1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 } 793 EXPORT_SYMBOL_GPL(xhci_shutdown); 794 795 #ifdef CONFIG_PM 796 static void xhci_save_registers(struct xhci_hcd *xhci) 797 { 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 807 } 808 809 static void xhci_restore_registers(struct xhci_hcd *xhci) 810 { 811 writel(xhci->s3.command, &xhci->op_regs->command); 812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 820 } 821 822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 823 { 824 u64 val_64; 825 826 /* step 2: initialize command ring buffer */ 827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 830 xhci->cmd_ring->dequeue) & 831 (u64) ~CMD_RING_RSVD_BITS) | 832 xhci->cmd_ring->cycle_state; 833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 834 "// Setting command ring address to 0x%llx", 835 (long unsigned long) val_64); 836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 837 } 838 839 /* 840 * The whole command ring must be cleared to zero when we suspend the host. 841 * 842 * The host doesn't save the command ring pointer in the suspend well, so we 843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 844 * aligned, because of the reserved bits in the command ring dequeue pointer 845 * register. Therefore, we can't just set the dequeue pointer back in the 846 * middle of the ring (TRBs are 16-byte aligned). 847 */ 848 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 849 { 850 struct xhci_ring *ring; 851 struct xhci_segment *seg; 852 853 ring = xhci->cmd_ring; 854 seg = ring->deq_seg; 855 do { 856 memset(seg->trbs, 0, 857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 859 cpu_to_le32(~TRB_CYCLE); 860 seg = seg->next; 861 } while (seg != ring->deq_seg); 862 863 /* Reset the software enqueue and dequeue pointers */ 864 ring->deq_seg = ring->first_seg; 865 ring->dequeue = ring->first_seg->trbs; 866 ring->enq_seg = ring->deq_seg; 867 ring->enqueue = ring->dequeue; 868 869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 870 /* 871 * Ring is now zeroed, so the HW should look for change of ownership 872 * when the cycle bit is set to 1. 873 */ 874 ring->cycle_state = 1; 875 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 887 { 888 struct xhci_port **ports; 889 int port_index; 890 unsigned long flags; 891 u32 t1, t2, portsc; 892 893 spin_lock_irqsave(&xhci->lock, flags); 894 895 /* disable usb3 ports Wake bits */ 896 port_index = xhci->usb3_rhub.num_ports; 897 ports = xhci->usb3_rhub.ports; 898 while (port_index--) { 899 t1 = readl(ports[port_index]->addr); 900 portsc = t1; 901 t1 = xhci_port_state_to_neutral(t1); 902 t2 = t1 & ~PORT_WAKE_BITS; 903 if (t1 != t2) { 904 writel(t2, ports[port_index]->addr); 905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 906 xhci->usb3_rhub.hcd->self.busnum, 907 port_index + 1, portsc, t2); 908 } 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 portsc = t1; 917 t1 = xhci_port_state_to_neutral(t1); 918 t2 = t1 & ~PORT_WAKE_BITS; 919 if (t1 != t2) { 920 writel(t2, ports[port_index]->addr); 921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 922 xhci->usb2_rhub.hcd->self.busnum, 923 port_index + 1, portsc, t2); 924 } 925 } 926 spin_unlock_irqrestore(&xhci->lock, flags); 927 } 928 929 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 930 { 931 struct xhci_port **ports; 932 int port_index; 933 u32 status; 934 u32 portsc; 935 936 status = readl(&xhci->op_regs->status); 937 if (status & STS_EINT) 938 return true; 939 /* 940 * Checking STS_EINT is not enough as there is a lag between a change 941 * bit being set and the Port Status Change Event that it generated 942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 943 */ 944 945 port_index = xhci->usb2_rhub.num_ports; 946 ports = xhci->usb2_rhub.ports; 947 while (port_index--) { 948 portsc = readl(ports[port_index]->addr); 949 if (portsc & PORT_CHANGE_MASK || 950 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 951 return true; 952 } 953 port_index = xhci->usb3_rhub.num_ports; 954 ports = xhci->usb3_rhub.ports; 955 while (port_index--) { 956 portsc = readl(ports[port_index]->addr); 957 if (portsc & PORT_CHANGE_MASK || 958 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 959 return true; 960 } 961 return false; 962 } 963 964 /* 965 * Stop HC (not bus-specific) 966 * 967 * This is called when the machine transition into S3/S4 mode. 968 * 969 */ 970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 971 { 972 int rc = 0; 973 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 974 struct usb_hcd *hcd = xhci_to_hcd(xhci); 975 u32 command; 976 u32 res; 977 978 if (!hcd->state) 979 return 0; 980 981 if (hcd->state != HC_STATE_SUSPENDED || 982 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 983 return -EINVAL; 984 985 /* Clear root port wake on bits if wakeup not allowed. */ 986 if (!do_wakeup) 987 xhci_disable_port_wake_on_bits(xhci); 988 989 if (!HCD_HW_ACCESSIBLE(hcd)) 990 return 0; 991 992 xhci_dbc_suspend(xhci); 993 994 /* Don't poll the roothubs on bus suspend. */ 995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 997 del_timer_sync(&hcd->rh_timer); 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 del_timer_sync(&xhci->shared_hcd->rh_timer); 1000 1001 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1002 usleep_range(1000, 1500); 1003 1004 spin_lock_irq(&xhci->lock); 1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 /* step 1: stop endpoint */ 1008 /* skipped assuming that port suspend has done */ 1009 1010 /* step 2: clear Run/Stop bit */ 1011 command = readl(&xhci->op_regs->command); 1012 command &= ~CMD_RUN; 1013 writel(command, &xhci->op_regs->command); 1014 1015 /* Some chips from Fresco Logic need an extraordinary delay */ 1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1017 1018 if (xhci_handshake(&xhci->op_regs->status, 1019 STS_HALT, STS_HALT, delay)) { 1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1021 spin_unlock_irq(&xhci->lock); 1022 return -ETIMEDOUT; 1023 } 1024 xhci_clear_command_ring(xhci); 1025 1026 /* step 3: save registers */ 1027 xhci_save_registers(xhci); 1028 1029 /* step 4: set CSS flag */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_CSS; 1032 writel(command, &xhci->op_regs->command); 1033 xhci->broken_suspend = 0; 1034 if (xhci_handshake(&xhci->op_regs->status, 1035 STS_SAVE, 0, 20 * 1000)) { 1036 /* 1037 * AMD SNPS xHC 3.0 occasionally does not clear the 1038 * SSS bit of USBSTS and when driver tries to poll 1039 * to see if the xHC clears BIT(8) which never happens 1040 * and driver assumes that controller is not responding 1041 * and times out. To workaround this, its good to check 1042 * if SRE and HCE bits are not set (as per xhci 1043 * Section 5.4.2) and bypass the timeout. 1044 */ 1045 res = readl(&xhci->op_regs->status); 1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1047 (((res & STS_SRE) == 0) && 1048 ((res & STS_HCE) == 0))) { 1049 xhci->broken_suspend = 1; 1050 } else { 1051 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1052 spin_unlock_irq(&xhci->lock); 1053 return -ETIMEDOUT; 1054 } 1055 } 1056 spin_unlock_irq(&xhci->lock); 1057 1058 /* 1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1060 * is about to be suspended. 1061 */ 1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1063 (!(xhci_all_ports_seen_u0(xhci)))) { 1064 del_timer_sync(&xhci->comp_mode_recovery_timer); 1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1066 "%s: compliance mode recovery timer deleted", 1067 __func__); 1068 } 1069 1070 /* step 5: remove core well power */ 1071 /* synchronize irq when using MSI-X */ 1072 xhci_msix_sync_irqs(xhci); 1073 1074 return rc; 1075 } 1076 EXPORT_SYMBOL_GPL(xhci_suspend); 1077 1078 /* 1079 * start xHC (not bus-specific) 1080 * 1081 * This is called when the machine transition from S3/S4 mode. 1082 * 1083 */ 1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1085 { 1086 u32 command, temp = 0; 1087 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1088 struct usb_hcd *secondary_hcd; 1089 int retval = 0; 1090 bool comp_timer_running = false; 1091 1092 if (!hcd->state) 1093 return 0; 1094 1095 /* Wait a bit if either of the roothubs need to settle from the 1096 * transition into bus suspend. 1097 */ 1098 1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1101 msleep(100); 1102 1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1108 hibernated = true; 1109 1110 if (!hibernated) { 1111 /* 1112 * Some controllers might lose power during suspend, so wait 1113 * for controller not ready bit to clear, just as in xHC init. 1114 */ 1115 retval = xhci_handshake(&xhci->op_regs->status, 1116 STS_CNR, 0, 10 * 1000 * 1000); 1117 if (retval) { 1118 xhci_warn(xhci, "Controller not ready at resume %d\n", 1119 retval); 1120 spin_unlock_irq(&xhci->lock); 1121 return retval; 1122 } 1123 /* step 1: restore register */ 1124 xhci_restore_registers(xhci); 1125 /* step 2: initialize command ring buffer */ 1126 xhci_set_cmd_ring_deq(xhci); 1127 /* step 3: restore state and start state*/ 1128 /* step 3: set CRS flag */ 1129 command = readl(&xhci->op_regs->command); 1130 command |= CMD_CRS; 1131 writel(command, &xhci->op_regs->command); 1132 /* 1133 * Some controllers take up to 55+ ms to complete the controller 1134 * restore so setting the timeout to 100ms. Xhci specification 1135 * doesn't mention any timeout value. 1136 */ 1137 if (xhci_handshake(&xhci->op_regs->status, 1138 STS_RESTORE, 0, 100 * 1000)) { 1139 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1140 spin_unlock_irq(&xhci->lock); 1141 return -ETIMEDOUT; 1142 } 1143 temp = readl(&xhci->op_regs->status); 1144 } 1145 1146 /* If restore operation fails, re-initialize the HC during resume */ 1147 if ((temp & STS_SRE) || hibernated) { 1148 1149 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1150 !(xhci_all_ports_seen_u0(xhci))) { 1151 del_timer_sync(&xhci->comp_mode_recovery_timer); 1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1153 "Compliance Mode Recovery Timer deleted!"); 1154 } 1155 1156 /* Let the USB core know _both_ roothubs lost power. */ 1157 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1159 1160 xhci_dbg(xhci, "Stop HCD\n"); 1161 xhci_halt(xhci); 1162 xhci_zero_64b_regs(xhci); 1163 retval = xhci_reset(xhci); 1164 spin_unlock_irq(&xhci->lock); 1165 if (retval) 1166 return retval; 1167 xhci_cleanup_msix(xhci); 1168 1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1170 temp = readl(&xhci->op_regs->status); 1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1172 temp = readl(&xhci->ir_set->irq_pending); 1173 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1174 1175 xhci_dbg(xhci, "cleaning up memory\n"); 1176 xhci_mem_cleanup(xhci); 1177 xhci_debugfs_exit(xhci); 1178 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1179 readl(&xhci->op_regs->status)); 1180 1181 /* USB core calls the PCI reinit and start functions twice: 1182 * first with the primary HCD, and then with the secondary HCD. 1183 * If we don't do the same, the host will never be started. 1184 */ 1185 if (!usb_hcd_is_primary_hcd(hcd)) 1186 secondary_hcd = hcd; 1187 else 1188 secondary_hcd = xhci->shared_hcd; 1189 1190 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1191 retval = xhci_init(hcd->primary_hcd); 1192 if (retval) 1193 return retval; 1194 comp_timer_running = true; 1195 1196 xhci_dbg(xhci, "Start the primary HCD\n"); 1197 retval = xhci_run(hcd->primary_hcd); 1198 if (!retval) { 1199 xhci_dbg(xhci, "Start the secondary HCD\n"); 1200 retval = xhci_run(secondary_hcd); 1201 } 1202 hcd->state = HC_STATE_SUSPENDED; 1203 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1204 goto done; 1205 } 1206 1207 /* step 4: set Run/Stop bit */ 1208 command = readl(&xhci->op_regs->command); 1209 command |= CMD_RUN; 1210 writel(command, &xhci->op_regs->command); 1211 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1212 0, 250 * 1000); 1213 1214 /* step 5: walk topology and initialize portsc, 1215 * portpmsc and portli 1216 */ 1217 /* this is done in bus_resume */ 1218 1219 /* step 6: restart each of the previously 1220 * Running endpoints by ringing their doorbells 1221 */ 1222 1223 spin_unlock_irq(&xhci->lock); 1224 1225 xhci_dbc_resume(xhci); 1226 1227 done: 1228 if (retval == 0) { 1229 /* Resume root hubs only when have pending events. */ 1230 if (xhci_pending_portevent(xhci)) { 1231 usb_hcd_resume_root_hub(xhci->shared_hcd); 1232 usb_hcd_resume_root_hub(hcd); 1233 } 1234 } 1235 1236 /* 1237 * If system is subject to the Quirk, Compliance Mode Timer needs to 1238 * be re-initialized Always after a system resume. Ports are subject 1239 * to suffer the Compliance Mode issue again. It doesn't matter if 1240 * ports have entered previously to U0 before system's suspension. 1241 */ 1242 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1243 compliance_mode_recovery_timer_init(xhci); 1244 1245 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1246 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1247 1248 /* Re-enable port polling. */ 1249 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1250 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1251 usb_hcd_poll_rh_status(xhci->shared_hcd); 1252 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1253 usb_hcd_poll_rh_status(hcd); 1254 1255 return retval; 1256 } 1257 EXPORT_SYMBOL_GPL(xhci_resume); 1258 #endif /* CONFIG_PM */ 1259 1260 /*-------------------------------------------------------------------------*/ 1261 1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1263 { 1264 void *temp; 1265 int ret = 0; 1266 unsigned int buf_len; 1267 enum dma_data_direction dir; 1268 1269 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1270 buf_len = urb->transfer_buffer_length; 1271 1272 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1273 dev_to_node(hcd->self.sysdev)); 1274 1275 if (usb_urb_dir_out(urb)) 1276 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1277 temp, buf_len, 0); 1278 1279 urb->transfer_buffer = temp; 1280 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1281 urb->transfer_buffer, 1282 urb->transfer_buffer_length, 1283 dir); 1284 1285 if (dma_mapping_error(hcd->self.sysdev, 1286 urb->transfer_dma)) { 1287 ret = -EAGAIN; 1288 kfree(temp); 1289 } else { 1290 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1291 } 1292 1293 return ret; 1294 } 1295 1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1297 struct urb *urb) 1298 { 1299 bool ret = false; 1300 unsigned int i; 1301 unsigned int len = 0; 1302 unsigned int trb_size; 1303 unsigned int max_pkt; 1304 struct scatterlist *sg; 1305 struct scatterlist *tail_sg; 1306 1307 tail_sg = urb->sg; 1308 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1309 1310 if (!urb->num_sgs) 1311 return ret; 1312 1313 if (urb->dev->speed >= USB_SPEED_SUPER) 1314 trb_size = TRB_CACHE_SIZE_SS; 1315 else 1316 trb_size = TRB_CACHE_SIZE_HS; 1317 1318 if (urb->transfer_buffer_length != 0 && 1319 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1320 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1321 len = len + sg->length; 1322 if (i > trb_size - 2) { 1323 len = len - tail_sg->length; 1324 if (len < max_pkt) { 1325 ret = true; 1326 break; 1327 } 1328 1329 tail_sg = sg_next(tail_sg); 1330 } 1331 } 1332 } 1333 return ret; 1334 } 1335 1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1337 { 1338 unsigned int len; 1339 unsigned int buf_len; 1340 enum dma_data_direction dir; 1341 1342 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1343 1344 buf_len = urb->transfer_buffer_length; 1345 1346 if (IS_ENABLED(CONFIG_HAS_DMA) && 1347 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1348 dma_unmap_single(hcd->self.sysdev, 1349 urb->transfer_dma, 1350 urb->transfer_buffer_length, 1351 dir); 1352 1353 if (usb_urb_dir_in(urb)) 1354 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1355 urb->transfer_buffer, 1356 buf_len, 1357 0); 1358 1359 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1360 kfree(urb->transfer_buffer); 1361 urb->transfer_buffer = NULL; 1362 } 1363 1364 /* 1365 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1366 * we'll copy the actual data into the TRB address register. This is limited to 1367 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1368 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1369 */ 1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1371 gfp_t mem_flags) 1372 { 1373 struct xhci_hcd *xhci; 1374 1375 xhci = hcd_to_xhci(hcd); 1376 1377 if (xhci_urb_suitable_for_idt(urb)) 1378 return 0; 1379 1380 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1381 if (xhci_urb_temp_buffer_required(hcd, urb)) 1382 return xhci_map_temp_buffer(hcd, urb); 1383 } 1384 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1385 } 1386 1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1388 { 1389 struct xhci_hcd *xhci; 1390 bool unmap_temp_buf = false; 1391 1392 xhci = hcd_to_xhci(hcd); 1393 1394 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1395 unmap_temp_buf = true; 1396 1397 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1398 xhci_unmap_temp_buf(hcd, urb); 1399 else 1400 usb_hcd_unmap_urb_for_dma(hcd, urb); 1401 } 1402 1403 /** 1404 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1405 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1406 * value to right shift 1 for the bitmask. 1407 * 1408 * Index = (epnum * 2) + direction - 1, 1409 * where direction = 0 for OUT, 1 for IN. 1410 * For control endpoints, the IN index is used (OUT index is unused), so 1411 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1412 */ 1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1414 { 1415 unsigned int index; 1416 if (usb_endpoint_xfer_control(desc)) 1417 index = (unsigned int) (usb_endpoint_num(desc)*2); 1418 else 1419 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1420 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1421 return index; 1422 } 1423 1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1425 * address from the XHCI endpoint index. 1426 */ 1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1428 { 1429 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1430 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1431 return direction | number; 1432 } 1433 1434 /* Find the flag for this endpoint (for use in the control context). Use the 1435 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1436 * bit 1, etc. 1437 */ 1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1439 { 1440 return 1 << (xhci_get_endpoint_index(desc) + 1); 1441 } 1442 1443 /* Find the flag for this endpoint (for use in the control context). Use the 1444 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1445 * bit 1, etc. 1446 */ 1447 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1448 { 1449 return 1 << (ep_index + 1); 1450 } 1451 1452 /* Compute the last valid endpoint context index. Basically, this is the 1453 * endpoint index plus one. For slot contexts with more than valid endpoint, 1454 * we find the most significant bit set in the added contexts flags. 