xref: /openbmc/linux/drivers/usb/host/xhci.c (revision a06c488d)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151 
152 	return ret;
153 }
154 
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 	u32 command;
165 	u32 state;
166 	int ret, i;
167 
168 	state = readl(&xhci->op_regs->status);
169 	if ((state & STS_HALT) == 0) {
170 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 		return 0;
172 	}
173 
174 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 	command = readl(&xhci->op_regs->command);
176 	command |= CMD_RESET;
177 	writel(command, &xhci->op_regs->command);
178 
179 	/* Existing Intel xHCI controllers require a delay of 1 mS,
180 	 * after setting the CMD_RESET bit, and before accessing any
181 	 * HC registers. This allows the HC to complete the
182 	 * reset operation and be ready for HC register access.
183 	 * Without this delay, the subsequent HC register access,
184 	 * may result in a system hang very rarely.
185 	 */
186 	if (xhci->quirks & XHCI_INTEL_HOST)
187 		udelay(1000);
188 
189 	ret = xhci_handshake(&xhci->op_regs->command,
190 			CMD_RESET, 0, 10 * 1000 * 1000);
191 	if (ret)
192 		return ret;
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; ++i) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 	int i;
216 
217 	if (!xhci->msix_entries)
218 		return -EINVAL;
219 
220 	for (i = 0; i < xhci->msix_count; i++)
221 		if (xhci->msix_entries[i].vector)
222 			free_irq(xhci->msix_entries[i].vector,
223 					xhci_to_hcd(xhci));
224 	return 0;
225 }
226 
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 	int ret;
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_enable_msi(pdev);
236 	if (ret) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_disable_msi(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 	int ret;
261 
262 	/* return if using legacy interrupt */
263 	if (xhci_to_hcd(xhci)->irq > 0)
264 		return;
265 
266 	ret = xhci_free_msi(xhci);
267 	if (!ret)
268 		return;
269 	if (pdev->irq > 0)
270 		free_irq(pdev->irq, xhci_to_hcd(xhci));
271 
272 	return;
273 }
274 
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 	int i, ret = 0;
281 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283 
284 	/*
285 	 * calculate number of msi-x vectors supported.
286 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
288 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 	 *   Add additional 1 vector to ensure always available interrupt.
290 	 */
291 	xhci->msix_count = min(num_online_cpus() + 1,
292 				HCS_MAX_INTRS(xhci->hcs_params1));
293 
294 	xhci->msix_entries =
295 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 				GFP_KERNEL);
297 	if (!xhci->msix_entries) {
298 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 		return -ENOMEM;
300 	}
301 
302 	for (i = 0; i < xhci->msix_count; i++) {
303 		xhci->msix_entries[i].entry = i;
304 		xhci->msix_entries[i].vector = 0;
305 	}
306 
307 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 	if (ret) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"Failed to enable MSI-X");
311 		goto free_entries;
312 	}
313 
314 	for (i = 0; i < xhci->msix_count; i++) {
315 		ret = request_irq(xhci->msix_entries[i].vector,
316 				xhci_msi_irq,
317 				0, "xhci_hcd", xhci_to_hcd(xhci));
318 		if (ret)
319 			goto disable_msix;
320 	}
321 
322 	hcd->msix_enabled = 1;
323 	return ret;
324 
325 disable_msix:
326 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 	xhci_free_irq(xhci);
328 	pci_disable_msix(pdev);
329 free_entries:
330 	kfree(xhci->msix_entries);
331 	xhci->msix_entries = NULL;
332 	return ret;
333 }
334 
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340 
341 	if (xhci->quirks & XHCI_PLAT)
342 		return;
343 
344 	xhci_free_irq(xhci);
345 
346 	if (xhci->msix_entries) {
347 		pci_disable_msix(pdev);
348 		kfree(xhci->msix_entries);
349 		xhci->msix_entries = NULL;
350 	} else {
351 		pci_disable_msi(pdev);
352 	}
353 
354 	hcd->msix_enabled = 0;
355 	return;
356 }
357 
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 	int i;
361 
362 	if (xhci->msix_entries) {
363 		for (i = 0; i < xhci->msix_count; i++)
364 			synchronize_irq(xhci->msix_entries[i].vector);
365 	}
366 }
367 
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 	struct pci_dev  *pdev;
372 	int ret;
373 
374 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
375 	if (xhci->quirks & XHCI_PLAT)
376 		return 0;
377 
378 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 	/*
380 	 * Some Fresco Logic host controllers advertise MSI, but fail to
381 	 * generate interrupts.  Don't even try to enable MSI.
382 	 */
383 	if (xhci->quirks & XHCI_BROKEN_MSI)
384 		goto legacy_irq;
385 
386 	/* unregister the legacy interrupt */
387 	if (hcd->irq)
388 		free_irq(hcd->irq, hcd);
389 	hcd->irq = 0;
390 
391 	ret = xhci_setup_msix(xhci);
392 	if (ret)
393 		/* fall back to msi*/
394 		ret = xhci_setup_msi(xhci);
395 
396 	if (!ret)
397 		/* hcd->irq is 0, we have MSI */
398 		return 0;
399 
400 	if (!pdev->irq) {
401 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 		return -EINVAL;
403 	}
404 
405  legacy_irq:
406 	if (!strlen(hcd->irq_descr))
407 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 			 hcd->driver->description, hcd->self.busnum);
409 
410 	/* fall back to legacy interrupt*/
411 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 			hcd->irq_descr, hcd);
413 	if (ret) {
414 		xhci_err(xhci, "request interrupt %d failed\n",
415 				pdev->irq);
416 		return ret;
417 	}
418 	hcd->irq = pdev->irq;
419 	return 0;
420 }
421 
422 #else
423 
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 	return 0;
427 }
428 
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432 
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436 
437 #endif
438 
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 	struct xhci_hcd *xhci;
442 	struct usb_hcd *hcd;
443 	u32 temp;
444 	int i;
445 
446 	xhci = (struct xhci_hcd *)arg;
447 
448 	for (i = 0; i < xhci->num_usb3_ports; i++) {
449 		temp = readl(xhci->usb3_ports[i]);
450 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 			/*
452 			 * Compliance Mode Detected. Letting USB Core
453 			 * handle the Warm Reset
454 			 */
455 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 					"Compliance mode detected->port %d",
457 					i + 1);
458 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 					"Attempting compliance mode recovery");
460 			hcd = xhci->shared_hcd;
461 
462 			if (hcd->state == HC_STATE_SUSPENDED)
463 				usb_hcd_resume_root_hub(hcd);
464 
465 			usb_hcd_poll_rh_status(hcd);
466 		}
467 	}
468 
469 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 		mod_timer(&xhci->comp_mode_recovery_timer,
471 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473 
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 	xhci->port_status_u0 = 0;
487 	setup_timer(&xhci->comp_mode_recovery_timer,
488 		    compliance_mode_recovery, (unsigned long)xhci);
489 	xhci->comp_mode_recovery_timer.expires = jiffies +
490 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491 
492 	set_timer_slack(&xhci->comp_mode_recovery_timer,
493 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 	add_timer(&xhci->comp_mode_recovery_timer);
495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 			"Compliance mode recovery timer initialized");
497 }
498 
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 	const char *dmi_product_name, *dmi_sys_vendor;
508 
509 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 	if (!dmi_product_name || !dmi_sys_vendor)
512 		return false;
513 
514 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 		return false;
516 
517 	if (strstr(dmi_product_name, "Z420") ||
518 			strstr(dmi_product_name, "Z620") ||
519 			strstr(dmi_product_name, "Z820") ||
520 			strstr(dmi_product_name, "Z1 Workstation"))
521 		return true;
522 
523 	return false;
524 }
525 
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530 
531 
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 	int retval = 0;
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 	spin_lock_init(&xhci->lock);
546 	if (xhci->hci_version == 0x95 && link_quirk) {
547 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 				"QUIRK: Not clearing Link TRB chain bits.");
549 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 	} else {
551 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 				"xHCI doesn't need link TRB QUIRK");
553 	}
554 	retval = xhci_mem_init(xhci, GFP_KERNEL);
555 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556 
557 	/* Initializing Compliance Mode Recovery Data If Needed */
558 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 		compliance_mode_recovery_timer_init(xhci);
561 	}
562 
563 	return retval;
564 }
565 
566 /*-------------------------------------------------------------------------*/
567 
568 
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 	if (xhci_start(xhci)) {
572 		xhci_halt(xhci);
573 		return -ENODEV;
574 	}
575 	xhci->shared_hcd->state = HC_STATE_RUNNING;
576 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577 
578 	if (xhci->quirks & XHCI_NEC_HOST)
579 		xhci_ring_cmd_db(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 			"Finished xhci_run for USB3 roothub");
583 	return 0;
584 }
585 
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600 	u32 temp;
601 	u64 temp_64;
602 	int ret;
603 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604 
605 	/* Start the xHCI host controller running only after the USB 2.0 roothub
606 	 * is setup.
607 	 */
608 
609 	hcd->uses_new_polling = 1;
610 	if (!usb_hcd_is_primary_hcd(hcd))
611 		return xhci_run_finished(xhci);
612 
613 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614 
615 	ret = xhci_try_enable_msi(hcd);
616 	if (ret)
617 		return ret;
618 
619 	xhci_dbg(xhci, "Command ring memory map follows:\n");
620 	xhci_debug_ring(xhci, xhci->cmd_ring);
621 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 	xhci_dbg_cmd_ptrs(xhci);
623 
624 	xhci_dbg(xhci, "ERST memory map follows:\n");
625 	xhci_dbg_erst(xhci, &xhci->erst);
626 	xhci_dbg(xhci, "Event ring:\n");
627 	xhci_debug_ring(xhci, xhci->event_ring);
628 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 	temp_64 &= ~ERST_PTR_MASK;
631 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633 
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"// Set the interrupt modulation register");
636 	temp = readl(&xhci->ir_set->irq_control);
637 	temp &= ~ER_IRQ_INTERVAL_MASK;
638 	/*
639 	 * the increment interval is 8 times as much as that defined
640 	 * in xHCI spec on MTK's controller
641 	 */
642 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 	writel(temp, &xhci->ir_set->irq_control);
644 
645 	/* Set the HCD state before we enable the irqs */
646 	temp = readl(&xhci->op_regs->command);
647 	temp |= (CMD_EIE);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"// Enable interrupts, cmd = 0x%x.", temp);
650 	writel(temp, &xhci->op_regs->command);
651 
652 	temp = readl(&xhci->ir_set->irq_pending);
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 	xhci_print_ir_set(xhci, 0);
658 
659 	if (xhci->quirks & XHCI_NEC_HOST) {
660 		struct xhci_command *command;
661 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 		if (!command)
663 			return -ENOMEM;
664 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 				TRB_TYPE(TRB_NEC_GET_FW));
666 	}
667 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 			"Finished xhci_run for USB2 roothub");
669 	return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672 
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 	u32 temp;
685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687 	if (xhci->xhc_state & XHCI_STATE_HALTED)
688 		return;
689 
690 	mutex_lock(&xhci->mutex);
691 	spin_lock_irq(&xhci->lock);
692 	xhci->xhc_state |= XHCI_STATE_HALTED;
693 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694 
695 	/* Make sure the xHC is halted for a USB3 roothub
696 	 * (xhci_stop() could be called as part of failed init).
697 	 */
698 	xhci_halt(xhci);
699 	xhci_reset(xhci);
700 	spin_unlock_irq(&xhci->lock);
701 
702 	xhci_cleanup_msix(xhci);
703 
704 	/* Deleting Compliance Mode Recovery Timer */
705 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 			(!(xhci_all_ports_seen_u0(xhci)))) {
707 		del_timer_sync(&xhci->comp_mode_recovery_timer);
708 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 				"%s: compliance mode recovery timer deleted",
710 				__func__);
711 	}
712 
713 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 		usb_amd_dev_put();
715 
716 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 			"// Disabling event ring interrupts");
718 	temp = readl(&xhci->op_regs->status);
719 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 	temp = readl(&xhci->ir_set->irq_pending);
721 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 	xhci_print_ir_set(xhci, 0);
723 
724 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 	xhci_mem_cleanup(xhci);
726 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 			"xhci_stop completed - status = %x",
728 			readl(&xhci->op_regs->status));
729 	mutex_unlock(&xhci->mutex);
730 }
731 
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744 
745 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747 
748 	spin_lock_irq(&xhci->lock);
749 	xhci_halt(xhci);
750 	/* Workaround for spurious wakeups at shutdown with HSW */
751 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 		xhci_reset(xhci);
753 	spin_unlock_irq(&xhci->lock);
754 
755 	xhci_cleanup_msix(xhci);
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 			"xhci_shutdown completed - status = %x",
759 			readl(&xhci->op_regs->status));
760 
761 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
762 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765 
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 	xhci->s3.command = readl(&xhci->op_regs->command);
770 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779 
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 	writel(xhci->s3.command, &xhci->op_regs->command);
783 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792 
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 	u64	val_64;
796 
797 	/* step 2: initialize command ring buffer */
798 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 				      xhci->cmd_ring->dequeue) &
802 		 (u64) ~CMD_RING_RSVD_BITS) |
803 		xhci->cmd_ring->cycle_state;
804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 			"// Setting command ring address to 0x%llx",
806 			(long unsigned long) val_64);
807 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809 
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 	struct xhci_ring *ring;
822 	struct xhci_segment *seg;
823 
824 	ring = xhci->cmd_ring;
825 	seg = ring->deq_seg;
826 	do {
827 		memset(seg->trbs, 0,
828 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 			cpu_to_le32(~TRB_CYCLE);
831 		seg = seg->next;
832 	} while (seg != ring->deq_seg);
833 
834 	/* Reset the software enqueue and dequeue pointers */
835 	ring->deq_seg = ring->first_seg;
836 	ring->dequeue = ring->first_seg->trbs;
837 	ring->enq_seg = ring->deq_seg;
838 	ring->enqueue = ring->dequeue;
839 
840 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 	/*
842 	 * Ring is now zeroed, so the HW should look for change of ownership
843 	 * when the cycle bit is set to 1.
844 	 */
845 	ring->cycle_state = 1;
846 
847 	/*
848 	 * Reset the hardware dequeue pointer.
849 	 * Yes, this will need to be re-written after resume, but we're paranoid
850 	 * and want to make sure the hardware doesn't access bogus memory
851 	 * because, say, the BIOS or an SMI started the host without changing
852 	 * the command ring pointers.
853 	 */
854 	xhci_set_cmd_ring_deq(xhci);
855 }
856 
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 	int port_index;
860 	__le32 __iomem **port_array;
861 	unsigned long flags;
862 	u32 t1, t2;
863 
864 	spin_lock_irqsave(&xhci->lock, flags);
865 
866 	/* disble usb3 ports Wake bits*/
867 	port_index = xhci->num_usb3_ports;
868 	port_array = xhci->usb3_ports;
869 	while (port_index--) {
870 		t1 = readl(port_array[port_index]);
871 		t1 = xhci_port_state_to_neutral(t1);
872 		t2 = t1 & ~PORT_WAKE_BITS;
873 		if (t1 != t2)
874 			writel(t2, port_array[port_index]);
875 	}
876 
877 	/* disble usb2 ports Wake bits*/
878 	port_index = xhci->num_usb2_ports;
879 	port_array = xhci->usb2_ports;
880 	while (port_index--) {
881 		t1 = readl(port_array[port_index]);
882 		t1 = xhci_port_state_to_neutral(t1);
883 		t2 = t1 & ~PORT_WAKE_BITS;
884 		if (t1 != t2)
885 			writel(t2, port_array[port_index]);
886 	}
887 
888 	spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890 
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 	int			rc = 0;
900 	unsigned int		delay = XHCI_MAX_HALT_USEC;
901 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
902 	u32			command;
903 
904 	if (!hcd->state)
905 		return 0;
906 
907 	if (hcd->state != HC_STATE_SUSPENDED ||
908 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 		return -EINVAL;
910 
911 	/* Clear root port wake on bits if wakeup not allowed. */
912 	if (!do_wakeup)
913 		xhci_disable_port_wake_on_bits(xhci);
914 
915 	/* Don't poll the roothubs on bus suspend. */
916 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 	del_timer_sync(&hcd->rh_timer);
919 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 	del_timer_sync(&xhci->shared_hcd->rh_timer);
921 
922 	spin_lock_irq(&xhci->lock);
923 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 	/* step 1: stop endpoint */
926 	/* skipped assuming that port suspend has done */
927 
928 	/* step 2: clear Run/Stop bit */
929 	command = readl(&xhci->op_regs->command);
930 	command &= ~CMD_RUN;
931 	writel(command, &xhci->op_regs->command);
932 
933 	/* Some chips from Fresco Logic need an extraordinary delay */
934 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935 
936 	if (xhci_handshake(&xhci->op_regs->status,
937 		      STS_HALT, STS_HALT, delay)) {
938 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 		spin_unlock_irq(&xhci->lock);
940 		return -ETIMEDOUT;
941 	}
942 	xhci_clear_command_ring(xhci);
943 
944 	/* step 3: save registers */
945 	xhci_save_registers(xhci);
946 
947 	/* step 4: set CSS flag */
948 	command = readl(&xhci->op_regs->command);
949 	command |= CMD_CSS;
950 	writel(command, &xhci->op_regs->command);
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 10 * 1000)) {
953 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 		spin_unlock_irq(&xhci->lock);
955 		return -ETIMEDOUT;
956 	}
957 	spin_unlock_irq(&xhci->lock);
958 
959 	/*
960 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 	 * is about to be suspended.
962 	 */
963 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 			(!(xhci_all_ports_seen_u0(xhci)))) {
965 		del_timer_sync(&xhci->comp_mode_recovery_timer);
966 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 				"%s: compliance mode recovery timer deleted",
968 				__func__);
969 	}
970 
971 	/* step 5: remove core well power */
972 	/* synchronize irq when using MSI-X */
973 	xhci_msix_sync_irqs(xhci);
974 
975 	return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978 
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 	u32			command, temp = 0, status;
988 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
989 	struct usb_hcd		*secondary_hcd;
990 	int			retval = 0;
991 	bool			comp_timer_running = false;
992 
993 	if (!hcd->state)
994 		return 0;
995 
996 	/* Wait a bit if either of the roothubs need to settle from the
997 	 * transition into bus suspend.
