xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 9f99d983)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, usec);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 	xhci_quiesce(xhci);
115 
116 	ret = xhci_handshake(&xhci->op_regs->status,
117 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 	if (ret) {
119 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 		return ret;
121 	}
122 	xhci->xhc_state |= XHCI_STATE_HALTED;
123 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 	return ret;
125 }
126 
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 	u32 temp;
133 	int ret;
134 
135 	temp = readl(&xhci->op_regs->command);
136 	temp |= (CMD_RUN);
137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 			temp);
139 	writel(temp, &xhci->op_regs->command);
140 
141 	/*
142 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 	 * running.
144 	 */
145 	ret = xhci_handshake(&xhci->op_regs->status,
146 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 	if (ret == -ETIMEDOUT)
148 		xhci_err(xhci, "Host took too long to start, "
149 				"waited %u microseconds.\n",
150 				XHCI_MAX_HALT_USEC);
151 	if (!ret)
152 		/* clear state flags. Including dying, halted or removing */
153 		xhci->xhc_state = 0;
154 
155 	return ret;
156 }
157 
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 	u32 command;
168 	u32 state;
169 	int ret;
170 
171 	state = readl(&xhci->op_regs->status);
172 
173 	if (state == ~(u32)0) {
174 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 		return -ENODEV;
176 	}
177 
178 	if ((state & STS_HALT) == 0) {
179 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 		return 0;
181 	}
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 	command = readl(&xhci->op_regs->command);
185 	command |= CMD_RESET;
186 	writel(command, &xhci->op_regs->command);
187 
188 	/* Existing Intel xHCI controllers require a delay of 1 mS,
189 	 * after setting the CMD_RESET bit, and before accessing any
190 	 * HC registers. This allows the HC to complete the
191 	 * reset operation and be ready for HC register access.
192 	 * Without this delay, the subsequent HC register access,
193 	 * may result in a system hang very rarely.
194 	 */
195 	if (xhci->quirks & XHCI_INTEL_HOST)
196 		udelay(1000);
197 
198 	ret = xhci_handshake(&xhci->op_regs->command,
199 			CMD_RESET, 0, 10 * 1000 * 1000);
200 	if (ret)
201 		return ret;
202 
203 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205 
206 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 			 "Wait for controller to be ready for doorbell rings");
208 	/*
209 	 * xHCI cannot write to any doorbells or operational registers other
210 	 * than status until the "Controller Not Ready" flag is cleared.
211 	 */
212 	ret = xhci_handshake(&xhci->op_regs->status,
213 			STS_CNR, 0, 10 * 1000 * 1000);
214 
215 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
221 
222 	return ret;
223 }
224 
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 	int err, i;
229 	u64 val;
230 	u32 intrs;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 		      ARRAY_SIZE(xhci->run_regs->ir_set));
271 
272 	for (i = 0; i < intrs; i++) {
273 		struct xhci_intr_reg __iomem *ir;
274 
275 		ir = &xhci->run_regs->ir_set[i];
276 		val = xhci_read_64(xhci, &ir->erst_base);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_base);
279 		val= xhci_read_64(xhci, &ir->erst_dequeue);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 	}
283 
284 	/* Wait for the fault to appear. It will be cleared on reset */
285 	err = xhci_handshake(&xhci->op_regs->status,
286 			     STS_FATAL, STS_FATAL,
287 			     XHCI_MAX_HALT_USEC);
288 	if (!err)
289 		xhci_info(xhci, "Fault detected\n");
290 }
291 
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 	int ret;
299 	/*
300 	 * TODO:Check with MSI Soc for sysdev
301 	 */
302 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303 
304 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 	if (ret < 0) {
306 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 				"failed to allocate MSI entry");
308 		return ret;
309 	}
310 
311 	ret = request_irq(pdev->irq, xhci_msi_irq,
312 				0, "xhci_hcd", xhci_to_hcd(xhci));
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"disable MSI interrupt");
316 		pci_free_irq_vectors(pdev);
317 	}
318 
319 	return ret;
320 }
321 
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 	int i, ret = 0;
328 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 
331 	/*
332 	 * calculate number of msi-x vectors supported.
333 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
335 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 	 *   Add additional 1 vector to ensure always available interrupt.
337 	 */
338 	xhci->msix_count = min(num_online_cpus() + 1,
339 				HCS_MAX_INTRS(xhci->hcs_params1));
340 
341 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 			PCI_IRQ_MSIX);
343 	if (ret < 0) {
344 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 				"Failed to enable MSI-X");
346 		return ret;
347 	}
348 
349 	for (i = 0; i < xhci->msix_count; i++) {
350 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 				"xhci_hcd", xhci_to_hcd(xhci));
352 		if (ret)
353 			goto disable_msix;
354 	}
355 
356 	hcd->msix_enabled = 1;
357 	return ret;
358 
359 disable_msix:
360 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 	while (--i >= 0)
362 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 	pci_free_irq_vectors(pdev);
364 	return ret;
365 }
366 
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372 
373 	if (xhci->quirks & XHCI_PLAT)
374 		return;
375 
376 	/* return if using legacy interrupt */
377 	if (hcd->irq > 0)
378 		return;
379 
380 	if (hcd->msix_enabled) {
381 		int i;
382 
383 		for (i = 0; i < xhci->msix_count; i++)
384 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 	} else {
386 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 	}
388 
389 	pci_free_irq_vectors(pdev);
390 	hcd->msix_enabled = 0;
391 }
392 
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
396 
397 	if (hcd->msix_enabled) {
398 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 		int i;
400 
401 		for (i = 0; i < xhci->msix_count; i++)
402 			synchronize_irq(pci_irq_vector(pdev, i));
403 	}
404 }
405 
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 	struct pci_dev  *pdev;
410 	int ret;
411 
412 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
413 	if (xhci->quirks & XHCI_PLAT)
414 		return 0;
415 
416 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 	/*
418 	 * Some Fresco Logic host controllers advertise MSI, but fail to
419 	 * generate interrupts.  Don't even try to enable MSI.
420 	 */
421 	if (xhci->quirks & XHCI_BROKEN_MSI)
422 		goto legacy_irq;
423 
424 	/* unregister the legacy interrupt */
425 	if (hcd->irq)
426 		free_irq(hcd->irq, hcd);
427 	hcd->irq = 0;
428 
429 	ret = xhci_setup_msix(xhci);
430 	if (ret)
431 		/* fall back to msi*/
432 		ret = xhci_setup_msi(xhci);
433 
434 	if (!ret) {
435 		hcd->msi_enabled = 1;
436 		return 0;
437 	}
438 
439 	if (!pdev->irq) {
440 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 		return -EINVAL;
442 	}
443 
444  legacy_irq:
445 	if (!strlen(hcd->irq_descr))
446 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 			 hcd->driver->description, hcd->self.busnum);
448 
449 	/* fall back to legacy interrupt*/
450 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 			hcd->irq_descr, hcd);
452 	if (ret) {
453 		xhci_err(xhci, "request interrupt %d failed\n",
454 				pdev->irq);
455 		return ret;
456 	}
457 	hcd->irq = pdev->irq;
458 	return 0;
459 }
460 
461 #else
462 
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 	return 0;
466 }
467 
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471 
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475 
476 #endif
477 
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 	struct xhci_hcd *xhci;
481 	struct usb_hcd *hcd;
482 	struct xhci_hub *rhub;
483 	u32 temp;
484 	int i;
485 
486 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 	rhub = &xhci->usb3_rhub;
488 
489 	for (i = 0; i < rhub->num_ports; i++) {
490 		temp = readl(rhub->ports[i]->addr);
491 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 			/*
493 			 * Compliance Mode Detected. Letting USB Core
494 			 * handle the Warm Reset
495 			 */
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Compliance mode detected->port %d",
498 					i + 1);
499 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 					"Attempting compliance mode recovery");
501 			hcd = xhci->shared_hcd;
502 
503 			if (hcd->state == HC_STATE_SUSPENDED)
504 				usb_hcd_resume_root_hub(hcd);
505 
506 			usb_hcd_poll_rh_status(hcd);
507 		}
508 	}
509 
510 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 		mod_timer(&xhci->comp_mode_recovery_timer,
512 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514 
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 	xhci->port_status_u0 = 0;
528 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 		    0);
530 	xhci->comp_mode_recovery_timer.expires = jiffies +
531 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532 
533 	add_timer(&xhci->comp_mode_recovery_timer);
534 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 			"Compliance mode recovery timer initialized");
536 }
537 
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 	const char *dmi_product_name, *dmi_sys_vendor;
547 
548 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 	if (!dmi_product_name || !dmi_sys_vendor)
551 		return false;
552 
553 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 		return false;
555 
556 	if (strstr(dmi_product_name, "Z420") ||
557 			strstr(dmi_product_name, "Z620") ||
558 			strstr(dmi_product_name, "Z820") ||
559 			strstr(dmi_product_name, "Z1 Workstation"))
560 		return true;
561 
562 	return false;
563 }
564 
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569 
570 
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 	int retval = 0;
582 
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 	spin_lock_init(&xhci->lock);
585 	if (xhci->hci_version == 0x95 && link_quirk) {
586 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 				"QUIRK: Not clearing Link TRB chain bits.");
588 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 	} else {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 				"xHCI doesn't need link TRB QUIRK");
592 	}
593 	retval = xhci_mem_init(xhci, GFP_KERNEL);
594 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595 
596 	/* Initializing Compliance Mode Recovery Data If Needed */
597 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 		compliance_mode_recovery_timer_init(xhci);
600 	}
601 
602 	return retval;
603 }
604 
605 /*-------------------------------------------------------------------------*/
606 
607 
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 	if (xhci_start(xhci)) {
611 		xhci_halt(xhci);
612 		return -ENODEV;
613 	}
614 	xhci->shared_hcd->state = HC_STATE_RUNNING;
615 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616 
617 	if (xhci->quirks & XHCI_NEC_HOST)
618 		xhci_ring_cmd_db(xhci);
619 
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"Finished xhci_run for USB3 roothub");
622 	return 0;
623 }
624 
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639 	u32 temp;
640 	u64 temp_64;
641 	int ret;
642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643 
644 	/* Start the xHCI host controller running only after the USB 2.0 roothub
645 	 * is setup.
646 	 */
647 
648 	hcd->uses_new_polling = 1;
649 	if (!usb_hcd_is_primary_hcd(hcd))
650 		return xhci_run_finished(xhci);
651 
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653 
654 	ret = xhci_try_enable_msi(hcd);
655 	if (ret)
656 		return ret;
657 
658 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 	temp_64 &= ~ERST_PTR_MASK;
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662 
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"// Set the interrupt modulation register");
665 	temp = readl(&xhci->ir_set->irq_control);
666 	temp &= ~ER_IRQ_INTERVAL_MASK;
667 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 	writel(temp, &xhci->ir_set->irq_control);
669 
670 	/* Set the HCD state before we enable the irqs */
671 	temp = readl(&xhci->op_regs->command);
672 	temp |= (CMD_EIE);
673 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 			"// Enable interrupts, cmd = 0x%x.", temp);
675 	writel(temp, &xhci->op_regs->command);
676 
677 	temp = readl(&xhci->ir_set->irq_pending);
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682 
683 	if (xhci->quirks & XHCI_NEC_HOST) {
684 		struct xhci_command *command;
685 
686 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 		if (!command)
688 			return -ENOMEM;
689 
690 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 				TRB_TYPE(TRB_NEC_GET_FW));
692 		if (ret)
693 			xhci_free_command(xhci, command);
694 	}
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"Finished xhci_run for USB2 roothub");
697 
698 	xhci_dbc_init(xhci);
699 
700 	xhci_debugfs_init(xhci);
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705 
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717 	u32 temp;
718 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719 
720 	mutex_lock(&xhci->mutex);
721 
722 	/* Only halt host and free memory after both hcds are removed */
723 	if (!usb_hcd_is_primary_hcd(hcd)) {
724 		mutex_unlock(&xhci->mutex);
725 		return;
726 	}
727 
728 	xhci_dbc_exit(xhci);
729 
730 	spin_lock_irq(&xhci->lock);
731 	xhci->xhc_state |= XHCI_STATE_HALTED;
732 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733 	xhci_halt(xhci);
734 	xhci_reset(xhci);
735 	spin_unlock_irq(&xhci->lock);
736 
737 	xhci_cleanup_msix(xhci);
738 
739 	/* Deleting Compliance Mode Recovery Timer */
740 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 			(!(xhci_all_ports_seen_u0(xhci)))) {
742 		del_timer_sync(&xhci->comp_mode_recovery_timer);
743 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 				"%s: compliance mode recovery timer deleted",
745 				__func__);
746 	}
747 
748 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
749 		usb_amd_dev_put();
750 
751 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 			"// Disabling event ring interrupts");
753 	temp = readl(&xhci->op_regs->status);
754 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 	temp = readl(&xhci->ir_set->irq_pending);
756 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 	xhci_mem_cleanup(xhci);
760 	xhci_debugfs_exit(xhci);
761 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 			"xhci_stop completed - status = %x",
763 			readl(&xhci->op_regs->status));
764 	mutex_unlock(&xhci->mutex);
765 }
766 
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779 
780 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782 
783 	spin_lock_irq(&xhci->lock);
784 	xhci_halt(xhci);
785 	/* Workaround for spurious wakeups at shutdown with HSW */
786 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787 		xhci_reset(xhci);
788 	spin_unlock_irq(&xhci->lock);
789 
790 	xhci_cleanup_msix(xhci);
791 
792 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 			"xhci_shutdown completed - status = %x",
794 			readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797 
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 	xhci->s3.command = readl(&xhci->op_regs->command);
802 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 	writel(xhci->s3.command, &xhci->op_regs->command);
815 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824 
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 	u64	val_64;
828 
829 	/* step 2: initialize command ring buffer */
830 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 				      xhci->cmd_ring->dequeue) &
834 		 (u64) ~CMD_RING_RSVD_BITS) |
835 		xhci->cmd_ring->cycle_state;
836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 			"// Setting command ring address to 0x%llx",
838 			(long unsigned long) val_64);
839 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	seg = ring->deq_seg;
858 	do {
859 		memset(seg->trbs, 0,
860 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 			cpu_to_le32(~TRB_CYCLE);
863 		seg = seg->next;
864 	} while (seg != ring->deq_seg);
865 
866 	/* Reset the software enqueue and dequeue pointers */
867 	ring->deq_seg = ring->first_seg;
868 	ring->dequeue = ring->first_seg->trbs;
869 	ring->enq_seg = ring->deq_seg;
870 	ring->enqueue = ring->dequeue;
871 
872 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 	/*
874 	 * Ring is now zeroed, so the HW should look for change of ownership
875 	 * when the cycle bit is set to 1.
876 	 */
877 	ring->cycle_state = 1;
878 
879 	/*
880 	 * Reset the hardware dequeue pointer.
881 	 * Yes, this will need to be re-written after resume, but we're paranoid
882 	 * and want to make sure the hardware doesn't access bogus memory
883 	 * because, say, the BIOS or an SMI started the host without changing
884 	 * the command ring pointers.
885 	 */
886 	xhci_set_cmd_ring_deq(xhci);
887 }
888 
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897 
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899 				       struct xhci_hub *rhub,
900 				       bool do_wakeup)
901 {
902 	unsigned long flags;
903 	u32 t1, t2, portsc;
904 	int i;
905 
906 	spin_lock_irqsave(&xhci->lock, flags);
907 
908 	for (i = 0; i < rhub->num_ports; i++) {
909 		portsc = readl(rhub->ports[i]->addr);
910 		t1 = xhci_port_state_to_neutral(portsc);
911 		t2 = t1;
912 
913 		/* clear wake bits if do_wake is not set */
914 		if (!do_wakeup)
915 			t2 &= ~PORT_WAKE_BITS;
916 
917 		/* Don't touch csc bit if connected or connect change is set */
918 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919 			t2 |= PORT_CSC;
920 
921 		if (t1 != t2) {
922 			writel(t2, rhub->ports[i]->addr);
923 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
925 		}
926 	}
927 	spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929 
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932 	struct xhci_port	**ports;
933 	int			port_index;
934 	u32			status;
935 	u32			portsc;
936 
937 	status = readl(&xhci->op_regs->status);
938 	if (status & STS_EINT)
939 		return true;
940 	/*
941 	 * Checking STS_EINT is not enough as there is a lag between a change
942 	 * bit being set and the Port Status Change Event that it generated
943 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944 	 */
945 
946 	port_index = xhci->usb2_rhub.num_ports;
947 	ports = xhci->usb2_rhub.ports;
948 	while (port_index--) {
949 		portsc = readl(ports[port_index]->addr);
950 		if (portsc & PORT_CHANGE_MASK ||
951 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952 			return true;
953 	}
954 	port_index = xhci->usb3_rhub.num_ports;
955 	ports = xhci->usb3_rhub.ports;
956 	while (port_index--) {
957 		portsc = readl(ports[port_index]->addr);
958 		if (portsc & PORT_CHANGE_MASK ||
959 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960 			return true;
961 	}
962 	return false;
963 }
964 
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973 	int			rc = 0;
974 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
975 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
976 	u32			command;
977 	u32			res;
978 
979 	if (!hcd->state)
980 		return 0;
981 
982 	if (hcd->state != HC_STATE_SUSPENDED ||
983 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984 		return -EINVAL;
985 
986 	/* Clear root port wake on bits if wakeup not allowed. */
987 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989 
990 	if (!HCD_HW_ACCESSIBLE(hcd))
991 		return 0;
992 
993 	xhci_dbc_suspend(xhci);
994 
995 	/* Don't poll the roothubs on bus suspend. */
996 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997 		 __func__, hcd->self.busnum);
998 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 	del_timer_sync(&hcd->rh_timer);
1000 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1002 
1003 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 		usleep_range(1000, 1500);
1005 
1006 	spin_lock_irq(&xhci->lock);
1007 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 	/* step 1: stop endpoint */
1010 	/* skipped assuming that port suspend has done */
1011 
1012 	/* step 2: clear Run/Stop bit */
1013 	command = readl(&xhci->op_regs->command);
1014 	command &= ~CMD_RUN;
1015 	writel(command, &xhci->op_regs->command);
1016 
1017 	/* Some chips from Fresco Logic need an extraordinary delay */
1018 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019 
1020 	if (xhci_handshake(&xhci->op_regs->status,
1021 		      STS_HALT, STS_HALT, delay)) {
1022 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 		spin_unlock_irq(&xhci->lock);
1024 		return -ETIMEDOUT;
1025 	}
1026 	xhci_clear_command_ring(xhci);
1027 
1028 	/* step 3: save registers */
1029 	xhci_save_registers(xhci);
1030 
1031 	/* step 4: set CSS flag */
1032 	command = readl(&xhci->op_regs->command);
1033 	command |= CMD_CSS;
1034 	writel(command, &xhci->op_regs->command);
1035 	xhci->broken_suspend = 0;
1036 	if (xhci_handshake(&xhci->op_regs->status,
1037 				STS_SAVE, 0, 20 * 1000)) {
1038 	/*
1039 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 	 * SSS bit of USBSTS and when driver tries to poll
1041 	 * to see if the xHC clears BIT(8) which never happens
1042 	 * and driver assumes that controller is not responding
1043 	 * and times out. To workaround this, its good to check
1044 	 * if SRE and HCE bits are not set (as per xhci
1045 	 * Section 5.4.2) and bypass the timeout.
1046 	 */
1047 		res = readl(&xhci->op_regs->status);
1048 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 		    (((res & STS_SRE) == 0) &&
1050 				((res & STS_HCE) == 0))) {
1051 			xhci->broken_suspend = 1;
1052 		} else {
1053 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 			spin_unlock_irq(&xhci->lock);
1055 			return -ETIMEDOUT;
1056 		}
1057 	}
1058 	spin_unlock_irq(&xhci->lock);
1059 
1060 	/*
1061 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 	 * is about to be suspended.
