1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "Finished xhci_run for USB2 roothub"); 697 698 xhci_dbc_init(xhci); 699 700 xhci_debugfs_init(xhci); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(xhci_run); 705 706 /* 707 * Stop xHCI driver. 708 * 709 * This function is called by the USB core when the HC driver is removed. 710 * Its opposite is xhci_run(). 711 * 712 * Disable device contexts, disable IRQs, and quiesce the HC. 713 * Reset the HC, finish any completed transactions, and cleanup memory. 714 */ 715 static void xhci_stop(struct usb_hcd *hcd) 716 { 717 u32 temp; 718 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 719 720 mutex_lock(&xhci->mutex); 721 722 /* Only halt host and free memory after both hcds are removed */ 723 if (!usb_hcd_is_primary_hcd(hcd)) { 724 mutex_unlock(&xhci->mutex); 725 return; 726 } 727 728 xhci_dbc_exit(xhci); 729 730 spin_lock_irq(&xhci->lock); 731 xhci->xhc_state |= XHCI_STATE_HALTED; 732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 733 xhci_halt(xhci); 734 xhci_reset(xhci); 735 spin_unlock_irq(&xhci->lock); 736 737 xhci_cleanup_msix(xhci); 738 739 /* Deleting Compliance Mode Recovery Timer */ 740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 741 (!(xhci_all_ports_seen_u0(xhci)))) { 742 del_timer_sync(&xhci->comp_mode_recovery_timer); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 744 "%s: compliance mode recovery timer deleted", 745 __func__); 746 } 747 748 if (xhci->quirks & XHCI_AMD_PLL_FIX) 749 usb_amd_dev_put(); 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 752 "// Disabling event ring interrupts"); 753 temp = readl(&xhci->op_regs->status); 754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 755 temp = readl(&xhci->ir_set->irq_pending); 756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 759 xhci_mem_cleanup(xhci); 760 xhci_debugfs_exit(xhci); 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_stop completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 mutex_unlock(&xhci->mutex); 765 } 766 767 /* 768 * Shutdown HC (not bus-specific) 769 * 770 * This is called when the machine is rebooting or halting. We assume that the 771 * machine will be powered off, and the HC's internal state will be reset. 772 * Don't bother to free memory. 773 * 774 * This will only ever be called with the main usb_hcd (the USB3 roothub). 775 */ 776 void xhci_shutdown(struct usb_hcd *hcd) 777 { 778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 779 780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 782 783 spin_lock_irq(&xhci->lock); 784 xhci_halt(xhci); 785 /* Workaround for spurious wakeups at shutdown with HSW */ 786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 787 xhci_reset(xhci); 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_cleanup_msix(xhci); 791 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "xhci_shutdown completed - status = %x", 794 readl(&xhci->op_regs->status)); 795 } 796 EXPORT_SYMBOL_GPL(xhci_shutdown); 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 /* 890 * Disable port wake bits if do_wakeup is not set. 891 * 892 * Also clear a possible internal port wake state left hanging for ports that 893 * detected termination but never successfully enumerated (trained to 0U). 894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 895 * at enumeration clears this wake, force one here as well for unconnected ports 896 */ 897 898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 899 struct xhci_hub *rhub, 900 bool do_wakeup) 901 { 902 unsigned long flags; 903 u32 t1, t2, portsc; 904 int i; 905 906 spin_lock_irqsave(&xhci->lock, flags); 907 908 for (i = 0; i < rhub->num_ports; i++) { 909 portsc = readl(rhub->ports[i]->addr); 910 t1 = xhci_port_state_to_neutral(portsc); 911 t2 = t1; 912 913 /* clear wake bits if do_wake is not set */ 914 if (!do_wakeup) 915 t2 &= ~PORT_WAKE_BITS; 916 917 /* Don't touch csc bit if connected or connect change is set */ 918 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 919 t2 |= PORT_CSC; 920 921 if (t1 != t2) { 922 writel(t2, rhub->ports[i]->addr); 923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 924 rhub->hcd->self.busnum, i + 1, portsc, t2); 925 } 926 } 927 spin_unlock_irqrestore(&xhci->lock, flags); 928 } 929 930 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 931 { 932 struct xhci_port **ports; 933 int port_index; 934 u32 status; 935 u32 portsc; 936 937 status = readl(&xhci->op_regs->status); 938 if (status & STS_EINT) 939 return true; 940 /* 941 * Checking STS_EINT is not enough as there is a lag between a change 942 * bit being set and the Port Status Change Event that it generated 943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 944 */ 945 946 port_index = xhci->usb2_rhub.num_ports; 947 ports = xhci->usb2_rhub.ports; 948 while (port_index--) { 949 portsc = readl(ports[port_index]->addr); 950 if (portsc & PORT_CHANGE_MASK || 951 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 952 return true; 953 } 954 port_index = xhci->usb3_rhub.num_ports; 955 ports = xhci->usb3_rhub.ports; 956 while (port_index--) { 957 portsc = readl(ports[port_index]->addr); 958 if (portsc & PORT_CHANGE_MASK || 959 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Stop HC (not bus-specific) 967 * 968 * This is called when the machine transition into S3/S4 mode. 969 * 970 */ 971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 972 { 973 int rc = 0; 974 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 975 struct usb_hcd *hcd = xhci_to_hcd(xhci); 976 u32 command; 977 u32 res; 978 979 if (!hcd->state) 980 return 0; 981 982 if (hcd->state != HC_STATE_SUSPENDED || 983 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 984 return -EINVAL; 985 986 /* Clear root port wake on bits if wakeup not allowed. */ 987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 989 990 if (!HCD_HW_ACCESSIBLE(hcd)) 991 return 0; 992 993 xhci_dbc_suspend(xhci); 994 995 /* Don't poll the roothubs on bus suspend. */ 996 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 997 __func__, hcd->self.busnum); 998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 999 del_timer_sync(&hcd->rh_timer); 1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1001 del_timer_sync(&xhci->shared_hcd->rh_timer); 1002 1003 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1004 usleep_range(1000, 1500); 1005 1006 spin_lock_irq(&xhci->lock); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1009 /* step 1: stop endpoint */ 1010 /* skipped assuming that port suspend has done */ 1011 1012 /* step 2: clear Run/Stop bit */ 1013 command = readl(&xhci->op_regs->command); 1014 command &= ~CMD_RUN; 1015 writel(command, &xhci->op_regs->command); 1016 1017 /* Some chips from Fresco Logic need an extraordinary delay */ 1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1019 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_HALT, STS_HALT, delay)) { 1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 xhci_clear_command_ring(xhci); 1027 1028 /* step 3: save registers */ 1029 xhci_save_registers(xhci); 1030 1031 /* step 4: set CSS flag */ 1032 command = readl(&xhci->op_regs->command); 1033 command |= CMD_CSS; 1034 writel(command, &xhci->op_regs->command); 1035 xhci->broken_suspend = 0; 1036 if (xhci_handshake(&xhci->op_regs->status, 1037 STS_SAVE, 0, 20 * 1000)) { 1038 /* 1039 * AMD SNPS xHC 3.0 occasionally does not clear the 1040 * SSS bit of USBSTS and when driver tries to poll 1041 * to see if the xHC clears BIT(8) which never happens 1042 * and driver assumes that controller is not responding 1043 * and times out. To workaround this, its good to check 1044 * if SRE and HCE bits are not set (as per xhci 1045 * Section 5.4.2) and bypass the timeout. 1046 */ 1047 res = readl(&xhci->op_regs->status); 1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1049 (((res & STS_SRE) == 0) && 1050 ((res & STS_HCE) == 0))) { 1051 xhci->broken_suspend = 1; 1052 } else { 1053 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 } 1058 spin_unlock_irq(&xhci->lock); 1059 1060 /* 1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1062 * is about to be suspended. 1063 */ 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 (!(xhci_all_ports_seen_u0(xhci)))) { 1066 del_timer_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "%s: compliance mode recovery timer deleted", 1069 __func__); 1070 } 1071 1072 /* step 5: remove core well power */ 1073 /* synchronize irq when using MSI-X */ 1074 xhci_msix_sync_irqs(xhci); 1075 1076 return rc; 1077 } 1078 EXPORT_SYMBOL_GPL(xhci_suspend); 1079 1080 /* 1081 * start xHC (not bus-specific) 1082 * 1083 * This is called when the machine transition from S3/S4 mode. 1084 * 1085 */ 1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1087 { 1088 u32 command, temp = 0; 1089 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1090 struct usb_hcd *secondary_hcd; 1091 int retval = 0; 1092 bool comp_timer_running = false; 1093 bool pending_portevent = false; 1094 bool reinit_xhc = false; 1095 1096 if (!hcd->state) 1097 return 0; 1098 1099 /* Wait a bit if either of the roothubs need to settle from the 1100 * transition into bus suspend. 1101 */ 1102 1103 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1104 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1105 msleep(100); 1106 1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1108 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1109 1110 spin_lock_irq(&xhci->lock); 1111 1112 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1113 reinit_xhc = true; 1114 1115 if (!reinit_xhc) { 1116 /* 1117 * Some controllers might lose power during suspend, so wait 1118 * for controller not ready bit to clear, just as in xHC init. 1119 */ 1120 retval = xhci_handshake(&xhci->op_regs->status, 1121 STS_CNR, 0, 10 * 1000 * 1000); 1122 if (retval) { 1123 xhci_warn(xhci, "Controller not ready at resume %d\n", 1124 retval); 1125 spin_unlock_irq(&xhci->lock); 1126 return retval; 1127 } 1128 /* step 1: restore register */ 1129 xhci_restore_registers(xhci); 1130 /* step 2: initialize command ring buffer */ 1131 xhci_set_cmd_ring_deq(xhci); 1132 /* step 3: restore state and start state*/ 1133 /* step 3: set CRS flag */ 1134 command = readl(&xhci->op_regs->command); 1135 command |= CMD_CRS; 1136 writel(command, &xhci->op_regs->command); 1137 /* 1138 * Some controllers take up to 55+ ms to complete the controller 1139 * restore so setting the timeout to 100ms. Xhci specification 1140 * doesn't mention any timeout value. 1141 */ 1142 if (xhci_handshake(&xhci->op_regs->status, 1143 STS_RESTORE, 0, 100 * 1000)) { 1144 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1145 spin_unlock_irq(&xhci->lock); 1146 return -ETIMEDOUT; 1147 } 1148 } 1149 1150 temp = readl(&xhci->op_regs->status); 1151 1152 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1153 if (temp & (STS_SRE | STS_HCE)) { 1154 reinit_xhc = true; 1155 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1156 } 1157 1158 if (reinit_xhc) { 1159 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1160 !(xhci_all_ports_seen_u0(xhci))) { 1161 del_timer_sync(&xhci->comp_mode_recovery_timer); 1162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1163 "Compliance Mode Recovery Timer deleted!"); 1164 } 1165 1166 /* Let the USB core know _both_ roothubs lost power. */ 1167 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1168 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1169 1170 xhci_dbg(xhci, "Stop HCD\n"); 1171 xhci_halt(xhci); 1172 xhci_zero_64b_regs(xhci); 1173 retval = xhci_reset(xhci); 1174 spin_unlock_irq(&xhci->lock); 1175 if (retval) 1176 return retval; 1177 xhci_cleanup_msix(xhci); 1178 1179 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1180 temp = readl(&xhci->op_regs->status); 1181 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1182 temp = readl(&xhci->ir_set->irq_pending); 1183 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1184 1185 xhci_dbg(xhci, "cleaning up memory\n"); 1186 xhci_mem_cleanup(xhci); 1187 xhci_debugfs_exit(xhci); 1188 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1189 readl(&xhci->op_regs->status)); 1190 1191 /* USB core calls the PCI reinit and start functions twice: 1192 * first with the primary HCD, and then with the secondary HCD. 1193 * If we don't do the same, the host will never be started. 1194 */ 1195 if (!usb_hcd_is_primary_hcd(hcd)) 1196 secondary_hcd = hcd; 1197 else 1198 secondary_hcd = xhci->shared_hcd; 1199 1200 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1201 retval = xhci_init(hcd->primary_hcd); 1202 if (retval) 1203 return retval; 1204 comp_timer_running = true; 1205 1206 xhci_dbg(xhci, "Start the primary HCD\n"); 1207 retval = xhci_run(hcd->primary_hcd); 1208 if (!retval) { 1209 xhci_dbg(xhci, "Start the secondary HCD\n"); 1210 retval = xhci_run(secondary_hcd); 1211 } 1212 hcd->state = HC_STATE_SUSPENDED; 1213 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1214 goto done; 1215 } 1216 1217 /* step 4: set Run/Stop bit */ 1218 command = readl(&xhci->op_regs->command); 1219 command |= CMD_RUN; 1220 writel(command, &xhci->op_regs->command); 1221 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1222 0, 250 * 1000); 1223 1224 /* step 5: walk topology and initialize portsc, 1225 * portpmsc and portli 1226 */ 1227 /* this is done in bus_resume */ 1228 1229 /* step 6: restart each of the previously 1230 * Running endpoints by ringing their doorbells 1231 */ 1232 1233 spin_unlock_irq(&xhci->lock); 1234 1235 xhci_dbc_resume(xhci); 1236 1237 done: 1238 if (retval == 0) { 1239 /* 1240 * Resume roothubs only if there are pending events. 1241 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1242 * the first wake signalling failed, give it that chance. 1243 */ 1244 pending_portevent = xhci_pending_portevent(xhci); 1245 if (!pending_portevent) { 1246 msleep(120); 1247 pending_portevent = xhci_pending_portevent(xhci); 1248 } 1249 1250 if (pending_portevent) { 1251 usb_hcd_resume_root_hub(xhci->shared_hcd); 1252 usb_hcd_resume_root_hub(hcd); 1253 } 1254 } 1255 /* 1256 * If system is subject to the Quirk, Compliance Mode Timer needs to 1257 * be re-initialized Always after a system resume. Ports are subject 1258 * to suffer the Compliance Mode issue again. It doesn't matter if 1259 * ports have entered previously to U0 before system's suspension. 1260 */ 1261 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1262 compliance_mode_recovery_timer_init(xhci); 1263 1264 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1265 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1266 1267 /* Re-enable port polling. */ 1268 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1269 __func__, hcd->self.busnum); 1270 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1271 usb_hcd_poll_rh_status(xhci->shared_hcd); 1272 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1273 usb_hcd_poll_rh_status(hcd); 1274 1275 return retval; 1276 } 1277 EXPORT_SYMBOL_GPL(xhci_resume); 1278 #endif /* CONFIG_PM */ 1279 1280 /*-------------------------------------------------------------------------*/ 1281 1282 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1283 { 1284 void *temp; 1285 int ret = 0; 1286 unsigned int buf_len; 1287 enum dma_data_direction dir; 1288 1289 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1290 buf_len = urb->transfer_buffer_length; 1291 1292 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1293 dev_to_node(hcd->self.sysdev)); 1294 1295 if (usb_urb_dir_out(urb)) 1296 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1297 temp, buf_len, 0); 1298 1299 urb->transfer_buffer = temp; 1300 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1301 urb->transfer_buffer, 1302 urb->transfer_buffer_length, 1303 dir); 1304 1305 if (dma_mapping_error(hcd->self.sysdev, 1306 urb->transfer_dma)) { 1307 ret = -EAGAIN; 1308 kfree(temp); 1309 } else { 1310 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1311 } 1312 1313 return ret; 1314 } 1315 1316 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1317 struct urb *urb) 1318 { 1319 bool ret = false; 1320 unsigned int i; 1321 unsigned int len = 0; 1322 unsigned int trb_size; 1323 unsigned int max_pkt; 1324 struct scatterlist *sg; 1325 struct scatterlist *tail_sg; 1326 1327 tail_sg = urb->sg; 1328 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1329 1330 if (!urb->num_sgs) 1331 return ret; 1332 1333 if (urb->dev->speed >= USB_SPEED_SUPER) 1334 trb_size = TRB_CACHE_SIZE_SS; 1335 else 1336 trb_size = TRB_CACHE_SIZE_HS; 1337 1338 if (urb->transfer_buffer_length != 0 && 1339 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1340 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1341 len = len + sg->length; 1342 if (i > trb_size - 2) { 1343 len = len - tail_sg->length; 1344 if (len < max_pkt) { 1345 ret = true; 1346 break; 1347 } 1348 1349 tail_sg = sg_next(tail_sg); 1350 } 1351 } 1352 } 1353 return ret; 1354 } 1355 1356 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1357 { 1358 unsigned int len; 1359 unsigned int buf_len; 1360 enum dma_data_direction dir; 1361 1362 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1363 1364 buf_len = urb->transfer_buffer_length; 1365 1366 if (IS_ENABLED(CONFIG_HAS_DMA) && 1367 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1368 dma_unmap_single(hcd->self.sysdev, 1369 urb->transfer_dma, 1370 urb->transfer_buffer_length, 1371 dir); 1372 1373 if (usb_urb_dir_in(urb)) { 1374 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1375 urb->transfer_buffer, 1376 buf_len, 1377 0); 1378 if (len != buf_len) { 1379 xhci_dbg(hcd_to_xhci(hcd), 1380 "Copy from tmp buf to urb sg list failed\n"); 1381 urb->actual_length = len; 1382 } 1383 } 1384 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1385 kfree(urb->transfer_buffer); 1386 urb->transfer_buffer = NULL; 1387 } 1388 1389 /* 1390 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1391 * we'll copy the actual data into the TRB address register. This is limited to 1392 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1393 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1394 */ 1395 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1396 gfp_t mem_flags) 1397 { 1398 struct xhci_hcd *xhci; 1399 1400 xhci = hcd_to_xhci(hcd); 1401 1402 if (xhci_urb_suitable_for_idt(urb)) 1403 return 0; 1404 1405 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1406 if (xhci_urb_temp_buffer_required(hcd, urb)) 1407 return xhci_map_temp_buffer(hcd, urb); 1408 } 1409 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1410 } 1411 1412 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1413 { 1414 struct xhci_hcd *xhci; 1415 bool unmap_temp_buf = false; 1416 1417 xhci = hcd_to_xhci(hcd); 1418 1419 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1420 unmap_temp_buf = true; 1421 1422 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1423 xhci_unmap_temp_buf(hcd, urb); 1424 else 1425 usb_hcd_unmap_urb_for_dma(hcd, urb); 1426 } 1427 1428 /** 1429 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1430 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1431 * value to right shift 1 for the bitmask. 