998 	 */
999 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 			time_before(jiffies,
1001 				xhci->bus_state[1].next_statechange))
1002 		msleep(100);
1003 
1004 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006 
1007 	spin_lock_irq(&xhci->lock);
1008 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 		hibernated = true;
1010 
1011 	if (!hibernated) {
1012 		/* step 1: restore register */
1013 		xhci_restore_registers(xhci);
1014 		/* step 2: initialize command ring buffer */
1015 		xhci_set_cmd_ring_deq(xhci);
1016 		/* step 3: restore state and start state*/
1017 		/* step 3: set CRS flag */
1018 		command = readl(&xhci->op_regs->command);
1019 		command |= CMD_CRS;
1020 		writel(command, &xhci->op_regs->command);
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 10 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 		temp = readl(&xhci->op_regs->status);
1028 	}
1029 
1030 	/* If restore operation fails, re-initialize the HC during resume */
1031 	if ((temp & STS_SRE) || hibernated) {
1032 
1033 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 				!(xhci_all_ports_seen_u0(xhci))) {
1035 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 				"Compliance Mode Recovery Timer deleted!");
1038 		}
1039 
1040 		/* Let the USB core know _both_ roothubs lost power. */
1041 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043 
1044 		xhci_dbg(xhci, "Stop HCD\n");
1045 		xhci_halt(xhci);
1046 		xhci_reset(xhci);
1047 		spin_unlock_irq(&xhci->lock);
1048 		xhci_cleanup_msix(xhci);
1049 
1050 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 		temp = readl(&xhci->op_regs->status);
1052 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 		temp = readl(&xhci->ir_set->irq_pending);
1054 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 		xhci_print_ir_set(xhci, 0);
1056 
1057 		xhci_dbg(xhci, "cleaning up memory\n");
1058 		xhci_mem_cleanup(xhci);
1059 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 			    readl(&xhci->op_regs->status));
1061 
1062 		/* USB core calls the PCI reinit and start functions twice:
1063 		 * first with the primary HCD, and then with the secondary HCD.
1064 		 * If we don't do the same, the host will never be started.
1065 		 */
1066 		if (!usb_hcd_is_primary_hcd(hcd))
1067 			secondary_hcd = hcd;
1068 		else
1069 			secondary_hcd = xhci->shared_hcd;
1070 
1071 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 		retval = xhci_init(hcd->primary_hcd);
1073 		if (retval)
1074 			return retval;
1075 		comp_timer_running = true;
1076 
1077 		xhci_dbg(xhci, "Start the primary HCD\n");
1078 		retval = xhci_run(hcd->primary_hcd);
1079 		if (!retval) {
1080 			xhci_dbg(xhci, "Start the secondary HCD\n");
1081 			retval = xhci_run(secondary_hcd);
1082 		}
1083 		hcd->state = HC_STATE_SUSPENDED;
1084 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 		goto done;
1086 	}
1087 
1088 	/* step 4: set Run/Stop bit */
1089 	command = readl(&xhci->op_regs->command);
1090 	command |= CMD_RUN;
1091 	writel(command, &xhci->op_regs->command);
1092 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 		  0, 250 * 1000);
1094 
1095 	/* step 5: walk topology and initialize portsc,
1096 	 * portpmsc and portli
1097 	 */
1098 	/* this is done in bus_resume */
1099 
1100 	/* step 6: restart each of the previously
1101 	 * Running endpoints by ringing their doorbells
1102 	 */
1103 
1104 	spin_unlock_irq(&xhci->lock);
1105 
1106  done:
1107 	if (retval == 0) {
1108 		/* Resume root hubs only when have pending events. */
1109 		status = readl(&xhci->op_regs->status);
1110 		if (status & STS_EINT) {
1111 			usb_hcd_resume_root_hub(hcd);
1112 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 	 * be re-initialized Always after a system resume. Ports are subject
1119 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 	 * ports have entered previously to U0 before system's suspension.
1121 	 */
1122 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 		compliance_mode_recovery_timer_init(xhci);
1124 
1125 	/* Re-enable port polling. */
1126 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128 	usb_hcd_poll_rh_status(hcd);
1129 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1131 
1132 	return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif	/* CONFIG_PM */
1136 
1137 /*-------------------------------------------------------------------------*/
1138 
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 	unsigned int index;
1152 	if (usb_endpoint_xfer_control(desc))
1153 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 	else
1155 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 	return index;
1158 }
1159 
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 	return direction | number;
1168 }
1169 
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178 
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 	return 1 << (ep_index + 1);
1186 }
1187 
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 	return fls(added_ctxs) - 1;
1197 }
1198 
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 		const char *func) {
1205 	struct xhci_hcd	*xhci;
1206 	struct xhci_virt_device	*virt_dev;
1207 
1208 	if (!hcd || (check_ep && !ep) || !udev) {
1209 		pr_debug("xHCI %s called with invalid args\n", func);
1210 		return -EINVAL;
1211 	}
1212 	if (!udev->parent) {
1213 		pr_debug("xHCI %s called for root hub\n", func);
1214 		return 0;
1215 	}
1216 
1217 	xhci = hcd_to_xhci(hcd);
1218 	if (check_virt_dev) {
1219 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 					func);
1222 			return -EINVAL;
1223 		}
1224 
1225 		virt_dev = xhci->devs[udev->slot_id];
1226 		if (virt_dev->udev != udev) {
1227 			xhci_dbg(xhci, "xHCI %s called with udev and "
1228 					  "virt_dev does not match\n", func);
1229 			return -EINVAL;
1230 		}
1231 	}
1232 
1233 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 		return -ENODEV;
1235 
1236 	return 1;
1237 }
1238 
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 		struct usb_device *udev, struct xhci_command *command,
1241 		bool ctx_change, bool must_succeed);
1242 
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 		unsigned int ep_index, struct urb *urb)
1251 {
1252 	struct xhci_container_ctx *out_ctx;
1253 	struct xhci_input_control_ctx *ctrl_ctx;
1254 	struct xhci_ep_ctx *ep_ctx;
1255 	struct xhci_command *command;
1256 	int max_packet_size;
1257 	int hw_max_packet_size;
1258 	int ret = 0;
1259 
1260 	out_ctx = xhci->devs[slot_id]->out_ctx;
1261 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 	if (hw_max_packet_size != max_packet_size) {
1265 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266 				"Max Packet Size for ep 0 changed.");
1267 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268 				"Max packet size in usb_device = %d",
1269 				max_packet_size);
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max packet size in xHCI HW = %d",
1272 				hw_max_packet_size);
1273 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274 				"Issuing evaluate context command.");
1275 
1276 		/* Set up the input context flags for the command */
1277 		/* FIXME: This won't work if a non-default control endpoint
1278 		 * changes max packet sizes.
1279 		 */
1280 
1281 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 		if (!command)
1283 			return -ENOMEM;
1284 
1285 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 		if (!ctrl_ctx) {
1288 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 					__func__);
1290 			ret = -ENOMEM;
1291 			goto command_cleanup;
1292 		}
1293 		/* Set up the modified control endpoint 0 */
1294 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 				xhci->devs[slot_id]->out_ctx, ep_index);
1296 
1297 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300 
1301 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 		ctrl_ctx->drop_flags = 0;
1303 
1304 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308 
1309 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 				true, false);
1311 
1312 		/* Clean up the input context for later use by bandwidth
1313 		 * functions.
1314 		 */
1315 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 		kfree(command->completion);
1318 		kfree(command);
1319 	}
1320 	return ret;
1321 }
1322 
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 	struct xhci_td *buffer;
1331 	unsigned long flags;
1332 	int ret = 0;
1333 	unsigned int slot_id, ep_index;
1334 	struct urb_priv	*urb_priv;
1335 	int size, i;
1336 
1337 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 					true, true, __func__) <= 0)
1339 		return -EINVAL;
1340 
1341 	slot_id = urb->dev->slot_id;
1342 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343 
1344 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 		if (!in_interrupt())
1346 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 		ret = -ESHUTDOWN;
1348 		goto exit;
1349 	}
1350 
1351 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 		size = urb->number_of_packets;
1353 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 	    urb->transfer_buffer_length > 0 &&
1355 	    urb->transfer_flags & URB_ZERO_PACKET &&
1356 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 		size = 2;
1358 	else
1359 		size = 1;
1360 
1361 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 				  size * sizeof(struct xhci_td *), mem_flags);
1363 	if (!urb_priv)
1364 		return -ENOMEM;
1365 
1366 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 	if (!buffer) {
1368 		kfree(urb_priv);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	for (i = 0; i < size; i++) {
1373 		urb_priv->td[i] = buffer;
1374 		buffer++;
1375 	}
1376 
1377 	urb_priv->length = size;
1378 	urb_priv->td_cnt = 0;
1379 	urb->hcpriv = urb_priv;
1380 
1381 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 		/* Check to see if the max packet size for the default control
1383 		 * endpoint changed during FS device enumeration
1384 		 */
1385 		if (urb->dev->speed == USB_SPEED_FULL) {
1386 			ret = xhci_check_maxpacket(xhci, slot_id,
1387 					ep_index, urb);
1388 			if (ret < 0) {
1389 				xhci_urb_free_priv(urb_priv);
1390 				urb->hcpriv = NULL;
1391 				return ret;
1392 			}
1393 		}
1394 
1395 		/* We have a spinlock and interrupts disabled, so we must pass
1396 		 * atomic context to this function, which may allocate memory.
1397 		 */
1398 		spin_lock_irqsave(&xhci->lock, flags);
1399 		if (xhci->xhc_state & XHCI_STATE_DYING)
1400 			goto dying;
1401 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 				slot_id, ep_index);
1403 		if (ret)
1404 			goto free_priv;
1405 		spin_unlock_irqrestore(&xhci->lock, flags);
1406 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 		spin_lock_irqsave(&xhci->lock, flags);
1408 		if (xhci->xhc_state & XHCI_STATE_DYING)
1409 			goto dying;
1410 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 				EP_GETTING_STREAMS) {
1412 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 					"is transitioning to using streams.\n");
1414 			ret = -EINVAL;
1415 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 				EP_GETTING_NO_STREAMS) {
1417 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 					"is transitioning to "
1419 					"not having streams.\n");
1420 			ret = -EINVAL;
1421 		} else {
1422 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 					slot_id, ep_index);
1424 		}
1425 		if (ret)
1426 			goto free_priv;
1427 		spin_unlock_irqrestore(&xhci->lock, flags);
1428 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 		spin_lock_irqsave(&xhci->lock, flags);
1430 		if (xhci->xhc_state & XHCI_STATE_DYING)
1431 			goto dying;
1432 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 				slot_id, ep_index);
1434 		if (ret)
1435 			goto free_priv;
1436 		spin_unlock_irqrestore(&xhci->lock, flags);
1437 	} else {
1438 		spin_lock_irqsave(&xhci->lock, flags);
1439 		if (xhci->xhc_state & XHCI_STATE_DYING)
1440 			goto dying;
1441 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 				slot_id, ep_index);
1443 		if (ret)
1444 			goto free_priv;
1445 		spin_unlock_irqrestore(&xhci->lock, flags);
1446 	}
1447 exit:
1448 	return ret;
1449 dying:
1450 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 			"non-responsive xHCI host.\n",
1452 			urb->ep->desc.bEndpointAddress, urb);
1453 	ret = -ESHUTDOWN;
1454 free_priv:
1455 	xhci_urb_free_priv(urb_priv);
1456 	urb->hcpriv = NULL;
1457 	spin_unlock_irqrestore(&xhci->lock, flags);
1458 	return ret;
1459 }
1460 
1461 /* Get the right ring for the given URB.
1462  * If the endpoint supports streams, boundary check the URB's stream ID.
1463  * If the endpoint doesn't support streams, return the singular endpoint ring.
1464  */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466 		struct urb *urb)
1467 {
1468 	unsigned int slot_id;
1469 	unsigned int ep_index;
1470 	unsigned int stream_id;
1471 	struct xhci_virt_ep *ep;
1472 
1473 	slot_id = urb->dev->slot_id;
1474 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475 	stream_id = urb->stream_id;
1476 	ep = &xhci->devs[slot_id]->eps[ep_index];
1477 	/* Common case: no streams */
1478 	if (!(ep->ep_state & EP_HAS_STREAMS))
1479 		return ep->ring;
1480 
1481 	if (stream_id == 0) {
1482 		xhci_warn(xhci,
1483 				"WARN: Slot ID %u, ep index %u has streams, "
1484 				"but URB has no stream ID.\n",
1485 				slot_id, ep_index);
1486 		return NULL;
1487 	}
1488 
1489 	if (stream_id < ep->stream_info->num_streams)
1490 		return ep->stream_info->stream_rings[stream_id];
1491 
1492 	xhci_warn(xhci,
1493 			"WARN: Slot ID %u, ep index %u has "
1494 			"stream IDs 1 to %u allocated, "
1495 			"but stream ID %u is requested.\n",
1496 			slot_id, ep_index,
1497 			ep->stream_info->num_streams - 1,
1498 			stream_id);
1499 	return NULL;
1500 }
1501 
1502 /*
1503  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1504  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1505  * should pick up where it left off in the TD, unless a Set Transfer Ring
1506  * Dequeue Pointer is issued.
1507  *
1508  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509  * the ring.  Since the ring is a contiguous structure, they can't be physically
1510  * removed.  Instead, there are two options:
1511  *
1512  *  1) If the HC is in the middle of processing the URB to be canceled, we
1513  *     simply move the ring's dequeue pointer past those TRBs using the Set
1514  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1515  *     when drivers timeout on the last submitted URB and attempt to cancel.
1516  *
1517  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1519  *     HC will need to invalidate the any TRBs it has cached after the stop
1520  *     endpoint command, as noted in the xHCI 0.95 errata.
1521  *
1522  *  3) The TD may have completed by the time the Stop Endpoint Command
1523  *     completes, so software needs to handle that case too.
1524  *
1525  * This function should protect against the TD enqueueing code ringing the
1526  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527  * It also needs to account for multiple cancellations on happening at the same
1528  * time for the same endpoint.
1529  *
1530  * Note that this function can be called in any context, or so says
1531  * usb_hcd_unlink_urb()
1532  */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535 	unsigned long flags;
1536 	int ret, i;
1537 	u32 temp;
1538 	struct xhci_hcd *xhci;
1539 	struct urb_priv	*urb_priv;
1540 	struct xhci_td *td;
1541 	unsigned int ep_index;
1542 	struct xhci_ring *ep_ring;
1543 	struct xhci_virt_ep *ep;
1544 	struct xhci_command *command;
1545 
1546 	xhci = hcd_to_xhci(hcd);
1547 	spin_lock_irqsave(&xhci->lock, flags);
1548 	/* Make sure the URB hasn't completed or been unlinked already */
1549 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550 	if (ret || !urb->hcpriv)
1551 		goto done;
1552 	temp = readl(&xhci->op_regs->status);
1553 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555 				"HW died, freeing TD.");
1556 		urb_priv = urb->hcpriv;
1557 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1558 			td = urb_priv->td[i];
1559 			if (!list_empty(&td->td_list))
1560 				list_del_init(&td->td_list);
1561 			if (!list_empty(&td->cancelled_td_list))
1562 				list_del_init(&td->cancelled_td_list);
1563 		}
1564 
1565 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1566 		spin_unlock_irqrestore(&xhci->lock, flags);
1567 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1568 		xhci_urb_free_priv(urb_priv);
1569 		return ret;
1570 	}
1571 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1572 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1573 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1574 				"Ep 0x%x: URB %p to be canceled on "
1575 				"non-responsive xHCI host.",
1576 				urb->ep->desc.bEndpointAddress, urb);
1577 		/* Let the stop endpoint command watchdog timer (which set this
1578 		 * state) finish cleaning up the endpoint TD lists.  We must
1579 		 * have caught it in the middle of dropping a lock and giving
1580 		 * back an URB.
1581 		 */
1582 		goto done;
1583 	}
1584 
1585 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1586 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1587 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1588 	if (!ep_ring) {
1589 		ret = -EINVAL;
1590 		goto done;
1591 	}
1592 
1593 	urb_priv = urb->hcpriv;
1594 	i = urb_priv->td_cnt;
1595 	if (i < urb_priv->length)
1596 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1597 				"Cancel URB %p, dev %s, ep 0x%x, "
1598 				"starting at offset 0x%llx",
1599 				urb, urb->dev->devpath,
1600 				urb->ep->desc.bEndpointAddress,
1601 				(unsigned long long) xhci_trb_virt_to_dma(
1602 					urb_priv->td[i]->start_seg,
1603 					urb_priv->td[i]->first_trb));
1604 
1605 	for (; i < urb_priv->length; i++) {
1606 		td = urb_priv->td[i];
1607 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1608 	}
1609 
1610 	/* Queue a stop endpoint command, but only if this is
1611 	 * the first cancellation to be handled.
1612 	 */
1613 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1614 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1615 		if (!command) {
1616 			ret = -ENOMEM;
1617 			goto done;
1618 		}
1619 		ep->ep_state |= EP_HALT_PENDING;
1620 		ep->stop_cmds_pending++;
1621 		ep->stop_cmd_timer.expires = jiffies +
1622 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1623 		add_timer(&ep->stop_cmd_timer);
1624 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1625 					 ep_index, 0);
1626 		xhci_ring_cmd_db(xhci);
1627 	}
1628 done:
1629 	spin_unlock_irqrestore(&xhci->lock, flags);
1630 	return ret;
1631 }
1632 
1633 /* Drop an endpoint from a new bandwidth configuration for this device.
1634  * Only one call to this function is allowed per endpoint before
1635  * check_bandwidth() or reset_bandwidth() must be called.
1636  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1637  * add the endpoint to the schedule with possibly new parameters denoted by a
1638  * different endpoint descriptor in usb_host_endpoint.
1639  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1640  * not allowed.
1641  *
1642  * The USB core will not allow URBs to be queued to an endpoint that is being
1643  * disabled, so there's no need for mutual exclusion to protect
1644  * the xhci->devs[slot_id] structure.