1455 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1456 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1457 */ 1458 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1459 { 1460 return fls(added_ctxs) - 1; 1461 } 1462 1463 /* Returns 1 if the arguments are OK; 1464 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1465 */ 1466 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1467 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1468 const char *func) { 1469 struct xhci_hcd *xhci; 1470 struct xhci_virt_device *virt_dev; 1471 1472 if (!hcd || (check_ep && !ep) || !udev) { 1473 pr_debug("xHCI %s called with invalid args\n", func); 1474 return -EINVAL; 1475 } 1476 if (!udev->parent) { 1477 pr_debug("xHCI %s called for root hub\n", func); 1478 return 0; 1479 } 1480 1481 xhci = hcd_to_xhci(hcd); 1482 if (check_virt_dev) { 1483 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1484 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1485 func); 1486 return -EINVAL; 1487 } 1488 1489 virt_dev = xhci->devs[udev->slot_id]; 1490 if (virt_dev->udev != udev) { 1491 xhci_dbg(xhci, "xHCI %s called with udev and " 1492 "virt_dev does not match\n", func); 1493 return -EINVAL; 1494 } 1495 } 1496 1497 if (xhci->xhc_state & XHCI_STATE_HALTED) 1498 return -ENODEV; 1499 1500 return 1; 1501 } 1502 1503 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1504 struct usb_device *udev, struct xhci_command *command, 1505 bool ctx_change, bool must_succeed); 1506 1507 /* 1508 * Full speed devices may have a max packet size greater than 8 bytes, but the 1509 * USB core doesn't know that until it reads the first 8 bytes of the 1510 * descriptor. If the usb_device's max packet size changes after that point, 1511 * we need to issue an evaluate context command and wait on it. 1512 */ 1513 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1514 unsigned int ep_index, struct urb *urb) 1515 { 1516 struct xhci_container_ctx *out_ctx; 1517 struct xhci_input_control_ctx *ctrl_ctx; 1518 struct xhci_ep_ctx *ep_ctx; 1519 struct xhci_command *command; 1520 int max_packet_size; 1521 int hw_max_packet_size; 1522 int ret = 0; 1523 1524 out_ctx = xhci->devs[slot_id]->out_ctx; 1525 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1526 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1527 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1528 if (hw_max_packet_size != max_packet_size) { 1529 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1530 "Max Packet Size for ep 0 changed."); 1531 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1532 "Max packet size in usb_device = %d", 1533 max_packet_size); 1534 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1535 "Max packet size in xHCI HW = %d", 1536 hw_max_packet_size); 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1538 "Issuing evaluate context command."); 1539 1540 /* Set up the input context flags for the command */ 1541 /* FIXME: This won't work if a non-default control endpoint 1542 * changes max packet sizes. 1543 */ 1544 1545 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1546 if (!command) 1547 return -ENOMEM; 1548 1549 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1550 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1551 if (!ctrl_ctx) { 1552 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1553 __func__); 1554 ret = -ENOMEM; 1555 goto command_cleanup; 1556 } 1557 /* Set up the modified control endpoint 0 */ 1558 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1559 xhci->devs[slot_id]->out_ctx, ep_index); 1560 1561 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1562 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1563 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1564 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1565 1566 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1567 ctrl_ctx->drop_flags = 0; 1568 1569 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1570 true, false); 1571 1572 /* Clean up the input context for later use by bandwidth 1573 * functions. 1574 */ 1575 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1576 command_cleanup: 1577 kfree(command->completion); 1578 kfree(command); 1579 } 1580 return ret; 1581 } 1582 1583 /* 1584 * non-error returns are a promise to giveback() the urb later 1585 * we drop ownership so next owner (or urb unlink) can get it 1586 */ 1587 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1588 { 1589 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1590 unsigned long flags; 1591 int ret = 0; 1592 unsigned int slot_id, ep_index; 1593 unsigned int *ep_state; 1594 struct urb_priv *urb_priv; 1595 int num_tds; 1596 1597 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1598 true, true, __func__) <= 0) 1599 return -EINVAL; 1600 1601 slot_id = urb->dev->slot_id; 1602 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1603 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1604 1605 if (!HCD_HW_ACCESSIBLE(hcd)) 1606 return -ESHUTDOWN; 1607 1608 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1609 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1610 return -ENODEV; 1611 } 1612 1613 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1614 num_tds = urb->number_of_packets; 1615 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1616 urb->transfer_buffer_length > 0 && 1617 urb->transfer_flags & URB_ZERO_PACKET && 1618 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1619 num_tds = 2; 1620 else 1621 num_tds = 1; 1622 1623 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1624 if (!urb_priv) 1625 return -ENOMEM; 1626 1627 urb_priv->num_tds = num_tds; 1628 urb_priv->num_tds_done = 0; 1629 urb->hcpriv = urb_priv; 1630 1631 trace_xhci_urb_enqueue(urb); 1632 1633 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1634 /* Check to see if the max packet size for the default control 1635 * endpoint changed during FS device enumeration 1636 */ 1637 if (urb->dev->speed == USB_SPEED_FULL) { 1638 ret = xhci_check_maxpacket(xhci, slot_id, 1639 ep_index, urb); 1640 if (ret < 0) { 1641 xhci_urb_free_priv(urb_priv); 1642 urb->hcpriv = NULL; 1643 return ret; 1644 } 1645 } 1646 } 1647 1648 spin_lock_irqsave(&xhci->lock, flags); 1649 1650 if (xhci->xhc_state & XHCI_STATE_DYING) { 1651 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1652 urb->ep->desc.bEndpointAddress, urb); 1653 ret = -ESHUTDOWN; 1654 goto free_priv; 1655 } 1656 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1657 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1658 *ep_state); 1659 ret = -EINVAL; 1660 goto free_priv; 1661 } 1662 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1663 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1664 ret = -EINVAL; 1665 goto free_priv; 1666 } 1667 1668 switch (usb_endpoint_type(&urb->ep->desc)) { 1669 1670 case USB_ENDPOINT_XFER_CONTROL: 1671 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1672 slot_id, ep_index); 1673 break; 1674 case USB_ENDPOINT_XFER_BULK: 1675 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1676 slot_id, ep_index); 1677 break; 1678 case USB_ENDPOINT_XFER_INT: 1679 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1680 slot_id, ep_index); 1681 break; 1682 case USB_ENDPOINT_XFER_ISOC: 1683 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1684 slot_id, ep_index); 1685 } 1686 1687 if (ret) { 1688 free_priv: 1689 xhci_urb_free_priv(urb_priv); 1690 urb->hcpriv = NULL; 1691 } 1692 spin_unlock_irqrestore(&xhci->lock, flags); 1693 return ret; 1694 } 1695 1696 /* 1697 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1698 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1699 * should pick up where it left off in the TD, unless a Set Transfer Ring 1700 * Dequeue Pointer is issued. 1701 * 1702 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1703 * the ring. Since the ring is a contiguous structure, they can't be physically 1704 * removed. Instead, there are two options: 1705 * 1706 * 1) If the HC is in the middle of processing the URB to be canceled, we 1707 * simply move the ring's dequeue pointer past those TRBs using the Set 1708 * Transfer Ring Dequeue Pointer command. This will be the common case, 1709 * when drivers timeout on the last submitted URB and attempt to cancel. 1710 * 1711 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1712 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1713 * HC will need to invalidate the any TRBs it has cached after the stop 1714 * endpoint command, as noted in the xHCI 0.95 errata. 1715 * 1716 * 3) The TD may have completed by the time the Stop Endpoint Command 1717 * completes, so software needs to handle that case too. 1718 * 1719 * This function should protect against the TD enqueueing code ringing the 1720 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1721 * It also needs to account for multiple cancellations on happening at the same 1722 * time for the same endpoint. 1723 * 1724 * Note that this function can be called in any context, or so says 1725 * usb_hcd_unlink_urb() 1726 */ 1727 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1728 { 1729 unsigned long flags; 1730 int ret, i; 1731 u32 temp; 1732 struct xhci_hcd *xhci; 1733 struct urb_priv *urb_priv; 1734 struct xhci_td *td; 1735 unsigned int ep_index; 1736 struct xhci_ring *ep_ring; 1737 struct xhci_virt_ep *ep; 1738 struct xhci_command *command; 1739 struct xhci_virt_device *vdev; 1740 1741 xhci = hcd_to_xhci(hcd); 1742 spin_lock_irqsave(&xhci->lock, flags); 1743 1744 trace_xhci_urb_dequeue(urb); 1745 1746 /* Make sure the URB hasn't completed or been unlinked already */ 1747 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1748 if (ret) 1749 goto done; 1750 1751 /* give back URB now if we can't queue it for cancel */ 1752 vdev = xhci->devs[urb->dev->slot_id]; 1753 urb_priv = urb->hcpriv; 1754 if (!vdev || !urb_priv) 1755 goto err_giveback; 1756 1757 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1758 ep = &vdev->eps[ep_index]; 1759 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1760 if (!ep || !ep_ring) 1761 goto err_giveback; 1762 1763 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1764 temp = readl(&xhci->op_regs->status); 1765 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1766 xhci_hc_died(xhci); 1767 goto done; 1768 } 1769 1770 /* 1771 * check ring is not re-allocated since URB was enqueued. If it is, then 1772 * make sure none of the ring related pointers in this URB private data 1773 * are touched, such as td_list, otherwise we overwrite freed data 1774 */ 1775 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1776 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1777 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1778 td = &urb_priv->td[i]; 1779 if (!list_empty(&td->cancelled_td_list)) 1780 list_del_init(&td->cancelled_td_list); 1781 } 1782 goto err_giveback; 1783 } 1784 1785 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1786 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1787 "HC halted, freeing TD manually."); 1788 for (i = urb_priv->num_tds_done; 1789 i < urb_priv->num_tds; 1790 i++) { 1791 td = &urb_priv->td[i]; 1792 if (!list_empty(&td->td_list)) 1793 list_del_init(&td->td_list); 1794 if (!list_empty(&td->cancelled_td_list)) 1795 list_del_init(&td->cancelled_td_list); 1796 } 1797 goto err_giveback; 1798 } 1799 1800 i = urb_priv->num_tds_done; 1801 if (i < urb_priv->num_tds) 1802 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1803 "Cancel URB %p, dev %s, ep 0x%x, " 1804 "starting at offset 0x%llx", 1805 urb, urb->dev->devpath, 1806 urb->ep->desc.bEndpointAddress, 1807 (unsigned long long) xhci_trb_virt_to_dma( 1808 urb_priv->td[i].start_seg, 1809 urb_priv->td[i].first_trb)); 1810 1811 for (; i < urb_priv->num_tds; i++) { 1812 td = &urb_priv->td[i]; 1813 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1814 } 1815 1816 /* Queue a stop endpoint command, but only if this is 1817 * the first cancellation to be handled. 1818 */ 1819 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1820 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1821 if (!command) { 1822 ret = -ENOMEM; 1823 goto done; 1824 } 1825 ep->ep_state |= EP_STOP_CMD_PENDING; 1826 ep->stop_cmd_timer.expires = jiffies + 1827 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1828 add_timer(&ep->stop_cmd_timer); 1829 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1830 ep_index, 0); 1831 xhci_ring_cmd_db(xhci); 1832 } 1833 done: 1834 spin_unlock_irqrestore(&xhci->lock, flags); 1835 return ret; 1836 1837 err_giveback: 1838 if (urb_priv) 1839 xhci_urb_free_priv(urb_priv); 1840 usb_hcd_unlink_urb_from_ep(hcd, urb); 1841 spin_unlock_irqrestore(&xhci->lock, flags); 1842 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1843 return ret; 1844 } 1845 1846 /* Drop an endpoint from a new bandwidth configuration for this device. 1847 * Only one call to this function is allowed per endpoint before 1848 * check_bandwidth() or reset_bandwidth() must be called. 1849 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1850 * add the endpoint to the schedule with possibly new parameters denoted by a 1851 * different endpoint descriptor in usb_host_endpoint. 1852 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1853 * not allowed. 1854 * 1855 * The USB core will not allow URBs to be queued to an endpoint that is being 1856 * disabled, so there's no need for mutual exclusion to protect 1857 * the xhci->devs[slot_id] structure. 1858 */ 1859 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1860 struct usb_host_endpoint *ep) 1861 { 1862 struct xhci_hcd *xhci; 1863 struct xhci_container_ctx *in_ctx, *out_ctx; 1864 struct xhci_input_control_ctx *ctrl_ctx; 1865 unsigned int ep_index; 1866 struct xhci_ep_ctx *ep_ctx; 1867 u32 drop_flag; 1868 u32 new_add_flags, new_drop_flags; 1869 int ret; 1870 1871 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1872 if (ret <= 0) 1873 return ret; 1874 xhci = hcd_to_xhci(hcd); 1875 if (xhci->xhc_state & XHCI_STATE_DYING) 1876 return -ENODEV; 1877 1878 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1879 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1880 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1881 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1882 __func__, drop_flag); 1883 return 0; 1884 } 1885 1886 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1887 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1888 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1889 if (!ctrl_ctx) { 1890 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1891 __func__); 1892 return 0; 1893 } 1894 1895 ep_index = xhci_get_endpoint_index(&ep->desc); 1896 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1897 /* If the HC already knows the endpoint is disabled, 1898 * or the HCD has noted it is disabled, ignore this request 1899 */ 1900 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1901 le32_to_cpu(ctrl_ctx->drop_flags) & 1902 xhci_get_endpoint_flag(&ep->desc)) { 1903 /* Do not warn when called after a usb_device_reset */ 1904 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1905 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1906 __func__, ep); 1907 return 0; 1908 } 1909 1910 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1911 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1912 1913 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1914 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1915 1916 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1917 1918 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1919 1920 if (xhci->quirks & XHCI_MTK_HOST) 1921 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1922 1923 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1924 (unsigned int) ep->desc.bEndpointAddress, 1925 udev->slot_id, 1926 (unsigned int) new_drop_flags, 1927 (unsigned int) new_add_flags); 1928 return 0; 1929 } 1930 1931 /* Add an endpoint to a new possible bandwidth configuration for this device. 1932 * Only one call to this function is allowed per endpoint before 1933 * check_bandwidth() or reset_bandwidth() must be called. 1934 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1935 * add the endpoint to the schedule with possibly new parameters denoted by a 1936 * different endpoint descriptor in usb_host_endpoint. 1937 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1938 * not allowed. 1939 * 1940 * The USB core will not allow URBs to be queued to an endpoint until the 1941 * configuration or alt setting is installed in the device, so there's no need 1942 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1943 */ 1944 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1945 struct usb_host_endpoint *ep) 1946 { 1947 struct xhci_hcd *xhci; 1948 struct xhci_container_ctx *in_ctx; 1949 unsigned int ep_index; 1950 struct xhci_input_control_ctx *ctrl_ctx; 1951 struct xhci_ep_ctx *ep_ctx; 1952 u32 added_ctxs; 1953 u32 new_add_flags, new_drop_flags; 1954 struct xhci_virt_device *virt_dev; 1955 int ret = 0; 1956 1957 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1958 if (ret <= 0) { 1959 /* So we won't queue a reset ep command for a root hub */ 1960 ep->hcpriv = NULL; 1961 return ret; 1962 } 1963 xhci = hcd_to_xhci(hcd); 1964 if (xhci->xhc_state & XHCI_STATE_DYING) 1965 return -ENODEV; 1966 1967 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1968 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1969 /* FIXME when we have to issue an evaluate endpoint command to 1970 * deal with ep0 max packet size changing once we get the 1971 * descriptors 1972 */ 1973 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1974 __func__, added_ctxs); 1975 return 0; 1976 } 1977 1978 virt_dev = xhci->devs[udev->slot_id]; 1979 in_ctx = virt_dev->in_ctx; 1980 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1981 if (!ctrl_ctx) { 1982 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1983 __func__); 1984 return 0; 1985 } 1986 1987 ep_index = xhci_get_endpoint_index(&ep->desc); 1988 /* If this endpoint is already in use, and the upper layers are trying 1989 * to add it again without dropping it, reject the addition. 1990 */ 1991 if (virt_dev->eps[ep_index].ring && 1992 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1993 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1994 "without dropping it.\n", 1995 (unsigned int) ep->desc.bEndpointAddress); 1996 return -EINVAL; 1997 } 1998 1999 /* If the HCD has already noted the endpoint is enabled, 2000 * ignore this request. 2001 */ 2002 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2003 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2004 __func__, ep); 2005 return 0; 2006 } 2007 2008 /* 2009 * Configuration and alternate setting changes must be done in 2010 * process context, not interrupt context (or so documenation 2011 * for usb_set_interface() and usb_set_configuration() claim). 2012 */ 2013 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2014 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2015 __func__, ep->desc.bEndpointAddress); 2016 return -ENOMEM; 2017 } 2018 2019 if (xhci->quirks & XHCI_MTK_HOST) { 2020 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 2021 if (ret < 0) { 2022 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 2023 virt_dev->eps[ep_index].new_ring = NULL; 2024 return ret; 2025 } 2026 } 2027 2028 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2029 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2030 2031 /* If xhci_endpoint_disable() was called for this endpoint, but the 2032 * xHC hasn't been notified yet through the check_bandwidth() call, 2033 * this re-adds a new state for the endpoint from the new endpoint 2034 * descriptors. We must drop and re-add this endpoint, so we leave the 2035 * drop flags alone. 