1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 ms of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 */ 99 int xhci_halt(struct xhci_hcd *xhci) 100 { 101 int ret; 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 ret = handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 if (!ret) 108 xhci->xhc_state |= XHCI_STATE_HALTED; 109 else 110 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 111 XHCI_MAX_HALT_USEC); 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 static int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = xhci_readl(xhci, &xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 126 temp); 127 xhci_writel(xhci, temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = handshake(xhci, &xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 xhci->xhc_state &= ~XHCI_STATE_HALTED; 141 return ret; 142 } 143 144 /* 145 * Reset a halted HC. 146 * 147 * This resets pipelines, timers, counters, state machines, etc. 148 * Transactions will be terminated immediately, and operational registers 149 * will be set to their defaults. 150 */ 151 int xhci_reset(struct xhci_hcd *xhci) 152 { 153 u32 command; 154 u32 state; 155 int ret, i; 156 157 state = xhci_readl(xhci, &xhci->op_regs->status); 158 if ((state & STS_HALT) == 0) { 159 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 160 return 0; 161 } 162 163 xhci_dbg(xhci, "// Reset the HC\n"); 164 command = xhci_readl(xhci, &xhci->op_regs->command); 165 command |= CMD_RESET; 166 xhci_writel(xhci, command, &xhci->op_regs->command); 167 168 ret = handshake(xhci, &xhci->op_regs->command, 169 CMD_RESET, 0, 10 * 1000 * 1000); 170 if (ret) 171 return ret; 172 173 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 174 /* 175 * xHCI cannot write to any doorbells or operational registers other 176 * than status until the "Controller Not Ready" flag is cleared. 177 */ 178 ret = handshake(xhci, &xhci->op_regs->status, 179 STS_CNR, 0, 10 * 1000 * 1000); 180 181 for (i = 0; i < 2; ++i) { 182 xhci->bus_state[i].port_c_suspend = 0; 183 xhci->bus_state[i].suspended_ports = 0; 184 xhci->bus_state[i].resuming_ports = 0; 185 } 186 187 return ret; 188 } 189 190 #ifdef CONFIG_PCI 191 static int xhci_free_msi(struct xhci_hcd *xhci) 192 { 193 int i; 194 195 if (!xhci->msix_entries) 196 return -EINVAL; 197 198 for (i = 0; i < xhci->msix_count; i++) 199 if (xhci->msix_entries[i].vector) 200 free_irq(xhci->msix_entries[i].vector, 201 xhci_to_hcd(xhci)); 202 return 0; 203 } 204 205 /* 206 * Set up MSI 207 */ 208 static int xhci_setup_msi(struct xhci_hcd *xhci) 209 { 210 int ret; 211 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 212 213 ret = pci_enable_msi(pdev); 214 if (ret) { 215 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 216 return ret; 217 } 218 219 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 220 0, "xhci_hcd", xhci_to_hcd(xhci)); 221 if (ret) { 222 xhci_dbg(xhci, "disable MSI interrupt\n"); 223 pci_disable_msi(pdev); 224 } 225 226 return ret; 227 } 228 229 /* 230 * Free IRQs 231 * free all IRQs request 232 */ 233 static void xhci_free_irq(struct xhci_hcd *xhci) 234 { 235 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 236 int ret; 237 238 /* return if using legacy interrupt */ 239 if (xhci_to_hcd(xhci)->irq > 0) 240 return; 241 242 ret = xhci_free_msi(xhci); 243 if (!ret) 244 return; 245 if (pdev->irq > 0) 246 free_irq(pdev->irq, xhci_to_hcd(xhci)); 247 248 return; 249 } 250 251 /* 252 * Set up MSI-X 253 */ 254 static int xhci_setup_msix(struct xhci_hcd *xhci) 255 { 256 int i, ret = 0; 257 struct usb_hcd *hcd = xhci_to_hcd(xhci); 258 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 259 260 /* 261 * calculate number of msi-x vectors supported. 262 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 263 * with max number of interrupters based on the xhci HCSPARAMS1. 264 * - num_online_cpus: maximum msi-x vectors per CPUs core. 265 * Add additional 1 vector to ensure always available interrupt. 266 */ 267 xhci->msix_count = min(num_online_cpus() + 1, 268 HCS_MAX_INTRS(xhci->hcs_params1)); 269 270 xhci->msix_entries = 271 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 272 GFP_KERNEL); 273 if (!xhci->msix_entries) { 274 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 275 return -ENOMEM; 276 } 277 278 for (i = 0; i < xhci->msix_count; i++) { 279 xhci->msix_entries[i].entry = i; 280 xhci->msix_entries[i].vector = 0; 281 } 282 283 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 284 if (ret) { 285 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 286 goto free_entries; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 ret = request_irq(xhci->msix_entries[i].vector, 291 (irq_handler_t)xhci_msi_irq, 292 0, "xhci_hcd", xhci_to_hcd(xhci)); 293 if (ret) 294 goto disable_msix; 295 } 296 297 hcd->msix_enabled = 1; 298 return ret; 299 300 disable_msix: 301 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 302 xhci_free_irq(xhci); 303 pci_disable_msix(pdev); 304 free_entries: 305 kfree(xhci->msix_entries); 306 xhci->msix_entries = NULL; 307 return ret; 308 } 309 310 /* Free any IRQs and disable MSI-X */ 311 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 312 { 313 struct usb_hcd *hcd = xhci_to_hcd(xhci); 314 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 315 316 xhci_free_irq(xhci); 317 318 if (xhci->msix_entries) { 319 pci_disable_msix(pdev); 320 kfree(xhci->msix_entries); 321 xhci->msix_entries = NULL; 322 } else { 323 pci_disable_msi(pdev); 324 } 325 326 hcd->msix_enabled = 0; 327 return; 328 } 329 330 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 331 { 332 int i; 333 334 if (xhci->msix_entries) { 335 for (i = 0; i < xhci->msix_count; i++) 336 synchronize_irq(xhci->msix_entries[i].vector); 337 } 338 } 339 340 static int xhci_try_enable_msi(struct usb_hcd *hcd) 341 { 342 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 344 int ret; 345 346 /* 347 * Some Fresco Logic host controllers advertise MSI, but fail to 348 * generate interrupts. Don't even try to enable MSI. 349 */ 350 if (xhci->quirks & XHCI_BROKEN_MSI) 351 return 0; 352 353 /* unregister the legacy interrupt */ 354 if (hcd->irq) 355 free_irq(hcd->irq, hcd); 356 hcd->irq = 0; 357 358 ret = xhci_setup_msix(xhci); 359 if (ret) 360 /* fall back to msi*/ 361 ret = xhci_setup_msi(xhci); 362 363 if (!ret) 364 /* hcd->irq is 0, we have MSI */ 365 return 0; 366 367 if (!pdev->irq) { 368 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 369 return -EINVAL; 370 } 371 372 /* fall back to legacy interrupt*/ 373 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 374 hcd->irq_descr, hcd); 375 if (ret) { 376 xhci_err(xhci, "request interrupt %d failed\n", 377 pdev->irq); 378 return ret; 379 } 380 hcd->irq = pdev->irq; 381 return 0; 382 } 383 384 #else 385 386 static int xhci_try_enable_msi(struct usb_hcd *hcd) 387 { 388 return 0; 389 } 390 391 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 392 { 393 } 394 395 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 396 { 397 } 398 399 #endif 400 401 /* 402 * Initialize memory for HCD and xHC (one-time init). 403 * 404 * Program the PAGESIZE register, initialize the device context array, create 405 * device contexts (?), set up a command ring segment (or two?), create event 406 * ring (one for now). 407 */ 408 int xhci_init(struct usb_hcd *hcd) 409 { 410 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 411 int retval = 0; 412 413 xhci_dbg(xhci, "xhci_init\n"); 414 spin_lock_init(&xhci->lock); 415 if (xhci->hci_version == 0x95 && link_quirk) { 416 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 417 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 418 } else { 419 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 420 } 421 retval = xhci_mem_init(xhci, GFP_KERNEL); 422 xhci_dbg(xhci, "Finished xhci_init\n"); 423 424 return retval; 425 } 426 427 /*-------------------------------------------------------------------------*/ 428 429 430 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 431 static void xhci_event_ring_work(unsigned long arg) 432 { 433 unsigned long flags; 434 int temp; 435 u64 temp_64; 436 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 437 int i, j; 438 439 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 440 441 spin_lock_irqsave(&xhci->lock, flags); 442 temp = xhci_readl(xhci, &xhci->op_regs->status); 443 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 444 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 445 (xhci->xhc_state & XHCI_STATE_HALTED)) { 446 xhci_dbg(xhci, "HW died, polling stopped.\n"); 447 spin_unlock_irqrestore(&xhci->lock, flags); 448 return; 449 } 450 451 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 452 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 453 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 454 xhci->error_bitmask = 0; 455 xhci_dbg(xhci, "Event ring:\n"); 456 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 457 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 458 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 459 temp_64 &= ~ERST_PTR_MASK; 460 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 461 xhci_dbg(xhci, "Command ring:\n"); 462 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 463 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 464 xhci_dbg_cmd_ptrs(xhci); 465 for (i = 0; i < MAX_HC_SLOTS; ++i) { 466 if (!xhci->devs[i]) 467 continue; 468 for (j = 0; j < 31; ++j) { 469 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 470 } 471 } 472 spin_unlock_irqrestore(&xhci->lock, flags); 473 474 if (!xhci->zombie) 475 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 476 else 477 xhci_dbg(xhci, "Quit polling the event ring.\n"); 478 } 479 #endif 480 481 static int xhci_run_finished(struct xhci_hcd *xhci) 482 { 483 if (xhci_start(xhci)) { 484 xhci_halt(xhci); 485 return -ENODEV; 486 } 487 xhci->shared_hcd->state = HC_STATE_RUNNING; 488 489 if (xhci->quirks & XHCI_NEC_HOST) 490 xhci_ring_cmd_db(xhci); 491 492 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 493 return 0; 494 } 495 496 /* 497 * Start the HC after it was halted. 498 * 499 * This function is called by the USB core when the HC driver is added. 500 * Its opposite is xhci_stop(). 501 * 502 * xhci_init() must be called once before this function can be called. 503 * Reset the HC, enable device slot contexts, program DCBAAP, and 504 * set command ring pointer and event ring pointer. 505 * 506 * Setup MSI-X vectors and enable interrupts. 507 */ 508 int xhci_run(struct usb_hcd *hcd) 509 { 510 u32 temp; 511 u64 temp_64; 512 int ret; 513 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 514 515 /* Start the xHCI host controller running only after the USB 2.0 roothub 516 * is setup. 517 */ 518 519 hcd->uses_new_polling = 1; 520 if (!usb_hcd_is_primary_hcd(hcd)) 521 return xhci_run_finished(xhci); 522 523 xhci_dbg(xhci, "xhci_run\n"); 524 525 ret = xhci_try_enable_msi(hcd); 526 if (ret) 527 return ret; 528 529 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 530 init_timer(&xhci->event_ring_timer); 531 xhci->event_ring_timer.data = (unsigned long) xhci; 532 xhci->event_ring_timer.function = xhci_event_ring_work; 533 /* Poll the event ring */ 534 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 535 xhci->zombie = 0; 536 xhci_dbg(xhci, "Setting event ring polling timer\n"); 537 add_timer(&xhci->event_ring_timer); 538 #endif 539 540 xhci_dbg(xhci, "Command ring memory map follows:\n"); 541 xhci_debug_ring(xhci, xhci->cmd_ring); 542 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 543 xhci_dbg_cmd_ptrs(xhci); 544 545 xhci_dbg(xhci, "ERST memory map follows:\n"); 546 xhci_dbg_erst(xhci, &xhci->erst); 547 xhci_dbg(xhci, "Event ring:\n"); 548 xhci_debug_ring(xhci, xhci->event_ring); 549 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 550 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 551 temp_64 &= ~ERST_PTR_MASK; 552 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 553 554 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 555 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 556 temp &= ~ER_IRQ_INTERVAL_MASK; 557 temp |= (u32) 160; 558 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 559 560 /* Set the HCD state before we enable the irqs */ 561 temp = xhci_readl(xhci, &xhci->op_regs->command); 562 temp |= (CMD_EIE); 563 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 564 temp); 565 xhci_writel(xhci, temp, &xhci->op_regs->command); 566 567 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 568 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 569 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 570 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 571 &xhci->ir_set->irq_pending); 572 xhci_print_ir_set(xhci, 0); 573 574 if (xhci->quirks & XHCI_NEC_HOST) 575 xhci_queue_vendor_command(xhci, 0, 0, 0, 576 TRB_TYPE(TRB_NEC_GET_FW)); 577 578 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 579 return 0; 580 } 581 582 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 583 { 584 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 585 586 spin_lock_irq(&xhci->lock); 587 xhci_halt(xhci); 588 589 /* The shared_hcd is going to be deallocated shortly (the USB core only 590 * calls this function when allocation fails in usb_add_hcd(), or 591 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 592 */ 593 xhci->shared_hcd = NULL; 594 spin_unlock_irq(&xhci->lock); 595 } 596 597 /* 598 * Stop xHCI driver. 599 * 600 * This function is called by the USB core when the HC driver is removed. 601 * Its opposite is xhci_run(). 602 * 603 * Disable device contexts, disable IRQs, and quiesce the HC. 604 * Reset the HC, finish any completed transactions, and cleanup memory. 605 */ 606 void xhci_stop(struct usb_hcd *hcd) 607 { 608 u32 temp; 609 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 610 611 if (!usb_hcd_is_primary_hcd(hcd)) { 612 xhci_only_stop_hcd(xhci->shared_hcd); 613 return; 614 } 615 616 spin_lock_irq(&xhci->lock); 617 /* Make sure the xHC is halted for a USB3 roothub 618 * (xhci_stop() could be called as part of failed init). 619 */ 620 xhci_halt(xhci); 621 xhci_reset(xhci); 622 spin_unlock_irq(&xhci->lock); 623 624 xhci_cleanup_msix(xhci); 625 626 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 627 /* Tell the event ring poll function not to reschedule */ 628 xhci->zombie = 1; 629 del_timer_sync(&xhci->event_ring_timer); 630 #endif 631 632 if (xhci->quirks & XHCI_AMD_PLL_FIX) 633 usb_amd_dev_put(); 634 635 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 636 temp = xhci_readl(xhci, &xhci->op_regs->status); 637 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 638 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 639 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 640 &xhci->ir_set->irq_pending); 641 xhci_print_ir_set(xhci, 0); 642 643 xhci_dbg(xhci, "cleaning up memory\n"); 644 xhci_mem_cleanup(xhci); 645 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 646 xhci_readl(xhci, &xhci->op_regs->status)); 647 } 648 649 /* 650 * Shutdown HC (not bus-specific) 651 * 652 * This is called when the machine is rebooting or halting. We assume that the 653 * machine will be powered off, and the HC's internal state will be reset. 654 * Don't bother to free memory. 655 * 656 * This will only ever be called with the main usb_hcd (the USB3 roothub). 657 */ 658 void xhci_shutdown(struct usb_hcd *hcd) 659 { 660 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 661 662 if (xhci->quirks && XHCI_SPURIOUS_REBOOT) 663 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 664 665 spin_lock_irq(&xhci->lock); 666 xhci_halt(xhci); 667 spin_unlock_irq(&xhci->lock); 668 669 xhci_cleanup_msix(xhci); 670 671 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 672 xhci_readl(xhci, &xhci->op_regs->status)); 673 } 674 675 #ifdef CONFIG_PM 676 static void xhci_save_registers(struct xhci_hcd *xhci) 677 { 678 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 679 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 680 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 681 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 682 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 683 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 684 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 685 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 686 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 687 } 688 689 static void xhci_restore_registers(struct xhci_hcd *xhci) 690 { 691 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 692 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 693 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 694 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 695 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 696 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 697 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 698 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 699 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 700 } 701 702 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 703 { 704 u64 val_64; 705 706 /* step 2: initialize command ring buffer */ 707 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 708 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 709 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 710 xhci->cmd_ring->dequeue) & 711 (u64) ~CMD_RING_RSVD_BITS) | 712 xhci->cmd_ring->cycle_state; 713 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 714 (long unsigned long) val_64); 715 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 716 } 717 718 /* 719 * The whole command ring must be cleared to zero when we suspend the host. 720 * 721 * The host doesn't save the command ring pointer in the suspend well, so we 722 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 723 * aligned, because of the reserved bits in the command ring dequeue pointer 724 * register. Therefore, we can't just set the dequeue pointer back in the 725 * middle of the ring (TRBs are 16-byte aligned). 726 */ 727 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 728 { 729 struct xhci_ring *ring; 730 struct xhci_segment *seg; 731 732 ring = xhci->cmd_ring; 733 seg = ring->deq_seg; 734 do { 735 memset(seg->trbs, 0, 736 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 737 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 738 cpu_to_le32(~TRB_CYCLE); 739 seg = seg->next; 740 } while (seg != ring->deq_seg); 741 742 /* Reset the software enqueue and dequeue pointers */ 743 ring->deq_seg = ring->first_seg; 744 ring->dequeue = ring->first_seg->trbs; 745 ring->enq_seg = ring->deq_seg; 746 ring->enqueue = ring->dequeue; 747 748 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 749 /* 750 * Ring is now zeroed, so the HW should look for change of ownership 751 * when the cycle bit is set to 1. 