1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING); 151 152 return ret; 153 } 154 155 /* 156 * Reset a halted HC. 157 * 158 * This resets pipelines, timers, counters, state machines, etc. 159 * Transactions will be terminated immediately, and operational registers 160 * will be set to their defaults. 161 */ 162 int xhci_reset(struct xhci_hcd *xhci) 163 { 164 u32 command; 165 u32 state; 166 int ret, i; 167 168 state = readl(&xhci->op_regs->status); 169 if ((state & STS_HALT) == 0) { 170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 171 return 0; 172 } 173 174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 175 command = readl(&xhci->op_regs->command); 176 command |= CMD_RESET; 177 writel(command, &xhci->op_regs->command); 178 179 /* Existing Intel xHCI controllers require a delay of 1 mS, 180 * after setting the CMD_RESET bit, and before accessing any 181 * HC registers. This allows the HC to complete the 182 * reset operation and be ready for HC register access. 183 * Without this delay, the subsequent HC register access, 184 * may result in a system hang very rarely. 185 */ 186 if (xhci->quirks & XHCI_INTEL_HOST) 187 udelay(1000); 188 189 ret = xhci_handshake(&xhci->op_regs->command, 190 CMD_RESET, 0, 10 * 1000 * 1000); 191 if (ret) 192 return ret; 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; ++i) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 #ifdef CONFIG_PCI 213 static int xhci_free_msi(struct xhci_hcd *xhci) 214 { 215 int i; 216 217 if (!xhci->msix_entries) 218 return -EINVAL; 219 220 for (i = 0; i < xhci->msix_count; i++) 221 if (xhci->msix_entries[i].vector) 222 free_irq(xhci->msix_entries[i].vector, 223 xhci_to_hcd(xhci)); 224 return 0; 225 } 226 227 /* 228 * Set up MSI 229 */ 230 static int xhci_setup_msi(struct xhci_hcd *xhci) 231 { 232 int ret; 233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 234 235 ret = pci_enable_msi(pdev); 236 if (ret) { 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "failed to allocate MSI entry"); 239 return ret; 240 } 241 242 ret = request_irq(pdev->irq, xhci_msi_irq, 243 0, "xhci_hcd", xhci_to_hcd(xhci)); 244 if (ret) { 245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 246 "disable MSI interrupt"); 247 pci_disable_msi(pdev); 248 } 249 250 return ret; 251 } 252 253 /* 254 * Free IRQs 255 * free all IRQs request 256 */ 257 static void xhci_free_irq(struct xhci_hcd *xhci) 258 { 259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 260 int ret; 261 262 /* return if using legacy interrupt */ 263 if (xhci_to_hcd(xhci)->irq > 0) 264 return; 265 266 ret = xhci_free_msi(xhci); 267 if (!ret) 268 return; 269 if (pdev->irq > 0) 270 free_irq(pdev->irq, xhci_to_hcd(xhci)); 271 272 return; 273 } 274 275 /* 276 * Set up MSI-X 277 */ 278 static int xhci_setup_msix(struct xhci_hcd *xhci) 279 { 280 int i, ret = 0; 281 struct usb_hcd *hcd = xhci_to_hcd(xhci); 282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 283 284 /* 285 * calculate number of msi-x vectors supported. 286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 287 * with max number of interrupters based on the xhci HCSPARAMS1. 288 * - num_online_cpus: maximum msi-x vectors per CPUs core. 289 * Add additional 1 vector to ensure always available interrupt. 290 */ 291 xhci->msix_count = min(num_online_cpus() + 1, 292 HCS_MAX_INTRS(xhci->hcs_params1)); 293 294 xhci->msix_entries = 295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 296 GFP_KERNEL); 297 if (!xhci->msix_entries) { 298 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 299 return -ENOMEM; 300 } 301 302 for (i = 0; i < xhci->msix_count; i++) { 303 xhci->msix_entries[i].entry = i; 304 xhci->msix_entries[i].vector = 0; 305 } 306 307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 308 if (ret) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "Failed to enable MSI-X"); 311 goto free_entries; 312 } 313 314 for (i = 0; i < xhci->msix_count; i++) { 315 ret = request_irq(xhci->msix_entries[i].vector, 316 xhci_msi_irq, 317 0, "xhci_hcd", xhci_to_hcd(xhci)); 318 if (ret) 319 goto disable_msix; 320 } 321 322 hcd->msix_enabled = 1; 323 return ret; 324 325 disable_msix: 326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 327 xhci_free_irq(xhci); 328 pci_disable_msix(pdev); 329 free_entries: 330 kfree(xhci->msix_entries); 331 xhci->msix_entries = NULL; 332 return ret; 333 } 334 335 /* Free any IRQs and disable MSI-X */ 336 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 337 { 338 struct usb_hcd *hcd = xhci_to_hcd(xhci); 339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 340 341 if (xhci->quirks & XHCI_PLAT) 342 return; 343 344 xhci_free_irq(xhci); 345 346 if (xhci->msix_entries) { 347 pci_disable_msix(pdev); 348 kfree(xhci->msix_entries); 349 xhci->msix_entries = NULL; 350 } else { 351 pci_disable_msi(pdev); 352 } 353 354 hcd->msix_enabled = 0; 355 return; 356 } 357 358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 359 { 360 int i; 361 362 if (xhci->msix_entries) { 363 for (i = 0; i < xhci->msix_count; i++) 364 synchronize_irq(xhci->msix_entries[i].vector); 365 } 366 } 367 368 static int xhci_try_enable_msi(struct usb_hcd *hcd) 369 { 370 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 371 struct pci_dev *pdev; 372 int ret; 373 374 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 375 if (xhci->quirks & XHCI_PLAT) 376 return 0; 377 378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 379 /* 380 * Some Fresco Logic host controllers advertise MSI, but fail to 381 * generate interrupts. Don't even try to enable MSI. 382 */ 383 if (xhci->quirks & XHCI_BROKEN_MSI) 384 goto legacy_irq; 385 386 /* unregister the legacy interrupt */ 387 if (hcd->irq) 388 free_irq(hcd->irq, hcd); 389 hcd->irq = 0; 390 391 ret = xhci_setup_msix(xhci); 392 if (ret) 393 /* fall back to msi*/ 394 ret = xhci_setup_msi(xhci); 395 396 if (!ret) 397 /* hcd->irq is 0, we have MSI */ 398 return 0; 399 400 if (!pdev->irq) { 401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 402 return -EINVAL; 403 } 404 405 legacy_irq: 406 if (!strlen(hcd->irq_descr)) 407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 408 hcd->driver->description, hcd->self.busnum); 409 410 /* fall back to legacy interrupt*/ 411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 412 hcd->irq_descr, hcd); 413 if (ret) { 414 xhci_err(xhci, "request interrupt %d failed\n", 415 pdev->irq); 416 return ret; 417 } 418 hcd->irq = pdev->irq; 419 return 0; 420 } 421 422 #else 423 424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 425 { 426 return 0; 427 } 428 429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 430 { 431 } 432 433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 434 { 435 } 436 437 #endif 438 439 static void compliance_mode_recovery(unsigned long arg) 440 { 441 struct xhci_hcd *xhci; 442 struct usb_hcd *hcd; 443 u32 temp; 444 int i; 445 446 xhci = (struct xhci_hcd *)arg; 447 448 for (i = 0; i < xhci->num_usb3_ports; i++) { 449 temp = readl(xhci->usb3_ports[i]); 450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 451 /* 452 * Compliance Mode Detected. Letting USB Core 453 * handle the Warm Reset 454 */ 455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 456 "Compliance mode detected->port %d", 457 i + 1); 458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 459 "Attempting compliance mode recovery"); 460 hcd = xhci->shared_hcd; 461 462 if (hcd->state == HC_STATE_SUSPENDED) 463 usb_hcd_resume_root_hub(hcd); 464 465 usb_hcd_poll_rh_status(hcd); 466 } 467 } 468 469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 470 mod_timer(&xhci->comp_mode_recovery_timer, 471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 472 } 473 474 /* 475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 476 * that causes ports behind that hardware to enter compliance mode sometimes. 477 * The quirk creates a timer that polls every 2 seconds the link state of 478 * each host controller's port and recovers it by issuing a Warm reset 479 * if Compliance mode is detected, otherwise the port will become "dead" (no 480 * device connections or disconnections will be detected anymore). Becasue no 481 * status event is generated when entering compliance mode (per xhci spec), 482 * this quirk is needed on systems that have the failing hardware installed. 483 */ 484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 485 { 486 xhci->port_status_u0 = 0; 487 setup_timer(&xhci->comp_mode_recovery_timer, 488 compliance_mode_recovery, (unsigned long)xhci); 489 xhci->comp_mode_recovery_timer.expires = jiffies + 490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 491 492 set_timer_slack(&xhci->comp_mode_recovery_timer, 493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 494 add_timer(&xhci->comp_mode_recovery_timer); 495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 496 "Compliance mode recovery timer initialized"); 497 } 498 499 /* 500 * This function identifies the systems that have installed the SN65LVPE502CP 501 * USB3.0 re-driver and that need the Compliance Mode Quirk. 502 * Systems: 503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 504 */ 505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 506 { 507 const char *dmi_product_name, *dmi_sys_vendor; 508 509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 511 if (!dmi_product_name || !dmi_sys_vendor) 512 return false; 513 514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 515 return false; 516 517 if (strstr(dmi_product_name, "Z420") || 518 strstr(dmi_product_name, "Z620") || 519 strstr(dmi_product_name, "Z820") || 520 strstr(dmi_product_name, "Z1 Workstation")) 521 return true; 522 523 return false; 524 } 525 526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 527 { 528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 529 } 530 531 532 /* 533 * Initialize memory for HCD and xHC (one-time init). 534 * 535 * Program the PAGESIZE register, initialize the device context array, create 536 * device contexts (?), set up a command ring segment (or two?), create event 537 * ring (one for now). 538 */ 539 int xhci_init(struct usb_hcd *hcd) 540 { 541 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 542 int retval = 0; 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 545 spin_lock_init(&xhci->lock); 546 if (xhci->hci_version == 0x95 && link_quirk) { 547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 548 "QUIRK: Not clearing Link TRB chain bits."); 549 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 550 } else { 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 552 "xHCI doesn't need link TRB QUIRK"); 553 } 554 retval = xhci_mem_init(xhci, GFP_KERNEL); 555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 556 557 /* Initializing Compliance Mode Recovery Data If Needed */ 558 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 559 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 560 compliance_mode_recovery_timer_init(xhci); 561 } 562 563 return retval; 564 } 565 566 /*-------------------------------------------------------------------------*/ 567 568 569 static int xhci_run_finished(struct xhci_hcd *xhci) 570 { 571 if (xhci_start(xhci)) { 572 xhci_halt(xhci); 573 return -ENODEV; 574 } 575 xhci->shared_hcd->state = HC_STATE_RUNNING; 576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 577 578 if (xhci->quirks & XHCI_NEC_HOST) 579 xhci_ring_cmd_db(xhci); 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 582 "Finished xhci_run for USB3 roothub"); 583 return 0; 584 } 585 586 /* 587 * Start the HC after it was halted. 588 * 589 * This function is called by the USB core when the HC driver is added. 590 * Its opposite is xhci_stop(). 591 * 592 * xhci_init() must be called once before this function can be called. 593 * Reset the HC, enable device slot contexts, program DCBAAP, and 594 * set command ring pointer and event ring pointer. 595 * 596 * Setup MSI-X vectors and enable interrupts. 597 */ 598 int xhci_run(struct usb_hcd *hcd) 599 { 600 u32 temp; 601 u64 temp_64; 602 int ret; 603 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 604 605 /* Start the xHCI host controller running only after the USB 2.0 roothub 606 * is setup. 607 */ 608 609 hcd->uses_new_polling = 1; 610 if (!usb_hcd_is_primary_hcd(hcd)) 611 return xhci_run_finished(xhci); 612 613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 614 615 ret = xhci_try_enable_msi(hcd); 616 if (ret) 617 return ret; 618 619 xhci_dbg(xhci, "Command ring memory map follows:\n"); 620 xhci_debug_ring(xhci, xhci->cmd_ring); 621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 622 xhci_dbg_cmd_ptrs(xhci); 623 624 xhci_dbg(xhci, "ERST memory map follows:\n"); 625 xhci_dbg_erst(xhci, &xhci->erst); 626 xhci_dbg(xhci, "Event ring:\n"); 627 xhci_debug_ring(xhci, xhci->event_ring); 628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 630 temp_64 &= ~ERST_PTR_MASK; 631 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 633 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "// Set the interrupt modulation register"); 636 temp = readl(&xhci->ir_set->irq_control); 637 temp &= ~ER_IRQ_INTERVAL_MASK; 638 /* 639 * the increment interval is 8 times as much as that defined 640 * in xHCI spec on MTK's controller 641 */ 642 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 643 writel(temp, &xhci->ir_set->irq_control); 644 645 /* Set the HCD state before we enable the irqs */ 646 temp = readl(&xhci->op_regs->command); 647 temp |= (CMD_EIE); 648 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 649 "// Enable interrupts, cmd = 0x%x.", temp); 650 writel(temp, &xhci->op_regs->command); 651 652 temp = readl(&xhci->ir_set->irq_pending); 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 654 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 655 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 656 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 657 xhci_print_ir_set(xhci, 0); 658 659 if (xhci->quirks & XHCI_NEC_HOST) { 660 struct xhci_command *command; 661 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 662 if (!command) 663 return -ENOMEM; 664 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 665 TRB_TYPE(TRB_NEC_GET_FW)); 666 } 667 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 668 "Finished xhci_run for USB2 roothub"); 669 return 0; 670 } 671 EXPORT_SYMBOL_GPL(xhci_run); 672 673 /* 674 * Stop xHCI driver. 675 * 676 * This function is called by the USB core when the HC driver is removed. 677 * Its opposite is xhci_run(). 678 * 679 * Disable device contexts, disable IRQs, and quiesce the HC. 680 * Reset the HC, finish any completed transactions, and cleanup memory. 681 */ 682 void xhci_stop(struct usb_hcd *hcd) 683 { 684 u32 temp; 685 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 686 687 if (xhci->xhc_state & XHCI_STATE_HALTED) 688 return; 689 690 mutex_lock(&xhci->mutex); 691 spin_lock_irq(&xhci->lock); 692 xhci->xhc_state |= XHCI_STATE_HALTED; 693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 694 695 /* Make sure the xHC is halted for a USB3 roothub 696 * (xhci_stop() could be called as part of failed init). 697 */ 698 xhci_halt(xhci); 699 xhci_reset(xhci); 700 spin_unlock_irq(&xhci->lock); 701 702 xhci_cleanup_msix(xhci); 703 704 /* Deleting Compliance Mode Recovery Timer */ 705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 706 (!(xhci_all_ports_seen_u0(xhci)))) { 707 del_timer_sync(&xhci->comp_mode_recovery_timer); 708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 709 "%s: compliance mode recovery timer deleted", 710 __func__); 711 } 712 713 if (xhci->quirks & XHCI_AMD_PLL_FIX) 714 usb_amd_dev_put(); 715 716 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 717 "// Disabling event ring interrupts"); 718 temp = readl(&xhci->op_regs->status); 719 writel(temp & ~STS_EINT, &xhci->op_regs->status); 720 temp = readl(&xhci->ir_set->irq_pending); 721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 722 xhci_print_ir_set(xhci, 0); 723 724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 725 xhci_mem_cleanup(xhci); 726 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 727 "xhci_stop completed - status = %x", 728 readl(&xhci->op_regs->status)); 729 mutex_unlock(&xhci->mutex); 730 } 731 732 /* 733 * Shutdown HC (not bus-specific) 734 * 735 * This is called when the machine is rebooting or halting. We assume that the 736 * machine will be powered off, and the HC's internal state will be reset. 737 * Don't bother to free memory. 738 * 739 * This will only ever be called with the main usb_hcd (the USB3 roothub). 740 */ 741 void xhci_shutdown(struct usb_hcd *hcd) 742 { 743 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 744 745 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 746 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 747 748 spin_lock_irq(&xhci->lock); 749 xhci_halt(xhci); 750 /* Workaround for spurious wakeups at shutdown with HSW */ 751 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 752 xhci_reset(xhci); 753 spin_unlock_irq(&xhci->lock); 754 755 xhci_cleanup_msix(xhci); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 758 "xhci_shutdown completed - status = %x", 759 readl(&xhci->op_regs->status)); 760 761 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 762 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 763 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 764 } 765 766 #ifdef CONFIG_PM 767 static void xhci_save_registers(struct xhci_hcd *xhci) 768 { 769 xhci->s3.command = readl(&xhci->op_regs->command); 770 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 771 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 772 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 773 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 774 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 775 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 776 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 777 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 778 } 779 780 static void xhci_restore_registers(struct xhci_hcd *xhci) 781 { 782 writel(xhci->s3.command, &xhci->op_regs->command); 783 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 784 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 785 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 786 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 787 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 788 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 789 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 790 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 791 } 792 793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 794 { 795 u64 val_64; 796 797 /* step 2: initialize command ring buffer */ 798 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 799 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 800 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 801 xhci->cmd_ring->dequeue) & 802 (u64) ~CMD_RING_RSVD_BITS) | 803 xhci->cmd_ring->cycle_state; 804 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 805 "// Setting command ring address to 0x%llx", 806 (long unsigned long) val_64); 807 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 808 } 809 810 /* 811 * The whole command ring must be cleared to zero when we suspend the host. 812 * 813 * The host doesn't save the command ring pointer in the suspend well, so we 814 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 815 * aligned, because of the reserved bits in the command ring dequeue pointer 816 * register. Therefore, we can't just set the dequeue pointer back in the 817 * middle of the ring (TRBs are 16-byte aligned). 818 */ 819 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 820 { 821 struct xhci_ring *ring; 822 struct xhci_segment *seg; 823 824 ring = xhci->cmd_ring; 825 seg = ring->deq_seg; 826 do { 827 memset(seg->trbs, 0, 828 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 829 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 830 cpu_to_le32(~TRB_CYCLE); 831 seg = seg->next; 832 } while (seg != ring->deq_seg); 833 834 /* Reset the software enqueue and dequeue pointers */ 835 ring->deq_seg = ring->first_seg; 836 ring->dequeue = ring->first_seg->trbs; 837 ring->enq_seg = ring->deq_seg; 838 ring->enqueue = ring->dequeue; 839 840 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 841 /* 842 * Ring is now zeroed, so the HW should look for change of ownership 843 * when the cycle bit is set to 1. 