xref: /openbmc/linux/drivers/usb/host/xhci.c (revision b34e08d5)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	if (!strlen(hcd->irq_descr))
394 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 			 hcd->driver->description, hcd->self.busnum);
396 
397 	/* fall back to legacy interrupt*/
398 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 			hcd->irq_descr, hcd);
400 	if (ret) {
401 		xhci_err(xhci, "request interrupt %d failed\n",
402 				pdev->irq);
403 		return ret;
404 	}
405 	hcd->irq = pdev->irq;
406 	return 0;
407 }
408 
409 #else
410 
411 static int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	return 0;
414 }
415 
416 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419 
420 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423 
424 #endif
425 
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 	struct xhci_hcd *xhci;
429 	struct usb_hcd *hcd;
430 	u32 temp;
431 	int i;
432 
433 	xhci = (struct xhci_hcd *)arg;
434 
435 	for (i = 0; i < xhci->num_usb3_ports; i++) {
436 		temp = readl(xhci->usb3_ports[i]);
437 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 			/*
439 			 * Compliance Mode Detected. Letting USB Core
440 			 * handle the Warm Reset
441 			 */
442 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 					"Compliance mode detected->port %d",
444 					i + 1);
445 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 					"Attempting compliance mode recovery");
447 			hcd = xhci->shared_hcd;
448 
449 			if (hcd->state == HC_STATE_SUSPENDED)
450 				usb_hcd_resume_root_hub(hcd);
451 
452 			usb_hcd_poll_rh_status(hcd);
453 		}
454 	}
455 
456 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 		mod_timer(&xhci->comp_mode_recovery_timer,
458 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460 
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 	xhci->port_status_u0 = 0;
474 	init_timer(&xhci->comp_mode_recovery_timer);
475 
476 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST)
645 		xhci_queue_vendor_command(xhci, 0, 0, 0,
646 				TRB_TYPE(TRB_NEC_GET_FW));
647 
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"Finished xhci_run for USB2 roothub");
650 	return 0;
651 }
652 
653 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
654 {
655 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
656 
657 	spin_lock_irq(&xhci->lock);
658 	xhci_halt(xhci);
659 
660 	/* The shared_hcd is going to be deallocated shortly (the USB core only
661 	 * calls this function when allocation fails in usb_add_hcd(), or
662 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
663 	 */
664 	xhci->shared_hcd = NULL;
665 	spin_unlock_irq(&xhci->lock);
666 }
667 
668 /*
669  * Stop xHCI driver.
670  *
671  * This function is called by the USB core when the HC driver is removed.
672  * Its opposite is xhci_run().
673  *
674  * Disable device contexts, disable IRQs, and quiesce the HC.
675  * Reset the HC, finish any completed transactions, and cleanup memory.
676  */
677 void xhci_stop(struct usb_hcd *hcd)
678 {
679 	u32 temp;
680 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681 
682 	if (!usb_hcd_is_primary_hcd(hcd)) {
683 		xhci_only_stop_hcd(xhci->shared_hcd);
684 		return;
685 	}
686 
687 	spin_lock_irq(&xhci->lock);
688 	/* Make sure the xHC is halted for a USB3 roothub
689 	 * (xhci_stop() could be called as part of failed init).
690 	 */
691 	xhci_halt(xhci);
692 	xhci_reset(xhci);
693 	spin_unlock_irq(&xhci->lock);
694 
695 	xhci_cleanup_msix(xhci);
696 
697 	/* Deleting Compliance Mode Recovery Timer */
698 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
699 			(!(xhci_all_ports_seen_u0(xhci)))) {
700 		del_timer_sync(&xhci->comp_mode_recovery_timer);
701 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
702 				"%s: compliance mode recovery timer deleted",
703 				__func__);
704 	}
705 
706 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
707 		usb_amd_dev_put();
708 
709 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
710 			"// Disabling event ring interrupts");
711 	temp = readl(&xhci->op_regs->status);
712 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
713 	temp = readl(&xhci->ir_set->irq_pending);
714 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
715 	xhci_print_ir_set(xhci, 0);
716 
717 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
718 	xhci_mem_cleanup(xhci);
719 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 			"xhci_stop completed - status = %x",
721 			readl(&xhci->op_regs->status));
722 }
723 
724 /*
725  * Shutdown HC (not bus-specific)
726  *
727  * This is called when the machine is rebooting or halting.  We assume that the
728  * machine will be powered off, and the HC's internal state will be reset.
729  * Don't bother to free memory.
730  *
731  * This will only ever be called with the main usb_hcd (the USB3 roothub).
732  */
733 void xhci_shutdown(struct usb_hcd *hcd)
734 {
735 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736 
737 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
738 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
739 
740 	spin_lock_irq(&xhci->lock);
741 	xhci_halt(xhci);
742 	/* Workaround for spurious wakeups at shutdown with HSW */
743 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
744 		xhci_reset(xhci);
745 	spin_unlock_irq(&xhci->lock);
746 
747 	xhci_cleanup_msix(xhci);
748 
749 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 			"xhci_shutdown completed - status = %x",
751 			readl(&xhci->op_regs->status));
752 
753 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
754 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
755 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
756 }
757 
758 #ifdef CONFIG_PM
759 static void xhci_save_registers(struct xhci_hcd *xhci)
760 {
761 	xhci->s3.command = readl(&xhci->op_regs->command);
762 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
763 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
764 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
765 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
766 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
767 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
768 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
769 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
770 }
771 
772 static void xhci_restore_registers(struct xhci_hcd *xhci)
773 {
774 	writel(xhci->s3.command, &xhci->op_regs->command);
775 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
776 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
777 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
778 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
779 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
780 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
781 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
782 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
783 }
784 
785 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
786 {
787 	u64	val_64;
788 
789 	/* step 2: initialize command ring buffer */
790 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
791 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
792 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
793 				      xhci->cmd_ring->dequeue) &
794 		 (u64) ~CMD_RING_RSVD_BITS) |
795 		xhci->cmd_ring->cycle_state;
796 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
797 			"// Setting command ring address to 0x%llx",
798 			(long unsigned long) val_64);
799 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
800 }
801 
802 /*
803  * The whole command ring must be cleared to zero when we suspend the host.
804  *
805  * The host doesn't save the command ring pointer in the suspend well, so we
806  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
807  * aligned, because of the reserved bits in the command ring dequeue pointer
808  * register.  Therefore, we can't just set the dequeue pointer back in the
809  * middle of the ring (TRBs are 16-byte aligned).
810  */
811 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
812 {
813 	struct xhci_ring *ring;
814 	struct xhci_segment *seg;
815 
816 	ring = xhci->cmd_ring;
817 	seg = ring->deq_seg;
818 	do {
819 		memset(seg->trbs, 0,
820 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
821 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
822 			cpu_to_le32(~TRB_CYCLE);
823 		seg = seg->next;
824 	} while (seg != ring->deq_seg);
825 
826 	/* Reset the software enqueue and dequeue pointers */
827 	ring->deq_seg = ring->first_seg;
828 	ring->dequeue = ring->first_seg->trbs;
829 	ring->enq_seg = ring->deq_seg;
830 	ring->enqueue = ring->dequeue;
831 
832 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
833 	/*
834 	 * Ring is now zeroed, so the HW should look for change of ownership
835 	 * when the cycle bit is set to 1.
836 	 */
837 	ring->cycle_state = 1;
838 
839 	/*
840 	 * Reset the hardware dequeue pointer.
841 	 * Yes, this will need to be re-written after resume, but we're paranoid
842 	 * and want to make sure the hardware doesn't access bogus memory
843 	 * because, say, the BIOS or an SMI started the host without changing
844 	 * the command ring pointers.
845 	 */
846 	xhci_set_cmd_ring_deq(xhci);
847 }
848 
849 /*
850  * Stop HC (not bus-specific)
851  *
852  * This is called when the machine transition into S3/S4 mode.
853  *
854  */
855 int xhci_suspend(struct xhci_hcd *xhci)
856 {
857 	int			rc = 0;
858 	unsigned int		delay = XHCI_MAX_HALT_USEC;
859 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
860 	u32			command;
861 
862 	if (hcd->state != HC_STATE_SUSPENDED ||
863 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
864 		return -EINVAL;
865 
866 	/* Don't poll the roothubs on bus suspend. */
867 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
868 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
869 	del_timer_sync(&hcd->rh_timer);
870 
871 	spin_lock_irq(&xhci->lock);
872 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
873 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
874 	/* step 1: stop endpoint */
875 	/* skipped assuming that port suspend has done */
876 
877 	/* step 2: clear Run/Stop bit */
878 	command = readl(&xhci->op_regs->command);
879 	command &= ~CMD_RUN;
880 	writel(command, &xhci->op_regs->command);
881 
882 	/* Some chips from Fresco Logic need an extraordinary delay */
883 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
884 
885 	if (xhci_handshake(xhci, &xhci->op_regs->status,
886 		      STS_HALT, STS_HALT, delay)) {
887 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
888 		spin_unlock_irq(&xhci->lock);
889 		return -ETIMEDOUT;
890 	}
891 	xhci_clear_command_ring(xhci);
892 
893 	/* step 3: save registers */
894 	xhci_save_registers(xhci);
895 
896 	/* step 4: set CSS flag */
897 	command = readl(&xhci->op_regs->command);
898 	command |= CMD_CSS;
899 	writel(command, &xhci->op_regs->command);
900 	if (xhci_handshake(xhci, &xhci->op_regs->status,
901 				STS_SAVE, 0, 10 * 1000)) {
902 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
903 		spin_unlock_irq(&xhci->lock);
904 		return -ETIMEDOUT;
905 	}
906 	spin_unlock_irq(&xhci->lock);
907 
908 	/*
909 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
910 	 * is about to be suspended.
911 	 */
912 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
913 			(!(xhci_all_ports_seen_u0(xhci)))) {
914 		del_timer_sync(&xhci->comp_mode_recovery_timer);
915 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
916 				"%s: compliance mode recovery timer deleted",
917 				__func__);
918 	}
919 
920 	/* step 5: remove core well power */
921 	/* synchronize irq when using MSI-X */
922 	xhci_msix_sync_irqs(xhci);
923 
924 	return rc;
925 }
926 
927 /*
928  * start xHC (not bus-specific)
929  *
930  * This is called when the machine transition from S3/S4 mode.
931  *
932  */
933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
934 {
935 	u32			command, temp = 0;
936 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
937 	struct usb_hcd		*secondary_hcd;
938 	int			retval = 0;
939 	bool			comp_timer_running = false;
940 
941 	/* Wait a bit if either of the roothubs need to settle from the
942 	 * transition into bus suspend.
943 	 */
944 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
945 			time_before(jiffies,
946 				xhci->bus_state[1].next_statechange))
947 		msleep(100);
948 
949 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
950 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
951 
952 	spin_lock_irq(&xhci->lock);
953 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
954 		hibernated = true;
955 
956 	if (!hibernated) {
957 		/* step 1: restore register */
958 		xhci_restore_registers(xhci);
959 		/* step 2: initialize command ring buffer */
960 		xhci_set_cmd_ring_deq(xhci);
961 		/* step 3: restore state and start state*/
962 		/* step 3: set CRS flag */
963 		command = readl(&xhci->op_regs->command);
964 		command |= CMD_CRS;
965 		writel(command, &xhci->op_regs->command);
966 		if (xhci_handshake(xhci, &xhci->op_regs->status,
967 			      STS_RESTORE, 0, 10 * 1000)) {
968 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
969 			spin_unlock_irq(&xhci->lock);
970 			return -ETIMEDOUT;
971 		}
972 		temp = readl(&xhci->op_regs->status);
973 	}
974 
975 	/* If restore operation fails, re-initialize the HC during resume */
976 	if ((temp & STS_SRE) || hibernated) {
977 
978 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
979 				!(xhci_all_ports_seen_u0(xhci))) {
980 			del_timer_sync(&xhci->comp_mode_recovery_timer);
981 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
982 				"Compliance Mode Recovery Timer deleted!");
983 		}
984 
985 		/* Let the USB core know _both_ roothubs lost power. */
986 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
987 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
988 
989 		xhci_dbg(xhci, "Stop HCD\n");
990 		xhci_halt(xhci);
991 		xhci_reset(xhci);
992 		spin_unlock_irq(&xhci->lock);
993 		xhci_cleanup_msix(xhci);
994 
995 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
996 		temp = readl(&xhci->op_regs->status);
997 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
998 		temp = readl(&xhci->ir_set->irq_pending);
999 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1000 		xhci_print_ir_set(xhci, 0);
1001 
1002 		xhci_dbg(xhci, "cleaning up memory\n");
1003 		xhci_mem_cleanup(xhci);
1004 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005 			    readl(&xhci->op_regs->status));
1006 
1007 		/* USB core calls the PCI reinit and start functions twice:
1008 		 * first with the primary HCD, and then with the secondary HCD.
1009 		 * If we don't do the same, the host will never be started.
1010 		 */
1011 		if (!usb_hcd_is_primary_hcd(hcd))
1012 			secondary_hcd = hcd;
1013 		else
1014 			secondary_hcd = xhci->shared_hcd;
1015 
1016 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017 		retval = xhci_init(hcd->primary_hcd);
1018 		if (retval)
1019 			return retval;
1020 		comp_timer_running = true;
1021 
1022 		xhci_dbg(xhci, "Start the primary HCD\n");
1023 		retval = xhci_run(hcd->primary_hcd);
1024 		if (!retval) {
1025 			xhci_dbg(xhci, "Start the secondary HCD\n");
1026 			retval = xhci_run(secondary_hcd);
1027 		}
1028 		hcd->state = HC_STATE_SUSPENDED;
1029 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 		goto done;
1031 	}
1032 
1033 	/* step 4: set Run/Stop bit */
1034 	command = readl(&xhci->op_regs->command);
1035 	command |= CMD_RUN;
1036 	writel(command, &xhci->op_regs->command);
1037 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 		  0, 250 * 1000);
1039 
1040 	/* step 5: walk topology and initialize portsc,
1041 	 * portpmsc and portli
1042 	 */
1043 	/* this is done in bus_resume */
1044 
1045 	/* step 6: restart each of the previously
1046 	 * Running endpoints by ringing their doorbells
1047 	 */
1048 
1049 	spin_unlock_irq(&xhci->lock);
1050 
1051  done:
1052 	if (retval == 0) {
1053 		usb_hcd_resume_root_hub(hcd);
1054 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 	}
1056 
1057 	/*
1058 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 	 * be re-initialized Always after a system resume. Ports are subject
1060 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 	 * ports have entered previously to U0 before system's suspension.
1062 	 */
1063 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064 		compliance_mode_recovery_timer_init(xhci);
1065 
1066 	/* Re-enable port polling. */
1067 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069 	usb_hcd_poll_rh_status(hcd);
1070 
1071 	return retval;
1072 }
1073 #endif	/* CONFIG_PM */
1074 
1075 /*-------------------------------------------------------------------------*/
1076 
1077 /**
1078  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1080  * value to right shift 1 for the bitmask.
1081  *
1082  * Index  = (epnum * 2) + direction - 1,
1083  * where direction = 0 for OUT, 1 for IN.
1084  * For control endpoints, the IN index is used (OUT index is unused), so
1085  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086  */
1087 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088 {
1089 	unsigned int index;
1090 	if (usb_endpoint_xfer_control(desc))
1091 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1092 	else
1093 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095 	return index;
1096 }
1097 
1098 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099  * address from the XHCI endpoint index.
1100  */
1101 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102 {
1103 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105 	return direction | number;
1106 }
1107 
1108 /* Find the flag for this endpoint (for use in the control context).  Use the
1109  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110  * bit 1, etc.
1111  */
1112 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113 {
1114 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1115 }
1116 
1117 /* Find the flag for this endpoint (for use in the control context).  Use the
1118  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1119  * bit 1, etc.
1120  */
1121 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122 {
1123 	return 1 << (ep_index + 1);
1124 }
1125 
1126 /* Compute the last valid endpoint context index.  Basically, this is the
1127  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1128  * we find the most significant bit set in the added contexts flags.
1129  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131  */
1132 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133 {
1134 	return fls(added_ctxs) - 1;
1135 }
1136 
1137 /* Returns 1 if the arguments are OK;
1138  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139  */
1140 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142 		const char *func) {
1143 	struct xhci_hcd	*xhci;
1144 	struct xhci_virt_device	*virt_dev;
1145 
1146 	if (!hcd || (check_ep && !ep) || !udev) {
1147 		pr_debug("xHCI %s called with invalid args\n", func);
1148 		return -EINVAL;
1149 	}
1150 	if (!udev->parent) {
1151 		pr_debug("xHCI %s called for root hub\n", func);
1152 		return 0;
1153 	}
1154 
1155 	xhci = hcd_to_xhci(hcd);
1156 	if (check_virt_dev) {
1157 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159 					func);
1160 			return -EINVAL;
1161 		}
1162 
1163 		virt_dev = xhci->devs[udev->slot_id];
1164 		if (virt_dev->udev != udev) {
1165 			xhci_dbg(xhci, "xHCI %s called with udev and "
1166 					  "virt_dev does not match\n", func);
1167 			return -EINVAL;
1168 		}
1169 	}
1170 
1171 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1172 		return -ENODEV;
1173 
1174 	return 1;
1175 }
1176 
1177 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178 		struct usb_device *udev, struct xhci_command *command,
1179 		bool ctx_change, bool must_succeed);
1180 
1181 /*
1182  * Full speed devices may have a max packet size greater than 8 bytes, but the
1183  * USB core doesn't know that until it reads the first 8 bytes of the
1184  * descriptor.  If the usb_device's max packet size changes after that point,
1185  * we need to issue an evaluate context command and wait on it.
