1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 44 /* 45 * xhci_handshake - spin reading hc until handshake completes or fails 46 * @ptr: address of hc register to be read 47 * @mask: bits to look at in result of read 48 * @done: value of those bits when handshake succeeds 49 * @usec: timeout in microseconds 50 * 51 * Returns negative errno, or zero on success 52 * 53 * Success happens when the "mask" bits have the specified value (hardware 54 * handshake done). There are two failure modes: "usec" have passed (major 55 * hardware flakeout), or the register reads as all-ones (hardware removed). 56 */ 57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 58 u32 mask, u32 done, int usec) 59 { 60 u32 result; 61 62 do { 63 result = xhci_readl(xhci, ptr); 64 if (result == ~(u32)0) /* card removed */ 65 return -ENODEV; 66 result &= mask; 67 if (result == done) 68 return 0; 69 udelay(1); 70 usec--; 71 } while (usec > 0); 72 return -ETIMEDOUT; 73 } 74 75 /* 76 * Disable interrupts and begin the xHCI halting process. 77 */ 78 void xhci_quiesce(struct xhci_hcd *xhci) 79 { 80 u32 halted; 81 u32 cmd; 82 u32 mask; 83 84 mask = ~(XHCI_IRQS); 85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 86 if (!halted) 87 mask &= ~CMD_RUN; 88 89 cmd = xhci_readl(xhci, &xhci->op_regs->command); 90 cmd &= mask; 91 xhci_writel(xhci, cmd, &xhci->op_regs->command); 92 } 93 94 /* 95 * Force HC into halt state. 96 * 97 * Disable any IRQs and clear the run/stop bit. 98 * HC will complete any current and actively pipelined transactions, and 99 * should halt within 16 ms of the run/stop bit being cleared. 100 * Read HC Halted bit in the status register to see when the HC is finished. 101 */ 102 int xhci_halt(struct xhci_hcd *xhci) 103 { 104 int ret; 105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 106 xhci_quiesce(xhci); 107 108 ret = xhci_handshake(xhci, &xhci->op_regs->status, 109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 110 if (!ret) { 111 xhci->xhc_state |= XHCI_STATE_HALTED; 112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 113 } else 114 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 115 XHCI_MAX_HALT_USEC); 116 return ret; 117 } 118 119 /* 120 * Set the run bit and wait for the host to be running. 121 */ 122 static int xhci_start(struct xhci_hcd *xhci) 123 { 124 u32 temp; 125 int ret; 126 127 temp = xhci_readl(xhci, &xhci->op_regs->command); 128 temp |= (CMD_RUN); 129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 130 temp); 131 xhci_writel(xhci, temp, &xhci->op_regs->command); 132 133 /* 134 * Wait for the HCHalted Status bit to be 0 to indicate the host is 135 * running. 136 */ 137 ret = xhci_handshake(xhci, &xhci->op_regs->status, 138 STS_HALT, 0, XHCI_MAX_HALT_USEC); 139 if (ret == -ETIMEDOUT) 140 xhci_err(xhci, "Host took too long to start, " 141 "waited %u microseconds.\n", 142 XHCI_MAX_HALT_USEC); 143 if (!ret) 144 xhci->xhc_state &= ~XHCI_STATE_HALTED; 145 return ret; 146 } 147 148 /* 149 * Reset a halted HC. 150 * 151 * This resets pipelines, timers, counters, state machines, etc. 152 * Transactions will be terminated immediately, and operational registers 153 * will be set to their defaults. 154 */ 155 int xhci_reset(struct xhci_hcd *xhci) 156 { 157 u32 command; 158 u32 state; 159 int ret, i; 160 161 state = xhci_readl(xhci, &xhci->op_regs->status); 162 if ((state & STS_HALT) == 0) { 163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 164 return 0; 165 } 166 167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 168 command = xhci_readl(xhci, &xhci->op_regs->command); 169 command |= CMD_RESET; 170 xhci_writel(xhci, command, &xhci->op_regs->command); 171 172 ret = xhci_handshake(xhci, &xhci->op_regs->command, 173 CMD_RESET, 0, 10 * 1000 * 1000); 174 if (ret) 175 return ret; 176 177 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 178 "Wait for controller to be ready for doorbell rings"); 179 /* 180 * xHCI cannot write to any doorbells or operational registers other 181 * than status until the "Controller Not Ready" flag is cleared. 182 */ 183 ret = xhci_handshake(xhci, &xhci->op_regs->status, 184 STS_CNR, 0, 10 * 1000 * 1000); 185 186 for (i = 0; i < 2; ++i) { 187 xhci->bus_state[i].port_c_suspend = 0; 188 xhci->bus_state[i].suspended_ports = 0; 189 xhci->bus_state[i].resuming_ports = 0; 190 } 191 192 return ret; 193 } 194 195 #ifdef CONFIG_PCI 196 static int xhci_free_msi(struct xhci_hcd *xhci) 197 { 198 int i; 199 200 if (!xhci->msix_entries) 201 return -EINVAL; 202 203 for (i = 0; i < xhci->msix_count; i++) 204 if (xhci->msix_entries[i].vector) 205 free_irq(xhci->msix_entries[i].vector, 206 xhci_to_hcd(xhci)); 207 return 0; 208 } 209 210 /* 211 * Set up MSI 212 */ 213 static int xhci_setup_msi(struct xhci_hcd *xhci) 214 { 215 int ret; 216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 217 218 ret = pci_enable_msi(pdev); 219 if (ret) { 220 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 221 "failed to allocate MSI entry"); 222 return ret; 223 } 224 225 ret = request_irq(pdev->irq, xhci_msi_irq, 226 0, "xhci_hcd", xhci_to_hcd(xhci)); 227 if (ret) { 228 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 229 "disable MSI interrupt"); 230 pci_disable_msi(pdev); 231 } 232 233 return ret; 234 } 235 236 /* 237 * Free IRQs 238 * free all IRQs request 239 */ 240 static void xhci_free_irq(struct xhci_hcd *xhci) 241 { 242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 243 int ret; 244 245 /* return if using legacy interrupt */ 246 if (xhci_to_hcd(xhci)->irq > 0) 247 return; 248 249 ret = xhci_free_msi(xhci); 250 if (!ret) 251 return; 252 if (pdev->irq > 0) 253 free_irq(pdev->irq, xhci_to_hcd(xhci)); 254 255 return; 256 } 257 258 /* 259 * Set up MSI-X 260 */ 261 static int xhci_setup_msix(struct xhci_hcd *xhci) 262 { 263 int i, ret = 0; 264 struct usb_hcd *hcd = xhci_to_hcd(xhci); 265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 266 267 /* 268 * calculate number of msi-x vectors supported. 269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 270 * with max number of interrupters based on the xhci HCSPARAMS1. 271 * - num_online_cpus: maximum msi-x vectors per CPUs core. 272 * Add additional 1 vector to ensure always available interrupt. 273 */ 274 xhci->msix_count = min(num_online_cpus() + 1, 275 HCS_MAX_INTRS(xhci->hcs_params1)); 276 277 xhci->msix_entries = 278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 279 GFP_KERNEL); 280 if (!xhci->msix_entries) { 281 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < xhci->msix_count; i++) { 286 xhci->msix_entries[i].entry = i; 287 xhci->msix_entries[i].vector = 0; 288 } 289 290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 291 if (ret) { 292 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 293 "Failed to enable MSI-X"); 294 goto free_entries; 295 } 296 297 for (i = 0; i < xhci->msix_count; i++) { 298 ret = request_irq(xhci->msix_entries[i].vector, 299 xhci_msi_irq, 300 0, "xhci_hcd", xhci_to_hcd(xhci)); 301 if (ret) 302 goto disable_msix; 303 } 304 305 hcd->msix_enabled = 1; 306 return ret; 307 308 disable_msix: 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 310 xhci_free_irq(xhci); 311 pci_disable_msix(pdev); 312 free_entries: 313 kfree(xhci->msix_entries); 314 xhci->msix_entries = NULL; 315 return ret; 316 } 317 318 /* Free any IRQs and disable MSI-X */ 319 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 320 { 321 struct usb_hcd *hcd = xhci_to_hcd(xhci); 322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 323 324 xhci_free_irq(xhci); 325 326 if (xhci->msix_entries) { 327 pci_disable_msix(pdev); 328 kfree(xhci->msix_entries); 329 xhci->msix_entries = NULL; 330 } else { 331 pci_disable_msi(pdev); 332 } 333 334 hcd->msix_enabled = 0; 335 return; 336 } 337 338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 339 { 340 int i; 341 342 if (xhci->msix_entries) { 343 for (i = 0; i < xhci->msix_count; i++) 344 synchronize_irq(xhci->msix_entries[i].vector); 345 } 346 } 347 348 static int xhci_try_enable_msi(struct usb_hcd *hcd) 349 { 350 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 351 struct pci_dev *pdev; 352 int ret; 353 354 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 355 if (xhci->quirks & XHCI_PLAT) 356 return 0; 357 358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 359 /* 360 * Some Fresco Logic host controllers advertise MSI, but fail to 361 * generate interrupts. Don't even try to enable MSI. 362 */ 363 if (xhci->quirks & XHCI_BROKEN_MSI) 364 goto legacy_irq; 365 366 /* unregister the legacy interrupt */ 367 if (hcd->irq) 368 free_irq(hcd->irq, hcd); 369 hcd->irq = 0; 370 371 ret = xhci_setup_msix(xhci); 372 if (ret) 373 /* fall back to msi*/ 374 ret = xhci_setup_msi(xhci); 375 376 if (!ret) 377 /* hcd->irq is 0, we have MSI */ 378 return 0; 379 380 if (!pdev->irq) { 381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 382 return -EINVAL; 383 } 384 385 legacy_irq: 386 /* fall back to legacy interrupt*/ 387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 388 hcd->irq_descr, hcd); 389 if (ret) { 390 xhci_err(xhci, "request interrupt %d failed\n", 391 pdev->irq); 392 return ret; 393 } 394 hcd->irq = pdev->irq; 395 return 0; 396 } 397 398 #else 399 400 static int xhci_try_enable_msi(struct usb_hcd *hcd) 401 { 402 return 0; 403 } 404 405 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 406 { 407 } 408 409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 410 { 411 } 412 413 #endif 414 415 static void compliance_mode_recovery(unsigned long arg) 416 { 417 struct xhci_hcd *xhci; 418 struct usb_hcd *hcd; 419 u32 temp; 420 int i; 421 422 xhci = (struct xhci_hcd *)arg; 423 424 for (i = 0; i < xhci->num_usb3_ports; i++) { 425 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 427 /* 428 * Compliance Mode Detected. Letting USB Core 429 * handle the Warm Reset 430 */ 431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 432 "Compliance mode detected->port %d", 433 i + 1); 434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 435 "Attempting compliance mode recovery"); 436 hcd = xhci->shared_hcd; 437 438 if (hcd->state == HC_STATE_SUSPENDED) 439 usb_hcd_resume_root_hub(hcd); 440 441 usb_hcd_poll_rh_status(hcd); 442 } 443 } 444 445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 446 mod_timer(&xhci->comp_mode_recovery_timer, 447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 448 } 449 450 /* 451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 452 * that causes ports behind that hardware to enter compliance mode sometimes. 453 * The quirk creates a timer that polls every 2 seconds the link state of 454 * each host controller's port and recovers it by issuing a Warm reset 455 * if Compliance mode is detected, otherwise the port will become "dead" (no 456 * device connections or disconnections will be detected anymore). Becasue no 457 * status event is generated when entering compliance mode (per xhci spec), 458 * this quirk is needed on systems that have the failing hardware installed. 459 */ 460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 461 { 462 xhci->port_status_u0 = 0; 463 init_timer(&xhci->comp_mode_recovery_timer); 464 465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 467 xhci->comp_mode_recovery_timer.expires = jiffies + 468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 469 470 set_timer_slack(&xhci->comp_mode_recovery_timer, 471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 472 add_timer(&xhci->comp_mode_recovery_timer); 473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 474 "Compliance mode recovery timer initialized"); 475 } 476 477 /* 478 * This function identifies the systems that have installed the SN65LVPE502CP 479 * USB3.0 re-driver and that need the Compliance Mode Quirk. 480 * Systems: 481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 482 */ 483 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 484 { 485 const char *dmi_product_name, *dmi_sys_vendor; 486 487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 489 if (!dmi_product_name || !dmi_sys_vendor) 490 return false; 491 492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 493 return false; 494 495 if (strstr(dmi_product_name, "Z420") || 496 strstr(dmi_product_name, "Z620") || 497 strstr(dmi_product_name, "Z820") || 498 strstr(dmi_product_name, "Z1 Workstation")) 499 return true; 500 501 return false; 502 } 503 504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 505 { 506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 507 } 508 509 510 /* 511 * Initialize memory for HCD and xHC (one-time init). 512 * 513 * Program the PAGESIZE register, initialize the device context array, create 514 * device contexts (?), set up a command ring segment (or two?), create event 515 * ring (one for now). 516 */ 517 int xhci_init(struct usb_hcd *hcd) 518 { 519 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 520 int retval = 0; 521 522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 523 spin_lock_init(&xhci->lock); 524 if (xhci->hci_version == 0x95 && link_quirk) { 525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 526 "QUIRK: Not clearing Link TRB chain bits."); 527 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 528 } else { 529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 530 "xHCI doesn't need link TRB QUIRK"); 531 } 532 retval = xhci_mem_init(xhci, GFP_KERNEL); 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 534 535 /* Initializing Compliance Mode Recovery Data If Needed */ 536 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 537 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 538 compliance_mode_recovery_timer_init(xhci); 539 } 540 541 return retval; 542 } 543 544 /*-------------------------------------------------------------------------*/ 545 546 547 static int xhci_run_finished(struct xhci_hcd *xhci) 548 { 549 if (xhci_start(xhci)) { 550 xhci_halt(xhci); 551 return -ENODEV; 552 } 553 xhci->shared_hcd->state = HC_STATE_RUNNING; 554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 555 556 if (xhci->quirks & XHCI_NEC_HOST) 557 xhci_ring_cmd_db(xhci); 558 559 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 560 "Finished xhci_run for USB3 roothub"); 561 return 0; 562 } 563 564 /* 565 * Start the HC after it was halted. 566 * 567 * This function is called by the USB core when the HC driver is added. 568 * Its opposite is xhci_stop(). 569 * 570 * xhci_init() must be called once before this function can be called. 571 * Reset the HC, enable device slot contexts, program DCBAAP, and 572 * set command ring pointer and event ring pointer. 573 * 574 * Setup MSI-X vectors and enable interrupts. 575 */ 576 int xhci_run(struct usb_hcd *hcd) 577 { 578 u32 temp; 579 u64 temp_64; 580 int ret; 581 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 582 583 /* Start the xHCI host controller running only after the USB 2.0 roothub 584 * is setup. 585 */ 586 587 hcd->uses_new_polling = 1; 588 if (!usb_hcd_is_primary_hcd(hcd)) 589 return xhci_run_finished(xhci); 590 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 592 593 ret = xhci_try_enable_msi(hcd); 594 if (ret) 595 return ret; 596 597 xhci_dbg(xhci, "Command ring memory map follows:\n"); 598 xhci_debug_ring(xhci, xhci->cmd_ring); 599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 600 xhci_dbg_cmd_ptrs(xhci); 601 602 xhci_dbg(xhci, "ERST memory map follows:\n"); 603 xhci_dbg_erst(xhci, &xhci->erst); 604 xhci_dbg(xhci, "Event ring:\n"); 605 xhci_debug_ring(xhci, xhci->event_ring); 606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 608 temp_64 &= ~ERST_PTR_MASK; 609 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 613 "// Set the interrupt modulation register"); 614 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 615 temp &= ~ER_IRQ_INTERVAL_MASK; 616 temp |= (u32) 160; 617 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 618 619 /* Set the HCD state before we enable the irqs */ 620 temp = xhci_readl(xhci, &xhci->op_regs->command); 621 temp |= (CMD_EIE); 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "// Enable interrupts, cmd = 0x%x.", temp); 624 xhci_writel(xhci, temp, &xhci->op_regs->command); 625 626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 627 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 630 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 631 &xhci->ir_set->irq_pending); 632 xhci_print_ir_set(xhci, 0); 633 634 if (xhci->quirks & XHCI_NEC_HOST) 635 xhci_queue_vendor_command(xhci, 0, 0, 0, 636 TRB_TYPE(TRB_NEC_GET_FW)); 637 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "Finished xhci_run for USB2 roothub"); 640 return 0; 641 } 642 643 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 644 { 645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 646 647 spin_lock_irq(&xhci->lock); 648 xhci_halt(xhci); 649 650 /* The shared_hcd is going to be deallocated shortly (the USB core only 651 * calls this function when allocation fails in usb_add_hcd(), or 652 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 653 */ 654 xhci->shared_hcd = NULL; 655 spin_unlock_irq(&xhci->lock); 656 } 657 658 /* 659 * Stop xHCI driver. 660 * 661 * This function is called by the USB core when the HC driver is removed. 662 * Its opposite is xhci_run(). 663 * 664 * Disable device contexts, disable IRQs, and quiesce the HC. 665 * Reset the HC, finish any completed transactions, and cleanup memory. 666 */ 667 void xhci_stop(struct usb_hcd *hcd) 668 { 669 u32 temp; 670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 671 672 if (!usb_hcd_is_primary_hcd(hcd)) { 673 xhci_only_stop_hcd(xhci->shared_hcd); 674 return; 675 } 676 677 spin_lock_irq(&xhci->lock); 678 /* Make sure the xHC is halted for a USB3 roothub 679 * (xhci_stop() could be called as part of failed init). 680 */ 681 xhci_halt(xhci); 682 xhci_reset(xhci); 683 spin_unlock_irq(&xhci->lock); 684 685 xhci_cleanup_msix(xhci); 686 687 /* Deleting Compliance Mode Recovery Timer */ 688 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 689 (!(xhci_all_ports_seen_u0(xhci)))) { 690 del_timer_sync(&xhci->comp_mode_recovery_timer); 691 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 692 "%s: compliance mode recovery timer deleted", 693 __func__); 694 } 695 696 if (xhci->quirks & XHCI_AMD_PLL_FIX) 697 usb_amd_dev_put(); 698 699 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 700 "// Disabling event ring interrupts"); 701 temp = xhci_readl(xhci, &xhci->op_regs->status); 702 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 703 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 704 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 705 &xhci->ir_set->irq_pending); 706 xhci_print_ir_set(xhci, 0); 707 708 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 709 xhci_mem_cleanup(xhci); 710 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 711 "xhci_stop completed - status = %x", 712 xhci_readl(xhci, &xhci->op_regs->status)); 713 } 714 715 /* 716 * Shutdown HC (not bus-specific) 717 * 718 * This is called when the machine is rebooting or halting. We assume that the 719 * machine will be powered off, and the HC's internal state will be reset. 720 * Don't bother to free memory. 721 * 722 * This will only ever be called with the main usb_hcd (the USB3 roothub). 