xref: /openbmc/linux/drivers/usb/host/xhci.c (revision b34081f1)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * xhci_handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 		      u32 mask, u32 done, int usec)
59 {
60 	u32	result;
61 
62 	do {
63 		result = xhci_readl(xhci, ptr);
64 		if (result == ~(u32)0)		/* card removed */
65 			return -ENODEV;
66 		result &= mask;
67 		if (result == done)
68 			return 0;
69 		udelay(1);
70 		usec--;
71 	} while (usec > 0);
72 	return -ETIMEDOUT;
73 }
74 
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80 	u32 halted;
81 	u32 cmd;
82 	u32 mask;
83 
84 	mask = ~(XHCI_IRQS);
85 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86 	if (!halted)
87 		mask &= ~CMD_RUN;
88 
89 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
90 	cmd &= mask;
91 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93 
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104 	int ret;
105 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106 	xhci_quiesce(xhci);
107 
108 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 	if (!ret) {
111 		xhci->xhc_state |= XHCI_STATE_HALTED;
112 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113 	} else
114 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115 				XHCI_MAX_HALT_USEC);
116 	return ret;
117 }
118 
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124 	u32 temp;
125 	int ret;
126 
127 	temp = xhci_readl(xhci, &xhci->op_regs->command);
128 	temp |= (CMD_RUN);
129 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130 			temp);
131 	xhci_writel(xhci, temp, &xhci->op_regs->command);
132 
133 	/*
134 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 	 * running.
136 	 */
137 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 	if (ret == -ETIMEDOUT)
140 		xhci_err(xhci, "Host took too long to start, "
141 				"waited %u microseconds.\n",
142 				XHCI_MAX_HALT_USEC);
143 	if (!ret)
144 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
145 	return ret;
146 }
147 
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157 	u32 command;
158 	u32 state;
159 	int ret, i;
160 
161 	state = xhci_readl(xhci, &xhci->op_regs->status);
162 	if ((state & STS_HALT) == 0) {
163 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 		return 0;
165 	}
166 
167 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 	command = xhci_readl(xhci, &xhci->op_regs->command);
169 	command |= CMD_RESET;
170 	xhci_writel(xhci, command, &xhci->op_regs->command);
171 
172 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 			CMD_RESET, 0, 10 * 1000 * 1000);
174 	if (ret)
175 		return ret;
176 
177 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 			 "Wait for controller to be ready for doorbell rings");
179 	/*
180 	 * xHCI cannot write to any doorbells or operational registers other
181 	 * than status until the "Controller Not Ready" flag is cleared.
182 	 */
183 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 			STS_CNR, 0, 10 * 1000 * 1000);
185 
186 	for (i = 0; i < 2; ++i) {
187 		xhci->bus_state[i].port_c_suspend = 0;
188 		xhci->bus_state[i].suspended_ports = 0;
189 		xhci->bus_state[i].resuming_ports = 0;
190 	}
191 
192 	return ret;
193 }
194 
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198 	int i;
199 
200 	if (!xhci->msix_entries)
201 		return -EINVAL;
202 
203 	for (i = 0; i < xhci->msix_count; i++)
204 		if (xhci->msix_entries[i].vector)
205 			free_irq(xhci->msix_entries[i].vector,
206 					xhci_to_hcd(xhci));
207 	return 0;
208 }
209 
210 /*
211  * Set up MSI
212  */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215 	int ret;
216 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217 
218 	ret = pci_enable_msi(pdev);
219 	if (ret) {
220 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 				"failed to allocate MSI entry");
222 		return ret;
223 	}
224 
225 	ret = request_irq(pdev->irq, xhci_msi_irq,
226 				0, "xhci_hcd", xhci_to_hcd(xhci));
227 	if (ret) {
228 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 				"disable MSI interrupt");
230 		pci_disable_msi(pdev);
231 	}
232 
233 	return ret;
234 }
235 
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 	int ret;
244 
245 	/* return if using legacy interrupt */
246 	if (xhci_to_hcd(xhci)->irq > 0)
247 		return;
248 
249 	ret = xhci_free_msi(xhci);
250 	if (!ret)
251 		return;
252 	if (pdev->irq > 0)
253 		free_irq(pdev->irq, xhci_to_hcd(xhci));
254 
255 	return;
256 }
257 
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263 	int i, ret = 0;
264 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266 
267 	/*
268 	 * calculate number of msi-x vectors supported.
269 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
271 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 	 *   Add additional 1 vector to ensure always available interrupt.
273 	 */
274 	xhci->msix_count = min(num_online_cpus() + 1,
275 				HCS_MAX_INTRS(xhci->hcs_params1));
276 
277 	xhci->msix_entries =
278 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279 				GFP_KERNEL);
280 	if (!xhci->msix_entries) {
281 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282 		return -ENOMEM;
283 	}
284 
285 	for (i = 0; i < xhci->msix_count; i++) {
286 		xhci->msix_entries[i].entry = i;
287 		xhci->msix_entries[i].vector = 0;
288 	}
289 
290 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291 	if (ret) {
292 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 				"Failed to enable MSI-X");
294 		goto free_entries;
295 	}
296 
297 	for (i = 0; i < xhci->msix_count; i++) {
298 		ret = request_irq(xhci->msix_entries[i].vector,
299 				xhci_msi_irq,
300 				0, "xhci_hcd", xhci_to_hcd(xhci));
301 		if (ret)
302 			goto disable_msix;
303 	}
304 
305 	hcd->msix_enabled = 1;
306 	return ret;
307 
308 disable_msix:
309 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310 	xhci_free_irq(xhci);
311 	pci_disable_msix(pdev);
312 free_entries:
313 	kfree(xhci->msix_entries);
314 	xhci->msix_entries = NULL;
315 	return ret;
316 }
317 
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323 
324 	xhci_free_irq(xhci);
325 
326 	if (xhci->msix_entries) {
327 		pci_disable_msix(pdev);
328 		kfree(xhci->msix_entries);
329 		xhci->msix_entries = NULL;
330 	} else {
331 		pci_disable_msi(pdev);
332 	}
333 
334 	hcd->msix_enabled = 0;
335 	return;
336 }
337 
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340 	int i;
341 
342 	if (xhci->msix_entries) {
343 		for (i = 0; i < xhci->msix_count; i++)
344 			synchronize_irq(xhci->msix_entries[i].vector);
345 	}
346 }
347 
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 	struct pci_dev  *pdev;
352 	int ret;
353 
354 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
355 	if (xhci->quirks & XHCI_PLAT)
356 		return 0;
357 
358 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
359 	/*
360 	 * Some Fresco Logic host controllers advertise MSI, but fail to
361 	 * generate interrupts.  Don't even try to enable MSI.
362 	 */
363 	if (xhci->quirks & XHCI_BROKEN_MSI)
364 		goto legacy_irq;
365 
366 	/* unregister the legacy interrupt */
367 	if (hcd->irq)
368 		free_irq(hcd->irq, hcd);
369 	hcd->irq = 0;
370 
371 	ret = xhci_setup_msix(xhci);
372 	if (ret)
373 		/* fall back to msi*/
374 		ret = xhci_setup_msi(xhci);
375 
376 	if (!ret)
377 		/* hcd->irq is 0, we have MSI */
378 		return 0;
379 
380 	if (!pdev->irq) {
381 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382 		return -EINVAL;
383 	}
384 
385  legacy_irq:
386 	/* fall back to legacy interrupt*/
387 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 			hcd->irq_descr, hcd);
389 	if (ret) {
390 		xhci_err(xhci, "request interrupt %d failed\n",
391 				pdev->irq);
392 		return ret;
393 	}
394 	hcd->irq = pdev->irq;
395 	return 0;
396 }
397 
398 #else
399 
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
401 {
402 	return 0;
403 }
404 
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
406 {
407 }
408 
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
410 {
411 }
412 
413 #endif
414 
415 static void compliance_mode_recovery(unsigned long arg)
416 {
417 	struct xhci_hcd *xhci;
418 	struct usb_hcd *hcd;
419 	u32 temp;
420 	int i;
421 
422 	xhci = (struct xhci_hcd *)arg;
423 
424 	for (i = 0; i < xhci->num_usb3_ports; i++) {
425 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
427 			/*
428 			 * Compliance Mode Detected. Letting USB Core
429 			 * handle the Warm Reset
430 			 */
431 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 					"Compliance mode detected->port %d",
433 					i + 1);
434 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 					"Attempting compliance mode recovery");
436 			hcd = xhci->shared_hcd;
437 
438 			if (hcd->state == HC_STATE_SUSPENDED)
439 				usb_hcd_resume_root_hub(hcd);
440 
441 			usb_hcd_poll_rh_status(hcd);
442 		}
443 	}
444 
445 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 		mod_timer(&xhci->comp_mode_recovery_timer,
447 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
448 }
449 
450 /*
451  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452  * that causes ports behind that hardware to enter compliance mode sometimes.
453  * The quirk creates a timer that polls every 2 seconds the link state of
454  * each host controller's port and recovers it by issuing a Warm reset
455  * if Compliance mode is detected, otherwise the port will become "dead" (no
456  * device connections or disconnections will be detected anymore). Becasue no
457  * status event is generated when entering compliance mode (per xhci spec),
458  * this quirk is needed on systems that have the failing hardware installed.
459  */
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
461 {
462 	xhci->port_status_u0 = 0;
463 	init_timer(&xhci->comp_mode_recovery_timer);
464 
465 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 	xhci->comp_mode_recovery_timer.expires = jiffies +
468 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
469 
470 	set_timer_slack(&xhci->comp_mode_recovery_timer,
471 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 	add_timer(&xhci->comp_mode_recovery_timer);
473 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 			"Compliance mode recovery timer initialized");
475 }
476 
477 /*
478  * This function identifies the systems that have installed the SN65LVPE502CP
479  * USB3.0 re-driver and that need the Compliance Mode Quirk.
480  * Systems:
481  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
482  */
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
484 {
485 	const char *dmi_product_name, *dmi_sys_vendor;
486 
487 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 	if (!dmi_product_name || !dmi_sys_vendor)
490 		return false;
491 
492 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493 		return false;
494 
495 	if (strstr(dmi_product_name, "Z420") ||
496 			strstr(dmi_product_name, "Z620") ||
497 			strstr(dmi_product_name, "Z820") ||
498 			strstr(dmi_product_name, "Z1 Workstation"))
499 		return true;
500 
501 	return false;
502 }
503 
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
505 {
506 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
507 }
508 
509 
510 /*
511  * Initialize memory for HCD and xHC (one-time init).
512  *
513  * Program the PAGESIZE register, initialize the device context array, create
514  * device contexts (?), set up a command ring segment (or two?), create event
515  * ring (one for now).
516  */
517 int xhci_init(struct usb_hcd *hcd)
518 {
519 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520 	int retval = 0;
521 
522 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 	spin_lock_init(&xhci->lock);
524 	if (xhci->hci_version == 0x95 && link_quirk) {
525 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 				"QUIRK: Not clearing Link TRB chain bits.");
527 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528 	} else {
529 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 				"xHCI doesn't need link TRB QUIRK");
531 	}
532 	retval = xhci_mem_init(xhci, GFP_KERNEL);
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
534 
535 	/* Initializing Compliance Mode Recovery Data If Needed */
536 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 		compliance_mode_recovery_timer_init(xhci);
539 	}
540 
541 	return retval;
542 }
543 
544 /*-------------------------------------------------------------------------*/
545 
546 
547 static int xhci_run_finished(struct xhci_hcd *xhci)
548 {
549 	if (xhci_start(xhci)) {
550 		xhci_halt(xhci);
551 		return -ENODEV;
552 	}
553 	xhci->shared_hcd->state = HC_STATE_RUNNING;
554 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
555 
556 	if (xhci->quirks & XHCI_NEC_HOST)
557 		xhci_ring_cmd_db(xhci);
558 
559 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 			"Finished xhci_run for USB3 roothub");
561 	return 0;
562 }
563 
564 /*
565  * Start the HC after it was halted.
566  *
567  * This function is called by the USB core when the HC driver is added.
568  * Its opposite is xhci_stop().
569  *
570  * xhci_init() must be called once before this function can be called.
571  * Reset the HC, enable device slot contexts, program DCBAAP, and
572  * set command ring pointer and event ring pointer.
573  *
574  * Setup MSI-X vectors and enable interrupts.
575  */
576 int xhci_run(struct usb_hcd *hcd)
577 {
578 	u32 temp;
579 	u64 temp_64;
580 	int ret;
581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 
583 	/* Start the xHCI host controller running only after the USB 2.0 roothub
584 	 * is setup.
585 	 */
586 
587 	hcd->uses_new_polling = 1;
588 	if (!usb_hcd_is_primary_hcd(hcd))
589 		return xhci_run_finished(xhci);
590 
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
592 
593 	ret = xhci_try_enable_msi(hcd);
594 	if (ret)
595 		return ret;
596 
597 	xhci_dbg(xhci, "Command ring memory map follows:\n");
598 	xhci_debug_ring(xhci, xhci->cmd_ring);
599 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 	xhci_dbg_cmd_ptrs(xhci);
601 
602 	xhci_dbg(xhci, "ERST memory map follows:\n");
603 	xhci_dbg_erst(xhci, &xhci->erst);
604 	xhci_dbg(xhci, "Event ring:\n");
605 	xhci_debug_ring(xhci, xhci->event_ring);
606 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 	temp_64 &= ~ERST_PTR_MASK;
609 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 			"// Set the interrupt modulation register");
614 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615 	temp &= ~ER_IRQ_INTERVAL_MASK;
616 	temp |= (u32) 160;
617 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
618 
619 	/* Set the HCD state before we enable the irqs */
620 	temp = xhci_readl(xhci, &xhci->op_regs->command);
621 	temp |= (CMD_EIE);
622 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 			"// Enable interrupts, cmd = 0x%x.", temp);
624 	xhci_writel(xhci, temp, &xhci->op_regs->command);
625 
626 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631 			&xhci->ir_set->irq_pending);
632 	xhci_print_ir_set(xhci, 0);
633 
634 	if (xhci->quirks & XHCI_NEC_HOST)
635 		xhci_queue_vendor_command(xhci, 0, 0, 0,
636 				TRB_TYPE(TRB_NEC_GET_FW));
637 
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"Finished xhci_run for USB2 roothub");
640 	return 0;
641 }
642 
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
644 {
645 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
646 
647 	spin_lock_irq(&xhci->lock);
648 	xhci_halt(xhci);
649 
650 	/* The shared_hcd is going to be deallocated shortly (the USB core only
651 	 * calls this function when allocation fails in usb_add_hcd(), or
652 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
653 	 */
654 	xhci->shared_hcd = NULL;
655 	spin_unlock_irq(&xhci->lock);
656 }
657 
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669 	u32 temp;
670 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671 
672 	if (!usb_hcd_is_primary_hcd(hcd)) {
673 		xhci_only_stop_hcd(xhci->shared_hcd);
674 		return;
675 	}
676 
677 	spin_lock_irq(&xhci->lock);
678 	/* Make sure the xHC is halted for a USB3 roothub
679 	 * (xhci_stop() could be called as part of failed init).
680 	 */
681 	xhci_halt(xhci);
682 	xhci_reset(xhci);
683 	spin_unlock_irq(&xhci->lock);
684 
685 	xhci_cleanup_msix(xhci);
686 
687 	/* Deleting Compliance Mode Recovery Timer */
688 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689 			(!(xhci_all_ports_seen_u0(xhci)))) {
690 		del_timer_sync(&xhci->comp_mode_recovery_timer);
691 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692 				"%s: compliance mode recovery timer deleted",
693 				__func__);
694 	}
695 
696 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
697 		usb_amd_dev_put();
698 
699 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 			"// Disabling event ring interrupts");
701 	temp = xhci_readl(xhci, &xhci->op_regs->status);
702 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705 			&xhci->ir_set->irq_pending);
706 	xhci_print_ir_set(xhci, 0);
707 
708 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709 	xhci_mem_cleanup(xhci);
710 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711 			"xhci_stop completed - status = %x",
712 			xhci_readl(xhci, &xhci->op_regs->status));
713 }
714 
715 /*
716  * Shutdown HC (not bus-specific)
717  *
718  * This is called when the machine is rebooting or halting.  We assume that the
719  * machine will be powered off, and the HC's internal state will be reset.
720  * Don't bother to free memory.
721  *
722  * This will only ever be called with the main usb_hcd (the USB3 roothub).
723  */
724 void xhci_shutdown(struct usb_hcd *hcd)
725 {
726 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
727 
728 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
730 
731 	spin_lock_irq(&xhci->lock);
732 	xhci_halt(xhci);
733 	spin_unlock_irq(&xhci->lock);
734 
735 	xhci_cleanup_msix(xhci);
736 
737 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
738 			"xhci_shutdown completed - status = %x",
739 			xhci_readl(xhci, &xhci->op_regs->status));
740 }
741 
742 #ifdef CONFIG_PM
743 static void xhci_save_registers(struct xhci_hcd *xhci)
744 {
745 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
746 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
747 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
748 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
749 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
750 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
751 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
752 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
753 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
754 }
755 
756 static void xhci_restore_registers(struct xhci_hcd *xhci)
757 {
758 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
759 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
760 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
761 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
762 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
763 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
764 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
765 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
766 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
767 }
768 
769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
770 {
771 	u64	val_64;
772 
773 	/* step 2: initialize command ring buffer */
774 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
775 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
776 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
777 				      xhci->cmd_ring->dequeue) &
778 		 (u64) ~CMD_RING_RSVD_BITS) |
779 		xhci->cmd_ring->cycle_state;
780 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
781 			"// Setting command ring address to 0x%llx",
782 			(long unsigned long) val_64);
783 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
784 }
785 
786 /*
787  * The whole command ring must be cleared to zero when we suspend the host.
788  *
789  * The host doesn't save the command ring pointer in the suspend well, so we
790  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
791  * aligned, because of the reserved bits in the command ring dequeue pointer
792  * register.  Therefore, we can't just set the dequeue pointer back in the
793  * middle of the ring (TRBs are 16-byte aligned).
794  */
795 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
796 {
797 	struct xhci_ring *ring;
798 	struct xhci_segment *seg;
799 
800 	ring = xhci->cmd_ring;
801 	seg = ring->deq_seg;
802 	do {
803 		memset(seg->trbs, 0,
804 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
805 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
806 			cpu_to_le32(~TRB_CYCLE);
807 		seg = seg->next;
808 	} while (seg != ring->deq_seg);
809 
810 	/* Reset the software enqueue and dequeue pointers */
811 	ring->deq_seg = ring->first_seg;
812 	ring->dequeue = ring->first_seg->trbs;
813 	ring->enq_seg = ring->deq_seg;
814 	ring->enqueue = ring->dequeue;
815 
816 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
817 	/*
818 	 * Ring is now zeroed, so the HW should look for change of ownership
819 	 * when the cycle bit is set to 1.
820 	 */
821 	ring->cycle_state = 1;
822 
823 	/*
824 	 * Reset the hardware dequeue pointer.