844 */ 845 ring->cycle_state = 1; 846 847 /* 848 * Reset the hardware dequeue pointer. 849 * Yes, this will need to be re-written after resume, but we're paranoid 850 * and want to make sure the hardware doesn't access bogus memory 851 * because, say, the BIOS or an SMI started the host without changing 852 * the command ring pointers. 853 */ 854 xhci_set_cmd_ring_deq(xhci); 855 } 856 857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 858 { 859 int port_index; 860 __le32 __iomem **port_array; 861 unsigned long flags; 862 u32 t1, t2; 863 864 spin_lock_irqsave(&xhci->lock, flags); 865 866 /* disble usb3 ports Wake bits*/ 867 port_index = xhci->num_usb3_ports; 868 port_array = xhci->usb3_ports; 869 while (port_index--) { 870 t1 = readl(port_array[port_index]); 871 t1 = xhci_port_state_to_neutral(t1); 872 t2 = t1 & ~PORT_WAKE_BITS; 873 if (t1 != t2) 874 writel(t2, port_array[port_index]); 875 } 876 877 /* disble usb2 ports Wake bits*/ 878 port_index = xhci->num_usb2_ports; 879 port_array = xhci->usb2_ports; 880 while (port_index--) { 881 t1 = readl(port_array[port_index]); 882 t1 = xhci_port_state_to_neutral(t1); 883 t2 = t1 & ~PORT_WAKE_BITS; 884 if (t1 != t2) 885 writel(t2, port_array[port_index]); 886 } 887 888 spin_unlock_irqrestore(&xhci->lock, flags); 889 } 890 891 /* 892 * Stop HC (not bus-specific) 893 * 894 * This is called when the machine transition into S3/S4 mode. 895 * 896 */ 897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 898 { 899 int rc = 0; 900 unsigned int delay = XHCI_MAX_HALT_USEC; 901 struct usb_hcd *hcd = xhci_to_hcd(xhci); 902 u32 command; 903 904 if (!hcd->state) 905 return 0; 906 907 if (hcd->state != HC_STATE_SUSPENDED || 908 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 909 return -EINVAL; 910 911 /* Clear root port wake on bits if wakeup not allowed. */ 912 if (!do_wakeup) 913 xhci_disable_port_wake_on_bits(xhci); 914 915 /* Don't poll the roothubs on bus suspend. */ 916 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 918 del_timer_sync(&hcd->rh_timer); 919 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 920 del_timer_sync(&xhci->shared_hcd->rh_timer); 921 922 spin_lock_irq(&xhci->lock); 923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 925 /* step 1: stop endpoint */ 926 /* skipped assuming that port suspend has done */ 927 928 /* step 2: clear Run/Stop bit */ 929 command = readl(&xhci->op_regs->command); 930 command &= ~CMD_RUN; 931 writel(command, &xhci->op_regs->command); 932 933 /* Some chips from Fresco Logic need an extraordinary delay */ 934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 935 936 if (xhci_handshake(&xhci->op_regs->status, 937 STS_HALT, STS_HALT, delay)) { 938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 939 spin_unlock_irq(&xhci->lock); 940 return -ETIMEDOUT; 941 } 942 xhci_clear_command_ring(xhci); 943 944 /* step 3: save registers */ 945 xhci_save_registers(xhci); 946 947 /* step 4: set CSS flag */ 948 command = readl(&xhci->op_regs->command); 949 command |= CMD_CSS; 950 writel(command, &xhci->op_regs->command); 951 if (xhci_handshake(&xhci->op_regs->status, 952 STS_SAVE, 0, 10 * 1000)) { 953 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 954 spin_unlock_irq(&xhci->lock); 955 return -ETIMEDOUT; 956 } 957 spin_unlock_irq(&xhci->lock); 958 959 /* 960 * Deleting Compliance Mode Recovery Timer because the xHCI Host 961 * is about to be suspended. 962 */ 963 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 964 (!(xhci_all_ports_seen_u0(xhci)))) { 965 del_timer_sync(&xhci->comp_mode_recovery_timer); 966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 967 "%s: compliance mode recovery timer deleted", 968 __func__); 969 } 970 971 /* step 5: remove core well power */ 972 /* synchronize irq when using MSI-X */ 973 xhci_msix_sync_irqs(xhci); 974 975 return rc; 976 } 977 EXPORT_SYMBOL_GPL(xhci_suspend); 978 979 /* 980 * start xHC (not bus-specific) 981 * 982 * This is called when the machine transition from S3/S4 mode. 983 * 984 */ 985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 986 { 987 u32 command, temp = 0, status; 988 struct usb_hcd *hcd = xhci_to_hcd(xhci); 989 struct usb_hcd *secondary_hcd; 990 int retval = 0; 991 bool comp_timer_running = false; 992 993 if (!hcd->state) 994 return 0; 995 996 /* Wait a bit if either of the roothubs need to settle from the 997 * transition into bus suspend. 998 */ 999 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1000 time_before(jiffies, 1001 xhci->bus_state[1].next_statechange)) 1002 msleep(100); 1003 1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1006 1007 spin_lock_irq(&xhci->lock); 1008 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1009 hibernated = true; 1010 1011 if (!hibernated) { 1012 /* step 1: restore register */ 1013 xhci_restore_registers(xhci); 1014 /* step 2: initialize command ring buffer */ 1015 xhci_set_cmd_ring_deq(xhci); 1016 /* step 3: restore state and start state*/ 1017 /* step 3: set CRS flag */ 1018 command = readl(&xhci->op_regs->command); 1019 command |= CMD_CRS; 1020 writel(command, &xhci->op_regs->command); 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_RESTORE, 0, 10 * 1000)) { 1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 temp = readl(&xhci->op_regs->status); 1028 } 1029 1030 /* If restore operation fails, re-initialize the HC during resume */ 1031 if ((temp & STS_SRE) || hibernated) { 1032 1033 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1034 !(xhci_all_ports_seen_u0(xhci))) { 1035 del_timer_sync(&xhci->comp_mode_recovery_timer); 1036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1037 "Compliance Mode Recovery Timer deleted!"); 1038 } 1039 1040 /* Let the USB core know _both_ roothubs lost power. */ 1041 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1042 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1043 1044 xhci_dbg(xhci, "Stop HCD\n"); 1045 xhci_halt(xhci); 1046 xhci_reset(xhci); 1047 spin_unlock_irq(&xhci->lock); 1048 xhci_cleanup_msix(xhci); 1049 1050 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1051 temp = readl(&xhci->op_regs->status); 1052 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1053 temp = readl(&xhci->ir_set->irq_pending); 1054 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1055 xhci_print_ir_set(xhci, 0); 1056 1057 xhci_dbg(xhci, "cleaning up memory\n"); 1058 xhci_mem_cleanup(xhci); 1059 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1060 readl(&xhci->op_regs->status)); 1061 1062 /* USB core calls the PCI reinit and start functions twice: 1063 * first with the primary HCD, and then with the secondary HCD. 1064 * If we don't do the same, the host will never be started. 1065 */ 1066 if (!usb_hcd_is_primary_hcd(hcd)) 1067 secondary_hcd = hcd; 1068 else 1069 secondary_hcd = xhci->shared_hcd; 1070 1071 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1072 retval = xhci_init(hcd->primary_hcd); 1073 if (retval) 1074 return retval; 1075 comp_timer_running = true; 1076 1077 xhci_dbg(xhci, "Start the primary HCD\n"); 1078 retval = xhci_run(hcd->primary_hcd); 1079 if (!retval) { 1080 xhci_dbg(xhci, "Start the secondary HCD\n"); 1081 retval = xhci_run(secondary_hcd); 1082 } 1083 hcd->state = HC_STATE_SUSPENDED; 1084 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1085 goto done; 1086 } 1087 1088 /* step 4: set Run/Stop bit */ 1089 command = readl(&xhci->op_regs->command); 1090 command |= CMD_RUN; 1091 writel(command, &xhci->op_regs->command); 1092 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1093 0, 250 * 1000); 1094 1095 /* step 5: walk topology and initialize portsc, 1096 * portpmsc and portli 1097 */ 1098 /* this is done in bus_resume */ 1099 1100 /* step 6: restart each of the previously 1101 * Running endpoints by ringing their doorbells 1102 */ 1103 1104 spin_unlock_irq(&xhci->lock); 1105 1106 done: 1107 if (retval == 0) { 1108 /* Resume root hubs only when have pending events. */ 1109 status = readl(&xhci->op_regs->status); 1110 if (status & STS_EINT) { 1111 usb_hcd_resume_root_hub(hcd); 1112 usb_hcd_resume_root_hub(xhci->shared_hcd); 1113 } 1114 } 1115 1116 /* 1117 * If system is subject to the Quirk, Compliance Mode Timer needs to 1118 * be re-initialized Always after a system resume. Ports are subject 1119 * to suffer the Compliance Mode issue again. It doesn't matter if 1120 * ports have entered previously to U0 before system's suspension. 1121 */ 1122 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1123 compliance_mode_recovery_timer_init(xhci); 1124 1125 /* Re-enable port polling. */ 1126 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1127 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1128 usb_hcd_poll_rh_status(hcd); 1129 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1130 usb_hcd_poll_rh_status(xhci->shared_hcd); 1131 1132 return retval; 1133 } 1134 EXPORT_SYMBOL_GPL(xhci_resume); 1135 #endif /* CONFIG_PM */ 1136 1137 /*-------------------------------------------------------------------------*/ 1138 1139 /** 1140 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1141 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1142 * value to right shift 1 for the bitmask. 1143 * 1144 * Index = (epnum * 2) + direction - 1, 1145 * where direction = 0 for OUT, 1 for IN. 1146 * For control endpoints, the IN index is used (OUT index is unused), so 1147 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1148 */ 1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1150 { 1151 unsigned int index; 1152 if (usb_endpoint_xfer_control(desc)) 1153 index = (unsigned int) (usb_endpoint_num(desc)*2); 1154 else 1155 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1156 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1157 return index; 1158 } 1159 1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1161 * address from the XHCI endpoint index. 1162 */ 1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1164 { 1165 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1166 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1167 return direction | number; 1168 } 1169 1170 /* Find the flag for this endpoint (for use in the control context). Use the 1171 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1172 * bit 1, etc. 1173 */ 1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1175 { 1176 return 1 << (xhci_get_endpoint_index(desc) + 1); 1177 } 1178 1179 /* Find the flag for this endpoint (for use in the control context). Use the 1180 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1181 * bit 1, etc. 1182 */ 1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1184 { 1185 return 1 << (ep_index + 1); 1186 } 1187 1188 /* Compute the last valid endpoint context index. Basically, this is the 1189 * endpoint index plus one. For slot contexts with more than valid endpoint, 1190 * we find the most significant bit set in the added contexts flags. 1191 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1192 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1193 */ 1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1195 { 1196 return fls(added_ctxs) - 1; 1197 } 1198 1199 /* Returns 1 if the arguments are OK; 1200 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1201 */ 1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1203 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1204 const char *func) { 1205 struct xhci_hcd *xhci; 1206 struct xhci_virt_device *virt_dev; 1207 1208 if (!hcd || (check_ep && !ep) || !udev) { 1209 pr_debug("xHCI %s called with invalid args\n", func); 1210 return -EINVAL; 1211 } 1212 if (!udev->parent) { 1213 pr_debug("xHCI %s called for root hub\n", func); 1214 return 0; 1215 } 1216 1217 xhci = hcd_to_xhci(hcd); 1218 if (check_virt_dev) { 1219 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1220 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1221 func); 1222 return -EINVAL; 1223 } 1224 1225 virt_dev = xhci->devs[udev->slot_id]; 1226 if (virt_dev->udev != udev) { 1227 xhci_dbg(xhci, "xHCI %s called with udev and " 1228 "virt_dev does not match\n", func); 1229 return -EINVAL; 1230 } 1231 } 1232 1233 if (xhci->xhc_state & XHCI_STATE_HALTED) 1234 return -ENODEV; 1235 1236 return 1; 1237 } 1238 1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1240 struct usb_device *udev, struct xhci_command *command, 1241 bool ctx_change, bool must_succeed); 1242 1243 /* 1244 * Full speed devices may have a max packet size greater than 8 bytes, but the 1245 * USB core doesn't know that until it reads the first 8 bytes of the 1246 * descriptor. If the usb_device's max packet size changes after that point, 1247 * we need to issue an evaluate context command and wait on it. 1248 */ 1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1250 unsigned int ep_index, struct urb *urb) 1251 { 1252 struct xhci_container_ctx *out_ctx; 1253 struct xhci_input_control_ctx *ctrl_ctx; 1254 struct xhci_ep_ctx *ep_ctx; 1255 struct xhci_command *command; 1256 int max_packet_size; 1257 int hw_max_packet_size; 1258 int ret = 0; 1259 1260 out_ctx = xhci->devs[slot_id]->out_ctx; 1261 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1262 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1263 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1264 if (hw_max_packet_size != max_packet_size) { 1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1266 "Max Packet Size for ep 0 changed."); 1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1268 "Max packet size in usb_device = %d", 1269 max_packet_size); 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max packet size in xHCI HW = %d", 1272 hw_max_packet_size); 1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1274 "Issuing evaluate context command."); 1275 1276 /* Set up the input context flags for the command */ 1277 /* FIXME: This won't work if a non-default control endpoint 1278 * changes max packet sizes. 1279 */ 1280 1281 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1282 if (!command) 1283 return -ENOMEM; 1284 1285 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1287 if (!ctrl_ctx) { 1288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1289 __func__); 1290 ret = -ENOMEM; 1291 goto command_cleanup; 1292 } 1293 /* Set up the modified control endpoint 0 */ 1294 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1295 xhci->devs[slot_id]->out_ctx, ep_index); 1296 1297 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1298 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1299 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1300 1301 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1302 ctrl_ctx->drop_flags = 0; 1303 1304 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1305 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1306 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1307 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1308 1309 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1310 true, false); 1311 1312 /* Clean up the input context for later use by bandwidth 1313 * functions. 1314 */ 1315 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1316 command_cleanup: 1317 kfree(command->completion); 1318 kfree(command); 1319 } 1320 return ret; 1321 } 1322 1323 /* 1324 * non-error returns are a promise to giveback() the urb later 1325 * we drop ownership so next owner (or urb unlink) can get it 1326 */ 1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1328 { 1329 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1330 struct xhci_td *buffer; 1331 unsigned long flags; 1332 int ret = 0; 1333 unsigned int slot_id, ep_index; 1334 struct urb_priv *urb_priv; 1335 int size, i; 1336 1337 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1338 true, true, __func__) <= 0) 1339 return -EINVAL; 1340 1341 slot_id = urb->dev->slot_id; 1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1343 1344 if (!HCD_HW_ACCESSIBLE(hcd)) { 1345 if (!in_interrupt()) 1346 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1347 ret = -ESHUTDOWN; 1348 goto exit; 1349 } 1350 1351 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1352 size = urb->number_of_packets; 1353 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1354 urb->transfer_buffer_length > 0 && 1355 urb->transfer_flags & URB_ZERO_PACKET && 1356 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1357 size = 2; 1358 else 1359 size = 1; 1360 1361 urb_priv = kzalloc(sizeof(struct urb_priv) + 1362 size * sizeof(struct xhci_td *), mem_flags); 1363 if (!urb_priv) 1364 return -ENOMEM; 1365 1366 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1367 if (!buffer) { 1368 kfree(urb_priv); 1369 return -ENOMEM; 1370 } 1371 1372 for (i = 0; i < size; i++) { 1373 urb_priv->td[i] = buffer; 1374 buffer++; 1375 } 1376 1377 urb_priv->length = size; 1378 urb_priv->td_cnt = 0; 1379 urb->hcpriv = urb_priv; 1380 1381 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1382 /* Check to see if the max packet size for the default control 1383 * endpoint changed during FS device enumeration 1384 */ 1385 if (urb->dev->speed == USB_SPEED_FULL) { 1386 ret = xhci_check_maxpacket(xhci, slot_id, 1387 ep_index, urb); 1388 if (ret < 0) { 1389 xhci_urb_free_priv(urb_priv); 1390 urb->hcpriv = NULL; 1391 return ret; 1392 } 1393 } 1394 1395 /* We have a spinlock and interrupts disabled, so we must pass 1396 * atomic context to this function, which may allocate memory. 1397 */ 1398 spin_lock_irqsave(&xhci->lock, flags); 1399 if (xhci->xhc_state & XHCI_STATE_DYING) 1400 goto dying; 1401 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1402 slot_id, ep_index); 1403 if (ret) 1404 goto free_priv; 1405 spin_unlock_irqrestore(&xhci->lock, flags); 1406 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1407 spin_lock_irqsave(&xhci->lock, flags); 1408 if (xhci->xhc_state & XHCI_STATE_DYING) 1409 goto dying; 1410 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1411 EP_GETTING_STREAMS) { 1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1413 "is transitioning to using streams.\n"); 1414 ret = -EINVAL; 1415 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1416 EP_GETTING_NO_STREAMS) { 1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1418 "is transitioning to " 1419 "not having streams.\n"); 1420 ret = -EINVAL; 1421 } else { 1422 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1423 slot_id, ep_index); 1424 } 1425 if (ret) 1426 goto free_priv; 1427 spin_unlock_irqrestore(&xhci->lock, flags); 1428 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1429 spin_lock_irqsave(&xhci->lock, flags); 1430 if (xhci->xhc_state & XHCI_STATE_DYING) 1431 goto dying; 1432 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1433 slot_id, ep_index); 1434 if (ret) 1435 goto free_priv; 1436 spin_unlock_irqrestore(&xhci->lock, flags); 1437 } else { 1438 spin_lock_irqsave(&xhci->lock, flags); 1439 if (xhci->xhc_state & XHCI_STATE_DYING) 1440 goto dying; 1441 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1442 slot_id, ep_index); 1443 if (ret) 1444 goto free_priv; 1445 spin_unlock_irqrestore(&xhci->lock, flags); 1446 } 1447 exit: 1448 return ret; 1449 dying: 1450 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1451 "non-responsive xHCI host.\n", 1452 urb->ep->desc.bEndpointAddress, urb); 1453 ret = -ESHUTDOWN; 1454 free_priv: 1455 xhci_urb_free_priv(urb_priv); 1456 urb->hcpriv = NULL; 1457 spin_unlock_irqrestore(&xhci->lock, flags); 1458 return ret; 1459 } 1460 1461 /* Get the right ring for the given URB. 1462 * If the endpoint supports streams, boundary check the URB's stream ID. 1463 * If the endpoint doesn't support streams, return the singular endpoint ring. 1464 */ 1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1466 struct urb *urb) 1467 { 1468 unsigned int slot_id; 1469 unsigned int ep_index; 1470 unsigned int stream_id; 1471 struct xhci_virt_ep *ep; 1472 1473 slot_id = urb->dev->slot_id; 1474 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1475 stream_id = urb->stream_id; 1476 ep = &xhci->devs[slot_id]->eps[ep_index]; 1477 /* Common case: no streams */ 1478 if (!