xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 95e9fd10)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	else
110 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111 				XHCI_MAX_HALT_USEC);
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = xhci_readl(xhci, &xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126 			temp);
127 	xhci_writel(xhci, temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = handshake(xhci, &xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
141 	return ret;
142 }
143 
144 /*
145  * Reset a halted HC.
146  *
147  * This resets pipelines, timers, counters, state machines, etc.
148  * Transactions will be terminated immediately, and operational registers
149  * will be set to their defaults.
150  */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153 	u32 command;
154 	u32 state;
155 	int ret, i;
156 
157 	state = xhci_readl(xhci, &xhci->op_regs->status);
158 	if ((state & STS_HALT) == 0) {
159 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160 		return 0;
161 	}
162 
163 	xhci_dbg(xhci, "// Reset the HC\n");
164 	command = xhci_readl(xhci, &xhci->op_regs->command);
165 	command |= CMD_RESET;
166 	xhci_writel(xhci, command, &xhci->op_regs->command);
167 
168 	ret = handshake(xhci, &xhci->op_regs->command,
169 			CMD_RESET, 0, 10 * 1000 * 1000);
170 	if (ret)
171 		return ret;
172 
173 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174 	/*
175 	 * xHCI cannot write to any doorbells or operational registers other
176 	 * than status until the "Controller Not Ready" flag is cleared.
177 	 */
178 	ret = handshake(xhci, &xhci->op_regs->status,
179 			STS_CNR, 0, 10 * 1000 * 1000);
180 
181 	for (i = 0; i < 2; ++i) {
182 		xhci->bus_state[i].port_c_suspend = 0;
183 		xhci->bus_state[i].suspended_ports = 0;
184 		xhci->bus_state[i].resuming_ports = 0;
185 	}
186 
187 	return ret;
188 }
189 
190 #ifdef CONFIG_PCI
191 static int xhci_free_msi(struct xhci_hcd *xhci)
192 {
193 	int i;
194 
195 	if (!xhci->msix_entries)
196 		return -EINVAL;
197 
198 	for (i = 0; i < xhci->msix_count; i++)
199 		if (xhci->msix_entries[i].vector)
200 			free_irq(xhci->msix_entries[i].vector,
201 					xhci_to_hcd(xhci));
202 	return 0;
203 }
204 
205 /*
206  * Set up MSI
207  */
208 static int xhci_setup_msi(struct xhci_hcd *xhci)
209 {
210 	int ret;
211 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
212 
213 	ret = pci_enable_msi(pdev);
214 	if (ret) {
215 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
216 		return ret;
217 	}
218 
219 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
220 				0, "xhci_hcd", xhci_to_hcd(xhci));
221 	if (ret) {
222 		xhci_dbg(xhci, "disable MSI interrupt\n");
223 		pci_disable_msi(pdev);
224 	}
225 
226 	return ret;
227 }
228 
229 /*
230  * Free IRQs
231  * free all IRQs request
232  */
233 static void xhci_free_irq(struct xhci_hcd *xhci)
234 {
235 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236 	int ret;
237 
238 	/* return if using legacy interrupt */
239 	if (xhci_to_hcd(xhci)->irq > 0)
240 		return;
241 
242 	ret = xhci_free_msi(xhci);
243 	if (!ret)
244 		return;
245 	if (pdev->irq > 0)
246 		free_irq(pdev->irq, xhci_to_hcd(xhci));
247 
248 	return;
249 }
250 
251 /*
252  * Set up MSI-X
253  */
254 static int xhci_setup_msix(struct xhci_hcd *xhci)
255 {
256 	int i, ret = 0;
257 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
258 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
259 
260 	/*
261 	 * calculate number of msi-x vectors supported.
262 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
263 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
264 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
265 	 *   Add additional 1 vector to ensure always available interrupt.
266 	 */
267 	xhci->msix_count = min(num_online_cpus() + 1,
268 				HCS_MAX_INTRS(xhci->hcs_params1));
269 
270 	xhci->msix_entries =
271 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
272 				GFP_KERNEL);
273 	if (!xhci->msix_entries) {
274 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
275 		return -ENOMEM;
276 	}
277 
278 	for (i = 0; i < xhci->msix_count; i++) {
279 		xhci->msix_entries[i].entry = i;
280 		xhci->msix_entries[i].vector = 0;
281 	}
282 
283 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
284 	if (ret) {
285 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
286 		goto free_entries;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		ret = request_irq(xhci->msix_entries[i].vector,
291 				(irq_handler_t)xhci_msi_irq,
292 				0, "xhci_hcd", xhci_to_hcd(xhci));
293 		if (ret)
294 			goto disable_msix;
295 	}
296 
297 	hcd->msix_enabled = 1;
298 	return ret;
299 
300 disable_msix:
301 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
302 	xhci_free_irq(xhci);
303 	pci_disable_msix(pdev);
304 free_entries:
305 	kfree(xhci->msix_entries);
306 	xhci->msix_entries = NULL;
307 	return ret;
308 }
309 
310 /* Free any IRQs and disable MSI-X */
311 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
312 {
313 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
314 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
315 
316 	xhci_free_irq(xhci);
317 
318 	if (xhci->msix_entries) {
319 		pci_disable_msix(pdev);
320 		kfree(xhci->msix_entries);
321 		xhci->msix_entries = NULL;
322 	} else {
323 		pci_disable_msi(pdev);
324 	}
325 
326 	hcd->msix_enabled = 0;
327 	return;
328 }
329 
330 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
331 {
332 	int i;
333 
334 	if (xhci->msix_entries) {
335 		for (i = 0; i < xhci->msix_count; i++)
336 			synchronize_irq(xhci->msix_entries[i].vector);
337 	}
338 }
339 
340 static int xhci_try_enable_msi(struct usb_hcd *hcd)
341 {
342 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
343 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344 	int ret;
345 
346 	/*
347 	 * Some Fresco Logic host controllers advertise MSI, but fail to
348 	 * generate interrupts.  Don't even try to enable MSI.
349 	 */
350 	if (xhci->quirks & XHCI_BROKEN_MSI)
351 		return 0;
352 
353 	/* unregister the legacy interrupt */
354 	if (hcd->irq)
355 		free_irq(hcd->irq, hcd);
356 	hcd->irq = 0;
357 
358 	ret = xhci_setup_msix(xhci);
359 	if (ret)
360 		/* fall back to msi*/
361 		ret = xhci_setup_msi(xhci);
362 
363 	if (!ret)
364 		/* hcd->irq is 0, we have MSI */
365 		return 0;
366 
367 	if (!pdev->irq) {
368 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369 		return -EINVAL;
370 	}
371 
372 	/* fall back to legacy interrupt*/
373 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
374 			hcd->irq_descr, hcd);
375 	if (ret) {
376 		xhci_err(xhci, "request interrupt %d failed\n",
377 				pdev->irq);
378 		return ret;
379 	}
380 	hcd->irq = pdev->irq;
381 	return 0;
382 }
383 
384 #else
385 
386 static int xhci_try_enable_msi(struct usb_hcd *hcd)
387 {
388 	return 0;
389 }
390 
391 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
392 {
393 }
394 
395 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
396 {
397 }
398 
399 #endif
400 
401 /*
402  * Initialize memory for HCD and xHC (one-time init).
403  *
404  * Program the PAGESIZE register, initialize the device context array, create
405  * device contexts (?), set up a command ring segment (or two?), create event
406  * ring (one for now).
407  */
408 int xhci_init(struct usb_hcd *hcd)
409 {
410 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
411 	int retval = 0;
412 
413 	xhci_dbg(xhci, "xhci_init\n");
414 	spin_lock_init(&xhci->lock);
415 	if (xhci->hci_version == 0x95 && link_quirk) {
416 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
417 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
418 	} else {
419 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
420 	}
421 	retval = xhci_mem_init(xhci, GFP_KERNEL);
422 	xhci_dbg(xhci, "Finished xhci_init\n");
423 
424 	return retval;
425 }
426 
427 /*-------------------------------------------------------------------------*/
428 
429 
430 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
431 static void xhci_event_ring_work(unsigned long arg)
432 {
433 	unsigned long flags;
434 	int temp;
435 	u64 temp_64;
436 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
437 	int i, j;
438 
439 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
440 
441 	spin_lock_irqsave(&xhci->lock, flags);
442 	temp = xhci_readl(xhci, &xhci->op_regs->status);
443 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
444 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
445 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
446 		xhci_dbg(xhci, "HW died, polling stopped.\n");
447 		spin_unlock_irqrestore(&xhci->lock, flags);
448 		return;
449 	}
450 
451 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
452 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
453 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
454 	xhci->error_bitmask = 0;
455 	xhci_dbg(xhci, "Event ring:\n");
456 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
457 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
458 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
459 	temp_64 &= ~ERST_PTR_MASK;
460 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
461 	xhci_dbg(xhci, "Command ring:\n");
462 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
463 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
464 	xhci_dbg_cmd_ptrs(xhci);
465 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
466 		if (!xhci->devs[i])
467 			continue;
468 		for (j = 0; j < 31; ++j) {
469 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
470 		}
471 	}
472 	spin_unlock_irqrestore(&xhci->lock, flags);
473 
474 	if (!xhci->zombie)
475 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
476 	else
477 		xhci_dbg(xhci, "Quit polling the event ring.\n");
478 }
479 #endif
480 
481 static int xhci_run_finished(struct xhci_hcd *xhci)
482 {
483 	if (xhci_start(xhci)) {
484 		xhci_halt(xhci);
485 		return -ENODEV;
486 	}
487 	xhci->shared_hcd->state = HC_STATE_RUNNING;
488 
489 	if (xhci->quirks & XHCI_NEC_HOST)
490 		xhci_ring_cmd_db(xhci);
491 
492 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
493 	return 0;
494 }
495 
496 /*
497  * Start the HC after it was halted.
498  *
499  * This function is called by the USB core when the HC driver is added.
500  * Its opposite is xhci_stop().
501  *
502  * xhci_init() must be called once before this function can be called.
503  * Reset the HC, enable device slot contexts, program DCBAAP, and
504  * set command ring pointer and event ring pointer.
505  *
506  * Setup MSI-X vectors and enable interrupts.
507  */
508 int xhci_run(struct usb_hcd *hcd)
509 {
510 	u32 temp;
511 	u64 temp_64;
512 	int ret;
513 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 
515 	/* Start the xHCI host controller running only after the USB 2.0 roothub
516 	 * is setup.
517 	 */
518 
519 	hcd->uses_new_polling = 1;
520 	if (!usb_hcd_is_primary_hcd(hcd))
521 		return xhci_run_finished(xhci);
522 
523 	xhci_dbg(xhci, "xhci_run\n");
524 
525 	ret = xhci_try_enable_msi(hcd);
526 	if (ret)
527 		return ret;
528 
529 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
530 	init_timer(&xhci->event_ring_timer);
531 	xhci->event_ring_timer.data = (unsigned long) xhci;
532 	xhci->event_ring_timer.function = xhci_event_ring_work;
533 	/* Poll the event ring */
534 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
535 	xhci->zombie = 0;
536 	xhci_dbg(xhci, "Setting event ring polling timer\n");
537 	add_timer(&xhci->event_ring_timer);
538 #endif
539 
540 	xhci_dbg(xhci, "Command ring memory map follows:\n");
541 	xhci_debug_ring(xhci, xhci->cmd_ring);
542 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
543 	xhci_dbg_cmd_ptrs(xhci);
544 
545 	xhci_dbg(xhci, "ERST memory map follows:\n");
546 	xhci_dbg_erst(xhci, &xhci->erst);
547 	xhci_dbg(xhci, "Event ring:\n");
548 	xhci_debug_ring(xhci, xhci->event_ring);
549 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
550 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
551 	temp_64 &= ~ERST_PTR_MASK;
552 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
553 
554 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
555 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
556 	temp &= ~ER_IRQ_INTERVAL_MASK;
557 	temp |= (u32) 160;
558 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
559 
560 	/* Set the HCD state before we enable the irqs */
561 	temp = xhci_readl(xhci, &xhci->op_regs->command);
562 	temp |= (CMD_EIE);
563 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
564 			temp);
565 	xhci_writel(xhci, temp, &xhci->op_regs->command);
566 
567 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
569 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
570 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
571 			&xhci->ir_set->irq_pending);
572 	xhci_print_ir_set(xhci, 0);
573 
574 	if (xhci->quirks & XHCI_NEC_HOST)
575 		xhci_queue_vendor_command(xhci, 0, 0, 0,
576 				TRB_TYPE(TRB_NEC_GET_FW));
577 
578 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
579 	return 0;
580 }
581 
582 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
583 {
584 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585 
586 	spin_lock_irq(&xhci->lock);
587 	xhci_halt(xhci);
588 
589 	/* The shared_hcd is going to be deallocated shortly (the USB core only
590 	 * calls this function when allocation fails in usb_add_hcd(), or
591 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
592 	 */
593 	xhci->shared_hcd = NULL;
594 	spin_unlock_irq(&xhci->lock);
595 }
596 
597 /*
598  * Stop xHCI driver.
599  *
600  * This function is called by the USB core when the HC driver is removed.
601  * Its opposite is xhci_run().
602  *
603  * Disable device contexts, disable IRQs, and quiesce the HC.
604  * Reset the HC, finish any completed transactions, and cleanup memory.
605  */
606 void xhci_stop(struct usb_hcd *hcd)
607 {
608 	u32 temp;
609 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
610 
611 	if (!usb_hcd_is_primary_hcd(hcd)) {
612 		xhci_only_stop_hcd(xhci->shared_hcd);
613 		return;
614 	}
615 
616 	spin_lock_irq(&xhci->lock);
617 	/* Make sure the xHC is halted for a USB3 roothub
618 	 * (xhci_stop() could be called as part of failed init).
619 	 */
620 	xhci_halt(xhci);
621 	xhci_reset(xhci);
622 	spin_unlock_irq(&xhci->lock);
623 
624 	xhci_cleanup_msix(xhci);
625 
626 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
627 	/* Tell the event ring poll function not to reschedule */
628 	xhci->zombie = 1;
629 	del_timer_sync(&xhci->event_ring_timer);
630 #endif
631 
632 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
633 		usb_amd_dev_put();
634 
635 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
636 	temp = xhci_readl(xhci, &xhci->op_regs->status);
637 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
638 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
639 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
640 			&xhci->ir_set->irq_pending);
641 	xhci_print_ir_set(xhci, 0);
642 
643 	xhci_dbg(xhci, "cleaning up memory\n");
644 	xhci_mem_cleanup(xhci);
645 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
646 		    xhci_readl(xhci, &xhci->op_regs->status));
647 }
648 
649 /*
650  * Shutdown HC (not bus-specific)
651  *
652  * This is called when the machine is rebooting or halting.  We assume that the
653  * machine will be powered off, and the HC's internal state will be reset.
654  * Don't bother to free memory.
655  *
656  * This will only ever be called with the main usb_hcd (the USB3 roothub).
657  */
658 void xhci_shutdown(struct usb_hcd *hcd)
659 {
660 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661 
662 	if (xhci->quirks && XHCI_SPURIOUS_REBOOT)
663 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
664 
665 	spin_lock_irq(&xhci->lock);
666 	xhci_halt(xhci);
667 	spin_unlock_irq(&xhci->lock);
668 
669 	xhci_cleanup_msix(xhci);
670 
671 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
672 		    xhci_readl(xhci, &xhci->op_regs->status));
673 }
674 
675 #ifdef CONFIG_PM
676 static void xhci_save_registers(struct xhci_hcd *xhci)
677 {
678 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
679 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
680 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
681 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
682 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
683 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
684 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
685 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
686 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
687 }
688 
689 static void xhci_restore_registers(struct xhci_hcd *xhci)
690 {
691 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
692 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
693 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
694 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
695 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
696 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
697 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
698 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
699 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
700 }
701 
702 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
703 {
704 	u64	val_64;
705 
706 	/* step 2: initialize command ring buffer */
707 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
708 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
709 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
710 				      xhci->cmd_ring->dequeue) &
711 		 (u64) ~CMD_RING_RSVD_BITS) |
712 		xhci->cmd_ring->cycle_state;
713 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
714 			(long unsigned long) val_64);
715 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
716 }
717 
718 /*
719  * The whole command ring must be cleared to zero when we suspend the host.
720  *
721  * The host doesn't save the command ring pointer in the suspend well, so we
722  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
723  * aligned, because of the reserved bits in the command ring dequeue pointer
724  * register.  Therefore, we can't just set the dequeue pointer back in the
725  * middle of the ring (TRBs are 16-byte aligned).