2036 */ 2037 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2038 2039 /* Store the usb_device pointer for later use */ 2040 ep->hcpriv = udev; 2041 2042 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2043 trace_xhci_add_endpoint(ep_ctx); 2044 2045 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2046 (unsigned int) ep->desc.bEndpointAddress, 2047 udev->slot_id, 2048 (unsigned int) new_drop_flags, 2049 (unsigned int) new_add_flags); 2050 return 0; 2051 } 2052 2053 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2054 { 2055 struct xhci_input_control_ctx *ctrl_ctx; 2056 struct xhci_ep_ctx *ep_ctx; 2057 struct xhci_slot_ctx *slot_ctx; 2058 int i; 2059 2060 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2061 if (!ctrl_ctx) { 2062 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2063 __func__); 2064 return; 2065 } 2066 2067 /* When a device's add flag and drop flag are zero, any subsequent 2068 * configure endpoint command will leave that endpoint's state 2069 * untouched. Make sure we don't leave any old state in the input 2070 * endpoint contexts. 2071 */ 2072 ctrl_ctx->drop_flags = 0; 2073 ctrl_ctx->add_flags = 0; 2074 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2075 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2076 /* Endpoint 0 is always valid */ 2077 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2078 for (i = 1; i < 31; i++) { 2079 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2080 ep_ctx->ep_info = 0; 2081 ep_ctx->ep_info2 = 0; 2082 ep_ctx->deq = 0; 2083 ep_ctx->tx_info = 0; 2084 } 2085 } 2086 2087 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2088 struct usb_device *udev, u32 *cmd_status) 2089 { 2090 int ret; 2091 2092 switch (*cmd_status) { 2093 case COMP_COMMAND_ABORTED: 2094 case COMP_COMMAND_RING_STOPPED: 2095 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2096 ret = -ETIME; 2097 break; 2098 case COMP_RESOURCE_ERROR: 2099 dev_warn(&udev->dev, 2100 "Not enough host controller resources for new device state.\n"); 2101 ret = -ENOMEM; 2102 /* FIXME: can we allocate more resources for the HC? */ 2103 break; 2104 case COMP_BANDWIDTH_ERROR: 2105 case COMP_SECONDARY_BANDWIDTH_ERROR: 2106 dev_warn(&udev->dev, 2107 "Not enough bandwidth for new device state.\n"); 2108 ret = -ENOSPC; 2109 /* FIXME: can we go back to the old state? */ 2110 break; 2111 case COMP_TRB_ERROR: 2112 /* the HCD set up something wrong */ 2113 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2114 "add flag = 1, " 2115 "and endpoint is not disabled.\n"); 2116 ret = -EINVAL; 2117 break; 2118 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2119 dev_warn(&udev->dev, 2120 "ERROR: Incompatible device for endpoint configure command.\n"); 2121 ret = -ENODEV; 2122 break; 2123 case COMP_SUCCESS: 2124 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2125 "Successful Endpoint Configure command"); 2126 ret = 0; 2127 break; 2128 default: 2129 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2130 *cmd_status); 2131 ret = -EINVAL; 2132 break; 2133 } 2134 return ret; 2135 } 2136 2137 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2138 struct usb_device *udev, u32 *cmd_status) 2139 { 2140 int ret; 2141 2142 switch (*cmd_status) { 2143 case COMP_COMMAND_ABORTED: 2144 case COMP_COMMAND_RING_STOPPED: 2145 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2146 ret = -ETIME; 2147 break; 2148 case COMP_PARAMETER_ERROR: 2149 dev_warn(&udev->dev, 2150 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2151 ret = -EINVAL; 2152 break; 2153 case COMP_SLOT_NOT_ENABLED_ERROR: 2154 dev_warn(&udev->dev, 2155 "WARN: slot not enabled for evaluate context command.\n"); 2156 ret = -EINVAL; 2157 break; 2158 case COMP_CONTEXT_STATE_ERROR: 2159 dev_warn(&udev->dev, 2160 "WARN: invalid context state for evaluate context command.\n"); 2161 ret = -EINVAL; 2162 break; 2163 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2164 dev_warn(&udev->dev, 2165 "ERROR: Incompatible device for evaluate context command.\n"); 2166 ret = -ENODEV; 2167 break; 2168 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2169 /* Max Exit Latency too large error */ 2170 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2171 ret = -EINVAL; 2172 break; 2173 case COMP_SUCCESS: 2174 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2175 "Successful evaluate context command"); 2176 ret = 0; 2177 break; 2178 default: 2179 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2180 *cmd_status); 2181 ret = -EINVAL; 2182 break; 2183 } 2184 return ret; 2185 } 2186 2187 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2188 struct xhci_input_control_ctx *ctrl_ctx) 2189 { 2190 u32 valid_add_flags; 2191 u32 valid_drop_flags; 2192 2193 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2194 * (bit 1). The default control endpoint is added during the Address 2195 * Device command and is never removed until the slot is disabled. 2196 */ 2197 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2198 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2199 2200 /* Use hweight32 to count the number of ones in the add flags, or 2201 * number of endpoints added. Don't count endpoints that are changed 2202 * (both added and dropped). 2203 */ 2204 return hweight32(valid_add_flags) - 2205 hweight32(valid_add_flags & valid_drop_flags); 2206 } 2207 2208 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2209 struct xhci_input_control_ctx *ctrl_ctx) 2210 { 2211 u32 valid_add_flags; 2212 u32 valid_drop_flags; 2213 2214 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2215 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2216 2217 return hweight32(valid_drop_flags) - 2218 hweight32(valid_add_flags & valid_drop_flags); 2219 } 2220 2221 /* 2222 * We need to reserve the new number of endpoints before the configure endpoint 2223 * command completes. We can't subtract the dropped endpoints from the number 2224 * of active endpoints until the command completes because we can oversubscribe 2225 * the host in this case: 2226 * 2227 * - the first configure endpoint command drops more endpoints than it adds 2228 * - a second configure endpoint command that adds more endpoints is queued 2229 * - the first configure endpoint command fails, so the config is unchanged 2230 * - the second command may succeed, even though there isn't enough resources 2231 * 2232 * Must be called with xhci->lock held. 2233 */ 2234 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2235 struct xhci_input_control_ctx *ctrl_ctx) 2236 { 2237 u32 added_eps; 2238 2239 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2240 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2241 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2242 "Not enough ep ctxs: " 2243 "%u active, need to add %u, limit is %u.", 2244 xhci->num_active_eps, added_eps, 2245 xhci->limit_active_eps); 2246 return -ENOMEM; 2247 } 2248 xhci->num_active_eps += added_eps; 2249 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2250 "Adding %u ep ctxs, %u now active.", added_eps, 2251 xhci->num_active_eps); 2252 return 0; 2253 } 2254 2255 /* 2256 * The configure endpoint was failed by the xHC for some other reason, so we 2257 * need to revert the resources that failed configuration would have used. 2258 * 2259 * Must be called with xhci->lock held. 2260 */ 2261 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2262 struct xhci_input_control_ctx *ctrl_ctx) 2263 { 2264 u32 num_failed_eps; 2265 2266 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2267 xhci->num_active_eps -= num_failed_eps; 2268 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2269 "Removing %u failed ep ctxs, %u now active.", 2270 num_failed_eps, 2271 xhci->num_active_eps); 2272 } 2273 2274 /* 2275 * Now that the command has completed, clean up the active endpoint count by 2276 * subtracting out the endpoints that were dropped (but not changed). 2277 * 2278 * Must be called with xhci->lock held. 2279 */ 2280 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2281 struct xhci_input_control_ctx *ctrl_ctx) 2282 { 2283 u32 num_dropped_eps; 2284 2285 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2286 xhci->num_active_eps -= num_dropped_eps; 2287 if (num_dropped_eps) 2288 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2289 "Removing %u dropped ep ctxs, %u now active.", 2290 num_dropped_eps, 2291 xhci->num_active_eps); 2292 } 2293 2294 static unsigned int xhci_get_block_size(struct usb_device *udev) 2295 { 2296 switch (udev->speed) { 2297 case USB_SPEED_LOW: 2298 case USB_SPEED_FULL: 2299 return FS_BLOCK; 2300 case USB_SPEED_HIGH: 2301 return HS_BLOCK; 2302 case USB_SPEED_SUPER: 2303 case USB_SPEED_SUPER_PLUS: 2304 return SS_BLOCK; 2305 case USB_SPEED_UNKNOWN: 2306 case USB_SPEED_WIRELESS: 2307 default: 2308 /* Should never happen */ 2309 return 1; 2310 } 2311 } 2312 2313 static unsigned int 2314 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2315 { 2316 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2317 return LS_OVERHEAD; 2318 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2319 return FS_OVERHEAD; 2320 return HS_OVERHEAD; 2321 } 2322 2323 /* If we are changing a LS/FS device under a HS hub, 2324 * make sure (if we are activating a new TT) that the HS bus has enough 2325 * bandwidth for this new TT. 2326 */ 2327 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2328 struct xhci_virt_device *virt_dev, 2329 int old_active_eps) 2330 { 2331 struct xhci_interval_bw_table *bw_table; 2332 struct xhci_tt_bw_info *tt_info; 2333 2334 /* Find the bandwidth table for the root port this TT is attached to. */ 2335 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2336 tt_info = virt_dev->tt_info; 2337 /* If this TT already had active endpoints, the bandwidth for this TT 2338 * has already been added. Removing all periodic endpoints (and thus 2339 * making the TT enactive) will only decrease the bandwidth used. 2340 */ 2341 if (old_active_eps) 2342 return 0; 2343 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2344 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2345 return -ENOMEM; 2346 return 0; 2347 } 2348 /* Not sure why we would have no new active endpoints... 2349 * 2350 * Maybe because of an Evaluate Context change for a hub update or a 2351 * control endpoint 0 max packet size change? 2352 * FIXME: skip the bandwidth calculation in that case. 2353 */ 2354 return 0; 2355 } 2356 2357 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2358 struct xhci_virt_device *virt_dev) 2359 { 2360 unsigned int bw_reserved; 2361 2362 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2363 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2364 return -ENOMEM; 2365 2366 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2367 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2368 return -ENOMEM; 2369 2370 return 0; 2371 } 2372 2373 /* 2374 * This algorithm is a very conservative estimate of the worst-case scheduling 2375 * scenario for any one interval. The hardware dynamically schedules the 2376 * packets, so we can't tell which microframe could be the limiting factor in 2377 * the bandwidth scheduling. This only takes into account periodic endpoints. 2378 * 2379 * Obviously, we can't solve an NP complete problem to find the minimum worst 2380 * case scenario. Instead, we come up with an estimate that is no less than 2381 * the worst case bandwidth used for any one microframe, but may be an 2382 * over-estimate. 2383 * 2384 * We walk the requirements for each endpoint by interval, starting with the 2385 * smallest interval, and place packets in the schedule where there is only one 2386 * possible way to schedule packets for that interval. In order to simplify 2387 * this algorithm, we record the largest max packet size for each interval, and 2388 * assume all packets will be that size. 2389 * 2390 * For interval 0, we obviously must schedule all packets for each interval. 2391 * The bandwidth for interval 0 is just the amount of data to be transmitted 2392 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2393 * the number of packets). 2394 * 2395 * For interval 1, we have two possible microframes to schedule those packets 2396 * in. For this algorithm, if we can schedule the same number of packets for 2397 * each possible scheduling opportunity (each microframe), we will do so. The 2398 * remaining number of packets will be saved to be transmitted in the gaps in 2399 * the next interval's scheduling sequence. 2400 * 2401 * As we move those remaining packets to be scheduled with interval 2 packets, 2402 * we have to double the number of remaining packets to transmit. This is 2403 * because the intervals are actually powers of 2, and we would be transmitting 2404 * the previous interval's packets twice in this interval. We also have to be 2405 * sure that when we look at the largest max packet size for this interval, we 2406 * also look at the largest max packet size for the remaining packets and take 2407 * the greater of the two. 2408 * 2409 * The algorithm continues to evenly distribute packets in each scheduling 2410 * opportunity, and push the remaining packets out, until we get to the last 2411 * interval. Then those packets and their associated overhead are just added 2412 * to the bandwidth used. 2413 */ 2414 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2415 struct xhci_virt_device *virt_dev, 2416 int old_active_eps) 2417 { 2418 unsigned int bw_reserved; 2419 unsigned int max_bandwidth; 2420 unsigned int bw_used; 2421 unsigned int block_size; 2422 struct xhci_interval_bw_table *bw_table; 2423 unsigned int packet_size = 0; 2424 unsigned int overhead = 0; 2425 unsigned int packets_transmitted = 0; 2426 unsigned int packets_remaining = 0; 2427 unsigned int i; 2428 2429 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2430 return xhci_check_ss_bw(xhci, virt_dev); 2431 2432 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2433 max_bandwidth = HS_BW_LIMIT; 2434 /* Convert percent of bus BW reserved to blocks reserved */ 2435 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2436 } else { 2437 max_bandwidth = FS_BW_LIMIT; 2438 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2439 } 2440 2441 bw_table = virt_dev->bw_table; 2442 /* We need to translate the max packet size and max ESIT payloads into 2443 * the units the hardware uses. 2444 */ 2445 block_size = xhci_get_block_size(virt_dev->udev); 2446 2447 /* If we are manipulating a LS/FS device under a HS hub, double check 2448 * that the HS bus has enough bandwidth if we are activing a new TT. 2449 */ 2450 if (virt_dev->tt_info) { 2451 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2452 "Recalculating BW for rootport %u", 2453 virt_dev->real_port); 2454 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2455 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2456 "newly activated TT.\n"); 2457 return -ENOMEM; 2458 } 2459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2460 "Recalculating BW for TT slot %u port %u", 2461 virt_dev->tt_info->slot_id, 2462 virt_dev->tt_info->ttport); 2463 } else { 2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2465 "Recalculating BW for rootport %u", 2466 virt_dev->real_port); 2467 } 2468 2469 /* Add in how much bandwidth will be used for interval zero, or the 2470 * rounded max ESIT payload + number of packets * largest overhead. 2471 */ 2472 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2473 bw_table->interval_bw[0].num_packets * 2474 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2475 2476 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2477 unsigned int bw_added; 2478 unsigned int largest_mps; 2479 unsigned int interval_overhead; 2480 2481 /* 2482 * How many packets could we transmit in this interval? 2483 * If packets didn't fit in the previous interval, we will need 2484 * to transmit that many packets twice within this interval. 2485 */ 2486 packets_remaining = 2 * packets_remaining + 2487 bw_table->interval_bw[i].num_packets; 2488 2489 /* Find the largest max packet size of this or the previous 2490 * interval. 2491 */ 2492 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2493 largest_mps = 0; 2494 else { 2495 struct xhci_virt_ep *virt_ep; 2496 struct list_head *ep_entry; 2497 2498 ep_entry = bw_table->interval_bw[i].endpoints.next; 2499 virt_ep = list_entry(ep_entry, 2500 struct xhci_virt_ep, bw_endpoint_list); 2501 /* Convert to blocks, rounding up */ 2502 largest_mps = DIV_ROUND_UP( 2503 virt_ep->bw_info.max_packet_size, 2504 block_size); 2505 } 2506 if (largest_mps > packet_size) 2507 packet_size = largest_mps; 2508 2509 /* Use the larger overhead of this or the previous interval. */ 2510 interval_overhead = xhci_get_largest_overhead( 2511 &bw_table->interval_bw[i]); 2512 if (interval_overhead > overhead) 2513 overhead = interval_overhead; 2514 2515 /* How many packets can we evenly distribute across 2516 * (1 << (i + 1)) possible scheduling opportunities? 2517 */ 2518 packets_transmitted = packets_remaining >> (i + 1); 2519 2520 /* Add in the bandwidth used for those scheduled packets */ 2521 bw_added = packets_transmitted * (overhead + packet_size); 2522 2523 /* How many packets do we have remaining to transmit? */ 2524 packets_remaining = packets_remaining % (1 << (i + 1)); 2525 2526 /* What largest max packet size should those packets have? */ 2527 /* If we've transmitted all packets, don't carry over the 2528 * largest packet size. 2529 */ 2530 if (packets_remaining == 0) { 2531 packet_size = 0; 2532 overhead = 0; 2533 } else if (packets_transmitted > 0) { 2534 /* Otherwise if we do have remaining packets, and we've 2535 * scheduled some packets in this interval, take the 2536 * largest max packet size from endpoints with this 2537 * interval. 2538 */ 2539 packet_size = largest_mps; 2540 overhead = interval_overhead; 2541 } 2542 /* Otherwise carry over packet_size and overhead from the last 2543 * time we had a remainder. 2544 */ 2545 bw_used += bw_added; 2546 if (bw_used > max_bandwidth) { 2547 xhci_warn(xhci, "Not enough bandwidth. " 2548 "Proposed: %u, Max: %u\n", 2549 bw_used, max_bandwidth); 2550 return -ENOMEM; 2551 } 2552 } 2553 /* 2554 * Ok, we know we have some packets left over after even-handedly 2555 * scheduling interval 15. We don't know which microframes they will 2556 * fit into, so we over-schedule and say they will be scheduled every 2557 * microframe. 