723 */ 724 void xhci_shutdown(struct usb_hcd *hcd) 725 { 726 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 727 728 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 729 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 730 731 spin_lock_irq(&xhci->lock); 732 xhci_halt(xhci); 733 spin_unlock_irq(&xhci->lock); 734 735 xhci_cleanup_msix(xhci); 736 737 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 738 "xhci_shutdown completed - status = %x", 739 xhci_readl(xhci, &xhci->op_regs->status)); 740 } 741 742 #ifdef CONFIG_PM 743 static void xhci_save_registers(struct xhci_hcd *xhci) 744 { 745 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 746 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 747 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 748 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 749 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 750 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 751 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 752 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 753 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 754 } 755 756 static void xhci_restore_registers(struct xhci_hcd *xhci) 757 { 758 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 759 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 760 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 761 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 762 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 763 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 764 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 765 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 766 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 767 } 768 769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 770 { 771 u64 val_64; 772 773 /* step 2: initialize command ring buffer */ 774 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 775 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 776 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 777 xhci->cmd_ring->dequeue) & 778 (u64) ~CMD_RING_RSVD_BITS) | 779 xhci->cmd_ring->cycle_state; 780 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 781 "// Setting command ring address to 0x%llx", 782 (long unsigned long) val_64); 783 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 784 } 785 786 /* 787 * The whole command ring must be cleared to zero when we suspend the host. 788 * 789 * The host doesn't save the command ring pointer in the suspend well, so we 790 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 791 * aligned, because of the reserved bits in the command ring dequeue pointer 792 * register. Therefore, we can't just set the dequeue pointer back in the 793 * middle of the ring (TRBs are 16-byte aligned). 794 */ 795 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 796 { 797 struct xhci_ring *ring; 798 struct xhci_segment *seg; 799 800 ring = xhci->cmd_ring; 801 seg = ring->deq_seg; 802 do { 803 memset(seg->trbs, 0, 804 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 805 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 806 cpu_to_le32(~TRB_CYCLE); 807 seg = seg->next; 808 } while (seg != ring->deq_seg); 809 810 /* Reset the software enqueue and dequeue pointers */ 811 ring->deq_seg = ring->first_seg; 812 ring->dequeue = ring->first_seg->trbs; 813 ring->enq_seg = ring->deq_seg; 814 ring->enqueue = ring->dequeue; 815 816 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 817 /* 818 * Ring is now zeroed, so the HW should look for change of ownership 819 * when the cycle bit is set to 1. 820 */ 821 ring->cycle_state = 1; 822 823 /* 824 * Reset the hardware dequeue pointer. 825 * Yes, this will need to be re-written after resume, but we're paranoid 826 * and want to make sure the hardware doesn't access bogus memory 827 * because, say, the BIOS or an SMI started the host without changing 828 * the command ring pointers. 829 */ 830 xhci_set_cmd_ring_deq(xhci); 831 } 832 833 /* 834 * Stop HC (not bus-specific) 835 * 836 * This is called when the machine transition into S3/S4 mode. 837 * 838 */ 839 int xhci_suspend(struct xhci_hcd *xhci) 840 { 841 int rc = 0; 842 struct usb_hcd *hcd = xhci_to_hcd(xhci); 843 u32 command; 844 845 if (hcd->state != HC_STATE_SUSPENDED || 846 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 847 return -EINVAL; 848 849 /* Don't poll the roothubs on bus suspend. */ 850 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 851 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 852 del_timer_sync(&hcd->rh_timer); 853 854 spin_lock_irq(&xhci->lock); 855 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 856 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 857 /* step 1: stop endpoint */ 858 /* skipped assuming that port suspend has done */ 859 860 /* step 2: clear Run/Stop bit */ 861 command = xhci_readl(xhci, &xhci->op_regs->command); 862 command &= ~CMD_RUN; 863 xhci_writel(xhci, command, &xhci->op_regs->command); 864 if (xhci_handshake(xhci, &xhci->op_regs->status, 865 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 866 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 867 spin_unlock_irq(&xhci->lock); 868 return -ETIMEDOUT; 869 } 870 xhci_clear_command_ring(xhci); 871 872 /* step 3: save registers */ 873 xhci_save_registers(xhci); 874 875 /* step 4: set CSS flag */ 876 command = xhci_readl(xhci, &xhci->op_regs->command); 877 command |= CMD_CSS; 878 xhci_writel(xhci, command, &xhci->op_regs->command); 879 if (xhci_handshake(xhci, &xhci->op_regs->status, 880 STS_SAVE, 0, 10 * 1000)) { 881 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 882 spin_unlock_irq(&xhci->lock); 883 return -ETIMEDOUT; 884 } 885 spin_unlock_irq(&xhci->lock); 886 887 /* 888 * Deleting Compliance Mode Recovery Timer because the xHCI Host 889 * is about to be suspended. 890 */ 891 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 892 (!(xhci_all_ports_seen_u0(xhci)))) { 893 del_timer_sync(&xhci->comp_mode_recovery_timer); 894 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 895 "%s: compliance mode recovery timer deleted", 896 __func__); 897 } 898 899 /* step 5: remove core well power */ 900 /* synchronize irq when using MSI-X */ 901 xhci_msix_sync_irqs(xhci); 902 903 return rc; 904 } 905 906 /* 907 * start xHC (not bus-specific) 908 * 909 * This is called when the machine transition from S3/S4 mode. 910 * 911 */ 912 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 913 { 914 u32 command, temp = 0; 915 struct usb_hcd *hcd = xhci_to_hcd(xhci); 916 struct usb_hcd *secondary_hcd; 917 int retval = 0; 918 bool comp_timer_running = false; 919 920 /* Wait a bit if either of the roothubs need to settle from the 921 * transition into bus suspend. 922 */ 923 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 924 time_before(jiffies, 925 xhci->bus_state[1].next_statechange)) 926 msleep(100); 927 928 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 930 931 spin_lock_irq(&xhci->lock); 932 if (xhci->quirks & XHCI_RESET_ON_RESUME) 933 hibernated = true; 934 935 if (!hibernated) { 936 /* step 1: restore register */ 937 xhci_restore_registers(xhci); 938 /* step 2: initialize command ring buffer */ 939 xhci_set_cmd_ring_deq(xhci); 940 /* step 3: restore state and start state*/ 941 /* step 3: set CRS flag */ 942 command = xhci_readl(xhci, &xhci->op_regs->command); 943 command |= CMD_CRS; 944 xhci_writel(xhci, command, &xhci->op_regs->command); 945 if (xhci_handshake(xhci, &xhci->op_regs->status, 946 STS_RESTORE, 0, 10 * 1000)) { 947 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 948 spin_unlock_irq(&xhci->lock); 949 return -ETIMEDOUT; 950 } 951 temp = xhci_readl(xhci, &xhci->op_regs->status); 952 } 953 954 /* If restore operation fails, re-initialize the HC during resume */ 955 if ((temp & STS_SRE) || hibernated) { 956 957 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 958 !(xhci_all_ports_seen_u0(xhci))) { 959 del_timer_sync(&xhci->comp_mode_recovery_timer); 960 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 961 "Compliance Mode Recovery Timer deleted!"); 962 } 963 964 /* Let the USB core know _both_ roothubs lost power. */ 965 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 966 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 967 968 xhci_dbg(xhci, "Stop HCD\n"); 969 xhci_halt(xhci); 970 xhci_reset(xhci); 971 spin_unlock_irq(&xhci->lock); 972 xhci_cleanup_msix(xhci); 973 974 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 975 temp = xhci_readl(xhci, &xhci->op_regs->status); 976 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 977 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 978 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 979 &xhci->ir_set->irq_pending); 980 xhci_print_ir_set(xhci, 0); 981 982 xhci_dbg(xhci, "cleaning up memory\n"); 983 xhci_mem_cleanup(xhci); 984 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 985 xhci_readl(xhci, &xhci->op_regs->status)); 986 987 /* USB core calls the PCI reinit and start functions twice: 988 * first with the primary HCD, and then with the secondary HCD. 989 * If we don't do the same, the host will never be started. 990 */ 991 if (!usb_hcd_is_primary_hcd(hcd)) 992 secondary_hcd = hcd; 993 else 994 secondary_hcd = xhci->shared_hcd; 995 996 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 997 retval = xhci_init(hcd->primary_hcd); 998 if (retval) 999 return retval; 1000 comp_timer_running = true; 1001 1002 xhci_dbg(xhci, "Start the primary HCD\n"); 1003 retval = xhci_run(hcd->primary_hcd); 1004 if (!retval) { 1005 xhci_dbg(xhci, "Start the secondary HCD\n"); 1006 retval = xhci_run(secondary_hcd); 1007 } 1008 hcd->state = HC_STATE_SUSPENDED; 1009 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1010 goto done; 1011 } 1012 1013 /* step 4: set Run/Stop bit */ 1014 command = xhci_readl(xhci, &xhci->op_regs->command); 1015 command |= CMD_RUN; 1016 xhci_writel(xhci, command, &xhci->op_regs->command); 1017 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1018 0, 250 * 1000); 1019 1020 /* step 5: walk topology and initialize portsc, 1021 * portpmsc and portli 1022 */ 1023 /* this is done in bus_resume */ 1024 1025 /* step 6: restart each of the previously 1026 * Running endpoints by ringing their doorbells 1027 */ 1028 1029 spin_unlock_irq(&xhci->lock); 1030 1031 done: 1032 if (retval == 0) { 1033 usb_hcd_resume_root_hub(hcd); 1034 usb_hcd_resume_root_hub(xhci->shared_hcd); 1035 } 1036 1037 /* 1038 * If system is subject to the Quirk, Compliance Mode Timer needs to 1039 * be re-initialized Always after a system resume. Ports are subject 1040 * to suffer the Compliance Mode issue again. It doesn't matter if 1041 * ports have entered previously to U0 before system's suspension. 1042 */ 1043 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1044 compliance_mode_recovery_timer_init(xhci); 1045 1046 /* Re-enable port polling. */ 1047 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1048 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1049 usb_hcd_poll_rh_status(hcd); 1050 1051 return retval; 1052 } 1053 #endif /* CONFIG_PM */ 1054 1055 /*-------------------------------------------------------------------------*/ 1056 1057 /** 1058 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1059 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1060 * value to right shift 1 for the bitmask. 1061 * 1062 * Index = (epnum * 2) + direction - 1, 1063 * where direction = 0 for OUT, 1 for IN. 1064 * For control endpoints, the IN index is used (OUT index is unused), so 1065 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1066 */ 1067 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1068 { 1069 unsigned int index; 1070 if (usb_endpoint_xfer_control(desc)) 1071 index = (unsigned int) (usb_endpoint_num(desc)*2); 1072 else 1073 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1074 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1075 return index; 1076 } 1077 1078 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1079 * address from the XHCI endpoint index. 1080 */ 1081 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1082 { 1083 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1084 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1085 return direction | number; 1086 } 1087 1088 /* Find the flag for this endpoint (for use in the control context). Use the 1089 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1090 * bit 1, etc. 1091 */ 1092 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1093 { 1094 return 1 << (xhci_get_endpoint_index(desc) + 1); 1095 } 1096 1097 /* Find the flag for this endpoint (for use in the control context). Use the 1098 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1099 * bit 1, etc. 1100 */ 1101 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1102 { 1103 return 1 << (ep_index + 1); 1104 } 1105 1106 /* Compute the last valid endpoint context index. Basically, this is the 1107 * endpoint index plus one. For slot contexts with more than valid endpoint, 1108 * we find the most significant bit set in the added contexts flags. 1109 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1110 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1111 */ 1112 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1113 { 1114 return fls(added_ctxs) - 1; 1115 } 1116 1117 /* Returns 1 if the arguments are OK; 1118 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1119 */ 1120 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1121 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1122 const char *func) { 1123 struct xhci_hcd *xhci; 1124 struct xhci_virt_device *virt_dev; 1125 1126 if (!hcd || (check_ep && !ep) || !udev) { 1127 pr_debug("xHCI %s called with invalid args\n", func); 1128 return -EINVAL; 1129 } 1130 if (!udev->parent) { 1131 pr_debug("xHCI %s called for root hub\n", func); 1132 return 0; 1133 } 1134 1135 xhci = hcd_to_xhci(hcd); 1136 if (check_virt_dev) { 1137 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1138 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1139 func); 1140 return -EINVAL; 1141 } 1142 1143 virt_dev = xhci->devs[udev->slot_id]; 1144 if (virt_dev->udev != udev) { 1145 xhci_dbg(xhci, "xHCI %s called with udev and " 1146 "virt_dev does not match\n", func); 1147 return -EINVAL; 1148 } 1149 } 1150 1151 if (xhci->xhc_state & XHCI_STATE_HALTED) 1152 return -ENODEV; 1153 1154 return 1; 1155 } 1156 1157 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1158 struct usb_device *udev, struct xhci_command *command, 1159 bool ctx_change, bool must_succeed); 1160 1161 /* 1162 * Full speed devices may have a max packet size greater than 8 bytes, but the 1163 * USB core doesn't know that until it reads the first 8 bytes of the 1164 * descriptor. If the usb_device's max packet size changes after that point, 1165 * we need to issue an evaluate context command and wait on it. 1166 */ 1167 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1168 unsigned int ep_index, struct urb *urb) 1169 { 1170 struct xhci_container_ctx *in_ctx; 1171 struct xhci_container_ctx *out_ctx; 1172 struct xhci_input_control_ctx *ctrl_ctx; 1173 struct xhci_ep_ctx *ep_ctx; 1174 int max_packet_size; 1175 int hw_max_packet_size; 1176 int ret = 0; 1177 1178 out_ctx = xhci->devs[slot_id]->out_ctx; 1179 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1180 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1181 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1182 if (hw_max_packet_size != max_packet_size) { 1183 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1184 "Max Packet Size for ep 0 changed."); 1185 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1186 "Max packet size in usb_device = %d", 1187 max_packet_size); 1188 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1189 "Max packet size in xHCI HW = %d", 1190 hw_max_packet_size); 1191 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1192 "Issuing evaluate context command."); 1193 1194 /* Set up the input context flags for the command */ 1195 /* FIXME: This won't work if a non-default control endpoint 1196 * changes max packet sizes. 1197 */ 1198 in_ctx = xhci->devs[slot_id]->in_ctx; 1199 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1200 if (!ctrl_ctx) { 1201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1202 __func__); 1203 return -ENOMEM; 1204 } 1205 /* Set up the modified control endpoint 0 */ 1206 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1207 xhci->devs[slot_id]->out_ctx, ep_index); 1208 1209 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1210 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1211 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1212 1213 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1214 ctrl_ctx->drop_flags = 0; 1215 1216 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1217 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1218 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1219 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1220 1221 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1222 true, false); 1223 1224 /* Clean up the input context for later use by bandwidth 1225 * functions. 1226 */ 1227 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1228 } 1229 return ret; 1230 } 1231 1232 /* 1233 * non-error returns are a promise to giveback() the urb later 1234 * we drop ownership so next owner (or urb unlink) can get it 1235 */ 1236 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1237 { 1238 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1239 struct xhci_td *buffer; 1240 unsigned long flags; 1241 int ret = 0; 1242 unsigned int slot_id, ep_index; 1243 struct urb_priv *urb_priv; 1244 int size, i; 1245 1246 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1247 true, true, __func__) <= 0) 1248 return -EINVAL; 1249 1250 slot_id = urb->dev->slot_id; 1251 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1252 1253 if (!HCD_HW_ACCESSIBLE(hcd)) { 1254 if (!in_interrupt()) 1255 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1256 ret = -ESHUTDOWN; 1257 goto exit; 1258 } 1259 1260 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1261 size = urb->number_of_packets; 1262 else 1263 size = 1; 1264 1265 urb_priv = kzalloc(sizeof(struct urb_priv) + 1266 size * sizeof(struct xhci_td *), mem_flags); 1267 if (!urb_priv) 1268 return -ENOMEM; 1269 1270 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1271 if (!buffer) { 1272 kfree(urb_priv); 1273 return -ENOMEM; 1274 } 1275 1276 for (i = 0; i < size; i++) { 1277 urb_priv->td[i] = buffer; 1278 buffer++; 1279 } 1280 1281 urb_priv->length = size; 1282 urb_priv->td_cnt = 0; 1283 urb->hcpriv = urb_priv; 1284 1285 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1286 /* Check to see if the max packet size for the default control 1287 * endpoint changed during FS device enumeration 1288 */ 1289 if (urb->dev->speed == USB_SPEED_FULL) { 1290 ret = xhci_check_maxpacket(xhci, slot_id, 1291 ep_index, urb); 1292 if (ret < 0) { 1293 xhci_urb_free_priv(xhci, urb_priv); 1294 urb->hcpriv = NULL; 1295 return ret; 1296 } 1297 } 1298 1299 /* We have a spinlock and interrupts disabled, so we must pass 1300 * atomic context to this function, which may allocate memory. 1301 */ 1302 spin_lock_irqsave(&xhci->lock, flags); 1303 if (xhci->xhc_state & XHCI_STATE_DYING) 1304 goto dying; 1305 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1306 slot_id, ep_index); 1307 if (ret) 1308 goto free_priv; 1309 spin_unlock_irqrestore(&xhci->lock, flags); 1310 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1311 spin_lock_irqsave(&xhci->lock, flags); 1312 if (xhci->xhc_state & XHCI_STATE_DYING) 1313 goto dying; 1314 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1315 EP_GETTING_STREAMS) { 1316 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1317 "is transitioning to using streams.\n"); 1318 ret = -EINVAL; 1319 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1320 EP_GETTING_NO_STREAMS) { 1321 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1322 "is transitioning to " 1323 "not having streams.\n"); 1324 ret = -EINVAL; 1325 } else { 1326 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1327 slot_id, ep_index); 1328 } 1329 if (ret) 1330 goto free_priv; 1331 spin_unlock_irqrestore(&xhci->lock, flags); 1332 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1333 spin_lock_irqsave(&xhci->lock, flags); 1334 if (xhci->xhc_state & XHCI_STATE_DYING) 1335 goto dying; 1336 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1337 slot_id, ep_index); 1338 if (ret) 1339 goto free_priv; 1340 spin_unlock_irqrestore(&xhci->lock, flags); 1341 } else { 1342 spin_lock_irqsave(&xhci->lock, flags); 1343 if (xhci->xhc_state & XHCI_STATE_DYING) 1344 goto dying; 1345 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1346 slot_id, ep_index); 1347 if (ret) 1348 goto free_priv; 1349 spin_unlock_irqrestore(&xhci->lock, flags); 1350 } 1351 exit: 1352 return ret; 1353 dying: 1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1355 "non-responsive xHCI host.