726  */
727 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
728 {
729 	struct xhci_ring *ring;
730 	struct xhci_segment *seg;
731 
732 	ring = xhci->cmd_ring;
733 	seg = ring->deq_seg;
734 	do {
735 		memset(seg->trbs, 0,
736 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
737 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
738 			cpu_to_le32(~TRB_CYCLE);
739 		seg = seg->next;
740 	} while (seg != ring->deq_seg);
741 
742 	/* Reset the software enqueue and dequeue pointers */
743 	ring->deq_seg = ring->first_seg;
744 	ring->dequeue = ring->first_seg->trbs;
745 	ring->enq_seg = ring->deq_seg;
746 	ring->enqueue = ring->dequeue;
747 
748 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
749 	/*
750 	 * Ring is now zeroed, so the HW should look for change of ownership
751 	 * when the cycle bit is set to 1.
752 	 */
753 	ring->cycle_state = 1;
754 
755 	/*
756 	 * Reset the hardware dequeue pointer.
757 	 * Yes, this will need to be re-written after resume, but we're paranoid
758 	 * and want to make sure the hardware doesn't access bogus memory
759 	 * because, say, the BIOS or an SMI started the host without changing
760 	 * the command ring pointers.
761 	 */
762 	xhci_set_cmd_ring_deq(xhci);
763 }
764 
765 /*
766  * Stop HC (not bus-specific)
767  *
768  * This is called when the machine transition into S3/S4 mode.
769  *
770  */
771 int xhci_suspend(struct xhci_hcd *xhci)
772 {
773 	int			rc = 0;
774 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
775 	u32			command;
776 
777 	spin_lock_irq(&xhci->lock);
778 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
779 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
780 	/* step 1: stop endpoint */
781 	/* skipped assuming that port suspend has done */
782 
783 	/* step 2: clear Run/Stop bit */
784 	command = xhci_readl(xhci, &xhci->op_regs->command);
785 	command &= ~CMD_RUN;
786 	xhci_writel(xhci, command, &xhci->op_regs->command);
787 	if (handshake(xhci, &xhci->op_regs->status,
788 		      STS_HALT, STS_HALT, 100*100)) {
789 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
790 		spin_unlock_irq(&xhci->lock);
791 		return -ETIMEDOUT;
792 	}
793 	xhci_clear_command_ring(xhci);
794 
795 	/* step 3: save registers */
796 	xhci_save_registers(xhci);
797 
798 	/* step 4: set CSS flag */
799 	command = xhci_readl(xhci, &xhci->op_regs->command);
800 	command |= CMD_CSS;
801 	xhci_writel(xhci, command, &xhci->op_regs->command);
802 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
803 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
804 		spin_unlock_irq(&xhci->lock);
805 		return -ETIMEDOUT;
806 	}
807 	spin_unlock_irq(&xhci->lock);
808 
809 	/* step 5: remove core well power */
810 	/* synchronize irq when using MSI-X */
811 	xhci_msix_sync_irqs(xhci);
812 
813 	return rc;
814 }
815 
816 /*
817  * start xHC (not bus-specific)
818  *
819  * This is called when the machine transition from S3/S4 mode.
820  *
821  */
822 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
823 {
824 	u32			command, temp = 0;
825 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
826 	struct usb_hcd		*secondary_hcd;
827 	int			retval = 0;
828 
829 	/* Wait a bit if either of the roothubs need to settle from the
830 	 * transition into bus suspend.
831 	 */
832 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
833 			time_before(jiffies,
834 				xhci->bus_state[1].next_statechange))
835 		msleep(100);
836 
837 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
839 
840 	spin_lock_irq(&xhci->lock);
841 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
842 		hibernated = true;
843 
844 	if (!hibernated) {
845 		/* step 1: restore register */
846 		xhci_restore_registers(xhci);
847 		/* step 2: initialize command ring buffer */
848 		xhci_set_cmd_ring_deq(xhci);
849 		/* step 3: restore state and start state*/
850 		/* step 3: set CRS flag */
851 		command = xhci_readl(xhci, &xhci->op_regs->command);
852 		command |= CMD_CRS;
853 		xhci_writel(xhci, command, &xhci->op_regs->command);
854 		if (handshake(xhci, &xhci->op_regs->status,
855 			      STS_RESTORE, 0, 10 * 1000)) {
856 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
857 			spin_unlock_irq(&xhci->lock);
858 			return -ETIMEDOUT;
859 		}
860 		temp = xhci_readl(xhci, &xhci->op_regs->status);
861 	}
862 
863 	/* If restore operation fails, re-initialize the HC during resume */
864 	if ((temp & STS_SRE) || hibernated) {
865 		/* Let the USB core know _both_ roothubs lost power. */
866 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
867 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
868 
869 		xhci_dbg(xhci, "Stop HCD\n");
870 		xhci_halt(xhci);
871 		xhci_reset(xhci);
872 		spin_unlock_irq(&xhci->lock);
873 		xhci_cleanup_msix(xhci);
874 
875 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
876 		/* Tell the event ring poll function not to reschedule */
877 		xhci->zombie = 1;
878 		del_timer_sync(&xhci->event_ring_timer);
879 #endif
880 
881 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
882 		temp = xhci_readl(xhci, &xhci->op_regs->status);
883 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
884 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
885 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
886 				&xhci->ir_set->irq_pending);
887 		xhci_print_ir_set(xhci, 0);
888 
889 		xhci_dbg(xhci, "cleaning up memory\n");
890 		xhci_mem_cleanup(xhci);
891 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
892 			    xhci_readl(xhci, &xhci->op_regs->status));
893 
894 		/* USB core calls the PCI reinit and start functions twice:
895 		 * first with the primary HCD, and then with the secondary HCD.
896 		 * If we don't do the same, the host will never be started.
897 		 */
898 		if (!usb_hcd_is_primary_hcd(hcd))
899 			secondary_hcd = hcd;
900 		else
901 			secondary_hcd = xhci->shared_hcd;
902 
903 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
904 		retval = xhci_init(hcd->primary_hcd);
905 		if (retval)
906 			return retval;
907 		xhci_dbg(xhci, "Start the primary HCD\n");
908 		retval = xhci_run(hcd->primary_hcd);
909 		if (!retval) {
910 			xhci_dbg(xhci, "Start the secondary HCD\n");
911 			retval = xhci_run(secondary_hcd);
912 		}
913 		hcd->state = HC_STATE_SUSPENDED;
914 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
915 		goto done;
916 	}
917 
918 	/* step 4: set Run/Stop bit */
919 	command = xhci_readl(xhci, &xhci->op_regs->command);
920 	command |= CMD_RUN;
921 	xhci_writel(xhci, command, &xhci->op_regs->command);
922 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
923 		  0, 250 * 1000);
924 
925 	/* step 5: walk topology and initialize portsc,
926 	 * portpmsc and portli
927 	 */
928 	/* this is done in bus_resume */
929 
930 	/* step 6: restart each of the previously
931 	 * Running endpoints by ringing their doorbells
932 	 */
933 
934 	spin_unlock_irq(&xhci->lock);
935 
936  done:
937 	if (retval == 0) {
938 		usb_hcd_resume_root_hub(hcd);
939 		usb_hcd_resume_root_hub(xhci->shared_hcd);
940 	}
941 	return retval;
942 }
943 #endif	/* CONFIG_PM */
944 
945 /*-------------------------------------------------------------------------*/
946 
947 /**
948  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
949  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
950  * value to right shift 1 for the bitmask.
951  *
952  * Index  = (epnum * 2) + direction - 1,
953  * where direction = 0 for OUT, 1 for IN.
954  * For control endpoints, the IN index is used (OUT index is unused), so
955  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
956  */
957 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
958 {
959 	unsigned int index;
960 	if (usb_endpoint_xfer_control(desc))
961 		index = (unsigned int) (usb_endpoint_num(desc)*2);
962 	else
963 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
964 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
965 	return index;
966 }
967 
968 /* Find the flag for this endpoint (for use in the control context).  Use the
969  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
970  * bit 1, etc.
971  */
972 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
973 {
974 	return 1 << (xhci_get_endpoint_index(desc) + 1);
975 }
976 
977 /* Find the flag for this endpoint (for use in the control context).  Use the
978  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
979  * bit 1, etc.
980  */
981 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
982 {
983 	return 1 << (ep_index + 1);
984 }
985 
986 /* Compute the last valid endpoint context index.  Basically, this is the
987  * endpoint index plus one.  For slot contexts with more than valid endpoint,
988  * we find the most significant bit set in the added contexts flags.
989  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
990  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
991  */
992 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
993 {
994 	return fls(added_ctxs) - 1;
995 }
996 
997 /* Returns 1 if the arguments are OK;
998  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
999  */
1000 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1001 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1002 		const char *func) {
1003 	struct xhci_hcd	*xhci;
1004 	struct xhci_virt_device	*virt_dev;
1005 
1006 	if (!hcd || (check_ep && !ep) || !udev) {
1007 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1008 				func);
1009 		return -EINVAL;
1010 	}
1011 	if (!udev->parent) {
1012 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1013 				func);
1014 		return 0;
1015 	}
1016 
1017 	xhci = hcd_to_xhci(hcd);
1018 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1019 		return -ENODEV;
1020 
1021 	if (check_virt_dev) {
1022 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1023 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1024 						"device\n", func);
1025 			return -EINVAL;
1026 		}
1027 
1028 		virt_dev = xhci->devs[udev->slot_id];
1029 		if (virt_dev->udev != udev) {
1030 			printk(KERN_DEBUG "xHCI %s called with udev and "
1031 					  "virt_dev does not match\n", func);
1032 			return -EINVAL;
1033 		}
1034 	}
1035 
1036 	return 1;
1037 }
1038 
1039 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1040 		struct usb_device *udev, struct xhci_command *command,
1041 		bool ctx_change, bool must_succeed);
1042 
1043 /*
1044  * Full speed devices may have a max packet size greater than 8 bytes, but the
1045  * USB core doesn't know that until it reads the first 8 bytes of the
1046  * descriptor.  If the usb_device's max packet size changes after that point,
1047  * we need to issue an evaluate context command and wait on it.
1048  */
1049 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1050 		unsigned int ep_index, struct urb *urb)
1051 {
1052 	struct xhci_container_ctx *in_ctx;
1053 	struct xhci_container_ctx *out_ctx;
1054 	struct xhci_input_control_ctx *ctrl_ctx;
1055 	struct xhci_ep_ctx *ep_ctx;
1056 	int max_packet_size;
1057 	int hw_max_packet_size;
1058 	int ret = 0;
1059 
1060 	out_ctx = xhci->devs[slot_id]->out_ctx;
1061 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1062 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1063 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1064 	if (hw_max_packet_size != max_packet_size) {
1065 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1066 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1067 				max_packet_size);
1068 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1069 				hw_max_packet_size);
1070 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1071 
1072 		/* Set up the modified control endpoint 0 */
1073 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1074 				xhci->devs[slot_id]->out_ctx, ep_index);
1075 		in_ctx = xhci->devs[slot_id]->in_ctx;
1076 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1077 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1078 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1079 
1080 		/* Set up the input context flags for the command */
1081 		/* FIXME: This won't work if a non-default control endpoint
1082 		 * changes max packet sizes.
1083 		 */
1084 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1085 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1086 		ctrl_ctx->drop_flags = 0;
1087 
1088 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1089 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1090 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1091 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1092 
1093 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1094 				true, false);
1095 
1096 		/* Clean up the input context for later use by bandwidth
1097 		 * functions.
1098 		 */
1099 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1100 	}
1101 	return ret;
1102 }
1103 
1104 /*
1105  * non-error returns are a promise to giveback() the urb later
1106  * we drop ownership so next owner (or urb unlink) can get it
1107  */
1108 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1109 {
1110 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1111 	struct xhci_td *buffer;
1112 	unsigned long flags;
1113 	int ret = 0;
1114 	unsigned int slot_id, ep_index;
1115 	struct urb_priv	*urb_priv;
1116 	int size, i;
1117 
1118 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1119 					true, true, __func__) <= 0)
1120 		return -EINVAL;
1121 
1122 	slot_id = urb->dev->slot_id;
1123 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1124 
1125 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1126 		if (!in_interrupt())
1127 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1128 		ret = -ESHUTDOWN;
1129 		goto exit;
1130 	}
1131 
1132 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1133 		size = urb->number_of_packets;
1134 	else
1135 		size = 1;
1136 
1137 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1138 				  size * sizeof(struct xhci_td *), mem_flags);
1139 	if (!urb_priv)
1140 		return -ENOMEM;
1141 
1142 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1143 	if (!buffer) {
1144 		kfree(urb_priv);
1145 		return -ENOMEM;
1146 	}
1147 
1148 	for (i = 0; i < size; i++) {
1149 		urb_priv->td[i] = buffer;
1150 		buffer++;
1151 	}
1152 
1153 	urb_priv->length = size;
1154 	urb_priv->td_cnt = 0;
1155 	urb->hcpriv = urb_priv;
1156 
1157 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1158 		/* Check to see if the max packet size for the default control
1159 		 * endpoint changed during FS device enumeration
1160 		 */
1161 		if (urb->dev->speed == USB_SPEED_FULL) {
1162 			ret = xhci_check_maxpacket(xhci, slot_id,
1163 					ep_index, urb);
1164 			if (ret < 0) {
1165 				xhci_urb_free_priv(xhci, urb_priv);
1166 				urb->hcpriv = NULL;
1167 				return ret;
1168 			}
1169 		}
1170 
1171 		/* We have a spinlock and interrupts disabled, so we must pass
1172 		 * atomic context to this function, which may allocate memory.
1173 		 */
1174 		spin_lock_irqsave(&xhci->lock, flags);
1175 		if (xhci->xhc_state & XHCI_STATE_DYING)
1176 			goto dying;
1177 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1178 				slot_id, ep_index);
1179 		if (ret)
1180 			goto free_priv;
1181 		spin_unlock_irqrestore(&xhci->lock, flags);
1182 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1183 		spin_lock_irqsave(&xhci->lock, flags);
1184 		if (xhci->xhc_state & XHCI_STATE_DYING)
1185 			goto dying;
1186 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1187 				EP_GETTING_STREAMS) {
1188 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1189 					"is transitioning to using streams.\n");
1190 			ret = -EINVAL;
1191 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1192 				EP_GETTING_NO_STREAMS) {
1193 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1194 					"is transitioning to "
1195 					"not having streams.\n");
1196 			ret = -EINVAL;
1197 		} else {
1198 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1199 					slot_id, ep_index);
1200 		}
1201 		if (ret)
1202 			goto free_priv;
1203 		spin_unlock_irqrestore(&xhci->lock, flags);
1204 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1205 		spin_lock_irqsave(&xhci->lock, flags);
1206 		if (xhci->xhc_state & XHCI_STATE_DYING)
1207 			goto dying;
1208 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1209 				slot_id, ep_index);
1210 		if (ret)
1211 			goto free_priv;
1212 		spin_unlock_irqrestore(&xhci->lock, flags);
1213 	} else {
1214 		spin_lock_irqsave(&xhci->lock, flags);
1215 		if (xhci->xhc_state & XHCI_STATE_DYING)
1216 			goto dying;
1217 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1218 				slot_id, ep_index);
1219 		if (ret)
1220 			goto free_priv;
1221 		spin_unlock_irqrestore(&xhci->lock, flags);
1222 	}
1223 exit:
1224 	return ret;
1225 dying:
1226 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1227 			"non-responsive xHCI host.\n",
1228 			urb->ep->desc.bEndpointAddress, urb);
1229 	ret = -ESHUTDOWN;
1230 free_priv:
1231 	xhci_urb_free_priv(xhci, urb_priv);
1232 	urb->hcpriv = NULL;
1233 	spin_unlock_irqrestore(&xhci->lock, flags);
1234 	return ret;
1235 }
1236 
1237 /* Get the right ring for the given URB.
1238  * If the endpoint supports streams, boundary check the URB's stream ID.
1239  * If the endpoint doesn't support streams, return the singular endpoint ring.
1240  */
1241 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1242 		struct urb *urb)
1243 {
1244 	unsigned int slot_id;
1245 	unsigned int ep_index;
1246 	unsigned int stream_id;
1247 	struct xhci_virt_ep *ep;
1248 
1249 	slot_id = urb->dev->slot_id;
1250 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1251 	stream_id = urb->stream_id;
1252 	ep = &xhci->devs[slot_id]->eps[ep_index];
1253 	/* Common case: no streams */
1254 	if (!(ep->ep_state & EP_HAS_STREAMS))
1255 		return ep->ring;
1256 
1257 	if (stream_id == 0) {
1258 		xhci_warn(xhci,
1259 				"WARN: Slot ID %u, ep index %u has streams, "
1260 				"but URB has no stream ID.\n",
1261 				slot_id, ep_index);
1262 		return NULL;
1263 	}
1264 
1265 	if (stream_id < ep->stream_info->num_streams)
1266 		return ep->stream_info->stream_rings[stream_id];
1267 
1268 	xhci_warn(xhci,
1269 			"WARN: Slot ID %u, ep index %u has "
1270 			"stream IDs 1 to %u allocated, "
1271 			"but stream ID %u is requested.\n",
1272 			slot_id, ep_index,
1273 			ep->stream_info->num_streams - 1,
1274 			stream_id);
1275 	return NULL;
1276 }
1277 
1278 /*
1279  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1280  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1281  * should pick up where it left off in the TD, unless a Set Transfer Ring
1282  * Dequeue Pointer is issued.