2558 */ 2559 if (packets_remaining > 0) 2560 bw_used += overhead + packet_size; 2561 2562 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2563 unsigned int port_index = virt_dev->real_port - 1; 2564 2565 /* OK, we're manipulating a HS device attached to a 2566 * root port bandwidth domain. Include the number of active TTs 2567 * in the bandwidth used. 2568 */ 2569 bw_used += TT_HS_OVERHEAD * 2570 xhci->rh_bw[port_index].num_active_tts; 2571 } 2572 2573 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2574 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2575 "Available: %u " "percent", 2576 bw_used, max_bandwidth, bw_reserved, 2577 (max_bandwidth - bw_used - bw_reserved) * 100 / 2578 max_bandwidth); 2579 2580 bw_used += bw_reserved; 2581 if (bw_used > max_bandwidth) { 2582 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2583 bw_used, max_bandwidth); 2584 return -ENOMEM; 2585 } 2586 2587 bw_table->bw_used = bw_used; 2588 return 0; 2589 } 2590 2591 static bool xhci_is_async_ep(unsigned int ep_type) 2592 { 2593 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2594 ep_type != ISOC_IN_EP && 2595 ep_type != INT_IN_EP); 2596 } 2597 2598 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2599 { 2600 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2601 } 2602 2603 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2604 { 2605 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2606 2607 if (ep_bw->ep_interval == 0) 2608 return SS_OVERHEAD_BURST + 2609 (ep_bw->mult * ep_bw->num_packets * 2610 (SS_OVERHEAD + mps)); 2611 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2612 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2613 1 << ep_bw->ep_interval); 2614 2615 } 2616 2617 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2618 struct xhci_bw_info *ep_bw, 2619 struct xhci_interval_bw_table *bw_table, 2620 struct usb_device *udev, 2621 struct xhci_virt_ep *virt_ep, 2622 struct xhci_tt_bw_info *tt_info) 2623 { 2624 struct xhci_interval_bw *interval_bw; 2625 int normalized_interval; 2626 2627 if (xhci_is_async_ep(ep_bw->type)) 2628 return; 2629 2630 if (udev->speed >= USB_SPEED_SUPER) { 2631 if (xhci_is_sync_in_ep(ep_bw->type)) 2632 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2633 xhci_get_ss_bw_consumed(ep_bw); 2634 else 2635 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2636 xhci_get_ss_bw_consumed(ep_bw); 2637 return; 2638 } 2639 2640 /* SuperSpeed endpoints never get added to intervals in the table, so 2641 * this check is only valid for HS/FS/LS devices. 2642 */ 2643 if (list_empty(&virt_ep->bw_endpoint_list)) 2644 return; 2645 /* For LS/FS devices, we need to translate the interval expressed in 2646 * microframes to frames. 2647 */ 2648 if (udev->speed == USB_SPEED_HIGH) 2649 normalized_interval = ep_bw->ep_interval; 2650 else 2651 normalized_interval = ep_bw->ep_interval - 3; 2652 2653 if (normalized_interval == 0) 2654 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2655 interval_bw = &bw_table->interval_bw[normalized_interval]; 2656 interval_bw->num_packets -= ep_bw->num_packets; 2657 switch (udev->speed) { 2658 case USB_SPEED_LOW: 2659 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2660 break; 2661 case USB_SPEED_FULL: 2662 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2663 break; 2664 case USB_SPEED_HIGH: 2665 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2666 break; 2667 case USB_SPEED_SUPER: 2668 case USB_SPEED_SUPER_PLUS: 2669 case USB_SPEED_UNKNOWN: 2670 case USB_SPEED_WIRELESS: 2671 /* Should never happen because only LS/FS/HS endpoints will get 2672 * added to the endpoint list. 2673 */ 2674 return; 2675 } 2676 if (tt_info) 2677 tt_info->active_eps -= 1; 2678 list_del_init(&virt_ep->bw_endpoint_list); 2679 } 2680 2681 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2682 struct xhci_bw_info *ep_bw, 2683 struct xhci_interval_bw_table *bw_table, 2684 struct usb_device *udev, 2685 struct xhci_virt_ep *virt_ep, 2686 struct xhci_tt_bw_info *tt_info) 2687 { 2688 struct xhci_interval_bw *interval_bw; 2689 struct xhci_virt_ep *smaller_ep; 2690 int normalized_interval; 2691 2692 if (xhci_is_async_ep(ep_bw->type)) 2693 return; 2694 2695 if (udev->speed == USB_SPEED_SUPER) { 2696 if (xhci_is_sync_in_ep(ep_bw->type)) 2697 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2698 xhci_get_ss_bw_consumed(ep_bw); 2699 else 2700 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2701 xhci_get_ss_bw_consumed(ep_bw); 2702 return; 2703 } 2704 2705 /* For LS/FS devices, we need to translate the interval expressed in 2706 * microframes to frames. 2707 */ 2708 if (udev->speed == USB_SPEED_HIGH) 2709 normalized_interval = ep_bw->ep_interval; 2710 else 2711 normalized_interval = ep_bw->ep_interval - 3; 2712 2713 if (normalized_interval == 0) 2714 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2715 interval_bw = &bw_table->interval_bw[normalized_interval]; 2716 interval_bw->num_packets += ep_bw->num_packets; 2717 switch (udev->speed) { 2718 case USB_SPEED_LOW: 2719 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2720 break; 2721 case USB_SPEED_FULL: 2722 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2723 break; 2724 case USB_SPEED_HIGH: 2725 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2726 break; 2727 case USB_SPEED_SUPER: 2728 case USB_SPEED_SUPER_PLUS: 2729 case USB_SPEED_UNKNOWN: 2730 case USB_SPEED_WIRELESS: 2731 /* Should never happen because only LS/FS/HS endpoints will get 2732 * added to the endpoint list. 2733 */ 2734 return; 2735 } 2736 2737 if (tt_info) 2738 tt_info->active_eps += 1; 2739 /* Insert the endpoint into the list, largest max packet size first. */ 2740 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2741 bw_endpoint_list) { 2742 if (ep_bw->max_packet_size >= 2743 smaller_ep->bw_info.max_packet_size) { 2744 /* Add the new ep before the smaller endpoint */ 2745 list_add_tail(&virt_ep->bw_endpoint_list, 2746 &smaller_ep->bw_endpoint_list); 2747 return; 2748 } 2749 } 2750 /* Add the new endpoint at the end of the list. */ 2751 list_add_tail(&virt_ep->bw_endpoint_list, 2752 &interval_bw->endpoints); 2753 } 2754 2755 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2756 struct xhci_virt_device *virt_dev, 2757 int old_active_eps) 2758 { 2759 struct xhci_root_port_bw_info *rh_bw_info; 2760 if (!virt_dev->tt_info) 2761 return; 2762 2763 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2764 if (old_active_eps == 0 && 2765 virt_dev->tt_info->active_eps != 0) { 2766 rh_bw_info->num_active_tts += 1; 2767 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2768 } else if (old_active_eps != 0 && 2769 virt_dev->tt_info->active_eps == 0) { 2770 rh_bw_info->num_active_tts -= 1; 2771 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2772 } 2773 } 2774 2775 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2776 struct xhci_virt_device *virt_dev, 2777 struct xhci_container_ctx *in_ctx) 2778 { 2779 struct xhci_bw_info ep_bw_info[31]; 2780 int i; 2781 struct xhci_input_control_ctx *ctrl_ctx; 2782 int old_active_eps = 0; 2783 2784 if (virt_dev->tt_info) 2785 old_active_eps = virt_dev->tt_info->active_eps; 2786 2787 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2788 if (!ctrl_ctx) { 2789 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2790 __func__); 2791 return -ENOMEM; 2792 } 2793 2794 for (i = 0; i < 31; i++) { 2795 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2796 continue; 2797 2798 /* Make a copy of the BW info in case we need to revert this */ 2799 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2800 sizeof(ep_bw_info[i])); 2801 /* Drop the endpoint from the interval table if the endpoint is 2802 * being dropped or changed. 2803 */ 2804 if (EP_IS_DROPPED(ctrl_ctx, i)) 2805 xhci_drop_ep_from_interval_table(xhci, 2806 &virt_dev->eps[i].bw_info, 2807 virt_dev->bw_table, 2808 virt_dev->udev, 2809 &virt_dev->eps[i], 2810 virt_dev->tt_info); 2811 } 2812 /* Overwrite the information stored in the endpoints' bw_info */ 2813 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2814 for (i = 0; i < 31; i++) { 2815 /* Add any changed or added endpoints to the interval table */ 2816 if (EP_IS_ADDED(ctrl_ctx, i)) 2817 xhci_add_ep_to_interval_table(xhci, 2818 &virt_dev->eps[i].bw_info, 2819 virt_dev->bw_table, 2820 virt_dev->udev, 2821 &virt_dev->eps[i], 2822 virt_dev->tt_info); 2823 } 2824 2825 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2826 /* Ok, this fits in the bandwidth we have. 2827 * Update the number of active TTs. 2828 */ 2829 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2830 return 0; 2831 } 2832 2833 /* We don't have enough bandwidth for this, revert the stored info. */ 2834 for (i = 0; i < 31; i++) { 2835 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2836 continue; 2837 2838 /* Drop the new copies of any added or changed endpoints from 2839 * the interval table. 2840 */ 2841 if (EP_IS_ADDED(ctrl_ctx, i)) { 2842 xhci_drop_ep_from_interval_table(xhci, 2843 &virt_dev->eps[i].bw_info, 2844 virt_dev->bw_table, 2845 virt_dev->udev, 2846 &virt_dev->eps[i], 2847 virt_dev->tt_info); 2848 } 2849 /* Revert the endpoint back to its old information */ 2850 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2851 sizeof(ep_bw_info[i])); 2852 /* Add any changed or dropped endpoints back into the table */ 2853 if (EP_IS_DROPPED(ctrl_ctx, i)) 2854 xhci_add_ep_to_interval_table(xhci, 2855 &virt_dev->eps[i].bw_info, 2856 virt_dev->bw_table, 2857 virt_dev->udev, 2858 &virt_dev->eps[i], 2859 virt_dev->tt_info); 2860 } 2861 return -ENOMEM; 2862 } 2863 2864 2865 /* Issue a configure endpoint command or evaluate context command 2866 * and wait for it to finish. 2867 */ 2868 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2869 struct usb_device *udev, 2870 struct xhci_command *command, 2871 bool ctx_change, bool must_succeed) 2872 { 2873 int ret; 2874 unsigned long flags; 2875 struct xhci_input_control_ctx *ctrl_ctx; 2876 struct xhci_virt_device *virt_dev; 2877 struct xhci_slot_ctx *slot_ctx; 2878 2879 if (!command) 2880 return -EINVAL; 2881 2882 spin_lock_irqsave(&xhci->lock, flags); 2883 2884 if (xhci->xhc_state & XHCI_STATE_DYING) { 2885 spin_unlock_irqrestore(&xhci->lock, flags); 2886 return -ESHUTDOWN; 2887 } 2888 2889 virt_dev = xhci->devs[udev->slot_id]; 2890 2891 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2892 if (!ctrl_ctx) { 2893 spin_unlock_irqrestore(&xhci->lock, flags); 2894 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2895 __func__); 2896 return -ENOMEM; 2897 } 2898 2899 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2900 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2901 spin_unlock_irqrestore(&xhci->lock, flags); 2902 xhci_warn(xhci, "Not enough host resources, " 2903 "active endpoint contexts = %u\n", 2904 xhci->num_active_eps); 2905 return -ENOMEM; 2906 } 2907 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2908 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2909 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2910 xhci_free_host_resources(xhci, ctrl_ctx); 2911 spin_unlock_irqrestore(&xhci->lock, flags); 2912 xhci_warn(xhci, "Not enough bandwidth\n"); 2913 return -ENOMEM; 2914 } 2915 2916 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2917 2918 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2919 trace_xhci_configure_endpoint(slot_ctx); 2920 2921 if (!ctx_change) 2922 ret = xhci_queue_configure_endpoint(xhci, command, 2923 command->in_ctx->dma, 2924 udev->slot_id, must_succeed); 2925 else 2926 ret = xhci_queue_evaluate_context(xhci, command, 2927 command->in_ctx->dma, 2928 udev->slot_id, must_succeed); 2929 if (ret < 0) { 2930 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2931 xhci_free_host_resources(xhci, ctrl_ctx); 2932 spin_unlock_irqrestore(&xhci->lock, flags); 2933 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2934 "FIXME allocate a new ring segment"); 2935 return -ENOMEM; 2936 } 2937 xhci_ring_cmd_db(xhci); 2938 spin_unlock_irqrestore(&xhci->lock, flags); 2939 2940 /* Wait for the configure endpoint command to complete */ 2941 wait_for_completion(command->completion); 2942 2943 if (!ctx_change) 2944 ret = xhci_configure_endpoint_result(xhci, udev, 2945 &command->status); 2946 else 2947 ret = xhci_evaluate_context_result(xhci, udev, 2948 &command->status); 2949 2950 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2951 spin_lock_irqsave(&xhci->lock, flags); 2952 /* If the command failed, remove the reserved resources. 2953 * Otherwise, clean up the estimate to include dropped eps. 2954 */ 2955 if (ret) 2956 xhci_free_host_resources(xhci, ctrl_ctx); 2957 else 2958 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2959 spin_unlock_irqrestore(&xhci->lock, flags); 2960 } 2961 return ret; 2962 } 2963 2964 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2965 struct xhci_virt_device *vdev, int i) 2966 { 2967 struct xhci_virt_ep *ep = &vdev->eps[i]; 2968 2969 if (ep->ep_state & EP_HAS_STREAMS) { 2970 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2971 xhci_get_endpoint_address(i)); 2972 xhci_free_stream_info(xhci, ep->stream_info); 2973 ep->stream_info = NULL; 2974 ep->ep_state &= ~EP_HAS_STREAMS; 2975 } 2976 } 2977 2978 /* Called after one or more calls to xhci_add_endpoint() or 2979 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2980 * to call xhci_reset_bandwidth(). 2981 * 2982 * Since we are in the middle of changing either configuration or 2983 * installing a new alt setting, the USB core won't allow URBs to be 2984 * enqueued for any endpoint on the old config or interface. Nothing 2985 * else should be touching the xhci->devs[slot_id] structure, so we 2986 * don't need to take the xhci->lock for manipulating that. 2987 */ 2988 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2989 { 2990 int i; 2991 int ret = 0; 2992 struct xhci_hcd *xhci; 2993 struct xhci_virt_device *virt_dev; 2994 struct xhci_input_control_ctx *ctrl_ctx; 2995 struct xhci_slot_ctx *slot_ctx; 2996 struct xhci_command *command; 2997 2998 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2999 if (ret <= 0) 3000 return ret; 3001 xhci = hcd_to_xhci(hcd); 3002 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3003 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3004 return -ENODEV; 3005 3006 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3007 virt_dev = xhci->devs[udev->slot_id]; 3008 3009 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3010 if (!command) 3011 return -ENOMEM; 3012 3013 command->in_ctx = virt_dev->in_ctx; 3014 3015 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3016 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3017 if (!ctrl_ctx) { 3018 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3019 __func__); 3020 ret = -ENOMEM; 3021 goto command_cleanup; 3022 } 3023 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3024 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3025 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3026 3027 /* Don't issue the command if there's no endpoints to update. */ 3028 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3029 ctrl_ctx->drop_flags == 0) { 3030 ret = 0; 3031 goto command_cleanup; 3032 } 3033 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3034 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3035 for (i = 31; i >= 1; i--) { 3036 __le32 le32 = cpu_to_le32(BIT(i)); 3037 3038 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3039 || (ctrl_ctx->add_flags & le32) || i == 1) { 3040 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3041 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3042 break; 3043 } 3044 } 3045 3046 ret = xhci_configure_endpoint(xhci, udev, command, 3047 false, false); 3048 if (ret) 3049 /* Callee should call reset_bandwidth() */ 3050 goto command_cleanup; 3051 3052 /* Free any rings that were dropped, but not changed. */ 3053 for (i = 1; i < 31; i++) { 3054 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3055 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3056 xhci_free_endpoint_ring(xhci, virt_dev, i); 3057 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3058 } 3059 } 3060 xhci_zero_in_ctx(xhci, virt_dev); 3061 /* 3062 * Install any rings for completely new endpoints or changed endpoints, 3063 * and free any old rings from changed endpoints. 3064 */ 3065 for (i = 1; i < 31; i++) { 3066 if (!virt_dev->eps[i].new_ring) 3067 continue; 3068 /* Only free the old ring if it exists. 3069 * It may not if this is the first add of an endpoint. 3070 */ 3071 if (virt_dev->eps[i].ring) { 3072 xhci_free_endpoint_ring(xhci, virt_dev, i); 3073 } 3074 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3075 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3076 virt_dev->eps[i].new_ring = NULL; 3077 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3078 } 3079 command_cleanup: 3080 kfree(command->completion); 3081 kfree(command); 3082 3083 return ret; 3084 } 3085 3086 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3087 { 3088 struct xhci_hcd *xhci; 3089 struct xhci_virt_device *virt_dev; 3090 int i, ret; 3091 3092 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3093 if (ret <= 0) 3094 return; 3095 xhci = hcd_to_xhci(hcd); 3096 3097 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3098 virt_dev = xhci->devs[udev->slot_id]; 3099 /* Free any rings allocated for added endpoints */ 3100 for (i = 0; i < 31; i++) { 3101 if (virt_dev->eps[i].new_ring) { 3102 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3103 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3104 virt_dev->eps[i].new_ring = NULL; 3105 } 3106 } 3107 xhci_zero_in_ctx(xhci, virt_dev); 3108 } 3109 3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3111 struct xhci_container_ctx *in_ctx, 3112 struct xhci_container_ctx *out_ctx, 3113 struct xhci_input_control_ctx *ctrl_ctx, 3114 u32 add_flags, u32 drop_flags) 3115 { 3116 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3117 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3118 xhci_slot_copy(xhci, in_ctx, out_ctx); 3119 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3120 } 3121 3122 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 3123 unsigned int slot_id, unsigned int ep_index, 3124 struct xhci_dequeue_state *deq_state) 3125 { 3126 struct xhci_input_control_ctx *ctrl_ctx; 3127 struct xhci_container_ctx *in_ctx; 3128 struct xhci_ep_ctx *ep_ctx; 3129 u32 added_ctxs; 3130 dma_addr_t addr; 3131 3132 in_ctx = xhci->devs[slot_id]->in_ctx; 3133 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 3134 if (!ctrl_ctx) { 3135 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3136 __func__); 3137 return; 3138 } 3139 3140 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3141 xhci->devs[slot_id]->out_ctx, ep_index); 3142 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3143 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3144 deq_state->new_deq_ptr); 3145 if (addr == 0) { 3146 xhci_warn(xhci, "WARN Cannot submit config ep after " 3147 "reset ep command\n"); 3148 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3149 deq_state->new_deq_seg, 3150 deq_state->new_deq_ptr); 3151 return; 3152 } 3153 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3154 3155 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3156 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3157 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3158 added_ctxs, added_ctxs); 3159 } 3160 3161 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id, 3162 unsigned int ep_index, unsigned int stream_id, 3163 struct xhci_td *td) 3164 { 3165 struct xhci_dequeue_state deq_state; 3166 3167 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3168 "Cleaning up stalled endpoint ring"); 3169 /* We need to move the HW's dequeue pointer past this TD, 3170 * or it will attempt to resend it on the next doorbell ring. 3171 */ 3172 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td, 3173 &deq_state); 3174 3175 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3176 return; 3177 3178 /* HW with the reset endpoint quirk will use the saved dequeue state to 3179 * issue a configure endpoint command later. 