1186  */
1187 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188 		unsigned int ep_index, struct urb *urb)
1189 {
1190 	struct xhci_container_ctx *in_ctx;
1191 	struct xhci_container_ctx *out_ctx;
1192 	struct xhci_input_control_ctx *ctrl_ctx;
1193 	struct xhci_ep_ctx *ep_ctx;
1194 	int max_packet_size;
1195 	int hw_max_packet_size;
1196 	int ret = 0;
1197 
1198 	out_ctx = xhci->devs[slot_id]->out_ctx;
1199 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202 	if (hw_max_packet_size != max_packet_size) {
1203 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204 				"Max Packet Size for ep 0 changed.");
1205 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1206 				"Max packet size in usb_device = %d",
1207 				max_packet_size);
1208 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1209 				"Max packet size in xHCI HW = %d",
1210 				hw_max_packet_size);
1211 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212 				"Issuing evaluate context command.");
1213 
1214 		/* Set up the input context flags for the command */
1215 		/* FIXME: This won't work if a non-default control endpoint
1216 		 * changes max packet sizes.
1217 		 */
1218 		in_ctx = xhci->devs[slot_id]->in_ctx;
1219 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220 		if (!ctrl_ctx) {
1221 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222 					__func__);
1223 			return -ENOMEM;
1224 		}
1225 		/* Set up the modified control endpoint 0 */
1226 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227 				xhci->devs[slot_id]->out_ctx, ep_index);
1228 
1229 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232 
1233 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234 		ctrl_ctx->drop_flags = 0;
1235 
1236 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240 
1241 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242 				true, false);
1243 
1244 		/* Clean up the input context for later use by bandwidth
1245 		 * functions.
1246 		 */
1247 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248 	}
1249 	return ret;
1250 }
1251 
1252 /*
1253  * non-error returns are a promise to giveback() the urb later
1254  * we drop ownership so next owner (or urb unlink) can get it
1255  */
1256 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257 {
1258 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259 	struct xhci_td *buffer;
1260 	unsigned long flags;
1261 	int ret = 0;
1262 	unsigned int slot_id, ep_index;
1263 	struct urb_priv	*urb_priv;
1264 	int size, i;
1265 
1266 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267 					true, true, __func__) <= 0)
1268 		return -EINVAL;
1269 
1270 	slot_id = urb->dev->slot_id;
1271 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272 
1273 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1274 		if (!in_interrupt())
1275 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276 		ret = -ESHUTDOWN;
1277 		goto exit;
1278 	}
1279 
1280 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281 		size = urb->number_of_packets;
1282 	else
1283 		size = 1;
1284 
1285 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1286 				  size * sizeof(struct xhci_td *), mem_flags);
1287 	if (!urb_priv)
1288 		return -ENOMEM;
1289 
1290 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291 	if (!buffer) {
1292 		kfree(urb_priv);
1293 		return -ENOMEM;
1294 	}
1295 
1296 	for (i = 0; i < size; i++) {
1297 		urb_priv->td[i] = buffer;
1298 		buffer++;
1299 	}
1300 
1301 	urb_priv->length = size;
1302 	urb_priv->td_cnt = 0;
1303 	urb->hcpriv = urb_priv;
1304 
1305 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306 		/* Check to see if the max packet size for the default control
1307 		 * endpoint changed during FS device enumeration
1308 		 */
1309 		if (urb->dev->speed == USB_SPEED_FULL) {
1310 			ret = xhci_check_maxpacket(xhci, slot_id,
1311 					ep_index, urb);
1312 			if (ret < 0) {
1313 				xhci_urb_free_priv(xhci, urb_priv);
1314 				urb->hcpriv = NULL;
1315 				return ret;
1316 			}
1317 		}
1318 
1319 		/* We have a spinlock and interrupts disabled, so we must pass
1320 		 * atomic context to this function, which may allocate memory.
1321 		 */
1322 		spin_lock_irqsave(&xhci->lock, flags);
1323 		if (xhci->xhc_state & XHCI_STATE_DYING)
1324 			goto dying;
1325 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326 				slot_id, ep_index);
1327 		if (ret)
1328 			goto free_priv;
1329 		spin_unlock_irqrestore(&xhci->lock, flags);
1330 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331 		spin_lock_irqsave(&xhci->lock, flags);
1332 		if (xhci->xhc_state & XHCI_STATE_DYING)
1333 			goto dying;
1334 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335 				EP_GETTING_STREAMS) {
1336 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337 					"is transitioning to using streams.\n");
1338 			ret = -EINVAL;
1339 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340 				EP_GETTING_NO_STREAMS) {
1341 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342 					"is transitioning to "
1343 					"not having streams.\n");
1344 			ret = -EINVAL;
1345 		} else {
1346 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347 					slot_id, ep_index);
1348 		}
1349 		if (ret)
1350 			goto free_priv;
1351 		spin_unlock_irqrestore(&xhci->lock, flags);
1352 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353 		spin_lock_irqsave(&xhci->lock, flags);
1354 		if (xhci->xhc_state & XHCI_STATE_DYING)
1355 			goto dying;
1356 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357 				slot_id, ep_index);
1358 		if (ret)
1359 			goto free_priv;
1360 		spin_unlock_irqrestore(&xhci->lock, flags);
1361 	} else {
1362 		spin_lock_irqsave(&xhci->lock, flags);
1363 		if (xhci->xhc_state & XHCI_STATE_DYING)
1364 			goto dying;
1365 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366 				slot_id, ep_index);
1367 		if (ret)
1368 			goto free_priv;
1369 		spin_unlock_irqrestore(&xhci->lock, flags);
1370 	}
1371 exit:
1372 	return ret;
1373 dying:
1374 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375 			"non-responsive xHCI host.\n",
1376 			urb->ep->desc.bEndpointAddress, urb);
1377 	ret = -ESHUTDOWN;
1378 free_priv:
1379 	xhci_urb_free_priv(xhci, urb_priv);
1380 	urb->hcpriv = NULL;
1381 	spin_unlock_irqrestore(&xhci->lock, flags);
1382 	return ret;
1383 }
1384 
1385 /* Get the right ring for the given URB.
1386  * If the endpoint supports streams, boundary check the URB's stream ID.
1387  * If the endpoint doesn't support streams, return the singular endpoint ring.
1388  */
1389 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390 		struct urb *urb)
1391 {
1392 	unsigned int slot_id;
1393 	unsigned int ep_index;
1394 	unsigned int stream_id;
1395 	struct xhci_virt_ep *ep;
1396 
1397 	slot_id = urb->dev->slot_id;
1398 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399 	stream_id = urb->stream_id;
1400 	ep = &xhci->devs[slot_id]->eps[ep_index];
1401 	/* Common case: no streams */
1402 	if (!(ep->ep_state & EP_HAS_STREAMS))
1403 		return ep->ring;
1404 
1405 	if (stream_id == 0) {
1406 		xhci_warn(xhci,
1407 				"WARN: Slot ID %u, ep index %u has streams, "
1408 				"but URB has no stream ID.\n",
1409 				slot_id, ep_index);
1410 		return NULL;
1411 	}
1412 
1413 	if (stream_id < ep->stream_info->num_streams)
1414 		return ep->stream_info->stream_rings[stream_id];
1415 
1416 	xhci_warn(xhci,
1417 			"WARN: Slot ID %u, ep index %u has "
1418 			"stream IDs 1 to %u allocated, "
1419 			"but stream ID %u is requested.\n",
1420 			slot_id, ep_index,
1421 			ep->stream_info->num_streams - 1,
1422 			stream_id);
1423 	return NULL;
1424 }
1425 
1426 /*
1427  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1428  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1429  * should pick up where it left off in the TD, unless a Set Transfer Ring
1430  * Dequeue Pointer is issued.
1431  *
1432  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433  * the ring.  Since the ring is a contiguous structure, they can't be physically
1434  * removed.  Instead, there are two options:
1435  *
1436  *  1) If the HC is in the middle of processing the URB to be canceled, we
1437  *     simply move the ring's dequeue pointer past those TRBs using the Set
1438  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1439  *     when drivers timeout on the last submitted URB and attempt to cancel.
1440  *
1441  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1443  *     HC will need to invalidate the any TRBs it has cached after the stop
1444  *     endpoint command, as noted in the xHCI 0.95 errata.
1445  *
1446  *  3) The TD may have completed by the time the Stop Endpoint Command
1447  *     completes, so software needs to handle that case too.
1448  *
1449  * This function should protect against the TD enqueueing code ringing the
1450  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451  * It also needs to account for multiple cancellations on happening at the same
1452  * time for the same endpoint.
1453  *
1454  * Note that this function can be called in any context, or so says
1455  * usb_hcd_unlink_urb()
1456  */
1457 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458 {
1459 	unsigned long flags;
1460 	int ret, i;
1461 	u32 temp;
1462 	struct xhci_hcd *xhci;
1463 	struct urb_priv	*urb_priv;
1464 	struct xhci_td *td;
1465 	unsigned int ep_index;
1466 	struct xhci_ring *ep_ring;
1467 	struct xhci_virt_ep *ep;
1468 
1469 	xhci = hcd_to_xhci(hcd);
1470 	spin_lock_irqsave(&xhci->lock, flags);
1471 	/* Make sure the URB hasn't completed or been unlinked already */
1472 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473 	if (ret || !urb->hcpriv)
1474 		goto done;
1475 	temp = readl(&xhci->op_regs->status);
1476 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478 				"HW died, freeing TD.");
1479 		urb_priv = urb->hcpriv;
1480 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481 			td = urb_priv->td[i];
1482 			if (!list_empty(&td->td_list))
1483 				list_del_init(&td->td_list);
1484 			if (!list_empty(&td->cancelled_td_list))
1485 				list_del_init(&td->cancelled_td_list);
1486 		}
1487 
1488 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1489 		spin_unlock_irqrestore(&xhci->lock, flags);
1490 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491 		xhci_urb_free_priv(xhci, urb_priv);
1492 		return ret;
1493 	}
1494 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1496 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497 				"Ep 0x%x: URB %p to be canceled on "
1498 				"non-responsive xHCI host.",
1499 				urb->ep->desc.bEndpointAddress, urb);
1500 		/* Let the stop endpoint command watchdog timer (which set this
1501 		 * state) finish cleaning up the endpoint TD lists.  We must
1502 		 * have caught it in the middle of dropping a lock and giving
1503 		 * back an URB.
1504 		 */
1505 		goto done;
1506 	}
1507 
1508 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511 	if (!ep_ring) {
1512 		ret = -EINVAL;
1513 		goto done;
1514 	}
1515 
1516 	urb_priv = urb->hcpriv;
1517 	i = urb_priv->td_cnt;
1518 	if (i < urb_priv->length)
1519 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520 				"Cancel URB %p, dev %s, ep 0x%x, "
1521 				"starting at offset 0x%llx",
1522 				urb, urb->dev->devpath,
1523 				urb->ep->desc.bEndpointAddress,
1524 				(unsigned long long) xhci_trb_virt_to_dma(
1525 					urb_priv->td[i]->start_seg,
1526 					urb_priv->td[i]->first_trb));
1527 
1528 	for (; i < urb_priv->length; i++) {
1529 		td = urb_priv->td[i];
1530 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531 	}
1532 
1533 	/* Queue a stop endpoint command, but only if this is
1534 	 * the first cancellation to be handled.
1535 	 */
1536 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1537 		ep->ep_state |= EP_HALT_PENDING;
1538 		ep->stop_cmds_pending++;
1539 		ep->stop_cmd_timer.expires = jiffies +
1540 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541 		add_timer(&ep->stop_cmd_timer);
1542 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543 		xhci_ring_cmd_db(xhci);
1544 	}
1545 done:
1546 	spin_unlock_irqrestore(&xhci->lock, flags);
1547 	return ret;
1548 }
1549 
1550 /* Drop an endpoint from a new bandwidth configuration for this device.
1551  * Only one call to this function is allowed per endpoint before
1552  * check_bandwidth() or reset_bandwidth() must be called.
1553  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554  * add the endpoint to the schedule with possibly new parameters denoted by a
1555  * different endpoint descriptor in usb_host_endpoint.
1556  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557  * not allowed.
1558  *
1559  * The USB core will not allow URBs to be queued to an endpoint that is being
1560  * disabled, so there's no need for mutual exclusion to protect
1561  * the xhci->devs[slot_id] structure.
1562  */
1563 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564 		struct usb_host_endpoint *ep)
1565 {
1566 	struct xhci_hcd *xhci;
1567 	struct xhci_container_ctx *in_ctx, *out_ctx;
1568 	struct xhci_input_control_ctx *ctrl_ctx;
1569 	struct xhci_slot_ctx *slot_ctx;
1570 	unsigned int last_ctx;
1571 	unsigned int ep_index;
1572 	struct xhci_ep_ctx *ep_ctx;
1573 	u32 drop_flag;
1574 	u32 new_add_flags, new_drop_flags, new_slot_info;
1575 	int ret;
1576 
1577 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578 	if (ret <= 0)
1579 		return ret;
1580 	xhci = hcd_to_xhci(hcd);
1581 	if (xhci->xhc_state & XHCI_STATE_DYING)
1582 		return -ENODEV;
1583 
1584 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588 				__func__, drop_flag);
1589 		return 0;
1590 	}
1591 
1592 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595 	if (!ctrl_ctx) {
1596 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597 				__func__);
1598 		return 0;
1599 	}
1600 
1601 	ep_index = xhci_get_endpoint_index(&ep->desc);
1602 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 	/* If the HC already knows the endpoint is disabled,
1604 	 * or the HCD has noted it is disabled, ignore this request
1605 	 */
1606 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1608 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1609 	    xhci_get_endpoint_flag(&ep->desc)) {
1610 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611 				__func__, ep);
1612 		return 0;
1613 	}
1614 
1615 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617 
1618 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620 
1621 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623 	/* Update the last valid endpoint context, if we deleted the last one */
1624 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625 	    LAST_CTX(last_ctx)) {
1626 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628 	}
1629 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630 
1631 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632 
1633 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634 			(unsigned int) ep->desc.bEndpointAddress,
1635 			udev->slot_id,
1636 			(unsigned int) new_drop_flags,
1637 			(unsigned int) new_add_flags,
1638 			(unsigned int) new_slot_info);
1639 	return 0;
1640 }
1641 
1642 /* Add an endpoint to a new possible bandwidth configuration for this device.
1643  * Only one call to this function is allowed per endpoint before
1644  * check_bandwidth() or reset_bandwidth() must be called.
1645  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646  * add the endpoint to the schedule with possibly new parameters denoted by a
1647  * different endpoint descriptor in usb_host_endpoint.
1648  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649  * not allowed.
1650  *
1651  * The USB core will not allow URBs to be queued to an endpoint until the
1652  * configuration or alt setting is installed in the device, so there's no need
1653  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654  */
1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656 		struct usb_host_endpoint *ep)
1657 {
1658 	struct xhci_hcd *xhci;
1659 	struct xhci_container_ctx *in_ctx, *out_ctx;
1660 	unsigned int ep_index;
1661 	struct xhci_slot_ctx *slot_ctx;
1662 	struct xhci_input_control_ctx *ctrl_ctx;
1663 	u32 added_ctxs;
1664 	unsigned int last_ctx;
1665 	u32 new_add_flags, new_drop_flags, new_slot_info;
1666 	struct xhci_virt_device *virt_dev;
1667 	int ret = 0;
1668 
1669 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670 	if (ret <= 0) {
1671 		/* So we won't queue a reset ep command for a root hub */
1672 		ep->hcpriv = NULL;
1673 		return ret;
1674 	}
1675 	xhci = hcd_to_xhci(hcd);
1676 	if (xhci->xhc_state & XHCI_STATE_DYING)
1677 		return -ENODEV;
1678 
1679 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682 		/* FIXME when we have to issue an evaluate endpoint command to
1683 		 * deal with ep0 max packet size changing once we get the
1684 		 * descriptors
1685 		 */
1686 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687 				__func__, added_ctxs);
1688 		return 0;
1689 	}
1690 
1691 	virt_dev = xhci->devs[udev->slot_id];
1692 	in_ctx = virt_dev->in_ctx;
1693 	out_ctx = virt_dev->out_ctx;
1694 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695 	if (!ctrl_ctx) {
1696 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697 				__func__);
1698 		return 0;
1699 	}
1700 
1701 	ep_index = xhci_get_endpoint_index(&ep->desc);
1702 	/* If this endpoint is already in use, and the upper layers are trying
1703 	 * to add it again without dropping it, reject the addition.