(ep->ep_state & EP_HAS_STREAMS)) 1479 return ep->ring; 1480 1481 if (stream_id == 0) { 1482 xhci_warn(xhci, 1483 "WARN: Slot ID %u, ep index %u has streams, " 1484 "but URB has no stream ID.\n", 1485 slot_id, ep_index); 1486 return NULL; 1487 } 1488 1489 if (stream_id < ep->stream_info->num_streams) 1490 return ep->stream_info->stream_rings[stream_id]; 1491 1492 xhci_warn(xhci, 1493 "WARN: Slot ID %u, ep index %u has " 1494 "stream IDs 1 to %u allocated, " 1495 "but stream ID %u is requested.\n", 1496 slot_id, ep_index, 1497 ep->stream_info->num_streams - 1, 1498 stream_id); 1499 return NULL; 1500 } 1501 1502 /* 1503 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1504 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1505 * should pick up where it left off in the TD, unless a Set Transfer Ring 1506 * Dequeue Pointer is issued. 1507 * 1508 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1509 * the ring. Since the ring is a contiguous structure, they can't be physically 1510 * removed. Instead, there are two options: 1511 * 1512 * 1) If the HC is in the middle of processing the URB to be canceled, we 1513 * simply move the ring's dequeue pointer past those TRBs using the Set 1514 * Transfer Ring Dequeue Pointer command. This will be the common case, 1515 * when drivers timeout on the last submitted URB and attempt to cancel. 1516 * 1517 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1518 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1519 * HC will need to invalidate the any TRBs it has cached after the stop 1520 * endpoint command, as noted in the xHCI 0.95 errata. 1521 * 1522 * 3) The TD may have completed by the time the Stop Endpoint Command 1523 * completes, so software needs to handle that case too. 1524 * 1525 * This function should protect against the TD enqueueing code ringing the 1526 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1527 * It also needs to account for multiple cancellations on happening at the same 1528 * time for the same endpoint. 1529 * 1530 * Note that this function can be called in any context, or so says 1531 * usb_hcd_unlink_urb() 1532 */ 1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1534 { 1535 unsigned long flags; 1536 int ret, i; 1537 u32 temp; 1538 struct xhci_hcd *xhci; 1539 struct urb_priv *urb_priv; 1540 struct xhci_td *td; 1541 unsigned int ep_index; 1542 struct xhci_ring *ep_ring; 1543 struct xhci_virt_ep *ep; 1544 struct xhci_command *command; 1545 1546 xhci = hcd_to_xhci(hcd); 1547 spin_lock_irqsave(&xhci->lock, flags); 1548 /* Make sure the URB hasn't completed or been unlinked already */ 1549 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1550 if (ret || !urb->hcpriv) 1551 goto done; 1552 temp = readl(&xhci->op_regs->status); 1553 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1555 "HW died, freeing TD."); 1556 urb_priv = urb->hcpriv; 1557 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1558 td = urb_priv->td[i]; 1559 if (!list_empty(&td->td_list)) 1560 list_del_init(&td->td_list); 1561 if (!list_empty(&td->cancelled_td_list)) 1562 list_del_init(&td->cancelled_td_list); 1563 } 1564 1565 usb_hcd_unlink_urb_from_ep(hcd, urb); 1566 spin_unlock_irqrestore(&xhci->lock, flags); 1567 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1568 xhci_urb_free_priv(urb_priv); 1569 return ret; 1570 } 1571 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1572 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1573 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1574 "Ep 0x%x: URB %p to be canceled on " 1575 "non-responsive xHCI host.", 1576 urb->ep->desc.bEndpointAddress, urb); 1577 /* Let the stop endpoint command watchdog timer (which set this 1578 * state) finish cleaning up the endpoint TD lists. We must 1579 * have caught it in the middle of dropping a lock and giving 1580 * back an URB. 1581 */ 1582 goto done; 1583 } 1584 1585 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1586 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1587 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1588 if (!ep_ring) { 1589 ret = -EINVAL; 1590 goto done; 1591 } 1592 1593 urb_priv = urb->hcpriv; 1594 i = urb_priv->td_cnt; 1595 if (i < urb_priv->length) 1596 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1597 "Cancel URB %p, dev %s, ep 0x%x, " 1598 "starting at offset 0x%llx", 1599 urb, urb->dev->devpath, 1600 urb->ep->desc.bEndpointAddress, 1601 (unsigned long long) xhci_trb_virt_to_dma( 1602 urb_priv->td[i]->start_seg, 1603 urb_priv->td[i]->first_trb)); 1604 1605 for (; i < urb_priv->length; i++) { 1606 td = urb_priv->td[i]; 1607 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1608 } 1609 1610 /* Queue a stop endpoint command, but only if this is 1611 * the first cancellation to be handled. 1612 */ 1613 if (!(ep->ep_state & EP_HALT_PENDING)) { 1614 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1615 if (!command) { 1616 ret = -ENOMEM; 1617 goto done; 1618 } 1619 ep->ep_state |= EP_HALT_PENDING; 1620 ep->stop_cmds_pending++; 1621 ep->stop_cmd_timer.expires = jiffies + 1622 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1623 add_timer(&ep->stop_cmd_timer); 1624 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1625 ep_index, 0); 1626 xhci_ring_cmd_db(xhci); 1627 } 1628 done: 1629 spin_unlock_irqrestore(&xhci->lock, flags); 1630 return ret; 1631 } 1632 1633 /* Drop an endpoint from a new bandwidth configuration for this device. 1634 * Only one call to this function is allowed per endpoint before 1635 * check_bandwidth() or reset_bandwidth() must be called. 1636 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1637 * add the endpoint to the schedule with possibly new parameters denoted by a 1638 * different endpoint descriptor in usb_host_endpoint. 1639 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1640 * not allowed. 1641 * 1642 * The USB core will not allow URBs to be queued to an endpoint that is being 1643 * disabled, so there's no need for mutual exclusion to protect 1644 * the xhci->devs[slot_id] structure. 1645 */ 1646 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1647 struct usb_host_endpoint *ep) 1648 { 1649 struct xhci_hcd *xhci; 1650 struct xhci_container_ctx *in_ctx, *out_ctx; 1651 struct xhci_input_control_ctx *ctrl_ctx; 1652 unsigned int ep_index; 1653 struct xhci_ep_ctx *ep_ctx; 1654 u32 drop_flag; 1655 u32 new_add_flags, new_drop_flags; 1656 int ret; 1657 1658 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1659 if (ret <= 0) 1660 return ret; 1661 xhci = hcd_to_xhci(hcd); 1662 if (xhci->xhc_state & XHCI_STATE_DYING) 1663 return -ENODEV; 1664 1665 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1666 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1667 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1668 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1669 __func__, drop_flag); 1670 return 0; 1671 } 1672 1673 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1674 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1675 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1676 if (!ctrl_ctx) { 1677 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1678 __func__); 1679 return 0; 1680 } 1681 1682 ep_index = xhci_get_endpoint_index(&ep->desc); 1683 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1684 /* If the HC already knows the endpoint is disabled, 1685 * or the HCD has noted it is disabled, ignore this request 1686 */ 1687 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1688 cpu_to_le32(EP_STATE_DISABLED)) || 1689 le32_to_cpu(ctrl_ctx->drop_flags) & 1690 xhci_get_endpoint_flag(&ep->desc)) { 1691 /* Do not warn when called after a usb_device_reset */ 1692 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1693 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1694 __func__, ep); 1695 return 0; 1696 } 1697 1698 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1699 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1700 1701 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1702 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1703 1704 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1705 1706 if (xhci->quirks & XHCI_MTK_HOST) 1707 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1708 1709 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1710 (unsigned int) ep->desc.bEndpointAddress, 1711 udev->slot_id, 1712 (unsigned int) new_drop_flags, 1713 (unsigned int) new_add_flags); 1714 return 0; 1715 } 1716 1717 /* Add an endpoint to a new possible bandwidth configuration for this device. 1718 * Only one call to this function is allowed per endpoint before 1719 * check_bandwidth() or reset_bandwidth() must be called. 1720 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1721 * add the endpoint to the schedule with possibly new parameters denoted by a 1722 * different endpoint descriptor in usb_host_endpoint. 1723 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1724 * not allowed. 1725 * 1726 * The USB core will not allow URBs to be queued to an endpoint until the 1727 * configuration or alt setting is installed in the device, so there's no need 1728 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1729 */ 1730 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1731 struct usb_host_endpoint *ep) 1732 { 1733 struct xhci_hcd *xhci; 1734 struct xhci_container_ctx *in_ctx; 1735 unsigned int ep_index; 1736 struct xhci_input_control_ctx *ctrl_ctx; 1737 u32 added_ctxs; 1738 u32 new_add_flags, new_drop_flags; 1739 struct xhci_virt_device *virt_dev; 1740 int ret = 0; 1741 1742 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1743 if (ret <= 0) { 1744 /* So we won't queue a reset ep command for a root hub */ 1745 ep->hcpriv = NULL; 1746 return ret; 1747 } 1748 xhci = hcd_to_xhci(hcd); 1749 if (xhci->xhc_state & XHCI_STATE_DYING) 1750 return -ENODEV; 1751 1752 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1753 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1754 /* FIXME when we have to issue an evaluate endpoint command to 1755 * deal with ep0 max packet size changing once we get the 1756 * descriptors 1757 */ 1758 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1759 __func__, added_ctxs); 1760 return 0; 1761 } 1762 1763 virt_dev = xhci->devs[udev->slot_id]; 1764 in_ctx = virt_dev->in_ctx; 1765 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1766 if (!ctrl_ctx) { 1767 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1768 __func__); 1769 return 0; 1770 } 1771 1772 ep_index = xhci_get_endpoint_index(&ep->desc); 1773 /* If this endpoint is already in use, and the upper layers are trying 1774 * to add it again without dropping it, reject the addition. 1775 */ 1776 if (virt_dev->eps[ep_index].ring && 1777 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1778 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1779 "without dropping it.\n", 1780 (unsigned int) ep->desc.bEndpointAddress); 1781 return -EINVAL; 1782 } 1783 1784 /* If the HCD has already noted the endpoint is enabled, 1785 * ignore this request. 1786 */ 1787 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1788 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1789 __func__, ep); 1790 return 0; 1791 } 1792 1793 /* 1794 * Configuration and alternate setting changes must be done in 1795 * process context, not interrupt context (or so documenation 1796 * for usb_set_interface() and usb_set_configuration() claim). 1797 */ 1798 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1799 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1800 __func__, ep->desc.bEndpointAddress); 1801 return -ENOMEM; 1802 } 1803 1804 if (xhci->quirks & XHCI_MTK_HOST) { 1805 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1806 if (ret < 0) { 1807 xhci_free_or_cache_endpoint_ring(xhci, 1808 virt_dev, ep_index); 1809 return ret; 1810 } 1811 } 1812 1813 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1814 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1815 1816 /* If xhci_endpoint_disable() was called for this endpoint, but the 1817 * xHC hasn't been notified yet through the check_bandwidth() call, 1818 * this re-adds a new state for the endpoint from the new endpoint 1819 * descriptors. We must drop and re-add this endpoint, so we leave the 1820 * drop flags alone. 1821 */ 1822 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1823 1824 /* Store the usb_device pointer for later use */ 1825 ep->hcpriv = udev; 1826 1827 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1828 (unsigned int) ep->desc.bEndpointAddress, 1829 udev->slot_id, 1830 (unsigned int) new_drop_flags, 1831 (unsigned int) new_add_flags); 1832 return 0; 1833 } 1834 1835 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1836 { 1837 struct xhci_input_control_ctx *ctrl_ctx; 1838 struct xhci_ep_ctx *ep_ctx; 1839 struct xhci_slot_ctx *slot_ctx; 1840 int i; 1841 1842 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1843 if (!ctrl_ctx) { 1844 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1845 __func__); 1846 return; 1847 } 1848 1849 /* When a device's add flag and drop flag are zero, any subsequent 1850 * configure endpoint command will leave that endpoint's state 1851 * untouched. Make sure we don't leave any old state in the input 1852 * endpoint contexts. 1853 */ 1854 ctrl_ctx->drop_flags = 0; 1855 ctrl_ctx->add_flags = 0; 1856 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1857 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1858 /* Endpoint 0 is always valid */ 1859 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1860 for (i = 1; i < 31; ++i) { 1861 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1862 ep_ctx->ep_info = 0; 1863 ep_ctx->ep_info2 = 0; 1864 ep_ctx->deq = 0; 1865 ep_ctx->tx_info = 0; 1866 } 1867 } 1868 1869 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1870 struct usb_device *udev, u32 *cmd_status) 1871 { 1872 int ret; 1873 1874 switch (*cmd_status) { 1875 case COMP_CMD_ABORT: 1876 case COMP_CMD_STOP: 1877 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1878 ret = -ETIME; 1879 break; 1880 case COMP_ENOMEM: 1881 dev_warn(&udev->dev, 1882 "Not enough host controller resources for new device state.\n"); 1883 ret = -ENOMEM; 1884 /* FIXME: can we allocate more resources for the HC? */ 1885 break; 1886 case COMP_BW_ERR: 1887 case COMP_2ND_BW_ERR: 1888 dev_warn(&udev->dev, 1889 "Not enough bandwidth for new device state.\n"); 1890 ret = -ENOSPC; 1891 /* FIXME: can we go back to the old state? */ 1892 break; 1893 case COMP_TRB_ERR: 1894 /* the HCD set up something wrong */ 1895 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1896 "add flag = 1, " 1897 "and endpoint is not disabled.\n"); 1898 ret = -EINVAL; 1899 break; 1900 case COMP_DEV_ERR: 1901 dev_warn(&udev->dev, 1902 "ERROR: Incompatible device for endpoint configure command.\n"); 1903 ret = -ENODEV; 1904 break; 1905 case COMP_SUCCESS: 1906 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1907 "Successful Endpoint Configure command"); 1908 ret = 0; 1909 break; 1910 default: 1911 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1912 *cmd_status); 1913 ret = -EINVAL; 1914 break; 1915 } 1916 return ret; 1917 } 1918 1919 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1920 struct usb_device *udev, u32 *cmd_status) 1921 { 1922 int ret; 1923 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1924 1925 switch (*cmd_status) { 1926 case COMP_CMD_ABORT: 1927 case COMP_CMD_STOP: 1928 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1929 ret = -ETIME; 1930 break; 1931 case COMP_EINVAL: 1932 dev_warn(&udev->dev, 1933 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1934 ret = -EINVAL; 1935 break; 1936 case COMP_EBADSLT: 1937 dev_warn(&udev->dev, 1938 "WARN: slot not enabled for evaluate context command.\n"); 1939 ret = -EINVAL; 1940 break; 1941 case COMP_CTX_STATE: 1942 dev_warn(&udev->dev, 1943 "WARN: invalid context state for evaluate context command.\n"); 1944 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1945 ret = -EINVAL; 1946 break; 1947 case COMP_DEV_ERR: 1948 dev_warn(&udev->dev, 1949 "ERROR: Incompatible device for evaluate context command.\n"); 1950 ret = -ENODEV; 1951 break; 1952 case COMP_MEL_ERR: 1953 /* Max Exit Latency too large error */ 1954 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1955 ret = -EINVAL; 1956 break; 1957 case COMP_SUCCESS: 1958 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1959 "Successful evaluate context command"); 1960 ret = 0; 1961 break; 1962 default: 1963 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1964 *cmd_status); 1965 ret = -EINVAL; 1966 break; 1967 } 1968 return ret; 1969 } 1970 1971 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1972 struct xhci_input_control_ctx *ctrl_ctx) 1973 { 1974 u32 valid_add_flags; 1975 u32 valid_drop_flags; 1976 1977 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1978 * (bit 1). The default control endpoint is added during the Address 1979 * Device command and is never removed until the slot is disabled. 1980 */ 1981 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1982 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1983 1984 /* Use hweight32 to count the number of ones in the add flags, or 1985 * number of endpoints added. Don't count endpoints that are changed 1986 * (both added and dropped). 1987 */ 1988 return hweight32(valid_add_flags) - 1989 hweight32(valid_add_flags & valid_drop_flags); 1990 } 1991 1992 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1993 struct xhci_input_control_ctx *ctrl_ctx) 1994 { 1995 u32 valid_add_flags; 1996 u32 valid_drop_flags; 1997 1998 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1999 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2000 2001 return hweight32(valid_drop_flags) - 2002 hweight32(valid_add_flags & valid_drop_flags); 2003 } 2004 2005 /* 2006 * We need to reserve the new number of endpoints before the configure endpoint 2007 * command completes. We can't subtract the dropped endpoints from the number 2008 * of active endpoints until the command completes because we can oversubscribe 2009 * the host in this case: 2010 * 2011 * - the first configure endpoint command drops more endpoints than it adds 2012 * - a second configure endpoint command that adds more endpoints is queued 2013 * - the first configure endpoint command fails, so the config is unchanged 2014 * - the second command may succeed, even though there isn't enough resources 2015 * 2016 * Must be called with xhci->lock held. 2017 */ 2018 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2019 struct xhci_input_control_ctx *ctrl_ctx) 2020 { 2021 u32 added_eps; 2022 2023 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2024 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2025 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2026 "Not enough ep ctxs: " 2027 "%u active, need to add %u, limit is %u.", 2028 xhci->num_active_eps, added_eps, 2029 xhci->limit_active_eps); 2030 return -ENOMEM; 2031 } 2032 xhci->num_active_eps += added_eps; 2033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2034 "Adding %u ep ctxs, %u now active.", added_eps, 2035 xhci->num_active_eps); 2036 return 0; 2037 } 2038 2039 /* 2040 * The configure endpoint was failed by the xHC for some other reason, so we 2041 * need to revert the resources that failed configuration would have used. 2042 * 2043 * Must be called with xhci->lock held. 2044 */ 2045 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2046 struct xhci_input_control_ctx *ctrl_ctx) 2047 { 2048 u32 num_failed_eps; 2049 2050 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2051 xhci->num_active_eps -= num_failed_eps; 2052 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2053 "Removing %u failed ep ctxs, %u now active.", 2054 num_failed_eps, 2055 xhci->num_active_eps); 2056 } 2057 2058 /* 2059 * Now that the command has completed, clean up the active endpoint count by 2060 * subtracting out the endpoints that were dropped (but not changed). 