1645  */
1646 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1647 		struct usb_host_endpoint *ep)
1648 {
1649 	struct xhci_hcd *xhci;
1650 	struct xhci_container_ctx *in_ctx, *out_ctx;
1651 	struct xhci_input_control_ctx *ctrl_ctx;
1652 	unsigned int ep_index;
1653 	struct xhci_ep_ctx *ep_ctx;
1654 	u32 drop_flag;
1655 	u32 new_add_flags, new_drop_flags;
1656 	int ret;
1657 
1658 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1659 	if (ret <= 0)
1660 		return ret;
1661 	xhci = hcd_to_xhci(hcd);
1662 	if (xhci->xhc_state & XHCI_STATE_DYING)
1663 		return -ENODEV;
1664 
1665 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1666 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1667 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1668 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1669 				__func__, drop_flag);
1670 		return 0;
1671 	}
1672 
1673 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1674 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1675 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1676 	if (!ctrl_ctx) {
1677 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1678 				__func__);
1679 		return 0;
1680 	}
1681 
1682 	ep_index = xhci_get_endpoint_index(&ep->desc);
1683 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1684 	/* If the HC already knows the endpoint is disabled,
1685 	 * or the HCD has noted it is disabled, ignore this request
1686 	 */
1687 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1688 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1689 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1690 	    xhci_get_endpoint_flag(&ep->desc)) {
1691 		/* Do not warn when called after a usb_device_reset */
1692 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1693 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1694 				  __func__, ep);
1695 		return 0;
1696 	}
1697 
1698 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1699 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1700 
1701 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1702 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1703 
1704 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1705 
1706 	if (xhci->quirks & XHCI_MTK_HOST)
1707 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1708 
1709 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1710 			(unsigned int) ep->desc.bEndpointAddress,
1711 			udev->slot_id,
1712 			(unsigned int) new_drop_flags,
1713 			(unsigned int) new_add_flags);
1714 	return 0;
1715 }
1716 
1717 /* Add an endpoint to a new possible bandwidth configuration for this device.
1718  * Only one call to this function is allowed per endpoint before
1719  * check_bandwidth() or reset_bandwidth() must be called.
1720  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1721  * add the endpoint to the schedule with possibly new parameters denoted by a
1722  * different endpoint descriptor in usb_host_endpoint.
1723  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1724  * not allowed.
1725  *
1726  * The USB core will not allow URBs to be queued to an endpoint until the
1727  * configuration or alt setting is installed in the device, so there's no need
1728  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1729  */
1730 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1731 		struct usb_host_endpoint *ep)
1732 {
1733 	struct xhci_hcd *xhci;
1734 	struct xhci_container_ctx *in_ctx;
1735 	unsigned int ep_index;
1736 	struct xhci_input_control_ctx *ctrl_ctx;
1737 	u32 added_ctxs;
1738 	u32 new_add_flags, new_drop_flags;
1739 	struct xhci_virt_device *virt_dev;
1740 	int ret = 0;
1741 
1742 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1743 	if (ret <= 0) {
1744 		/* So we won't queue a reset ep command for a root hub */
1745 		ep->hcpriv = NULL;
1746 		return ret;
1747 	}
1748 	xhci = hcd_to_xhci(hcd);
1749 	if (xhci->xhc_state & XHCI_STATE_DYING)
1750 		return -ENODEV;
1751 
1752 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1753 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1754 		/* FIXME when we have to issue an evaluate endpoint command to
1755 		 * deal with ep0 max packet size changing once we get the
1756 		 * descriptors
1757 		 */
1758 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1759 				__func__, added_ctxs);
1760 		return 0;
1761 	}
1762 
1763 	virt_dev = xhci->devs[udev->slot_id];
1764 	in_ctx = virt_dev->in_ctx;
1765 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1766 	if (!ctrl_ctx) {
1767 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1768 				__func__);
1769 		return 0;
1770 	}
1771 
1772 	ep_index = xhci_get_endpoint_index(&ep->desc);
1773 	/* If this endpoint is already in use, and the upper layers are trying
1774 	 * to add it again without dropping it, reject the addition.
1775 	 */
1776 	if (virt_dev->eps[ep_index].ring &&
1777 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1778 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1779 				"without dropping it.\n",
1780 				(unsigned int) ep->desc.bEndpointAddress);
1781 		return -EINVAL;
1782 	}
1783 
1784 	/* If the HCD has already noted the endpoint is enabled,
1785 	 * ignore this request.
1786 	 */
1787 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1788 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1789 				__func__, ep);
1790 		return 0;
1791 	}
1792 
1793 	/*
1794 	 * Configuration and alternate setting changes must be done in
1795 	 * process context, not interrupt context (or so documenation
1796 	 * for usb_set_interface() and usb_set_configuration() claim).
1797 	 */
1798 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1799 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1800 				__func__, ep->desc.bEndpointAddress);
1801 		return -ENOMEM;
1802 	}
1803 
1804 	if (xhci->quirks & XHCI_MTK_HOST) {
1805 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1806 		if (ret < 0) {
1807 			xhci_free_or_cache_endpoint_ring(xhci,
1808 				virt_dev, ep_index);
1809 			return ret;
1810 		}
1811 	}
1812 
1813 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1814 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1815 
1816 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1817 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1818 	 * this re-adds a new state for the endpoint from the new endpoint
1819 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1820 	 * drop flags alone.
1821 	 */
1822 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1823 
1824 	/* Store the usb_device pointer for later use */
1825 	ep->hcpriv = udev;
1826 
1827 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1828 			(unsigned int) ep->desc.bEndpointAddress,
1829 			udev->slot_id,
1830 			(unsigned int) new_drop_flags,
1831 			(unsigned int) new_add_flags);
1832 	return 0;
1833 }
1834 
1835 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1836 {
1837 	struct xhci_input_control_ctx *ctrl_ctx;
1838 	struct xhci_ep_ctx *ep_ctx;
1839 	struct xhci_slot_ctx *slot_ctx;
1840 	int i;
1841 
1842 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1843 	if (!ctrl_ctx) {
1844 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1845 				__func__);
1846 		return;
1847 	}
1848 
1849 	/* When a device's add flag and drop flag are zero, any subsequent
1850 	 * configure endpoint command will leave that endpoint's state
1851 	 * untouched.  Make sure we don't leave any old state in the input
1852 	 * endpoint contexts.
1853 	 */
1854 	ctrl_ctx->drop_flags = 0;
1855 	ctrl_ctx->add_flags = 0;
1856 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1857 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1858 	/* Endpoint 0 is always valid */
1859 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1860 	for (i = 1; i < 31; ++i) {
1861 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1862 		ep_ctx->ep_info = 0;
1863 		ep_ctx->ep_info2 = 0;
1864 		ep_ctx->deq = 0;
1865 		ep_ctx->tx_info = 0;
1866 	}
1867 }
1868 
1869 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1870 		struct usb_device *udev, u32 *cmd_status)
1871 {
1872 	int ret;
1873 
1874 	switch (*cmd_status) {
1875 	case COMP_CMD_ABORT:
1876 	case COMP_CMD_STOP:
1877 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1878 		ret = -ETIME;
1879 		break;
1880 	case COMP_ENOMEM:
1881 		dev_warn(&udev->dev,
1882 			 "Not enough host controller resources for new device state.\n");
1883 		ret = -ENOMEM;
1884 		/* FIXME: can we allocate more resources for the HC? */
1885 		break;
1886 	case COMP_BW_ERR:
1887 	case COMP_2ND_BW_ERR:
1888 		dev_warn(&udev->dev,
1889 			 "Not enough bandwidth for new device state.\n");
1890 		ret = -ENOSPC;
1891 		/* FIXME: can we go back to the old state? */
1892 		break;
1893 	case COMP_TRB_ERR:
1894 		/* the HCD set up something wrong */
1895 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1896 				"add flag = 1, "
1897 				"and endpoint is not disabled.\n");
1898 		ret = -EINVAL;
1899 		break;
1900 	case COMP_DEV_ERR:
1901 		dev_warn(&udev->dev,
1902 			 "ERROR: Incompatible device for endpoint configure command.\n");
1903 		ret = -ENODEV;
1904 		break;
1905 	case COMP_SUCCESS:
1906 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1907 				"Successful Endpoint Configure command");
1908 		ret = 0;
1909 		break;
1910 	default:
1911 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1912 				*cmd_status);
1913 		ret = -EINVAL;
1914 		break;
1915 	}
1916 	return ret;
1917 }
1918 
1919 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1920 		struct usb_device *udev, u32 *cmd_status)
1921 {
1922 	int ret;
1923 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1924 
1925 	switch (*cmd_status) {
1926 	case COMP_CMD_ABORT:
1927 	case COMP_CMD_STOP:
1928 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1929 		ret = -ETIME;
1930 		break;
1931 	case COMP_EINVAL:
1932 		dev_warn(&udev->dev,
1933 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1934 		ret = -EINVAL;
1935 		break;
1936 	case COMP_EBADSLT:
1937 		dev_warn(&udev->dev,
1938 			"WARN: slot not enabled for evaluate context command.\n");
1939 		ret = -EINVAL;
1940 		break;
1941 	case COMP_CTX_STATE:
1942 		dev_warn(&udev->dev,
1943 			"WARN: invalid context state for evaluate context command.\n");
1944 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1945 		ret = -EINVAL;
1946 		break;
1947 	case COMP_DEV_ERR:
1948 		dev_warn(&udev->dev,
1949 			"ERROR: Incompatible device for evaluate context command.\n");
1950 		ret = -ENODEV;
1951 		break;
1952 	case COMP_MEL_ERR:
1953 		/* Max Exit Latency too large error */
1954 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1955 		ret = -EINVAL;
1956 		break;
1957 	case COMP_SUCCESS:
1958 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1959 				"Successful evaluate context command");
1960 		ret = 0;
1961 		break;
1962 	default:
1963 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1964 			*cmd_status);
1965 		ret = -EINVAL;
1966 		break;
1967 	}
1968 	return ret;
1969 }
1970 
1971 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1972 		struct xhci_input_control_ctx *ctrl_ctx)
1973 {
1974 	u32 valid_add_flags;
1975 	u32 valid_drop_flags;
1976 
1977 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1978 	 * (bit 1).  The default control endpoint is added during the Address
1979 	 * Device command and is never removed until the slot is disabled.
1980 	 */
1981 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1983 
1984 	/* Use hweight32 to count the number of ones in the add flags, or
1985 	 * number of endpoints added.  Don't count endpoints that are changed
1986 	 * (both added and dropped).
1987 	 */
1988 	return hweight32(valid_add_flags) -
1989 		hweight32(valid_add_flags & valid_drop_flags);
1990 }
1991 
1992 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1993 		struct xhci_input_control_ctx *ctrl_ctx)
1994 {
1995 	u32 valid_add_flags;
1996 	u32 valid_drop_flags;
1997 
1998 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1999 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2000 
2001 	return hweight32(valid_drop_flags) -
2002 		hweight32(valid_add_flags & valid_drop_flags);
2003 }
2004 
2005 /*
2006  * We need to reserve the new number of endpoints before the configure endpoint
2007  * command completes.  We can't subtract the dropped endpoints from the number
2008  * of active endpoints until the command completes because we can oversubscribe
2009  * the host in this case:
2010  *
2011  *  - the first configure endpoint command drops more endpoints than it adds
2012  *  - a second configure endpoint command that adds more endpoints is queued
2013  *  - the first configure endpoint command fails, so the config is unchanged
2014  *  - the second command may succeed, even though there isn't enough resources
2015  *
2016  * Must be called with xhci->lock held.
2017  */
2018 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2019 		struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021 	u32 added_eps;
2022 
2023 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2024 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2025 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2026 				"Not enough ep ctxs: "
2027 				"%u active, need to add %u, limit is %u.",
2028 				xhci->num_active_eps, added_eps,
2029 				xhci->limit_active_eps);
2030 		return -ENOMEM;
2031 	}
2032 	xhci->num_active_eps += added_eps;
2033 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2034 			"Adding %u ep ctxs, %u now active.", added_eps,
2035 			xhci->num_active_eps);
2036 	return 0;
2037 }
2038 
2039 /*
2040  * The configure endpoint was failed by the xHC for some other reason, so we
2041  * need to revert the resources that failed configuration would have used.
2042  *
2043  * Must be called with xhci->lock held.
2044  */
2045 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2046 		struct xhci_input_control_ctx *ctrl_ctx)
2047 {
2048 	u32 num_failed_eps;
2049 
2050 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2051 	xhci->num_active_eps -= num_failed_eps;
2052 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2053 			"Removing %u failed ep ctxs, %u now active.",
2054 			num_failed_eps,
2055 			xhci->num_active_eps);
2056 }
2057 
2058 /*
2059  * Now that the command has completed, clean up the active endpoint count by
2060  * subtracting out the endpoints that were dropped (but not changed).
2061  *
2062  * Must be called with xhci->lock held.
2063  */
2064 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2065 		struct xhci_input_control_ctx *ctrl_ctx)
2066 {
2067 	u32 num_dropped_eps;
2068 
2069 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2070 	xhci->num_active_eps -= num_dropped_eps;
2071 	if (num_dropped_eps)
2072 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2073 				"Removing %u dropped ep ctxs, %u now active.",
2074 				num_dropped_eps,
2075 				xhci->num_active_eps);
2076 }
2077 
2078 static unsigned int xhci_get_block_size(struct usb_device *udev)
2079 {
2080 	switch (udev->speed) {
2081 	case USB_SPEED_LOW:
2082 	case USB_SPEED_FULL:
2083 		return FS_BLOCK;
2084 	case USB_SPEED_HIGH:
2085 		return HS_BLOCK;
2086 	case USB_SPEED_SUPER:
2087 		return SS_BLOCK;
2088 	case USB_SPEED_UNKNOWN:
2089 	case USB_SPEED_WIRELESS:
2090 	default:
2091 		/* Should never happen */
2092 		return 1;
2093 	}
2094 }
2095 
2096 static unsigned int
2097 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2098 {
2099 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2100 		return LS_OVERHEAD;
2101 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2102 		return FS_OVERHEAD;
2103 	return HS_OVERHEAD;
2104 }
2105 
2106 /* If we are changing a LS/FS device under a HS hub,
2107  * make sure (if we are activating a new TT) that the HS bus has enough
2108  * bandwidth for this new TT.
2109  */
2110 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2111 		struct xhci_virt_device *virt_dev,
2112 		int old_active_eps)
2113 {
2114 	struct xhci_interval_bw_table *bw_table;
2115 	struct xhci_tt_bw_info *tt_info;
2116 
2117 	/* Find the bandwidth table for the root port this TT is attached to. */
2118 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2119 	tt_info = virt_dev->tt_info;
2120 	/* If this TT already had active endpoints, the bandwidth for this TT
2121 	 * has already been added.  Removing all periodic endpoints (and thus
2122 	 * making the TT enactive) will only decrease the bandwidth used.
2123 	 */
2124 	if (old_active_eps)
2125 		return 0;
2126 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2127 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2128 			return -ENOMEM;
2129 		return 0;
2130 	}
2131 	/* Not sure why we would have no new active endpoints...
2132 	 *
2133 	 * Maybe because of an Evaluate Context change for a hub update or a
2134 	 * control endpoint 0 max packet size change?
2135 	 * FIXME: skip the bandwidth calculation in that case.
2136 	 */
2137 	return 0;
2138 }
2139 
2140 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2141 		struct xhci_virt_device *virt_dev)
2142 {
2143 	unsigned int bw_reserved;
2144 
2145 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2146 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2147 		return -ENOMEM;
2148 
2149 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2150 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2151 		return -ENOMEM;
2152 
2153 	return 0;
2154 }
2155 
2156 /*
2157  * This algorithm is a very conservative estimate of the worst-case scheduling
2158  * scenario for any one interval.  The hardware dynamically schedules the
2159  * packets, so we can't tell which microframe could be the limiting factor in
2160  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2161  *
2162  * Obviously, we can't solve an NP complete problem to find the minimum worst
2163  * case scenario.  Instead, we come up with an estimate that is no less than
2164  * the worst case bandwidth used for any one microframe, but may be an
2165  * over-estimate.
2166  *
2167  * We walk the requirements for each endpoint by interval, starting with the
2168  * smallest interval, and place packets in the schedule where there is only one
2169  * possible way to schedule packets for that interval.  In order to simplify
2170  * this algorithm, we record the largest max packet size for each interval, and
2171  * assume all packets will be that size.
2172  *
2173  * For interval 0, we obviously must schedule all packets for each interval.
2174  * The bandwidth for interval 0 is just the amount of data to be transmitted
2175  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2176  * the number of packets).
2177  *
2178  * For interval 1, we have two possible microframes to schedule those packets
2179  * in.  For this algorithm, if we can schedule the same number of packets for
2180  * each possible scheduling opportunity (each microframe), we will do so.  The
2181  * remaining number of packets will be saved to be transmitted in the gaps in
2182  * the next interval's scheduling sequence.
2183  *
2184  * As we move those remaining packets to be scheduled with interval 2 packets,
2185  * we have to double the number of remaining packets to transmit.  This is
2186  * because the intervals are actually powers of 2, and we would be transmitting
2187  * the previous interval's packets twice in this interval.  We also have to be
2188  * sure that when we look at the largest max packet size for this interval, we
2189  * also look at the largest max packet size for the remaining packets and take
2190  * the greater of the two.
2191  *
2192  * The algorithm continues to evenly distribute packets in each scheduling
2193  * opportunity, and push the remaining packets out, until we get to the last
2194  * interval.  Then those packets and their associated overhead are just added
2195  * to the bandwidth used.
2196  */
2197 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2198 		struct xhci_virt_device *virt_dev,
2199 		int old_active_eps)
2200 {
2201 	unsigned int bw_reserved;
2202 	unsigned int max_bandwidth;
2203 	unsigned int bw_used;
2204 	unsigned int block_size;
2205 	struct xhci_interval_bw_table *bw_table;
2206 	unsigned int packet_size = 0;
2207 	unsigned int overhead = 0;
2208 	unsigned int packets_transmitted = 0;
2209 	unsigned int packets_remaining = 0;
2210 	unsigned int i;
2211 
2212 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2213 		return xhci_check_ss_bw(xhci, virt_dev);
2214 
2215 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2216 		max_bandwidth = HS_BW_LIMIT;
2217 		/* Convert percent of bus BW reserved to blocks reserved */
2218 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2219 	} else {
2220 		max_bandwidth = FS_BW_LIMIT;
2221 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2222 	}
2223 
2224 	bw_table = virt_dev->bw_table;
2225 	/* We need to translate the max packet size and max ESIT payloads into
2226 	 * the units the hardware uses.