1283  *
1284  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1285  * the ring.  Since the ring is a contiguous structure, they can't be physically
1286  * removed.  Instead, there are two options:
1287  *
1288  *  1) If the HC is in the middle of processing the URB to be canceled, we
1289  *     simply move the ring's dequeue pointer past those TRBs using the Set
1290  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1291  *     when drivers timeout on the last submitted URB and attempt to cancel.
1292  *
1293  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1294  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1295  *     HC will need to invalidate the any TRBs it has cached after the stop
1296  *     endpoint command, as noted in the xHCI 0.95 errata.
1297  *
1298  *  3) The TD may have completed by the time the Stop Endpoint Command
1299  *     completes, so software needs to handle that case too.
1300  *
1301  * This function should protect against the TD enqueueing code ringing the
1302  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1303  * It also needs to account for multiple cancellations on happening at the same
1304  * time for the same endpoint.
1305  *
1306  * Note that this function can be called in any context, or so says
1307  * usb_hcd_unlink_urb()
1308  */
1309 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1310 {
1311 	unsigned long flags;
1312 	int ret, i;
1313 	u32 temp;
1314 	struct xhci_hcd *xhci;
1315 	struct urb_priv	*urb_priv;
1316 	struct xhci_td *td;
1317 	unsigned int ep_index;
1318 	struct xhci_ring *ep_ring;
1319 	struct xhci_virt_ep *ep;
1320 
1321 	xhci = hcd_to_xhci(hcd);
1322 	spin_lock_irqsave(&xhci->lock, flags);
1323 	/* Make sure the URB hasn't completed or been unlinked already */
1324 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1325 	if (ret || !urb->hcpriv)
1326 		goto done;
1327 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1328 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1329 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1330 		urb_priv = urb->hcpriv;
1331 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1332 			td = urb_priv->td[i];
1333 			if (!list_empty(&td->td_list))
1334 				list_del_init(&td->td_list);
1335 			if (!list_empty(&td->cancelled_td_list))
1336 				list_del_init(&td->cancelled_td_list);
1337 		}
1338 
1339 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1340 		spin_unlock_irqrestore(&xhci->lock, flags);
1341 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1342 		xhci_urb_free_priv(xhci, urb_priv);
1343 		return ret;
1344 	}
1345 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1346 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1347 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1348 				"non-responsive xHCI host.\n",
1349 				urb->ep->desc.bEndpointAddress, urb);
1350 		/* Let the stop endpoint command watchdog timer (which set this
1351 		 * state) finish cleaning up the endpoint TD lists.  We must
1352 		 * have caught it in the middle of dropping a lock and giving
1353 		 * back an URB.
1354 		 */
1355 		goto done;
1356 	}
1357 
1358 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1359 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1360 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1361 	if (!ep_ring) {
1362 		ret = -EINVAL;
1363 		goto done;
1364 	}
1365 
1366 	urb_priv = urb->hcpriv;
1367 	i = urb_priv->td_cnt;
1368 	if (i < urb_priv->length)
1369 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1370 				"starting at offset 0x%llx\n",
1371 				urb, urb->dev->devpath,
1372 				urb->ep->desc.bEndpointAddress,
1373 				(unsigned long long) xhci_trb_virt_to_dma(
1374 					urb_priv->td[i]->start_seg,
1375 					urb_priv->td[i]->first_trb));
1376 
1377 	for (; i < urb_priv->length; i++) {
1378 		td = urb_priv->td[i];
1379 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1380 	}
1381 
1382 	/* Queue a stop endpoint command, but only if this is
1383 	 * the first cancellation to be handled.
1384 	 */
1385 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1386 		ep->ep_state |= EP_HALT_PENDING;
1387 		ep->stop_cmds_pending++;
1388 		ep->stop_cmd_timer.expires = jiffies +
1389 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1390 		add_timer(&ep->stop_cmd_timer);
1391 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1392 		xhci_ring_cmd_db(xhci);
1393 	}
1394 done:
1395 	spin_unlock_irqrestore(&xhci->lock, flags);
1396 	return ret;
1397 }
1398 
1399 /* Drop an endpoint from a new bandwidth configuration for this device.
1400  * Only one call to this function is allowed per endpoint before
1401  * check_bandwidth() or reset_bandwidth() must be called.
1402  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1403  * add the endpoint to the schedule with possibly new parameters denoted by a
1404  * different endpoint descriptor in usb_host_endpoint.
1405  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1406  * not allowed.
1407  *
1408  * The USB core will not allow URBs to be queued to an endpoint that is being
1409  * disabled, so there's no need for mutual exclusion to protect
1410  * the xhci->devs[slot_id] structure.
1411  */
1412 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1413 		struct usb_host_endpoint *ep)
1414 {
1415 	struct xhci_hcd *xhci;
1416 	struct xhci_container_ctx *in_ctx, *out_ctx;
1417 	struct xhci_input_control_ctx *ctrl_ctx;
1418 	struct xhci_slot_ctx *slot_ctx;
1419 	unsigned int last_ctx;
1420 	unsigned int ep_index;
1421 	struct xhci_ep_ctx *ep_ctx;
1422 	u32 drop_flag;
1423 	u32 new_add_flags, new_drop_flags, new_slot_info;
1424 	int ret;
1425 
1426 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1427 	if (ret <= 0)
1428 		return ret;
1429 	xhci = hcd_to_xhci(hcd);
1430 	if (xhci->xhc_state & XHCI_STATE_DYING)
1431 		return -ENODEV;
1432 
1433 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1434 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1435 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1436 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1437 				__func__, drop_flag);
1438 		return 0;
1439 	}
1440 
1441 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1442 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1443 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1444 	ep_index = xhci_get_endpoint_index(&ep->desc);
1445 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1446 	/* If the HC already knows the endpoint is disabled,
1447 	 * or the HCD has noted it is disabled, ignore this request
1448 	 */
1449 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1450 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1451 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1452 	    xhci_get_endpoint_flag(&ep->desc)) {
1453 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1454 				__func__, ep);
1455 		return 0;
1456 	}
1457 
1458 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1459 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1460 
1461 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1462 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1463 
1464 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1465 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1466 	/* Update the last valid endpoint context, if we deleted the last one */
1467 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1468 	    LAST_CTX(last_ctx)) {
1469 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1470 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1471 	}
1472 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1473 
1474 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1475 
1476 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1477 			(unsigned int) ep->desc.bEndpointAddress,
1478 			udev->slot_id,
1479 			(unsigned int) new_drop_flags,
1480 			(unsigned int) new_add_flags,
1481 			(unsigned int) new_slot_info);
1482 	return 0;
1483 }
1484 
1485 /* Add an endpoint to a new possible bandwidth configuration for this device.
1486  * Only one call to this function is allowed per endpoint before
1487  * check_bandwidth() or reset_bandwidth() must be called.
1488  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1489  * add the endpoint to the schedule with possibly new parameters denoted by a
1490  * different endpoint descriptor in usb_host_endpoint.
1491  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1492  * not allowed.
1493  *
1494  * The USB core will not allow URBs to be queued to an endpoint until the
1495  * configuration or alt setting is installed in the device, so there's no need
1496  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1497  */
1498 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1499 		struct usb_host_endpoint *ep)
1500 {
1501 	struct xhci_hcd *xhci;
1502 	struct xhci_container_ctx *in_ctx, *out_ctx;
1503 	unsigned int ep_index;
1504 	struct xhci_ep_ctx *ep_ctx;
1505 	struct xhci_slot_ctx *slot_ctx;
1506 	struct xhci_input_control_ctx *ctrl_ctx;
1507 	u32 added_ctxs;
1508 	unsigned int last_ctx;
1509 	u32 new_add_flags, new_drop_flags, new_slot_info;
1510 	struct xhci_virt_device *virt_dev;
1511 	int ret = 0;
1512 
1513 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1514 	if (ret <= 0) {
1515 		/* So we won't queue a reset ep command for a root hub */
1516 		ep->hcpriv = NULL;
1517 		return ret;
1518 	}
1519 	xhci = hcd_to_xhci(hcd);
1520 	if (xhci->xhc_state & XHCI_STATE_DYING)
1521 		return -ENODEV;
1522 
1523 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1524 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1525 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1526 		/* FIXME when we have to issue an evaluate endpoint command to
1527 		 * deal with ep0 max packet size changing once we get the
1528 		 * descriptors
1529 		 */
1530 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1531 				__func__, added_ctxs);
1532 		return 0;
1533 	}
1534 
1535 	virt_dev = xhci->devs[udev->slot_id];
1536 	in_ctx = virt_dev->in_ctx;
1537 	out_ctx = virt_dev->out_ctx;
1538 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1539 	ep_index = xhci_get_endpoint_index(&ep->desc);
1540 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1541 
1542 	/* If this endpoint is already in use, and the upper layers are trying
1543 	 * to add it again without dropping it, reject the addition.
1544 	 */
1545 	if (virt_dev->eps[ep_index].ring &&
1546 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1547 				xhci_get_endpoint_flag(&ep->desc))) {
1548 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1549 				"without dropping it.\n",
1550 				(unsigned int) ep->desc.bEndpointAddress);
1551 		return -EINVAL;
1552 	}
1553 
1554 	/* If the HCD has already noted the endpoint is enabled,
1555 	 * ignore this request.
1556 	 */
1557 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1558 	    xhci_get_endpoint_flag(&ep->desc)) {
1559 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1560 				__func__, ep);
1561 		return 0;
1562 	}
1563 
1564 	/*
1565 	 * Configuration and alternate setting changes must be done in
1566 	 * process context, not interrupt context (or so documenation
1567 	 * for usb_set_interface() and usb_set_configuration() claim).
1568 	 */
1569 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1570 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1571 				__func__, ep->desc.bEndpointAddress);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1576 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1577 
1578 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1579 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1580 	 * this re-adds a new state for the endpoint from the new endpoint
1581 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1582 	 * drop flags alone.
1583 	 */
1584 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585 
1586 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1587 	/* Update the last valid endpoint context, if we just added one past */
1588 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1589 	    LAST_CTX(last_ctx)) {
1590 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1591 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1592 	}
1593 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1594 
1595 	/* Store the usb_device pointer for later use */
1596 	ep->hcpriv = udev;
1597 
1598 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1599 			(unsigned int) ep->desc.bEndpointAddress,
1600 			udev->slot_id,
1601 			(unsigned int) new_drop_flags,
1602 			(unsigned int) new_add_flags,
1603 			(unsigned int) new_slot_info);
1604 	return 0;
1605 }
1606 
1607 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1608 {
1609 	struct xhci_input_control_ctx *ctrl_ctx;
1610 	struct xhci_ep_ctx *ep_ctx;
1611 	struct xhci_slot_ctx *slot_ctx;
1612 	int i;
1613 
1614 	/* When a device's add flag and drop flag are zero, any subsequent
1615 	 * configure endpoint command will leave that endpoint's state
1616 	 * untouched.  Make sure we don't leave any old state in the input
1617 	 * endpoint contexts.
1618 	 */
1619 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1620 	ctrl_ctx->drop_flags = 0;
1621 	ctrl_ctx->add_flags = 0;
1622 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1623 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1624 	/* Endpoint 0 is always valid */
1625 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1626 	for (i = 1; i < 31; ++i) {
1627 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1628 		ep_ctx->ep_info = 0;
1629 		ep_ctx->ep_info2 = 0;
1630 		ep_ctx->deq = 0;
1631 		ep_ctx->tx_info = 0;
1632 	}
1633 }
1634 
1635 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1636 		struct usb_device *udev, u32 *cmd_status)
1637 {
1638 	int ret;
1639 
1640 	switch (*cmd_status) {
1641 	case COMP_ENOMEM:
1642 		dev_warn(&udev->dev, "Not enough host controller resources "
1643 				"for new device state.\n");
1644 		ret = -ENOMEM;
1645 		/* FIXME: can we allocate more resources for the HC? */
1646 		break;
1647 	case COMP_BW_ERR:
1648 	case COMP_2ND_BW_ERR:
1649 		dev_warn(&udev->dev, "Not enough bandwidth "
1650 				"for new device state.\n");
1651 		ret = -ENOSPC;
1652 		/* FIXME: can we go back to the old state? */
1653 		break;
1654 	case COMP_TRB_ERR:
1655 		/* the HCD set up something wrong */
1656 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1657 				"add flag = 1, "
1658 				"and endpoint is not disabled.\n");
1659 		ret = -EINVAL;
1660 		break;
1661 	case COMP_DEV_ERR:
1662 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1663 				"configure command.\n");
1664 		ret = -ENODEV;
1665 		break;
1666 	case COMP_SUCCESS:
1667 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1668 		ret = 0;
1669 		break;
1670 	default:
1671 		xhci_err(xhci, "ERROR: unexpected command completion "
1672 				"code 0x%x.\n", *cmd_status);
1673 		ret = -EINVAL;
1674 		break;
1675 	}
1676 	return ret;
1677 }
1678 
1679 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1680 		struct usb_device *udev, u32 *cmd_status)
1681 {
1682 	int ret;
1683 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1684 
1685 	switch (*cmd_status) {
1686 	case COMP_EINVAL:
1687 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1688 				"context command.\n");
1689 		ret = -EINVAL;
1690 		break;
1691 	case COMP_EBADSLT:
1692 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1693 				"evaluate context command.\n");
1694 	case COMP_CTX_STATE:
1695 		dev_warn(&udev->dev, "WARN: invalid context state for "
1696 				"evaluate context command.\n");
1697 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1698 		ret = -EINVAL;
1699 		break;
1700 	case COMP_DEV_ERR:
1701 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1702 				"context command.\n");
1703 		ret = -ENODEV;
1704 		break;
1705 	case COMP_MEL_ERR:
1706 		/* Max Exit Latency too large error */
1707 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1708 		ret = -EINVAL;
1709 		break;
1710 	case COMP_SUCCESS:
1711 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1712 		ret = 0;
1713 		break;
1714 	default:
1715 		xhci_err(xhci, "ERROR: unexpected command completion "
1716 				"code 0x%x.\n", *cmd_status);
1717 		ret = -EINVAL;
1718 		break;
1719 	}
1720 	return ret;
1721 }
1722 
1723 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1724 		struct xhci_container_ctx *in_ctx)
1725 {
1726 	struct xhci_input_control_ctx *ctrl_ctx;
1727 	u32 valid_add_flags;
1728 	u32 valid_drop_flags;
1729 
1730 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1731 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1732 	 * (bit 1).  The default control endpoint is added during the Address
1733 	 * Device command and is never removed until the slot is disabled.
1734 	 */
1735 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1736 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1737 
1738 	/* Use hweight32 to count the number of ones in the add flags, or
1739 	 * number of endpoints added.  Don't count endpoints that are changed
1740 	 * (both added and dropped).
1741 	 */
1742 	return hweight32(valid_add_flags) -
1743 		hweight32(valid_add_flags & valid_drop_flags);
1744 }
1745 
1746 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1747 		struct xhci_container_ctx *in_ctx)
1748 {
1749 	struct xhci_input_control_ctx *ctrl_ctx;
1750 	u32 valid_add_flags;
1751 	u32 valid_drop_flags;
1752 
1753 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1754 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1755 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1756 
1757 	return hweight32(valid_drop_flags) -
1758 		hweight32(valid_add_flags & valid_drop_flags);
1759 }
1760 
1761 /*
1762  * We need to reserve the new number of endpoints before the configure endpoint
1763  * command completes.  We can't subtract the dropped endpoints from the number
1764  * of active endpoints until the command completes because we can oversubscribe
1765  * the host in this case:
1766  *
1767  *  - the first configure endpoint command drops more endpoints than it adds
1768  *  - a second configure endpoint command that adds more endpoints is queued
1769  *  - the first configure endpoint command fails, so the config is unchanged
1770  *  - the second command may succeed, even though there isn't enough resources
1771  *
1772  * Must be called with xhci->lock held.
1773  */
1774 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1775 		struct xhci_container_ctx *in_ctx)
1776 {
1777 	u32 added_eps;
1778 
1779 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1780 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1781 		xhci_dbg(xhci, "Not enough ep ctxs: "
1782 				"%u active, need to add %u, limit is %u.\n",
1783 				xhci->num_active_eps, added_eps,
1784 				xhci->limit_active_eps);
1785 		return -ENOMEM;
1786 	}
1787 	xhci->num_active_eps += added_eps;
1788 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1789 			xhci->num_active_eps);
1790 	return 0;
1791 }
1792 
1793 /*
1794  * The configure endpoint was failed by the xHC for some other reason, so we
1795  * need to revert the resources that failed configuration would have used.