2061 * 2062 * Must be called with xhci->lock held. 2063 */ 2064 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2065 struct xhci_input_control_ctx *ctrl_ctx) 2066 { 2067 u32 num_dropped_eps; 2068 2069 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2070 xhci->num_active_eps -= num_dropped_eps; 2071 if (num_dropped_eps) 2072 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2073 "Removing %u dropped ep ctxs, %u now active.", 2074 num_dropped_eps, 2075 xhci->num_active_eps); 2076 } 2077 2078 static unsigned int xhci_get_block_size(struct usb_device *udev) 2079 { 2080 switch (udev->speed) { 2081 case USB_SPEED_LOW: 2082 case USB_SPEED_FULL: 2083 return FS_BLOCK; 2084 case USB_SPEED_HIGH: 2085 return HS_BLOCK; 2086 case USB_SPEED_SUPER: 2087 return SS_BLOCK; 2088 case USB_SPEED_UNKNOWN: 2089 case USB_SPEED_WIRELESS: 2090 default: 2091 /* Should never happen */ 2092 return 1; 2093 } 2094 } 2095 2096 static unsigned int 2097 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2098 { 2099 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2100 return LS_OVERHEAD; 2101 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2102 return FS_OVERHEAD; 2103 return HS_OVERHEAD; 2104 } 2105 2106 /* If we are changing a LS/FS device under a HS hub, 2107 * make sure (if we are activating a new TT) that the HS bus has enough 2108 * bandwidth for this new TT. 2109 */ 2110 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2111 struct xhci_virt_device *virt_dev, 2112 int old_active_eps) 2113 { 2114 struct xhci_interval_bw_table *bw_table; 2115 struct xhci_tt_bw_info *tt_info; 2116 2117 /* Find the bandwidth table for the root port this TT is attached to. */ 2118 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2119 tt_info = virt_dev->tt_info; 2120 /* If this TT already had active endpoints, the bandwidth for this TT 2121 * has already been added. Removing all periodic endpoints (and thus 2122 * making the TT enactive) will only decrease the bandwidth used. 2123 */ 2124 if (old_active_eps) 2125 return 0; 2126 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2127 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2128 return -ENOMEM; 2129 return 0; 2130 } 2131 /* Not sure why we would have no new active endpoints... 2132 * 2133 * Maybe because of an Evaluate Context change for a hub update or a 2134 * control endpoint 0 max packet size change? 2135 * FIXME: skip the bandwidth calculation in that case. 2136 */ 2137 return 0; 2138 } 2139 2140 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2141 struct xhci_virt_device *virt_dev) 2142 { 2143 unsigned int bw_reserved; 2144 2145 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2146 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2147 return -ENOMEM; 2148 2149 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2150 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2151 return -ENOMEM; 2152 2153 return 0; 2154 } 2155 2156 /* 2157 * This algorithm is a very conservative estimate of the worst-case scheduling 2158 * scenario for any one interval. The hardware dynamically schedules the 2159 * packets, so we can't tell which microframe could be the limiting factor in 2160 * the bandwidth scheduling. This only takes into account periodic endpoints. 2161 * 2162 * Obviously, we can't solve an NP complete problem to find the minimum worst 2163 * case scenario. Instead, we come up with an estimate that is no less than 2164 * the worst case bandwidth used for any one microframe, but may be an 2165 * over-estimate. 2166 * 2167 * We walk the requirements for each endpoint by interval, starting with the 2168 * smallest interval, and place packets in the schedule where there is only one 2169 * possible way to schedule packets for that interval. In order to simplify 2170 * this algorithm, we record the largest max packet size for each interval, and 2171 * assume all packets will be that size. 2172 * 2173 * For interval 0, we obviously must schedule all packets for each interval. 2174 * The bandwidth for interval 0 is just the amount of data to be transmitted 2175 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2176 * the number of packets). 2177 * 2178 * For interval 1, we have two possible microframes to schedule those packets 2179 * in. For this algorithm, if we can schedule the same number of packets for 2180 * each possible scheduling opportunity (each microframe), we will do so. The 2181 * remaining number of packets will be saved to be transmitted in the gaps in 2182 * the next interval's scheduling sequence. 2183 * 2184 * As we move those remaining packets to be scheduled with interval 2 packets, 2185 * we have to double the number of remaining packets to transmit. This is 2186 * because the intervals are actually powers of 2, and we would be transmitting 2187 * the previous interval's packets twice in this interval. We also have to be 2188 * sure that when we look at the largest max packet size for this interval, we 2189 * also look at the largest max packet size for the remaining packets and take 2190 * the greater of the two. 2191 * 2192 * The algorithm continues to evenly distribute packets in each scheduling 2193 * opportunity, and push the remaining packets out, until we get to the last 2194 * interval. Then those packets and their associated overhead are just added 2195 * to the bandwidth used. 2196 */ 2197 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2198 struct xhci_virt_device *virt_dev, 2199 int old_active_eps) 2200 { 2201 unsigned int bw_reserved; 2202 unsigned int max_bandwidth; 2203 unsigned int bw_used; 2204 unsigned int block_size; 2205 struct xhci_interval_bw_table *bw_table; 2206 unsigned int packet_size = 0; 2207 unsigned int overhead = 0; 2208 unsigned int packets_transmitted = 0; 2209 unsigned int packets_remaining = 0; 2210 unsigned int i; 2211 2212 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2213 return xhci_check_ss_bw(xhci, virt_dev); 2214 2215 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2216 max_bandwidth = HS_BW_LIMIT; 2217 /* Convert percent of bus BW reserved to blocks reserved */ 2218 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2219 } else { 2220 max_bandwidth = FS_BW_LIMIT; 2221 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2222 } 2223 2224 bw_table = virt_dev->bw_table; 2225 /* We need to translate the max packet size and max ESIT payloads into 2226 * the units the hardware uses. 2227 */ 2228 block_size = xhci_get_block_size(virt_dev->udev); 2229 2230 /* If we are manipulating a LS/FS device under a HS hub, double check 2231 * that the HS bus has enough bandwidth if we are activing a new TT. 2232 */ 2233 if (virt_dev->tt_info) { 2234 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2235 "Recalculating BW for rootport %u", 2236 virt_dev->real_port); 2237 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2238 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2239 "newly activated TT.\n"); 2240 return -ENOMEM; 2241 } 2242 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2243 "Recalculating BW for TT slot %u port %u", 2244 virt_dev->tt_info->slot_id, 2245 virt_dev->tt_info->ttport); 2246 } else { 2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2248 "Recalculating BW for rootport %u", 2249 virt_dev->real_port); 2250 } 2251 2252 /* Add in how much bandwidth will be used for interval zero, or the 2253 * rounded max ESIT payload + number of packets * largest overhead. 2254 */ 2255 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2256 bw_table->interval_bw[0].num_packets * 2257 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2258 2259 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2260 unsigned int bw_added; 2261 unsigned int largest_mps; 2262 unsigned int interval_overhead; 2263 2264 /* 2265 * How many packets could we transmit in this interval? 2266 * If packets didn't fit in the previous interval, we will need 2267 * to transmit that many packets twice within this interval. 2268 */ 2269 packets_remaining = 2 * packets_remaining + 2270 bw_table->interval_bw[i].num_packets; 2271 2272 /* Find the largest max packet size of this or the previous 2273 * interval. 2274 */ 2275 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2276 largest_mps = 0; 2277 else { 2278 struct xhci_virt_ep *virt_ep; 2279 struct list_head *ep_entry; 2280 2281 ep_entry = bw_table->interval_bw[i].endpoints.next; 2282 virt_ep = list_entry(ep_entry, 2283 struct xhci_virt_ep, bw_endpoint_list); 2284 /* Convert to blocks, rounding up */ 2285 largest_mps = DIV_ROUND_UP( 2286 virt_ep->bw_info.max_packet_size, 2287 block_size); 2288 } 2289 if (largest_mps > packet_size) 2290 packet_size = largest_mps; 2291 2292 /* Use the larger overhead of this or the previous interval. */ 2293 interval_overhead = xhci_get_largest_overhead( 2294 &bw_table->interval_bw[i]); 2295 if (interval_overhead > overhead) 2296 overhead = interval_overhead; 2297 2298 /* How many packets can we evenly distribute across 2299 * (1 << (i + 1)) possible scheduling opportunities? 2300 */ 2301 packets_transmitted = packets_remaining >> (i + 1); 2302 2303 /* Add in the bandwidth used for those scheduled packets */ 2304 bw_added = packets_transmitted * (overhead + packet_size); 2305 2306 /* How many packets do we have remaining to transmit? */ 2307 packets_remaining = packets_remaining % (1 << (i + 1)); 2308 2309 /* What largest max packet size should those packets have? */ 2310 /* If we've transmitted all packets, don't carry over the 2311 * largest packet size. 2312 */ 2313 if (packets_remaining == 0) { 2314 packet_size = 0; 2315 overhead = 0; 2316 } else if (packets_transmitted > 0) { 2317 /* Otherwise if we do have remaining packets, and we've 2318 * scheduled some packets in this interval, take the 2319 * largest max packet size from endpoints with this 2320 * interval. 2321 */ 2322 packet_size = largest_mps; 2323 overhead = interval_overhead; 2324 } 2325 /* Otherwise carry over packet_size and overhead from the last 2326 * time we had a remainder. 2327 */ 2328 bw_used += bw_added; 2329 if (bw_used > max_bandwidth) { 2330 xhci_warn(xhci, "Not enough bandwidth. " 2331 "Proposed: %u, Max: %u\n", 2332 bw_used, max_bandwidth); 2333 return -ENOMEM; 2334 } 2335 } 2336 /* 2337 * Ok, we know we have some packets left over after even-handedly 2338 * scheduling interval 15. We don't know which microframes they will 2339 * fit into, so we over-schedule and say they will be scheduled every 2340 * microframe. 2341 */ 2342 if (packets_remaining > 0) 2343 bw_used += overhead + packet_size; 2344 2345 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2346 unsigned int port_index = virt_dev->real_port - 1; 2347 2348 /* OK, we're manipulating a HS device attached to a 2349 * root port bandwidth domain. Include the number of active TTs 2350 * in the bandwidth used. 2351 */ 2352 bw_used += TT_HS_OVERHEAD * 2353 xhci->rh_bw[port_index].num_active_tts; 2354 } 2355 2356 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2357 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2358 "Available: %u " "percent", 2359 bw_used, max_bandwidth, bw_reserved, 2360 (max_bandwidth - bw_used - bw_reserved) * 100 / 2361 max_bandwidth); 2362 2363 bw_used += bw_reserved; 2364 if (bw_used > max_bandwidth) { 2365 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2366 bw_used, max_bandwidth); 2367 return -ENOMEM; 2368 } 2369 2370 bw_table->bw_used = bw_used; 2371 return 0; 2372 } 2373 2374 static bool xhci_is_async_ep(unsigned int ep_type) 2375 { 2376 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2377 ep_type != ISOC_IN_EP && 2378 ep_type != INT_IN_EP); 2379 } 2380 2381 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2382 { 2383 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2384 } 2385 2386 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2387 { 2388 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2389 2390 if (ep_bw->ep_interval == 0) 2391 return SS_OVERHEAD_BURST + 2392 (ep_bw->mult * ep_bw->num_packets * 2393 (SS_OVERHEAD + mps)); 2394 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2395 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2396 1 << ep_bw->ep_interval); 2397 2398 } 2399 2400 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2401 struct xhci_bw_info *ep_bw, 2402 struct xhci_interval_bw_table *bw_table, 2403 struct usb_device *udev, 2404 struct xhci_virt_ep *virt_ep, 2405 struct xhci_tt_bw_info *tt_info) 2406 { 2407 struct xhci_interval_bw *interval_bw; 2408 int normalized_interval; 2409 2410 if (xhci_is_async_ep(ep_bw->type)) 2411 return; 2412 2413 if (udev->speed == USB_SPEED_SUPER) { 2414 if (xhci_is_sync_in_ep(ep_bw->type)) 2415 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2416 xhci_get_ss_bw_consumed(ep_bw); 2417 else 2418 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2419 xhci_get_ss_bw_consumed(ep_bw); 2420 return; 2421 } 2422 2423 /* SuperSpeed endpoints never get added to intervals in the table, so 2424 * this check is only valid for HS/FS/LS devices. 2425 */ 2426 if (list_empty(&virt_ep->bw_endpoint_list)) 2427 return; 2428 /* For LS/FS devices, we need to translate the interval expressed in 2429 * microframes to frames. 2430 */ 2431 if (udev->speed == USB_SPEED_HIGH) 2432 normalized_interval = ep_bw->ep_interval; 2433 else 2434 normalized_interval = ep_bw->ep_interval - 3; 2435 2436 if (normalized_interval == 0) 2437 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2438 interval_bw = &bw_table->interval_bw[normalized_interval]; 2439 interval_bw->num_packets -= ep_bw->num_packets; 2440 switch (udev->speed) { 2441 case USB_SPEED_LOW: 2442 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2443 break; 2444 case USB_SPEED_FULL: 2445 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2446 break; 2447 case USB_SPEED_HIGH: 2448 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2449 break; 2450 case USB_SPEED_SUPER: 2451 case USB_SPEED_UNKNOWN: 2452 case USB_SPEED_WIRELESS: 2453 /* Should never happen because only LS/FS/HS endpoints will get 2454 * added to the endpoint list. 2455 */ 2456 return; 2457 } 2458 if (tt_info) 2459 tt_info->active_eps -= 1; 2460 list_del_init(&virt_ep->bw_endpoint_list); 2461 } 2462 2463 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2464 struct xhci_bw_info *ep_bw, 2465 struct xhci_interval_bw_table *bw_table, 2466 struct usb_device *udev, 2467 struct xhci_virt_ep *virt_ep, 2468 struct xhci_tt_bw_info *tt_info) 2469 { 2470 struct xhci_interval_bw *interval_bw; 2471 struct xhci_virt_ep *smaller_ep; 2472 int normalized_interval; 2473 2474 if (xhci_is_async_ep(ep_bw->type)) 2475 return; 2476 2477 if (udev->speed == USB_SPEED_SUPER) { 2478 if (xhci_is_sync_in_ep(ep_bw->type)) 2479 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2480 xhci_get_ss_bw_consumed(ep_bw); 2481 else 2482 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2483 xhci_get_ss_bw_consumed(ep_bw); 2484 return; 2485 } 2486 2487 /* For LS/FS devices, we need to translate the interval expressed in 2488 * microframes to frames. 2489 */ 2490 if (udev->speed == USB_SPEED_HIGH) 2491 normalized_interval = ep_bw->ep_interval; 2492 else 2493 normalized_interval = ep_bw->ep_interval - 3; 2494 2495 if (normalized_interval == 0) 2496 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2497 interval_bw = &bw_table->interval_bw[normalized_interval]; 2498 interval_bw->num_packets += ep_bw->num_packets; 2499 switch (udev->speed) { 2500 case USB_SPEED_LOW: 2501 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2502 break; 2503 case USB_SPEED_FULL: 2504 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2505 break; 2506 case USB_SPEED_HIGH: 2507 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2508 break; 2509 case USB_SPEED_SUPER: 2510 case USB_SPEED_UNKNOWN: 2511 case USB_SPEED_WIRELESS: 2512 /* Should never happen because only LS/FS/HS endpoints will get 2513 * added to the endpoint list. 2514 */ 2515 return; 2516 } 2517 2518 if (tt_info) 2519 tt_info->active_eps += 1; 2520 /* Insert the endpoint into the list, largest max packet size first. */ 2521 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2522 bw_endpoint_list) { 2523 if (ep_bw->max_packet_size >= 2524 smaller_ep->bw_info.max_packet_size) { 2525 /* Add the new ep before the smaller endpoint */ 2526 list_add_tail(&virt_ep->bw_endpoint_list, 2527 &smaller_ep->bw_endpoint_list); 2528 return; 2529 } 2530 } 2531 /* Add the new endpoint at the end of the list. */ 2532 list_add_tail(&virt_ep->bw_endpoint_list, 2533 &interval_bw->endpoints); 2534 } 2535 2536 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2537 struct xhci_virt_device *virt_dev, 2538 int old_active_eps) 2539 { 2540 struct xhci_root_port_bw_info *rh_bw_info; 2541 if (!virt_dev->tt_info) 2542 return; 2543 2544 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2545 if (old_active_eps == 0 && 2546 virt_dev->tt_info->active_eps != 0) { 2547 rh_bw_info->num_active_tts += 1; 2548 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2549 } else if (old_active_eps != 0 && 2550 virt_dev->tt_info->active_eps == 0) { 2551 rh_bw_info->num_active_tts -= 1; 2552 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2553 } 2554 } 2555 2556 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2557 struct xhci_virt_device *virt_dev, 2558 struct xhci_container_ctx *in_ctx) 2559 { 2560 struct xhci_bw_info ep_bw_info[31]; 2561 int i; 2562 struct xhci_input_control_ctx *ctrl_ctx; 2563 int old_active_eps = 0; 2564 2565 if (virt_dev->tt_info) 2566 old_active_eps = virt_dev->tt_info->active_eps; 2567 2568 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2569 if (!ctrl_ctx) { 2570 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2571 __func__); 2572 return -ENOMEM; 2573 } 2574 2575 for (i = 0; i < 31; i++) { 2576 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2577 continue; 2578 2579 /* Make a copy of the BW info in case we need to revert this */ 2580 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2581 sizeof(ep_bw_info[i])); 2582 /* Drop the endpoint from the interval table if the endpoint is 2583 * being dropped or changed. 2584 */ 2585 if (EP_IS_DROPPED(ctrl_ctx, i)) 2586 xhci_drop_ep_from_interval_table(xhci, 2587 &virt_dev->eps[i].bw_info, 2588 virt_dev->bw_table, 2589 virt_dev->udev, 2590 &virt_dev->eps[i], 2591 virt_dev->tt_info); 2592 } 2593 /* Overwrite the information stored in the endpoints' bw_info */ 2594 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2595 for (i = 0; i < 31; i++) { 2596 /* Add any changed or added endpoints to the interval table */ 2597 if (EP_IS_ADDED(ctrl_ctx, i)) 2598 xhci_add_ep_to_interval_table(xhci, 2599 &virt_dev->eps[i].bw_info, 2600 virt_dev->bw_table, 2601 virt_dev->udev, 2602 &virt_dev->eps[i], 2603 virt_dev->tt_info); 2604 } 2605 2606 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2607 /* Ok, this fits in the bandwidth we have. 2608 * Update the number of active TTs. 2609 */ 2610 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2611 return 0; 2612 } 2613 2614 /* We don't have enough bandwidth for this, revert the stored info. */ 2615 for (i = 0; i < 31; i++) { 2616 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2617 continue; 2618 2619 /* Drop the new copies of any added or changed endpoints from 2620 * the interval table. 2621 */ 2622 if (EP_IS_ADDED(ctrl_ctx, i)) { 2623 xhci_drop_ep_from_interval_table(xhci, 2624 &virt_dev->eps[i].bw_info, 2625 virt_dev->bw_table, 2626 virt_dev->udev, 2627 &virt_dev->eps[i], 2628 virt_dev->tt_info); 2629 } 2630 /* Revert the endpoint back to its old information */ 2631 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2632 sizeof(ep_bw_info[i])); 2633 /* Add any changed or dropped endpoints back into the table */ 2634 if (EP_IS_DROPPED(ctrl_ctx, i)) 2635 xhci_add_ep_to_interval_table(xhci, 2636 &virt_dev->eps[i].bw_info, 2637 virt_dev->bw_table, 2638 virt_dev->udev, 2639 &virt_dev->eps[i], 2640 virt_dev->tt_info); 2641 } 2642 return -ENOMEM; 2643 } 2644 2645 2646 /* Issue a configure endpoint command or evaluate context command 2647 * and wait for it to finish. 