3180 */ 3181 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3182 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3183 "Queueing new dequeue state"); 3184 xhci_queue_new_dequeue_state(xhci, slot_id, 3185 ep_index, &deq_state); 3186 } else { 3187 /* Better hope no one uses the input context between now and the 3188 * reset endpoint completion! 3189 * XXX: No idea how this hardware will react when stream rings 3190 * are enabled. 3191 */ 3192 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3193 "Setting up input context for " 3194 "configure endpoint command"); 3195 xhci_setup_input_ctx_for_quirk(xhci, slot_id, 3196 ep_index, &deq_state); 3197 } 3198 } 3199 3200 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3201 struct usb_host_endpoint *host_ep) 3202 { 3203 struct xhci_hcd *xhci; 3204 struct xhci_virt_device *vdev; 3205 struct xhci_virt_ep *ep; 3206 struct usb_device *udev; 3207 unsigned long flags; 3208 unsigned int ep_index; 3209 3210 xhci = hcd_to_xhci(hcd); 3211 rescan: 3212 spin_lock_irqsave(&xhci->lock, flags); 3213 3214 udev = (struct usb_device *)host_ep->hcpriv; 3215 if (!udev || !udev->slot_id) 3216 goto done; 3217 3218 vdev = xhci->devs[udev->slot_id]; 3219 if (!vdev) 3220 goto done; 3221 3222 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3223 ep = &vdev->eps[ep_index]; 3224 if (!ep) 3225 goto done; 3226 3227 /* wait for hub_tt_work to finish clearing hub TT */ 3228 if (ep->ep_state & EP_CLEARING_TT) { 3229 spin_unlock_irqrestore(&xhci->lock, flags); 3230 schedule_timeout_uninterruptible(1); 3231 goto rescan; 3232 } 3233 3234 if (ep->ep_state) 3235 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3236 ep->ep_state); 3237 done: 3238 host_ep->hcpriv = NULL; 3239 spin_unlock_irqrestore(&xhci->lock, flags); 3240 } 3241 3242 /* 3243 * Called after usb core issues a clear halt control message. 3244 * The host side of the halt should already be cleared by a reset endpoint 3245 * command issued when the STALL event was received. 3246 * 3247 * The reset endpoint command may only be issued to endpoints in the halted 3248 * state. For software that wishes to reset the data toggle or sequence number 3249 * of an endpoint that isn't in the halted state this function will issue a 3250 * configure endpoint command with the Drop and Add bits set for the target 3251 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3252 */ 3253 3254 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3255 struct usb_host_endpoint *host_ep) 3256 { 3257 struct xhci_hcd *xhci; 3258 struct usb_device *udev; 3259 struct xhci_virt_device *vdev; 3260 struct xhci_virt_ep *ep; 3261 struct xhci_input_control_ctx *ctrl_ctx; 3262 struct xhci_command *stop_cmd, *cfg_cmd; 3263 unsigned int ep_index; 3264 unsigned long flags; 3265 u32 ep_flag; 3266 int err; 3267 3268 xhci = hcd_to_xhci(hcd); 3269 if (!host_ep->hcpriv) 3270 return; 3271 udev = (struct usb_device *) host_ep->hcpriv; 3272 vdev = xhci->devs[udev->slot_id]; 3273 3274 /* 3275 * vdev may be lost due to xHC restore error and re-initialization 3276 * during S3/S4 resume. A new vdev will be allocated later by 3277 * xhci_discover_or_reset_device() 3278 */ 3279 if (!udev->slot_id || !vdev) 3280 return; 3281 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3282 ep = &vdev->eps[ep_index]; 3283 if (!ep) 3284 return; 3285 3286 /* Bail out if toggle is already being cleared by a endpoint reset */ 3287 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3288 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3289 return; 3290 } 3291 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3292 if (usb_endpoint_xfer_control(&host_ep->desc) || 3293 usb_endpoint_xfer_isoc(&host_ep->desc)) 3294 return; 3295 3296 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3297 3298 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3299 return; 3300 3301 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3302 if (!stop_cmd) 3303 return; 3304 3305 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3306 if (!cfg_cmd) 3307 goto cleanup; 3308 3309 spin_lock_irqsave(&xhci->lock, flags); 3310 3311 /* block queuing new trbs and ringing ep doorbell */ 3312 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3313 3314 /* 3315 * Make sure endpoint ring is empty before resetting the toggle/seq. 3316 * Driver is required to synchronously cancel all transfer request. 3317 * Stop the endpoint to force xHC to update the output context 3318 */ 3319 3320 if (!list_empty(&ep->ring->td_list)) { 3321 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3322 spin_unlock_irqrestore(&xhci->lock, flags); 3323 xhci_free_command(xhci, cfg_cmd); 3324 goto cleanup; 3325 } 3326 3327 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3328 ep_index, 0); 3329 if (err < 0) { 3330 spin_unlock_irqrestore(&xhci->lock, flags); 3331 xhci_free_command(xhci, cfg_cmd); 3332 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3333 __func__, err); 3334 goto cleanup; 3335 } 3336 3337 xhci_ring_cmd_db(xhci); 3338 spin_unlock_irqrestore(&xhci->lock, flags); 3339 3340 wait_for_completion(stop_cmd->completion); 3341 3342 spin_lock_irqsave(&xhci->lock, flags); 3343 3344 /* config ep command clears toggle if add and drop ep flags are set */ 3345 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3346 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3347 ctrl_ctx, ep_flag, ep_flag); 3348 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3349 3350 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3351 udev->slot_id, false); 3352 if (err < 0) { 3353 spin_unlock_irqrestore(&xhci->lock, flags); 3354 xhci_free_command(xhci, cfg_cmd); 3355 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3356 __func__, err); 3357 goto cleanup; 3358 } 3359 3360 xhci_ring_cmd_db(xhci); 3361 spin_unlock_irqrestore(&xhci->lock, flags); 3362 3363 wait_for_completion(cfg_cmd->completion); 3364 3365 xhci_free_command(xhci, cfg_cmd); 3366 cleanup: 3367 xhci_free_command(xhci, stop_cmd); 3368 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3369 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3370 } 3371 3372 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3373 struct usb_device *udev, struct usb_host_endpoint *ep, 3374 unsigned int slot_id) 3375 { 3376 int ret; 3377 unsigned int ep_index; 3378 unsigned int ep_state; 3379 3380 if (!ep) 3381 return -EINVAL; 3382 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3383 if (ret <= 0) 3384 return -EINVAL; 3385 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3386 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3387 " descriptor for ep 0x%x does not support streams\n", 3388 ep->desc.bEndpointAddress); 3389 return -EINVAL; 3390 } 3391 3392 ep_index = xhci_get_endpoint_index(&ep->desc); 3393 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3394 if (ep_state & EP_HAS_STREAMS || 3395 ep_state & EP_GETTING_STREAMS) { 3396 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3397 "already has streams set up.\n", 3398 ep->desc.bEndpointAddress); 3399 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3400 "dynamic stream context array reallocation.\n"); 3401 return -EINVAL; 3402 } 3403 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3404 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3405 "endpoint 0x%x; URBs are pending.\n", 3406 ep->desc.bEndpointAddress); 3407 return -EINVAL; 3408 } 3409 return 0; 3410 } 3411 3412 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3413 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3414 { 3415 unsigned int max_streams; 3416 3417 /* The stream context array size must be a power of two */ 3418 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3419 /* 3420 * Find out how many primary stream array entries the host controller 3421 * supports. Later we may use secondary stream arrays (similar to 2nd 3422 * level page entries), but that's an optional feature for xHCI host 3423 * controllers. xHCs must support at least 4 stream IDs. 3424 */ 3425 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3426 if (*num_stream_ctxs > max_streams) { 3427 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3428 max_streams); 3429 *num_stream_ctxs = max_streams; 3430 *num_streams = max_streams; 3431 } 3432 } 3433 3434 /* Returns an error code if one of the endpoint already has streams. 3435 * This does not change any data structures, it only checks and gathers 3436 * information. 3437 */ 3438 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3439 struct usb_device *udev, 3440 struct usb_host_endpoint **eps, unsigned int num_eps, 3441 unsigned int *num_streams, u32 *changed_ep_bitmask) 3442 { 3443 unsigned int max_streams; 3444 unsigned int endpoint_flag; 3445 int i; 3446 int ret; 3447 3448 for (i = 0; i < num_eps; i++) { 3449 ret = xhci_check_streams_endpoint(xhci, udev, 3450 eps[i], udev->slot_id); 3451 if (ret < 0) 3452 return ret; 3453 3454 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3455 if (max_streams < (*num_streams - 1)) { 3456 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3457 eps[i]->desc.bEndpointAddress, 3458 max_streams); 3459 *num_streams = max_streams+1; 3460 } 3461 3462 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3463 if (*changed_ep_bitmask & endpoint_flag) 3464 return -EINVAL; 3465 *changed_ep_bitmask |= endpoint_flag; 3466 } 3467 return 0; 3468 } 3469 3470 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3471 struct usb_device *udev, 3472 struct usb_host_endpoint **eps, unsigned int num_eps) 3473 { 3474 u32 changed_ep_bitmask = 0; 3475 unsigned int slot_id; 3476 unsigned int ep_index; 3477 unsigned int ep_state; 3478 int i; 3479 3480 slot_id = udev->slot_id; 3481 if (!xhci->devs[slot_id]) 3482 return 0; 3483 3484 for (i = 0; i < num_eps; i++) { 3485 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3486 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3487 /* Are streams already being freed for the endpoint? */ 3488 if (ep_state & EP_GETTING_NO_STREAMS) { 3489 xhci_warn(xhci, "WARN Can't disable streams for " 3490 "endpoint 0x%x, " 3491 "streams are being disabled already\n", 3492 eps[i]->desc.bEndpointAddress); 3493 return 0; 3494 } 3495 /* Are there actually any streams to free? */ 3496 if (!(ep_state & EP_HAS_STREAMS) && 3497 !(ep_state & EP_GETTING_STREAMS)) { 3498 xhci_warn(xhci, "WARN Can't disable streams for " 3499 "endpoint 0x%x, " 3500 "streams are already disabled!\n", 3501 eps[i]->desc.bEndpointAddress); 3502 xhci_warn(xhci, "WARN xhci_free_streams() called " 3503 "with non-streams endpoint\n"); 3504 return 0; 3505 } 3506 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3507 } 3508 return changed_ep_bitmask; 3509 } 3510 3511 /* 3512 * The USB device drivers use this function (through the HCD interface in USB 3513 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3514 * coordinate mass storage command queueing across multiple endpoints (basically 3515 * a stream ID == a task ID). 3516 * 3517 * Setting up streams involves allocating the same size stream context array 3518 * for each endpoint and issuing a configure endpoint command for all endpoints. 3519 * 3520 * Don't allow the call to succeed if one endpoint only supports one stream 3521 * (which means it doesn't support streams at all). 3522 * 3523 * Drivers may get less stream IDs than they asked for, if the host controller 3524 * hardware or endpoints claim they can't support the number of requested 3525 * stream IDs. 3526 */ 3527 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3528 struct usb_host_endpoint **eps, unsigned int num_eps, 3529 unsigned int num_streams, gfp_t mem_flags) 3530 { 3531 int i, ret; 3532 struct xhci_hcd *xhci; 3533 struct xhci_virt_device *vdev; 3534 struct xhci_command *config_cmd; 3535 struct xhci_input_control_ctx *ctrl_ctx; 3536 unsigned int ep_index; 3537 unsigned int num_stream_ctxs; 3538 unsigned int max_packet; 3539 unsigned long flags; 3540 u32 changed_ep_bitmask = 0; 3541 3542 if (!eps) 3543 return -EINVAL; 3544 3545 /* Add one to the number of streams requested to account for 3546 * stream 0 that is reserved for xHCI usage. 3547 */ 3548 num_streams += 1; 3549 xhci = hcd_to_xhci(hcd); 3550 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3551 num_streams); 3552 3553 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3554 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3555 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3556 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3557 return -ENOSYS; 3558 } 3559 3560 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3561 if (!config_cmd) 3562 return -ENOMEM; 3563 3564 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3565 if (!ctrl_ctx) { 3566 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3567 __func__); 3568 xhci_free_command(xhci, config_cmd); 3569 return -ENOMEM; 3570 } 3571 3572 /* Check to make sure all endpoints are not already configured for 3573 * streams. While we're at it, find the maximum number of streams that 3574 * all the endpoints will support and check for duplicate endpoints. 3575 */ 3576 spin_lock_irqsave(&xhci->lock, flags); 3577 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3578 num_eps, &num_streams, &changed_ep_bitmask); 3579 if (ret < 0) { 3580 xhci_free_command(xhci, config_cmd); 3581 spin_unlock_irqrestore(&xhci->lock, flags); 3582 return ret; 3583 } 3584 if (num_streams <= 1) { 3585 xhci_warn(xhci, "WARN: endpoints can't handle " 3586 "more than one stream.\n"); 3587 xhci_free_command(xhci, config_cmd); 3588 spin_unlock_irqrestore(&xhci->lock, flags); 3589 return -EINVAL; 3590 } 3591 vdev = xhci->devs[udev->slot_id]; 3592 /* Mark each endpoint as being in transition, so 3593 * xhci_urb_enqueue() will reject all URBs. 3594 */ 3595 for (i = 0; i < num_eps; i++) { 3596 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3597 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3598 } 3599 spin_unlock_irqrestore(&xhci->lock, flags); 3600 3601 /* Setup internal data structures and allocate HW data structures for 3602 * streams (but don't install the HW structures in the input context 3603 * until we're sure all memory allocation succeeded). 3604 */ 3605 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3606 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3607 num_stream_ctxs, num_streams); 3608 3609 for (i = 0; i < num_eps; i++) { 3610 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3611 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3612 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3613 num_stream_ctxs, 3614 num_streams, 3615 max_packet, mem_flags); 3616 if (!vdev->eps[ep_index].stream_info) 3617 goto cleanup; 3618 /* Set maxPstreams in endpoint context and update deq ptr to 3619 * point to stream context array. FIXME 3620 */ 3621 } 3622 3623 /* Set up the input context for a configure endpoint command. */ 3624 for (i = 0; i < num_eps; i++) { 3625 struct xhci_ep_ctx *ep_ctx; 3626 3627 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3628 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3629 3630 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3631 vdev->out_ctx, ep_index); 3632 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3633 vdev->eps[ep_index].stream_info); 3634 } 3635 /* Tell the HW to drop its old copy of the endpoint context info 3636 * and add the updated copy from the input context. 3637 */ 3638 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3639 vdev->out_ctx, ctrl_ctx, 3640 changed_ep_bitmask, changed_ep_bitmask); 3641 3642 /* Issue and wait for the configure endpoint command */ 3643 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3644 false, false); 3645 3646 /* xHC rejected the configure endpoint command for some reason, so we 3647 * leave the old ring intact and free our internal streams data 3648 * structure. 3649 */ 3650 if (ret < 0) 3651 goto cleanup; 3652 3653 spin_lock_irqsave(&xhci->lock, flags); 3654 for (i = 0; i < num_eps; i++) { 3655 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3656 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3657 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3658 udev->slot_id, ep_index); 3659 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3660 } 3661 xhci_free_command(xhci, config_cmd); 3662 spin_unlock_irqrestore(&xhci->lock, flags); 3663 3664 for (i = 0; i < num_eps; i++) { 3665 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3666 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3667 } 3668 /* Subtract 1 for stream 0, which drivers can't use */ 3669 return num_streams - 1; 3670 3671 cleanup: 3672 /* If it didn't work, free the streams! */ 3673 for (i = 0; i < num_eps; i++) { 3674 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3675 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3676 vdev->eps[ep_index].stream_info = NULL; 3677 /* FIXME Unset maxPstreams in endpoint context and 3678 * update deq ptr to point to normal string ring. 3679 */ 3680 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3681 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3682 xhci_endpoint_zero(xhci, vdev, eps[i]); 3683 } 3684 xhci_free_command(xhci, config_cmd); 3685 return -ENOMEM; 3686 } 3687 3688 /* Transition the endpoint from using streams to being a "normal" endpoint 3689 * without streams. 3690 * 3691 * Modify the endpoint context state, submit a configure endpoint command, 3692 * and free all endpoint rings for streams if that completes successfully. 3693 */ 3694 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3695 struct usb_host_endpoint **eps, unsigned int num_eps, 3696 gfp_t mem_flags) 3697 { 3698 int i, ret; 3699 struct xhci_hcd *xhci; 3700 struct xhci_virt_device *vdev; 3701 struct xhci_command *command; 3702 struct xhci_input_control_ctx *ctrl_ctx; 3703 unsigned int ep_index; 3704 unsigned long flags; 3705 u32 changed_ep_bitmask; 3706 3707 xhci = hcd_to_xhci(hcd); 3708 vdev = xhci->devs[udev->slot_id]; 3709 3710 /* Set up a configure endpoint command to remove the streams rings */ 3711 spin_lock_irqsave(&xhci->lock, flags); 3712 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3713 udev, eps, num_eps); 3714 if (changed_ep_bitmask == 0) { 3715 spin_unlock_irqrestore(&xhci->lock, flags); 3716 return -EINVAL; 3717 } 3718 3719 /* Use the xhci_command structure from the first endpoint. We may have 3720 * allocated too many, but the driver may call xhci_free_streams() for 3721 * each endpoint it grouped into one call to xhci_alloc_streams(). 3722 */ 3723 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3724 command = vdev->eps[ep_index].stream_info->free_streams_command; 3725 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3726 if (!ctrl_ctx) { 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3729 __func__); 3730 return -EINVAL; 3731 } 3732 3733 for (i = 0; i < num_eps; i++) { 3734 struct xhci_ep_ctx *ep_ctx; 3735 3736 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3737 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3738 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3739 EP_GETTING_NO_STREAMS; 3740 3741 xhci_endpoint_copy(xhci, command->in_ctx, 3742 vdev->out_ctx, ep_index); 3743 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3744 &vdev->eps[ep_index]); 3745 } 3746 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3747 vdev->out_ctx, ctrl_ctx, 3748 changed_ep_bitmask, changed_ep_bitmask); 3749 spin_unlock_irqrestore(&xhci->lock, flags); 3750 3751 /* Issue and wait for the configure endpoint command, 3752 * which must succeed. 