1432 * 1433 * Index = (epnum * 2) + direction - 1, 1434 * where direction = 0 for OUT, 1 for IN. 1435 * For control endpoints, the IN index is used (OUT index is unused), so 1436 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1437 */ 1438 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1439 { 1440 unsigned int index; 1441 if (usb_endpoint_xfer_control(desc)) 1442 index = (unsigned int) (usb_endpoint_num(desc)*2); 1443 else 1444 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1445 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1446 return index; 1447 } 1448 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1449 1450 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1451 * address from the XHCI endpoint index. 1452 */ 1453 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1454 { 1455 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1456 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1457 return direction | number; 1458 } 1459 1460 /* Find the flag for this endpoint (for use in the control context). Use the 1461 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1462 * bit 1, etc. 1463 */ 1464 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1465 { 1466 return 1 << (xhci_get_endpoint_index(desc) + 1); 1467 } 1468 1469 /* Compute the last valid endpoint context index. Basically, this is the 1470 * endpoint index plus one. For slot contexts with more than valid endpoint, 1471 * we find the most significant bit set in the added contexts flags. 1472 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1473 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1474 */ 1475 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1476 { 1477 return fls(added_ctxs) - 1; 1478 } 1479 1480 /* Returns 1 if the arguments are OK; 1481 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1482 */ 1483 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1484 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1485 const char *func) { 1486 struct xhci_hcd *xhci; 1487 struct xhci_virt_device *virt_dev; 1488 1489 if (!hcd || (check_ep && !ep) || !udev) { 1490 pr_debug("xHCI %s called with invalid args\n", func); 1491 return -EINVAL; 1492 } 1493 if (!udev->parent) { 1494 pr_debug("xHCI %s called for root hub\n", func); 1495 return 0; 1496 } 1497 1498 xhci = hcd_to_xhci(hcd); 1499 if (check_virt_dev) { 1500 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1501 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1502 func); 1503 return -EINVAL; 1504 } 1505 1506 virt_dev = xhci->devs[udev->slot_id]; 1507 if (virt_dev->udev != udev) { 1508 xhci_dbg(xhci, "xHCI %s called with udev and " 1509 "virt_dev does not match\n", func); 1510 return -EINVAL; 1511 } 1512 } 1513 1514 if (xhci->xhc_state & XHCI_STATE_HALTED) 1515 return -ENODEV; 1516 1517 return 1; 1518 } 1519 1520 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1521 struct usb_device *udev, struct xhci_command *command, 1522 bool ctx_change, bool must_succeed); 1523 1524 /* 1525 * Full speed devices may have a max packet size greater than 8 bytes, but the 1526 * USB core doesn't know that until it reads the first 8 bytes of the 1527 * descriptor. If the usb_device's max packet size changes after that point, 1528 * we need to issue an evaluate context command and wait on it. 1529 */ 1530 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1531 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1532 { 1533 struct xhci_container_ctx *out_ctx; 1534 struct xhci_input_control_ctx *ctrl_ctx; 1535 struct xhci_ep_ctx *ep_ctx; 1536 struct xhci_command *command; 1537 int max_packet_size; 1538 int hw_max_packet_size; 1539 int ret = 0; 1540 1541 out_ctx = xhci->devs[slot_id]->out_ctx; 1542 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1543 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1544 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1545 if (hw_max_packet_size != max_packet_size) { 1546 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1547 "Max Packet Size for ep 0 changed."); 1548 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1549 "Max packet size in usb_device = %d", 1550 max_packet_size); 1551 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1552 "Max packet size in xHCI HW = %d", 1553 hw_max_packet_size); 1554 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1555 "Issuing evaluate context command."); 1556 1557 /* Set up the input context flags for the command */ 1558 /* FIXME: This won't work if a non-default control endpoint 1559 * changes max packet sizes. 1560 */ 1561 1562 command = xhci_alloc_command(xhci, true, mem_flags); 1563 if (!command) 1564 return -ENOMEM; 1565 1566 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1567 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1568 if (!ctrl_ctx) { 1569 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1570 __func__); 1571 ret = -ENOMEM; 1572 goto command_cleanup; 1573 } 1574 /* Set up the modified control endpoint 0 */ 1575 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1576 xhci->devs[slot_id]->out_ctx, ep_index); 1577 1578 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1579 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1580 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1581 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1582 1583 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1584 ctrl_ctx->drop_flags = 0; 1585 1586 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1587 true, false); 1588 1589 /* Clean up the input context for later use by bandwidth 1590 * functions. 1591 */ 1592 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1593 command_cleanup: 1594 kfree(command->completion); 1595 kfree(command); 1596 } 1597 return ret; 1598 } 1599 1600 /* 1601 * non-error returns are a promise to giveback() the urb later 1602 * we drop ownership so next owner (or urb unlink) can get it 1603 */ 1604 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1605 { 1606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1607 unsigned long flags; 1608 int ret = 0; 1609 unsigned int slot_id, ep_index; 1610 unsigned int *ep_state; 1611 struct urb_priv *urb_priv; 1612 int num_tds; 1613 1614 if (!urb) 1615 return -EINVAL; 1616 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1617 true, true, __func__); 1618 if (ret <= 0) 1619 return ret ? ret : -EINVAL; 1620 1621 slot_id = urb->dev->slot_id; 1622 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1623 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1624 1625 if (!HCD_HW_ACCESSIBLE(hcd)) 1626 return -ESHUTDOWN; 1627 1628 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1629 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1630 return -ENODEV; 1631 } 1632 1633 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1634 num_tds = urb->number_of_packets; 1635 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1636 urb->transfer_buffer_length > 0 && 1637 urb->transfer_flags & URB_ZERO_PACKET && 1638 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1639 num_tds = 2; 1640 else 1641 num_tds = 1; 1642 1643 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1644 if (!urb_priv) 1645 return -ENOMEM; 1646 1647 urb_priv->num_tds = num_tds; 1648 urb_priv->num_tds_done = 0; 1649 urb->hcpriv = urb_priv; 1650 1651 trace_xhci_urb_enqueue(urb); 1652 1653 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1654 /* Check to see if the max packet size for the default control 1655 * endpoint changed during FS device enumeration 1656 */ 1657 if (urb->dev->speed == USB_SPEED_FULL) { 1658 ret = xhci_check_maxpacket(xhci, slot_id, 1659 ep_index, urb, mem_flags); 1660 if (ret < 0) { 1661 xhci_urb_free_priv(urb_priv); 1662 urb->hcpriv = NULL; 1663 return ret; 1664 } 1665 } 1666 } 1667 1668 spin_lock_irqsave(&xhci->lock, flags); 1669 1670 if (xhci->xhc_state & XHCI_STATE_DYING) { 1671 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1672 urb->ep->desc.bEndpointAddress, urb); 1673 ret = -ESHUTDOWN; 1674 goto free_priv; 1675 } 1676 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1677 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1678 *ep_state); 1679 ret = -EINVAL; 1680 goto free_priv; 1681 } 1682 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1683 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1684 ret = -EINVAL; 1685 goto free_priv; 1686 } 1687 1688 switch (usb_endpoint_type(&urb->ep->desc)) { 1689 1690 case USB_ENDPOINT_XFER_CONTROL: 1691 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1692 slot_id, ep_index); 1693 break; 1694 case USB_ENDPOINT_XFER_BULK: 1695 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1696 slot_id, ep_index); 1697 break; 1698 case USB_ENDPOINT_XFER_INT: 1699 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1700 slot_id, ep_index); 1701 break; 1702 case USB_ENDPOINT_XFER_ISOC: 1703 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1704 slot_id, ep_index); 1705 } 1706 1707 if (ret) { 1708 free_priv: 1709 xhci_urb_free_priv(urb_priv); 1710 urb->hcpriv = NULL; 1711 } 1712 spin_unlock_irqrestore(&xhci->lock, flags); 1713 return ret; 1714 } 1715 1716 /* 1717 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1718 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1719 * should pick up where it left off in the TD, unless a Set Transfer Ring 1720 * Dequeue Pointer is issued. 1721 * 1722 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1723 * the ring. Since the ring is a contiguous structure, they can't be physically 1724 * removed. Instead, there are two options: 1725 * 1726 * 1) If the HC is in the middle of processing the URB to be canceled, we 1727 * simply move the ring's dequeue pointer past those TRBs using the Set 1728 * Transfer Ring Dequeue Pointer command. This will be the common case, 1729 * when drivers timeout on the last submitted URB and attempt to cancel. 1730 * 1731 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1732 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1733 * HC will need to invalidate the any TRBs it has cached after the stop 1734 * endpoint command, as noted in the xHCI 0.95 errata. 1735 * 1736 * 3) The TD may have completed by the time the Stop Endpoint Command 1737 * completes, so software needs to handle that case too. 1738 * 1739 * This function should protect against the TD enqueueing code ringing the 1740 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1741 * It also needs to account for multiple cancellations on happening at the same 1742 * time for the same endpoint. 1743 * 1744 * Note that this function can be called in any context, or so says 1745 * usb_hcd_unlink_urb() 1746 */ 1747 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1748 { 1749 unsigned long flags; 1750 int ret, i; 1751 u32 temp; 1752 struct xhci_hcd *xhci; 1753 struct urb_priv *urb_priv; 1754 struct xhci_td *td; 1755 unsigned int ep_index; 1756 struct xhci_ring *ep_ring; 1757 struct xhci_virt_ep *ep; 1758 struct xhci_command *command; 1759 struct xhci_virt_device *vdev; 1760 1761 xhci = hcd_to_xhci(hcd); 1762 spin_lock_irqsave(&xhci->lock, flags); 1763 1764 trace_xhci_urb_dequeue(urb); 1765 1766 /* Make sure the URB hasn't completed or been unlinked already */ 1767 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1768 if (ret) 1769 goto done; 1770 1771 /* give back URB now if we can't queue it for cancel */ 1772 vdev = xhci->devs[urb->dev->slot_id]; 1773 urb_priv = urb->hcpriv; 1774 if (!vdev || !urb_priv) 1775 goto err_giveback; 1776 1777 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1778 ep = &vdev->eps[ep_index]; 1779 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1780 if (!ep || !ep_ring) 1781 goto err_giveback; 1782 1783 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1784 temp = readl(&xhci->op_regs->status); 1785 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1786 xhci_hc_died(xhci); 1787 goto done; 1788 } 1789 1790 /* 1791 * check ring is not re-allocated since URB was enqueued. If it is, then 1792 * make sure none of the ring related pointers in this URB private data 1793 * are touched, such as td_list, otherwise we overwrite freed data 1794 */ 1795 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1796 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1797 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1798 td = &urb_priv->td[i]; 1799 if (!list_empty(&td->cancelled_td_list)) 1800 list_del_init(&td->cancelled_td_list); 1801 } 1802 goto err_giveback; 1803 } 1804 1805 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1806 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1807 "HC halted, freeing TD manually."); 1808 for (i = urb_priv->num_tds_done; 1809 i < urb_priv->num_tds; 1810 i++) { 1811 td = &urb_priv->td[i]; 1812 if (!list_empty(&td->td_list)) 1813 list_del_init(&td->td_list); 1814 if (!list_empty(&td->cancelled_td_list)) 1815 list_del_init(&td->cancelled_td_list); 1816 } 1817 goto err_giveback; 1818 } 1819 1820 i = urb_priv->num_tds_done; 1821 if (i < urb_priv->num_tds) 1822 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1823 "Cancel URB %p, dev %s, ep 0x%x, " 1824 "starting at offset 0x%llx", 1825 urb, urb->dev->devpath, 1826 urb->ep->desc.bEndpointAddress, 1827 (unsigned long long) xhci_trb_virt_to_dma( 1828 urb_priv->td[i].start_seg, 1829 urb_priv->td[i].first_trb)); 1830 1831 for (; i < urb_priv->num_tds; i++) { 1832 td = &urb_priv->td[i]; 1833 /* TD can already be on cancelled list if ep halted on it */ 1834 if (list_empty(&td->cancelled_td_list)) { 1835 td->cancel_status = TD_DIRTY; 1836 list_add_tail(&td->cancelled_td_list, 1837 &ep->cancelled_td_list); 1838 } 1839 } 1840 1841 /* Queue a stop endpoint command, but only if this is 1842 * the first cancellation to be handled. 1843 */ 1844 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1845 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1846 if (!command) { 1847 ret = -ENOMEM; 1848 goto done; 1849 } 1850 ep->ep_state |= EP_STOP_CMD_PENDING; 1851 ep->stop_cmd_timer.expires = jiffies + 1852 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1853 add_timer(&ep->stop_cmd_timer); 1854 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1855 ep_index, 0); 1856 xhci_ring_cmd_db(xhci); 1857 } 1858 done: 1859 spin_unlock_irqrestore(&xhci->lock, flags); 1860 return ret; 1861 1862 err_giveback: 1863 if (urb_priv) 1864 xhci_urb_free_priv(urb_priv); 1865 usb_hcd_unlink_urb_from_ep(hcd, urb); 1866 spin_unlock_irqrestore(&xhci->lock, flags); 1867 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1868 return ret; 1869 } 1870 1871 /* Drop an endpoint from a new bandwidth configuration for this device. 1872 * Only one call to this function is allowed per endpoint before 1873 * check_bandwidth() or reset_bandwidth() must be called. 1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1875 * add the endpoint to the schedule with possibly new parameters denoted by a 1876 * different endpoint descriptor in usb_host_endpoint. 1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1878 * not allowed. 1879 * 1880 * The USB core will not allow URBs to be queued to an endpoint that is being 1881 * disabled, so there's no need for mutual exclusion to protect 1882 * the xhci->devs[slot_id] structure. 1883 */ 1884 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1885 struct usb_host_endpoint *ep) 1886 { 1887 struct xhci_hcd *xhci; 1888 struct xhci_container_ctx *in_ctx, *out_ctx; 1889 struct xhci_input_control_ctx *ctrl_ctx; 1890 unsigned int ep_index; 1891 struct xhci_ep_ctx *ep_ctx; 1892 u32 drop_flag; 1893 u32 new_add_flags, new_drop_flags; 1894 int ret; 1895 1896 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1897 if (ret <= 0) 1898 return ret; 1899 xhci = hcd_to_xhci(hcd); 1900 if (xhci->xhc_state & XHCI_STATE_DYING) 1901 return -ENODEV; 1902 1903 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1904 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1905 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1906 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1907 __func__, drop_flag); 1908 return 0; 1909 } 1910 1911 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1912 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1913 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1914 if (!ctrl_ctx) { 1915 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1916 __func__); 1917 return 0; 1918 } 1919 1920 ep_index = xhci_get_endpoint_index(&ep->desc); 1921 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1922 /* If the HC already knows the endpoint is disabled, 1923 * or the HCD has noted it is disabled, ignore this request 1924 */ 1925 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1926 le32_to_cpu(ctrl_ctx->drop_flags) & 1927 xhci_get_endpoint_flag(&ep->desc)) { 1928 /* Do not warn when called after a usb_device_reset */ 1929 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1930 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1931 __func__, ep); 1932 return 0; 1933 } 1934 1935 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1936 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1937 1938 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1939 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1940 1941 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1942 1943 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1944 1945 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1946 (unsigned int) ep->desc.bEndpointAddress, 1947 udev->slot_id, 1948 (unsigned int) new_drop_flags, 1949 (unsigned int) new_add_flags); 1950 return 0; 1951 } 1952 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1953 1954 /* Add an endpoint to a new possible bandwidth configuration for this device. 1955 * Only one call to this function is allowed per endpoint before 1956 * check_bandwidth() or reset_bandwidth() must be called. 1957 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1958 * add the endpoint to the schedule with possibly new parameters denoted by a 1959 * different endpoint descriptor in usb_host_endpoint. 1960 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1961 * not allowed. 1962 * 1963 * The USB core will not allow URBs to be queued to an endpoint until the 1964 * configuration or alt setting is installed in the device, so there's no need 1965 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1966 */ 1967 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1968 struct usb_host_endpoint *ep) 1969 { 1970 struct xhci_hcd *xhci; 1971 struct xhci_container_ctx *in_ctx; 1972 unsigned int ep_index; 1973 struct xhci_input_control_ctx *ctrl_ctx; 1974 struct xhci_ep_ctx *ep_ctx; 1975 u32 added_ctxs; 1976 u32 new_add_flags, new_drop_flags; 1977 struct xhci_virt_device *virt_dev; 1978 int ret = 0; 1979 1980 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1981 if (ret <= 0) { 1982 /* So we won't queue a reset ep command for a root hub */ 1983 ep->hcpriv = NULL; 1984 return ret; 1985 } 1986 xhci = hcd_to_xhci(hcd); 1987 if (xhci->xhc_state & XHCI_STATE_DYING) 1988 return -ENODEV; 1989 1990 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1991 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1992 /* FIXME when we have to issue an evaluate endpoint command to 1993 * deal with ep0 max packet size changing once we get the 1994 * descriptors 1995 */ 1996 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1997 __func__, added_ctxs); 1998 return 0; 1999 } 2000 2001 virt_dev = xhci->devs[udev->slot_id]; 2002 in_ctx = virt_dev->in_ctx; 2003 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2004 if (!ctrl_ctx) { 2005 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2006 __func__); 2007 return 0; 2008 } 2009 2010 ep_index = xhci_get_endpoint_index(&ep->desc); 2011 /* If this endpoint is already in use, and the upper layers are trying 2012 * to add it again without dropping it, reject the addition. 