825 	 * Yes, this will need to be re-written after resume, but we're paranoid
826 	 * and want to make sure the hardware doesn't access bogus memory
827 	 * because, say, the BIOS or an SMI started the host without changing
828 	 * the command ring pointers.
829 	 */
830 	xhci_set_cmd_ring_deq(xhci);
831 }
832 
833 /*
834  * Stop HC (not bus-specific)
835  *
836  * This is called when the machine transition into S3/S4 mode.
837  *
838  */
839 int xhci_suspend(struct xhci_hcd *xhci)
840 {
841 	int			rc = 0;
842 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
843 	u32			command;
844 
845 	if (hcd->state != HC_STATE_SUSPENDED ||
846 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
847 		return -EINVAL;
848 
849 	/* Don't poll the roothubs on bus suspend. */
850 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
851 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
852 	del_timer_sync(&hcd->rh_timer);
853 
854 	spin_lock_irq(&xhci->lock);
855 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
856 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
857 	/* step 1: stop endpoint */
858 	/* skipped assuming that port suspend has done */
859 
860 	/* step 2: clear Run/Stop bit */
861 	command = xhci_readl(xhci, &xhci->op_regs->command);
862 	command &= ~CMD_RUN;
863 	xhci_writel(xhci, command, &xhci->op_regs->command);
864 	if (xhci_handshake(xhci, &xhci->op_regs->status,
865 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
866 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
867 		spin_unlock_irq(&xhci->lock);
868 		return -ETIMEDOUT;
869 	}
870 	xhci_clear_command_ring(xhci);
871 
872 	/* step 3: save registers */
873 	xhci_save_registers(xhci);
874 
875 	/* step 4: set CSS flag */
876 	command = xhci_readl(xhci, &xhci->op_regs->command);
877 	command |= CMD_CSS;
878 	xhci_writel(xhci, command, &xhci->op_regs->command);
879 	if (xhci_handshake(xhci, &xhci->op_regs->status,
880 				STS_SAVE, 0, 10 * 1000)) {
881 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
882 		spin_unlock_irq(&xhci->lock);
883 		return -ETIMEDOUT;
884 	}
885 	spin_unlock_irq(&xhci->lock);
886 
887 	/*
888 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
889 	 * is about to be suspended.
890 	 */
891 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
892 			(!(xhci_all_ports_seen_u0(xhci)))) {
893 		del_timer_sync(&xhci->comp_mode_recovery_timer);
894 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
895 				"%s: compliance mode recovery timer deleted",
896 				__func__);
897 	}
898 
899 	/* step 5: remove core well power */
900 	/* synchronize irq when using MSI-X */
901 	xhci_msix_sync_irqs(xhci);
902 
903 	return rc;
904 }
905 
906 /*
907  * start xHC (not bus-specific)
908  *
909  * This is called when the machine transition from S3/S4 mode.
910  *
911  */
912 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
913 {
914 	u32			command, temp = 0;
915 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
916 	struct usb_hcd		*secondary_hcd;
917 	int			retval = 0;
918 	bool			comp_timer_running = false;
919 
920 	/* Wait a bit if either of the roothubs need to settle from the
921 	 * transition into bus suspend.
922 	 */
923 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
924 			time_before(jiffies,
925 				xhci->bus_state[1].next_statechange))
926 		msleep(100);
927 
928 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 
931 	spin_lock_irq(&xhci->lock);
932 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
933 		hibernated = true;
934 
935 	if (!hibernated) {
936 		/* step 1: restore register */
937 		xhci_restore_registers(xhci);
938 		/* step 2: initialize command ring buffer */
939 		xhci_set_cmd_ring_deq(xhci);
940 		/* step 3: restore state and start state*/
941 		/* step 3: set CRS flag */
942 		command = xhci_readl(xhci, &xhci->op_regs->command);
943 		command |= CMD_CRS;
944 		xhci_writel(xhci, command, &xhci->op_regs->command);
945 		if (xhci_handshake(xhci, &xhci->op_regs->status,
946 			      STS_RESTORE, 0, 10 * 1000)) {
947 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
948 			spin_unlock_irq(&xhci->lock);
949 			return -ETIMEDOUT;
950 		}
951 		temp = xhci_readl(xhci, &xhci->op_regs->status);
952 	}
953 
954 	/* If restore operation fails, re-initialize the HC during resume */
955 	if ((temp & STS_SRE) || hibernated) {
956 
957 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
958 				!(xhci_all_ports_seen_u0(xhci))) {
959 			del_timer_sync(&xhci->comp_mode_recovery_timer);
960 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
961 				"Compliance Mode Recovery Timer deleted!");
962 		}
963 
964 		/* Let the USB core know _both_ roothubs lost power. */
965 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
966 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
967 
968 		xhci_dbg(xhci, "Stop HCD\n");
969 		xhci_halt(xhci);
970 		xhci_reset(xhci);
971 		spin_unlock_irq(&xhci->lock);
972 		xhci_cleanup_msix(xhci);
973 
974 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
975 		temp = xhci_readl(xhci, &xhci->op_regs->status);
976 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
977 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
978 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
979 				&xhci->ir_set->irq_pending);
980 		xhci_print_ir_set(xhci, 0);
981 
982 		xhci_dbg(xhci, "cleaning up memory\n");
983 		xhci_mem_cleanup(xhci);
984 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
985 			    xhci_readl(xhci, &xhci->op_regs->status));
986 
987 		/* USB core calls the PCI reinit and start functions twice:
988 		 * first with the primary HCD, and then with the secondary HCD.
989 		 * If we don't do the same, the host will never be started.
990 		 */
991 		if (!usb_hcd_is_primary_hcd(hcd))
992 			secondary_hcd = hcd;
993 		else
994 			secondary_hcd = xhci->shared_hcd;
995 
996 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
997 		retval = xhci_init(hcd->primary_hcd);
998 		if (retval)
999 			return retval;
1000 		comp_timer_running = true;
1001 
1002 		xhci_dbg(xhci, "Start the primary HCD\n");
1003 		retval = xhci_run(hcd->primary_hcd);
1004 		if (!retval) {
1005 			xhci_dbg(xhci, "Start the secondary HCD\n");
1006 			retval = xhci_run(secondary_hcd);
1007 		}
1008 		hcd->state = HC_STATE_SUSPENDED;
1009 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1010 		goto done;
1011 	}
1012 
1013 	/* step 4: set Run/Stop bit */
1014 	command = xhci_readl(xhci, &xhci->op_regs->command);
1015 	command |= CMD_RUN;
1016 	xhci_writel(xhci, command, &xhci->op_regs->command);
1017 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1018 		  0, 250 * 1000);
1019 
1020 	/* step 5: walk topology and initialize portsc,
1021 	 * portpmsc and portli
1022 	 */
1023 	/* this is done in bus_resume */
1024 
1025 	/* step 6: restart each of the previously
1026 	 * Running endpoints by ringing their doorbells
1027 	 */
1028 
1029 	spin_unlock_irq(&xhci->lock);
1030 
1031  done:
1032 	if (retval == 0) {
1033 		usb_hcd_resume_root_hub(hcd);
1034 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1035 	}
1036 
1037 	/*
1038 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1039 	 * be re-initialized Always after a system resume. Ports are subject
1040 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1041 	 * ports have entered previously to U0 before system's suspension.
1042 	 */
1043 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1044 		compliance_mode_recovery_timer_init(xhci);
1045 
1046 	/* Re-enable port polling. */
1047 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1048 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1049 	usb_hcd_poll_rh_status(hcd);
1050 
1051 	return retval;
1052 }
1053 #endif	/* CONFIG_PM */
1054 
1055 /*-------------------------------------------------------------------------*/
1056 
1057 /**
1058  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1059  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1060  * value to right shift 1 for the bitmask.
1061  *
1062  * Index  = (epnum * 2) + direction - 1,
1063  * where direction = 0 for OUT, 1 for IN.
1064  * For control endpoints, the IN index is used (OUT index is unused), so
1065  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1066  */
1067 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1068 {
1069 	unsigned int index;
1070 	if (usb_endpoint_xfer_control(desc))
1071 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1072 	else
1073 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1074 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1075 	return index;
1076 }
1077 
1078 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1079  * address from the XHCI endpoint index.
1080  */
1081 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1082 {
1083 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1084 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1085 	return direction | number;
1086 }
1087 
1088 /* Find the flag for this endpoint (for use in the control context).  Use the
1089  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1090  * bit 1, etc.
1091  */
1092 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1093 {
1094 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1095 }
1096 
1097 /* Find the flag for this endpoint (for use in the control context).  Use the
1098  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1099  * bit 1, etc.
1100  */
1101 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1102 {
1103 	return 1 << (ep_index + 1);
1104 }
1105 
1106 /* Compute the last valid endpoint context index.  Basically, this is the
1107  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1108  * we find the most significant bit set in the added contexts flags.
1109  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1110  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1111  */
1112 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1113 {
1114 	return fls(added_ctxs) - 1;
1115 }
1116 
1117 /* Returns 1 if the arguments are OK;
1118  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1119  */
1120 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1121 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1122 		const char *func) {
1123 	struct xhci_hcd	*xhci;
1124 	struct xhci_virt_device	*virt_dev;
1125 
1126 	if (!hcd || (check_ep && !ep) || !udev) {
1127 		pr_debug("xHCI %s called with invalid args\n", func);
1128 		return -EINVAL;
1129 	}
1130 	if (!udev->parent) {
1131 		pr_debug("xHCI %s called for root hub\n", func);
1132 		return 0;
1133 	}
1134 
1135 	xhci = hcd_to_xhci(hcd);
1136 	if (check_virt_dev) {
1137 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1138 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1139 					func);
1140 			return -EINVAL;
1141 		}
1142 
1143 		virt_dev = xhci->devs[udev->slot_id];
1144 		if (virt_dev->udev != udev) {
1145 			xhci_dbg(xhci, "xHCI %s called with udev and "
1146 					  "virt_dev does not match\n", func);
1147 			return -EINVAL;
1148 		}
1149 	}
1150 
1151 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1152 		return -ENODEV;
1153 
1154 	return 1;
1155 }
1156 
1157 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1158 		struct usb_device *udev, struct xhci_command *command,
1159 		bool ctx_change, bool must_succeed);
1160 
1161 /*
1162  * Full speed devices may have a max packet size greater than 8 bytes, but the
1163  * USB core doesn't know that until it reads the first 8 bytes of the
1164  * descriptor.  If the usb_device's max packet size changes after that point,
1165  * we need to issue an evaluate context command and wait on it.
1166  */
1167 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1168 		unsigned int ep_index, struct urb *urb)
1169 {
1170 	struct xhci_container_ctx *in_ctx;
1171 	struct xhci_container_ctx *out_ctx;
1172 	struct xhci_input_control_ctx *ctrl_ctx;
1173 	struct xhci_ep_ctx *ep_ctx;
1174 	int max_packet_size;
1175 	int hw_max_packet_size;
1176 	int ret = 0;
1177 
1178 	out_ctx = xhci->devs[slot_id]->out_ctx;
1179 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1180 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1181 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1182 	if (hw_max_packet_size != max_packet_size) {
1183 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1184 				"Max Packet Size for ep 0 changed.");
1185 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1186 				"Max packet size in usb_device = %d",
1187 				max_packet_size);
1188 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1189 				"Max packet size in xHCI HW = %d",
1190 				hw_max_packet_size);
1191 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1192 				"Issuing evaluate context command.");
1193 
1194 		/* Set up the input context flags for the command */
1195 		/* FIXME: This won't work if a non-default control endpoint
1196 		 * changes max packet sizes.
1197 		 */
1198 		in_ctx = xhci->devs[slot_id]->in_ctx;
1199 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1200 		if (!ctrl_ctx) {
1201 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1202 					__func__);
1203 			return -ENOMEM;
1204 		}
1205 		/* Set up the modified control endpoint 0 */
1206 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1207 				xhci->devs[slot_id]->out_ctx, ep_index);
1208 
1209 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1210 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1211 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1212 
1213 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1214 		ctrl_ctx->drop_flags = 0;
1215 
1216 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1217 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1218 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1219 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1220 
1221 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1222 				true, false);
1223 
1224 		/* Clean up the input context for later use by bandwidth
1225 		 * functions.
1226 		 */
1227 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1228 	}
1229 	return ret;
1230 }
1231 
1232 /*
1233  * non-error returns are a promise to giveback() the urb later
1234  * we drop ownership so next owner (or urb unlink) can get it
1235  */
1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1237 {
1238 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1239 	struct xhci_td *buffer;
1240 	unsigned long flags;
1241 	int ret = 0;
1242 	unsigned int slot_id, ep_index;
1243 	struct urb_priv	*urb_priv;
1244 	int size, i;
1245 
1246 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1247 					true, true, __func__) <= 0)
1248 		return -EINVAL;
1249 
1250 	slot_id = urb->dev->slot_id;
1251 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252 
1253 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1254 		if (!in_interrupt())
1255 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1256 		ret = -ESHUTDOWN;
1257 		goto exit;
1258 	}
1259 
1260 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1261 		size = urb->number_of_packets;
1262 	else
1263 		size = 1;
1264 
1265 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1266 				  size * sizeof(struct xhci_td *), mem_flags);
1267 	if (!urb_priv)
1268 		return -ENOMEM;
1269 
1270 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1271 	if (!buffer) {
1272 		kfree(urb_priv);
1273 		return -ENOMEM;
1274 	}
1275 
1276 	for (i = 0; i < size; i++) {
1277 		urb_priv->td[i] = buffer;
1278 		buffer++;
1279 	}
1280 
1281 	urb_priv->length = size;
1282 	urb_priv->td_cnt = 0;
1283 	urb->hcpriv = urb_priv;
1284 
1285 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1286 		/* Check to see if the max packet size for the default control
1287 		 * endpoint changed during FS device enumeration
1288 		 */
1289 		if (urb->dev->speed == USB_SPEED_FULL) {
1290 			ret = xhci_check_maxpacket(xhci, slot_id,
1291 					ep_index, urb);
1292 			if (ret < 0) {
1293 				xhci_urb_free_priv(xhci, urb_priv);
1294 				urb->hcpriv = NULL;
1295 				return ret;
1296 			}
1297 		}
1298 
1299 		/* We have a spinlock and interrupts disabled, so we must pass
1300 		 * atomic context to this function, which may allocate memory.
1301 		 */
1302 		spin_lock_irqsave(&xhci->lock, flags);
1303 		if (xhci->xhc_state & XHCI_STATE_DYING)
1304 			goto dying;
1305 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1306 				slot_id, ep_index);
1307 		if (ret)
1308 			goto free_priv;
1309 		spin_unlock_irqrestore(&xhci->lock, flags);
1310 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1311 		spin_lock_irqsave(&xhci->lock, flags);
1312 		if (xhci->xhc_state & XHCI_STATE_DYING)
1313 			goto dying;
1314 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1315 				EP_GETTING_STREAMS) {
1316 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1317 					"is transitioning to using streams.\n");
1318 			ret = -EINVAL;
1319 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1320 				EP_GETTING_NO_STREAMS) {
1321 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1322 					"is transitioning to "
1323 					"not having streams.\n");
1324 			ret = -EINVAL;
1325 		} else {
1326 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1327 					slot_id, ep_index);
1328 		}
1329 		if (ret)
1330 			goto free_priv;
1331 		spin_unlock_irqrestore(&xhci->lock, flags);
1332 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1333 		spin_lock_irqsave(&xhci->lock, flags);
1334 		if (xhci->xhc_state & XHCI_STATE_DYING)
1335 			goto dying;
1336 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1337 				slot_id, ep_index);
1338 		if (ret)
1339 			goto free_priv;
1340 		spin_unlock_irqrestore(&xhci->lock, flags);
1341 	} else {
1342 		spin_lock_irqsave(&xhci->lock, flags);
1343 		if (xhci->xhc_state & XHCI_STATE_DYING)
1344 			goto dying;
1345 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1346 				slot_id, ep_index);
1347 		if (ret)
1348 			goto free_priv;
1349 		spin_unlock_irqrestore(&xhci->lock, flags);
1350 	}
1351 exit:
1352 	return ret;
1353 dying:
1354 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1355 			"non-responsive xHCI host.\n",
1356 			urb->ep->desc.bEndpointAddress, urb);
1357 	ret = -ESHUTDOWN;
1358 free_priv:
1359 	xhci_urb_free_priv(xhci, urb_priv);
1360 	urb->hcpriv = NULL;
1361 	spin_unlock_irqrestore(&xhci->lock, flags);
1362 	return ret;
1363 }
1364 
1365 /* Get the right ring for the given URB.
1366  * If the endpoint supports streams, boundary check the URB's stream ID.
1367  * If the endpoint doesn't support streams, return the singular endpoint ring.
1368  */
1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1370 		struct urb *urb)
1371 {
1372 	unsigned int slot_id;
1373 	unsigned int ep_index;
1374 	unsigned int stream_id;
1375 	struct xhci_virt_ep *ep;
1376 
1377 	slot_id = urb->dev->slot_id;
1378 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1379 	stream_id = urb->stream_id;
1380 	ep = &xhci->devs[slot_id]->eps[ep_index];
1381 	/* Common case: no streams */
1382 	if (!(ep->ep_state & EP_HAS_STREAMS))
1383 		return ep->ring;
1384 
1385 	if (stream_id == 0) {
1386 		xhci_warn(xhci,
1387 				"WARN: Slot ID %u, ep index %u has streams, "
1388 				"but URB has no stream ID.\n",
1389 				slot_id, ep_index);
1390 		return NULL;
1391 	}
1392 
1393 	if (stream_id < ep->stream_info->num_streams)
1394 		return ep->stream_info->stream_rings[stream_id];
1395 
1396 	xhci_warn(xhci,
1397 			"WARN: Slot ID %u, ep index %u has "
1398 			"stream IDs 1 to %u allocated, "
1399 			"but stream ID %u is requested.\n",
1400 			slot_id, ep_index,
1401 			ep->stream_info->num_streams - 1,
1402 			stream_id);
1403 	return NULL;
1404 }
1405 
1406 /*
1407  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1408  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1409  * should pick up where it left off in the TD, unless a Set Transfer Ring
1410  * Dequeue Pointer is issued.
1411  *
1412  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1413  * the ring.  Since the ring is a contiguous structure, they can't be physically
1414  * removed.  Instead, there are two options:
1415  *
1416  *  1) If the HC is in the middle of processing the URB to be canceled, we
1417  *     simply move the ring's dequeue pointer past those TRBs using the Set
1418  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1419  *     when drivers timeout on the last submitted URB and attempt to cancel.
1420  *
1421  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1422  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1423  *     HC will need to invalidate the any TRBs it has cached after the stop
1424  *     endpoint command, as noted in the xHCI 0.95 errata.
1425  *
1426  *  3) The TD may have completed by the time the Stop Endpoint Command
1427  *     completes, so software needs to handle that case too.
1428  *
1429  * This function should protect against the TD enqueueing code ringing the
1430  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1431  * It also needs to account for multiple cancellations on happening at the same
1432  * time for the same endpoint.