\n", 1356 urb->ep->desc.bEndpointAddress, urb); 1357 ret = -ESHUTDOWN; 1358 free_priv: 1359 xhci_urb_free_priv(xhci, urb_priv); 1360 urb->hcpriv = NULL; 1361 spin_unlock_irqrestore(&xhci->lock, flags); 1362 return ret; 1363 } 1364 1365 /* Get the right ring for the given URB. 1366 * If the endpoint supports streams, boundary check the URB's stream ID. 1367 * If the endpoint doesn't support streams, return the singular endpoint ring. 1368 */ 1369 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1370 struct urb *urb) 1371 { 1372 unsigned int slot_id; 1373 unsigned int ep_index; 1374 unsigned int stream_id; 1375 struct xhci_virt_ep *ep; 1376 1377 slot_id = urb->dev->slot_id; 1378 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1379 stream_id = urb->stream_id; 1380 ep = &xhci->devs[slot_id]->eps[ep_index]; 1381 /* Common case: no streams */ 1382 if (!(ep->ep_state & EP_HAS_STREAMS)) 1383 return ep->ring; 1384 1385 if (stream_id == 0) { 1386 xhci_warn(xhci, 1387 "WARN: Slot ID %u, ep index %u has streams, " 1388 "but URB has no stream ID.\n", 1389 slot_id, ep_index); 1390 return NULL; 1391 } 1392 1393 if (stream_id < ep->stream_info->num_streams) 1394 return ep->stream_info->stream_rings[stream_id]; 1395 1396 xhci_warn(xhci, 1397 "WARN: Slot ID %u, ep index %u has " 1398 "stream IDs 1 to %u allocated, " 1399 "but stream ID %u is requested.\n", 1400 slot_id, ep_index, 1401 ep->stream_info->num_streams - 1, 1402 stream_id); 1403 return NULL; 1404 } 1405 1406 /* 1407 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1408 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1409 * should pick up where it left off in the TD, unless a Set Transfer Ring 1410 * Dequeue Pointer is issued. 1411 * 1412 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1413 * the ring. Since the ring is a contiguous structure, they can't be physically 1414 * removed. Instead, there are two options: 1415 * 1416 * 1) If the HC is in the middle of processing the URB to be canceled, we 1417 * simply move the ring's dequeue pointer past those TRBs using the Set 1418 * Transfer Ring Dequeue Pointer command. This will be the common case, 1419 * when drivers timeout on the last submitted URB and attempt to cancel. 1420 * 1421 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1422 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1423 * HC will need to invalidate the any TRBs it has cached after the stop 1424 * endpoint command, as noted in the xHCI 0.95 errata. 1425 * 1426 * 3) The TD may have completed by the time the Stop Endpoint Command 1427 * completes, so software needs to handle that case too. 1428 * 1429 * This function should protect against the TD enqueueing code ringing the 1430 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1431 * It also needs to account for multiple cancellations on happening at the same 1432 * time for the same endpoint. 1433 * 1434 * Note that this function can be called in any context, or so says 1435 * usb_hcd_unlink_urb() 1436 */ 1437 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1438 { 1439 unsigned long flags; 1440 int ret, i; 1441 u32 temp; 1442 struct xhci_hcd *xhci; 1443 struct urb_priv *urb_priv; 1444 struct xhci_td *td; 1445 unsigned int ep_index; 1446 struct xhci_ring *ep_ring; 1447 struct xhci_virt_ep *ep; 1448 1449 xhci = hcd_to_xhci(hcd); 1450 spin_lock_irqsave(&xhci->lock, flags); 1451 /* Make sure the URB hasn't completed or been unlinked already */ 1452 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1453 if (ret || !urb->hcpriv) 1454 goto done; 1455 temp = xhci_readl(xhci, &xhci->op_regs->status); 1456 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1457 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1458 "HW died, freeing TD."); 1459 urb_priv = urb->hcpriv; 1460 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1461 td = urb_priv->td[i]; 1462 if (!list_empty(&td->td_list)) 1463 list_del_init(&td->td_list); 1464 if (!list_empty(&td->cancelled_td_list)) 1465 list_del_init(&td->cancelled_td_list); 1466 } 1467 1468 usb_hcd_unlink_urb_from_ep(hcd, urb); 1469 spin_unlock_irqrestore(&xhci->lock, flags); 1470 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1471 xhci_urb_free_priv(xhci, urb_priv); 1472 return ret; 1473 } 1474 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1475 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1476 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1477 "Ep 0x%x: URB %p to be canceled on " 1478 "non-responsive xHCI host.", 1479 urb->ep->desc.bEndpointAddress, urb); 1480 /* Let the stop endpoint command watchdog timer (which set this 1481 * state) finish cleaning up the endpoint TD lists. We must 1482 * have caught it in the middle of dropping a lock and giving 1483 * back an URB. 1484 */ 1485 goto done; 1486 } 1487 1488 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1489 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1490 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1491 if (!ep_ring) { 1492 ret = -EINVAL; 1493 goto done; 1494 } 1495 1496 urb_priv = urb->hcpriv; 1497 i = urb_priv->td_cnt; 1498 if (i < urb_priv->length) 1499 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1500 "Cancel URB %p, dev %s, ep 0x%x, " 1501 "starting at offset 0x%llx", 1502 urb, urb->dev->devpath, 1503 urb->ep->desc.bEndpointAddress, 1504 (unsigned long long) xhci_trb_virt_to_dma( 1505 urb_priv->td[i]->start_seg, 1506 urb_priv->td[i]->first_trb)); 1507 1508 for (; i < urb_priv->length; i++) { 1509 td = urb_priv->td[i]; 1510 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1511 } 1512 1513 /* Queue a stop endpoint command, but only if this is 1514 * the first cancellation to be handled. 1515 */ 1516 if (!(ep->ep_state & EP_HALT_PENDING)) { 1517 ep->ep_state |= EP_HALT_PENDING; 1518 ep->stop_cmds_pending++; 1519 ep->stop_cmd_timer.expires = jiffies + 1520 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1521 add_timer(&ep->stop_cmd_timer); 1522 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1523 xhci_ring_cmd_db(xhci); 1524 } 1525 done: 1526 spin_unlock_irqrestore(&xhci->lock, flags); 1527 return ret; 1528 } 1529 1530 /* Drop an endpoint from a new bandwidth configuration for this device. 1531 * Only one call to this function is allowed per endpoint before 1532 * check_bandwidth() or reset_bandwidth() must be called. 1533 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1534 * add the endpoint to the schedule with possibly new parameters denoted by a 1535 * different endpoint descriptor in usb_host_endpoint. 1536 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1537 * not allowed. 1538 * 1539 * The USB core will not allow URBs to be queued to an endpoint that is being 1540 * disabled, so there's no need for mutual exclusion to protect 1541 * the xhci->devs[slot_id] structure. 1542 */ 1543 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1544 struct usb_host_endpoint *ep) 1545 { 1546 struct xhci_hcd *xhci; 1547 struct xhci_container_ctx *in_ctx, *out_ctx; 1548 struct xhci_input_control_ctx *ctrl_ctx; 1549 struct xhci_slot_ctx *slot_ctx; 1550 unsigned int last_ctx; 1551 unsigned int ep_index; 1552 struct xhci_ep_ctx *ep_ctx; 1553 u32 drop_flag; 1554 u32 new_add_flags, new_drop_flags, new_slot_info; 1555 int ret; 1556 1557 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1558 if (ret <= 0) 1559 return ret; 1560 xhci = hcd_to_xhci(hcd); 1561 if (xhci->xhc_state & XHCI_STATE_DYING) 1562 return -ENODEV; 1563 1564 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1565 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1566 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1567 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1568 __func__, drop_flag); 1569 return 0; 1570 } 1571 1572 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1573 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1574 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1575 if (!ctrl_ctx) { 1576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1577 __func__); 1578 return 0; 1579 } 1580 1581 ep_index = xhci_get_endpoint_index(&ep->desc); 1582 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1583 /* If the HC already knows the endpoint is disabled, 1584 * or the HCD has noted it is disabled, ignore this request 1585 */ 1586 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1587 cpu_to_le32(EP_STATE_DISABLED)) || 1588 le32_to_cpu(ctrl_ctx->drop_flags) & 1589 xhci_get_endpoint_flag(&ep->desc)) { 1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1591 __func__, ep); 1592 return 0; 1593 } 1594 1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1597 1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1600 1601 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1602 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1603 /* Update the last valid endpoint context, if we deleted the last one */ 1604 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1605 LAST_CTX(last_ctx)) { 1606 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1607 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1608 } 1609 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1610 1611 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1612 1613 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1614 (unsigned int) ep->desc.bEndpointAddress, 1615 udev->slot_id, 1616 (unsigned int) new_drop_flags, 1617 (unsigned int) new_add_flags, 1618 (unsigned int) new_slot_info); 1619 return 0; 1620 } 1621 1622 /* Add an endpoint to a new possible bandwidth configuration for this device. 1623 * Only one call to this function is allowed per endpoint before 1624 * check_bandwidth() or reset_bandwidth() must be called. 1625 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1626 * add the endpoint to the schedule with possibly new parameters denoted by a 1627 * different endpoint descriptor in usb_host_endpoint. 1628 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1629 * not allowed. 1630 * 1631 * The USB core will not allow URBs to be queued to an endpoint until the 1632 * configuration or alt setting is installed in the device, so there's no need 1633 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1634 */ 1635 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1636 struct usb_host_endpoint *ep) 1637 { 1638 struct xhci_hcd *xhci; 1639 struct xhci_container_ctx *in_ctx, *out_ctx; 1640 unsigned int ep_index; 1641 struct xhci_slot_ctx *slot_ctx; 1642 struct xhci_input_control_ctx *ctrl_ctx; 1643 u32 added_ctxs; 1644 unsigned int last_ctx; 1645 u32 new_add_flags, new_drop_flags, new_slot_info; 1646 struct xhci_virt_device *virt_dev; 1647 int ret = 0; 1648 1649 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1650 if (ret <= 0) { 1651 /* So we won't queue a reset ep command for a root hub */ 1652 ep->hcpriv = NULL; 1653 return ret; 1654 } 1655 xhci = hcd_to_xhci(hcd); 1656 if (xhci->xhc_state & XHCI_STATE_DYING) 1657 return -ENODEV; 1658 1659 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1660 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1661 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1662 /* FIXME when we have to issue an evaluate endpoint command to 1663 * deal with ep0 max packet size changing once we get the 1664 * descriptors 1665 */ 1666 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1667 __func__, added_ctxs); 1668 return 0; 1669 } 1670 1671 virt_dev = xhci->devs[udev->slot_id]; 1672 in_ctx = virt_dev->in_ctx; 1673 out_ctx = virt_dev->out_ctx; 1674 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1675 if (!ctrl_ctx) { 1676 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1677 __func__); 1678 return 0; 1679 } 1680 1681 ep_index = xhci_get_endpoint_index(&ep->desc); 1682 /* If this endpoint is already in use, and the upper layers are trying 1683 * to add it again without dropping it, reject the addition. 1684 */ 1685 if (virt_dev->eps[ep_index].ring && 1686 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1687 xhci_get_endpoint_flag(&ep->desc))) { 1688 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1689 "without dropping it.\n", 1690 (unsigned int) ep->desc.bEndpointAddress); 1691 return -EINVAL; 1692 } 1693 1694 /* If the HCD has already noted the endpoint is enabled, 1695 * ignore this request. 1696 */ 1697 if (le32_to_cpu(ctrl_ctx->add_flags) & 1698 xhci_get_endpoint_flag(&ep->desc)) { 1699 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1700 __func__, ep); 1701 return 0; 1702 } 1703 1704 /* 1705 * Configuration and alternate setting changes must be done in 1706 * process context, not interrupt context (or so documenation 1707 * for usb_set_interface() and usb_set_configuration() claim). 1708 */ 1709 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1710 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1711 __func__, ep->desc.bEndpointAddress); 1712 return -ENOMEM; 1713 } 1714 1715 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1716 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1717 1718 /* If xhci_endpoint_disable() was called for this endpoint, but the 1719 * xHC hasn't been notified yet through the check_bandwidth() call, 1720 * this re-adds a new state for the endpoint from the new endpoint 1721 * descriptors. We must drop and re-add this endpoint, so we leave the 1722 * drop flags alone. 1723 */ 1724 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1725 1726 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1727 /* Update the last valid endpoint context, if we just added one past */ 1728 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1729 LAST_CTX(last_ctx)) { 1730 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1731 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1732 } 1733 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1734 1735 /* Store the usb_device pointer for later use */ 1736 ep->hcpriv = udev; 1737 1738 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1739 (unsigned int) ep->desc.bEndpointAddress, 1740 udev->slot_id, 1741 (unsigned int) new_drop_flags, 1742 (unsigned int) new_add_flags, 1743 (unsigned int) new_slot_info); 1744 return 0; 1745 } 1746 1747 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1748 { 1749 struct xhci_input_control_ctx *ctrl_ctx; 1750 struct xhci_ep_ctx *ep_ctx; 1751 struct xhci_slot_ctx *slot_ctx; 1752 int i; 1753 1754 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1755 if (!ctrl_ctx) { 1756 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1757 __func__); 1758 return; 1759 } 1760 1761 /* When a device's add flag and drop flag are zero, any subsequent 1762 * configure endpoint command will leave that endpoint's state 1763 * untouched. Make sure we don't leave any old state in the input 1764 * endpoint contexts. 1765 */ 1766 ctrl_ctx->drop_flags = 0; 1767 ctrl_ctx->add_flags = 0; 1768 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1769 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1770 /* Endpoint 0 is always valid */ 1771 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1772 for (i = 1; i < 31; ++i) { 1773 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1774 ep_ctx->ep_info = 0; 1775 ep_ctx->ep_info2 = 0; 1776 ep_ctx->deq = 0; 1777 ep_ctx->tx_info = 0; 1778 } 1779 } 1780 1781 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1782 struct usb_device *udev, u32 *cmd_status) 1783 { 1784 int ret; 1785 1786 switch (*cmd_status) { 1787 case COMP_ENOMEM: 1788 dev_warn(&udev->dev, "Not enough host controller resources " 1789 "for new device state.\n"); 1790 ret = -ENOMEM; 1791 /* FIXME: can we allocate more resources for the HC? */ 1792 break; 1793 case COMP_BW_ERR: 1794 case COMP_2ND_BW_ERR: 1795 dev_warn(&udev->dev, "Not enough bandwidth " 1796 "for new device state.\n"); 1797 ret = -ENOSPC; 1798 /* FIXME: can we go back to the old state? */ 1799 break; 1800 case COMP_TRB_ERR: 1801 /* the HCD set up something wrong */ 1802 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1803 "add flag = 1, " 1804 "and endpoint is not disabled.\n"); 1805 ret = -EINVAL; 1806 break; 1807 case COMP_DEV_ERR: 1808 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1809 "configure command.\n"); 1810 ret = -ENODEV; 1811 break; 1812 case COMP_SUCCESS: 1813 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1814 "Successful Endpoint Configure command"); 1815 ret = 0; 1816 break; 1817 default: 1818 xhci_err(xhci, "ERROR: unexpected command completion " 1819 "code 0x%x.\n", *cmd_status); 1820 ret = -EINVAL; 1821 break; 1822 } 1823 return ret; 1824 } 1825 1826 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1827 struct usb_device *udev, u32 *cmd_status) 1828 { 1829 int ret; 1830 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1831 1832 switch (*cmd_status) { 1833 case COMP_EINVAL: 1834 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1835 "context command.\n"); 1836 ret = -EINVAL; 1837 break; 1838 case COMP_EBADSLT: 1839 dev_warn(&udev->dev, "WARN: slot not enabled for" 1840 "evaluate context command.\n"); 1841 ret = -EINVAL; 1842 break; 1843 case COMP_CTX_STATE: 1844 dev_warn(&udev->dev, "WARN: invalid context state for " 1845 "evaluate context command.\n"); 1846 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1847 ret = -EINVAL; 1848 break; 1849 case COMP_DEV_ERR: 1850 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1851 "context command.\n"); 1852 ret = -ENODEV; 1853 break; 1854 case COMP_MEL_ERR: 1855 /* Max Exit Latency too large error */ 1856 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1857 ret = -EINVAL; 1858 break; 1859 case COMP_SUCCESS: 1860 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1861 "Successful evaluate context command"); 1862 ret = 0; 1863 break; 1864 default: 1865 xhci_err(xhci, "ERROR: unexpected command completion " 1866 "code 0x%x.\n", *cmd_status); 1867 ret = -EINVAL; 1868 break; 1869 } 1870 return ret; 1871 } 1872 1873 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1874 struct xhci_input_control_ctx *ctrl_ctx) 1875 { 1876 u32 valid_add_flags; 1877 u32 valid_drop_flags; 1878 1879 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1880 * (bit 1). The default control endpoint is added during the Address 1881 * Device command and is never removed until the slot is disabled. 1882 */ 1883 valid_add_flags = ctrl_ctx->add_flags >> 2; 1884 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1885 1886 /* Use hweight32 to count the number of ones in the add flags, or 1887 * number of endpoints added. Don't count endpoints that are changed 1888 * (both added and dropped). 1889 */ 1890 return hweight32(valid_add_flags) - 1891 hweight32(valid_add_flags & valid_drop_flags); 1892 } 1893 1894 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1895 struct xhci_input_control_ctx *ctrl_ctx) 1896 { 1897 u32 valid_add_flags; 1898 u32 valid_drop_flags; 1899 1900 valid_add_flags = ctrl_ctx->add_flags >> 2; 1901 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1902 1903 return hweight32(valid_drop_flags) - 1904 hweight32(valid_add_flags & valid_drop_flags); 1905 } 1906 1907 /* 1908 * We need to reserve the new number of endpoints before the configure endpoint 1909 * command completes. We can't subtract the dropped endpoints from the number 1910 * of active endpoints until the command completes because we can oversubscribe 1911 * the host in this case: 1912 * 1913 * - the first configure endpoint command drops more endpoints than it adds 1914 * - a second configure endpoint command that adds more endpoints is queued 1915 * - the first configure endpoint command fails, so the config is unchanged 1916 * - the second command may succeed, even though there isn't enough resources 1917 * 1918 * Must be called with xhci->lock held. 1919 */ 1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1921 struct xhci_input_control_ctx *ctrl_ctx) 1922 { 1923 u32 added_eps; 1924 1925 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1926 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1928 "Not enough ep ctxs: " 1929 "%u active, need to add %u, limit is %u.", 1930 xhci->num_active_eps, added_eps, 1931 xhci->limit_active_eps); 1932 return -ENOMEM; 1933 } 1934 xhci->num_active_eps += added_eps; 1935 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1936 "Adding %u ep ctxs, %u now active.", added_eps, 1937 xhci->num_active_eps); 1938 return 0; 1939 } 1940 1941 /* 1942 * The configure endpoint was failed by the xHC for some other reason, so we 1943 * need to revert the resources that failed configuration would have used. 1944 * 1945 * Must be called with xhci->lock held. 1946 */ 1947 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1948 struct xhci_input_control_ctx *ctrl_ctx) 1949 { 1950 u32 num_failed_eps; 1951 1952 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1953 xhci->num_active_eps -= num_failed_eps; 1954 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1955 "Removing %u failed ep ctxs, %u now active.", 1956 num_failed_eps, 1957 xhci->num_active_eps); 1958 } 1959 1960 /* 1961 * Now that the command has completed, clean up the active endpoint count by 1962 * subtracting out the endpoints that were dropped (but not changed). 