3753 */ 3754 ret = xhci_configure_endpoint(xhci, udev, command, 3755 false, true); 3756 3757 /* xHC rejected the configure endpoint command for some reason, so we 3758 * leave the streams rings intact. 3759 */ 3760 if (ret < 0) 3761 return ret; 3762 3763 spin_lock_irqsave(&xhci->lock, flags); 3764 for (i = 0; i < num_eps; i++) { 3765 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3766 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3767 vdev->eps[ep_index].stream_info = NULL; 3768 /* FIXME Unset maxPstreams in endpoint context and 3769 * update deq ptr to point to normal string ring. 3770 */ 3771 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3772 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3773 } 3774 spin_unlock_irqrestore(&xhci->lock, flags); 3775 3776 return 0; 3777 } 3778 3779 /* 3780 * Deletes endpoint resources for endpoints that were active before a Reset 3781 * Device command, or a Disable Slot command. The Reset Device command leaves 3782 * the control endpoint intact, whereas the Disable Slot command deletes it. 3783 * 3784 * Must be called with xhci->lock held. 3785 */ 3786 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3787 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3788 { 3789 int i; 3790 unsigned int num_dropped_eps = 0; 3791 unsigned int drop_flags = 0; 3792 3793 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3794 if (virt_dev->eps[i].ring) { 3795 drop_flags |= 1 << i; 3796 num_dropped_eps++; 3797 } 3798 } 3799 xhci->num_active_eps -= num_dropped_eps; 3800 if (num_dropped_eps) 3801 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3802 "Dropped %u ep ctxs, flags = 0x%x, " 3803 "%u now active.", 3804 num_dropped_eps, drop_flags, 3805 xhci->num_active_eps); 3806 } 3807 3808 /* 3809 * This submits a Reset Device Command, which will set the device state to 0, 3810 * set the device address to 0, and disable all the endpoints except the default 3811 * control endpoint. The USB core should come back and call 3812 * xhci_address_device(), and then re-set up the configuration. If this is 3813 * called because of a usb_reset_and_verify_device(), then the old alternate 3814 * settings will be re-installed through the normal bandwidth allocation 3815 * functions. 3816 * 3817 * Wait for the Reset Device command to finish. Remove all structures 3818 * associated with the endpoints that were disabled. Clear the input device 3819 * structure? Reset the control endpoint 0 max packet size? 3820 * 3821 * If the virt_dev to be reset does not exist or does not match the udev, 3822 * it means the device is lost, possibly due to the xHC restore error and 3823 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3824 * re-allocate the device. 3825 */ 3826 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3827 struct usb_device *udev) 3828 { 3829 int ret, i; 3830 unsigned long flags; 3831 struct xhci_hcd *xhci; 3832 unsigned int slot_id; 3833 struct xhci_virt_device *virt_dev; 3834 struct xhci_command *reset_device_cmd; 3835 struct xhci_slot_ctx *slot_ctx; 3836 int old_active_eps = 0; 3837 3838 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3839 if (ret <= 0) 3840 return ret; 3841 xhci = hcd_to_xhci(hcd); 3842 slot_id = udev->slot_id; 3843 virt_dev = xhci->devs[slot_id]; 3844 if (!virt_dev) { 3845 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3846 "not exist. Re-allocate the device\n", slot_id); 3847 ret = xhci_alloc_dev(hcd, udev); 3848 if (ret == 1) 3849 return 0; 3850 else 3851 return -EINVAL; 3852 } 3853 3854 if (virt_dev->tt_info) 3855 old_active_eps = virt_dev->tt_info->active_eps; 3856 3857 if (virt_dev->udev != udev) { 3858 /* If the virt_dev and the udev does not match, this virt_dev 3859 * may belong to another udev. 3860 * Re-allocate the device. 3861 */ 3862 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3863 "not match the udev. Re-allocate the device\n", 3864 slot_id); 3865 ret = xhci_alloc_dev(hcd, udev); 3866 if (ret == 1) 3867 return 0; 3868 else 3869 return -EINVAL; 3870 } 3871 3872 /* If device is not setup, there is no point in resetting it */ 3873 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3874 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3875 SLOT_STATE_DISABLED) 3876 return 0; 3877 3878 trace_xhci_discover_or_reset_device(slot_ctx); 3879 3880 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3881 /* Allocate the command structure that holds the struct completion. 3882 * Assume we're in process context, since the normal device reset 3883 * process has to wait for the device anyway. Storage devices are 3884 * reset as part of error handling, so use GFP_NOIO instead of 3885 * GFP_KERNEL. 3886 */ 3887 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3888 if (!reset_device_cmd) { 3889 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3890 return -ENOMEM; 3891 } 3892 3893 /* Attempt to submit the Reset Device command to the command ring */ 3894 spin_lock_irqsave(&xhci->lock, flags); 3895 3896 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3897 if (ret) { 3898 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3899 spin_unlock_irqrestore(&xhci->lock, flags); 3900 goto command_cleanup; 3901 } 3902 xhci_ring_cmd_db(xhci); 3903 spin_unlock_irqrestore(&xhci->lock, flags); 3904 3905 /* Wait for the Reset Device command to finish */ 3906 wait_for_completion(reset_device_cmd->completion); 3907 3908 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3909 * unless we tried to reset a slot ID that wasn't enabled, 3910 * or the device wasn't in the addressed or configured state. 3911 */ 3912 ret = reset_device_cmd->status; 3913 switch (ret) { 3914 case COMP_COMMAND_ABORTED: 3915 case COMP_COMMAND_RING_STOPPED: 3916 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3917 ret = -ETIME; 3918 goto command_cleanup; 3919 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3920 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3921 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3922 slot_id, 3923 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3924 xhci_dbg(xhci, "Not freeing device rings.\n"); 3925 /* Don't treat this as an error. May change my mind later. */ 3926 ret = 0; 3927 goto command_cleanup; 3928 case COMP_SUCCESS: 3929 xhci_dbg(xhci, "Successful reset device command.\n"); 3930 break; 3931 default: 3932 if (xhci_is_vendor_info_code(xhci, ret)) 3933 break; 3934 xhci_warn(xhci, "Unknown completion code %u for " 3935 "reset device command.\n", ret); 3936 ret = -EINVAL; 3937 goto command_cleanup; 3938 } 3939 3940 /* Free up host controller endpoint resources */ 3941 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3942 spin_lock_irqsave(&xhci->lock, flags); 3943 /* Don't delete the default control endpoint resources */ 3944 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3945 spin_unlock_irqrestore(&xhci->lock, flags); 3946 } 3947 3948 /* Everything but endpoint 0 is disabled, so free the rings. */ 3949 for (i = 1; i < 31; i++) { 3950 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3951 3952 if (ep->ep_state & EP_HAS_STREAMS) { 3953 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3954 xhci_get_endpoint_address(i)); 3955 xhci_free_stream_info(xhci, ep->stream_info); 3956 ep->stream_info = NULL; 3957 ep->ep_state &= ~EP_HAS_STREAMS; 3958 } 3959 3960 if (ep->ring) { 3961 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3962 xhci_free_endpoint_ring(xhci, virt_dev, i); 3963 } 3964 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3965 xhci_drop_ep_from_interval_table(xhci, 3966 &virt_dev->eps[i].bw_info, 3967 virt_dev->bw_table, 3968 udev, 3969 &virt_dev->eps[i], 3970 virt_dev->tt_info); 3971 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3972 } 3973 /* If necessary, update the number of active TTs on this root port */ 3974 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3975 virt_dev->flags = 0; 3976 ret = 0; 3977 3978 command_cleanup: 3979 xhci_free_command(xhci, reset_device_cmd); 3980 return ret; 3981 } 3982 3983 /* 3984 * At this point, the struct usb_device is about to go away, the device has 3985 * disconnected, and all traffic has been stopped and the endpoints have been 3986 * disabled. Free any HC data structures associated with that device. 3987 */ 3988 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3989 { 3990 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3991 struct xhci_virt_device *virt_dev; 3992 struct xhci_slot_ctx *slot_ctx; 3993 int i, ret; 3994 3995 #ifndef CONFIG_USB_DEFAULT_PERSIST 3996 /* 3997 * We called pm_runtime_get_noresume when the device was attached. 3998 * Decrement the counter here to allow controller to runtime suspend 3999 * if no devices remain. 4000 */ 4001 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4002 pm_runtime_put_noidle(hcd->self.controller); 4003 #endif 4004 4005 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 4006 /* If the host is halted due to driver unload, we still need to free the 4007 * device. 4008 */ 4009 if (ret <= 0 && ret != -ENODEV) 4010 return; 4011 4012 virt_dev = xhci->devs[udev->slot_id]; 4013 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4014 trace_xhci_free_dev(slot_ctx); 4015 4016 /* Stop any wayward timer functions (which may grab the lock) */ 4017 for (i = 0; i < 31; i++) { 4018 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4019 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 4020 } 4021 virt_dev->udev = NULL; 4022 ret = xhci_disable_slot(xhci, udev->slot_id); 4023 if (ret) 4024 xhci_free_virt_device(xhci, udev->slot_id); 4025 } 4026 4027 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4028 { 4029 struct xhci_command *command; 4030 unsigned long flags; 4031 u32 state; 4032 int ret = 0; 4033 4034 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 4035 if (!command) 4036 return -ENOMEM; 4037 4038 xhci_debugfs_remove_slot(xhci, slot_id); 4039 4040 spin_lock_irqsave(&xhci->lock, flags); 4041 /* Don't disable the slot if the host controller is dead. */ 4042 state = readl(&xhci->op_regs->status); 4043 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4044 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4045 spin_unlock_irqrestore(&xhci->lock, flags); 4046 kfree(command); 4047 return -ENODEV; 4048 } 4049 4050 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4051 slot_id); 4052 if (ret) { 4053 spin_unlock_irqrestore(&xhci->lock, flags); 4054 kfree(command); 4055 return ret; 4056 } 4057 xhci_ring_cmd_db(xhci); 4058 spin_unlock_irqrestore(&xhci->lock, flags); 4059 return ret; 4060 } 4061 4062 /* 4063 * Checks if we have enough host controller resources for the default control 4064 * endpoint. 4065 * 4066 * Must be called with xhci->lock held. 4067 */ 4068 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4069 { 4070 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4071 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4072 "Not enough ep ctxs: " 4073 "%u active, need to add 1, limit is %u.", 4074 xhci->num_active_eps, xhci->limit_active_eps); 4075 return -ENOMEM; 4076 } 4077 xhci->num_active_eps += 1; 4078 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4079 "Adding 1 ep ctx, %u now active.", 4080 xhci->num_active_eps); 4081 return 0; 4082 } 4083 4084 4085 /* 4086 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4087 * timed out, or allocating memory failed. Returns 1 on success. 4088 */ 4089 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4090 { 4091 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4092 struct xhci_virt_device *vdev; 4093 struct xhci_slot_ctx *slot_ctx; 4094 unsigned long flags; 4095 int ret, slot_id; 4096 struct xhci_command *command; 4097 4098 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4099 if (!command) 4100 return 0; 4101 4102 spin_lock_irqsave(&xhci->lock, flags); 4103 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4104 if (ret) { 4105 spin_unlock_irqrestore(&xhci->lock, flags); 4106 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4107 xhci_free_command(xhci, command); 4108 return 0; 4109 } 4110 xhci_ring_cmd_db(xhci); 4111 spin_unlock_irqrestore(&xhci->lock, flags); 4112 4113 wait_for_completion(command->completion); 4114 slot_id = command->slot_id; 4115 4116 if (!slot_id || command->status != COMP_SUCCESS) { 4117 xhci_err(xhci, "Error while assigning device slot ID\n"); 4118 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4119 HCS_MAX_SLOTS( 4120 readl(&xhci->cap_regs->hcs_params1))); 4121 xhci_free_command(xhci, command); 4122 return 0; 4123 } 4124 4125 xhci_free_command(xhci, command); 4126 4127 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4128 spin_lock_irqsave(&xhci->lock, flags); 4129 ret = xhci_reserve_host_control_ep_resources(xhci); 4130 if (ret) { 4131 spin_unlock_irqrestore(&xhci->lock, flags); 4132 xhci_warn(xhci, "Not enough host resources, " 4133 "active endpoint contexts = %u\n", 4134 xhci->num_active_eps); 4135 goto disable_slot; 4136 } 4137 spin_unlock_irqrestore(&xhci->lock, flags); 4138 } 4139 /* Use GFP_NOIO, since this function can be called from 4140 * xhci_discover_or_reset_device(), which may be called as part of 4141 * mass storage driver error handling. 4142 */ 4143 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4144 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4145 goto disable_slot; 4146 } 4147 vdev = xhci->devs[slot_id]; 4148 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4149 trace_xhci_alloc_dev(slot_ctx); 4150 4151 udev->slot_id = slot_id; 4152 4153 xhci_debugfs_create_slot(xhci, slot_id); 4154 4155 #ifndef CONFIG_USB_DEFAULT_PERSIST 4156 /* 4157 * If resetting upon resume, we can't put the controller into runtime 4158 * suspend if there is a device attached. 4159 */ 4160 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4161 pm_runtime_get_noresume(hcd->self.controller); 4162 #endif 4163 4164 /* Is this a LS or FS device under a HS hub? */ 4165 /* Hub or peripherial? */ 4166 return 1; 4167 4168 disable_slot: 4169 ret = xhci_disable_slot(xhci, udev->slot_id); 4170 if (ret) 4171 xhci_free_virt_device(xhci, udev->slot_id); 4172 4173 return 0; 4174 } 4175 4176 /* 4177 * Issue an Address Device command and optionally send a corresponding 4178 * SetAddress request to the device. 4179 */ 4180 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4181 enum xhci_setup_dev setup) 4182 { 4183 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4184 unsigned long flags; 4185 struct xhci_virt_device *virt_dev; 4186 int ret = 0; 4187 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4188 struct xhci_slot_ctx *slot_ctx; 4189 struct xhci_input_control_ctx *ctrl_ctx; 4190 u64 temp_64; 4191 struct xhci_command *command = NULL; 4192 4193 mutex_lock(&xhci->mutex); 4194 4195 if (xhci->xhc_state) { /* dying, removing or halted */ 4196 ret = -ESHUTDOWN; 4197 goto out; 4198 } 4199 4200 if (!udev->slot_id) { 4201 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4202 "Bad Slot ID %d", udev->slot_id); 4203 ret = -EINVAL; 4204 goto out; 4205 } 4206 4207 virt_dev = xhci->devs[udev->slot_id]; 4208 4209 if (WARN_ON(!virt_dev)) { 4210 /* 4211 * In plug/unplug torture test with an NEC controller, 4212 * a zero-dereference was observed once due to virt_dev = 0. 4213 * Print useful debug rather than crash if it is observed again! 4214 */ 4215 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4216 udev->slot_id); 4217 ret = -EINVAL; 4218 goto out; 4219 } 4220 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4221 trace_xhci_setup_device_slot(slot_ctx); 4222 4223 if (setup == SETUP_CONTEXT_ONLY) { 4224 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4225 SLOT_STATE_DEFAULT) { 4226 xhci_dbg(xhci, "Slot already in default state\n"); 4227 goto out; 4228 } 4229 } 4230 4231 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4232 if (!command) { 4233 ret = -ENOMEM; 4234 goto out; 4235 } 4236 4237 command->in_ctx = virt_dev->in_ctx; 4238 4239 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4240 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4241 if (!ctrl_ctx) { 4242 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4243 __func__); 4244 ret = -EINVAL; 4245 goto out; 4246 } 4247 /* 4248 * If this is the first Set Address since device plug-in or 4249 * virt_device realloaction after a resume with an xHCI power loss, 4250 * then set up the slot context. 4251 */ 4252 if (!slot_ctx->dev_info) 4253 xhci_setup_addressable_virt_dev(xhci, udev); 4254 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4255 else 4256 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4257 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4258 ctrl_ctx->drop_flags = 0; 4259 4260 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4261 le32_to_cpu(slot_ctx->dev_info) >> 27); 4262 4263 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4264 spin_lock_irqsave(&xhci->lock, flags); 4265 trace_xhci_setup_device(virt_dev); 4266 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4267 udev->slot_id, setup); 4268 if (ret) { 4269 spin_unlock_irqrestore(&xhci->lock, flags); 4270 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4271 "FIXME: allocate a command ring segment"); 4272 goto out; 4273 } 4274 xhci_ring_cmd_db(xhci); 4275 spin_unlock_irqrestore(&xhci->lock, flags); 4276 4277 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4278 wait_for_completion(command->completion); 4279 4280 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4281 * the SetAddress() "recovery interval" required by USB and aborting the 4282 * command on a timeout. 4283 */ 4284 switch (command->status) { 4285 case COMP_COMMAND_ABORTED: 4286 case COMP_COMMAND_RING_STOPPED: 4287 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4288 ret = -ETIME; 4289 break; 4290 case COMP_CONTEXT_STATE_ERROR: 4291 case COMP_SLOT_NOT_ENABLED_ERROR: 4292 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4293 act, udev->slot_id); 4294 ret = -EINVAL; 4295 break; 4296 case COMP_USB_TRANSACTION_ERROR: 4297 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4298 4299 mutex_unlock(&xhci->mutex); 4300 ret = xhci_disable_slot(xhci, udev->slot_id); 4301 if (!ret) 4302 xhci_alloc_dev(hcd, udev); 4303 kfree(command->completion); 4304 kfree(command); 4305 return -EPROTO; 4306 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4307 dev_warn(&udev->dev, 4308 "ERROR: Incompatible device for setup %s command\n", act); 4309 ret = -ENODEV; 4310 break; 4311 case COMP_SUCCESS: 4312 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4313 "Successful setup %s command", act); 4314 break; 4315 default: 4316 xhci_err(xhci, 4317 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4318 act, command->status); 4319 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4320 ret = -EINVAL; 4321 break; 4322 } 4323 if (ret) 4324 goto out; 4325 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4326 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4327 "Op regs DCBAA ptr = %#016llx", temp_64); 4328 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4329 "Slot ID %d dcbaa entry @%p = %#016llx", 4330 udev->slot_id, 4331 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4332 (unsigned long long) 4333 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4334 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4335 "Output Context DMA address = %#08llx", 4336 (unsigned long long)virt_dev->out_ctx->dma); 4337 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4338 le32_to_cpu(slot_ctx->dev_info) >> 27); 4339 /* 4340 * USB core uses address 1 for the roothubs, so we add one to the 4341 * address given back to us by the HC. 4342 */ 4343 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4344 le32_to_cpu(slot_ctx->dev_info) >> 27); 4345 /* Zero the input context control for later use */ 4346 ctrl_ctx->add_flags = 0; 4347 ctrl_ctx->drop_flags = 0; 4348 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4349 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4350 4351 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4352 "Internal device address = %d", 4353 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4354 out: 4355 mutex_unlock(&xhci->mutex); 4356 if (command) { 4357 kfree(command->completion); 4358 kfree(command); 4359 } 4360 return ret; 4361 } 4362 4363 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4364 { 4365 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4366 } 4367 4368 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4369 { 4370 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4371 } 4372 4373 /* 4374 * Transfer the port index into real index in the HW port status 4375 * registers. Caculate offset between the port's PORTSC register 4376 * and port status base. Divide the number of per port register 4377 * to get the real index. The raw port number bases 1. 