2227 	 */
2228 	block_size = xhci_get_block_size(virt_dev->udev);
2229 
2230 	/* If we are manipulating a LS/FS device under a HS hub, double check
2231 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2232 	 */
2233 	if (virt_dev->tt_info) {
2234 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2235 				"Recalculating BW for rootport %u",
2236 				virt_dev->real_port);
2237 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2238 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2239 					"newly activated TT.\n");
2240 			return -ENOMEM;
2241 		}
2242 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2243 				"Recalculating BW for TT slot %u port %u",
2244 				virt_dev->tt_info->slot_id,
2245 				virt_dev->tt_info->ttport);
2246 	} else {
2247 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248 				"Recalculating BW for rootport %u",
2249 				virt_dev->real_port);
2250 	}
2251 
2252 	/* Add in how much bandwidth will be used for interval zero, or the
2253 	 * rounded max ESIT payload + number of packets * largest overhead.
2254 	 */
2255 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2256 		bw_table->interval_bw[0].num_packets *
2257 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2258 
2259 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2260 		unsigned int bw_added;
2261 		unsigned int largest_mps;
2262 		unsigned int interval_overhead;
2263 
2264 		/*
2265 		 * How many packets could we transmit in this interval?
2266 		 * If packets didn't fit in the previous interval, we will need
2267 		 * to transmit that many packets twice within this interval.
2268 		 */
2269 		packets_remaining = 2 * packets_remaining +
2270 			bw_table->interval_bw[i].num_packets;
2271 
2272 		/* Find the largest max packet size of this or the previous
2273 		 * interval.
2274 		 */
2275 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2276 			largest_mps = 0;
2277 		else {
2278 			struct xhci_virt_ep *virt_ep;
2279 			struct list_head *ep_entry;
2280 
2281 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2282 			virt_ep = list_entry(ep_entry,
2283 					struct xhci_virt_ep, bw_endpoint_list);
2284 			/* Convert to blocks, rounding up */
2285 			largest_mps = DIV_ROUND_UP(
2286 					virt_ep->bw_info.max_packet_size,
2287 					block_size);
2288 		}
2289 		if (largest_mps > packet_size)
2290 			packet_size = largest_mps;
2291 
2292 		/* Use the larger overhead of this or the previous interval. */
2293 		interval_overhead = xhci_get_largest_overhead(
2294 				&bw_table->interval_bw[i]);
2295 		if (interval_overhead > overhead)
2296 			overhead = interval_overhead;
2297 
2298 		/* How many packets can we evenly distribute across
2299 		 * (1 << (i + 1)) possible scheduling opportunities?
2300 		 */
2301 		packets_transmitted = packets_remaining >> (i + 1);
2302 
2303 		/* Add in the bandwidth used for those scheduled packets */
2304 		bw_added = packets_transmitted * (overhead + packet_size);
2305 
2306 		/* How many packets do we have remaining to transmit? */
2307 		packets_remaining = packets_remaining % (1 << (i + 1));
2308 
2309 		/* What largest max packet size should those packets have? */
2310 		/* If we've transmitted all packets, don't carry over the
2311 		 * largest packet size.
2312 		 */
2313 		if (packets_remaining == 0) {
2314 			packet_size = 0;
2315 			overhead = 0;
2316 		} else if (packets_transmitted > 0) {
2317 			/* Otherwise if we do have remaining packets, and we've
2318 			 * scheduled some packets in this interval, take the
2319 			 * largest max packet size from endpoints with this
2320 			 * interval.
2321 			 */
2322 			packet_size = largest_mps;
2323 			overhead = interval_overhead;
2324 		}
2325 		/* Otherwise carry over packet_size and overhead from the last
2326 		 * time we had a remainder.
2327 		 */
2328 		bw_used += bw_added;
2329 		if (bw_used > max_bandwidth) {
2330 			xhci_warn(xhci, "Not enough bandwidth. "
2331 					"Proposed: %u, Max: %u\n",
2332 				bw_used, max_bandwidth);
2333 			return -ENOMEM;
2334 		}
2335 	}
2336 	/*
2337 	 * Ok, we know we have some packets left over after even-handedly
2338 	 * scheduling interval 15.  We don't know which microframes they will
2339 	 * fit into, so we over-schedule and say they will be scheduled every
2340 	 * microframe.
2341 	 */
2342 	if (packets_remaining > 0)
2343 		bw_used += overhead + packet_size;
2344 
2345 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2346 		unsigned int port_index = virt_dev->real_port - 1;
2347 
2348 		/* OK, we're manipulating a HS device attached to a
2349 		 * root port bandwidth domain.  Include the number of active TTs
2350 		 * in the bandwidth used.
2351 		 */
2352 		bw_used += TT_HS_OVERHEAD *
2353 			xhci->rh_bw[port_index].num_active_tts;
2354 	}
2355 
2356 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2357 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2358 		"Available: %u " "percent",
2359 		bw_used, max_bandwidth, bw_reserved,
2360 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2361 		max_bandwidth);
2362 
2363 	bw_used += bw_reserved;
2364 	if (bw_used > max_bandwidth) {
2365 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2366 				bw_used, max_bandwidth);
2367 		return -ENOMEM;
2368 	}
2369 
2370 	bw_table->bw_used = bw_used;
2371 	return 0;
2372 }
2373 
2374 static bool xhci_is_async_ep(unsigned int ep_type)
2375 {
2376 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2377 					ep_type != ISOC_IN_EP &&
2378 					ep_type != INT_IN_EP);
2379 }
2380 
2381 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2382 {
2383 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2384 }
2385 
2386 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2387 {
2388 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2389 
2390 	if (ep_bw->ep_interval == 0)
2391 		return SS_OVERHEAD_BURST +
2392 			(ep_bw->mult * ep_bw->num_packets *
2393 					(SS_OVERHEAD + mps));
2394 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2395 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2396 				1 << ep_bw->ep_interval);
2397 
2398 }
2399 
2400 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2401 		struct xhci_bw_info *ep_bw,
2402 		struct xhci_interval_bw_table *bw_table,
2403 		struct usb_device *udev,
2404 		struct xhci_virt_ep *virt_ep,
2405 		struct xhci_tt_bw_info *tt_info)
2406 {
2407 	struct xhci_interval_bw	*interval_bw;
2408 	int normalized_interval;
2409 
2410 	if (xhci_is_async_ep(ep_bw->type))
2411 		return;
2412 
2413 	if (udev->speed == USB_SPEED_SUPER) {
2414 		if (xhci_is_sync_in_ep(ep_bw->type))
2415 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2416 				xhci_get_ss_bw_consumed(ep_bw);
2417 		else
2418 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2419 				xhci_get_ss_bw_consumed(ep_bw);
2420 		return;
2421 	}
2422 
2423 	/* SuperSpeed endpoints never get added to intervals in the table, so
2424 	 * this check is only valid for HS/FS/LS devices.
2425 	 */
2426 	if (list_empty(&virt_ep->bw_endpoint_list))
2427 		return;
2428 	/* For LS/FS devices, we need to translate the interval expressed in
2429 	 * microframes to frames.
2430 	 */
2431 	if (udev->speed == USB_SPEED_HIGH)
2432 		normalized_interval = ep_bw->ep_interval;
2433 	else
2434 		normalized_interval = ep_bw->ep_interval - 3;
2435 
2436 	if (normalized_interval == 0)
2437 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2438 	interval_bw = &bw_table->interval_bw[normalized_interval];
2439 	interval_bw->num_packets -= ep_bw->num_packets;
2440 	switch (udev->speed) {
2441 	case USB_SPEED_LOW:
2442 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2443 		break;
2444 	case USB_SPEED_FULL:
2445 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2446 		break;
2447 	case USB_SPEED_HIGH:
2448 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2449 		break;
2450 	case USB_SPEED_SUPER:
2451 	case USB_SPEED_UNKNOWN:
2452 	case USB_SPEED_WIRELESS:
2453 		/* Should never happen because only LS/FS/HS endpoints will get
2454 		 * added to the endpoint list.
2455 		 */
2456 		return;
2457 	}
2458 	if (tt_info)
2459 		tt_info->active_eps -= 1;
2460 	list_del_init(&virt_ep->bw_endpoint_list);
2461 }
2462 
2463 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2464 		struct xhci_bw_info *ep_bw,
2465 		struct xhci_interval_bw_table *bw_table,
2466 		struct usb_device *udev,
2467 		struct xhci_virt_ep *virt_ep,
2468 		struct xhci_tt_bw_info *tt_info)
2469 {
2470 	struct xhci_interval_bw	*interval_bw;
2471 	struct xhci_virt_ep *smaller_ep;
2472 	int normalized_interval;
2473 
2474 	if (xhci_is_async_ep(ep_bw->type))
2475 		return;
2476 
2477 	if (udev->speed == USB_SPEED_SUPER) {
2478 		if (xhci_is_sync_in_ep(ep_bw->type))
2479 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2480 				xhci_get_ss_bw_consumed(ep_bw);
2481 		else
2482 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2483 				xhci_get_ss_bw_consumed(ep_bw);
2484 		return;
2485 	}
2486 
2487 	/* For LS/FS devices, we need to translate the interval expressed in
2488 	 * microframes to frames.
2489 	 */
2490 	if (udev->speed == USB_SPEED_HIGH)
2491 		normalized_interval = ep_bw->ep_interval;
2492 	else
2493 		normalized_interval = ep_bw->ep_interval - 3;
2494 
2495 	if (normalized_interval == 0)
2496 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2497 	interval_bw = &bw_table->interval_bw[normalized_interval];
2498 	interval_bw->num_packets += ep_bw->num_packets;
2499 	switch (udev->speed) {
2500 	case USB_SPEED_LOW:
2501 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2502 		break;
2503 	case USB_SPEED_FULL:
2504 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2505 		break;
2506 	case USB_SPEED_HIGH:
2507 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2508 		break;
2509 	case USB_SPEED_SUPER:
2510 	case USB_SPEED_UNKNOWN:
2511 	case USB_SPEED_WIRELESS:
2512 		/* Should never happen because only LS/FS/HS endpoints will get
2513 		 * added to the endpoint list.
2514 		 */
2515 		return;
2516 	}
2517 
2518 	if (tt_info)
2519 		tt_info->active_eps += 1;
2520 	/* Insert the endpoint into the list, largest max packet size first. */
2521 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2522 			bw_endpoint_list) {
2523 		if (ep_bw->max_packet_size >=
2524 				smaller_ep->bw_info.max_packet_size) {
2525 			/* Add the new ep before the smaller endpoint */
2526 			list_add_tail(&virt_ep->bw_endpoint_list,
2527 					&smaller_ep->bw_endpoint_list);
2528 			return;
2529 		}
2530 	}
2531 	/* Add the new endpoint at the end of the list. */
2532 	list_add_tail(&virt_ep->bw_endpoint_list,
2533 			&interval_bw->endpoints);
2534 }
2535 
2536 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2537 		struct xhci_virt_device *virt_dev,
2538 		int old_active_eps)
2539 {
2540 	struct xhci_root_port_bw_info *rh_bw_info;
2541 	if (!virt_dev->tt_info)
2542 		return;
2543 
2544 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2545 	if (old_active_eps == 0 &&
2546 				virt_dev->tt_info->active_eps != 0) {
2547 		rh_bw_info->num_active_tts += 1;
2548 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2549 	} else if (old_active_eps != 0 &&
2550 				virt_dev->tt_info->active_eps == 0) {
2551 		rh_bw_info->num_active_tts -= 1;
2552 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2553 	}
2554 }
2555 
2556 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2557 		struct xhci_virt_device *virt_dev,
2558 		struct xhci_container_ctx *in_ctx)
2559 {
2560 	struct xhci_bw_info ep_bw_info[31];
2561 	int i;
2562 	struct xhci_input_control_ctx *ctrl_ctx;
2563 	int old_active_eps = 0;
2564 
2565 	if (virt_dev->tt_info)
2566 		old_active_eps = virt_dev->tt_info->active_eps;
2567 
2568 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2569 	if (!ctrl_ctx) {
2570 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2571 				__func__);
2572 		return -ENOMEM;
2573 	}
2574 
2575 	for (i = 0; i < 31; i++) {
2576 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2577 			continue;
2578 
2579 		/* Make a copy of the BW info in case we need to revert this */
2580 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2581 				sizeof(ep_bw_info[i]));
2582 		/* Drop the endpoint from the interval table if the endpoint is
2583 		 * being dropped or changed.
2584 		 */
2585 		if (EP_IS_DROPPED(ctrl_ctx, i))
2586 			xhci_drop_ep_from_interval_table(xhci,
2587 					&virt_dev->eps[i].bw_info,
2588 					virt_dev->bw_table,
2589 					virt_dev->udev,
2590 					&virt_dev->eps[i],
2591 					virt_dev->tt_info);
2592 	}
2593 	/* Overwrite the information stored in the endpoints' bw_info */
2594 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2595 	for (i = 0; i < 31; i++) {
2596 		/* Add any changed or added endpoints to the interval table */
2597 		if (EP_IS_ADDED(ctrl_ctx, i))
2598 			xhci_add_ep_to_interval_table(xhci,
2599 					&virt_dev->eps[i].bw_info,
2600 					virt_dev->bw_table,
2601 					virt_dev->udev,
2602 					&virt_dev->eps[i],
2603 					virt_dev->tt_info);
2604 	}
2605 
2606 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2607 		/* Ok, this fits in the bandwidth we have.
2608 		 * Update the number of active TTs.
2609 		 */
2610 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2611 		return 0;
2612 	}
2613 
2614 	/* We don't have enough bandwidth for this, revert the stored info. */
2615 	for (i = 0; i < 31; i++) {
2616 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2617 			continue;
2618 
2619 		/* Drop the new copies of any added or changed endpoints from
2620 		 * the interval table.
2621 		 */
2622 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2623 			xhci_drop_ep_from_interval_table(xhci,
2624 					&virt_dev->eps[i].bw_info,
2625 					virt_dev->bw_table,
2626 					virt_dev->udev,
2627 					&virt_dev->eps[i],
2628 					virt_dev->tt_info);
2629 		}
2630 		/* Revert the endpoint back to its old information */
2631 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2632 				sizeof(ep_bw_info[i]));
2633 		/* Add any changed or dropped endpoints back into the table */
2634 		if (EP_IS_DROPPED(ctrl_ctx, i))
2635 			xhci_add_ep_to_interval_table(xhci,
2636 					&virt_dev->eps[i].bw_info,
2637 					virt_dev->bw_table,
2638 					virt_dev->udev,
2639 					&virt_dev->eps[i],
2640 					virt_dev->tt_info);
2641 	}
2642 	return -ENOMEM;
2643 }
2644 
2645 
2646 /* Issue a configure endpoint command or evaluate context command
2647  * and wait for it to finish.
2648  */
2649 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2650 		struct usb_device *udev,
2651 		struct xhci_command *command,
2652 		bool ctx_change, bool must_succeed)
2653 {
2654 	int ret;
2655 	unsigned long flags;
2656 	struct xhci_input_control_ctx *ctrl_ctx;
2657 	struct xhci_virt_device *virt_dev;
2658 
2659 	if (!command)
2660 		return -EINVAL;
2661 
2662 	spin_lock_irqsave(&xhci->lock, flags);
2663 	virt_dev = xhci->devs[udev->slot_id];
2664 
2665 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2666 	if (!ctrl_ctx) {
2667 		spin_unlock_irqrestore(&xhci->lock, flags);
2668 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2669 				__func__);
2670 		return -ENOMEM;
2671 	}
2672 
2673 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2674 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2675 		spin_unlock_irqrestore(&xhci->lock, flags);
2676 		xhci_warn(xhci, "Not enough host resources, "
2677 				"active endpoint contexts = %u\n",
2678 				xhci->num_active_eps);
2679 		return -ENOMEM;
2680 	}
2681 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2682 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2683 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2684 			xhci_free_host_resources(xhci, ctrl_ctx);
2685 		spin_unlock_irqrestore(&xhci->lock, flags);
2686 		xhci_warn(xhci, "Not enough bandwidth\n");
2687 		return -ENOMEM;
2688 	}
2689 
2690 	if (!ctx_change)
2691 		ret = xhci_queue_configure_endpoint(xhci, command,
2692 				command->in_ctx->dma,
2693 				udev->slot_id, must_succeed);
2694 	else
2695 		ret = xhci_queue_evaluate_context(xhci, command,
2696 				command->in_ctx->dma,
2697 				udev->slot_id, must_succeed);
2698 	if (ret < 0) {
2699 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2700 			xhci_free_host_resources(xhci, ctrl_ctx);
2701 		spin_unlock_irqrestore(&xhci->lock, flags);
2702 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2703 				"FIXME allocate a new ring segment");
2704 		return -ENOMEM;
2705 	}
2706 	xhci_ring_cmd_db(xhci);
2707 	spin_unlock_irqrestore(&xhci->lock, flags);
2708 
2709 	/* Wait for the configure endpoint command to complete */
2710 	wait_for_completion(command->completion);
2711 
2712 	if (!ctx_change)
2713 		ret = xhci_configure_endpoint_result(xhci, udev,
2714 						     &command->status);
2715 	else
2716 		ret = xhci_evaluate_context_result(xhci, udev,
2717 						   &command->status);
2718 
2719 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2720 		spin_lock_irqsave(&xhci->lock, flags);
2721 		/* If the command failed, remove the reserved resources.
2722 		 * Otherwise, clean up the estimate to include dropped eps.