1063 	 */
1064 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 			(!(xhci_all_ports_seen_u0(xhci)))) {
1066 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 				"%s: compliance mode recovery timer deleted",
1069 				__func__);
1070 	}
1071 
1072 	/* step 5: remove core well power */
1073 	/* synchronize irq when using MSI-X */
1074 	xhci_msix_sync_irqs(xhci);
1075 
1076 	return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079 
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088 	u32			command, temp = 0;
1089 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1090 	struct usb_hcd		*secondary_hcd;
1091 	int			retval = 0;
1092 	bool			comp_timer_running = false;
1093 	bool			pending_portevent = false;
1094 	bool			reinit_xhc = false;
1095 
1096 	if (!hcd->state)
1097 		return 0;
1098 
1099 	/* Wait a bit if either of the roothubs need to settle from the
1100 	 * transition into bus suspend.
1101 	 */
1102 
1103 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105 		msleep(100);
1106 
1107 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109 
1110 	spin_lock_irq(&xhci->lock);
1111 
1112 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1113 		reinit_xhc = true;
1114 
1115 	if (!reinit_xhc) {
1116 		/*
1117 		 * Some controllers might lose power during suspend, so wait
1118 		 * for controller not ready bit to clear, just as in xHC init.
1119 		 */
1120 		retval = xhci_handshake(&xhci->op_regs->status,
1121 					STS_CNR, 0, 10 * 1000 * 1000);
1122 		if (retval) {
1123 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1124 				  retval);
1125 			spin_unlock_irq(&xhci->lock);
1126 			return retval;
1127 		}
1128 		/* step 1: restore register */
1129 		xhci_restore_registers(xhci);
1130 		/* step 2: initialize command ring buffer */
1131 		xhci_set_cmd_ring_deq(xhci);
1132 		/* step 3: restore state and start state*/
1133 		/* step 3: set CRS flag */
1134 		command = readl(&xhci->op_regs->command);
1135 		command |= CMD_CRS;
1136 		writel(command, &xhci->op_regs->command);
1137 		/*
1138 		 * Some controllers take up to 55+ ms to complete the controller
1139 		 * restore so setting the timeout to 100ms. Xhci specification
1140 		 * doesn't mention any timeout value.
1141 		 */
1142 		if (xhci_handshake(&xhci->op_regs->status,
1143 			      STS_RESTORE, 0, 100 * 1000)) {
1144 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1145 			spin_unlock_irq(&xhci->lock);
1146 			return -ETIMEDOUT;
1147 		}
1148 	}
1149 
1150 	temp = readl(&xhci->op_regs->status);
1151 
1152 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1153 	if (temp & (STS_SRE | STS_HCE)) {
1154 		reinit_xhc = true;
1155 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1156 	}
1157 
1158 	if (reinit_xhc) {
1159 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1160 				!(xhci_all_ports_seen_u0(xhci))) {
1161 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1162 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1163 				"Compliance Mode Recovery Timer deleted!");
1164 		}
1165 
1166 		/* Let the USB core know _both_ roothubs lost power. */
1167 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1168 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1169 
1170 		xhci_dbg(xhci, "Stop HCD\n");
1171 		xhci_halt(xhci);
1172 		xhci_zero_64b_regs(xhci);
1173 		retval = xhci_reset(xhci);
1174 		spin_unlock_irq(&xhci->lock);
1175 		if (retval)
1176 			return retval;
1177 		xhci_cleanup_msix(xhci);
1178 
1179 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1180 		temp = readl(&xhci->op_regs->status);
1181 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1182 		temp = readl(&xhci->ir_set->irq_pending);
1183 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1184 
1185 		xhci_dbg(xhci, "cleaning up memory\n");
1186 		xhci_mem_cleanup(xhci);
1187 		xhci_debugfs_exit(xhci);
1188 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1189 			    readl(&xhci->op_regs->status));
1190 
1191 		/* USB core calls the PCI reinit and start functions twice:
1192 		 * first with the primary HCD, and then with the secondary HCD.
1193 		 * If we don't do the same, the host will never be started.
1194 		 */
1195 		if (!usb_hcd_is_primary_hcd(hcd))
1196 			secondary_hcd = hcd;
1197 		else
1198 			secondary_hcd = xhci->shared_hcd;
1199 
1200 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1201 		retval = xhci_init(hcd->primary_hcd);
1202 		if (retval)
1203 			return retval;
1204 		comp_timer_running = true;
1205 
1206 		xhci_dbg(xhci, "Start the primary HCD\n");
1207 		retval = xhci_run(hcd->primary_hcd);
1208 		if (!retval) {
1209 			xhci_dbg(xhci, "Start the secondary HCD\n");
1210 			retval = xhci_run(secondary_hcd);
1211 		}
1212 		hcd->state = HC_STATE_SUSPENDED;
1213 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1214 		goto done;
1215 	}
1216 
1217 	/* step 4: set Run/Stop bit */
1218 	command = readl(&xhci->op_regs->command);
1219 	command |= CMD_RUN;
1220 	writel(command, &xhci->op_regs->command);
1221 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1222 		  0, 250 * 1000);
1223 
1224 	/* step 5: walk topology and initialize portsc,
1225 	 * portpmsc and portli
1226 	 */
1227 	/* this is done in bus_resume */
1228 
1229 	/* step 6: restart each of the previously
1230 	 * Running endpoints by ringing their doorbells
1231 	 */
1232 
1233 	spin_unlock_irq(&xhci->lock);
1234 
1235 	xhci_dbc_resume(xhci);
1236 
1237  done:
1238 	if (retval == 0) {
1239 		/*
1240 		 * Resume roothubs only if there are pending events.
1241 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1242 		 * the first wake signalling failed, give it that chance.
1243 		 */
1244 		pending_portevent = xhci_pending_portevent(xhci);
1245 		if (!pending_portevent) {
1246 			msleep(120);
1247 			pending_portevent = xhci_pending_portevent(xhci);
1248 		}
1249 
1250 		if (pending_portevent) {
1251 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1252 			usb_hcd_resume_root_hub(hcd);
1253 		}
1254 	}
1255 	/*
1256 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1257 	 * be re-initialized Always after a system resume. Ports are subject
1258 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1259 	 * ports have entered previously to U0 before system's suspension.
1260 	 */
1261 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1262 		compliance_mode_recovery_timer_init(xhci);
1263 
1264 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1265 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1266 
1267 	/* Re-enable port polling. */
1268 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1269 		 __func__, hcd->self.busnum);
1270 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1271 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1272 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1273 	usb_hcd_poll_rh_status(hcd);
1274 
1275 	return retval;
1276 }
1277 EXPORT_SYMBOL_GPL(xhci_resume);
1278 #endif	/* CONFIG_PM */
1279 
1280 /*-------------------------------------------------------------------------*/
1281 
1282 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1283 {
1284 	void *temp;
1285 	int ret = 0;
1286 	unsigned int buf_len;
1287 	enum dma_data_direction dir;
1288 
1289 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1290 	buf_len = urb->transfer_buffer_length;
1291 
1292 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1293 			    dev_to_node(hcd->self.sysdev));
1294 
1295 	if (usb_urb_dir_out(urb))
1296 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1297 				   temp, buf_len, 0);
1298 
1299 	urb->transfer_buffer = temp;
1300 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1301 					   urb->transfer_buffer,
1302 					   urb->transfer_buffer_length,
1303 					   dir);
1304 
1305 	if (dma_mapping_error(hcd->self.sysdev,
1306 			      urb->transfer_dma)) {
1307 		ret = -EAGAIN;
1308 		kfree(temp);
1309 	} else {
1310 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1317 					  struct urb *urb)
1318 {
1319 	bool ret = false;
1320 	unsigned int i;
1321 	unsigned int len = 0;
1322 	unsigned int trb_size;
1323 	unsigned int max_pkt;
1324 	struct scatterlist *sg;
1325 	struct scatterlist *tail_sg;
1326 
1327 	tail_sg = urb->sg;
1328 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1329 
1330 	if (!urb->num_sgs)
1331 		return ret;
1332 
1333 	if (urb->dev->speed >= USB_SPEED_SUPER)
1334 		trb_size = TRB_CACHE_SIZE_SS;
1335 	else
1336 		trb_size = TRB_CACHE_SIZE_HS;
1337 
1338 	if (urb->transfer_buffer_length != 0 &&
1339 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1340 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1341 			len = len + sg->length;
1342 			if (i > trb_size - 2) {
1343 				len = len - tail_sg->length;
1344 				if (len < max_pkt) {
1345 					ret = true;
1346 					break;
1347 				}
1348 
1349 				tail_sg = sg_next(tail_sg);
1350 			}
1351 		}
1352 	}
1353 	return ret;
1354 }
1355 
1356 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1357 {
1358 	unsigned int len;
1359 	unsigned int buf_len;
1360 	enum dma_data_direction dir;
1361 
1362 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1363 
1364 	buf_len = urb->transfer_buffer_length;
1365 
1366 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1367 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1368 		dma_unmap_single(hcd->self.sysdev,
1369 				 urb->transfer_dma,
1370 				 urb->transfer_buffer_length,
1371 				 dir);
1372 
1373 	if (usb_urb_dir_in(urb)) {
1374 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1375 					   urb->transfer_buffer,
1376 					   buf_len,
1377 					   0);
1378 		if (len != buf_len) {
1379 			xhci_dbg(hcd_to_xhci(hcd),
1380 				 "Copy from tmp buf to urb sg list failed\n");
1381 			urb->actual_length = len;
1382 		}
1383 	}
1384 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1385 	kfree(urb->transfer_buffer);
1386 	urb->transfer_buffer = NULL;
1387 }
1388 
1389 /*
1390  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1391  * we'll copy the actual data into the TRB address register. This is limited to
1392  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1393  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1394  */
1395 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1396 				gfp_t mem_flags)
1397 {
1398 	struct xhci_hcd *xhci;
1399 
1400 	xhci = hcd_to_xhci(hcd);
1401 
1402 	if (xhci_urb_suitable_for_idt(urb))
1403 		return 0;
1404 
1405 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1406 		if (xhci_urb_temp_buffer_required(hcd, urb))
1407 			return xhci_map_temp_buffer(hcd, urb);
1408 	}
1409 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1410 }
1411 
1412 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1413 {
1414 	struct xhci_hcd *xhci;
1415 	bool unmap_temp_buf = false;
1416 
1417 	xhci = hcd_to_xhci(hcd);
1418 
1419 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1420 		unmap_temp_buf = true;
1421 
1422 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1423 		xhci_unmap_temp_buf(hcd, urb);
1424 	else
1425 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1426 }
1427 
1428 /**
1429  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1430  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1431  * value to right shift 1 for the bitmask.
1432  *
1433  * Index  = (epnum * 2) + direction - 1,
1434  * where direction = 0 for OUT, 1 for IN.
1435  * For control endpoints, the IN index is used (OUT index is unused), so
1436  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1437  */
1438 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1439 {
1440 	unsigned int index;
1441 	if (usb_endpoint_xfer_control(desc))
1442 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1443 	else
1444 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1445 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1446 	return index;
1447 }
1448 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1449 
1450 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1451  * address from the XHCI endpoint index.
1452  */
1453 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1454 {
1455 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1456 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1457 	return direction | number;
1458 }
1459 
1460 /* Find the flag for this endpoint (for use in the control context).  Use the
1461  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1462  * bit 1, etc.
1463  */
1464 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1465 {
1466 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1467 }
1468 
1469 /* Compute the last valid endpoint context index.  Basically, this is the
1470  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1471  * we find the most significant bit set in the added contexts flags.
1472  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1473  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1474  */
1475 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1476 {
1477 	return fls(added_ctxs) - 1;
1478 }
1479 
1480 /* Returns 1 if the arguments are OK;
1481  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1482  */
1483 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1484 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1485 		const char *func) {
1486 	struct xhci_hcd	*xhci;
1487 	struct xhci_virt_device	*virt_dev;
1488 
1489 	if (!hcd || (check_ep && !ep) || !udev) {
1490 		pr_debug("xHCI %s called with invalid args\n", func);
1491 		return -EINVAL;
1492 	}
1493 	if (!udev->parent) {
1494 		pr_debug("xHCI %s called for root hub\n", func);
1495 		return 0;
1496 	}
1497 
1498 	xhci = hcd_to_xhci(hcd);
1499 	if (check_virt_dev) {
1500 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1501 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1502 					func);
1503 			return -EINVAL;
1504 		}
1505 
1506 		virt_dev = xhci->devs[udev->slot_id];
1507 		if (virt_dev->udev != udev) {
1508 			xhci_dbg(xhci, "xHCI %s called with udev and "
1509 					  "virt_dev does not match\n", func);
1510 			return -EINVAL;
1511 		}
1512 	}
1513 
1514 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1515 		return -ENODEV;
1516 
1517 	return 1;
1518 }
1519 
1520 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1521 		struct usb_device *udev, struct xhci_command *command,
1522 		bool ctx_change, bool must_succeed);
1523 
1524 /*
1525  * Full speed devices may have a max packet size greater than 8 bytes, but the
1526  * USB core doesn't know that until it reads the first 8 bytes of the
1527  * descriptor.  If the usb_device's max packet size changes after that point,
1528  * we need to issue an evaluate context command and wait on it.
1529  */
1530 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1531 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1532 {
1533 	struct xhci_container_ctx *out_ctx;
1534 	struct xhci_input_control_ctx *ctrl_ctx;
1535 	struct xhci_ep_ctx *ep_ctx;
1536 	struct xhci_command *command;
1537 	int max_packet_size;
1538 	int hw_max_packet_size;
1539 	int ret = 0;
1540 
1541 	out_ctx = xhci->devs[slot_id]->out_ctx;
1542 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1543 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1544 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1545 	if (hw_max_packet_size != max_packet_size) {
1546 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1547 				"Max Packet Size for ep 0 changed.");
1548 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1549 				"Max packet size in usb_device = %d",
1550 				max_packet_size);
1551 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1552 				"Max packet size in xHCI HW = %d",
1553 				hw_max_packet_size);
1554 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1555 				"Issuing evaluate context command.");
1556 
1557 		/* Set up the input context flags for the command */
1558 		/* FIXME: This won't work if a non-default control endpoint
1559 		 * changes max packet sizes.
1560 		 */
1561 
1562 		command = xhci_alloc_command(xhci, true, mem_flags);
1563 		if (!command)
1564 			return -ENOMEM;
1565 
1566 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1567 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1568 		if (!ctrl_ctx) {
1569 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570 					__func__);
1571 			ret = -ENOMEM;
1572 			goto command_cleanup;
1573 		}
1574 		/* Set up the modified control endpoint 0 */
1575 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1576 				xhci->devs[slot_id]->out_ctx, ep_index);
1577 
1578 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1579 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1580 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1581 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1582 
1583 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1584 		ctrl_ctx->drop_flags = 0;
1585 
1586 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1587 				true, false);
1588 
1589 		/* Clean up the input context for later use by bandwidth
1590 		 * functions.
1591 		 */
1592 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1593 command_cleanup:
1594 		kfree(command->completion);
1595 		kfree(command);
1596 	}
1597 	return ret;
1598 }
1599 
1600 /*
1601  * non-error returns are a promise to giveback() the urb later
1602  * we drop ownership so next owner (or urb unlink) can get it
1603  */
1604 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1605 {
1606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1607 	unsigned long flags;
1608 	int ret = 0;
1609 	unsigned int slot_id, ep_index;
1610 	unsigned int *ep_state;
1611 	struct urb_priv	*urb_priv;
1612 	int num_tds;
1613 
1614 	if (!urb)
1615 		return -EINVAL;
1616 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1617 					true, true, __func__);
1618 	if (ret <= 0)
1619 		return ret ? ret : -EINVAL;
1620 
1621 	slot_id = urb->dev->slot_id;
1622 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1623 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1624 
1625 	if (!HCD_HW_ACCESSIBLE(hcd))
1626 		return -ESHUTDOWN;
1627 
1628 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1629 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1630 		return -ENODEV;
1631 	}
1632 
1633 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1634 		num_tds = urb->number_of_packets;
1635 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1636 	    urb->transfer_buffer_length > 0 &&
1637 	    urb->transfer_flags & URB_ZERO_PACKET &&
1638 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1639 		num_tds = 2;
1640 	else
1641 		num_tds = 1;
1642 
1643 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1644 	if (!urb_priv)
1645 		return -ENOMEM;
1646 
1647 	urb_priv->num_tds = num_tds;
1648 	urb_priv->num_tds_done = 0;
1649 	urb->hcpriv = urb_priv;
1650 
1651 	trace_xhci_urb_enqueue(urb);
1652 
1653 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1654 		/* Check to see if the max packet size for the default control
1655 		 * endpoint changed during FS device enumeration
1656 		 */
1657 		if (urb->dev->speed == USB_SPEED_FULL) {
1658 			ret = xhci_check_maxpacket(xhci, slot_id,
1659 					ep_index, urb, mem_flags);
1660 			if (ret < 0) {
1661 				xhci_urb_free_priv(urb_priv);
1662 				urb->hcpriv = NULL;
1663 				return ret;
1664 			}
1665 		}
1666 	}
1667 
1668 	spin_lock_irqsave(&xhci->lock, flags);
1669 
1670 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1671 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1672 			 urb->ep->desc.bEndpointAddress, urb);
1673 		ret = -ESHUTDOWN;
1674 		goto free_priv;
1675 	}
1676 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1677 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1678 			  *ep_state);
1679 		ret = -EINVAL;
1680 		goto free_priv;
1681 	}
1682 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1683 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1684 		ret = -EINVAL;
1685 		goto free_priv;
1686 	}
1687 
1688 	switch (usb_endpoint_type(&urb->ep->desc)) {
1689 
1690 	case USB_ENDPOINT_XFER_CONTROL:
1691 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1692 					 slot_id, ep_index);
1693 		break;
1694 	case USB_ENDPOINT_XFER_BULK:
1695 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1696 					 slot_id, ep_index);
1697 		break;
1698 	case USB_ENDPOINT_XFER_INT:
1699 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1700 				slot_id, ep_index);
1701 		break;
1702 	case USB_ENDPOINT_XFER_ISOC:
1703 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1704 				slot_id, ep_index);
1705 	}
1706 
1707 	if (ret) {
1708 free_priv:
1709 		xhci_urb_free_priv(urb_priv);
1710 		urb->hcpriv = NULL;
1711 	}
1712 	spin_unlock_irqrestore(&xhci->lock, flags);
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1718  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1719  * should pick up where it left off in the TD, unless a Set Transfer Ring
1720  * Dequeue Pointer is issued.
1721  *
1722  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1723  * the ring.  Since the ring is a contiguous structure, they can't be physically
1724  * removed.  Instead, there are two options:
1725  *
1726  *  1) If the HC is in the middle of processing the URB to be canceled, we
1727  *     simply move the ring's dequeue pointer past those TRBs using the Set
1728  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1729  *     when drivers timeout on the last submitted URB and attempt to cancel.
1730  *
1731  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1732  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1733  *     HC will need to invalidate the any TRBs it has cached after the stop
1734  *     endpoint command, as noted in the xHCI 0.95 errata.
1735  *
1736  *  3) The TD may have completed by the time the Stop Endpoint Command
1737  *     completes, so software needs to handle that case too.
1738  *
1739  * This function should protect against the TD enqueueing code ringing the
1740  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1741  * It also needs to account for multiple cancellations on happening at the same
1742  * time for the same endpoint.