1433  *
1434  * Note that this function can be called in any context, or so says
1435  * usb_hcd_unlink_urb()
1436  */
1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1438 {
1439 	unsigned long flags;
1440 	int ret, i;
1441 	u32 temp;
1442 	struct xhci_hcd *xhci;
1443 	struct urb_priv	*urb_priv;
1444 	struct xhci_td *td;
1445 	unsigned int ep_index;
1446 	struct xhci_ring *ep_ring;
1447 	struct xhci_virt_ep *ep;
1448 
1449 	xhci = hcd_to_xhci(hcd);
1450 	spin_lock_irqsave(&xhci->lock, flags);
1451 	/* Make sure the URB hasn't completed or been unlinked already */
1452 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1453 	if (ret || !urb->hcpriv)
1454 		goto done;
1455 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1456 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1457 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1458 				"HW died, freeing TD.");
1459 		urb_priv = urb->hcpriv;
1460 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1461 			td = urb_priv->td[i];
1462 			if (!list_empty(&td->td_list))
1463 				list_del_init(&td->td_list);
1464 			if (!list_empty(&td->cancelled_td_list))
1465 				list_del_init(&td->cancelled_td_list);
1466 		}
1467 
1468 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1469 		spin_unlock_irqrestore(&xhci->lock, flags);
1470 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1471 		xhci_urb_free_priv(xhci, urb_priv);
1472 		return ret;
1473 	}
1474 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1475 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1476 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1477 				"Ep 0x%x: URB %p to be canceled on "
1478 				"non-responsive xHCI host.",
1479 				urb->ep->desc.bEndpointAddress, urb);
1480 		/* Let the stop endpoint command watchdog timer (which set this
1481 		 * state) finish cleaning up the endpoint TD lists.  We must
1482 		 * have caught it in the middle of dropping a lock and giving
1483 		 * back an URB.
1484 		 */
1485 		goto done;
1486 	}
1487 
1488 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1489 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1490 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1491 	if (!ep_ring) {
1492 		ret = -EINVAL;
1493 		goto done;
1494 	}
1495 
1496 	urb_priv = urb->hcpriv;
1497 	i = urb_priv->td_cnt;
1498 	if (i < urb_priv->length)
1499 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1500 				"Cancel URB %p, dev %s, ep 0x%x, "
1501 				"starting at offset 0x%llx",
1502 				urb, urb->dev->devpath,
1503 				urb->ep->desc.bEndpointAddress,
1504 				(unsigned long long) xhci_trb_virt_to_dma(
1505 					urb_priv->td[i]->start_seg,
1506 					urb_priv->td[i]->first_trb));
1507 
1508 	for (; i < urb_priv->length; i++) {
1509 		td = urb_priv->td[i];
1510 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1511 	}
1512 
1513 	/* Queue a stop endpoint command, but only if this is
1514 	 * the first cancellation to be handled.
1515 	 */
1516 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1517 		ep->ep_state |= EP_HALT_PENDING;
1518 		ep->stop_cmds_pending++;
1519 		ep->stop_cmd_timer.expires = jiffies +
1520 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521 		add_timer(&ep->stop_cmd_timer);
1522 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1523 		xhci_ring_cmd_db(xhci);
1524 	}
1525 done:
1526 	spin_unlock_irqrestore(&xhci->lock, flags);
1527 	return ret;
1528 }
1529 
1530 /* Drop an endpoint from a new bandwidth configuration for this device.
1531  * Only one call to this function is allowed per endpoint before
1532  * check_bandwidth() or reset_bandwidth() must be called.
1533  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1534  * add the endpoint to the schedule with possibly new parameters denoted by a
1535  * different endpoint descriptor in usb_host_endpoint.
1536  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1537  * not allowed.
1538  *
1539  * The USB core will not allow URBs to be queued to an endpoint that is being
1540  * disabled, so there's no need for mutual exclusion to protect
1541  * the xhci->devs[slot_id] structure.
1542  */
1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1544 		struct usb_host_endpoint *ep)
1545 {
1546 	struct xhci_hcd *xhci;
1547 	struct xhci_container_ctx *in_ctx, *out_ctx;
1548 	struct xhci_input_control_ctx *ctrl_ctx;
1549 	struct xhci_slot_ctx *slot_ctx;
1550 	unsigned int last_ctx;
1551 	unsigned int ep_index;
1552 	struct xhci_ep_ctx *ep_ctx;
1553 	u32 drop_flag;
1554 	u32 new_add_flags, new_drop_flags, new_slot_info;
1555 	int ret;
1556 
1557 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1558 	if (ret <= 0)
1559 		return ret;
1560 	xhci = hcd_to_xhci(hcd);
1561 	if (xhci->xhc_state & XHCI_STATE_DYING)
1562 		return -ENODEV;
1563 
1564 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1565 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1566 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1567 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1568 				__func__, drop_flag);
1569 		return 0;
1570 	}
1571 
1572 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1573 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1574 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1575 	if (!ctrl_ctx) {
1576 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1577 				__func__);
1578 		return 0;
1579 	}
1580 
1581 	ep_index = xhci_get_endpoint_index(&ep->desc);
1582 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1583 	/* If the HC already knows the endpoint is disabled,
1584 	 * or the HCD has noted it is disabled, ignore this request
1585 	 */
1586 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1587 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1588 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1589 	    xhci_get_endpoint_flag(&ep->desc)) {
1590 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591 				__func__, ep);
1592 		return 0;
1593 	}
1594 
1595 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597 
1598 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600 
1601 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1602 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603 	/* Update the last valid endpoint context, if we deleted the last one */
1604 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1605 	    LAST_CTX(last_ctx)) {
1606 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1608 	}
1609 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1610 
1611 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1612 
1613 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1614 			(unsigned int) ep->desc.bEndpointAddress,
1615 			udev->slot_id,
1616 			(unsigned int) new_drop_flags,
1617 			(unsigned int) new_add_flags,
1618 			(unsigned int) new_slot_info);
1619 	return 0;
1620 }
1621 
1622 /* Add an endpoint to a new possible bandwidth configuration for this device.
1623  * Only one call to this function is allowed per endpoint before
1624  * check_bandwidth() or reset_bandwidth() must be called.
1625  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1626  * add the endpoint to the schedule with possibly new parameters denoted by a
1627  * different endpoint descriptor in usb_host_endpoint.
1628  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1629  * not allowed.
1630  *
1631  * The USB core will not allow URBs to be queued to an endpoint until the
1632  * configuration or alt setting is installed in the device, so there's no need
1633  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1634  */
1635 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1636 		struct usb_host_endpoint *ep)
1637 {
1638 	struct xhci_hcd *xhci;
1639 	struct xhci_container_ctx *in_ctx, *out_ctx;
1640 	unsigned int ep_index;
1641 	struct xhci_slot_ctx *slot_ctx;
1642 	struct xhci_input_control_ctx *ctrl_ctx;
1643 	u32 added_ctxs;
1644 	unsigned int last_ctx;
1645 	u32 new_add_flags, new_drop_flags, new_slot_info;
1646 	struct xhci_virt_device *virt_dev;
1647 	int ret = 0;
1648 
1649 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1650 	if (ret <= 0) {
1651 		/* So we won't queue a reset ep command for a root hub */
1652 		ep->hcpriv = NULL;
1653 		return ret;
1654 	}
1655 	xhci = hcd_to_xhci(hcd);
1656 	if (xhci->xhc_state & XHCI_STATE_DYING)
1657 		return -ENODEV;
1658 
1659 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1661 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1662 		/* FIXME when we have to issue an evaluate endpoint command to
1663 		 * deal with ep0 max packet size changing once we get the
1664 		 * descriptors
1665 		 */
1666 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1667 				__func__, added_ctxs);
1668 		return 0;
1669 	}
1670 
1671 	virt_dev = xhci->devs[udev->slot_id];
1672 	in_ctx = virt_dev->in_ctx;
1673 	out_ctx = virt_dev->out_ctx;
1674 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1675 	if (!ctrl_ctx) {
1676 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1677 				__func__);
1678 		return 0;
1679 	}
1680 
1681 	ep_index = xhci_get_endpoint_index(&ep->desc);
1682 	/* If this endpoint is already in use, and the upper layers are trying
1683 	 * to add it again without dropping it, reject the addition.
1684 	 */
1685 	if (virt_dev->eps[ep_index].ring &&
1686 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1687 				xhci_get_endpoint_flag(&ep->desc))) {
1688 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1689 				"without dropping it.\n",
1690 				(unsigned int) ep->desc.bEndpointAddress);
1691 		return -EINVAL;
1692 	}
1693 
1694 	/* If the HCD has already noted the endpoint is enabled,
1695 	 * ignore this request.
1696 	 */
1697 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1698 	    xhci_get_endpoint_flag(&ep->desc)) {
1699 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1700 				__func__, ep);
1701 		return 0;
1702 	}
1703 
1704 	/*
1705 	 * Configuration and alternate setting changes must be done in
1706 	 * process context, not interrupt context (or so documenation
1707 	 * for usb_set_interface() and usb_set_configuration() claim).
1708 	 */
1709 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1710 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1711 				__func__, ep->desc.bEndpointAddress);
1712 		return -ENOMEM;
1713 	}
1714 
1715 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1716 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1717 
1718 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1719 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1720 	 * this re-adds a new state for the endpoint from the new endpoint
1721 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1722 	 * drop flags alone.
1723 	 */
1724 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1725 
1726 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1727 	/* Update the last valid endpoint context, if we just added one past */
1728 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1729 	    LAST_CTX(last_ctx)) {
1730 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1731 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1732 	}
1733 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1734 
1735 	/* Store the usb_device pointer for later use */
1736 	ep->hcpriv = udev;
1737 
1738 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1739 			(unsigned int) ep->desc.bEndpointAddress,
1740 			udev->slot_id,
1741 			(unsigned int) new_drop_flags,
1742 			(unsigned int) new_add_flags,
1743 			(unsigned int) new_slot_info);
1744 	return 0;
1745 }
1746 
1747 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1748 {
1749 	struct xhci_input_control_ctx *ctrl_ctx;
1750 	struct xhci_ep_ctx *ep_ctx;
1751 	struct xhci_slot_ctx *slot_ctx;
1752 	int i;
1753 
1754 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1755 	if (!ctrl_ctx) {
1756 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1757 				__func__);
1758 		return;
1759 	}
1760 
1761 	/* When a device's add flag and drop flag are zero, any subsequent
1762 	 * configure endpoint command will leave that endpoint's state
1763 	 * untouched.  Make sure we don't leave any old state in the input
1764 	 * endpoint contexts.
1765 	 */
1766 	ctrl_ctx->drop_flags = 0;
1767 	ctrl_ctx->add_flags = 0;
1768 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1769 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1770 	/* Endpoint 0 is always valid */
1771 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1772 	for (i = 1; i < 31; ++i) {
1773 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1774 		ep_ctx->ep_info = 0;
1775 		ep_ctx->ep_info2 = 0;
1776 		ep_ctx->deq = 0;
1777 		ep_ctx->tx_info = 0;
1778 	}
1779 }
1780 
1781 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1782 		struct usb_device *udev, u32 *cmd_status)
1783 {
1784 	int ret;
1785 
1786 	switch (*cmd_status) {
1787 	case COMP_ENOMEM:
1788 		dev_warn(&udev->dev, "Not enough host controller resources "
1789 				"for new device state.\n");
1790 		ret = -ENOMEM;
1791 		/* FIXME: can we allocate more resources for the HC? */
1792 		break;
1793 	case COMP_BW_ERR:
1794 	case COMP_2ND_BW_ERR:
1795 		dev_warn(&udev->dev, "Not enough bandwidth "
1796 				"for new device state.\n");
1797 		ret = -ENOSPC;
1798 		/* FIXME: can we go back to the old state? */
1799 		break;
1800 	case COMP_TRB_ERR:
1801 		/* the HCD set up something wrong */
1802 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1803 				"add flag = 1, "
1804 				"and endpoint is not disabled.\n");
1805 		ret = -EINVAL;
1806 		break;
1807 	case COMP_DEV_ERR:
1808 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1809 				"configure command.\n");
1810 		ret = -ENODEV;
1811 		break;
1812 	case COMP_SUCCESS:
1813 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1814 				"Successful Endpoint Configure command");
1815 		ret = 0;
1816 		break;
1817 	default:
1818 		xhci_err(xhci, "ERROR: unexpected command completion "
1819 				"code 0x%x.\n", *cmd_status);
1820 		ret = -EINVAL;
1821 		break;
1822 	}
1823 	return ret;
1824 }
1825 
1826 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1827 		struct usb_device *udev, u32 *cmd_status)
1828 {
1829 	int ret;
1830 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1831 
1832 	switch (*cmd_status) {
1833 	case COMP_EINVAL:
1834 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1835 				"context command.\n");
1836 		ret = -EINVAL;
1837 		break;
1838 	case COMP_EBADSLT:
1839 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1840 				"evaluate context command.\n");
1841 		ret = -EINVAL;
1842 		break;
1843 	case COMP_CTX_STATE:
1844 		dev_warn(&udev->dev, "WARN: invalid context state for "
1845 				"evaluate context command.\n");
1846 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1847 		ret = -EINVAL;
1848 		break;
1849 	case COMP_DEV_ERR:
1850 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1851 				"context command.\n");
1852 		ret = -ENODEV;
1853 		break;
1854 	case COMP_MEL_ERR:
1855 		/* Max Exit Latency too large error */
1856 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1857 		ret = -EINVAL;
1858 		break;
1859 	case COMP_SUCCESS:
1860 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1861 				"Successful evaluate context command");
1862 		ret = 0;
1863 		break;
1864 	default:
1865 		xhci_err(xhci, "ERROR: unexpected command completion "
1866 				"code 0x%x.\n", *cmd_status);
1867 		ret = -EINVAL;
1868 		break;
1869 	}
1870 	return ret;
1871 }
1872 
1873 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1874 		struct xhci_input_control_ctx *ctrl_ctx)
1875 {
1876 	u32 valid_add_flags;
1877 	u32 valid_drop_flags;
1878 
1879 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1880 	 * (bit 1).  The default control endpoint is added during the Address
1881 	 * Device command and is never removed until the slot is disabled.
1882 	 */
1883 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1884 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1885 
1886 	/* Use hweight32 to count the number of ones in the add flags, or
1887 	 * number of endpoints added.  Don't count endpoints that are changed
1888 	 * (both added and dropped).
1889 	 */
1890 	return hweight32(valid_add_flags) -
1891 		hweight32(valid_add_flags & valid_drop_flags);
1892 }
1893 
1894 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1895 		struct xhci_input_control_ctx *ctrl_ctx)
1896 {
1897 	u32 valid_add_flags;
1898 	u32 valid_drop_flags;
1899 
1900 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1901 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1902 
1903 	return hweight32(valid_drop_flags) -
1904 		hweight32(valid_add_flags & valid_drop_flags);
1905 }
1906 
1907 /*
1908  * We need to reserve the new number of endpoints before the configure endpoint
1909  * command completes.  We can't subtract the dropped endpoints from the number
1910  * of active endpoints until the command completes because we can oversubscribe
1911  * the host in this case:
1912  *
1913  *  - the first configure endpoint command drops more endpoints than it adds
1914  *  - a second configure endpoint command that adds more endpoints is queued
1915  *  - the first configure endpoint command fails, so the config is unchanged
1916  *  - the second command may succeed, even though there isn't enough resources
1917  *
1918  * Must be called with xhci->lock held.
1919  */
1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1921 		struct xhci_input_control_ctx *ctrl_ctx)
1922 {
1923 	u32 added_eps;
1924 
1925 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1926 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1927 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1928 				"Not enough ep ctxs: "
1929 				"%u active, need to add %u, limit is %u.",
1930 				xhci->num_active_eps, added_eps,
1931 				xhci->limit_active_eps);
1932 		return -ENOMEM;
1933 	}
1934 	xhci->num_active_eps += added_eps;
1935 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1936 			"Adding %u ep ctxs, %u now active.", added_eps,
1937 			xhci->num_active_eps);
1938 	return 0;
1939 }
1940 
1941 /*
1942  * The configure endpoint was failed by the xHC for some other reason, so we
1943  * need to revert the resources that failed configuration would have used.
1944  *
1945  * Must be called with xhci->lock held.
1946  */
1947 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1948 		struct xhci_input_control_ctx *ctrl_ctx)
1949 {
1950 	u32 num_failed_eps;
1951 
1952 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1953 	xhci->num_active_eps -= num_failed_eps;
1954 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1955 			"Removing %u failed ep ctxs, %u now active.",
1956 			num_failed_eps,
1957 			xhci->num_active_eps);
1958 }
1959 
1960 /*
1961  * Now that the command has completed, clean up the active endpoint count by
1962  * subtracting out the endpoints that were dropped (but not changed).
1963  *
1964  * Must be called with xhci->lock held.
1965  */
1966 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1967 		struct xhci_input_control_ctx *ctrl_ctx)
1968 {
1969 	u32 num_dropped_eps;
1970 
1971 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1972 	xhci->num_active_eps -= num_dropped_eps;
1973 	if (num_dropped_eps)
1974 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 				"Removing %u dropped ep ctxs, %u now active.",
1976 				num_dropped_eps,
1977 				xhci->num_active_eps);
1978 }
1979 
1980 static unsigned int xhci_get_block_size(struct usb_device *udev)
1981 {
1982 	switch (udev->speed) {
1983 	case USB_SPEED_LOW:
1984 	case USB_SPEED_FULL:
1985 		return FS_BLOCK;
1986 	case USB_SPEED_HIGH:
1987 		return HS_BLOCK;
1988 	case USB_SPEED_SUPER:
1989 		return SS_BLOCK;
1990 	case USB_SPEED_UNKNOWN:
1991 	case USB_SPEED_WIRELESS:
1992 	default:
1993 		/* Should never happen */
1994 		return 1;
1995 	}
1996 }
1997 
1998 static unsigned int
1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2000 {
2001 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2002 		return LS_OVERHEAD;
2003 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2004 		return FS_OVERHEAD;
2005 	return HS_OVERHEAD;
2006 }
2007 
2008 /* If we are changing a LS/FS device under a HS hub,
2009  * make sure (if we are activating a new TT) that the HS bus has enough
2010  * bandwidth for this new TT.
2011  */
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013 		struct xhci_virt_device *virt_dev,
2014 		int old_active_eps)
2015 {
2016 	struct xhci_interval_bw_table *bw_table;
2017 	struct xhci_tt_bw_info *tt_info;
2018 
2019 	/* Find the bandwidth table for the root port this TT is attached to. */
2020 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021 	tt_info = virt_dev->tt_info;
2022 	/* If this TT already had active endpoints, the bandwidth for this TT
2023 	 * has already been added.  Removing all periodic endpoints (and thus
2024 	 * making the TT enactive) will only decrease the bandwidth used.
2025 	 */
2026 	if (old_active_eps)
2027 		return 0;
2028 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2030 			return -ENOMEM;
2031 		return 0;
2032 	}
2033 	/* Not sure why we would have no new active endpoints...