2013 */ 2014 if (virt_dev->eps[ep_index].ring && 2015 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2016 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2017 "without dropping it.\n", 2018 (unsigned int) ep->desc.bEndpointAddress); 2019 return -EINVAL; 2020 } 2021 2022 /* If the HCD has already noted the endpoint is enabled, 2023 * ignore this request. 2024 */ 2025 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2026 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2027 __func__, ep); 2028 return 0; 2029 } 2030 2031 /* 2032 * Configuration and alternate setting changes must be done in 2033 * process context, not interrupt context (or so documenation 2034 * for usb_set_interface() and usb_set_configuration() claim). 2035 */ 2036 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2037 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2038 __func__, ep->desc.bEndpointAddress); 2039 return -ENOMEM; 2040 } 2041 2042 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2043 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2044 2045 /* If xhci_endpoint_disable() was called for this endpoint, but the 2046 * xHC hasn't been notified yet through the check_bandwidth() call, 2047 * this re-adds a new state for the endpoint from the new endpoint 2048 * descriptors. We must drop and re-add this endpoint, so we leave the 2049 * drop flags alone. 2050 */ 2051 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2052 2053 /* Store the usb_device pointer for later use */ 2054 ep->hcpriv = udev; 2055 2056 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2057 trace_xhci_add_endpoint(ep_ctx); 2058 2059 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2060 (unsigned int) ep->desc.bEndpointAddress, 2061 udev->slot_id, 2062 (unsigned int) new_drop_flags, 2063 (unsigned int) new_add_flags); 2064 return 0; 2065 } 2066 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2067 2068 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2069 { 2070 struct xhci_input_control_ctx *ctrl_ctx; 2071 struct xhci_ep_ctx *ep_ctx; 2072 struct xhci_slot_ctx *slot_ctx; 2073 int i; 2074 2075 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2076 if (!ctrl_ctx) { 2077 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2078 __func__); 2079 return; 2080 } 2081 2082 /* When a device's add flag and drop flag are zero, any subsequent 2083 * configure endpoint command will leave that endpoint's state 2084 * untouched. Make sure we don't leave any old state in the input 2085 * endpoint contexts. 2086 */ 2087 ctrl_ctx->drop_flags = 0; 2088 ctrl_ctx->add_flags = 0; 2089 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2090 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2091 /* Endpoint 0 is always valid */ 2092 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2093 for (i = 1; i < 31; i++) { 2094 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2095 ep_ctx->ep_info = 0; 2096 ep_ctx->ep_info2 = 0; 2097 ep_ctx->deq = 0; 2098 ep_ctx->tx_info = 0; 2099 } 2100 } 2101 2102 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2103 struct usb_device *udev, u32 *cmd_status) 2104 { 2105 int ret; 2106 2107 switch (*cmd_status) { 2108 case COMP_COMMAND_ABORTED: 2109 case COMP_COMMAND_RING_STOPPED: 2110 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2111 ret = -ETIME; 2112 break; 2113 case COMP_RESOURCE_ERROR: 2114 dev_warn(&udev->dev, 2115 "Not enough host controller resources for new device state.\n"); 2116 ret = -ENOMEM; 2117 /* FIXME: can we allocate more resources for the HC? */ 2118 break; 2119 case COMP_BANDWIDTH_ERROR: 2120 case COMP_SECONDARY_BANDWIDTH_ERROR: 2121 dev_warn(&udev->dev, 2122 "Not enough bandwidth for new device state.\n"); 2123 ret = -ENOSPC; 2124 /* FIXME: can we go back to the old state? */ 2125 break; 2126 case COMP_TRB_ERROR: 2127 /* the HCD set up something wrong */ 2128 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2129 "add flag = 1, " 2130 "and endpoint is not disabled.\n"); 2131 ret = -EINVAL; 2132 break; 2133 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2134 dev_warn(&udev->dev, 2135 "ERROR: Incompatible device for endpoint configure command.\n"); 2136 ret = -ENODEV; 2137 break; 2138 case COMP_SUCCESS: 2139 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2140 "Successful Endpoint Configure command"); 2141 ret = 0; 2142 break; 2143 default: 2144 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2145 *cmd_status); 2146 ret = -EINVAL; 2147 break; 2148 } 2149 return ret; 2150 } 2151 2152 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2153 struct usb_device *udev, u32 *cmd_status) 2154 { 2155 int ret; 2156 2157 switch (*cmd_status) { 2158 case COMP_COMMAND_ABORTED: 2159 case COMP_COMMAND_RING_STOPPED: 2160 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2161 ret = -ETIME; 2162 break; 2163 case COMP_PARAMETER_ERROR: 2164 dev_warn(&udev->dev, 2165 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2166 ret = -EINVAL; 2167 break; 2168 case COMP_SLOT_NOT_ENABLED_ERROR: 2169 dev_warn(&udev->dev, 2170 "WARN: slot not enabled for evaluate context command.\n"); 2171 ret = -EINVAL; 2172 break; 2173 case COMP_CONTEXT_STATE_ERROR: 2174 dev_warn(&udev->dev, 2175 "WARN: invalid context state for evaluate context command.\n"); 2176 ret = -EINVAL; 2177 break; 2178 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2179 dev_warn(&udev->dev, 2180 "ERROR: Incompatible device for evaluate context command.\n"); 2181 ret = -ENODEV; 2182 break; 2183 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2184 /* Max Exit Latency too large error */ 2185 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2186 ret = -EINVAL; 2187 break; 2188 case COMP_SUCCESS: 2189 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2190 "Successful evaluate context command"); 2191 ret = 0; 2192 break; 2193 default: 2194 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2195 *cmd_status); 2196 ret = -EINVAL; 2197 break; 2198 } 2199 return ret; 2200 } 2201 2202 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2203 struct xhci_input_control_ctx *ctrl_ctx) 2204 { 2205 u32 valid_add_flags; 2206 u32 valid_drop_flags; 2207 2208 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2209 * (bit 1). The default control endpoint is added during the Address 2210 * Device command and is never removed until the slot is disabled. 2211 */ 2212 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2213 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2214 2215 /* Use hweight32 to count the number of ones in the add flags, or 2216 * number of endpoints added. Don't count endpoints that are changed 2217 * (both added and dropped). 2218 */ 2219 return hweight32(valid_add_flags) - 2220 hweight32(valid_add_flags & valid_drop_flags); 2221 } 2222 2223 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2224 struct xhci_input_control_ctx *ctrl_ctx) 2225 { 2226 u32 valid_add_flags; 2227 u32 valid_drop_flags; 2228 2229 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2230 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2231 2232 return hweight32(valid_drop_flags) - 2233 hweight32(valid_add_flags & valid_drop_flags); 2234 } 2235 2236 /* 2237 * We need to reserve the new number of endpoints before the configure endpoint 2238 * command completes. We can't subtract the dropped endpoints from the number 2239 * of active endpoints until the command completes because we can oversubscribe 2240 * the host in this case: 2241 * 2242 * - the first configure endpoint command drops more endpoints than it adds 2243 * - a second configure endpoint command that adds more endpoints is queued 2244 * - the first configure endpoint command fails, so the config is unchanged 2245 * - the second command may succeed, even though there isn't enough resources 2246 * 2247 * Must be called with xhci->lock held. 2248 */ 2249 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2250 struct xhci_input_control_ctx *ctrl_ctx) 2251 { 2252 u32 added_eps; 2253 2254 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2255 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2256 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2257 "Not enough ep ctxs: " 2258 "%u active, need to add %u, limit is %u.", 2259 xhci->num_active_eps, added_eps, 2260 xhci->limit_active_eps); 2261 return -ENOMEM; 2262 } 2263 xhci->num_active_eps += added_eps; 2264 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2265 "Adding %u ep ctxs, %u now active.", added_eps, 2266 xhci->num_active_eps); 2267 return 0; 2268 } 2269 2270 /* 2271 * The configure endpoint was failed by the xHC for some other reason, so we 2272 * need to revert the resources that failed configuration would have used. 2273 * 2274 * Must be called with xhci->lock held. 2275 */ 2276 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2277 struct xhci_input_control_ctx *ctrl_ctx) 2278 { 2279 u32 num_failed_eps; 2280 2281 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2282 xhci->num_active_eps -= num_failed_eps; 2283 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2284 "Removing %u failed ep ctxs, %u now active.", 2285 num_failed_eps, 2286 xhci->num_active_eps); 2287 } 2288 2289 /* 2290 * Now that the command has completed, clean up the active endpoint count by 2291 * subtracting out the endpoints that were dropped (but not changed). 2292 * 2293 * Must be called with xhci->lock held. 2294 */ 2295 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2296 struct xhci_input_control_ctx *ctrl_ctx) 2297 { 2298 u32 num_dropped_eps; 2299 2300 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2301 xhci->num_active_eps -= num_dropped_eps; 2302 if (num_dropped_eps) 2303 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2304 "Removing %u dropped ep ctxs, %u now active.", 2305 num_dropped_eps, 2306 xhci->num_active_eps); 2307 } 2308 2309 static unsigned int xhci_get_block_size(struct usb_device *udev) 2310 { 2311 switch (udev->speed) { 2312 case USB_SPEED_LOW: 2313 case USB_SPEED_FULL: 2314 return FS_BLOCK; 2315 case USB_SPEED_HIGH: 2316 return HS_BLOCK; 2317 case USB_SPEED_SUPER: 2318 case USB_SPEED_SUPER_PLUS: 2319 return SS_BLOCK; 2320 case USB_SPEED_UNKNOWN: 2321 case USB_SPEED_WIRELESS: 2322 default: 2323 /* Should never happen */ 2324 return 1; 2325 } 2326 } 2327 2328 static unsigned int 2329 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2330 { 2331 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2332 return LS_OVERHEAD; 2333 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2334 return FS_OVERHEAD; 2335 return HS_OVERHEAD; 2336 } 2337 2338 /* If we are changing a LS/FS device under a HS hub, 2339 * make sure (if we are activating a new TT) that the HS bus has enough 2340 * bandwidth for this new TT. 2341 */ 2342 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2343 struct xhci_virt_device *virt_dev, 2344 int old_active_eps) 2345 { 2346 struct xhci_interval_bw_table *bw_table; 2347 struct xhci_tt_bw_info *tt_info; 2348 2349 /* Find the bandwidth table for the root port this TT is attached to. */ 2350 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2351 tt_info = virt_dev->tt_info; 2352 /* If this TT already had active endpoints, the bandwidth for this TT 2353 * has already been added. Removing all periodic endpoints (and thus 2354 * making the TT enactive) will only decrease the bandwidth used. 2355 */ 2356 if (old_active_eps) 2357 return 0; 2358 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2359 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2360 return -ENOMEM; 2361 return 0; 2362 } 2363 /* Not sure why we would have no new active endpoints... 2364 * 2365 * Maybe because of an Evaluate Context change for a hub update or a 2366 * control endpoint 0 max packet size change? 2367 * FIXME: skip the bandwidth calculation in that case. 2368 */ 2369 return 0; 2370 } 2371 2372 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2373 struct xhci_virt_device *virt_dev) 2374 { 2375 unsigned int bw_reserved; 2376 2377 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2378 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2379 return -ENOMEM; 2380 2381 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2382 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2383 return -ENOMEM; 2384 2385 return 0; 2386 } 2387 2388 /* 2389 * This algorithm is a very conservative estimate of the worst-case scheduling 2390 * scenario for any one interval. The hardware dynamically schedules the 2391 * packets, so we can't tell which microframe could be the limiting factor in 2392 * the bandwidth scheduling. This only takes into account periodic endpoints. 2393 * 2394 * Obviously, we can't solve an NP complete problem to find the minimum worst 2395 * case scenario. Instead, we come up with an estimate that is no less than 2396 * the worst case bandwidth used for any one microframe, but may be an 2397 * over-estimate. 2398 * 2399 * We walk the requirements for each endpoint by interval, starting with the 2400 * smallest interval, and place packets in the schedule where there is only one 2401 * possible way to schedule packets for that interval. In order to simplify 2402 * this algorithm, we record the largest max packet size for each interval, and 2403 * assume all packets will be that size. 2404 * 2405 * For interval 0, we obviously must schedule all packets for each interval. 2406 * The bandwidth for interval 0 is just the amount of data to be transmitted 2407 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2408 * the number of packets). 2409 * 2410 * For interval 1, we have two possible microframes to schedule those packets 2411 * in. For this algorithm, if we can schedule the same number of packets for 2412 * each possible scheduling opportunity (each microframe), we will do so. The 2413 * remaining number of packets will be saved to be transmitted in the gaps in 2414 * the next interval's scheduling sequence. 2415 * 2416 * As we move those remaining packets to be scheduled with interval 2 packets, 2417 * we have to double the number of remaining packets to transmit. This is 2418 * because the intervals are actually powers of 2, and we would be transmitting 2419 * the previous interval's packets twice in this interval. We also have to be 2420 * sure that when we look at the largest max packet size for this interval, we 2421 * also look at the largest max packet size for the remaining packets and take 2422 * the greater of the two. 2423 * 2424 * The algorithm continues to evenly distribute packets in each scheduling 2425 * opportunity, and push the remaining packets out, until we get to the last 2426 * interval. Then those packets and their associated overhead are just added 2427 * to the bandwidth used. 2428 */ 2429 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2430 struct xhci_virt_device *virt_dev, 2431 int old_active_eps) 2432 { 2433 unsigned int bw_reserved; 2434 unsigned int max_bandwidth; 2435 unsigned int bw_used; 2436 unsigned int block_size; 2437 struct xhci_interval_bw_table *bw_table; 2438 unsigned int packet_size = 0; 2439 unsigned int overhead = 0; 2440 unsigned int packets_transmitted = 0; 2441 unsigned int packets_remaining = 0; 2442 unsigned int i; 2443 2444 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2445 return xhci_check_ss_bw(xhci, virt_dev); 2446 2447 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2448 max_bandwidth = HS_BW_LIMIT; 2449 /* Convert percent of bus BW reserved to blocks reserved */ 2450 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2451 } else { 2452 max_bandwidth = FS_BW_LIMIT; 2453 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2454 } 2455 2456 bw_table = virt_dev->bw_table; 2457 /* We need to translate the max packet size and max ESIT payloads into 2458 * the units the hardware uses. 2459 */ 2460 block_size = xhci_get_block_size(virt_dev->udev); 2461 2462 /* If we are manipulating a LS/FS device under a HS hub, double check 2463 * that the HS bus has enough bandwidth if we are activing a new TT. 2464 */ 2465 if (virt_dev->tt_info) { 2466 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2467 "Recalculating BW for rootport %u", 2468 virt_dev->real_port); 2469 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2470 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2471 "newly activated TT.\n"); 2472 return -ENOMEM; 2473 } 2474 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2475 "Recalculating BW for TT slot %u port %u", 2476 virt_dev->tt_info->slot_id, 2477 virt_dev->tt_info->ttport); 2478 } else { 2479 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2480 "Recalculating BW for rootport %u", 2481 virt_dev->real_port); 2482 } 2483 2484 /* Add in how much bandwidth will be used for interval zero, or the 2485 * rounded max ESIT payload + number of packets * largest overhead. 2486 */ 2487 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2488 bw_table->interval_bw[0].num_packets * 2489 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2490 2491 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2492 unsigned int bw_added; 2493 unsigned int largest_mps; 2494 unsigned int interval_overhead; 2495 2496 /* 2497 * How many packets could we transmit in this interval? 2498 * If packets didn't fit in the previous interval, we will need 2499 * to transmit that many packets twice within this interval. 2500 */ 2501 packets_remaining = 2 * packets_remaining + 2502 bw_table->interval_bw[i].num_packets; 2503 2504 /* Find the largest max packet size of this or the previous 2505 * interval. 2506 */ 2507 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2508 largest_mps = 0; 2509 else { 2510 struct xhci_virt_ep *virt_ep; 2511 struct list_head *ep_entry; 2512 2513 ep_entry = bw_table->interval_bw[i].endpoints.next; 2514 virt_ep = list_entry(ep_entry, 2515 struct xhci_virt_ep, bw_endpoint_list); 2516 /* Convert to blocks, rounding up */ 2517 largest_mps = DIV_ROUND_UP( 2518 virt_ep->bw_info.max_packet_size, 2519 block_size); 2520 } 2521 if (largest_mps > packet_size) 2522 packet_size = largest_mps; 2523 2524 /* Use the larger overhead of this or the previous interval. */ 2525 interval_overhead = xhci_get_largest_overhead( 2526 &bw_table->interval_bw[i]); 2527 if (interval_overhead > overhead) 2528 overhead = interval_overhead; 2529 2530 /* How many packets can we evenly distribute across 2531 * (1 << (i + 1)) possible scheduling opportunities? 2532 */ 2533 packets_transmitted = packets_remaining >> (i + 1); 2534 2535 /* Add in the bandwidth used for those scheduled packets */ 2536 bw_added = packets_transmitted * (overhead + packet_size); 2537 2538 /* How many packets do we have remaining to transmit? */ 2539 packets_remaining = packets_remaining % (1 << (i + 1)); 2540 2541 /* What largest max packet size should those packets have? */ 2542 /* If we've transmitted all packets, don't carry over the 2543 * largest packet size. 2544 */ 2545 if (packets_remaining == 0) { 2546 packet_size = 0; 2547 overhead = 0; 2548 } else if (packets_transmitted > 0) { 2549 /* Otherwise if we do have remaining packets, and we've 2550 * scheduled some packets in this interval, take the 2551 * largest max packet size from endpoints with this 2552 * interval. 