1743  *
1744  * Note that this function can be called in any context, or so says
1745  * usb_hcd_unlink_urb()
1746  */
1747 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749 	unsigned long flags;
1750 	int ret, i;
1751 	u32 temp;
1752 	struct xhci_hcd *xhci;
1753 	struct urb_priv	*urb_priv;
1754 	struct xhci_td *td;
1755 	unsigned int ep_index;
1756 	struct xhci_ring *ep_ring;
1757 	struct xhci_virt_ep *ep;
1758 	struct xhci_command *command;
1759 	struct xhci_virt_device *vdev;
1760 
1761 	xhci = hcd_to_xhci(hcd);
1762 	spin_lock_irqsave(&xhci->lock, flags);
1763 
1764 	trace_xhci_urb_dequeue(urb);
1765 
1766 	/* Make sure the URB hasn't completed or been unlinked already */
1767 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1768 	if (ret)
1769 		goto done;
1770 
1771 	/* give back URB now if we can't queue it for cancel */
1772 	vdev = xhci->devs[urb->dev->slot_id];
1773 	urb_priv = urb->hcpriv;
1774 	if (!vdev || !urb_priv)
1775 		goto err_giveback;
1776 
1777 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1778 	ep = &vdev->eps[ep_index];
1779 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1780 	if (!ep || !ep_ring)
1781 		goto err_giveback;
1782 
1783 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1784 	temp = readl(&xhci->op_regs->status);
1785 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1786 		xhci_hc_died(xhci);
1787 		goto done;
1788 	}
1789 
1790 	/*
1791 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1792 	 * make sure none of the ring related pointers in this URB private data
1793 	 * are touched, such as td_list, otherwise we overwrite freed data
1794 	 */
1795 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1796 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1797 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1798 			td = &urb_priv->td[i];
1799 			if (!list_empty(&td->cancelled_td_list))
1800 				list_del_init(&td->cancelled_td_list);
1801 		}
1802 		goto err_giveback;
1803 	}
1804 
1805 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1806 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1807 				"HC halted, freeing TD manually.");
1808 		for (i = urb_priv->num_tds_done;
1809 		     i < urb_priv->num_tds;
1810 		     i++) {
1811 			td = &urb_priv->td[i];
1812 			if (!list_empty(&td->td_list))
1813 				list_del_init(&td->td_list);
1814 			if (!list_empty(&td->cancelled_td_list))
1815 				list_del_init(&td->cancelled_td_list);
1816 		}
1817 		goto err_giveback;
1818 	}
1819 
1820 	i = urb_priv->num_tds_done;
1821 	if (i < urb_priv->num_tds)
1822 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1823 				"Cancel URB %p, dev %s, ep 0x%x, "
1824 				"starting at offset 0x%llx",
1825 				urb, urb->dev->devpath,
1826 				urb->ep->desc.bEndpointAddress,
1827 				(unsigned long long) xhci_trb_virt_to_dma(
1828 					urb_priv->td[i].start_seg,
1829 					urb_priv->td[i].first_trb));
1830 
1831 	for (; i < urb_priv->num_tds; i++) {
1832 		td = &urb_priv->td[i];
1833 		/* TD can already be on cancelled list if ep halted on it */
1834 		if (list_empty(&td->cancelled_td_list)) {
1835 			td->cancel_status = TD_DIRTY;
1836 			list_add_tail(&td->cancelled_td_list,
1837 				      &ep->cancelled_td_list);
1838 		}
1839 	}
1840 
1841 	/* Queue a stop endpoint command, but only if this is
1842 	 * the first cancellation to be handled.
1843 	 */
1844 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1845 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1846 		if (!command) {
1847 			ret = -ENOMEM;
1848 			goto done;
1849 		}
1850 		ep->ep_state |= EP_STOP_CMD_PENDING;
1851 		ep->stop_cmd_timer.expires = jiffies +
1852 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1853 		add_timer(&ep->stop_cmd_timer);
1854 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1855 					 ep_index, 0);
1856 		xhci_ring_cmd_db(xhci);
1857 	}
1858 done:
1859 	spin_unlock_irqrestore(&xhci->lock, flags);
1860 	return ret;
1861 
1862 err_giveback:
1863 	if (urb_priv)
1864 		xhci_urb_free_priv(urb_priv);
1865 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1866 	spin_unlock_irqrestore(&xhci->lock, flags);
1867 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1868 	return ret;
1869 }
1870 
1871 /* Drop an endpoint from a new bandwidth configuration for this device.
1872  * Only one call to this function is allowed per endpoint before
1873  * check_bandwidth() or reset_bandwidth() must be called.
1874  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875  * add the endpoint to the schedule with possibly new parameters denoted by a
1876  * different endpoint descriptor in usb_host_endpoint.
1877  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878  * not allowed.
1879  *
1880  * The USB core will not allow URBs to be queued to an endpoint that is being
1881  * disabled, so there's no need for mutual exclusion to protect
1882  * the xhci->devs[slot_id] structure.
1883  */
1884 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885 		       struct usb_host_endpoint *ep)
1886 {
1887 	struct xhci_hcd *xhci;
1888 	struct xhci_container_ctx *in_ctx, *out_ctx;
1889 	struct xhci_input_control_ctx *ctrl_ctx;
1890 	unsigned int ep_index;
1891 	struct xhci_ep_ctx *ep_ctx;
1892 	u32 drop_flag;
1893 	u32 new_add_flags, new_drop_flags;
1894 	int ret;
1895 
1896 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1897 	if (ret <= 0)
1898 		return ret;
1899 	xhci = hcd_to_xhci(hcd);
1900 	if (xhci->xhc_state & XHCI_STATE_DYING)
1901 		return -ENODEV;
1902 
1903 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1904 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1905 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1906 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1907 				__func__, drop_flag);
1908 		return 0;
1909 	}
1910 
1911 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1912 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1913 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1914 	if (!ctrl_ctx) {
1915 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1916 				__func__);
1917 		return 0;
1918 	}
1919 
1920 	ep_index = xhci_get_endpoint_index(&ep->desc);
1921 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1922 	/* If the HC already knows the endpoint is disabled,
1923 	 * or the HCD has noted it is disabled, ignore this request
1924 	 */
1925 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1926 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1927 	    xhci_get_endpoint_flag(&ep->desc)) {
1928 		/* Do not warn when called after a usb_device_reset */
1929 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1930 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1931 				  __func__, ep);
1932 		return 0;
1933 	}
1934 
1935 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1936 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1937 
1938 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1939 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1940 
1941 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1942 
1943 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1944 
1945 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1946 			(unsigned int) ep->desc.bEndpointAddress,
1947 			udev->slot_id,
1948 			(unsigned int) new_drop_flags,
1949 			(unsigned int) new_add_flags);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1953 
1954 /* Add an endpoint to a new possible bandwidth configuration for this device.
1955  * Only one call to this function is allowed per endpoint before
1956  * check_bandwidth() or reset_bandwidth() must be called.
1957  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1958  * add the endpoint to the schedule with possibly new parameters denoted by a
1959  * different endpoint descriptor in usb_host_endpoint.
1960  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1961  * not allowed.
1962  *
1963  * The USB core will not allow URBs to be queued to an endpoint until the
1964  * configuration or alt setting is installed in the device, so there's no need
1965  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1966  */
1967 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1968 		      struct usb_host_endpoint *ep)
1969 {
1970 	struct xhci_hcd *xhci;
1971 	struct xhci_container_ctx *in_ctx;
1972 	unsigned int ep_index;
1973 	struct xhci_input_control_ctx *ctrl_ctx;
1974 	struct xhci_ep_ctx *ep_ctx;
1975 	u32 added_ctxs;
1976 	u32 new_add_flags, new_drop_flags;
1977 	struct xhci_virt_device *virt_dev;
1978 	int ret = 0;
1979 
1980 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1981 	if (ret <= 0) {
1982 		/* So we won't queue a reset ep command for a root hub */
1983 		ep->hcpriv = NULL;
1984 		return ret;
1985 	}
1986 	xhci = hcd_to_xhci(hcd);
1987 	if (xhci->xhc_state & XHCI_STATE_DYING)
1988 		return -ENODEV;
1989 
1990 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1991 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1992 		/* FIXME when we have to issue an evaluate endpoint command to
1993 		 * deal with ep0 max packet size changing once we get the
1994 		 * descriptors
1995 		 */
1996 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1997 				__func__, added_ctxs);
1998 		return 0;
1999 	}
2000 
2001 	virt_dev = xhci->devs[udev->slot_id];
2002 	in_ctx = virt_dev->in_ctx;
2003 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2004 	if (!ctrl_ctx) {
2005 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2006 				__func__);
2007 		return 0;
2008 	}
2009 
2010 	ep_index = xhci_get_endpoint_index(&ep->desc);
2011 	/* If this endpoint is already in use, and the upper layers are trying
2012 	 * to add it again without dropping it, reject the addition.
2013 	 */
2014 	if (virt_dev->eps[ep_index].ring &&
2015 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2016 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2017 				"without dropping it.\n",
2018 				(unsigned int) ep->desc.bEndpointAddress);
2019 		return -EINVAL;
2020 	}
2021 
2022 	/* If the HCD has already noted the endpoint is enabled,
2023 	 * ignore this request.
2024 	 */
2025 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2026 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2027 				__func__, ep);
2028 		return 0;
2029 	}
2030 
2031 	/*
2032 	 * Configuration and alternate setting changes must be done in
2033 	 * process context, not interrupt context (or so documenation
2034 	 * for usb_set_interface() and usb_set_configuration() claim).
2035 	 */
2036 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2037 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2038 				__func__, ep->desc.bEndpointAddress);
2039 		return -ENOMEM;
2040 	}
2041 
2042 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2043 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2044 
2045 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2046 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2047 	 * this re-adds a new state for the endpoint from the new endpoint
2048 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2049 	 * drop flags alone.
2050 	 */
2051 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2052 
2053 	/* Store the usb_device pointer for later use */
2054 	ep->hcpriv = udev;
2055 
2056 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2057 	trace_xhci_add_endpoint(ep_ctx);
2058 
2059 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2060 			(unsigned int) ep->desc.bEndpointAddress,
2061 			udev->slot_id,
2062 			(unsigned int) new_drop_flags,
2063 			(unsigned int) new_add_flags);
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2067 
2068 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2069 {
2070 	struct xhci_input_control_ctx *ctrl_ctx;
2071 	struct xhci_ep_ctx *ep_ctx;
2072 	struct xhci_slot_ctx *slot_ctx;
2073 	int i;
2074 
2075 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2076 	if (!ctrl_ctx) {
2077 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2078 				__func__);
2079 		return;
2080 	}
2081 
2082 	/* When a device's add flag and drop flag are zero, any subsequent
2083 	 * configure endpoint command will leave that endpoint's state
2084 	 * untouched.  Make sure we don't leave any old state in the input
2085 	 * endpoint contexts.
2086 	 */
2087 	ctrl_ctx->drop_flags = 0;
2088 	ctrl_ctx->add_flags = 0;
2089 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2090 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2091 	/* Endpoint 0 is always valid */
2092 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2093 	for (i = 1; i < 31; i++) {
2094 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2095 		ep_ctx->ep_info = 0;
2096 		ep_ctx->ep_info2 = 0;
2097 		ep_ctx->deq = 0;
2098 		ep_ctx->tx_info = 0;
2099 	}
2100 }
2101 
2102 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2103 		struct usb_device *udev, u32 *cmd_status)
2104 {
2105 	int ret;
2106 
2107 	switch (*cmd_status) {
2108 	case COMP_COMMAND_ABORTED:
2109 	case COMP_COMMAND_RING_STOPPED:
2110 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2111 		ret = -ETIME;
2112 		break;
2113 	case COMP_RESOURCE_ERROR:
2114 		dev_warn(&udev->dev,
2115 			 "Not enough host controller resources for new device state.\n");
2116 		ret = -ENOMEM;
2117 		/* FIXME: can we allocate more resources for the HC? */
2118 		break;
2119 	case COMP_BANDWIDTH_ERROR:
2120 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2121 		dev_warn(&udev->dev,
2122 			 "Not enough bandwidth for new device state.\n");
2123 		ret = -ENOSPC;
2124 		/* FIXME: can we go back to the old state? */
2125 		break;
2126 	case COMP_TRB_ERROR:
2127 		/* the HCD set up something wrong */
2128 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2129 				"add flag = 1, "
2130 				"and endpoint is not disabled.\n");
2131 		ret = -EINVAL;
2132 		break;
2133 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2134 		dev_warn(&udev->dev,
2135 			 "ERROR: Incompatible device for endpoint configure command.\n");
2136 		ret = -ENODEV;
2137 		break;
2138 	case COMP_SUCCESS:
2139 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2140 				"Successful Endpoint Configure command");
2141 		ret = 0;
2142 		break;
2143 	default:
2144 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2145 				*cmd_status);
2146 		ret = -EINVAL;
2147 		break;
2148 	}
2149 	return ret;
2150 }
2151 
2152 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2153 		struct usb_device *udev, u32 *cmd_status)
2154 {
2155 	int ret;
2156 
2157 	switch (*cmd_status) {
2158 	case COMP_COMMAND_ABORTED:
2159 	case COMP_COMMAND_RING_STOPPED:
2160 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2161 		ret = -ETIME;
2162 		break;
2163 	case COMP_PARAMETER_ERROR:
2164 		dev_warn(&udev->dev,
2165 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2166 		ret = -EINVAL;
2167 		break;
2168 	case COMP_SLOT_NOT_ENABLED_ERROR:
2169 		dev_warn(&udev->dev,
2170 			"WARN: slot not enabled for evaluate context command.\n");
2171 		ret = -EINVAL;
2172 		break;
2173 	case COMP_CONTEXT_STATE_ERROR:
2174 		dev_warn(&udev->dev,
2175 			"WARN: invalid context state for evaluate context command.\n");
2176 		ret = -EINVAL;
2177 		break;
2178 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2179 		dev_warn(&udev->dev,
2180 			"ERROR: Incompatible device for evaluate context command.\n");
2181 		ret = -ENODEV;
2182 		break;
2183 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2184 		/* Max Exit Latency too large error */
2185 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2186 		ret = -EINVAL;
2187 		break;
2188 	case COMP_SUCCESS:
2189 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2190 				"Successful evaluate context command");
2191 		ret = 0;
2192 		break;
2193 	default:
2194 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2195 			*cmd_status);
2196 		ret = -EINVAL;
2197 		break;
2198 	}
2199 	return ret;
2200 }
2201 
2202 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2203 		struct xhci_input_control_ctx *ctrl_ctx)
2204 {
2205 	u32 valid_add_flags;
2206 	u32 valid_drop_flags;
2207 
2208 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2209 	 * (bit 1).  The default control endpoint is added during the Address
2210 	 * Device command and is never removed until the slot is disabled.
2211 	 */
2212 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2213 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2214 
2215 	/* Use hweight32 to count the number of ones in the add flags, or
2216 	 * number of endpoints added.  Don't count endpoints that are changed
2217 	 * (both added and dropped).
2218 	 */
2219 	return hweight32(valid_add_flags) -
2220 		hweight32(valid_add_flags & valid_drop_flags);
2221 }
2222 
2223 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2224 		struct xhci_input_control_ctx *ctrl_ctx)
2225 {
2226 	u32 valid_add_flags;
2227 	u32 valid_drop_flags;
2228 
2229 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2230 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2231 
2232 	return hweight32(valid_drop_flags) -
2233 		hweight32(valid_add_flags & valid_drop_flags);
2234 }
2235 
2236 /*
2237  * We need to reserve the new number of endpoints before the configure endpoint
2238  * command completes.  We can't subtract the dropped endpoints from the number
2239  * of active endpoints until the command completes because we can oversubscribe
2240  * the host in this case:
2241  *
2242  *  - the first configure endpoint command drops more endpoints than it adds
2243  *  - a second configure endpoint command that adds more endpoints is queued
2244  *  - the first configure endpoint command fails, so the config is unchanged
2245  *  - the second command may succeed, even though there isn't enough resources
2246  *
2247  * Must be called with xhci->lock held.
2248  */
2249 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2250 		struct xhci_input_control_ctx *ctrl_ctx)
2251 {
2252 	u32 added_eps;
2253 
2254 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2255 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2256 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257 				"Not enough ep ctxs: "
2258 				"%u active, need to add %u, limit is %u.",
2259 				xhci->num_active_eps, added_eps,
2260 				xhci->limit_active_eps);
2261 		return -ENOMEM;
2262 	}
2263 	xhci->num_active_eps += added_eps;
2264 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2265 			"Adding %u ep ctxs, %u now active.", added_eps,
2266 			xhci->num_active_eps);
2267 	return 0;
2268 }
2269 
2270 /*
2271  * The configure endpoint was failed by the xHC for some other reason, so we
2272  * need to revert the resources that failed configuration would have used.
2273  *
2274  * Must be called with xhci->lock held.
2275  */
2276 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2277 		struct xhci_input_control_ctx *ctrl_ctx)
2278 {
2279 	u32 num_failed_eps;
2280 
2281 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2282 	xhci->num_active_eps -= num_failed_eps;
2283 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2284 			"Removing %u failed ep ctxs, %u now active.",
2285 			num_failed_eps,
2286 			xhci->num_active_eps);
2287 }
2288 
2289 /*
2290  * Now that the command has completed, clean up the active endpoint count by
2291  * subtracting out the endpoints that were dropped (but not changed).
2292  *
2293  * Must be called with xhci->lock held.
2294  */
2295 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2296 		struct xhci_input_control_ctx *ctrl_ctx)
2297 {
2298 	u32 num_dropped_eps;
2299 
2300 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2301 	xhci->num_active_eps -= num_dropped_eps;
2302 	if (num_dropped_eps)
2303 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2304 				"Removing %u dropped ep ctxs, %u now active.",
2305 				num_dropped_eps,
2306 				xhci->num_active_eps);
2307 }
2308 
2309 static unsigned int xhci_get_block_size(struct usb_device *udev)
2310 {
2311 	switch (udev->speed) {
2312 	case USB_SPEED_LOW:
2313 	case USB_SPEED_FULL:
2314 		return FS_BLOCK;
2315 	case USB_SPEED_HIGH:
2316 		return HS_BLOCK;
2317 	case USB_SPEED_SUPER:
2318 	case USB_SPEED_SUPER_PLUS:
2319 		return SS_BLOCK;
2320 	case USB_SPEED_UNKNOWN:
2321 	case USB_SPEED_WIRELESS:
2322 	default:
2323 		/* Should never happen */
2324 		return 1;
2325 	}
2326 }
2327 
2328 static unsigned int
2329 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2330 {
2331 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2332 		return LS_OVERHEAD;
2333 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2334 		return FS_OVERHEAD;
2335 	return HS_OVERHEAD;
2336 }
2337 
2338 /* If we are changing a LS/FS device under a HS hub,
2339  * make sure (if we are activating a new TT) that the HS bus has enough
2340  * bandwidth for this new TT.
2341  */
2342 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2343 		struct xhci_virt_device *virt_dev,
2344 		int old_active_eps)
2345 {
2346 	struct xhci_interval_bw_table *bw_table;
2347 	struct xhci_tt_bw_info *tt_info;
2348 
2349 	/* Find the bandwidth table for the root port this TT is attached to. */
2350 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2351 	tt_info = virt_dev->tt_info;
2352 	/* If this TT already had active endpoints, the bandwidth for this TT
2353 	 * has already been added.  Removing all periodic endpoints (and thus
2354 	 * making the TT enactive) will only decrease the bandwidth used.
2355 	 */
2356 	if (old_active_eps)
2357 		return 0;
2358 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2359 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2360 			return -ENOMEM;
2361 		return 0;
2362 	}
2363 	/* Not sure why we would have no new active endpoints...
2364 	 *
2365 	 * Maybe because of an Evaluate Context change for a hub update or a
2366 	 * control endpoint 0 max packet size change?
2367 	 * FIXME: skip the bandwidth calculation in that case.
2368 	 */
2369 	return 0;
2370 }
2371 
2372 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2373 		struct xhci_virt_device *virt_dev)
2374 {
2375 	unsigned int bw_reserved;
2376 
2377 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2378 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2379 		return -ENOMEM;
2380 
2381 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2382 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2383 		return -ENOMEM;
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * This algorithm is a very conservative estimate of the worst-case scheduling
2390  * scenario for any one interval.  The hardware dynamically schedules the
2391  * packets, so we can't tell which microframe could be the limiting factor in
2392  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2393  *
2394  * Obviously, we can't solve an NP complete problem to find the minimum worst
2395  * case scenario.  Instead, we come up with an estimate that is no less than
2396  * the worst case bandwidth used for any one microframe, but may be an
2397  * over-estimate.