752 */ 753 ring->cycle_state = 1; 754 755 /* 756 * Reset the hardware dequeue pointer. 757 * Yes, this will need to be re-written after resume, but we're paranoid 758 * and want to make sure the hardware doesn't access bogus memory 759 * because, say, the BIOS or an SMI started the host without changing 760 * the command ring pointers. 761 */ 762 xhci_set_cmd_ring_deq(xhci); 763 } 764 765 /* 766 * Stop HC (not bus-specific) 767 * 768 * This is called when the machine transition into S3/S4 mode. 769 * 770 */ 771 int xhci_suspend(struct xhci_hcd *xhci) 772 { 773 int rc = 0; 774 struct usb_hcd *hcd = xhci_to_hcd(xhci); 775 u32 command; 776 777 spin_lock_irq(&xhci->lock); 778 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 779 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 780 /* step 1: stop endpoint */ 781 /* skipped assuming that port suspend has done */ 782 783 /* step 2: clear Run/Stop bit */ 784 command = xhci_readl(xhci, &xhci->op_regs->command); 785 command &= ~CMD_RUN; 786 xhci_writel(xhci, command, &xhci->op_regs->command); 787 if (handshake(xhci, &xhci->op_regs->status, 788 STS_HALT, STS_HALT, 100*100)) { 789 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 790 spin_unlock_irq(&xhci->lock); 791 return -ETIMEDOUT; 792 } 793 xhci_clear_command_ring(xhci); 794 795 /* step 3: save registers */ 796 xhci_save_registers(xhci); 797 798 /* step 4: set CSS flag */ 799 command = xhci_readl(xhci, &xhci->op_regs->command); 800 command |= CMD_CSS; 801 xhci_writel(xhci, command, &xhci->op_regs->command); 802 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) { 803 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 804 spin_unlock_irq(&xhci->lock); 805 return -ETIMEDOUT; 806 } 807 spin_unlock_irq(&xhci->lock); 808 809 /* step 5: remove core well power */ 810 /* synchronize irq when using MSI-X */ 811 xhci_msix_sync_irqs(xhci); 812 813 return rc; 814 } 815 816 /* 817 * start xHC (not bus-specific) 818 * 819 * This is called when the machine transition from S3/S4 mode. 820 * 821 */ 822 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 823 { 824 u32 command, temp = 0; 825 struct usb_hcd *hcd = xhci_to_hcd(xhci); 826 struct usb_hcd *secondary_hcd; 827 int retval = 0; 828 829 /* Wait a bit if either of the roothubs need to settle from the 830 * transition into bus suspend. 831 */ 832 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 833 time_before(jiffies, 834 xhci->bus_state[1].next_statechange)) 835 msleep(100); 836 837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 838 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 839 840 spin_lock_irq(&xhci->lock); 841 if (xhci->quirks & XHCI_RESET_ON_RESUME) 842 hibernated = true; 843 844 if (!hibernated) { 845 /* step 1: restore register */ 846 xhci_restore_registers(xhci); 847 /* step 2: initialize command ring buffer */ 848 xhci_set_cmd_ring_deq(xhci); 849 /* step 3: restore state and start state*/ 850 /* step 3: set CRS flag */ 851 command = xhci_readl(xhci, &xhci->op_regs->command); 852 command |= CMD_CRS; 853 xhci_writel(xhci, command, &xhci->op_regs->command); 854 if (handshake(xhci, &xhci->op_regs->status, 855 STS_RESTORE, 0, 10 * 1000)) { 856 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 857 spin_unlock_irq(&xhci->lock); 858 return -ETIMEDOUT; 859 } 860 temp = xhci_readl(xhci, &xhci->op_regs->status); 861 } 862 863 /* If restore operation fails, re-initialize the HC during resume */ 864 if ((temp & STS_SRE) || hibernated) { 865 /* Let the USB core know _both_ roothubs lost power. */ 866 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 867 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 868 869 xhci_dbg(xhci, "Stop HCD\n"); 870 xhci_halt(xhci); 871 xhci_reset(xhci); 872 spin_unlock_irq(&xhci->lock); 873 xhci_cleanup_msix(xhci); 874 875 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 876 /* Tell the event ring poll function not to reschedule */ 877 xhci->zombie = 1; 878 del_timer_sync(&xhci->event_ring_timer); 879 #endif 880 881 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 882 temp = xhci_readl(xhci, &xhci->op_regs->status); 883 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 884 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 885 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 886 &xhci->ir_set->irq_pending); 887 xhci_print_ir_set(xhci, 0); 888 889 xhci_dbg(xhci, "cleaning up memory\n"); 890 xhci_mem_cleanup(xhci); 891 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 892 xhci_readl(xhci, &xhci->op_regs->status)); 893 894 /* USB core calls the PCI reinit and start functions twice: 895 * first with the primary HCD, and then with the secondary HCD. 896 * If we don't do the same, the host will never be started. 897 */ 898 if (!usb_hcd_is_primary_hcd(hcd)) 899 secondary_hcd = hcd; 900 else 901 secondary_hcd = xhci->shared_hcd; 902 903 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 904 retval = xhci_init(hcd->primary_hcd); 905 if (retval) 906 return retval; 907 xhci_dbg(xhci, "Start the primary HCD\n"); 908 retval = xhci_run(hcd->primary_hcd); 909 if (!retval) { 910 xhci_dbg(xhci, "Start the secondary HCD\n"); 911 retval = xhci_run(secondary_hcd); 912 } 913 hcd->state = HC_STATE_SUSPENDED; 914 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 915 goto done; 916 } 917 918 /* step 4: set Run/Stop bit */ 919 command = xhci_readl(xhci, &xhci->op_regs->command); 920 command |= CMD_RUN; 921 xhci_writel(xhci, command, &xhci->op_regs->command); 922 handshake(xhci, &xhci->op_regs->status, STS_HALT, 923 0, 250 * 1000); 924 925 /* step 5: walk topology and initialize portsc, 926 * portpmsc and portli 927 */ 928 /* this is done in bus_resume */ 929 930 /* step 6: restart each of the previously 931 * Running endpoints by ringing their doorbells 932 */ 933 934 spin_unlock_irq(&xhci->lock); 935 936 done: 937 if (retval == 0) { 938 usb_hcd_resume_root_hub(hcd); 939 usb_hcd_resume_root_hub(xhci->shared_hcd); 940 } 941 return retval; 942 } 943 #endif /* CONFIG_PM */ 944 945 /*-------------------------------------------------------------------------*/ 946 947 /** 948 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 949 * HCDs. Find the index for an endpoint given its descriptor. Use the return 950 * value to right shift 1 for the bitmask. 951 * 952 * Index = (epnum * 2) + direction - 1, 953 * where direction = 0 for OUT, 1 for IN. 954 * For control endpoints, the IN index is used (OUT index is unused), so 955 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 956 */ 957 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 958 { 959 unsigned int index; 960 if (usb_endpoint_xfer_control(desc)) 961 index = (unsigned int) (usb_endpoint_num(desc)*2); 962 else 963 index = (unsigned int) (usb_endpoint_num(desc)*2) + 964 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 965 return index; 966 } 967 968 /* Find the flag for this endpoint (for use in the control context). Use the 969 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 970 * bit 1, etc. 971 */ 972 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 973 { 974 return 1 << (xhci_get_endpoint_index(desc) + 1); 975 } 976 977 /* Find the flag for this endpoint (for use in the control context). Use the 978 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 979 * bit 1, etc. 980 */ 981 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 982 { 983 return 1 << (ep_index + 1); 984 } 985 986 /* Compute the last valid endpoint context index. Basically, this is the 987 * endpoint index plus one. For slot contexts with more than valid endpoint, 988 * we find the most significant bit set in the added contexts flags. 989 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 990 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 991 */ 992 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 993 { 994 return fls(added_ctxs) - 1; 995 } 996 997 /* Returns 1 if the arguments are OK; 998 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 999 */ 1000 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1001 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1002 const char *func) { 1003 struct xhci_hcd *xhci; 1004 struct xhci_virt_device *virt_dev; 1005 1006 if (!hcd || (check_ep && !ep) || !udev) { 1007 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1008 func); 1009 return -EINVAL; 1010 } 1011 if (!udev->parent) { 1012 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1013 func); 1014 return 0; 1015 } 1016 1017 xhci = hcd_to_xhci(hcd); 1018 if (xhci->xhc_state & XHCI_STATE_HALTED) 1019 return -ENODEV; 1020 1021 if (check_virt_dev) { 1022 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1023 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1024 "device\n", func); 1025 return -EINVAL; 1026 } 1027 1028 virt_dev = xhci->devs[udev->slot_id]; 1029 if (virt_dev->udev != udev) { 1030 printk(KERN_DEBUG "xHCI %s called with udev and " 1031 "virt_dev does not match\n", func); 1032 return -EINVAL; 1033 } 1034 } 1035 1036 return 1; 1037 } 1038 1039 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1040 struct usb_device *udev, struct xhci_command *command, 1041 bool ctx_change, bool must_succeed); 1042 1043 /* 1044 * Full speed devices may have a max packet size greater than 8 bytes, but the 1045 * USB core doesn't know that until it reads the first 8 bytes of the 1046 * descriptor. If the usb_device's max packet size changes after that point, 1047 * we need to issue an evaluate context command and wait on it. 1048 */ 1049 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1050 unsigned int ep_index, struct urb *urb) 1051 { 1052 struct xhci_container_ctx *in_ctx; 1053 struct xhci_container_ctx *out_ctx; 1054 struct xhci_input_control_ctx *ctrl_ctx; 1055 struct xhci_ep_ctx *ep_ctx; 1056 int max_packet_size; 1057 int hw_max_packet_size; 1058 int ret = 0; 1059 1060 out_ctx = xhci->devs[slot_id]->out_ctx; 1061 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1062 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1063 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1064 if (hw_max_packet_size != max_packet_size) { 1065 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1066 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1067 max_packet_size); 1068 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1069 hw_max_packet_size); 1070 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1071 1072 /* Set up the modified control endpoint 0 */ 1073 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1074 xhci->devs[slot_id]->out_ctx, ep_index); 1075 in_ctx = xhci->devs[slot_id]->in_ctx; 1076 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1077 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1078 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1079 1080 /* Set up the input context flags for the command */ 1081 /* FIXME: This won't work if a non-default control endpoint 1082 * changes max packet sizes. 1083 */ 1084 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1085 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1086 ctrl_ctx->drop_flags = 0; 1087 1088 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1089 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1090 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1091 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1092 1093 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1094 true, false); 1095 1096 /* Clean up the input context for later use by bandwidth 1097 * functions. 1098 */ 1099 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1100 } 1101 return ret; 1102 } 1103 1104 /* 1105 * non-error returns are a promise to giveback() the urb later 1106 * we drop ownership so next owner (or urb unlink) can get it 1107 */ 1108 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1109 { 1110 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1111 struct xhci_td *buffer; 1112 unsigned long flags; 1113 int ret = 0; 1114 unsigned int slot_id, ep_index; 1115 struct urb_priv *urb_priv; 1116 int size, i; 1117 1118 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1119 true, true, __func__) <= 0) 1120 return -EINVAL; 1121 1122 slot_id = urb->dev->slot_id; 1123 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1124 1125 if (!HCD_HW_ACCESSIBLE(hcd)) { 1126 if (!in_interrupt()) 1127 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1128 ret = -ESHUTDOWN; 1129 goto exit; 1130 } 1131 1132 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1133 size = urb->number_of_packets; 1134 else 1135 size = 1; 1136 1137 urb_priv = kzalloc(sizeof(struct urb_priv) + 1138 size * sizeof(struct xhci_td *), mem_flags); 1139 if (!urb_priv) 1140 return -ENOMEM; 1141 1142 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1143 if (!buffer) { 1144 kfree(urb_priv); 1145 return -ENOMEM; 1146 } 1147 1148 for (i = 0; i < size; i++) { 1149 urb_priv->td[i] = buffer; 1150 buffer++; 1151 } 1152 1153 urb_priv->length = size; 1154 urb_priv->td_cnt = 0; 1155 urb->hcpriv = urb_priv; 1156 1157 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1158 /* Check to see if the max packet size for the default control 1159 * endpoint changed during FS device enumeration 1160 */ 1161 if (urb->dev->speed == USB_SPEED_FULL) { 1162 ret = xhci_check_maxpacket(xhci, slot_id, 1163 ep_index, urb); 1164 if (ret < 0) { 1165 xhci_urb_free_priv(xhci, urb_priv); 1166 urb->hcpriv = NULL; 1167 return ret; 1168 } 1169 } 1170 1171 /* We have a spinlock and interrupts disabled, so we must pass 1172 * atomic context to this function, which may allocate memory. 1173 */ 1174 spin_lock_irqsave(&xhci->lock, flags); 1175 if (xhci->xhc_state & XHCI_STATE_DYING) 1176 goto dying; 1177 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1178 slot_id, ep_index); 1179 if (ret) 1180 goto free_priv; 1181 spin_unlock_irqrestore(&xhci->lock, flags); 1182 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1183 spin_lock_irqsave(&xhci->lock, flags); 1184 if (xhci->xhc_state & XHCI_STATE_DYING) 1185 goto dying; 1186 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1187 EP_GETTING_STREAMS) { 1188 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1189 "is transitioning to using streams.\n"); 1190 ret = -EINVAL; 1191 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1192 EP_GETTING_NO_STREAMS) { 1193 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1194 "is transitioning to " 1195 "not having streams.\n"); 1196 ret = -EINVAL; 1197 } else { 1198 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1199 slot_id, ep_index); 1200 } 1201 if (ret) 1202 goto free_priv; 1203 spin_unlock_irqrestore(&xhci->lock, flags); 1204 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1205 spin_lock_irqsave(&xhci->lock, flags); 1206 if (xhci->xhc_state & XHCI_STATE_DYING) 1207 goto dying; 1208 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1209 slot_id, ep_index); 1210 if (ret) 1211 goto free_priv; 1212 spin_unlock_irqrestore(&xhci->lock, flags); 1213 } else { 1214 spin_lock_irqsave(&xhci->lock, flags); 1215 if (xhci->xhc_state & XHCI_STATE_DYING) 1216 goto dying; 1217 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1218 slot_id, ep_index); 1219 if (ret) 1220 goto free_priv; 1221 spin_unlock_irqrestore(&xhci->lock, flags); 1222 } 1223 exit: 1224 return ret; 1225 dying: 1226 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1227 "non-responsive xHCI host.\n", 1228 urb->ep->desc.bEndpointAddress, urb); 1229 ret = -ESHUTDOWN; 1230 free_priv: 1231 xhci_urb_free_priv(xhci, urb_priv); 1232 urb->hcpriv = NULL; 1233 spin_unlock_irqrestore(&xhci->lock, flags); 1234 return ret; 1235 } 1236 1237 /* Get the right ring for the given URB. 1238 * If the endpoint supports streams, boundary check the URB's stream ID. 1239 * If the endpoint doesn't support streams, return the singular endpoint ring. 1240 */ 1241 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1242 struct urb *urb) 1243 { 1244 unsigned int slot_id; 1245 unsigned int ep_index; 1246 unsigned int stream_id; 1247 struct xhci_virt_ep *ep; 1248 1249 slot_id = urb->dev->slot_id; 1250 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1251 stream_id = urb->stream_id; 1252 ep = &xhci->devs[slot_id]->eps[ep_index]; 1253 /* Common case: no streams */ 1254 if (!(ep->ep_state & EP_HAS_STREAMS)) 1255 return ep->ring; 1256 1257 if (stream_id == 0) { 1258 xhci_warn(xhci, 1259 "WARN: Slot ID %u, ep index %u has streams, " 1260 "but URB has no stream ID.\n", 1261 slot_id, ep_index); 1262 return NULL; 1263 } 1264 1265 if (stream_id < ep->stream_info->num_streams) 1266 return ep->stream_info->stream_rings[stream_id]; 1267 1268 xhci_warn(xhci, 1269 "WARN: Slot ID %u, ep index %u has " 1270 "stream IDs 1 to %u allocated, " 1271 "but stream ID %u is requested.\n", 1272 slot_id, ep_index, 1273 ep->stream_info->num_streams - 1, 1274 stream_id); 1275 return NULL; 1276 } 1277 1278 /* 1279 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1280 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1281 * should pick up where it left off in the TD, unless a Set Transfer Ring 1282 * Dequeue Pointer is issued. 1283 * 1284 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1285 * the ring. Since the ring is a contiguous structure, they can't be physically 1286 * removed. Instead, there are two options: 1287 * 1288 * 1) If the HC is in the middle of processing the URB to be canceled, we 1289 * simply move the ring's dequeue pointer past those TRBs using the Set 1290 * Transfer Ring Dequeue Pointer command. This will be the common case, 1291 * when drivers timeout on the last submitted URB and attempt to cancel. 1292 * 1293 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1294 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1295 * HC will need to invalidate the any TRBs it has cached after the stop 1296 * endpoint command, as noted in the xHCI 0.95 errata. 1297 * 1298 * 3) The TD may have completed by the time the Stop Endpoint Command 1299 * completes, so software needs to handle that case too. 1300 * 1301 * This function should protect against the TD enqueueing code ringing the 1302 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1303 * It also needs to account for multiple cancellations on happening at the same 1304 * time for the same endpoint. 