2553 */ 2554 packet_size = largest_mps; 2555 overhead = interval_overhead; 2556 } 2557 /* Otherwise carry over packet_size and overhead from the last 2558 * time we had a remainder. 2559 */ 2560 bw_used += bw_added; 2561 if (bw_used > max_bandwidth) { 2562 xhci_warn(xhci, "Not enough bandwidth. " 2563 "Proposed: %u, Max: %u\n", 2564 bw_used, max_bandwidth); 2565 return -ENOMEM; 2566 } 2567 } 2568 /* 2569 * Ok, we know we have some packets left over after even-handedly 2570 * scheduling interval 15. We don't know which microframes they will 2571 * fit into, so we over-schedule and say they will be scheduled every 2572 * microframe. 2573 */ 2574 if (packets_remaining > 0) 2575 bw_used += overhead + packet_size; 2576 2577 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2578 unsigned int port_index = virt_dev->real_port - 1; 2579 2580 /* OK, we're manipulating a HS device attached to a 2581 * root port bandwidth domain. Include the number of active TTs 2582 * in the bandwidth used. 2583 */ 2584 bw_used += TT_HS_OVERHEAD * 2585 xhci->rh_bw[port_index].num_active_tts; 2586 } 2587 2588 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2589 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2590 "Available: %u " "percent", 2591 bw_used, max_bandwidth, bw_reserved, 2592 (max_bandwidth - bw_used - bw_reserved) * 100 / 2593 max_bandwidth); 2594 2595 bw_used += bw_reserved; 2596 if (bw_used > max_bandwidth) { 2597 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2598 bw_used, max_bandwidth); 2599 return -ENOMEM; 2600 } 2601 2602 bw_table->bw_used = bw_used; 2603 return 0; 2604 } 2605 2606 static bool xhci_is_async_ep(unsigned int ep_type) 2607 { 2608 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2609 ep_type != ISOC_IN_EP && 2610 ep_type != INT_IN_EP); 2611 } 2612 2613 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2614 { 2615 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2616 } 2617 2618 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2619 { 2620 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2621 2622 if (ep_bw->ep_interval == 0) 2623 return SS_OVERHEAD_BURST + 2624 (ep_bw->mult * ep_bw->num_packets * 2625 (SS_OVERHEAD + mps)); 2626 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2627 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2628 1 << ep_bw->ep_interval); 2629 2630 } 2631 2632 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2633 struct xhci_bw_info *ep_bw, 2634 struct xhci_interval_bw_table *bw_table, 2635 struct usb_device *udev, 2636 struct xhci_virt_ep *virt_ep, 2637 struct xhci_tt_bw_info *tt_info) 2638 { 2639 struct xhci_interval_bw *interval_bw; 2640 int normalized_interval; 2641 2642 if (xhci_is_async_ep(ep_bw->type)) 2643 return; 2644 2645 if (udev->speed >= USB_SPEED_SUPER) { 2646 if (xhci_is_sync_in_ep(ep_bw->type)) 2647 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2648 xhci_get_ss_bw_consumed(ep_bw); 2649 else 2650 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2651 xhci_get_ss_bw_consumed(ep_bw); 2652 return; 2653 } 2654 2655 /* SuperSpeed endpoints never get added to intervals in the table, so 2656 * this check is only valid for HS/FS/LS devices. 2657 */ 2658 if (list_empty(&virt_ep->bw_endpoint_list)) 2659 return; 2660 /* For LS/FS devices, we need to translate the interval expressed in 2661 * microframes to frames. 2662 */ 2663 if (udev->speed == USB_SPEED_HIGH) 2664 normalized_interval = ep_bw->ep_interval; 2665 else 2666 normalized_interval = ep_bw->ep_interval - 3; 2667 2668 if (normalized_interval == 0) 2669 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2670 interval_bw = &bw_table->interval_bw[normalized_interval]; 2671 interval_bw->num_packets -= ep_bw->num_packets; 2672 switch (udev->speed) { 2673 case USB_SPEED_LOW: 2674 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2675 break; 2676 case USB_SPEED_FULL: 2677 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2678 break; 2679 case USB_SPEED_HIGH: 2680 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2681 break; 2682 case USB_SPEED_SUPER: 2683 case USB_SPEED_SUPER_PLUS: 2684 case USB_SPEED_UNKNOWN: 2685 case USB_SPEED_WIRELESS: 2686 /* Should never happen because only LS/FS/HS endpoints will get 2687 * added to the endpoint list. 2688 */ 2689 return; 2690 } 2691 if (tt_info) 2692 tt_info->active_eps -= 1; 2693 list_del_init(&virt_ep->bw_endpoint_list); 2694 } 2695 2696 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2697 struct xhci_bw_info *ep_bw, 2698 struct xhci_interval_bw_table *bw_table, 2699 struct usb_device *udev, 2700 struct xhci_virt_ep *virt_ep, 2701 struct xhci_tt_bw_info *tt_info) 2702 { 2703 struct xhci_interval_bw *interval_bw; 2704 struct xhci_virt_ep *smaller_ep; 2705 int normalized_interval; 2706 2707 if (xhci_is_async_ep(ep_bw->type)) 2708 return; 2709 2710 if (udev->speed == USB_SPEED_SUPER) { 2711 if (xhci_is_sync_in_ep(ep_bw->type)) 2712 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2713 xhci_get_ss_bw_consumed(ep_bw); 2714 else 2715 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2716 xhci_get_ss_bw_consumed(ep_bw); 2717 return; 2718 } 2719 2720 /* For LS/FS devices, we need to translate the interval expressed in 2721 * microframes to frames. 2722 */ 2723 if (udev->speed == USB_SPEED_HIGH) 2724 normalized_interval = ep_bw->ep_interval; 2725 else 2726 normalized_interval = ep_bw->ep_interval - 3; 2727 2728 if (normalized_interval == 0) 2729 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2730 interval_bw = &bw_table->interval_bw[normalized_interval]; 2731 interval_bw->num_packets += ep_bw->num_packets; 2732 switch (udev->speed) { 2733 case USB_SPEED_LOW: 2734 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2735 break; 2736 case USB_SPEED_FULL: 2737 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2738 break; 2739 case USB_SPEED_HIGH: 2740 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2741 break; 2742 case USB_SPEED_SUPER: 2743 case USB_SPEED_SUPER_PLUS: 2744 case USB_SPEED_UNKNOWN: 2745 case USB_SPEED_WIRELESS: 2746 /* Should never happen because only LS/FS/HS endpoints will get 2747 * added to the endpoint list. 2748 */ 2749 return; 2750 } 2751 2752 if (tt_info) 2753 tt_info->active_eps += 1; 2754 /* Insert the endpoint into the list, largest max packet size first. */ 2755 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2756 bw_endpoint_list) { 2757 if (ep_bw->max_packet_size >= 2758 smaller_ep->bw_info.max_packet_size) { 2759 /* Add the new ep before the smaller endpoint */ 2760 list_add_tail(&virt_ep->bw_endpoint_list, 2761 &smaller_ep->bw_endpoint_list); 2762 return; 2763 } 2764 } 2765 /* Add the new endpoint at the end of the list. */ 2766 list_add_tail(&virt_ep->bw_endpoint_list, 2767 &interval_bw->endpoints); 2768 } 2769 2770 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2771 struct xhci_virt_device *virt_dev, 2772 int old_active_eps) 2773 { 2774 struct xhci_root_port_bw_info *rh_bw_info; 2775 if (!virt_dev->tt_info) 2776 return; 2777 2778 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2779 if (old_active_eps == 0 && 2780 virt_dev->tt_info->active_eps != 0) { 2781 rh_bw_info->num_active_tts += 1; 2782 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2783 } else if (old_active_eps != 0 && 2784 virt_dev->tt_info->active_eps == 0) { 2785 rh_bw_info->num_active_tts -= 1; 2786 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2787 } 2788 } 2789 2790 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2791 struct xhci_virt_device *virt_dev, 2792 struct xhci_container_ctx *in_ctx) 2793 { 2794 struct xhci_bw_info ep_bw_info[31]; 2795 int i; 2796 struct xhci_input_control_ctx *ctrl_ctx; 2797 int old_active_eps = 0; 2798 2799 if (virt_dev->tt_info) 2800 old_active_eps = virt_dev->tt_info->active_eps; 2801 2802 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2803 if (!ctrl_ctx) { 2804 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2805 __func__); 2806 return -ENOMEM; 2807 } 2808 2809 for (i = 0; i < 31; i++) { 2810 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2811 continue; 2812 2813 /* Make a copy of the BW info in case we need to revert this */ 2814 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2815 sizeof(ep_bw_info[i])); 2816 /* Drop the endpoint from the interval table if the endpoint is 2817 * being dropped or changed. 2818 */ 2819 if (EP_IS_DROPPED(ctrl_ctx, i)) 2820 xhci_drop_ep_from_interval_table(xhci, 2821 &virt_dev->eps[i].bw_info, 2822 virt_dev->bw_table, 2823 virt_dev->udev, 2824 &virt_dev->eps[i], 2825 virt_dev->tt_info); 2826 } 2827 /* Overwrite the information stored in the endpoints' bw_info */ 2828 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2829 for (i = 0; i < 31; i++) { 2830 /* Add any changed or added endpoints to the interval table */ 2831 if (EP_IS_ADDED(ctrl_ctx, i)) 2832 xhci_add_ep_to_interval_table(xhci, 2833 &virt_dev->eps[i].bw_info, 2834 virt_dev->bw_table, 2835 virt_dev->udev, 2836 &virt_dev->eps[i], 2837 virt_dev->tt_info); 2838 } 2839 2840 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2841 /* Ok, this fits in the bandwidth we have. 2842 * Update the number of active TTs. 2843 */ 2844 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2845 return 0; 2846 } 2847 2848 /* We don't have enough bandwidth for this, revert the stored info. */ 2849 for (i = 0; i < 31; i++) { 2850 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2851 continue; 2852 2853 /* Drop the new copies of any added or changed endpoints from 2854 * the interval table. 2855 */ 2856 if (EP_IS_ADDED(ctrl_ctx, i)) { 2857 xhci_drop_ep_from_interval_table(xhci, 2858 &virt_dev->eps[i].bw_info, 2859 virt_dev->bw_table, 2860 virt_dev->udev, 2861 &virt_dev->eps[i], 2862 virt_dev->tt_info); 2863 } 2864 /* Revert the endpoint back to its old information */ 2865 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2866 sizeof(ep_bw_info[i])); 2867 /* Add any changed or dropped endpoints back into the table */ 2868 if (EP_IS_DROPPED(ctrl_ctx, i)) 2869 xhci_add_ep_to_interval_table(xhci, 2870 &virt_dev->eps[i].bw_info, 2871 virt_dev->bw_table, 2872 virt_dev->udev, 2873 &virt_dev->eps[i], 2874 virt_dev->tt_info); 2875 } 2876 return -ENOMEM; 2877 } 2878 2879 2880 /* Issue a configure endpoint command or evaluate context command 2881 * and wait for it to finish. 2882 */ 2883 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2884 struct usb_device *udev, 2885 struct xhci_command *command, 2886 bool ctx_change, bool must_succeed) 2887 { 2888 int ret; 2889 unsigned long flags; 2890 struct xhci_input_control_ctx *ctrl_ctx; 2891 struct xhci_virt_device *virt_dev; 2892 struct xhci_slot_ctx *slot_ctx; 2893 2894 if (!command) 2895 return -EINVAL; 2896 2897 spin_lock_irqsave(&xhci->lock, flags); 2898 2899 if (xhci->xhc_state & XHCI_STATE_DYING) { 2900 spin_unlock_irqrestore(&xhci->lock, flags); 2901 return -ESHUTDOWN; 2902 } 2903 2904 virt_dev = xhci->devs[udev->slot_id]; 2905 2906 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2907 if (!ctrl_ctx) { 2908 spin_unlock_irqrestore(&xhci->lock, flags); 2909 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2910 __func__); 2911 return -ENOMEM; 2912 } 2913 2914 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2915 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2916 spin_unlock_irqrestore(&xhci->lock, flags); 2917 xhci_warn(xhci, "Not enough host resources, " 2918 "active endpoint contexts = %u\n", 2919 xhci->num_active_eps); 2920 return -ENOMEM; 2921 } 2922 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2923 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2924 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2925 xhci_free_host_resources(xhci, ctrl_ctx); 2926 spin_unlock_irqrestore(&xhci->lock, flags); 2927 xhci_warn(xhci, "Not enough bandwidth\n"); 2928 return -ENOMEM; 2929 } 2930 2931 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2932 2933 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2934 trace_xhci_configure_endpoint(slot_ctx); 2935 2936 if (!ctx_change) 2937 ret = xhci_queue_configure_endpoint(xhci, command, 2938 command->in_ctx->dma, 2939 udev->slot_id, must_succeed); 2940 else 2941 ret = xhci_queue_evaluate_context(xhci, command, 2942 command->in_ctx->dma, 2943 udev->slot_id, must_succeed); 2944 if (ret < 0) { 2945 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2946 xhci_free_host_resources(xhci, ctrl_ctx); 2947 spin_unlock_irqrestore(&xhci->lock, flags); 2948 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2949 "FIXME allocate a new ring segment"); 2950 return -ENOMEM; 2951 } 2952 xhci_ring_cmd_db(xhci); 2953 spin_unlock_irqrestore(&xhci->lock, flags); 2954 2955 /* Wait for the configure endpoint command to complete */ 2956 wait_for_completion(command->completion); 2957 2958 if (!ctx_change) 2959 ret = xhci_configure_endpoint_result(xhci, udev, 2960 &command->status); 2961 else 2962 ret = xhci_evaluate_context_result(xhci, udev, 2963 &command->status); 2964 2965 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2966 spin_lock_irqsave(&xhci->lock, flags); 2967 /* If the command failed, remove the reserved resources. 2968 * Otherwise, clean up the estimate to include dropped eps. 2969 */ 2970 if (ret) 2971 xhci_free_host_resources(xhci, ctrl_ctx); 2972 else 2973 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2974 spin_unlock_irqrestore(&xhci->lock, flags); 2975 } 2976 return ret; 2977 } 2978 2979 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2980 struct xhci_virt_device *vdev, int i) 2981 { 2982 struct xhci_virt_ep *ep = &vdev->eps[i]; 2983 2984 if (ep->ep_state & EP_HAS_STREAMS) { 2985 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2986 xhci_get_endpoint_address(i)); 2987 xhci_free_stream_info(xhci, ep->stream_info); 2988 ep->stream_info = NULL; 2989 ep->ep_state &= ~EP_HAS_STREAMS; 2990 } 2991 } 2992 2993 /* Called after one or more calls to xhci_add_endpoint() or 2994 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2995 * to call xhci_reset_bandwidth(). 2996 * 2997 * Since we are in the middle of changing either configuration or 2998 * installing a new alt setting, the USB core won't allow URBs to be 2999 * enqueued for any endpoint on the old config or interface. Nothing 3000 * else should be touching the xhci->devs[slot_id] structure, so we 3001 * don't need to take the xhci->lock for manipulating that. 3002 */ 3003 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3004 { 3005 int i; 3006 int ret = 0; 3007 struct xhci_hcd *xhci; 3008 struct xhci_virt_device *virt_dev; 3009 struct xhci_input_control_ctx *ctrl_ctx; 3010 struct xhci_slot_ctx *slot_ctx; 3011 struct xhci_command *command; 3012 3013 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3014 if (ret <= 0) 3015 return ret; 3016 xhci = hcd_to_xhci(hcd); 3017 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3018 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3019 return -ENODEV; 3020 3021 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3022 virt_dev = xhci->devs[udev->slot_id]; 3023 3024 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3025 if (!command) 3026 return -ENOMEM; 3027 3028 command->in_ctx = virt_dev->in_ctx; 3029 3030 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3031 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3032 if (!ctrl_ctx) { 3033 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3034 __func__); 3035 ret = -ENOMEM; 3036 goto command_cleanup; 3037 } 3038 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3039 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3040 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3041 3042 /* Don't issue the command if there's no endpoints to update. */ 3043 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3044 ctrl_ctx->drop_flags == 0) { 3045 ret = 0; 3046 goto command_cleanup; 3047 } 3048 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3049 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3050 for (i = 31; i >= 1; i--) { 3051 __le32 le32 = cpu_to_le32(BIT(i)); 3052 3053 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3054 || (ctrl_ctx->add_flags & le32) || i == 1) { 3055 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3056 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3057 break; 3058 } 3059 } 3060 3061 ret = xhci_configure_endpoint(xhci, udev, command, 3062 false, false); 3063 if (ret) 3064 /* Callee should call reset_bandwidth() */ 3065 goto command_cleanup; 3066 3067 /* Free any rings that were dropped, but not changed. */ 3068 for (i = 1; i < 31; i++) { 3069 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3070 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3071 xhci_free_endpoint_ring(xhci, virt_dev, i); 3072 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3073 } 3074 } 3075 xhci_zero_in_ctx(xhci, virt_dev); 3076 /* 3077 * Install any rings for completely new endpoints or changed endpoints, 3078 * and free any old rings from changed endpoints. 3079 */ 3080 for (i = 1; i < 31; i++) { 3081 if (!virt_dev->eps[i].new_ring) 3082 continue; 3083 /* Only free the old ring if it exists. 3084 * It may not if this is the first add of an endpoint. 3085 */ 3086 if (virt_dev->eps[i].ring) { 3087 xhci_free_endpoint_ring(xhci, virt_dev, i); 3088 } 3089 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3090 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3091 virt_dev->eps[i].new_ring = NULL; 3092 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3093 } 3094 command_cleanup: 3095 kfree(command->completion); 3096 kfree(command); 3097 3098 return ret; 3099 } 3100 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3101 3102 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3103 { 3104 struct xhci_hcd *xhci; 3105 struct xhci_virt_device *virt_dev; 3106 int i, ret; 3107 3108 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3109 if (ret <= 0) 3110 return; 3111 xhci = hcd_to_xhci(hcd); 3112 3113 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3114 virt_dev = xhci->devs[udev->slot_id]; 3115 /* Free any rings allocated for added endpoints */ 3116 for (i = 0; i < 31; i++) { 3117 if (virt_dev->eps[i].new_ring) { 3118 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3119 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3120 virt_dev->eps[i].new_ring = NULL; 3121 } 3122 } 3123 xhci_zero_in_ctx(xhci, virt_dev); 3124 } 3125 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3126 3127 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3128 struct xhci_container_ctx *in_ctx, 3129 struct xhci_container_ctx *out_ctx, 3130 struct xhci_input_control_ctx *ctrl_ctx, 3131 u32 add_flags, u32 drop_flags) 3132 { 3133 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3134 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3135 xhci_slot_copy(xhci, in_ctx, out_ctx); 3136 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3137 } 3138 3139 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3140 struct usb_host_endpoint *host_ep) 3141 { 3142 struct xhci_hcd *xhci; 3143 struct xhci_virt_device *vdev; 3144 struct xhci_virt_ep *ep; 3145 struct usb_device *udev; 3146 unsigned long flags; 3147 unsigned int ep_index; 3148 3149 xhci = hcd_to_xhci(hcd); 3150 rescan: 3151 spin_lock_irqsave(&xhci->lock, flags); 3152 3153 udev = (struct usb_device *)host_ep->hcpriv; 3154 if (!udev || !udev->slot_id) 3155 goto done; 3156 3157 vdev = xhci->devs[udev->slot_id]; 3158 if (!vdev) 3159 goto done; 3160 3161 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3162 ep = &vdev->eps[ep_index]; 3163 if (!ep) 3164 goto done; 3165 3166 /* wait for hub_tt_work to finish clearing hub TT */ 3167 if (ep->ep_state & EP_CLEARING_TT) { 3168 spin_unlock_irqrestore(&xhci->lock, flags); 3169 schedule_timeout_uninterruptible(1); 3170 goto rescan; 3171 } 3172 3173 if (ep->ep_state) 3174 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3175 ep->ep_state); 3176 done: 3177 host_ep->hcpriv = NULL; 3178 spin_unlock_irqrestore(&xhci->lock, flags); 3179 } 3180 3181 /* 3182 * Called after usb core issues a clear halt control message. 