2398  *
2399  * We walk the requirements for each endpoint by interval, starting with the
2400  * smallest interval, and place packets in the schedule where there is only one
2401  * possible way to schedule packets for that interval.  In order to simplify
2402  * this algorithm, we record the largest max packet size for each interval, and
2403  * assume all packets will be that size.
2404  *
2405  * For interval 0, we obviously must schedule all packets for each interval.
2406  * The bandwidth for interval 0 is just the amount of data to be transmitted
2407  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2408  * the number of packets).
2409  *
2410  * For interval 1, we have two possible microframes to schedule those packets
2411  * in.  For this algorithm, if we can schedule the same number of packets for
2412  * each possible scheduling opportunity (each microframe), we will do so.  The
2413  * remaining number of packets will be saved to be transmitted in the gaps in
2414  * the next interval's scheduling sequence.
2415  *
2416  * As we move those remaining packets to be scheduled with interval 2 packets,
2417  * we have to double the number of remaining packets to transmit.  This is
2418  * because the intervals are actually powers of 2, and we would be transmitting
2419  * the previous interval's packets twice in this interval.  We also have to be
2420  * sure that when we look at the largest max packet size for this interval, we
2421  * also look at the largest max packet size for the remaining packets and take
2422  * the greater of the two.
2423  *
2424  * The algorithm continues to evenly distribute packets in each scheduling
2425  * opportunity, and push the remaining packets out, until we get to the last
2426  * interval.  Then those packets and their associated overhead are just added
2427  * to the bandwidth used.
2428  */
2429 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2430 		struct xhci_virt_device *virt_dev,
2431 		int old_active_eps)
2432 {
2433 	unsigned int bw_reserved;
2434 	unsigned int max_bandwidth;
2435 	unsigned int bw_used;
2436 	unsigned int block_size;
2437 	struct xhci_interval_bw_table *bw_table;
2438 	unsigned int packet_size = 0;
2439 	unsigned int overhead = 0;
2440 	unsigned int packets_transmitted = 0;
2441 	unsigned int packets_remaining = 0;
2442 	unsigned int i;
2443 
2444 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2445 		return xhci_check_ss_bw(xhci, virt_dev);
2446 
2447 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2448 		max_bandwidth = HS_BW_LIMIT;
2449 		/* Convert percent of bus BW reserved to blocks reserved */
2450 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2451 	} else {
2452 		max_bandwidth = FS_BW_LIMIT;
2453 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2454 	}
2455 
2456 	bw_table = virt_dev->bw_table;
2457 	/* We need to translate the max packet size and max ESIT payloads into
2458 	 * the units the hardware uses.
2459 	 */
2460 	block_size = xhci_get_block_size(virt_dev->udev);
2461 
2462 	/* If we are manipulating a LS/FS device under a HS hub, double check
2463 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2464 	 */
2465 	if (virt_dev->tt_info) {
2466 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2467 				"Recalculating BW for rootport %u",
2468 				virt_dev->real_port);
2469 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2470 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2471 					"newly activated TT.\n");
2472 			return -ENOMEM;
2473 		}
2474 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2475 				"Recalculating BW for TT slot %u port %u",
2476 				virt_dev->tt_info->slot_id,
2477 				virt_dev->tt_info->ttport);
2478 	} else {
2479 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2480 				"Recalculating BW for rootport %u",
2481 				virt_dev->real_port);
2482 	}
2483 
2484 	/* Add in how much bandwidth will be used for interval zero, or the
2485 	 * rounded max ESIT payload + number of packets * largest overhead.
2486 	 */
2487 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2488 		bw_table->interval_bw[0].num_packets *
2489 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2490 
2491 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2492 		unsigned int bw_added;
2493 		unsigned int largest_mps;
2494 		unsigned int interval_overhead;
2495 
2496 		/*
2497 		 * How many packets could we transmit in this interval?
2498 		 * If packets didn't fit in the previous interval, we will need
2499 		 * to transmit that many packets twice within this interval.
2500 		 */
2501 		packets_remaining = 2 * packets_remaining +
2502 			bw_table->interval_bw[i].num_packets;
2503 
2504 		/* Find the largest max packet size of this or the previous
2505 		 * interval.
2506 		 */
2507 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2508 			largest_mps = 0;
2509 		else {
2510 			struct xhci_virt_ep *virt_ep;
2511 			struct list_head *ep_entry;
2512 
2513 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2514 			virt_ep = list_entry(ep_entry,
2515 					struct xhci_virt_ep, bw_endpoint_list);
2516 			/* Convert to blocks, rounding up */
2517 			largest_mps = DIV_ROUND_UP(
2518 					virt_ep->bw_info.max_packet_size,
2519 					block_size);
2520 		}
2521 		if (largest_mps > packet_size)
2522 			packet_size = largest_mps;
2523 
2524 		/* Use the larger overhead of this or the previous interval. */
2525 		interval_overhead = xhci_get_largest_overhead(
2526 				&bw_table->interval_bw[i]);
2527 		if (interval_overhead > overhead)
2528 			overhead = interval_overhead;
2529 
2530 		/* How many packets can we evenly distribute across
2531 		 * (1 << (i + 1)) possible scheduling opportunities?
2532 		 */
2533 		packets_transmitted = packets_remaining >> (i + 1);
2534 
2535 		/* Add in the bandwidth used for those scheduled packets */
2536 		bw_added = packets_transmitted * (overhead + packet_size);
2537 
2538 		/* How many packets do we have remaining to transmit? */
2539 		packets_remaining = packets_remaining % (1 << (i + 1));
2540 
2541 		/* What largest max packet size should those packets have? */
2542 		/* If we've transmitted all packets, don't carry over the
2543 		 * largest packet size.
2544 		 */
2545 		if (packets_remaining == 0) {
2546 			packet_size = 0;
2547 			overhead = 0;
2548 		} else if (packets_transmitted > 0) {
2549 			/* Otherwise if we do have remaining packets, and we've
2550 			 * scheduled some packets in this interval, take the
2551 			 * largest max packet size from endpoints with this
2552 			 * interval.
2553 			 */
2554 			packet_size = largest_mps;
2555 			overhead = interval_overhead;
2556 		}
2557 		/* Otherwise carry over packet_size and overhead from the last
2558 		 * time we had a remainder.
2559 		 */
2560 		bw_used += bw_added;
2561 		if (bw_used > max_bandwidth) {
2562 			xhci_warn(xhci, "Not enough bandwidth. "
2563 					"Proposed: %u, Max: %u\n",
2564 				bw_used, max_bandwidth);
2565 			return -ENOMEM;
2566 		}
2567 	}
2568 	/*
2569 	 * Ok, we know we have some packets left over after even-handedly
2570 	 * scheduling interval 15.  We don't know which microframes they will
2571 	 * fit into, so we over-schedule and say they will be scheduled every
2572 	 * microframe.
2573 	 */
2574 	if (packets_remaining > 0)
2575 		bw_used += overhead + packet_size;
2576 
2577 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2578 		unsigned int port_index = virt_dev->real_port - 1;
2579 
2580 		/* OK, we're manipulating a HS device attached to a
2581 		 * root port bandwidth domain.  Include the number of active TTs
2582 		 * in the bandwidth used.
2583 		 */
2584 		bw_used += TT_HS_OVERHEAD *
2585 			xhci->rh_bw[port_index].num_active_tts;
2586 	}
2587 
2588 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2589 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2590 		"Available: %u " "percent",
2591 		bw_used, max_bandwidth, bw_reserved,
2592 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2593 		max_bandwidth);
2594 
2595 	bw_used += bw_reserved;
2596 	if (bw_used > max_bandwidth) {
2597 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2598 				bw_used, max_bandwidth);
2599 		return -ENOMEM;
2600 	}
2601 
2602 	bw_table->bw_used = bw_used;
2603 	return 0;
2604 }
2605 
2606 static bool xhci_is_async_ep(unsigned int ep_type)
2607 {
2608 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2609 					ep_type != ISOC_IN_EP &&
2610 					ep_type != INT_IN_EP);
2611 }
2612 
2613 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2614 {
2615 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2616 }
2617 
2618 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2619 {
2620 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2621 
2622 	if (ep_bw->ep_interval == 0)
2623 		return SS_OVERHEAD_BURST +
2624 			(ep_bw->mult * ep_bw->num_packets *
2625 					(SS_OVERHEAD + mps));
2626 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2627 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2628 				1 << ep_bw->ep_interval);
2629 
2630 }
2631 
2632 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2633 		struct xhci_bw_info *ep_bw,
2634 		struct xhci_interval_bw_table *bw_table,
2635 		struct usb_device *udev,
2636 		struct xhci_virt_ep *virt_ep,
2637 		struct xhci_tt_bw_info *tt_info)
2638 {
2639 	struct xhci_interval_bw	*interval_bw;
2640 	int normalized_interval;
2641 
2642 	if (xhci_is_async_ep(ep_bw->type))
2643 		return;
2644 
2645 	if (udev->speed >= USB_SPEED_SUPER) {
2646 		if (xhci_is_sync_in_ep(ep_bw->type))
2647 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2648 				xhci_get_ss_bw_consumed(ep_bw);
2649 		else
2650 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2651 				xhci_get_ss_bw_consumed(ep_bw);
2652 		return;
2653 	}
2654 
2655 	/* SuperSpeed endpoints never get added to intervals in the table, so
2656 	 * this check is only valid for HS/FS/LS devices.
2657 	 */
2658 	if (list_empty(&virt_ep->bw_endpoint_list))
2659 		return;
2660 	/* For LS/FS devices, we need to translate the interval expressed in
2661 	 * microframes to frames.
2662 	 */
2663 	if (udev->speed == USB_SPEED_HIGH)
2664 		normalized_interval = ep_bw->ep_interval;
2665 	else
2666 		normalized_interval = ep_bw->ep_interval - 3;
2667 
2668 	if (normalized_interval == 0)
2669 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2670 	interval_bw = &bw_table->interval_bw[normalized_interval];
2671 	interval_bw->num_packets -= ep_bw->num_packets;
2672 	switch (udev->speed) {
2673 	case USB_SPEED_LOW:
2674 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2675 		break;
2676 	case USB_SPEED_FULL:
2677 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2678 		break;
2679 	case USB_SPEED_HIGH:
2680 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2681 		break;
2682 	case USB_SPEED_SUPER:
2683 	case USB_SPEED_SUPER_PLUS:
2684 	case USB_SPEED_UNKNOWN:
2685 	case USB_SPEED_WIRELESS:
2686 		/* Should never happen because only LS/FS/HS endpoints will get
2687 		 * added to the endpoint list.
2688 		 */
2689 		return;
2690 	}
2691 	if (tt_info)
2692 		tt_info->active_eps -= 1;
2693 	list_del_init(&virt_ep->bw_endpoint_list);
2694 }
2695 
2696 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2697 		struct xhci_bw_info *ep_bw,
2698 		struct xhci_interval_bw_table *bw_table,
2699 		struct usb_device *udev,
2700 		struct xhci_virt_ep *virt_ep,
2701 		struct xhci_tt_bw_info *tt_info)
2702 {
2703 	struct xhci_interval_bw	*interval_bw;
2704 	struct xhci_virt_ep *smaller_ep;
2705 	int normalized_interval;
2706 
2707 	if (xhci_is_async_ep(ep_bw->type))
2708 		return;
2709 
2710 	if (udev->speed == USB_SPEED_SUPER) {
2711 		if (xhci_is_sync_in_ep(ep_bw->type))
2712 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2713 				xhci_get_ss_bw_consumed(ep_bw);
2714 		else
2715 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2716 				xhci_get_ss_bw_consumed(ep_bw);
2717 		return;
2718 	}
2719 
2720 	/* For LS/FS devices, we need to translate the interval expressed in
2721 	 * microframes to frames.
2722 	 */
2723 	if (udev->speed == USB_SPEED_HIGH)
2724 		normalized_interval = ep_bw->ep_interval;
2725 	else
2726 		normalized_interval = ep_bw->ep_interval - 3;
2727 
2728 	if (normalized_interval == 0)
2729 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2730 	interval_bw = &bw_table->interval_bw[normalized_interval];
2731 	interval_bw->num_packets += ep_bw->num_packets;
2732 	switch (udev->speed) {
2733 	case USB_SPEED_LOW:
2734 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2735 		break;
2736 	case USB_SPEED_FULL:
2737 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2738 		break;
2739 	case USB_SPEED_HIGH:
2740 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2741 		break;
2742 	case USB_SPEED_SUPER:
2743 	case USB_SPEED_SUPER_PLUS:
2744 	case USB_SPEED_UNKNOWN:
2745 	case USB_SPEED_WIRELESS:
2746 		/* Should never happen because only LS/FS/HS endpoints will get
2747 		 * added to the endpoint list.
2748 		 */
2749 		return;
2750 	}
2751 
2752 	if (tt_info)
2753 		tt_info->active_eps += 1;
2754 	/* Insert the endpoint into the list, largest max packet size first. */
2755 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2756 			bw_endpoint_list) {
2757 		if (ep_bw->max_packet_size >=
2758 				smaller_ep->bw_info.max_packet_size) {
2759 			/* Add the new ep before the smaller endpoint */
2760 			list_add_tail(&virt_ep->bw_endpoint_list,
2761 					&smaller_ep->bw_endpoint_list);
2762 			return;
2763 		}
2764 	}
2765 	/* Add the new endpoint at the end of the list. */
2766 	list_add_tail(&virt_ep->bw_endpoint_list,
2767 			&interval_bw->endpoints);
2768 }
2769 
2770 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2771 		struct xhci_virt_device *virt_dev,
2772 		int old_active_eps)
2773 {
2774 	struct xhci_root_port_bw_info *rh_bw_info;
2775 	if (!virt_dev->tt_info)
2776 		return;
2777 
2778 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2779 	if (old_active_eps == 0 &&
2780 				virt_dev->tt_info->active_eps != 0) {
2781 		rh_bw_info->num_active_tts += 1;
2782 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2783 	} else if (old_active_eps != 0 &&
2784 				virt_dev->tt_info->active_eps == 0) {
2785 		rh_bw_info->num_active_tts -= 1;
2786 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2787 	}
2788 }
2789 
2790 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2791 		struct xhci_virt_device *virt_dev,
2792 		struct xhci_container_ctx *in_ctx)
2793 {
2794 	struct xhci_bw_info ep_bw_info[31];
2795 	int i;
2796 	struct xhci_input_control_ctx *ctrl_ctx;
2797 	int old_active_eps = 0;
2798 
2799 	if (virt_dev->tt_info)
2800 		old_active_eps = virt_dev->tt_info->active_eps;
2801 
2802 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2803 	if (!ctrl_ctx) {
2804 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805 				__func__);
2806 		return -ENOMEM;
2807 	}
2808 
2809 	for (i = 0; i < 31; i++) {
2810 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2811 			continue;
2812 
2813 		/* Make a copy of the BW info in case we need to revert this */
2814 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2815 				sizeof(ep_bw_info[i]));
2816 		/* Drop the endpoint from the interval table if the endpoint is
2817 		 * being dropped or changed.
2818 		 */
2819 		if (EP_IS_DROPPED(ctrl_ctx, i))
2820 			xhci_drop_ep_from_interval_table(xhci,
2821 					&virt_dev->eps[i].bw_info,
2822 					virt_dev->bw_table,
2823 					virt_dev->udev,
2824 					&virt_dev->eps[i],
2825 					virt_dev->tt_info);
2826 	}
2827 	/* Overwrite the information stored in the endpoints' bw_info */
2828 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2829 	for (i = 0; i < 31; i++) {
2830 		/* Add any changed or added endpoints to the interval table */
2831 		if (EP_IS_ADDED(ctrl_ctx, i))
2832 			xhci_add_ep_to_interval_table(xhci,
2833 					&virt_dev->eps[i].bw_info,
2834 					virt_dev->bw_table,
2835 					virt_dev->udev,
2836 					&virt_dev->eps[i],
2837 					virt_dev->tt_info);
2838 	}
2839 
2840 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2841 		/* Ok, this fits in the bandwidth we have.
2842 		 * Update the number of active TTs.
2843 		 */
2844 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2845 		return 0;
2846 	}
2847 
2848 	/* We don't have enough bandwidth for this, revert the stored info. */
2849 	for (i = 0; i < 31; i++) {
2850 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2851 			continue;
2852 
2853 		/* Drop the new copies of any added or changed endpoints from
2854 		 * the interval table.
2855 		 */
2856 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2857 			xhci_drop_ep_from_interval_table(xhci,
2858 					&virt_dev->eps[i].bw_info,
2859 					virt_dev->bw_table,
2860 					virt_dev->udev,
2861 					&virt_dev->eps[i],
2862 					virt_dev->tt_info);
2863 		}
2864 		/* Revert the endpoint back to its old information */
2865 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2866 				sizeof(ep_bw_info[i]));
2867 		/* Add any changed or dropped endpoints back into the table */
2868 		if (EP_IS_DROPPED(ctrl_ctx, i))
2869 			xhci_add_ep_to_interval_table(xhci,
2870 					&virt_dev->eps[i].bw_info,
2871 					virt_dev->bw_table,
2872 					virt_dev->udev,
2873 					&virt_dev->eps[i],
2874 					virt_dev->tt_info);
2875 	}
2876 	return -ENOMEM;
2877 }
2878 
2879 
2880 /* Issue a configure endpoint command or evaluate context command
2881  * and wait for it to finish.
2882  */
2883 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2884 		struct usb_device *udev,
2885 		struct xhci_command *command,
2886 		bool ctx_change, bool must_succeed)
2887 {
2888 	int ret;
2889 	unsigned long flags;
2890 	struct xhci_input_control_ctx *ctrl_ctx;
2891 	struct xhci_virt_device *virt_dev;
2892 	struct xhci_slot_ctx *slot_ctx;
2893 
2894 	if (!command)
2895 		return -EINVAL;
2896 
2897 	spin_lock_irqsave(&xhci->lock, flags);
2898 
2899 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2900 		spin_unlock_irqrestore(&xhci->lock, flags);
2901 		return -ESHUTDOWN;
2902 	}
2903 
2904 	virt_dev = xhci->devs[udev->slot_id];
2905 
2906 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2907 	if (!ctrl_ctx) {
2908 		spin_unlock_irqrestore(&xhci->lock, flags);
2909 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2910 				__func__);
2911 		return -ENOMEM;
2912 	}
2913 
2914 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2915 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2916 		spin_unlock_irqrestore(&xhci->lock, flags);
2917 		xhci_warn(xhci, "Not enough host resources, "
2918 				"active endpoint contexts = %u\n",
2919 				xhci->num_active_eps);
2920 		return -ENOMEM;
2921 	}
2922 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2923 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2924 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2925 			xhci_free_host_resources(xhci, ctrl_ctx);
2926 		spin_unlock_irqrestore(&xhci->lock, flags);
2927 		xhci_warn(xhci, "Not enough bandwidth\n");
2928 		return -ENOMEM;
2929 	}
2930 
2931 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2932 
2933 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2934 	trace_xhci_configure_endpoint(slot_ctx);
2935 
2936 	if (!ctx_change)
2937 		ret = xhci_queue_configure_endpoint(xhci, command,
2938 				command->in_ctx->dma,
2939 				udev->slot_id, must_succeed);
2940 	else
2941 		ret = xhci_queue_evaluate_context(xhci, command,
2942 				command->in_ctx->dma,
2943 				udev->slot_id, must_succeed);
2944 	if (ret < 0) {
2945 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2946 			xhci_free_host_resources(xhci, ctrl_ctx);
2947 		spin_unlock_irqrestore(&xhci->lock, flags);
2948 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2949 				"FIXME allocate a new ring segment");
2950 		return -ENOMEM;
2951 	}
2952 	xhci_ring_cmd_db(xhci);
2953 	spin_unlock_irqrestore(&xhci->lock, flags);
2954 
2955 	/* Wait for the configure endpoint command to complete */
2956 	wait_for_completion(command->completion);
2957 
2958 	if (!ctx_change)
2959 		ret = xhci_configure_endpoint_result(xhci, udev,
2960 						     &command->status);
2961 	else
2962 		ret = xhci_evaluate_context_result(xhci, udev,
2963 						   &command->status);
2964 
2965 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2966 		spin_lock_irqsave(&xhci->lock, flags);
2967 		/* If the command failed, remove the reserved resources.