1305 * 1306 * Note that this function can be called in any context, or so says 1307 * usb_hcd_unlink_urb() 1308 */ 1309 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1310 { 1311 unsigned long flags; 1312 int ret, i; 1313 u32 temp; 1314 struct xhci_hcd *xhci; 1315 struct urb_priv *urb_priv; 1316 struct xhci_td *td; 1317 unsigned int ep_index; 1318 struct xhci_ring *ep_ring; 1319 struct xhci_virt_ep *ep; 1320 1321 xhci = hcd_to_xhci(hcd); 1322 spin_lock_irqsave(&xhci->lock, flags); 1323 /* Make sure the URB hasn't completed or been unlinked already */ 1324 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1325 if (ret || !urb->hcpriv) 1326 goto done; 1327 temp = xhci_readl(xhci, &xhci->op_regs->status); 1328 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1329 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1330 urb_priv = urb->hcpriv; 1331 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1332 td = urb_priv->td[i]; 1333 if (!list_empty(&td->td_list)) 1334 list_del_init(&td->td_list); 1335 if (!list_empty(&td->cancelled_td_list)) 1336 list_del_init(&td->cancelled_td_list); 1337 } 1338 1339 usb_hcd_unlink_urb_from_ep(hcd, urb); 1340 spin_unlock_irqrestore(&xhci->lock, flags); 1341 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1342 xhci_urb_free_priv(xhci, urb_priv); 1343 return ret; 1344 } 1345 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1346 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1347 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1348 "non-responsive xHCI host.\n", 1349 urb->ep->desc.bEndpointAddress, urb); 1350 /* Let the stop endpoint command watchdog timer (which set this 1351 * state) finish cleaning up the endpoint TD lists. We must 1352 * have caught it in the middle of dropping a lock and giving 1353 * back an URB. 1354 */ 1355 goto done; 1356 } 1357 1358 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1359 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1360 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1361 if (!ep_ring) { 1362 ret = -EINVAL; 1363 goto done; 1364 } 1365 1366 urb_priv = urb->hcpriv; 1367 i = urb_priv->td_cnt; 1368 if (i < urb_priv->length) 1369 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1370 "starting at offset 0x%llx\n", 1371 urb, urb->dev->devpath, 1372 urb->ep->desc.bEndpointAddress, 1373 (unsigned long long) xhci_trb_virt_to_dma( 1374 urb_priv->td[i]->start_seg, 1375 urb_priv->td[i]->first_trb)); 1376 1377 for (; i < urb_priv->length; i++) { 1378 td = urb_priv->td[i]; 1379 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1380 } 1381 1382 /* Queue a stop endpoint command, but only if this is 1383 * the first cancellation to be handled. 1384 */ 1385 if (!(ep->ep_state & EP_HALT_PENDING)) { 1386 ep->ep_state |= EP_HALT_PENDING; 1387 ep->stop_cmds_pending++; 1388 ep->stop_cmd_timer.expires = jiffies + 1389 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1390 add_timer(&ep->stop_cmd_timer); 1391 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1392 xhci_ring_cmd_db(xhci); 1393 } 1394 done: 1395 spin_unlock_irqrestore(&xhci->lock, flags); 1396 return ret; 1397 } 1398 1399 /* Drop an endpoint from a new bandwidth configuration for this device. 1400 * Only one call to this function is allowed per endpoint before 1401 * check_bandwidth() or reset_bandwidth() must be called. 1402 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1403 * add the endpoint to the schedule with possibly new parameters denoted by a 1404 * different endpoint descriptor in usb_host_endpoint. 1405 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1406 * not allowed. 1407 * 1408 * The USB core will not allow URBs to be queued to an endpoint that is being 1409 * disabled, so there's no need for mutual exclusion to protect 1410 * the xhci->devs[slot_id] structure. 1411 */ 1412 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1413 struct usb_host_endpoint *ep) 1414 { 1415 struct xhci_hcd *xhci; 1416 struct xhci_container_ctx *in_ctx, *out_ctx; 1417 struct xhci_input_control_ctx *ctrl_ctx; 1418 struct xhci_slot_ctx *slot_ctx; 1419 unsigned int last_ctx; 1420 unsigned int ep_index; 1421 struct xhci_ep_ctx *ep_ctx; 1422 u32 drop_flag; 1423 u32 new_add_flags, new_drop_flags, new_slot_info; 1424 int ret; 1425 1426 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1427 if (ret <= 0) 1428 return ret; 1429 xhci = hcd_to_xhci(hcd); 1430 if (xhci->xhc_state & XHCI_STATE_DYING) 1431 return -ENODEV; 1432 1433 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1434 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1435 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1436 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1437 __func__, drop_flag); 1438 return 0; 1439 } 1440 1441 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1442 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1443 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1444 ep_index = xhci_get_endpoint_index(&ep->desc); 1445 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1446 /* If the HC already knows the endpoint is disabled, 1447 * or the HCD has noted it is disabled, ignore this request 1448 */ 1449 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1450 cpu_to_le32(EP_STATE_DISABLED)) || 1451 le32_to_cpu(ctrl_ctx->drop_flags) & 1452 xhci_get_endpoint_flag(&ep->desc)) { 1453 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1454 __func__, ep); 1455 return 0; 1456 } 1457 1458 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1459 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1460 1461 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1462 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1463 1464 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1465 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1466 /* Update the last valid endpoint context, if we deleted the last one */ 1467 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1468 LAST_CTX(last_ctx)) { 1469 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1470 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1471 } 1472 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1473 1474 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1475 1476 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1477 (unsigned int) ep->desc.bEndpointAddress, 1478 udev->slot_id, 1479 (unsigned int) new_drop_flags, 1480 (unsigned int) new_add_flags, 1481 (unsigned int) new_slot_info); 1482 return 0; 1483 } 1484 1485 /* Add an endpoint to a new possible bandwidth configuration for this device. 1486 * Only one call to this function is allowed per endpoint before 1487 * check_bandwidth() or reset_bandwidth() must be called. 1488 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1489 * add the endpoint to the schedule with possibly new parameters denoted by a 1490 * different endpoint descriptor in usb_host_endpoint. 1491 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1492 * not allowed. 1493 * 1494 * The USB core will not allow URBs to be queued to an endpoint until the 1495 * configuration or alt setting is installed in the device, so there's no need 1496 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1497 */ 1498 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1499 struct usb_host_endpoint *ep) 1500 { 1501 struct xhci_hcd *xhci; 1502 struct xhci_container_ctx *in_ctx, *out_ctx; 1503 unsigned int ep_index; 1504 struct xhci_ep_ctx *ep_ctx; 1505 struct xhci_slot_ctx *slot_ctx; 1506 struct xhci_input_control_ctx *ctrl_ctx; 1507 u32 added_ctxs; 1508 unsigned int last_ctx; 1509 u32 new_add_flags, new_drop_flags, new_slot_info; 1510 struct xhci_virt_device *virt_dev; 1511 int ret = 0; 1512 1513 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1514 if (ret <= 0) { 1515 /* So we won't queue a reset ep command for a root hub */ 1516 ep->hcpriv = NULL; 1517 return ret; 1518 } 1519 xhci = hcd_to_xhci(hcd); 1520 if (xhci->xhc_state & XHCI_STATE_DYING) 1521 return -ENODEV; 1522 1523 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1524 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1525 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1526 /* FIXME when we have to issue an evaluate endpoint command to 1527 * deal with ep0 max packet size changing once we get the 1528 * descriptors 1529 */ 1530 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1531 __func__, added_ctxs); 1532 return 0; 1533 } 1534 1535 virt_dev = xhci->devs[udev->slot_id]; 1536 in_ctx = virt_dev->in_ctx; 1537 out_ctx = virt_dev->out_ctx; 1538 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1539 ep_index = xhci_get_endpoint_index(&ep->desc); 1540 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1541 1542 /* If this endpoint is already in use, and the upper layers are trying 1543 * to add it again without dropping it, reject the addition. 1544 */ 1545 if (virt_dev->eps[ep_index].ring && 1546 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1547 xhci_get_endpoint_flag(&ep->desc))) { 1548 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1549 "without dropping it.\n", 1550 (unsigned int) ep->desc.bEndpointAddress); 1551 return -EINVAL; 1552 } 1553 1554 /* If the HCD has already noted the endpoint is enabled, 1555 * ignore this request. 1556 */ 1557 if (le32_to_cpu(ctrl_ctx->add_flags) & 1558 xhci_get_endpoint_flag(&ep->desc)) { 1559 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1560 __func__, ep); 1561 return 0; 1562 } 1563 1564 /* 1565 * Configuration and alternate setting changes must be done in 1566 * process context, not interrupt context (or so documenation 1567 * for usb_set_interface() and usb_set_configuration() claim). 1568 */ 1569 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1570 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1571 __func__, ep->desc.bEndpointAddress); 1572 return -ENOMEM; 1573 } 1574 1575 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1576 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1577 1578 /* If xhci_endpoint_disable() was called for this endpoint, but the 1579 * xHC hasn't been notified yet through the check_bandwidth() call, 1580 * this re-adds a new state for the endpoint from the new endpoint 1581 * descriptors. We must drop and re-add this endpoint, so we leave the 1582 * drop flags alone. 1583 */ 1584 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1585 1586 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1587 /* Update the last valid endpoint context, if we just added one past */ 1588 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1589 LAST_CTX(last_ctx)) { 1590 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1591 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1592 } 1593 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1594 1595 /* Store the usb_device pointer for later use */ 1596 ep->hcpriv = udev; 1597 1598 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1599 (unsigned int) ep->desc.bEndpointAddress, 1600 udev->slot_id, 1601 (unsigned int) new_drop_flags, 1602 (unsigned int) new_add_flags, 1603 (unsigned int) new_slot_info); 1604 return 0; 1605 } 1606 1607 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1608 { 1609 struct xhci_input_control_ctx *ctrl_ctx; 1610 struct xhci_ep_ctx *ep_ctx; 1611 struct xhci_slot_ctx *slot_ctx; 1612 int i; 1613 1614 /* When a device's add flag and drop flag are zero, any subsequent 1615 * configure endpoint command will leave that endpoint's state 1616 * untouched. Make sure we don't leave any old state in the input 1617 * endpoint contexts. 1618 */ 1619 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1620 ctrl_ctx->drop_flags = 0; 1621 ctrl_ctx->add_flags = 0; 1622 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1623 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1624 /* Endpoint 0 is always valid */ 1625 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1626 for (i = 1; i < 31; ++i) { 1627 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1628 ep_ctx->ep_info = 0; 1629 ep_ctx->ep_info2 = 0; 1630 ep_ctx->deq = 0; 1631 ep_ctx->tx_info = 0; 1632 } 1633 } 1634 1635 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1636 struct usb_device *udev, u32 *cmd_status) 1637 { 1638 int ret; 1639 1640 switch (*cmd_status) { 1641 case COMP_ENOMEM: 1642 dev_warn(&udev->dev, "Not enough host controller resources " 1643 "for new device state.\n"); 1644 ret = -ENOMEM; 1645 /* FIXME: can we allocate more resources for the HC? */ 1646 break; 1647 case COMP_BW_ERR: 1648 case COMP_2ND_BW_ERR: 1649 dev_warn(&udev->dev, "Not enough bandwidth " 1650 "for new device state.\n"); 1651 ret = -ENOSPC; 1652 /* FIXME: can we go back to the old state? */ 1653 break; 1654 case COMP_TRB_ERR: 1655 /* the HCD set up something wrong */ 1656 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1657 "add flag = 1, " 1658 "and endpoint is not disabled.\n"); 1659 ret = -EINVAL; 1660 break; 1661 case COMP_DEV_ERR: 1662 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1663 "configure command.\n"); 1664 ret = -ENODEV; 1665 break; 1666 case COMP_SUCCESS: 1667 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1668 ret = 0; 1669 break; 1670 default: 1671 xhci_err(xhci, "ERROR: unexpected command completion " 1672 "code 0x%x.\n", *cmd_status); 1673 ret = -EINVAL; 1674 break; 1675 } 1676 return ret; 1677 } 1678 1679 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1680 struct usb_device *udev, u32 *cmd_status) 1681 { 1682 int ret; 1683 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1684 1685 switch (*cmd_status) { 1686 case COMP_EINVAL: 1687 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1688 "context command.\n"); 1689 ret = -EINVAL; 1690 break; 1691 case COMP_EBADSLT: 1692 dev_warn(&udev->dev, "WARN: slot not enabled for" 1693 "evaluate context command.\n"); 1694 case COMP_CTX_STATE: 1695 dev_warn(&udev->dev, "WARN: invalid context state for " 1696 "evaluate context command.\n"); 1697 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1698 ret = -EINVAL; 1699 break; 1700 case COMP_DEV_ERR: 1701 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1702 "context command.\n"); 1703 ret = -ENODEV; 1704 break; 1705 case COMP_MEL_ERR: 1706 /* Max Exit Latency too large error */ 1707 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1708 ret = -EINVAL; 1709 break; 1710 case COMP_SUCCESS: 1711 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1712 ret = 0; 1713 break; 1714 default: 1715 xhci_err(xhci, "ERROR: unexpected command completion " 1716 "code 0x%x.\n", *cmd_status); 1717 ret = -EINVAL; 1718 break; 1719 } 1720 return ret; 1721 } 1722 1723 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1724 struct xhci_container_ctx *in_ctx) 1725 { 1726 struct xhci_input_control_ctx *ctrl_ctx; 1727 u32 valid_add_flags; 1728 u32 valid_drop_flags; 1729 1730 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1731 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1732 * (bit 1). The default control endpoint is added during the Address 1733 * Device command and is never removed until the slot is disabled. 1734 */ 1735 valid_add_flags = ctrl_ctx->add_flags >> 2; 1736 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1737 1738 /* Use hweight32 to count the number of ones in the add flags, or 1739 * number of endpoints added. Don't count endpoints that are changed 1740 * (both added and dropped). 1741 */ 1742 return hweight32(valid_add_flags) - 1743 hweight32(valid_add_flags & valid_drop_flags); 1744 } 1745 1746 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1747 struct xhci_container_ctx *in_ctx) 1748 { 1749 struct xhci_input_control_ctx *ctrl_ctx; 1750 u32 valid_add_flags; 1751 u32 valid_drop_flags; 1752 1753 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1754 valid_add_flags = ctrl_ctx->add_flags >> 2; 1755 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1756 1757 return hweight32(valid_drop_flags) - 1758 hweight32(valid_add_flags & valid_drop_flags); 1759 } 1760 1761 /* 1762 * We need to reserve the new number of endpoints before the configure endpoint 1763 * command completes. We can't subtract the dropped endpoints from the number 1764 * of active endpoints until the command completes because we can oversubscribe 1765 * the host in this case: 1766 * 1767 * - the first configure endpoint command drops more endpoints than it adds 1768 * - a second configure endpoint command that adds more endpoints is queued 1769 * - the first configure endpoint command fails, so the config is unchanged 1770 * - the second command may succeed, even though there isn't enough resources 1771 * 1772 * Must be called with xhci->lock held. 1773 */ 1774 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1775 struct xhci_container_ctx *in_ctx) 1776 { 1777 u32 added_eps; 1778 1779 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1780 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1781 xhci_dbg(xhci, "Not enough ep ctxs: " 1782 "%u active, need to add %u, limit is %u.\n", 1783 xhci->num_active_eps, added_eps, 1784 xhci->limit_active_eps); 1785 return -ENOMEM; 1786 } 1787 xhci->num_active_eps += added_eps; 1788 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1789 xhci->num_active_eps); 1790 return 0; 1791 } 1792 1793 /* 1794 * The configure endpoint was failed by the xHC for some other reason, so we 1795 * need to revert the resources that failed configuration would have used. 1796 * 1797 * Must be called with xhci->lock held. 1798 */ 1799 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1800 struct xhci_container_ctx *in_ctx) 1801 { 1802 u32 num_failed_eps; 1803 1804 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1805 xhci->num_active_eps -= num_failed_eps; 1806 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1807 num_failed_eps, 1808 xhci->num_active_eps); 1809 } 1810 1811 /* 1812 * Now that the command has completed, clean up the active endpoint count by 1813 * subtracting out the endpoints that were dropped (but not changed). 