1704 	 */
1705 	if (virt_dev->eps[ep_index].ring &&
1706 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1707 				xhci_get_endpoint_flag(&ep->desc))) {
1708 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709 				"without dropping it.\n",
1710 				(unsigned int) ep->desc.bEndpointAddress);
1711 		return -EINVAL;
1712 	}
1713 
1714 	/* If the HCD has already noted the endpoint is enabled,
1715 	 * ignore this request.
1716 	 */
1717 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1718 	    xhci_get_endpoint_flag(&ep->desc)) {
1719 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720 				__func__, ep);
1721 		return 0;
1722 	}
1723 
1724 	/*
1725 	 * Configuration and alternate setting changes must be done in
1726 	 * process context, not interrupt context (or so documenation
1727 	 * for usb_set_interface() and usb_set_configuration() claim).
1728 	 */
1729 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731 				__func__, ep->desc.bEndpointAddress);
1732 		return -ENOMEM;
1733 	}
1734 
1735 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737 
1738 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1739 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1740 	 * this re-adds a new state for the endpoint from the new endpoint
1741 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1742 	 * drop flags alone.
1743 	 */
1744 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745 
1746 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747 	/* Update the last valid endpoint context, if we just added one past */
1748 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749 	    LAST_CTX(last_ctx)) {
1750 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752 	}
1753 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754 
1755 	/* Store the usb_device pointer for later use */
1756 	ep->hcpriv = udev;
1757 
1758 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759 			(unsigned int) ep->desc.bEndpointAddress,
1760 			udev->slot_id,
1761 			(unsigned int) new_drop_flags,
1762 			(unsigned int) new_add_flags,
1763 			(unsigned int) new_slot_info);
1764 	return 0;
1765 }
1766 
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769 	struct xhci_input_control_ctx *ctrl_ctx;
1770 	struct xhci_ep_ctx *ep_ctx;
1771 	struct xhci_slot_ctx *slot_ctx;
1772 	int i;
1773 
1774 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775 	if (!ctrl_ctx) {
1776 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777 				__func__);
1778 		return;
1779 	}
1780 
1781 	/* When a device's add flag and drop flag are zero, any subsequent
1782 	 * configure endpoint command will leave that endpoint's state
1783 	 * untouched.  Make sure we don't leave any old state in the input
1784 	 * endpoint contexts.
1785 	 */
1786 	ctrl_ctx->drop_flags = 0;
1787 	ctrl_ctx->add_flags = 0;
1788 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790 	/* Endpoint 0 is always valid */
1791 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792 	for (i = 1; i < 31; ++i) {
1793 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794 		ep_ctx->ep_info = 0;
1795 		ep_ctx->ep_info2 = 0;
1796 		ep_ctx->deq = 0;
1797 		ep_ctx->tx_info = 0;
1798 	}
1799 }
1800 
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802 		struct usb_device *udev, u32 *cmd_status)
1803 {
1804 	int ret;
1805 
1806 	switch (*cmd_status) {
1807 	case COMP_ENOMEM:
1808 		dev_warn(&udev->dev, "Not enough host controller resources "
1809 				"for new device state.\n");
1810 		ret = -ENOMEM;
1811 		/* FIXME: can we allocate more resources for the HC? */
1812 		break;
1813 	case COMP_BW_ERR:
1814 	case COMP_2ND_BW_ERR:
1815 		dev_warn(&udev->dev, "Not enough bandwidth "
1816 				"for new device state.\n");
1817 		ret = -ENOSPC;
1818 		/* FIXME: can we go back to the old state? */
1819 		break;
1820 	case COMP_TRB_ERR:
1821 		/* the HCD set up something wrong */
1822 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823 				"add flag = 1, "
1824 				"and endpoint is not disabled.\n");
1825 		ret = -EINVAL;
1826 		break;
1827 	case COMP_DEV_ERR:
1828 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829 				"configure command.\n");
1830 		ret = -ENODEV;
1831 		break;
1832 	case COMP_SUCCESS:
1833 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834 				"Successful Endpoint Configure command");
1835 		ret = 0;
1836 		break;
1837 	default:
1838 		xhci_err(xhci, "ERROR: unexpected command completion "
1839 				"code 0x%x.\n", *cmd_status);
1840 		ret = -EINVAL;
1841 		break;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847 		struct usb_device *udev, u32 *cmd_status)
1848 {
1849 	int ret;
1850 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851 
1852 	switch (*cmd_status) {
1853 	case COMP_EINVAL:
1854 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855 				"context command.\n");
1856 		ret = -EINVAL;
1857 		break;
1858 	case COMP_EBADSLT:
1859 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1860 				"evaluate context command.\n");
1861 		ret = -EINVAL;
1862 		break;
1863 	case COMP_CTX_STATE:
1864 		dev_warn(&udev->dev, "WARN: invalid context state for "
1865 				"evaluate context command.\n");
1866 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867 		ret = -EINVAL;
1868 		break;
1869 	case COMP_DEV_ERR:
1870 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871 				"context command.\n");
1872 		ret = -ENODEV;
1873 		break;
1874 	case COMP_MEL_ERR:
1875 		/* Max Exit Latency too large error */
1876 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877 		ret = -EINVAL;
1878 		break;
1879 	case COMP_SUCCESS:
1880 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881 				"Successful evaluate context command");
1882 		ret = 0;
1883 		break;
1884 	default:
1885 		xhci_err(xhci, "ERROR: unexpected command completion "
1886 				"code 0x%x.\n", *cmd_status);
1887 		ret = -EINVAL;
1888 		break;
1889 	}
1890 	return ret;
1891 }
1892 
1893 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894 		struct xhci_input_control_ctx *ctrl_ctx)
1895 {
1896 	u32 valid_add_flags;
1897 	u32 valid_drop_flags;
1898 
1899 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1900 	 * (bit 1).  The default control endpoint is added during the Address
1901 	 * Device command and is never removed until the slot is disabled.
1902 	 */
1903 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905 
1906 	/* Use hweight32 to count the number of ones in the add flags, or
1907 	 * number of endpoints added.  Don't count endpoints that are changed
1908 	 * (both added and dropped).
1909 	 */
1910 	return hweight32(valid_add_flags) -
1911 		hweight32(valid_add_flags & valid_drop_flags);
1912 }
1913 
1914 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915 		struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917 	u32 valid_add_flags;
1918 	u32 valid_drop_flags;
1919 
1920 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1922 
1923 	return hweight32(valid_drop_flags) -
1924 		hweight32(valid_add_flags & valid_drop_flags);
1925 }
1926 
1927 /*
1928  * We need to reserve the new number of endpoints before the configure endpoint
1929  * command completes.  We can't subtract the dropped endpoints from the number
1930  * of active endpoints until the command completes because we can oversubscribe
1931  * the host in this case:
1932  *
1933  *  - the first configure endpoint command drops more endpoints than it adds
1934  *  - a second configure endpoint command that adds more endpoints is queued
1935  *  - the first configure endpoint command fails, so the config is unchanged
1936  *  - the second command may succeed, even though there isn't enough resources
1937  *
1938  * Must be called with xhci->lock held.
1939  */
1940 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941 		struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943 	u32 added_eps;
1944 
1945 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 				"Not enough ep ctxs: "
1949 				"%u active, need to add %u, limit is %u.",
1950 				xhci->num_active_eps, added_eps,
1951 				xhci->limit_active_eps);
1952 		return -ENOMEM;
1953 	}
1954 	xhci->num_active_eps += added_eps;
1955 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956 			"Adding %u ep ctxs, %u now active.", added_eps,
1957 			xhci->num_active_eps);
1958 	return 0;
1959 }
1960 
1961 /*
1962  * The configure endpoint was failed by the xHC for some other reason, so we
1963  * need to revert the resources that failed configuration would have used.
1964  *
1965  * Must be called with xhci->lock held.
1966  */
1967 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968 		struct xhci_input_control_ctx *ctrl_ctx)
1969 {
1970 	u32 num_failed_eps;
1971 
1972 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973 	xhci->num_active_eps -= num_failed_eps;
1974 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 			"Removing %u failed ep ctxs, %u now active.",
1976 			num_failed_eps,
1977 			xhci->num_active_eps);
1978 }
1979 
1980 /*
1981  * Now that the command has completed, clean up the active endpoint count by
1982  * subtracting out the endpoints that were dropped (but not changed).
1983  *
1984  * Must be called with xhci->lock held.
1985  */
1986 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987 		struct xhci_input_control_ctx *ctrl_ctx)
1988 {
1989 	u32 num_dropped_eps;
1990 
1991 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992 	xhci->num_active_eps -= num_dropped_eps;
1993 	if (num_dropped_eps)
1994 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995 				"Removing %u dropped ep ctxs, %u now active.",
1996 				num_dropped_eps,
1997 				xhci->num_active_eps);
1998 }
1999 
2000 static unsigned int xhci_get_block_size(struct usb_device *udev)
2001 {
2002 	switch (udev->speed) {
2003 	case USB_SPEED_LOW:
2004 	case USB_SPEED_FULL:
2005 		return FS_BLOCK;
2006 	case USB_SPEED_HIGH:
2007 		return HS_BLOCK;
2008 	case USB_SPEED_SUPER:
2009 		return SS_BLOCK;
2010 	case USB_SPEED_UNKNOWN:
2011 	case USB_SPEED_WIRELESS:
2012 	default:
2013 		/* Should never happen */
2014 		return 1;
2015 	}
2016 }
2017 
2018 static unsigned int
2019 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020 {
2021 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022 		return LS_OVERHEAD;
2023 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024 		return FS_OVERHEAD;
2025 	return HS_OVERHEAD;
2026 }
2027 
2028 /* If we are changing a LS/FS device under a HS hub,
2029  * make sure (if we are activating a new TT) that the HS bus has enough
2030  * bandwidth for this new TT.
2031  */
2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033 		struct xhci_virt_device *virt_dev,
2034 		int old_active_eps)
2035 {
2036 	struct xhci_interval_bw_table *bw_table;
2037 	struct xhci_tt_bw_info *tt_info;
2038 
2039 	/* Find the bandwidth table for the root port this TT is attached to. */
2040 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041 	tt_info = virt_dev->tt_info;
2042 	/* If this TT already had active endpoints, the bandwidth for this TT
2043 	 * has already been added.  Removing all periodic endpoints (and thus
2044 	 * making the TT enactive) will only decrease the bandwidth used.
2045 	 */
2046 	if (old_active_eps)
2047 		return 0;
2048 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050 			return -ENOMEM;
2051 		return 0;
2052 	}
2053 	/* Not sure why we would have no new active endpoints...
2054 	 *
2055 	 * Maybe because of an Evaluate Context change for a hub update or a
2056 	 * control endpoint 0 max packet size change?
2057 	 * FIXME: skip the bandwidth calculation in that case.
2058 	 */
2059 	return 0;
2060 }
2061 
2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063 		struct xhci_virt_device *virt_dev)
2064 {
2065 	unsigned int bw_reserved;
2066 
2067 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069 		return -ENOMEM;
2070 
2071 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073 		return -ENOMEM;
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * This algorithm is a very conservative estimate of the worst-case scheduling
2080  * scenario for any one interval.  The hardware dynamically schedules the
2081  * packets, so we can't tell which microframe could be the limiting factor in
2082  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083  *
2084  * Obviously, we can't solve an NP complete problem to find the minimum worst
2085  * case scenario.  Instead, we come up with an estimate that is no less than
2086  * the worst case bandwidth used for any one microframe, but may be an
2087  * over-estimate.
2088  *
2089  * We walk the requirements for each endpoint by interval, starting with the
2090  * smallest interval, and place packets in the schedule where there is only one
2091  * possible way to schedule packets for that interval.  In order to simplify
2092  * this algorithm, we record the largest max packet size for each interval, and
2093  * assume all packets will be that size.
2094  *
2095  * For interval 0, we obviously must schedule all packets for each interval.
2096  * The bandwidth for interval 0 is just the amount of data to be transmitted
2097  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098  * the number of packets).
2099  *
2100  * For interval 1, we have two possible microframes to schedule those packets
2101  * in.  For this algorithm, if we can schedule the same number of packets for
2102  * each possible scheduling opportunity (each microframe), we will do so.  The
2103  * remaining number of packets will be saved to be transmitted in the gaps in
2104  * the next interval's scheduling sequence.
2105  *
2106  * As we move those remaining packets to be scheduled with interval 2 packets,
2107  * we have to double the number of remaining packets to transmit.  This is
2108  * because the intervals are actually powers of 2, and we would be transmitting
2109  * the previous interval's packets twice in this interval.  We also have to be
2110  * sure that when we look at the largest max packet size for this interval, we
2111  * also look at the largest max packet size for the remaining packets and take
2112  * the greater of the two.
2113  *
2114  * The algorithm continues to evenly distribute packets in each scheduling
2115  * opportunity, and push the remaining packets out, until we get to the last
2116  * interval.  Then those packets and their associated overhead are just added
2117  * to the bandwidth used.
2118  */
2119 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120 		struct xhci_virt_device *virt_dev,
2121 		int old_active_eps)
2122 {
2123 	unsigned int bw_reserved;
2124 	unsigned int max_bandwidth;
2125 	unsigned int bw_used;
2126 	unsigned int block_size;
2127 	struct xhci_interval_bw_table *bw_table;
2128 	unsigned int packet_size = 0;
2129 	unsigned int overhead = 0;
2130 	unsigned int packets_transmitted = 0;
2131 	unsigned int packets_remaining = 0;
2132 	unsigned int i;
2133 
2134 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135 		return xhci_check_ss_bw(xhci, virt_dev);
2136 
2137 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138 		max_bandwidth = HS_BW_LIMIT;
2139 		/* Convert percent of bus BW reserved to blocks reserved */
2140 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141 	} else {
2142 		max_bandwidth = FS_BW_LIMIT;
2143 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144 	}
2145 
2146 	bw_table = virt_dev->bw_table;
2147 	/* We need to translate the max packet size and max ESIT payloads into
2148 	 * the units the hardware uses.
2149 	 */
2150 	block_size = xhci_get_block_size(virt_dev->udev);
2151 
2152 	/* If we are manipulating a LS/FS device under a HS hub, double check
2153 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2154 	 */
2155 	if (virt_dev->tt_info) {
2156 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 				"Recalculating BW for rootport %u",
2158 				virt_dev->real_port);
2159 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161 					"newly activated TT.\n");
2162 			return -ENOMEM;
2163 		}
2164 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 				"Recalculating BW for TT slot %u port %u",
2166 				virt_dev->tt_info->slot_id,
2167 				virt_dev->tt_info->ttport);
2168 	} else {
2169 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 				"Recalculating BW for rootport %u",
2171 				virt_dev->real_port);
2172 	}
2173 
2174 	/* Add in how much bandwidth will be used for interval zero, or the
2175 	 * rounded max ESIT payload + number of packets * largest overhead.
2176 	 */
2177 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178 		bw_table->interval_bw[0].num_packets *
2179 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180 
2181 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182 		unsigned int bw_added;
2183 		unsigned int largest_mps;
2184 		unsigned int interval_overhead;
2185 
2186 		/*
2187 		 * How many packets could we transmit in this interval?
2188 		 * If packets didn't fit in the previous interval, we will need
2189 		 * to transmit that many packets twice within this interval.
2190 		 */
2191 		packets_remaining = 2 * packets_remaining +
2192 			bw_table->interval_bw[i].num_packets;
2193 
2194 		/* Find the largest max packet size of this or the previous
2195 		 * interval.
2196 		 */
2197 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2198 			largest_mps = 0;
2199 		else {
2200 			struct xhci_virt_ep *virt_ep;
2201 			struct list_head *ep_entry;
2202 
2203 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2204 			virt_ep = list_entry(ep_entry,
2205 					struct xhci_virt_ep, bw_endpoint_list);
2206 			/* Convert to blocks, rounding up */
2207 			largest_mps = DIV_ROUND_UP(
2208 					virt_ep->bw_info.max_packet_size,
2209 					block_size);
2210 		}
2211 		if (largest_mps > packet_size)
2212 			packet_size = largest_mps;
2213 
2214 		/* Use the larger overhead of this or the previous interval. */
2215 		interval_overhead = xhci_get_largest_overhead(
2216 				&bw_table->interval_bw[i]);
2217 		if (interval_overhead > overhead)
2218 			overhead = interval_overhead;
2219 
2220 		/* How many packets can we evenly distribute across
2221 		 * (1 << (i + 1)) possible scheduling opportunities?