1963 * 1964 * Must be called with xhci->lock held. 1965 */ 1966 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1967 struct xhci_input_control_ctx *ctrl_ctx) 1968 { 1969 u32 num_dropped_eps; 1970 1971 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1972 xhci->num_active_eps -= num_dropped_eps; 1973 if (num_dropped_eps) 1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1975 "Removing %u dropped ep ctxs, %u now active.", 1976 num_dropped_eps, 1977 xhci->num_active_eps); 1978 } 1979 1980 static unsigned int xhci_get_block_size(struct usb_device *udev) 1981 { 1982 switch (udev->speed) { 1983 case USB_SPEED_LOW: 1984 case USB_SPEED_FULL: 1985 return FS_BLOCK; 1986 case USB_SPEED_HIGH: 1987 return HS_BLOCK; 1988 case USB_SPEED_SUPER: 1989 return SS_BLOCK; 1990 case USB_SPEED_UNKNOWN: 1991 case USB_SPEED_WIRELESS: 1992 default: 1993 /* Should never happen */ 1994 return 1; 1995 } 1996 } 1997 1998 static unsigned int 1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2000 { 2001 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2002 return LS_OVERHEAD; 2003 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2004 return FS_OVERHEAD; 2005 return HS_OVERHEAD; 2006 } 2007 2008 /* If we are changing a LS/FS device under a HS hub, 2009 * make sure (if we are activating a new TT) that the HS bus has enough 2010 * bandwidth for this new TT. 2011 */ 2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2013 struct xhci_virt_device *virt_dev, 2014 int old_active_eps) 2015 { 2016 struct xhci_interval_bw_table *bw_table; 2017 struct xhci_tt_bw_info *tt_info; 2018 2019 /* Find the bandwidth table for the root port this TT is attached to. */ 2020 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2021 tt_info = virt_dev->tt_info; 2022 /* If this TT already had active endpoints, the bandwidth for this TT 2023 * has already been added. Removing all periodic endpoints (and thus 2024 * making the TT enactive) will only decrease the bandwidth used. 2025 */ 2026 if (old_active_eps) 2027 return 0; 2028 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2029 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2030 return -ENOMEM; 2031 return 0; 2032 } 2033 /* Not sure why we would have no new active endpoints... 2034 * 2035 * Maybe because of an Evaluate Context change for a hub update or a 2036 * control endpoint 0 max packet size change? 2037 * FIXME: skip the bandwidth calculation in that case. 2038 */ 2039 return 0; 2040 } 2041 2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2043 struct xhci_virt_device *virt_dev) 2044 { 2045 unsigned int bw_reserved; 2046 2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2048 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2049 return -ENOMEM; 2050 2051 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2052 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2053 return -ENOMEM; 2054 2055 return 0; 2056 } 2057 2058 /* 2059 * This algorithm is a very conservative estimate of the worst-case scheduling 2060 * scenario for any one interval. The hardware dynamically schedules the 2061 * packets, so we can't tell which microframe could be the limiting factor in 2062 * the bandwidth scheduling. This only takes into account periodic endpoints. 2063 * 2064 * Obviously, we can't solve an NP complete problem to find the minimum worst 2065 * case scenario. Instead, we come up with an estimate that is no less than 2066 * the worst case bandwidth used for any one microframe, but may be an 2067 * over-estimate. 2068 * 2069 * We walk the requirements for each endpoint by interval, starting with the 2070 * smallest interval, and place packets in the schedule where there is only one 2071 * possible way to schedule packets for that interval. In order to simplify 2072 * this algorithm, we record the largest max packet size for each interval, and 2073 * assume all packets will be that size. 2074 * 2075 * For interval 0, we obviously must schedule all packets for each interval. 2076 * The bandwidth for interval 0 is just the amount of data to be transmitted 2077 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2078 * the number of packets). 2079 * 2080 * For interval 1, we have two possible microframes to schedule those packets 2081 * in. For this algorithm, if we can schedule the same number of packets for 2082 * each possible scheduling opportunity (each microframe), we will do so. The 2083 * remaining number of packets will be saved to be transmitted in the gaps in 2084 * the next interval's scheduling sequence. 2085 * 2086 * As we move those remaining packets to be scheduled with interval 2 packets, 2087 * we have to double the number of remaining packets to transmit. This is 2088 * because the intervals are actually powers of 2, and we would be transmitting 2089 * the previous interval's packets twice in this interval. We also have to be 2090 * sure that when we look at the largest max packet size for this interval, we 2091 * also look at the largest max packet size for the remaining packets and take 2092 * the greater of the two. 2093 * 2094 * The algorithm continues to evenly distribute packets in each scheduling 2095 * opportunity, and push the remaining packets out, until we get to the last 2096 * interval. Then those packets and their associated overhead are just added 2097 * to the bandwidth used. 2098 */ 2099 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2100 struct xhci_virt_device *virt_dev, 2101 int old_active_eps) 2102 { 2103 unsigned int bw_reserved; 2104 unsigned int max_bandwidth; 2105 unsigned int bw_used; 2106 unsigned int block_size; 2107 struct xhci_interval_bw_table *bw_table; 2108 unsigned int packet_size = 0; 2109 unsigned int overhead = 0; 2110 unsigned int packets_transmitted = 0; 2111 unsigned int packets_remaining = 0; 2112 unsigned int i; 2113 2114 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2115 return xhci_check_ss_bw(xhci, virt_dev); 2116 2117 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2118 max_bandwidth = HS_BW_LIMIT; 2119 /* Convert percent of bus BW reserved to blocks reserved */ 2120 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2121 } else { 2122 max_bandwidth = FS_BW_LIMIT; 2123 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2124 } 2125 2126 bw_table = virt_dev->bw_table; 2127 /* We need to translate the max packet size and max ESIT payloads into 2128 * the units the hardware uses. 2129 */ 2130 block_size = xhci_get_block_size(virt_dev->udev); 2131 2132 /* If we are manipulating a LS/FS device under a HS hub, double check 2133 * that the HS bus has enough bandwidth if we are activing a new TT. 2134 */ 2135 if (virt_dev->tt_info) { 2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2137 "Recalculating BW for rootport %u", 2138 virt_dev->real_port); 2139 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2140 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2141 "newly activated TT.\n"); 2142 return -ENOMEM; 2143 } 2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2145 "Recalculating BW for TT slot %u port %u", 2146 virt_dev->tt_info->slot_id, 2147 virt_dev->tt_info->ttport); 2148 } else { 2149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2150 "Recalculating BW for rootport %u", 2151 virt_dev->real_port); 2152 } 2153 2154 /* Add in how much bandwidth will be used for interval zero, or the 2155 * rounded max ESIT payload + number of packets * largest overhead. 2156 */ 2157 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2158 bw_table->interval_bw[0].num_packets * 2159 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2160 2161 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2162 unsigned int bw_added; 2163 unsigned int largest_mps; 2164 unsigned int interval_overhead; 2165 2166 /* 2167 * How many packets could we transmit in this interval? 2168 * If packets didn't fit in the previous interval, we will need 2169 * to transmit that many packets twice within this interval. 2170 */ 2171 packets_remaining = 2 * packets_remaining + 2172 bw_table->interval_bw[i].num_packets; 2173 2174 /* Find the largest max packet size of this or the previous 2175 * interval. 2176 */ 2177 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2178 largest_mps = 0; 2179 else { 2180 struct xhci_virt_ep *virt_ep; 2181 struct list_head *ep_entry; 2182 2183 ep_entry = bw_table->interval_bw[i].endpoints.next; 2184 virt_ep = list_entry(ep_entry, 2185 struct xhci_virt_ep, bw_endpoint_list); 2186 /* Convert to blocks, rounding up */ 2187 largest_mps = DIV_ROUND_UP( 2188 virt_ep->bw_info.max_packet_size, 2189 block_size); 2190 } 2191 if (largest_mps > packet_size) 2192 packet_size = largest_mps; 2193 2194 /* Use the larger overhead of this or the previous interval. */ 2195 interval_overhead = xhci_get_largest_overhead( 2196 &bw_table->interval_bw[i]); 2197 if (interval_overhead > overhead) 2198 overhead = interval_overhead; 2199 2200 /* How many packets can we evenly distribute across 2201 * (1 << (i + 1)) possible scheduling opportunities? 2202 */ 2203 packets_transmitted = packets_remaining >> (i + 1); 2204 2205 /* Add in the bandwidth used for those scheduled packets */ 2206 bw_added = packets_transmitted * (overhead + packet_size); 2207 2208 /* How many packets do we have remaining to transmit? */ 2209 packets_remaining = packets_remaining % (1 << (i + 1)); 2210 2211 /* What largest max packet size should those packets have? */ 2212 /* If we've transmitted all packets, don't carry over the 2213 * largest packet size. 2214 */ 2215 if (packets_remaining == 0) { 2216 packet_size = 0; 2217 overhead = 0; 2218 } else if (packets_transmitted > 0) { 2219 /* Otherwise if we do have remaining packets, and we've 2220 * scheduled some packets in this interval, take the 2221 * largest max packet size from endpoints with this 2222 * interval. 2223 */ 2224 packet_size = largest_mps; 2225 overhead = interval_overhead; 2226 } 2227 /* Otherwise carry over packet_size and overhead from the last 2228 * time we had a remainder. 2229 */ 2230 bw_used += bw_added; 2231 if (bw_used > max_bandwidth) { 2232 xhci_warn(xhci, "Not enough bandwidth. " 2233 "Proposed: %u, Max: %u\n", 2234 bw_used, max_bandwidth); 2235 return -ENOMEM; 2236 } 2237 } 2238 /* 2239 * Ok, we know we have some packets left over after even-handedly 2240 * scheduling interval 15. We don't know which microframes they will 2241 * fit into, so we over-schedule and say they will be scheduled every 2242 * microframe. 2243 */ 2244 if (packets_remaining > 0) 2245 bw_used += overhead + packet_size; 2246 2247 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2248 unsigned int port_index = virt_dev->real_port - 1; 2249 2250 /* OK, we're manipulating a HS device attached to a 2251 * root port bandwidth domain. Include the number of active TTs 2252 * in the bandwidth used. 2253 */ 2254 bw_used += TT_HS_OVERHEAD * 2255 xhci->rh_bw[port_index].num_active_tts; 2256 } 2257 2258 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2259 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2260 "Available: %u " "percent", 2261 bw_used, max_bandwidth, bw_reserved, 2262 (max_bandwidth - bw_used - bw_reserved) * 100 / 2263 max_bandwidth); 2264 2265 bw_used += bw_reserved; 2266 if (bw_used > max_bandwidth) { 2267 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2268 bw_used, max_bandwidth); 2269 return -ENOMEM; 2270 } 2271 2272 bw_table->bw_used = bw_used; 2273 return 0; 2274 } 2275 2276 static bool xhci_is_async_ep(unsigned int ep_type) 2277 { 2278 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2279 ep_type != ISOC_IN_EP && 2280 ep_type != INT_IN_EP); 2281 } 2282 2283 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2284 { 2285 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2286 } 2287 2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2289 { 2290 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2291 2292 if (ep_bw->ep_interval == 0) 2293 return SS_OVERHEAD_BURST + 2294 (ep_bw->mult * ep_bw->num_packets * 2295 (SS_OVERHEAD + mps)); 2296 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2297 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2298 1 << ep_bw->ep_interval); 2299 2300 } 2301 2302 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2303 struct xhci_bw_info *ep_bw, 2304 struct xhci_interval_bw_table *bw_table, 2305 struct usb_device *udev, 2306 struct xhci_virt_ep *virt_ep, 2307 struct xhci_tt_bw_info *tt_info) 2308 { 2309 struct xhci_interval_bw *interval_bw; 2310 int normalized_interval; 2311 2312 if (xhci_is_async_ep(ep_bw->type)) 2313 return; 2314 2315 if (udev->speed == USB_SPEED_SUPER) { 2316 if (xhci_is_sync_in_ep(ep_bw->type)) 2317 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2318 xhci_get_ss_bw_consumed(ep_bw); 2319 else 2320 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2321 xhci_get_ss_bw_consumed(ep_bw); 2322 return; 2323 } 2324 2325 /* SuperSpeed endpoints never get added to intervals in the table, so 2326 * this check is only valid for HS/FS/LS devices. 2327 */ 2328 if (list_empty(&virt_ep->bw_endpoint_list)) 2329 return; 2330 /* For LS/FS devices, we need to translate the interval expressed in 2331 * microframes to frames. 2332 */ 2333 if (udev->speed == USB_SPEED_HIGH) 2334 normalized_interval = ep_bw->ep_interval; 2335 else 2336 normalized_interval = ep_bw->ep_interval - 3; 2337 2338 if (normalized_interval == 0) 2339 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2340 interval_bw = &bw_table->interval_bw[normalized_interval]; 2341 interval_bw->num_packets -= ep_bw->num_packets; 2342 switch (udev->speed) { 2343 case USB_SPEED_LOW: 2344 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2345 break; 2346 case USB_SPEED_FULL: 2347 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2348 break; 2349 case USB_SPEED_HIGH: 2350 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2351 break; 2352 case USB_SPEED_SUPER: 2353 case USB_SPEED_UNKNOWN: 2354 case USB_SPEED_WIRELESS: 2355 /* Should never happen because only LS/FS/HS endpoints will get 2356 * added to the endpoint list. 2357 */ 2358 return; 2359 } 2360 if (tt_info) 2361 tt_info->active_eps -= 1; 2362 list_del_init(&virt_ep->bw_endpoint_list); 2363 } 2364 2365 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2366 struct xhci_bw_info *ep_bw, 2367 struct xhci_interval_bw_table *bw_table, 2368 struct usb_device *udev, 2369 struct xhci_virt_ep *virt_ep, 2370 struct xhci_tt_bw_info *tt_info) 2371 { 2372 struct xhci_interval_bw *interval_bw; 2373 struct xhci_virt_ep *smaller_ep; 2374 int normalized_interval; 2375 2376 if (xhci_is_async_ep(ep_bw->type)) 2377 return; 2378 2379 if (udev->speed == USB_SPEED_SUPER) { 2380 if (xhci_is_sync_in_ep(ep_bw->type)) 2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2382 xhci_get_ss_bw_consumed(ep_bw); 2383 else 2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2385 xhci_get_ss_bw_consumed(ep_bw); 2386 return; 2387 } 2388 2389 /* For LS/FS devices, we need to translate the interval expressed in 2390 * microframes to frames. 2391 */ 2392 if (udev->speed == USB_SPEED_HIGH) 2393 normalized_interval = ep_bw->ep_interval; 2394 else 2395 normalized_interval = ep_bw->ep_interval - 3; 2396 2397 if (normalized_interval == 0) 2398 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2399 interval_bw = &bw_table->interval_bw[normalized_interval]; 2400 interval_bw->num_packets += ep_bw->num_packets; 2401 switch (udev->speed) { 2402 case USB_SPEED_LOW: 2403 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2404 break; 2405 case USB_SPEED_FULL: 2406 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2407 break; 2408 case USB_SPEED_HIGH: 2409 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2410 break; 2411 case USB_SPEED_SUPER: 2412 case USB_SPEED_UNKNOWN: 2413 case USB_SPEED_WIRELESS: 2414 /* Should never happen because only LS/FS/HS endpoints will get 2415 * added to the endpoint list. 2416 */ 2417 return; 2418 } 2419 2420 if (tt_info) 2421 tt_info->active_eps += 1; 2422 /* Insert the endpoint into the list, largest max packet size first. */ 2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2424 bw_endpoint_list) { 2425 if (ep_bw->max_packet_size >= 2426 smaller_ep->bw_info.max_packet_size) { 2427 /* Add the new ep before the smaller endpoint */ 2428 list_add_tail(&virt_ep->bw_endpoint_list, 2429 &smaller_ep->bw_endpoint_list); 2430 return; 2431 } 2432 } 2433 /* Add the new endpoint at the end of the list. */ 2434 list_add_tail(&virt_ep->bw_endpoint_list, 2435 &interval_bw->endpoints); 2436 } 2437 2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2439 struct xhci_virt_device *virt_dev, 2440 int old_active_eps) 2441 { 2442 struct xhci_root_port_bw_info *rh_bw_info; 2443 if (!virt_dev->tt_info) 2444 return; 2445 2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2447 if (old_active_eps == 0 && 2448 virt_dev->tt_info->active_eps != 0) { 2449 rh_bw_info->num_active_tts += 1; 2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2451 } else if (old_active_eps != 0 && 2452 virt_dev->tt_info->active_eps == 0) { 2453 rh_bw_info->num_active_tts -= 1; 2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2455 } 2456 } 2457 2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2459 struct xhci_virt_device *virt_dev, 2460 struct xhci_container_ctx *in_ctx) 2461 { 2462 struct xhci_bw_info ep_bw_info[31]; 2463 int i; 2464 struct xhci_input_control_ctx *ctrl_ctx; 2465 int old_active_eps = 0; 2466 2467 if (virt_dev->tt_info) 2468 old_active_eps = virt_dev->tt_info->active_eps; 2469 2470 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2471 if (!ctrl_ctx) { 2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2473 __func__); 2474 return -ENOMEM; 2475 } 2476 2477 for (i = 0; i < 31; i++) { 2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2479 continue; 2480 2481 /* Make a copy of the BW info in case we need to revert this */ 2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2483 sizeof(ep_bw_info[i])); 2484 /* Drop the endpoint from the interval table if the endpoint is 2485 * being dropped or changed. 2486 */ 2487 if (EP_IS_DROPPED(ctrl_ctx, i)) 2488 xhci_drop_ep_from_interval_table(xhci, 2489 &virt_dev->eps[i].bw_info, 2490 virt_dev->bw_table, 2491 virt_dev->udev, 2492 &virt_dev->eps[i], 2493 virt_dev->tt_info); 2494 } 2495 /* Overwrite the information stored in the endpoints' bw_info */ 2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2497 for (i = 0; i < 31; i++) { 2498 /* Add any changed or added endpoints to the interval table */ 2499 if (EP_IS_ADDED(ctrl_ctx, i)) 2500 xhci_add_ep_to_interval_table(xhci, 2501 &virt_dev->eps[i].bw_info, 2502 virt_dev->bw_table, 2503 virt_dev->udev, 2504 &virt_dev->eps[i], 2505 virt_dev->tt_info); 2506 } 2507 2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2509 /* Ok, this fits in the bandwidth we have. 2510 * Update the number of active TTs. 2511 */ 2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2513 return 0; 2514 } 2515 2516 /* We don't have enough bandwidth for this, revert the stored info. */ 2517 for (i = 0; i < 31; i++) { 2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2519 continue; 2520 2521 /* Drop the new copies of any added or changed endpoints from 2522 * the interval table. 2523 */ 2524 if (EP_IS_ADDED(ctrl_ctx, i)) { 2525 xhci_drop_ep_from_interval_table(xhci, 2526 &virt_dev->eps[i].bw_info, 2527 virt_dev->bw_table, 2528 virt_dev->udev, 2529 &virt_dev->eps[i], 2530 virt_dev->tt_info); 2531 } 2532 /* Revert the endpoint back to its old information */ 2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2534 sizeof(ep_bw_info[i])); 2535 /* Add any changed or dropped endpoints back into the table */ 2536 if (EP_IS_DROPPED(ctrl_ctx, i)) 2537 xhci_add_ep_to_interval_table(xhci, 2538 &virt_dev->eps[i].bw_info, 2539 virt_dev->bw_table, 2540 virt_dev->udev, 2541 &virt_dev->eps[i], 2542 virt_dev->tt_info); 2543 } 2544 return -ENOMEM; 2545 } 2546 2547 2548 /* Issue a configure endpoint command or evaluate context command 2549 * and wait for it to finish. 