1814 * 1815 * Must be called with xhci->lock held. 1816 */ 1817 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1818 struct xhci_container_ctx *in_ctx) 1819 { 1820 u32 num_dropped_eps; 1821 1822 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1823 xhci->num_active_eps -= num_dropped_eps; 1824 if (num_dropped_eps) 1825 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1826 num_dropped_eps, 1827 xhci->num_active_eps); 1828 } 1829 1830 unsigned int xhci_get_block_size(struct usb_device *udev) 1831 { 1832 switch (udev->speed) { 1833 case USB_SPEED_LOW: 1834 case USB_SPEED_FULL: 1835 return FS_BLOCK; 1836 case USB_SPEED_HIGH: 1837 return HS_BLOCK; 1838 case USB_SPEED_SUPER: 1839 return SS_BLOCK; 1840 case USB_SPEED_UNKNOWN: 1841 case USB_SPEED_WIRELESS: 1842 default: 1843 /* Should never happen */ 1844 return 1; 1845 } 1846 } 1847 1848 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1849 { 1850 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1851 return LS_OVERHEAD; 1852 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1853 return FS_OVERHEAD; 1854 return HS_OVERHEAD; 1855 } 1856 1857 /* If we are changing a LS/FS device under a HS hub, 1858 * make sure (if we are activating a new TT) that the HS bus has enough 1859 * bandwidth for this new TT. 1860 */ 1861 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1862 struct xhci_virt_device *virt_dev, 1863 int old_active_eps) 1864 { 1865 struct xhci_interval_bw_table *bw_table; 1866 struct xhci_tt_bw_info *tt_info; 1867 1868 /* Find the bandwidth table for the root port this TT is attached to. */ 1869 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1870 tt_info = virt_dev->tt_info; 1871 /* If this TT already had active endpoints, the bandwidth for this TT 1872 * has already been added. Removing all periodic endpoints (and thus 1873 * making the TT enactive) will only decrease the bandwidth used. 1874 */ 1875 if (old_active_eps) 1876 return 0; 1877 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1878 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 1879 return -ENOMEM; 1880 return 0; 1881 } 1882 /* Not sure why we would have no new active endpoints... 1883 * 1884 * Maybe because of an Evaluate Context change for a hub update or a 1885 * control endpoint 0 max packet size change? 1886 * FIXME: skip the bandwidth calculation in that case. 1887 */ 1888 return 0; 1889 } 1890 1891 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 1892 struct xhci_virt_device *virt_dev) 1893 { 1894 unsigned int bw_reserved; 1895 1896 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 1897 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 1898 return -ENOMEM; 1899 1900 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 1901 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 1902 return -ENOMEM; 1903 1904 return 0; 1905 } 1906 1907 /* 1908 * This algorithm is a very conservative estimate of the worst-case scheduling 1909 * scenario for any one interval. The hardware dynamically schedules the 1910 * packets, so we can't tell which microframe could be the limiting factor in 1911 * the bandwidth scheduling. This only takes into account periodic endpoints. 1912 * 1913 * Obviously, we can't solve an NP complete problem to find the minimum worst 1914 * case scenario. Instead, we come up with an estimate that is no less than 1915 * the worst case bandwidth used for any one microframe, but may be an 1916 * over-estimate. 1917 * 1918 * We walk the requirements for each endpoint by interval, starting with the 1919 * smallest interval, and place packets in the schedule where there is only one 1920 * possible way to schedule packets for that interval. In order to simplify 1921 * this algorithm, we record the largest max packet size for each interval, and 1922 * assume all packets will be that size. 1923 * 1924 * For interval 0, we obviously must schedule all packets for each interval. 1925 * The bandwidth for interval 0 is just the amount of data to be transmitted 1926 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 1927 * the number of packets). 1928 * 1929 * For interval 1, we have two possible microframes to schedule those packets 1930 * in. For this algorithm, if we can schedule the same number of packets for 1931 * each possible scheduling opportunity (each microframe), we will do so. The 1932 * remaining number of packets will be saved to be transmitted in the gaps in 1933 * the next interval's scheduling sequence. 1934 * 1935 * As we move those remaining packets to be scheduled with interval 2 packets, 1936 * we have to double the number of remaining packets to transmit. This is 1937 * because the intervals are actually powers of 2, and we would be transmitting 1938 * the previous interval's packets twice in this interval. We also have to be 1939 * sure that when we look at the largest max packet size for this interval, we 1940 * also look at the largest max packet size for the remaining packets and take 1941 * the greater of the two. 1942 * 1943 * The algorithm continues to evenly distribute packets in each scheduling 1944 * opportunity, and push the remaining packets out, until we get to the last 1945 * interval. Then those packets and their associated overhead are just added 1946 * to the bandwidth used. 1947 */ 1948 static int xhci_check_bw_table(struct xhci_hcd *xhci, 1949 struct xhci_virt_device *virt_dev, 1950 int old_active_eps) 1951 { 1952 unsigned int bw_reserved; 1953 unsigned int max_bandwidth; 1954 unsigned int bw_used; 1955 unsigned int block_size; 1956 struct xhci_interval_bw_table *bw_table; 1957 unsigned int packet_size = 0; 1958 unsigned int overhead = 0; 1959 unsigned int packets_transmitted = 0; 1960 unsigned int packets_remaining = 0; 1961 unsigned int i; 1962 1963 if (virt_dev->udev->speed == USB_SPEED_SUPER) 1964 return xhci_check_ss_bw(xhci, virt_dev); 1965 1966 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 1967 max_bandwidth = HS_BW_LIMIT; 1968 /* Convert percent of bus BW reserved to blocks reserved */ 1969 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 1970 } else { 1971 max_bandwidth = FS_BW_LIMIT; 1972 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 1973 } 1974 1975 bw_table = virt_dev->bw_table; 1976 /* We need to translate the max packet size and max ESIT payloads into 1977 * the units the hardware uses. 1978 */ 1979 block_size = xhci_get_block_size(virt_dev->udev); 1980 1981 /* If we are manipulating a LS/FS device under a HS hub, double check 1982 * that the HS bus has enough bandwidth if we are activing a new TT. 1983 */ 1984 if (virt_dev->tt_info) { 1985 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1986 virt_dev->real_port); 1987 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 1988 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 1989 "newly activated TT.\n"); 1990 return -ENOMEM; 1991 } 1992 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 1993 virt_dev->tt_info->slot_id, 1994 virt_dev->tt_info->ttport); 1995 } else { 1996 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1997 virt_dev->real_port); 1998 } 1999 2000 /* Add in how much bandwidth will be used for interval zero, or the 2001 * rounded max ESIT payload + number of packets * largest overhead. 2002 */ 2003 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2004 bw_table->interval_bw[0].num_packets * 2005 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2006 2007 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2008 unsigned int bw_added; 2009 unsigned int largest_mps; 2010 unsigned int interval_overhead; 2011 2012 /* 2013 * How many packets could we transmit in this interval? 2014 * If packets didn't fit in the previous interval, we will need 2015 * to transmit that many packets twice within this interval. 2016 */ 2017 packets_remaining = 2 * packets_remaining + 2018 bw_table->interval_bw[i].num_packets; 2019 2020 /* Find the largest max packet size of this or the previous 2021 * interval. 2022 */ 2023 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2024 largest_mps = 0; 2025 else { 2026 struct xhci_virt_ep *virt_ep; 2027 struct list_head *ep_entry; 2028 2029 ep_entry = bw_table->interval_bw[i].endpoints.next; 2030 virt_ep = list_entry(ep_entry, 2031 struct xhci_virt_ep, bw_endpoint_list); 2032 /* Convert to blocks, rounding up */ 2033 largest_mps = DIV_ROUND_UP( 2034 virt_ep->bw_info.max_packet_size, 2035 block_size); 2036 } 2037 if (largest_mps > packet_size) 2038 packet_size = largest_mps; 2039 2040 /* Use the larger overhead of this or the previous interval. */ 2041 interval_overhead = xhci_get_largest_overhead( 2042 &bw_table->interval_bw[i]); 2043 if (interval_overhead > overhead) 2044 overhead = interval_overhead; 2045 2046 /* How many packets can we evenly distribute across 2047 * (1 << (i + 1)) possible scheduling opportunities? 2048 */ 2049 packets_transmitted = packets_remaining >> (i + 1); 2050 2051 /* Add in the bandwidth used for those scheduled packets */ 2052 bw_added = packets_transmitted * (overhead + packet_size); 2053 2054 /* How many packets do we have remaining to transmit? */ 2055 packets_remaining = packets_remaining % (1 << (i + 1)); 2056 2057 /* What largest max packet size should those packets have? */ 2058 /* If we've transmitted all packets, don't carry over the 2059 * largest packet size. 2060 */ 2061 if (packets_remaining == 0) { 2062 packet_size = 0; 2063 overhead = 0; 2064 } else if (packets_transmitted > 0) { 2065 /* Otherwise if we do have remaining packets, and we've 2066 * scheduled some packets in this interval, take the 2067 * largest max packet size from endpoints with this 2068 * interval. 2069 */ 2070 packet_size = largest_mps; 2071 overhead = interval_overhead; 2072 } 2073 /* Otherwise carry over packet_size and overhead from the last 2074 * time we had a remainder. 2075 */ 2076 bw_used += bw_added; 2077 if (bw_used > max_bandwidth) { 2078 xhci_warn(xhci, "Not enough bandwidth. " 2079 "Proposed: %u, Max: %u\n", 2080 bw_used, max_bandwidth); 2081 return -ENOMEM; 2082 } 2083 } 2084 /* 2085 * Ok, we know we have some packets left over after even-handedly 2086 * scheduling interval 15. We don't know which microframes they will 2087 * fit into, so we over-schedule and say they will be scheduled every 2088 * microframe. 2089 */ 2090 if (packets_remaining > 0) 2091 bw_used += overhead + packet_size; 2092 2093 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2094 unsigned int port_index = virt_dev->real_port - 1; 2095 2096 /* OK, we're manipulating a HS device attached to a 2097 * root port bandwidth domain. Include the number of active TTs 2098 * in the bandwidth used. 2099 */ 2100 bw_used += TT_HS_OVERHEAD * 2101 xhci->rh_bw[port_index].num_active_tts; 2102 } 2103 2104 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2105 "Available: %u " "percent\n", 2106 bw_used, max_bandwidth, bw_reserved, 2107 (max_bandwidth - bw_used - bw_reserved) * 100 / 2108 max_bandwidth); 2109 2110 bw_used += bw_reserved; 2111 if (bw_used > max_bandwidth) { 2112 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2113 bw_used, max_bandwidth); 2114 return -ENOMEM; 2115 } 2116 2117 bw_table->bw_used = bw_used; 2118 return 0; 2119 } 2120 2121 static bool xhci_is_async_ep(unsigned int ep_type) 2122 { 2123 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2124 ep_type != ISOC_IN_EP && 2125 ep_type != INT_IN_EP); 2126 } 2127 2128 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2129 { 2130 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2131 } 2132 2133 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2134 { 2135 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2136 2137 if (ep_bw->ep_interval == 0) 2138 return SS_OVERHEAD_BURST + 2139 (ep_bw->mult * ep_bw->num_packets * 2140 (SS_OVERHEAD + mps)); 2141 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2142 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2143 1 << ep_bw->ep_interval); 2144 2145 } 2146 2147 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2148 struct xhci_bw_info *ep_bw, 2149 struct xhci_interval_bw_table *bw_table, 2150 struct usb_device *udev, 2151 struct xhci_virt_ep *virt_ep, 2152 struct xhci_tt_bw_info *tt_info) 2153 { 2154 struct xhci_interval_bw *interval_bw; 2155 int normalized_interval; 2156 2157 if (xhci_is_async_ep(ep_bw->type)) 2158 return; 2159 2160 if (udev->speed == USB_SPEED_SUPER) { 2161 if (xhci_is_sync_in_ep(ep_bw->type)) 2162 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2163 xhci_get_ss_bw_consumed(ep_bw); 2164 else 2165 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2166 xhci_get_ss_bw_consumed(ep_bw); 2167 return; 2168 } 2169 2170 /* SuperSpeed endpoints never get added to intervals in the table, so 2171 * this check is only valid for HS/FS/LS devices. 2172 */ 2173 if (list_empty(&virt_ep->bw_endpoint_list)) 2174 return; 2175 /* For LS/FS devices, we need to translate the interval expressed in 2176 * microframes to frames. 2177 */ 2178 if (udev->speed == USB_SPEED_HIGH) 2179 normalized_interval = ep_bw->ep_interval; 2180 else 2181 normalized_interval = ep_bw->ep_interval - 3; 2182 2183 if (normalized_interval == 0) 2184 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2185 interval_bw = &bw_table->interval_bw[normalized_interval]; 2186 interval_bw->num_packets -= ep_bw->num_packets; 2187 switch (udev->speed) { 2188 case USB_SPEED_LOW: 2189 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2190 break; 2191 case USB_SPEED_FULL: 2192 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2193 break; 2194 case USB_SPEED_HIGH: 2195 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2196 break; 2197 case USB_SPEED_SUPER: 2198 case USB_SPEED_UNKNOWN: 2199 case USB_SPEED_WIRELESS: 2200 /* Should never happen because only LS/FS/HS endpoints will get 2201 * added to the endpoint list. 2202 */ 2203 return; 2204 } 2205 if (tt_info) 2206 tt_info->active_eps -= 1; 2207 list_del_init(&virt_ep->bw_endpoint_list); 2208 } 2209 2210 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2211 struct xhci_bw_info *ep_bw, 2212 struct xhci_interval_bw_table *bw_table, 2213 struct usb_device *udev, 2214 struct xhci_virt_ep *virt_ep, 2215 struct xhci_tt_bw_info *tt_info) 2216 { 2217 struct xhci_interval_bw *interval_bw; 2218 struct xhci_virt_ep *smaller_ep; 2219 int normalized_interval; 2220 2221 if (xhci_is_async_ep(ep_bw->type)) 2222 return; 2223 2224 if (udev->speed == USB_SPEED_SUPER) { 2225 if (xhci_is_sync_in_ep(ep_bw->type)) 2226 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2227 xhci_get_ss_bw_consumed(ep_bw); 2228 else 2229 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2230 xhci_get_ss_bw_consumed(ep_bw); 2231 return; 2232 } 2233 2234 /* For LS/FS devices, we need to translate the interval expressed in 2235 * microframes to frames. 2236 */ 2237 if (udev->speed == USB_SPEED_HIGH) 2238 normalized_interval = ep_bw->ep_interval; 2239 else 2240 normalized_interval = ep_bw->ep_interval - 3; 2241 2242 if (normalized_interval == 0) 2243 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2244 interval_bw = &bw_table->interval_bw[normalized_interval]; 2245 interval_bw->num_packets += ep_bw->num_packets; 2246 switch (udev->speed) { 2247 case USB_SPEED_LOW: 2248 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2249 break; 2250 case USB_SPEED_FULL: 2251 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2252 break; 2253 case USB_SPEED_HIGH: 2254 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2255 break; 2256 case USB_SPEED_SUPER: 2257 case USB_SPEED_UNKNOWN: 2258 case USB_SPEED_WIRELESS: 2259 /* Should never happen because only LS/FS/HS endpoints will get 2260 * added to the endpoint list. 2261 */ 2262 return; 2263 } 2264 2265 if (tt_info) 2266 tt_info->active_eps += 1; 2267 /* Insert the endpoint into the list, largest max packet size first. */ 2268 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2269 bw_endpoint_list) { 2270 if (ep_bw->max_packet_size >= 2271 smaller_ep->bw_info.max_packet_size) { 2272 /* Add the new ep before the smaller endpoint */ 2273 list_add_tail(&virt_ep->bw_endpoint_list, 2274 &smaller_ep->bw_endpoint_list); 2275 return; 2276 } 2277 } 2278 /* Add the new endpoint at the end of the list. */ 2279 list_add_tail(&virt_ep->bw_endpoint_list, 2280 &interval_bw->endpoints); 2281 } 2282 2283 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2284 struct xhci_virt_device *virt_dev, 2285 int old_active_eps) 2286 { 2287 struct xhci_root_port_bw_info *rh_bw_info; 2288 if (!virt_dev->tt_info) 2289 return; 2290 2291 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2292 if (old_active_eps == 0 && 2293 virt_dev->tt_info->active_eps != 0) { 2294 rh_bw_info->num_active_tts += 1; 2295 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2296 } else if (old_active_eps != 0 && 2297 virt_dev->tt_info->active_eps == 0) { 2298 rh_bw_info->num_active_tts -= 1; 2299 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2300 } 2301 } 2302 2303 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2304 struct xhci_virt_device *virt_dev, 2305 struct xhci_container_ctx *in_ctx) 2306 { 2307 struct xhci_bw_info ep_bw_info[31]; 2308 int i; 2309 struct xhci_input_control_ctx *ctrl_ctx; 2310 int old_active_eps = 0; 2311 2312 if (virt_dev->tt_info) 2313 old_active_eps = virt_dev->tt_info->active_eps; 2314 2315 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2316 2317 for (i = 0; i < 31; i++) { 2318 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2319 continue; 2320 2321 /* Make a copy of the BW info in case we need to revert this */ 2322 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2323 sizeof(ep_bw_info[i])); 2324 /* Drop the endpoint from the interval table if the endpoint is 2325 * being dropped or changed. 2326 */ 2327 if (EP_IS_DROPPED(ctrl_ctx, i)) 2328 xhci_drop_ep_from_interval_table(xhci, 2329 &virt_dev->eps[i].bw_info, 2330 virt_dev->bw_table, 2331 virt_dev->udev, 2332 &virt_dev->eps[i], 2333 virt_dev->tt_info); 2334 } 2335 /* Overwrite the information stored in the endpoints' bw_info */ 2336 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2337 for (i = 0; i < 31; i++) { 2338 /* Add any changed or added endpoints to the interval table */ 2339 if (EP_IS_ADDED(ctrl_ctx, i)) 2340 xhci_add_ep_to_interval_table(xhci, 2341 &virt_dev->eps[i].bw_info, 2342 virt_dev->bw_table, 2343 virt_dev->udev, 2344 &virt_dev->eps[i], 2345 virt_dev->tt_info); 2346 } 2347 2348 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2349 /* Ok, this fits in the bandwidth we have. 2350 * Update the number of active TTs. 2351 */ 2352 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2353 return 0; 2354 } 2355 2356 /* We don't have enough bandwidth for this, revert the stored info. */ 2357 for (i = 0; i < 31; i++) { 2358 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2359 continue; 2360 2361 /* Drop the new copies of any added or changed endpoints from 2362 * the interval table. 