3183 * The host side of the halt should already be cleared by a reset endpoint 3184 * command issued when the STALL event was received. 3185 * 3186 * The reset endpoint command may only be issued to endpoints in the halted 3187 * state. For software that wishes to reset the data toggle or sequence number 3188 * of an endpoint that isn't in the halted state this function will issue a 3189 * configure endpoint command with the Drop and Add bits set for the target 3190 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3191 */ 3192 3193 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3194 struct usb_host_endpoint *host_ep) 3195 { 3196 struct xhci_hcd *xhci; 3197 struct usb_device *udev; 3198 struct xhci_virt_device *vdev; 3199 struct xhci_virt_ep *ep; 3200 struct xhci_input_control_ctx *ctrl_ctx; 3201 struct xhci_command *stop_cmd, *cfg_cmd; 3202 unsigned int ep_index; 3203 unsigned long flags; 3204 u32 ep_flag; 3205 int err; 3206 3207 xhci = hcd_to_xhci(hcd); 3208 if (!host_ep->hcpriv) 3209 return; 3210 udev = (struct usb_device *) host_ep->hcpriv; 3211 vdev = xhci->devs[udev->slot_id]; 3212 3213 /* 3214 * vdev may be lost due to xHC restore error and re-initialization 3215 * during S3/S4 resume. A new vdev will be allocated later by 3216 * xhci_discover_or_reset_device() 3217 */ 3218 if (!udev->slot_id || !vdev) 3219 return; 3220 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3221 ep = &vdev->eps[ep_index]; 3222 if (!ep) 3223 return; 3224 3225 /* Bail out if toggle is already being cleared by a endpoint reset */ 3226 spin_lock_irqsave(&xhci->lock, flags); 3227 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3228 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3229 spin_unlock_irqrestore(&xhci->lock, flags); 3230 return; 3231 } 3232 spin_unlock_irqrestore(&xhci->lock, flags); 3233 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3234 if (usb_endpoint_xfer_control(&host_ep->desc) || 3235 usb_endpoint_xfer_isoc(&host_ep->desc)) 3236 return; 3237 3238 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3239 3240 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3241 return; 3242 3243 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3244 if (!stop_cmd) 3245 return; 3246 3247 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3248 if (!cfg_cmd) 3249 goto cleanup; 3250 3251 spin_lock_irqsave(&xhci->lock, flags); 3252 3253 /* block queuing new trbs and ringing ep doorbell */ 3254 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3255 3256 /* 3257 * Make sure endpoint ring is empty before resetting the toggle/seq. 3258 * Driver is required to synchronously cancel all transfer request. 3259 * Stop the endpoint to force xHC to update the output context 3260 */ 3261 3262 if (!list_empty(&ep->ring->td_list)) { 3263 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3264 spin_unlock_irqrestore(&xhci->lock, flags); 3265 xhci_free_command(xhci, cfg_cmd); 3266 goto cleanup; 3267 } 3268 3269 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3270 ep_index, 0); 3271 if (err < 0) { 3272 spin_unlock_irqrestore(&xhci->lock, flags); 3273 xhci_free_command(xhci, cfg_cmd); 3274 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3275 __func__, err); 3276 goto cleanup; 3277 } 3278 3279 xhci_ring_cmd_db(xhci); 3280 spin_unlock_irqrestore(&xhci->lock, flags); 3281 3282 wait_for_completion(stop_cmd->completion); 3283 3284 spin_lock_irqsave(&xhci->lock, flags); 3285 3286 /* config ep command clears toggle if add and drop ep flags are set */ 3287 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3288 if (!ctrl_ctx) { 3289 spin_unlock_irqrestore(&xhci->lock, flags); 3290 xhci_free_command(xhci, cfg_cmd); 3291 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3292 __func__); 3293 goto cleanup; 3294 } 3295 3296 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3297 ctrl_ctx, ep_flag, ep_flag); 3298 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3299 3300 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3301 udev->slot_id, false); 3302 if (err < 0) { 3303 spin_unlock_irqrestore(&xhci->lock, flags); 3304 xhci_free_command(xhci, cfg_cmd); 3305 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3306 __func__, err); 3307 goto cleanup; 3308 } 3309 3310 xhci_ring_cmd_db(xhci); 3311 spin_unlock_irqrestore(&xhci->lock, flags); 3312 3313 wait_for_completion(cfg_cmd->completion); 3314 3315 xhci_free_command(xhci, cfg_cmd); 3316 cleanup: 3317 xhci_free_command(xhci, stop_cmd); 3318 spin_lock_irqsave(&xhci->lock, flags); 3319 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3320 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3321 spin_unlock_irqrestore(&xhci->lock, flags); 3322 } 3323 3324 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3325 struct usb_device *udev, struct usb_host_endpoint *ep, 3326 unsigned int slot_id) 3327 { 3328 int ret; 3329 unsigned int ep_index; 3330 unsigned int ep_state; 3331 3332 if (!ep) 3333 return -EINVAL; 3334 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3335 if (ret <= 0) 3336 return ret ? ret : -EINVAL; 3337 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3338 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3339 " descriptor for ep 0x%x does not support streams\n", 3340 ep->desc.bEndpointAddress); 3341 return -EINVAL; 3342 } 3343 3344 ep_index = xhci_get_endpoint_index(&ep->desc); 3345 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3346 if (ep_state & EP_HAS_STREAMS || 3347 ep_state & EP_GETTING_STREAMS) { 3348 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3349 "already has streams set up.\n", 3350 ep->desc.bEndpointAddress); 3351 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3352 "dynamic stream context array reallocation.\n"); 3353 return -EINVAL; 3354 } 3355 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3356 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3357 "endpoint 0x%x; URBs are pending.\n", 3358 ep->desc.bEndpointAddress); 3359 return -EINVAL; 3360 } 3361 return 0; 3362 } 3363 3364 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3365 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3366 { 3367 unsigned int max_streams; 3368 3369 /* The stream context array size must be a power of two */ 3370 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3371 /* 3372 * Find out how many primary stream array entries the host controller 3373 * supports. Later we may use secondary stream arrays (similar to 2nd 3374 * level page entries), but that's an optional feature for xHCI host 3375 * controllers. xHCs must support at least 4 stream IDs. 3376 */ 3377 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3378 if (*num_stream_ctxs > max_streams) { 3379 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3380 max_streams); 3381 *num_stream_ctxs = max_streams; 3382 *num_streams = max_streams; 3383 } 3384 } 3385 3386 /* Returns an error code if one of the endpoint already has streams. 3387 * This does not change any data structures, it only checks and gathers 3388 * information. 3389 */ 3390 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3391 struct usb_device *udev, 3392 struct usb_host_endpoint **eps, unsigned int num_eps, 3393 unsigned int *num_streams, u32 *changed_ep_bitmask) 3394 { 3395 unsigned int max_streams; 3396 unsigned int endpoint_flag; 3397 int i; 3398 int ret; 3399 3400 for (i = 0; i < num_eps; i++) { 3401 ret = xhci_check_streams_endpoint(xhci, udev, 3402 eps[i], udev->slot_id); 3403 if (ret < 0) 3404 return ret; 3405 3406 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3407 if (max_streams < (*num_streams - 1)) { 3408 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3409 eps[i]->desc.bEndpointAddress, 3410 max_streams); 3411 *num_streams = max_streams+1; 3412 } 3413 3414 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3415 if (*changed_ep_bitmask & endpoint_flag) 3416 return -EINVAL; 3417 *changed_ep_bitmask |= endpoint_flag; 3418 } 3419 return 0; 3420 } 3421 3422 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3423 struct usb_device *udev, 3424 struct usb_host_endpoint **eps, unsigned int num_eps) 3425 { 3426 u32 changed_ep_bitmask = 0; 3427 unsigned int slot_id; 3428 unsigned int ep_index; 3429 unsigned int ep_state; 3430 int i; 3431 3432 slot_id = udev->slot_id; 3433 if (!xhci->devs[slot_id]) 3434 return 0; 3435 3436 for (i = 0; i < num_eps; i++) { 3437 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3438 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3439 /* Are streams already being freed for the endpoint? */ 3440 if (ep_state & EP_GETTING_NO_STREAMS) { 3441 xhci_warn(xhci, "WARN Can't disable streams for " 3442 "endpoint 0x%x, " 3443 "streams are being disabled already\n", 3444 eps[i]->desc.bEndpointAddress); 3445 return 0; 3446 } 3447 /* Are there actually any streams to free? */ 3448 if (!(ep_state & EP_HAS_STREAMS) && 3449 !(ep_state & EP_GETTING_STREAMS)) { 3450 xhci_warn(xhci, "WARN Can't disable streams for " 3451 "endpoint 0x%x, " 3452 "streams are already disabled!\n", 3453 eps[i]->desc.bEndpointAddress); 3454 xhci_warn(xhci, "WARN xhci_free_streams() called " 3455 "with non-streams endpoint\n"); 3456 return 0; 3457 } 3458 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3459 } 3460 return changed_ep_bitmask; 3461 } 3462 3463 /* 3464 * The USB device drivers use this function (through the HCD interface in USB 3465 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3466 * coordinate mass storage command queueing across multiple endpoints (basically 3467 * a stream ID == a task ID). 3468 * 3469 * Setting up streams involves allocating the same size stream context array 3470 * for each endpoint and issuing a configure endpoint command for all endpoints. 3471 * 3472 * Don't allow the call to succeed if one endpoint only supports one stream 3473 * (which means it doesn't support streams at all). 3474 * 3475 * Drivers may get less stream IDs than they asked for, if the host controller 3476 * hardware or endpoints claim they can't support the number of requested 3477 * stream IDs. 3478 */ 3479 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3480 struct usb_host_endpoint **eps, unsigned int num_eps, 3481 unsigned int num_streams, gfp_t mem_flags) 3482 { 3483 int i, ret; 3484 struct xhci_hcd *xhci; 3485 struct xhci_virt_device *vdev; 3486 struct xhci_command *config_cmd; 3487 struct xhci_input_control_ctx *ctrl_ctx; 3488 unsigned int ep_index; 3489 unsigned int num_stream_ctxs; 3490 unsigned int max_packet; 3491 unsigned long flags; 3492 u32 changed_ep_bitmask = 0; 3493 3494 if (!eps) 3495 return -EINVAL; 3496 3497 /* Add one to the number of streams requested to account for 3498 * stream 0 that is reserved for xHCI usage. 3499 */ 3500 num_streams += 1; 3501 xhci = hcd_to_xhci(hcd); 3502 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3503 num_streams); 3504 3505 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3506 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3507 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3508 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3509 return -ENOSYS; 3510 } 3511 3512 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3513 if (!config_cmd) 3514 return -ENOMEM; 3515 3516 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3517 if (!ctrl_ctx) { 3518 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3519 __func__); 3520 xhci_free_command(xhci, config_cmd); 3521 return -ENOMEM; 3522 } 3523 3524 /* Check to make sure all endpoints are not already configured for 3525 * streams. While we're at it, find the maximum number of streams that 3526 * all the endpoints will support and check for duplicate endpoints. 3527 */ 3528 spin_lock_irqsave(&xhci->lock, flags); 3529 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3530 num_eps, &num_streams, &changed_ep_bitmask); 3531 if (ret < 0) { 3532 xhci_free_command(xhci, config_cmd); 3533 spin_unlock_irqrestore(&xhci->lock, flags); 3534 return ret; 3535 } 3536 if (num_streams <= 1) { 3537 xhci_warn(xhci, "WARN: endpoints can't handle " 3538 "more than one stream.\n"); 3539 xhci_free_command(xhci, config_cmd); 3540 spin_unlock_irqrestore(&xhci->lock, flags); 3541 return -EINVAL; 3542 } 3543 vdev = xhci->devs[udev->slot_id]; 3544 /* Mark each endpoint as being in transition, so 3545 * xhci_urb_enqueue() will reject all URBs. 3546 */ 3547 for (i = 0; i < num_eps; i++) { 3548 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3549 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3550 } 3551 spin_unlock_irqrestore(&xhci->lock, flags); 3552 3553 /* Setup internal data structures and allocate HW data structures for 3554 * streams (but don't install the HW structures in the input context 3555 * until we're sure all memory allocation succeeded). 3556 */ 3557 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3558 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3559 num_stream_ctxs, num_streams); 3560 3561 for (i = 0; i < num_eps; i++) { 3562 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3563 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3564 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3565 num_stream_ctxs, 3566 num_streams, 3567 max_packet, mem_flags); 3568 if (!vdev->eps[ep_index].stream_info) 3569 goto cleanup; 3570 /* Set maxPstreams in endpoint context and update deq ptr to 3571 * point to stream context array. FIXME 3572 */ 3573 } 3574 3575 /* Set up the input context for a configure endpoint command. */ 3576 for (i = 0; i < num_eps; i++) { 3577 struct xhci_ep_ctx *ep_ctx; 3578 3579 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3580 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3581 3582 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3583 vdev->out_ctx, ep_index); 3584 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3585 vdev->eps[ep_index].stream_info); 3586 } 3587 /* Tell the HW to drop its old copy of the endpoint context info 3588 * and add the updated copy from the input context. 3589 */ 3590 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3591 vdev->out_ctx, ctrl_ctx, 3592 changed_ep_bitmask, changed_ep_bitmask); 3593 3594 /* Issue and wait for the configure endpoint command */ 3595 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3596 false, false); 3597 3598 /* xHC rejected the configure endpoint command for some reason, so we 3599 * leave the old ring intact and free our internal streams data 3600 * structure. 3601 */ 3602 if (ret < 0) 3603 goto cleanup; 3604 3605 spin_lock_irqsave(&xhci->lock, flags); 3606 for (i = 0; i < num_eps; i++) { 3607 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3608 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3609 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3610 udev->slot_id, ep_index); 3611 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3612 } 3613 xhci_free_command(xhci, config_cmd); 3614 spin_unlock_irqrestore(&xhci->lock, flags); 3615 3616 for (i = 0; i < num_eps; i++) { 3617 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3618 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3619 } 3620 /* Subtract 1 for stream 0, which drivers can't use */ 3621 return num_streams - 1; 3622 3623 cleanup: 3624 /* If it didn't work, free the streams! */ 3625 for (i = 0; i < num_eps; i++) { 3626 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3627 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3628 vdev->eps[ep_index].stream_info = NULL; 3629 /* FIXME Unset maxPstreams in endpoint context and 3630 * update deq ptr to point to normal string ring. 3631 */ 3632 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3633 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3634 xhci_endpoint_zero(xhci, vdev, eps[i]); 3635 } 3636 xhci_free_command(xhci, config_cmd); 3637 return -ENOMEM; 3638 } 3639 3640 /* Transition the endpoint from using streams to being a "normal" endpoint 3641 * without streams. 3642 * 3643 * Modify the endpoint context state, submit a configure endpoint command, 3644 * and free all endpoint rings for streams if that completes successfully. 3645 */ 3646 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3647 struct usb_host_endpoint **eps, unsigned int num_eps, 3648 gfp_t mem_flags) 3649 { 3650 int i, ret; 3651 struct xhci_hcd *xhci; 3652 struct xhci_virt_device *vdev; 3653 struct xhci_command *command; 3654 struct xhci_input_control_ctx *ctrl_ctx; 3655 unsigned int ep_index; 3656 unsigned long flags; 3657 u32 changed_ep_bitmask; 3658 3659 xhci = hcd_to_xhci(hcd); 3660 vdev = xhci->devs[udev->slot_id]; 3661 3662 /* Set up a configure endpoint command to remove the streams rings */ 3663 spin_lock_irqsave(&xhci->lock, flags); 3664 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3665 udev, eps, num_eps); 3666 if (changed_ep_bitmask == 0) { 3667 spin_unlock_irqrestore(&xhci->lock, flags); 3668 return -EINVAL; 3669 } 3670 3671 /* Use the xhci_command structure from the first endpoint. We may have 3672 * allocated too many, but the driver may call xhci_free_streams() for 3673 * each endpoint it grouped into one call to xhci_alloc_streams(). 3674 */ 3675 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3676 command = vdev->eps[ep_index].stream_info->free_streams_command; 3677 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3678 if (!ctrl_ctx) { 3679 spin_unlock_irqrestore(&xhci->lock, flags); 3680 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3681 __func__); 3682 return -EINVAL; 3683 } 3684 3685 for (i = 0; i < num_eps; i++) { 3686 struct xhci_ep_ctx *ep_ctx; 3687 3688 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3689 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3690 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3691 EP_GETTING_NO_STREAMS; 3692 3693 xhci_endpoint_copy(xhci, command->in_ctx, 3694 vdev->out_ctx, ep_index); 3695 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3696 &vdev->eps[ep_index]); 3697 } 3698 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3699 vdev->out_ctx, ctrl_ctx, 3700 changed_ep_bitmask, changed_ep_bitmask); 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 3703 /* Issue and wait for the configure endpoint command, 3704 * which must succeed. 3705 */ 3706 ret = xhci_configure_endpoint(xhci, udev, command, 3707 false, true); 3708 3709 /* xHC rejected the configure endpoint command for some reason, so we 3710 * leave the streams rings intact. 