1796  *
1797  * Must be called with xhci->lock held.
1798  */
1799 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1800 		struct xhci_container_ctx *in_ctx)
1801 {
1802 	u32 num_failed_eps;
1803 
1804 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1805 	xhci->num_active_eps -= num_failed_eps;
1806 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1807 			num_failed_eps,
1808 			xhci->num_active_eps);
1809 }
1810 
1811 /*
1812  * Now that the command has completed, clean up the active endpoint count by
1813  * subtracting out the endpoints that were dropped (but not changed).
1814  *
1815  * Must be called with xhci->lock held.
1816  */
1817 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1818 		struct xhci_container_ctx *in_ctx)
1819 {
1820 	u32 num_dropped_eps;
1821 
1822 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1823 	xhci->num_active_eps -= num_dropped_eps;
1824 	if (num_dropped_eps)
1825 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1826 				num_dropped_eps,
1827 				xhci->num_active_eps);
1828 }
1829 
1830 unsigned int xhci_get_block_size(struct usb_device *udev)
1831 {
1832 	switch (udev->speed) {
1833 	case USB_SPEED_LOW:
1834 	case USB_SPEED_FULL:
1835 		return FS_BLOCK;
1836 	case USB_SPEED_HIGH:
1837 		return HS_BLOCK;
1838 	case USB_SPEED_SUPER:
1839 		return SS_BLOCK;
1840 	case USB_SPEED_UNKNOWN:
1841 	case USB_SPEED_WIRELESS:
1842 	default:
1843 		/* Should never happen */
1844 		return 1;
1845 	}
1846 }
1847 
1848 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1849 {
1850 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1851 		return LS_OVERHEAD;
1852 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1853 		return FS_OVERHEAD;
1854 	return HS_OVERHEAD;
1855 }
1856 
1857 /* If we are changing a LS/FS device under a HS hub,
1858  * make sure (if we are activating a new TT) that the HS bus has enough
1859  * bandwidth for this new TT.
1860  */
1861 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1862 		struct xhci_virt_device *virt_dev,
1863 		int old_active_eps)
1864 {
1865 	struct xhci_interval_bw_table *bw_table;
1866 	struct xhci_tt_bw_info *tt_info;
1867 
1868 	/* Find the bandwidth table for the root port this TT is attached to. */
1869 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1870 	tt_info = virt_dev->tt_info;
1871 	/* If this TT already had active endpoints, the bandwidth for this TT
1872 	 * has already been added.  Removing all periodic endpoints (and thus
1873 	 * making the TT enactive) will only decrease the bandwidth used.
1874 	 */
1875 	if (old_active_eps)
1876 		return 0;
1877 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1878 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1879 			return -ENOMEM;
1880 		return 0;
1881 	}
1882 	/* Not sure why we would have no new active endpoints...
1883 	 *
1884 	 * Maybe because of an Evaluate Context change for a hub update or a
1885 	 * control endpoint 0 max packet size change?
1886 	 * FIXME: skip the bandwidth calculation in that case.
1887 	 */
1888 	return 0;
1889 }
1890 
1891 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1892 		struct xhci_virt_device *virt_dev)
1893 {
1894 	unsigned int bw_reserved;
1895 
1896 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1897 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1898 		return -ENOMEM;
1899 
1900 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1901 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1902 		return -ENOMEM;
1903 
1904 	return 0;
1905 }
1906 
1907 /*
1908  * This algorithm is a very conservative estimate of the worst-case scheduling
1909  * scenario for any one interval.  The hardware dynamically schedules the
1910  * packets, so we can't tell which microframe could be the limiting factor in
1911  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1912  *
1913  * Obviously, we can't solve an NP complete problem to find the minimum worst
1914  * case scenario.  Instead, we come up with an estimate that is no less than
1915  * the worst case bandwidth used for any one microframe, but may be an
1916  * over-estimate.
1917  *
1918  * We walk the requirements for each endpoint by interval, starting with the
1919  * smallest interval, and place packets in the schedule where there is only one
1920  * possible way to schedule packets for that interval.  In order to simplify
1921  * this algorithm, we record the largest max packet size for each interval, and
1922  * assume all packets will be that size.
1923  *
1924  * For interval 0, we obviously must schedule all packets for each interval.
1925  * The bandwidth for interval 0 is just the amount of data to be transmitted
1926  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1927  * the number of packets).
1928  *
1929  * For interval 1, we have two possible microframes to schedule those packets
1930  * in.  For this algorithm, if we can schedule the same number of packets for
1931  * each possible scheduling opportunity (each microframe), we will do so.  The
1932  * remaining number of packets will be saved to be transmitted in the gaps in
1933  * the next interval's scheduling sequence.
1934  *
1935  * As we move those remaining packets to be scheduled with interval 2 packets,
1936  * we have to double the number of remaining packets to transmit.  This is
1937  * because the intervals are actually powers of 2, and we would be transmitting
1938  * the previous interval's packets twice in this interval.  We also have to be
1939  * sure that when we look at the largest max packet size for this interval, we
1940  * also look at the largest max packet size for the remaining packets and take
1941  * the greater of the two.
1942  *
1943  * The algorithm continues to evenly distribute packets in each scheduling
1944  * opportunity, and push the remaining packets out, until we get to the last
1945  * interval.  Then those packets and their associated overhead are just added
1946  * to the bandwidth used.
1947  */
1948 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1949 		struct xhci_virt_device *virt_dev,
1950 		int old_active_eps)
1951 {
1952 	unsigned int bw_reserved;
1953 	unsigned int max_bandwidth;
1954 	unsigned int bw_used;
1955 	unsigned int block_size;
1956 	struct xhci_interval_bw_table *bw_table;
1957 	unsigned int packet_size = 0;
1958 	unsigned int overhead = 0;
1959 	unsigned int packets_transmitted = 0;
1960 	unsigned int packets_remaining = 0;
1961 	unsigned int i;
1962 
1963 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1964 		return xhci_check_ss_bw(xhci, virt_dev);
1965 
1966 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1967 		max_bandwidth = HS_BW_LIMIT;
1968 		/* Convert percent of bus BW reserved to blocks reserved */
1969 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1970 	} else {
1971 		max_bandwidth = FS_BW_LIMIT;
1972 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1973 	}
1974 
1975 	bw_table = virt_dev->bw_table;
1976 	/* We need to translate the max packet size and max ESIT payloads into
1977 	 * the units the hardware uses.
1978 	 */
1979 	block_size = xhci_get_block_size(virt_dev->udev);
1980 
1981 	/* If we are manipulating a LS/FS device under a HS hub, double check
1982 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1983 	 */
1984 	if (virt_dev->tt_info) {
1985 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1986 				virt_dev->real_port);
1987 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1988 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1989 					"newly activated TT.\n");
1990 			return -ENOMEM;
1991 		}
1992 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1993 				virt_dev->tt_info->slot_id,
1994 				virt_dev->tt_info->ttport);
1995 	} else {
1996 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1997 				virt_dev->real_port);
1998 	}
1999 
2000 	/* Add in how much bandwidth will be used for interval zero, or the
2001 	 * rounded max ESIT payload + number of packets * largest overhead.
2002 	 */
2003 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2004 		bw_table->interval_bw[0].num_packets *
2005 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2006 
2007 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2008 		unsigned int bw_added;
2009 		unsigned int largest_mps;
2010 		unsigned int interval_overhead;
2011 
2012 		/*
2013 		 * How many packets could we transmit in this interval?
2014 		 * If packets didn't fit in the previous interval, we will need
2015 		 * to transmit that many packets twice within this interval.
2016 		 */
2017 		packets_remaining = 2 * packets_remaining +
2018 			bw_table->interval_bw[i].num_packets;
2019 
2020 		/* Find the largest max packet size of this or the previous
2021 		 * interval.
2022 		 */
2023 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2024 			largest_mps = 0;
2025 		else {
2026 			struct xhci_virt_ep *virt_ep;
2027 			struct list_head *ep_entry;
2028 
2029 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2030 			virt_ep = list_entry(ep_entry,
2031 					struct xhci_virt_ep, bw_endpoint_list);
2032 			/* Convert to blocks, rounding up */
2033 			largest_mps = DIV_ROUND_UP(
2034 					virt_ep->bw_info.max_packet_size,
2035 					block_size);
2036 		}
2037 		if (largest_mps > packet_size)
2038 			packet_size = largest_mps;
2039 
2040 		/* Use the larger overhead of this or the previous interval. */
2041 		interval_overhead = xhci_get_largest_overhead(
2042 				&bw_table->interval_bw[i]);
2043 		if (interval_overhead > overhead)
2044 			overhead = interval_overhead;
2045 
2046 		/* How many packets can we evenly distribute across
2047 		 * (1 << (i + 1)) possible scheduling opportunities?
2048 		 */
2049 		packets_transmitted = packets_remaining >> (i + 1);
2050 
2051 		/* Add in the bandwidth used for those scheduled packets */
2052 		bw_added = packets_transmitted * (overhead + packet_size);
2053 
2054 		/* How many packets do we have remaining to transmit? */
2055 		packets_remaining = packets_remaining % (1 << (i + 1));
2056 
2057 		/* What largest max packet size should those packets have? */
2058 		/* If we've transmitted all packets, don't carry over the
2059 		 * largest packet size.
2060 		 */
2061 		if (packets_remaining == 0) {
2062 			packet_size = 0;
2063 			overhead = 0;
2064 		} else if (packets_transmitted > 0) {
2065 			/* Otherwise if we do have remaining packets, and we've
2066 			 * scheduled some packets in this interval, take the
2067 			 * largest max packet size from endpoints with this
2068 			 * interval.
2069 			 */
2070 			packet_size = largest_mps;
2071 			overhead = interval_overhead;
2072 		}
2073 		/* Otherwise carry over packet_size and overhead from the last
2074 		 * time we had a remainder.
2075 		 */
2076 		bw_used += bw_added;
2077 		if (bw_used > max_bandwidth) {
2078 			xhci_warn(xhci, "Not enough bandwidth. "
2079 					"Proposed: %u, Max: %u\n",
2080 				bw_used, max_bandwidth);
2081 			return -ENOMEM;
2082 		}
2083 	}
2084 	/*
2085 	 * Ok, we know we have some packets left over after even-handedly
2086 	 * scheduling interval 15.  We don't know which microframes they will
2087 	 * fit into, so we over-schedule and say they will be scheduled every
2088 	 * microframe.
2089 	 */
2090 	if (packets_remaining > 0)
2091 		bw_used += overhead + packet_size;
2092 
2093 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2094 		unsigned int port_index = virt_dev->real_port - 1;
2095 
2096 		/* OK, we're manipulating a HS device attached to a
2097 		 * root port bandwidth domain.  Include the number of active TTs
2098 		 * in the bandwidth used.
2099 		 */
2100 		bw_used += TT_HS_OVERHEAD *
2101 			xhci->rh_bw[port_index].num_active_tts;
2102 	}
2103 
2104 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2105 		"Available: %u " "percent\n",
2106 		bw_used, max_bandwidth, bw_reserved,
2107 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2108 		max_bandwidth);
2109 
2110 	bw_used += bw_reserved;
2111 	if (bw_used > max_bandwidth) {
2112 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2113 				bw_used, max_bandwidth);
2114 		return -ENOMEM;
2115 	}
2116 
2117 	bw_table->bw_used = bw_used;
2118 	return 0;
2119 }
2120 
2121 static bool xhci_is_async_ep(unsigned int ep_type)
2122 {
2123 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2124 					ep_type != ISOC_IN_EP &&
2125 					ep_type != INT_IN_EP);
2126 }
2127 
2128 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2129 {
2130 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2131 }
2132 
2133 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2134 {
2135 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2136 
2137 	if (ep_bw->ep_interval == 0)
2138 		return SS_OVERHEAD_BURST +
2139 			(ep_bw->mult * ep_bw->num_packets *
2140 					(SS_OVERHEAD + mps));
2141 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2142 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2143 				1 << ep_bw->ep_interval);
2144 
2145 }
2146 
2147 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2148 		struct xhci_bw_info *ep_bw,
2149 		struct xhci_interval_bw_table *bw_table,
2150 		struct usb_device *udev,
2151 		struct xhci_virt_ep *virt_ep,
2152 		struct xhci_tt_bw_info *tt_info)
2153 {
2154 	struct xhci_interval_bw	*interval_bw;
2155 	int normalized_interval;
2156 
2157 	if (xhci_is_async_ep(ep_bw->type))
2158 		return;
2159 
2160 	if (udev->speed == USB_SPEED_SUPER) {
2161 		if (xhci_is_sync_in_ep(ep_bw->type))
2162 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2163 				xhci_get_ss_bw_consumed(ep_bw);
2164 		else
2165 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2166 				xhci_get_ss_bw_consumed(ep_bw);
2167 		return;
2168 	}
2169 
2170 	/* SuperSpeed endpoints never get added to intervals in the table, so
2171 	 * this check is only valid for HS/FS/LS devices.
2172 	 */
2173 	if (list_empty(&virt_ep->bw_endpoint_list))
2174 		return;
2175 	/* For LS/FS devices, we need to translate the interval expressed in
2176 	 * microframes to frames.
2177 	 */
2178 	if (udev->speed == USB_SPEED_HIGH)
2179 		normalized_interval = ep_bw->ep_interval;
2180 	else
2181 		normalized_interval = ep_bw->ep_interval - 3;
2182 
2183 	if (normalized_interval == 0)
2184 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2185 	interval_bw = &bw_table->interval_bw[normalized_interval];
2186 	interval_bw->num_packets -= ep_bw->num_packets;
2187 	switch (udev->speed) {
2188 	case USB_SPEED_LOW:
2189 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2190 		break;
2191 	case USB_SPEED_FULL:
2192 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2193 		break;
2194 	case USB_SPEED_HIGH:
2195 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2196 		break;
2197 	case USB_SPEED_SUPER:
2198 	case USB_SPEED_UNKNOWN:
2199 	case USB_SPEED_WIRELESS:
2200 		/* Should never happen because only LS/FS/HS endpoints will get
2201 		 * added to the endpoint list.
2202 		 */
2203 		return;
2204 	}
2205 	if (tt_info)
2206 		tt_info->active_eps -= 1;
2207 	list_del_init(&virt_ep->bw_endpoint_list);
2208 }
2209 
2210 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2211 		struct xhci_bw_info *ep_bw,
2212 		struct xhci_interval_bw_table *bw_table,
2213 		struct usb_device *udev,
2214 		struct xhci_virt_ep *virt_ep,
2215 		struct xhci_tt_bw_info *tt_info)
2216 {
2217 	struct xhci_interval_bw	*interval_bw;
2218 	struct xhci_virt_ep *smaller_ep;
2219 	int normalized_interval;
2220 
2221 	if (xhci_is_async_ep(ep_bw->type))
2222 		return;
2223 
2224 	if (udev->speed == USB_SPEED_SUPER) {
2225 		if (xhci_is_sync_in_ep(ep_bw->type))
2226 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2227 				xhci_get_ss_bw_consumed(ep_bw);
2228 		else
2229 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2230 				xhci_get_ss_bw_consumed(ep_bw);
2231 		return;
2232 	}
2233 
2234 	/* For LS/FS devices, we need to translate the interval expressed in
2235 	 * microframes to frames.
2236 	 */
2237 	if (udev->speed == USB_SPEED_HIGH)
2238 		normalized_interval = ep_bw->ep_interval;
2239 	else
2240 		normalized_interval = ep_bw->ep_interval - 3;
2241 
2242 	if (normalized_interval == 0)
2243 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2244 	interval_bw = &bw_table->interval_bw[normalized_interval];
2245 	interval_bw->num_packets += ep_bw->num_packets;
2246 	switch (udev->speed) {
2247 	case USB_SPEED_LOW:
2248 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2249 		break;
2250 	case USB_SPEED_FULL:
2251 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2252 		break;
2253 	case USB_SPEED_HIGH:
2254 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2255 		break;
2256 	case USB_SPEED_SUPER:
2257 	case USB_SPEED_UNKNOWN:
2258 	case USB_SPEED_WIRELESS:
2259 		/* Should never happen because only LS/FS/HS endpoints will get
2260 		 * added to the endpoint list.