2550 */ 2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2552 struct usb_device *udev, 2553 struct xhci_command *command, 2554 bool ctx_change, bool must_succeed) 2555 { 2556 int ret; 2557 int timeleft; 2558 unsigned long flags; 2559 struct xhci_container_ctx *in_ctx; 2560 struct xhci_input_control_ctx *ctrl_ctx; 2561 struct completion *cmd_completion; 2562 u32 *cmd_status; 2563 struct xhci_virt_device *virt_dev; 2564 union xhci_trb *cmd_trb; 2565 2566 spin_lock_irqsave(&xhci->lock, flags); 2567 virt_dev = xhci->devs[udev->slot_id]; 2568 2569 if (command) 2570 in_ctx = command->in_ctx; 2571 else 2572 in_ctx = virt_dev->in_ctx; 2573 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2574 if (!ctrl_ctx) { 2575 spin_unlock_irqrestore(&xhci->lock, flags); 2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2577 __func__); 2578 return -ENOMEM; 2579 } 2580 2581 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2582 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2583 spin_unlock_irqrestore(&xhci->lock, flags); 2584 xhci_warn(xhci, "Not enough host resources, " 2585 "active endpoint contexts = %u\n", 2586 xhci->num_active_eps); 2587 return -ENOMEM; 2588 } 2589 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2590 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2591 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2592 xhci_free_host_resources(xhci, ctrl_ctx); 2593 spin_unlock_irqrestore(&xhci->lock, flags); 2594 xhci_warn(xhci, "Not enough bandwidth\n"); 2595 return -ENOMEM; 2596 } 2597 2598 if (command) { 2599 cmd_completion = command->completion; 2600 cmd_status = &command->status; 2601 command->command_trb = xhci->cmd_ring->enqueue; 2602 2603 /* Enqueue pointer can be left pointing to the link TRB, 2604 * we must handle that 2605 */ 2606 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2607 command->command_trb = 2608 xhci->cmd_ring->enq_seg->next->trbs; 2609 2610 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2611 } else { 2612 cmd_completion = &virt_dev->cmd_completion; 2613 cmd_status = &virt_dev->cmd_status; 2614 } 2615 init_completion(cmd_completion); 2616 2617 cmd_trb = xhci->cmd_ring->dequeue; 2618 if (!ctx_change) 2619 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2620 udev->slot_id, must_succeed); 2621 else 2622 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2623 udev->slot_id, must_succeed); 2624 if (ret < 0) { 2625 if (command) 2626 list_del(&command->cmd_list); 2627 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2628 xhci_free_host_resources(xhci, ctrl_ctx); 2629 spin_unlock_irqrestore(&xhci->lock, flags); 2630 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2631 "FIXME allocate a new ring segment"); 2632 return -ENOMEM; 2633 } 2634 xhci_ring_cmd_db(xhci); 2635 spin_unlock_irqrestore(&xhci->lock, flags); 2636 2637 /* Wait for the configure endpoint command to complete */ 2638 timeleft = wait_for_completion_interruptible_timeout( 2639 cmd_completion, 2640 XHCI_CMD_DEFAULT_TIMEOUT); 2641 if (timeleft <= 0) { 2642 xhci_warn(xhci, "%s while waiting for %s command\n", 2643 timeleft == 0 ? "Timeout" : "Signal", 2644 ctx_change == 0 ? 2645 "configure endpoint" : 2646 "evaluate context"); 2647 /* cancel the configure endpoint command */ 2648 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2649 if (ret < 0) 2650 return ret; 2651 return -ETIME; 2652 } 2653 2654 if (!ctx_change) 2655 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2656 else 2657 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2658 2659 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2660 spin_lock_irqsave(&xhci->lock, flags); 2661 /* If the command failed, remove the reserved resources. 2662 * Otherwise, clean up the estimate to include dropped eps. 2663 */ 2664 if (ret) 2665 xhci_free_host_resources(xhci, ctrl_ctx); 2666 else 2667 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2668 spin_unlock_irqrestore(&xhci->lock, flags); 2669 } 2670 return ret; 2671 } 2672 2673 /* Called after one or more calls to xhci_add_endpoint() or 2674 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2675 * to call xhci_reset_bandwidth(). 2676 * 2677 * Since we are in the middle of changing either configuration or 2678 * installing a new alt setting, the USB core won't allow URBs to be 2679 * enqueued for any endpoint on the old config or interface. Nothing 2680 * else should be touching the xhci->devs[slot_id] structure, so we 2681 * don't need to take the xhci->lock for manipulating that. 2682 */ 2683 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2684 { 2685 int i; 2686 int ret = 0; 2687 struct xhci_hcd *xhci; 2688 struct xhci_virt_device *virt_dev; 2689 struct xhci_input_control_ctx *ctrl_ctx; 2690 struct xhci_slot_ctx *slot_ctx; 2691 2692 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2693 if (ret <= 0) 2694 return ret; 2695 xhci = hcd_to_xhci(hcd); 2696 if (xhci->xhc_state & XHCI_STATE_DYING) 2697 return -ENODEV; 2698 2699 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2700 virt_dev = xhci->devs[udev->slot_id]; 2701 2702 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2703 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2704 if (!ctrl_ctx) { 2705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2706 __func__); 2707 return -ENOMEM; 2708 } 2709 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2710 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2711 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2712 2713 /* Don't issue the command if there's no endpoints to update. */ 2714 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2715 ctrl_ctx->drop_flags == 0) 2716 return 0; 2717 2718 xhci_dbg(xhci, "New Input Control Context:\n"); 2719 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2720 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2721 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2722 2723 ret = xhci_configure_endpoint(xhci, udev, NULL, 2724 false, false); 2725 if (ret) { 2726 /* Callee should call reset_bandwidth() */ 2727 return ret; 2728 } 2729 2730 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2731 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2732 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2733 2734 /* Free any rings that were dropped, but not changed. */ 2735 for (i = 1; i < 31; ++i) { 2736 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2737 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2738 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2739 } 2740 xhci_zero_in_ctx(xhci, virt_dev); 2741 /* 2742 * Install any rings for completely new endpoints or changed endpoints, 2743 * and free or cache any old rings from changed endpoints. 2744 */ 2745 for (i = 1; i < 31; ++i) { 2746 if (!virt_dev->eps[i].new_ring) 2747 continue; 2748 /* Only cache or free the old ring if it exists. 2749 * It may not if this is the first add of an endpoint. 2750 */ 2751 if (virt_dev->eps[i].ring) { 2752 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2753 } 2754 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2755 virt_dev->eps[i].new_ring = NULL; 2756 } 2757 2758 return ret; 2759 } 2760 2761 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2762 { 2763 struct xhci_hcd *xhci; 2764 struct xhci_virt_device *virt_dev; 2765 int i, ret; 2766 2767 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2768 if (ret <= 0) 2769 return; 2770 xhci = hcd_to_xhci(hcd); 2771 2772 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2773 virt_dev = xhci->devs[udev->slot_id]; 2774 /* Free any rings allocated for added endpoints */ 2775 for (i = 0; i < 31; ++i) { 2776 if (virt_dev->eps[i].new_ring) { 2777 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2778 virt_dev->eps[i].new_ring = NULL; 2779 } 2780 } 2781 xhci_zero_in_ctx(xhci, virt_dev); 2782 } 2783 2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2785 struct xhci_container_ctx *in_ctx, 2786 struct xhci_container_ctx *out_ctx, 2787 struct xhci_input_control_ctx *ctrl_ctx, 2788 u32 add_flags, u32 drop_flags) 2789 { 2790 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2791 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2792 xhci_slot_copy(xhci, in_ctx, out_ctx); 2793 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2794 2795 xhci_dbg(xhci, "Input Context:\n"); 2796 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2797 } 2798 2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2800 unsigned int slot_id, unsigned int ep_index, 2801 struct xhci_dequeue_state *deq_state) 2802 { 2803 struct xhci_input_control_ctx *ctrl_ctx; 2804 struct xhci_container_ctx *in_ctx; 2805 struct xhci_ep_ctx *ep_ctx; 2806 u32 added_ctxs; 2807 dma_addr_t addr; 2808 2809 in_ctx = xhci->devs[slot_id]->in_ctx; 2810 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2811 if (!ctrl_ctx) { 2812 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2813 __func__); 2814 return; 2815 } 2816 2817 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2818 xhci->devs[slot_id]->out_ctx, ep_index); 2819 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2820 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2821 deq_state->new_deq_ptr); 2822 if (addr == 0) { 2823 xhci_warn(xhci, "WARN Cannot submit config ep after " 2824 "reset ep command\n"); 2825 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2826 deq_state->new_deq_seg, 2827 deq_state->new_deq_ptr); 2828 return; 2829 } 2830 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2831 2832 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2833 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2834 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2835 added_ctxs, added_ctxs); 2836 } 2837 2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2839 struct usb_device *udev, unsigned int ep_index) 2840 { 2841 struct xhci_dequeue_state deq_state; 2842 struct xhci_virt_ep *ep; 2843 2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2845 "Cleaning up stalled endpoint ring"); 2846 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2847 /* We need to move the HW's dequeue pointer past this TD, 2848 * or it will attempt to resend it on the next doorbell ring. 2849 */ 2850 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2851 ep_index, ep->stopped_stream, ep->stopped_td, 2852 &deq_state); 2853 2854 /* HW with the reset endpoint quirk will use the saved dequeue state to 2855 * issue a configure endpoint command later. 2856 */ 2857 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2858 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2859 "Queueing new dequeue state"); 2860 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2861 ep_index, ep->stopped_stream, &deq_state); 2862 } else { 2863 /* Better hope no one uses the input context between now and the 2864 * reset endpoint completion! 2865 * XXX: No idea how this hardware will react when stream rings 2866 * are enabled. 2867 */ 2868 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2869 "Setting up input context for " 2870 "configure endpoint command"); 2871 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2872 ep_index, &deq_state); 2873 } 2874 } 2875 2876 /* Deal with stalled endpoints. The core should have sent the control message 2877 * to clear the halt condition. However, we need to make the xHCI hardware 2878 * reset its sequence number, since a device will expect a sequence number of 2879 * zero after the halt condition is cleared. 2880 * Context: in_interrupt 2881 */ 2882 void xhci_endpoint_reset(struct usb_hcd *hcd, 2883 struct usb_host_endpoint *ep) 2884 { 2885 struct xhci_hcd *xhci; 2886 struct usb_device *udev; 2887 unsigned int ep_index; 2888 unsigned long flags; 2889 int ret; 2890 struct xhci_virt_ep *virt_ep; 2891 2892 xhci = hcd_to_xhci(hcd); 2893 udev = (struct usb_device *) ep->hcpriv; 2894 /* Called with a root hub endpoint (or an endpoint that wasn't added 2895 * with xhci_add_endpoint() 2896 */ 2897 if (!ep->hcpriv) 2898 return; 2899 ep_index = xhci_get_endpoint_index(&ep->desc); 2900 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2901 if (!virt_ep->stopped_td) { 2902 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2903 "Endpoint 0x%x not halted, refusing to reset.", 2904 ep->desc.bEndpointAddress); 2905 return; 2906 } 2907 if (usb_endpoint_xfer_control(&ep->desc)) { 2908 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2909 "Control endpoint stall already handled."); 2910 return; 2911 } 2912 2913 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2914 "Queueing reset endpoint command"); 2915 spin_lock_irqsave(&xhci->lock, flags); 2916 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2917 /* 2918 * Can't change the ring dequeue pointer until it's transitioned to the 2919 * stopped state, which is only upon a successful reset endpoint 2920 * command. Better hope that last command worked! 2921 */ 2922 if (!ret) { 2923 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2924 kfree(virt_ep->stopped_td); 2925 xhci_ring_cmd_db(xhci); 2926 } 2927 virt_ep->stopped_td = NULL; 2928 virt_ep->stopped_trb = NULL; 2929 virt_ep->stopped_stream = 0; 2930 spin_unlock_irqrestore(&xhci->lock, flags); 2931 2932 if (ret) 2933 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2934 } 2935 2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2937 struct usb_device *udev, struct usb_host_endpoint *ep, 2938 unsigned int slot_id) 2939 { 2940 int ret; 2941 unsigned int ep_index; 2942 unsigned int ep_state; 2943 2944 if (!ep) 2945 return -EINVAL; 2946 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2947 if (ret <= 0) 2948 return -EINVAL; 2949 if (ep->ss_ep_comp.bmAttributes == 0) { 2950 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2951 " descriptor for ep 0x%x does not support streams\n", 2952 ep->desc.bEndpointAddress); 2953 return -EINVAL; 2954 } 2955 2956 ep_index = xhci_get_endpoint_index(&ep->desc); 2957 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2958 if (ep_state & EP_HAS_STREAMS || 2959 ep_state & EP_GETTING_STREAMS) { 2960 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2961 "already has streams set up.\n", 2962 ep->desc.bEndpointAddress); 2963 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2964 "dynamic stream context array reallocation.\n"); 2965 return -EINVAL; 2966 } 2967 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2968 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2969 "endpoint 0x%x; URBs are pending.\n", 2970 ep->desc.bEndpointAddress); 2971 return -EINVAL; 2972 } 2973 return 0; 2974 } 2975 2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2977 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2978 { 2979 unsigned int max_streams; 2980 2981 /* The stream context array size must be a power of two */ 2982 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2983 /* 2984 * Find out how many primary stream array entries the host controller 2985 * supports. Later we may use secondary stream arrays (similar to 2nd 2986 * level page entries), but that's an optional feature for xHCI host 2987 * controllers. xHCs must support at least 4 stream IDs. 2988 */ 2989 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2990 if (*num_stream_ctxs > max_streams) { 2991 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2992 max_streams); 2993 *num_stream_ctxs = max_streams; 2994 *num_streams = max_streams; 2995 } 2996 } 2997 2998 /* Returns an error code if one of the endpoint already has streams. 2999 * This does not change any data structures, it only checks and gathers 3000 * information. 3001 */ 3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3003 struct usb_device *udev, 3004 struct usb_host_endpoint **eps, unsigned int num_eps, 3005 unsigned int *num_streams, u32 *changed_ep_bitmask) 3006 { 3007 unsigned int max_streams; 3008 unsigned int endpoint_flag; 3009 int i; 3010 int ret; 3011 3012 for (i = 0; i < num_eps; i++) { 3013 ret = xhci_check_streams_endpoint(xhci, udev, 3014 eps[i], udev->slot_id); 3015 if (ret < 0) 3016 return ret; 3017 3018 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3019 if (max_streams < (*num_streams - 1)) { 3020 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3021 eps[i]->desc.bEndpointAddress, 3022 max_streams); 3023 *num_streams = max_streams+1; 3024 } 3025 3026 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3027 if (*changed_ep_bitmask & endpoint_flag) 3028 return -EINVAL; 3029 *changed_ep_bitmask |= endpoint_flag; 3030 } 3031 return 0; 3032 } 3033 3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3035 struct usb_device *udev, 3036 struct usb_host_endpoint **eps, unsigned int num_eps) 3037 { 3038 u32 changed_ep_bitmask = 0; 3039 unsigned int slot_id; 3040 unsigned int ep_index; 3041 unsigned int ep_state; 3042 int i; 3043 3044 slot_id = udev->slot_id; 3045 if (!xhci->devs[slot_id]) 3046 return 0; 3047 3048 for (i = 0; i < num_eps; i++) { 3049 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3050 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3051 /* Are streams already being freed for the endpoint? */ 3052 if (ep_state & EP_GETTING_NO_STREAMS) { 3053 xhci_warn(xhci, "WARN Can't disable streams for " 3054 "endpoint 0x%x, " 3055 "streams are being disabled already\n", 3056 eps[i]->desc.bEndpointAddress); 3057 return 0; 3058 } 3059 /* Are there actually any streams to free? */ 3060 if (!(ep_state & EP_HAS_STREAMS) && 3061 !(ep_state & EP_GETTING_STREAMS)) { 3062 xhci_warn(xhci, "WARN Can't disable streams for " 3063 "endpoint 0x%x, " 3064 "streams are already disabled!\n", 3065 eps[i]->desc.bEndpointAddress); 3066 xhci_warn(xhci, "WARN xhci_free_streams() called " 3067 "with non-streams endpoint\n"); 3068 return 0; 3069 } 3070 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3071 } 3072 return changed_ep_bitmask; 3073 } 3074 3075 /* 3076 * The USB device drivers use this function (though the HCD interface in USB 3077 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3078 * coordinate mass storage command queueing across multiple endpoints (basically 3079 * a stream ID == a task ID). 3080 * 3081 * Setting up streams involves allocating the same size stream context array 3082 * for each endpoint and issuing a configure endpoint command for all endpoints. 3083 * 3084 * Don't allow the call to succeed if one endpoint only supports one stream 3085 * (which means it doesn't support streams at all). 3086 * 3087 * Drivers may get less stream IDs than they asked for, if the host controller 3088 * hardware or endpoints claim they can't support the number of requested 3089 * stream IDs. 3090 */ 3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3092 struct usb_host_endpoint **eps, unsigned int num_eps, 3093 unsigned int num_streams, gfp_t mem_flags) 3094 { 3095 int i, ret; 3096 struct xhci_hcd *xhci; 3097 struct xhci_virt_device *vdev; 3098 struct xhci_command *config_cmd; 3099 struct xhci_input_control_ctx *ctrl_ctx; 3100 unsigned int ep_index; 3101 unsigned int num_stream_ctxs; 3102 unsigned long flags; 3103 u32 changed_ep_bitmask = 0; 3104 3105 if (!eps) 3106 return -EINVAL; 3107 3108 /* Add one to the number of streams requested to account for 3109 * stream 0 that is reserved for xHCI usage. 3110 */ 3111 num_streams += 1; 3112 xhci = hcd_to_xhci(hcd); 3113 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3114 num_streams); 3115 3116 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3117 if (!config_cmd) { 3118 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3119 return -ENOMEM; 3120 } 3121 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3122 if (!ctrl_ctx) { 3123 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3124 __func__); 3125 xhci_free_command(xhci, config_cmd); 3126 return -ENOMEM; 3127 } 3128 3129 /* Check to make sure all endpoints are not already configured for 3130 * streams. While we're at it, find the maximum number of streams that 3131 * all the endpoints will support and check for duplicate endpoints. 3132 */ 3133 spin_lock_irqsave(&xhci->lock, flags); 3134 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3135 num_eps, &num_streams, &changed_ep_bitmask); 3136 if (ret < 0) { 3137 xhci_free_command(xhci, config_cmd); 3138 spin_unlock_irqrestore(&xhci->lock, flags); 3139 return ret; 3140 } 3141 if (num_streams <= 1) { 3142 xhci_warn(xhci, "WARN: endpoints can't handle " 3143 "more than one stream.