2222 		 */
2223 		packets_transmitted = packets_remaining >> (i + 1);
2224 
2225 		/* Add in the bandwidth used for those scheduled packets */
2226 		bw_added = packets_transmitted * (overhead + packet_size);
2227 
2228 		/* How many packets do we have remaining to transmit? */
2229 		packets_remaining = packets_remaining % (1 << (i + 1));
2230 
2231 		/* What largest max packet size should those packets have? */
2232 		/* If we've transmitted all packets, don't carry over the
2233 		 * largest packet size.
2234 		 */
2235 		if (packets_remaining == 0) {
2236 			packet_size = 0;
2237 			overhead = 0;
2238 		} else if (packets_transmitted > 0) {
2239 			/* Otherwise if we do have remaining packets, and we've
2240 			 * scheduled some packets in this interval, take the
2241 			 * largest max packet size from endpoints with this
2242 			 * interval.
2243 			 */
2244 			packet_size = largest_mps;
2245 			overhead = interval_overhead;
2246 		}
2247 		/* Otherwise carry over packet_size and overhead from the last
2248 		 * time we had a remainder.
2249 		 */
2250 		bw_used += bw_added;
2251 		if (bw_used > max_bandwidth) {
2252 			xhci_warn(xhci, "Not enough bandwidth. "
2253 					"Proposed: %u, Max: %u\n",
2254 				bw_used, max_bandwidth);
2255 			return -ENOMEM;
2256 		}
2257 	}
2258 	/*
2259 	 * Ok, we know we have some packets left over after even-handedly
2260 	 * scheduling interval 15.  We don't know which microframes they will
2261 	 * fit into, so we over-schedule and say they will be scheduled every
2262 	 * microframe.
2263 	 */
2264 	if (packets_remaining > 0)
2265 		bw_used += overhead + packet_size;
2266 
2267 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268 		unsigned int port_index = virt_dev->real_port - 1;
2269 
2270 		/* OK, we're manipulating a HS device attached to a
2271 		 * root port bandwidth domain.  Include the number of active TTs
2272 		 * in the bandwidth used.
2273 		 */
2274 		bw_used += TT_HS_OVERHEAD *
2275 			xhci->rh_bw[port_index].num_active_tts;
2276 	}
2277 
2278 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280 		"Available: %u " "percent",
2281 		bw_used, max_bandwidth, bw_reserved,
2282 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2283 		max_bandwidth);
2284 
2285 	bw_used += bw_reserved;
2286 	if (bw_used > max_bandwidth) {
2287 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288 				bw_used, max_bandwidth);
2289 		return -ENOMEM;
2290 	}
2291 
2292 	bw_table->bw_used = bw_used;
2293 	return 0;
2294 }
2295 
2296 static bool xhci_is_async_ep(unsigned int ep_type)
2297 {
2298 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299 					ep_type != ISOC_IN_EP &&
2300 					ep_type != INT_IN_EP);
2301 }
2302 
2303 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304 {
2305 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306 }
2307 
2308 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309 {
2310 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311 
2312 	if (ep_bw->ep_interval == 0)
2313 		return SS_OVERHEAD_BURST +
2314 			(ep_bw->mult * ep_bw->num_packets *
2315 					(SS_OVERHEAD + mps));
2316 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318 				1 << ep_bw->ep_interval);
2319 
2320 }
2321 
2322 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323 		struct xhci_bw_info *ep_bw,
2324 		struct xhci_interval_bw_table *bw_table,
2325 		struct usb_device *udev,
2326 		struct xhci_virt_ep *virt_ep,
2327 		struct xhci_tt_bw_info *tt_info)
2328 {
2329 	struct xhci_interval_bw	*interval_bw;
2330 	int normalized_interval;
2331 
2332 	if (xhci_is_async_ep(ep_bw->type))
2333 		return;
2334 
2335 	if (udev->speed == USB_SPEED_SUPER) {
2336 		if (xhci_is_sync_in_ep(ep_bw->type))
2337 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338 				xhci_get_ss_bw_consumed(ep_bw);
2339 		else
2340 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341 				xhci_get_ss_bw_consumed(ep_bw);
2342 		return;
2343 	}
2344 
2345 	/* SuperSpeed endpoints never get added to intervals in the table, so
2346 	 * this check is only valid for HS/FS/LS devices.
2347 	 */
2348 	if (list_empty(&virt_ep->bw_endpoint_list))
2349 		return;
2350 	/* For LS/FS devices, we need to translate the interval expressed in
2351 	 * microframes to frames.
2352 	 */
2353 	if (udev->speed == USB_SPEED_HIGH)
2354 		normalized_interval = ep_bw->ep_interval;
2355 	else
2356 		normalized_interval = ep_bw->ep_interval - 3;
2357 
2358 	if (normalized_interval == 0)
2359 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360 	interval_bw = &bw_table->interval_bw[normalized_interval];
2361 	interval_bw->num_packets -= ep_bw->num_packets;
2362 	switch (udev->speed) {
2363 	case USB_SPEED_LOW:
2364 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365 		break;
2366 	case USB_SPEED_FULL:
2367 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368 		break;
2369 	case USB_SPEED_HIGH:
2370 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371 		break;
2372 	case USB_SPEED_SUPER:
2373 	case USB_SPEED_UNKNOWN:
2374 	case USB_SPEED_WIRELESS:
2375 		/* Should never happen because only LS/FS/HS endpoints will get
2376 		 * added to the endpoint list.
2377 		 */
2378 		return;
2379 	}
2380 	if (tt_info)
2381 		tt_info->active_eps -= 1;
2382 	list_del_init(&virt_ep->bw_endpoint_list);
2383 }
2384 
2385 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386 		struct xhci_bw_info *ep_bw,
2387 		struct xhci_interval_bw_table *bw_table,
2388 		struct usb_device *udev,
2389 		struct xhci_virt_ep *virt_ep,
2390 		struct xhci_tt_bw_info *tt_info)
2391 {
2392 	struct xhci_interval_bw	*interval_bw;
2393 	struct xhci_virt_ep *smaller_ep;
2394 	int normalized_interval;
2395 
2396 	if (xhci_is_async_ep(ep_bw->type))
2397 		return;
2398 
2399 	if (udev->speed == USB_SPEED_SUPER) {
2400 		if (xhci_is_sync_in_ep(ep_bw->type))
2401 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402 				xhci_get_ss_bw_consumed(ep_bw);
2403 		else
2404 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405 				xhci_get_ss_bw_consumed(ep_bw);
2406 		return;
2407 	}
2408 
2409 	/* For LS/FS devices, we need to translate the interval expressed in
2410 	 * microframes to frames.
2411 	 */
2412 	if (udev->speed == USB_SPEED_HIGH)
2413 		normalized_interval = ep_bw->ep_interval;
2414 	else
2415 		normalized_interval = ep_bw->ep_interval - 3;
2416 
2417 	if (normalized_interval == 0)
2418 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419 	interval_bw = &bw_table->interval_bw[normalized_interval];
2420 	interval_bw->num_packets += ep_bw->num_packets;
2421 	switch (udev->speed) {
2422 	case USB_SPEED_LOW:
2423 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424 		break;
2425 	case USB_SPEED_FULL:
2426 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427 		break;
2428 	case USB_SPEED_HIGH:
2429 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430 		break;
2431 	case USB_SPEED_SUPER:
2432 	case USB_SPEED_UNKNOWN:
2433 	case USB_SPEED_WIRELESS:
2434 		/* Should never happen because only LS/FS/HS endpoints will get
2435 		 * added to the endpoint list.
2436 		 */
2437 		return;
2438 	}
2439 
2440 	if (tt_info)
2441 		tt_info->active_eps += 1;
2442 	/* Insert the endpoint into the list, largest max packet size first. */
2443 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444 			bw_endpoint_list) {
2445 		if (ep_bw->max_packet_size >=
2446 				smaller_ep->bw_info.max_packet_size) {
2447 			/* Add the new ep before the smaller endpoint */
2448 			list_add_tail(&virt_ep->bw_endpoint_list,
2449 					&smaller_ep->bw_endpoint_list);
2450 			return;
2451 		}
2452 	}
2453 	/* Add the new endpoint at the end of the list. */
2454 	list_add_tail(&virt_ep->bw_endpoint_list,
2455 			&interval_bw->endpoints);
2456 }
2457 
2458 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459 		struct xhci_virt_device *virt_dev,
2460 		int old_active_eps)
2461 {
2462 	struct xhci_root_port_bw_info *rh_bw_info;
2463 	if (!virt_dev->tt_info)
2464 		return;
2465 
2466 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467 	if (old_active_eps == 0 &&
2468 				virt_dev->tt_info->active_eps != 0) {
2469 		rh_bw_info->num_active_tts += 1;
2470 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471 	} else if (old_active_eps != 0 &&
2472 				virt_dev->tt_info->active_eps == 0) {
2473 		rh_bw_info->num_active_tts -= 1;
2474 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475 	}
2476 }
2477 
2478 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479 		struct xhci_virt_device *virt_dev,
2480 		struct xhci_container_ctx *in_ctx)
2481 {
2482 	struct xhci_bw_info ep_bw_info[31];
2483 	int i;
2484 	struct xhci_input_control_ctx *ctrl_ctx;
2485 	int old_active_eps = 0;
2486 
2487 	if (virt_dev->tt_info)
2488 		old_active_eps = virt_dev->tt_info->active_eps;
2489 
2490 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491 	if (!ctrl_ctx) {
2492 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493 				__func__);
2494 		return -ENOMEM;
2495 	}
2496 
2497 	for (i = 0; i < 31; i++) {
2498 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499 			continue;
2500 
2501 		/* Make a copy of the BW info in case we need to revert this */
2502 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503 				sizeof(ep_bw_info[i]));
2504 		/* Drop the endpoint from the interval table if the endpoint is
2505 		 * being dropped or changed.
2506 		 */
2507 		if (EP_IS_DROPPED(ctrl_ctx, i))
2508 			xhci_drop_ep_from_interval_table(xhci,
2509 					&virt_dev->eps[i].bw_info,
2510 					virt_dev->bw_table,
2511 					virt_dev->udev,
2512 					&virt_dev->eps[i],
2513 					virt_dev->tt_info);
2514 	}
2515 	/* Overwrite the information stored in the endpoints' bw_info */
2516 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517 	for (i = 0; i < 31; i++) {
2518 		/* Add any changed or added endpoints to the interval table */
2519 		if (EP_IS_ADDED(ctrl_ctx, i))
2520 			xhci_add_ep_to_interval_table(xhci,
2521 					&virt_dev->eps[i].bw_info,
2522 					virt_dev->bw_table,
2523 					virt_dev->udev,
2524 					&virt_dev->eps[i],
2525 					virt_dev->tt_info);
2526 	}
2527 
2528 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529 		/* Ok, this fits in the bandwidth we have.
2530 		 * Update the number of active TTs.
2531 		 */
2532 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533 		return 0;
2534 	}
2535 
2536 	/* We don't have enough bandwidth for this, revert the stored info. */
2537 	for (i = 0; i < 31; i++) {
2538 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539 			continue;
2540 
2541 		/* Drop the new copies of any added or changed endpoints from
2542 		 * the interval table.
2543 		 */
2544 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2545 			xhci_drop_ep_from_interval_table(xhci,
2546 					&virt_dev->eps[i].bw_info,
2547 					virt_dev->bw_table,
2548 					virt_dev->udev,
2549 					&virt_dev->eps[i],
2550 					virt_dev->tt_info);
2551 		}
2552 		/* Revert the endpoint back to its old information */
2553 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554 				sizeof(ep_bw_info[i]));
2555 		/* Add any changed or dropped endpoints back into the table */
2556 		if (EP_IS_DROPPED(ctrl_ctx, i))
2557 			xhci_add_ep_to_interval_table(xhci,
2558 					&virt_dev->eps[i].bw_info,
2559 					virt_dev->bw_table,
2560 					virt_dev->udev,
2561 					&virt_dev->eps[i],
2562 					virt_dev->tt_info);
2563 	}
2564 	return -ENOMEM;
2565 }
2566 
2567 
2568 /* Issue a configure endpoint command or evaluate context command
2569  * and wait for it to finish.
2570  */
2571 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572 		struct usb_device *udev,
2573 		struct xhci_command *command,
2574 		bool ctx_change, bool must_succeed)
2575 {
2576 	int ret;
2577 	int timeleft;
2578 	unsigned long flags;
2579 	struct xhci_container_ctx *in_ctx;
2580 	struct xhci_input_control_ctx *ctrl_ctx;
2581 	struct completion *cmd_completion;
2582 	u32 *cmd_status;
2583 	struct xhci_virt_device *virt_dev;
2584 	union xhci_trb *cmd_trb;
2585 
2586 	spin_lock_irqsave(&xhci->lock, flags);
2587 	virt_dev = xhci->devs[udev->slot_id];
2588 
2589 	if (command)
2590 		in_ctx = command->in_ctx;
2591 	else
2592 		in_ctx = virt_dev->in_ctx;
2593 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594 	if (!ctrl_ctx) {
2595 		spin_unlock_irqrestore(&xhci->lock, flags);
2596 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597 				__func__);
2598 		return -ENOMEM;
2599 	}
2600 
2601 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603 		spin_unlock_irqrestore(&xhci->lock, flags);
2604 		xhci_warn(xhci, "Not enough host resources, "
2605 				"active endpoint contexts = %u\n",
2606 				xhci->num_active_eps);
2607 		return -ENOMEM;
2608 	}
2609 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 			xhci_free_host_resources(xhci, ctrl_ctx);
2613 		spin_unlock_irqrestore(&xhci->lock, flags);
2614 		xhci_warn(xhci, "Not enough bandwidth\n");
2615 		return -ENOMEM;
2616 	}
2617 
2618 	if (command) {
2619 		cmd_completion = command->completion;
2620 		cmd_status = &command->status;
2621 		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623 	} else {
2624 		cmd_completion = &virt_dev->cmd_completion;
2625 		cmd_status = &virt_dev->cmd_status;
2626 	}
2627 	init_completion(cmd_completion);
2628 
2629 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630 	if (!ctx_change)
2631 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632 				udev->slot_id, must_succeed);
2633 	else
2634 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635 				udev->slot_id, must_succeed);
2636 	if (ret < 0) {
2637 		if (command)
2638 			list_del(&command->cmd_list);
2639 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640 			xhci_free_host_resources(xhci, ctrl_ctx);
2641 		spin_unlock_irqrestore(&xhci->lock, flags);
2642 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2643 				"FIXME allocate a new ring segment");
2644 		return -ENOMEM;
2645 	}
2646 	xhci_ring_cmd_db(xhci);
2647 	spin_unlock_irqrestore(&xhci->lock, flags);
2648 
2649 	/* Wait for the configure endpoint command to complete */
2650 	timeleft = wait_for_completion_interruptible_timeout(
2651 			cmd_completion,
2652 			XHCI_CMD_DEFAULT_TIMEOUT);
2653 	if (timeleft <= 0) {
2654 		xhci_warn(xhci, "%s while waiting for %s command\n",
2655 				timeleft == 0 ? "Timeout" : "Signal",
2656 				ctx_change == 0 ?
2657 					"configure endpoint" :
2658 					"evaluate context");
2659 		/* cancel the configure endpoint command */
2660 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661 		if (ret < 0)
2662 			return ret;
2663 		return -ETIME;
2664 	}
2665 
2666 	if (!ctx_change)
2667 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668 	else
2669 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670 
2671 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672 		spin_lock_irqsave(&xhci->lock, flags);
2673 		/* If the command failed, remove the reserved resources.
2674 		 * Otherwise, clean up the estimate to include dropped eps.
2675 		 */
2676 		if (ret)
2677 			xhci_free_host_resources(xhci, ctrl_ctx);
2678 		else
2679 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680 		spin_unlock_irqrestore(&xhci->lock, flags);
2681 	}
2682 	return ret;
2683 }
2684 
2685 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686 	struct xhci_virt_device *vdev, int i)
2687 {
2688 	struct xhci_virt_ep *ep = &vdev->eps[i];
2689 
2690 	if (ep->ep_state & EP_HAS_STREAMS) {
2691 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692 				xhci_get_endpoint_address(i));
2693 		xhci_free_stream_info(xhci, ep->stream_info);
2694 		ep->stream_info = NULL;
2695 		ep->ep_state &= ~EP_HAS_STREAMS;
2696 	}
2697 }
2698 
2699 /* Called after one or more calls to xhci_add_endpoint() or
2700  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2701  * to call xhci_reset_bandwidth().
2702  *
2703  * Since we are in the middle of changing either configuration or
2704  * installing a new alt setting, the USB core won't allow URBs to be
2705  * enqueued for any endpoint on the old config or interface.  Nothing
2706  * else should be touching the xhci->devs[slot_id] structure, so we
2707  * don't need to take the xhci->lock for manipulating that.