2261 		 */
2262 		return;
2263 	}
2264 
2265 	if (tt_info)
2266 		tt_info->active_eps += 1;
2267 	/* Insert the endpoint into the list, largest max packet size first. */
2268 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2269 			bw_endpoint_list) {
2270 		if (ep_bw->max_packet_size >=
2271 				smaller_ep->bw_info.max_packet_size) {
2272 			/* Add the new ep before the smaller endpoint */
2273 			list_add_tail(&virt_ep->bw_endpoint_list,
2274 					&smaller_ep->bw_endpoint_list);
2275 			return;
2276 		}
2277 	}
2278 	/* Add the new endpoint at the end of the list. */
2279 	list_add_tail(&virt_ep->bw_endpoint_list,
2280 			&interval_bw->endpoints);
2281 }
2282 
2283 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2284 		struct xhci_virt_device *virt_dev,
2285 		int old_active_eps)
2286 {
2287 	struct xhci_root_port_bw_info *rh_bw_info;
2288 	if (!virt_dev->tt_info)
2289 		return;
2290 
2291 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2292 	if (old_active_eps == 0 &&
2293 				virt_dev->tt_info->active_eps != 0) {
2294 		rh_bw_info->num_active_tts += 1;
2295 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2296 	} else if (old_active_eps != 0 &&
2297 				virt_dev->tt_info->active_eps == 0) {
2298 		rh_bw_info->num_active_tts -= 1;
2299 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2300 	}
2301 }
2302 
2303 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2304 		struct xhci_virt_device *virt_dev,
2305 		struct xhci_container_ctx *in_ctx)
2306 {
2307 	struct xhci_bw_info ep_bw_info[31];
2308 	int i;
2309 	struct xhci_input_control_ctx *ctrl_ctx;
2310 	int old_active_eps = 0;
2311 
2312 	if (virt_dev->tt_info)
2313 		old_active_eps = virt_dev->tt_info->active_eps;
2314 
2315 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2316 
2317 	for (i = 0; i < 31; i++) {
2318 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2319 			continue;
2320 
2321 		/* Make a copy of the BW info in case we need to revert this */
2322 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2323 				sizeof(ep_bw_info[i]));
2324 		/* Drop the endpoint from the interval table if the endpoint is
2325 		 * being dropped or changed.
2326 		 */
2327 		if (EP_IS_DROPPED(ctrl_ctx, i))
2328 			xhci_drop_ep_from_interval_table(xhci,
2329 					&virt_dev->eps[i].bw_info,
2330 					virt_dev->bw_table,
2331 					virt_dev->udev,
2332 					&virt_dev->eps[i],
2333 					virt_dev->tt_info);
2334 	}
2335 	/* Overwrite the information stored in the endpoints' bw_info */
2336 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2337 	for (i = 0; i < 31; i++) {
2338 		/* Add any changed or added endpoints to the interval table */
2339 		if (EP_IS_ADDED(ctrl_ctx, i))
2340 			xhci_add_ep_to_interval_table(xhci,
2341 					&virt_dev->eps[i].bw_info,
2342 					virt_dev->bw_table,
2343 					virt_dev->udev,
2344 					&virt_dev->eps[i],
2345 					virt_dev->tt_info);
2346 	}
2347 
2348 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2349 		/* Ok, this fits in the bandwidth we have.
2350 		 * Update the number of active TTs.
2351 		 */
2352 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2353 		return 0;
2354 	}
2355 
2356 	/* We don't have enough bandwidth for this, revert the stored info. */
2357 	for (i = 0; i < 31; i++) {
2358 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2359 			continue;
2360 
2361 		/* Drop the new copies of any added or changed endpoints from
2362 		 * the interval table.
2363 		 */
2364 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2365 			xhci_drop_ep_from_interval_table(xhci,
2366 					&virt_dev->eps[i].bw_info,
2367 					virt_dev->bw_table,
2368 					virt_dev->udev,
2369 					&virt_dev->eps[i],
2370 					virt_dev->tt_info);
2371 		}
2372 		/* Revert the endpoint back to its old information */
2373 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2374 				sizeof(ep_bw_info[i]));
2375 		/* Add any changed or dropped endpoints back into the table */
2376 		if (EP_IS_DROPPED(ctrl_ctx, i))
2377 			xhci_add_ep_to_interval_table(xhci,
2378 					&virt_dev->eps[i].bw_info,
2379 					virt_dev->bw_table,
2380 					virt_dev->udev,
2381 					&virt_dev->eps[i],
2382 					virt_dev->tt_info);
2383 	}
2384 	return -ENOMEM;
2385 }
2386 
2387 
2388 /* Issue a configure endpoint command or evaluate context command
2389  * and wait for it to finish.
2390  */
2391 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2392 		struct usb_device *udev,
2393 		struct xhci_command *command,
2394 		bool ctx_change, bool must_succeed)
2395 {
2396 	int ret;
2397 	int timeleft;
2398 	unsigned long flags;
2399 	struct xhci_container_ctx *in_ctx;
2400 	struct completion *cmd_completion;
2401 	u32 *cmd_status;
2402 	struct xhci_virt_device *virt_dev;
2403 
2404 	spin_lock_irqsave(&xhci->lock, flags);
2405 	virt_dev = xhci->devs[udev->slot_id];
2406 
2407 	if (command)
2408 		in_ctx = command->in_ctx;
2409 	else
2410 		in_ctx = virt_dev->in_ctx;
2411 
2412 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2413 			xhci_reserve_host_resources(xhci, in_ctx)) {
2414 		spin_unlock_irqrestore(&xhci->lock, flags);
2415 		xhci_warn(xhci, "Not enough host resources, "
2416 				"active endpoint contexts = %u\n",
2417 				xhci->num_active_eps);
2418 		return -ENOMEM;
2419 	}
2420 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2421 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2422 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2423 			xhci_free_host_resources(xhci, in_ctx);
2424 		spin_unlock_irqrestore(&xhci->lock, flags);
2425 		xhci_warn(xhci, "Not enough bandwidth\n");
2426 		return -ENOMEM;
2427 	}
2428 
2429 	if (command) {
2430 		cmd_completion = command->completion;
2431 		cmd_status = &command->status;
2432 		command->command_trb = xhci->cmd_ring->enqueue;
2433 
2434 		/* Enqueue pointer can be left pointing to the link TRB,
2435 		 * we must handle that
2436 		 */
2437 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2438 			command->command_trb =
2439 				xhci->cmd_ring->enq_seg->next->trbs;
2440 
2441 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2442 	} else {
2443 		cmd_completion = &virt_dev->cmd_completion;
2444 		cmd_status = &virt_dev->cmd_status;
2445 	}
2446 	init_completion(cmd_completion);
2447 
2448 	if (!ctx_change)
2449 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2450 				udev->slot_id, must_succeed);
2451 	else
2452 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2453 				udev->slot_id, must_succeed);
2454 	if (ret < 0) {
2455 		if (command)
2456 			list_del(&command->cmd_list);
2457 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2458 			xhci_free_host_resources(xhci, in_ctx);
2459 		spin_unlock_irqrestore(&xhci->lock, flags);
2460 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2461 		return -ENOMEM;
2462 	}
2463 	xhci_ring_cmd_db(xhci);
2464 	spin_unlock_irqrestore(&xhci->lock, flags);
2465 
2466 	/* Wait for the configure endpoint command to complete */
2467 	timeleft = wait_for_completion_interruptible_timeout(
2468 			cmd_completion,
2469 			USB_CTRL_SET_TIMEOUT);
2470 	if (timeleft <= 0) {
2471 		xhci_warn(xhci, "%s while waiting for %s command\n",
2472 				timeleft == 0 ? "Timeout" : "Signal",
2473 				ctx_change == 0 ?
2474 					"configure endpoint" :
2475 					"evaluate context");
2476 		/* FIXME cancel the configure endpoint command */
2477 		return -ETIME;
2478 	}
2479 
2480 	if (!ctx_change)
2481 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2482 	else
2483 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2484 
2485 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2486 		spin_lock_irqsave(&xhci->lock, flags);
2487 		/* If the command failed, remove the reserved resources.
2488 		 * Otherwise, clean up the estimate to include dropped eps.
2489 		 */
2490 		if (ret)
2491 			xhci_free_host_resources(xhci, in_ctx);
2492 		else
2493 			xhci_finish_resource_reservation(xhci, in_ctx);
2494 		spin_unlock_irqrestore(&xhci->lock, flags);
2495 	}
2496 	return ret;
2497 }
2498 
2499 /* Called after one or more calls to xhci_add_endpoint() or
2500  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2501  * to call xhci_reset_bandwidth().
2502  *
2503  * Since we are in the middle of changing either configuration or
2504  * installing a new alt setting, the USB core won't allow URBs to be
2505  * enqueued for any endpoint on the old config or interface.  Nothing
2506  * else should be touching the xhci->devs[slot_id] structure, so we
2507  * don't need to take the xhci->lock for manipulating that.
2508  */
2509 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2510 {
2511 	int i;
2512 	int ret = 0;
2513 	struct xhci_hcd *xhci;
2514 	struct xhci_virt_device	*virt_dev;
2515 	struct xhci_input_control_ctx *ctrl_ctx;
2516 	struct xhci_slot_ctx *slot_ctx;
2517 
2518 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2519 	if (ret <= 0)
2520 		return ret;
2521 	xhci = hcd_to_xhci(hcd);
2522 	if (xhci->xhc_state & XHCI_STATE_DYING)
2523 		return -ENODEV;
2524 
2525 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2526 	virt_dev = xhci->devs[udev->slot_id];
2527 
2528 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2529 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2530 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2531 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2532 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2533 
2534 	/* Don't issue the command if there's no endpoints to update. */
2535 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2536 			ctrl_ctx->drop_flags == 0)
2537 		return 0;
2538 
2539 	xhci_dbg(xhci, "New Input Control Context:\n");
2540 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2541 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2542 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2543 
2544 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2545 			false, false);
2546 	if (ret) {
2547 		/* Callee should call reset_bandwidth() */
2548 		return ret;
2549 	}
2550 
2551 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2552 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2553 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2554 
2555 	/* Free any rings that were dropped, but not changed. */
2556 	for (i = 1; i < 31; ++i) {
2557 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2558 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2559 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2560 	}
2561 	xhci_zero_in_ctx(xhci, virt_dev);
2562 	/*
2563 	 * Install any rings for completely new endpoints or changed endpoints,
2564 	 * and free or cache any old rings from changed endpoints.
2565 	 */
2566 	for (i = 1; i < 31; ++i) {
2567 		if (!virt_dev->eps[i].new_ring)
2568 			continue;
2569 		/* Only cache or free the old ring if it exists.
2570 		 * It may not if this is the first add of an endpoint.
2571 		 */
2572 		if (virt_dev->eps[i].ring) {
2573 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2574 		}
2575 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2576 		virt_dev->eps[i].new_ring = NULL;
2577 	}
2578 
2579 	return ret;
2580 }
2581 
2582 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2583 {
2584 	struct xhci_hcd *xhci;
2585 	struct xhci_virt_device	*virt_dev;
2586 	int i, ret;
2587 
2588 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2589 	if (ret <= 0)
2590 		return;
2591 	xhci = hcd_to_xhci(hcd);
2592 
2593 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2594 	virt_dev = xhci->devs[udev->slot_id];
2595 	/* Free any rings allocated for added endpoints */
2596 	for (i = 0; i < 31; ++i) {
2597 		if (virt_dev->eps[i].new_ring) {
2598 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2599 			virt_dev->eps[i].new_ring = NULL;
2600 		}
2601 	}
2602 	xhci_zero_in_ctx(xhci, virt_dev);
2603 }
2604 
2605 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2606 		struct xhci_container_ctx *in_ctx,
2607 		struct xhci_container_ctx *out_ctx,
2608 		u32 add_flags, u32 drop_flags)
2609 {
2610 	struct xhci_input_control_ctx *ctrl_ctx;
2611 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2612 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2613 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2614 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2615 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2616 
2617 	xhci_dbg(xhci, "Input Context:\n");
2618 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2619 }
2620 
2621 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2622 		unsigned int slot_id, unsigned int ep_index,
2623 		struct xhci_dequeue_state *deq_state)
2624 {
2625 	struct xhci_container_ctx *in_ctx;
2626 	struct xhci_ep_ctx *ep_ctx;
2627 	u32 added_ctxs;
2628 	dma_addr_t addr;
2629 
2630 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2631 			xhci->devs[slot_id]->out_ctx, ep_index);
2632 	in_ctx = xhci->devs[slot_id]->in_ctx;
2633 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2634 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2635 			deq_state->new_deq_ptr);
2636 	if (addr == 0) {
2637 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2638 				"reset ep command\n");
2639 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2640 				deq_state->new_deq_seg,
2641 				deq_state->new_deq_ptr);
2642 		return;
2643 	}
2644 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2645 
2646 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2647 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2648 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2649 }
2650 
2651 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2652 		struct usb_device *udev, unsigned int ep_index)
2653 {
2654 	struct xhci_dequeue_state deq_state;
2655 	struct xhci_virt_ep *ep;
2656 
2657 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2658 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2659 	/* We need to move the HW's dequeue pointer past this TD,
2660 	 * or it will attempt to resend it on the next doorbell ring.
2661 	 */
2662 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2663 			ep_index, ep->stopped_stream, ep->stopped_td,
2664 			&deq_state);
2665 
2666 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2667 	 * issue a configure endpoint command later.
2668 	 */
2669 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2670 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2671 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2672 				ep_index, ep->stopped_stream, &deq_state);
2673 	} else {
2674 		/* Better hope no one uses the input context between now and the
2675 		 * reset endpoint completion!
2676 		 * XXX: No idea how this hardware will react when stream rings
2677 		 * are enabled.
2678 		 */
2679 		xhci_dbg(xhci, "Setting up input context for "
2680 				"configure endpoint command\n");
2681 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2682 				ep_index, &deq_state);
2683 	}
2684 }
2685 
2686 /* Deal with stalled endpoints.  The core should have sent the control message
2687  * to clear the halt condition.  However, we need to make the xHCI hardware
2688  * reset its sequence number, since a device will expect a sequence number of
2689  * zero after the halt condition is cleared.
2690  * Context: in_interrupt
2691  */
2692 void xhci_endpoint_reset(struct usb_hcd *hcd,
2693 		struct usb_host_endpoint *ep)
2694 {
2695 	struct xhci_hcd *xhci;
2696 	struct usb_device *udev;
2697 	unsigned int ep_index;
2698 	unsigned long flags;
2699 	int ret;
2700 	struct xhci_virt_ep *virt_ep;
2701 
2702 	xhci = hcd_to_xhci(hcd);
2703 	udev = (struct usb_device *) ep->hcpriv;
2704 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2705 	 * with xhci_add_endpoint()
2706 	 */
2707 	if (!ep->hcpriv)
2708 		return;
2709 	ep_index = xhci_get_endpoint_index(&ep->desc);
2710 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2711 	if (!virt_ep->stopped_td) {
2712 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2713 				ep->desc.bEndpointAddress);
2714 		return;
2715 	}
2716 	if (usb_endpoint_xfer_control(&ep->desc)) {
2717 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2718 		return;
2719 	}
2720 
2721 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2722 	spin_lock_irqsave(&xhci->lock, flags);
2723 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2724 	/*
2725 	 * Can't change the ring dequeue pointer until it's transitioned to the
2726 	 * stopped state, which is only upon a successful reset endpoint
2727 	 * command.  Better hope that last command worked!
2728 	 */
2729 	if (!ret) {
2730 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2731 		kfree(virt_ep->stopped_td);
2732 		xhci_ring_cmd_db(xhci);
2733 	}
2734 	virt_ep->stopped_td = NULL;
2735 	virt_ep->stopped_trb = NULL;
2736 	virt_ep->stopped_stream = 0;
2737 	spin_unlock_irqrestore(&xhci->lock, flags);
2738 
2739 	if (ret)
2740 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2741 }
2742 
2743 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2744 		struct usb_device *udev, struct usb_host_endpoint *ep,
2745 		unsigned int slot_id)
2746 {
2747 	int ret;
2748 	unsigned int ep_index;
2749 	unsigned int ep_state;
2750 
2751 	if (!ep)
2752 		return -EINVAL;
2753 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2754 	if (ret <= 0)
2755 		return -EINVAL;
2756 	if (ep->ss_ep_comp.bmAttributes == 0) {
2757 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2758 				" descriptor for ep 0x%x does not support streams\n",
2759 				ep->desc.bEndpointAddress);
2760 		return -EINVAL;
2761 	}
2762 
2763 	ep_index = xhci_get_endpoint_index(&ep->desc);
2764 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2765 	if (ep_state & EP_HAS_STREAMS ||
2766 			ep_state & EP_GETTING_STREAMS) {
2767 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2768 				"already has streams set up.\n",
2769 				ep->desc.bEndpointAddress);
2770 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2771 				"dynamic stream context array reallocation.\n");
2772 		return -EINVAL;
2773 	}
2774 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2775 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2776 				"endpoint 0x%x; URBs are pending.\n",
2777 				ep->desc.bEndpointAddress);
2778 		return -EINVAL;
2779 	}
2780 	return 0;
2781 }
2782 
2783 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2784 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2785 {
2786 	unsigned int max_streams;
2787 
2788 	/* The stream context array size must be a power of two */
2789 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2790 	/*
2791 	 * Find out how many primary stream array entries the host controller
2792 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2793 	 * level page entries), but that's an optional feature for xHCI host
2794 	 * controllers. xHCs must support at least 4 stream IDs.