\n"); 3144 xhci_free_command(xhci, config_cmd); 3145 spin_unlock_irqrestore(&xhci->lock, flags); 3146 return -EINVAL; 3147 } 3148 vdev = xhci->devs[udev->slot_id]; 3149 /* Mark each endpoint as being in transition, so 3150 * xhci_urb_enqueue() will reject all URBs. 3151 */ 3152 for (i = 0; i < num_eps; i++) { 3153 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3154 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3155 } 3156 spin_unlock_irqrestore(&xhci->lock, flags); 3157 3158 /* Setup internal data structures and allocate HW data structures for 3159 * streams (but don't install the HW structures in the input context 3160 * until we're sure all memory allocation succeeded). 3161 */ 3162 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3163 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3164 num_stream_ctxs, num_streams); 3165 3166 for (i = 0; i < num_eps; i++) { 3167 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3168 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3169 num_stream_ctxs, 3170 num_streams, mem_flags); 3171 if (!vdev->eps[ep_index].stream_info) 3172 goto cleanup; 3173 /* Set maxPstreams in endpoint context and update deq ptr to 3174 * point to stream context array. FIXME 3175 */ 3176 } 3177 3178 /* Set up the input context for a configure endpoint command. */ 3179 for (i = 0; i < num_eps; i++) { 3180 struct xhci_ep_ctx *ep_ctx; 3181 3182 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3183 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3184 3185 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3186 vdev->out_ctx, ep_index); 3187 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3188 vdev->eps[ep_index].stream_info); 3189 } 3190 /* Tell the HW to drop its old copy of the endpoint context info 3191 * and add the updated copy from the input context. 3192 */ 3193 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3194 vdev->out_ctx, ctrl_ctx, 3195 changed_ep_bitmask, changed_ep_bitmask); 3196 3197 /* Issue and wait for the configure endpoint command */ 3198 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3199 false, false); 3200 3201 /* xHC rejected the configure endpoint command for some reason, so we 3202 * leave the old ring intact and free our internal streams data 3203 * structure. 3204 */ 3205 if (ret < 0) 3206 goto cleanup; 3207 3208 spin_lock_irqsave(&xhci->lock, flags); 3209 for (i = 0; i < num_eps; i++) { 3210 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3211 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3212 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3213 udev->slot_id, ep_index); 3214 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3215 } 3216 xhci_free_command(xhci, config_cmd); 3217 spin_unlock_irqrestore(&xhci->lock, flags); 3218 3219 /* Subtract 1 for stream 0, which drivers can't use */ 3220 return num_streams - 1; 3221 3222 cleanup: 3223 /* If it didn't work, free the streams! */ 3224 for (i = 0; i < num_eps; i++) { 3225 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3226 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3227 vdev->eps[ep_index].stream_info = NULL; 3228 /* FIXME Unset maxPstreams in endpoint context and 3229 * update deq ptr to point to normal string ring. 3230 */ 3231 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3232 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3233 xhci_endpoint_zero(xhci, vdev, eps[i]); 3234 } 3235 xhci_free_command(xhci, config_cmd); 3236 return -ENOMEM; 3237 } 3238 3239 /* Transition the endpoint from using streams to being a "normal" endpoint 3240 * without streams. 3241 * 3242 * Modify the endpoint context state, submit a configure endpoint command, 3243 * and free all endpoint rings for streams if that completes successfully. 3244 */ 3245 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3246 struct usb_host_endpoint **eps, unsigned int num_eps, 3247 gfp_t mem_flags) 3248 { 3249 int i, ret; 3250 struct xhci_hcd *xhci; 3251 struct xhci_virt_device *vdev; 3252 struct xhci_command *command; 3253 struct xhci_input_control_ctx *ctrl_ctx; 3254 unsigned int ep_index; 3255 unsigned long flags; 3256 u32 changed_ep_bitmask; 3257 3258 xhci = hcd_to_xhci(hcd); 3259 vdev = xhci->devs[udev->slot_id]; 3260 3261 /* Set up a configure endpoint command to remove the streams rings */ 3262 spin_lock_irqsave(&xhci->lock, flags); 3263 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3264 udev, eps, num_eps); 3265 if (changed_ep_bitmask == 0) { 3266 spin_unlock_irqrestore(&xhci->lock, flags); 3267 return -EINVAL; 3268 } 3269 3270 /* Use the xhci_command structure from the first endpoint. We may have 3271 * allocated too many, but the driver may call xhci_free_streams() for 3272 * each endpoint it grouped into one call to xhci_alloc_streams(). 3273 */ 3274 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3275 command = vdev->eps[ep_index].stream_info->free_streams_command; 3276 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3277 if (!ctrl_ctx) { 3278 spin_unlock_irqrestore(&xhci->lock, flags); 3279 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3280 __func__); 3281 return -EINVAL; 3282 } 3283 3284 for (i = 0; i < num_eps; i++) { 3285 struct xhci_ep_ctx *ep_ctx; 3286 3287 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3288 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3289 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3290 EP_GETTING_NO_STREAMS; 3291 3292 xhci_endpoint_copy(xhci, command->in_ctx, 3293 vdev->out_ctx, ep_index); 3294 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3295 &vdev->eps[ep_index]); 3296 } 3297 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3298 vdev->out_ctx, ctrl_ctx, 3299 changed_ep_bitmask, changed_ep_bitmask); 3300 spin_unlock_irqrestore(&xhci->lock, flags); 3301 3302 /* Issue and wait for the configure endpoint command, 3303 * which must succeed. 3304 */ 3305 ret = xhci_configure_endpoint(xhci, udev, command, 3306 false, true); 3307 3308 /* xHC rejected the configure endpoint command for some reason, so we 3309 * leave the streams rings intact. 3310 */ 3311 if (ret < 0) 3312 return ret; 3313 3314 spin_lock_irqsave(&xhci->lock, flags); 3315 for (i = 0; i < num_eps; i++) { 3316 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3317 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3318 vdev->eps[ep_index].stream_info = NULL; 3319 /* FIXME Unset maxPstreams in endpoint context and 3320 * update deq ptr to point to normal string ring. 3321 */ 3322 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3323 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3324 } 3325 spin_unlock_irqrestore(&xhci->lock, flags); 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * Deletes endpoint resources for endpoints that were active before a Reset 3332 * Device command, or a Disable Slot command. The Reset Device command leaves 3333 * the control endpoint intact, whereas the Disable Slot command deletes it. 3334 * 3335 * Must be called with xhci->lock held. 3336 */ 3337 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3338 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3339 { 3340 int i; 3341 unsigned int num_dropped_eps = 0; 3342 unsigned int drop_flags = 0; 3343 3344 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3345 if (virt_dev->eps[i].ring) { 3346 drop_flags |= 1 << i; 3347 num_dropped_eps++; 3348 } 3349 } 3350 xhci->num_active_eps -= num_dropped_eps; 3351 if (num_dropped_eps) 3352 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3353 "Dropped %u ep ctxs, flags = 0x%x, " 3354 "%u now active.", 3355 num_dropped_eps, drop_flags, 3356 xhci->num_active_eps); 3357 } 3358 3359 /* 3360 * This submits a Reset Device Command, which will set the device state to 0, 3361 * set the device address to 0, and disable all the endpoints except the default 3362 * control endpoint. The USB core should come back and call 3363 * xhci_address_device(), and then re-set up the configuration. If this is 3364 * called because of a usb_reset_and_verify_device(), then the old alternate 3365 * settings will be re-installed through the normal bandwidth allocation 3366 * functions. 3367 * 3368 * Wait for the Reset Device command to finish. Remove all structures 3369 * associated with the endpoints that were disabled. Clear the input device 3370 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3371 * 3372 * If the virt_dev to be reset does not exist or does not match the udev, 3373 * it means the device is lost, possibly due to the xHC restore error and 3374 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3375 * re-allocate the device. 3376 */ 3377 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3378 { 3379 int ret, i; 3380 unsigned long flags; 3381 struct xhci_hcd *xhci; 3382 unsigned int slot_id; 3383 struct xhci_virt_device *virt_dev; 3384 struct xhci_command *reset_device_cmd; 3385 int timeleft; 3386 int last_freed_endpoint; 3387 struct xhci_slot_ctx *slot_ctx; 3388 int old_active_eps = 0; 3389 3390 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3391 if (ret <= 0) 3392 return ret; 3393 xhci = hcd_to_xhci(hcd); 3394 slot_id = udev->slot_id; 3395 virt_dev = xhci->devs[slot_id]; 3396 if (!virt_dev) { 3397 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3398 "not exist. Re-allocate the device\n", slot_id); 3399 ret = xhci_alloc_dev(hcd, udev); 3400 if (ret == 1) 3401 return 0; 3402 else 3403 return -EINVAL; 3404 } 3405 3406 if (virt_dev->udev != udev) { 3407 /* If the virt_dev and the udev does not match, this virt_dev 3408 * may belong to another udev. 3409 * Re-allocate the device. 3410 */ 3411 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3412 "not match the udev. Re-allocate the device\n", 3413 slot_id); 3414 ret = xhci_alloc_dev(hcd, udev); 3415 if (ret == 1) 3416 return 0; 3417 else 3418 return -EINVAL; 3419 } 3420 3421 /* If device is not setup, there is no point in resetting it */ 3422 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3423 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3424 SLOT_STATE_DISABLED) 3425 return 0; 3426 3427 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3428 /* Allocate the command structure that holds the struct completion. 3429 * Assume we're in process context, since the normal device reset 3430 * process has to wait for the device anyway. Storage devices are 3431 * reset as part of error handling, so use GFP_NOIO instead of 3432 * GFP_KERNEL. 3433 */ 3434 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3435 if (!reset_device_cmd) { 3436 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3437 return -ENOMEM; 3438 } 3439 3440 /* Attempt to submit the Reset Device command to the command ring */ 3441 spin_lock_irqsave(&xhci->lock, flags); 3442 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3443 3444 /* Enqueue pointer can be left pointing to the link TRB, 3445 * we must handle that 3446 */ 3447 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3448 reset_device_cmd->command_trb = 3449 xhci->cmd_ring->enq_seg->next->trbs; 3450 3451 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3452 ret = xhci_queue_reset_device(xhci, slot_id); 3453 if (ret) { 3454 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3455 list_del(&reset_device_cmd->cmd_list); 3456 spin_unlock_irqrestore(&xhci->lock, flags); 3457 goto command_cleanup; 3458 } 3459 xhci_ring_cmd_db(xhci); 3460 spin_unlock_irqrestore(&xhci->lock, flags); 3461 3462 /* Wait for the Reset Device command to finish */ 3463 timeleft = wait_for_completion_interruptible_timeout( 3464 reset_device_cmd->completion, 3465 USB_CTRL_SET_TIMEOUT); 3466 if (timeleft <= 0) { 3467 xhci_warn(xhci, "%s while waiting for reset device command\n", 3468 timeleft == 0 ? "Timeout" : "Signal"); 3469 spin_lock_irqsave(&xhci->lock, flags); 3470 /* The timeout might have raced with the event ring handler, so 3471 * only delete from the list if the item isn't poisoned. 3472 */ 3473 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3474 list_del(&reset_device_cmd->cmd_list); 3475 spin_unlock_irqrestore(&xhci->lock, flags); 3476 ret = -ETIME; 3477 goto command_cleanup; 3478 } 3479 3480 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3481 * unless we tried to reset a slot ID that wasn't enabled, 3482 * or the device wasn't in the addressed or configured state. 3483 */ 3484 ret = reset_device_cmd->status; 3485 switch (ret) { 3486 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3487 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3488 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3489 slot_id, 3490 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3491 xhci_dbg(xhci, "Not freeing device rings.\n"); 3492 /* Don't treat this as an error. May change my mind later. */ 3493 ret = 0; 3494 goto command_cleanup; 3495 case COMP_SUCCESS: 3496 xhci_dbg(xhci, "Successful reset device command.\n"); 3497 break; 3498 default: 3499 if (xhci_is_vendor_info_code(xhci, ret)) 3500 break; 3501 xhci_warn(xhci, "Unknown completion code %u for " 3502 "reset device command.\n", ret); 3503 ret = -EINVAL; 3504 goto command_cleanup; 3505 } 3506 3507 /* Free up host controller endpoint resources */ 3508 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3509 spin_lock_irqsave(&xhci->lock, flags); 3510 /* Don't delete the default control endpoint resources */ 3511 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3512 spin_unlock_irqrestore(&xhci->lock, flags); 3513 } 3514 3515 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3516 last_freed_endpoint = 1; 3517 for (i = 1; i < 31; ++i) { 3518 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3519 3520 if (ep->ep_state & EP_HAS_STREAMS) { 3521 xhci_free_stream_info(xhci, ep->stream_info); 3522 ep->stream_info = NULL; 3523 ep->ep_state &= ~EP_HAS_STREAMS; 3524 } 3525 3526 if (ep->ring) { 3527 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3528 last_freed_endpoint = i; 3529 } 3530 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3531 xhci_drop_ep_from_interval_table(xhci, 3532 &virt_dev->eps[i].bw_info, 3533 virt_dev->bw_table, 3534 udev, 3535 &virt_dev->eps[i], 3536 virt_dev->tt_info); 3537 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3538 } 3539 /* If necessary, update the number of active TTs on this root port */ 3540 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3541 3542 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3543 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3544 ret = 0; 3545 3546 command_cleanup: 3547 xhci_free_command(xhci, reset_device_cmd); 3548 return ret; 3549 } 3550 3551 /* 3552 * At this point, the struct usb_device is about to go away, the device has 3553 * disconnected, and all traffic has been stopped and the endpoints have been 3554 * disabled. Free any HC data structures associated with that device. 3555 */ 3556 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3557 { 3558 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3559 struct xhci_virt_device *virt_dev; 3560 unsigned long flags; 3561 u32 state; 3562 int i, ret; 3563 3564 #ifndef CONFIG_USB_DEFAULT_PERSIST 3565 /* 3566 * We called pm_runtime_get_noresume when the device was attached. 3567 * Decrement the counter here to allow controller to runtime suspend 3568 * if no devices remain. 3569 */ 3570 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3571 pm_runtime_put_noidle(hcd->self.controller); 3572 #endif 3573 3574 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3575 /* If the host is halted due to driver unload, we still need to free the 3576 * device. 3577 */ 3578 if (ret <= 0 && ret != -ENODEV) 3579 return; 3580 3581 virt_dev = xhci->devs[udev->slot_id]; 3582 3583 /* Stop any wayward timer functions (which may grab the lock) */ 3584 for (i = 0; i < 31; ++i) { 3585 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3586 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3587 } 3588 3589 if (udev->usb2_hw_lpm_enabled) { 3590 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3591 udev->usb2_hw_lpm_enabled = 0; 3592 } 3593 3594 spin_lock_irqsave(&xhci->lock, flags); 3595 /* Don't disable the slot if the host controller is dead. */ 3596 state = xhci_readl(xhci, &xhci->op_regs->status); 3597 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3598 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3599 xhci_free_virt_device(xhci, udev->slot_id); 3600 spin_unlock_irqrestore(&xhci->lock, flags); 3601 return; 3602 } 3603 3604 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3605 spin_unlock_irqrestore(&xhci->lock, flags); 3606 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3607 return; 3608 } 3609 xhci_ring_cmd_db(xhci); 3610 spin_unlock_irqrestore(&xhci->lock, flags); 3611 /* 3612 * Event command completion handler will free any data structures 3613 * associated with the slot. XXX Can free sleep? 3614 */ 3615 } 3616 3617 /* 3618 * Checks if we have enough host controller resources for the default control 3619 * endpoint. 3620 * 3621 * Must be called with xhci->lock held. 3622 */ 3623 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3624 { 3625 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3626 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3627 "Not enough ep ctxs: " 3628 "%u active, need to add 1, limit is %u.", 3629 xhci->num_active_eps, xhci->limit_active_eps); 3630 return -ENOMEM; 3631 } 3632 xhci->num_active_eps += 1; 3633 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3634 "Adding 1 ep ctx, %u now active.", 3635 xhci->num_active_eps); 3636 return 0; 3637 } 3638 3639 3640 /* 3641 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3642 * timed out, or allocating memory failed. Returns 1 on success. 3643 */ 3644 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3645 { 3646 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3647 unsigned long flags; 3648 int timeleft; 3649 int ret; 3650 union xhci_trb *cmd_trb; 3651 3652 spin_lock_irqsave(&xhci->lock, flags); 3653 cmd_trb = xhci->cmd_ring->dequeue; 3654 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3655 if (ret) { 3656 spin_unlock_irqrestore(&xhci->lock, flags); 3657 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3658 return 0; 3659 } 3660 xhci_ring_cmd_db(xhci); 3661 spin_unlock_irqrestore(&xhci->lock, flags); 3662 3663 /* XXX: how much time for xHC slot assignment? */ 3664 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3665 XHCI_CMD_DEFAULT_TIMEOUT); 3666 if (timeleft <= 0) { 3667 xhci_warn(xhci, "%s while waiting for a slot\n", 3668 timeleft == 0 ? "Timeout" : "Signal"); 3669 /* cancel the enable slot request */ 3670 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3671 } 3672 3673 if (!xhci->slot_id) { 3674 xhci_err(xhci, "Error while assigning device slot ID\n"); 3675 return 0; 3676 } 3677 3678 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3679 spin_lock_irqsave(&xhci->lock, flags); 3680 ret = xhci_reserve_host_control_ep_resources(xhci); 3681 if (ret) { 3682 spin_unlock_irqrestore(&xhci->lock, flags); 3683 xhci_warn(xhci, "Not enough host resources, " 3684 "active endpoint contexts = %u\n", 3685 xhci->num_active_eps); 3686 goto disable_slot; 3687 } 3688 spin_unlock_irqrestore(&xhci->lock, flags); 3689 } 3690 /* Use GFP_NOIO, since this function can be called from 3691 * xhci_discover_or_reset_device(), which may be called as part of 3692 * mass storage driver error handling. 3693 */ 3694 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3695 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3696 goto disable_slot; 3697 } 3698 udev->slot_id = xhci->slot_id; 3699 3700 #ifndef CONFIG_USB_DEFAULT_PERSIST 3701 /* 3702 * If resetting upon resume, we can't put the controller into runtime 3703 * suspend if there is a device attached. 3704 */ 3705 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3706 pm_runtime_get_noresume(hcd->self.controller); 3707 #endif 3708 3709 /* Is this a LS or FS device under a HS hub? */ 3710 /* Hub or peripherial? */ 3711 return 1; 3712 3713 disable_slot: 3714 /* Disable slot, if we can do it without mem alloc */ 3715 spin_lock_irqsave(&xhci->lock, flags); 3716 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3717 xhci_ring_cmd_db(xhci); 3718 spin_unlock_irqrestore(&xhci->lock, flags); 3719 return 0; 3720 } 3721 3722 /* 3723 * Issue an Address Device command (which will issue a SetAddress request to 3724 * the device). 