2968 		 * Otherwise, clean up the estimate to include dropped eps.
2969 		 */
2970 		if (ret)
2971 			xhci_free_host_resources(xhci, ctrl_ctx);
2972 		else
2973 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2974 		spin_unlock_irqrestore(&xhci->lock, flags);
2975 	}
2976 	return ret;
2977 }
2978 
2979 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2980 	struct xhci_virt_device *vdev, int i)
2981 {
2982 	struct xhci_virt_ep *ep = &vdev->eps[i];
2983 
2984 	if (ep->ep_state & EP_HAS_STREAMS) {
2985 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2986 				xhci_get_endpoint_address(i));
2987 		xhci_free_stream_info(xhci, ep->stream_info);
2988 		ep->stream_info = NULL;
2989 		ep->ep_state &= ~EP_HAS_STREAMS;
2990 	}
2991 }
2992 
2993 /* Called after one or more calls to xhci_add_endpoint() or
2994  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2995  * to call xhci_reset_bandwidth().
2996  *
2997  * Since we are in the middle of changing either configuration or
2998  * installing a new alt setting, the USB core won't allow URBs to be
2999  * enqueued for any endpoint on the old config or interface.  Nothing
3000  * else should be touching the xhci->devs[slot_id] structure, so we
3001  * don't need to take the xhci->lock for manipulating that.
3002  */
3003 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3004 {
3005 	int i;
3006 	int ret = 0;
3007 	struct xhci_hcd *xhci;
3008 	struct xhci_virt_device	*virt_dev;
3009 	struct xhci_input_control_ctx *ctrl_ctx;
3010 	struct xhci_slot_ctx *slot_ctx;
3011 	struct xhci_command *command;
3012 
3013 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3014 	if (ret <= 0)
3015 		return ret;
3016 	xhci = hcd_to_xhci(hcd);
3017 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3018 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3019 		return -ENODEV;
3020 
3021 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022 	virt_dev = xhci->devs[udev->slot_id];
3023 
3024 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3025 	if (!command)
3026 		return -ENOMEM;
3027 
3028 	command->in_ctx = virt_dev->in_ctx;
3029 
3030 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3031 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3032 	if (!ctrl_ctx) {
3033 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3034 				__func__);
3035 		ret = -ENOMEM;
3036 		goto command_cleanup;
3037 	}
3038 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3039 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3040 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3041 
3042 	/* Don't issue the command if there's no endpoints to update. */
3043 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3044 	    ctrl_ctx->drop_flags == 0) {
3045 		ret = 0;
3046 		goto command_cleanup;
3047 	}
3048 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3049 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3050 	for (i = 31; i >= 1; i--) {
3051 		__le32 le32 = cpu_to_le32(BIT(i));
3052 
3053 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3054 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3055 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3056 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3057 			break;
3058 		}
3059 	}
3060 
3061 	ret = xhci_configure_endpoint(xhci, udev, command,
3062 			false, false);
3063 	if (ret)
3064 		/* Callee should call reset_bandwidth() */
3065 		goto command_cleanup;
3066 
3067 	/* Free any rings that were dropped, but not changed. */
3068 	for (i = 1; i < 31; i++) {
3069 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3070 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3071 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3072 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3073 		}
3074 	}
3075 	xhci_zero_in_ctx(xhci, virt_dev);
3076 	/*
3077 	 * Install any rings for completely new endpoints or changed endpoints,
3078 	 * and free any old rings from changed endpoints.
3079 	 */
3080 	for (i = 1; i < 31; i++) {
3081 		if (!virt_dev->eps[i].new_ring)
3082 			continue;
3083 		/* Only free the old ring if it exists.
3084 		 * It may not if this is the first add of an endpoint.
3085 		 */
3086 		if (virt_dev->eps[i].ring) {
3087 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3088 		}
3089 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3090 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3091 		virt_dev->eps[i].new_ring = NULL;
3092 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3093 	}
3094 command_cleanup:
3095 	kfree(command->completion);
3096 	kfree(command);
3097 
3098 	return ret;
3099 }
3100 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3101 
3102 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3103 {
3104 	struct xhci_hcd *xhci;
3105 	struct xhci_virt_device	*virt_dev;
3106 	int i, ret;
3107 
3108 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3109 	if (ret <= 0)
3110 		return;
3111 	xhci = hcd_to_xhci(hcd);
3112 
3113 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3114 	virt_dev = xhci->devs[udev->slot_id];
3115 	/* Free any rings allocated for added endpoints */
3116 	for (i = 0; i < 31; i++) {
3117 		if (virt_dev->eps[i].new_ring) {
3118 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3119 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3120 			virt_dev->eps[i].new_ring = NULL;
3121 		}
3122 	}
3123 	xhci_zero_in_ctx(xhci, virt_dev);
3124 }
3125 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3126 
3127 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3128 		struct xhci_container_ctx *in_ctx,
3129 		struct xhci_container_ctx *out_ctx,
3130 		struct xhci_input_control_ctx *ctrl_ctx,
3131 		u32 add_flags, u32 drop_flags)
3132 {
3133 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3134 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3135 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3136 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3137 }
3138 
3139 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3140 				  struct usb_host_endpoint *host_ep)
3141 {
3142 	struct xhci_hcd		*xhci;
3143 	struct xhci_virt_device	*vdev;
3144 	struct xhci_virt_ep	*ep;
3145 	struct usb_device	*udev;
3146 	unsigned long		flags;
3147 	unsigned int		ep_index;
3148 
3149 	xhci = hcd_to_xhci(hcd);
3150 rescan:
3151 	spin_lock_irqsave(&xhci->lock, flags);
3152 
3153 	udev = (struct usb_device *)host_ep->hcpriv;
3154 	if (!udev || !udev->slot_id)
3155 		goto done;
3156 
3157 	vdev = xhci->devs[udev->slot_id];
3158 	if (!vdev)
3159 		goto done;
3160 
3161 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3162 	ep = &vdev->eps[ep_index];
3163 	if (!ep)
3164 		goto done;
3165 
3166 	/* wait for hub_tt_work to finish clearing hub TT */
3167 	if (ep->ep_state & EP_CLEARING_TT) {
3168 		spin_unlock_irqrestore(&xhci->lock, flags);
3169 		schedule_timeout_uninterruptible(1);
3170 		goto rescan;
3171 	}
3172 
3173 	if (ep->ep_state)
3174 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3175 			 ep->ep_state);
3176 done:
3177 	host_ep->hcpriv = NULL;
3178 	spin_unlock_irqrestore(&xhci->lock, flags);
3179 }
3180 
3181 /*
3182  * Called after usb core issues a clear halt control message.
3183  * The host side of the halt should already be cleared by a reset endpoint
3184  * command issued when the STALL event was received.
3185  *
3186  * The reset endpoint command may only be issued to endpoints in the halted
3187  * state. For software that wishes to reset the data toggle or sequence number
3188  * of an endpoint that isn't in the halted state this function will issue a
3189  * configure endpoint command with the Drop and Add bits set for the target
3190  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3191  */
3192 
3193 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3194 		struct usb_host_endpoint *host_ep)
3195 {
3196 	struct xhci_hcd *xhci;
3197 	struct usb_device *udev;
3198 	struct xhci_virt_device *vdev;
3199 	struct xhci_virt_ep *ep;
3200 	struct xhci_input_control_ctx *ctrl_ctx;
3201 	struct xhci_command *stop_cmd, *cfg_cmd;
3202 	unsigned int ep_index;
3203 	unsigned long flags;
3204 	u32 ep_flag;
3205 	int err;
3206 
3207 	xhci = hcd_to_xhci(hcd);
3208 	if (!host_ep->hcpriv)
3209 		return;
3210 	udev = (struct usb_device *) host_ep->hcpriv;
3211 	vdev = xhci->devs[udev->slot_id];
3212 
3213 	/*
3214 	 * vdev may be lost due to xHC restore error and re-initialization
3215 	 * during S3/S4 resume. A new vdev will be allocated later by
3216 	 * xhci_discover_or_reset_device()
3217 	 */
3218 	if (!udev->slot_id || !vdev)
3219 		return;
3220 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3221 	ep = &vdev->eps[ep_index];
3222 	if (!ep)
3223 		return;
3224 
3225 	/* Bail out if toggle is already being cleared by a endpoint reset */
3226 	spin_lock_irqsave(&xhci->lock, flags);
3227 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3228 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3229 		spin_unlock_irqrestore(&xhci->lock, flags);
3230 		return;
3231 	}
3232 	spin_unlock_irqrestore(&xhci->lock, flags);
3233 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3234 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3235 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3236 		return;
3237 
3238 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3239 
3240 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3241 		return;
3242 
3243 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3244 	if (!stop_cmd)
3245 		return;
3246 
3247 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3248 	if (!cfg_cmd)
3249 		goto cleanup;
3250 
3251 	spin_lock_irqsave(&xhci->lock, flags);
3252 
3253 	/* block queuing new trbs and ringing ep doorbell */
3254 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3255 
3256 	/*
3257 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3258 	 * Driver is required to synchronously cancel all transfer request.
3259 	 * Stop the endpoint to force xHC to update the output context
3260 	 */
3261 
3262 	if (!list_empty(&ep->ring->td_list)) {
3263 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3264 		spin_unlock_irqrestore(&xhci->lock, flags);
3265 		xhci_free_command(xhci, cfg_cmd);
3266 		goto cleanup;
3267 	}
3268 
3269 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3270 					ep_index, 0);
3271 	if (err < 0) {
3272 		spin_unlock_irqrestore(&xhci->lock, flags);
3273 		xhci_free_command(xhci, cfg_cmd);
3274 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3275 				__func__, err);
3276 		goto cleanup;
3277 	}
3278 
3279 	xhci_ring_cmd_db(xhci);
3280 	spin_unlock_irqrestore(&xhci->lock, flags);
3281 
3282 	wait_for_completion(stop_cmd->completion);
3283 
3284 	spin_lock_irqsave(&xhci->lock, flags);
3285 
3286 	/* config ep command clears toggle if add and drop ep flags are set */
3287 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3288 	if (!ctrl_ctx) {
3289 		spin_unlock_irqrestore(&xhci->lock, flags);
3290 		xhci_free_command(xhci, cfg_cmd);
3291 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3292 				__func__);
3293 		goto cleanup;
3294 	}
3295 
3296 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3297 					   ctrl_ctx, ep_flag, ep_flag);
3298 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3299 
3300 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3301 				      udev->slot_id, false);
3302 	if (err < 0) {
3303 		spin_unlock_irqrestore(&xhci->lock, flags);
3304 		xhci_free_command(xhci, cfg_cmd);
3305 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3306 				__func__, err);
3307 		goto cleanup;
3308 	}
3309 
3310 	xhci_ring_cmd_db(xhci);
3311 	spin_unlock_irqrestore(&xhci->lock, flags);
3312 
3313 	wait_for_completion(cfg_cmd->completion);
3314 
3315 	xhci_free_command(xhci, cfg_cmd);
3316 cleanup:
3317 	xhci_free_command(xhci, stop_cmd);
3318 	spin_lock_irqsave(&xhci->lock, flags);
3319 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3320 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3321 	spin_unlock_irqrestore(&xhci->lock, flags);
3322 }
3323 
3324 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3325 		struct usb_device *udev, struct usb_host_endpoint *ep,
3326 		unsigned int slot_id)
3327 {
3328 	int ret;
3329 	unsigned int ep_index;
3330 	unsigned int ep_state;
3331 
3332 	if (!ep)
3333 		return -EINVAL;
3334 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3335 	if (ret <= 0)
3336 		return ret ? ret : -EINVAL;
3337 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3338 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3339 				" descriptor for ep 0x%x does not support streams\n",
3340 				ep->desc.bEndpointAddress);
3341 		return -EINVAL;
3342 	}
3343 
3344 	ep_index = xhci_get_endpoint_index(&ep->desc);
3345 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3346 	if (ep_state & EP_HAS_STREAMS ||
3347 			ep_state & EP_GETTING_STREAMS) {
3348 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3349 				"already has streams set up.\n",
3350 				ep->desc.bEndpointAddress);
3351 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3352 				"dynamic stream context array reallocation.\n");
3353 		return -EINVAL;
3354 	}
3355 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3356 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3357 				"endpoint 0x%x; URBs are pending.\n",
3358 				ep->desc.bEndpointAddress);
3359 		return -EINVAL;
3360 	}
3361 	return 0;
3362 }
3363 
3364 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3365 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3366 {
3367 	unsigned int max_streams;
3368 
3369 	/* The stream context array size must be a power of two */
3370 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3371 	/*
3372 	 * Find out how many primary stream array entries the host controller
3373 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3374 	 * level page entries), but that's an optional feature for xHCI host
3375 	 * controllers. xHCs must support at least 4 stream IDs.
3376 	 */
3377 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3378 	if (*num_stream_ctxs > max_streams) {
3379 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3380 				max_streams);
3381 		*num_stream_ctxs = max_streams;
3382 		*num_streams = max_streams;
3383 	}
3384 }
3385 
3386 /* Returns an error code if one of the endpoint already has streams.
3387  * This does not change any data structures, it only checks and gathers
3388  * information.
3389  */
3390 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3391 		struct usb_device *udev,
3392 		struct usb_host_endpoint **eps, unsigned int num_eps,
3393 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3394 {
3395 	unsigned int max_streams;
3396 	unsigned int endpoint_flag;
3397 	int i;
3398 	int ret;
3399 
3400 	for (i = 0; i < num_eps; i++) {
3401 		ret = xhci_check_streams_endpoint(xhci, udev,
3402 				eps[i], udev->slot_id);
3403 		if (ret < 0)
3404 			return ret;
3405 
3406 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3407 		if (max_streams < (*num_streams - 1)) {
3408 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3409 					eps[i]->desc.bEndpointAddress,
3410 					max_streams);
3411 			*num_streams = max_streams+1;
3412 		}
3413 
3414 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3415 		if (*changed_ep_bitmask & endpoint_flag)
3416 			return -EINVAL;
3417 		*changed_ep_bitmask |= endpoint_flag;
3418 	}
3419 	return 0;
3420 }
3421 
3422 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3423 		struct usb_device *udev,
3424 		struct usb_host_endpoint **eps, unsigned int num_eps)
3425 {
3426 	u32 changed_ep_bitmask = 0;
3427 	unsigned int slot_id;
3428 	unsigned int ep_index;
3429 	unsigned int ep_state;
3430 	int i;
3431 
3432 	slot_id = udev->slot_id;
3433 	if (!xhci->devs[slot_id])
3434 		return 0;
3435 
3436 	for (i = 0; i < num_eps; i++) {
3437 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3438 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3439 		/* Are streams already being freed for the endpoint? */
3440 		if (ep_state & EP_GETTING_NO_STREAMS) {
3441 			xhci_warn(xhci, "WARN Can't disable streams for "
3442 					"endpoint 0x%x, "
3443 					"streams are being disabled already\n",
3444 					eps[i]->desc.bEndpointAddress);
3445 			return 0;
3446 		}
3447 		/* Are there actually any streams to free? */
3448 		if (!(ep_state & EP_HAS_STREAMS) &&
3449 				!(ep_state & EP_GETTING_STREAMS)) {
3450 			xhci_warn(xhci, "WARN Can't disable streams for "
3451 					"endpoint 0x%x, "
3452 					"streams are already disabled!\n",
3453 					eps[i]->desc.bEndpointAddress);
3454 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3455 					"with non-streams endpoint\n");
3456 			return 0;
3457 		}
3458 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3459 	}
3460 	return changed_ep_bitmask;
3461 }
3462 
3463 /*
3464  * The USB device drivers use this function (through the HCD interface in USB
3465  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3466  * coordinate mass storage command queueing across multiple endpoints (basically
3467  * a stream ID == a task ID).
3468  *
3469  * Setting up streams involves allocating the same size stream context array
3470  * for each endpoint and issuing a configure endpoint command for all endpoints.
3471  *
3472  * Don't allow the call to succeed if one endpoint only supports one stream
3473  * (which means it doesn't support streams at all).
3474  *
3475  * Drivers may get less stream IDs than they asked for, if the host controller
3476  * hardware or endpoints claim they can't support the number of requested
3477  * stream IDs.
3478  */
3479 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3480 		struct usb_host_endpoint **eps, unsigned int num_eps,
3481 		unsigned int num_streams, gfp_t mem_flags)
3482 {
3483 	int i, ret;
3484 	struct xhci_hcd *xhci;
3485 	struct xhci_virt_device *vdev;
3486 	struct xhci_command *config_cmd;
3487 	struct xhci_input_control_ctx *ctrl_ctx;
3488 	unsigned int ep_index;
3489 	unsigned int num_stream_ctxs;
3490 	unsigned int max_packet;
3491 	unsigned long flags;
3492 	u32 changed_ep_bitmask = 0;
3493 
3494 	if (!eps)
3495 		return -EINVAL;
3496 
3497 	/* Add one to the number of streams requested to account for
3498 	 * stream 0 that is reserved for xHCI usage.
3499 	 */
3500 	num_streams += 1;
3501 	xhci = hcd_to_xhci(hcd);
3502 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3503 			num_streams);
3504 
3505 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3506 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3507 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3508 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3509 		return -ENOSYS;
3510 	}
3511 
3512 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3513 	if (!config_cmd)
3514 		return -ENOMEM;
3515 
3516 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3517 	if (!ctrl_ctx) {
3518 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3519 				__func__);
3520 		xhci_free_command(xhci, config_cmd);
3521 		return -ENOMEM;
3522 	}
3523 
3524 	/* Check to make sure all endpoints are not already configured for
3525 	 * streams.  While we're at it, find the maximum number of streams that
3526 	 * all the endpoints will support and check for duplicate endpoints.
3527 	 */
3528 	spin_lock_irqsave(&xhci->lock, flags);
3529 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3530 			num_eps, &num_streams, &changed_ep_bitmask);
3531 	if (ret < 0) {
3532 		xhci_free_command(xhci, config_cmd);
3533 		spin_unlock_irqrestore(&xhci->lock, flags);
3534 		return ret;
3535 	}
3536 	if (num_streams <= 1) {
3537 		xhci_warn(xhci, "WARN: endpoints can't handle "
3538 				"more than one stream.\n");
3539 		xhci_free_command(xhci, config_cmd);
3540 		spin_unlock_irqrestore(&xhci->lock, flags);
3541 		return -EINVAL;
3542 	}
3543 	vdev = xhci->devs[udev->slot_id];
3544 	/* Mark each endpoint as being in transition, so
3545 	 * xhci_urb_enqueue() will reject all URBs.
3546 	 */
3547 	for (i = 0; i < num_eps; i++) {
3548 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3549 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3550 	}
3551 	spin_unlock_irqrestore(&xhci->lock, flags);
3552 
3553 	/* Setup internal data structures and allocate HW data structures for
3554 	 * streams (but don't install the HW structures in the input context
3555 	 * until we're sure all memory allocation succeeded).
3556 	 */
3557 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3558 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3559 			num_stream_ctxs, num_streams);
3560 
3561 	for (i = 0; i < num_eps; i++) {
3562 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3564 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3565 				num_stream_ctxs,
3566 				num_streams,
3567 				max_packet, mem_flags);
3568 		if (!vdev->eps[ep_index].stream_info)
3569 			goto cleanup;
3570 		/* Set maxPstreams in endpoint context and update deq ptr to
3571 		 * point to stream context array. FIXME
3572 		 */
3573 	}
3574 
3575 	/* Set up the input context for a configure endpoint command. */
3576 	for (i = 0; i < num_eps; i++) {
3577 		struct xhci_ep_ctx *ep_ctx;
3578 
3579 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3580 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3581 
3582 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3583 				vdev->out_ctx, ep_index);
3584 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3585 				vdev->eps[ep_index].stream_info);
3586 	}
3587 	/* Tell the HW to drop its old copy of the endpoint context info
3588 	 * and add the updated copy from the input context.