2034 	 *
2035 	 * Maybe because of an Evaluate Context change for a hub update or a
2036 	 * control endpoint 0 max packet size change?
2037 	 * FIXME: skip the bandwidth calculation in that case.
2038 	 */
2039 	return 0;
2040 }
2041 
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043 		struct xhci_virt_device *virt_dev)
2044 {
2045 	unsigned int bw_reserved;
2046 
2047 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049 		return -ENOMEM;
2050 
2051 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2053 		return -ENOMEM;
2054 
2055 	return 0;
2056 }
2057 
2058 /*
2059  * This algorithm is a very conservative estimate of the worst-case scheduling
2060  * scenario for any one interval.  The hardware dynamically schedules the
2061  * packets, so we can't tell which microframe could be the limiting factor in
2062  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2063  *
2064  * Obviously, we can't solve an NP complete problem to find the minimum worst
2065  * case scenario.  Instead, we come up with an estimate that is no less than
2066  * the worst case bandwidth used for any one microframe, but may be an
2067  * over-estimate.
2068  *
2069  * We walk the requirements for each endpoint by interval, starting with the
2070  * smallest interval, and place packets in the schedule where there is only one
2071  * possible way to schedule packets for that interval.  In order to simplify
2072  * this algorithm, we record the largest max packet size for each interval, and
2073  * assume all packets will be that size.
2074  *
2075  * For interval 0, we obviously must schedule all packets for each interval.
2076  * The bandwidth for interval 0 is just the amount of data to be transmitted
2077  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078  * the number of packets).
2079  *
2080  * For interval 1, we have two possible microframes to schedule those packets
2081  * in.  For this algorithm, if we can schedule the same number of packets for
2082  * each possible scheduling opportunity (each microframe), we will do so.  The
2083  * remaining number of packets will be saved to be transmitted in the gaps in
2084  * the next interval's scheduling sequence.
2085  *
2086  * As we move those remaining packets to be scheduled with interval 2 packets,
2087  * we have to double the number of remaining packets to transmit.  This is
2088  * because the intervals are actually powers of 2, and we would be transmitting
2089  * the previous interval's packets twice in this interval.  We also have to be
2090  * sure that when we look at the largest max packet size for this interval, we
2091  * also look at the largest max packet size for the remaining packets and take
2092  * the greater of the two.
2093  *
2094  * The algorithm continues to evenly distribute packets in each scheduling
2095  * opportunity, and push the remaining packets out, until we get to the last
2096  * interval.  Then those packets and their associated overhead are just added
2097  * to the bandwidth used.
2098  */
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100 		struct xhci_virt_device *virt_dev,
2101 		int old_active_eps)
2102 {
2103 	unsigned int bw_reserved;
2104 	unsigned int max_bandwidth;
2105 	unsigned int bw_used;
2106 	unsigned int block_size;
2107 	struct xhci_interval_bw_table *bw_table;
2108 	unsigned int packet_size = 0;
2109 	unsigned int overhead = 0;
2110 	unsigned int packets_transmitted = 0;
2111 	unsigned int packets_remaining = 0;
2112 	unsigned int i;
2113 
2114 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2115 		return xhci_check_ss_bw(xhci, virt_dev);
2116 
2117 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118 		max_bandwidth = HS_BW_LIMIT;
2119 		/* Convert percent of bus BW reserved to blocks reserved */
2120 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2121 	} else {
2122 		max_bandwidth = FS_BW_LIMIT;
2123 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2124 	}
2125 
2126 	bw_table = virt_dev->bw_table;
2127 	/* We need to translate the max packet size and max ESIT payloads into
2128 	 * the units the hardware uses.
2129 	 */
2130 	block_size = xhci_get_block_size(virt_dev->udev);
2131 
2132 	/* If we are manipulating a LS/FS device under a HS hub, double check
2133 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2134 	 */
2135 	if (virt_dev->tt_info) {
2136 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 				"Recalculating BW for rootport %u",
2138 				virt_dev->real_port);
2139 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2140 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2141 					"newly activated TT.\n");
2142 			return -ENOMEM;
2143 		}
2144 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 				"Recalculating BW for TT slot %u port %u",
2146 				virt_dev->tt_info->slot_id,
2147 				virt_dev->tt_info->ttport);
2148 	} else {
2149 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150 				"Recalculating BW for rootport %u",
2151 				virt_dev->real_port);
2152 	}
2153 
2154 	/* Add in how much bandwidth will be used for interval zero, or the
2155 	 * rounded max ESIT payload + number of packets * largest overhead.
2156 	 */
2157 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2158 		bw_table->interval_bw[0].num_packets *
2159 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2160 
2161 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2162 		unsigned int bw_added;
2163 		unsigned int largest_mps;
2164 		unsigned int interval_overhead;
2165 
2166 		/*
2167 		 * How many packets could we transmit in this interval?
2168 		 * If packets didn't fit in the previous interval, we will need
2169 		 * to transmit that many packets twice within this interval.
2170 		 */
2171 		packets_remaining = 2 * packets_remaining +
2172 			bw_table->interval_bw[i].num_packets;
2173 
2174 		/* Find the largest max packet size of this or the previous
2175 		 * interval.
2176 		 */
2177 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2178 			largest_mps = 0;
2179 		else {
2180 			struct xhci_virt_ep *virt_ep;
2181 			struct list_head *ep_entry;
2182 
2183 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2184 			virt_ep = list_entry(ep_entry,
2185 					struct xhci_virt_ep, bw_endpoint_list);
2186 			/* Convert to blocks, rounding up */
2187 			largest_mps = DIV_ROUND_UP(
2188 					virt_ep->bw_info.max_packet_size,
2189 					block_size);
2190 		}
2191 		if (largest_mps > packet_size)
2192 			packet_size = largest_mps;
2193 
2194 		/* Use the larger overhead of this or the previous interval. */
2195 		interval_overhead = xhci_get_largest_overhead(
2196 				&bw_table->interval_bw[i]);
2197 		if (interval_overhead > overhead)
2198 			overhead = interval_overhead;
2199 
2200 		/* How many packets can we evenly distribute across
2201 		 * (1 << (i + 1)) possible scheduling opportunities?
2202 		 */
2203 		packets_transmitted = packets_remaining >> (i + 1);
2204 
2205 		/* Add in the bandwidth used for those scheduled packets */
2206 		bw_added = packets_transmitted * (overhead + packet_size);
2207 
2208 		/* How many packets do we have remaining to transmit? */
2209 		packets_remaining = packets_remaining % (1 << (i + 1));
2210 
2211 		/* What largest max packet size should those packets have? */
2212 		/* If we've transmitted all packets, don't carry over the
2213 		 * largest packet size.
2214 		 */
2215 		if (packets_remaining == 0) {
2216 			packet_size = 0;
2217 			overhead = 0;
2218 		} else if (packets_transmitted > 0) {
2219 			/* Otherwise if we do have remaining packets, and we've
2220 			 * scheduled some packets in this interval, take the
2221 			 * largest max packet size from endpoints with this
2222 			 * interval.
2223 			 */
2224 			packet_size = largest_mps;
2225 			overhead = interval_overhead;
2226 		}
2227 		/* Otherwise carry over packet_size and overhead from the last
2228 		 * time we had a remainder.
2229 		 */
2230 		bw_used += bw_added;
2231 		if (bw_used > max_bandwidth) {
2232 			xhci_warn(xhci, "Not enough bandwidth. "
2233 					"Proposed: %u, Max: %u\n",
2234 				bw_used, max_bandwidth);
2235 			return -ENOMEM;
2236 		}
2237 	}
2238 	/*
2239 	 * Ok, we know we have some packets left over after even-handedly
2240 	 * scheduling interval 15.  We don't know which microframes they will
2241 	 * fit into, so we over-schedule and say they will be scheduled every
2242 	 * microframe.
2243 	 */
2244 	if (packets_remaining > 0)
2245 		bw_used += overhead + packet_size;
2246 
2247 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2248 		unsigned int port_index = virt_dev->real_port - 1;
2249 
2250 		/* OK, we're manipulating a HS device attached to a
2251 		 * root port bandwidth domain.  Include the number of active TTs
2252 		 * in the bandwidth used.
2253 		 */
2254 		bw_used += TT_HS_OVERHEAD *
2255 			xhci->rh_bw[port_index].num_active_tts;
2256 	}
2257 
2258 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2259 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2260 		"Available: %u " "percent",
2261 		bw_used, max_bandwidth, bw_reserved,
2262 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2263 		max_bandwidth);
2264 
2265 	bw_used += bw_reserved;
2266 	if (bw_used > max_bandwidth) {
2267 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2268 				bw_used, max_bandwidth);
2269 		return -ENOMEM;
2270 	}
2271 
2272 	bw_table->bw_used = bw_used;
2273 	return 0;
2274 }
2275 
2276 static bool xhci_is_async_ep(unsigned int ep_type)
2277 {
2278 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2279 					ep_type != ISOC_IN_EP &&
2280 					ep_type != INT_IN_EP);
2281 }
2282 
2283 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2284 {
2285 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2286 }
2287 
2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2289 {
2290 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2291 
2292 	if (ep_bw->ep_interval == 0)
2293 		return SS_OVERHEAD_BURST +
2294 			(ep_bw->mult * ep_bw->num_packets *
2295 					(SS_OVERHEAD + mps));
2296 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2297 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2298 				1 << ep_bw->ep_interval);
2299 
2300 }
2301 
2302 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2303 		struct xhci_bw_info *ep_bw,
2304 		struct xhci_interval_bw_table *bw_table,
2305 		struct usb_device *udev,
2306 		struct xhci_virt_ep *virt_ep,
2307 		struct xhci_tt_bw_info *tt_info)
2308 {
2309 	struct xhci_interval_bw	*interval_bw;
2310 	int normalized_interval;
2311 
2312 	if (xhci_is_async_ep(ep_bw->type))
2313 		return;
2314 
2315 	if (udev->speed == USB_SPEED_SUPER) {
2316 		if (xhci_is_sync_in_ep(ep_bw->type))
2317 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2318 				xhci_get_ss_bw_consumed(ep_bw);
2319 		else
2320 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2321 				xhci_get_ss_bw_consumed(ep_bw);
2322 		return;
2323 	}
2324 
2325 	/* SuperSpeed endpoints never get added to intervals in the table, so
2326 	 * this check is only valid for HS/FS/LS devices.
2327 	 */
2328 	if (list_empty(&virt_ep->bw_endpoint_list))
2329 		return;
2330 	/* For LS/FS devices, we need to translate the interval expressed in
2331 	 * microframes to frames.
2332 	 */
2333 	if (udev->speed == USB_SPEED_HIGH)
2334 		normalized_interval = ep_bw->ep_interval;
2335 	else
2336 		normalized_interval = ep_bw->ep_interval - 3;
2337 
2338 	if (normalized_interval == 0)
2339 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2340 	interval_bw = &bw_table->interval_bw[normalized_interval];
2341 	interval_bw->num_packets -= ep_bw->num_packets;
2342 	switch (udev->speed) {
2343 	case USB_SPEED_LOW:
2344 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2345 		break;
2346 	case USB_SPEED_FULL:
2347 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2348 		break;
2349 	case USB_SPEED_HIGH:
2350 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2351 		break;
2352 	case USB_SPEED_SUPER:
2353 	case USB_SPEED_UNKNOWN:
2354 	case USB_SPEED_WIRELESS:
2355 		/* Should never happen because only LS/FS/HS endpoints will get
2356 		 * added to the endpoint list.
2357 		 */
2358 		return;
2359 	}
2360 	if (tt_info)
2361 		tt_info->active_eps -= 1;
2362 	list_del_init(&virt_ep->bw_endpoint_list);
2363 }
2364 
2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2366 		struct xhci_bw_info *ep_bw,
2367 		struct xhci_interval_bw_table *bw_table,
2368 		struct usb_device *udev,
2369 		struct xhci_virt_ep *virt_ep,
2370 		struct xhci_tt_bw_info *tt_info)
2371 {
2372 	struct xhci_interval_bw	*interval_bw;
2373 	struct xhci_virt_ep *smaller_ep;
2374 	int normalized_interval;
2375 
2376 	if (xhci_is_async_ep(ep_bw->type))
2377 		return;
2378 
2379 	if (udev->speed == USB_SPEED_SUPER) {
2380 		if (xhci_is_sync_in_ep(ep_bw->type))
2381 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2382 				xhci_get_ss_bw_consumed(ep_bw);
2383 		else
2384 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2385 				xhci_get_ss_bw_consumed(ep_bw);
2386 		return;
2387 	}
2388 
2389 	/* For LS/FS devices, we need to translate the interval expressed in
2390 	 * microframes to frames.
2391 	 */
2392 	if (udev->speed == USB_SPEED_HIGH)
2393 		normalized_interval = ep_bw->ep_interval;
2394 	else
2395 		normalized_interval = ep_bw->ep_interval - 3;
2396 
2397 	if (normalized_interval == 0)
2398 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2399 	interval_bw = &bw_table->interval_bw[normalized_interval];
2400 	interval_bw->num_packets += ep_bw->num_packets;
2401 	switch (udev->speed) {
2402 	case USB_SPEED_LOW:
2403 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2404 		break;
2405 	case USB_SPEED_FULL:
2406 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2407 		break;
2408 	case USB_SPEED_HIGH:
2409 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2410 		break;
2411 	case USB_SPEED_SUPER:
2412 	case USB_SPEED_UNKNOWN:
2413 	case USB_SPEED_WIRELESS:
2414 		/* Should never happen because only LS/FS/HS endpoints will get
2415 		 * added to the endpoint list.
2416 		 */
2417 		return;
2418 	}
2419 
2420 	if (tt_info)
2421 		tt_info->active_eps += 1;
2422 	/* Insert the endpoint into the list, largest max packet size first. */
2423 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424 			bw_endpoint_list) {
2425 		if (ep_bw->max_packet_size >=
2426 				smaller_ep->bw_info.max_packet_size) {
2427 			/* Add the new ep before the smaller endpoint */
2428 			list_add_tail(&virt_ep->bw_endpoint_list,
2429 					&smaller_ep->bw_endpoint_list);
2430 			return;
2431 		}
2432 	}
2433 	/* Add the new endpoint at the end of the list. */
2434 	list_add_tail(&virt_ep->bw_endpoint_list,
2435 			&interval_bw->endpoints);
2436 }
2437 
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 		struct xhci_virt_device *virt_dev,
2440 		int old_active_eps)
2441 {
2442 	struct xhci_root_port_bw_info *rh_bw_info;
2443 	if (!virt_dev->tt_info)
2444 		return;
2445 
2446 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 	if (old_active_eps == 0 &&
2448 				virt_dev->tt_info->active_eps != 0) {
2449 		rh_bw_info->num_active_tts += 1;
2450 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 	} else if (old_active_eps != 0 &&
2452 				virt_dev->tt_info->active_eps == 0) {
2453 		rh_bw_info->num_active_tts -= 1;
2454 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455 	}
2456 }
2457 
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 		struct xhci_virt_device *virt_dev,
2460 		struct xhci_container_ctx *in_ctx)
2461 {
2462 	struct xhci_bw_info ep_bw_info[31];
2463 	int i;
2464 	struct xhci_input_control_ctx *ctrl_ctx;
2465 	int old_active_eps = 0;
2466 
2467 	if (virt_dev->tt_info)
2468 		old_active_eps = virt_dev->tt_info->active_eps;
2469 
2470 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2471 	if (!ctrl_ctx) {
2472 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473 				__func__);
2474 		return -ENOMEM;
2475 	}
2476 
2477 	for (i = 0; i < 31; i++) {
2478 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479 			continue;
2480 
2481 		/* Make a copy of the BW info in case we need to revert this */
2482 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 				sizeof(ep_bw_info[i]));
2484 		/* Drop the endpoint from the interval table if the endpoint is
2485 		 * being dropped or changed.
2486 		 */
2487 		if (EP_IS_DROPPED(ctrl_ctx, i))
2488 			xhci_drop_ep_from_interval_table(xhci,
2489 					&virt_dev->eps[i].bw_info,
2490 					virt_dev->bw_table,
2491 					virt_dev->udev,
2492 					&virt_dev->eps[i],
2493 					virt_dev->tt_info);
2494 	}
2495 	/* Overwrite the information stored in the endpoints' bw_info */
2496 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 	for (i = 0; i < 31; i++) {
2498 		/* Add any changed or added endpoints to the interval table */
2499 		if (EP_IS_ADDED(ctrl_ctx, i))
2500 			xhci_add_ep_to_interval_table(xhci,
2501 					&virt_dev->eps[i].bw_info,
2502 					virt_dev->bw_table,
2503 					virt_dev->udev,
2504 					&virt_dev->eps[i],
2505 					virt_dev->tt_info);
2506 	}
2507 
2508 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 		/* Ok, this fits in the bandwidth we have.
2510 		 * Update the number of active TTs.
2511 		 */
2512 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513 		return 0;
2514 	}
2515 
2516 	/* We don't have enough bandwidth for this, revert the stored info. */
2517 	for (i = 0; i < 31; i++) {
2518 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519 			continue;
2520 
2521 		/* Drop the new copies of any added or changed endpoints from
2522 		 * the interval table.
2523 		 */
2524 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 			xhci_drop_ep_from_interval_table(xhci,
2526 					&virt_dev->eps[i].bw_info,
2527 					virt_dev->bw_table,
2528 					virt_dev->udev,
2529 					&virt_dev->eps[i],
2530 					virt_dev->tt_info);
2531 		}
2532 		/* Revert the endpoint back to its old information */
2533 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 				sizeof(ep_bw_info[i]));
2535 		/* Add any changed or dropped endpoints back into the table */
2536 		if (EP_IS_DROPPED(ctrl_ctx, i))
2537 			xhci_add_ep_to_interval_table(xhci,
2538 					&virt_dev->eps[i].bw_info,
2539 					virt_dev->bw_table,
2540 					virt_dev->udev,
2541 					&virt_dev->eps[i],
2542 					virt_dev->tt_info);
2543 	}
2544 	return -ENOMEM;
2545 }
2546 
2547 
2548 /* Issue a configure endpoint command or evaluate context command
2549  * and wait for it to finish.