3725 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3726 * we should only issue and wait on one address command at the same time. 3727 * 3728 * We add one to the device address issued by the hardware because the USB core 3729 * uses address 1 for the root hubs (even though they're not really devices). 3730 */ 3731 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3732 { 3733 unsigned long flags; 3734 int timeleft; 3735 struct xhci_virt_device *virt_dev; 3736 int ret = 0; 3737 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3738 struct xhci_slot_ctx *slot_ctx; 3739 struct xhci_input_control_ctx *ctrl_ctx; 3740 u64 temp_64; 3741 union xhci_trb *cmd_trb; 3742 3743 if (!udev->slot_id) { 3744 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3745 "Bad Slot ID %d", udev->slot_id); 3746 return -EINVAL; 3747 } 3748 3749 virt_dev = xhci->devs[udev->slot_id]; 3750 3751 if (WARN_ON(!virt_dev)) { 3752 /* 3753 * In plug/unplug torture test with an NEC controller, 3754 * a zero-dereference was observed once due to virt_dev = 0. 3755 * Print useful debug rather than crash if it is observed again! 3756 */ 3757 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3758 udev->slot_id); 3759 return -EINVAL; 3760 } 3761 3762 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3764 if (!ctrl_ctx) { 3765 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3766 __func__); 3767 return -EINVAL; 3768 } 3769 /* 3770 * If this is the first Set Address since device plug-in or 3771 * virt_device realloaction after a resume with an xHCI power loss, 3772 * then set up the slot context. 3773 */ 3774 if (!slot_ctx->dev_info) 3775 xhci_setup_addressable_virt_dev(xhci, udev); 3776 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3777 else 3778 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3779 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3780 ctrl_ctx->drop_flags = 0; 3781 3782 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3783 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3784 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3785 slot_ctx->dev_info >> 27); 3786 3787 spin_lock_irqsave(&xhci->lock, flags); 3788 cmd_trb = xhci->cmd_ring->dequeue; 3789 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3790 udev->slot_id); 3791 if (ret) { 3792 spin_unlock_irqrestore(&xhci->lock, flags); 3793 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3794 "FIXME: allocate a command ring segment"); 3795 return ret; 3796 } 3797 xhci_ring_cmd_db(xhci); 3798 spin_unlock_irqrestore(&xhci->lock, flags); 3799 3800 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3801 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3802 XHCI_CMD_DEFAULT_TIMEOUT); 3803 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3804 * the SetAddress() "recovery interval" required by USB and aborting the 3805 * command on a timeout. 3806 */ 3807 if (timeleft <= 0) { 3808 xhci_warn(xhci, "%s while waiting for address device command\n", 3809 timeleft == 0 ? "Timeout" : "Signal"); 3810 /* cancel the address device command */ 3811 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3812 if (ret < 0) 3813 return ret; 3814 return -ETIME; 3815 } 3816 3817 switch (virt_dev->cmd_status) { 3818 case COMP_CTX_STATE: 3819 case COMP_EBADSLT: 3820 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3821 udev->slot_id); 3822 ret = -EINVAL; 3823 break; 3824 case COMP_TX_ERR: 3825 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3826 ret = -EPROTO; 3827 break; 3828 case COMP_DEV_ERR: 3829 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3830 "device command.\n"); 3831 ret = -ENODEV; 3832 break; 3833 case COMP_SUCCESS: 3834 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3835 "Successful Address Device command"); 3836 break; 3837 default: 3838 xhci_err(xhci, "ERROR: unexpected command completion " 3839 "code 0x%x.\n", virt_dev->cmd_status); 3840 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3841 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3842 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3843 ret = -EINVAL; 3844 break; 3845 } 3846 if (ret) { 3847 return ret; 3848 } 3849 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3850 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3851 "Op regs DCBAA ptr = %#016llx", temp_64); 3852 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3853 "Slot ID %d dcbaa entry @%p = %#016llx", 3854 udev->slot_id, 3855 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3856 (unsigned long long) 3857 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3858 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3859 "Output Context DMA address = %#08llx", 3860 (unsigned long long)virt_dev->out_ctx->dma); 3861 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3862 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3863 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3864 slot_ctx->dev_info >> 27); 3865 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3867 /* 3868 * USB core uses address 1 for the roothubs, so we add one to the 3869 * address given back to us by the HC. 3870 */ 3871 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3872 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3873 slot_ctx->dev_info >> 27); 3874 /* Use kernel assigned address for devices; store xHC assigned 3875 * address locally. */ 3876 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3877 + 1; 3878 /* Zero the input context control for later use */ 3879 ctrl_ctx->add_flags = 0; 3880 ctrl_ctx->drop_flags = 0; 3881 3882 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3883 "Internal device address = %d", virt_dev->address); 3884 3885 return 0; 3886 } 3887 3888 /* 3889 * Transfer the port index into real index in the HW port status 3890 * registers. Caculate offset between the port's PORTSC register 3891 * and port status base. Divide the number of per port register 3892 * to get the real index. The raw port number bases 1. 3893 */ 3894 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3895 { 3896 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3897 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3898 __le32 __iomem *addr; 3899 int raw_port; 3900 3901 if (hcd->speed != HCD_USB3) 3902 addr = xhci->usb2_ports[port1 - 1]; 3903 else 3904 addr = xhci->usb3_ports[port1 - 1]; 3905 3906 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3907 return raw_port; 3908 } 3909 3910 /* 3911 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3912 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3913 */ 3914 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3915 struct usb_device *udev, u16 max_exit_latency) 3916 { 3917 struct xhci_virt_device *virt_dev; 3918 struct xhci_command *command; 3919 struct xhci_input_control_ctx *ctrl_ctx; 3920 struct xhci_slot_ctx *slot_ctx; 3921 unsigned long flags; 3922 int ret; 3923 3924 spin_lock_irqsave(&xhci->lock, flags); 3925 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3926 spin_unlock_irqrestore(&xhci->lock, flags); 3927 return 0; 3928 } 3929 3930 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3931 virt_dev = xhci->devs[udev->slot_id]; 3932 command = xhci->lpm_command; 3933 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3934 if (!ctrl_ctx) { 3935 spin_unlock_irqrestore(&xhci->lock, flags); 3936 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3937 __func__); 3938 return -ENOMEM; 3939 } 3940 3941 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3942 spin_unlock_irqrestore(&xhci->lock, flags); 3943 3944 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3945 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3946 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3947 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3948 3949 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3950 "Set up evaluate context for LPM MEL change."); 3951 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3952 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3953 3954 /* Issue and wait for the evaluate context command. */ 3955 ret = xhci_configure_endpoint(xhci, udev, command, 3956 true, true); 3957 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3958 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3959 3960 if (!ret) { 3961 spin_lock_irqsave(&xhci->lock, flags); 3962 virt_dev->current_mel = max_exit_latency; 3963 spin_unlock_irqrestore(&xhci->lock, flags); 3964 } 3965 return ret; 3966 } 3967 3968 #ifdef CONFIG_PM_RUNTIME 3969 3970 /* BESL to HIRD Encoding array for USB2 LPM */ 3971 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3972 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3973 3974 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3975 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3976 struct usb_device *udev) 3977 { 3978 int u2del, besl, besl_host; 3979 int besl_device = 0; 3980 u32 field; 3981 3982 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3983 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3984 3985 if (field & USB_BESL_SUPPORT) { 3986 for (besl_host = 0; besl_host < 16; besl_host++) { 3987 if (xhci_besl_encoding[besl_host] >= u2del) 3988 break; 3989 } 3990 /* Use baseline BESL value as default */ 3991 if (field & USB_BESL_BASELINE_VALID) 3992 besl_device = USB_GET_BESL_BASELINE(field); 3993 else if (field & USB_BESL_DEEP_VALID) 3994 besl_device = USB_GET_BESL_DEEP(field); 3995 } else { 3996 if (u2del <= 50) 3997 besl_host = 0; 3998 else 3999 besl_host = (u2del - 51) / 75 + 1; 4000 } 4001 4002 besl = besl_host + besl_device; 4003 if (besl > 15) 4004 besl = 15; 4005 4006 return besl; 4007 } 4008 4009 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4010 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4011 { 4012 u32 field; 4013 int l1; 4014 int besld = 0; 4015 int hirdm = 0; 4016 4017 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4018 4019 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4020 l1 = udev->l1_params.timeout / 256; 4021 4022 /* device has preferred BESLD */ 4023 if (field & USB_BESL_DEEP_VALID) { 4024 besld = USB_GET_BESL_DEEP(field); 4025 hirdm = 1; 4026 } 4027 4028 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4029 } 4030 4031 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 4032 struct usb_device *udev) 4033 { 4034 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4035 struct dev_info *dev_info; 4036 __le32 __iomem **port_array; 4037 __le32 __iomem *addr, *pm_addr; 4038 u32 temp, dev_id; 4039 unsigned int port_num; 4040 unsigned long flags; 4041 int hird; 4042 int ret; 4043 4044 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4045 !udev->lpm_capable) 4046 return -EINVAL; 4047 4048 /* we only support lpm for non-hub device connected to root hub yet */ 4049 if (!udev->parent || udev->parent->parent || 4050 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4051 return -EINVAL; 4052 4053 spin_lock_irqsave(&xhci->lock, flags); 4054 4055 /* Look for devices in lpm_failed_devs list */ 4056 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 4057 le16_to_cpu(udev->descriptor.idProduct); 4058 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 4059 if (dev_info->dev_id == dev_id) { 4060 ret = -EINVAL; 4061 goto finish; 4062 } 4063 } 4064 4065 port_array = xhci->usb2_ports; 4066 port_num = udev->portnum - 1; 4067 4068 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 4069 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 4070 ret = -EINVAL; 4071 goto finish; 4072 } 4073 4074 /* 4075 * Test USB 2.0 software LPM. 4076 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 4077 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 4078 * in the June 2011 errata release. 4079 */ 4080 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 4081 /* 4082 * Set L1 Device Slot and HIRD/BESL. 4083 * Check device's USB 2.0 extension descriptor to determine whether 4084 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 4085 */ 4086 pm_addr = port_array[port_num] + PORTPMSC; 4087 hird = xhci_calculate_hird_besl(xhci, udev); 4088 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 4089 xhci_writel(xhci, temp, pm_addr); 4090 4091 /* Set port link state to U2(L1) */ 4092 addr = port_array[port_num]; 4093 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 4094 4095 /* wait for ACK */ 4096 spin_unlock_irqrestore(&xhci->lock, flags); 4097 msleep(10); 4098 spin_lock_irqsave(&xhci->lock, flags); 4099 4100 /* Check L1 Status */ 4101 ret = xhci_handshake(xhci, pm_addr, 4102 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 4103 if (ret != -ETIMEDOUT) { 4104 /* enter L1 successfully */ 4105 temp = xhci_readl(xhci, addr); 4106 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 4107 port_num, temp); 4108 ret = 0; 4109 } else { 4110 temp = xhci_readl(xhci, pm_addr); 4111 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 4112 port_num, temp & PORT_L1S_MASK); 4113 ret = -EINVAL; 4114 } 4115 4116 /* Resume the port */ 4117 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 4118 4119 spin_unlock_irqrestore(&xhci->lock, flags); 4120 msleep(10); 4121 spin_lock_irqsave(&xhci->lock, flags); 4122 4123 /* Clear PLC */ 4124 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 4125 4126 /* Check PORTSC to make sure the device is in the right state */ 4127 if (!ret) { 4128 temp = xhci_readl(xhci, addr); 4129 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 4130 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 4131 (temp & PORT_PLS_MASK) != XDEV_U0) { 4132 xhci_dbg(xhci, "port L1 resume fail\n"); 4133 ret = -EINVAL; 4134 } 4135 } 4136 4137 if (ret) { 4138 /* Insert dev to lpm_failed_devs list */ 4139 xhci_warn(xhci, "device LPM test failed, may disconnect and " 4140 "re-enumerate\n"); 4141 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 4142 if (!dev_info) { 4143 ret = -ENOMEM; 4144 goto finish; 4145 } 4146 dev_info->dev_id = dev_id; 4147 INIT_LIST_HEAD(&dev_info->list); 4148 list_add(&dev_info->list, &xhci->lpm_failed_devs); 4149 } else { 4150 xhci_ring_device(xhci, udev->slot_id); 4151 } 4152 4153 finish: 4154 spin_unlock_irqrestore(&xhci->lock, flags); 4155 return ret; 4156 } 4157 4158 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4159 struct usb_device *udev, int enable) 4160 { 4161 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4162 __le32 __iomem **port_array; 4163 __le32 __iomem *pm_addr, *hlpm_addr; 4164 u32 pm_val, hlpm_val, field; 4165 unsigned int port_num; 4166 unsigned long flags; 4167 int hird, exit_latency; 4168 int ret; 4169 4170 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4171 !udev->lpm_capable) 4172 return -EPERM; 4173 4174 if (!udev->parent || udev->parent->parent || 4175 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4176 return -EPERM; 4177 4178 if (udev->usb2_hw_lpm_capable != 1) 4179 return -EPERM; 4180 4181 spin_lock_irqsave(&xhci->lock, flags); 4182 4183 port_array = xhci->usb2_ports; 4184 port_num = udev->portnum - 1; 4185 pm_addr = port_array[port_num] + PORTPMSC; 4186 pm_val = xhci_readl(xhci, pm_addr); 4187 hlpm_addr = port_array[port_num] + PORTHLPMC; 4188 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4189 4190 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4191 enable ? "enable" : "disable", port_num); 4192 4193 if (enable) { 4194 /* Host supports BESL timeout instead of HIRD */ 4195 if (udev->usb2_hw_lpm_besl_capable) { 4196 /* if device doesn't have a preferred BESL value use a 4197 * default one which works with mixed HIRD and BESL 4198 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4199 */ 4200 if ((field & USB_BESL_SUPPORT) && 4201 (field & USB_BESL_BASELINE_VALID)) 4202 hird = USB_GET_BESL_BASELINE(field); 4203 else 4204 hird = udev->l1_params.besl; 4205 4206 exit_latency = xhci_besl_encoding[hird]; 4207 spin_unlock_irqrestore(&xhci->lock, flags); 4208 4209 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4210 * input context for link powermanagement evaluate 4211 * context commands. It is protected by hcd->bandwidth 4212 * mutex and is shared by all devices. We need to set 4213 * the max ext latency in USB 2 BESL LPM as well, so 4214 * use the same mutex and xhci_change_max_exit_latency() 4215 */ 4216 mutex_lock(hcd->bandwidth_mutex); 4217 ret = xhci_change_max_exit_latency(xhci, udev, 4218 exit_latency); 4219 mutex_unlock(hcd->bandwidth_mutex); 4220 4221 if (ret < 0) 4222 return ret; 4223 spin_lock_irqsave(&xhci->lock, flags); 4224 4225 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4226 xhci_writel(xhci, hlpm_val, hlpm_addr); 4227 /* flush write */ 4228 xhci_readl(xhci, hlpm_addr); 4229 } else { 4230 hird = xhci_calculate_hird_besl(xhci, udev); 4231 } 4232 4233 pm_val &= ~PORT_HIRD_MASK; 4234 pm_val |= PORT_HIRD(hird) | PORT_RWE; 4235 xhci_writel(xhci, pm_val, pm_addr); 4236 pm_val = xhci_readl(xhci, pm_addr); 4237 pm_val |= PORT_HLE; 4238 xhci_writel(xhci, pm_val, pm_addr); 4239 /* flush write */ 4240 xhci_readl(xhci, pm_addr); 4241 } else { 4242 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4243 xhci_writel(xhci, pm_val, pm_addr); 4244 /* flush write */ 4245 xhci_readl(xhci, pm_addr); 4246 if (udev->usb2_hw_lpm_besl_capable) { 4247 spin_unlock_irqrestore(&xhci->lock, flags); 4248 mutex_lock(hcd->bandwidth_mutex); 4249 xhci_change_max_exit_latency(xhci, udev, 0); 4250 mutex_unlock(hcd->bandwidth_mutex); 4251 return 0; 4252 } 4253 } 4254 4255 spin_unlock_irqrestore(&xhci->lock, flags); 4256 return 0; 4257 } 4258 4259 /* check if a usb2 port supports a given extened capability protocol 4260 * only USB2 ports extended protocol capability values are cached. 4261 * Return 1 if capability is supported 4262 */ 4263 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4264 unsigned capability) 4265 { 4266 u32 port_offset, port_count; 4267 int i; 4268 4269 for (i = 0; i < xhci->num_ext_caps; i++) { 4270 if (xhci->ext_caps[i] & capability) { 4271 /* port offsets starts at 1 */ 4272 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4273 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4274 if (port >= port_offset && 4275 port < port_offset + port_count) 4276 return 1; 4277 } 4278 } 4279 return 0; 4280 } 4281 4282 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4283 { 4284 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4285 int ret; 4286 int portnum = udev->portnum - 1; 4287 4288 ret = xhci_usb2_software_lpm_test(hcd, udev); 4289 if (!ret) { 4290 xhci_dbg(xhci, "software LPM test succeed\n"); 4291 if (xhci->hw_lpm_support == 1 && 4292 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) { 4293 udev->usb2_hw_lpm_capable = 1; 4294 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4295 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4296 if (xhci_check_usb2_port_capability(xhci, portnum, 4297 XHCI_BLC)) 4298 udev->usb2_hw_lpm_besl_capable = 1; 4299 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4300 if (!ret) 4301 udev->usb2_hw_lpm_enabled = 1; 4302 } 4303 } 4304 4305 return 0; 4306 } 4307 4308 #else 4309 4310 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4311 struct usb_device *udev, int enable) 4312 { 4313 return 0; 4314 } 4315 4316 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4317 { 4318 return 0; 4319 } 4320 4321 #endif /* CONFIG_PM_RUNTIME */ 4322 4323 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4324 4325 #ifdef CONFIG_PM 4326 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4327 static unsigned long long xhci_service_interval_to_ns( 4328 struct usb_endpoint_descriptor *desc) 4329 { 4330 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4331 } 4332 4333 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4334 enum usb3_link_state state) 4335 { 4336 unsigned long long sel; 4337 unsigned long long pel; 4338 unsigned int max_sel_pel; 4339 char *state_name; 4340 4341 switch (state) { 4342 case USB3_LPM_U1: 4343 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4344 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4345 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4346 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4347 state_name = "U1"; 4348 break; 4349 case USB3_LPM_U2: 4350 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4351 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4352 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4353 state_name = "U2"; 4354 break; 4355 default: 4356 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4357 __func__); 4358 return USB3_LPM_DISABLED; 4359 } 4360 4361 if (sel <= max_sel_pel && pel <= max_sel_pel) 4362 return USB3_LPM_DEVICE_INITIATED; 4363 4364 if (sel > max_sel_pel) 4365 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4366 "due to long SEL %llu ms\n", 4367 state_name, sel); 4368 else 4369 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4370 "due to long PEL %llu ms\n", 4371 state_name, pel); 4372 return USB3_LPM_DISABLED; 4373 } 4374 4375 /* Returns the hub-encoded U1 timeout value. 