2363 */ 2364 if (EP_IS_ADDED(ctrl_ctx, i)) { 2365 xhci_drop_ep_from_interval_table(xhci, 2366 &virt_dev->eps[i].bw_info, 2367 virt_dev->bw_table, 2368 virt_dev->udev, 2369 &virt_dev->eps[i], 2370 virt_dev->tt_info); 2371 } 2372 /* Revert the endpoint back to its old information */ 2373 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2374 sizeof(ep_bw_info[i])); 2375 /* Add any changed or dropped endpoints back into the table */ 2376 if (EP_IS_DROPPED(ctrl_ctx, i)) 2377 xhci_add_ep_to_interval_table(xhci, 2378 &virt_dev->eps[i].bw_info, 2379 virt_dev->bw_table, 2380 virt_dev->udev, 2381 &virt_dev->eps[i], 2382 virt_dev->tt_info); 2383 } 2384 return -ENOMEM; 2385 } 2386 2387 2388 /* Issue a configure endpoint command or evaluate context command 2389 * and wait for it to finish. 2390 */ 2391 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2392 struct usb_device *udev, 2393 struct xhci_command *command, 2394 bool ctx_change, bool must_succeed) 2395 { 2396 int ret; 2397 int timeleft; 2398 unsigned long flags; 2399 struct xhci_container_ctx *in_ctx; 2400 struct completion *cmd_completion; 2401 u32 *cmd_status; 2402 struct xhci_virt_device *virt_dev; 2403 2404 spin_lock_irqsave(&xhci->lock, flags); 2405 virt_dev = xhci->devs[udev->slot_id]; 2406 2407 if (command) 2408 in_ctx = command->in_ctx; 2409 else 2410 in_ctx = virt_dev->in_ctx; 2411 2412 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2413 xhci_reserve_host_resources(xhci, in_ctx)) { 2414 spin_unlock_irqrestore(&xhci->lock, flags); 2415 xhci_warn(xhci, "Not enough host resources, " 2416 "active endpoint contexts = %u\n", 2417 xhci->num_active_eps); 2418 return -ENOMEM; 2419 } 2420 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2421 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2422 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2423 xhci_free_host_resources(xhci, in_ctx); 2424 spin_unlock_irqrestore(&xhci->lock, flags); 2425 xhci_warn(xhci, "Not enough bandwidth\n"); 2426 return -ENOMEM; 2427 } 2428 2429 if (command) { 2430 cmd_completion = command->completion; 2431 cmd_status = &command->status; 2432 command->command_trb = xhci->cmd_ring->enqueue; 2433 2434 /* Enqueue pointer can be left pointing to the link TRB, 2435 * we must handle that 2436 */ 2437 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2438 command->command_trb = 2439 xhci->cmd_ring->enq_seg->next->trbs; 2440 2441 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2442 } else { 2443 cmd_completion = &virt_dev->cmd_completion; 2444 cmd_status = &virt_dev->cmd_status; 2445 } 2446 init_completion(cmd_completion); 2447 2448 if (!ctx_change) 2449 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2450 udev->slot_id, must_succeed); 2451 else 2452 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2453 udev->slot_id, must_succeed); 2454 if (ret < 0) { 2455 if (command) 2456 list_del(&command->cmd_list); 2457 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2458 xhci_free_host_resources(xhci, in_ctx); 2459 spin_unlock_irqrestore(&xhci->lock, flags); 2460 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2461 return -ENOMEM; 2462 } 2463 xhci_ring_cmd_db(xhci); 2464 spin_unlock_irqrestore(&xhci->lock, flags); 2465 2466 /* Wait for the configure endpoint command to complete */ 2467 timeleft = wait_for_completion_interruptible_timeout( 2468 cmd_completion, 2469 USB_CTRL_SET_TIMEOUT); 2470 if (timeleft <= 0) { 2471 xhci_warn(xhci, "%s while waiting for %s command\n", 2472 timeleft == 0 ? "Timeout" : "Signal", 2473 ctx_change == 0 ? 2474 "configure endpoint" : 2475 "evaluate context"); 2476 /* FIXME cancel the configure endpoint command */ 2477 return -ETIME; 2478 } 2479 2480 if (!ctx_change) 2481 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2482 else 2483 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2484 2485 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2486 spin_lock_irqsave(&xhci->lock, flags); 2487 /* If the command failed, remove the reserved resources. 2488 * Otherwise, clean up the estimate to include dropped eps. 2489 */ 2490 if (ret) 2491 xhci_free_host_resources(xhci, in_ctx); 2492 else 2493 xhci_finish_resource_reservation(xhci, in_ctx); 2494 spin_unlock_irqrestore(&xhci->lock, flags); 2495 } 2496 return ret; 2497 } 2498 2499 /* Called after one or more calls to xhci_add_endpoint() or 2500 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2501 * to call xhci_reset_bandwidth(). 2502 * 2503 * Since we are in the middle of changing either configuration or 2504 * installing a new alt setting, the USB core won't allow URBs to be 2505 * enqueued for any endpoint on the old config or interface. Nothing 2506 * else should be touching the xhci->devs[slot_id] structure, so we 2507 * don't need to take the xhci->lock for manipulating that. 2508 */ 2509 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2510 { 2511 int i; 2512 int ret = 0; 2513 struct xhci_hcd *xhci; 2514 struct xhci_virt_device *virt_dev; 2515 struct xhci_input_control_ctx *ctrl_ctx; 2516 struct xhci_slot_ctx *slot_ctx; 2517 2518 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2519 if (ret <= 0) 2520 return ret; 2521 xhci = hcd_to_xhci(hcd); 2522 if (xhci->xhc_state & XHCI_STATE_DYING) 2523 return -ENODEV; 2524 2525 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2526 virt_dev = xhci->devs[udev->slot_id]; 2527 2528 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2529 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2530 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2531 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2532 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2533 2534 /* Don't issue the command if there's no endpoints to update. */ 2535 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2536 ctrl_ctx->drop_flags == 0) 2537 return 0; 2538 2539 xhci_dbg(xhci, "New Input Control Context:\n"); 2540 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2541 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2542 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2543 2544 ret = xhci_configure_endpoint(xhci, udev, NULL, 2545 false, false); 2546 if (ret) { 2547 /* Callee should call reset_bandwidth() */ 2548 return ret; 2549 } 2550 2551 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2552 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2553 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2554 2555 /* Free any rings that were dropped, but not changed. */ 2556 for (i = 1; i < 31; ++i) { 2557 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2558 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2559 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2560 } 2561 xhci_zero_in_ctx(xhci, virt_dev); 2562 /* 2563 * Install any rings for completely new endpoints or changed endpoints, 2564 * and free or cache any old rings from changed endpoints. 2565 */ 2566 for (i = 1; i < 31; ++i) { 2567 if (!virt_dev->eps[i].new_ring) 2568 continue; 2569 /* Only cache or free the old ring if it exists. 2570 * It may not if this is the first add of an endpoint. 2571 */ 2572 if (virt_dev->eps[i].ring) { 2573 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2574 } 2575 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2576 virt_dev->eps[i].new_ring = NULL; 2577 } 2578 2579 return ret; 2580 } 2581 2582 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2583 { 2584 struct xhci_hcd *xhci; 2585 struct xhci_virt_device *virt_dev; 2586 int i, ret; 2587 2588 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2589 if (ret <= 0) 2590 return; 2591 xhci = hcd_to_xhci(hcd); 2592 2593 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2594 virt_dev = xhci->devs[udev->slot_id]; 2595 /* Free any rings allocated for added endpoints */ 2596 for (i = 0; i < 31; ++i) { 2597 if (virt_dev->eps[i].new_ring) { 2598 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2599 virt_dev->eps[i].new_ring = NULL; 2600 } 2601 } 2602 xhci_zero_in_ctx(xhci, virt_dev); 2603 } 2604 2605 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2606 struct xhci_container_ctx *in_ctx, 2607 struct xhci_container_ctx *out_ctx, 2608 u32 add_flags, u32 drop_flags) 2609 { 2610 struct xhci_input_control_ctx *ctrl_ctx; 2611 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2612 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2613 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2614 xhci_slot_copy(xhci, in_ctx, out_ctx); 2615 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2616 2617 xhci_dbg(xhci, "Input Context:\n"); 2618 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2619 } 2620 2621 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2622 unsigned int slot_id, unsigned int ep_index, 2623 struct xhci_dequeue_state *deq_state) 2624 { 2625 struct xhci_container_ctx *in_ctx; 2626 struct xhci_ep_ctx *ep_ctx; 2627 u32 added_ctxs; 2628 dma_addr_t addr; 2629 2630 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2631 xhci->devs[slot_id]->out_ctx, ep_index); 2632 in_ctx = xhci->devs[slot_id]->in_ctx; 2633 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2634 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2635 deq_state->new_deq_ptr); 2636 if (addr == 0) { 2637 xhci_warn(xhci, "WARN Cannot submit config ep after " 2638 "reset ep command\n"); 2639 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2640 deq_state->new_deq_seg, 2641 deq_state->new_deq_ptr); 2642 return; 2643 } 2644 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2645 2646 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2647 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2648 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2649 } 2650 2651 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2652 struct usb_device *udev, unsigned int ep_index) 2653 { 2654 struct xhci_dequeue_state deq_state; 2655 struct xhci_virt_ep *ep; 2656 2657 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2658 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2659 /* We need to move the HW's dequeue pointer past this TD, 2660 * or it will attempt to resend it on the next doorbell ring. 2661 */ 2662 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2663 ep_index, ep->stopped_stream, ep->stopped_td, 2664 &deq_state); 2665 2666 /* HW with the reset endpoint quirk will use the saved dequeue state to 2667 * issue a configure endpoint command later. 2668 */ 2669 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2670 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2671 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2672 ep_index, ep->stopped_stream, &deq_state); 2673 } else { 2674 /* Better hope no one uses the input context between now and the 2675 * reset endpoint completion! 2676 * XXX: No idea how this hardware will react when stream rings 2677 * are enabled. 2678 */ 2679 xhci_dbg(xhci, "Setting up input context for " 2680 "configure endpoint command\n"); 2681 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2682 ep_index, &deq_state); 2683 } 2684 } 2685 2686 /* Deal with stalled endpoints. The core should have sent the control message 2687 * to clear the halt condition. However, we need to make the xHCI hardware 2688 * reset its sequence number, since a device will expect a sequence number of 2689 * zero after the halt condition is cleared. 2690 * Context: in_interrupt 2691 */ 2692 void xhci_endpoint_reset(struct usb_hcd *hcd, 2693 struct usb_host_endpoint *ep) 2694 { 2695 struct xhci_hcd *xhci; 2696 struct usb_device *udev; 2697 unsigned int ep_index; 2698 unsigned long flags; 2699 int ret; 2700 struct xhci_virt_ep *virt_ep; 2701 2702 xhci = hcd_to_xhci(hcd); 2703 udev = (struct usb_device *) ep->hcpriv; 2704 /* Called with a root hub endpoint (or an endpoint that wasn't added 2705 * with xhci_add_endpoint() 2706 */ 2707 if (!ep->hcpriv) 2708 return; 2709 ep_index = xhci_get_endpoint_index(&ep->desc); 2710 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2711 if (!virt_ep->stopped_td) { 2712 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2713 ep->desc.bEndpointAddress); 2714 return; 2715 } 2716 if (usb_endpoint_xfer_control(&ep->desc)) { 2717 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2718 return; 2719 } 2720 2721 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2722 spin_lock_irqsave(&xhci->lock, flags); 2723 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2724 /* 2725 * Can't change the ring dequeue pointer until it's transitioned to the 2726 * stopped state, which is only upon a successful reset endpoint 2727 * command. Better hope that last command worked! 2728 */ 2729 if (!ret) { 2730 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2731 kfree(virt_ep->stopped_td); 2732 xhci_ring_cmd_db(xhci); 2733 } 2734 virt_ep->stopped_td = NULL; 2735 virt_ep->stopped_trb = NULL; 2736 virt_ep->stopped_stream = 0; 2737 spin_unlock_irqrestore(&xhci->lock, flags); 2738 2739 if (ret) 2740 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2741 } 2742 2743 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2744 struct usb_device *udev, struct usb_host_endpoint *ep, 2745 unsigned int slot_id) 2746 { 2747 int ret; 2748 unsigned int ep_index; 2749 unsigned int ep_state; 2750 2751 if (!ep) 2752 return -EINVAL; 2753 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2754 if (ret <= 0) 2755 return -EINVAL; 2756 if (ep->ss_ep_comp.bmAttributes == 0) { 2757 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2758 " descriptor for ep 0x%x does not support streams\n", 2759 ep->desc.bEndpointAddress); 2760 return -EINVAL; 2761 } 2762 2763 ep_index = xhci_get_endpoint_index(&ep->desc); 2764 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2765 if (ep_state & EP_HAS_STREAMS || 2766 ep_state & EP_GETTING_STREAMS) { 2767 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2768 "already has streams set up.\n", 2769 ep->desc.bEndpointAddress); 2770 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2771 "dynamic stream context array reallocation.\n"); 2772 return -EINVAL; 2773 } 2774 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2775 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2776 "endpoint 0x%x; URBs are pending.\n", 2777 ep->desc.bEndpointAddress); 2778 return -EINVAL; 2779 } 2780 return 0; 2781 } 2782 2783 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2784 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2785 { 2786 unsigned int max_streams; 2787 2788 /* The stream context array size must be a power of two */ 2789 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2790 /* 2791 * Find out how many primary stream array entries the host controller 2792 * supports. Later we may use secondary stream arrays (similar to 2nd 2793 * level page entries), but that's an optional feature for xHCI host 2794 * controllers. xHCs must support at least 4 stream IDs. 2795 */ 2796 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2797 if (*num_stream_ctxs > max_streams) { 2798 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2799 max_streams); 2800 *num_stream_ctxs = max_streams; 2801 *num_streams = max_streams; 2802 } 2803 } 2804 2805 /* Returns an error code if one of the endpoint already has streams. 2806 * This does not change any data structures, it only checks and gathers 2807 * information. 2808 */ 2809 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2810 struct usb_device *udev, 2811 struct usb_host_endpoint **eps, unsigned int num_eps, 2812 unsigned int *num_streams, u32 *changed_ep_bitmask) 2813 { 2814 unsigned int max_streams; 2815 unsigned int endpoint_flag; 2816 int i; 2817 int ret; 2818 2819 for (i = 0; i < num_eps; i++) { 2820 ret = xhci_check_streams_endpoint(xhci, udev, 2821 eps[i], udev->slot_id); 2822 if (ret < 0) 2823 return ret; 2824 2825 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2826 if (max_streams < (*num_streams - 1)) { 2827 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2828 eps[i]->desc.bEndpointAddress, 2829 max_streams); 2830 *num_streams = max_streams+1; 2831 } 2832 2833 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2834 if (*changed_ep_bitmask & endpoint_flag) 2835 return -EINVAL; 2836 *changed_ep_bitmask |= endpoint_flag; 2837 } 2838 return 0; 2839 } 2840 2841 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2842 struct usb_device *udev, 2843 struct usb_host_endpoint **eps, unsigned int num_eps) 2844 { 2845 u32 changed_ep_bitmask = 0; 2846 unsigned int slot_id; 2847 unsigned int ep_index; 2848 unsigned int ep_state; 2849 int i; 2850 2851 slot_id = udev->slot_id; 2852 if (!xhci->devs[slot_id]) 2853 return 0; 2854 2855 for (i = 0; i < num_eps; i++) { 2856 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2857 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2858 /* Are streams already being freed for the endpoint? */ 2859 if (ep_state & EP_GETTING_NO_STREAMS) { 2860 xhci_warn(xhci, "WARN Can't disable streams for " 2861 "endpoint 0x%x\n, " 2862 "streams are being disabled already.", 2863 eps[i]->desc.bEndpointAddress); 2864 return 0; 2865 } 2866 /* Are there actually any streams to free? */ 2867 if (!(ep_state & EP_HAS_STREAMS) && 2868 !(ep_state & EP_GETTING_STREAMS)) { 2869 xhci_warn(xhci, "WARN Can't disable streams for " 2870 "endpoint 0x%x\n, " 2871 "streams are already disabled!", 2872 eps[i]->desc.bEndpointAddress); 2873 xhci_warn(xhci, "WARN xhci_free_streams() called " 2874 "with non-streams endpoint\n"); 2875 return 0; 2876 } 2877 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2878 } 2879 return changed_ep_bitmask; 2880 } 2881 2882 /* 2883 * The USB device drivers use this function (though the HCD interface in USB 2884 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 2885 * coordinate mass storage command queueing across multiple endpoints (basically 2886 * a stream ID == a task ID). 2887 * 2888 * Setting up streams involves allocating the same size stream context array 2889 * for each endpoint and issuing a configure endpoint command for all endpoints. 2890 * 2891 * Don't allow the call to succeed if one endpoint only supports one stream 2892 * (which means it doesn't support streams at all). 2893 * 2894 * Drivers may get less stream IDs than they asked for, if the host controller 2895 * hardware or endpoints claim they can't support the number of requested 2896 * stream IDs. 2897 */ 2898 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 2899 struct usb_host_endpoint **eps, unsigned int num_eps, 2900 unsigned int num_streams, gfp_t mem_flags) 2901 { 2902 int i, ret; 2903 struct xhci_hcd *xhci; 2904 struct xhci_virt_device *vdev; 2905 struct xhci_command *config_cmd; 2906 unsigned int ep_index; 2907 unsigned int num_stream_ctxs; 2908 unsigned long flags; 2909 u32 changed_ep_bitmask = 0; 2910 2911 if (!eps) 2912 return -EINVAL; 2913 2914 /* Add one to the number of streams requested to account for 2915 * stream 0 that is reserved for xHCI usage. 