2708  */
2709 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710 {
2711 	int i;
2712 	int ret = 0;
2713 	struct xhci_hcd *xhci;
2714 	struct xhci_virt_device	*virt_dev;
2715 	struct xhci_input_control_ctx *ctrl_ctx;
2716 	struct xhci_slot_ctx *slot_ctx;
2717 
2718 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719 	if (ret <= 0)
2720 		return ret;
2721 	xhci = hcd_to_xhci(hcd);
2722 	if (xhci->xhc_state & XHCI_STATE_DYING)
2723 		return -ENODEV;
2724 
2725 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726 	virt_dev = xhci->devs[udev->slot_id];
2727 
2728 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730 	if (!ctrl_ctx) {
2731 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732 				__func__);
2733 		return -ENOMEM;
2734 	}
2735 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738 
2739 	/* Don't issue the command if there's no endpoints to update. */
2740 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741 			ctrl_ctx->drop_flags == 0)
2742 		return 0;
2743 
2744 	xhci_dbg(xhci, "New Input Control Context:\n");
2745 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748 
2749 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2750 			false, false);
2751 	if (ret) {
2752 		/* Callee should call reset_bandwidth() */
2753 		return ret;
2754 	}
2755 
2756 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2759 
2760 	/* Free any rings that were dropped, but not changed. */
2761 	for (i = 1; i < 31; ++i) {
2762 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766 		}
2767 	}
2768 	xhci_zero_in_ctx(xhci, virt_dev);
2769 	/*
2770 	 * Install any rings for completely new endpoints or changed endpoints,
2771 	 * and free or cache any old rings from changed endpoints.
2772 	 */
2773 	for (i = 1; i < 31; ++i) {
2774 		if (!virt_dev->eps[i].new_ring)
2775 			continue;
2776 		/* Only cache or free the old ring if it exists.
2777 		 * It may not if this is the first add of an endpoint.
2778 		 */
2779 		if (virt_dev->eps[i].ring) {
2780 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781 		}
2782 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784 		virt_dev->eps[i].new_ring = NULL;
2785 	}
2786 
2787 	return ret;
2788 }
2789 
2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 {
2792 	struct xhci_hcd *xhci;
2793 	struct xhci_virt_device	*virt_dev;
2794 	int i, ret;
2795 
2796 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797 	if (ret <= 0)
2798 		return;
2799 	xhci = hcd_to_xhci(hcd);
2800 
2801 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802 	virt_dev = xhci->devs[udev->slot_id];
2803 	/* Free any rings allocated for added endpoints */
2804 	for (i = 0; i < 31; ++i) {
2805 		if (virt_dev->eps[i].new_ring) {
2806 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807 			virt_dev->eps[i].new_ring = NULL;
2808 		}
2809 	}
2810 	xhci_zero_in_ctx(xhci, virt_dev);
2811 }
2812 
2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814 		struct xhci_container_ctx *in_ctx,
2815 		struct xhci_container_ctx *out_ctx,
2816 		struct xhci_input_control_ctx *ctrl_ctx,
2817 		u32 add_flags, u32 drop_flags)
2818 {
2819 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2822 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823 
2824 	xhci_dbg(xhci, "Input Context:\n");
2825 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826 }
2827 
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 		unsigned int slot_id, unsigned int ep_index,
2830 		struct xhci_dequeue_state *deq_state)
2831 {
2832 	struct xhci_input_control_ctx *ctrl_ctx;
2833 	struct xhci_container_ctx *in_ctx;
2834 	struct xhci_ep_ctx *ep_ctx;
2835 	u32 added_ctxs;
2836 	dma_addr_t addr;
2837 
2838 	in_ctx = xhci->devs[slot_id]->in_ctx;
2839 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840 	if (!ctrl_ctx) {
2841 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842 				__func__);
2843 		return;
2844 	}
2845 
2846 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847 			xhci->devs[slot_id]->out_ctx, ep_index);
2848 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850 			deq_state->new_deq_ptr);
2851 	if (addr == 0) {
2852 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2853 				"reset ep command\n");
2854 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855 				deq_state->new_deq_seg,
2856 				deq_state->new_deq_ptr);
2857 		return;
2858 	}
2859 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860 
2861 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864 			added_ctxs, added_ctxs);
2865 }
2866 
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868 		struct usb_device *udev, unsigned int ep_index)
2869 {
2870 	struct xhci_dequeue_state deq_state;
2871 	struct xhci_virt_ep *ep;
2872 
2873 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 			"Cleaning up stalled endpoint ring");
2875 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 	/* We need to move the HW's dequeue pointer past this TD,
2877 	 * or it will attempt to resend it on the next doorbell ring.
2878 	 */
2879 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 			ep_index, ep->stopped_stream, ep->stopped_td,
2881 			&deq_state);
2882 
2883 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2884 	 * issue a configure endpoint command later.
2885 	 */
2886 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888 				"Queueing new dequeue state");
2889 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890 				ep_index, ep->stopped_stream, &deq_state);
2891 	} else {
2892 		/* Better hope no one uses the input context between now and the
2893 		 * reset endpoint completion!
2894 		 * XXX: No idea how this hardware will react when stream rings
2895 		 * are enabled.
2896 		 */
2897 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898 				"Setting up input context for "
2899 				"configure endpoint command");
2900 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901 				ep_index, &deq_state);
2902 	}
2903 }
2904 
2905 /* Deal with stalled endpoints.  The core should have sent the control message
2906  * to clear the halt condition.  However, we need to make the xHCI hardware
2907  * reset its sequence number, since a device will expect a sequence number of
2908  * zero after the halt condition is cleared.
2909  * Context: in_interrupt
2910  */
2911 void xhci_endpoint_reset(struct usb_hcd *hcd,
2912 		struct usb_host_endpoint *ep)
2913 {
2914 	struct xhci_hcd *xhci;
2915 	struct usb_device *udev;
2916 	unsigned int ep_index;
2917 	unsigned long flags;
2918 	int ret;
2919 	struct xhci_virt_ep *virt_ep;
2920 
2921 	xhci = hcd_to_xhci(hcd);
2922 	udev = (struct usb_device *) ep->hcpriv;
2923 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2924 	 * with xhci_add_endpoint()
2925 	 */
2926 	if (!ep->hcpriv)
2927 		return;
2928 	ep_index = xhci_get_endpoint_index(&ep->desc);
2929 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930 	if (!virt_ep->stopped_td) {
2931 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932 			"Endpoint 0x%x not halted, refusing to reset.",
2933 			ep->desc.bEndpointAddress);
2934 		return;
2935 	}
2936 	if (usb_endpoint_xfer_control(&ep->desc)) {
2937 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938 				"Control endpoint stall already handled.");
2939 		return;
2940 	}
2941 
2942 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943 			"Queueing reset endpoint command");
2944 	spin_lock_irqsave(&xhci->lock, flags);
2945 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2946 	/*
2947 	 * Can't change the ring dequeue pointer until it's transitioned to the
2948 	 * stopped state, which is only upon a successful reset endpoint
2949 	 * command.  Better hope that last command worked!
2950 	 */
2951 	if (!ret) {
2952 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953 		kfree(virt_ep->stopped_td);
2954 		xhci_ring_cmd_db(xhci);
2955 	}
2956 	virt_ep->stopped_td = NULL;
2957 	virt_ep->stopped_trb = NULL;
2958 	virt_ep->stopped_stream = 0;
2959 	spin_unlock_irqrestore(&xhci->lock, flags);
2960 
2961 	if (ret)
2962 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2963 }
2964 
2965 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2966 		struct usb_device *udev, struct usb_host_endpoint *ep,
2967 		unsigned int slot_id)
2968 {
2969 	int ret;
2970 	unsigned int ep_index;
2971 	unsigned int ep_state;
2972 
2973 	if (!ep)
2974 		return -EINVAL;
2975 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2976 	if (ret <= 0)
2977 		return -EINVAL;
2978 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2979 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2980 				" descriptor for ep 0x%x does not support streams\n",
2981 				ep->desc.bEndpointAddress);
2982 		return -EINVAL;
2983 	}
2984 
2985 	ep_index = xhci_get_endpoint_index(&ep->desc);
2986 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2987 	if (ep_state & EP_HAS_STREAMS ||
2988 			ep_state & EP_GETTING_STREAMS) {
2989 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2990 				"already has streams set up.\n",
2991 				ep->desc.bEndpointAddress);
2992 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2993 				"dynamic stream context array reallocation.\n");
2994 		return -EINVAL;
2995 	}
2996 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2997 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2998 				"endpoint 0x%x; URBs are pending.\n",
2999 				ep->desc.bEndpointAddress);
3000 		return -EINVAL;
3001 	}
3002 	return 0;
3003 }
3004 
3005 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3006 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3007 {
3008 	unsigned int max_streams;
3009 
3010 	/* The stream context array size must be a power of two */
3011 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3012 	/*
3013 	 * Find out how many primary stream array entries the host controller
3014 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3015 	 * level page entries), but that's an optional feature for xHCI host
3016 	 * controllers. xHCs must support at least 4 stream IDs.
3017 	 */
3018 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3019 	if (*num_stream_ctxs > max_streams) {
3020 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3021 				max_streams);
3022 		*num_stream_ctxs = max_streams;
3023 		*num_streams = max_streams;
3024 	}
3025 }
3026 
3027 /* Returns an error code if one of the endpoint already has streams.
3028  * This does not change any data structures, it only checks and gathers
3029  * information.
3030  */
3031 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3032 		struct usb_device *udev,
3033 		struct usb_host_endpoint **eps, unsigned int num_eps,
3034 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3035 {
3036 	unsigned int max_streams;
3037 	unsigned int endpoint_flag;
3038 	int i;
3039 	int ret;
3040 
3041 	for (i = 0; i < num_eps; i++) {
3042 		ret = xhci_check_streams_endpoint(xhci, udev,
3043 				eps[i], udev->slot_id);
3044 		if (ret < 0)
3045 			return ret;
3046 
3047 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3048 		if (max_streams < (*num_streams - 1)) {
3049 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3050 					eps[i]->desc.bEndpointAddress,
3051 					max_streams);
3052 			*num_streams = max_streams+1;
3053 		}
3054 
3055 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3056 		if (*changed_ep_bitmask & endpoint_flag)
3057 			return -EINVAL;
3058 		*changed_ep_bitmask |= endpoint_flag;
3059 	}
3060 	return 0;
3061 }
3062 
3063 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3064 		struct usb_device *udev,
3065 		struct usb_host_endpoint **eps, unsigned int num_eps)
3066 {
3067 	u32 changed_ep_bitmask = 0;
3068 	unsigned int slot_id;
3069 	unsigned int ep_index;
3070 	unsigned int ep_state;
3071 	int i;
3072 
3073 	slot_id = udev->slot_id;
3074 	if (!xhci->devs[slot_id])
3075 		return 0;
3076 
3077 	for (i = 0; i < num_eps; i++) {
3078 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3079 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3080 		/* Are streams already being freed for the endpoint? */
3081 		if (ep_state & EP_GETTING_NO_STREAMS) {
3082 			xhci_warn(xhci, "WARN Can't disable streams for "
3083 					"endpoint 0x%x, "
3084 					"streams are being disabled already\n",
3085 					eps[i]->desc.bEndpointAddress);
3086 			return 0;
3087 		}
3088 		/* Are there actually any streams to free? */
3089 		if (!(ep_state & EP_HAS_STREAMS) &&
3090 				!(ep_state & EP_GETTING_STREAMS)) {
3091 			xhci_warn(xhci, "WARN Can't disable streams for "
3092 					"endpoint 0x%x, "
3093 					"streams are already disabled!\n",
3094 					eps[i]->desc.bEndpointAddress);
3095 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3096 					"with non-streams endpoint\n");
3097 			return 0;
3098 		}
3099 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3100 	}
3101 	return changed_ep_bitmask;
3102 }
3103 
3104 /*
3105  * The USB device drivers use this function (though the HCD interface in USB
3106  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3107  * coordinate mass storage command queueing across multiple endpoints (basically
3108  * a stream ID == a task ID).
3109  *
3110  * Setting up streams involves allocating the same size stream context array
3111  * for each endpoint and issuing a configure endpoint command for all endpoints.
3112  *
3113  * Don't allow the call to succeed if one endpoint only supports one stream
3114  * (which means it doesn't support streams at all).
3115  *
3116  * Drivers may get less stream IDs than they asked for, if the host controller
3117  * hardware or endpoints claim they can't support the number of requested
3118  * stream IDs.
3119  */
3120 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3121 		struct usb_host_endpoint **eps, unsigned int num_eps,
3122 		unsigned int num_streams, gfp_t mem_flags)
3123 {
3124 	int i, ret;
3125 	struct xhci_hcd *xhci;
3126 	struct xhci_virt_device *vdev;
3127 	struct xhci_command *config_cmd;
3128 	struct xhci_input_control_ctx *ctrl_ctx;
3129 	unsigned int ep_index;
3130 	unsigned int num_stream_ctxs;
3131 	unsigned long flags;
3132 	u32 changed_ep_bitmask = 0;
3133 
3134 	if (!eps)
3135 		return -EINVAL;
3136 
3137 	/* Add one to the number of streams requested to account for
3138 	 * stream 0 that is reserved for xHCI usage.
3139 	 */
3140 	num_streams += 1;
3141 	xhci = hcd_to_xhci(hcd);
3142 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3143 			num_streams);
3144 
3145 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3146 	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148 		return -ENOSYS;
3149 	}
3150 
3151 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152 	if (!config_cmd) {
3153 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154 		return -ENOMEM;
3155 	}
3156 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3157 	if (!ctrl_ctx) {
3158 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159 				__func__);
3160 		xhci_free_command(xhci, config_cmd);
3161 		return -ENOMEM;
3162 	}
3163 
3164 	/* Check to make sure all endpoints are not already configured for
3165 	 * streams.  While we're at it, find the maximum number of streams that
3166 	 * all the endpoints will support and check for duplicate endpoints.
3167 	 */
3168 	spin_lock_irqsave(&xhci->lock, flags);
3169 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170 			num_eps, &num_streams, &changed_ep_bitmask);
3171 	if (ret < 0) {
3172 		xhci_free_command(xhci, config_cmd);
3173 		spin_unlock_irqrestore(&xhci->lock, flags);
3174 		return ret;
3175 	}
3176 	if (num_streams <= 1) {
3177 		xhci_warn(xhci, "WARN: endpoints can't handle "
3178 				"more than one stream.\n");
3179 		xhci_free_command(xhci, config_cmd);
3180 		spin_unlock_irqrestore(&xhci->lock, flags);
3181 		return -EINVAL;
3182 	}
3183 	vdev = xhci->devs[udev->slot_id];
3184 	/* Mark each endpoint as being in transition, so
3185 	 * xhci_urb_enqueue() will reject all URBs.
3186 	 */
3187 	for (i = 0; i < num_eps; i++) {
3188 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190 	}
3191 	spin_unlock_irqrestore(&xhci->lock, flags);
3192 
3193 	/* Setup internal data structures and allocate HW data structures for
3194 	 * streams (but don't install the HW structures in the input context
3195 	 * until we're sure all memory allocation succeeded).
3196 	 */
3197 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199 			num_stream_ctxs, num_streams);
3200 
3201 	for (i = 0; i < num_eps; i++) {
3202 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3204 				num_stream_ctxs,
3205 				num_streams, mem_flags);
3206 		if (!vdev->eps[ep_index].stream_info)
3207 			goto cleanup;
3208 		/* Set maxPstreams in endpoint context and update deq ptr to
3209 		 * point to stream context array. FIXME
3210 		 */
3211 	}
3212 
3213 	/* Set up the input context for a configure endpoint command. */
3214 	for (i = 0; i < num_eps; i++) {
3215 		struct xhci_ep_ctx *ep_ctx;
3216 
3217 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3219 
3220 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3221 				vdev->out_ctx, ep_index);
3222 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3223 				vdev->eps[ep_index].stream_info);
3224 	}
3225 	/* Tell the HW to drop its old copy of the endpoint context info
3226 	 * and add the updated copy from the input context.
3227 	 */
3228 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3229 			vdev->out_ctx, ctrl_ctx,
3230 			changed_ep_bitmask, changed_ep_bitmask);
3231 
3232 	/* Issue and wait for the configure endpoint command */
3233 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3234 			false, false);
3235 
3236 	/* xHC rejected the configure endpoint command for some reason, so we
3237 	 * leave the old ring intact and free our internal streams data
3238 	 * structure.
3239 	 */
3240 	if (ret < 0)
3241 		goto cleanup;
3242 
3243 	spin_lock_irqsave(&xhci->lock, flags);
3244 	for (i = 0; i < num_eps; i++) {
3245 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3247 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3248 			 udev->slot_id, ep_index);
3249 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3250 	}
3251 	xhci_free_command(xhci, config_cmd);
3252 	spin_unlock_irqrestore(&xhci->lock, flags);
3253 
3254 	/* Subtract 1 for stream 0, which drivers can't use */
3255 	return num_streams - 1;
3256 
3257 cleanup:
3258 	/* If it didn't work, free the streams! */
3259 	for (i = 0; i < num_eps; i++) {
3260 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3262 		vdev->eps[ep_index].stream_info = NULL;
3263 		/* FIXME Unset maxPstreams in endpoint context and
3264 		 * update deq ptr to point to normal string ring.