4376 * The U1 timeout should be the maximum of the following values: 4377 * - For control endpoints, U1 system exit latency (SEL) * 3 4378 * - For bulk endpoints, U1 SEL * 5 4379 * - For interrupt endpoints: 4380 * - Notification EPs, U1 SEL * 3 4381 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4382 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4383 */ 4384 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4385 struct usb_endpoint_descriptor *desc) 4386 { 4387 unsigned long long timeout_ns; 4388 int ep_type; 4389 int intr_type; 4390 4391 ep_type = usb_endpoint_type(desc); 4392 switch (ep_type) { 4393 case USB_ENDPOINT_XFER_CONTROL: 4394 timeout_ns = udev->u1_params.sel * 3; 4395 break; 4396 case USB_ENDPOINT_XFER_BULK: 4397 timeout_ns = udev->u1_params.sel * 5; 4398 break; 4399 case USB_ENDPOINT_XFER_INT: 4400 intr_type = usb_endpoint_interrupt_type(desc); 4401 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4402 timeout_ns = udev->u1_params.sel * 3; 4403 break; 4404 } 4405 /* Otherwise the calculation is the same as isoc eps */ 4406 case USB_ENDPOINT_XFER_ISOC: 4407 timeout_ns = xhci_service_interval_to_ns(desc); 4408 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4409 if (timeout_ns < udev->u1_params.sel * 2) 4410 timeout_ns = udev->u1_params.sel * 2; 4411 break; 4412 default: 4413 return 0; 4414 } 4415 4416 /* The U1 timeout is encoded in 1us intervals. */ 4417 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4418 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4419 if (timeout_ns == USB3_LPM_DISABLED) 4420 timeout_ns++; 4421 4422 /* If the necessary timeout value is bigger than what we can set in the 4423 * USB 3.0 hub, we have to disable hub-initiated U1. 4424 */ 4425 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4426 return timeout_ns; 4427 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4428 "due to long timeout %llu ms\n", timeout_ns); 4429 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4430 } 4431 4432 /* Returns the hub-encoded U2 timeout value. 4433 * The U2 timeout should be the maximum of: 4434 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4435 * - largest bInterval of any active periodic endpoint (to avoid going 4436 * into lower power link states between intervals). 4437 * - the U2 Exit Latency of the device 4438 */ 4439 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4440 struct usb_endpoint_descriptor *desc) 4441 { 4442 unsigned long long timeout_ns; 4443 unsigned long long u2_del_ns; 4444 4445 timeout_ns = 10 * 1000 * 1000; 4446 4447 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4448 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4449 timeout_ns = xhci_service_interval_to_ns(desc); 4450 4451 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4452 if (u2_del_ns > timeout_ns) 4453 timeout_ns = u2_del_ns; 4454 4455 /* The U2 timeout is encoded in 256us intervals */ 4456 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4457 /* If the necessary timeout value is bigger than what we can set in the 4458 * USB 3.0 hub, we have to disable hub-initiated U2. 4459 */ 4460 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4461 return timeout_ns; 4462 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4463 "due to long timeout %llu ms\n", timeout_ns); 4464 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4465 } 4466 4467 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4468 struct usb_device *udev, 4469 struct usb_endpoint_descriptor *desc, 4470 enum usb3_link_state state, 4471 u16 *timeout) 4472 { 4473 if (state == USB3_LPM_U1) { 4474 if (xhci->quirks & XHCI_INTEL_HOST) 4475 return xhci_calculate_intel_u1_timeout(udev, desc); 4476 } else { 4477 if (xhci->quirks & XHCI_INTEL_HOST) 4478 return xhci_calculate_intel_u2_timeout(udev, desc); 4479 } 4480 4481 return USB3_LPM_DISABLED; 4482 } 4483 4484 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4485 struct usb_device *udev, 4486 struct usb_endpoint_descriptor *desc, 4487 enum usb3_link_state state, 4488 u16 *timeout) 4489 { 4490 u16 alt_timeout; 4491 4492 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4493 desc, state, timeout); 4494 4495 /* If we found we can't enable hub-initiated LPM, or 4496 * the U1 or U2 exit latency was too high to allow 4497 * device-initiated LPM as well, just stop searching. 4498 */ 4499 if (alt_timeout == USB3_LPM_DISABLED || 4500 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4501 *timeout = alt_timeout; 4502 return -E2BIG; 4503 } 4504 if (alt_timeout > *timeout) 4505 *timeout = alt_timeout; 4506 return 0; 4507 } 4508 4509 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4510 struct usb_device *udev, 4511 struct usb_host_interface *alt, 4512 enum usb3_link_state state, 4513 u16 *timeout) 4514 { 4515 int j; 4516 4517 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4518 if (xhci_update_timeout_for_endpoint(xhci, udev, 4519 &alt->endpoint[j].desc, state, timeout)) 4520 return -E2BIG; 4521 continue; 4522 } 4523 return 0; 4524 } 4525 4526 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4527 enum usb3_link_state state) 4528 { 4529 struct usb_device *parent; 4530 unsigned int num_hubs; 4531 4532 if (state == USB3_LPM_U2) 4533 return 0; 4534 4535 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4536 for (parent = udev->parent, num_hubs = 0; parent->parent; 4537 parent = parent->parent) 4538 num_hubs++; 4539 4540 if (num_hubs < 2) 4541 return 0; 4542 4543 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4544 " below second-tier hub.\n"); 4545 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4546 "to decrease power consumption.\n"); 4547 return -E2BIG; 4548 } 4549 4550 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4551 struct usb_device *udev, 4552 enum usb3_link_state state) 4553 { 4554 if (xhci->quirks & XHCI_INTEL_HOST) 4555 return xhci_check_intel_tier_policy(udev, state); 4556 return -EINVAL; 4557 } 4558 4559 /* Returns the U1 or U2 timeout that should be enabled. 4560 * If the tier check or timeout setting functions return with a non-zero exit 4561 * code, that means the timeout value has been finalized and we shouldn't look 4562 * at any more endpoints. 4563 */ 4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4565 struct usb_device *udev, enum usb3_link_state state) 4566 { 4567 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4568 struct usb_host_config *config; 4569 char *state_name; 4570 int i; 4571 u16 timeout = USB3_LPM_DISABLED; 4572 4573 if (state == USB3_LPM_U1) 4574 state_name = "U1"; 4575 else if (state == USB3_LPM_U2) 4576 state_name = "U2"; 4577 else { 4578 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4579 state); 4580 return timeout; 4581 } 4582 4583 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4584 return timeout; 4585 4586 /* Gather some information about the currently installed configuration 4587 * and alternate interface settings. 4588 */ 4589 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4590 state, &timeout)) 4591 return timeout; 4592 4593 config = udev->actconfig; 4594 if (!config) 4595 return timeout; 4596 4597 for (i = 0; i < USB_MAXINTERFACES; i++) { 4598 struct usb_driver *driver; 4599 struct usb_interface *intf = config->interface[i]; 4600 4601 if (!intf) 4602 continue; 4603 4604 /* Check if any currently bound drivers want hub-initiated LPM 4605 * disabled. 4606 */ 4607 if (intf->dev.driver) { 4608 driver = to_usb_driver(intf->dev.driver); 4609 if (driver && driver->disable_hub_initiated_lpm) { 4610 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4611 "at request of driver %s\n", 4612 state_name, driver->name); 4613 return xhci_get_timeout_no_hub_lpm(udev, state); 4614 } 4615 } 4616 4617 /* Not sure how this could happen... */ 4618 if (!intf->cur_altsetting) 4619 continue; 4620 4621 if (xhci_update_timeout_for_interface(xhci, udev, 4622 intf->cur_altsetting, 4623 state, &timeout)) 4624 return timeout; 4625 } 4626 return timeout; 4627 } 4628 4629 static int calculate_max_exit_latency(struct usb_device *udev, 4630 enum usb3_link_state state_changed, 4631 u16 hub_encoded_timeout) 4632 { 4633 unsigned long long u1_mel_us = 0; 4634 unsigned long long u2_mel_us = 0; 4635 unsigned long long mel_us = 0; 4636 bool disabling_u1; 4637 bool disabling_u2; 4638 bool enabling_u1; 4639 bool enabling_u2; 4640 4641 disabling_u1 = (state_changed == USB3_LPM_U1 && 4642 hub_encoded_timeout == USB3_LPM_DISABLED); 4643 disabling_u2 = (state_changed == USB3_LPM_U2 && 4644 hub_encoded_timeout == USB3_LPM_DISABLED); 4645 4646 enabling_u1 = (state_changed == USB3_LPM_U1 && 4647 hub_encoded_timeout != USB3_LPM_DISABLED); 4648 enabling_u2 = (state_changed == USB3_LPM_U2 && 4649 hub_encoded_timeout != USB3_LPM_DISABLED); 4650 4651 /* If U1 was already enabled and we're not disabling it, 4652 * or we're going to enable U1, account for the U1 max exit latency. 4653 */ 4654 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4655 enabling_u1) 4656 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4657 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4658 enabling_u2) 4659 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4660 4661 if (u1_mel_us > u2_mel_us) 4662 mel_us = u1_mel_us; 4663 else 4664 mel_us = u2_mel_us; 4665 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4666 if (mel_us > MAX_EXIT) { 4667 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4668 "is too big.\n", mel_us); 4669 return -E2BIG; 4670 } 4671 return mel_us; 4672 } 4673 4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4676 struct usb_device *udev, enum usb3_link_state state) 4677 { 4678 struct xhci_hcd *xhci; 4679 u16 hub_encoded_timeout; 4680 int mel; 4681 int ret; 4682 4683 xhci = hcd_to_xhci(hcd); 4684 /* The LPM timeout values are pretty host-controller specific, so don't 4685 * enable hub-initiated timeouts unless the vendor has provided 4686 * information about their timeout algorithm. 4687 */ 4688 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4689 !xhci->devs[udev->slot_id]) 4690 return USB3_LPM_DISABLED; 4691 4692 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4693 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4694 if (mel < 0) { 4695 /* Max Exit Latency is too big, disable LPM. */ 4696 hub_encoded_timeout = USB3_LPM_DISABLED; 4697 mel = 0; 4698 } 4699 4700 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4701 if (ret) 4702 return ret; 4703 return hub_encoded_timeout; 4704 } 4705 4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4707 struct usb_device *udev, enum usb3_link_state state) 4708 { 4709 struct xhci_hcd *xhci; 4710 u16 mel; 4711 int ret; 4712 4713 xhci = hcd_to_xhci(hcd); 4714 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4715 !xhci->devs[udev->slot_id]) 4716 return 0; 4717 4718 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4719 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4720 if (ret) 4721 return ret; 4722 return 0; 4723 } 4724 #else /* CONFIG_PM */ 4725 4726 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4727 struct usb_device *udev, enum usb3_link_state state) 4728 { 4729 return USB3_LPM_DISABLED; 4730 } 4731 4732 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4733 struct usb_device *udev, enum usb3_link_state state) 4734 { 4735 return 0; 4736 } 4737 #endif /* CONFIG_PM */ 4738 4739 /*-------------------------------------------------------------------------*/ 4740 4741 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4742 * internal data structures for the device. 4743 */ 4744 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4745 struct usb_tt *tt, gfp_t mem_flags) 4746 { 4747 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4748 struct xhci_virt_device *vdev; 4749 struct xhci_command *config_cmd; 4750 struct xhci_input_control_ctx *ctrl_ctx; 4751 struct xhci_slot_ctx *slot_ctx; 4752 unsigned long flags; 4753 unsigned think_time; 4754 int ret; 4755 4756 /* Ignore root hubs */ 4757 if (!hdev->parent) 4758 return 0; 4759 4760 vdev = xhci->devs[hdev->slot_id]; 4761 if (!vdev) { 4762 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4763 return -EINVAL; 4764 } 4765 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4766 if (!config_cmd) { 4767 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4768 return -ENOMEM; 4769 } 4770 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4771 if (!ctrl_ctx) { 4772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4773 __func__); 4774 xhci_free_command(xhci, config_cmd); 4775 return -ENOMEM; 4776 } 4777 4778 spin_lock_irqsave(&xhci->lock, flags); 4779 if (hdev->speed == USB_SPEED_HIGH && 4780 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4781 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4782 xhci_free_command(xhci, config_cmd); 4783 spin_unlock_irqrestore(&xhci->lock, flags); 4784 return -ENOMEM; 4785 } 4786 4787 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4788 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4789 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4790 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4791 if (tt->multi) 4792 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4793 if (xhci->hci_version > 0x95) { 4794 xhci_dbg(xhci, "xHCI version %x needs hub " 4795 "TT think time and number of ports\n", 4796 (unsigned int) xhci->hci_version); 4797 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4798 /* Set TT think time - convert from ns to FS bit times. 4799 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4800 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4801 * 4802 * xHCI 1.0: this field shall be 0 if the device is not a 4803 * High-spped hub. 4804 */ 4805 think_time = tt->think_time; 4806 if (think_time != 0) 4807 think_time = (think_time / 666) - 1; 4808 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4809 slot_ctx->tt_info |= 4810 cpu_to_le32(TT_THINK_TIME(think_time)); 4811 } else { 4812 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4813 "TT think time or number of ports\n", 4814 (unsigned int) xhci->hci_version); 4815 } 4816 slot_ctx->dev_state = 0; 4817 spin_unlock_irqrestore(&xhci->lock, flags); 4818 4819 xhci_dbg(xhci, "Set up %s for hub device.\n", 4820 (xhci->hci_version > 0x95) ? 4821 "configure endpoint" : "evaluate context"); 4822 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4823 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4824 4825 /* Issue and wait for the configure endpoint or 4826 * evaluate context command. 4827 */ 4828 if (xhci->hci_version > 0x95) 4829 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4830 false, false); 4831 else 4832 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4833 true, false); 4834 4835 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4836 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4837 4838 xhci_free_command(xhci, config_cmd); 4839 return ret; 4840 } 4841 4842 int xhci_get_frame(struct usb_hcd *hcd) 4843 { 4844 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4845 /* EHCI mods by the periodic size. Why? */ 4846 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4847 } 4848 4849 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4850 { 4851 struct xhci_hcd *xhci; 4852 struct device *dev = hcd->self.controller; 4853 int retval; 4854 4855 /* Accept arbitrarily long scatter-gather lists */ 4856 hcd->self.sg_tablesize = ~0; 4857 4858 /* support to build packet from discontinuous buffers */ 4859 hcd->self.no_sg_constraint = 1; 4860 4861 /* XHCI controllers don't stop the ep queue on short packets :| */ 4862 hcd->self.no_stop_on_short = 1; 4863 4864 if (usb_hcd_is_primary_hcd(hcd)) { 4865 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4866 if (!xhci) 4867 return -ENOMEM; 4868 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4869 xhci->main_hcd = hcd; 4870 /* Mark the first roothub as being USB 2.0. 4871 * The xHCI driver will register the USB 3.0 roothub. 4872 */ 4873 hcd->speed = HCD_USB2; 4874 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4875 /* 4876 * USB 2.0 roothub under xHCI has an integrated TT, 4877 * (rate matching hub) as opposed to having an OHCI/UHCI 4878 * companion controller. 4879 */ 4880 hcd->has_tt = 1; 4881 } else { 4882 /* xHCI private pointer was set in xhci_pci_probe for the second 4883 * registered roothub. 4884 */ 4885 return 0; 4886 } 4887 4888 xhci->cap_regs = hcd->regs; 4889 xhci->op_regs = hcd->regs + 4890 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4891 xhci->run_regs = hcd->regs + 4892 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4893 /* Cache read-only capability registers */ 4894 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4895 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4896 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4897 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4898 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4899 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4900 xhci_print_registers(xhci); 4901 4902 get_quirks(dev, xhci); 4903 4904 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4905 * success event after a short transfer. This quirk will ignore such 4906 * spurious event. 4907 */ 4908 if (xhci->hci_version > 0x96) 4909 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4910 4911 /* Make sure the HC is halted. */ 4912 retval = xhci_halt(xhci); 4913 if (retval) 4914 goto error; 4915 4916 xhci_dbg(xhci, "Resetting HCD\n"); 4917 /* Reset the internal HC memory state and registers. */ 4918 retval = xhci_reset(xhci); 4919 if (retval) 4920 goto error; 4921 xhci_dbg(xhci, "Reset complete\n"); 4922 4923 /* Set dma_mask and coherent_dma_mask to 64-bits, 4924 * if xHC supports 64-bit addressing */ 4925 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4926 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4927 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4928 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4929 } 4930 4931 xhci_dbg(xhci, "Calling HCD init\n"); 4932 /* Initialize HCD and host controller data structures. */ 4933 retval = xhci_init(hcd); 4934 if (retval) 4935 goto error; 4936 xhci_dbg(xhci, "Called HCD init\n"); 4937 return 0; 4938 error: 4939 kfree(xhci); 4940 return retval; 4941 } 4942 4943 MODULE_DESCRIPTION(DRIVER_DESC); 4944 MODULE_AUTHOR(DRIVER_AUTHOR); 4945 MODULE_LICENSE("GPL"); 4946 4947 static int __init xhci_hcd_init(void) 4948 { 4949 int retval; 4950 4951 retval = xhci_register_pci(); 4952 if (retval < 0) { 4953 pr_debug("Problem registering PCI driver.\n"); 4954 return retval; 4955 } 4956 retval = xhci_register_plat(); 4957 if (retval < 0) { 4958 pr_debug("Problem registering platform driver.\n"); 4959 goto unreg_pci; 4960 } 4961 /* 4962 * Check the compiler generated sizes of structures that must be laid 4963 * out in specific ways for hardware access. 4964 */ 4965 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4966 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4967 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4968 /* xhci_device_control has eight fields, and also 4969 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4970 */ 4971 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4972 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4973 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4974 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4975 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4976 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4977 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4978 return 0; 4979 unreg_pci: 4980 xhci_unregister_pci(); 4981 return retval; 4982 } 4983 module_init(xhci_hcd_init); 4984 4985 static void __exit xhci_hcd_cleanup(void) 4986 { 4987 xhci_unregister_pci(); 4988 xhci_unregister_plat(); 4989 } 4990 module_exit(xhci_hcd_cleanup); 4991