2648 */ 2649 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2650 struct usb_device *udev, 2651 struct xhci_command *command, 2652 bool ctx_change, bool must_succeed) 2653 { 2654 int ret; 2655 unsigned long flags; 2656 struct xhci_input_control_ctx *ctrl_ctx; 2657 struct xhci_virt_device *virt_dev; 2658 2659 if (!command) 2660 return -EINVAL; 2661 2662 spin_lock_irqsave(&xhci->lock, flags); 2663 virt_dev = xhci->devs[udev->slot_id]; 2664 2665 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2666 if (!ctrl_ctx) { 2667 spin_unlock_irqrestore(&xhci->lock, flags); 2668 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2669 __func__); 2670 return -ENOMEM; 2671 } 2672 2673 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2674 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2675 spin_unlock_irqrestore(&xhci->lock, flags); 2676 xhci_warn(xhci, "Not enough host resources, " 2677 "active endpoint contexts = %u\n", 2678 xhci->num_active_eps); 2679 return -ENOMEM; 2680 } 2681 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2682 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2683 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2684 xhci_free_host_resources(xhci, ctrl_ctx); 2685 spin_unlock_irqrestore(&xhci->lock, flags); 2686 xhci_warn(xhci, "Not enough bandwidth\n"); 2687 return -ENOMEM; 2688 } 2689 2690 if (!ctx_change) 2691 ret = xhci_queue_configure_endpoint(xhci, command, 2692 command->in_ctx->dma, 2693 udev->slot_id, must_succeed); 2694 else 2695 ret = xhci_queue_evaluate_context(xhci, command, 2696 command->in_ctx->dma, 2697 udev->slot_id, must_succeed); 2698 if (ret < 0) { 2699 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2700 xhci_free_host_resources(xhci, ctrl_ctx); 2701 spin_unlock_irqrestore(&xhci->lock, flags); 2702 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2703 "FIXME allocate a new ring segment"); 2704 return -ENOMEM; 2705 } 2706 xhci_ring_cmd_db(xhci); 2707 spin_unlock_irqrestore(&xhci->lock, flags); 2708 2709 /* Wait for the configure endpoint command to complete */ 2710 wait_for_completion(command->completion); 2711 2712 if (!ctx_change) 2713 ret = xhci_configure_endpoint_result(xhci, udev, 2714 &command->status); 2715 else 2716 ret = xhci_evaluate_context_result(xhci, udev, 2717 &command->status); 2718 2719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2720 spin_lock_irqsave(&xhci->lock, flags); 2721 /* If the command failed, remove the reserved resources. 2722 * Otherwise, clean up the estimate to include dropped eps. 2723 */ 2724 if (ret) 2725 xhci_free_host_resources(xhci, ctrl_ctx); 2726 else 2727 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2728 spin_unlock_irqrestore(&xhci->lock, flags); 2729 } 2730 return ret; 2731 } 2732 2733 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2734 struct xhci_virt_device *vdev, int i) 2735 { 2736 struct xhci_virt_ep *ep = &vdev->eps[i]; 2737 2738 if (ep->ep_state & EP_HAS_STREAMS) { 2739 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2740 xhci_get_endpoint_address(i)); 2741 xhci_free_stream_info(xhci, ep->stream_info); 2742 ep->stream_info = NULL; 2743 ep->ep_state &= ~EP_HAS_STREAMS; 2744 } 2745 } 2746 2747 /* Called after one or more calls to xhci_add_endpoint() or 2748 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2749 * to call xhci_reset_bandwidth(). 2750 * 2751 * Since we are in the middle of changing either configuration or 2752 * installing a new alt setting, the USB core won't allow URBs to be 2753 * enqueued for any endpoint on the old config or interface. Nothing 2754 * else should be touching the xhci->devs[slot_id] structure, so we 2755 * don't need to take the xhci->lock for manipulating that. 2756 */ 2757 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2758 { 2759 int i; 2760 int ret = 0; 2761 struct xhci_hcd *xhci; 2762 struct xhci_virt_device *virt_dev; 2763 struct xhci_input_control_ctx *ctrl_ctx; 2764 struct xhci_slot_ctx *slot_ctx; 2765 struct xhci_command *command; 2766 2767 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2768 if (ret <= 0) 2769 return ret; 2770 xhci = hcd_to_xhci(hcd); 2771 if (xhci->xhc_state & XHCI_STATE_DYING) 2772 return -ENODEV; 2773 2774 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2775 virt_dev = xhci->devs[udev->slot_id]; 2776 2777 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2778 if (!command) 2779 return -ENOMEM; 2780 2781 command->in_ctx = virt_dev->in_ctx; 2782 2783 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2784 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2785 if (!ctrl_ctx) { 2786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2787 __func__); 2788 ret = -ENOMEM; 2789 goto command_cleanup; 2790 } 2791 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2792 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2793 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2794 2795 /* Don't issue the command if there's no endpoints to update. */ 2796 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2797 ctrl_ctx->drop_flags == 0) { 2798 ret = 0; 2799 goto command_cleanup; 2800 } 2801 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2802 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2803 for (i = 31; i >= 1; i--) { 2804 __le32 le32 = cpu_to_le32(BIT(i)); 2805 2806 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2807 || (ctrl_ctx->add_flags & le32) || i == 1) { 2808 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2809 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2810 break; 2811 } 2812 } 2813 xhci_dbg(xhci, "New Input Control Context:\n"); 2814 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2815 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2816 2817 ret = xhci_configure_endpoint(xhci, udev, command, 2818 false, false); 2819 if (ret) 2820 /* Callee should call reset_bandwidth() */ 2821 goto command_cleanup; 2822 2823 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2824 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2825 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2826 2827 /* Free any rings that were dropped, but not changed. */ 2828 for (i = 1; i < 31; ++i) { 2829 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2830 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2831 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2832 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2833 } 2834 } 2835 xhci_zero_in_ctx(xhci, virt_dev); 2836 /* 2837 * Install any rings for completely new endpoints or changed endpoints, 2838 * and free or cache any old rings from changed endpoints. 2839 */ 2840 for (i = 1; i < 31; ++i) { 2841 if (!virt_dev->eps[i].new_ring) 2842 continue; 2843 /* Only cache or free the old ring if it exists. 2844 * It may not if this is the first add of an endpoint. 2845 */ 2846 if (virt_dev->eps[i].ring) { 2847 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2848 } 2849 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2850 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2851 virt_dev->eps[i].new_ring = NULL; 2852 } 2853 command_cleanup: 2854 kfree(command->completion); 2855 kfree(command); 2856 2857 return ret; 2858 } 2859 2860 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2861 { 2862 struct xhci_hcd *xhci; 2863 struct xhci_virt_device *virt_dev; 2864 int i, ret; 2865 2866 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2867 if (ret <= 0) 2868 return; 2869 xhci = hcd_to_xhci(hcd); 2870 2871 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2872 virt_dev = xhci->devs[udev->slot_id]; 2873 /* Free any rings allocated for added endpoints */ 2874 for (i = 0; i < 31; ++i) { 2875 if (virt_dev->eps[i].new_ring) { 2876 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2877 virt_dev->eps[i].new_ring = NULL; 2878 } 2879 } 2880 xhci_zero_in_ctx(xhci, virt_dev); 2881 } 2882 2883 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2884 struct xhci_container_ctx *in_ctx, 2885 struct xhci_container_ctx *out_ctx, 2886 struct xhci_input_control_ctx *ctrl_ctx, 2887 u32 add_flags, u32 drop_flags) 2888 { 2889 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2890 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2891 xhci_slot_copy(xhci, in_ctx, out_ctx); 2892 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2893 2894 xhci_dbg(xhci, "Input Context:\n"); 2895 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2896 } 2897 2898 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2899 unsigned int slot_id, unsigned int ep_index, 2900 struct xhci_dequeue_state *deq_state) 2901 { 2902 struct xhci_input_control_ctx *ctrl_ctx; 2903 struct xhci_container_ctx *in_ctx; 2904 struct xhci_ep_ctx *ep_ctx; 2905 u32 added_ctxs; 2906 dma_addr_t addr; 2907 2908 in_ctx = xhci->devs[slot_id]->in_ctx; 2909 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2910 if (!ctrl_ctx) { 2911 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2912 __func__); 2913 return; 2914 } 2915 2916 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2917 xhci->devs[slot_id]->out_ctx, ep_index); 2918 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2919 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2920 deq_state->new_deq_ptr); 2921 if (addr == 0) { 2922 xhci_warn(xhci, "WARN Cannot submit config ep after " 2923 "reset ep command\n"); 2924 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2925 deq_state->new_deq_seg, 2926 deq_state->new_deq_ptr); 2927 return; 2928 } 2929 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2930 2931 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2932 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2933 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2934 added_ctxs, added_ctxs); 2935 } 2936 2937 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2938 unsigned int ep_index, struct xhci_td *td) 2939 { 2940 struct xhci_dequeue_state deq_state; 2941 struct xhci_virt_ep *ep; 2942 struct usb_device *udev = td->urb->dev; 2943 2944 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2945 "Cleaning up stalled endpoint ring"); 2946 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2947 /* We need to move the HW's dequeue pointer past this TD, 2948 * or it will attempt to resend it on the next doorbell ring. 2949 */ 2950 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2951 ep_index, ep->stopped_stream, td, &deq_state); 2952 2953 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2954 return; 2955 2956 /* HW with the reset endpoint quirk will use the saved dequeue state to 2957 * issue a configure endpoint command later. 2958 */ 2959 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2960 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2961 "Queueing new dequeue state"); 2962 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2963 ep_index, ep->stopped_stream, &deq_state); 2964 } else { 2965 /* Better hope no one uses the input context between now and the 2966 * reset endpoint completion! 2967 * XXX: No idea how this hardware will react when stream rings 2968 * are enabled. 2969 */ 2970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2971 "Setting up input context for " 2972 "configure endpoint command"); 2973 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2974 ep_index, &deq_state); 2975 } 2976 } 2977 2978 /* Called when clearing halted device. The core should have sent the control 2979 * message to clear the device halt condition. The host side of the halt should 2980 * already be cleared with a reset endpoint command issued when the STALL tx 2981 * event was received. 2982 * 2983 * Context: in_interrupt 2984 */ 2985 2986 void xhci_endpoint_reset(struct usb_hcd *hcd, 2987 struct usb_host_endpoint *ep) 2988 { 2989 struct xhci_hcd *xhci; 2990 2991 xhci = hcd_to_xhci(hcd); 2992 2993 /* 2994 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2995 * The Reset Endpoint Command may only be issued to endpoints in the 2996 * Halted state. If software wishes reset the Data Toggle or Sequence 2997 * Number of an endpoint that isn't in the Halted state, then software 2998 * may issue a Configure Endpoint Command with the Drop and Add bits set 2999 * for the target endpoint. that is in the Stopped state. 3000 */ 3001 3002 /* For now just print debug to follow the situation */ 3003 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 3004 ep->desc.bEndpointAddress); 3005 } 3006 3007 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3008 struct usb_device *udev, struct usb_host_endpoint *ep, 3009 unsigned int slot_id) 3010 { 3011 int ret; 3012 unsigned int ep_index; 3013 unsigned int ep_state; 3014 3015 if (!ep) 3016 return -EINVAL; 3017 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3018 if (ret <= 0) 3019 return -EINVAL; 3020 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3021 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3022 " descriptor for ep 0x%x does not support streams\n", 3023 ep->desc.bEndpointAddress); 3024 return -EINVAL; 3025 } 3026 3027 ep_index = xhci_get_endpoint_index(&ep->desc); 3028 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3029 if (ep_state & EP_HAS_STREAMS || 3030 ep_state & EP_GETTING_STREAMS) { 3031 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3032 "already has streams set up.\n", 3033 ep->desc.bEndpointAddress); 3034 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3035 "dynamic stream context array reallocation.\n"); 3036 return -EINVAL; 3037 } 3038 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3039 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3040 "endpoint 0x%x; URBs are pending.\n", 3041 ep->desc.bEndpointAddress); 3042 return -EINVAL; 3043 } 3044 return 0; 3045 } 3046 3047 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3048 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3049 { 3050 unsigned int max_streams; 3051 3052 /* The stream context array size must be a power of two */ 3053 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3054 /* 3055 * Find out how many primary stream array entries the host controller 3056 * supports. Later we may use secondary stream arrays (similar to 2nd 3057 * level page entries), but that's an optional feature for xHCI host 3058 * controllers. xHCs must support at least 4 stream IDs. 3059 */ 3060 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3061 if (*num_stream_ctxs > max_streams) { 3062 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3063 max_streams); 3064 *num_stream_ctxs = max_streams; 3065 *num_streams = max_streams; 3066 } 3067 } 3068 3069 /* Returns an error code if one of the endpoint already has streams. 3070 * This does not change any data structures, it only checks and gathers 3071 * information. 3072 */ 3073 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3074 struct usb_device *udev, 3075 struct usb_host_endpoint **eps, unsigned int num_eps, 3076 unsigned int *num_streams, u32 *changed_ep_bitmask) 3077 { 3078 unsigned int max_streams; 3079 unsigned int endpoint_flag; 3080 int i; 3081 int ret; 3082 3083 for (i = 0; i < num_eps; i++) { 3084 ret = xhci_check_streams_endpoint(xhci, udev, 3085 eps[i], udev->slot_id); 3086 if (ret < 0) 3087 return ret; 3088 3089 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3090 if (max_streams < (*num_streams - 1)) { 3091 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3092 eps[i]->desc.bEndpointAddress, 3093 max_streams); 3094 *num_streams = max_streams+1; 3095 } 3096 3097 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3098 if (*changed_ep_bitmask & endpoint_flag) 3099 return -EINVAL; 3100 *changed_ep_bitmask |= endpoint_flag; 3101 } 3102 return 0; 3103 } 3104 3105 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3106 struct usb_device *udev, 3107 struct usb_host_endpoint **eps, unsigned int num_eps) 3108 { 3109 u32 changed_ep_bitmask = 0; 3110 unsigned int slot_id; 3111 unsigned int ep_index; 3112 unsigned int ep_state; 3113 int i; 3114 3115 slot_id = udev->slot_id; 3116 if (!xhci->devs[slot_id]) 3117 return 0; 3118 3119 for (i = 0; i < num_eps; i++) { 3120 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3121 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3122 /* Are streams already being freed for the endpoint? */ 3123 if (ep_state & EP_GETTING_NO_STREAMS) { 3124 xhci_warn(xhci, "WARN Can't disable streams for " 3125 "endpoint 0x%x, " 3126 "streams are being disabled already\n", 3127 eps[i]->desc.bEndpointAddress); 3128 return 0; 3129 } 3130 /* Are there actually any streams to free? */ 3131 if (!(ep_state & EP_HAS_STREAMS) && 3132 !(ep_state & EP_GETTING_STREAMS)) { 3133 xhci_warn(xhci, "WARN Can't disable streams for " 3134 "endpoint 0x%x, " 3135 "streams are already disabled!\n", 3136 eps[i]->desc.bEndpointAddress); 3137 xhci_warn(xhci, "WARN xhci_free_streams() called " 3138 "with non-streams endpoint\n"); 3139 return 0; 3140 } 3141 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3142 } 3143 return changed_ep_bitmask; 3144 } 3145 3146 /* 3147 * The USB device drivers use this function (through the HCD interface in USB 3148 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3149 * coordinate mass storage command queueing across multiple endpoints (basically 3150 * a stream ID == a task ID). 3151 * 3152 * Setting up streams involves allocating the same size stream context array 3153 * for each endpoint and issuing a configure endpoint command for all endpoints. 3154 * 3155 * Don't allow the call to succeed if one endpoint only supports one stream 3156 * (which means it doesn't support streams at all). 3157 * 3158 * Drivers may get less stream IDs than they asked for, if the host controller 3159 * hardware or endpoints claim they can't support the number of requested 3160 * stream IDs. 3161 */ 3162 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3163 struct usb_host_endpoint **eps, unsigned int num_eps, 3164 unsigned int num_streams, gfp_t mem_flags) 3165 { 3166 int i, ret; 3167 struct xhci_hcd *xhci; 3168 struct xhci_virt_device *vdev; 3169 struct xhci_command *config_cmd; 3170 struct xhci_input_control_ctx *ctrl_ctx; 3171 unsigned int ep_index; 3172 unsigned int num_stream_ctxs; 3173 unsigned long flags; 3174 u32 changed_ep_bitmask = 0; 3175 3176 if (!eps) 3177 return -EINVAL; 3178 3179 /* Add one to the number of streams requested to account for 3180 * stream 0 that is reserved for xHCI usage. 3181 */ 3182 num_streams += 1; 3183 xhci = hcd_to_xhci(hcd); 3184 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3185 num_streams); 3186 3187 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3188 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3189 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3190 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3191 return -ENOSYS; 3192 } 3193 3194 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3195 if (!config_cmd) { 3196 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3197 return -ENOMEM; 3198 } 3199 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3200 if (!ctrl_ctx) { 3201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3202 __func__); 3203 xhci_free_command(xhci, config_cmd); 3204 return -ENOMEM; 3205 } 3206 3207 /* Check to make sure all endpoints are not already configured for 3208 * streams. While we're at it, find the maximum number of streams that 3209 * all the endpoints will support and check for duplicate endpoints. 3210 */ 3211 spin_lock_irqsave(&xhci->lock, flags); 3212 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3213 num_eps, &num_streams, &changed_ep_bitmask); 3214 if (ret < 0) { 3215 xhci_free_command(xhci, config_cmd); 3216 spin_unlock_irqrestore(&xhci->lock, flags); 3217 return ret; 3218 } 3219 if (num_streams <= 1) { 3220 xhci_warn(xhci, "WARN: endpoints can't handle " 3221 "more than one stream.\n"); 3222 xhci_free_command(xhci, config_cmd); 3223 spin_unlock_irqrestore(&xhci->lock, flags); 3224 return -EINVAL; 3225 } 3226 vdev = xhci->devs[udev->slot_id]; 3227 /* Mark each endpoint as being in transition, so 3228 * xhci_urb_enqueue() will reject all URBs. 3229 */ 3230 for (i = 0; i < num_eps; i++) { 3231 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3232 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3233 } 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 3236 /* Setup internal data structures and allocate HW data structures for 3237 * streams (but don't install the HW structures in the input context 3238 * until we're sure all memory allocation succeeded). 