2723 		 */
2724 		if (ret)
2725 			xhci_free_host_resources(xhci, ctrl_ctx);
2726 		else
2727 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2728 		spin_unlock_irqrestore(&xhci->lock, flags);
2729 	}
2730 	return ret;
2731 }
2732 
2733 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2734 	struct xhci_virt_device *vdev, int i)
2735 {
2736 	struct xhci_virt_ep *ep = &vdev->eps[i];
2737 
2738 	if (ep->ep_state & EP_HAS_STREAMS) {
2739 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2740 				xhci_get_endpoint_address(i));
2741 		xhci_free_stream_info(xhci, ep->stream_info);
2742 		ep->stream_info = NULL;
2743 		ep->ep_state &= ~EP_HAS_STREAMS;
2744 	}
2745 }
2746 
2747 /* Called after one or more calls to xhci_add_endpoint() or
2748  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2749  * to call xhci_reset_bandwidth().
2750  *
2751  * Since we are in the middle of changing either configuration or
2752  * installing a new alt setting, the USB core won't allow URBs to be
2753  * enqueued for any endpoint on the old config or interface.  Nothing
2754  * else should be touching the xhci->devs[slot_id] structure, so we
2755  * don't need to take the xhci->lock for manipulating that.
2756  */
2757 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2758 {
2759 	int i;
2760 	int ret = 0;
2761 	struct xhci_hcd *xhci;
2762 	struct xhci_virt_device	*virt_dev;
2763 	struct xhci_input_control_ctx *ctrl_ctx;
2764 	struct xhci_slot_ctx *slot_ctx;
2765 	struct xhci_command *command;
2766 
2767 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2768 	if (ret <= 0)
2769 		return ret;
2770 	xhci = hcd_to_xhci(hcd);
2771 	if (xhci->xhc_state & XHCI_STATE_DYING)
2772 		return -ENODEV;
2773 
2774 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775 	virt_dev = xhci->devs[udev->slot_id];
2776 
2777 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2778 	if (!command)
2779 		return -ENOMEM;
2780 
2781 	command->in_ctx = virt_dev->in_ctx;
2782 
2783 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2784 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2785 	if (!ctrl_ctx) {
2786 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2787 				__func__);
2788 		ret = -ENOMEM;
2789 		goto command_cleanup;
2790 	}
2791 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2792 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2793 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2794 
2795 	/* Don't issue the command if there's no endpoints to update. */
2796 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2797 	    ctrl_ctx->drop_flags == 0) {
2798 		ret = 0;
2799 		goto command_cleanup;
2800 	}
2801 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2802 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2803 	for (i = 31; i >= 1; i--) {
2804 		__le32 le32 = cpu_to_le32(BIT(i));
2805 
2806 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2807 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2808 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2809 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2810 			break;
2811 		}
2812 	}
2813 	xhci_dbg(xhci, "New Input Control Context:\n");
2814 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2815 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2816 
2817 	ret = xhci_configure_endpoint(xhci, udev, command,
2818 			false, false);
2819 	if (ret)
2820 		/* Callee should call reset_bandwidth() */
2821 		goto command_cleanup;
2822 
2823 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2824 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2825 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2826 
2827 	/* Free any rings that were dropped, but not changed. */
2828 	for (i = 1; i < 31; ++i) {
2829 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2830 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2831 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2832 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833 		}
2834 	}
2835 	xhci_zero_in_ctx(xhci, virt_dev);
2836 	/*
2837 	 * Install any rings for completely new endpoints or changed endpoints,
2838 	 * and free or cache any old rings from changed endpoints.
2839 	 */
2840 	for (i = 1; i < 31; ++i) {
2841 		if (!virt_dev->eps[i].new_ring)
2842 			continue;
2843 		/* Only cache or free the old ring if it exists.
2844 		 * It may not if this is the first add of an endpoint.
2845 		 */
2846 		if (virt_dev->eps[i].ring) {
2847 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2848 		}
2849 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2850 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2851 		virt_dev->eps[i].new_ring = NULL;
2852 	}
2853 command_cleanup:
2854 	kfree(command->completion);
2855 	kfree(command);
2856 
2857 	return ret;
2858 }
2859 
2860 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2861 {
2862 	struct xhci_hcd *xhci;
2863 	struct xhci_virt_device	*virt_dev;
2864 	int i, ret;
2865 
2866 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2867 	if (ret <= 0)
2868 		return;
2869 	xhci = hcd_to_xhci(hcd);
2870 
2871 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2872 	virt_dev = xhci->devs[udev->slot_id];
2873 	/* Free any rings allocated for added endpoints */
2874 	for (i = 0; i < 31; ++i) {
2875 		if (virt_dev->eps[i].new_ring) {
2876 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2877 			virt_dev->eps[i].new_ring = NULL;
2878 		}
2879 	}
2880 	xhci_zero_in_ctx(xhci, virt_dev);
2881 }
2882 
2883 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2884 		struct xhci_container_ctx *in_ctx,
2885 		struct xhci_container_ctx *out_ctx,
2886 		struct xhci_input_control_ctx *ctrl_ctx,
2887 		u32 add_flags, u32 drop_flags)
2888 {
2889 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2890 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2891 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2892 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2893 
2894 	xhci_dbg(xhci, "Input Context:\n");
2895 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2896 }
2897 
2898 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2899 		unsigned int slot_id, unsigned int ep_index,
2900 		struct xhci_dequeue_state *deq_state)
2901 {
2902 	struct xhci_input_control_ctx *ctrl_ctx;
2903 	struct xhci_container_ctx *in_ctx;
2904 	struct xhci_ep_ctx *ep_ctx;
2905 	u32 added_ctxs;
2906 	dma_addr_t addr;
2907 
2908 	in_ctx = xhci->devs[slot_id]->in_ctx;
2909 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2910 	if (!ctrl_ctx) {
2911 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2912 				__func__);
2913 		return;
2914 	}
2915 
2916 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2917 			xhci->devs[slot_id]->out_ctx, ep_index);
2918 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2919 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2920 			deq_state->new_deq_ptr);
2921 	if (addr == 0) {
2922 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2923 				"reset ep command\n");
2924 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2925 				deq_state->new_deq_seg,
2926 				deq_state->new_deq_ptr);
2927 		return;
2928 	}
2929 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2930 
2931 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2932 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2933 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2934 			added_ctxs, added_ctxs);
2935 }
2936 
2937 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2938 			unsigned int ep_index, struct xhci_td *td)
2939 {
2940 	struct xhci_dequeue_state deq_state;
2941 	struct xhci_virt_ep *ep;
2942 	struct usb_device *udev = td->urb->dev;
2943 
2944 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2945 			"Cleaning up stalled endpoint ring");
2946 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2947 	/* We need to move the HW's dequeue pointer past this TD,
2948 	 * or it will attempt to resend it on the next doorbell ring.
2949 	 */
2950 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2951 			ep_index, ep->stopped_stream, td, &deq_state);
2952 
2953 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2954 		return;
2955 
2956 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2957 	 * issue a configure endpoint command later.
2958 	 */
2959 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2960 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2961 				"Queueing new dequeue state");
2962 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2963 				ep_index, ep->stopped_stream, &deq_state);
2964 	} else {
2965 		/* Better hope no one uses the input context between now and the
2966 		 * reset endpoint completion!
2967 		 * XXX: No idea how this hardware will react when stream rings
2968 		 * are enabled.
2969 		 */
2970 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2971 				"Setting up input context for "
2972 				"configure endpoint command");
2973 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2974 				ep_index, &deq_state);
2975 	}
2976 }
2977 
2978 /* Called when clearing halted device. The core should have sent the control
2979  * message to clear the device halt condition. The host side of the halt should
2980  * already be cleared with a reset endpoint command issued when the STALL tx
2981  * event was received.
2982  *
2983  * Context: in_interrupt
2984  */
2985 
2986 void xhci_endpoint_reset(struct usb_hcd *hcd,
2987 		struct usb_host_endpoint *ep)
2988 {
2989 	struct xhci_hcd *xhci;
2990 
2991 	xhci = hcd_to_xhci(hcd);
2992 
2993 	/*
2994 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2995 	 * The Reset Endpoint Command may only be issued to endpoints in the
2996 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2997 	 * Number of an endpoint that isn't in the Halted state, then software
2998 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2999 	 * for the target endpoint. that is in the Stopped state.
3000 	 */
3001 
3002 	/* For now just print debug to follow the situation */
3003 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3004 		 ep->desc.bEndpointAddress);
3005 }
3006 
3007 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3008 		struct usb_device *udev, struct usb_host_endpoint *ep,
3009 		unsigned int slot_id)
3010 {
3011 	int ret;
3012 	unsigned int ep_index;
3013 	unsigned int ep_state;
3014 
3015 	if (!ep)
3016 		return -EINVAL;
3017 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3018 	if (ret <= 0)
3019 		return -EINVAL;
3020 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3021 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3022 				" descriptor for ep 0x%x does not support streams\n",
3023 				ep->desc.bEndpointAddress);
3024 		return -EINVAL;
3025 	}
3026 
3027 	ep_index = xhci_get_endpoint_index(&ep->desc);
3028 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3029 	if (ep_state & EP_HAS_STREAMS ||
3030 			ep_state & EP_GETTING_STREAMS) {
3031 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3032 				"already has streams set up.\n",
3033 				ep->desc.bEndpointAddress);
3034 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3035 				"dynamic stream context array reallocation.\n");
3036 		return -EINVAL;
3037 	}
3038 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3039 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3040 				"endpoint 0x%x; URBs are pending.\n",
3041 				ep->desc.bEndpointAddress);
3042 		return -EINVAL;
3043 	}
3044 	return 0;
3045 }
3046 
3047 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3048 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3049 {
3050 	unsigned int max_streams;
3051 
3052 	/* The stream context array size must be a power of two */
3053 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3054 	/*
3055 	 * Find out how many primary stream array entries the host controller
3056 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3057 	 * level page entries), but that's an optional feature for xHCI host
3058 	 * controllers. xHCs must support at least 4 stream IDs.
3059 	 */
3060 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3061 	if (*num_stream_ctxs > max_streams) {
3062 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3063 				max_streams);
3064 		*num_stream_ctxs = max_streams;
3065 		*num_streams = max_streams;
3066 	}
3067 }
3068 
3069 /* Returns an error code if one of the endpoint already has streams.
3070  * This does not change any data structures, it only checks and gathers
3071  * information.
3072  */
3073 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3074 		struct usb_device *udev,
3075 		struct usb_host_endpoint **eps, unsigned int num_eps,
3076 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3077 {
3078 	unsigned int max_streams;
3079 	unsigned int endpoint_flag;
3080 	int i;
3081 	int ret;
3082 
3083 	for (i = 0; i < num_eps; i++) {
3084 		ret = xhci_check_streams_endpoint(xhci, udev,
3085 				eps[i], udev->slot_id);
3086 		if (ret < 0)
3087 			return ret;
3088 
3089 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3090 		if (max_streams < (*num_streams - 1)) {
3091 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3092 					eps[i]->desc.bEndpointAddress,
3093 					max_streams);
3094 			*num_streams = max_streams+1;
3095 		}
3096 
3097 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3098 		if (*changed_ep_bitmask & endpoint_flag)
3099 			return -EINVAL;
3100 		*changed_ep_bitmask |= endpoint_flag;
3101 	}
3102 	return 0;
3103 }
3104 
3105 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3106 		struct usb_device *udev,
3107 		struct usb_host_endpoint **eps, unsigned int num_eps)
3108 {
3109 	u32 changed_ep_bitmask = 0;
3110 	unsigned int slot_id;
3111 	unsigned int ep_index;
3112 	unsigned int ep_state;
3113 	int i;
3114 
3115 	slot_id = udev->slot_id;
3116 	if (!xhci->devs[slot_id])
3117 		return 0;
3118 
3119 	for (i = 0; i < num_eps; i++) {
3120 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3122 		/* Are streams already being freed for the endpoint? */
3123 		if (ep_state & EP_GETTING_NO_STREAMS) {
3124 			xhci_warn(xhci, "WARN Can't disable streams for "
3125 					"endpoint 0x%x, "
3126 					"streams are being disabled already\n",
3127 					eps[i]->desc.bEndpointAddress);
3128 			return 0;
3129 		}
3130 		/* Are there actually any streams to free? */
3131 		if (!(ep_state & EP_HAS_STREAMS) &&
3132 				!(ep_state & EP_GETTING_STREAMS)) {
3133 			xhci_warn(xhci, "WARN Can't disable streams for "
3134 					"endpoint 0x%x, "
3135 					"streams are already disabled!\n",
3136 					eps[i]->desc.bEndpointAddress);
3137 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3138 					"with non-streams endpoint\n");
3139 			return 0;
3140 		}
3141 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3142 	}
3143 	return changed_ep_bitmask;
3144 }
3145 
3146 /*
3147  * The USB device drivers use this function (through the HCD interface in USB
3148  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3149  * coordinate mass storage command queueing across multiple endpoints (basically
3150  * a stream ID == a task ID).
3151  *
3152  * Setting up streams involves allocating the same size stream context array
3153  * for each endpoint and issuing a configure endpoint command for all endpoints.
3154  *
3155  * Don't allow the call to succeed if one endpoint only supports one stream
3156  * (which means it doesn't support streams at all).
3157  *
3158  * Drivers may get less stream IDs than they asked for, if the host controller
3159  * hardware or endpoints claim they can't support the number of requested
3160  * stream IDs.
3161  */
3162 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3163 		struct usb_host_endpoint **eps, unsigned int num_eps,
3164 		unsigned int num_streams, gfp_t mem_flags)
3165 {
3166 	int i, ret;
3167 	struct xhci_hcd *xhci;
3168 	struct xhci_virt_device *vdev;
3169 	struct xhci_command *config_cmd;
3170 	struct xhci_input_control_ctx *ctrl_ctx;
3171 	unsigned int ep_index;
3172 	unsigned int num_stream_ctxs;
3173 	unsigned long flags;
3174 	u32 changed_ep_bitmask = 0;
3175 
3176 	if (!eps)
3177 		return -EINVAL;
3178 
3179 	/* Add one to the number of streams requested to account for
3180 	 * stream 0 that is reserved for xHCI usage.
3181 	 */
3182 	num_streams += 1;
3183 	xhci = hcd_to_xhci(hcd);
3184 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3185 			num_streams);
3186 
3187 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3188 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3189 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3190 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3191 		return -ENOSYS;
3192 	}
3193 
3194 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3195 	if (!config_cmd) {
3196 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3197 		return -ENOMEM;
3198 	}
3199 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3200 	if (!ctrl_ctx) {
3201 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3202 				__func__);
3203 		xhci_free_command(xhci, config_cmd);
3204 		return -ENOMEM;
3205 	}
3206 
3207 	/* Check to make sure all endpoints are not already configured for
3208 	 * streams.  While we're at it, find the maximum number of streams that
3209 	 * all the endpoints will support and check for duplicate endpoints.
3210 	 */
3211 	spin_lock_irqsave(&xhci->lock, flags);
3212 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3213 			num_eps, &num_streams, &changed_ep_bitmask);
3214 	if (ret < 0) {
3215 		xhci_free_command(xhci, config_cmd);
3216 		spin_unlock_irqrestore(&xhci->lock, flags);
3217 		return ret;
3218 	}
3219 	if (num_streams <= 1) {
3220 		xhci_warn(xhci, "WARN: endpoints can't handle "
3221 				"more than one stream.\n");
3222 		xhci_free_command(xhci, config_cmd);
3223 		spin_unlock_irqrestore(&xhci->lock, flags);
3224 		return -EINVAL;
3225 	}
3226 	vdev = xhci->devs[udev->slot_id];
3227 	/* Mark each endpoint as being in transition, so
3228 	 * xhci_urb_enqueue() will reject all URBs.
3229 	 */
3230 	for (i = 0; i < num_eps; i++) {
3231 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3232 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3233 	}
3234 	spin_unlock_irqrestore(&xhci->lock, flags);
3235 
3236 	/* Setup internal data structures and allocate HW data structures for
3237 	 * streams (but don't install the HW structures in the input context
3238 	 * until we're sure all memory allocation succeeded).
3239 	 */
3240 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3241 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3242 			num_stream_ctxs, num_streams);
3243 
3244 	for (i = 0; i < num_eps; i++) {
3245 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3247 				num_stream_ctxs,
3248 				num_streams, mem_flags);
3249 		if (!vdev->eps[ep_index].stream_info)
3250 			goto cleanup;
3251 		/* Set maxPstreams in endpoint context and update deq ptr to
3252 		 * point to stream context array. FIXME
3253 		 */
3254 	}
3255 
3256 	/* Set up the input context for a configure endpoint command. */
3257 	for (i = 0; i < num_eps; i++) {
3258 		struct xhci_ep_ctx *ep_ctx;
3259 
3260 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3262 
3263 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3264 				vdev->out_ctx, ep_index);
3265 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3266 				vdev->eps[ep_index].stream_info);
3267 	}
3268 	/* Tell the HW to drop its old copy of the endpoint context info
3269 	 * and add the updated copy from the input context.
3270 	 */
3271 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3272 			vdev->out_ctx, ctrl_ctx,
3273 			changed_ep_bitmask, changed_ep_bitmask);
3274 
3275 	/* Issue and wait for the configure endpoint command */
3276 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3277 			false, false);
3278 
3279 	/* xHC rejected the configure endpoint command for some reason, so we
3280 	 * leave the old ring intact and free our internal streams data
3281 	 * structure.
3282 	 */
3283 	if (ret < 0)
3284 		goto cleanup;
3285 
3286 	spin_lock_irqsave(&xhci->lock, flags);
3287 	for (i = 0; i < num_eps; i++) {
3288 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3290 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3291 			 udev->slot_id, ep_index);
3292 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3293 	}
3294 	xhci_free_command(xhci, config_cmd);
3295 	spin_unlock_irqrestore(&xhci->lock, flags);
3296 
3297 	/* Subtract 1 for stream 0, which drivers can't use */
3298 	return num_streams - 1;
3299 
3300 cleanup:
3301 	/* If it didn't work, free the streams! */
3302 	for (i = 0; i < num_eps; i++) {
3303 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3304 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3305 		vdev->eps[ep_index].stream_info = NULL;
3306 		/* FIXME Unset maxPstreams in endpoint context and
3307 		 * update deq ptr to point to normal string ring.