2550  */
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 		struct usb_device *udev,
2553 		struct xhci_command *command,
2554 		bool ctx_change, bool must_succeed)
2555 {
2556 	int ret;
2557 	int timeleft;
2558 	unsigned long flags;
2559 	struct xhci_container_ctx *in_ctx;
2560 	struct xhci_input_control_ctx *ctrl_ctx;
2561 	struct completion *cmd_completion;
2562 	u32 *cmd_status;
2563 	struct xhci_virt_device *virt_dev;
2564 	union xhci_trb *cmd_trb;
2565 
2566 	spin_lock_irqsave(&xhci->lock, flags);
2567 	virt_dev = xhci->devs[udev->slot_id];
2568 
2569 	if (command)
2570 		in_ctx = command->in_ctx;
2571 	else
2572 		in_ctx = virt_dev->in_ctx;
2573 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2574 	if (!ctrl_ctx) {
2575 		spin_unlock_irqrestore(&xhci->lock, flags);
2576 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577 				__func__);
2578 		return -ENOMEM;
2579 	}
2580 
2581 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2582 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2583 		spin_unlock_irqrestore(&xhci->lock, flags);
2584 		xhci_warn(xhci, "Not enough host resources, "
2585 				"active endpoint contexts = %u\n",
2586 				xhci->num_active_eps);
2587 		return -ENOMEM;
2588 	}
2589 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2590 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2591 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2592 			xhci_free_host_resources(xhci, ctrl_ctx);
2593 		spin_unlock_irqrestore(&xhci->lock, flags);
2594 		xhci_warn(xhci, "Not enough bandwidth\n");
2595 		return -ENOMEM;
2596 	}
2597 
2598 	if (command) {
2599 		cmd_completion = command->completion;
2600 		cmd_status = &command->status;
2601 		command->command_trb = xhci->cmd_ring->enqueue;
2602 
2603 		/* Enqueue pointer can be left pointing to the link TRB,
2604 		 * we must handle that
2605 		 */
2606 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2607 			command->command_trb =
2608 				xhci->cmd_ring->enq_seg->next->trbs;
2609 
2610 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2611 	} else {
2612 		cmd_completion = &virt_dev->cmd_completion;
2613 		cmd_status = &virt_dev->cmd_status;
2614 	}
2615 	init_completion(cmd_completion);
2616 
2617 	cmd_trb = xhci->cmd_ring->dequeue;
2618 	if (!ctx_change)
2619 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2620 				udev->slot_id, must_succeed);
2621 	else
2622 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2623 				udev->slot_id, must_succeed);
2624 	if (ret < 0) {
2625 		if (command)
2626 			list_del(&command->cmd_list);
2627 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2628 			xhci_free_host_resources(xhci, ctrl_ctx);
2629 		spin_unlock_irqrestore(&xhci->lock, flags);
2630 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2631 				"FIXME allocate a new ring segment");
2632 		return -ENOMEM;
2633 	}
2634 	xhci_ring_cmd_db(xhci);
2635 	spin_unlock_irqrestore(&xhci->lock, flags);
2636 
2637 	/* Wait for the configure endpoint command to complete */
2638 	timeleft = wait_for_completion_interruptible_timeout(
2639 			cmd_completion,
2640 			XHCI_CMD_DEFAULT_TIMEOUT);
2641 	if (timeleft <= 0) {
2642 		xhci_warn(xhci, "%s while waiting for %s command\n",
2643 				timeleft == 0 ? "Timeout" : "Signal",
2644 				ctx_change == 0 ?
2645 					"configure endpoint" :
2646 					"evaluate context");
2647 		/* cancel the configure endpoint command */
2648 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2649 		if (ret < 0)
2650 			return ret;
2651 		return -ETIME;
2652 	}
2653 
2654 	if (!ctx_change)
2655 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2656 	else
2657 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2658 
2659 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2660 		spin_lock_irqsave(&xhci->lock, flags);
2661 		/* If the command failed, remove the reserved resources.
2662 		 * Otherwise, clean up the estimate to include dropped eps.
2663 		 */
2664 		if (ret)
2665 			xhci_free_host_resources(xhci, ctrl_ctx);
2666 		else
2667 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2668 		spin_unlock_irqrestore(&xhci->lock, flags);
2669 	}
2670 	return ret;
2671 }
2672 
2673 /* Called after one or more calls to xhci_add_endpoint() or
2674  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2675  * to call xhci_reset_bandwidth().
2676  *
2677  * Since we are in the middle of changing either configuration or
2678  * installing a new alt setting, the USB core won't allow URBs to be
2679  * enqueued for any endpoint on the old config or interface.  Nothing
2680  * else should be touching the xhci->devs[slot_id] structure, so we
2681  * don't need to take the xhci->lock for manipulating that.
2682  */
2683 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2684 {
2685 	int i;
2686 	int ret = 0;
2687 	struct xhci_hcd *xhci;
2688 	struct xhci_virt_device	*virt_dev;
2689 	struct xhci_input_control_ctx *ctrl_ctx;
2690 	struct xhci_slot_ctx *slot_ctx;
2691 
2692 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693 	if (ret <= 0)
2694 		return ret;
2695 	xhci = hcd_to_xhci(hcd);
2696 	if (xhci->xhc_state & XHCI_STATE_DYING)
2697 		return -ENODEV;
2698 
2699 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2700 	virt_dev = xhci->devs[udev->slot_id];
2701 
2702 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2703 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2704 	if (!ctrl_ctx) {
2705 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706 				__func__);
2707 		return -ENOMEM;
2708 	}
2709 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2710 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2711 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2712 
2713 	/* Don't issue the command if there's no endpoints to update. */
2714 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2715 			ctrl_ctx->drop_flags == 0)
2716 		return 0;
2717 
2718 	xhci_dbg(xhci, "New Input Control Context:\n");
2719 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2720 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2721 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2722 
2723 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2724 			false, false);
2725 	if (ret) {
2726 		/* Callee should call reset_bandwidth() */
2727 		return ret;
2728 	}
2729 
2730 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2731 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2732 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2733 
2734 	/* Free any rings that were dropped, but not changed. */
2735 	for (i = 1; i < 31; ++i) {
2736 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2737 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2738 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2739 	}
2740 	xhci_zero_in_ctx(xhci, virt_dev);
2741 	/*
2742 	 * Install any rings for completely new endpoints or changed endpoints,
2743 	 * and free or cache any old rings from changed endpoints.
2744 	 */
2745 	for (i = 1; i < 31; ++i) {
2746 		if (!virt_dev->eps[i].new_ring)
2747 			continue;
2748 		/* Only cache or free the old ring if it exists.
2749 		 * It may not if this is the first add of an endpoint.
2750 		 */
2751 		if (virt_dev->eps[i].ring) {
2752 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2753 		}
2754 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2755 		virt_dev->eps[i].new_ring = NULL;
2756 	}
2757 
2758 	return ret;
2759 }
2760 
2761 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2762 {
2763 	struct xhci_hcd *xhci;
2764 	struct xhci_virt_device	*virt_dev;
2765 	int i, ret;
2766 
2767 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2768 	if (ret <= 0)
2769 		return;
2770 	xhci = hcd_to_xhci(hcd);
2771 
2772 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2773 	virt_dev = xhci->devs[udev->slot_id];
2774 	/* Free any rings allocated for added endpoints */
2775 	for (i = 0; i < 31; ++i) {
2776 		if (virt_dev->eps[i].new_ring) {
2777 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778 			virt_dev->eps[i].new_ring = NULL;
2779 		}
2780 	}
2781 	xhci_zero_in_ctx(xhci, virt_dev);
2782 }
2783 
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785 		struct xhci_container_ctx *in_ctx,
2786 		struct xhci_container_ctx *out_ctx,
2787 		struct xhci_input_control_ctx *ctrl_ctx,
2788 		u32 add_flags, u32 drop_flags)
2789 {
2790 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2793 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794 
2795 	xhci_dbg(xhci, "Input Context:\n");
2796 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2797 }
2798 
2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2800 		unsigned int slot_id, unsigned int ep_index,
2801 		struct xhci_dequeue_state *deq_state)
2802 {
2803 	struct xhci_input_control_ctx *ctrl_ctx;
2804 	struct xhci_container_ctx *in_ctx;
2805 	struct xhci_ep_ctx *ep_ctx;
2806 	u32 added_ctxs;
2807 	dma_addr_t addr;
2808 
2809 	in_ctx = xhci->devs[slot_id]->in_ctx;
2810 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2811 	if (!ctrl_ctx) {
2812 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2813 				__func__);
2814 		return;
2815 	}
2816 
2817 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2818 			xhci->devs[slot_id]->out_ctx, ep_index);
2819 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2820 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2821 			deq_state->new_deq_ptr);
2822 	if (addr == 0) {
2823 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2824 				"reset ep command\n");
2825 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2826 				deq_state->new_deq_seg,
2827 				deq_state->new_deq_ptr);
2828 		return;
2829 	}
2830 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2831 
2832 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2833 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2834 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2835 			added_ctxs, added_ctxs);
2836 }
2837 
2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2839 		struct usb_device *udev, unsigned int ep_index)
2840 {
2841 	struct xhci_dequeue_state deq_state;
2842 	struct xhci_virt_ep *ep;
2843 
2844 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 			"Cleaning up stalled endpoint ring");
2846 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847 	/* We need to move the HW's dequeue pointer past this TD,
2848 	 * or it will attempt to resend it on the next doorbell ring.
2849 	 */
2850 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851 			ep_index, ep->stopped_stream, ep->stopped_td,
2852 			&deq_state);
2853 
2854 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2855 	 * issue a configure endpoint command later.
2856 	 */
2857 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2858 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2859 				"Queueing new dequeue state");
2860 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2861 				ep_index, ep->stopped_stream, &deq_state);
2862 	} else {
2863 		/* Better hope no one uses the input context between now and the
2864 		 * reset endpoint completion!
2865 		 * XXX: No idea how this hardware will react when stream rings
2866 		 * are enabled.
2867 		 */
2868 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2869 				"Setting up input context for "
2870 				"configure endpoint command");
2871 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2872 				ep_index, &deq_state);
2873 	}
2874 }
2875 
2876 /* Deal with stalled endpoints.  The core should have sent the control message
2877  * to clear the halt condition.  However, we need to make the xHCI hardware
2878  * reset its sequence number, since a device will expect a sequence number of
2879  * zero after the halt condition is cleared.
2880  * Context: in_interrupt
2881  */
2882 void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 		struct usb_host_endpoint *ep)
2884 {
2885 	struct xhci_hcd *xhci;
2886 	struct usb_device *udev;
2887 	unsigned int ep_index;
2888 	unsigned long flags;
2889 	int ret;
2890 	struct xhci_virt_ep *virt_ep;
2891 
2892 	xhci = hcd_to_xhci(hcd);
2893 	udev = (struct usb_device *) ep->hcpriv;
2894 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2895 	 * with xhci_add_endpoint()
2896 	 */
2897 	if (!ep->hcpriv)
2898 		return;
2899 	ep_index = xhci_get_endpoint_index(&ep->desc);
2900 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2901 	if (!virt_ep->stopped_td) {
2902 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2903 			"Endpoint 0x%x not halted, refusing to reset.",
2904 			ep->desc.bEndpointAddress);
2905 		return;
2906 	}
2907 	if (usb_endpoint_xfer_control(&ep->desc)) {
2908 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2909 				"Control endpoint stall already handled.");
2910 		return;
2911 	}
2912 
2913 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914 			"Queueing reset endpoint command");
2915 	spin_lock_irqsave(&xhci->lock, flags);
2916 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2917 	/*
2918 	 * Can't change the ring dequeue pointer until it's transitioned to the
2919 	 * stopped state, which is only upon a successful reset endpoint
2920 	 * command.  Better hope that last command worked!
2921 	 */
2922 	if (!ret) {
2923 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2924 		kfree(virt_ep->stopped_td);
2925 		xhci_ring_cmd_db(xhci);
2926 	}
2927 	virt_ep->stopped_td = NULL;
2928 	virt_ep->stopped_trb = NULL;
2929 	virt_ep->stopped_stream = 0;
2930 	spin_unlock_irqrestore(&xhci->lock, flags);
2931 
2932 	if (ret)
2933 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2934 }
2935 
2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2937 		struct usb_device *udev, struct usb_host_endpoint *ep,
2938 		unsigned int slot_id)
2939 {
2940 	int ret;
2941 	unsigned int ep_index;
2942 	unsigned int ep_state;
2943 
2944 	if (!ep)
2945 		return -EINVAL;
2946 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2947 	if (ret <= 0)
2948 		return -EINVAL;
2949 	if (ep->ss_ep_comp.bmAttributes == 0) {
2950 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2951 				" descriptor for ep 0x%x does not support streams\n",
2952 				ep->desc.bEndpointAddress);
2953 		return -EINVAL;
2954 	}
2955 
2956 	ep_index = xhci_get_endpoint_index(&ep->desc);
2957 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2958 	if (ep_state & EP_HAS_STREAMS ||
2959 			ep_state & EP_GETTING_STREAMS) {
2960 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2961 				"already has streams set up.\n",
2962 				ep->desc.bEndpointAddress);
2963 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2964 				"dynamic stream context array reallocation.\n");
2965 		return -EINVAL;
2966 	}
2967 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2968 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2969 				"endpoint 0x%x; URBs are pending.\n",
2970 				ep->desc.bEndpointAddress);
2971 		return -EINVAL;
2972 	}
2973 	return 0;
2974 }
2975 
2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2977 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2978 {
2979 	unsigned int max_streams;
2980 
2981 	/* The stream context array size must be a power of two */
2982 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2983 	/*
2984 	 * Find out how many primary stream array entries the host controller
2985 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2986 	 * level page entries), but that's an optional feature for xHCI host
2987 	 * controllers. xHCs must support at least 4 stream IDs.
2988 	 */
2989 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2990 	if (*num_stream_ctxs > max_streams) {
2991 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2992 				max_streams);
2993 		*num_stream_ctxs = max_streams;
2994 		*num_streams = max_streams;
2995 	}
2996 }
2997 
2998 /* Returns an error code if one of the endpoint already has streams.
2999  * This does not change any data structures, it only checks and gathers
3000  * information.
3001  */
3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3003 		struct usb_device *udev,
3004 		struct usb_host_endpoint **eps, unsigned int num_eps,
3005 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3006 {
3007 	unsigned int max_streams;
3008 	unsigned int endpoint_flag;
3009 	int i;
3010 	int ret;
3011 
3012 	for (i = 0; i < num_eps; i++) {
3013 		ret = xhci_check_streams_endpoint(xhci, udev,
3014 				eps[i], udev->slot_id);
3015 		if (ret < 0)
3016 			return ret;
3017 
3018 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3019 		if (max_streams < (*num_streams - 1)) {
3020 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3021 					eps[i]->desc.bEndpointAddress,
3022 					max_streams);
3023 			*num_streams = max_streams+1;
3024 		}
3025 
3026 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3027 		if (*changed_ep_bitmask & endpoint_flag)
3028 			return -EINVAL;
3029 		*changed_ep_bitmask |= endpoint_flag;
3030 	}
3031 	return 0;
3032 }
3033 
3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3035 		struct usb_device *udev,
3036 		struct usb_host_endpoint **eps, unsigned int num_eps)
3037 {
3038 	u32 changed_ep_bitmask = 0;
3039 	unsigned int slot_id;
3040 	unsigned int ep_index;
3041 	unsigned int ep_state;
3042 	int i;
3043 
3044 	slot_id = udev->slot_id;
3045 	if (!xhci->devs[slot_id])
3046 		return 0;
3047 
3048 	for (i = 0; i < num_eps; i++) {
3049 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3051 		/* Are streams already being freed for the endpoint? */
3052 		if (ep_state & EP_GETTING_NO_STREAMS) {
3053 			xhci_warn(xhci, "WARN Can't disable streams for "
3054 					"endpoint 0x%x, "
3055 					"streams are being disabled already\n",
3056 					eps[i]->desc.bEndpointAddress);
3057 			return 0;
3058 		}
3059 		/* Are there actually any streams to free? */
3060 		if (!(ep_state & EP_HAS_STREAMS) &&
3061 				!(ep_state & EP_GETTING_STREAMS)) {
3062 			xhci_warn(xhci, "WARN Can't disable streams for "
3063 					"endpoint 0x%x, "
3064 					"streams are already disabled!\n",
3065 					eps[i]->desc.bEndpointAddress);
3066 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3067 					"with non-streams endpoint\n");
3068 			return 0;
3069 		}
3070 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3071 	}
3072 	return changed_ep_bitmask;
3073 }
3074 
3075 /*
3076  * The USB device drivers use this function (though the HCD interface in USB
3077  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3078  * coordinate mass storage command queueing across multiple endpoints (basically
3079  * a stream ID == a task ID).
3080  *
3081  * Setting up streams involves allocating the same size stream context array
3082  * for each endpoint and issuing a configure endpoint command for all endpoints.
3083  *
3084  * Don't allow the call to succeed if one endpoint only supports one stream
3085  * (which means it doesn't support streams at all).
3086  *
3087  * Drivers may get less stream IDs than they asked for, if the host controller
3088  * hardware or endpoints claim they can't support the number of requested
3089  * stream IDs.
3090  */
3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3092 		struct usb_host_endpoint **eps, unsigned int num_eps,
3093 		unsigned int num_streams, gfp_t mem_flags)
3094 {
3095 	int i, ret;
3096 	struct xhci_hcd *xhci;
3097 	struct xhci_virt_device *vdev;
3098 	struct xhci_command *config_cmd;
3099 	struct xhci_input_control_ctx *ctrl_ctx;
3100 	unsigned int ep_index;
3101 	unsigned int num_stream_ctxs;
3102 	unsigned long flags;
3103 	u32 changed_ep_bitmask = 0;
3104 
3105 	if (!eps)
3106 		return -EINVAL;
3107 
3108 	/* Add one to the number of streams requested to account for
3109 	 * stream 0 that is reserved for xHCI usage.
3110 	 */
3111 	num_streams += 1;
3112 	xhci = hcd_to_xhci(hcd);
3113 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3114 			num_streams);
3115 
3116 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3117 	if (!config_cmd) {
3118 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3119 		return -ENOMEM;
3120 	}
3121 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3122 	if (!ctrl_ctx) {
3123 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3124 				__func__);
3125 		xhci_free_command(xhci, config_cmd);
3126 		return -ENOMEM;
3127 	}
3128 
3129 	/* Check to make sure all endpoints are not already configured for
3130 	 * streams.  While we're at it, find the maximum number of streams that
3131 	 * all the endpoints will support and check for duplicate endpoints.
3132 	 */
3133 	spin_lock_irqsave(&xhci->lock, flags);
3134 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3135 			num_eps, &num_streams, &changed_ep_bitmask);
3136 	if (ret < 0) {
3137 		xhci_free_command(xhci, config_cmd);
3138 		spin_unlock_irqrestore(&xhci->lock, flags);
3139 		return ret;
3140 	}
3141 	if (num_streams <= 1) {
3142 		xhci_warn(xhci, "WARN: endpoints can't handle "
3143 				"more than one stream.\n");
3144 		xhci_free_command(xhci, config_cmd);
3145 		spin_unlock_irqrestore(&xhci->lock, flags);
3146 		return -EINVAL;
3147 	}
3148 	vdev = xhci->devs[udev->slot_id];
3149 	/* Mark each endpoint as being in transition, so
3150 	 * xhci_urb_enqueue() will reject all URBs.
3151 	 */
3152 	for (i = 0; i < num_eps; i++) {
3153 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3155 	}
3156 	spin_unlock_irqrestore(&xhci->lock, flags);
3157 
3158 	/* Setup internal data structures and allocate HW data structures for
3159 	 * streams (but don't install the HW structures in the input context
3160 	 * until we're sure all memory allocation succeeded).