2916 */ 2917 num_streams += 1; 2918 xhci = hcd_to_xhci(hcd); 2919 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2920 num_streams); 2921 2922 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2923 if (!config_cmd) { 2924 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2925 return -ENOMEM; 2926 } 2927 2928 /* Check to make sure all endpoints are not already configured for 2929 * streams. While we're at it, find the maximum number of streams that 2930 * all the endpoints will support and check for duplicate endpoints. 2931 */ 2932 spin_lock_irqsave(&xhci->lock, flags); 2933 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2934 num_eps, &num_streams, &changed_ep_bitmask); 2935 if (ret < 0) { 2936 xhci_free_command(xhci, config_cmd); 2937 spin_unlock_irqrestore(&xhci->lock, flags); 2938 return ret; 2939 } 2940 if (num_streams <= 1) { 2941 xhci_warn(xhci, "WARN: endpoints can't handle " 2942 "more than one stream.\n"); 2943 xhci_free_command(xhci, config_cmd); 2944 spin_unlock_irqrestore(&xhci->lock, flags); 2945 return -EINVAL; 2946 } 2947 vdev = xhci->devs[udev->slot_id]; 2948 /* Mark each endpoint as being in transition, so 2949 * xhci_urb_enqueue() will reject all URBs. 2950 */ 2951 for (i = 0; i < num_eps; i++) { 2952 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2953 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2954 } 2955 spin_unlock_irqrestore(&xhci->lock, flags); 2956 2957 /* Setup internal data structures and allocate HW data structures for 2958 * streams (but don't install the HW structures in the input context 2959 * until we're sure all memory allocation succeeded). 2960 */ 2961 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2962 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2963 num_stream_ctxs, num_streams); 2964 2965 for (i = 0; i < num_eps; i++) { 2966 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2967 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2968 num_stream_ctxs, 2969 num_streams, mem_flags); 2970 if (!vdev->eps[ep_index].stream_info) 2971 goto cleanup; 2972 /* Set maxPstreams in endpoint context and update deq ptr to 2973 * point to stream context array. FIXME 2974 */ 2975 } 2976 2977 /* Set up the input context for a configure endpoint command. */ 2978 for (i = 0; i < num_eps; i++) { 2979 struct xhci_ep_ctx *ep_ctx; 2980 2981 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2982 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2983 2984 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2985 vdev->out_ctx, ep_index); 2986 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2987 vdev->eps[ep_index].stream_info); 2988 } 2989 /* Tell the HW to drop its old copy of the endpoint context info 2990 * and add the updated copy from the input context. 2991 */ 2992 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2993 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2994 2995 /* Issue and wait for the configure endpoint command */ 2996 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2997 false, false); 2998 2999 /* xHC rejected the configure endpoint command for some reason, so we 3000 * leave the old ring intact and free our internal streams data 3001 * structure. 3002 */ 3003 if (ret < 0) 3004 goto cleanup; 3005 3006 spin_lock_irqsave(&xhci->lock, flags); 3007 for (i = 0; i < num_eps; i++) { 3008 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3009 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3010 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3011 udev->slot_id, ep_index); 3012 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3013 } 3014 xhci_free_command(xhci, config_cmd); 3015 spin_unlock_irqrestore(&xhci->lock, flags); 3016 3017 /* Subtract 1 for stream 0, which drivers can't use */ 3018 return num_streams - 1; 3019 3020 cleanup: 3021 /* If it didn't work, free the streams! */ 3022 for (i = 0; i < num_eps; i++) { 3023 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3024 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3025 vdev->eps[ep_index].stream_info = NULL; 3026 /* FIXME Unset maxPstreams in endpoint context and 3027 * update deq ptr to point to normal string ring. 3028 */ 3029 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3030 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3031 xhci_endpoint_zero(xhci, vdev, eps[i]); 3032 } 3033 xhci_free_command(xhci, config_cmd); 3034 return -ENOMEM; 3035 } 3036 3037 /* Transition the endpoint from using streams to being a "normal" endpoint 3038 * without streams. 3039 * 3040 * Modify the endpoint context state, submit a configure endpoint command, 3041 * and free all endpoint rings for streams if that completes successfully. 3042 */ 3043 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3044 struct usb_host_endpoint **eps, unsigned int num_eps, 3045 gfp_t mem_flags) 3046 { 3047 int i, ret; 3048 struct xhci_hcd *xhci; 3049 struct xhci_virt_device *vdev; 3050 struct xhci_command *command; 3051 unsigned int ep_index; 3052 unsigned long flags; 3053 u32 changed_ep_bitmask; 3054 3055 xhci = hcd_to_xhci(hcd); 3056 vdev = xhci->devs[udev->slot_id]; 3057 3058 /* Set up a configure endpoint command to remove the streams rings */ 3059 spin_lock_irqsave(&xhci->lock, flags); 3060 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3061 udev, eps, num_eps); 3062 if (changed_ep_bitmask == 0) { 3063 spin_unlock_irqrestore(&xhci->lock, flags); 3064 return -EINVAL; 3065 } 3066 3067 /* Use the xhci_command structure from the first endpoint. We may have 3068 * allocated too many, but the driver may call xhci_free_streams() for 3069 * each endpoint it grouped into one call to xhci_alloc_streams(). 3070 */ 3071 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3072 command = vdev->eps[ep_index].stream_info->free_streams_command; 3073 for (i = 0; i < num_eps; i++) { 3074 struct xhci_ep_ctx *ep_ctx; 3075 3076 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3077 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3078 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3079 EP_GETTING_NO_STREAMS; 3080 3081 xhci_endpoint_copy(xhci, command->in_ctx, 3082 vdev->out_ctx, ep_index); 3083 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3084 &vdev->eps[ep_index]); 3085 } 3086 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3087 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3088 spin_unlock_irqrestore(&xhci->lock, flags); 3089 3090 /* Issue and wait for the configure endpoint command, 3091 * which must succeed. 3092 */ 3093 ret = xhci_configure_endpoint(xhci, udev, command, 3094 false, true); 3095 3096 /* xHC rejected the configure endpoint command for some reason, so we 3097 * leave the streams rings intact. 3098 */ 3099 if (ret < 0) 3100 return ret; 3101 3102 spin_lock_irqsave(&xhci->lock, flags); 3103 for (i = 0; i < num_eps; i++) { 3104 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3105 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3106 vdev->eps[ep_index].stream_info = NULL; 3107 /* FIXME Unset maxPstreams in endpoint context and 3108 * update deq ptr to point to normal string ring. 3109 */ 3110 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3111 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3112 } 3113 spin_unlock_irqrestore(&xhci->lock, flags); 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * Deletes endpoint resources for endpoints that were active before a Reset 3120 * Device command, or a Disable Slot command. The Reset Device command leaves 3121 * the control endpoint intact, whereas the Disable Slot command deletes it. 3122 * 3123 * Must be called with xhci->lock held. 3124 */ 3125 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3126 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3127 { 3128 int i; 3129 unsigned int num_dropped_eps = 0; 3130 unsigned int drop_flags = 0; 3131 3132 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3133 if (virt_dev->eps[i].ring) { 3134 drop_flags |= 1 << i; 3135 num_dropped_eps++; 3136 } 3137 } 3138 xhci->num_active_eps -= num_dropped_eps; 3139 if (num_dropped_eps) 3140 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3141 "%u now active.\n", 3142 num_dropped_eps, drop_flags, 3143 xhci->num_active_eps); 3144 } 3145 3146 /* 3147 * This submits a Reset Device Command, which will set the device state to 0, 3148 * set the device address to 0, and disable all the endpoints except the default 3149 * control endpoint. The USB core should come back and call 3150 * xhci_address_device(), and then re-set up the configuration. If this is 3151 * called because of a usb_reset_and_verify_device(), then the old alternate 3152 * settings will be re-installed through the normal bandwidth allocation 3153 * functions. 3154 * 3155 * Wait for the Reset Device command to finish. Remove all structures 3156 * associated with the endpoints that were disabled. Clear the input device 3157 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3158 * 3159 * If the virt_dev to be reset does not exist or does not match the udev, 3160 * it means the device is lost, possibly due to the xHC restore error and 3161 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3162 * re-allocate the device. 3163 */ 3164 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3165 { 3166 int ret, i; 3167 unsigned long flags; 3168 struct xhci_hcd *xhci; 3169 unsigned int slot_id; 3170 struct xhci_virt_device *virt_dev; 3171 struct xhci_command *reset_device_cmd; 3172 int timeleft; 3173 int last_freed_endpoint; 3174 struct xhci_slot_ctx *slot_ctx; 3175 int old_active_eps = 0; 3176 3177 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3178 if (ret <= 0) 3179 return ret; 3180 xhci = hcd_to_xhci(hcd); 3181 slot_id = udev->slot_id; 3182 virt_dev = xhci->devs[slot_id]; 3183 if (!virt_dev) { 3184 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3185 "not exist. Re-allocate the device\n", slot_id); 3186 ret = xhci_alloc_dev(hcd, udev); 3187 if (ret == 1) 3188 return 0; 3189 else 3190 return -EINVAL; 3191 } 3192 3193 if (virt_dev->udev != udev) { 3194 /* If the virt_dev and the udev does not match, this virt_dev 3195 * may belong to another udev. 3196 * Re-allocate the device. 3197 */ 3198 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3199 "not match the udev. Re-allocate the device\n", 3200 slot_id); 3201 ret = xhci_alloc_dev(hcd, udev); 3202 if (ret == 1) 3203 return 0; 3204 else 3205 return -EINVAL; 3206 } 3207 3208 /* If device is not setup, there is no point in resetting it */ 3209 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3210 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3211 SLOT_STATE_DISABLED) 3212 return 0; 3213 3214 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3215 /* Allocate the command structure that holds the struct completion. 3216 * Assume we're in process context, since the normal device reset 3217 * process has to wait for the device anyway. Storage devices are 3218 * reset as part of error handling, so use GFP_NOIO instead of 3219 * GFP_KERNEL. 3220 */ 3221 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3222 if (!reset_device_cmd) { 3223 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3224 return -ENOMEM; 3225 } 3226 3227 /* Attempt to submit the Reset Device command to the command ring */ 3228 spin_lock_irqsave(&xhci->lock, flags); 3229 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3230 3231 /* Enqueue pointer can be left pointing to the link TRB, 3232 * we must handle that 3233 */ 3234 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3235 reset_device_cmd->command_trb = 3236 xhci->cmd_ring->enq_seg->next->trbs; 3237 3238 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3239 ret = xhci_queue_reset_device(xhci, slot_id); 3240 if (ret) { 3241 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3242 list_del(&reset_device_cmd->cmd_list); 3243 spin_unlock_irqrestore(&xhci->lock, flags); 3244 goto command_cleanup; 3245 } 3246 xhci_ring_cmd_db(xhci); 3247 spin_unlock_irqrestore(&xhci->lock, flags); 3248 3249 /* Wait for the Reset Device command to finish */ 3250 timeleft = wait_for_completion_interruptible_timeout( 3251 reset_device_cmd->completion, 3252 USB_CTRL_SET_TIMEOUT); 3253 if (timeleft <= 0) { 3254 xhci_warn(xhci, "%s while waiting for reset device command\n", 3255 timeleft == 0 ? "Timeout" : "Signal"); 3256 spin_lock_irqsave(&xhci->lock, flags); 3257 /* The timeout might have raced with the event ring handler, so 3258 * only delete from the list if the item isn't poisoned. 3259 */ 3260 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3261 list_del(&reset_device_cmd->cmd_list); 3262 spin_unlock_irqrestore(&xhci->lock, flags); 3263 ret = -ETIME; 3264 goto command_cleanup; 3265 } 3266 3267 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3268 * unless we tried to reset a slot ID that wasn't enabled, 3269 * or the device wasn't in the addressed or configured state. 3270 */ 3271 ret = reset_device_cmd->status; 3272 switch (ret) { 3273 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3274 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3275 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3276 slot_id, 3277 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3278 xhci_info(xhci, "Not freeing device rings.\n"); 3279 /* Don't treat this as an error. May change my mind later. */ 3280 ret = 0; 3281 goto command_cleanup; 3282 case COMP_SUCCESS: 3283 xhci_dbg(xhci, "Successful reset device command.\n"); 3284 break; 3285 default: 3286 if (xhci_is_vendor_info_code(xhci, ret)) 3287 break; 3288 xhci_warn(xhci, "Unknown completion code %u for " 3289 "reset device command.\n", ret); 3290 ret = -EINVAL; 3291 goto command_cleanup; 3292 } 3293 3294 /* Free up host controller endpoint resources */ 3295 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3296 spin_lock_irqsave(&xhci->lock, flags); 3297 /* Don't delete the default control endpoint resources */ 3298 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3299 spin_unlock_irqrestore(&xhci->lock, flags); 3300 } 3301 3302 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3303 last_freed_endpoint = 1; 3304 for (i = 1; i < 31; ++i) { 3305 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3306 3307 if (ep->ep_state & EP_HAS_STREAMS) { 3308 xhci_free_stream_info(xhci, ep->stream_info); 3309 ep->stream_info = NULL; 3310 ep->ep_state &= ~EP_HAS_STREAMS; 3311 } 3312 3313 if (ep->ring) { 3314 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3315 last_freed_endpoint = i; 3316 } 3317 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3318 xhci_drop_ep_from_interval_table(xhci, 3319 &virt_dev->eps[i].bw_info, 3320 virt_dev->bw_table, 3321 udev, 3322 &virt_dev->eps[i], 3323 virt_dev->tt_info); 3324 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3325 } 3326 /* If necessary, update the number of active TTs on this root port */ 3327 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3328 3329 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3330 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3331 ret = 0; 3332 3333 command_cleanup: 3334 xhci_free_command(xhci, reset_device_cmd); 3335 return ret; 3336 } 3337 3338 /* 3339 * At this point, the struct usb_device is about to go away, the device has 3340 * disconnected, and all traffic has been stopped and the endpoints have been 3341 * disabled. Free any HC data structures associated with that device. 3342 */ 3343 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3344 { 3345 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3346 struct xhci_virt_device *virt_dev; 3347 unsigned long flags; 3348 u32 state; 3349 int i, ret; 3350 3351 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3352 /* If the host is halted due to driver unload, we still need to free the 3353 * device. 3354 */ 3355 if (ret <= 0 && ret != -ENODEV) 3356 return; 3357 3358 virt_dev = xhci->devs[udev->slot_id]; 3359 3360 /* Stop any wayward timer functions (which may grab the lock) */ 3361 for (i = 0; i < 31; ++i) { 3362 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3363 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3364 } 3365 3366 if (udev->usb2_hw_lpm_enabled) { 3367 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3368 udev->usb2_hw_lpm_enabled = 0; 3369 } 3370 3371 spin_lock_irqsave(&xhci->lock, flags); 3372 /* Don't disable the slot if the host controller is dead. */ 3373 state = xhci_readl(xhci, &xhci->op_regs->status); 3374 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3375 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3376 xhci_free_virt_device(xhci, udev->slot_id); 3377 spin_unlock_irqrestore(&xhci->lock, flags); 3378 return; 3379 } 3380 3381 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3382 spin_unlock_irqrestore(&xhci->lock, flags); 3383 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3384 return; 3385 } 3386 xhci_ring_cmd_db(xhci); 3387 spin_unlock_irqrestore(&xhci->lock, flags); 3388 /* 3389 * Event command completion handler will free any data structures 3390 * associated with the slot. XXX Can free sleep? 3391 */ 3392 } 3393 3394 /* 3395 * Checks if we have enough host controller resources for the default control 3396 * endpoint. 3397 * 3398 * Must be called with xhci->lock held. 3399 */ 3400 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3401 { 3402 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3403 xhci_dbg(xhci, "Not enough ep ctxs: " 3404 "%u active, need to add 1, limit is %u.\n", 3405 xhci->num_active_eps, xhci->limit_active_eps); 3406 return -ENOMEM; 3407 } 3408 xhci->num_active_eps += 1; 3409 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3410 xhci->num_active_eps); 3411 return 0; 3412 } 3413 3414 3415 /* 3416 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3417 * timed out, or allocating memory failed. Returns 1 on success. 