3308 		 */
3309 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3310 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3311 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3312 	}
3313 	xhci_free_command(xhci, config_cmd);
3314 	return -ENOMEM;
3315 }
3316 
3317 /* Transition the endpoint from using streams to being a "normal" endpoint
3318  * without streams.
3319  *
3320  * Modify the endpoint context state, submit a configure endpoint command,
3321  * and free all endpoint rings for streams if that completes successfully.
3322  */
3323 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3324 		struct usb_host_endpoint **eps, unsigned int num_eps,
3325 		gfp_t mem_flags)
3326 {
3327 	int i, ret;
3328 	struct xhci_hcd *xhci;
3329 	struct xhci_virt_device *vdev;
3330 	struct xhci_command *command;
3331 	struct xhci_input_control_ctx *ctrl_ctx;
3332 	unsigned int ep_index;
3333 	unsigned long flags;
3334 	u32 changed_ep_bitmask;
3335 
3336 	xhci = hcd_to_xhci(hcd);
3337 	vdev = xhci->devs[udev->slot_id];
3338 
3339 	/* Set up a configure endpoint command to remove the streams rings */
3340 	spin_lock_irqsave(&xhci->lock, flags);
3341 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3342 			udev, eps, num_eps);
3343 	if (changed_ep_bitmask == 0) {
3344 		spin_unlock_irqrestore(&xhci->lock, flags);
3345 		return -EINVAL;
3346 	}
3347 
3348 	/* Use the xhci_command structure from the first endpoint.  We may have
3349 	 * allocated too many, but the driver may call xhci_free_streams() for
3350 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3351 	 */
3352 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3353 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3354 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3355 	if (!ctrl_ctx) {
3356 		spin_unlock_irqrestore(&xhci->lock, flags);
3357 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3358 				__func__);
3359 		return -EINVAL;
3360 	}
3361 
3362 	for (i = 0; i < num_eps; i++) {
3363 		struct xhci_ep_ctx *ep_ctx;
3364 
3365 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3366 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3367 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3368 			EP_GETTING_NO_STREAMS;
3369 
3370 		xhci_endpoint_copy(xhci, command->in_ctx,
3371 				vdev->out_ctx, ep_index);
3372 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3373 				&vdev->eps[ep_index]);
3374 	}
3375 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3376 			vdev->out_ctx, ctrl_ctx,
3377 			changed_ep_bitmask, changed_ep_bitmask);
3378 	spin_unlock_irqrestore(&xhci->lock, flags);
3379 
3380 	/* Issue and wait for the configure endpoint command,
3381 	 * which must succeed.
3382 	 */
3383 	ret = xhci_configure_endpoint(xhci, udev, command,
3384 			false, true);
3385 
3386 	/* xHC rejected the configure endpoint command for some reason, so we
3387 	 * leave the streams rings intact.
3388 	 */
3389 	if (ret < 0)
3390 		return ret;
3391 
3392 	spin_lock_irqsave(&xhci->lock, flags);
3393 	for (i = 0; i < num_eps; i++) {
3394 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3395 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3396 		vdev->eps[ep_index].stream_info = NULL;
3397 		/* FIXME Unset maxPstreams in endpoint context and
3398 		 * update deq ptr to point to normal string ring.
3399 		 */
3400 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3401 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3402 	}
3403 	spin_unlock_irqrestore(&xhci->lock, flags);
3404 
3405 	return 0;
3406 }
3407 
3408 /*
3409  * Deletes endpoint resources for endpoints that were active before a Reset
3410  * Device command, or a Disable Slot command.  The Reset Device command leaves
3411  * the control endpoint intact, whereas the Disable Slot command deletes it.
3412  *
3413  * Must be called with xhci->lock held.
3414  */
3415 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3416 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3417 {
3418 	int i;
3419 	unsigned int num_dropped_eps = 0;
3420 	unsigned int drop_flags = 0;
3421 
3422 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3423 		if (virt_dev->eps[i].ring) {
3424 			drop_flags |= 1 << i;
3425 			num_dropped_eps++;
3426 		}
3427 	}
3428 	xhci->num_active_eps -= num_dropped_eps;
3429 	if (num_dropped_eps)
3430 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3431 				"Dropped %u ep ctxs, flags = 0x%x, "
3432 				"%u now active.",
3433 				num_dropped_eps, drop_flags,
3434 				xhci->num_active_eps);
3435 }
3436 
3437 /*
3438  * This submits a Reset Device Command, which will set the device state to 0,
3439  * set the device address to 0, and disable all the endpoints except the default
3440  * control endpoint.  The USB core should come back and call
3441  * xhci_address_device(), and then re-set up the configuration.  If this is
3442  * called because of a usb_reset_and_verify_device(), then the old alternate
3443  * settings will be re-installed through the normal bandwidth allocation
3444  * functions.
3445  *
3446  * Wait for the Reset Device command to finish.  Remove all structures
3447  * associated with the endpoints that were disabled.  Clear the input device
3448  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3449  *
3450  * If the virt_dev to be reset does not exist or does not match the udev,
3451  * it means the device is lost, possibly due to the xHC restore error and
3452  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3453  * re-allocate the device.
3454  */
3455 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3456 {
3457 	int ret, i;
3458 	unsigned long flags;
3459 	struct xhci_hcd *xhci;
3460 	unsigned int slot_id;
3461 	struct xhci_virt_device *virt_dev;
3462 	struct xhci_command *reset_device_cmd;
3463 	int last_freed_endpoint;
3464 	struct xhci_slot_ctx *slot_ctx;
3465 	int old_active_eps = 0;
3466 
3467 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3468 	if (ret <= 0)
3469 		return ret;
3470 	xhci = hcd_to_xhci(hcd);
3471 	slot_id = udev->slot_id;
3472 	virt_dev = xhci->devs[slot_id];
3473 	if (!virt_dev) {
3474 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475 				"not exist. Re-allocate the device\n", slot_id);
3476 		ret = xhci_alloc_dev(hcd, udev);
3477 		if (ret == 1)
3478 			return 0;
3479 		else
3480 			return -EINVAL;
3481 	}
3482 
3483 	if (virt_dev->tt_info)
3484 		old_active_eps = virt_dev->tt_info->active_eps;
3485 
3486 	if (virt_dev->udev != udev) {
3487 		/* If the virt_dev and the udev does not match, this virt_dev
3488 		 * may belong to another udev.
3489 		 * Re-allocate the device.
3490 		 */
3491 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3492 				"not match the udev. Re-allocate the device\n",
3493 				slot_id);
3494 		ret = xhci_alloc_dev(hcd, udev);
3495 		if (ret == 1)
3496 			return 0;
3497 		else
3498 			return -EINVAL;
3499 	}
3500 
3501 	/* If device is not setup, there is no point in resetting it */
3502 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3503 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3504 						SLOT_STATE_DISABLED)
3505 		return 0;
3506 
3507 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3508 	/* Allocate the command structure that holds the struct completion.
3509 	 * Assume we're in process context, since the normal device reset
3510 	 * process has to wait for the device anyway.  Storage devices are
3511 	 * reset as part of error handling, so use GFP_NOIO instead of
3512 	 * GFP_KERNEL.
3513 	 */
3514 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3515 	if (!reset_device_cmd) {
3516 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3517 		return -ENOMEM;
3518 	}
3519 
3520 	/* Attempt to submit the Reset Device command to the command ring */
3521 	spin_lock_irqsave(&xhci->lock, flags);
3522 
3523 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3524 	if (ret) {
3525 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3526 		spin_unlock_irqrestore(&xhci->lock, flags);
3527 		goto command_cleanup;
3528 	}
3529 	xhci_ring_cmd_db(xhci);
3530 	spin_unlock_irqrestore(&xhci->lock, flags);
3531 
3532 	/* Wait for the Reset Device command to finish */
3533 	wait_for_completion(reset_device_cmd->completion);
3534 
3535 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3536 	 * unless we tried to reset a slot ID that wasn't enabled,
3537 	 * or the device wasn't in the addressed or configured state.
3538 	 */
3539 	ret = reset_device_cmd->status;
3540 	switch (ret) {
3541 	case COMP_CMD_ABORT:
3542 	case COMP_CMD_STOP:
3543 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3544 		ret = -ETIME;
3545 		goto command_cleanup;
3546 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3547 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3548 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3549 				slot_id,
3550 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3551 		xhci_dbg(xhci, "Not freeing device rings.\n");
3552 		/* Don't treat this as an error.  May change my mind later. */
3553 		ret = 0;
3554 		goto command_cleanup;
3555 	case COMP_SUCCESS:
3556 		xhci_dbg(xhci, "Successful reset device command.\n");
3557 		break;
3558 	default:
3559 		if (xhci_is_vendor_info_code(xhci, ret))
3560 			break;
3561 		xhci_warn(xhci, "Unknown completion code %u for "
3562 				"reset device command.\n", ret);
3563 		ret = -EINVAL;
3564 		goto command_cleanup;
3565 	}
3566 
3567 	/* Free up host controller endpoint resources */
3568 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3569 		spin_lock_irqsave(&xhci->lock, flags);
3570 		/* Don't delete the default control endpoint resources */
3571 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3572 		spin_unlock_irqrestore(&xhci->lock, flags);
3573 	}
3574 
3575 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3576 	last_freed_endpoint = 1;
3577 	for (i = 1; i < 31; ++i) {
3578 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3579 
3580 		if (ep->ep_state & EP_HAS_STREAMS) {
3581 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3582 					xhci_get_endpoint_address(i));
3583 			xhci_free_stream_info(xhci, ep->stream_info);
3584 			ep->stream_info = NULL;
3585 			ep->ep_state &= ~EP_HAS_STREAMS;
3586 		}
3587 
3588 		if (ep->ring) {
3589 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3590 			last_freed_endpoint = i;
3591 		}
3592 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3593 			xhci_drop_ep_from_interval_table(xhci,
3594 					&virt_dev->eps[i].bw_info,
3595 					virt_dev->bw_table,
3596 					udev,
3597 					&virt_dev->eps[i],
3598 					virt_dev->tt_info);
3599 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3600 	}
3601 	/* If necessary, update the number of active TTs on this root port */
3602 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3603 
3604 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3605 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3606 	ret = 0;
3607 
3608 command_cleanup:
3609 	xhci_free_command(xhci, reset_device_cmd);
3610 	return ret;
3611 }
3612 
3613 /*
3614  * At this point, the struct usb_device is about to go away, the device has
3615  * disconnected, and all traffic has been stopped and the endpoints have been
3616  * disabled.  Free any HC data structures associated with that device.
3617  */
3618 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3619 {
3620 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3621 	struct xhci_virt_device *virt_dev;
3622 	unsigned long flags;
3623 	u32 state;
3624 	int i, ret;
3625 	struct xhci_command *command;
3626 
3627 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3628 	if (!command)
3629 		return;
3630 
3631 #ifndef CONFIG_USB_DEFAULT_PERSIST
3632 	/*
3633 	 * We called pm_runtime_get_noresume when the device was attached.
3634 	 * Decrement the counter here to allow controller to runtime suspend
3635 	 * if no devices remain.
3636 	 */
3637 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3638 		pm_runtime_put_noidle(hcd->self.controller);
3639 #endif
3640 
3641 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3642 	/* If the host is halted due to driver unload, we still need to free the
3643 	 * device.
3644 	 */
3645 	if (ret <= 0 && ret != -ENODEV) {
3646 		kfree(command);
3647 		return;
3648 	}
3649 
3650 	virt_dev = xhci->devs[udev->slot_id];
3651 
3652 	/* Stop any wayward timer functions (which may grab the lock) */
3653 	for (i = 0; i < 31; ++i) {
3654 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3655 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3656 	}
3657 
3658 	spin_lock_irqsave(&xhci->lock, flags);
3659 	/* Don't disable the slot if the host controller is dead. */
3660 	state = readl(&xhci->op_regs->status);
3661 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3662 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3663 		xhci_free_virt_device(xhci, udev->slot_id);
3664 		spin_unlock_irqrestore(&xhci->lock, flags);
3665 		kfree(command);
3666 		return;
3667 	}
3668 
3669 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3670 				    udev->slot_id)) {
3671 		spin_unlock_irqrestore(&xhci->lock, flags);
3672 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3673 		return;
3674 	}
3675 	xhci_ring_cmd_db(xhci);
3676 	spin_unlock_irqrestore(&xhci->lock, flags);
3677 
3678 	/*
3679 	 * Event command completion handler will free any data structures
3680 	 * associated with the slot.  XXX Can free sleep?
3681 	 */
3682 }
3683 
3684 /*
3685  * Checks if we have enough host controller resources for the default control
3686  * endpoint.
3687  *
3688  * Must be called with xhci->lock held.
3689  */
3690 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3691 {
3692 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3693 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3694 				"Not enough ep ctxs: "
3695 				"%u active, need to add 1, limit is %u.",
3696 				xhci->num_active_eps, xhci->limit_active_eps);
3697 		return -ENOMEM;
3698 	}
3699 	xhci->num_active_eps += 1;
3700 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701 			"Adding 1 ep ctx, %u now active.",
3702 			xhci->num_active_eps);
3703 	return 0;
3704 }
3705 
3706 
3707 /*
3708  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3709  * timed out, or allocating memory failed.  Returns 1 on success.
3710  */
3711 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3712 {
3713 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3714 	unsigned long flags;
3715 	int ret, slot_id;
3716 	struct xhci_command *command;
3717 
3718 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3719 	if (!command)
3720 		return 0;
3721 
3722 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3723 	mutex_lock(&xhci->mutex);
3724 	spin_lock_irqsave(&xhci->lock, flags);
3725 	command->completion = &xhci->addr_dev;
3726 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3727 	if (ret) {
3728 		spin_unlock_irqrestore(&xhci->lock, flags);
3729 		mutex_unlock(&xhci->mutex);
3730 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3731 		kfree(command);
3732 		return 0;
3733 	}
3734 	xhci_ring_cmd_db(xhci);
3735 	spin_unlock_irqrestore(&xhci->lock, flags);
3736 
3737 	wait_for_completion(command->completion);
3738 	slot_id = xhci->slot_id;
3739 	mutex_unlock(&xhci->mutex);
3740 
3741 	if (!slot_id || command->status != COMP_SUCCESS) {
3742 		xhci_err(xhci, "Error while assigning device slot ID\n");
3743 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3744 				HCS_MAX_SLOTS(
3745 					readl(&xhci->cap_regs->hcs_params1)));
3746 		kfree(command);
3747 		return 0;
3748 	}
3749 
3750 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3751 		spin_lock_irqsave(&xhci->lock, flags);
3752 		ret = xhci_reserve_host_control_ep_resources(xhci);
3753 		if (ret) {
3754 			spin_unlock_irqrestore(&xhci->lock, flags);
3755 			xhci_warn(xhci, "Not enough host resources, "
3756 					"active endpoint contexts = %u\n",
3757 					xhci->num_active_eps);
3758 			goto disable_slot;
3759 		}
3760 		spin_unlock_irqrestore(&xhci->lock, flags);
3761 	}
3762 	/* Use GFP_NOIO, since this function can be called from
3763 	 * xhci_discover_or_reset_device(), which may be called as part of
3764 	 * mass storage driver error handling.
3765 	 */
3766 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3767 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3768 		goto disable_slot;
3769 	}
3770 	udev->slot_id = slot_id;
3771 
3772 #ifndef CONFIG_USB_DEFAULT_PERSIST
3773 	/*
3774 	 * If resetting upon resume, we can't put the controller into runtime
3775 	 * suspend if there is a device attached.
3776 	 */
3777 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3778 		pm_runtime_get_noresume(hcd->self.controller);
3779 #endif
3780 
3781 
3782 	kfree(command);
3783 	/* Is this a LS or FS device under a HS hub? */
3784 	/* Hub or peripherial? */
3785 	return 1;
3786 
3787 disable_slot:
3788 	/* Disable slot, if we can do it without mem alloc */
3789 	spin_lock_irqsave(&xhci->lock, flags);
3790 	command->completion = NULL;
3791 	command->status = 0;
3792 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3793 				     udev->slot_id))
3794 		xhci_ring_cmd_db(xhci);
3795 	spin_unlock_irqrestore(&xhci->lock, flags);
3796 	return 0;
3797 }
3798 
3799 /*
3800  * Issue an Address Device command and optionally send a corresponding
3801  * SetAddress request to the device.
3802  */
3803 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3804 			     enum xhci_setup_dev setup)
3805 {
3806 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3807 	unsigned long flags;
3808 	struct xhci_virt_device *virt_dev;
3809 	int ret = 0;
3810 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3811 	struct xhci_slot_ctx *slot_ctx;
3812 	struct xhci_input_control_ctx *ctrl_ctx;
3813 	u64 temp_64;
3814 	struct xhci_command *command = NULL;
3815 
3816 	mutex_lock(&xhci->mutex);
3817 
3818 	if (xhci->xhc_state)	/* dying or halted */
3819 		goto out;
3820 
3821 	if (!udev->slot_id) {
3822 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3823 				"Bad Slot ID %d", udev->slot_id);
3824 		ret = -EINVAL;
3825 		goto out;
3826 	}
3827 
3828 	virt_dev = xhci->devs[udev->slot_id];
3829 
3830 	if (WARN_ON(!virt_dev)) {
3831 		/*
3832 		 * In plug/unplug torture test with an NEC controller,
3833 		 * a zero-dereference was observed once due to virt_dev = 0.
3834 		 * Print useful debug rather than crash if it is observed again!
3835 		 */
3836 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3837 			udev->slot_id);
3838 		ret = -EINVAL;
3839 		goto out;
3840 	}
3841 
3842 	if (setup == SETUP_CONTEXT_ONLY) {
3843 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3844 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3845 		    SLOT_STATE_DEFAULT) {
3846 			xhci_dbg(xhci, "Slot already in default state\n");
3847 			goto out;
3848 		}
3849 	}
3850 
3851 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3852 	if (!command) {
3853 		ret = -ENOMEM;
3854 		goto out;
3855 	}
3856 
3857 	command->in_ctx = virt_dev->in_ctx;
3858 	command->completion = &xhci->addr_dev;
3859 
3860 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3861 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3862 	if (!ctrl_ctx) {
3863 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3864 				__func__);
3865 		ret = -EINVAL;
3866 		goto out;
3867 	}
3868 	/*
3869 	 * If this is the first Set Address since device plug-in or
3870 	 * virt_device realloaction after a resume with an xHCI power loss,
3871 	 * then set up the slot context.