2795 	 */
2796 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2797 	if (*num_stream_ctxs > max_streams) {
2798 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2799 				max_streams);
2800 		*num_stream_ctxs = max_streams;
2801 		*num_streams = max_streams;
2802 	}
2803 }
2804 
2805 /* Returns an error code if one of the endpoint already has streams.
2806  * This does not change any data structures, it only checks and gathers
2807  * information.
2808  */
2809 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2810 		struct usb_device *udev,
2811 		struct usb_host_endpoint **eps, unsigned int num_eps,
2812 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2813 {
2814 	unsigned int max_streams;
2815 	unsigned int endpoint_flag;
2816 	int i;
2817 	int ret;
2818 
2819 	for (i = 0; i < num_eps; i++) {
2820 		ret = xhci_check_streams_endpoint(xhci, udev,
2821 				eps[i], udev->slot_id);
2822 		if (ret < 0)
2823 			return ret;
2824 
2825 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2826 		if (max_streams < (*num_streams - 1)) {
2827 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2828 					eps[i]->desc.bEndpointAddress,
2829 					max_streams);
2830 			*num_streams = max_streams+1;
2831 		}
2832 
2833 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2834 		if (*changed_ep_bitmask & endpoint_flag)
2835 			return -EINVAL;
2836 		*changed_ep_bitmask |= endpoint_flag;
2837 	}
2838 	return 0;
2839 }
2840 
2841 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2842 		struct usb_device *udev,
2843 		struct usb_host_endpoint **eps, unsigned int num_eps)
2844 {
2845 	u32 changed_ep_bitmask = 0;
2846 	unsigned int slot_id;
2847 	unsigned int ep_index;
2848 	unsigned int ep_state;
2849 	int i;
2850 
2851 	slot_id = udev->slot_id;
2852 	if (!xhci->devs[slot_id])
2853 		return 0;
2854 
2855 	for (i = 0; i < num_eps; i++) {
2856 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2857 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2858 		/* Are streams already being freed for the endpoint? */
2859 		if (ep_state & EP_GETTING_NO_STREAMS) {
2860 			xhci_warn(xhci, "WARN Can't disable streams for "
2861 					"endpoint 0x%x\n, "
2862 					"streams are being disabled already.",
2863 					eps[i]->desc.bEndpointAddress);
2864 			return 0;
2865 		}
2866 		/* Are there actually any streams to free? */
2867 		if (!(ep_state & EP_HAS_STREAMS) &&
2868 				!(ep_state & EP_GETTING_STREAMS)) {
2869 			xhci_warn(xhci, "WARN Can't disable streams for "
2870 					"endpoint 0x%x\n, "
2871 					"streams are already disabled!",
2872 					eps[i]->desc.bEndpointAddress);
2873 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2874 					"with non-streams endpoint\n");
2875 			return 0;
2876 		}
2877 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2878 	}
2879 	return changed_ep_bitmask;
2880 }
2881 
2882 /*
2883  * The USB device drivers use this function (though the HCD interface in USB
2884  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2885  * coordinate mass storage command queueing across multiple endpoints (basically
2886  * a stream ID == a task ID).
2887  *
2888  * Setting up streams involves allocating the same size stream context array
2889  * for each endpoint and issuing a configure endpoint command for all endpoints.
2890  *
2891  * Don't allow the call to succeed if one endpoint only supports one stream
2892  * (which means it doesn't support streams at all).
2893  *
2894  * Drivers may get less stream IDs than they asked for, if the host controller
2895  * hardware or endpoints claim they can't support the number of requested
2896  * stream IDs.
2897  */
2898 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2899 		struct usb_host_endpoint **eps, unsigned int num_eps,
2900 		unsigned int num_streams, gfp_t mem_flags)
2901 {
2902 	int i, ret;
2903 	struct xhci_hcd *xhci;
2904 	struct xhci_virt_device *vdev;
2905 	struct xhci_command *config_cmd;
2906 	unsigned int ep_index;
2907 	unsigned int num_stream_ctxs;
2908 	unsigned long flags;
2909 	u32 changed_ep_bitmask = 0;
2910 
2911 	if (!eps)
2912 		return -EINVAL;
2913 
2914 	/* Add one to the number of streams requested to account for
2915 	 * stream 0 that is reserved for xHCI usage.
2916 	 */
2917 	num_streams += 1;
2918 	xhci = hcd_to_xhci(hcd);
2919 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2920 			num_streams);
2921 
2922 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2923 	if (!config_cmd) {
2924 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2925 		return -ENOMEM;
2926 	}
2927 
2928 	/* Check to make sure all endpoints are not already configured for
2929 	 * streams.  While we're at it, find the maximum number of streams that
2930 	 * all the endpoints will support and check for duplicate endpoints.
2931 	 */
2932 	spin_lock_irqsave(&xhci->lock, flags);
2933 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2934 			num_eps, &num_streams, &changed_ep_bitmask);
2935 	if (ret < 0) {
2936 		xhci_free_command(xhci, config_cmd);
2937 		spin_unlock_irqrestore(&xhci->lock, flags);
2938 		return ret;
2939 	}
2940 	if (num_streams <= 1) {
2941 		xhci_warn(xhci, "WARN: endpoints can't handle "
2942 				"more than one stream.\n");
2943 		xhci_free_command(xhci, config_cmd);
2944 		spin_unlock_irqrestore(&xhci->lock, flags);
2945 		return -EINVAL;
2946 	}
2947 	vdev = xhci->devs[udev->slot_id];
2948 	/* Mark each endpoint as being in transition, so
2949 	 * xhci_urb_enqueue() will reject all URBs.
2950 	 */
2951 	for (i = 0; i < num_eps; i++) {
2952 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2953 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2954 	}
2955 	spin_unlock_irqrestore(&xhci->lock, flags);
2956 
2957 	/* Setup internal data structures and allocate HW data structures for
2958 	 * streams (but don't install the HW structures in the input context
2959 	 * until we're sure all memory allocation succeeded).
2960 	 */
2961 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2962 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2963 			num_stream_ctxs, num_streams);
2964 
2965 	for (i = 0; i < num_eps; i++) {
2966 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2967 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2968 				num_stream_ctxs,
2969 				num_streams, mem_flags);
2970 		if (!vdev->eps[ep_index].stream_info)
2971 			goto cleanup;
2972 		/* Set maxPstreams in endpoint context and update deq ptr to
2973 		 * point to stream context array. FIXME
2974 		 */
2975 	}
2976 
2977 	/* Set up the input context for a configure endpoint command. */
2978 	for (i = 0; i < num_eps; i++) {
2979 		struct xhci_ep_ctx *ep_ctx;
2980 
2981 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2982 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2983 
2984 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2985 				vdev->out_ctx, ep_index);
2986 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2987 				vdev->eps[ep_index].stream_info);
2988 	}
2989 	/* Tell the HW to drop its old copy of the endpoint context info
2990 	 * and add the updated copy from the input context.
2991 	 */
2992 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2993 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2994 
2995 	/* Issue and wait for the configure endpoint command */
2996 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2997 			false, false);
2998 
2999 	/* xHC rejected the configure endpoint command for some reason, so we
3000 	 * leave the old ring intact and free our internal streams data
3001 	 * structure.
3002 	 */
3003 	if (ret < 0)
3004 		goto cleanup;
3005 
3006 	spin_lock_irqsave(&xhci->lock, flags);
3007 	for (i = 0; i < num_eps; i++) {
3008 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3009 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3010 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3011 			 udev->slot_id, ep_index);
3012 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3013 	}
3014 	xhci_free_command(xhci, config_cmd);
3015 	spin_unlock_irqrestore(&xhci->lock, flags);
3016 
3017 	/* Subtract 1 for stream 0, which drivers can't use */
3018 	return num_streams - 1;
3019 
3020 cleanup:
3021 	/* If it didn't work, free the streams! */
3022 	for (i = 0; i < num_eps; i++) {
3023 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3024 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3025 		vdev->eps[ep_index].stream_info = NULL;
3026 		/* FIXME Unset maxPstreams in endpoint context and
3027 		 * update deq ptr to point to normal string ring.
3028 		 */
3029 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3030 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3031 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3032 	}
3033 	xhci_free_command(xhci, config_cmd);
3034 	return -ENOMEM;
3035 }
3036 
3037 /* Transition the endpoint from using streams to being a "normal" endpoint
3038  * without streams.
3039  *
3040  * Modify the endpoint context state, submit a configure endpoint command,
3041  * and free all endpoint rings for streams if that completes successfully.
3042  */
3043 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3044 		struct usb_host_endpoint **eps, unsigned int num_eps,
3045 		gfp_t mem_flags)
3046 {
3047 	int i, ret;
3048 	struct xhci_hcd *xhci;
3049 	struct xhci_virt_device *vdev;
3050 	struct xhci_command *command;
3051 	unsigned int ep_index;
3052 	unsigned long flags;
3053 	u32 changed_ep_bitmask;
3054 
3055 	xhci = hcd_to_xhci(hcd);
3056 	vdev = xhci->devs[udev->slot_id];
3057 
3058 	/* Set up a configure endpoint command to remove the streams rings */
3059 	spin_lock_irqsave(&xhci->lock, flags);
3060 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3061 			udev, eps, num_eps);
3062 	if (changed_ep_bitmask == 0) {
3063 		spin_unlock_irqrestore(&xhci->lock, flags);
3064 		return -EINVAL;
3065 	}
3066 
3067 	/* Use the xhci_command structure from the first endpoint.  We may have
3068 	 * allocated too many, but the driver may call xhci_free_streams() for
3069 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3070 	 */
3071 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3072 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3073 	for (i = 0; i < num_eps; i++) {
3074 		struct xhci_ep_ctx *ep_ctx;
3075 
3076 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3078 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3079 			EP_GETTING_NO_STREAMS;
3080 
3081 		xhci_endpoint_copy(xhci, command->in_ctx,
3082 				vdev->out_ctx, ep_index);
3083 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3084 				&vdev->eps[ep_index]);
3085 	}
3086 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3087 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3088 	spin_unlock_irqrestore(&xhci->lock, flags);
3089 
3090 	/* Issue and wait for the configure endpoint command,
3091 	 * which must succeed.
3092 	 */
3093 	ret = xhci_configure_endpoint(xhci, udev, command,
3094 			false, true);
3095 
3096 	/* xHC rejected the configure endpoint command for some reason, so we
3097 	 * leave the streams rings intact.
3098 	 */
3099 	if (ret < 0)
3100 		return ret;
3101 
3102 	spin_lock_irqsave(&xhci->lock, flags);
3103 	for (i = 0; i < num_eps; i++) {
3104 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3105 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3106 		vdev->eps[ep_index].stream_info = NULL;
3107 		/* FIXME Unset maxPstreams in endpoint context and
3108 		 * update deq ptr to point to normal string ring.
3109 		 */
3110 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3111 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3112 	}
3113 	spin_unlock_irqrestore(&xhci->lock, flags);
3114 
3115 	return 0;
3116 }
3117 
3118 /*
3119  * Deletes endpoint resources for endpoints that were active before a Reset
3120  * Device command, or a Disable Slot command.  The Reset Device command leaves
3121  * the control endpoint intact, whereas the Disable Slot command deletes it.
3122  *
3123  * Must be called with xhci->lock held.
3124  */
3125 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3126 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3127 {
3128 	int i;
3129 	unsigned int num_dropped_eps = 0;
3130 	unsigned int drop_flags = 0;
3131 
3132 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3133 		if (virt_dev->eps[i].ring) {
3134 			drop_flags |= 1 << i;
3135 			num_dropped_eps++;
3136 		}
3137 	}
3138 	xhci->num_active_eps -= num_dropped_eps;
3139 	if (num_dropped_eps)
3140 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3141 				"%u now active.\n",
3142 				num_dropped_eps, drop_flags,
3143 				xhci->num_active_eps);
3144 }
3145 
3146 /*
3147  * This submits a Reset Device Command, which will set the device state to 0,
3148  * set the device address to 0, and disable all the endpoints except the default
3149  * control endpoint.  The USB core should come back and call
3150  * xhci_address_device(), and then re-set up the configuration.  If this is
3151  * called because of a usb_reset_and_verify_device(), then the old alternate
3152  * settings will be re-installed through the normal bandwidth allocation
3153  * functions.
3154  *
3155  * Wait for the Reset Device command to finish.  Remove all structures
3156  * associated with the endpoints that were disabled.  Clear the input device
3157  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3158  *
3159  * If the virt_dev to be reset does not exist or does not match the udev,
3160  * it means the device is lost, possibly due to the xHC restore error and
3161  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3162  * re-allocate the device.
3163  */
3164 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3165 {
3166 	int ret, i;
3167 	unsigned long flags;
3168 	struct xhci_hcd *xhci;
3169 	unsigned int slot_id;
3170 	struct xhci_virt_device *virt_dev;
3171 	struct xhci_command *reset_device_cmd;
3172 	int timeleft;
3173 	int last_freed_endpoint;
3174 	struct xhci_slot_ctx *slot_ctx;
3175 	int old_active_eps = 0;
3176 
3177 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3178 	if (ret <= 0)
3179 		return ret;
3180 	xhci = hcd_to_xhci(hcd);
3181 	slot_id = udev->slot_id;
3182 	virt_dev = xhci->devs[slot_id];
3183 	if (!virt_dev) {
3184 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3185 				"not exist. Re-allocate the device\n", slot_id);
3186 		ret = xhci_alloc_dev(hcd, udev);
3187 		if (ret == 1)
3188 			return 0;
3189 		else
3190 			return -EINVAL;
3191 	}
3192 
3193 	if (virt_dev->udev != udev) {
3194 		/* If the virt_dev and the udev does not match, this virt_dev
3195 		 * may belong to another udev.
3196 		 * Re-allocate the device.
3197 		 */
3198 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3199 				"not match the udev. Re-allocate the device\n",
3200 				slot_id);
3201 		ret = xhci_alloc_dev(hcd, udev);
3202 		if (ret == 1)
3203 			return 0;
3204 		else
3205 			return -EINVAL;
3206 	}
3207 
3208 	/* If device is not setup, there is no point in resetting it */
3209 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3210 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3211 						SLOT_STATE_DISABLED)
3212 		return 0;
3213 
3214 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3215 	/* Allocate the command structure that holds the struct completion.
3216 	 * Assume we're in process context, since the normal device reset
3217 	 * process has to wait for the device anyway.  Storage devices are
3218 	 * reset as part of error handling, so use GFP_NOIO instead of
3219 	 * GFP_KERNEL.
3220 	 */
3221 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3222 	if (!reset_device_cmd) {
3223 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3224 		return -ENOMEM;
3225 	}
3226 
3227 	/* Attempt to submit the Reset Device command to the command ring */
3228 	spin_lock_irqsave(&xhci->lock, flags);
3229 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3230 
3231 	/* Enqueue pointer can be left pointing to the link TRB,
3232 	 * we must handle that
3233 	 */
3234 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3235 		reset_device_cmd->command_trb =
3236 			xhci->cmd_ring->enq_seg->next->trbs;
3237 
3238 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3239 	ret = xhci_queue_reset_device(xhci, slot_id);
3240 	if (ret) {
3241 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3242 		list_del(&reset_device_cmd->cmd_list);
3243 		spin_unlock_irqrestore(&xhci->lock, flags);
3244 		goto command_cleanup;
3245 	}
3246 	xhci_ring_cmd_db(xhci);
3247 	spin_unlock_irqrestore(&xhci->lock, flags);
3248 
3249 	/* Wait for the Reset Device command to finish */
3250 	timeleft = wait_for_completion_interruptible_timeout(
3251 			reset_device_cmd->completion,
3252 			USB_CTRL_SET_TIMEOUT);
3253 	if (timeleft <= 0) {
3254 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3255 				timeleft == 0 ? "Timeout" : "Signal");
3256 		spin_lock_irqsave(&xhci->lock, flags);
3257 		/* The timeout might have raced with the event ring handler, so
3258 		 * only delete from the list if the item isn't poisoned.
3259 		 */
3260 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3261 			list_del(&reset_device_cmd->cmd_list);
3262 		spin_unlock_irqrestore(&xhci->lock, flags);
3263 		ret = -ETIME;
3264 		goto command_cleanup;
3265 	}
3266 
3267 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3268 	 * unless we tried to reset a slot ID that wasn't enabled,
3269 	 * or the device wasn't in the addressed or configured state.