3265 		 */
3266 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3268 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3269 	}
3270 	xhci_free_command(xhci, config_cmd);
3271 	return -ENOMEM;
3272 }
3273 
3274 /* Transition the endpoint from using streams to being a "normal" endpoint
3275  * without streams.
3276  *
3277  * Modify the endpoint context state, submit a configure endpoint command,
3278  * and free all endpoint rings for streams if that completes successfully.
3279  */
3280 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3281 		struct usb_host_endpoint **eps, unsigned int num_eps,
3282 		gfp_t mem_flags)
3283 {
3284 	int i, ret;
3285 	struct xhci_hcd *xhci;
3286 	struct xhci_virt_device *vdev;
3287 	struct xhci_command *command;
3288 	struct xhci_input_control_ctx *ctrl_ctx;
3289 	unsigned int ep_index;
3290 	unsigned long flags;
3291 	u32 changed_ep_bitmask;
3292 
3293 	xhci = hcd_to_xhci(hcd);
3294 	vdev = xhci->devs[udev->slot_id];
3295 
3296 	/* Set up a configure endpoint command to remove the streams rings */
3297 	spin_lock_irqsave(&xhci->lock, flags);
3298 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3299 			udev, eps, num_eps);
3300 	if (changed_ep_bitmask == 0) {
3301 		spin_unlock_irqrestore(&xhci->lock, flags);
3302 		return -EINVAL;
3303 	}
3304 
3305 	/* Use the xhci_command structure from the first endpoint.  We may have
3306 	 * allocated too many, but the driver may call xhci_free_streams() for
3307 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3308 	 */
3309 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3310 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3311 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3312 	if (!ctrl_ctx) {
3313 		spin_unlock_irqrestore(&xhci->lock, flags);
3314 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3315 				__func__);
3316 		return -EINVAL;
3317 	}
3318 
3319 	for (i = 0; i < num_eps; i++) {
3320 		struct xhci_ep_ctx *ep_ctx;
3321 
3322 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3324 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3325 			EP_GETTING_NO_STREAMS;
3326 
3327 		xhci_endpoint_copy(xhci, command->in_ctx,
3328 				vdev->out_ctx, ep_index);
3329 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3330 				&vdev->eps[ep_index]);
3331 	}
3332 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3333 			vdev->out_ctx, ctrl_ctx,
3334 			changed_ep_bitmask, changed_ep_bitmask);
3335 	spin_unlock_irqrestore(&xhci->lock, flags);
3336 
3337 	/* Issue and wait for the configure endpoint command,
3338 	 * which must succeed.
3339 	 */
3340 	ret = xhci_configure_endpoint(xhci, udev, command,
3341 			false, true);
3342 
3343 	/* xHC rejected the configure endpoint command for some reason, so we
3344 	 * leave the streams rings intact.
3345 	 */
3346 	if (ret < 0)
3347 		return ret;
3348 
3349 	spin_lock_irqsave(&xhci->lock, flags);
3350 	for (i = 0; i < num_eps; i++) {
3351 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3352 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3353 		vdev->eps[ep_index].stream_info = NULL;
3354 		/* FIXME Unset maxPstreams in endpoint context and
3355 		 * update deq ptr to point to normal string ring.
3356 		 */
3357 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3358 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3359 	}
3360 	spin_unlock_irqrestore(&xhci->lock, flags);
3361 
3362 	return 0;
3363 }
3364 
3365 /*
3366  * Deletes endpoint resources for endpoints that were active before a Reset
3367  * Device command, or a Disable Slot command.  The Reset Device command leaves
3368  * the control endpoint intact, whereas the Disable Slot command deletes it.
3369  *
3370  * Must be called with xhci->lock held.
3371  */
3372 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3373 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3374 {
3375 	int i;
3376 	unsigned int num_dropped_eps = 0;
3377 	unsigned int drop_flags = 0;
3378 
3379 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3380 		if (virt_dev->eps[i].ring) {
3381 			drop_flags |= 1 << i;
3382 			num_dropped_eps++;
3383 		}
3384 	}
3385 	xhci->num_active_eps -= num_dropped_eps;
3386 	if (num_dropped_eps)
3387 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3388 				"Dropped %u ep ctxs, flags = 0x%x, "
3389 				"%u now active.",
3390 				num_dropped_eps, drop_flags,
3391 				xhci->num_active_eps);
3392 }
3393 
3394 /*
3395  * This submits a Reset Device Command, which will set the device state to 0,
3396  * set the device address to 0, and disable all the endpoints except the default
3397  * control endpoint.  The USB core should come back and call
3398  * xhci_address_device(), and then re-set up the configuration.  If this is
3399  * called because of a usb_reset_and_verify_device(), then the old alternate
3400  * settings will be re-installed through the normal bandwidth allocation
3401  * functions.
3402  *
3403  * Wait for the Reset Device command to finish.  Remove all structures
3404  * associated with the endpoints that were disabled.  Clear the input device
3405  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3406  *
3407  * If the virt_dev to be reset does not exist or does not match the udev,
3408  * it means the device is lost, possibly due to the xHC restore error and
3409  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3410  * re-allocate the device.
3411  */
3412 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3413 {
3414 	int ret, i;
3415 	unsigned long flags;
3416 	struct xhci_hcd *xhci;
3417 	unsigned int slot_id;
3418 	struct xhci_virt_device *virt_dev;
3419 	struct xhci_command *reset_device_cmd;
3420 	int timeleft;
3421 	int last_freed_endpoint;
3422 	struct xhci_slot_ctx *slot_ctx;
3423 	int old_active_eps = 0;
3424 
3425 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3426 	if (ret <= 0)
3427 		return ret;
3428 	xhci = hcd_to_xhci(hcd);
3429 	slot_id = udev->slot_id;
3430 	virt_dev = xhci->devs[slot_id];
3431 	if (!virt_dev) {
3432 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3433 				"not exist. Re-allocate the device\n", slot_id);
3434 		ret = xhci_alloc_dev(hcd, udev);
3435 		if (ret == 1)
3436 			return 0;
3437 		else
3438 			return -EINVAL;
3439 	}
3440 
3441 	if (virt_dev->udev != udev) {
3442 		/* If the virt_dev and the udev does not match, this virt_dev
3443 		 * may belong to another udev.
3444 		 * Re-allocate the device.
3445 		 */
3446 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447 				"not match the udev. Re-allocate the device\n",
3448 				slot_id);
3449 		ret = xhci_alloc_dev(hcd, udev);
3450 		if (ret == 1)
3451 			return 0;
3452 		else
3453 			return -EINVAL;
3454 	}
3455 
3456 	/* If device is not setup, there is no point in resetting it */
3457 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3458 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3459 						SLOT_STATE_DISABLED)
3460 		return 0;
3461 
3462 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3463 	/* Allocate the command structure that holds the struct completion.
3464 	 * Assume we're in process context, since the normal device reset
3465 	 * process has to wait for the device anyway.  Storage devices are
3466 	 * reset as part of error handling, so use GFP_NOIO instead of
3467 	 * GFP_KERNEL.
3468 	 */
3469 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3470 	if (!reset_device_cmd) {
3471 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3472 		return -ENOMEM;
3473 	}
3474 
3475 	/* Attempt to submit the Reset Device command to the command ring */
3476 	spin_lock_irqsave(&xhci->lock, flags);
3477 	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3478 
3479 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3480 	ret = xhci_queue_reset_device(xhci, slot_id);
3481 	if (ret) {
3482 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3483 		list_del(&reset_device_cmd->cmd_list);
3484 		spin_unlock_irqrestore(&xhci->lock, flags);
3485 		goto command_cleanup;
3486 	}
3487 	xhci_ring_cmd_db(xhci);
3488 	spin_unlock_irqrestore(&xhci->lock, flags);
3489 
3490 	/* Wait for the Reset Device command to finish */
3491 	timeleft = wait_for_completion_interruptible_timeout(
3492 			reset_device_cmd->completion,
3493 			XHCI_CMD_DEFAULT_TIMEOUT);
3494 	if (timeleft <= 0) {
3495 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3496 				timeleft == 0 ? "Timeout" : "Signal");
3497 		spin_lock_irqsave(&xhci->lock, flags);
3498 		/* The timeout might have raced with the event ring handler, so
3499 		 * only delete from the list if the item isn't poisoned.
3500 		 */
3501 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3502 			list_del(&reset_device_cmd->cmd_list);
3503 		spin_unlock_irqrestore(&xhci->lock, flags);
3504 		ret = -ETIME;
3505 		goto command_cleanup;
3506 	}
3507 
3508 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3509 	 * unless we tried to reset a slot ID that wasn't enabled,
3510 	 * or the device wasn't in the addressed or configured state.
3511 	 */
3512 	ret = reset_device_cmd->status;
3513 	switch (ret) {
3514 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3515 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3516 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3517 				slot_id,
3518 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3519 		xhci_dbg(xhci, "Not freeing device rings.\n");
3520 		/* Don't treat this as an error.  May change my mind later. */
3521 		ret = 0;
3522 		goto command_cleanup;
3523 	case COMP_SUCCESS:
3524 		xhci_dbg(xhci, "Successful reset device command.\n");
3525 		break;
3526 	default:
3527 		if (xhci_is_vendor_info_code(xhci, ret))
3528 			break;
3529 		xhci_warn(xhci, "Unknown completion code %u for "
3530 				"reset device command.\n", ret);
3531 		ret = -EINVAL;
3532 		goto command_cleanup;
3533 	}
3534 
3535 	/* Free up host controller endpoint resources */
3536 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3537 		spin_lock_irqsave(&xhci->lock, flags);
3538 		/* Don't delete the default control endpoint resources */
3539 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3540 		spin_unlock_irqrestore(&xhci->lock, flags);
3541 	}
3542 
3543 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3544 	last_freed_endpoint = 1;
3545 	for (i = 1; i < 31; ++i) {
3546 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3547 
3548 		if (ep->ep_state & EP_HAS_STREAMS) {
3549 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3550 					xhci_get_endpoint_address(i));
3551 			xhci_free_stream_info(xhci, ep->stream_info);
3552 			ep->stream_info = NULL;
3553 			ep->ep_state &= ~EP_HAS_STREAMS;
3554 		}
3555 
3556 		if (ep->ring) {
3557 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3558 			last_freed_endpoint = i;
3559 		}
3560 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3561 			xhci_drop_ep_from_interval_table(xhci,
3562 					&virt_dev->eps[i].bw_info,
3563 					virt_dev->bw_table,
3564 					udev,
3565 					&virt_dev->eps[i],
3566 					virt_dev->tt_info);
3567 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3568 	}
3569 	/* If necessary, update the number of active TTs on this root port */
3570 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3571 
3572 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3573 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3574 	ret = 0;
3575 
3576 command_cleanup:
3577 	xhci_free_command(xhci, reset_device_cmd);
3578 	return ret;
3579 }
3580 
3581 /*
3582  * At this point, the struct usb_device is about to go away, the device has
3583  * disconnected, and all traffic has been stopped and the endpoints have been
3584  * disabled.  Free any HC data structures associated with that device.
3585  */
3586 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3587 {
3588 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3589 	struct xhci_virt_device *virt_dev;
3590 	unsigned long flags;
3591 	u32 state;
3592 	int i, ret;
3593 
3594 #ifndef CONFIG_USB_DEFAULT_PERSIST
3595 	/*
3596 	 * We called pm_runtime_get_noresume when the device was attached.
3597 	 * Decrement the counter here to allow controller to runtime suspend
3598 	 * if no devices remain.
3599 	 */
3600 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3601 		pm_runtime_put_noidle(hcd->self.controller);
3602 #endif
3603 
3604 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3605 	/* If the host is halted due to driver unload, we still need to free the
3606 	 * device.
3607 	 */
3608 	if (ret <= 0 && ret != -ENODEV)
3609 		return;
3610 
3611 	virt_dev = xhci->devs[udev->slot_id];
3612 
3613 	/* Stop any wayward timer functions (which may grab the lock) */
3614 	for (i = 0; i < 31; ++i) {
3615 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3616 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3617 	}
3618 
3619 	spin_lock_irqsave(&xhci->lock, flags);
3620 	/* Don't disable the slot if the host controller is dead. */
3621 	state = readl(&xhci->op_regs->status);
3622 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3623 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3624 		xhci_free_virt_device(xhci, udev->slot_id);
3625 		spin_unlock_irqrestore(&xhci->lock, flags);
3626 		return;
3627 	}
3628 
3629 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3630 		spin_unlock_irqrestore(&xhci->lock, flags);
3631 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632 		return;
3633 	}
3634 	xhci_ring_cmd_db(xhci);
3635 	spin_unlock_irqrestore(&xhci->lock, flags);
3636 	/*
3637 	 * Event command completion handler will free any data structures
3638 	 * associated with the slot.  XXX Can free sleep?
3639 	 */
3640 }
3641 
3642 /*
3643  * Checks if we have enough host controller resources for the default control
3644  * endpoint.
3645  *
3646  * Must be called with xhci->lock held.
3647  */
3648 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3649 {
3650 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3651 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652 				"Not enough ep ctxs: "
3653 				"%u active, need to add 1, limit is %u.",
3654 				xhci->num_active_eps, xhci->limit_active_eps);
3655 		return -ENOMEM;
3656 	}
3657 	xhci->num_active_eps += 1;
3658 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3659 			"Adding 1 ep ctx, %u now active.",
3660 			xhci->num_active_eps);
3661 	return 0;
3662 }
3663 
3664 
3665 /*
3666  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3667  * timed out, or allocating memory failed.  Returns 1 on success.
3668  */
3669 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3670 {
3671 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3672 	unsigned long flags;
3673 	int timeleft;
3674 	int ret;
3675 	union xhci_trb *cmd_trb;
3676 
3677 	spin_lock_irqsave(&xhci->lock, flags);
3678 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3679 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3680 	if (ret) {
3681 		spin_unlock_irqrestore(&xhci->lock, flags);
3682 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3683 		return 0;
3684 	}
3685 	xhci_ring_cmd_db(xhci);
3686 	spin_unlock_irqrestore(&xhci->lock, flags);
3687 
3688 	/* XXX: how much time for xHC slot assignment? */
3689 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3690 			XHCI_CMD_DEFAULT_TIMEOUT);
3691 	if (timeleft <= 0) {
3692 		xhci_warn(xhci, "%s while waiting for a slot\n",
3693 				timeleft == 0 ? "Timeout" : "Signal");
3694 		/* cancel the enable slot request */
3695 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3696 	}
3697 
3698 	if (!xhci->slot_id) {
3699 		xhci_err(xhci, "Error while assigning device slot ID\n");
3700 		return 0;
3701 	}
3702 
3703 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3704 		spin_lock_irqsave(&xhci->lock, flags);
3705 		ret = xhci_reserve_host_control_ep_resources(xhci);
3706 		if (ret) {
3707 			spin_unlock_irqrestore(&xhci->lock, flags);
3708 			xhci_warn(xhci, "Not enough host resources, "
3709 					"active endpoint contexts = %u\n",
3710 					xhci->num_active_eps);
3711 			goto disable_slot;
3712 		}
3713 		spin_unlock_irqrestore(&xhci->lock, flags);
3714 	}
3715 	/* Use GFP_NOIO, since this function can be called from
3716 	 * xhci_discover_or_reset_device(), which may be called as part of
3717 	 * mass storage driver error handling.
3718 	 */
3719 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3720 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3721 		goto disable_slot;
3722 	}
3723 	udev->slot_id = xhci->slot_id;
3724 
3725 #ifndef CONFIG_USB_DEFAULT_PERSIST
3726 	/*
3727 	 * If resetting upon resume, we can't put the controller into runtime
3728 	 * suspend if there is a device attached.
3729 	 */
3730 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3731 		pm_runtime_get_noresume(hcd->self.controller);
3732 #endif
3733 
3734 	/* Is this a LS or FS device under a HS hub? */
3735 	/* Hub or peripherial? */
3736 	return 1;
3737 
3738 disable_slot:
3739 	/* Disable slot, if we can do it without mem alloc */
3740 	spin_lock_irqsave(&xhci->lock, flags);
3741 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3742 		xhci_ring_cmd_db(xhci);
3743 	spin_unlock_irqrestore(&xhci->lock, flags);
3744 	return 0;
3745 }
3746 
3747 /*
3748  * Issue an Address Device command and optionally send a corresponding
3749  * SetAddress request to the device.
3750  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3751  * we should only issue and wait on one address command at the same time.