4378 */ 4379 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4380 { 4381 struct xhci_hub *rhub; 4382 4383 rhub = xhci_get_rhub(hcd); 4384 return rhub->ports[port1 - 1]->hw_portnum + 1; 4385 } 4386 4387 /* 4388 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4389 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4390 */ 4391 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4392 struct usb_device *udev, u16 max_exit_latency) 4393 { 4394 struct xhci_virt_device *virt_dev; 4395 struct xhci_command *command; 4396 struct xhci_input_control_ctx *ctrl_ctx; 4397 struct xhci_slot_ctx *slot_ctx; 4398 unsigned long flags; 4399 int ret; 4400 4401 spin_lock_irqsave(&xhci->lock, flags); 4402 4403 virt_dev = xhci->devs[udev->slot_id]; 4404 4405 /* 4406 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4407 * xHC was re-initialized. Exit latency will be set later after 4408 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4409 */ 4410 4411 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4412 spin_unlock_irqrestore(&xhci->lock, flags); 4413 return 0; 4414 } 4415 4416 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4417 command = xhci->lpm_command; 4418 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4419 if (!ctrl_ctx) { 4420 spin_unlock_irqrestore(&xhci->lock, flags); 4421 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4422 __func__); 4423 return -ENOMEM; 4424 } 4425 4426 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4427 spin_unlock_irqrestore(&xhci->lock, flags); 4428 4429 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4430 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4431 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4432 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4433 slot_ctx->dev_state = 0; 4434 4435 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4436 "Set up evaluate context for LPM MEL change."); 4437 4438 /* Issue and wait for the evaluate context command. */ 4439 ret = xhci_configure_endpoint(xhci, udev, command, 4440 true, true); 4441 4442 if (!ret) { 4443 spin_lock_irqsave(&xhci->lock, flags); 4444 virt_dev->current_mel = max_exit_latency; 4445 spin_unlock_irqrestore(&xhci->lock, flags); 4446 } 4447 return ret; 4448 } 4449 4450 #ifdef CONFIG_PM 4451 4452 /* BESL to HIRD Encoding array for USB2 LPM */ 4453 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4454 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4455 4456 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4457 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4458 struct usb_device *udev) 4459 { 4460 int u2del, besl, besl_host; 4461 int besl_device = 0; 4462 u32 field; 4463 4464 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4465 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4466 4467 if (field & USB_BESL_SUPPORT) { 4468 for (besl_host = 0; besl_host < 16; besl_host++) { 4469 if (xhci_besl_encoding[besl_host] >= u2del) 4470 break; 4471 } 4472 /* Use baseline BESL value as default */ 4473 if (field & USB_BESL_BASELINE_VALID) 4474 besl_device = USB_GET_BESL_BASELINE(field); 4475 else if (field & USB_BESL_DEEP_VALID) 4476 besl_device = USB_GET_BESL_DEEP(field); 4477 } else { 4478 if (u2del <= 50) 4479 besl_host = 0; 4480 else 4481 besl_host = (u2del - 51) / 75 + 1; 4482 } 4483 4484 besl = besl_host + besl_device; 4485 if (besl > 15) 4486 besl = 15; 4487 4488 return besl; 4489 } 4490 4491 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4492 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4493 { 4494 u32 field; 4495 int l1; 4496 int besld = 0; 4497 int hirdm = 0; 4498 4499 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4500 4501 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4502 l1 = udev->l1_params.timeout / 256; 4503 4504 /* device has preferred BESLD */ 4505 if (field & USB_BESL_DEEP_VALID) { 4506 besld = USB_GET_BESL_DEEP(field); 4507 hirdm = 1; 4508 } 4509 4510 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4511 } 4512 4513 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4514 struct usb_device *udev, int enable) 4515 { 4516 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4517 struct xhci_port **ports; 4518 __le32 __iomem *pm_addr, *hlpm_addr; 4519 u32 pm_val, hlpm_val, field; 4520 unsigned int port_num; 4521 unsigned long flags; 4522 int hird, exit_latency; 4523 int ret; 4524 4525 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4526 return -EPERM; 4527 4528 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4529 !udev->lpm_capable) 4530 return -EPERM; 4531 4532 if (!udev->parent || udev->parent->parent || 4533 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4534 return -EPERM; 4535 4536 if (udev->usb2_hw_lpm_capable != 1) 4537 return -EPERM; 4538 4539 spin_lock_irqsave(&xhci->lock, flags); 4540 4541 ports = xhci->usb2_rhub.ports; 4542 port_num = udev->portnum - 1; 4543 pm_addr = ports[port_num]->addr + PORTPMSC; 4544 pm_val = readl(pm_addr); 4545 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4546 4547 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4548 enable ? "enable" : "disable", port_num + 1); 4549 4550 if (enable) { 4551 /* Host supports BESL timeout instead of HIRD */ 4552 if (udev->usb2_hw_lpm_besl_capable) { 4553 /* if device doesn't have a preferred BESL value use a 4554 * default one which works with mixed HIRD and BESL 4555 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4556 */ 4557 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4558 if ((field & USB_BESL_SUPPORT) && 4559 (field & USB_BESL_BASELINE_VALID)) 4560 hird = USB_GET_BESL_BASELINE(field); 4561 else 4562 hird = udev->l1_params.besl; 4563 4564 exit_latency = xhci_besl_encoding[hird]; 4565 spin_unlock_irqrestore(&xhci->lock, flags); 4566 4567 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4568 * input context for link powermanagement evaluate 4569 * context commands. It is protected by hcd->bandwidth 4570 * mutex and is shared by all devices. We need to set 4571 * the max ext latency in USB 2 BESL LPM as well, so 4572 * use the same mutex and xhci_change_max_exit_latency() 4573 */ 4574 mutex_lock(hcd->bandwidth_mutex); 4575 ret = xhci_change_max_exit_latency(xhci, udev, 4576 exit_latency); 4577 mutex_unlock(hcd->bandwidth_mutex); 4578 4579 if (ret < 0) 4580 return ret; 4581 spin_lock_irqsave(&xhci->lock, flags); 4582 4583 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4584 writel(hlpm_val, hlpm_addr); 4585 /* flush write */ 4586 readl(hlpm_addr); 4587 } else { 4588 hird = xhci_calculate_hird_besl(xhci, udev); 4589 } 4590 4591 pm_val &= ~PORT_HIRD_MASK; 4592 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4593 writel(pm_val, pm_addr); 4594 pm_val = readl(pm_addr); 4595 pm_val |= PORT_HLE; 4596 writel(pm_val, pm_addr); 4597 /* flush write */ 4598 readl(pm_addr); 4599 } else { 4600 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4601 writel(pm_val, pm_addr); 4602 /* flush write */ 4603 readl(pm_addr); 4604 if (udev->usb2_hw_lpm_besl_capable) { 4605 spin_unlock_irqrestore(&xhci->lock, flags); 4606 mutex_lock(hcd->bandwidth_mutex); 4607 xhci_change_max_exit_latency(xhci, udev, 0); 4608 mutex_unlock(hcd->bandwidth_mutex); 4609 readl_poll_timeout(ports[port_num]->addr, pm_val, 4610 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4611 100, 10000); 4612 return 0; 4613 } 4614 } 4615 4616 spin_unlock_irqrestore(&xhci->lock, flags); 4617 return 0; 4618 } 4619 4620 /* check if a usb2 port supports a given extened capability protocol 4621 * only USB2 ports extended protocol capability values are cached. 4622 * Return 1 if capability is supported 4623 */ 4624 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4625 unsigned capability) 4626 { 4627 u32 port_offset, port_count; 4628 int i; 4629 4630 for (i = 0; i < xhci->num_ext_caps; i++) { 4631 if (xhci->ext_caps[i] & capability) { 4632 /* port offsets starts at 1 */ 4633 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4634 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4635 if (port >= port_offset && 4636 port < port_offset + port_count) 4637 return 1; 4638 } 4639 } 4640 return 0; 4641 } 4642 4643 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4644 { 4645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4646 int portnum = udev->portnum - 1; 4647 4648 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4649 return 0; 4650 4651 /* we only support lpm for non-hub device connected to root hub yet */ 4652 if (!udev->parent || udev->parent->parent || 4653 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4654 return 0; 4655 4656 if (xhci->hw_lpm_support == 1 && 4657 xhci_check_usb2_port_capability( 4658 xhci, portnum, XHCI_HLC)) { 4659 udev->usb2_hw_lpm_capable = 1; 4660 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4661 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4662 if (xhci_check_usb2_port_capability(xhci, portnum, 4663 XHCI_BLC)) 4664 udev->usb2_hw_lpm_besl_capable = 1; 4665 } 4666 4667 return 0; 4668 } 4669 4670 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4671 4672 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4673 static unsigned long long xhci_service_interval_to_ns( 4674 struct usb_endpoint_descriptor *desc) 4675 { 4676 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4677 } 4678 4679 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4680 enum usb3_link_state state) 4681 { 4682 unsigned long long sel; 4683 unsigned long long pel; 4684 unsigned int max_sel_pel; 4685 char *state_name; 4686 4687 switch (state) { 4688 case USB3_LPM_U1: 4689 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4690 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4691 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4692 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4693 state_name = "U1"; 4694 break; 4695 case USB3_LPM_U2: 4696 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4697 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4698 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4699 state_name = "U2"; 4700 break; 4701 default: 4702 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4703 __func__); 4704 return USB3_LPM_DISABLED; 4705 } 4706 4707 if (sel <= max_sel_pel && pel <= max_sel_pel) 4708 return USB3_LPM_DEVICE_INITIATED; 4709 4710 if (sel > max_sel_pel) 4711 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4712 "due to long SEL %llu ms\n", 4713 state_name, sel); 4714 else 4715 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4716 "due to long PEL %llu ms\n", 4717 state_name, pel); 4718 return USB3_LPM_DISABLED; 4719 } 4720 4721 /* The U1 timeout should be the maximum of the following values: 4722 * - For control endpoints, U1 system exit latency (SEL) * 3 4723 * - For bulk endpoints, U1 SEL * 5 4724 * - For interrupt endpoints: 4725 * - Notification EPs, U1 SEL * 3 4726 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4727 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4728 */ 4729 static unsigned long long xhci_calculate_intel_u1_timeout( 4730 struct usb_device *udev, 4731 struct usb_endpoint_descriptor *desc) 4732 { 4733 unsigned long long timeout_ns; 4734 int ep_type; 4735 int intr_type; 4736 4737 ep_type = usb_endpoint_type(desc); 4738 switch (ep_type) { 4739 case USB_ENDPOINT_XFER_CONTROL: 4740 timeout_ns = udev->u1_params.sel * 3; 4741 break; 4742 case USB_ENDPOINT_XFER_BULK: 4743 timeout_ns = udev->u1_params.sel * 5; 4744 break; 4745 case USB_ENDPOINT_XFER_INT: 4746 intr_type = usb_endpoint_interrupt_type(desc); 4747 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4748 timeout_ns = udev->u1_params.sel * 3; 4749 break; 4750 } 4751 /* Otherwise the calculation is the same as isoc eps */ 4752 fallthrough; 4753 case USB_ENDPOINT_XFER_ISOC: 4754 timeout_ns = xhci_service_interval_to_ns(desc); 4755 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4756 if (timeout_ns < udev->u1_params.sel * 2) 4757 timeout_ns = udev->u1_params.sel * 2; 4758 break; 4759 default: 4760 return 0; 4761 } 4762 4763 return timeout_ns; 4764 } 4765 4766 /* Returns the hub-encoded U1 timeout value. */ 4767 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4768 struct usb_device *udev, 4769 struct usb_endpoint_descriptor *desc) 4770 { 4771 unsigned long long timeout_ns; 4772 4773 if (xhci->quirks & XHCI_INTEL_HOST) 4774 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4775 else 4776 timeout_ns = udev->u1_params.sel; 4777 4778 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4779 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4780 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4781 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4782 return USB3_LPM_DISABLED; 4783 } 4784 } 4785 4786 /* The U1 timeout is encoded in 1us intervals. 4787 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4788 */ 4789 if (timeout_ns == USB3_LPM_DISABLED) 4790 timeout_ns = 1; 4791 else 4792 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4793 4794 /* If the necessary timeout value is bigger than what we can set in the 4795 * USB 3.0 hub, we have to disable hub-initiated U1. 4796 */ 4797 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4798 return timeout_ns; 4799 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4800 "due to long timeout %llu ms\n", timeout_ns); 4801 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4802 } 4803 4804 /* The U2 timeout should be the maximum of: 4805 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4806 * - largest bInterval of any active periodic endpoint (to avoid going 4807 * into lower power link states between intervals). 4808 * - the U2 Exit Latency of the device 4809 */ 4810 static unsigned long long xhci_calculate_intel_u2_timeout( 4811 struct usb_device *udev, 4812 struct usb_endpoint_descriptor *desc) 4813 { 4814 unsigned long long timeout_ns; 4815 unsigned long long u2_del_ns; 4816 4817 timeout_ns = 10 * 1000 * 1000; 4818 4819 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4820 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4821 timeout_ns = xhci_service_interval_to_ns(desc); 4822 4823 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4824 if (u2_del_ns > timeout_ns) 4825 timeout_ns = u2_del_ns; 4826 4827 return timeout_ns; 4828 } 4829 4830 /* Returns the hub-encoded U2 timeout value. */ 4831 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4832 struct usb_device *udev, 4833 struct usb_endpoint_descriptor *desc) 4834 { 4835 unsigned long long timeout_ns; 4836 4837 if (xhci->quirks & XHCI_INTEL_HOST) 4838 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4839 else 4840 timeout_ns = udev->u2_params.sel; 4841 4842 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4843 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4844 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4845 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4846 return USB3_LPM_DISABLED; 4847 } 4848 } 4849 4850 /* The U2 timeout is encoded in 256us intervals */ 4851 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4852 /* If the necessary timeout value is bigger than what we can set in the 4853 * USB 3.0 hub, we have to disable hub-initiated U2. 4854 */ 4855 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4856 return timeout_ns; 4857 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4858 "due to long timeout %llu ms\n", timeout_ns); 4859 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4860 } 4861 4862 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4863 struct usb_device *udev, 4864 struct usb_endpoint_descriptor *desc, 4865 enum usb3_link_state state, 4866 u16 *timeout) 4867 { 4868 if (state == USB3_LPM_U1) 4869 return xhci_calculate_u1_timeout(xhci, udev, desc); 4870 else if (state == USB3_LPM_U2) 4871 return xhci_calculate_u2_timeout(xhci, udev, desc); 4872 4873 return USB3_LPM_DISABLED; 4874 } 4875 4876 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4877 struct usb_device *udev, 4878 struct usb_endpoint_descriptor *desc, 4879 enum usb3_link_state state, 4880 u16 *timeout) 4881 { 4882 u16 alt_timeout; 4883 4884 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4885 desc, state, timeout); 4886 4887 /* If we found we can't enable hub-initiated LPM, and 4888 * the U1 or U2 exit latency was too high to allow 4889 * device-initiated LPM as well, then we will disable LPM 4890 * for this device, so stop searching any further. 4891 */ 4892 if (alt_timeout == USB3_LPM_DISABLED) { 4893 *timeout = alt_timeout; 4894 return -E2BIG; 4895 } 4896 if (alt_timeout > *timeout) 4897 *timeout = alt_timeout; 4898 return 0; 4899 } 4900 4901 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4902 struct usb_device *udev, 4903 struct usb_host_interface *alt, 4904 enum usb3_link_state state, 4905 u16 *timeout) 4906 { 4907 int j; 4908 4909 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4910 if (xhci_update_timeout_for_endpoint(xhci, udev, 4911 &alt->endpoint[j].desc, state, timeout)) 4912 return -E2BIG; 4913 continue; 4914 } 4915 return 0; 4916 } 4917 4918 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4919 enum usb3_link_state state) 4920 { 4921 struct usb_device *parent; 4922 unsigned int num_hubs; 4923 4924 if (state == USB3_LPM_U2) 4925 return 0; 4926 4927 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4928 for (parent = udev->parent, num_hubs = 0; parent->parent; 4929 parent = parent->parent) 4930 num_hubs++; 4931 4932 if (num_hubs < 2) 4933 return 0; 4934 4935 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4936 " below second-tier hub.\n"); 4937 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4938 "to decrease power consumption.\n"); 4939 return -E2BIG; 4940 } 4941 4942 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4943 struct usb_device *udev, 4944 enum usb3_link_state state) 4945 { 4946 if (xhci->quirks & XHCI_INTEL_HOST) 4947 return xhci_check_intel_tier_policy(udev, state); 4948 else 4949 return 0; 4950 } 4951 4952 /* Returns the U1 or U2 timeout that should be enabled. 