3239 */ 3240 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3241 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3242 num_stream_ctxs, num_streams); 3243 3244 for (i = 0; i < num_eps; i++) { 3245 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3246 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3247 num_stream_ctxs, 3248 num_streams, mem_flags); 3249 if (!vdev->eps[ep_index].stream_info) 3250 goto cleanup; 3251 /* Set maxPstreams in endpoint context and update deq ptr to 3252 * point to stream context array. FIXME 3253 */ 3254 } 3255 3256 /* Set up the input context for a configure endpoint command. */ 3257 for (i = 0; i < num_eps; i++) { 3258 struct xhci_ep_ctx *ep_ctx; 3259 3260 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3261 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3262 3263 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3264 vdev->out_ctx, ep_index); 3265 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3266 vdev->eps[ep_index].stream_info); 3267 } 3268 /* Tell the HW to drop its old copy of the endpoint context info 3269 * and add the updated copy from the input context. 3270 */ 3271 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3272 vdev->out_ctx, ctrl_ctx, 3273 changed_ep_bitmask, changed_ep_bitmask); 3274 3275 /* Issue and wait for the configure endpoint command */ 3276 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3277 false, false); 3278 3279 /* xHC rejected the configure endpoint command for some reason, so we 3280 * leave the old ring intact and free our internal streams data 3281 * structure. 3282 */ 3283 if (ret < 0) 3284 goto cleanup; 3285 3286 spin_lock_irqsave(&xhci->lock, flags); 3287 for (i = 0; i < num_eps; i++) { 3288 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3289 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3290 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3291 udev->slot_id, ep_index); 3292 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3293 } 3294 xhci_free_command(xhci, config_cmd); 3295 spin_unlock_irqrestore(&xhci->lock, flags); 3296 3297 /* Subtract 1 for stream 0, which drivers can't use */ 3298 return num_streams - 1; 3299 3300 cleanup: 3301 /* If it didn't work, free the streams! */ 3302 for (i = 0; i < num_eps; i++) { 3303 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3304 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3305 vdev->eps[ep_index].stream_info = NULL; 3306 /* FIXME Unset maxPstreams in endpoint context and 3307 * update deq ptr to point to normal string ring. 3308 */ 3309 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3310 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3311 xhci_endpoint_zero(xhci, vdev, eps[i]); 3312 } 3313 xhci_free_command(xhci, config_cmd); 3314 return -ENOMEM; 3315 } 3316 3317 /* Transition the endpoint from using streams to being a "normal" endpoint 3318 * without streams. 3319 * 3320 * Modify the endpoint context state, submit a configure endpoint command, 3321 * and free all endpoint rings for streams if that completes successfully. 3322 */ 3323 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3324 struct usb_host_endpoint **eps, unsigned int num_eps, 3325 gfp_t mem_flags) 3326 { 3327 int i, ret; 3328 struct xhci_hcd *xhci; 3329 struct xhci_virt_device *vdev; 3330 struct xhci_command *command; 3331 struct xhci_input_control_ctx *ctrl_ctx; 3332 unsigned int ep_index; 3333 unsigned long flags; 3334 u32 changed_ep_bitmask; 3335 3336 xhci = hcd_to_xhci(hcd); 3337 vdev = xhci->devs[udev->slot_id]; 3338 3339 /* Set up a configure endpoint command to remove the streams rings */ 3340 spin_lock_irqsave(&xhci->lock, flags); 3341 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3342 udev, eps, num_eps); 3343 if (changed_ep_bitmask == 0) { 3344 spin_unlock_irqrestore(&xhci->lock, flags); 3345 return -EINVAL; 3346 } 3347 3348 /* Use the xhci_command structure from the first endpoint. We may have 3349 * allocated too many, but the driver may call xhci_free_streams() for 3350 * each endpoint it grouped into one call to xhci_alloc_streams(). 3351 */ 3352 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3353 command = vdev->eps[ep_index].stream_info->free_streams_command; 3354 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3355 if (!ctrl_ctx) { 3356 spin_unlock_irqrestore(&xhci->lock, flags); 3357 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3358 __func__); 3359 return -EINVAL; 3360 } 3361 3362 for (i = 0; i < num_eps; i++) { 3363 struct xhci_ep_ctx *ep_ctx; 3364 3365 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3366 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3367 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3368 EP_GETTING_NO_STREAMS; 3369 3370 xhci_endpoint_copy(xhci, command->in_ctx, 3371 vdev->out_ctx, ep_index); 3372 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3373 &vdev->eps[ep_index]); 3374 } 3375 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3376 vdev->out_ctx, ctrl_ctx, 3377 changed_ep_bitmask, changed_ep_bitmask); 3378 spin_unlock_irqrestore(&xhci->lock, flags); 3379 3380 /* Issue and wait for the configure endpoint command, 3381 * which must succeed. 3382 */ 3383 ret = xhci_configure_endpoint(xhci, udev, command, 3384 false, true); 3385 3386 /* xHC rejected the configure endpoint command for some reason, so we 3387 * leave the streams rings intact. 3388 */ 3389 if (ret < 0) 3390 return ret; 3391 3392 spin_lock_irqsave(&xhci->lock, flags); 3393 for (i = 0; i < num_eps; i++) { 3394 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3395 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3396 vdev->eps[ep_index].stream_info = NULL; 3397 /* FIXME Unset maxPstreams in endpoint context and 3398 * update deq ptr to point to normal string ring. 3399 */ 3400 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3401 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3402 } 3403 spin_unlock_irqrestore(&xhci->lock, flags); 3404 3405 return 0; 3406 } 3407 3408 /* 3409 * Deletes endpoint resources for endpoints that were active before a Reset 3410 * Device command, or a Disable Slot command. The Reset Device command leaves 3411 * the control endpoint intact, whereas the Disable Slot command deletes it. 3412 * 3413 * Must be called with xhci->lock held. 3414 */ 3415 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3416 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3417 { 3418 int i; 3419 unsigned int num_dropped_eps = 0; 3420 unsigned int drop_flags = 0; 3421 3422 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3423 if (virt_dev->eps[i].ring) { 3424 drop_flags |= 1 << i; 3425 num_dropped_eps++; 3426 } 3427 } 3428 xhci->num_active_eps -= num_dropped_eps; 3429 if (num_dropped_eps) 3430 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3431 "Dropped %u ep ctxs, flags = 0x%x, " 3432 "%u now active.", 3433 num_dropped_eps, drop_flags, 3434 xhci->num_active_eps); 3435 } 3436 3437 /* 3438 * This submits a Reset Device Command, which will set the device state to 0, 3439 * set the device address to 0, and disable all the endpoints except the default 3440 * control endpoint. The USB core should come back and call 3441 * xhci_address_device(), and then re-set up the configuration. If this is 3442 * called because of a usb_reset_and_verify_device(), then the old alternate 3443 * settings will be re-installed through the normal bandwidth allocation 3444 * functions. 3445 * 3446 * Wait for the Reset Device command to finish. Remove all structures 3447 * associated with the endpoints that were disabled. Clear the input device 3448 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3449 * 3450 * If the virt_dev to be reset does not exist or does not match the udev, 3451 * it means the device is lost, possibly due to the xHC restore error and 3452 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3453 * re-allocate the device. 3454 */ 3455 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3456 { 3457 int ret, i; 3458 unsigned long flags; 3459 struct xhci_hcd *xhci; 3460 unsigned int slot_id; 3461 struct xhci_virt_device *virt_dev; 3462 struct xhci_command *reset_device_cmd; 3463 int last_freed_endpoint; 3464 struct xhci_slot_ctx *slot_ctx; 3465 int old_active_eps = 0; 3466 3467 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3468 if (ret <= 0) 3469 return ret; 3470 xhci = hcd_to_xhci(hcd); 3471 slot_id = udev->slot_id; 3472 virt_dev = xhci->devs[slot_id]; 3473 if (!virt_dev) { 3474 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3475 "not exist. Re-allocate the device\n", slot_id); 3476 ret = xhci_alloc_dev(hcd, udev); 3477 if (ret == 1) 3478 return 0; 3479 else 3480 return -EINVAL; 3481 } 3482 3483 if (virt_dev->tt_info) 3484 old_active_eps = virt_dev->tt_info->active_eps; 3485 3486 if (virt_dev->udev != udev) { 3487 /* If the virt_dev and the udev does not match, this virt_dev 3488 * may belong to another udev. 3489 * Re-allocate the device. 3490 */ 3491 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3492 "not match the udev. Re-allocate the device\n", 3493 slot_id); 3494 ret = xhci_alloc_dev(hcd, udev); 3495 if (ret == 1) 3496 return 0; 3497 else 3498 return -EINVAL; 3499 } 3500 3501 /* If device is not setup, there is no point in resetting it */ 3502 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3503 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3504 SLOT_STATE_DISABLED) 3505 return 0; 3506 3507 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3508 /* Allocate the command structure that holds the struct completion. 3509 * Assume we're in process context, since the normal device reset 3510 * process has to wait for the device anyway. Storage devices are 3511 * reset as part of error handling, so use GFP_NOIO instead of 3512 * GFP_KERNEL. 3513 */ 3514 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3515 if (!reset_device_cmd) { 3516 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3517 return -ENOMEM; 3518 } 3519 3520 /* Attempt to submit the Reset Device command to the command ring */ 3521 spin_lock_irqsave(&xhci->lock, flags); 3522 3523 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3524 if (ret) { 3525 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3526 spin_unlock_irqrestore(&xhci->lock, flags); 3527 goto command_cleanup; 3528 } 3529 xhci_ring_cmd_db(xhci); 3530 spin_unlock_irqrestore(&xhci->lock, flags); 3531 3532 /* Wait for the Reset Device command to finish */ 3533 wait_for_completion(reset_device_cmd->completion); 3534 3535 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3536 * unless we tried to reset a slot ID that wasn't enabled, 3537 * or the device wasn't in the addressed or configured state. 3538 */ 3539 ret = reset_device_cmd->status; 3540 switch (ret) { 3541 case COMP_CMD_ABORT: 3542 case COMP_CMD_STOP: 3543 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3544 ret = -ETIME; 3545 goto command_cleanup; 3546 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3547 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3548 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3549 slot_id, 3550 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3551 xhci_dbg(xhci, "Not freeing device rings.\n"); 3552 /* Don't treat this as an error. May change my mind later. */ 3553 ret = 0; 3554 goto command_cleanup; 3555 case COMP_SUCCESS: 3556 xhci_dbg(xhci, "Successful reset device command.\n"); 3557 break; 3558 default: 3559 if (xhci_is_vendor_info_code(xhci, ret)) 3560 break; 3561 xhci_warn(xhci, "Unknown completion code %u for " 3562 "reset device command.\n", ret); 3563 ret = -EINVAL; 3564 goto command_cleanup; 3565 } 3566 3567 /* Free up host controller endpoint resources */ 3568 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3569 spin_lock_irqsave(&xhci->lock, flags); 3570 /* Don't delete the default control endpoint resources */ 3571 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3572 spin_unlock_irqrestore(&xhci->lock, flags); 3573 } 3574 3575 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3576 last_freed_endpoint = 1; 3577 for (i = 1; i < 31; ++i) { 3578 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3579 3580 if (ep->ep_state & EP_HAS_STREAMS) { 3581 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3582 xhci_get_endpoint_address(i)); 3583 xhci_free_stream_info(xhci, ep->stream_info); 3584 ep->stream_info = NULL; 3585 ep->ep_state &= ~EP_HAS_STREAMS; 3586 } 3587 3588 if (ep->ring) { 3589 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3590 last_freed_endpoint = i; 3591 } 3592 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3593 xhci_drop_ep_from_interval_table(xhci, 3594 &virt_dev->eps[i].bw_info, 3595 virt_dev->bw_table, 3596 udev, 3597 &virt_dev->eps[i], 3598 virt_dev->tt_info); 3599 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3600 } 3601 /* If necessary, update the number of active TTs on this root port */ 3602 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3603 3604 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3605 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3606 ret = 0; 3607 3608 command_cleanup: 3609 xhci_free_command(xhci, reset_device_cmd); 3610 return ret; 3611 } 3612 3613 /* 3614 * At this point, the struct usb_device is about to go away, the device has 3615 * disconnected, and all traffic has been stopped and the endpoints have been 3616 * disabled. Free any HC data structures associated with that device. 3617 */ 3618 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3619 { 3620 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3621 struct xhci_virt_device *virt_dev; 3622 unsigned long flags; 3623 u32 state; 3624 int i, ret; 3625 struct xhci_command *command; 3626 3627 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3628 if (!command) 3629 return; 3630 3631 #ifndef CONFIG_USB_DEFAULT_PERSIST 3632 /* 3633 * We called pm_runtime_get_noresume when the device was attached. 3634 * Decrement the counter here to allow controller to runtime suspend 3635 * if no devices remain. 3636 */ 3637 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3638 pm_runtime_put_noidle(hcd->self.controller); 3639 #endif 3640 3641 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3642 /* If the host is halted due to driver unload, we still need to free the 3643 * device. 3644 */ 3645 if (ret <= 0 && ret != -ENODEV) { 3646 kfree(command); 3647 return; 3648 } 3649 3650 virt_dev = xhci->devs[udev->slot_id]; 3651 3652 /* Stop any wayward timer functions (which may grab the lock) */ 3653 for (i = 0; i < 31; ++i) { 3654 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3655 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3656 } 3657 3658 spin_lock_irqsave(&xhci->lock, flags); 3659 /* Don't disable the slot if the host controller is dead. */ 3660 state = readl(&xhci->op_regs->status); 3661 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3662 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3663 xhci_free_virt_device(xhci, udev->slot_id); 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 kfree(command); 3666 return; 3667 } 3668 3669 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3670 udev->slot_id)) { 3671 spin_unlock_irqrestore(&xhci->lock, flags); 3672 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3673 return; 3674 } 3675 xhci_ring_cmd_db(xhci); 3676 spin_unlock_irqrestore(&xhci->lock, flags); 3677 3678 /* 3679 * Event command completion handler will free any data structures 3680 * associated with the slot. XXX Can free sleep? 3681 */ 3682 } 3683 3684 /* 3685 * Checks if we have enough host controller resources for the default control 3686 * endpoint. 3687 * 3688 * Must be called with xhci->lock held. 3689 */ 3690 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3691 { 3692 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3693 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3694 "Not enough ep ctxs: " 3695 "%u active, need to add 1, limit is %u.", 3696 xhci->num_active_eps, xhci->limit_active_eps); 3697 return -ENOMEM; 3698 } 3699 xhci->num_active_eps += 1; 3700 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3701 "Adding 1 ep ctx, %u now active.", 3702 xhci->num_active_eps); 3703 return 0; 3704 } 3705 3706 3707 /* 3708 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3709 * timed out, or allocating memory failed. Returns 1 on success. 3710 */ 3711 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3712 { 3713 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3714 unsigned long flags; 3715 int ret, slot_id; 3716 struct xhci_command *command; 3717 3718 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3719 if (!command) 3720 return 0; 3721 3722 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3723 mutex_lock(&xhci->mutex); 3724 spin_lock_irqsave(&xhci->lock, flags); 3725 command->completion = &xhci->addr_dev; 3726 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3727 if (ret) { 3728 spin_unlock_irqrestore(&xhci->lock, flags); 3729 mutex_unlock(&xhci->mutex); 3730 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3731 kfree(command); 3732 return 0; 3733 } 3734 xhci_ring_cmd_db(xhci); 3735 spin_unlock_irqrestore(&xhci->lock, flags); 3736 3737 wait_for_completion(command->completion); 3738 slot_id = xhci->slot_id; 3739 mutex_unlock(&xhci->mutex); 3740 3741 if (!slot_id || command->status != COMP_SUCCESS) { 3742 xhci_err(xhci, "Error while assigning device slot ID\n"); 3743 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3744 HCS_MAX_SLOTS( 3745 readl(&xhci->cap_regs->hcs_params1))); 3746 kfree(command); 3747 return 0; 3748 } 3749 3750 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3751 spin_lock_irqsave(&xhci->lock, flags); 3752 ret = xhci_reserve_host_control_ep_resources(xhci); 3753 if (ret) { 3754 spin_unlock_irqrestore(&xhci->lock, flags); 3755 xhci_warn(xhci, "Not enough host resources, " 3756 "active endpoint contexts = %u\n", 3757 xhci->num_active_eps); 3758 goto disable_slot; 3759 } 3760 spin_unlock_irqrestore(&xhci->lock, flags); 3761 } 3762 /* Use GFP_NOIO, since this function can be called from 3763 * xhci_discover_or_reset_device(), which may be called as part of 3764 * mass storage driver error handling. 3765 */ 3766 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3767 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3768 goto disable_slot; 3769 } 3770 udev->slot_id = slot_id; 3771 3772 #ifndef CONFIG_USB_DEFAULT_PERSIST 3773 /* 3774 * If resetting upon resume, we can't put the controller into runtime 3775 * suspend if there is a device attached. 3776 */ 3777 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3778 pm_runtime_get_noresume(hcd->self.controller); 3779 #endif 3780 3781 3782 kfree(command); 3783 /* Is this a LS or FS device under a HS hub? */ 3784 /* Hub or peripherial? */ 3785 return 1; 3786 3787 disable_slot: 3788 /* Disable slot, if we can do it without mem alloc */ 3789 spin_lock_irqsave(&xhci->lock, flags); 3790 command->completion = NULL; 3791 command->status = 0; 3792 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3793 udev->slot_id)) 3794 xhci_ring_cmd_db(xhci); 3795 spin_unlock_irqrestore(&xhci->lock, flags); 3796 return 0; 3797 } 3798 3799 /* 3800 * Issue an Address Device command and optionally send a corresponding 3801 * SetAddress request to the device. 3802 */ 3803 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3804 enum xhci_setup_dev setup) 3805 { 3806 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3807 unsigned long flags; 3808 struct xhci_virt_device *virt_dev; 3809 int ret = 0; 3810 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3811 struct xhci_slot_ctx *slot_ctx; 3812 struct xhci_input_control_ctx *ctrl_ctx; 3813 u64 temp_64; 3814 struct xhci_command *command = NULL; 3815 3816 mutex_lock(&xhci->mutex); 3817 3818 if (xhci->xhc_state) /* dying or halted */ 3819 goto out; 3820 3821 if (!udev->slot_id) { 3822 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3823 "Bad Slot ID %d", udev->slot_id); 3824 ret = -EINVAL; 3825 goto out; 3826 } 3827 3828 virt_dev = xhci->devs[udev->slot_id]; 3829 3830 if (WARN_ON(!virt_dev)) { 3831 /* 3832 * In plug/unplug torture test with an NEC controller, 3833 * a zero-dereference was observed once due to virt_dev = 0. 