3711 */ 3712 if (ret < 0) 3713 return ret; 3714 3715 spin_lock_irqsave(&xhci->lock, flags); 3716 for (i = 0; i < num_eps; i++) { 3717 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3718 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3719 vdev->eps[ep_index].stream_info = NULL; 3720 /* FIXME Unset maxPstreams in endpoint context and 3721 * update deq ptr to point to normal string ring. 3722 */ 3723 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3724 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3725 } 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 3728 return 0; 3729 } 3730 3731 /* 3732 * Deletes endpoint resources for endpoints that were active before a Reset 3733 * Device command, or a Disable Slot command. The Reset Device command leaves 3734 * the control endpoint intact, whereas the Disable Slot command deletes it. 3735 * 3736 * Must be called with xhci->lock held. 3737 */ 3738 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3739 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3740 { 3741 int i; 3742 unsigned int num_dropped_eps = 0; 3743 unsigned int drop_flags = 0; 3744 3745 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3746 if (virt_dev->eps[i].ring) { 3747 drop_flags |= 1 << i; 3748 num_dropped_eps++; 3749 } 3750 } 3751 xhci->num_active_eps -= num_dropped_eps; 3752 if (num_dropped_eps) 3753 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3754 "Dropped %u ep ctxs, flags = 0x%x, " 3755 "%u now active.", 3756 num_dropped_eps, drop_flags, 3757 xhci->num_active_eps); 3758 } 3759 3760 /* 3761 * This submits a Reset Device Command, which will set the device state to 0, 3762 * set the device address to 0, and disable all the endpoints except the default 3763 * control endpoint. The USB core should come back and call 3764 * xhci_address_device(), and then re-set up the configuration. If this is 3765 * called because of a usb_reset_and_verify_device(), then the old alternate 3766 * settings will be re-installed through the normal bandwidth allocation 3767 * functions. 3768 * 3769 * Wait for the Reset Device command to finish. Remove all structures 3770 * associated with the endpoints that were disabled. Clear the input device 3771 * structure? Reset the control endpoint 0 max packet size? 3772 * 3773 * If the virt_dev to be reset does not exist or does not match the udev, 3774 * it means the device is lost, possibly due to the xHC restore error and 3775 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3776 * re-allocate the device. 3777 */ 3778 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3779 struct usb_device *udev) 3780 { 3781 int ret, i; 3782 unsigned long flags; 3783 struct xhci_hcd *xhci; 3784 unsigned int slot_id; 3785 struct xhci_virt_device *virt_dev; 3786 struct xhci_command *reset_device_cmd; 3787 struct xhci_slot_ctx *slot_ctx; 3788 int old_active_eps = 0; 3789 3790 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3791 if (ret <= 0) 3792 return ret; 3793 xhci = hcd_to_xhci(hcd); 3794 slot_id = udev->slot_id; 3795 virt_dev = xhci->devs[slot_id]; 3796 if (!virt_dev) { 3797 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3798 "not exist. Re-allocate the device\n", slot_id); 3799 ret = xhci_alloc_dev(hcd, udev); 3800 if (ret == 1) 3801 return 0; 3802 else 3803 return -EINVAL; 3804 } 3805 3806 if (virt_dev->tt_info) 3807 old_active_eps = virt_dev->tt_info->active_eps; 3808 3809 if (virt_dev->udev != udev) { 3810 /* If the virt_dev and the udev does not match, this virt_dev 3811 * may belong to another udev. 3812 * Re-allocate the device. 3813 */ 3814 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3815 "not match the udev. Re-allocate the device\n", 3816 slot_id); 3817 ret = xhci_alloc_dev(hcd, udev); 3818 if (ret == 1) 3819 return 0; 3820 else 3821 return -EINVAL; 3822 } 3823 3824 /* If device is not setup, there is no point in resetting it */ 3825 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3826 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3827 SLOT_STATE_DISABLED) 3828 return 0; 3829 3830 trace_xhci_discover_or_reset_device(slot_ctx); 3831 3832 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3833 /* Allocate the command structure that holds the struct completion. 3834 * Assume we're in process context, since the normal device reset 3835 * process has to wait for the device anyway. Storage devices are 3836 * reset as part of error handling, so use GFP_NOIO instead of 3837 * GFP_KERNEL. 3838 */ 3839 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3840 if (!reset_device_cmd) { 3841 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3842 return -ENOMEM; 3843 } 3844 3845 /* Attempt to submit the Reset Device command to the command ring */ 3846 spin_lock_irqsave(&xhci->lock, flags); 3847 3848 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3849 if (ret) { 3850 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3851 spin_unlock_irqrestore(&xhci->lock, flags); 3852 goto command_cleanup; 3853 } 3854 xhci_ring_cmd_db(xhci); 3855 spin_unlock_irqrestore(&xhci->lock, flags); 3856 3857 /* Wait for the Reset Device command to finish */ 3858 wait_for_completion(reset_device_cmd->completion); 3859 3860 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3861 * unless we tried to reset a slot ID that wasn't enabled, 3862 * or the device wasn't in the addressed or configured state. 3863 */ 3864 ret = reset_device_cmd->status; 3865 switch (ret) { 3866 case COMP_COMMAND_ABORTED: 3867 case COMP_COMMAND_RING_STOPPED: 3868 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3869 ret = -ETIME; 3870 goto command_cleanup; 3871 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3872 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3873 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3874 slot_id, 3875 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3876 xhci_dbg(xhci, "Not freeing device rings.\n"); 3877 /* Don't treat this as an error. May change my mind later. */ 3878 ret = 0; 3879 goto command_cleanup; 3880 case COMP_SUCCESS: 3881 xhci_dbg(xhci, "Successful reset device command.\n"); 3882 break; 3883 default: 3884 if (xhci_is_vendor_info_code(xhci, ret)) 3885 break; 3886 xhci_warn(xhci, "Unknown completion code %u for " 3887 "reset device command.\n", ret); 3888 ret = -EINVAL; 3889 goto command_cleanup; 3890 } 3891 3892 /* Free up host controller endpoint resources */ 3893 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3894 spin_lock_irqsave(&xhci->lock, flags); 3895 /* Don't delete the default control endpoint resources */ 3896 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3897 spin_unlock_irqrestore(&xhci->lock, flags); 3898 } 3899 3900 /* Everything but endpoint 0 is disabled, so free the rings. */ 3901 for (i = 1; i < 31; i++) { 3902 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3903 3904 if (ep->ep_state & EP_HAS_STREAMS) { 3905 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3906 xhci_get_endpoint_address(i)); 3907 xhci_free_stream_info(xhci, ep->stream_info); 3908 ep->stream_info = NULL; 3909 ep->ep_state &= ~EP_HAS_STREAMS; 3910 } 3911 3912 if (ep->ring) { 3913 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3914 xhci_free_endpoint_ring(xhci, virt_dev, i); 3915 } 3916 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3917 xhci_drop_ep_from_interval_table(xhci, 3918 &virt_dev->eps[i].bw_info, 3919 virt_dev->bw_table, 3920 udev, 3921 &virt_dev->eps[i], 3922 virt_dev->tt_info); 3923 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3924 } 3925 /* If necessary, update the number of active TTs on this root port */ 3926 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3927 virt_dev->flags = 0; 3928 ret = 0; 3929 3930 command_cleanup: 3931 xhci_free_command(xhci, reset_device_cmd); 3932 return ret; 3933 } 3934 3935 /* 3936 * At this point, the struct usb_device is about to go away, the device has 3937 * disconnected, and all traffic has been stopped and the endpoints have been 3938 * disabled. Free any HC data structures associated with that device. 3939 */ 3940 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3941 { 3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3943 struct xhci_virt_device *virt_dev; 3944 struct xhci_slot_ctx *slot_ctx; 3945 int i, ret; 3946 3947 /* 3948 * We called pm_runtime_get_noresume when the device was attached. 3949 * Decrement the counter here to allow controller to runtime suspend 3950 * if no devices remain. 3951 */ 3952 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3953 pm_runtime_put_noidle(hcd->self.controller); 3954 3955 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3956 /* If the host is halted due to driver unload, we still need to free the 3957 * device. 3958 */ 3959 if (ret <= 0 && ret != -ENODEV) 3960 return; 3961 3962 virt_dev = xhci->devs[udev->slot_id]; 3963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3964 trace_xhci_free_dev(slot_ctx); 3965 3966 /* Stop any wayward timer functions (which may grab the lock) */ 3967 for (i = 0; i < 31; i++) { 3968 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3969 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3970 } 3971 virt_dev->udev = NULL; 3972 xhci_disable_slot(xhci, udev->slot_id); 3973 xhci_free_virt_device(xhci, udev->slot_id); 3974 } 3975 3976 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3977 { 3978 struct xhci_command *command; 3979 unsigned long flags; 3980 u32 state; 3981 int ret = 0; 3982 3983 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3984 if (!command) 3985 return -ENOMEM; 3986 3987 xhci_debugfs_remove_slot(xhci, slot_id); 3988 3989 spin_lock_irqsave(&xhci->lock, flags); 3990 /* Don't disable the slot if the host controller is dead. */ 3991 state = readl(&xhci->op_regs->status); 3992 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3993 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3994 spin_unlock_irqrestore(&xhci->lock, flags); 3995 kfree(command); 3996 return -ENODEV; 3997 } 3998 3999 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4000 slot_id); 4001 if (ret) { 4002 spin_unlock_irqrestore(&xhci->lock, flags); 4003 kfree(command); 4004 return ret; 4005 } 4006 xhci_ring_cmd_db(xhci); 4007 spin_unlock_irqrestore(&xhci->lock, flags); 4008 4009 wait_for_completion(command->completion); 4010 4011 if (command->status != COMP_SUCCESS) 4012 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4013 slot_id, command->status); 4014 4015 xhci_free_command(xhci, command); 4016 4017 return ret; 4018 } 4019 4020 /* 4021 * Checks if we have enough host controller resources for the default control 4022 * endpoint. 4023 * 4024 * Must be called with xhci->lock held. 4025 */ 4026 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4027 { 4028 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4029 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4030 "Not enough ep ctxs: " 4031 "%u active, need to add 1, limit is %u.", 4032 xhci->num_active_eps, xhci->limit_active_eps); 4033 return -ENOMEM; 4034 } 4035 xhci->num_active_eps += 1; 4036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4037 "Adding 1 ep ctx, %u now active.", 4038 xhci->num_active_eps); 4039 return 0; 4040 } 4041 4042 4043 /* 4044 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4045 * timed out, or allocating memory failed. Returns 1 on success. 4046 */ 4047 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4048 { 4049 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4050 struct xhci_virt_device *vdev; 4051 struct xhci_slot_ctx *slot_ctx; 4052 unsigned long flags; 4053 int ret, slot_id; 4054 struct xhci_command *command; 4055 4056 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4057 if (!command) 4058 return 0; 4059 4060 spin_lock_irqsave(&xhci->lock, flags); 4061 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4062 if (ret) { 4063 spin_unlock_irqrestore(&xhci->lock, flags); 4064 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4065 xhci_free_command(xhci, command); 4066 return 0; 4067 } 4068 xhci_ring_cmd_db(xhci); 4069 spin_unlock_irqrestore(&xhci->lock, flags); 4070 4071 wait_for_completion(command->completion); 4072 slot_id = command->slot_id; 4073 4074 if (!slot_id || command->status != COMP_SUCCESS) { 4075 xhci_err(xhci, "Error while assigning device slot ID\n"); 4076 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4077 HCS_MAX_SLOTS( 4078 readl(&xhci->cap_regs->hcs_params1))); 4079 xhci_free_command(xhci, command); 4080 return 0; 4081 } 4082 4083 xhci_free_command(xhci, command); 4084 4085 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4086 spin_lock_irqsave(&xhci->lock, flags); 4087 ret = xhci_reserve_host_control_ep_resources(xhci); 4088 if (ret) { 4089 spin_unlock_irqrestore(&xhci->lock, flags); 4090 xhci_warn(xhci, "Not enough host resources, " 4091 "active endpoint contexts = %u\n", 4092 xhci->num_active_eps); 4093 goto disable_slot; 4094 } 4095 spin_unlock_irqrestore(&xhci->lock, flags); 4096 } 4097 /* Use GFP_NOIO, since this function can be called from 4098 * xhci_discover_or_reset_device(), which may be called as part of 4099 * mass storage driver error handling. 4100 */ 4101 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4102 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4103 goto disable_slot; 4104 } 4105 vdev = xhci->devs[slot_id]; 4106 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4107 trace_xhci_alloc_dev(slot_ctx); 4108 4109 udev->slot_id = slot_id; 4110 4111 xhci_debugfs_create_slot(xhci, slot_id); 4112 4113 /* 4114 * If resetting upon resume, we can't put the controller into runtime 4115 * suspend if there is a device attached. 4116 */ 4117 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4118 pm_runtime_get_noresume(hcd->self.controller); 4119 4120 /* Is this a LS or FS device under a HS hub? */ 4121 /* Hub or peripherial? */ 4122 return 1; 4123 4124 disable_slot: 4125 xhci_disable_slot(xhci, udev->slot_id); 4126 xhci_free_virt_device(xhci, udev->slot_id); 4127 4128 return 0; 4129 } 4130 4131 /* 4132 * Issue an Address Device command and optionally send a corresponding 4133 * SetAddress request to the device. 4134 */ 4135 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4136 enum xhci_setup_dev setup) 4137 { 4138 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4139 unsigned long flags; 4140 struct xhci_virt_device *virt_dev; 4141 int ret = 0; 4142 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4143 struct xhci_slot_ctx *slot_ctx; 4144 struct xhci_input_control_ctx *ctrl_ctx; 4145 u64 temp_64; 4146 struct xhci_command *command = NULL; 4147 4148 mutex_lock(&xhci->mutex); 4149 4150 if (xhci->xhc_state) { /* dying, removing or halted */ 4151 ret = -ESHUTDOWN; 4152 goto out; 4153 } 4154 4155 if (!udev->slot_id) { 4156 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4157 "Bad Slot ID %d", udev->slot_id); 4158 ret = -EINVAL; 4159 goto out; 4160 } 4161 4162 virt_dev = xhci->devs[udev->slot_id]; 4163 4164 if (WARN_ON(!virt_dev)) { 4165 /* 4166 * In plug/unplug torture test with an NEC controller, 4167 * a zero-dereference was observed once due to virt_dev = 0. 4168 * Print useful debug rather than crash if it is observed again! 4169 */ 4170 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4171 udev->slot_id); 4172 ret = -EINVAL; 4173 goto out; 4174 } 4175 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4176 trace_xhci_setup_device_slot(slot_ctx); 4177 4178 if (setup == SETUP_CONTEXT_ONLY) { 4179 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4180 SLOT_STATE_DEFAULT) { 4181 xhci_dbg(xhci, "Slot already in default state\n"); 4182 goto out; 4183 } 4184 } 4185 4186 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4187 if (!command) { 4188 ret = -ENOMEM; 4189 goto out; 4190 } 4191 4192 command->in_ctx = virt_dev->in_ctx; 4193 4194 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4195 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4196 if (!ctrl_ctx) { 4197 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4198 __func__); 4199 ret = -EINVAL; 4200 goto out; 4201 } 4202 /* 4203 * If this is the first Set Address since device plug-in or 4204 * virt_device realloaction after a resume with an xHCI power loss, 4205 * then set up the slot context. 4206 */ 4207 if (!slot_ctx->dev_info) 4208 xhci_setup_addressable_virt_dev(xhci, udev); 4209 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4210 else 4211 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4212 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4213 ctrl_ctx->drop_flags = 0; 4214 4215 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4216 le32_to_cpu(slot_ctx->dev_info) >> 27); 4217 4218 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4219 spin_lock_irqsave(&xhci->lock, flags); 4220 trace_xhci_setup_device(virt_dev); 4221 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4222 udev->slot_id, setup); 4223 if (ret) { 4224 spin_unlock_irqrestore(&xhci->lock, flags); 4225 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4226 "FIXME: allocate a command ring segment"); 4227 goto out; 4228 } 4229 xhci_ring_cmd_db(xhci); 4230 spin_unlock_irqrestore(&xhci->lock, flags); 4231 4232 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4233 wait_for_completion(command->completion); 4234 4235 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4236 * the SetAddress() "recovery interval" required by USB and aborting the 4237 * command on a timeout. 4238 */ 4239 switch (command->status) { 4240 case COMP_COMMAND_ABORTED: 4241 case COMP_COMMAND_RING_STOPPED: 4242 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4243 ret = -ETIME; 4244 break; 4245 case COMP_CONTEXT_STATE_ERROR: 4246 case COMP_SLOT_NOT_ENABLED_ERROR: 4247 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4248 act, udev->slot_id); 4249 ret = -EINVAL; 4250 break; 4251 case COMP_USB_TRANSACTION_ERROR: 4252 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4253 4254 mutex_unlock(&xhci->mutex); 4255 ret = xhci_disable_slot(xhci, udev->slot_id); 4256 xhci_free_virt_device(xhci, udev->slot_id); 4257 if (!ret) 4258 xhci_alloc_dev(hcd, udev); 4259 kfree(command->completion); 4260 kfree(command); 4261 return -EPROTO; 4262 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4263 dev_warn(&udev->dev, 4264 "ERROR: Incompatible device for setup %s command\n", act); 4265 ret = -ENODEV; 4266 break; 4267 case COMP_SUCCESS: 4268 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4269 "Successful setup %s command", act); 4270 break; 4271 default: 4272 xhci_err(xhci, 4273 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4274 act, command->status); 4275 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4276 ret = -EINVAL; 4277 break; 4278 } 4279 if (ret) 4280 goto out; 4281 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4282 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4283 "Op regs DCBAA ptr = %#016llx", temp_64); 4284 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4285 "Slot ID %d dcbaa entry @%p = %#016llx", 4286 udev->slot_id, 4287 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4288 (unsigned long long) 4289 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4290 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4291 "Output Context DMA address = %#08llx", 4292 (unsigned long long)virt_dev->out_ctx->dma); 4293 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4294 le32_to_cpu(slot_ctx->dev_info) >> 27); 4295 /* 4296 * USB core uses address 1 for the roothubs, so we add one to the 4297 * address given back to us by the HC. 4298 */ 4299 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4300 le32_to_cpu(slot_ctx->dev_info) >> 27); 4301 /* Zero the input context control for later use */ 4302 ctrl_ctx->add_flags = 0; 4303 ctrl_ctx->drop_flags = 0; 4304 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4305 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4306 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Internal device address = %d", 4309 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4310 out: 4311 mutex_unlock(&xhci->mutex); 4312 if (command) { 4313 kfree(command->completion); 4314 kfree(command); 4315 } 4316 return ret; 4317 } 4318 4319 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4320 { 4321 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4322 } 4323 4324 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4325 { 4326 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4327 } 4328 4329 /* 4330 * Transfer the port index into real index in the HW port status 4331 * registers. Caculate offset between the port's PORTSC register 4332 * and port status base. Divide the number of per port register 4333 * to get the real index. The raw port number bases 1. 