3872 	 */
3873 	if (!slot_ctx->dev_info)
3874 		xhci_setup_addressable_virt_dev(xhci, udev);
3875 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3876 	else
3877 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3878 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3879 	ctrl_ctx->drop_flags = 0;
3880 
3881 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3882 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3883 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3884 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3885 
3886 	spin_lock_irqsave(&xhci->lock, flags);
3887 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3888 					udev->slot_id, setup);
3889 	if (ret) {
3890 		spin_unlock_irqrestore(&xhci->lock, flags);
3891 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3892 				"FIXME: allocate a command ring segment");
3893 		goto out;
3894 	}
3895 	xhci_ring_cmd_db(xhci);
3896 	spin_unlock_irqrestore(&xhci->lock, flags);
3897 
3898 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3899 	wait_for_completion(command->completion);
3900 
3901 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3902 	 * the SetAddress() "recovery interval" required by USB and aborting the
3903 	 * command on a timeout.
3904 	 */
3905 	switch (command->status) {
3906 	case COMP_CMD_ABORT:
3907 	case COMP_CMD_STOP:
3908 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3909 		ret = -ETIME;
3910 		break;
3911 	case COMP_CTX_STATE:
3912 	case COMP_EBADSLT:
3913 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3914 			 act, udev->slot_id);
3915 		ret = -EINVAL;
3916 		break;
3917 	case COMP_TX_ERR:
3918 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3919 		ret = -EPROTO;
3920 		break;
3921 	case COMP_DEV_ERR:
3922 		dev_warn(&udev->dev,
3923 			 "ERROR: Incompatible device for setup %s command\n", act);
3924 		ret = -ENODEV;
3925 		break;
3926 	case COMP_SUCCESS:
3927 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 			       "Successful setup %s command", act);
3929 		break;
3930 	default:
3931 		xhci_err(xhci,
3932 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3933 			 act, command->status);
3934 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3935 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3936 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3937 		ret = -EINVAL;
3938 		break;
3939 	}
3940 	if (ret)
3941 		goto out;
3942 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3943 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3944 			"Op regs DCBAA ptr = %#016llx", temp_64);
3945 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946 		"Slot ID %d dcbaa entry @%p = %#016llx",
3947 		udev->slot_id,
3948 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3949 		(unsigned long long)
3950 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3951 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3952 			"Output Context DMA address = %#08llx",
3953 			(unsigned long long)virt_dev->out_ctx->dma);
3954 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3955 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3956 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3957 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3958 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3959 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3960 	/*
3961 	 * USB core uses address 1 for the roothubs, so we add one to the
3962 	 * address given back to us by the HC.
3963 	 */
3964 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3965 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3966 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3967 	/* Zero the input context control for later use */
3968 	ctrl_ctx->add_flags = 0;
3969 	ctrl_ctx->drop_flags = 0;
3970 
3971 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3972 		       "Internal device address = %d",
3973 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3974 out:
3975 	mutex_unlock(&xhci->mutex);
3976 	kfree(command);
3977 	return ret;
3978 }
3979 
3980 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3981 {
3982 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3983 }
3984 
3985 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3988 }
3989 
3990 /*
3991  * Transfer the port index into real index in the HW port status
3992  * registers. Caculate offset between the port's PORTSC register
3993  * and port status base. Divide the number of per port register
3994  * to get the real index. The raw port number bases 1.
3995  */
3996 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3997 {
3998 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3999 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4000 	__le32 __iomem *addr;
4001 	int raw_port;
4002 
4003 	if (hcd->speed < HCD_USB3)
4004 		addr = xhci->usb2_ports[port1 - 1];
4005 	else
4006 		addr = xhci->usb3_ports[port1 - 1];
4007 
4008 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4009 	return raw_port;
4010 }
4011 
4012 /*
4013  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4014  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4015  */
4016 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4017 			struct usb_device *udev, u16 max_exit_latency)
4018 {
4019 	struct xhci_virt_device *virt_dev;
4020 	struct xhci_command *command;
4021 	struct xhci_input_control_ctx *ctrl_ctx;
4022 	struct xhci_slot_ctx *slot_ctx;
4023 	unsigned long flags;
4024 	int ret;
4025 
4026 	spin_lock_irqsave(&xhci->lock, flags);
4027 
4028 	virt_dev = xhci->devs[udev->slot_id];
4029 
4030 	/*
4031 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4032 	 * xHC was re-initialized. Exit latency will be set later after
4033 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4034 	 */
4035 
4036 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4037 		spin_unlock_irqrestore(&xhci->lock, flags);
4038 		return 0;
4039 	}
4040 
4041 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4042 	command = xhci->lpm_command;
4043 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4044 	if (!ctrl_ctx) {
4045 		spin_unlock_irqrestore(&xhci->lock, flags);
4046 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4047 				__func__);
4048 		return -ENOMEM;
4049 	}
4050 
4051 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4052 	spin_unlock_irqrestore(&xhci->lock, flags);
4053 
4054 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4055 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4056 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4057 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4058 	slot_ctx->dev_state = 0;
4059 
4060 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4061 			"Set up evaluate context for LPM MEL change.");
4062 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4063 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4064 
4065 	/* Issue and wait for the evaluate context command. */
4066 	ret = xhci_configure_endpoint(xhci, udev, command,
4067 			true, true);
4068 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4069 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4070 
4071 	if (!ret) {
4072 		spin_lock_irqsave(&xhci->lock, flags);
4073 		virt_dev->current_mel = max_exit_latency;
4074 		spin_unlock_irqrestore(&xhci->lock, flags);
4075 	}
4076 	return ret;
4077 }
4078 
4079 #ifdef CONFIG_PM
4080 
4081 /* BESL to HIRD Encoding array for USB2 LPM */
4082 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4083 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4084 
4085 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4086 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4087 					struct usb_device *udev)
4088 {
4089 	int u2del, besl, besl_host;
4090 	int besl_device = 0;
4091 	u32 field;
4092 
4093 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4094 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095 
4096 	if (field & USB_BESL_SUPPORT) {
4097 		for (besl_host = 0; besl_host < 16; besl_host++) {
4098 			if (xhci_besl_encoding[besl_host] >= u2del)
4099 				break;
4100 		}
4101 		/* Use baseline BESL value as default */
4102 		if (field & USB_BESL_BASELINE_VALID)
4103 			besl_device = USB_GET_BESL_BASELINE(field);
4104 		else if (field & USB_BESL_DEEP_VALID)
4105 			besl_device = USB_GET_BESL_DEEP(field);
4106 	} else {
4107 		if (u2del <= 50)
4108 			besl_host = 0;
4109 		else
4110 			besl_host = (u2del - 51) / 75 + 1;
4111 	}
4112 
4113 	besl = besl_host + besl_device;
4114 	if (besl > 15)
4115 		besl = 15;
4116 
4117 	return besl;
4118 }
4119 
4120 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4121 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4122 {
4123 	u32 field;
4124 	int l1;
4125 	int besld = 0;
4126 	int hirdm = 0;
4127 
4128 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4129 
4130 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4131 	l1 = udev->l1_params.timeout / 256;
4132 
4133 	/* device has preferred BESLD */
4134 	if (field & USB_BESL_DEEP_VALID) {
4135 		besld = USB_GET_BESL_DEEP(field);
4136 		hirdm = 1;
4137 	}
4138 
4139 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4140 }
4141 
4142 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4143 			struct usb_device *udev, int enable)
4144 {
4145 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4146 	__le32 __iomem	**port_array;
4147 	__le32 __iomem	*pm_addr, *hlpm_addr;
4148 	u32		pm_val, hlpm_val, field;
4149 	unsigned int	port_num;
4150 	unsigned long	flags;
4151 	int		hird, exit_latency;
4152 	int		ret;
4153 
4154 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4155 			!udev->lpm_capable)
4156 		return -EPERM;
4157 
4158 	if (!udev->parent || udev->parent->parent ||
4159 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4160 		return -EPERM;
4161 
4162 	if (udev->usb2_hw_lpm_capable != 1)
4163 		return -EPERM;
4164 
4165 	spin_lock_irqsave(&xhci->lock, flags);
4166 
4167 	port_array = xhci->usb2_ports;
4168 	port_num = udev->portnum - 1;
4169 	pm_addr = port_array[port_num] + PORTPMSC;
4170 	pm_val = readl(pm_addr);
4171 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4172 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4173 
4174 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4175 			enable ? "enable" : "disable", port_num + 1);
4176 
4177 	if (enable) {
4178 		/* Host supports BESL timeout instead of HIRD */
4179 		if (udev->usb2_hw_lpm_besl_capable) {
4180 			/* if device doesn't have a preferred BESL value use a
4181 			 * default one which works with mixed HIRD and BESL
4182 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4183 			 */
4184 			if ((field & USB_BESL_SUPPORT) &&
4185 			    (field & USB_BESL_BASELINE_VALID))
4186 				hird = USB_GET_BESL_BASELINE(field);
4187 			else
4188 				hird = udev->l1_params.besl;
4189 
4190 			exit_latency = xhci_besl_encoding[hird];
4191 			spin_unlock_irqrestore(&xhci->lock, flags);
4192 
4193 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4194 			 * input context for link powermanagement evaluate
4195 			 * context commands. It is protected by hcd->bandwidth
4196 			 * mutex and is shared by all devices. We need to set
4197 			 * the max ext latency in USB 2 BESL LPM as well, so
4198 			 * use the same mutex and xhci_change_max_exit_latency()
4199 			 */
4200 			mutex_lock(hcd->bandwidth_mutex);
4201 			ret = xhci_change_max_exit_latency(xhci, udev,
4202 							   exit_latency);
4203 			mutex_unlock(hcd->bandwidth_mutex);
4204 
4205 			if (ret < 0)
4206 				return ret;
4207 			spin_lock_irqsave(&xhci->lock, flags);
4208 
4209 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4210 			writel(hlpm_val, hlpm_addr);
4211 			/* flush write */
4212 			readl(hlpm_addr);
4213 		} else {
4214 			hird = xhci_calculate_hird_besl(xhci, udev);
4215 		}
4216 
4217 		pm_val &= ~PORT_HIRD_MASK;
4218 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4219 		writel(pm_val, pm_addr);
4220 		pm_val = readl(pm_addr);
4221 		pm_val |= PORT_HLE;
4222 		writel(pm_val, pm_addr);
4223 		/* flush write */
4224 		readl(pm_addr);
4225 	} else {
4226 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4227 		writel(pm_val, pm_addr);
4228 		/* flush write */
4229 		readl(pm_addr);
4230 		if (udev->usb2_hw_lpm_besl_capable) {
4231 			spin_unlock_irqrestore(&xhci->lock, flags);
4232 			mutex_lock(hcd->bandwidth_mutex);
4233 			xhci_change_max_exit_latency(xhci, udev, 0);
4234 			mutex_unlock(hcd->bandwidth_mutex);
4235 			return 0;
4236 		}
4237 	}
4238 
4239 	spin_unlock_irqrestore(&xhci->lock, flags);
4240 	return 0;
4241 }
4242 
4243 /* check if a usb2 port supports a given extened capability protocol
4244  * only USB2 ports extended protocol capability values are cached.
4245  * Return 1 if capability is supported
4246  */
4247 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4248 					   unsigned capability)
4249 {
4250 	u32 port_offset, port_count;
4251 	int i;
4252 
4253 	for (i = 0; i < xhci->num_ext_caps; i++) {
4254 		if (xhci->ext_caps[i] & capability) {
4255 			/* port offsets starts at 1 */
4256 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4257 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4258 			if (port >= port_offset &&
4259 			    port < port_offset + port_count)
4260 				return 1;
4261 		}
4262 	}
4263 	return 0;
4264 }
4265 
4266 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4267 {
4268 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4269 	int		portnum = udev->portnum - 1;
4270 
4271 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4272 			!udev->lpm_capable)
4273 		return 0;
4274 
4275 	/* we only support lpm for non-hub device connected to root hub yet */
4276 	if (!udev->parent || udev->parent->parent ||
4277 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4278 		return 0;
4279 
4280 	if (xhci->hw_lpm_support == 1 &&
4281 			xhci_check_usb2_port_capability(
4282 				xhci, portnum, XHCI_HLC)) {
4283 		udev->usb2_hw_lpm_capable = 1;
4284 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4285 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4286 		if (xhci_check_usb2_port_capability(xhci, portnum,
4287 					XHCI_BLC))
4288 			udev->usb2_hw_lpm_besl_capable = 1;
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4295 
4296 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4297 static unsigned long long xhci_service_interval_to_ns(
4298 		struct usb_endpoint_descriptor *desc)
4299 {
4300 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4301 }
4302 
4303 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4304 		enum usb3_link_state state)
4305 {
4306 	unsigned long long sel;
4307 	unsigned long long pel;
4308 	unsigned int max_sel_pel;
4309 	char *state_name;
4310 
4311 	switch (state) {
4312 	case USB3_LPM_U1:
4313 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4314 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4315 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4316 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4317 		state_name = "U1";
4318 		break;
4319 	case USB3_LPM_U2:
4320 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4321 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4322 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4323 		state_name = "U2";
4324 		break;
4325 	default:
4326 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4327 				__func__);
4328 		return USB3_LPM_DISABLED;
4329 	}
4330 
4331 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4332 		return USB3_LPM_DEVICE_INITIATED;
4333 
4334 	if (sel > max_sel_pel)
4335 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4336 				"due to long SEL %llu ms\n",
4337 				state_name, sel);
4338 	else
4339 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4340 				"due to long PEL %llu ms\n",
4341 				state_name, pel);
4342 	return USB3_LPM_DISABLED;
4343 }
4344 
4345 /* The U1 timeout should be the maximum of the following values:
4346  *  - For control endpoints, U1 system exit latency (SEL) * 3
4347  *  - For bulk endpoints, U1 SEL * 5
4348  *  - For interrupt endpoints:
4349  *    - Notification EPs, U1 SEL * 3
4350  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4351  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4352  */
4353 static unsigned long long xhci_calculate_intel_u1_timeout(
4354 		struct usb_device *udev,
4355 		struct usb_endpoint_descriptor *desc)
4356 {
4357 	unsigned long long timeout_ns;
4358 	int ep_type;
4359 	int intr_type;
4360 
4361 	ep_type = usb_endpoint_type(desc);
4362 	switch (ep_type) {
4363 	case USB_ENDPOINT_XFER_CONTROL:
4364 		timeout_ns = udev->u1_params.sel * 3;
4365 		break;
4366 	case USB_ENDPOINT_XFER_BULK:
4367 		timeout_ns = udev->u1_params.sel * 5;
4368 		break;
4369 	case USB_ENDPOINT_XFER_INT:
4370 		intr_type = usb_endpoint_interrupt_type(desc);
4371 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4372 			timeout_ns = udev->u1_params.sel * 3;
4373 			break;
4374 		}
4375 		/* Otherwise the calculation is the same as isoc eps */
4376 	case USB_ENDPOINT_XFER_ISOC:
4377 		timeout_ns = xhci_service_interval_to_ns(desc);
4378 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4379 		if (timeout_ns < udev->u1_params.sel * 2)
4380 			timeout_ns = udev->u1_params.sel * 2;
4381 		break;
4382 	default:
4383 		return 0;
4384 	}
4385 
4386 	return timeout_ns;
4387 }
4388 
4389 /* Returns the hub-encoded U1 timeout value. */
4390 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4391 		struct usb_device *udev,
4392 		struct usb_endpoint_descriptor *desc)
4393 {
4394 	unsigned long long timeout_ns;
4395 
4396 	if (xhci->quirks & XHCI_INTEL_HOST)
4397 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4398 	else
4399 		timeout_ns = udev->u1_params.sel;
4400 
4401 	/* The U1 timeout is encoded in 1us intervals.
4402 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4403 	 */
4404 	if (timeout_ns == USB3_LPM_DISABLED)
4405 		timeout_ns = 1;
4406 	else
4407 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4408 
4409 	/* If the necessary timeout value is bigger than what we can set in the
4410 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4411 	 */
4412 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4413 		return timeout_ns;
4414 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4415 			"due to long timeout %llu ms\n", timeout_ns);
4416 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 }
4418 
4419 /* The U2 timeout should be the maximum of:
4420  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4421  *  - largest bInterval of any active periodic endpoint (to avoid going
4422  *    into lower power link states between intervals).
4423  *  - the U2 Exit Latency of the device
4424  */
4425 static unsigned long long xhci_calculate_intel_u2_timeout(
4426 		struct usb_device *udev,
4427 		struct usb_endpoint_descriptor *desc)
4428 {
4429 	unsigned long long timeout_ns;
4430 	unsigned long long u2_del_ns;
4431 
4432 	timeout_ns = 10 * 1000 * 1000;
4433 
4434 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4435 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4436 		timeout_ns = xhci_service_interval_to_ns(desc);
4437 
4438 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4439 	if (u2_del_ns > timeout_ns)
4440 		timeout_ns = u2_del_ns;
4441 
4442 	return timeout_ns;
4443 }
4444 
4445 /* Returns the hub-encoded U2 timeout value. */
4446 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4447 		struct usb_device *udev,
4448 		struct usb_endpoint_descriptor *desc)
4449 {
4450 	unsigned long long timeout_ns;
4451 
4452 	if (xhci->quirks & XHCI_INTEL_HOST)
4453 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4454 	else
4455 		timeout_ns = udev->u2_params.sel;
4456 
4457 	/* The U2 timeout is encoded in 256us intervals */
4458 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4459 	/* If the necessary timeout value is bigger than what we can set in the
4460 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4461 	 */
4462 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4463 		return timeout_ns;
4464 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4465 			"due to long timeout %llu ms\n", timeout_ns);
4466 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4467 }
4468 
4469 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4470 		struct usb_device *udev,
4471 		struct usb_endpoint_descriptor *desc,
4472 		enum usb3_link_state state,
4473 		u16 *timeout)
4474 {
4475 	if (state == USB3_LPM_U1)
4476 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4477 	else if (state == USB3_LPM_U2)
4478 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4479 
4480 	return USB3_LPM_DISABLED;
4481 }
4482 
4483 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4484 		struct usb_device *udev,
4485 		struct usb_endpoint_descriptor *desc,
4486 		enum usb3_link_state state,
4487 		u16 *timeout)
4488 {
4489 	u16 alt_timeout;
4490 
4491 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4492 		desc, state, timeout);
4493 
4494 	/* If we found we can't enable hub-initiated LPM, or
4495 	 * the U1 or U2 exit latency was too high to allow
4496 	 * device-initiated LPM as well, just stop searching.