3834 * Print useful debug rather than crash if it is observed again! 3835 */ 3836 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3837 udev->slot_id); 3838 ret = -EINVAL; 3839 goto out; 3840 } 3841 3842 if (setup == SETUP_CONTEXT_ONLY) { 3843 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3844 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3845 SLOT_STATE_DEFAULT) { 3846 xhci_dbg(xhci, "Slot already in default state\n"); 3847 goto out; 3848 } 3849 } 3850 3851 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3852 if (!command) { 3853 ret = -ENOMEM; 3854 goto out; 3855 } 3856 3857 command->in_ctx = virt_dev->in_ctx; 3858 command->completion = &xhci->addr_dev; 3859 3860 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3861 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3862 if (!ctrl_ctx) { 3863 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3864 __func__); 3865 ret = -EINVAL; 3866 goto out; 3867 } 3868 /* 3869 * If this is the first Set Address since device plug-in or 3870 * virt_device realloaction after a resume with an xHCI power loss, 3871 * then set up the slot context. 3872 */ 3873 if (!slot_ctx->dev_info) 3874 xhci_setup_addressable_virt_dev(xhci, udev); 3875 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3876 else 3877 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3878 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3879 ctrl_ctx->drop_flags = 0; 3880 3881 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3882 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3883 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3884 le32_to_cpu(slot_ctx->dev_info) >> 27); 3885 3886 spin_lock_irqsave(&xhci->lock, flags); 3887 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3888 udev->slot_id, setup); 3889 if (ret) { 3890 spin_unlock_irqrestore(&xhci->lock, flags); 3891 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3892 "FIXME: allocate a command ring segment"); 3893 goto out; 3894 } 3895 xhci_ring_cmd_db(xhci); 3896 spin_unlock_irqrestore(&xhci->lock, flags); 3897 3898 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3899 wait_for_completion(command->completion); 3900 3901 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3902 * the SetAddress() "recovery interval" required by USB and aborting the 3903 * command on a timeout. 3904 */ 3905 switch (command->status) { 3906 case COMP_CMD_ABORT: 3907 case COMP_CMD_STOP: 3908 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3909 ret = -ETIME; 3910 break; 3911 case COMP_CTX_STATE: 3912 case COMP_EBADSLT: 3913 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3914 act, udev->slot_id); 3915 ret = -EINVAL; 3916 break; 3917 case COMP_TX_ERR: 3918 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3919 ret = -EPROTO; 3920 break; 3921 case COMP_DEV_ERR: 3922 dev_warn(&udev->dev, 3923 "ERROR: Incompatible device for setup %s command\n", act); 3924 ret = -ENODEV; 3925 break; 3926 case COMP_SUCCESS: 3927 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3928 "Successful setup %s command", act); 3929 break; 3930 default: 3931 xhci_err(xhci, 3932 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3933 act, command->status); 3934 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3935 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3936 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3937 ret = -EINVAL; 3938 break; 3939 } 3940 if (ret) 3941 goto out; 3942 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3943 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3944 "Op regs DCBAA ptr = %#016llx", temp_64); 3945 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3946 "Slot ID %d dcbaa entry @%p = %#016llx", 3947 udev->slot_id, 3948 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3949 (unsigned long long) 3950 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3951 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3952 "Output Context DMA address = %#08llx", 3953 (unsigned long long)virt_dev->out_ctx->dma); 3954 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3955 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3956 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3957 le32_to_cpu(slot_ctx->dev_info) >> 27); 3958 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3959 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3960 /* 3961 * USB core uses address 1 for the roothubs, so we add one to the 3962 * address given back to us by the HC. 3963 */ 3964 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3965 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3966 le32_to_cpu(slot_ctx->dev_info) >> 27); 3967 /* Zero the input context control for later use */ 3968 ctrl_ctx->add_flags = 0; 3969 ctrl_ctx->drop_flags = 0; 3970 3971 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3972 "Internal device address = %d", 3973 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3974 out: 3975 mutex_unlock(&xhci->mutex); 3976 kfree(command); 3977 return ret; 3978 } 3979 3980 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3981 { 3982 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3983 } 3984 3985 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3986 { 3987 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3988 } 3989 3990 /* 3991 * Transfer the port index into real index in the HW port status 3992 * registers. Caculate offset between the port's PORTSC register 3993 * and port status base. Divide the number of per port register 3994 * to get the real index. The raw port number bases 1. 3995 */ 3996 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3997 { 3998 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3999 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 4000 __le32 __iomem *addr; 4001 int raw_port; 4002 4003 if (hcd->speed < HCD_USB3) 4004 addr = xhci->usb2_ports[port1 - 1]; 4005 else 4006 addr = xhci->usb3_ports[port1 - 1]; 4007 4008 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 4009 return raw_port; 4010 } 4011 4012 /* 4013 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4014 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4015 */ 4016 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4017 struct usb_device *udev, u16 max_exit_latency) 4018 { 4019 struct xhci_virt_device *virt_dev; 4020 struct xhci_command *command; 4021 struct xhci_input_control_ctx *ctrl_ctx; 4022 struct xhci_slot_ctx *slot_ctx; 4023 unsigned long flags; 4024 int ret; 4025 4026 spin_lock_irqsave(&xhci->lock, flags); 4027 4028 virt_dev = xhci->devs[udev->slot_id]; 4029 4030 /* 4031 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4032 * xHC was re-initialized. Exit latency will be set later after 4033 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4034 */ 4035 4036 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4037 spin_unlock_irqrestore(&xhci->lock, flags); 4038 return 0; 4039 } 4040 4041 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4042 command = xhci->lpm_command; 4043 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4044 if (!ctrl_ctx) { 4045 spin_unlock_irqrestore(&xhci->lock, flags); 4046 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4047 __func__); 4048 return -ENOMEM; 4049 } 4050 4051 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4052 spin_unlock_irqrestore(&xhci->lock, flags); 4053 4054 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4055 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4056 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4057 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4058 slot_ctx->dev_state = 0; 4059 4060 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4061 "Set up evaluate context for LPM MEL change."); 4062 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4063 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4064 4065 /* Issue and wait for the evaluate context command. */ 4066 ret = xhci_configure_endpoint(xhci, udev, command, 4067 true, true); 4068 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4069 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4070 4071 if (!ret) { 4072 spin_lock_irqsave(&xhci->lock, flags); 4073 virt_dev->current_mel = max_exit_latency; 4074 spin_unlock_irqrestore(&xhci->lock, flags); 4075 } 4076 return ret; 4077 } 4078 4079 #ifdef CONFIG_PM 4080 4081 /* BESL to HIRD Encoding array for USB2 LPM */ 4082 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4083 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4084 4085 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4086 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4087 struct usb_device *udev) 4088 { 4089 int u2del, besl, besl_host; 4090 int besl_device = 0; 4091 u32 field; 4092 4093 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4094 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4095 4096 if (field & USB_BESL_SUPPORT) { 4097 for (besl_host = 0; besl_host < 16; besl_host++) { 4098 if (xhci_besl_encoding[besl_host] >= u2del) 4099 break; 4100 } 4101 /* Use baseline BESL value as default */ 4102 if (field & USB_BESL_BASELINE_VALID) 4103 besl_device = USB_GET_BESL_BASELINE(field); 4104 else if (field & USB_BESL_DEEP_VALID) 4105 besl_device = USB_GET_BESL_DEEP(field); 4106 } else { 4107 if (u2del <= 50) 4108 besl_host = 0; 4109 else 4110 besl_host = (u2del - 51) / 75 + 1; 4111 } 4112 4113 besl = besl_host + besl_device; 4114 if (besl > 15) 4115 besl = 15; 4116 4117 return besl; 4118 } 4119 4120 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4121 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4122 { 4123 u32 field; 4124 int l1; 4125 int besld = 0; 4126 int hirdm = 0; 4127 4128 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4129 4130 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4131 l1 = udev->l1_params.timeout / 256; 4132 4133 /* device has preferred BESLD */ 4134 if (field & USB_BESL_DEEP_VALID) { 4135 besld = USB_GET_BESL_DEEP(field); 4136 hirdm = 1; 4137 } 4138 4139 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4140 } 4141 4142 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4143 struct usb_device *udev, int enable) 4144 { 4145 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4146 __le32 __iomem **port_array; 4147 __le32 __iomem *pm_addr, *hlpm_addr; 4148 u32 pm_val, hlpm_val, field; 4149 unsigned int port_num; 4150 unsigned long flags; 4151 int hird, exit_latency; 4152 int ret; 4153 4154 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4155 !udev->lpm_capable) 4156 return -EPERM; 4157 4158 if (!udev->parent || udev->parent->parent || 4159 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4160 return -EPERM; 4161 4162 if (udev->usb2_hw_lpm_capable != 1) 4163 return -EPERM; 4164 4165 spin_lock_irqsave(&xhci->lock, flags); 4166 4167 port_array = xhci->usb2_ports; 4168 port_num = udev->portnum - 1; 4169 pm_addr = port_array[port_num] + PORTPMSC; 4170 pm_val = readl(pm_addr); 4171 hlpm_addr = port_array[port_num] + PORTHLPMC; 4172 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4173 4174 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4175 enable ? "enable" : "disable", port_num + 1); 4176 4177 if (enable) { 4178 /* Host supports BESL timeout instead of HIRD */ 4179 if (udev->usb2_hw_lpm_besl_capable) { 4180 /* if device doesn't have a preferred BESL value use a 4181 * default one which works with mixed HIRD and BESL 4182 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4183 */ 4184 if ((field & USB_BESL_SUPPORT) && 4185 (field & USB_BESL_BASELINE_VALID)) 4186 hird = USB_GET_BESL_BASELINE(field); 4187 else 4188 hird = udev->l1_params.besl; 4189 4190 exit_latency = xhci_besl_encoding[hird]; 4191 spin_unlock_irqrestore(&xhci->lock, flags); 4192 4193 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4194 * input context for link powermanagement evaluate 4195 * context commands. It is protected by hcd->bandwidth 4196 * mutex and is shared by all devices. We need to set 4197 * the max ext latency in USB 2 BESL LPM as well, so 4198 * use the same mutex and xhci_change_max_exit_latency() 4199 */ 4200 mutex_lock(hcd->bandwidth_mutex); 4201 ret = xhci_change_max_exit_latency(xhci, udev, 4202 exit_latency); 4203 mutex_unlock(hcd->bandwidth_mutex); 4204 4205 if (ret < 0) 4206 return ret; 4207 spin_lock_irqsave(&xhci->lock, flags); 4208 4209 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4210 writel(hlpm_val, hlpm_addr); 4211 /* flush write */ 4212 readl(hlpm_addr); 4213 } else { 4214 hird = xhci_calculate_hird_besl(xhci, udev); 4215 } 4216 4217 pm_val &= ~PORT_HIRD_MASK; 4218 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4219 writel(pm_val, pm_addr); 4220 pm_val = readl(pm_addr); 4221 pm_val |= PORT_HLE; 4222 writel(pm_val, pm_addr); 4223 /* flush write */ 4224 readl(pm_addr); 4225 } else { 4226 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4227 writel(pm_val, pm_addr); 4228 /* flush write */ 4229 readl(pm_addr); 4230 if (udev->usb2_hw_lpm_besl_capable) { 4231 spin_unlock_irqrestore(&xhci->lock, flags); 4232 mutex_lock(hcd->bandwidth_mutex); 4233 xhci_change_max_exit_latency(xhci, udev, 0); 4234 mutex_unlock(hcd->bandwidth_mutex); 4235 return 0; 4236 } 4237 } 4238 4239 spin_unlock_irqrestore(&xhci->lock, flags); 4240 return 0; 4241 } 4242 4243 /* check if a usb2 port supports a given extened capability protocol 4244 * only USB2 ports extended protocol capability values are cached. 4245 * Return 1 if capability is supported 4246 */ 4247 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4248 unsigned capability) 4249 { 4250 u32 port_offset, port_count; 4251 int i; 4252 4253 for (i = 0; i < xhci->num_ext_caps; i++) { 4254 if (xhci->ext_caps[i] & capability) { 4255 /* port offsets starts at 1 */ 4256 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4257 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4258 if (port >= port_offset && 4259 port < port_offset + port_count) 4260 return 1; 4261 } 4262 } 4263 return 0; 4264 } 4265 4266 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4267 { 4268 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4269 int portnum = udev->portnum - 1; 4270 4271 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4272 !udev->lpm_capable) 4273 return 0; 4274 4275 /* we only support lpm for non-hub device connected to root hub yet */ 4276 if (!udev->parent || udev->parent->parent || 4277 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4278 return 0; 4279 4280 if (xhci->hw_lpm_support == 1 && 4281 xhci_check_usb2_port_capability( 4282 xhci, portnum, XHCI_HLC)) { 4283 udev->usb2_hw_lpm_capable = 1; 4284 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4285 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4286 if (xhci_check_usb2_port_capability(xhci, portnum, 4287 XHCI_BLC)) 4288 udev->usb2_hw_lpm_besl_capable = 1; 4289 } 4290 4291 return 0; 4292 } 4293 4294 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4295 4296 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4297 static unsigned long long xhci_service_interval_to_ns( 4298 struct usb_endpoint_descriptor *desc) 4299 { 4300 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4301 } 4302 4303 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4304 enum usb3_link_state state) 4305 { 4306 unsigned long long sel; 4307 unsigned long long pel; 4308 unsigned int max_sel_pel; 4309 char *state_name; 4310 4311 switch (state) { 4312 case USB3_LPM_U1: 4313 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4314 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4315 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4316 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4317 state_name = "U1"; 4318 break; 4319 case USB3_LPM_U2: 4320 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4321 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4322 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4323 state_name = "U2"; 4324 break; 4325 default: 4326 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4327 __func__); 4328 return USB3_LPM_DISABLED; 4329 } 4330 4331 if (sel <= max_sel_pel && pel <= max_sel_pel) 4332 return USB3_LPM_DEVICE_INITIATED; 4333 4334 if (sel > max_sel_pel) 4335 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4336 "due to long SEL %llu ms\n", 4337 state_name, sel); 4338 else 4339 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4340 "due to long PEL %llu ms\n", 4341 state_name, pel); 4342 return USB3_LPM_DISABLED; 4343 } 4344 4345 /* The U1 timeout should be the maximum of the following values: 4346 * - For control endpoints, U1 system exit latency (SEL) * 3 4347 * - For bulk endpoints, U1 SEL * 5 4348 * - For interrupt endpoints: 4349 * - Notification EPs, U1 SEL * 3 4350 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4351 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4352 */ 4353 static unsigned long long xhci_calculate_intel_u1_timeout( 4354 struct usb_device *udev, 4355 struct usb_endpoint_descriptor *desc) 4356 { 4357 unsigned long long timeout_ns; 4358 int ep_type; 4359 int intr_type; 4360 4361 ep_type = usb_endpoint_type(desc); 4362 switch (ep_type) { 4363 case USB_ENDPOINT_XFER_CONTROL: 4364 timeout_ns = udev->u1_params.sel * 3; 4365 break; 4366 case USB_ENDPOINT_XFER_BULK: 4367 timeout_ns = udev->u1_params.sel * 5; 4368 break; 4369 case USB_ENDPOINT_XFER_INT: 4370 intr_type = usb_endpoint_interrupt_type(desc); 4371 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4372 timeout_ns = udev->u1_params.sel * 3; 4373 break; 4374 } 4375 /* Otherwise the calculation is the same as isoc eps */ 4376 case USB_ENDPOINT_XFER_ISOC: 4377 timeout_ns = xhci_service_interval_to_ns(desc); 4378 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4379 if (timeout_ns < udev->u1_params.sel * 2) 4380 timeout_ns = udev->u1_params.sel * 2; 4381 break; 4382 default: 4383 return 0; 4384 } 4385 4386 return timeout_ns; 4387 } 4388 4389 /* Returns the hub-encoded U1 timeout value. */ 4390 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4391 struct usb_device *udev, 4392 struct usb_endpoint_descriptor *desc) 4393 { 4394 unsigned long long timeout_ns; 4395 4396 if (xhci->quirks & XHCI_INTEL_HOST) 4397 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4398 else 4399 timeout_ns = udev->u1_params.sel; 4400 4401 /* The U1 timeout is encoded in 1us intervals. 4402 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4403 */ 4404 if (timeout_ns == USB3_LPM_DISABLED) 4405 timeout_ns = 1; 4406 else 4407 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4408 4409 /* If the necessary timeout value is bigger than what we can set in the 4410 * USB 3.0 hub, we have to disable hub-initiated U1. 4411 */ 4412 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4413 return timeout_ns; 4414 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4415 "due to long timeout %llu ms\n", timeout_ns); 4416 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4417 } 4418 4419 /* The U2 timeout should be the maximum of: 4420 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4421 * - largest bInterval of any active periodic endpoint (to avoid going 4422 * into lower power link states between intervals). 4423 * - the U2 Exit Latency of the device 4424 */ 4425 static unsigned long long xhci_calculate_intel_u2_timeout( 4426 struct usb_device *udev, 4427 struct usb_endpoint_descriptor *desc) 4428 { 4429 unsigned long long timeout_ns; 4430 unsigned long long u2_del_ns; 4431 4432 timeout_ns = 10 * 1000 * 1000; 4433 4434 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4435 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4436 timeout_ns = xhci_service_interval_to_ns(desc); 4437 4438 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4439 if (u2_del_ns > timeout_ns) 4440 timeout_ns = u2_del_ns; 4441 4442 return timeout_ns; 4443 } 4444 4445 /* Returns the hub-encoded U2 timeout value. */ 4446 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4447 struct usb_device *udev, 4448 struct usb_endpoint_descriptor *desc) 4449 { 4450 unsigned long long timeout_ns; 4451 4452 if (xhci->quirks & XHCI_INTEL_HOST) 4453 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4454 else 4455 timeout_ns = udev->u2_params.sel; 4456 4457 /* The U2 timeout is encoded in 256us intervals */ 4458 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4459 /* If the necessary timeout value is bigger than what we can set in the 4460 * USB 3.0 hub, we have to disable hub-initiated U2. 