3161 	 */
3162 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3163 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3164 			num_stream_ctxs, num_streams);
3165 
3166 	for (i = 0; i < num_eps; i++) {
3167 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3168 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3169 				num_stream_ctxs,
3170 				num_streams, mem_flags);
3171 		if (!vdev->eps[ep_index].stream_info)
3172 			goto cleanup;
3173 		/* Set maxPstreams in endpoint context and update deq ptr to
3174 		 * point to stream context array. FIXME
3175 		 */
3176 	}
3177 
3178 	/* Set up the input context for a configure endpoint command. */
3179 	for (i = 0; i < num_eps; i++) {
3180 		struct xhci_ep_ctx *ep_ctx;
3181 
3182 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3184 
3185 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3186 				vdev->out_ctx, ep_index);
3187 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3188 				vdev->eps[ep_index].stream_info);
3189 	}
3190 	/* Tell the HW to drop its old copy of the endpoint context info
3191 	 * and add the updated copy from the input context.
3192 	 */
3193 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3194 			vdev->out_ctx, ctrl_ctx,
3195 			changed_ep_bitmask, changed_ep_bitmask);
3196 
3197 	/* Issue and wait for the configure endpoint command */
3198 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3199 			false, false);
3200 
3201 	/* xHC rejected the configure endpoint command for some reason, so we
3202 	 * leave the old ring intact and free our internal streams data
3203 	 * structure.
3204 	 */
3205 	if (ret < 0)
3206 		goto cleanup;
3207 
3208 	spin_lock_irqsave(&xhci->lock, flags);
3209 	for (i = 0; i < num_eps; i++) {
3210 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3211 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3213 			 udev->slot_id, ep_index);
3214 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3215 	}
3216 	xhci_free_command(xhci, config_cmd);
3217 	spin_unlock_irqrestore(&xhci->lock, flags);
3218 
3219 	/* Subtract 1 for stream 0, which drivers can't use */
3220 	return num_streams - 1;
3221 
3222 cleanup:
3223 	/* If it didn't work, free the streams! */
3224 	for (i = 0; i < num_eps; i++) {
3225 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227 		vdev->eps[ep_index].stream_info = NULL;
3228 		/* FIXME Unset maxPstreams in endpoint context and
3229 		 * update deq ptr to point to normal string ring.
3230 		 */
3231 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3232 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3233 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3234 	}
3235 	xhci_free_command(xhci, config_cmd);
3236 	return -ENOMEM;
3237 }
3238 
3239 /* Transition the endpoint from using streams to being a "normal" endpoint
3240  * without streams.
3241  *
3242  * Modify the endpoint context state, submit a configure endpoint command,
3243  * and free all endpoint rings for streams if that completes successfully.
3244  */
3245 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3246 		struct usb_host_endpoint **eps, unsigned int num_eps,
3247 		gfp_t mem_flags)
3248 {
3249 	int i, ret;
3250 	struct xhci_hcd *xhci;
3251 	struct xhci_virt_device *vdev;
3252 	struct xhci_command *command;
3253 	struct xhci_input_control_ctx *ctrl_ctx;
3254 	unsigned int ep_index;
3255 	unsigned long flags;
3256 	u32 changed_ep_bitmask;
3257 
3258 	xhci = hcd_to_xhci(hcd);
3259 	vdev = xhci->devs[udev->slot_id];
3260 
3261 	/* Set up a configure endpoint command to remove the streams rings */
3262 	spin_lock_irqsave(&xhci->lock, flags);
3263 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3264 			udev, eps, num_eps);
3265 	if (changed_ep_bitmask == 0) {
3266 		spin_unlock_irqrestore(&xhci->lock, flags);
3267 		return -EINVAL;
3268 	}
3269 
3270 	/* Use the xhci_command structure from the first endpoint.  We may have
3271 	 * allocated too many, but the driver may call xhci_free_streams() for
3272 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3273 	 */
3274 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3275 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3276 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3277 	if (!ctrl_ctx) {
3278 		spin_unlock_irqrestore(&xhci->lock, flags);
3279 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3280 				__func__);
3281 		return -EINVAL;
3282 	}
3283 
3284 	for (i = 0; i < num_eps; i++) {
3285 		struct xhci_ep_ctx *ep_ctx;
3286 
3287 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3288 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3289 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3290 			EP_GETTING_NO_STREAMS;
3291 
3292 		xhci_endpoint_copy(xhci, command->in_ctx,
3293 				vdev->out_ctx, ep_index);
3294 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3295 				&vdev->eps[ep_index]);
3296 	}
3297 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3298 			vdev->out_ctx, ctrl_ctx,
3299 			changed_ep_bitmask, changed_ep_bitmask);
3300 	spin_unlock_irqrestore(&xhci->lock, flags);
3301 
3302 	/* Issue and wait for the configure endpoint command,
3303 	 * which must succeed.
3304 	 */
3305 	ret = xhci_configure_endpoint(xhci, udev, command,
3306 			false, true);
3307 
3308 	/* xHC rejected the configure endpoint command for some reason, so we
3309 	 * leave the streams rings intact.
3310 	 */
3311 	if (ret < 0)
3312 		return ret;
3313 
3314 	spin_lock_irqsave(&xhci->lock, flags);
3315 	for (i = 0; i < num_eps; i++) {
3316 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3317 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3318 		vdev->eps[ep_index].stream_info = NULL;
3319 		/* FIXME Unset maxPstreams in endpoint context and
3320 		 * update deq ptr to point to normal string ring.
3321 		 */
3322 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3323 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3324 	}
3325 	spin_unlock_irqrestore(&xhci->lock, flags);
3326 
3327 	return 0;
3328 }
3329 
3330 /*
3331  * Deletes endpoint resources for endpoints that were active before a Reset
3332  * Device command, or a Disable Slot command.  The Reset Device command leaves
3333  * the control endpoint intact, whereas the Disable Slot command deletes it.
3334  *
3335  * Must be called with xhci->lock held.
3336  */
3337 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3338 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3339 {
3340 	int i;
3341 	unsigned int num_dropped_eps = 0;
3342 	unsigned int drop_flags = 0;
3343 
3344 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3345 		if (virt_dev->eps[i].ring) {
3346 			drop_flags |= 1 << i;
3347 			num_dropped_eps++;
3348 		}
3349 	}
3350 	xhci->num_active_eps -= num_dropped_eps;
3351 	if (num_dropped_eps)
3352 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3353 				"Dropped %u ep ctxs, flags = 0x%x, "
3354 				"%u now active.",
3355 				num_dropped_eps, drop_flags,
3356 				xhci->num_active_eps);
3357 }
3358 
3359 /*
3360  * This submits a Reset Device Command, which will set the device state to 0,
3361  * set the device address to 0, and disable all the endpoints except the default
3362  * control endpoint.  The USB core should come back and call
3363  * xhci_address_device(), and then re-set up the configuration.  If this is
3364  * called because of a usb_reset_and_verify_device(), then the old alternate
3365  * settings will be re-installed through the normal bandwidth allocation
3366  * functions.
3367  *
3368  * Wait for the Reset Device command to finish.  Remove all structures
3369  * associated with the endpoints that were disabled.  Clear the input device
3370  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3371  *
3372  * If the virt_dev to be reset does not exist or does not match the udev,
3373  * it means the device is lost, possibly due to the xHC restore error and
3374  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3375  * re-allocate the device.
3376  */
3377 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3378 {
3379 	int ret, i;
3380 	unsigned long flags;
3381 	struct xhci_hcd *xhci;
3382 	unsigned int slot_id;
3383 	struct xhci_virt_device *virt_dev;
3384 	struct xhci_command *reset_device_cmd;
3385 	int timeleft;
3386 	int last_freed_endpoint;
3387 	struct xhci_slot_ctx *slot_ctx;
3388 	int old_active_eps = 0;
3389 
3390 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3391 	if (ret <= 0)
3392 		return ret;
3393 	xhci = hcd_to_xhci(hcd);
3394 	slot_id = udev->slot_id;
3395 	virt_dev = xhci->devs[slot_id];
3396 	if (!virt_dev) {
3397 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3398 				"not exist. Re-allocate the device\n", slot_id);
3399 		ret = xhci_alloc_dev(hcd, udev);
3400 		if (ret == 1)
3401 			return 0;
3402 		else
3403 			return -EINVAL;
3404 	}
3405 
3406 	if (virt_dev->udev != udev) {
3407 		/* If the virt_dev and the udev does not match, this virt_dev
3408 		 * may belong to another udev.
3409 		 * Re-allocate the device.
3410 		 */
3411 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3412 				"not match the udev. Re-allocate the device\n",
3413 				slot_id);
3414 		ret = xhci_alloc_dev(hcd, udev);
3415 		if (ret == 1)
3416 			return 0;
3417 		else
3418 			return -EINVAL;
3419 	}
3420 
3421 	/* If device is not setup, there is no point in resetting it */
3422 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3423 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3424 						SLOT_STATE_DISABLED)
3425 		return 0;
3426 
3427 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3428 	/* Allocate the command structure that holds the struct completion.
3429 	 * Assume we're in process context, since the normal device reset
3430 	 * process has to wait for the device anyway.  Storage devices are
3431 	 * reset as part of error handling, so use GFP_NOIO instead of
3432 	 * GFP_KERNEL.
3433 	 */
3434 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3435 	if (!reset_device_cmd) {
3436 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3437 		return -ENOMEM;
3438 	}
3439 
3440 	/* Attempt to submit the Reset Device command to the command ring */
3441 	spin_lock_irqsave(&xhci->lock, flags);
3442 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3443 
3444 	/* Enqueue pointer can be left pointing to the link TRB,
3445 	 * we must handle that
3446 	 */
3447 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3448 		reset_device_cmd->command_trb =
3449 			xhci->cmd_ring->enq_seg->next->trbs;
3450 
3451 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3452 	ret = xhci_queue_reset_device(xhci, slot_id);
3453 	if (ret) {
3454 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3455 		list_del(&reset_device_cmd->cmd_list);
3456 		spin_unlock_irqrestore(&xhci->lock, flags);
3457 		goto command_cleanup;
3458 	}
3459 	xhci_ring_cmd_db(xhci);
3460 	spin_unlock_irqrestore(&xhci->lock, flags);
3461 
3462 	/* Wait for the Reset Device command to finish */
3463 	timeleft = wait_for_completion_interruptible_timeout(
3464 			reset_device_cmd->completion,
3465 			USB_CTRL_SET_TIMEOUT);
3466 	if (timeleft <= 0) {
3467 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3468 				timeleft == 0 ? "Timeout" : "Signal");
3469 		spin_lock_irqsave(&xhci->lock, flags);
3470 		/* The timeout might have raced with the event ring handler, so
3471 		 * only delete from the list if the item isn't poisoned.
3472 		 */
3473 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3474 			list_del(&reset_device_cmd->cmd_list);
3475 		spin_unlock_irqrestore(&xhci->lock, flags);
3476 		ret = -ETIME;
3477 		goto command_cleanup;
3478 	}
3479 
3480 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3481 	 * unless we tried to reset a slot ID that wasn't enabled,
3482 	 * or the device wasn't in the addressed or configured state.
3483 	 */
3484 	ret = reset_device_cmd->status;
3485 	switch (ret) {
3486 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3487 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3488 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3489 				slot_id,
3490 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3491 		xhci_dbg(xhci, "Not freeing device rings.\n");
3492 		/* Don't treat this as an error.  May change my mind later. */
3493 		ret = 0;
3494 		goto command_cleanup;
3495 	case COMP_SUCCESS:
3496 		xhci_dbg(xhci, "Successful reset device command.\n");
3497 		break;
3498 	default:
3499 		if (xhci_is_vendor_info_code(xhci, ret))
3500 			break;
3501 		xhci_warn(xhci, "Unknown completion code %u for "
3502 				"reset device command.\n", ret);
3503 		ret = -EINVAL;
3504 		goto command_cleanup;
3505 	}
3506 
3507 	/* Free up host controller endpoint resources */
3508 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3509 		spin_lock_irqsave(&xhci->lock, flags);
3510 		/* Don't delete the default control endpoint resources */
3511 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3512 		spin_unlock_irqrestore(&xhci->lock, flags);
3513 	}
3514 
3515 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3516 	last_freed_endpoint = 1;
3517 	for (i = 1; i < 31; ++i) {
3518 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3519 
3520 		if (ep->ep_state & EP_HAS_STREAMS) {
3521 			xhci_free_stream_info(xhci, ep->stream_info);
3522 			ep->stream_info = NULL;
3523 			ep->ep_state &= ~EP_HAS_STREAMS;
3524 		}
3525 
3526 		if (ep->ring) {
3527 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3528 			last_freed_endpoint = i;
3529 		}
3530 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3531 			xhci_drop_ep_from_interval_table(xhci,
3532 					&virt_dev->eps[i].bw_info,
3533 					virt_dev->bw_table,
3534 					udev,
3535 					&virt_dev->eps[i],
3536 					virt_dev->tt_info);
3537 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3538 	}
3539 	/* If necessary, update the number of active TTs on this root port */
3540 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3541 
3542 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3543 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3544 	ret = 0;
3545 
3546 command_cleanup:
3547 	xhci_free_command(xhci, reset_device_cmd);
3548 	return ret;
3549 }
3550 
3551 /*
3552  * At this point, the struct usb_device is about to go away, the device has
3553  * disconnected, and all traffic has been stopped and the endpoints have been
3554  * disabled.  Free any HC data structures associated with that device.
3555  */
3556 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3557 {
3558 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3559 	struct xhci_virt_device *virt_dev;
3560 	unsigned long flags;
3561 	u32 state;
3562 	int i, ret;
3563 
3564 #ifndef CONFIG_USB_DEFAULT_PERSIST
3565 	/*
3566 	 * We called pm_runtime_get_noresume when the device was attached.
3567 	 * Decrement the counter here to allow controller to runtime suspend
3568 	 * if no devices remain.
3569 	 */
3570 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3571 		pm_runtime_put_noidle(hcd->self.controller);
3572 #endif
3573 
3574 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3575 	/* If the host is halted due to driver unload, we still need to free the
3576 	 * device.
3577 	 */
3578 	if (ret <= 0 && ret != -ENODEV)
3579 		return;
3580 
3581 	virt_dev = xhci->devs[udev->slot_id];
3582 
3583 	/* Stop any wayward timer functions (which may grab the lock) */
3584 	for (i = 0; i < 31; ++i) {
3585 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3586 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3587 	}
3588 
3589 	if (udev->usb2_hw_lpm_enabled) {
3590 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3591 		udev->usb2_hw_lpm_enabled = 0;
3592 	}
3593 
3594 	spin_lock_irqsave(&xhci->lock, flags);
3595 	/* Don't disable the slot if the host controller is dead. */
3596 	state = xhci_readl(xhci, &xhci->op_regs->status);
3597 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3598 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3599 		xhci_free_virt_device(xhci, udev->slot_id);
3600 		spin_unlock_irqrestore(&xhci->lock, flags);
3601 		return;
3602 	}
3603 
3604 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3605 		spin_unlock_irqrestore(&xhci->lock, flags);
3606 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3607 		return;
3608 	}
3609 	xhci_ring_cmd_db(xhci);
3610 	spin_unlock_irqrestore(&xhci->lock, flags);
3611 	/*
3612 	 * Event command completion handler will free any data structures
3613 	 * associated with the slot.  XXX Can free sleep?
3614 	 */
3615 }
3616 
3617 /*
3618  * Checks if we have enough host controller resources for the default control
3619  * endpoint.
3620  *
3621  * Must be called with xhci->lock held.
3622  */
3623 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3624 {
3625 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3626 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627 				"Not enough ep ctxs: "
3628 				"%u active, need to add 1, limit is %u.",
3629 				xhci->num_active_eps, xhci->limit_active_eps);
3630 		return -ENOMEM;
3631 	}
3632 	xhci->num_active_eps += 1;
3633 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3634 			"Adding 1 ep ctx, %u now active.",
3635 			xhci->num_active_eps);
3636 	return 0;
3637 }
3638 
3639 
3640 /*
3641  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3642  * timed out, or allocating memory failed.  Returns 1 on success.
3643  */
3644 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3645 {
3646 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3647 	unsigned long flags;
3648 	int timeleft;
3649 	int ret;
3650 	union xhci_trb *cmd_trb;
3651 
3652 	spin_lock_irqsave(&xhci->lock, flags);
3653 	cmd_trb = xhci->cmd_ring->dequeue;
3654 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3655 	if (ret) {
3656 		spin_unlock_irqrestore(&xhci->lock, flags);
3657 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3658 		return 0;
3659 	}
3660 	xhci_ring_cmd_db(xhci);
3661 	spin_unlock_irqrestore(&xhci->lock, flags);
3662 
3663 	/* XXX: how much time for xHC slot assignment? */
3664 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3665 			XHCI_CMD_DEFAULT_TIMEOUT);
3666 	if (timeleft <= 0) {
3667 		xhci_warn(xhci, "%s while waiting for a slot\n",
3668 				timeleft == 0 ? "Timeout" : "Signal");
3669 		/* cancel the enable slot request */
3670 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3671 	}
3672 
3673 	if (!xhci->slot_id) {
3674 		xhci_err(xhci, "Error while assigning device slot ID\n");
3675 		return 0;
3676 	}
3677 
3678 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3679 		spin_lock_irqsave(&xhci->lock, flags);
3680 		ret = xhci_reserve_host_control_ep_resources(xhci);
3681 		if (ret) {
3682 			spin_unlock_irqrestore(&xhci->lock, flags);
3683 			xhci_warn(xhci, "Not enough host resources, "
3684 					"active endpoint contexts = %u\n",
3685 					xhci->num_active_eps);
3686 			goto disable_slot;
3687 		}
3688 		spin_unlock_irqrestore(&xhci->lock, flags);
3689 	}
3690 	/* Use GFP_NOIO, since this function can be called from
3691 	 * xhci_discover_or_reset_device(), which may be called as part of
3692 	 * mass storage driver error handling.
3693 	 */
3694 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3695 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3696 		goto disable_slot;
3697 	}
3698 	udev->slot_id = xhci->slot_id;
3699 
3700 #ifndef CONFIG_USB_DEFAULT_PERSIST
3701 	/*
3702 	 * If resetting upon resume, we can't put the controller into runtime
3703 	 * suspend if there is a device attached.
3704 	 */
3705 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3706 		pm_runtime_get_noresume(hcd->self.controller);
3707 #endif
3708 
3709 	/* Is this a LS or FS device under a HS hub? */
3710 	/* Hub or peripherial? */
3711 	return 1;
3712 
3713 disable_slot:
3714 	/* Disable slot, if we can do it without mem alloc */
3715 	spin_lock_irqsave(&xhci->lock, flags);
3716 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3717 		xhci_ring_cmd_db(xhci);
3718 	spin_unlock_irqrestore(&xhci->lock, flags);
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Issue an Address Device command (which will issue a SetAddress request to
3724  * the device).
3725  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3726  * we should only issue and wait on one address command at the same time.