4334 */ 4335 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4336 { 4337 struct xhci_hub *rhub; 4338 4339 rhub = xhci_get_rhub(hcd); 4340 return rhub->ports[port1 - 1]->hw_portnum + 1; 4341 } 4342 4343 /* 4344 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4345 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4346 */ 4347 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4348 struct usb_device *udev, u16 max_exit_latency) 4349 { 4350 struct xhci_virt_device *virt_dev; 4351 struct xhci_command *command; 4352 struct xhci_input_control_ctx *ctrl_ctx; 4353 struct xhci_slot_ctx *slot_ctx; 4354 unsigned long flags; 4355 int ret; 4356 4357 spin_lock_irqsave(&xhci->lock, flags); 4358 4359 virt_dev = xhci->devs[udev->slot_id]; 4360 4361 /* 4362 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4363 * xHC was re-initialized. Exit latency will be set later after 4364 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4365 */ 4366 4367 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4368 spin_unlock_irqrestore(&xhci->lock, flags); 4369 return 0; 4370 } 4371 4372 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4373 command = xhci->lpm_command; 4374 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4375 if (!ctrl_ctx) { 4376 spin_unlock_irqrestore(&xhci->lock, flags); 4377 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4378 __func__); 4379 return -ENOMEM; 4380 } 4381 4382 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4383 spin_unlock_irqrestore(&xhci->lock, flags); 4384 4385 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4386 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4387 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4388 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4389 slot_ctx->dev_state = 0; 4390 4391 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4392 "Set up evaluate context for LPM MEL change."); 4393 4394 /* Issue and wait for the evaluate context command. */ 4395 ret = xhci_configure_endpoint(xhci, udev, command, 4396 true, true); 4397 4398 if (!ret) { 4399 spin_lock_irqsave(&xhci->lock, flags); 4400 virt_dev->current_mel = max_exit_latency; 4401 spin_unlock_irqrestore(&xhci->lock, flags); 4402 } 4403 return ret; 4404 } 4405 4406 #ifdef CONFIG_PM 4407 4408 /* BESL to HIRD Encoding array for USB2 LPM */ 4409 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4410 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4411 4412 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4413 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4414 struct usb_device *udev) 4415 { 4416 int u2del, besl, besl_host; 4417 int besl_device = 0; 4418 u32 field; 4419 4420 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4421 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4422 4423 if (field & USB_BESL_SUPPORT) { 4424 for (besl_host = 0; besl_host < 16; besl_host++) { 4425 if (xhci_besl_encoding[besl_host] >= u2del) 4426 break; 4427 } 4428 /* Use baseline BESL value as default */ 4429 if (field & USB_BESL_BASELINE_VALID) 4430 besl_device = USB_GET_BESL_BASELINE(field); 4431 else if (field & USB_BESL_DEEP_VALID) 4432 besl_device = USB_GET_BESL_DEEP(field); 4433 } else { 4434 if (u2del <= 50) 4435 besl_host = 0; 4436 else 4437 besl_host = (u2del - 51) / 75 + 1; 4438 } 4439 4440 besl = besl_host + besl_device; 4441 if (besl > 15) 4442 besl = 15; 4443 4444 return besl; 4445 } 4446 4447 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4448 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4449 { 4450 u32 field; 4451 int l1; 4452 int besld = 0; 4453 int hirdm = 0; 4454 4455 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4456 4457 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4458 l1 = udev->l1_params.timeout / 256; 4459 4460 /* device has preferred BESLD */ 4461 if (field & USB_BESL_DEEP_VALID) { 4462 besld = USB_GET_BESL_DEEP(field); 4463 hirdm = 1; 4464 } 4465 4466 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4467 } 4468 4469 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4470 struct usb_device *udev, int enable) 4471 { 4472 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4473 struct xhci_port **ports; 4474 __le32 __iomem *pm_addr, *hlpm_addr; 4475 u32 pm_val, hlpm_val, field; 4476 unsigned int port_num; 4477 unsigned long flags; 4478 int hird, exit_latency; 4479 int ret; 4480 4481 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4482 return -EPERM; 4483 4484 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4485 !udev->lpm_capable) 4486 return -EPERM; 4487 4488 if (!udev->parent || udev->parent->parent || 4489 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4490 return -EPERM; 4491 4492 if (udev->usb2_hw_lpm_capable != 1) 4493 return -EPERM; 4494 4495 spin_lock_irqsave(&xhci->lock, flags); 4496 4497 ports = xhci->usb2_rhub.ports; 4498 port_num = udev->portnum - 1; 4499 pm_addr = ports[port_num]->addr + PORTPMSC; 4500 pm_val = readl(pm_addr); 4501 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4502 4503 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4504 enable ? "enable" : "disable", port_num + 1); 4505 4506 if (enable) { 4507 /* Host supports BESL timeout instead of HIRD */ 4508 if (udev->usb2_hw_lpm_besl_capable) { 4509 /* if device doesn't have a preferred BESL value use a 4510 * default one which works with mixed HIRD and BESL 4511 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4512 */ 4513 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4514 if ((field & USB_BESL_SUPPORT) && 4515 (field & USB_BESL_BASELINE_VALID)) 4516 hird = USB_GET_BESL_BASELINE(field); 4517 else 4518 hird = udev->l1_params.besl; 4519 4520 exit_latency = xhci_besl_encoding[hird]; 4521 spin_unlock_irqrestore(&xhci->lock, flags); 4522 4523 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4524 * input context for link powermanagement evaluate 4525 * context commands. It is protected by hcd->bandwidth 4526 * mutex and is shared by all devices. We need to set 4527 * the max ext latency in USB 2 BESL LPM as well, so 4528 * use the same mutex and xhci_change_max_exit_latency() 4529 */ 4530 mutex_lock(hcd->bandwidth_mutex); 4531 ret = xhci_change_max_exit_latency(xhci, udev, 4532 exit_latency); 4533 mutex_unlock(hcd->bandwidth_mutex); 4534 4535 if (ret < 0) 4536 return ret; 4537 spin_lock_irqsave(&xhci->lock, flags); 4538 4539 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4540 writel(hlpm_val, hlpm_addr); 4541 /* flush write */ 4542 readl(hlpm_addr); 4543 } else { 4544 hird = xhci_calculate_hird_besl(xhci, udev); 4545 } 4546 4547 pm_val &= ~PORT_HIRD_MASK; 4548 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4549 writel(pm_val, pm_addr); 4550 pm_val = readl(pm_addr); 4551 pm_val |= PORT_HLE; 4552 writel(pm_val, pm_addr); 4553 /* flush write */ 4554 readl(pm_addr); 4555 } else { 4556 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4557 writel(pm_val, pm_addr); 4558 /* flush write */ 4559 readl(pm_addr); 4560 if (udev->usb2_hw_lpm_besl_capable) { 4561 spin_unlock_irqrestore(&xhci->lock, flags); 4562 mutex_lock(hcd->bandwidth_mutex); 4563 xhci_change_max_exit_latency(xhci, udev, 0); 4564 mutex_unlock(hcd->bandwidth_mutex); 4565 readl_poll_timeout(ports[port_num]->addr, pm_val, 4566 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4567 100, 10000); 4568 return 0; 4569 } 4570 } 4571 4572 spin_unlock_irqrestore(&xhci->lock, flags); 4573 return 0; 4574 } 4575 4576 /* check if a usb2 port supports a given extened capability protocol 4577 * only USB2 ports extended protocol capability values are cached. 4578 * Return 1 if capability is supported 4579 */ 4580 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4581 unsigned capability) 4582 { 4583 u32 port_offset, port_count; 4584 int i; 4585 4586 for (i = 0; i < xhci->num_ext_caps; i++) { 4587 if (xhci->ext_caps[i] & capability) { 4588 /* port offsets starts at 1 */ 4589 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4590 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4591 if (port >= port_offset && 4592 port < port_offset + port_count) 4593 return 1; 4594 } 4595 } 4596 return 0; 4597 } 4598 4599 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4600 { 4601 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4602 int portnum = udev->portnum - 1; 4603 4604 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4605 return 0; 4606 4607 /* we only support lpm for non-hub device connected to root hub yet */ 4608 if (!udev->parent || udev->parent->parent || 4609 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4610 return 0; 4611 4612 if (xhci->hw_lpm_support == 1 && 4613 xhci_check_usb2_port_capability( 4614 xhci, portnum, XHCI_HLC)) { 4615 udev->usb2_hw_lpm_capable = 1; 4616 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4617 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4618 if (xhci_check_usb2_port_capability(xhci, portnum, 4619 XHCI_BLC)) 4620 udev->usb2_hw_lpm_besl_capable = 1; 4621 } 4622 4623 return 0; 4624 } 4625 4626 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4627 4628 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4629 static unsigned long long xhci_service_interval_to_ns( 4630 struct usb_endpoint_descriptor *desc) 4631 { 4632 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4633 } 4634 4635 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4636 enum usb3_link_state state) 4637 { 4638 unsigned long long sel; 4639 unsigned long long pel; 4640 unsigned int max_sel_pel; 4641 char *state_name; 4642 4643 switch (state) { 4644 case USB3_LPM_U1: 4645 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4646 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4647 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4648 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4649 state_name = "U1"; 4650 break; 4651 case USB3_LPM_U2: 4652 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4653 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4654 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4655 state_name = "U2"; 4656 break; 4657 default: 4658 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4659 __func__); 4660 return USB3_LPM_DISABLED; 4661 } 4662 4663 if (sel <= max_sel_pel && pel <= max_sel_pel) 4664 return USB3_LPM_DEVICE_INITIATED; 4665 4666 if (sel > max_sel_pel) 4667 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4668 "due to long SEL %llu ms\n", 4669 state_name, sel); 4670 else 4671 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4672 "due to long PEL %llu ms\n", 4673 state_name, pel); 4674 return USB3_LPM_DISABLED; 4675 } 4676 4677 /* The U1 timeout should be the maximum of the following values: 4678 * - For control endpoints, U1 system exit latency (SEL) * 3 4679 * - For bulk endpoints, U1 SEL * 5 4680 * - For interrupt endpoints: 4681 * - Notification EPs, U1 SEL * 3 4682 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4683 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4684 */ 4685 static unsigned long long xhci_calculate_intel_u1_timeout( 4686 struct usb_device *udev, 4687 struct usb_endpoint_descriptor *desc) 4688 { 4689 unsigned long long timeout_ns; 4690 int ep_type; 4691 int intr_type; 4692 4693 ep_type = usb_endpoint_type(desc); 4694 switch (ep_type) { 4695 case USB_ENDPOINT_XFER_CONTROL: 4696 timeout_ns = udev->u1_params.sel * 3; 4697 break; 4698 case USB_ENDPOINT_XFER_BULK: 4699 timeout_ns = udev->u1_params.sel * 5; 4700 break; 4701 case USB_ENDPOINT_XFER_INT: 4702 intr_type = usb_endpoint_interrupt_type(desc); 4703 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4704 timeout_ns = udev->u1_params.sel * 3; 4705 break; 4706 } 4707 /* Otherwise the calculation is the same as isoc eps */ 4708 fallthrough; 4709 case USB_ENDPOINT_XFER_ISOC: 4710 timeout_ns = xhci_service_interval_to_ns(desc); 4711 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4712 if (timeout_ns < udev->u1_params.sel * 2) 4713 timeout_ns = udev->u1_params.sel * 2; 4714 break; 4715 default: 4716 return 0; 4717 } 4718 4719 return timeout_ns; 4720 } 4721 4722 /* Returns the hub-encoded U1 timeout value. */ 4723 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4724 struct usb_device *udev, 4725 struct usb_endpoint_descriptor *desc) 4726 { 4727 unsigned long long timeout_ns; 4728 4729 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4730 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4731 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4732 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4733 return USB3_LPM_DISABLED; 4734 } 4735 } 4736 4737 if (xhci->quirks & XHCI_INTEL_HOST) 4738 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4739 else 4740 timeout_ns = udev->u1_params.sel; 4741 4742 /* The U1 timeout is encoded in 1us intervals. 4743 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4744 */ 4745 if (timeout_ns == USB3_LPM_DISABLED) 4746 timeout_ns = 1; 4747 else 4748 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4749 4750 /* If the necessary timeout value is bigger than what we can set in the 4751 * USB 3.0 hub, we have to disable hub-initiated U1. 4752 */ 4753 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4754 return timeout_ns; 4755 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4756 "due to long timeout %llu ms\n", timeout_ns); 4757 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4758 } 4759 4760 /* The U2 timeout should be the maximum of: 4761 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4762 * - largest bInterval of any active periodic endpoint (to avoid going 4763 * into lower power link states between intervals). 4764 * - the U2 Exit Latency of the device 4765 */ 4766 static unsigned long long xhci_calculate_intel_u2_timeout( 4767 struct usb_device *udev, 4768 struct usb_endpoint_descriptor *desc) 4769 { 4770 unsigned long long timeout_ns; 4771 unsigned long long u2_del_ns; 4772 4773 timeout_ns = 10 * 1000 * 1000; 4774 4775 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4776 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4777 timeout_ns = xhci_service_interval_to_ns(desc); 4778 4779 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4780 if (u2_del_ns > timeout_ns) 4781 timeout_ns = u2_del_ns; 4782 4783 return timeout_ns; 4784 } 4785 4786 /* Returns the hub-encoded U2 timeout value. */ 4787 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4788 struct usb_device *udev, 4789 struct usb_endpoint_descriptor *desc) 4790 { 4791 unsigned long long timeout_ns; 4792 4793 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4794 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4795 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4796 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4797 return USB3_LPM_DISABLED; 4798 } 4799 } 4800 4801 if (xhci->quirks & XHCI_INTEL_HOST) 4802 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4803 else 4804 timeout_ns = udev->u2_params.sel; 4805 4806 /* The U2 timeout is encoded in 256us intervals */ 4807 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4808 /* If the necessary timeout value is bigger than what we can set in the 4809 * USB 3.0 hub, we have to disable hub-initiated U2. 4810 */ 4811 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4812 return timeout_ns; 4813 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4814 "due to long timeout %llu ms\n", timeout_ns); 4815 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4816 } 4817 4818 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4819 struct usb_device *udev, 4820 struct usb_endpoint_descriptor *desc, 4821 enum usb3_link_state state, 4822 u16 *timeout) 4823 { 4824 if (state == USB3_LPM_U1) 4825 return xhci_calculate_u1_timeout(xhci, udev, desc); 4826 else if (state == USB3_LPM_U2) 4827 return xhci_calculate_u2_timeout(xhci, udev, desc); 4828 4829 return USB3_LPM_DISABLED; 4830 } 4831 4832 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4833 struct usb_device *udev, 4834 struct usb_endpoint_descriptor *desc, 4835 enum usb3_link_state state, 4836 u16 *timeout) 4837 { 4838 u16 alt_timeout; 4839 4840 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4841 desc, state, timeout); 4842 4843 /* If we found we can't enable hub-initiated LPM, and 4844 * the U1 or U2 exit latency was too high to allow 4845 * device-initiated LPM as well, then we will disable LPM 4846 * for this device, so stop searching any further. 4847 */ 4848 if (alt_timeout == USB3_LPM_DISABLED) { 4849 *timeout = alt_timeout; 4850 return -E2BIG; 4851 } 4852 if (alt_timeout > *timeout) 4853 *timeout = alt_timeout; 4854 return 0; 4855 } 4856 4857 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4858 struct usb_device *udev, 4859 struct usb_host_interface *alt, 4860 enum usb3_link_state state, 4861 u16 *timeout) 4862 { 4863 int j; 4864 4865 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4866 if (xhci_update_timeout_for_endpoint(xhci, udev, 4867 &alt->endpoint[j].desc, state, timeout)) 4868 return -E2BIG; 4869 } 4870 return 0; 4871 } 4872 4873 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4874 enum usb3_link_state state) 4875 { 4876 struct usb_device *parent; 4877 unsigned int num_hubs; 4878 4879 if (state == USB3_LPM_U2) 4880 return 0; 4881 4882 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4883 for (parent = udev->parent, num_hubs = 0; parent->parent; 4884 parent = parent->parent) 4885 num_hubs++; 4886 4887 if (num_hubs < 2) 4888 return 0; 4889 4890 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4891 " below second-tier hub.\n"); 4892 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4893 "to decrease power consumption.\n"); 4894 return -E2BIG; 4895 } 4896 4897 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4898 struct usb_device *udev, 4899 enum usb3_link_state state) 4900 { 4901 if (xhci->quirks & XHCI_INTEL_HOST) 4902 return xhci_check_intel_tier_policy(udev, state); 4903 else 4904 return 0; 4905 } 4906 4907 /* Returns the U1 or U2 timeout that should be enabled. 4908 * If the tier check or timeout setting functions return with a non-zero exit 4909 * code, that means the timeout value has been finalized and we shouldn't look 4910 * at any more endpoints. 