3589 	 */
3590 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3591 			vdev->out_ctx, ctrl_ctx,
3592 			changed_ep_bitmask, changed_ep_bitmask);
3593 
3594 	/* Issue and wait for the configure endpoint command */
3595 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3596 			false, false);
3597 
3598 	/* xHC rejected the configure endpoint command for some reason, so we
3599 	 * leave the old ring intact and free our internal streams data
3600 	 * structure.
3601 	 */
3602 	if (ret < 0)
3603 		goto cleanup;
3604 
3605 	spin_lock_irqsave(&xhci->lock, flags);
3606 	for (i = 0; i < num_eps; i++) {
3607 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3609 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3610 			 udev->slot_id, ep_index);
3611 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3612 	}
3613 	xhci_free_command(xhci, config_cmd);
3614 	spin_unlock_irqrestore(&xhci->lock, flags);
3615 
3616 	for (i = 0; i < num_eps; i++) {
3617 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3618 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3619 	}
3620 	/* Subtract 1 for stream 0, which drivers can't use */
3621 	return num_streams - 1;
3622 
3623 cleanup:
3624 	/* If it didn't work, free the streams! */
3625 	for (i = 0; i < num_eps; i++) {
3626 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3627 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3628 		vdev->eps[ep_index].stream_info = NULL;
3629 		/* FIXME Unset maxPstreams in endpoint context and
3630 		 * update deq ptr to point to normal string ring.
3631 		 */
3632 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3633 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3634 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3635 	}
3636 	xhci_free_command(xhci, config_cmd);
3637 	return -ENOMEM;
3638 }
3639 
3640 /* Transition the endpoint from using streams to being a "normal" endpoint
3641  * without streams.
3642  *
3643  * Modify the endpoint context state, submit a configure endpoint command,
3644  * and free all endpoint rings for streams if that completes successfully.
3645  */
3646 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3647 		struct usb_host_endpoint **eps, unsigned int num_eps,
3648 		gfp_t mem_flags)
3649 {
3650 	int i, ret;
3651 	struct xhci_hcd *xhci;
3652 	struct xhci_virt_device *vdev;
3653 	struct xhci_command *command;
3654 	struct xhci_input_control_ctx *ctrl_ctx;
3655 	unsigned int ep_index;
3656 	unsigned long flags;
3657 	u32 changed_ep_bitmask;
3658 
3659 	xhci = hcd_to_xhci(hcd);
3660 	vdev = xhci->devs[udev->slot_id];
3661 
3662 	/* Set up a configure endpoint command to remove the streams rings */
3663 	spin_lock_irqsave(&xhci->lock, flags);
3664 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3665 			udev, eps, num_eps);
3666 	if (changed_ep_bitmask == 0) {
3667 		spin_unlock_irqrestore(&xhci->lock, flags);
3668 		return -EINVAL;
3669 	}
3670 
3671 	/* Use the xhci_command structure from the first endpoint.  We may have
3672 	 * allocated too many, but the driver may call xhci_free_streams() for
3673 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3674 	 */
3675 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3676 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3677 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3678 	if (!ctrl_ctx) {
3679 		spin_unlock_irqrestore(&xhci->lock, flags);
3680 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3681 				__func__);
3682 		return -EINVAL;
3683 	}
3684 
3685 	for (i = 0; i < num_eps; i++) {
3686 		struct xhci_ep_ctx *ep_ctx;
3687 
3688 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3689 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3690 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3691 			EP_GETTING_NO_STREAMS;
3692 
3693 		xhci_endpoint_copy(xhci, command->in_ctx,
3694 				vdev->out_ctx, ep_index);
3695 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3696 				&vdev->eps[ep_index]);
3697 	}
3698 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3699 			vdev->out_ctx, ctrl_ctx,
3700 			changed_ep_bitmask, changed_ep_bitmask);
3701 	spin_unlock_irqrestore(&xhci->lock, flags);
3702 
3703 	/* Issue and wait for the configure endpoint command,
3704 	 * which must succeed.
3705 	 */
3706 	ret = xhci_configure_endpoint(xhci, udev, command,
3707 			false, true);
3708 
3709 	/* xHC rejected the configure endpoint command for some reason, so we
3710 	 * leave the streams rings intact.
3711 	 */
3712 	if (ret < 0)
3713 		return ret;
3714 
3715 	spin_lock_irqsave(&xhci->lock, flags);
3716 	for (i = 0; i < num_eps; i++) {
3717 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3718 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3719 		vdev->eps[ep_index].stream_info = NULL;
3720 		/* FIXME Unset maxPstreams in endpoint context and
3721 		 * update deq ptr to point to normal string ring.
3722 		 */
3723 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3724 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3725 	}
3726 	spin_unlock_irqrestore(&xhci->lock, flags);
3727 
3728 	return 0;
3729 }
3730 
3731 /*
3732  * Deletes endpoint resources for endpoints that were active before a Reset
3733  * Device command, or a Disable Slot command.  The Reset Device command leaves
3734  * the control endpoint intact, whereas the Disable Slot command deletes it.
3735  *
3736  * Must be called with xhci->lock held.
3737  */
3738 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3739 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3740 {
3741 	int i;
3742 	unsigned int num_dropped_eps = 0;
3743 	unsigned int drop_flags = 0;
3744 
3745 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3746 		if (virt_dev->eps[i].ring) {
3747 			drop_flags |= 1 << i;
3748 			num_dropped_eps++;
3749 		}
3750 	}
3751 	xhci->num_active_eps -= num_dropped_eps;
3752 	if (num_dropped_eps)
3753 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3754 				"Dropped %u ep ctxs, flags = 0x%x, "
3755 				"%u now active.",
3756 				num_dropped_eps, drop_flags,
3757 				xhci->num_active_eps);
3758 }
3759 
3760 /*
3761  * This submits a Reset Device Command, which will set the device state to 0,
3762  * set the device address to 0, and disable all the endpoints except the default
3763  * control endpoint.  The USB core should come back and call
3764  * xhci_address_device(), and then re-set up the configuration.  If this is
3765  * called because of a usb_reset_and_verify_device(), then the old alternate
3766  * settings will be re-installed through the normal bandwidth allocation
3767  * functions.
3768  *
3769  * Wait for the Reset Device command to finish.  Remove all structures
3770  * associated with the endpoints that were disabled.  Clear the input device
3771  * structure? Reset the control endpoint 0 max packet size?
3772  *
3773  * If the virt_dev to be reset does not exist or does not match the udev,
3774  * it means the device is lost, possibly due to the xHC restore error and
3775  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3776  * re-allocate the device.
3777  */
3778 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3779 		struct usb_device *udev)
3780 {
3781 	int ret, i;
3782 	unsigned long flags;
3783 	struct xhci_hcd *xhci;
3784 	unsigned int slot_id;
3785 	struct xhci_virt_device *virt_dev;
3786 	struct xhci_command *reset_device_cmd;
3787 	struct xhci_slot_ctx *slot_ctx;
3788 	int old_active_eps = 0;
3789 
3790 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3791 	if (ret <= 0)
3792 		return ret;
3793 	xhci = hcd_to_xhci(hcd);
3794 	slot_id = udev->slot_id;
3795 	virt_dev = xhci->devs[slot_id];
3796 	if (!virt_dev) {
3797 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3798 				"not exist. Re-allocate the device\n", slot_id);
3799 		ret = xhci_alloc_dev(hcd, udev);
3800 		if (ret == 1)
3801 			return 0;
3802 		else
3803 			return -EINVAL;
3804 	}
3805 
3806 	if (virt_dev->tt_info)
3807 		old_active_eps = virt_dev->tt_info->active_eps;
3808 
3809 	if (virt_dev->udev != udev) {
3810 		/* If the virt_dev and the udev does not match, this virt_dev
3811 		 * may belong to another udev.
3812 		 * Re-allocate the device.
3813 		 */
3814 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3815 				"not match the udev. Re-allocate the device\n",
3816 				slot_id);
3817 		ret = xhci_alloc_dev(hcd, udev);
3818 		if (ret == 1)
3819 			return 0;
3820 		else
3821 			return -EINVAL;
3822 	}
3823 
3824 	/* If device is not setup, there is no point in resetting it */
3825 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3826 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3827 						SLOT_STATE_DISABLED)
3828 		return 0;
3829 
3830 	trace_xhci_discover_or_reset_device(slot_ctx);
3831 
3832 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3833 	/* Allocate the command structure that holds the struct completion.
3834 	 * Assume we're in process context, since the normal device reset
3835 	 * process has to wait for the device anyway.  Storage devices are
3836 	 * reset as part of error handling, so use GFP_NOIO instead of
3837 	 * GFP_KERNEL.
3838 	 */
3839 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3840 	if (!reset_device_cmd) {
3841 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3842 		return -ENOMEM;
3843 	}
3844 
3845 	/* Attempt to submit the Reset Device command to the command ring */
3846 	spin_lock_irqsave(&xhci->lock, flags);
3847 
3848 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3849 	if (ret) {
3850 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3851 		spin_unlock_irqrestore(&xhci->lock, flags);
3852 		goto command_cleanup;
3853 	}
3854 	xhci_ring_cmd_db(xhci);
3855 	spin_unlock_irqrestore(&xhci->lock, flags);
3856 
3857 	/* Wait for the Reset Device command to finish */
3858 	wait_for_completion(reset_device_cmd->completion);
3859 
3860 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3861 	 * unless we tried to reset a slot ID that wasn't enabled,
3862 	 * or the device wasn't in the addressed or configured state.
3863 	 */
3864 	ret = reset_device_cmd->status;
3865 	switch (ret) {
3866 	case COMP_COMMAND_ABORTED:
3867 	case COMP_COMMAND_RING_STOPPED:
3868 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3869 		ret = -ETIME;
3870 		goto command_cleanup;
3871 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3872 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3873 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3874 				slot_id,
3875 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3876 		xhci_dbg(xhci, "Not freeing device rings.\n");
3877 		/* Don't treat this as an error.  May change my mind later. */
3878 		ret = 0;
3879 		goto command_cleanup;
3880 	case COMP_SUCCESS:
3881 		xhci_dbg(xhci, "Successful reset device command.\n");
3882 		break;
3883 	default:
3884 		if (xhci_is_vendor_info_code(xhci, ret))
3885 			break;
3886 		xhci_warn(xhci, "Unknown completion code %u for "
3887 				"reset device command.\n", ret);
3888 		ret = -EINVAL;
3889 		goto command_cleanup;
3890 	}
3891 
3892 	/* Free up host controller endpoint resources */
3893 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3894 		spin_lock_irqsave(&xhci->lock, flags);
3895 		/* Don't delete the default control endpoint resources */
3896 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3897 		spin_unlock_irqrestore(&xhci->lock, flags);
3898 	}
3899 
3900 	/* Everything but endpoint 0 is disabled, so free the rings. */
3901 	for (i = 1; i < 31; i++) {
3902 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3903 
3904 		if (ep->ep_state & EP_HAS_STREAMS) {
3905 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3906 					xhci_get_endpoint_address(i));
3907 			xhci_free_stream_info(xhci, ep->stream_info);
3908 			ep->stream_info = NULL;
3909 			ep->ep_state &= ~EP_HAS_STREAMS;
3910 		}
3911 
3912 		if (ep->ring) {
3913 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3914 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3915 		}
3916 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3917 			xhci_drop_ep_from_interval_table(xhci,
3918 					&virt_dev->eps[i].bw_info,
3919 					virt_dev->bw_table,
3920 					udev,
3921 					&virt_dev->eps[i],
3922 					virt_dev->tt_info);
3923 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3924 	}
3925 	/* If necessary, update the number of active TTs on this root port */
3926 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3927 	virt_dev->flags = 0;
3928 	ret = 0;
3929 
3930 command_cleanup:
3931 	xhci_free_command(xhci, reset_device_cmd);
3932 	return ret;
3933 }
3934 
3935 /*
3936  * At this point, the struct usb_device is about to go away, the device has
3937  * disconnected, and all traffic has been stopped and the endpoints have been
3938  * disabled.  Free any HC data structures associated with that device.
3939  */
3940 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3941 {
3942 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943 	struct xhci_virt_device *virt_dev;
3944 	struct xhci_slot_ctx *slot_ctx;
3945 	int i, ret;
3946 
3947 	/*
3948 	 * We called pm_runtime_get_noresume when the device was attached.
3949 	 * Decrement the counter here to allow controller to runtime suspend
3950 	 * if no devices remain.
3951 	 */
3952 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3953 		pm_runtime_put_noidle(hcd->self.controller);
3954 
3955 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3956 	/* If the host is halted due to driver unload, we still need to free the
3957 	 * device.
3958 	 */
3959 	if (ret <= 0 && ret != -ENODEV)
3960 		return;
3961 
3962 	virt_dev = xhci->devs[udev->slot_id];
3963 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3964 	trace_xhci_free_dev(slot_ctx);
3965 
3966 	/* Stop any wayward timer functions (which may grab the lock) */
3967 	for (i = 0; i < 31; i++) {
3968 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3969 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3970 	}
3971 	virt_dev->udev = NULL;
3972 	xhci_disable_slot(xhci, udev->slot_id);
3973 	xhci_free_virt_device(xhci, udev->slot_id);
3974 }
3975 
3976 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3977 {
3978 	struct xhci_command *command;
3979 	unsigned long flags;
3980 	u32 state;
3981 	int ret = 0;
3982 
3983 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3984 	if (!command)
3985 		return -ENOMEM;
3986 
3987 	xhci_debugfs_remove_slot(xhci, slot_id);
3988 
3989 	spin_lock_irqsave(&xhci->lock, flags);
3990 	/* Don't disable the slot if the host controller is dead. */
3991 	state = readl(&xhci->op_regs->status);
3992 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3993 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3994 		spin_unlock_irqrestore(&xhci->lock, flags);
3995 		kfree(command);
3996 		return -ENODEV;
3997 	}
3998 
3999 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4000 				slot_id);
4001 	if (ret) {
4002 		spin_unlock_irqrestore(&xhci->lock, flags);
4003 		kfree(command);
4004 		return ret;
4005 	}
4006 	xhci_ring_cmd_db(xhci);
4007 	spin_unlock_irqrestore(&xhci->lock, flags);
4008 
4009 	wait_for_completion(command->completion);
4010 
4011 	if (command->status != COMP_SUCCESS)
4012 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4013 			  slot_id, command->status);
4014 
4015 	xhci_free_command(xhci, command);
4016 
4017 	return ret;
4018 }
4019 
4020 /*
4021  * Checks if we have enough host controller resources for the default control
4022  * endpoint.
4023  *
4024  * Must be called with xhci->lock held.
4025  */
4026 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4027 {
4028 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4029 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4030 				"Not enough ep ctxs: "
4031 				"%u active, need to add 1, limit is %u.",
4032 				xhci->num_active_eps, xhci->limit_active_eps);
4033 		return -ENOMEM;
4034 	}
4035 	xhci->num_active_eps += 1;
4036 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4037 			"Adding 1 ep ctx, %u now active.",
4038 			xhci->num_active_eps);
4039 	return 0;
4040 }
4041 
4042 
4043 /*
4044  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4045  * timed out, or allocating memory failed.  Returns 1 on success.
4046  */
4047 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4048 {
4049 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4050 	struct xhci_virt_device *vdev;
4051 	struct xhci_slot_ctx *slot_ctx;
4052 	unsigned long flags;
4053 	int ret, slot_id;
4054 	struct xhci_command *command;
4055 
4056 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4057 	if (!command)
4058 		return 0;
4059 
4060 	spin_lock_irqsave(&xhci->lock, flags);
4061 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4062 	if (ret) {
4063 		spin_unlock_irqrestore(&xhci->lock, flags);
4064 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4065 		xhci_free_command(xhci, command);
4066 		return 0;
4067 	}
4068 	xhci_ring_cmd_db(xhci);
4069 	spin_unlock_irqrestore(&xhci->lock, flags);
4070 
4071 	wait_for_completion(command->completion);
4072 	slot_id = command->slot_id;
4073 
4074 	if (!slot_id || command->status != COMP_SUCCESS) {
4075 		xhci_err(xhci, "Error while assigning device slot ID\n");
4076 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4077 				HCS_MAX_SLOTS(
4078 					readl(&xhci->cap_regs->hcs_params1)));
4079 		xhci_free_command(xhci, command);
4080 		return 0;
4081 	}
4082 
4083 	xhci_free_command(xhci, command);
4084 
4085 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4086 		spin_lock_irqsave(&xhci->lock, flags);
4087 		ret = xhci_reserve_host_control_ep_resources(xhci);
4088 		if (ret) {
4089 			spin_unlock_irqrestore(&xhci->lock, flags);
4090 			xhci_warn(xhci, "Not enough host resources, "
4091 					"active endpoint contexts = %u\n",
4092 					xhci->num_active_eps);
4093 			goto disable_slot;
4094 		}
4095 		spin_unlock_irqrestore(&xhci->lock, flags);
4096 	}
4097 	/* Use GFP_NOIO, since this function can be called from
4098 	 * xhci_discover_or_reset_device(), which may be called as part of
4099 	 * mass storage driver error handling.
4100 	 */
4101 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4102 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4103 		goto disable_slot;
4104 	}
4105 	vdev = xhci->devs[slot_id];
4106 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4107 	trace_xhci_alloc_dev(slot_ctx);
4108 
4109 	udev->slot_id = slot_id;
4110 
4111 	xhci_debugfs_create_slot(xhci, slot_id);
4112 
4113 	/*
4114 	 * If resetting upon resume, we can't put the controller into runtime
4115 	 * suspend if there is a device attached.
4116 	 */
4117 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4118 		pm_runtime_get_noresume(hcd->self.controller);
4119 
4120 	/* Is this a LS or FS device under a HS hub? */
4121 	/* Hub or peripherial? */
4122 	return 1;
4123 
4124 disable_slot:
4125 	xhci_disable_slot(xhci, udev->slot_id);
4126 	xhci_free_virt_device(xhci, udev->slot_id);
4127 
4128 	return 0;
4129 }
4130 
4131 /*
4132  * Issue an Address Device command and optionally send a corresponding
4133  * SetAddress request to the device.
4134  */
4135 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4136 			     enum xhci_setup_dev setup)
4137 {
4138 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4139 	unsigned long flags;
4140 	struct xhci_virt_device *virt_dev;
4141 	int ret = 0;
4142 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4143 	struct xhci_slot_ctx *slot_ctx;
4144 	struct xhci_input_control_ctx *ctrl_ctx;
4145 	u64 temp_64;
4146 	struct xhci_command *command = NULL;
4147 
4148 	mutex_lock(&xhci->mutex);
4149 
4150 	if (xhci->xhc_state) {	/* dying, removing or halted */
4151 		ret = -ESHUTDOWN;
4152 		goto out;
4153 	}
4154 
4155 	if (!udev->slot_id) {
4156 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4157 				"Bad Slot ID %d", udev->slot_id);
4158 		ret = -EINVAL;
4159 		goto out;
4160 	}
4161 
4162 	virt_dev = xhci->devs[udev->slot_id];
4163 
4164 	if (WARN_ON(!virt_dev)) {
4165 		/*
4166 		 * In plug/unplug torture test with an NEC controller,
4167 		 * a zero-dereference was observed once due to virt_dev = 0.
4168 		 * Print useful debug rather than crash if it is observed again!
4169 		 */
4170 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4171 			udev->slot_id);
4172 		ret = -EINVAL;
4173 		goto out;
4174 	}
4175 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4176 	trace_xhci_setup_device_slot(slot_ctx);
4177 
4178 	if (setup == SETUP_CONTEXT_ONLY) {
4179 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4180 		    SLOT_STATE_DEFAULT) {
4181 			xhci_dbg(xhci, "Slot already in default state\n");
4182 			goto out;
4183 		}
4184 	}
4185 
4186 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4187 	if (!command) {
4188 		ret = -ENOMEM;
4189 		goto out;
4190 	}
4191 
4192 	command->in_ctx = virt_dev->in_ctx;
4193 
4194 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4195 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4196 	if (!ctrl_ctx) {
4197 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4198 				__func__);
4199 		ret = -EINVAL;
4200 		goto out;
4201 	}
4202 	/*
4203 	 * If this is the first Set Address since device plug-in or
4204 	 * virt_device realloaction after a resume with an xHCI power loss,
4205 	 * then set up the slot context.