3727  *
3728  * We add one to the device address issued by the hardware because the USB core
3729  * uses address 1 for the root hubs (even though they're not really devices).
3730  */
3731 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3732 {
3733 	unsigned long flags;
3734 	int timeleft;
3735 	struct xhci_virt_device *virt_dev;
3736 	int ret = 0;
3737 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3738 	struct xhci_slot_ctx *slot_ctx;
3739 	struct xhci_input_control_ctx *ctrl_ctx;
3740 	u64 temp_64;
3741 	union xhci_trb *cmd_trb;
3742 
3743 	if (!udev->slot_id) {
3744 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3745 				"Bad Slot ID %d", udev->slot_id);
3746 		return -EINVAL;
3747 	}
3748 
3749 	virt_dev = xhci->devs[udev->slot_id];
3750 
3751 	if (WARN_ON(!virt_dev)) {
3752 		/*
3753 		 * In plug/unplug torture test with an NEC controller,
3754 		 * a zero-dereference was observed once due to virt_dev = 0.
3755 		 * Print useful debug rather than crash if it is observed again!
3756 		 */
3757 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3758 			udev->slot_id);
3759 		return -EINVAL;
3760 	}
3761 
3762 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3763 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3764 	if (!ctrl_ctx) {
3765 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3766 				__func__);
3767 		return -EINVAL;
3768 	}
3769 	/*
3770 	 * If this is the first Set Address since device plug-in or
3771 	 * virt_device realloaction after a resume with an xHCI power loss,
3772 	 * then set up the slot context.
3773 	 */
3774 	if (!slot_ctx->dev_info)
3775 		xhci_setup_addressable_virt_dev(xhci, udev);
3776 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3777 	else
3778 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3779 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3780 	ctrl_ctx->drop_flags = 0;
3781 
3782 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3783 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3784 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3785 				slot_ctx->dev_info >> 27);
3786 
3787 	spin_lock_irqsave(&xhci->lock, flags);
3788 	cmd_trb = xhci->cmd_ring->dequeue;
3789 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3790 					udev->slot_id);
3791 	if (ret) {
3792 		spin_unlock_irqrestore(&xhci->lock, flags);
3793 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3794 				"FIXME: allocate a command ring segment");
3795 		return ret;
3796 	}
3797 	xhci_ring_cmd_db(xhci);
3798 	spin_unlock_irqrestore(&xhci->lock, flags);
3799 
3800 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3801 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3802 			XHCI_CMD_DEFAULT_TIMEOUT);
3803 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3804 	 * the SetAddress() "recovery interval" required by USB and aborting the
3805 	 * command on a timeout.
3806 	 */
3807 	if (timeleft <= 0) {
3808 		xhci_warn(xhci, "%s while waiting for address device command\n",
3809 				timeleft == 0 ? "Timeout" : "Signal");
3810 		/* cancel the address device command */
3811 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3812 		if (ret < 0)
3813 			return ret;
3814 		return -ETIME;
3815 	}
3816 
3817 	switch (virt_dev->cmd_status) {
3818 	case COMP_CTX_STATE:
3819 	case COMP_EBADSLT:
3820 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3821 				udev->slot_id);
3822 		ret = -EINVAL;
3823 		break;
3824 	case COMP_TX_ERR:
3825 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3826 		ret = -EPROTO;
3827 		break;
3828 	case COMP_DEV_ERR:
3829 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3830 				"device command.\n");
3831 		ret = -ENODEV;
3832 		break;
3833 	case COMP_SUCCESS:
3834 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3835 				"Successful Address Device command");
3836 		break;
3837 	default:
3838 		xhci_err(xhci, "ERROR: unexpected command completion "
3839 				"code 0x%x.\n", virt_dev->cmd_status);
3840 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3841 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3842 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3843 		ret = -EINVAL;
3844 		break;
3845 	}
3846 	if (ret) {
3847 		return ret;
3848 	}
3849 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3850 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3851 			"Op regs DCBAA ptr = %#016llx", temp_64);
3852 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3853 		"Slot ID %d dcbaa entry @%p = %#016llx",
3854 		udev->slot_id,
3855 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3856 		(unsigned long long)
3857 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3858 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 			"Output Context DMA address = %#08llx",
3860 			(unsigned long long)virt_dev->out_ctx->dma);
3861 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3862 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3863 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864 				slot_ctx->dev_info >> 27);
3865 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3866 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3867 	/*
3868 	 * USB core uses address 1 for the roothubs, so we add one to the
3869 	 * address given back to us by the HC.
3870 	 */
3871 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3872 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873 				slot_ctx->dev_info >> 27);
3874 	/* Use kernel assigned address for devices; store xHC assigned
3875 	 * address locally. */
3876 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3877 		+ 1;
3878 	/* Zero the input context control for later use */
3879 	ctrl_ctx->add_flags = 0;
3880 	ctrl_ctx->drop_flags = 0;
3881 
3882 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883 			"Internal device address = %d", virt_dev->address);
3884 
3885 	return 0;
3886 }
3887 
3888 /*
3889  * Transfer the port index into real index in the HW port status
3890  * registers. Caculate offset between the port's PORTSC register
3891  * and port status base. Divide the number of per port register
3892  * to get the real index. The raw port number bases 1.
3893  */
3894 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3895 {
3896 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3897 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3898 	__le32 __iomem *addr;
3899 	int raw_port;
3900 
3901 	if (hcd->speed != HCD_USB3)
3902 		addr = xhci->usb2_ports[port1 - 1];
3903 	else
3904 		addr = xhci->usb3_ports[port1 - 1];
3905 
3906 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3907 	return raw_port;
3908 }
3909 
3910 /*
3911  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3912  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3913  */
3914 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3915 			struct usb_device *udev, u16 max_exit_latency)
3916 {
3917 	struct xhci_virt_device *virt_dev;
3918 	struct xhci_command *command;
3919 	struct xhci_input_control_ctx *ctrl_ctx;
3920 	struct xhci_slot_ctx *slot_ctx;
3921 	unsigned long flags;
3922 	int ret;
3923 
3924 	spin_lock_irqsave(&xhci->lock, flags);
3925 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3926 		spin_unlock_irqrestore(&xhci->lock, flags);
3927 		return 0;
3928 	}
3929 
3930 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3931 	virt_dev = xhci->devs[udev->slot_id];
3932 	command = xhci->lpm_command;
3933 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3934 	if (!ctrl_ctx) {
3935 		spin_unlock_irqrestore(&xhci->lock, flags);
3936 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3937 				__func__);
3938 		return -ENOMEM;
3939 	}
3940 
3941 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3942 	spin_unlock_irqrestore(&xhci->lock, flags);
3943 
3944 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3945 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3946 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3947 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3948 
3949 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3950 			"Set up evaluate context for LPM MEL change.");
3951 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3952 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3953 
3954 	/* Issue and wait for the evaluate context command. */
3955 	ret = xhci_configure_endpoint(xhci, udev, command,
3956 			true, true);
3957 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3958 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3959 
3960 	if (!ret) {
3961 		spin_lock_irqsave(&xhci->lock, flags);
3962 		virt_dev->current_mel = max_exit_latency;
3963 		spin_unlock_irqrestore(&xhci->lock, flags);
3964 	}
3965 	return ret;
3966 }
3967 
3968 #ifdef CONFIG_PM_RUNTIME
3969 
3970 /* BESL to HIRD Encoding array for USB2 LPM */
3971 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3972 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3973 
3974 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3975 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3976 					struct usb_device *udev)
3977 {
3978 	int u2del, besl, besl_host;
3979 	int besl_device = 0;
3980 	u32 field;
3981 
3982 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3983 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3984 
3985 	if (field & USB_BESL_SUPPORT) {
3986 		for (besl_host = 0; besl_host < 16; besl_host++) {
3987 			if (xhci_besl_encoding[besl_host] >= u2del)
3988 				break;
3989 		}
3990 		/* Use baseline BESL value as default */
3991 		if (field & USB_BESL_BASELINE_VALID)
3992 			besl_device = USB_GET_BESL_BASELINE(field);
3993 		else if (field & USB_BESL_DEEP_VALID)
3994 			besl_device = USB_GET_BESL_DEEP(field);
3995 	} else {
3996 		if (u2del <= 50)
3997 			besl_host = 0;
3998 		else
3999 			besl_host = (u2del - 51) / 75 + 1;
4000 	}
4001 
4002 	besl = besl_host + besl_device;
4003 	if (besl > 15)
4004 		besl = 15;
4005 
4006 	return besl;
4007 }
4008 
4009 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4010 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4011 {
4012 	u32 field;
4013 	int l1;
4014 	int besld = 0;
4015 	int hirdm = 0;
4016 
4017 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4018 
4019 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4020 	l1 = udev->l1_params.timeout / 256;
4021 
4022 	/* device has preferred BESLD */
4023 	if (field & USB_BESL_DEEP_VALID) {
4024 		besld = USB_GET_BESL_DEEP(field);
4025 		hirdm = 1;
4026 	}
4027 
4028 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4029 }
4030 
4031 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4032 					struct usb_device *udev)
4033 {
4034 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4035 	struct dev_info	*dev_info;
4036 	__le32 __iomem	**port_array;
4037 	__le32 __iomem	*addr, *pm_addr;
4038 	u32		temp, dev_id;
4039 	unsigned int	port_num;
4040 	unsigned long	flags;
4041 	int		hird;
4042 	int		ret;
4043 
4044 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4045 			!udev->lpm_capable)
4046 		return -EINVAL;
4047 
4048 	/* we only support lpm for non-hub device connected to root hub yet */
4049 	if (!udev->parent || udev->parent->parent ||
4050 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4051 		return -EINVAL;
4052 
4053 	spin_lock_irqsave(&xhci->lock, flags);
4054 
4055 	/* Look for devices in lpm_failed_devs list */
4056 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4057 			le16_to_cpu(udev->descriptor.idProduct);
4058 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4059 		if (dev_info->dev_id == dev_id) {
4060 			ret = -EINVAL;
4061 			goto finish;
4062 		}
4063 	}
4064 
4065 	port_array = xhci->usb2_ports;
4066 	port_num = udev->portnum - 1;
4067 
4068 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4069 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4070 		ret = -EINVAL;
4071 		goto finish;
4072 	}
4073 
4074 	/*
4075 	 * Test USB 2.0 software LPM.
4076 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4077 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4078 	 * in the June 2011 errata release.
4079 	 */
4080 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4081 	/*
4082 	 * Set L1 Device Slot and HIRD/BESL.
4083 	 * Check device's USB 2.0 extension descriptor to determine whether
4084 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4085 	 */
4086 	pm_addr = port_array[port_num] + PORTPMSC;
4087 	hird = xhci_calculate_hird_besl(xhci, udev);
4088 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4089 	xhci_writel(xhci, temp, pm_addr);
4090 
4091 	/* Set port link state to U2(L1) */
4092 	addr = port_array[port_num];
4093 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4094 
4095 	/* wait for ACK */
4096 	spin_unlock_irqrestore(&xhci->lock, flags);
4097 	msleep(10);
4098 	spin_lock_irqsave(&xhci->lock, flags);
4099 
4100 	/* Check L1 Status */
4101 	ret = xhci_handshake(xhci, pm_addr,
4102 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4103 	if (ret != -ETIMEDOUT) {
4104 		/* enter L1 successfully */
4105 		temp = xhci_readl(xhci, addr);
4106 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4107 				port_num, temp);
4108 		ret = 0;
4109 	} else {
4110 		temp = xhci_readl(xhci, pm_addr);
4111 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4112 				port_num, temp & PORT_L1S_MASK);
4113 		ret = -EINVAL;
4114 	}
4115 
4116 	/* Resume the port */
4117 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4118 
4119 	spin_unlock_irqrestore(&xhci->lock, flags);
4120 	msleep(10);
4121 	spin_lock_irqsave(&xhci->lock, flags);
4122 
4123 	/* Clear PLC */
4124 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4125 
4126 	/* Check PORTSC to make sure the device is in the right state */
4127 	if (!ret) {
4128 		temp = xhci_readl(xhci, addr);
4129 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
4130 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4131 				(temp & PORT_PLS_MASK) != XDEV_U0) {
4132 			xhci_dbg(xhci, "port L1 resume fail\n");
4133 			ret = -EINVAL;
4134 		}
4135 	}
4136 
4137 	if (ret) {
4138 		/* Insert dev to lpm_failed_devs list */
4139 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
4140 				"re-enumerate\n");
4141 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4142 		if (!dev_info) {
4143 			ret = -ENOMEM;
4144 			goto finish;
4145 		}
4146 		dev_info->dev_id = dev_id;
4147 		INIT_LIST_HEAD(&dev_info->list);
4148 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
4149 	} else {
4150 		xhci_ring_device(xhci, udev->slot_id);
4151 	}
4152 
4153 finish:
4154 	spin_unlock_irqrestore(&xhci->lock, flags);
4155 	return ret;
4156 }
4157 
4158 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4159 			struct usb_device *udev, int enable)
4160 {
4161 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4162 	__le32 __iomem	**port_array;
4163 	__le32 __iomem	*pm_addr, *hlpm_addr;
4164 	u32		pm_val, hlpm_val, field;
4165 	unsigned int	port_num;
4166 	unsigned long	flags;
4167 	int		hird, exit_latency;
4168 	int		ret;
4169 
4170 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4171 			!udev->lpm_capable)
4172 		return -EPERM;
4173 
4174 	if (!udev->parent || udev->parent->parent ||
4175 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4176 		return -EPERM;
4177 
4178 	if (udev->usb2_hw_lpm_capable != 1)
4179 		return -EPERM;
4180 
4181 	spin_lock_irqsave(&xhci->lock, flags);
4182 
4183 	port_array = xhci->usb2_ports;
4184 	port_num = udev->portnum - 1;
4185 	pm_addr = port_array[port_num] + PORTPMSC;
4186 	pm_val = xhci_readl(xhci, pm_addr);
4187 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4188 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4189 
4190 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4191 			enable ? "enable" : "disable", port_num);
4192 
4193 	if (enable) {
4194 		/* Host supports BESL timeout instead of HIRD */
4195 		if (udev->usb2_hw_lpm_besl_capable) {
4196 			/* if device doesn't have a preferred BESL value use a
4197 			 * default one which works with mixed HIRD and BESL
4198 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4199 			 */
4200 			if ((field & USB_BESL_SUPPORT) &&
4201 			    (field & USB_BESL_BASELINE_VALID))
4202 				hird = USB_GET_BESL_BASELINE(field);
4203 			else
4204 				hird = udev->l1_params.besl;
4205 
4206 			exit_latency = xhci_besl_encoding[hird];
4207 			spin_unlock_irqrestore(&xhci->lock, flags);
4208 
4209 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4210 			 * input context for link powermanagement evaluate
4211 			 * context commands. It is protected by hcd->bandwidth
4212 			 * mutex and is shared by all devices. We need to set
4213 			 * the max ext latency in USB 2 BESL LPM as well, so
4214 			 * use the same mutex and xhci_change_max_exit_latency()
4215 			 */
4216 			mutex_lock(hcd->bandwidth_mutex);
4217 			ret = xhci_change_max_exit_latency(xhci, udev,
4218 							   exit_latency);
4219 			mutex_unlock(hcd->bandwidth_mutex);
4220 
4221 			if (ret < 0)
4222 				return ret;
4223 			spin_lock_irqsave(&xhci->lock, flags);
4224 
4225 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4226 			xhci_writel(xhci, hlpm_val, hlpm_addr);
4227 			/* flush write */
4228 			xhci_readl(xhci, hlpm_addr);
4229 		} else {
4230 			hird = xhci_calculate_hird_besl(xhci, udev);
4231 		}
4232 
4233 		pm_val &= ~PORT_HIRD_MASK;
4234 		pm_val |= PORT_HIRD(hird) | PORT_RWE;
4235 		xhci_writel(xhci, pm_val, pm_addr);
4236 		pm_val = xhci_readl(xhci, pm_addr);
4237 		pm_val |= PORT_HLE;
4238 		xhci_writel(xhci, pm_val, pm_addr);
4239 		/* flush write */
4240 		xhci_readl(xhci, pm_addr);
4241 	} else {
4242 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4243 		xhci_writel(xhci, pm_val, pm_addr);
4244 		/* flush write */
4245 		xhci_readl(xhci, pm_addr);
4246 		if (udev->usb2_hw_lpm_besl_capable) {
4247 			spin_unlock_irqrestore(&xhci->lock, flags);
4248 			mutex_lock(hcd->bandwidth_mutex);
4249 			xhci_change_max_exit_latency(xhci, udev, 0);
4250 			mutex_unlock(hcd->bandwidth_mutex);
4251 			return 0;
4252 		}
4253 	}
4254 
4255 	spin_unlock_irqrestore(&xhci->lock, flags);
4256 	return 0;
4257 }
4258 
4259 /* check if a usb2 port supports a given extened capability protocol
4260  * only USB2 ports extended protocol capability values are cached.
4261  * Return 1 if capability is supported
4262  */
4263 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4264 					   unsigned capability)
4265 {
4266 	u32 port_offset, port_count;
4267 	int i;
4268 
4269 	for (i = 0; i < xhci->num_ext_caps; i++) {
4270 		if (xhci->ext_caps[i] & capability) {
4271 			/* port offsets starts at 1 */
4272 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4273 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4274 			if (port >= port_offset &&
4275 			    port < port_offset + port_count)
4276 				return 1;
4277 		}
4278 	}
4279 	return 0;
4280 }
4281 
4282 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4283 {
4284 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4285 	int		ret;
4286 	int		portnum = udev->portnum - 1;
4287 
4288 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4289 	if (!ret) {
4290 		xhci_dbg(xhci, "software LPM test succeed\n");
4291 		if (xhci->hw_lpm_support == 1 &&
4292 		    xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4293 			udev->usb2_hw_lpm_capable = 1;
4294 			udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4295 			udev->l1_params.besl = XHCI_DEFAULT_BESL;
4296 			if (xhci_check_usb2_port_capability(xhci, portnum,
4297 							    XHCI_BLC))
4298 				udev->usb2_hw_lpm_besl_capable = 1;
4299 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4300 			if (!ret)
4301 				udev->usb2_hw_lpm_enabled = 1;
4302 		}
4303 	}
4304 
4305 	return 0;
4306 }
4307 
4308 #else
4309 
4310 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4311 				struct usb_device *udev, int enable)
4312 {
4313 	return 0;
4314 }
4315 
4316 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4317 {
4318 	return 0;
4319 }
4320 
4321 #endif /* CONFIG_PM_RUNTIME */
4322 
4323 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4324 
4325 #ifdef CONFIG_PM
4326 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4327 static unsigned long long xhci_service_interval_to_ns(
4328 		struct usb_endpoint_descriptor *desc)
4329 {
4330 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4331 }
4332 
4333 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4334 		enum usb3_link_state state)
4335 {
4336 	unsigned long long sel;
4337 	unsigned long long pel;
4338 	unsigned int max_sel_pel;
4339 	char *state_name;
4340 
4341 	switch (state) {
4342 	case USB3_LPM_U1:
4343 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4344 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4345 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4346 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4347 		state_name = "U1";
4348 		break;
4349 	case USB3_LPM_U2:
4350 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4351 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4352 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4353 		state_name = "U2";
4354 		break;
4355 	default:
4356 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4357 				__func__);
4358 		return USB3_LPM_DISABLED;
4359 	}
4360 
4361 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4362 		return USB3_LPM_DEVICE_INITIATED;
4363 
4364 	if (sel > max_sel_pel)
4365 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4366 				"due to long SEL %llu ms\n",
4367 				state_name, sel);
4368 	else
4369 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4370 				"due to long PEL %llu ms\n",
4371 				state_name, pel);
4372 	return USB3_LPM_DISABLED;
4373 }
4374 
4375 /* Returns the hub-encoded U1 timeout value.