3418 */ 3419 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3420 { 3421 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3422 unsigned long flags; 3423 int timeleft; 3424 int ret; 3425 3426 spin_lock_irqsave(&xhci->lock, flags); 3427 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3428 if (ret) { 3429 spin_unlock_irqrestore(&xhci->lock, flags); 3430 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3431 return 0; 3432 } 3433 xhci_ring_cmd_db(xhci); 3434 spin_unlock_irqrestore(&xhci->lock, flags); 3435 3436 /* XXX: how much time for xHC slot assignment? */ 3437 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3438 USB_CTRL_SET_TIMEOUT); 3439 if (timeleft <= 0) { 3440 xhci_warn(xhci, "%s while waiting for a slot\n", 3441 timeleft == 0 ? "Timeout" : "Signal"); 3442 /* FIXME cancel the enable slot request */ 3443 return 0; 3444 } 3445 3446 if (!xhci->slot_id) { 3447 xhci_err(xhci, "Error while assigning device slot ID\n"); 3448 return 0; 3449 } 3450 3451 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3452 spin_lock_irqsave(&xhci->lock, flags); 3453 ret = xhci_reserve_host_control_ep_resources(xhci); 3454 if (ret) { 3455 spin_unlock_irqrestore(&xhci->lock, flags); 3456 xhci_warn(xhci, "Not enough host resources, " 3457 "active endpoint contexts = %u\n", 3458 xhci->num_active_eps); 3459 goto disable_slot; 3460 } 3461 spin_unlock_irqrestore(&xhci->lock, flags); 3462 } 3463 /* Use GFP_NOIO, since this function can be called from 3464 * xhci_discover_or_reset_device(), which may be called as part of 3465 * mass storage driver error handling. 3466 */ 3467 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3468 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3469 goto disable_slot; 3470 } 3471 udev->slot_id = xhci->slot_id; 3472 /* Is this a LS or FS device under a HS hub? */ 3473 /* Hub or peripherial? */ 3474 return 1; 3475 3476 disable_slot: 3477 /* Disable slot, if we can do it without mem alloc */ 3478 spin_lock_irqsave(&xhci->lock, flags); 3479 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3480 xhci_ring_cmd_db(xhci); 3481 spin_unlock_irqrestore(&xhci->lock, flags); 3482 return 0; 3483 } 3484 3485 /* 3486 * Issue an Address Device command (which will issue a SetAddress request to 3487 * the device). 3488 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3489 * we should only issue and wait on one address command at the same time. 3490 * 3491 * We add one to the device address issued by the hardware because the USB core 3492 * uses address 1 for the root hubs (even though they're not really devices). 3493 */ 3494 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3495 { 3496 unsigned long flags; 3497 int timeleft; 3498 struct xhci_virt_device *virt_dev; 3499 int ret = 0; 3500 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3501 struct xhci_slot_ctx *slot_ctx; 3502 struct xhci_input_control_ctx *ctrl_ctx; 3503 u64 temp_64; 3504 3505 if (!udev->slot_id) { 3506 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3507 return -EINVAL; 3508 } 3509 3510 virt_dev = xhci->devs[udev->slot_id]; 3511 3512 if (WARN_ON(!virt_dev)) { 3513 /* 3514 * In plug/unplug torture test with an NEC controller, 3515 * a zero-dereference was observed once due to virt_dev = 0. 3516 * Print useful debug rather than crash if it is observed again! 3517 */ 3518 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3519 udev->slot_id); 3520 return -EINVAL; 3521 } 3522 3523 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3524 /* 3525 * If this is the first Set Address since device plug-in or 3526 * virt_device realloaction after a resume with an xHCI power loss, 3527 * then set up the slot context. 3528 */ 3529 if (!slot_ctx->dev_info) 3530 xhci_setup_addressable_virt_dev(xhci, udev); 3531 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3532 else 3533 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3534 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3535 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3536 ctrl_ctx->drop_flags = 0; 3537 3538 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3539 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3540 3541 spin_lock_irqsave(&xhci->lock, flags); 3542 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3543 udev->slot_id); 3544 if (ret) { 3545 spin_unlock_irqrestore(&xhci->lock, flags); 3546 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3547 return ret; 3548 } 3549 xhci_ring_cmd_db(xhci); 3550 spin_unlock_irqrestore(&xhci->lock, flags); 3551 3552 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3553 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3554 USB_CTRL_SET_TIMEOUT); 3555 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3556 * the SetAddress() "recovery interval" required by USB and aborting the 3557 * command on a timeout. 3558 */ 3559 if (timeleft <= 0) { 3560 xhci_warn(xhci, "%s while waiting for address device command\n", 3561 timeleft == 0 ? "Timeout" : "Signal"); 3562 /* FIXME cancel the address device command */ 3563 return -ETIME; 3564 } 3565 3566 switch (virt_dev->cmd_status) { 3567 case COMP_CTX_STATE: 3568 case COMP_EBADSLT: 3569 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3570 udev->slot_id); 3571 ret = -EINVAL; 3572 break; 3573 case COMP_TX_ERR: 3574 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3575 ret = -EPROTO; 3576 break; 3577 case COMP_DEV_ERR: 3578 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3579 "device command.\n"); 3580 ret = -ENODEV; 3581 break; 3582 case COMP_SUCCESS: 3583 xhci_dbg(xhci, "Successful Address Device command\n"); 3584 break; 3585 default: 3586 xhci_err(xhci, "ERROR: unexpected command completion " 3587 "code 0x%x.\n", virt_dev->cmd_status); 3588 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3589 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3590 ret = -EINVAL; 3591 break; 3592 } 3593 if (ret) { 3594 return ret; 3595 } 3596 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3597 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3598 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3599 udev->slot_id, 3600 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3601 (unsigned long long) 3602 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3603 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3604 (unsigned long long)virt_dev->out_ctx->dma); 3605 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3606 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3607 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3608 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3609 /* 3610 * USB core uses address 1 for the roothubs, so we add one to the 3611 * address given back to us by the HC. 3612 */ 3613 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3614 /* Use kernel assigned address for devices; store xHC assigned 3615 * address locally. */ 3616 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3617 + 1; 3618 /* Zero the input context control for later use */ 3619 ctrl_ctx->add_flags = 0; 3620 ctrl_ctx->drop_flags = 0; 3621 3622 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3623 3624 return 0; 3625 } 3626 3627 #ifdef CONFIG_USB_SUSPEND 3628 3629 /* BESL to HIRD Encoding array for USB2 LPM */ 3630 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3631 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3632 3633 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3634 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3635 struct usb_device *udev) 3636 { 3637 int u2del, besl, besl_host; 3638 int besl_device = 0; 3639 u32 field; 3640 3641 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3642 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3643 3644 if (field & USB_BESL_SUPPORT) { 3645 for (besl_host = 0; besl_host < 16; besl_host++) { 3646 if (xhci_besl_encoding[besl_host] >= u2del) 3647 break; 3648 } 3649 /* Use baseline BESL value as default */ 3650 if (field & USB_BESL_BASELINE_VALID) 3651 besl_device = USB_GET_BESL_BASELINE(field); 3652 else if (field & USB_BESL_DEEP_VALID) 3653 besl_device = USB_GET_BESL_DEEP(field); 3654 } else { 3655 if (u2del <= 50) 3656 besl_host = 0; 3657 else 3658 besl_host = (u2del - 51) / 75 + 1; 3659 } 3660 3661 besl = besl_host + besl_device; 3662 if (besl > 15) 3663 besl = 15; 3664 3665 return besl; 3666 } 3667 3668 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3669 struct usb_device *udev) 3670 { 3671 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3672 struct dev_info *dev_info; 3673 __le32 __iomem **port_array; 3674 __le32 __iomem *addr, *pm_addr; 3675 u32 temp, dev_id; 3676 unsigned int port_num; 3677 unsigned long flags; 3678 int hird; 3679 int ret; 3680 3681 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3682 !udev->lpm_capable) 3683 return -EINVAL; 3684 3685 /* we only support lpm for non-hub device connected to root hub yet */ 3686 if (!udev->parent || udev->parent->parent || 3687 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3688 return -EINVAL; 3689 3690 spin_lock_irqsave(&xhci->lock, flags); 3691 3692 /* Look for devices in lpm_failed_devs list */ 3693 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3694 le16_to_cpu(udev->descriptor.idProduct); 3695 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3696 if (dev_info->dev_id == dev_id) { 3697 ret = -EINVAL; 3698 goto finish; 3699 } 3700 } 3701 3702 port_array = xhci->usb2_ports; 3703 port_num = udev->portnum - 1; 3704 3705 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3706 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3707 ret = -EINVAL; 3708 goto finish; 3709 } 3710 3711 /* 3712 * Test USB 2.0 software LPM. 3713 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3714 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3715 * in the June 2011 errata release. 3716 */ 3717 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3718 /* 3719 * Set L1 Device Slot and HIRD/BESL. 3720 * Check device's USB 2.0 extension descriptor to determine whether 3721 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3722 */ 3723 pm_addr = port_array[port_num] + 1; 3724 hird = xhci_calculate_hird_besl(xhci, udev); 3725 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3726 xhci_writel(xhci, temp, pm_addr); 3727 3728 /* Set port link state to U2(L1) */ 3729 addr = port_array[port_num]; 3730 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3731 3732 /* wait for ACK */ 3733 spin_unlock_irqrestore(&xhci->lock, flags); 3734 msleep(10); 3735 spin_lock_irqsave(&xhci->lock, flags); 3736 3737 /* Check L1 Status */ 3738 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3739 if (ret != -ETIMEDOUT) { 3740 /* enter L1 successfully */ 3741 temp = xhci_readl(xhci, addr); 3742 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3743 port_num, temp); 3744 ret = 0; 3745 } else { 3746 temp = xhci_readl(xhci, pm_addr); 3747 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3748 port_num, temp & PORT_L1S_MASK); 3749 ret = -EINVAL; 3750 } 3751 3752 /* Resume the port */ 3753 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3754 3755 spin_unlock_irqrestore(&xhci->lock, flags); 3756 msleep(10); 3757 spin_lock_irqsave(&xhci->lock, flags); 3758 3759 /* Clear PLC */ 3760 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3761 3762 /* Check PORTSC to make sure the device is in the right state */ 3763 if (!ret) { 3764 temp = xhci_readl(xhci, addr); 3765 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3766 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3767 (temp & PORT_PLS_MASK) != XDEV_U0) { 3768 xhci_dbg(xhci, "port L1 resume fail\n"); 3769 ret = -EINVAL; 3770 } 3771 } 3772 3773 if (ret) { 3774 /* Insert dev to lpm_failed_devs list */ 3775 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3776 "re-enumerate\n"); 3777 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3778 if (!dev_info) { 3779 ret = -ENOMEM; 3780 goto finish; 3781 } 3782 dev_info->dev_id = dev_id; 3783 INIT_LIST_HEAD(&dev_info->list); 3784 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3785 } else { 3786 xhci_ring_device(xhci, udev->slot_id); 3787 } 3788 3789 finish: 3790 spin_unlock_irqrestore(&xhci->lock, flags); 3791 return ret; 3792 } 3793 3794 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3795 struct usb_device *udev, int enable) 3796 { 3797 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3798 __le32 __iomem **port_array; 3799 __le32 __iomem *pm_addr; 3800 u32 temp; 3801 unsigned int port_num; 3802 unsigned long flags; 3803 int hird; 3804 3805 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3806 !udev->lpm_capable) 3807 return -EPERM; 3808 3809 if (!udev->parent || udev->parent->parent || 3810 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3811 return -EPERM; 3812 3813 if (udev->usb2_hw_lpm_capable != 1) 3814 return -EPERM; 3815 3816 spin_lock_irqsave(&xhci->lock, flags); 3817 3818 port_array = xhci->usb2_ports; 3819 port_num = udev->portnum - 1; 3820 pm_addr = port_array[port_num] + 1; 3821 temp = xhci_readl(xhci, pm_addr); 3822 3823 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3824 enable ? "enable" : "disable", port_num); 3825 3826 hird = xhci_calculate_hird_besl(xhci, udev); 3827 3828 if (enable) { 3829 temp &= ~PORT_HIRD_MASK; 3830 temp |= PORT_HIRD(hird) | PORT_RWE; 3831 xhci_writel(xhci, temp, pm_addr); 3832 temp = xhci_readl(xhci, pm_addr); 3833 temp |= PORT_HLE; 3834 xhci_writel(xhci, temp, pm_addr); 3835 } else { 3836 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3837 xhci_writel(xhci, temp, pm_addr); 3838 } 3839 3840 spin_unlock_irqrestore(&xhci->lock, flags); 3841 return 0; 3842 } 3843 3844 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3845 { 3846 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3847 int ret; 3848 3849 ret = xhci_usb2_software_lpm_test(hcd, udev); 3850 if (!ret) { 3851 xhci_dbg(xhci, "software LPM test succeed\n"); 3852 if (xhci->hw_lpm_support == 1) { 3853 udev->usb2_hw_lpm_capable = 1; 3854 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3855 if (!ret) 3856 udev->usb2_hw_lpm_enabled = 1; 3857 } 3858 } 3859 3860 return 0; 3861 } 3862 3863 #else 3864 3865 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3866 struct usb_device *udev, int enable) 3867 { 3868 return 0; 3869 } 3870 3871 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3872 { 3873 return 0; 3874 } 3875 3876 #endif /* CONFIG_USB_SUSPEND */ 3877 3878 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 3879 3880 #ifdef CONFIG_PM 3881 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 3882 static unsigned long long xhci_service_interval_to_ns( 3883 struct usb_endpoint_descriptor *desc) 3884 { 3885 return (1 << (desc->bInterval - 1)) * 125 * 1000; 3886 } 3887 3888 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 3889 enum usb3_link_state state) 3890 { 3891 unsigned long long sel; 3892 unsigned long long pel; 3893 unsigned int max_sel_pel; 3894 char *state_name; 3895 3896 switch (state) { 3897 case USB3_LPM_U1: 3898 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 3899 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 3900 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 3901 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 3902 state_name = "U1"; 3903 break; 3904 case USB3_LPM_U2: 3905 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 3906 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 3907 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 3908 state_name = "U2"; 3909 break; 3910 default: 3911 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 3912 __func__); 3913 return USB3_LPM_DISABLED; 3914 } 3915 3916 if (sel <= max_sel_pel && pel <= max_sel_pel) 3917 return USB3_LPM_DEVICE_INITIATED; 3918 3919 if (sel > max_sel_pel) 3920 dev_dbg(&udev->dev, "Device-initiated %s disabled " 3921 "due to long SEL %llu ms\n", 3922 state_name, sel); 3923 else 3924 dev_dbg(&udev->dev, "Device-initiated %s disabled " 3925 "due to long PEL %llu\n ms", 3926 state_name, pel); 3927 return USB3_LPM_DISABLED; 3928 } 3929 3930 /* Returns the hub-encoded U1 timeout value. 3931 * The U1 timeout should be the maximum of the following values: 3932 * - For control endpoints, U1 system exit latency (SEL) * 3 3933 * - For bulk endpoints, U1 SEL * 5 3934 * - For interrupt endpoints: 3935 * - Notification EPs, U1 SEL * 3 3936 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 3937 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 3938 */ 3939 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 3940 struct usb_endpoint_descriptor *desc) 3941 { 3942 unsigned long long timeout_ns; 3943 int ep_type; 3944 int intr_type; 3945 3946 ep_type = usb_endpoint_type(desc); 3947 switch (ep_type) { 3948 case USB_ENDPOINT_XFER_CONTROL: 3949 timeout_ns = udev->u1_params.sel * 3; 3950 break; 3951 case USB_ENDPOINT_XFER_BULK: 3952 timeout_ns = udev->u1_params.sel * 5; 3953 break; 3954 case USB_ENDPOINT_XFER_INT: 3955 intr_type = usb_endpoint_interrupt_type(desc); 3956 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 3957 timeout_ns = udev->u1_params.sel * 3; 3958 break; 3959 } 3960 /* Otherwise the calculation is the same as isoc eps */ 3961 case USB_ENDPOINT_XFER_ISOC: 3962 timeout_ns = xhci_service_interval_to_ns(desc); 3963 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 3964 if (timeout_ns < udev->u1_params.sel * 2) 3965 timeout_ns = udev->u1_params.sel * 2; 3966 break; 3967 default: 3968 return 0; 3969 } 3970 3971 /* The U1 timeout is encoded in 1us intervals. */ 3972 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 3973 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 3974 if (timeout_ns == USB3_LPM_DISABLED) 3975 timeout_ns++; 3976 3977 /* If the necessary timeout value is bigger than what we can set in the 3978 * USB 3.0 hub, we have to disable hub-initiated U1. 3979 */ 3980 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 3981 return timeout_ns; 3982 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 3983 "due to long timeout %llu ms\n", timeout_ns); 3984 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 3985 } 3986 3987 /* Returns the hub-encoded U2 timeout value. 3988 * The U2 timeout should be the maximum of: 3989 * - 10 ms (to avoid the bandwidth impact on the scheduler) 3990 * - largest bInterval of any active periodic endpoint (to avoid going 3991 * into lower power link states between intervals). 3992 * - the U2 Exit Latency of the device 3993 */ 3994 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 3995 struct usb_endpoint_descriptor *desc) 3996 { 3997 unsigned long long timeout_ns; 3998 unsigned long long u2_del_ns; 3999 4000 timeout_ns = 10 * 1000 * 1000; 4001 4002 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4003 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4004 timeout_ns = xhci_service_interval_to_ns(desc); 4005 4006 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000; 4007 if (u2_del_ns > timeout_ns) 4008 timeout_ns = u2_del_ns; 4009 4010 /* The U2 timeout is encoded in 256us intervals */ 4011 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4012 /* If the necessary timeout value is bigger than what we can set in the 4013 * USB 3.0 hub, we have to disable hub-initiated U2. 