3270 	 */
3271 	ret = reset_device_cmd->status;
3272 	switch (ret) {
3273 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3274 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3275 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3276 				slot_id,
3277 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3278 		xhci_info(xhci, "Not freeing device rings.\n");
3279 		/* Don't treat this as an error.  May change my mind later. */
3280 		ret = 0;
3281 		goto command_cleanup;
3282 	case COMP_SUCCESS:
3283 		xhci_dbg(xhci, "Successful reset device command.\n");
3284 		break;
3285 	default:
3286 		if (xhci_is_vendor_info_code(xhci, ret))
3287 			break;
3288 		xhci_warn(xhci, "Unknown completion code %u for "
3289 				"reset device command.\n", ret);
3290 		ret = -EINVAL;
3291 		goto command_cleanup;
3292 	}
3293 
3294 	/* Free up host controller endpoint resources */
3295 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3296 		spin_lock_irqsave(&xhci->lock, flags);
3297 		/* Don't delete the default control endpoint resources */
3298 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3299 		spin_unlock_irqrestore(&xhci->lock, flags);
3300 	}
3301 
3302 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3303 	last_freed_endpoint = 1;
3304 	for (i = 1; i < 31; ++i) {
3305 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3306 
3307 		if (ep->ep_state & EP_HAS_STREAMS) {
3308 			xhci_free_stream_info(xhci, ep->stream_info);
3309 			ep->stream_info = NULL;
3310 			ep->ep_state &= ~EP_HAS_STREAMS;
3311 		}
3312 
3313 		if (ep->ring) {
3314 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3315 			last_freed_endpoint = i;
3316 		}
3317 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3318 			xhci_drop_ep_from_interval_table(xhci,
3319 					&virt_dev->eps[i].bw_info,
3320 					virt_dev->bw_table,
3321 					udev,
3322 					&virt_dev->eps[i],
3323 					virt_dev->tt_info);
3324 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3325 	}
3326 	/* If necessary, update the number of active TTs on this root port */
3327 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3328 
3329 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3330 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3331 	ret = 0;
3332 
3333 command_cleanup:
3334 	xhci_free_command(xhci, reset_device_cmd);
3335 	return ret;
3336 }
3337 
3338 /*
3339  * At this point, the struct usb_device is about to go away, the device has
3340  * disconnected, and all traffic has been stopped and the endpoints have been
3341  * disabled.  Free any HC data structures associated with that device.
3342  */
3343 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3344 {
3345 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3346 	struct xhci_virt_device *virt_dev;
3347 	unsigned long flags;
3348 	u32 state;
3349 	int i, ret;
3350 
3351 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3352 	/* If the host is halted due to driver unload, we still need to free the
3353 	 * device.
3354 	 */
3355 	if (ret <= 0 && ret != -ENODEV)
3356 		return;
3357 
3358 	virt_dev = xhci->devs[udev->slot_id];
3359 
3360 	/* Stop any wayward timer functions (which may grab the lock) */
3361 	for (i = 0; i < 31; ++i) {
3362 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3363 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3364 	}
3365 
3366 	if (udev->usb2_hw_lpm_enabled) {
3367 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3368 		udev->usb2_hw_lpm_enabled = 0;
3369 	}
3370 
3371 	spin_lock_irqsave(&xhci->lock, flags);
3372 	/* Don't disable the slot if the host controller is dead. */
3373 	state = xhci_readl(xhci, &xhci->op_regs->status);
3374 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3375 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3376 		xhci_free_virt_device(xhci, udev->slot_id);
3377 		spin_unlock_irqrestore(&xhci->lock, flags);
3378 		return;
3379 	}
3380 
3381 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3382 		spin_unlock_irqrestore(&xhci->lock, flags);
3383 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3384 		return;
3385 	}
3386 	xhci_ring_cmd_db(xhci);
3387 	spin_unlock_irqrestore(&xhci->lock, flags);
3388 	/*
3389 	 * Event command completion handler will free any data structures
3390 	 * associated with the slot.  XXX Can free sleep?
3391 	 */
3392 }
3393 
3394 /*
3395  * Checks if we have enough host controller resources for the default control
3396  * endpoint.
3397  *
3398  * Must be called with xhci->lock held.
3399  */
3400 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3401 {
3402 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3403 		xhci_dbg(xhci, "Not enough ep ctxs: "
3404 				"%u active, need to add 1, limit is %u.\n",
3405 				xhci->num_active_eps, xhci->limit_active_eps);
3406 		return -ENOMEM;
3407 	}
3408 	xhci->num_active_eps += 1;
3409 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3410 			xhci->num_active_eps);
3411 	return 0;
3412 }
3413 
3414 
3415 /*
3416  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3417  * timed out, or allocating memory failed.  Returns 1 on success.
3418  */
3419 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3420 {
3421 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3422 	unsigned long flags;
3423 	int timeleft;
3424 	int ret;
3425 
3426 	spin_lock_irqsave(&xhci->lock, flags);
3427 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3428 	if (ret) {
3429 		spin_unlock_irqrestore(&xhci->lock, flags);
3430 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3431 		return 0;
3432 	}
3433 	xhci_ring_cmd_db(xhci);
3434 	spin_unlock_irqrestore(&xhci->lock, flags);
3435 
3436 	/* XXX: how much time for xHC slot assignment? */
3437 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3438 			USB_CTRL_SET_TIMEOUT);
3439 	if (timeleft <= 0) {
3440 		xhci_warn(xhci, "%s while waiting for a slot\n",
3441 				timeleft == 0 ? "Timeout" : "Signal");
3442 		/* FIXME cancel the enable slot request */
3443 		return 0;
3444 	}
3445 
3446 	if (!xhci->slot_id) {
3447 		xhci_err(xhci, "Error while assigning device slot ID\n");
3448 		return 0;
3449 	}
3450 
3451 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3452 		spin_lock_irqsave(&xhci->lock, flags);
3453 		ret = xhci_reserve_host_control_ep_resources(xhci);
3454 		if (ret) {
3455 			spin_unlock_irqrestore(&xhci->lock, flags);
3456 			xhci_warn(xhci, "Not enough host resources, "
3457 					"active endpoint contexts = %u\n",
3458 					xhci->num_active_eps);
3459 			goto disable_slot;
3460 		}
3461 		spin_unlock_irqrestore(&xhci->lock, flags);
3462 	}
3463 	/* Use GFP_NOIO, since this function can be called from
3464 	 * xhci_discover_or_reset_device(), which may be called as part of
3465 	 * mass storage driver error handling.
3466 	 */
3467 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3468 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3469 		goto disable_slot;
3470 	}
3471 	udev->slot_id = xhci->slot_id;
3472 	/* Is this a LS or FS device under a HS hub? */
3473 	/* Hub or peripherial? */
3474 	return 1;
3475 
3476 disable_slot:
3477 	/* Disable slot, if we can do it without mem alloc */
3478 	spin_lock_irqsave(&xhci->lock, flags);
3479 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3480 		xhci_ring_cmd_db(xhci);
3481 	spin_unlock_irqrestore(&xhci->lock, flags);
3482 	return 0;
3483 }
3484 
3485 /*
3486  * Issue an Address Device command (which will issue a SetAddress request to
3487  * the device).
3488  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3489  * we should only issue and wait on one address command at the same time.
3490  *
3491  * We add one to the device address issued by the hardware because the USB core
3492  * uses address 1 for the root hubs (even though they're not really devices).
3493  */
3494 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3495 {
3496 	unsigned long flags;
3497 	int timeleft;
3498 	struct xhci_virt_device *virt_dev;
3499 	int ret = 0;
3500 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3501 	struct xhci_slot_ctx *slot_ctx;
3502 	struct xhci_input_control_ctx *ctrl_ctx;
3503 	u64 temp_64;
3504 
3505 	if (!udev->slot_id) {
3506 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3507 		return -EINVAL;
3508 	}
3509 
3510 	virt_dev = xhci->devs[udev->slot_id];
3511 
3512 	if (WARN_ON(!virt_dev)) {
3513 		/*
3514 		 * In plug/unplug torture test with an NEC controller,
3515 		 * a zero-dereference was observed once due to virt_dev = 0.
3516 		 * Print useful debug rather than crash if it is observed again!
3517 		 */
3518 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3519 			udev->slot_id);
3520 		return -EINVAL;
3521 	}
3522 
3523 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3524 	/*
3525 	 * If this is the first Set Address since device plug-in or
3526 	 * virt_device realloaction after a resume with an xHCI power loss,
3527 	 * then set up the slot context.
3528 	 */
3529 	if (!slot_ctx->dev_info)
3530 		xhci_setup_addressable_virt_dev(xhci, udev);
3531 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3532 	else
3533 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3534 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3535 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3536 	ctrl_ctx->drop_flags = 0;
3537 
3538 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3539 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3540 
3541 	spin_lock_irqsave(&xhci->lock, flags);
3542 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3543 					udev->slot_id);
3544 	if (ret) {
3545 		spin_unlock_irqrestore(&xhci->lock, flags);
3546 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3547 		return ret;
3548 	}
3549 	xhci_ring_cmd_db(xhci);
3550 	spin_unlock_irqrestore(&xhci->lock, flags);
3551 
3552 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3553 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3554 			USB_CTRL_SET_TIMEOUT);
3555 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3556 	 * the SetAddress() "recovery interval" required by USB and aborting the
3557 	 * command on a timeout.
3558 	 */
3559 	if (timeleft <= 0) {
3560 		xhci_warn(xhci, "%s while waiting for address device command\n",
3561 				timeleft == 0 ? "Timeout" : "Signal");
3562 		/* FIXME cancel the address device command */
3563 		return -ETIME;
3564 	}
3565 
3566 	switch (virt_dev->cmd_status) {
3567 	case COMP_CTX_STATE:
3568 	case COMP_EBADSLT:
3569 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3570 				udev->slot_id);
3571 		ret = -EINVAL;
3572 		break;
3573 	case COMP_TX_ERR:
3574 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3575 		ret = -EPROTO;
3576 		break;
3577 	case COMP_DEV_ERR:
3578 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3579 				"device command.\n");
3580 		ret = -ENODEV;
3581 		break;
3582 	case COMP_SUCCESS:
3583 		xhci_dbg(xhci, "Successful Address Device command\n");
3584 		break;
3585 	default:
3586 		xhci_err(xhci, "ERROR: unexpected command completion "
3587 				"code 0x%x.\n", virt_dev->cmd_status);
3588 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3589 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3590 		ret = -EINVAL;
3591 		break;
3592 	}
3593 	if (ret) {
3594 		return ret;
3595 	}
3596 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3597 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3598 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3599 		 udev->slot_id,
3600 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3601 		 (unsigned long long)
3602 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3603 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3604 			(unsigned long long)virt_dev->out_ctx->dma);
3605 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3606 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3607 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3608 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3609 	/*
3610 	 * USB core uses address 1 for the roothubs, so we add one to the
3611 	 * address given back to us by the HC.
3612 	 */
3613 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3614 	/* Use kernel assigned address for devices; store xHC assigned
3615 	 * address locally. */
3616 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3617 		+ 1;
3618 	/* Zero the input context control for later use */
3619 	ctrl_ctx->add_flags = 0;
3620 	ctrl_ctx->drop_flags = 0;
3621 
3622 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3623 
3624 	return 0;
3625 }
3626 
3627 #ifdef CONFIG_USB_SUSPEND
3628 
3629 /* BESL to HIRD Encoding array for USB2 LPM */
3630 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3631 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3632 
3633 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3634 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3635 					struct usb_device *udev)
3636 {
3637 	int u2del, besl, besl_host;
3638 	int besl_device = 0;
3639 	u32 field;
3640 
3641 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3642 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3643 
3644 	if (field & USB_BESL_SUPPORT) {
3645 		for (besl_host = 0; besl_host < 16; besl_host++) {
3646 			if (xhci_besl_encoding[besl_host] >= u2del)
3647 				break;
3648 		}
3649 		/* Use baseline BESL value as default */
3650 		if (field & USB_BESL_BASELINE_VALID)
3651 			besl_device = USB_GET_BESL_BASELINE(field);
3652 		else if (field & USB_BESL_DEEP_VALID)
3653 			besl_device = USB_GET_BESL_DEEP(field);
3654 	} else {
3655 		if (u2del <= 50)
3656 			besl_host = 0;
3657 		else
3658 			besl_host = (u2del - 51) / 75 + 1;
3659 	}
3660 
3661 	besl = besl_host + besl_device;
3662 	if (besl > 15)
3663 		besl = 15;
3664 
3665 	return besl;
3666 }
3667 
3668 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3669 					struct usb_device *udev)
3670 {
3671 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3672 	struct dev_info	*dev_info;
3673 	__le32 __iomem	**port_array;
3674 	__le32 __iomem	*addr, *pm_addr;
3675 	u32		temp, dev_id;
3676 	unsigned int	port_num;
3677 	unsigned long	flags;
3678 	int		hird;
3679 	int		ret;
3680 
3681 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3682 			!udev->lpm_capable)
3683 		return -EINVAL;
3684 
3685 	/* we only support lpm for non-hub device connected to root hub yet */
3686 	if (!udev->parent || udev->parent->parent ||
3687 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3688 		return -EINVAL;
3689 
3690 	spin_lock_irqsave(&xhci->lock, flags);
3691 
3692 	/* Look for devices in lpm_failed_devs list */
3693 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3694 			le16_to_cpu(udev->descriptor.idProduct);
3695 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3696 		if (dev_info->dev_id == dev_id) {
3697 			ret = -EINVAL;
3698 			goto finish;
3699 		}
3700 	}
3701 
3702 	port_array = xhci->usb2_ports;
3703 	port_num = udev->portnum - 1;
3704 
3705 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3706 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3707 		ret = -EINVAL;
3708 		goto finish;
3709 	}
3710 
3711 	/*
3712 	 * Test USB 2.0 software LPM.
3713 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3714 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3715 	 * in the June 2011 errata release.
3716 	 */
3717 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3718 	/*
3719 	 * Set L1 Device Slot and HIRD/BESL.