4206 	 */
4207 	if (!slot_ctx->dev_info)
4208 		xhci_setup_addressable_virt_dev(xhci, udev);
4209 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4210 	else
4211 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4212 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4213 	ctrl_ctx->drop_flags = 0;
4214 
4215 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4216 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4217 
4218 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4219 	spin_lock_irqsave(&xhci->lock, flags);
4220 	trace_xhci_setup_device(virt_dev);
4221 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4222 					udev->slot_id, setup);
4223 	if (ret) {
4224 		spin_unlock_irqrestore(&xhci->lock, flags);
4225 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4226 				"FIXME: allocate a command ring segment");
4227 		goto out;
4228 	}
4229 	xhci_ring_cmd_db(xhci);
4230 	spin_unlock_irqrestore(&xhci->lock, flags);
4231 
4232 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4233 	wait_for_completion(command->completion);
4234 
4235 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4236 	 * the SetAddress() "recovery interval" required by USB and aborting the
4237 	 * command on a timeout.
4238 	 */
4239 	switch (command->status) {
4240 	case COMP_COMMAND_ABORTED:
4241 	case COMP_COMMAND_RING_STOPPED:
4242 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4243 		ret = -ETIME;
4244 		break;
4245 	case COMP_CONTEXT_STATE_ERROR:
4246 	case COMP_SLOT_NOT_ENABLED_ERROR:
4247 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4248 			 act, udev->slot_id);
4249 		ret = -EINVAL;
4250 		break;
4251 	case COMP_USB_TRANSACTION_ERROR:
4252 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4253 
4254 		mutex_unlock(&xhci->mutex);
4255 		ret = xhci_disable_slot(xhci, udev->slot_id);
4256 		xhci_free_virt_device(xhci, udev->slot_id);
4257 		if (!ret)
4258 			xhci_alloc_dev(hcd, udev);
4259 		kfree(command->completion);
4260 		kfree(command);
4261 		return -EPROTO;
4262 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4263 		dev_warn(&udev->dev,
4264 			 "ERROR: Incompatible device for setup %s command\n", act);
4265 		ret = -ENODEV;
4266 		break;
4267 	case COMP_SUCCESS:
4268 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4269 			       "Successful setup %s command", act);
4270 		break;
4271 	default:
4272 		xhci_err(xhci,
4273 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4274 			 act, command->status);
4275 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4276 		ret = -EINVAL;
4277 		break;
4278 	}
4279 	if (ret)
4280 		goto out;
4281 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4282 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4283 			"Op regs DCBAA ptr = %#016llx", temp_64);
4284 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4285 		"Slot ID %d dcbaa entry @%p = %#016llx",
4286 		udev->slot_id,
4287 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4288 		(unsigned long long)
4289 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4290 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4291 			"Output Context DMA address = %#08llx",
4292 			(unsigned long long)virt_dev->out_ctx->dma);
4293 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4294 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4295 	/*
4296 	 * USB core uses address 1 for the roothubs, so we add one to the
4297 	 * address given back to us by the HC.
4298 	 */
4299 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4300 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4301 	/* Zero the input context control for later use */
4302 	ctrl_ctx->add_flags = 0;
4303 	ctrl_ctx->drop_flags = 0;
4304 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4305 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4306 
4307 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 		       "Internal device address = %d",
4309 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4310 out:
4311 	mutex_unlock(&xhci->mutex);
4312 	if (command) {
4313 		kfree(command->completion);
4314 		kfree(command);
4315 	}
4316 	return ret;
4317 }
4318 
4319 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4320 {
4321 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4322 }
4323 
4324 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4325 {
4326 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4327 }
4328 
4329 /*
4330  * Transfer the port index into real index in the HW port status
4331  * registers. Caculate offset between the port's PORTSC register
4332  * and port status base. Divide the number of per port register
4333  * to get the real index. The raw port number bases 1.
4334  */
4335 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4336 {
4337 	struct xhci_hub *rhub;
4338 
4339 	rhub = xhci_get_rhub(hcd);
4340 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4341 }
4342 
4343 /*
4344  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4345  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4346  */
4347 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4348 			struct usb_device *udev, u16 max_exit_latency)
4349 {
4350 	struct xhci_virt_device *virt_dev;
4351 	struct xhci_command *command;
4352 	struct xhci_input_control_ctx *ctrl_ctx;
4353 	struct xhci_slot_ctx *slot_ctx;
4354 	unsigned long flags;
4355 	int ret;
4356 
4357 	spin_lock_irqsave(&xhci->lock, flags);
4358 
4359 	virt_dev = xhci->devs[udev->slot_id];
4360 
4361 	/*
4362 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4363 	 * xHC was re-initialized. Exit latency will be set later after
4364 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4365 	 */
4366 
4367 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4368 		spin_unlock_irqrestore(&xhci->lock, flags);
4369 		return 0;
4370 	}
4371 
4372 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4373 	command = xhci->lpm_command;
4374 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4375 	if (!ctrl_ctx) {
4376 		spin_unlock_irqrestore(&xhci->lock, flags);
4377 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4378 				__func__);
4379 		return -ENOMEM;
4380 	}
4381 
4382 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4383 	spin_unlock_irqrestore(&xhci->lock, flags);
4384 
4385 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4386 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4387 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4388 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4389 	slot_ctx->dev_state = 0;
4390 
4391 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4392 			"Set up evaluate context for LPM MEL change.");
4393 
4394 	/* Issue and wait for the evaluate context command. */
4395 	ret = xhci_configure_endpoint(xhci, udev, command,
4396 			true, true);
4397 
4398 	if (!ret) {
4399 		spin_lock_irqsave(&xhci->lock, flags);
4400 		virt_dev->current_mel = max_exit_latency;
4401 		spin_unlock_irqrestore(&xhci->lock, flags);
4402 	}
4403 	return ret;
4404 }
4405 
4406 #ifdef CONFIG_PM
4407 
4408 /* BESL to HIRD Encoding array for USB2 LPM */
4409 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4410 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4411 
4412 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4413 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4414 					struct usb_device *udev)
4415 {
4416 	int u2del, besl, besl_host;
4417 	int besl_device = 0;
4418 	u32 field;
4419 
4420 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4421 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4422 
4423 	if (field & USB_BESL_SUPPORT) {
4424 		for (besl_host = 0; besl_host < 16; besl_host++) {
4425 			if (xhci_besl_encoding[besl_host] >= u2del)
4426 				break;
4427 		}
4428 		/* Use baseline BESL value as default */
4429 		if (field & USB_BESL_BASELINE_VALID)
4430 			besl_device = USB_GET_BESL_BASELINE(field);
4431 		else if (field & USB_BESL_DEEP_VALID)
4432 			besl_device = USB_GET_BESL_DEEP(field);
4433 	} else {
4434 		if (u2del <= 50)
4435 			besl_host = 0;
4436 		else
4437 			besl_host = (u2del - 51) / 75 + 1;
4438 	}
4439 
4440 	besl = besl_host + besl_device;
4441 	if (besl > 15)
4442 		besl = 15;
4443 
4444 	return besl;
4445 }
4446 
4447 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4448 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4449 {
4450 	u32 field;
4451 	int l1;
4452 	int besld = 0;
4453 	int hirdm = 0;
4454 
4455 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4456 
4457 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4458 	l1 = udev->l1_params.timeout / 256;
4459 
4460 	/* device has preferred BESLD */
4461 	if (field & USB_BESL_DEEP_VALID) {
4462 		besld = USB_GET_BESL_DEEP(field);
4463 		hirdm = 1;
4464 	}
4465 
4466 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4467 }
4468 
4469 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4470 			struct usb_device *udev, int enable)
4471 {
4472 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4473 	struct xhci_port **ports;
4474 	__le32 __iomem	*pm_addr, *hlpm_addr;
4475 	u32		pm_val, hlpm_val, field;
4476 	unsigned int	port_num;
4477 	unsigned long	flags;
4478 	int		hird, exit_latency;
4479 	int		ret;
4480 
4481 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4482 		return -EPERM;
4483 
4484 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4485 			!udev->lpm_capable)
4486 		return -EPERM;
4487 
4488 	if (!udev->parent || udev->parent->parent ||
4489 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4490 		return -EPERM;
4491 
4492 	if (udev->usb2_hw_lpm_capable != 1)
4493 		return -EPERM;
4494 
4495 	spin_lock_irqsave(&xhci->lock, flags);
4496 
4497 	ports = xhci->usb2_rhub.ports;
4498 	port_num = udev->portnum - 1;
4499 	pm_addr = ports[port_num]->addr + PORTPMSC;
4500 	pm_val = readl(pm_addr);
4501 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4502 
4503 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4504 			enable ? "enable" : "disable", port_num + 1);
4505 
4506 	if (enable) {
4507 		/* Host supports BESL timeout instead of HIRD */
4508 		if (udev->usb2_hw_lpm_besl_capable) {
4509 			/* if device doesn't have a preferred BESL value use a
4510 			 * default one which works with mixed HIRD and BESL
4511 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4512 			 */
4513 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4514 			if ((field & USB_BESL_SUPPORT) &&
4515 			    (field & USB_BESL_BASELINE_VALID))
4516 				hird = USB_GET_BESL_BASELINE(field);
4517 			else
4518 				hird = udev->l1_params.besl;
4519 
4520 			exit_latency = xhci_besl_encoding[hird];
4521 			spin_unlock_irqrestore(&xhci->lock, flags);
4522 
4523 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4524 			 * input context for link powermanagement evaluate
4525 			 * context commands. It is protected by hcd->bandwidth
4526 			 * mutex and is shared by all devices. We need to set
4527 			 * the max ext latency in USB 2 BESL LPM as well, so
4528 			 * use the same mutex and xhci_change_max_exit_latency()
4529 			 */
4530 			mutex_lock(hcd->bandwidth_mutex);
4531 			ret = xhci_change_max_exit_latency(xhci, udev,
4532 							   exit_latency);
4533 			mutex_unlock(hcd->bandwidth_mutex);
4534 
4535 			if (ret < 0)
4536 				return ret;
4537 			spin_lock_irqsave(&xhci->lock, flags);
4538 
4539 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4540 			writel(hlpm_val, hlpm_addr);
4541 			/* flush write */
4542 			readl(hlpm_addr);
4543 		} else {
4544 			hird = xhci_calculate_hird_besl(xhci, udev);
4545 		}
4546 
4547 		pm_val &= ~PORT_HIRD_MASK;
4548 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4549 		writel(pm_val, pm_addr);
4550 		pm_val = readl(pm_addr);
4551 		pm_val |= PORT_HLE;
4552 		writel(pm_val, pm_addr);
4553 		/* flush write */
4554 		readl(pm_addr);
4555 	} else {
4556 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4557 		writel(pm_val, pm_addr);
4558 		/* flush write */
4559 		readl(pm_addr);
4560 		if (udev->usb2_hw_lpm_besl_capable) {
4561 			spin_unlock_irqrestore(&xhci->lock, flags);
4562 			mutex_lock(hcd->bandwidth_mutex);
4563 			xhci_change_max_exit_latency(xhci, udev, 0);
4564 			mutex_unlock(hcd->bandwidth_mutex);
4565 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4566 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4567 					   100, 10000);
4568 			return 0;
4569 		}
4570 	}
4571 
4572 	spin_unlock_irqrestore(&xhci->lock, flags);
4573 	return 0;
4574 }
4575 
4576 /* check if a usb2 port supports a given extened capability protocol
4577  * only USB2 ports extended protocol capability values are cached.
4578  * Return 1 if capability is supported
4579  */
4580 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4581 					   unsigned capability)
4582 {
4583 	u32 port_offset, port_count;
4584 	int i;
4585 
4586 	for (i = 0; i < xhci->num_ext_caps; i++) {
4587 		if (xhci->ext_caps[i] & capability) {
4588 			/* port offsets starts at 1 */
4589 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4590 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4591 			if (port >= port_offset &&
4592 			    port < port_offset + port_count)
4593 				return 1;
4594 		}
4595 	}
4596 	return 0;
4597 }
4598 
4599 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4600 {
4601 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4602 	int		portnum = udev->portnum - 1;
4603 
4604 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4605 		return 0;
4606 
4607 	/* we only support lpm for non-hub device connected to root hub yet */
4608 	if (!udev->parent || udev->parent->parent ||
4609 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4610 		return 0;
4611 
4612 	if (xhci->hw_lpm_support == 1 &&
4613 			xhci_check_usb2_port_capability(
4614 				xhci, portnum, XHCI_HLC)) {
4615 		udev->usb2_hw_lpm_capable = 1;
4616 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4617 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4618 		if (xhci_check_usb2_port_capability(xhci, portnum,
4619 					XHCI_BLC))
4620 			udev->usb2_hw_lpm_besl_capable = 1;
4621 	}
4622 
4623 	return 0;
4624 }
4625 
4626 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4627 
4628 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4629 static unsigned long long xhci_service_interval_to_ns(
4630 		struct usb_endpoint_descriptor *desc)
4631 {
4632 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4633 }
4634 
4635 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4636 		enum usb3_link_state state)
4637 {
4638 	unsigned long long sel;
4639 	unsigned long long pel;
4640 	unsigned int max_sel_pel;
4641 	char *state_name;
4642 
4643 	switch (state) {
4644 	case USB3_LPM_U1:
4645 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4646 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4647 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4648 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4649 		state_name = "U1";
4650 		break;
4651 	case USB3_LPM_U2:
4652 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4653 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4654 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4655 		state_name = "U2";
4656 		break;
4657 	default:
4658 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4659 				__func__);
4660 		return USB3_LPM_DISABLED;
4661 	}
4662 
4663 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4664 		return USB3_LPM_DEVICE_INITIATED;
4665 
4666 	if (sel > max_sel_pel)
4667 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4668 				"due to long SEL %llu ms\n",
4669 				state_name, sel);
4670 	else
4671 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4672 				"due to long PEL %llu ms\n",
4673 				state_name, pel);
4674 	return USB3_LPM_DISABLED;
4675 }
4676 
4677 /* The U1 timeout should be the maximum of the following values:
4678  *  - For control endpoints, U1 system exit latency (SEL) * 3
4679  *  - For bulk endpoints, U1 SEL * 5
4680  *  - For interrupt endpoints:
4681  *    - Notification EPs, U1 SEL * 3
4682  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4683  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4684  */
4685 static unsigned long long xhci_calculate_intel_u1_timeout(
4686 		struct usb_device *udev,
4687 		struct usb_endpoint_descriptor *desc)
4688 {
4689 	unsigned long long timeout_ns;
4690 	int ep_type;
4691 	int intr_type;
4692 
4693 	ep_type = usb_endpoint_type(desc);
4694 	switch (ep_type) {
4695 	case USB_ENDPOINT_XFER_CONTROL:
4696 		timeout_ns = udev->u1_params.sel * 3;
4697 		break;
4698 	case USB_ENDPOINT_XFER_BULK:
4699 		timeout_ns = udev->u1_params.sel * 5;
4700 		break;
4701 	case USB_ENDPOINT_XFER_INT:
4702 		intr_type = usb_endpoint_interrupt_type(desc);
4703 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4704 			timeout_ns = udev->u1_params.sel * 3;
4705 			break;
4706 		}
4707 		/* Otherwise the calculation is the same as isoc eps */
4708 		fallthrough;
4709 	case USB_ENDPOINT_XFER_ISOC:
4710 		timeout_ns = xhci_service_interval_to_ns(desc);
4711 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4712 		if (timeout_ns < udev->u1_params.sel * 2)
4713 			timeout_ns = udev->u1_params.sel * 2;
4714 		break;
4715 	default:
4716 		return 0;
4717 	}
4718 
4719 	return timeout_ns;
4720 }
4721 
4722 /* Returns the hub-encoded U1 timeout value. */
4723 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4724 		struct usb_device *udev,
4725 		struct usb_endpoint_descriptor *desc)
4726 {
4727 	unsigned long long timeout_ns;
4728 
4729 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4730 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4731 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4732 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4733 			return USB3_LPM_DISABLED;
4734 		}
4735 	}
4736 
4737 	if (xhci->quirks & XHCI_INTEL_HOST)
4738 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4739 	else
4740 		timeout_ns = udev->u1_params.sel;
4741 
4742 	/* The U1 timeout is encoded in 1us intervals.
4743 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4744 	 */
4745 	if (timeout_ns == USB3_LPM_DISABLED)
4746 		timeout_ns = 1;
4747 	else
4748 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4749 
4750 	/* If the necessary timeout value is bigger than what we can set in the
4751 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4752 	 */
4753 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4754 		return timeout_ns;
4755 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4756 			"due to long timeout %llu ms\n", timeout_ns);
4757 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4758 }
4759 
4760 /* The U2 timeout should be the maximum of:
4761  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4762  *  - largest bInterval of any active periodic endpoint (to avoid going
4763  *    into lower power link states between intervals).
4764  *  - the U2 Exit Latency of the device
4765  */
4766 static unsigned long long xhci_calculate_intel_u2_timeout(
4767 		struct usb_device *udev,
4768 		struct usb_endpoint_descriptor *desc)
4769 {
4770 	unsigned long long timeout_ns;
4771 	unsigned long long u2_del_ns;
4772 
4773 	timeout_ns = 10 * 1000 * 1000;
4774 
4775 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4776 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4777 		timeout_ns = xhci_service_interval_to_ns(desc);
4778 
4779 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4780 	if (u2_del_ns > timeout_ns)
4781 		timeout_ns = u2_del_ns;
4782 
4783 	return timeout_ns;
4784 }
4785 
4786 /* Returns the hub-encoded U2 timeout value. */
4787 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4788 		struct usb_device *udev,
4789 		struct usb_endpoint_descriptor *desc)
4790 {
4791 	unsigned long long timeout_ns;
4792 
4793 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4794 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4795 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4796 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4797 			return USB3_LPM_DISABLED;
4798 		}
4799 	}
4800 
4801 	if (xhci->quirks & XHCI_INTEL_HOST)
4802 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4803 	else
4804 		timeout_ns = udev->u2_params.sel;
4805 
4806 	/* The U2 timeout is encoded in 256us intervals */
4807 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4808 	/* If the necessary timeout value is bigger than what we can set in the
4809 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4810 	 */
4811 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4812 		return timeout_ns;
4813 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4814 			"due to long timeout %llu ms\n", timeout_ns);
4815 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4816 }
4817 
4818 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4819 		struct usb_device *udev,
4820 		struct usb_endpoint_descriptor *desc,
4821 		enum usb3_link_state state,
4822 		u16 *timeout)
4823 {
4824 	if (state == USB3_LPM_U1)
4825 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4826 	else if (state == USB3_LPM_U2)
4827 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4828 
4829 	return USB3_LPM_DISABLED;
4830 }
4831 
4832 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4833 		struct usb_device *udev,
4834 		struct usb_endpoint_descriptor *desc,
4835 		enum usb3_link_state state,
4836 		u16 *timeout)
4837 {
4838 	u16 alt_timeout;
4839 
4840 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4841 		desc, state, timeout);
4842 
4843 	/* If we found we can't enable hub-initiated LPM, and
4844 	 * the U1 or U2 exit latency was too high to allow
4845 	 * device-initiated LPM as well, then we will disable LPM
4846 	 * for this device, so stop searching any further.