4014 */ 4015 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4016 return timeout_ns; 4017 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4018 "due to long timeout %llu ms\n", timeout_ns); 4019 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4020 } 4021 4022 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4023 struct usb_device *udev, 4024 struct usb_endpoint_descriptor *desc, 4025 enum usb3_link_state state, 4026 u16 *timeout) 4027 { 4028 if (state == USB3_LPM_U1) { 4029 if (xhci->quirks & XHCI_INTEL_HOST) 4030 return xhci_calculate_intel_u1_timeout(udev, desc); 4031 } else { 4032 if (xhci->quirks & XHCI_INTEL_HOST) 4033 return xhci_calculate_intel_u2_timeout(udev, desc); 4034 } 4035 4036 return USB3_LPM_DISABLED; 4037 } 4038 4039 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4040 struct usb_device *udev, 4041 struct usb_endpoint_descriptor *desc, 4042 enum usb3_link_state state, 4043 u16 *timeout) 4044 { 4045 u16 alt_timeout; 4046 4047 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4048 desc, state, timeout); 4049 4050 /* If we found we can't enable hub-initiated LPM, or 4051 * the U1 or U2 exit latency was too high to allow 4052 * device-initiated LPM as well, just stop searching. 4053 */ 4054 if (alt_timeout == USB3_LPM_DISABLED || 4055 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4056 *timeout = alt_timeout; 4057 return -E2BIG; 4058 } 4059 if (alt_timeout > *timeout) 4060 *timeout = alt_timeout; 4061 return 0; 4062 } 4063 4064 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4065 struct usb_device *udev, 4066 struct usb_host_interface *alt, 4067 enum usb3_link_state state, 4068 u16 *timeout) 4069 { 4070 int j; 4071 4072 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4073 if (xhci_update_timeout_for_endpoint(xhci, udev, 4074 &alt->endpoint[j].desc, state, timeout)) 4075 return -E2BIG; 4076 continue; 4077 } 4078 return 0; 4079 } 4080 4081 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4082 enum usb3_link_state state) 4083 { 4084 struct usb_device *parent; 4085 unsigned int num_hubs; 4086 4087 if (state == USB3_LPM_U2) 4088 return 0; 4089 4090 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4091 for (parent = udev->parent, num_hubs = 0; parent->parent; 4092 parent = parent->parent) 4093 num_hubs++; 4094 4095 if (num_hubs < 2) 4096 return 0; 4097 4098 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4099 " below second-tier hub.\n"); 4100 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4101 "to decrease power consumption.\n"); 4102 return -E2BIG; 4103 } 4104 4105 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4106 struct usb_device *udev, 4107 enum usb3_link_state state) 4108 { 4109 if (xhci->quirks & XHCI_INTEL_HOST) 4110 return xhci_check_intel_tier_policy(udev, state); 4111 return -EINVAL; 4112 } 4113 4114 /* Returns the U1 or U2 timeout that should be enabled. 4115 * If the tier check or timeout setting functions return with a non-zero exit 4116 * code, that means the timeout value has been finalized and we shouldn't look 4117 * at any more endpoints. 4118 */ 4119 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4120 struct usb_device *udev, enum usb3_link_state state) 4121 { 4122 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4123 struct usb_host_config *config; 4124 char *state_name; 4125 int i; 4126 u16 timeout = USB3_LPM_DISABLED; 4127 4128 if (state == USB3_LPM_U1) 4129 state_name = "U1"; 4130 else if (state == USB3_LPM_U2) 4131 state_name = "U2"; 4132 else { 4133 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4134 state); 4135 return timeout; 4136 } 4137 4138 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4139 return timeout; 4140 4141 /* Gather some information about the currently installed configuration 4142 * and alternate interface settings. 4143 */ 4144 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4145 state, &timeout)) 4146 return timeout; 4147 4148 config = udev->actconfig; 4149 if (!config) 4150 return timeout; 4151 4152 for (i = 0; i < USB_MAXINTERFACES; i++) { 4153 struct usb_driver *driver; 4154 struct usb_interface *intf = config->interface[i]; 4155 4156 if (!intf) 4157 continue; 4158 4159 /* Check if any currently bound drivers want hub-initiated LPM 4160 * disabled. 4161 */ 4162 if (intf->dev.driver) { 4163 driver = to_usb_driver(intf->dev.driver); 4164 if (driver && driver->disable_hub_initiated_lpm) { 4165 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4166 "at request of driver %s\n", 4167 state_name, driver->name); 4168 return xhci_get_timeout_no_hub_lpm(udev, state); 4169 } 4170 } 4171 4172 /* Not sure how this could happen... */ 4173 if (!intf->cur_altsetting) 4174 continue; 4175 4176 if (xhci_update_timeout_for_interface(xhci, udev, 4177 intf->cur_altsetting, 4178 state, &timeout)) 4179 return timeout; 4180 } 4181 return timeout; 4182 } 4183 4184 /* 4185 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4186 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4187 */ 4188 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4189 struct usb_device *udev, u16 max_exit_latency) 4190 { 4191 struct xhci_virt_device *virt_dev; 4192 struct xhci_command *command; 4193 struct xhci_input_control_ctx *ctrl_ctx; 4194 struct xhci_slot_ctx *slot_ctx; 4195 unsigned long flags; 4196 int ret; 4197 4198 spin_lock_irqsave(&xhci->lock, flags); 4199 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4200 spin_unlock_irqrestore(&xhci->lock, flags); 4201 return 0; 4202 } 4203 4204 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4205 virt_dev = xhci->devs[udev->slot_id]; 4206 command = xhci->lpm_command; 4207 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4208 spin_unlock_irqrestore(&xhci->lock, flags); 4209 4210 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4211 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4212 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4213 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4214 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4215 4216 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4217 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4218 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4219 4220 /* Issue and wait for the evaluate context command. */ 4221 ret = xhci_configure_endpoint(xhci, udev, command, 4222 true, true); 4223 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4224 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4225 4226 if (!ret) { 4227 spin_lock_irqsave(&xhci->lock, flags); 4228 virt_dev->current_mel = max_exit_latency; 4229 spin_unlock_irqrestore(&xhci->lock, flags); 4230 } 4231 return ret; 4232 } 4233 4234 static int calculate_max_exit_latency(struct usb_device *udev, 4235 enum usb3_link_state state_changed, 4236 u16 hub_encoded_timeout) 4237 { 4238 unsigned long long u1_mel_us = 0; 4239 unsigned long long u2_mel_us = 0; 4240 unsigned long long mel_us = 0; 4241 bool disabling_u1; 4242 bool disabling_u2; 4243 bool enabling_u1; 4244 bool enabling_u2; 4245 4246 disabling_u1 = (state_changed == USB3_LPM_U1 && 4247 hub_encoded_timeout == USB3_LPM_DISABLED); 4248 disabling_u2 = (state_changed == USB3_LPM_U2 && 4249 hub_encoded_timeout == USB3_LPM_DISABLED); 4250 4251 enabling_u1 = (state_changed == USB3_LPM_U1 && 4252 hub_encoded_timeout != USB3_LPM_DISABLED); 4253 enabling_u2 = (state_changed == USB3_LPM_U2 && 4254 hub_encoded_timeout != USB3_LPM_DISABLED); 4255 4256 /* If U1 was already enabled and we're not disabling it, 4257 * or we're going to enable U1, account for the U1 max exit latency. 4258 */ 4259 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4260 enabling_u1) 4261 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4262 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4263 enabling_u2) 4264 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4265 4266 if (u1_mel_us > u2_mel_us) 4267 mel_us = u1_mel_us; 4268 else 4269 mel_us = u2_mel_us; 4270 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4271 if (mel_us > MAX_EXIT) { 4272 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4273 "is too big.\n", mel_us); 4274 return -E2BIG; 4275 } 4276 return mel_us; 4277 } 4278 4279 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4280 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4281 struct usb_device *udev, enum usb3_link_state state) 4282 { 4283 struct xhci_hcd *xhci; 4284 u16 hub_encoded_timeout; 4285 int mel; 4286 int ret; 4287 4288 xhci = hcd_to_xhci(hcd); 4289 /* The LPM timeout values are pretty host-controller specific, so don't 4290 * enable hub-initiated timeouts unless the vendor has provided 4291 * information about their timeout algorithm. 4292 */ 4293 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4294 !xhci->devs[udev->slot_id]) 4295 return USB3_LPM_DISABLED; 4296 4297 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4298 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4299 if (mel < 0) { 4300 /* Max Exit Latency is too big, disable LPM. */ 4301 hub_encoded_timeout = USB3_LPM_DISABLED; 4302 mel = 0; 4303 } 4304 4305 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4306 if (ret) 4307 return ret; 4308 return hub_encoded_timeout; 4309 } 4310 4311 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4312 struct usb_device *udev, enum usb3_link_state state) 4313 { 4314 struct xhci_hcd *xhci; 4315 u16 mel; 4316 int ret; 4317 4318 xhci = hcd_to_xhci(hcd); 4319 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4320 !xhci->devs[udev->slot_id]) 4321 return 0; 4322 4323 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4324 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4325 if (ret) 4326 return ret; 4327 return 0; 4328 } 4329 #else /* CONFIG_PM */ 4330 4331 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4332 struct usb_device *udev, enum usb3_link_state state) 4333 { 4334 return USB3_LPM_DISABLED; 4335 } 4336 4337 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4338 struct usb_device *udev, enum usb3_link_state state) 4339 { 4340 return 0; 4341 } 4342 #endif /* CONFIG_PM */ 4343 4344 /*-------------------------------------------------------------------------*/ 4345 4346 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4347 * internal data structures for the device. 4348 */ 4349 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4350 struct usb_tt *tt, gfp_t mem_flags) 4351 { 4352 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4353 struct xhci_virt_device *vdev; 4354 struct xhci_command *config_cmd; 4355 struct xhci_input_control_ctx *ctrl_ctx; 4356 struct xhci_slot_ctx *slot_ctx; 4357 unsigned long flags; 4358 unsigned think_time; 4359 int ret; 4360 4361 /* Ignore root hubs */ 4362 if (!hdev->parent) 4363 return 0; 4364 4365 vdev = xhci->devs[hdev->slot_id]; 4366 if (!vdev) { 4367 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4368 return -EINVAL; 4369 } 4370 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4371 if (!config_cmd) { 4372 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4373 return -ENOMEM; 4374 } 4375 4376 spin_lock_irqsave(&xhci->lock, flags); 4377 if (hdev->speed == USB_SPEED_HIGH && 4378 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4379 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4380 xhci_free_command(xhci, config_cmd); 4381 spin_unlock_irqrestore(&xhci->lock, flags); 4382 return -ENOMEM; 4383 } 4384 4385 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4386 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4387 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4388 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4389 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4390 if (tt->multi) 4391 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4392 if (xhci->hci_version > 0x95) { 4393 xhci_dbg(xhci, "xHCI version %x needs hub " 4394 "TT think time and number of ports\n", 4395 (unsigned int) xhci->hci_version); 4396 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4397 /* Set TT think time - convert from ns to FS bit times. 4398 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4399 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4400 * 4401 * xHCI 1.0: this field shall be 0 if the device is not a 4402 * High-spped hub. 4403 */ 4404 think_time = tt->think_time; 4405 if (think_time != 0) 4406 think_time = (think_time / 666) - 1; 4407 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4408 slot_ctx->tt_info |= 4409 cpu_to_le32(TT_THINK_TIME(think_time)); 4410 } else { 4411 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4412 "TT think time or number of ports\n", 4413 (unsigned int) xhci->hci_version); 4414 } 4415 slot_ctx->dev_state = 0; 4416 spin_unlock_irqrestore(&xhci->lock, flags); 4417 4418 xhci_dbg(xhci, "Set up %s for hub device.\n", 4419 (xhci->hci_version > 0x95) ? 4420 "configure endpoint" : "evaluate context"); 4421 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4422 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4423 4424 /* Issue and wait for the configure endpoint or 4425 * evaluate context command. 4426 */ 4427 if (xhci->hci_version > 0x95) 4428 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4429 false, false); 4430 else 4431 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4432 true, false); 4433 4434 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4435 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4436 4437 xhci_free_command(xhci, config_cmd); 4438 return ret; 4439 } 4440 4441 int xhci_get_frame(struct usb_hcd *hcd) 4442 { 4443 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4444 /* EHCI mods by the periodic size. Why? */ 4445 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4446 } 4447 4448 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4449 { 4450 struct xhci_hcd *xhci; 4451 struct device *dev = hcd->self.controller; 4452 int retval; 4453 u32 temp; 4454 4455 /* Accept arbitrarily long scatter-gather lists */ 4456 hcd->self.sg_tablesize = ~0; 4457 /* XHCI controllers don't stop the ep queue on short packets :| */ 4458 hcd->self.no_stop_on_short = 1; 4459 4460 if (usb_hcd_is_primary_hcd(hcd)) { 4461 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4462 if (!xhci) 4463 return -ENOMEM; 4464 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4465 xhci->main_hcd = hcd; 4466 /* Mark the first roothub as being USB 2.0. 4467 * The xHCI driver will register the USB 3.0 roothub. 4468 */ 4469 hcd->speed = HCD_USB2; 4470 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4471 /* 4472 * USB 2.0 roothub under xHCI has an integrated TT, 4473 * (rate matching hub) as opposed to having an OHCI/UHCI 4474 * companion controller. 4475 */ 4476 hcd->has_tt = 1; 4477 } else { 4478 /* xHCI private pointer was set in xhci_pci_probe for the second 4479 * registered roothub. 4480 */ 4481 xhci = hcd_to_xhci(hcd); 4482 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4483 if (HCC_64BIT_ADDR(temp)) { 4484 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4485 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4486 } else { 4487 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4488 } 4489 return 0; 4490 } 4491 4492 xhci->cap_regs = hcd->regs; 4493 xhci->op_regs = hcd->regs + 4494 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4495 xhci->run_regs = hcd->regs + 4496 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4497 /* Cache read-only capability registers */ 4498 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4499 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4500 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4501 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4502 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4503 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4504 xhci_print_registers(xhci); 4505 4506 get_quirks(dev, xhci); 4507 4508 /* Make sure the HC is halted. */ 4509 retval = xhci_halt(xhci); 4510 if (retval) 4511 goto error; 4512 4513 xhci_dbg(xhci, "Resetting HCD\n"); 4514 /* Reset the internal HC memory state and registers. */ 4515 retval = xhci_reset(xhci); 4516 if (retval) 4517 goto error; 4518 xhci_dbg(xhci, "Reset complete\n"); 4519 4520 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4521 if (HCC_64BIT_ADDR(temp)) { 4522 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4523 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4524 } else { 4525 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4526 } 4527 4528 xhci_dbg(xhci, "Calling HCD init\n"); 4529 /* Initialize HCD and host controller data structures. */ 4530 retval = xhci_init(hcd); 4531 if (retval) 4532 goto error; 4533 xhci_dbg(xhci, "Called HCD init\n"); 4534 return 0; 4535 error: 4536 kfree(xhci); 4537 return retval; 4538 } 4539 4540 MODULE_DESCRIPTION(DRIVER_DESC); 4541 MODULE_AUTHOR(DRIVER_AUTHOR); 4542 MODULE_LICENSE("GPL"); 4543 4544 static int __init xhci_hcd_init(void) 4545 { 4546 int retval; 4547 4548 retval = xhci_register_pci(); 4549 if (retval < 0) { 4550 printk(KERN_DEBUG "Problem registering PCI driver."); 4551 return retval; 4552 } 4553 retval = xhci_register_plat(); 4554 if (retval < 0) { 4555 printk(KERN_DEBUG "Problem registering platform driver."); 4556 goto unreg_pci; 4557 } 4558 /* 4559 * Check the compiler generated sizes of structures that must be laid 4560 * out in specific ways for hardware access. 4561 */ 4562 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4563 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4564 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4565 /* xhci_device_control has eight fields, and also 4566 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4567 */ 4568 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4569 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4570 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4571 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4572 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4573 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4574 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4575 return 0; 4576 unreg_pci: 4577 xhci_unregister_pci(); 4578 return retval; 4579 } 4580 module_init(xhci_hcd_init); 4581 4582 static void __exit xhci_hcd_cleanup(void) 4583 { 4584 xhci_unregister_pci(); 4585 xhci_unregister_plat(); 4586 } 4587 module_exit(xhci_hcd_cleanup); 4588