4953 * If the tier check or timeout setting functions return with a non-zero exit 4954 * code, that means the timeout value has been finalized and we shouldn't look 4955 * at any more endpoints. 4956 */ 4957 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4958 struct usb_device *udev, enum usb3_link_state state) 4959 { 4960 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4961 struct usb_host_config *config; 4962 char *state_name; 4963 int i; 4964 u16 timeout = USB3_LPM_DISABLED; 4965 4966 if (state == USB3_LPM_U1) 4967 state_name = "U1"; 4968 else if (state == USB3_LPM_U2) 4969 state_name = "U2"; 4970 else { 4971 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4972 state); 4973 return timeout; 4974 } 4975 4976 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4977 return timeout; 4978 4979 /* Gather some information about the currently installed configuration 4980 * and alternate interface settings. 4981 */ 4982 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4983 state, &timeout)) 4984 return timeout; 4985 4986 config = udev->actconfig; 4987 if (!config) 4988 return timeout; 4989 4990 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4991 struct usb_driver *driver; 4992 struct usb_interface *intf = config->interface[i]; 4993 4994 if (!intf) 4995 continue; 4996 4997 /* Check if any currently bound drivers want hub-initiated LPM 4998 * disabled. 4999 */ 5000 if (intf->dev.driver) { 5001 driver = to_usb_driver(intf->dev.driver); 5002 if (driver && driver->disable_hub_initiated_lpm) { 5003 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 5004 state_name, driver->name); 5005 timeout = xhci_get_timeout_no_hub_lpm(udev, 5006 state); 5007 if (timeout == USB3_LPM_DISABLED) 5008 return timeout; 5009 } 5010 } 5011 5012 /* Not sure how this could happen... */ 5013 if (!intf->cur_altsetting) 5014 continue; 5015 5016 if (xhci_update_timeout_for_interface(xhci, udev, 5017 intf->cur_altsetting, 5018 state, &timeout)) 5019 return timeout; 5020 } 5021 return timeout; 5022 } 5023 5024 static int calculate_max_exit_latency(struct usb_device *udev, 5025 enum usb3_link_state state_changed, 5026 u16 hub_encoded_timeout) 5027 { 5028 unsigned long long u1_mel_us = 0; 5029 unsigned long long u2_mel_us = 0; 5030 unsigned long long mel_us = 0; 5031 bool disabling_u1; 5032 bool disabling_u2; 5033 bool enabling_u1; 5034 bool enabling_u2; 5035 5036 disabling_u1 = (state_changed == USB3_LPM_U1 && 5037 hub_encoded_timeout == USB3_LPM_DISABLED); 5038 disabling_u2 = (state_changed == USB3_LPM_U2 && 5039 hub_encoded_timeout == USB3_LPM_DISABLED); 5040 5041 enabling_u1 = (state_changed == USB3_LPM_U1 && 5042 hub_encoded_timeout != USB3_LPM_DISABLED); 5043 enabling_u2 = (state_changed == USB3_LPM_U2 && 5044 hub_encoded_timeout != USB3_LPM_DISABLED); 5045 5046 /* If U1 was already enabled and we're not disabling it, 5047 * or we're going to enable U1, account for the U1 max exit latency. 5048 */ 5049 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5050 enabling_u1) 5051 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5052 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5053 enabling_u2) 5054 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5055 5056 if (u1_mel_us > u2_mel_us) 5057 mel_us = u1_mel_us; 5058 else 5059 mel_us = u2_mel_us; 5060 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5061 if (mel_us > MAX_EXIT) { 5062 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5063 "is too big.\n", mel_us); 5064 return -E2BIG; 5065 } 5066 return mel_us; 5067 } 5068 5069 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5071 struct usb_device *udev, enum usb3_link_state state) 5072 { 5073 struct xhci_hcd *xhci; 5074 u16 hub_encoded_timeout; 5075 int mel; 5076 int ret; 5077 5078 xhci = hcd_to_xhci(hcd); 5079 /* The LPM timeout values are pretty host-controller specific, so don't 5080 * enable hub-initiated timeouts unless the vendor has provided 5081 * information about their timeout algorithm. 5082 */ 5083 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5084 !xhci->devs[udev->slot_id]) 5085 return USB3_LPM_DISABLED; 5086 5087 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5088 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5089 if (mel < 0) { 5090 /* Max Exit Latency is too big, disable LPM. */ 5091 hub_encoded_timeout = USB3_LPM_DISABLED; 5092 mel = 0; 5093 } 5094 5095 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5096 if (ret) 5097 return ret; 5098 return hub_encoded_timeout; 5099 } 5100 5101 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5102 struct usb_device *udev, enum usb3_link_state state) 5103 { 5104 struct xhci_hcd *xhci; 5105 u16 mel; 5106 5107 xhci = hcd_to_xhci(hcd); 5108 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5109 !xhci->devs[udev->slot_id]) 5110 return 0; 5111 5112 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5113 return xhci_change_max_exit_latency(xhci, udev, mel); 5114 } 5115 #else /* CONFIG_PM */ 5116 5117 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5118 struct usb_device *udev, int enable) 5119 { 5120 return 0; 5121 } 5122 5123 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5124 { 5125 return 0; 5126 } 5127 5128 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5129 struct usb_device *udev, enum usb3_link_state state) 5130 { 5131 return USB3_LPM_DISABLED; 5132 } 5133 5134 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5135 struct usb_device *udev, enum usb3_link_state state) 5136 { 5137 return 0; 5138 } 5139 #endif /* CONFIG_PM */ 5140 5141 /*-------------------------------------------------------------------------*/ 5142 5143 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5144 * internal data structures for the device. 5145 */ 5146 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5147 struct usb_tt *tt, gfp_t mem_flags) 5148 { 5149 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5150 struct xhci_virt_device *vdev; 5151 struct xhci_command *config_cmd; 5152 struct xhci_input_control_ctx *ctrl_ctx; 5153 struct xhci_slot_ctx *slot_ctx; 5154 unsigned long flags; 5155 unsigned think_time; 5156 int ret; 5157 5158 /* Ignore root hubs */ 5159 if (!hdev->parent) 5160 return 0; 5161 5162 vdev = xhci->devs[hdev->slot_id]; 5163 if (!vdev) { 5164 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5165 return -EINVAL; 5166 } 5167 5168 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5169 if (!config_cmd) 5170 return -ENOMEM; 5171 5172 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5173 if (!ctrl_ctx) { 5174 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5175 __func__); 5176 xhci_free_command(xhci, config_cmd); 5177 return -ENOMEM; 5178 } 5179 5180 spin_lock_irqsave(&xhci->lock, flags); 5181 if (hdev->speed == USB_SPEED_HIGH && 5182 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5183 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5184 xhci_free_command(xhci, config_cmd); 5185 spin_unlock_irqrestore(&xhci->lock, flags); 5186 return -ENOMEM; 5187 } 5188 5189 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5190 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5191 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5192 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5193 /* 5194 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5195 * but it may be already set to 1 when setup an xHCI virtual 5196 * device, so clear it anyway. 5197 */ 5198 if (tt->multi) 5199 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5200 else if (hdev->speed == USB_SPEED_FULL) 5201 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5202 5203 if (xhci->hci_version > 0x95) { 5204 xhci_dbg(xhci, "xHCI version %x needs hub " 5205 "TT think time and number of ports\n", 5206 (unsigned int) xhci->hci_version); 5207 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5208 /* Set TT think time - convert from ns to FS bit times. 5209 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5210 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5211 * 5212 * xHCI 1.0: this field shall be 0 if the device is not a 5213 * High-spped hub. 5214 */ 5215 think_time = tt->think_time; 5216 if (think_time != 0) 5217 think_time = (think_time / 666) - 1; 5218 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5219 slot_ctx->tt_info |= 5220 cpu_to_le32(TT_THINK_TIME(think_time)); 5221 } else { 5222 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5223 "TT think time or number of ports\n", 5224 (unsigned int) xhci->hci_version); 5225 } 5226 slot_ctx->dev_state = 0; 5227 spin_unlock_irqrestore(&xhci->lock, flags); 5228 5229 xhci_dbg(xhci, "Set up %s for hub device.\n", 5230 (xhci->hci_version > 0x95) ? 5231 "configure endpoint" : "evaluate context"); 5232 5233 /* Issue and wait for the configure endpoint or 5234 * evaluate context command. 5235 */ 5236 if (xhci->hci_version > 0x95) 5237 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5238 false, false); 5239 else 5240 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5241 true, false); 5242 5243 xhci_free_command(xhci, config_cmd); 5244 return ret; 5245 } 5246 5247 static int xhci_get_frame(struct usb_hcd *hcd) 5248 { 5249 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5250 /* EHCI mods by the periodic size. Why? */ 5251 return readl(&xhci->run_regs->microframe_index) >> 3; 5252 } 5253 5254 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5255 { 5256 struct xhci_hcd *xhci; 5257 /* 5258 * TODO: Check with DWC3 clients for sysdev according to 5259 * quirks 5260 */ 5261 struct device *dev = hcd->self.sysdev; 5262 unsigned int minor_rev; 5263 int retval; 5264 5265 /* Accept arbitrarily long scatter-gather lists */ 5266 hcd->self.sg_tablesize = ~0; 5267 5268 /* support to build packet from discontinuous buffers */ 5269 hcd->self.no_sg_constraint = 1; 5270 5271 /* XHCI controllers don't stop the ep queue on short packets :| */ 5272 hcd->self.no_stop_on_short = 1; 5273 5274 xhci = hcd_to_xhci(hcd); 5275 5276 if (usb_hcd_is_primary_hcd(hcd)) { 5277 xhci->main_hcd = hcd; 5278 xhci->usb2_rhub.hcd = hcd; 5279 /* Mark the first roothub as being USB 2.0. 5280 * The xHCI driver will register the USB 3.0 roothub. 5281 */ 5282 hcd->speed = HCD_USB2; 5283 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5284 /* 5285 * USB 2.0 roothub under xHCI has an integrated TT, 5286 * (rate matching hub) as opposed to having an OHCI/UHCI 5287 * companion controller. 5288 */ 5289 hcd->has_tt = 1; 5290 } else { 5291 /* 5292 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5293 * should return 0x31 for sbrn, or that the minor revision 5294 * is a two digit BCD containig minor and sub-minor numbers. 5295 * This was later clarified in xHCI 1.2. 5296 * 5297 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5298 * minor revision set to 0x1 instead of 0x10. 5299 */ 5300 if (xhci->usb3_rhub.min_rev == 0x1) 5301 minor_rev = 1; 5302 else 5303 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5304 5305 switch (minor_rev) { 5306 case 2: 5307 hcd->speed = HCD_USB32; 5308 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5309 hcd->self.root_hub->rx_lanes = 2; 5310 hcd->self.root_hub->tx_lanes = 2; 5311 break; 5312 case 1: 5313 hcd->speed = HCD_USB31; 5314 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5315 break; 5316 } 5317 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5318 minor_rev, 5319 minor_rev ? "Enhanced " : ""); 5320 5321 xhci->usb3_rhub.hcd = hcd; 5322 /* xHCI private pointer was set in xhci_pci_probe for the second 5323 * registered roothub. 5324 */ 5325 return 0; 5326 } 5327 5328 mutex_init(&xhci->mutex); 5329 xhci->cap_regs = hcd->regs; 5330 xhci->op_regs = hcd->regs + 5331 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5332 xhci->run_regs = hcd->regs + 5333 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5334 /* Cache read-only capability registers */ 5335 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5336 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5337 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5338 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5339 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5340 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5341 if (xhci->hci_version > 0x100) 5342 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5343 5344 xhci->quirks |= quirks; 5345 5346 get_quirks(dev, xhci); 5347 5348 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5349 * success event after a short transfer. This quirk will ignore such 5350 * spurious event. 5351 */ 5352 if (xhci->hci_version > 0x96) 5353 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5354 5355 /* Make sure the HC is halted. */ 5356 retval = xhci_halt(xhci); 5357 if (retval) 5358 return retval; 5359 5360 xhci_zero_64b_regs(xhci); 5361 5362 xhci_dbg(xhci, "Resetting HCD\n"); 5363 /* Reset the internal HC memory state and registers. */ 5364 retval = xhci_reset(xhci); 5365 if (retval) 5366 return retval; 5367 xhci_dbg(xhci, "Reset complete\n"); 5368 5369 /* 5370 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5371 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5372 * address memory pointers actually. So, this driver clears the AC64 5373 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5374 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5375 */ 5376 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5377 xhci->hcc_params &= ~BIT(0); 5378 5379 /* Set dma_mask and coherent_dma_mask to 64-bits, 5380 * if xHC supports 64-bit addressing */ 5381 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5382 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5383 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5384 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5385 } else { 5386 /* 5387 * This is to avoid error in cases where a 32-bit USB 5388 * controller is used on a 64-bit capable system. 5389 */ 5390 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5391 if (retval) 5392 return retval; 5393 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5394 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5395 } 5396 5397 xhci_dbg(xhci, "Calling HCD init\n"); 5398 /* Initialize HCD and host controller data structures. */ 5399 retval = xhci_init(hcd); 5400 if (retval) 5401 return retval; 5402 xhci_dbg(xhci, "Called HCD init\n"); 5403 5404 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5405 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5406 5407 return 0; 5408 } 5409 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5410 5411 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5412 struct usb_host_endpoint *ep) 5413 { 5414 struct xhci_hcd *xhci; 5415 struct usb_device *udev; 5416 unsigned int slot_id; 5417 unsigned int ep_index; 5418 unsigned long flags; 5419 5420 xhci = hcd_to_xhci(hcd); 5421 5422 spin_lock_irqsave(&xhci->lock, flags); 5423 udev = (struct usb_device *)ep->hcpriv; 5424 slot_id = udev->slot_id; 5425 ep_index = xhci_get_endpoint_index(&ep->desc); 5426 5427 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5428 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5429 spin_unlock_irqrestore(&xhci->lock, flags); 5430 } 5431 5432 static const struct hc_driver xhci_hc_driver = { 5433 .description = "xhci-hcd", 5434 .product_desc = "xHCI Host Controller", 5435 .hcd_priv_size = sizeof(struct xhci_hcd), 5436 5437 /* 5438 * generic hardware linkage 5439 */ 5440 .irq = xhci_irq, 5441 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5442 HCD_BH, 5443 5444 /* 5445 * basic lifecycle operations 5446 */ 5447 .reset = NULL, /* set in xhci_init_driver() */ 5448 .start = xhci_run, 5449 .stop = xhci_stop, 5450 .shutdown = xhci_shutdown, 5451 5452 /* 5453 * managing i/o requests and associated device resources 5454 */ 5455 .map_urb_for_dma = xhci_map_urb_for_dma, 5456 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5457 .urb_enqueue = xhci_urb_enqueue, 5458 .urb_dequeue = xhci_urb_dequeue, 5459 .alloc_dev = xhci_alloc_dev, 5460 .free_dev = xhci_free_dev, 5461 .alloc_streams = xhci_alloc_streams, 5462 .free_streams = xhci_free_streams, 5463 .add_endpoint = xhci_add_endpoint, 5464 .drop_endpoint = xhci_drop_endpoint, 5465 .endpoint_disable = xhci_endpoint_disable, 5466 .endpoint_reset = xhci_endpoint_reset, 5467 .check_bandwidth = xhci_check_bandwidth, 5468 .reset_bandwidth = xhci_reset_bandwidth, 5469 .address_device = xhci_address_device, 5470 .enable_device = xhci_enable_device, 5471 .update_hub_device = xhci_update_hub_device, 5472 .reset_device = xhci_discover_or_reset_device, 5473 5474 /* 5475 * scheduling support 5476 */ 5477 .get_frame_number = xhci_get_frame, 5478 5479 /* 5480 * root hub support 5481 */ 5482 .hub_control = xhci_hub_control, 5483 .hub_status_data = xhci_hub_status_data, 5484 .bus_suspend = xhci_bus_suspend, 5485 .bus_resume = xhci_bus_resume, 5486 .get_resuming_ports = xhci_get_resuming_ports, 5487 5488 /* 5489 * call back when device connected and addressed 5490 */ 5491 .update_device = xhci_update_device, 5492 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5493 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5494 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5495 .find_raw_port_number = xhci_find_raw_port_number, 5496 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5497 }; 5498 5499 void xhci_init_driver(struct hc_driver *drv, 5500 const struct xhci_driver_overrides *over) 5501 { 5502 BUG_ON(!over); 5503 5504 /* Copy the generic table to drv then apply the overrides */ 5505 *drv = xhci_hc_driver; 5506 5507 if (over) { 5508 drv->hcd_priv_size += over->extra_priv_size; 5509 if (over->reset) 5510 drv->reset = over->reset; 5511 if (over->start) 5512 drv->start = over->start; 5513 if (over->check_bandwidth) 5514 drv->check_bandwidth = over->check_bandwidth; 5515 if (over->reset_bandwidth) 5516 drv->reset_bandwidth = over->reset_bandwidth; 5517 } 5518 } 5519 EXPORT_SYMBOL_GPL(xhci_init_driver); 5520 5521 MODULE_DESCRIPTION(DRIVER_DESC); 5522 MODULE_AUTHOR(DRIVER_AUTHOR); 5523 MODULE_LICENSE("GPL"); 5524 5525 static int __init xhci_hcd_init(void) 5526 { 5527 /* 5528 * Check the compiler generated sizes of structures that must be laid 5529 * out in specific ways for hardware access. 5530 */ 5531 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5532 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5533 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5534 /* xhci_device_control has eight fields, and also 5535 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5536 */ 5537 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5538 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5539 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5540 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5541 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5542 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5543 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5544 5545 if (usb_disabled()) 5546 return -ENODEV; 5547 5548 xhci_debugfs_create_root(); 5549 5550 return 0; 5551 } 5552 5553 /* 5554 * If an init function is provided, an exit function must also be provided 5555 * to allow module unload. 5556 */ 5557 static void __exit xhci_hcd_fini(void) 5558 { 5559 xhci_debugfs_remove_root(); 5560 } 5561 5562 module_init(xhci_hcd_init); 5563 module_exit(xhci_hcd_fini); 5564