4461 */ 4462 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4463 return timeout_ns; 4464 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4465 "due to long timeout %llu ms\n", timeout_ns); 4466 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4467 } 4468 4469 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4470 struct usb_device *udev, 4471 struct usb_endpoint_descriptor *desc, 4472 enum usb3_link_state state, 4473 u16 *timeout) 4474 { 4475 if (state == USB3_LPM_U1) 4476 return xhci_calculate_u1_timeout(xhci, udev, desc); 4477 else if (state == USB3_LPM_U2) 4478 return xhci_calculate_u2_timeout(xhci, udev, desc); 4479 4480 return USB3_LPM_DISABLED; 4481 } 4482 4483 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4484 struct usb_device *udev, 4485 struct usb_endpoint_descriptor *desc, 4486 enum usb3_link_state state, 4487 u16 *timeout) 4488 { 4489 u16 alt_timeout; 4490 4491 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4492 desc, state, timeout); 4493 4494 /* If we found we can't enable hub-initiated LPM, or 4495 * the U1 or U2 exit latency was too high to allow 4496 * device-initiated LPM as well, just stop searching. 4497 */ 4498 if (alt_timeout == USB3_LPM_DISABLED || 4499 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4500 *timeout = alt_timeout; 4501 return -E2BIG; 4502 } 4503 if (alt_timeout > *timeout) 4504 *timeout = alt_timeout; 4505 return 0; 4506 } 4507 4508 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4509 struct usb_device *udev, 4510 struct usb_host_interface *alt, 4511 enum usb3_link_state state, 4512 u16 *timeout) 4513 { 4514 int j; 4515 4516 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4517 if (xhci_update_timeout_for_endpoint(xhci, udev, 4518 &alt->endpoint[j].desc, state, timeout)) 4519 return -E2BIG; 4520 continue; 4521 } 4522 return 0; 4523 } 4524 4525 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4526 enum usb3_link_state state) 4527 { 4528 struct usb_device *parent; 4529 unsigned int num_hubs; 4530 4531 if (state == USB3_LPM_U2) 4532 return 0; 4533 4534 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4535 for (parent = udev->parent, num_hubs = 0; parent->parent; 4536 parent = parent->parent) 4537 num_hubs++; 4538 4539 if (num_hubs < 2) 4540 return 0; 4541 4542 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4543 " below second-tier hub.\n"); 4544 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4545 "to decrease power consumption.\n"); 4546 return -E2BIG; 4547 } 4548 4549 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4550 struct usb_device *udev, 4551 enum usb3_link_state state) 4552 { 4553 if (xhci->quirks & XHCI_INTEL_HOST) 4554 return xhci_check_intel_tier_policy(udev, state); 4555 else 4556 return 0; 4557 } 4558 4559 /* Returns the U1 or U2 timeout that should be enabled. 4560 * If the tier check or timeout setting functions return with a non-zero exit 4561 * code, that means the timeout value has been finalized and we shouldn't look 4562 * at any more endpoints. 4563 */ 4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4565 struct usb_device *udev, enum usb3_link_state state) 4566 { 4567 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4568 struct usb_host_config *config; 4569 char *state_name; 4570 int i; 4571 u16 timeout = USB3_LPM_DISABLED; 4572 4573 if (state == USB3_LPM_U1) 4574 state_name = "U1"; 4575 else if (state == USB3_LPM_U2) 4576 state_name = "U2"; 4577 else { 4578 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4579 state); 4580 return timeout; 4581 } 4582 4583 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4584 return timeout; 4585 4586 /* Gather some information about the currently installed configuration 4587 * and alternate interface settings. 4588 */ 4589 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4590 state, &timeout)) 4591 return timeout; 4592 4593 config = udev->actconfig; 4594 if (!config) 4595 return timeout; 4596 4597 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4598 struct usb_driver *driver; 4599 struct usb_interface *intf = config->interface[i]; 4600 4601 if (!intf) 4602 continue; 4603 4604 /* Check if any currently bound drivers want hub-initiated LPM 4605 * disabled. 4606 */ 4607 if (intf->dev.driver) { 4608 driver = to_usb_driver(intf->dev.driver); 4609 if (driver && driver->disable_hub_initiated_lpm) { 4610 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4611 "at request of driver %s\n", 4612 state_name, driver->name); 4613 return xhci_get_timeout_no_hub_lpm(udev, state); 4614 } 4615 } 4616 4617 /* Not sure how this could happen... */ 4618 if (!intf->cur_altsetting) 4619 continue; 4620 4621 if (xhci_update_timeout_for_interface(xhci, udev, 4622 intf->cur_altsetting, 4623 state, &timeout)) 4624 return timeout; 4625 } 4626 return timeout; 4627 } 4628 4629 static int calculate_max_exit_latency(struct usb_device *udev, 4630 enum usb3_link_state state_changed, 4631 u16 hub_encoded_timeout) 4632 { 4633 unsigned long long u1_mel_us = 0; 4634 unsigned long long u2_mel_us = 0; 4635 unsigned long long mel_us = 0; 4636 bool disabling_u1; 4637 bool disabling_u2; 4638 bool enabling_u1; 4639 bool enabling_u2; 4640 4641 disabling_u1 = (state_changed == USB3_LPM_U1 && 4642 hub_encoded_timeout == USB3_LPM_DISABLED); 4643 disabling_u2 = (state_changed == USB3_LPM_U2 && 4644 hub_encoded_timeout == USB3_LPM_DISABLED); 4645 4646 enabling_u1 = (state_changed == USB3_LPM_U1 && 4647 hub_encoded_timeout != USB3_LPM_DISABLED); 4648 enabling_u2 = (state_changed == USB3_LPM_U2 && 4649 hub_encoded_timeout != USB3_LPM_DISABLED); 4650 4651 /* If U1 was already enabled and we're not disabling it, 4652 * or we're going to enable U1, account for the U1 max exit latency. 4653 */ 4654 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4655 enabling_u1) 4656 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4657 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4658 enabling_u2) 4659 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4660 4661 if (u1_mel_us > u2_mel_us) 4662 mel_us = u1_mel_us; 4663 else 4664 mel_us = u2_mel_us; 4665 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4666 if (mel_us > MAX_EXIT) { 4667 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4668 "is too big.\n", mel_us); 4669 return -E2BIG; 4670 } 4671 return mel_us; 4672 } 4673 4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4676 struct usb_device *udev, enum usb3_link_state state) 4677 { 4678 struct xhci_hcd *xhci; 4679 u16 hub_encoded_timeout; 4680 int mel; 4681 int ret; 4682 4683 xhci = hcd_to_xhci(hcd); 4684 /* The LPM timeout values are pretty host-controller specific, so don't 4685 * enable hub-initiated timeouts unless the vendor has provided 4686 * information about their timeout algorithm. 4687 */ 4688 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4689 !xhci->devs[udev->slot_id]) 4690 return USB3_LPM_DISABLED; 4691 4692 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4693 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4694 if (mel < 0) { 4695 /* Max Exit Latency is too big, disable LPM. */ 4696 hub_encoded_timeout = USB3_LPM_DISABLED; 4697 mel = 0; 4698 } 4699 4700 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4701 if (ret) 4702 return ret; 4703 return hub_encoded_timeout; 4704 } 4705 4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4707 struct usb_device *udev, enum usb3_link_state state) 4708 { 4709 struct xhci_hcd *xhci; 4710 u16 mel; 4711 4712 xhci = hcd_to_xhci(hcd); 4713 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4714 !xhci->devs[udev->slot_id]) 4715 return 0; 4716 4717 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4718 return xhci_change_max_exit_latency(xhci, udev, mel); 4719 } 4720 #else /* CONFIG_PM */ 4721 4722 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4723 struct usb_device *udev, int enable) 4724 { 4725 return 0; 4726 } 4727 4728 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4729 { 4730 return 0; 4731 } 4732 4733 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4734 struct usb_device *udev, enum usb3_link_state state) 4735 { 4736 return USB3_LPM_DISABLED; 4737 } 4738 4739 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4740 struct usb_device *udev, enum usb3_link_state state) 4741 { 4742 return 0; 4743 } 4744 #endif /* CONFIG_PM */ 4745 4746 /*-------------------------------------------------------------------------*/ 4747 4748 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4749 * internal data structures for the device. 4750 */ 4751 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4752 struct usb_tt *tt, gfp_t mem_flags) 4753 { 4754 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4755 struct xhci_virt_device *vdev; 4756 struct xhci_command *config_cmd; 4757 struct xhci_input_control_ctx *ctrl_ctx; 4758 struct xhci_slot_ctx *slot_ctx; 4759 unsigned long flags; 4760 unsigned think_time; 4761 int ret; 4762 4763 /* Ignore root hubs */ 4764 if (!hdev->parent) 4765 return 0; 4766 4767 vdev = xhci->devs[hdev->slot_id]; 4768 if (!vdev) { 4769 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4770 return -EINVAL; 4771 } 4772 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4773 if (!config_cmd) { 4774 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4775 return -ENOMEM; 4776 } 4777 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4778 if (!ctrl_ctx) { 4779 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4780 __func__); 4781 xhci_free_command(xhci, config_cmd); 4782 return -ENOMEM; 4783 } 4784 4785 spin_lock_irqsave(&xhci->lock, flags); 4786 if (hdev->speed == USB_SPEED_HIGH && 4787 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4788 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4789 xhci_free_command(xhci, config_cmd); 4790 spin_unlock_irqrestore(&xhci->lock, flags); 4791 return -ENOMEM; 4792 } 4793 4794 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4795 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4796 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4797 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4798 /* 4799 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4800 * but it may be already set to 1 when setup an xHCI virtual 4801 * device, so clear it anyway. 4802 */ 4803 if (tt->multi) 4804 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4805 else if (hdev->speed == USB_SPEED_FULL) 4806 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4807 4808 if (xhci->hci_version > 0x95) { 4809 xhci_dbg(xhci, "xHCI version %x needs hub " 4810 "TT think time and number of ports\n", 4811 (unsigned int) xhci->hci_version); 4812 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4813 /* Set TT think time - convert from ns to FS bit times. 4814 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4815 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4816 * 4817 * xHCI 1.0: this field shall be 0 if the device is not a 4818 * High-spped hub. 4819 */ 4820 think_time = tt->think_time; 4821 if (think_time != 0) 4822 think_time = (think_time / 666) - 1; 4823 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4824 slot_ctx->tt_info |= 4825 cpu_to_le32(TT_THINK_TIME(think_time)); 4826 } else { 4827 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4828 "TT think time or number of ports\n", 4829 (unsigned int) xhci->hci_version); 4830 } 4831 slot_ctx->dev_state = 0; 4832 spin_unlock_irqrestore(&xhci->lock, flags); 4833 4834 xhci_dbg(xhci, "Set up %s for hub device.\n", 4835 (xhci->hci_version > 0x95) ? 4836 "configure endpoint" : "evaluate context"); 4837 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4838 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4839 4840 /* Issue and wait for the configure endpoint or 4841 * evaluate context command. 4842 */ 4843 if (xhci->hci_version > 0x95) 4844 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4845 false, false); 4846 else 4847 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4848 true, false); 4849 4850 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4851 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4852 4853 xhci_free_command(xhci, config_cmd); 4854 return ret; 4855 } 4856 4857 int xhci_get_frame(struct usb_hcd *hcd) 4858 { 4859 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4860 /* EHCI mods by the periodic size. Why? */ 4861 return readl(&xhci->run_regs->microframe_index) >> 3; 4862 } 4863 4864 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4865 { 4866 struct xhci_hcd *xhci; 4867 struct device *dev = hcd->self.controller; 4868 int retval; 4869 4870 /* Accept arbitrarily long scatter-gather lists */ 4871 hcd->self.sg_tablesize = ~0; 4872 4873 /* support to build packet from discontinuous buffers */ 4874 hcd->self.no_sg_constraint = 1; 4875 4876 /* XHCI controllers don't stop the ep queue on short packets :| */ 4877 hcd->self.no_stop_on_short = 1; 4878 4879 xhci = hcd_to_xhci(hcd); 4880 4881 if (usb_hcd_is_primary_hcd(hcd)) { 4882 xhci->main_hcd = hcd; 4883 /* Mark the first roothub as being USB 2.0. 4884 * The xHCI driver will register the USB 3.0 roothub. 4885 */ 4886 hcd->speed = HCD_USB2; 4887 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4888 /* 4889 * USB 2.0 roothub under xHCI has an integrated TT, 4890 * (rate matching hub) as opposed to having an OHCI/UHCI 4891 * companion controller. 4892 */ 4893 hcd->has_tt = 1; 4894 } else { 4895 if (xhci->sbrn == 0x31) { 4896 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4897 hcd->speed = HCD_USB31; 4898 } 4899 /* xHCI private pointer was set in xhci_pci_probe for the second 4900 * registered roothub. 4901 */ 4902 return 0; 4903 } 4904 4905 mutex_init(&xhci->mutex); 4906 xhci->cap_regs = hcd->regs; 4907 xhci->op_regs = hcd->regs + 4908 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4909 xhci->run_regs = hcd->regs + 4910 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4911 /* Cache read-only capability registers */ 4912 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4913 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4914 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4915 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4916 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4917 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4918 if (xhci->hci_version > 0x100) 4919 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4920 xhci_print_registers(xhci); 4921 4922 xhci->quirks = quirks; 4923 4924 get_quirks(dev, xhci); 4925 4926 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4927 * success event after a short transfer. This quirk will ignore such 4928 * spurious event. 4929 */ 4930 if (xhci->hci_version > 0x96) 4931 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4932 4933 /* Make sure the HC is halted. */ 4934 retval = xhci_halt(xhci); 4935 if (retval) 4936 return retval; 4937 4938 xhci_dbg(xhci, "Resetting HCD\n"); 4939 /* Reset the internal HC memory state and registers. */ 4940 retval = xhci_reset(xhci); 4941 if (retval) 4942 return retval; 4943 xhci_dbg(xhci, "Reset complete\n"); 4944 4945 /* Set dma_mask and coherent_dma_mask to 64-bits, 4946 * if xHC supports 64-bit addressing */ 4947 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4948 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4949 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4950 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4951 } else { 4952 /* 4953 * This is to avoid error in cases where a 32-bit USB 4954 * controller is used on a 64-bit capable system. 4955 */ 4956 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4957 if (retval) 4958 return retval; 4959 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4960 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4961 } 4962 4963 xhci_dbg(xhci, "Calling HCD init\n"); 4964 /* Initialize HCD and host controller data structures. */ 4965 retval = xhci_init(hcd); 4966 if (retval) 4967 return retval; 4968 xhci_dbg(xhci, "Called HCD init\n"); 4969 4970 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4971 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4972 4973 return 0; 4974 } 4975 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4976 4977 static const struct hc_driver xhci_hc_driver = { 4978 .description = "xhci-hcd", 4979 .product_desc = "xHCI Host Controller", 4980 .hcd_priv_size = sizeof(struct xhci_hcd), 4981 4982 /* 4983 * generic hardware linkage 4984 */ 4985 .irq = xhci_irq, 4986 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4987 4988 /* 4989 * basic lifecycle operations 4990 */ 4991 .reset = NULL, /* set in xhci_init_driver() */ 4992 .start = xhci_run, 4993 .stop = xhci_stop, 4994 .shutdown = xhci_shutdown, 4995 4996 /* 4997 * managing i/o requests and associated device resources 4998 */ 4999 .urb_enqueue = xhci_urb_enqueue, 5000 .urb_dequeue = xhci_urb_dequeue, 5001 .alloc_dev = xhci_alloc_dev, 5002 .free_dev = xhci_free_dev, 5003 .alloc_streams = xhci_alloc_streams, 5004 .free_streams = xhci_free_streams, 5005 .add_endpoint = xhci_add_endpoint, 5006 .drop_endpoint = xhci_drop_endpoint, 5007 .endpoint_reset = xhci_endpoint_reset, 5008 .check_bandwidth = xhci_check_bandwidth, 5009 .reset_bandwidth = xhci_reset_bandwidth, 5010 .address_device = xhci_address_device, 5011 .enable_device = xhci_enable_device, 5012 .update_hub_device = xhci_update_hub_device, 5013 .reset_device = xhci_discover_or_reset_device, 5014 5015 /* 5016 * scheduling support 5017 */ 5018 .get_frame_number = xhci_get_frame, 5019 5020 /* 5021 * root hub support 5022 */ 5023 .hub_control = xhci_hub_control, 5024 .hub_status_data = xhci_hub_status_data, 5025 .bus_suspend = xhci_bus_suspend, 5026 .bus_resume = xhci_bus_resume, 5027 5028 /* 5029 * call back when device connected and addressed 5030 */ 5031 .update_device = xhci_update_device, 5032 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5033 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5034 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5035 .find_raw_port_number = xhci_find_raw_port_number, 5036 }; 5037 5038 void xhci_init_driver(struct hc_driver *drv, 5039 const struct xhci_driver_overrides *over) 5040 { 5041 BUG_ON(!over); 5042 5043 /* Copy the generic table to drv then apply the overrides */ 5044 *drv = xhci_hc_driver; 5045 5046 if (over) { 5047 drv->hcd_priv_size += over->extra_priv_size; 5048 if (over->reset) 5049 drv->reset = over->reset; 5050 if (over->start) 5051 drv->start = over->start; 5052 } 5053 } 5054 EXPORT_SYMBOL_GPL(xhci_init_driver); 5055 5056 MODULE_DESCRIPTION(DRIVER_DESC); 5057 MODULE_AUTHOR(DRIVER_AUTHOR); 5058 MODULE_LICENSE("GPL"); 5059 5060 static int __init xhci_hcd_init(void) 5061 { 5062 /* 5063 * Check the compiler generated sizes of structures that must be laid 5064 * out in specific ways for hardware access. 5065 */ 5066 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5067 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5068 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5069 /* xhci_device_control has eight fields, and also 5070 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5071 */ 5072 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5073 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5074 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5075 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5076 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5077 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5078 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5079 5080 if (usb_disabled()) 5081 return -ENODEV; 5082 5083 return 0; 5084 } 5085 5086 /* 5087 * If an init function is provided, an exit function must also be provided 5088 * to allow module unload. 5089 */ 5090 static void __exit xhci_hcd_fini(void) { } 5091 5092 module_init(xhci_hcd_init); 5093 module_exit(xhci_hcd_fini); 5094