3752  */
3753 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3754 			     enum xhci_setup_dev setup)
3755 {
3756 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3757 	unsigned long flags;
3758 	int timeleft;
3759 	struct xhci_virt_device *virt_dev;
3760 	int ret = 0;
3761 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3762 	struct xhci_slot_ctx *slot_ctx;
3763 	struct xhci_input_control_ctx *ctrl_ctx;
3764 	u64 temp_64;
3765 	union xhci_trb *cmd_trb;
3766 
3767 	if (!udev->slot_id) {
3768 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3769 				"Bad Slot ID %d", udev->slot_id);
3770 		return -EINVAL;
3771 	}
3772 
3773 	virt_dev = xhci->devs[udev->slot_id];
3774 
3775 	if (WARN_ON(!virt_dev)) {
3776 		/*
3777 		 * In plug/unplug torture test with an NEC controller,
3778 		 * a zero-dereference was observed once due to virt_dev = 0.
3779 		 * Print useful debug rather than crash if it is observed again!
3780 		 */
3781 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3782 			udev->slot_id);
3783 		return -EINVAL;
3784 	}
3785 
3786 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3787 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3788 	if (!ctrl_ctx) {
3789 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3790 				__func__);
3791 		return -EINVAL;
3792 	}
3793 	/*
3794 	 * If this is the first Set Address since device plug-in or
3795 	 * virt_device realloaction after a resume with an xHCI power loss,
3796 	 * then set up the slot context.
3797 	 */
3798 	if (!slot_ctx->dev_info)
3799 		xhci_setup_addressable_virt_dev(xhci, udev);
3800 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3801 	else
3802 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3803 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3804 	ctrl_ctx->drop_flags = 0;
3805 
3806 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3807 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3808 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3809 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3810 
3811 	spin_lock_irqsave(&xhci->lock, flags);
3812 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3813 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3814 					udev->slot_id, setup);
3815 	if (ret) {
3816 		spin_unlock_irqrestore(&xhci->lock, flags);
3817 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3818 				"FIXME: allocate a command ring segment");
3819 		return ret;
3820 	}
3821 	xhci_ring_cmd_db(xhci);
3822 	spin_unlock_irqrestore(&xhci->lock, flags);
3823 
3824 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3825 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3826 			XHCI_CMD_DEFAULT_TIMEOUT);
3827 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3828 	 * the SetAddress() "recovery interval" required by USB and aborting the
3829 	 * command on a timeout.
3830 	 */
3831 	if (timeleft <= 0) {
3832 		xhci_warn(xhci, "%s while waiting for setup %s command\n",
3833 			  timeleft == 0 ? "Timeout" : "Signal", act);
3834 		/* cancel the address device command */
3835 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3836 		if (ret < 0)
3837 			return ret;
3838 		return -ETIME;
3839 	}
3840 
3841 	switch (virt_dev->cmd_status) {
3842 	case COMP_CTX_STATE:
3843 	case COMP_EBADSLT:
3844 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3845 			 act, udev->slot_id);
3846 		ret = -EINVAL;
3847 		break;
3848 	case COMP_TX_ERR:
3849 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3850 		ret = -EPROTO;
3851 		break;
3852 	case COMP_DEV_ERR:
3853 		dev_warn(&udev->dev,
3854 			 "ERROR: Incompatible device for setup %s command\n", act);
3855 		ret = -ENODEV;
3856 		break;
3857 	case COMP_SUCCESS:
3858 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 			       "Successful setup %s command", act);
3860 		break;
3861 	default:
3862 		xhci_err(xhci,
3863 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3864 			 act, virt_dev->cmd_status);
3865 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3866 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3867 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3868 		ret = -EINVAL;
3869 		break;
3870 	}
3871 	if (ret) {
3872 		return ret;
3873 	}
3874 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3875 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3876 			"Op regs DCBAA ptr = %#016llx", temp_64);
3877 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 		"Slot ID %d dcbaa entry @%p = %#016llx",
3879 		udev->slot_id,
3880 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3881 		(unsigned long long)
3882 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3883 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3884 			"Output Context DMA address = %#08llx",
3885 			(unsigned long long)virt_dev->out_ctx->dma);
3886 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3887 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3888 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3889 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3890 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3891 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3892 	/*
3893 	 * USB core uses address 1 for the roothubs, so we add one to the
3894 	 * address given back to us by the HC.
3895 	 */
3896 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3897 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3898 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3899 	/* Zero the input context control for later use */
3900 	ctrl_ctx->add_flags = 0;
3901 	ctrl_ctx->drop_flags = 0;
3902 
3903 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904 		       "Internal device address = %d",
3905 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3906 
3907 	return 0;
3908 }
3909 
3910 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3911 {
3912 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3913 }
3914 
3915 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3916 {
3917 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3918 }
3919 
3920 /*
3921  * Transfer the port index into real index in the HW port status
3922  * registers. Caculate offset between the port's PORTSC register
3923  * and port status base. Divide the number of per port register
3924  * to get the real index. The raw port number bases 1.
3925  */
3926 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3927 {
3928 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3929 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3930 	__le32 __iomem *addr;
3931 	int raw_port;
3932 
3933 	if (hcd->speed != HCD_USB3)
3934 		addr = xhci->usb2_ports[port1 - 1];
3935 	else
3936 		addr = xhci->usb3_ports[port1 - 1];
3937 
3938 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3939 	return raw_port;
3940 }
3941 
3942 /*
3943  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3944  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3945  */
3946 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3947 			struct usb_device *udev, u16 max_exit_latency)
3948 {
3949 	struct xhci_virt_device *virt_dev;
3950 	struct xhci_command *command;
3951 	struct xhci_input_control_ctx *ctrl_ctx;
3952 	struct xhci_slot_ctx *slot_ctx;
3953 	unsigned long flags;
3954 	int ret;
3955 
3956 	spin_lock_irqsave(&xhci->lock, flags);
3957 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3958 		spin_unlock_irqrestore(&xhci->lock, flags);
3959 		return 0;
3960 	}
3961 
3962 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3963 	virt_dev = xhci->devs[udev->slot_id];
3964 	command = xhci->lpm_command;
3965 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3966 	if (!ctrl_ctx) {
3967 		spin_unlock_irqrestore(&xhci->lock, flags);
3968 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3969 				__func__);
3970 		return -ENOMEM;
3971 	}
3972 
3973 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3974 	spin_unlock_irqrestore(&xhci->lock, flags);
3975 
3976 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3977 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3978 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3979 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3980 
3981 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3982 			"Set up evaluate context for LPM MEL change.");
3983 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3984 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3985 
3986 	/* Issue and wait for the evaluate context command. */
3987 	ret = xhci_configure_endpoint(xhci, udev, command,
3988 			true, true);
3989 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3990 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3991 
3992 	if (!ret) {
3993 		spin_lock_irqsave(&xhci->lock, flags);
3994 		virt_dev->current_mel = max_exit_latency;
3995 		spin_unlock_irqrestore(&xhci->lock, flags);
3996 	}
3997 	return ret;
3998 }
3999 
4000 #ifdef CONFIG_PM_RUNTIME
4001 
4002 /* BESL to HIRD Encoding array for USB2 LPM */
4003 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4004 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4005 
4006 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4007 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4008 					struct usb_device *udev)
4009 {
4010 	int u2del, besl, besl_host;
4011 	int besl_device = 0;
4012 	u32 field;
4013 
4014 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4015 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4016 
4017 	if (field & USB_BESL_SUPPORT) {
4018 		for (besl_host = 0; besl_host < 16; besl_host++) {
4019 			if (xhci_besl_encoding[besl_host] >= u2del)
4020 				break;
4021 		}
4022 		/* Use baseline BESL value as default */
4023 		if (field & USB_BESL_BASELINE_VALID)
4024 			besl_device = USB_GET_BESL_BASELINE(field);
4025 		else if (field & USB_BESL_DEEP_VALID)
4026 			besl_device = USB_GET_BESL_DEEP(field);
4027 	} else {
4028 		if (u2del <= 50)
4029 			besl_host = 0;
4030 		else
4031 			besl_host = (u2del - 51) / 75 + 1;
4032 	}
4033 
4034 	besl = besl_host + besl_device;
4035 	if (besl > 15)
4036 		besl = 15;
4037 
4038 	return besl;
4039 }
4040 
4041 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4042 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4043 {
4044 	u32 field;
4045 	int l1;
4046 	int besld = 0;
4047 	int hirdm = 0;
4048 
4049 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4050 
4051 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4052 	l1 = udev->l1_params.timeout / 256;
4053 
4054 	/* device has preferred BESLD */
4055 	if (field & USB_BESL_DEEP_VALID) {
4056 		besld = USB_GET_BESL_DEEP(field);
4057 		hirdm = 1;
4058 	}
4059 
4060 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4061 }
4062 
4063 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4064 			struct usb_device *udev, int enable)
4065 {
4066 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4067 	__le32 __iomem	**port_array;
4068 	__le32 __iomem	*pm_addr, *hlpm_addr;
4069 	u32		pm_val, hlpm_val, field;
4070 	unsigned int	port_num;
4071 	unsigned long	flags;
4072 	int		hird, exit_latency;
4073 	int		ret;
4074 
4075 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4076 			!udev->lpm_capable)
4077 		return -EPERM;
4078 
4079 	if (!udev->parent || udev->parent->parent ||
4080 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4081 		return -EPERM;
4082 
4083 	if (udev->usb2_hw_lpm_capable != 1)
4084 		return -EPERM;
4085 
4086 	spin_lock_irqsave(&xhci->lock, flags);
4087 
4088 	port_array = xhci->usb2_ports;
4089 	port_num = udev->portnum - 1;
4090 	pm_addr = port_array[port_num] + PORTPMSC;
4091 	pm_val = readl(pm_addr);
4092 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4093 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4094 
4095 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4096 			enable ? "enable" : "disable", port_num);
4097 
4098 	if (enable) {
4099 		/* Host supports BESL timeout instead of HIRD */
4100 		if (udev->usb2_hw_lpm_besl_capable) {
4101 			/* if device doesn't have a preferred BESL value use a
4102 			 * default one which works with mixed HIRD and BESL
4103 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4104 			 */
4105 			if ((field & USB_BESL_SUPPORT) &&
4106 			    (field & USB_BESL_BASELINE_VALID))
4107 				hird = USB_GET_BESL_BASELINE(field);
4108 			else
4109 				hird = udev->l1_params.besl;
4110 
4111 			exit_latency = xhci_besl_encoding[hird];
4112 			spin_unlock_irqrestore(&xhci->lock, flags);
4113 
4114 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4115 			 * input context for link powermanagement evaluate
4116 			 * context commands. It is protected by hcd->bandwidth
4117 			 * mutex and is shared by all devices. We need to set
4118 			 * the max ext latency in USB 2 BESL LPM as well, so
4119 			 * use the same mutex and xhci_change_max_exit_latency()
4120 			 */
4121 			mutex_lock(hcd->bandwidth_mutex);
4122 			ret = xhci_change_max_exit_latency(xhci, udev,
4123 							   exit_latency);
4124 			mutex_unlock(hcd->bandwidth_mutex);
4125 
4126 			if (ret < 0)
4127 				return ret;
4128 			spin_lock_irqsave(&xhci->lock, flags);
4129 
4130 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4131 			writel(hlpm_val, hlpm_addr);
4132 			/* flush write */
4133 			readl(hlpm_addr);
4134 		} else {
4135 			hird = xhci_calculate_hird_besl(xhci, udev);
4136 		}
4137 
4138 		pm_val &= ~PORT_HIRD_MASK;
4139 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4140 		writel(pm_val, pm_addr);
4141 		pm_val = readl(pm_addr);
4142 		pm_val |= PORT_HLE;
4143 		writel(pm_val, pm_addr);
4144 		/* flush write */
4145 		readl(pm_addr);
4146 	} else {
4147 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4148 		writel(pm_val, pm_addr);
4149 		/* flush write */
4150 		readl(pm_addr);
4151 		if (udev->usb2_hw_lpm_besl_capable) {
4152 			spin_unlock_irqrestore(&xhci->lock, flags);
4153 			mutex_lock(hcd->bandwidth_mutex);
4154 			xhci_change_max_exit_latency(xhci, udev, 0);
4155 			mutex_unlock(hcd->bandwidth_mutex);
4156 			return 0;
4157 		}
4158 	}
4159 
4160 	spin_unlock_irqrestore(&xhci->lock, flags);
4161 	return 0;
4162 }
4163 
4164 /* check if a usb2 port supports a given extened capability protocol
4165  * only USB2 ports extended protocol capability values are cached.
4166  * Return 1 if capability is supported
4167  */
4168 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4169 					   unsigned capability)
4170 {
4171 	u32 port_offset, port_count;
4172 	int i;
4173 
4174 	for (i = 0; i < xhci->num_ext_caps; i++) {
4175 		if (xhci->ext_caps[i] & capability) {
4176 			/* port offsets starts at 1 */
4177 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4178 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4179 			if (port >= port_offset &&
4180 			    port < port_offset + port_count)
4181 				return 1;
4182 		}
4183 	}
4184 	return 0;
4185 }
4186 
4187 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4188 {
4189 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4190 	int		portnum = udev->portnum - 1;
4191 
4192 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4193 			!udev->lpm_capable)
4194 		return 0;
4195 
4196 	/* we only support lpm for non-hub device connected to root hub yet */
4197 	if (!udev->parent || udev->parent->parent ||
4198 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4199 		return 0;
4200 
4201 	if (xhci->hw_lpm_support == 1 &&
4202 			xhci_check_usb2_port_capability(
4203 				xhci, portnum, XHCI_HLC)) {
4204 		udev->usb2_hw_lpm_capable = 1;
4205 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4206 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4207 		if (xhci_check_usb2_port_capability(xhci, portnum,
4208 					XHCI_BLC))
4209 			udev->usb2_hw_lpm_besl_capable = 1;
4210 	}
4211 
4212 	return 0;
4213 }
4214 
4215 #else
4216 
4217 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4218 				struct usb_device *udev, int enable)
4219 {
4220 	return 0;
4221 }
4222 
4223 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4224 {
4225 	return 0;
4226 }
4227 
4228 #endif /* CONFIG_PM_RUNTIME */
4229 
4230 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4231 
4232 #ifdef CONFIG_PM
4233 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4234 static unsigned long long xhci_service_interval_to_ns(
4235 		struct usb_endpoint_descriptor *desc)
4236 {
4237 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4238 }
4239 
4240 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4241 		enum usb3_link_state state)
4242 {
4243 	unsigned long long sel;
4244 	unsigned long long pel;
4245 	unsigned int max_sel_pel;
4246 	char *state_name;
4247 
4248 	switch (state) {
4249 	case USB3_LPM_U1:
4250 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4251 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4252 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4253 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4254 		state_name = "U1";
4255 		break;
4256 	case USB3_LPM_U2:
4257 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4258 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4259 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4260 		state_name = "U2";
4261 		break;
4262 	default:
4263 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4264 				__func__);
4265 		return USB3_LPM_DISABLED;
4266 	}
4267 
4268 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4269 		return USB3_LPM_DEVICE_INITIATED;
4270 
4271 	if (sel > max_sel_pel)
4272 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4273 				"due to long SEL %llu ms\n",
4274 				state_name, sel);
4275 	else
4276 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4277 				"due to long PEL %llu ms\n",
4278 				state_name, pel);
4279 	return USB3_LPM_DISABLED;
4280 }
4281 
4282 /* Returns the hub-encoded U1 timeout value.
4283  * The U1 timeout should be the maximum of the following values:
4284  *  - For control endpoints, U1 system exit latency (SEL) * 3
4285  *  - For bulk endpoints, U1 SEL * 5
4286  *  - For interrupt endpoints:
4287  *    - Notification EPs, U1 SEL * 3
4288  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4289  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4290  */
4291 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4292 		struct usb_endpoint_descriptor *desc)
4293 {
4294 	unsigned long long timeout_ns;
4295 	int ep_type;
4296 	int intr_type;
4297 
4298 	ep_type = usb_endpoint_type(desc);
4299 	switch (ep_type) {
4300 	case USB_ENDPOINT_XFER_CONTROL:
4301 		timeout_ns = udev->u1_params.sel * 3;
4302 		break;
4303 	case USB_ENDPOINT_XFER_BULK:
4304 		timeout_ns = udev->u1_params.sel * 5;
4305 		break;
4306 	case USB_ENDPOINT_XFER_INT:
4307 		intr_type = usb_endpoint_interrupt_type(desc);
4308 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4309 			timeout_ns = udev->u1_params.sel * 3;
4310 			break;
4311 		}
4312 		/* Otherwise the calculation is the same as isoc eps */
4313 	case USB_ENDPOINT_XFER_ISOC:
4314 		timeout_ns = xhci_service_interval_to_ns(desc);
4315 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4316 		if (timeout_ns < udev->u1_params.sel * 2)
4317 			timeout_ns = udev->u1_params.sel * 2;
4318 		break;
4319 	default:
4320 		return 0;
4321 	}
4322 
4323 	/* The U1 timeout is encoded in 1us intervals. */
4324 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4325 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4326 	if (timeout_ns == USB3_LPM_DISABLED)
4327 		timeout_ns++;
4328 
4329 	/* If the necessary timeout value is bigger than what we can set in the
4330 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4331 	 */
4332 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4333 		return timeout_ns;
4334 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4335 			"due to long timeout %llu ms\n", timeout_ns);
4336 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4337 }
4338 
4339 /* Returns the hub-encoded U2 timeout value.