4847 	 */
4848 	if (alt_timeout == USB3_LPM_DISABLED) {
4849 		*timeout = alt_timeout;
4850 		return -E2BIG;
4851 	}
4852 	if (alt_timeout > *timeout)
4853 		*timeout = alt_timeout;
4854 	return 0;
4855 }
4856 
4857 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4858 		struct usb_device *udev,
4859 		struct usb_host_interface *alt,
4860 		enum usb3_link_state state,
4861 		u16 *timeout)
4862 {
4863 	int j;
4864 
4865 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4866 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4867 					&alt->endpoint[j].desc, state, timeout))
4868 			return -E2BIG;
4869 	}
4870 	return 0;
4871 }
4872 
4873 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4874 		enum usb3_link_state state)
4875 {
4876 	struct usb_device *parent;
4877 	unsigned int num_hubs;
4878 
4879 	if (state == USB3_LPM_U2)
4880 		return 0;
4881 
4882 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4883 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4884 			parent = parent->parent)
4885 		num_hubs++;
4886 
4887 	if (num_hubs < 2)
4888 		return 0;
4889 
4890 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4891 			" below second-tier hub.\n");
4892 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4893 			"to decrease power consumption.\n");
4894 	return -E2BIG;
4895 }
4896 
4897 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4898 		struct usb_device *udev,
4899 		enum usb3_link_state state)
4900 {
4901 	if (xhci->quirks & XHCI_INTEL_HOST)
4902 		return xhci_check_intel_tier_policy(udev, state);
4903 	else
4904 		return 0;
4905 }
4906 
4907 /* Returns the U1 or U2 timeout that should be enabled.
4908  * If the tier check or timeout setting functions return with a non-zero exit
4909  * code, that means the timeout value has been finalized and we shouldn't look
4910  * at any more endpoints.
4911  */
4912 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4913 			struct usb_device *udev, enum usb3_link_state state)
4914 {
4915 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4916 	struct usb_host_config *config;
4917 	char *state_name;
4918 	int i;
4919 	u16 timeout = USB3_LPM_DISABLED;
4920 
4921 	if (state == USB3_LPM_U1)
4922 		state_name = "U1";
4923 	else if (state == USB3_LPM_U2)
4924 		state_name = "U2";
4925 	else {
4926 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4927 				state);
4928 		return timeout;
4929 	}
4930 
4931 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4932 		return timeout;
4933 
4934 	/* Gather some information about the currently installed configuration
4935 	 * and alternate interface settings.
4936 	 */
4937 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4938 			state, &timeout))
4939 		return timeout;
4940 
4941 	config = udev->actconfig;
4942 	if (!config)
4943 		return timeout;
4944 
4945 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4946 		struct usb_driver *driver;
4947 		struct usb_interface *intf = config->interface[i];
4948 
4949 		if (!intf)
4950 			continue;
4951 
4952 		/* Check if any currently bound drivers want hub-initiated LPM
4953 		 * disabled.
4954 		 */
4955 		if (intf->dev.driver) {
4956 			driver = to_usb_driver(intf->dev.driver);
4957 			if (driver && driver->disable_hub_initiated_lpm) {
4958 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4959 					state_name, driver->name);
4960 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4961 								      state);
4962 				if (timeout == USB3_LPM_DISABLED)
4963 					return timeout;
4964 			}
4965 		}
4966 
4967 		/* Not sure how this could happen... */
4968 		if (!intf->cur_altsetting)
4969 			continue;
4970 
4971 		if (xhci_update_timeout_for_interface(xhci, udev,
4972 					intf->cur_altsetting,
4973 					state, &timeout))
4974 			return timeout;
4975 	}
4976 	return timeout;
4977 }
4978 
4979 static int calculate_max_exit_latency(struct usb_device *udev,
4980 		enum usb3_link_state state_changed,
4981 		u16 hub_encoded_timeout)
4982 {
4983 	unsigned long long u1_mel_us = 0;
4984 	unsigned long long u2_mel_us = 0;
4985 	unsigned long long mel_us = 0;
4986 	bool disabling_u1;
4987 	bool disabling_u2;
4988 	bool enabling_u1;
4989 	bool enabling_u2;
4990 
4991 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4992 			hub_encoded_timeout == USB3_LPM_DISABLED);
4993 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4994 			hub_encoded_timeout == USB3_LPM_DISABLED);
4995 
4996 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4997 			hub_encoded_timeout != USB3_LPM_DISABLED);
4998 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4999 			hub_encoded_timeout != USB3_LPM_DISABLED);
5000 
5001 	/* If U1 was already enabled and we're not disabling it,
5002 	 * or we're going to enable U1, account for the U1 max exit latency.
5003 	 */
5004 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5005 			enabling_u1)
5006 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5007 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5008 			enabling_u2)
5009 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5010 
5011 	mel_us = max(u1_mel_us, u2_mel_us);
5012 
5013 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5014 	if (mel_us > MAX_EXIT) {
5015 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5016 				"is too big.\n", mel_us);
5017 		return -E2BIG;
5018 	}
5019 	return mel_us;
5020 }
5021 
5022 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5023 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5024 			struct usb_device *udev, enum usb3_link_state state)
5025 {
5026 	struct xhci_hcd	*xhci;
5027 	u16 hub_encoded_timeout;
5028 	int mel;
5029 	int ret;
5030 
5031 	xhci = hcd_to_xhci(hcd);
5032 	/* The LPM timeout values are pretty host-controller specific, so don't
5033 	 * enable hub-initiated timeouts unless the vendor has provided
5034 	 * information about their timeout algorithm.
5035 	 */
5036 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5037 			!xhci->devs[udev->slot_id])
5038 		return USB3_LPM_DISABLED;
5039 
5040 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5041 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5042 	if (mel < 0) {
5043 		/* Max Exit Latency is too big, disable LPM. */
5044 		hub_encoded_timeout = USB3_LPM_DISABLED;
5045 		mel = 0;
5046 	}
5047 
5048 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5049 	if (ret)
5050 		return ret;
5051 	return hub_encoded_timeout;
5052 }
5053 
5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 			struct usb_device *udev, enum usb3_link_state state)
5056 {
5057 	struct xhci_hcd	*xhci;
5058 	u16 mel;
5059 
5060 	xhci = hcd_to_xhci(hcd);
5061 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5062 			!xhci->devs[udev->slot_id])
5063 		return 0;
5064 
5065 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5066 	return xhci_change_max_exit_latency(xhci, udev, mel);
5067 }
5068 #else /* CONFIG_PM */
5069 
5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5071 				struct usb_device *udev, int enable)
5072 {
5073 	return 0;
5074 }
5075 
5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5077 {
5078 	return 0;
5079 }
5080 
5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5082 			struct usb_device *udev, enum usb3_link_state state)
5083 {
5084 	return USB3_LPM_DISABLED;
5085 }
5086 
5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5088 			struct usb_device *udev, enum usb3_link_state state)
5089 {
5090 	return 0;
5091 }
5092 #endif	/* CONFIG_PM */
5093 
5094 /*-------------------------------------------------------------------------*/
5095 
5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5097  * internal data structures for the device.
5098  */
5099 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5100 			struct usb_tt *tt, gfp_t mem_flags)
5101 {
5102 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5103 	struct xhci_virt_device *vdev;
5104 	struct xhci_command *config_cmd;
5105 	struct xhci_input_control_ctx *ctrl_ctx;
5106 	struct xhci_slot_ctx *slot_ctx;
5107 	unsigned long flags;
5108 	unsigned think_time;
5109 	int ret;
5110 
5111 	/* Ignore root hubs */
5112 	if (!hdev->parent)
5113 		return 0;
5114 
5115 	vdev = xhci->devs[hdev->slot_id];
5116 	if (!vdev) {
5117 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5118 		return -EINVAL;
5119 	}
5120 
5121 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5122 	if (!config_cmd)
5123 		return -ENOMEM;
5124 
5125 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5126 	if (!ctrl_ctx) {
5127 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5128 				__func__);
5129 		xhci_free_command(xhci, config_cmd);
5130 		return -ENOMEM;
5131 	}
5132 
5133 	spin_lock_irqsave(&xhci->lock, flags);
5134 	if (hdev->speed == USB_SPEED_HIGH &&
5135 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5136 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5137 		xhci_free_command(xhci, config_cmd);
5138 		spin_unlock_irqrestore(&xhci->lock, flags);
5139 		return -ENOMEM;
5140 	}
5141 
5142 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5143 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5144 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5145 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5146 	/*
5147 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5148 	 * but it may be already set to 1 when setup an xHCI virtual
5149 	 * device, so clear it anyway.
5150 	 */
5151 	if (tt->multi)
5152 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5153 	else if (hdev->speed == USB_SPEED_FULL)
5154 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5155 
5156 	if (xhci->hci_version > 0x95) {
5157 		xhci_dbg(xhci, "xHCI version %x needs hub "
5158 				"TT think time and number of ports\n",
5159 				(unsigned int) xhci->hci_version);
5160 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5161 		/* Set TT think time - convert from ns to FS bit times.
5162 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5163 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5164 		 *
5165 		 * xHCI 1.0: this field shall be 0 if the device is not a
5166 		 * High-spped hub.
5167 		 */
5168 		think_time = tt->think_time;
5169 		if (think_time != 0)
5170 			think_time = (think_time / 666) - 1;
5171 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5172 			slot_ctx->tt_info |=
5173 				cpu_to_le32(TT_THINK_TIME(think_time));
5174 	} else {
5175 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5176 				"TT think time or number of ports\n",
5177 				(unsigned int) xhci->hci_version);
5178 	}
5179 	slot_ctx->dev_state = 0;
5180 	spin_unlock_irqrestore(&xhci->lock, flags);
5181 
5182 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5183 			(xhci->hci_version > 0x95) ?
5184 			"configure endpoint" : "evaluate context");
5185 
5186 	/* Issue and wait for the configure endpoint or
5187 	 * evaluate context command.
5188 	 */
5189 	if (xhci->hci_version > 0x95)
5190 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5191 				false, false);
5192 	else
5193 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 				true, false);
5195 
5196 	xhci_free_command(xhci, config_cmd);
5197 	return ret;
5198 }
5199 
5200 static int xhci_get_frame(struct usb_hcd *hcd)
5201 {
5202 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5203 	/* EHCI mods by the periodic size.  Why? */
5204 	return readl(&xhci->run_regs->microframe_index) >> 3;
5205 }
5206 
5207 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5208 {
5209 	struct xhci_hcd		*xhci;
5210 	/*
5211 	 * TODO: Check with DWC3 clients for sysdev according to
5212 	 * quirks
5213 	 */
5214 	struct device		*dev = hcd->self.sysdev;
5215 	unsigned int		minor_rev;
5216 	int			retval;
5217 
5218 	/* Accept arbitrarily long scatter-gather lists */
5219 	hcd->self.sg_tablesize = ~0;
5220 
5221 	/* support to build packet from discontinuous buffers */
5222 	hcd->self.no_sg_constraint = 1;
5223 
5224 	/* XHCI controllers don't stop the ep queue on short packets :| */
5225 	hcd->self.no_stop_on_short = 1;
5226 
5227 	xhci = hcd_to_xhci(hcd);
5228 
5229 	if (usb_hcd_is_primary_hcd(hcd)) {
5230 		xhci->main_hcd = hcd;
5231 		xhci->usb2_rhub.hcd = hcd;
5232 		/* Mark the first roothub as being USB 2.0.
5233 		 * The xHCI driver will register the USB 3.0 roothub.
5234 		 */
5235 		hcd->speed = HCD_USB2;
5236 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5237 		/*
5238 		 * USB 2.0 roothub under xHCI has an integrated TT,
5239 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5240 		 * companion controller.
5241 		 */
5242 		hcd->has_tt = 1;
5243 	} else {
5244 		/*
5245 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5246 		 * should return 0x31 for sbrn, or that the minor revision
5247 		 * is a two digit BCD containig minor and sub-minor numbers.
5248 		 * This was later clarified in xHCI 1.2.
5249 		 *
5250 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5251 		 * minor revision set to 0x1 instead of 0x10.
5252 		 */
5253 		if (xhci->usb3_rhub.min_rev == 0x1)
5254 			minor_rev = 1;
5255 		else
5256 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5257 
5258 		switch (minor_rev) {
5259 		case 2:
5260 			hcd->speed = HCD_USB32;
5261 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262 			hcd->self.root_hub->rx_lanes = 2;
5263 			hcd->self.root_hub->tx_lanes = 2;
5264 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5265 			break;
5266 		case 1:
5267 			hcd->speed = HCD_USB31;
5268 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5269 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5270 			break;
5271 		}
5272 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5273 			  minor_rev,
5274 			  minor_rev ? "Enhanced " : "");
5275 
5276 		xhci->usb3_rhub.hcd = hcd;
5277 		/* xHCI private pointer was set in xhci_pci_probe for the second
5278 		 * registered roothub.
5279 		 */
5280 		return 0;
5281 	}
5282 
5283 	mutex_init(&xhci->mutex);
5284 	xhci->cap_regs = hcd->regs;
5285 	xhci->op_regs = hcd->regs +
5286 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5287 	xhci->run_regs = hcd->regs +
5288 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5289 	/* Cache read-only capability registers */
5290 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5291 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5292 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5293 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5294 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5295 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5296 	if (xhci->hci_version > 0x100)
5297 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5298 
5299 	xhci->quirks |= quirks;
5300 
5301 	get_quirks(dev, xhci);
5302 
5303 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5304 	 * success event after a short transfer. This quirk will ignore such
5305 	 * spurious event.
5306 	 */
5307 	if (xhci->hci_version > 0x96)
5308 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5309 
5310 	/* Make sure the HC is halted. */
5311 	retval = xhci_halt(xhci);
5312 	if (retval)
5313 		return retval;
5314 
5315 	xhci_zero_64b_regs(xhci);
5316 
5317 	xhci_dbg(xhci, "Resetting HCD\n");
5318 	/* Reset the internal HC memory state and registers. */
5319 	retval = xhci_reset(xhci);
5320 	if (retval)
5321 		return retval;
5322 	xhci_dbg(xhci, "Reset complete\n");
5323 
5324 	/*
5325 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5326 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5327 	 * address memory pointers actually. So, this driver clears the AC64
5328 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5329 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5330 	 */
5331 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5332 		xhci->hcc_params &= ~BIT(0);
5333 
5334 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5335 	 * if xHC supports 64-bit addressing */
5336 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5337 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5338 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5339 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5340 	} else {
5341 		/*
5342 		 * This is to avoid error in cases where a 32-bit USB
5343 		 * controller is used on a 64-bit capable system.
5344 		 */
5345 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5346 		if (retval)
5347 			return retval;
5348 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5349 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5350 	}
5351 
5352 	xhci_dbg(xhci, "Calling HCD init\n");
5353 	/* Initialize HCD and host controller data structures. */
5354 	retval = xhci_init(hcd);
5355 	if (retval)
5356 		return retval;
5357 	xhci_dbg(xhci, "Called HCD init\n");
5358 
5359 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5360 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5361 
5362 	return 0;
5363 }
5364 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5365 
5366 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5367 		struct usb_host_endpoint *ep)
5368 {
5369 	struct xhci_hcd *xhci;
5370 	struct usb_device *udev;
5371 	unsigned int slot_id;
5372 	unsigned int ep_index;
5373 	unsigned long flags;
5374 
5375 	xhci = hcd_to_xhci(hcd);
5376 
5377 	spin_lock_irqsave(&xhci->lock, flags);
5378 	udev = (struct usb_device *)ep->hcpriv;
5379 	slot_id = udev->slot_id;
5380 	ep_index = xhci_get_endpoint_index(&ep->desc);
5381 
5382 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5383 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5384 	spin_unlock_irqrestore(&xhci->lock, flags);
5385 }
5386 
5387 static const struct hc_driver xhci_hc_driver = {
5388 	.description =		"xhci-hcd",
5389 	.product_desc =		"xHCI Host Controller",
5390 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5391 
5392 	/*
5393 	 * generic hardware linkage
5394 	 */
5395 	.irq =			xhci_irq,
5396 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5397 				HCD_BH,
5398 
5399 	/*
5400 	 * basic lifecycle operations
5401 	 */
5402 	.reset =		NULL, /* set in xhci_init_driver() */
5403 	.start =		xhci_run,
5404 	.stop =			xhci_stop,
5405 	.shutdown =		xhci_shutdown,
5406 
5407 	/*
5408 	 * managing i/o requests and associated device resources
5409 	 */
5410 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5411 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5412 	.urb_enqueue =		xhci_urb_enqueue,
5413 	.urb_dequeue =		xhci_urb_dequeue,
5414 	.alloc_dev =		xhci_alloc_dev,
5415 	.free_dev =		xhci_free_dev,
5416 	.alloc_streams =	xhci_alloc_streams,
5417 	.free_streams =		xhci_free_streams,
5418 	.add_endpoint =		xhci_add_endpoint,
5419 	.drop_endpoint =	xhci_drop_endpoint,
5420 	.endpoint_disable =	xhci_endpoint_disable,
5421 	.endpoint_reset =	xhci_endpoint_reset,
5422 	.check_bandwidth =	xhci_check_bandwidth,
5423 	.reset_bandwidth =	xhci_reset_bandwidth,
5424 	.address_device =	xhci_address_device,
5425 	.enable_device =	xhci_enable_device,
5426 	.update_hub_device =	xhci_update_hub_device,
5427 	.reset_device =		xhci_discover_or_reset_device,
5428 
5429 	/*
5430 	 * scheduling support
5431 	 */
5432 	.get_frame_number =	xhci_get_frame,
5433 
5434 	/*
5435 	 * root hub support
5436 	 */
5437 	.hub_control =		xhci_hub_control,
5438 	.hub_status_data =	xhci_hub_status_data,
5439 	.bus_suspend =		xhci_bus_suspend,
5440 	.bus_resume =		xhci_bus_resume,
5441 	.get_resuming_ports =	xhci_get_resuming_ports,
5442 
5443 	/*
5444 	 * call back when device connected and addressed
5445 	 */
5446 	.update_device =        xhci_update_device,
5447 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5448 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5449 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5450 	.find_raw_port_number =	xhci_find_raw_port_number,
5451 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5452 };
5453 
5454 void xhci_init_driver(struct hc_driver *drv,
5455 		      const struct xhci_driver_overrides *over)
5456 {
5457 	BUG_ON(!over);
5458 
5459 	/* Copy the generic table to drv then apply the overrides */
5460 	*drv = xhci_hc_driver;
5461 
5462 	if (over) {
5463 		drv->hcd_priv_size += over->extra_priv_size;
5464 		if (over->reset)
5465 			drv->reset = over->reset;
5466 		if (over->start)
5467 			drv->start = over->start;
5468 		if (over->add_endpoint)
5469 			drv->add_endpoint = over->add_endpoint;
5470 		if (over->drop_endpoint)
5471 			drv->drop_endpoint = over->drop_endpoint;
5472 		if (over->check_bandwidth)
5473 			drv->check_bandwidth = over->check_bandwidth;
5474 		if (over->reset_bandwidth)
5475 			drv->reset_bandwidth = over->reset_bandwidth;
5476 	}
5477 }
5478 EXPORT_SYMBOL_GPL(xhci_init_driver);
5479 
5480 MODULE_DESCRIPTION(DRIVER_DESC);
5481 MODULE_AUTHOR(DRIVER_AUTHOR);
5482 MODULE_LICENSE("GPL");
5483 
5484 static int __init xhci_hcd_init(void)
5485 {
5486 	/*
5487 	 * Check the compiler generated sizes of structures that must be laid
5488 	 * out in specific ways for hardware access.
5489 	 */
5490 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5491 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5492 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5493 	/* xhci_device_control has eight fields, and also
5494 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5495 	 */
5496 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5497 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5498 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5499 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5500 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5501 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5502 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5503 
5504 	if (usb_disabled())
5505 		return -ENODEV;
5506 
5507 	xhci_debugfs_create_root();
5508 
5509 	return 0;
5510 }
5511 
5512 /*
5513  * If an init function is provided, an exit function must also be provided
5514  * to allow module unload.
5515  */
5516 static void __exit xhci_hcd_fini(void)
5517 {
5518 	xhci_debugfs_remove_root();
5519 }
5520 
5521 module_init(xhci_hcd_init);
5522 module_exit(xhci_hcd_fini);
5523