4911 */ 4912 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4913 struct usb_device *udev, enum usb3_link_state state) 4914 { 4915 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4916 struct usb_host_config *config; 4917 char *state_name; 4918 int i; 4919 u16 timeout = USB3_LPM_DISABLED; 4920 4921 if (state == USB3_LPM_U1) 4922 state_name = "U1"; 4923 else if (state == USB3_LPM_U2) 4924 state_name = "U2"; 4925 else { 4926 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4927 state); 4928 return timeout; 4929 } 4930 4931 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4932 return timeout; 4933 4934 /* Gather some information about the currently installed configuration 4935 * and alternate interface settings. 4936 */ 4937 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4938 state, &timeout)) 4939 return timeout; 4940 4941 config = udev->actconfig; 4942 if (!config) 4943 return timeout; 4944 4945 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4946 struct usb_driver *driver; 4947 struct usb_interface *intf = config->interface[i]; 4948 4949 if (!intf) 4950 continue; 4951 4952 /* Check if any currently bound drivers want hub-initiated LPM 4953 * disabled. 4954 */ 4955 if (intf->dev.driver) { 4956 driver = to_usb_driver(intf->dev.driver); 4957 if (driver && driver->disable_hub_initiated_lpm) { 4958 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4959 state_name, driver->name); 4960 timeout = xhci_get_timeout_no_hub_lpm(udev, 4961 state); 4962 if (timeout == USB3_LPM_DISABLED) 4963 return timeout; 4964 } 4965 } 4966 4967 /* Not sure how this could happen... */ 4968 if (!intf->cur_altsetting) 4969 continue; 4970 4971 if (xhci_update_timeout_for_interface(xhci, udev, 4972 intf->cur_altsetting, 4973 state, &timeout)) 4974 return timeout; 4975 } 4976 return timeout; 4977 } 4978 4979 static int calculate_max_exit_latency(struct usb_device *udev, 4980 enum usb3_link_state state_changed, 4981 u16 hub_encoded_timeout) 4982 { 4983 unsigned long long u1_mel_us = 0; 4984 unsigned long long u2_mel_us = 0; 4985 unsigned long long mel_us = 0; 4986 bool disabling_u1; 4987 bool disabling_u2; 4988 bool enabling_u1; 4989 bool enabling_u2; 4990 4991 disabling_u1 = (state_changed == USB3_LPM_U1 && 4992 hub_encoded_timeout == USB3_LPM_DISABLED); 4993 disabling_u2 = (state_changed == USB3_LPM_U2 && 4994 hub_encoded_timeout == USB3_LPM_DISABLED); 4995 4996 enabling_u1 = (state_changed == USB3_LPM_U1 && 4997 hub_encoded_timeout != USB3_LPM_DISABLED); 4998 enabling_u2 = (state_changed == USB3_LPM_U2 && 4999 hub_encoded_timeout != USB3_LPM_DISABLED); 5000 5001 /* If U1 was already enabled and we're not disabling it, 5002 * or we're going to enable U1, account for the U1 max exit latency. 5003 */ 5004 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5005 enabling_u1) 5006 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5007 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5008 enabling_u2) 5009 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5010 5011 mel_us = max(u1_mel_us, u2_mel_us); 5012 5013 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5014 if (mel_us > MAX_EXIT) { 5015 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5016 "is too big.\n", mel_us); 5017 return -E2BIG; 5018 } 5019 return mel_us; 5020 } 5021 5022 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5023 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5024 struct usb_device *udev, enum usb3_link_state state) 5025 { 5026 struct xhci_hcd *xhci; 5027 u16 hub_encoded_timeout; 5028 int mel; 5029 int ret; 5030 5031 xhci = hcd_to_xhci(hcd); 5032 /* The LPM timeout values are pretty host-controller specific, so don't 5033 * enable hub-initiated timeouts unless the vendor has provided 5034 * information about their timeout algorithm. 5035 */ 5036 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5037 !xhci->devs[udev->slot_id]) 5038 return USB3_LPM_DISABLED; 5039 5040 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5041 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5042 if (mel < 0) { 5043 /* Max Exit Latency is too big, disable LPM. */ 5044 hub_encoded_timeout = USB3_LPM_DISABLED; 5045 mel = 0; 5046 } 5047 5048 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5049 if (ret) 5050 return ret; 5051 return hub_encoded_timeout; 5052 } 5053 5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5055 struct usb_device *udev, enum usb3_link_state state) 5056 { 5057 struct xhci_hcd *xhci; 5058 u16 mel; 5059 5060 xhci = hcd_to_xhci(hcd); 5061 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5062 !xhci->devs[udev->slot_id]) 5063 return 0; 5064 5065 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5066 return xhci_change_max_exit_latency(xhci, udev, mel); 5067 } 5068 #else /* CONFIG_PM */ 5069 5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5071 struct usb_device *udev, int enable) 5072 { 5073 return 0; 5074 } 5075 5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5077 { 5078 return 0; 5079 } 5080 5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5082 struct usb_device *udev, enum usb3_link_state state) 5083 { 5084 return USB3_LPM_DISABLED; 5085 } 5086 5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5088 struct usb_device *udev, enum usb3_link_state state) 5089 { 5090 return 0; 5091 } 5092 #endif /* CONFIG_PM */ 5093 5094 /*-------------------------------------------------------------------------*/ 5095 5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5097 * internal data structures for the device. 5098 */ 5099 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5100 struct usb_tt *tt, gfp_t mem_flags) 5101 { 5102 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5103 struct xhci_virt_device *vdev; 5104 struct xhci_command *config_cmd; 5105 struct xhci_input_control_ctx *ctrl_ctx; 5106 struct xhci_slot_ctx *slot_ctx; 5107 unsigned long flags; 5108 unsigned think_time; 5109 int ret; 5110 5111 /* Ignore root hubs */ 5112 if (!hdev->parent) 5113 return 0; 5114 5115 vdev = xhci->devs[hdev->slot_id]; 5116 if (!vdev) { 5117 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5118 return -EINVAL; 5119 } 5120 5121 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5122 if (!config_cmd) 5123 return -ENOMEM; 5124 5125 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5126 if (!ctrl_ctx) { 5127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5128 __func__); 5129 xhci_free_command(xhci, config_cmd); 5130 return -ENOMEM; 5131 } 5132 5133 spin_lock_irqsave(&xhci->lock, flags); 5134 if (hdev->speed == USB_SPEED_HIGH && 5135 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5136 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5137 xhci_free_command(xhci, config_cmd); 5138 spin_unlock_irqrestore(&xhci->lock, flags); 5139 return -ENOMEM; 5140 } 5141 5142 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5143 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5144 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5145 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5146 /* 5147 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5148 * but it may be already set to 1 when setup an xHCI virtual 5149 * device, so clear it anyway. 5150 */ 5151 if (tt->multi) 5152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5153 else if (hdev->speed == USB_SPEED_FULL) 5154 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5155 5156 if (xhci->hci_version > 0x95) { 5157 xhci_dbg(xhci, "xHCI version %x needs hub " 5158 "TT think time and number of ports\n", 5159 (unsigned int) xhci->hci_version); 5160 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5161 /* Set TT think time - convert from ns to FS bit times. 5162 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5163 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5164 * 5165 * xHCI 1.0: this field shall be 0 if the device is not a 5166 * High-spped hub. 5167 */ 5168 think_time = tt->think_time; 5169 if (think_time != 0) 5170 think_time = (think_time / 666) - 1; 5171 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5172 slot_ctx->tt_info |= 5173 cpu_to_le32(TT_THINK_TIME(think_time)); 5174 } else { 5175 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5176 "TT think time or number of ports\n", 5177 (unsigned int) xhci->hci_version); 5178 } 5179 slot_ctx->dev_state = 0; 5180 spin_unlock_irqrestore(&xhci->lock, flags); 5181 5182 xhci_dbg(xhci, "Set up %s for hub device.\n", 5183 (xhci->hci_version > 0x95) ? 5184 "configure endpoint" : "evaluate context"); 5185 5186 /* Issue and wait for the configure endpoint or 5187 * evaluate context command. 5188 */ 5189 if (xhci->hci_version > 0x95) 5190 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5191 false, false); 5192 else 5193 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5194 true, false); 5195 5196 xhci_free_command(xhci, config_cmd); 5197 return ret; 5198 } 5199 5200 static int xhci_get_frame(struct usb_hcd *hcd) 5201 { 5202 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5203 /* EHCI mods by the periodic size. Why? */ 5204 return readl(&xhci->run_regs->microframe_index) >> 3; 5205 } 5206 5207 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5208 { 5209 struct xhci_hcd *xhci; 5210 /* 5211 * TODO: Check with DWC3 clients for sysdev according to 5212 * quirks 5213 */ 5214 struct device *dev = hcd->self.sysdev; 5215 unsigned int minor_rev; 5216 int retval; 5217 5218 /* Accept arbitrarily long scatter-gather lists */ 5219 hcd->self.sg_tablesize = ~0; 5220 5221 /* support to build packet from discontinuous buffers */ 5222 hcd->self.no_sg_constraint = 1; 5223 5224 /* XHCI controllers don't stop the ep queue on short packets :| */ 5225 hcd->self.no_stop_on_short = 1; 5226 5227 xhci = hcd_to_xhci(hcd); 5228 5229 if (usb_hcd_is_primary_hcd(hcd)) { 5230 xhci->main_hcd = hcd; 5231 xhci->usb2_rhub.hcd = hcd; 5232 /* Mark the first roothub as being USB 2.0. 5233 * The xHCI driver will register the USB 3.0 roothub. 5234 */ 5235 hcd->speed = HCD_USB2; 5236 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5237 /* 5238 * USB 2.0 roothub under xHCI has an integrated TT, 5239 * (rate matching hub) as opposed to having an OHCI/UHCI 5240 * companion controller. 5241 */ 5242 hcd->has_tt = 1; 5243 } else { 5244 /* 5245 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5246 * should return 0x31 for sbrn, or that the minor revision 5247 * is a two digit BCD containig minor and sub-minor numbers. 5248 * This was later clarified in xHCI 1.2. 5249 * 5250 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5251 * minor revision set to 0x1 instead of 0x10. 5252 */ 5253 if (xhci->usb3_rhub.min_rev == 0x1) 5254 minor_rev = 1; 5255 else 5256 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5257 5258 switch (minor_rev) { 5259 case 2: 5260 hcd->speed = HCD_USB32; 5261 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5262 hcd->self.root_hub->rx_lanes = 2; 5263 hcd->self.root_hub->tx_lanes = 2; 5264 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5265 break; 5266 case 1: 5267 hcd->speed = HCD_USB31; 5268 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5269 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5270 break; 5271 } 5272 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5273 minor_rev, 5274 minor_rev ? "Enhanced " : ""); 5275 5276 xhci->usb3_rhub.hcd = hcd; 5277 /* xHCI private pointer was set in xhci_pci_probe for the second 5278 * registered roothub. 5279 */ 5280 return 0; 5281 } 5282 5283 mutex_init(&xhci->mutex); 5284 xhci->cap_regs = hcd->regs; 5285 xhci->op_regs = hcd->regs + 5286 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5287 xhci->run_regs = hcd->regs + 5288 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5289 /* Cache read-only capability registers */ 5290 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5291 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5292 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5293 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5294 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5295 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5296 if (xhci->hci_version > 0x100) 5297 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5298 5299 xhci->quirks |= quirks; 5300 5301 get_quirks(dev, xhci); 5302 5303 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5304 * success event after a short transfer. This quirk will ignore such 5305 * spurious event. 5306 */ 5307 if (xhci->hci_version > 0x96) 5308 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5309 5310 /* Make sure the HC is halted. */ 5311 retval = xhci_halt(xhci); 5312 if (retval) 5313 return retval; 5314 5315 xhci_zero_64b_regs(xhci); 5316 5317 xhci_dbg(xhci, "Resetting HCD\n"); 5318 /* Reset the internal HC memory state and registers. */ 5319 retval = xhci_reset(xhci); 5320 if (retval) 5321 return retval; 5322 xhci_dbg(xhci, "Reset complete\n"); 5323 5324 /* 5325 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5326 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5327 * address memory pointers actually. So, this driver clears the AC64 5328 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5329 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5330 */ 5331 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5332 xhci->hcc_params &= ~BIT(0); 5333 5334 /* Set dma_mask and coherent_dma_mask to 64-bits, 5335 * if xHC supports 64-bit addressing */ 5336 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5337 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5338 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5339 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5340 } else { 5341 /* 5342 * This is to avoid error in cases where a 32-bit USB 5343 * controller is used on a 64-bit capable system. 5344 */ 5345 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5346 if (retval) 5347 return retval; 5348 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5349 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5350 } 5351 5352 xhci_dbg(xhci, "Calling HCD init\n"); 5353 /* Initialize HCD and host controller data structures. */ 5354 retval = xhci_init(hcd); 5355 if (retval) 5356 return retval; 5357 xhci_dbg(xhci, "Called HCD init\n"); 5358 5359 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5360 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5361 5362 return 0; 5363 } 5364 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5365 5366 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5367 struct usb_host_endpoint *ep) 5368 { 5369 struct xhci_hcd *xhci; 5370 struct usb_device *udev; 5371 unsigned int slot_id; 5372 unsigned int ep_index; 5373 unsigned long flags; 5374 5375 xhci = hcd_to_xhci(hcd); 5376 5377 spin_lock_irqsave(&xhci->lock, flags); 5378 udev = (struct usb_device *)ep->hcpriv; 5379 slot_id = udev->slot_id; 5380 ep_index = xhci_get_endpoint_index(&ep->desc); 5381 5382 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5383 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5384 spin_unlock_irqrestore(&xhci->lock, flags); 5385 } 5386 5387 static const struct hc_driver xhci_hc_driver = { 5388 .description = "xhci-hcd", 5389 .product_desc = "xHCI Host Controller", 5390 .hcd_priv_size = sizeof(struct xhci_hcd), 5391 5392 /* 5393 * generic hardware linkage 5394 */ 5395 .irq = xhci_irq, 5396 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5397 HCD_BH, 5398 5399 /* 5400 * basic lifecycle operations 5401 */ 5402 .reset = NULL, /* set in xhci_init_driver() */ 5403 .start = xhci_run, 5404 .stop = xhci_stop, 5405 .shutdown = xhci_shutdown, 5406 5407 /* 5408 * managing i/o requests and associated device resources 5409 */ 5410 .map_urb_for_dma = xhci_map_urb_for_dma, 5411 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5412 .urb_enqueue = xhci_urb_enqueue, 5413 .urb_dequeue = xhci_urb_dequeue, 5414 .alloc_dev = xhci_alloc_dev, 5415 .free_dev = xhci_free_dev, 5416 .alloc_streams = xhci_alloc_streams, 5417 .free_streams = xhci_free_streams, 5418 .add_endpoint = xhci_add_endpoint, 5419 .drop_endpoint = xhci_drop_endpoint, 5420 .endpoint_disable = xhci_endpoint_disable, 5421 .endpoint_reset = xhci_endpoint_reset, 5422 .check_bandwidth = xhci_check_bandwidth, 5423 .reset_bandwidth = xhci_reset_bandwidth, 5424 .address_device = xhci_address_device, 5425 .enable_device = xhci_enable_device, 5426 .update_hub_device = xhci_update_hub_device, 5427 .reset_device = xhci_discover_or_reset_device, 5428 5429 /* 5430 * scheduling support 5431 */ 5432 .get_frame_number = xhci_get_frame, 5433 5434 /* 5435 * root hub support 5436 */ 5437 .hub_control = xhci_hub_control, 5438 .hub_status_data = xhci_hub_status_data, 5439 .bus_suspend = xhci_bus_suspend, 5440 .bus_resume = xhci_bus_resume, 5441 .get_resuming_ports = xhci_get_resuming_ports, 5442 5443 /* 5444 * call back when device connected and addressed 5445 */ 5446 .update_device = xhci_update_device, 5447 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5448 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5449 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5450 .find_raw_port_number = xhci_find_raw_port_number, 5451 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5452 }; 5453 5454 void xhci_init_driver(struct hc_driver *drv, 5455 const struct xhci_driver_overrides *over) 5456 { 5457 BUG_ON(!over); 5458 5459 /* Copy the generic table to drv then apply the overrides */ 5460 *drv = xhci_hc_driver; 5461 5462 if (over) { 5463 drv->hcd_priv_size += over->extra_priv_size; 5464 if (over->reset) 5465 drv->reset = over->reset; 5466 if (over->start) 5467 drv->start = over->start; 5468 if (over->add_endpoint) 5469 drv->add_endpoint = over->add_endpoint; 5470 if (over->drop_endpoint) 5471 drv->drop_endpoint = over->drop_endpoint; 5472 if (over->check_bandwidth) 5473 drv->check_bandwidth = over->check_bandwidth; 5474 if (over->reset_bandwidth) 5475 drv->reset_bandwidth = over->reset_bandwidth; 5476 } 5477 } 5478 EXPORT_SYMBOL_GPL(xhci_init_driver); 5479 5480 MODULE_DESCRIPTION(DRIVER_DESC); 5481 MODULE_AUTHOR(DRIVER_AUTHOR); 5482 MODULE_LICENSE("GPL"); 5483 5484 static int __init xhci_hcd_init(void) 5485 { 5486 /* 5487 * Check the compiler generated sizes of structures that must be laid 5488 * out in specific ways for hardware access. 5489 */ 5490 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5491 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5492 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5493 /* xhci_device_control has eight fields, and also 5494 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5495 */ 5496 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5497 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5498 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5499 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5500 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5501 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5502 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5503 5504 if (usb_disabled()) 5505 return -ENODEV; 5506 5507 xhci_debugfs_create_root(); 5508 5509 return 0; 5510 } 5511 5512 /* 5513 * If an init function is provided, an exit function must also be provided 5514 * to allow module unload. 5515 */ 5516 static void __exit xhci_hcd_fini(void) 5517 { 5518 xhci_debugfs_remove_root(); 5519 } 5520 5521 module_init(xhci_hcd_init); 5522 module_exit(xhci_hcd_fini); 5523