4340  * The U2 timeout should be the maximum of:
4341  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4342  *  - largest bInterval of any active periodic endpoint (to avoid going
4343  *    into lower power link states between intervals).
4344  *  - the U2 Exit Latency of the device
4345  */
4346 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4347 		struct usb_endpoint_descriptor *desc)
4348 {
4349 	unsigned long long timeout_ns;
4350 	unsigned long long u2_del_ns;
4351 
4352 	timeout_ns = 10 * 1000 * 1000;
4353 
4354 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4355 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4356 		timeout_ns = xhci_service_interval_to_ns(desc);
4357 
4358 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4359 	if (u2_del_ns > timeout_ns)
4360 		timeout_ns = u2_del_ns;
4361 
4362 	/* The U2 timeout is encoded in 256us intervals */
4363 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4364 	/* If the necessary timeout value is bigger than what we can set in the
4365 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4366 	 */
4367 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4368 		return timeout_ns;
4369 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4370 			"due to long timeout %llu ms\n", timeout_ns);
4371 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4372 }
4373 
4374 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4375 		struct usb_device *udev,
4376 		struct usb_endpoint_descriptor *desc,
4377 		enum usb3_link_state state,
4378 		u16 *timeout)
4379 {
4380 	if (state == USB3_LPM_U1) {
4381 		if (xhci->quirks & XHCI_INTEL_HOST)
4382 			return xhci_calculate_intel_u1_timeout(udev, desc);
4383 	} else {
4384 		if (xhci->quirks & XHCI_INTEL_HOST)
4385 			return xhci_calculate_intel_u2_timeout(udev, desc);
4386 	}
4387 
4388 	return USB3_LPM_DISABLED;
4389 }
4390 
4391 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4392 		struct usb_device *udev,
4393 		struct usb_endpoint_descriptor *desc,
4394 		enum usb3_link_state state,
4395 		u16 *timeout)
4396 {
4397 	u16 alt_timeout;
4398 
4399 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4400 		desc, state, timeout);
4401 
4402 	/* If we found we can't enable hub-initiated LPM, or
4403 	 * the U1 or U2 exit latency was too high to allow
4404 	 * device-initiated LPM as well, just stop searching.
4405 	 */
4406 	if (alt_timeout == USB3_LPM_DISABLED ||
4407 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4408 		*timeout = alt_timeout;
4409 		return -E2BIG;
4410 	}
4411 	if (alt_timeout > *timeout)
4412 		*timeout = alt_timeout;
4413 	return 0;
4414 }
4415 
4416 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4417 		struct usb_device *udev,
4418 		struct usb_host_interface *alt,
4419 		enum usb3_link_state state,
4420 		u16 *timeout)
4421 {
4422 	int j;
4423 
4424 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4425 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4426 					&alt->endpoint[j].desc, state, timeout))
4427 			return -E2BIG;
4428 		continue;
4429 	}
4430 	return 0;
4431 }
4432 
4433 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4434 		enum usb3_link_state state)
4435 {
4436 	struct usb_device *parent;
4437 	unsigned int num_hubs;
4438 
4439 	if (state == USB3_LPM_U2)
4440 		return 0;
4441 
4442 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4443 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4444 			parent = parent->parent)
4445 		num_hubs++;
4446 
4447 	if (num_hubs < 2)
4448 		return 0;
4449 
4450 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4451 			" below second-tier hub.\n");
4452 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4453 			"to decrease power consumption.\n");
4454 	return -E2BIG;
4455 }
4456 
4457 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4458 		struct usb_device *udev,
4459 		enum usb3_link_state state)
4460 {
4461 	if (xhci->quirks & XHCI_INTEL_HOST)
4462 		return xhci_check_intel_tier_policy(udev, state);
4463 	return -EINVAL;
4464 }
4465 
4466 /* Returns the U1 or U2 timeout that should be enabled.
4467  * If the tier check or timeout setting functions return with a non-zero exit
4468  * code, that means the timeout value has been finalized and we shouldn't look
4469  * at any more endpoints.
4470  */
4471 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4472 			struct usb_device *udev, enum usb3_link_state state)
4473 {
4474 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4475 	struct usb_host_config *config;
4476 	char *state_name;
4477 	int i;
4478 	u16 timeout = USB3_LPM_DISABLED;
4479 
4480 	if (state == USB3_LPM_U1)
4481 		state_name = "U1";
4482 	else if (state == USB3_LPM_U2)
4483 		state_name = "U2";
4484 	else {
4485 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4486 				state);
4487 		return timeout;
4488 	}
4489 
4490 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4491 		return timeout;
4492 
4493 	/* Gather some information about the currently installed configuration
4494 	 * and alternate interface settings.
4495 	 */
4496 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4497 			state, &timeout))
4498 		return timeout;
4499 
4500 	config = udev->actconfig;
4501 	if (!config)
4502 		return timeout;
4503 
4504 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4505 		struct usb_driver *driver;
4506 		struct usb_interface *intf = config->interface[i];
4507 
4508 		if (!intf)
4509 			continue;
4510 
4511 		/* Check if any currently bound drivers want hub-initiated LPM
4512 		 * disabled.
4513 		 */
4514 		if (intf->dev.driver) {
4515 			driver = to_usb_driver(intf->dev.driver);
4516 			if (driver && driver->disable_hub_initiated_lpm) {
4517 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4518 						"at request of driver %s\n",
4519 						state_name, driver->name);
4520 				return xhci_get_timeout_no_hub_lpm(udev, state);
4521 			}
4522 		}
4523 
4524 		/* Not sure how this could happen... */
4525 		if (!intf->cur_altsetting)
4526 			continue;
4527 
4528 		if (xhci_update_timeout_for_interface(xhci, udev,
4529 					intf->cur_altsetting,
4530 					state, &timeout))
4531 			return timeout;
4532 	}
4533 	return timeout;
4534 }
4535 
4536 static int calculate_max_exit_latency(struct usb_device *udev,
4537 		enum usb3_link_state state_changed,
4538 		u16 hub_encoded_timeout)
4539 {
4540 	unsigned long long u1_mel_us = 0;
4541 	unsigned long long u2_mel_us = 0;
4542 	unsigned long long mel_us = 0;
4543 	bool disabling_u1;
4544 	bool disabling_u2;
4545 	bool enabling_u1;
4546 	bool enabling_u2;
4547 
4548 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4549 			hub_encoded_timeout == USB3_LPM_DISABLED);
4550 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4551 			hub_encoded_timeout == USB3_LPM_DISABLED);
4552 
4553 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4554 			hub_encoded_timeout != USB3_LPM_DISABLED);
4555 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4556 			hub_encoded_timeout != USB3_LPM_DISABLED);
4557 
4558 	/* If U1 was already enabled and we're not disabling it,
4559 	 * or we're going to enable U1, account for the U1 max exit latency.
4560 	 */
4561 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4562 			enabling_u1)
4563 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4564 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4565 			enabling_u2)
4566 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4567 
4568 	if (u1_mel_us > u2_mel_us)
4569 		mel_us = u1_mel_us;
4570 	else
4571 		mel_us = u2_mel_us;
4572 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4573 	if (mel_us > MAX_EXIT) {
4574 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4575 				"is too big.\n", mel_us);
4576 		return -E2BIG;
4577 	}
4578 	return mel_us;
4579 }
4580 
4581 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4582 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4583 			struct usb_device *udev, enum usb3_link_state state)
4584 {
4585 	struct xhci_hcd	*xhci;
4586 	u16 hub_encoded_timeout;
4587 	int mel;
4588 	int ret;
4589 
4590 	xhci = hcd_to_xhci(hcd);
4591 	/* The LPM timeout values are pretty host-controller specific, so don't
4592 	 * enable hub-initiated timeouts unless the vendor has provided
4593 	 * information about their timeout algorithm.
4594 	 */
4595 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4596 			!xhci->devs[udev->slot_id])
4597 		return USB3_LPM_DISABLED;
4598 
4599 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4600 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4601 	if (mel < 0) {
4602 		/* Max Exit Latency is too big, disable LPM. */
4603 		hub_encoded_timeout = USB3_LPM_DISABLED;
4604 		mel = 0;
4605 	}
4606 
4607 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4608 	if (ret)
4609 		return ret;
4610 	return hub_encoded_timeout;
4611 }
4612 
4613 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4614 			struct usb_device *udev, enum usb3_link_state state)
4615 {
4616 	struct xhci_hcd	*xhci;
4617 	u16 mel;
4618 	int ret;
4619 
4620 	xhci = hcd_to_xhci(hcd);
4621 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4622 			!xhci->devs[udev->slot_id])
4623 		return 0;
4624 
4625 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4626 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4627 	if (ret)
4628 		return ret;
4629 	return 0;
4630 }
4631 #else /* CONFIG_PM */
4632 
4633 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4634 			struct usb_device *udev, enum usb3_link_state state)
4635 {
4636 	return USB3_LPM_DISABLED;
4637 }
4638 
4639 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 			struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 	return 0;
4643 }
4644 #endif	/* CONFIG_PM */
4645 
4646 /*-------------------------------------------------------------------------*/
4647 
4648 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4649  * internal data structures for the device.
4650  */
4651 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4652 			struct usb_tt *tt, gfp_t mem_flags)
4653 {
4654 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4655 	struct xhci_virt_device *vdev;
4656 	struct xhci_command *config_cmd;
4657 	struct xhci_input_control_ctx *ctrl_ctx;
4658 	struct xhci_slot_ctx *slot_ctx;
4659 	unsigned long flags;
4660 	unsigned think_time;
4661 	int ret;
4662 
4663 	/* Ignore root hubs */
4664 	if (!hdev->parent)
4665 		return 0;
4666 
4667 	vdev = xhci->devs[hdev->slot_id];
4668 	if (!vdev) {
4669 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4670 		return -EINVAL;
4671 	}
4672 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4673 	if (!config_cmd) {
4674 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4675 		return -ENOMEM;
4676 	}
4677 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4678 	if (!ctrl_ctx) {
4679 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4680 				__func__);
4681 		xhci_free_command(xhci, config_cmd);
4682 		return -ENOMEM;
4683 	}
4684 
4685 	spin_lock_irqsave(&xhci->lock, flags);
4686 	if (hdev->speed == USB_SPEED_HIGH &&
4687 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4688 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4689 		xhci_free_command(xhci, config_cmd);
4690 		spin_unlock_irqrestore(&xhci->lock, flags);
4691 		return -ENOMEM;
4692 	}
4693 
4694 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4695 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4696 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4697 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4698 	if (tt->multi)
4699 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4700 	if (xhci->hci_version > 0x95) {
4701 		xhci_dbg(xhci, "xHCI version %x needs hub "
4702 				"TT think time and number of ports\n",
4703 				(unsigned int) xhci->hci_version);
4704 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4705 		/* Set TT think time - convert from ns to FS bit times.
4706 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4707 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4708 		 *
4709 		 * xHCI 1.0: this field shall be 0 if the device is not a
4710 		 * High-spped hub.
4711 		 */
4712 		think_time = tt->think_time;
4713 		if (think_time != 0)
4714 			think_time = (think_time / 666) - 1;
4715 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4716 			slot_ctx->tt_info |=
4717 				cpu_to_le32(TT_THINK_TIME(think_time));
4718 	} else {
4719 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4720 				"TT think time or number of ports\n",
4721 				(unsigned int) xhci->hci_version);
4722 	}
4723 	slot_ctx->dev_state = 0;
4724 	spin_unlock_irqrestore(&xhci->lock, flags);
4725 
4726 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4727 			(xhci->hci_version > 0x95) ?
4728 			"configure endpoint" : "evaluate context");
4729 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4730 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4731 
4732 	/* Issue and wait for the configure endpoint or
4733 	 * evaluate context command.
4734 	 */
4735 	if (xhci->hci_version > 0x95)
4736 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4737 				false, false);
4738 	else
4739 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4740 				true, false);
4741 
4742 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4743 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4744 
4745 	xhci_free_command(xhci, config_cmd);
4746 	return ret;
4747 }
4748 
4749 int xhci_get_frame(struct usb_hcd *hcd)
4750 {
4751 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4752 	/* EHCI mods by the periodic size.  Why? */
4753 	return readl(&xhci->run_regs->microframe_index) >> 3;
4754 }
4755 
4756 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4757 {
4758 	struct xhci_hcd		*xhci;
4759 	struct device		*dev = hcd->self.controller;
4760 	int			retval;
4761 
4762 	/* Accept arbitrarily long scatter-gather lists */
4763 	hcd->self.sg_tablesize = ~0;
4764 
4765 	/* support to build packet from discontinuous buffers */
4766 	hcd->self.no_sg_constraint = 1;
4767 
4768 	/* XHCI controllers don't stop the ep queue on short packets :| */
4769 	hcd->self.no_stop_on_short = 1;
4770 
4771 	if (usb_hcd_is_primary_hcd(hcd)) {
4772 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4773 		if (!xhci)
4774 			return -ENOMEM;
4775 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4776 		xhci->main_hcd = hcd;
4777 		/* Mark the first roothub as being USB 2.0.
4778 		 * The xHCI driver will register the USB 3.0 roothub.
4779 		 */
4780 		hcd->speed = HCD_USB2;
4781 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4782 		/*
4783 		 * USB 2.0 roothub under xHCI has an integrated TT,
4784 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4785 		 * companion controller.
4786 		 */
4787 		hcd->has_tt = 1;
4788 	} else {
4789 		/* xHCI private pointer was set in xhci_pci_probe for the second
4790 		 * registered roothub.
4791 		 */
4792 		return 0;
4793 	}
4794 
4795 	xhci->cap_regs = hcd->regs;
4796 	xhci->op_regs = hcd->regs +
4797 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4798 	xhci->run_regs = hcd->regs +
4799 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4800 	/* Cache read-only capability registers */
4801 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4802 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4803 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4804 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4805 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4806 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4807 	xhci_print_registers(xhci);
4808 
4809 	xhci->quirks = quirks;
4810 
4811 	get_quirks(dev, xhci);
4812 
4813 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4814 	 * success event after a short transfer. This quirk will ignore such
4815 	 * spurious event.
4816 	 */
4817 	if (xhci->hci_version > 0x96)
4818 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4819 
4820 	/* Make sure the HC is halted. */
4821 	retval = xhci_halt(xhci);
4822 	if (retval)
4823 		goto error;
4824 
4825 	xhci_dbg(xhci, "Resetting HCD\n");
4826 	/* Reset the internal HC memory state and registers. */
4827 	retval = xhci_reset(xhci);
4828 	if (retval)
4829 		goto error;
4830 	xhci_dbg(xhci, "Reset complete\n");
4831 
4832 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4833 	 * if xHC supports 64-bit addressing */
4834 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4835 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4836 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4837 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4838 	}
4839 
4840 	xhci_dbg(xhci, "Calling HCD init\n");
4841 	/* Initialize HCD and host controller data structures. */
4842 	retval = xhci_init(hcd);
4843 	if (retval)
4844 		goto error;
4845 	xhci_dbg(xhci, "Called HCD init\n");
4846 	return 0;
4847 error:
4848 	kfree(xhci);
4849 	return retval;
4850 }
4851 
4852 MODULE_DESCRIPTION(DRIVER_DESC);
4853 MODULE_AUTHOR(DRIVER_AUTHOR);
4854 MODULE_LICENSE("GPL");
4855 
4856 static int __init xhci_hcd_init(void)
4857 {
4858 	int retval;
4859 
4860 	retval = xhci_register_pci();
4861 	if (retval < 0) {
4862 		pr_debug("Problem registering PCI driver.\n");
4863 		return retval;
4864 	}
4865 	retval = xhci_register_plat();
4866 	if (retval < 0) {
4867 		pr_debug("Problem registering platform driver.\n");
4868 		goto unreg_pci;
4869 	}
4870 	/*
4871 	 * Check the compiler generated sizes of structures that must be laid
4872 	 * out in specific ways for hardware access.
4873 	 */
4874 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4875 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4876 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4877 	/* xhci_device_control has eight fields, and also
4878 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4879 	 */
4880 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4881 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4882 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4883 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4884 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4885 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4886 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4887 	return 0;
4888 unreg_pci:
4889 	xhci_unregister_pci();
4890 	return retval;
4891 }
4892 module_init(xhci_hcd_init);
4893 
4894 static void __exit xhci_hcd_cleanup(void)
4895 {
4896 	xhci_unregister_pci();
4897 	xhci_unregister_plat();
4898 }
4899 module_exit(xhci_hcd_cleanup);
4900