4376  * The U1 timeout should be the maximum of the following values:
4377  *  - For control endpoints, U1 system exit latency (SEL) * 3
4378  *  - For bulk endpoints, U1 SEL * 5
4379  *  - For interrupt endpoints:
4380  *    - Notification EPs, U1 SEL * 3
4381  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4382  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4383  */
4384 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4385 		struct usb_endpoint_descriptor *desc)
4386 {
4387 	unsigned long long timeout_ns;
4388 	int ep_type;
4389 	int intr_type;
4390 
4391 	ep_type = usb_endpoint_type(desc);
4392 	switch (ep_type) {
4393 	case USB_ENDPOINT_XFER_CONTROL:
4394 		timeout_ns = udev->u1_params.sel * 3;
4395 		break;
4396 	case USB_ENDPOINT_XFER_BULK:
4397 		timeout_ns = udev->u1_params.sel * 5;
4398 		break;
4399 	case USB_ENDPOINT_XFER_INT:
4400 		intr_type = usb_endpoint_interrupt_type(desc);
4401 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4402 			timeout_ns = udev->u1_params.sel * 3;
4403 			break;
4404 		}
4405 		/* Otherwise the calculation is the same as isoc eps */
4406 	case USB_ENDPOINT_XFER_ISOC:
4407 		timeout_ns = xhci_service_interval_to_ns(desc);
4408 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4409 		if (timeout_ns < udev->u1_params.sel * 2)
4410 			timeout_ns = udev->u1_params.sel * 2;
4411 		break;
4412 	default:
4413 		return 0;
4414 	}
4415 
4416 	/* The U1 timeout is encoded in 1us intervals. */
4417 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4418 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4419 	if (timeout_ns == USB3_LPM_DISABLED)
4420 		timeout_ns++;
4421 
4422 	/* If the necessary timeout value is bigger than what we can set in the
4423 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4424 	 */
4425 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4426 		return timeout_ns;
4427 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4428 			"due to long timeout %llu ms\n", timeout_ns);
4429 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4430 }
4431 
4432 /* Returns the hub-encoded U2 timeout value.
4433  * The U2 timeout should be the maximum of:
4434  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4435  *  - largest bInterval of any active periodic endpoint (to avoid going
4436  *    into lower power link states between intervals).
4437  *  - the U2 Exit Latency of the device
4438  */
4439 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4440 		struct usb_endpoint_descriptor *desc)
4441 {
4442 	unsigned long long timeout_ns;
4443 	unsigned long long u2_del_ns;
4444 
4445 	timeout_ns = 10 * 1000 * 1000;
4446 
4447 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4448 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4449 		timeout_ns = xhci_service_interval_to_ns(desc);
4450 
4451 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4452 	if (u2_del_ns > timeout_ns)
4453 		timeout_ns = u2_del_ns;
4454 
4455 	/* The U2 timeout is encoded in 256us intervals */
4456 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4457 	/* If the necessary timeout value is bigger than what we can set in the
4458 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4459 	 */
4460 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4461 		return timeout_ns;
4462 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4463 			"due to long timeout %llu ms\n", timeout_ns);
4464 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4465 }
4466 
4467 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4468 		struct usb_device *udev,
4469 		struct usb_endpoint_descriptor *desc,
4470 		enum usb3_link_state state,
4471 		u16 *timeout)
4472 {
4473 	if (state == USB3_LPM_U1) {
4474 		if (xhci->quirks & XHCI_INTEL_HOST)
4475 			return xhci_calculate_intel_u1_timeout(udev, desc);
4476 	} else {
4477 		if (xhci->quirks & XHCI_INTEL_HOST)
4478 			return xhci_calculate_intel_u2_timeout(udev, desc);
4479 	}
4480 
4481 	return USB3_LPM_DISABLED;
4482 }
4483 
4484 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4485 		struct usb_device *udev,
4486 		struct usb_endpoint_descriptor *desc,
4487 		enum usb3_link_state state,
4488 		u16 *timeout)
4489 {
4490 	u16 alt_timeout;
4491 
4492 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4493 		desc, state, timeout);
4494 
4495 	/* If we found we can't enable hub-initiated LPM, or
4496 	 * the U1 or U2 exit latency was too high to allow
4497 	 * device-initiated LPM as well, just stop searching.
4498 	 */
4499 	if (alt_timeout == USB3_LPM_DISABLED ||
4500 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4501 		*timeout = alt_timeout;
4502 		return -E2BIG;
4503 	}
4504 	if (alt_timeout > *timeout)
4505 		*timeout = alt_timeout;
4506 	return 0;
4507 }
4508 
4509 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4510 		struct usb_device *udev,
4511 		struct usb_host_interface *alt,
4512 		enum usb3_link_state state,
4513 		u16 *timeout)
4514 {
4515 	int j;
4516 
4517 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4518 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4519 					&alt->endpoint[j].desc, state, timeout))
4520 			return -E2BIG;
4521 		continue;
4522 	}
4523 	return 0;
4524 }
4525 
4526 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4527 		enum usb3_link_state state)
4528 {
4529 	struct usb_device *parent;
4530 	unsigned int num_hubs;
4531 
4532 	if (state == USB3_LPM_U2)
4533 		return 0;
4534 
4535 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4536 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4537 			parent = parent->parent)
4538 		num_hubs++;
4539 
4540 	if (num_hubs < 2)
4541 		return 0;
4542 
4543 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4544 			" below second-tier hub.\n");
4545 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4546 			"to decrease power consumption.\n");
4547 	return -E2BIG;
4548 }
4549 
4550 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4551 		struct usb_device *udev,
4552 		enum usb3_link_state state)
4553 {
4554 	if (xhci->quirks & XHCI_INTEL_HOST)
4555 		return xhci_check_intel_tier_policy(udev, state);
4556 	return -EINVAL;
4557 }
4558 
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560  * If the tier check or timeout setting functions return with a non-zero exit
4561  * code, that means the timeout value has been finalized and we shouldn't look
4562  * at any more endpoints.
4563  */
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565 			struct usb_device *udev, enum usb3_link_state state)
4566 {
4567 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568 	struct usb_host_config *config;
4569 	char *state_name;
4570 	int i;
4571 	u16 timeout = USB3_LPM_DISABLED;
4572 
4573 	if (state == USB3_LPM_U1)
4574 		state_name = "U1";
4575 	else if (state == USB3_LPM_U2)
4576 		state_name = "U2";
4577 	else {
4578 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4579 				state);
4580 		return timeout;
4581 	}
4582 
4583 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4584 		return timeout;
4585 
4586 	/* Gather some information about the currently installed configuration
4587 	 * and alternate interface settings.
4588 	 */
4589 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4590 			state, &timeout))
4591 		return timeout;
4592 
4593 	config = udev->actconfig;
4594 	if (!config)
4595 		return timeout;
4596 
4597 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4598 		struct usb_driver *driver;
4599 		struct usb_interface *intf = config->interface[i];
4600 
4601 		if (!intf)
4602 			continue;
4603 
4604 		/* Check if any currently bound drivers want hub-initiated LPM
4605 		 * disabled.
4606 		 */
4607 		if (intf->dev.driver) {
4608 			driver = to_usb_driver(intf->dev.driver);
4609 			if (driver && driver->disable_hub_initiated_lpm) {
4610 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611 						"at request of driver %s\n",
4612 						state_name, driver->name);
4613 				return xhci_get_timeout_no_hub_lpm(udev, state);
4614 			}
4615 		}
4616 
4617 		/* Not sure how this could happen... */
4618 		if (!intf->cur_altsetting)
4619 			continue;
4620 
4621 		if (xhci_update_timeout_for_interface(xhci, udev,
4622 					intf->cur_altsetting,
4623 					state, &timeout))
4624 			return timeout;
4625 	}
4626 	return timeout;
4627 }
4628 
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630 		enum usb3_link_state state_changed,
4631 		u16 hub_encoded_timeout)
4632 {
4633 	unsigned long long u1_mel_us = 0;
4634 	unsigned long long u2_mel_us = 0;
4635 	unsigned long long mel_us = 0;
4636 	bool disabling_u1;
4637 	bool disabling_u2;
4638 	bool enabling_u1;
4639 	bool enabling_u2;
4640 
4641 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642 			hub_encoded_timeout == USB3_LPM_DISABLED);
4643 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644 			hub_encoded_timeout == USB3_LPM_DISABLED);
4645 
4646 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 			hub_encoded_timeout != USB3_LPM_DISABLED);
4648 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 			hub_encoded_timeout != USB3_LPM_DISABLED);
4650 
4651 	/* If U1 was already enabled and we're not disabling it,
4652 	 * or we're going to enable U1, account for the U1 max exit latency.
4653 	 */
4654 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4655 			enabling_u1)
4656 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4658 			enabling_u2)
4659 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4660 
4661 	if (u1_mel_us > u2_mel_us)
4662 		mel_us = u1_mel_us;
4663 	else
4664 		mel_us = u2_mel_us;
4665 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4666 	if (mel_us > MAX_EXIT) {
4667 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668 				"is too big.\n", mel_us);
4669 		return -E2BIG;
4670 	}
4671 	return mel_us;
4672 }
4673 
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676 			struct usb_device *udev, enum usb3_link_state state)
4677 {
4678 	struct xhci_hcd	*xhci;
4679 	u16 hub_encoded_timeout;
4680 	int mel;
4681 	int ret;
4682 
4683 	xhci = hcd_to_xhci(hcd);
4684 	/* The LPM timeout values are pretty host-controller specific, so don't
4685 	 * enable hub-initiated timeouts unless the vendor has provided
4686 	 * information about their timeout algorithm.
4687 	 */
4688 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689 			!xhci->devs[udev->slot_id])
4690 		return USB3_LPM_DISABLED;
4691 
4692 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4694 	if (mel < 0) {
4695 		/* Max Exit Latency is too big, disable LPM. */
4696 		hub_encoded_timeout = USB3_LPM_DISABLED;
4697 		mel = 0;
4698 	}
4699 
4700 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4701 	if (ret)
4702 		return ret;
4703 	return hub_encoded_timeout;
4704 }
4705 
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 			struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 	struct xhci_hcd	*xhci;
4710 	u16 mel;
4711 	int ret;
4712 
4713 	xhci = hcd_to_xhci(hcd);
4714 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4715 			!xhci->devs[udev->slot_id])
4716 		return 0;
4717 
4718 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4719 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4720 	if (ret)
4721 		return ret;
4722 	return 0;
4723 }
4724 #else /* CONFIG_PM */
4725 
4726 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4727 			struct usb_device *udev, enum usb3_link_state state)
4728 {
4729 	return USB3_LPM_DISABLED;
4730 }
4731 
4732 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4733 			struct usb_device *udev, enum usb3_link_state state)
4734 {
4735 	return 0;
4736 }
4737 #endif	/* CONFIG_PM */
4738 
4739 /*-------------------------------------------------------------------------*/
4740 
4741 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4742  * internal data structures for the device.
4743  */
4744 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4745 			struct usb_tt *tt, gfp_t mem_flags)
4746 {
4747 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4748 	struct xhci_virt_device *vdev;
4749 	struct xhci_command *config_cmd;
4750 	struct xhci_input_control_ctx *ctrl_ctx;
4751 	struct xhci_slot_ctx *slot_ctx;
4752 	unsigned long flags;
4753 	unsigned think_time;
4754 	int ret;
4755 
4756 	/* Ignore root hubs */
4757 	if (!hdev->parent)
4758 		return 0;
4759 
4760 	vdev = xhci->devs[hdev->slot_id];
4761 	if (!vdev) {
4762 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4763 		return -EINVAL;
4764 	}
4765 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4766 	if (!config_cmd) {
4767 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4768 		return -ENOMEM;
4769 	}
4770 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4771 	if (!ctrl_ctx) {
4772 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4773 				__func__);
4774 		xhci_free_command(xhci, config_cmd);
4775 		return -ENOMEM;
4776 	}
4777 
4778 	spin_lock_irqsave(&xhci->lock, flags);
4779 	if (hdev->speed == USB_SPEED_HIGH &&
4780 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4781 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4782 		xhci_free_command(xhci, config_cmd);
4783 		spin_unlock_irqrestore(&xhci->lock, flags);
4784 		return -ENOMEM;
4785 	}
4786 
4787 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4788 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4789 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4790 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4791 	if (tt->multi)
4792 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4793 	if (xhci->hci_version > 0x95) {
4794 		xhci_dbg(xhci, "xHCI version %x needs hub "
4795 				"TT think time and number of ports\n",
4796 				(unsigned int) xhci->hci_version);
4797 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4798 		/* Set TT think time - convert from ns to FS bit times.
4799 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4800 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4801 		 *
4802 		 * xHCI 1.0: this field shall be 0 if the device is not a
4803 		 * High-spped hub.
4804 		 */
4805 		think_time = tt->think_time;
4806 		if (think_time != 0)
4807 			think_time = (think_time / 666) - 1;
4808 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4809 			slot_ctx->tt_info |=
4810 				cpu_to_le32(TT_THINK_TIME(think_time));
4811 	} else {
4812 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4813 				"TT think time or number of ports\n",
4814 				(unsigned int) xhci->hci_version);
4815 	}
4816 	slot_ctx->dev_state = 0;
4817 	spin_unlock_irqrestore(&xhci->lock, flags);
4818 
4819 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4820 			(xhci->hci_version > 0x95) ?
4821 			"configure endpoint" : "evaluate context");
4822 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4823 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4824 
4825 	/* Issue and wait for the configure endpoint or
4826 	 * evaluate context command.
4827 	 */
4828 	if (xhci->hci_version > 0x95)
4829 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4830 				false, false);
4831 	else
4832 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4833 				true, false);
4834 
4835 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4836 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4837 
4838 	xhci_free_command(xhci, config_cmd);
4839 	return ret;
4840 }
4841 
4842 int xhci_get_frame(struct usb_hcd *hcd)
4843 {
4844 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4845 	/* EHCI mods by the periodic size.  Why? */
4846 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4847 }
4848 
4849 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4850 {
4851 	struct xhci_hcd		*xhci;
4852 	struct device		*dev = hcd->self.controller;
4853 	int			retval;
4854 
4855 	/* Accept arbitrarily long scatter-gather lists */
4856 	hcd->self.sg_tablesize = ~0;
4857 
4858 	/* support to build packet from discontinuous buffers */
4859 	hcd->self.no_sg_constraint = 1;
4860 
4861 	/* XHCI controllers don't stop the ep queue on short packets :| */
4862 	hcd->self.no_stop_on_short = 1;
4863 
4864 	if (usb_hcd_is_primary_hcd(hcd)) {
4865 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4866 		if (!xhci)
4867 			return -ENOMEM;
4868 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4869 		xhci->main_hcd = hcd;
4870 		/* Mark the first roothub as being USB 2.0.
4871 		 * The xHCI driver will register the USB 3.0 roothub.
4872 		 */
4873 		hcd->speed = HCD_USB2;
4874 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4875 		/*
4876 		 * USB 2.0 roothub under xHCI has an integrated TT,
4877 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4878 		 * companion controller.
4879 		 */
4880 		hcd->has_tt = 1;
4881 	} else {
4882 		/* xHCI private pointer was set in xhci_pci_probe for the second
4883 		 * registered roothub.
4884 		 */
4885 		return 0;
4886 	}
4887 
4888 	xhci->cap_regs = hcd->regs;
4889 	xhci->op_regs = hcd->regs +
4890 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4891 	xhci->run_regs = hcd->regs +
4892 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4893 	/* Cache read-only capability registers */
4894 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4895 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4896 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4897 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4898 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4899 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4900 	xhci_print_registers(xhci);
4901 
4902 	get_quirks(dev, xhci);
4903 
4904 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4905 	 * success event after a short transfer. This quirk will ignore such
4906 	 * spurious event.
4907 	 */
4908 	if (xhci->hci_version > 0x96)
4909 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4910 
4911 	/* Make sure the HC is halted. */
4912 	retval = xhci_halt(xhci);
4913 	if (retval)
4914 		goto error;
4915 
4916 	xhci_dbg(xhci, "Resetting HCD\n");
4917 	/* Reset the internal HC memory state and registers. */
4918 	retval = xhci_reset(xhci);
4919 	if (retval)
4920 		goto error;
4921 	xhci_dbg(xhci, "Reset complete\n");
4922 
4923 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4924 	 * if xHC supports 64-bit addressing */
4925 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4926 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4927 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4928 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4929 	}
4930 
4931 	xhci_dbg(xhci, "Calling HCD init\n");
4932 	/* Initialize HCD and host controller data structures. */
4933 	retval = xhci_init(hcd);
4934 	if (retval)
4935 		goto error;
4936 	xhci_dbg(xhci, "Called HCD init\n");
4937 	return 0;
4938 error:
4939 	kfree(xhci);
4940 	return retval;
4941 }
4942 
4943 MODULE_DESCRIPTION(DRIVER_DESC);
4944 MODULE_AUTHOR(DRIVER_AUTHOR);
4945 MODULE_LICENSE("GPL");
4946 
4947 static int __init xhci_hcd_init(void)
4948 {
4949 	int retval;
4950 
4951 	retval = xhci_register_pci();
4952 	if (retval < 0) {
4953 		pr_debug("Problem registering PCI driver.\n");
4954 		return retval;
4955 	}
4956 	retval = xhci_register_plat();
4957 	if (retval < 0) {
4958 		pr_debug("Problem registering platform driver.\n");
4959 		goto unreg_pci;
4960 	}
4961 	/*
4962 	 * Check the compiler generated sizes of structures that must be laid
4963 	 * out in specific ways for hardware access.
4964 	 */
4965 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4966 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4967 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4968 	/* xhci_device_control has eight fields, and also
4969 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4970 	 */
4971 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4972 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4973 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4974 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4975 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4976 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4977 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4978 	return 0;
4979 unreg_pci:
4980 	xhci_unregister_pci();
4981 	return retval;
4982 }
4983 module_init(xhci_hcd_init);
4984 
4985 static void __exit xhci_hcd_cleanup(void)
4986 {
4987 	xhci_unregister_pci();
4988 	xhci_unregister_plat();
4989 }
4990 module_exit(xhci_hcd_cleanup);
4991