4497 	 */
4498 	if (alt_timeout == USB3_LPM_DISABLED ||
4499 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4500 		*timeout = alt_timeout;
4501 		return -E2BIG;
4502 	}
4503 	if (alt_timeout > *timeout)
4504 		*timeout = alt_timeout;
4505 	return 0;
4506 }
4507 
4508 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4509 		struct usb_device *udev,
4510 		struct usb_host_interface *alt,
4511 		enum usb3_link_state state,
4512 		u16 *timeout)
4513 {
4514 	int j;
4515 
4516 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4517 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4518 					&alt->endpoint[j].desc, state, timeout))
4519 			return -E2BIG;
4520 		continue;
4521 	}
4522 	return 0;
4523 }
4524 
4525 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4526 		enum usb3_link_state state)
4527 {
4528 	struct usb_device *parent;
4529 	unsigned int num_hubs;
4530 
4531 	if (state == USB3_LPM_U2)
4532 		return 0;
4533 
4534 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4535 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4536 			parent = parent->parent)
4537 		num_hubs++;
4538 
4539 	if (num_hubs < 2)
4540 		return 0;
4541 
4542 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4543 			" below second-tier hub.\n");
4544 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4545 			"to decrease power consumption.\n");
4546 	return -E2BIG;
4547 }
4548 
4549 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4550 		struct usb_device *udev,
4551 		enum usb3_link_state state)
4552 {
4553 	if (xhci->quirks & XHCI_INTEL_HOST)
4554 		return xhci_check_intel_tier_policy(udev, state);
4555 	else
4556 		return 0;
4557 }
4558 
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560  * If the tier check or timeout setting functions return with a non-zero exit
4561  * code, that means the timeout value has been finalized and we shouldn't look
4562  * at any more endpoints.
4563  */
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565 			struct usb_device *udev, enum usb3_link_state state)
4566 {
4567 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568 	struct usb_host_config *config;
4569 	char *state_name;
4570 	int i;
4571 	u16 timeout = USB3_LPM_DISABLED;
4572 
4573 	if (state == USB3_LPM_U1)
4574 		state_name = "U1";
4575 	else if (state == USB3_LPM_U2)
4576 		state_name = "U2";
4577 	else {
4578 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4579 				state);
4580 		return timeout;
4581 	}
4582 
4583 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4584 		return timeout;
4585 
4586 	/* Gather some information about the currently installed configuration
4587 	 * and alternate interface settings.
4588 	 */
4589 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4590 			state, &timeout))
4591 		return timeout;
4592 
4593 	config = udev->actconfig;
4594 	if (!config)
4595 		return timeout;
4596 
4597 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4598 		struct usb_driver *driver;
4599 		struct usb_interface *intf = config->interface[i];
4600 
4601 		if (!intf)
4602 			continue;
4603 
4604 		/* Check if any currently bound drivers want hub-initiated LPM
4605 		 * disabled.
4606 		 */
4607 		if (intf->dev.driver) {
4608 			driver = to_usb_driver(intf->dev.driver);
4609 			if (driver && driver->disable_hub_initiated_lpm) {
4610 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611 						"at request of driver %s\n",
4612 						state_name, driver->name);
4613 				return xhci_get_timeout_no_hub_lpm(udev, state);
4614 			}
4615 		}
4616 
4617 		/* Not sure how this could happen... */
4618 		if (!intf->cur_altsetting)
4619 			continue;
4620 
4621 		if (xhci_update_timeout_for_interface(xhci, udev,
4622 					intf->cur_altsetting,
4623 					state, &timeout))
4624 			return timeout;
4625 	}
4626 	return timeout;
4627 }
4628 
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630 		enum usb3_link_state state_changed,
4631 		u16 hub_encoded_timeout)
4632 {
4633 	unsigned long long u1_mel_us = 0;
4634 	unsigned long long u2_mel_us = 0;
4635 	unsigned long long mel_us = 0;
4636 	bool disabling_u1;
4637 	bool disabling_u2;
4638 	bool enabling_u1;
4639 	bool enabling_u2;
4640 
4641 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642 			hub_encoded_timeout == USB3_LPM_DISABLED);
4643 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644 			hub_encoded_timeout == USB3_LPM_DISABLED);
4645 
4646 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 			hub_encoded_timeout != USB3_LPM_DISABLED);
4648 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 			hub_encoded_timeout != USB3_LPM_DISABLED);
4650 
4651 	/* If U1 was already enabled and we're not disabling it,
4652 	 * or we're going to enable U1, account for the U1 max exit latency.
4653 	 */
4654 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4655 			enabling_u1)
4656 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4658 			enabling_u2)
4659 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4660 
4661 	if (u1_mel_us > u2_mel_us)
4662 		mel_us = u1_mel_us;
4663 	else
4664 		mel_us = u2_mel_us;
4665 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4666 	if (mel_us > MAX_EXIT) {
4667 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668 				"is too big.\n", mel_us);
4669 		return -E2BIG;
4670 	}
4671 	return mel_us;
4672 }
4673 
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676 			struct usb_device *udev, enum usb3_link_state state)
4677 {
4678 	struct xhci_hcd	*xhci;
4679 	u16 hub_encoded_timeout;
4680 	int mel;
4681 	int ret;
4682 
4683 	xhci = hcd_to_xhci(hcd);
4684 	/* The LPM timeout values are pretty host-controller specific, so don't
4685 	 * enable hub-initiated timeouts unless the vendor has provided
4686 	 * information about their timeout algorithm.
4687 	 */
4688 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689 			!xhci->devs[udev->slot_id])
4690 		return USB3_LPM_DISABLED;
4691 
4692 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4694 	if (mel < 0) {
4695 		/* Max Exit Latency is too big, disable LPM. */
4696 		hub_encoded_timeout = USB3_LPM_DISABLED;
4697 		mel = 0;
4698 	}
4699 
4700 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4701 	if (ret)
4702 		return ret;
4703 	return hub_encoded_timeout;
4704 }
4705 
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 			struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 	struct xhci_hcd	*xhci;
4710 	u16 mel;
4711 
4712 	xhci = hcd_to_xhci(hcd);
4713 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714 			!xhci->devs[udev->slot_id])
4715 		return 0;
4716 
4717 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4718 	return xhci_change_max_exit_latency(xhci, udev, mel);
4719 }
4720 #else /* CONFIG_PM */
4721 
4722 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4723 				struct usb_device *udev, int enable)
4724 {
4725 	return 0;
4726 }
4727 
4728 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4729 {
4730 	return 0;
4731 }
4732 
4733 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4734 			struct usb_device *udev, enum usb3_link_state state)
4735 {
4736 	return USB3_LPM_DISABLED;
4737 }
4738 
4739 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4740 			struct usb_device *udev, enum usb3_link_state state)
4741 {
4742 	return 0;
4743 }
4744 #endif	/* CONFIG_PM */
4745 
4746 /*-------------------------------------------------------------------------*/
4747 
4748 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4749  * internal data structures for the device.
4750  */
4751 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4752 			struct usb_tt *tt, gfp_t mem_flags)
4753 {
4754 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4755 	struct xhci_virt_device *vdev;
4756 	struct xhci_command *config_cmd;
4757 	struct xhci_input_control_ctx *ctrl_ctx;
4758 	struct xhci_slot_ctx *slot_ctx;
4759 	unsigned long flags;
4760 	unsigned think_time;
4761 	int ret;
4762 
4763 	/* Ignore root hubs */
4764 	if (!hdev->parent)
4765 		return 0;
4766 
4767 	vdev = xhci->devs[hdev->slot_id];
4768 	if (!vdev) {
4769 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4770 		return -EINVAL;
4771 	}
4772 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4773 	if (!config_cmd) {
4774 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4775 		return -ENOMEM;
4776 	}
4777 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4778 	if (!ctrl_ctx) {
4779 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4780 				__func__);
4781 		xhci_free_command(xhci, config_cmd);
4782 		return -ENOMEM;
4783 	}
4784 
4785 	spin_lock_irqsave(&xhci->lock, flags);
4786 	if (hdev->speed == USB_SPEED_HIGH &&
4787 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4788 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4789 		xhci_free_command(xhci, config_cmd);
4790 		spin_unlock_irqrestore(&xhci->lock, flags);
4791 		return -ENOMEM;
4792 	}
4793 
4794 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4795 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4796 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4797 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4798 	/*
4799 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4800 	 * but it may be already set to 1 when setup an xHCI virtual
4801 	 * device, so clear it anyway.
4802 	 */
4803 	if (tt->multi)
4804 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4805 	else if (hdev->speed == USB_SPEED_FULL)
4806 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4807 
4808 	if (xhci->hci_version > 0x95) {
4809 		xhci_dbg(xhci, "xHCI version %x needs hub "
4810 				"TT think time and number of ports\n",
4811 				(unsigned int) xhci->hci_version);
4812 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4813 		/* Set TT think time - convert from ns to FS bit times.
4814 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4815 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4816 		 *
4817 		 * xHCI 1.0: this field shall be 0 if the device is not a
4818 		 * High-spped hub.
4819 		 */
4820 		think_time = tt->think_time;
4821 		if (think_time != 0)
4822 			think_time = (think_time / 666) - 1;
4823 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4824 			slot_ctx->tt_info |=
4825 				cpu_to_le32(TT_THINK_TIME(think_time));
4826 	} else {
4827 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4828 				"TT think time or number of ports\n",
4829 				(unsigned int) xhci->hci_version);
4830 	}
4831 	slot_ctx->dev_state = 0;
4832 	spin_unlock_irqrestore(&xhci->lock, flags);
4833 
4834 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4835 			(xhci->hci_version > 0x95) ?
4836 			"configure endpoint" : "evaluate context");
4837 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4838 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4839 
4840 	/* Issue and wait for the configure endpoint or
4841 	 * evaluate context command.
4842 	 */
4843 	if (xhci->hci_version > 0x95)
4844 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4845 				false, false);
4846 	else
4847 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4848 				true, false);
4849 
4850 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4851 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4852 
4853 	xhci_free_command(xhci, config_cmd);
4854 	return ret;
4855 }
4856 
4857 int xhci_get_frame(struct usb_hcd *hcd)
4858 {
4859 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4860 	/* EHCI mods by the periodic size.  Why? */
4861 	return readl(&xhci->run_regs->microframe_index) >> 3;
4862 }
4863 
4864 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4865 {
4866 	struct xhci_hcd		*xhci;
4867 	struct device		*dev = hcd->self.controller;
4868 	int			retval;
4869 
4870 	/* Accept arbitrarily long scatter-gather lists */
4871 	hcd->self.sg_tablesize = ~0;
4872 
4873 	/* support to build packet from discontinuous buffers */
4874 	hcd->self.no_sg_constraint = 1;
4875 
4876 	/* XHCI controllers don't stop the ep queue on short packets :| */
4877 	hcd->self.no_stop_on_short = 1;
4878 
4879 	xhci = hcd_to_xhci(hcd);
4880 
4881 	if (usb_hcd_is_primary_hcd(hcd)) {
4882 		xhci->main_hcd = hcd;
4883 		/* Mark the first roothub as being USB 2.0.
4884 		 * The xHCI driver will register the USB 3.0 roothub.
4885 		 */
4886 		hcd->speed = HCD_USB2;
4887 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4888 		/*
4889 		 * USB 2.0 roothub under xHCI has an integrated TT,
4890 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4891 		 * companion controller.
4892 		 */
4893 		hcd->has_tt = 1;
4894 	} else {
4895 		if (xhci->sbrn == 0x31) {
4896 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4897 			hcd->speed = HCD_USB31;
4898 		}
4899 		/* xHCI private pointer was set in xhci_pci_probe for the second
4900 		 * registered roothub.
4901 		 */
4902 		return 0;
4903 	}
4904 
4905 	mutex_init(&xhci->mutex);
4906 	xhci->cap_regs = hcd->regs;
4907 	xhci->op_regs = hcd->regs +
4908 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4909 	xhci->run_regs = hcd->regs +
4910 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4911 	/* Cache read-only capability registers */
4912 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4913 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4914 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4915 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4916 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4917 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4918 	if (xhci->hci_version > 0x100)
4919 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4920 	xhci_print_registers(xhci);
4921 
4922 	xhci->quirks = quirks;
4923 
4924 	get_quirks(dev, xhci);
4925 
4926 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4927 	 * success event after a short transfer. This quirk will ignore such
4928 	 * spurious event.
4929 	 */
4930 	if (xhci->hci_version > 0x96)
4931 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4932 
4933 	/* Make sure the HC is halted. */
4934 	retval = xhci_halt(xhci);
4935 	if (retval)
4936 		return retval;
4937 
4938 	xhci_dbg(xhci, "Resetting HCD\n");
4939 	/* Reset the internal HC memory state and registers. */
4940 	retval = xhci_reset(xhci);
4941 	if (retval)
4942 		return retval;
4943 	xhci_dbg(xhci, "Reset complete\n");
4944 
4945 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4946 	 * if xHC supports 64-bit addressing */
4947 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4948 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4949 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4950 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4951 	} else {
4952 		/*
4953 		 * This is to avoid error in cases where a 32-bit USB
4954 		 * controller is used on a 64-bit capable system.
4955 		 */
4956 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4957 		if (retval)
4958 			return retval;
4959 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4960 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4961 	}
4962 
4963 	xhci_dbg(xhci, "Calling HCD init\n");
4964 	/* Initialize HCD and host controller data structures. */
4965 	retval = xhci_init(hcd);
4966 	if (retval)
4967 		return retval;
4968 	xhci_dbg(xhci, "Called HCD init\n");
4969 
4970 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4971 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4972 
4973 	return 0;
4974 }
4975 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4976 
4977 static const struct hc_driver xhci_hc_driver = {
4978 	.description =		"xhci-hcd",
4979 	.product_desc =		"xHCI Host Controller",
4980 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4981 
4982 	/*
4983 	 * generic hardware linkage
4984 	 */
4985 	.irq =			xhci_irq,
4986 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4987 
4988 	/*
4989 	 * basic lifecycle operations
4990 	 */
4991 	.reset =		NULL, /* set in xhci_init_driver() */
4992 	.start =		xhci_run,
4993 	.stop =			xhci_stop,
4994 	.shutdown =		xhci_shutdown,
4995 
4996 	/*
4997 	 * managing i/o requests and associated device resources
4998 	 */
4999 	.urb_enqueue =		xhci_urb_enqueue,
5000 	.urb_dequeue =		xhci_urb_dequeue,
5001 	.alloc_dev =		xhci_alloc_dev,
5002 	.free_dev =		xhci_free_dev,
5003 	.alloc_streams =	xhci_alloc_streams,
5004 	.free_streams =		xhci_free_streams,
5005 	.add_endpoint =		xhci_add_endpoint,
5006 	.drop_endpoint =	xhci_drop_endpoint,
5007 	.endpoint_reset =	xhci_endpoint_reset,
5008 	.check_bandwidth =	xhci_check_bandwidth,
5009 	.reset_bandwidth =	xhci_reset_bandwidth,
5010 	.address_device =	xhci_address_device,
5011 	.enable_device =	xhci_enable_device,
5012 	.update_hub_device =	xhci_update_hub_device,
5013 	.reset_device =		xhci_discover_or_reset_device,
5014 
5015 	/*
5016 	 * scheduling support
5017 	 */
5018 	.get_frame_number =	xhci_get_frame,
5019 
5020 	/*
5021 	 * root hub support
5022 	 */
5023 	.hub_control =		xhci_hub_control,
5024 	.hub_status_data =	xhci_hub_status_data,
5025 	.bus_suspend =		xhci_bus_suspend,
5026 	.bus_resume =		xhci_bus_resume,
5027 
5028 	/*
5029 	 * call back when device connected and addressed
5030 	 */
5031 	.update_device =        xhci_update_device,
5032 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5033 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5034 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5035 	.find_raw_port_number =	xhci_find_raw_port_number,
5036 };
5037 
5038 void xhci_init_driver(struct hc_driver *drv,
5039 		      const struct xhci_driver_overrides *over)
5040 {
5041 	BUG_ON(!over);
5042 
5043 	/* Copy the generic table to drv then apply the overrides */
5044 	*drv = xhci_hc_driver;
5045 
5046 	if (over) {
5047 		drv->hcd_priv_size += over->extra_priv_size;
5048 		if (over->reset)
5049 			drv->reset = over->reset;
5050 		if (over->start)
5051 			drv->start = over->start;
5052 	}
5053 }
5054 EXPORT_SYMBOL_GPL(xhci_init_driver);
5055 
5056 MODULE_DESCRIPTION(DRIVER_DESC);
5057 MODULE_AUTHOR(DRIVER_AUTHOR);
5058 MODULE_LICENSE("GPL");
5059 
5060 static int __init xhci_hcd_init(void)
5061 {
5062 	/*
5063 	 * Check the compiler generated sizes of structures that must be laid
5064 	 * out in specific ways for hardware access.
5065 	 */
5066 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5067 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5068 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5069 	/* xhci_device_control has eight fields, and also
5070 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5071 	 */
5072 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5073 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5074 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5075 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5076 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5077 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5078 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5079 
5080 	if (usb_disabled())
5081 		return -ENODEV;
5082 
5083 	return 0;
5084 }
5085 
5086 /*
5087  * If an init function is provided, an exit function must also be provided
5088  * to allow module unload.
5089  */
5090 static void __exit xhci_hcd_fini(void) { }
5091 
5092 module_init(xhci_hcd_init);
5093 module_exit(xhci_hcd_fini);
5094