3720 	 * Check device's USB 2.0 extension descriptor to determine whether
3721 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3722 	 */
3723 	pm_addr = port_array[port_num] + 1;
3724 	hird = xhci_calculate_hird_besl(xhci, udev);
3725 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3726 	xhci_writel(xhci, temp, pm_addr);
3727 
3728 	/* Set port link state to U2(L1) */
3729 	addr = port_array[port_num];
3730 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3731 
3732 	/* wait for ACK */
3733 	spin_unlock_irqrestore(&xhci->lock, flags);
3734 	msleep(10);
3735 	spin_lock_irqsave(&xhci->lock, flags);
3736 
3737 	/* Check L1 Status */
3738 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3739 	if (ret != -ETIMEDOUT) {
3740 		/* enter L1 successfully */
3741 		temp = xhci_readl(xhci, addr);
3742 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3743 				port_num, temp);
3744 		ret = 0;
3745 	} else {
3746 		temp = xhci_readl(xhci, pm_addr);
3747 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3748 				port_num, temp & PORT_L1S_MASK);
3749 		ret = -EINVAL;
3750 	}
3751 
3752 	/* Resume the port */
3753 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3754 
3755 	spin_unlock_irqrestore(&xhci->lock, flags);
3756 	msleep(10);
3757 	spin_lock_irqsave(&xhci->lock, flags);
3758 
3759 	/* Clear PLC */
3760 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3761 
3762 	/* Check PORTSC to make sure the device is in the right state */
3763 	if (!ret) {
3764 		temp = xhci_readl(xhci, addr);
3765 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3766 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3767 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3768 			xhci_dbg(xhci, "port L1 resume fail\n");
3769 			ret = -EINVAL;
3770 		}
3771 	}
3772 
3773 	if (ret) {
3774 		/* Insert dev to lpm_failed_devs list */
3775 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3776 				"re-enumerate\n");
3777 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3778 		if (!dev_info) {
3779 			ret = -ENOMEM;
3780 			goto finish;
3781 		}
3782 		dev_info->dev_id = dev_id;
3783 		INIT_LIST_HEAD(&dev_info->list);
3784 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3785 	} else {
3786 		xhci_ring_device(xhci, udev->slot_id);
3787 	}
3788 
3789 finish:
3790 	spin_unlock_irqrestore(&xhci->lock, flags);
3791 	return ret;
3792 }
3793 
3794 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3795 			struct usb_device *udev, int enable)
3796 {
3797 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3798 	__le32 __iomem	**port_array;
3799 	__le32 __iomem	*pm_addr;
3800 	u32		temp;
3801 	unsigned int	port_num;
3802 	unsigned long	flags;
3803 	int		hird;
3804 
3805 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3806 			!udev->lpm_capable)
3807 		return -EPERM;
3808 
3809 	if (!udev->parent || udev->parent->parent ||
3810 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3811 		return -EPERM;
3812 
3813 	if (udev->usb2_hw_lpm_capable != 1)
3814 		return -EPERM;
3815 
3816 	spin_lock_irqsave(&xhci->lock, flags);
3817 
3818 	port_array = xhci->usb2_ports;
3819 	port_num = udev->portnum - 1;
3820 	pm_addr = port_array[port_num] + 1;
3821 	temp = xhci_readl(xhci, pm_addr);
3822 
3823 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3824 			enable ? "enable" : "disable", port_num);
3825 
3826 	hird = xhci_calculate_hird_besl(xhci, udev);
3827 
3828 	if (enable) {
3829 		temp &= ~PORT_HIRD_MASK;
3830 		temp |= PORT_HIRD(hird) | PORT_RWE;
3831 		xhci_writel(xhci, temp, pm_addr);
3832 		temp = xhci_readl(xhci, pm_addr);
3833 		temp |= PORT_HLE;
3834 		xhci_writel(xhci, temp, pm_addr);
3835 	} else {
3836 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3837 		xhci_writel(xhci, temp, pm_addr);
3838 	}
3839 
3840 	spin_unlock_irqrestore(&xhci->lock, flags);
3841 	return 0;
3842 }
3843 
3844 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3845 {
3846 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3847 	int		ret;
3848 
3849 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3850 	if (!ret) {
3851 		xhci_dbg(xhci, "software LPM test succeed\n");
3852 		if (xhci->hw_lpm_support == 1) {
3853 			udev->usb2_hw_lpm_capable = 1;
3854 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3855 			if (!ret)
3856 				udev->usb2_hw_lpm_enabled = 1;
3857 		}
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 #else
3864 
3865 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3866 				struct usb_device *udev, int enable)
3867 {
3868 	return 0;
3869 }
3870 
3871 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3872 {
3873 	return 0;
3874 }
3875 
3876 #endif /* CONFIG_USB_SUSPEND */
3877 
3878 /*---------------------- USB 3.0 Link PM functions ------------------------*/
3879 
3880 #ifdef CONFIG_PM
3881 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
3882 static unsigned long long xhci_service_interval_to_ns(
3883 		struct usb_endpoint_descriptor *desc)
3884 {
3885 	return (1 << (desc->bInterval - 1)) * 125 * 1000;
3886 }
3887 
3888 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
3889 		enum usb3_link_state state)
3890 {
3891 	unsigned long long sel;
3892 	unsigned long long pel;
3893 	unsigned int max_sel_pel;
3894 	char *state_name;
3895 
3896 	switch (state) {
3897 	case USB3_LPM_U1:
3898 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
3899 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
3900 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
3901 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
3902 		state_name = "U1";
3903 		break;
3904 	case USB3_LPM_U2:
3905 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
3906 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
3907 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
3908 		state_name = "U2";
3909 		break;
3910 	default:
3911 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
3912 				__func__);
3913 		return USB3_LPM_DISABLED;
3914 	}
3915 
3916 	if (sel <= max_sel_pel && pel <= max_sel_pel)
3917 		return USB3_LPM_DEVICE_INITIATED;
3918 
3919 	if (sel > max_sel_pel)
3920 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
3921 				"due to long SEL %llu ms\n",
3922 				state_name, sel);
3923 	else
3924 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
3925 				"due to long PEL %llu\n ms",
3926 				state_name, pel);
3927 	return USB3_LPM_DISABLED;
3928 }
3929 
3930 /* Returns the hub-encoded U1 timeout value.
3931  * The U1 timeout should be the maximum of the following values:
3932  *  - For control endpoints, U1 system exit latency (SEL) * 3
3933  *  - For bulk endpoints, U1 SEL * 5
3934  *  - For interrupt endpoints:
3935  *    - Notification EPs, U1 SEL * 3
3936  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
3937  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
3938  */
3939 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
3940 		struct usb_endpoint_descriptor *desc)
3941 {
3942 	unsigned long long timeout_ns;
3943 	int ep_type;
3944 	int intr_type;
3945 
3946 	ep_type = usb_endpoint_type(desc);
3947 	switch (ep_type) {
3948 	case USB_ENDPOINT_XFER_CONTROL:
3949 		timeout_ns = udev->u1_params.sel * 3;
3950 		break;
3951 	case USB_ENDPOINT_XFER_BULK:
3952 		timeout_ns = udev->u1_params.sel * 5;
3953 		break;
3954 	case USB_ENDPOINT_XFER_INT:
3955 		intr_type = usb_endpoint_interrupt_type(desc);
3956 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
3957 			timeout_ns = udev->u1_params.sel * 3;
3958 			break;
3959 		}
3960 		/* Otherwise the calculation is the same as isoc eps */
3961 	case USB_ENDPOINT_XFER_ISOC:
3962 		timeout_ns = xhci_service_interval_to_ns(desc);
3963 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
3964 		if (timeout_ns < udev->u1_params.sel * 2)
3965 			timeout_ns = udev->u1_params.sel * 2;
3966 		break;
3967 	default:
3968 		return 0;
3969 	}
3970 
3971 	/* The U1 timeout is encoded in 1us intervals. */
3972 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
3973 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
3974 	if (timeout_ns == USB3_LPM_DISABLED)
3975 		timeout_ns++;
3976 
3977 	/* If the necessary timeout value is bigger than what we can set in the
3978 	 * USB 3.0 hub, we have to disable hub-initiated U1.
3979 	 */
3980 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
3981 		return timeout_ns;
3982 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
3983 			"due to long timeout %llu ms\n", timeout_ns);
3984 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
3985 }
3986 
3987 /* Returns the hub-encoded U2 timeout value.
3988  * The U2 timeout should be the maximum of:
3989  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
3990  *  - largest bInterval of any active periodic endpoint (to avoid going
3991  *    into lower power link states between intervals).
3992  *  - the U2 Exit Latency of the device
3993  */
3994 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
3995 		struct usb_endpoint_descriptor *desc)
3996 {
3997 	unsigned long long timeout_ns;
3998 	unsigned long long u2_del_ns;
3999 
4000 	timeout_ns = 10 * 1000 * 1000;
4001 
4002 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4003 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4004 		timeout_ns = xhci_service_interval_to_ns(desc);
4005 
4006 	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4007 	if (u2_del_ns > timeout_ns)
4008 		timeout_ns = u2_del_ns;
4009 
4010 	/* The U2 timeout is encoded in 256us intervals */
4011 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4012 	/* If the necessary timeout value is bigger than what we can set in the
4013 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4014 	 */
4015 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4016 		return timeout_ns;
4017 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4018 			"due to long timeout %llu ms\n", timeout_ns);
4019 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4020 }
4021 
4022 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4023 		struct usb_device *udev,
4024 		struct usb_endpoint_descriptor *desc,
4025 		enum usb3_link_state state,
4026 		u16 *timeout)
4027 {
4028 	if (state == USB3_LPM_U1) {
4029 		if (xhci->quirks & XHCI_INTEL_HOST)
4030 			return xhci_calculate_intel_u1_timeout(udev, desc);
4031 	} else {
4032 		if (xhci->quirks & XHCI_INTEL_HOST)
4033 			return xhci_calculate_intel_u2_timeout(udev, desc);
4034 	}
4035 
4036 	return USB3_LPM_DISABLED;
4037 }
4038 
4039 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4040 		struct usb_device *udev,
4041 		struct usb_endpoint_descriptor *desc,
4042 		enum usb3_link_state state,
4043 		u16 *timeout)
4044 {
4045 	u16 alt_timeout;
4046 
4047 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4048 		desc, state, timeout);
4049 
4050 	/* If we found we can't enable hub-initiated LPM, or
4051 	 * the U1 or U2 exit latency was too high to allow
4052 	 * device-initiated LPM as well, just stop searching.
4053 	 */
4054 	if (alt_timeout == USB3_LPM_DISABLED ||
4055 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4056 		*timeout = alt_timeout;
4057 		return -E2BIG;
4058 	}
4059 	if (alt_timeout > *timeout)
4060 		*timeout = alt_timeout;
4061 	return 0;
4062 }
4063 
4064 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4065 		struct usb_device *udev,
4066 		struct usb_host_interface *alt,
4067 		enum usb3_link_state state,
4068 		u16 *timeout)
4069 {
4070 	int j;
4071 
4072 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4073 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4074 					&alt->endpoint[j].desc, state, timeout))
4075 			return -E2BIG;
4076 		continue;
4077 	}
4078 	return 0;
4079 }
4080 
4081 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4082 		enum usb3_link_state state)
4083 {
4084 	struct usb_device *parent;
4085 	unsigned int num_hubs;
4086 
4087 	if (state == USB3_LPM_U2)
4088 		return 0;
4089 
4090 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4091 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4092 			parent = parent->parent)
4093 		num_hubs++;
4094 
4095 	if (num_hubs < 2)
4096 		return 0;
4097 
4098 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4099 			" below second-tier hub.\n");
4100 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4101 			"to decrease power consumption.\n");
4102 	return -E2BIG;
4103 }
4104 
4105 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4106 		struct usb_device *udev,
4107 		enum usb3_link_state state)
4108 {
4109 	if (xhci->quirks & XHCI_INTEL_HOST)
4110 		return xhci_check_intel_tier_policy(udev, state);
4111 	return -EINVAL;
4112 }
4113 
4114 /* Returns the U1 or U2 timeout that should be enabled.
4115  * If the tier check or timeout setting functions return with a non-zero exit
4116  * code, that means the timeout value has been finalized and we shouldn't look
4117  * at any more endpoints.
4118  */
4119 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4120 			struct usb_device *udev, enum usb3_link_state state)
4121 {
4122 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123 	struct usb_host_config *config;
4124 	char *state_name;
4125 	int i;
4126 	u16 timeout = USB3_LPM_DISABLED;
4127 
4128 	if (state == USB3_LPM_U1)
4129 		state_name = "U1";
4130 	else if (state == USB3_LPM_U2)
4131 		state_name = "U2";
4132 	else {
4133 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4134 				state);
4135 		return timeout;
4136 	}
4137 
4138 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4139 		return timeout;
4140 
4141 	/* Gather some information about the currently installed configuration
4142 	 * and alternate interface settings.
4143 	 */
4144 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4145 			state, &timeout))
4146 		return timeout;
4147 
4148 	config = udev->actconfig;
4149 	if (!config)
4150 		return timeout;
4151 
4152 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4153 		struct usb_driver *driver;
4154 		struct usb_interface *intf = config->interface[i];
4155 
4156 		if (!intf)
4157 			continue;
4158 
4159 		/* Check if any currently bound drivers want hub-initiated LPM
4160 		 * disabled.
4161 		 */
4162 		if (intf->dev.driver) {
4163 			driver = to_usb_driver(intf->dev.driver);
4164 			if (driver && driver->disable_hub_initiated_lpm) {
4165 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4166 						"at request of driver %s\n",
4167 						state_name, driver->name);
4168 				return xhci_get_timeout_no_hub_lpm(udev, state);
4169 			}
4170 		}
4171 
4172 		/* Not sure how this could happen... */
4173 		if (!intf->cur_altsetting)
4174 			continue;
4175 
4176 		if (xhci_update_timeout_for_interface(xhci, udev,
4177 					intf->cur_altsetting,
4178 					state, &timeout))
4179 			return timeout;
4180 	}
4181 	return timeout;
4182 }
4183 
4184 /*
4185  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4186  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4187  */
4188 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4189 			struct usb_device *udev, u16 max_exit_latency)
4190 {
4191 	struct xhci_virt_device *virt_dev;
4192 	struct xhci_command *command;
4193 	struct xhci_input_control_ctx *ctrl_ctx;
4194 	struct xhci_slot_ctx *slot_ctx;
4195 	unsigned long flags;
4196 	int ret;
4197 
4198 	spin_lock_irqsave(&xhci->lock, flags);
4199 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4200 		spin_unlock_irqrestore(&xhci->lock, flags);
4201 		return 0;
4202 	}
4203 
4204 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4205 	virt_dev = xhci->devs[udev->slot_id];
4206 	command = xhci->lpm_command;
4207 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4208 	spin_unlock_irqrestore(&xhci->lock, flags);
4209 
4210 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4211 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4212 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4213 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4214 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4215 
4216 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4217 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4218 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4219 
4220 	/* Issue and wait for the evaluate context command. */
4221 	ret = xhci_configure_endpoint(xhci, udev, command,
4222 			true, true);
4223 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4224 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4225 
4226 	if (!ret) {
4227 		spin_lock_irqsave(&xhci->lock, flags);
4228 		virt_dev->current_mel = max_exit_latency;
4229 		spin_unlock_irqrestore(&xhci->lock, flags);
4230 	}
4231 	return ret;
4232 }
4233 
4234 static int calculate_max_exit_latency(struct usb_device *udev,
4235 		enum usb3_link_state state_changed,
4236 		u16 hub_encoded_timeout)
4237 {
4238 	unsigned long long u1_mel_us = 0;
4239 	unsigned long long u2_mel_us = 0;
4240 	unsigned long long mel_us = 0;
4241 	bool disabling_u1;
4242 	bool disabling_u2;
4243 	bool enabling_u1;
4244 	bool enabling_u2;
4245 
4246 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4247 			hub_encoded_timeout == USB3_LPM_DISABLED);
4248 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4249 			hub_encoded_timeout == USB3_LPM_DISABLED);
4250 
4251 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4252 			hub_encoded_timeout != USB3_LPM_DISABLED);
4253 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4254 			hub_encoded_timeout != USB3_LPM_DISABLED);
4255 
4256 	/* If U1 was already enabled and we're not disabling it,
4257 	 * or we're going to enable U1, account for the U1 max exit latency.
4258 	 */
4259 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4260 			enabling_u1)
4261 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4262 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4263 			enabling_u2)
4264 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4265 
4266 	if (u1_mel_us > u2_mel_us)
4267 		mel_us = u1_mel_us;
4268 	else
4269 		mel_us = u2_mel_us;
4270 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4271 	if (mel_us > MAX_EXIT) {
4272 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4273 				"is too big.\n", mel_us);
4274 		return -E2BIG;
4275 	}
4276 	return mel_us;
4277 }
4278 
4279 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4280 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4281 			struct usb_device *udev, enum usb3_link_state state)
4282 {
4283 	struct xhci_hcd	*xhci;
4284 	u16 hub_encoded_timeout;
4285 	int mel;
4286 	int ret;
4287 
4288 	xhci = hcd_to_xhci(hcd);
4289 	/* The LPM timeout values are pretty host-controller specific, so don't
4290 	 * enable hub-initiated timeouts unless the vendor has provided
4291 	 * information about their timeout algorithm.
4292 	 */
4293 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4294 			!xhci->devs[udev->slot_id])
4295 		return USB3_LPM_DISABLED;
4296 
4297 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4298 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4299 	if (mel < 0) {
4300 		/* Max Exit Latency is too big, disable LPM. */
4301 		hub_encoded_timeout = USB3_LPM_DISABLED;
4302 		mel = 0;
4303 	}
4304 
4305 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4306 	if (ret)
4307 		return ret;
4308 	return hub_encoded_timeout;
4309 }
4310 
4311 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4312 			struct usb_device *udev, enum usb3_link_state state)
4313 {
4314 	struct xhci_hcd	*xhci;
4315 	u16 mel;
4316 	int ret;
4317 
4318 	xhci = hcd_to_xhci(hcd);
4319 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4320 			!xhci->devs[udev->slot_id])
4321 		return 0;
4322 
4323 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4324 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4325 	if (ret)
4326 		return ret;
4327 	return 0;
4328 }
4329 #else /* CONFIG_PM */
4330 
4331 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4332 			struct usb_device *udev, enum usb3_link_state state)
4333 {
4334 	return USB3_LPM_DISABLED;
4335 }
4336 
4337 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4338 			struct usb_device *udev, enum usb3_link_state state)
4339 {
4340 	return 0;
4341 }
4342 #endif	/* CONFIG_PM */
4343 
4344 /*-------------------------------------------------------------------------*/
4345 
4346 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4347  * internal data structures for the device.
4348  */
4349 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4350 			struct usb_tt *tt, gfp_t mem_flags)
4351 {
4352 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4353 	struct xhci_virt_device *vdev;
4354 	struct xhci_command *config_cmd;
4355 	struct xhci_input_control_ctx *ctrl_ctx;
4356 	struct xhci_slot_ctx *slot_ctx;
4357 	unsigned long flags;
4358 	unsigned think_time;
4359 	int ret;
4360 
4361 	/* Ignore root hubs */
4362 	if (!hdev->parent)
4363 		return 0;
4364 
4365 	vdev = xhci->devs[hdev->slot_id];
4366 	if (!vdev) {
4367 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4368 		return -EINVAL;
4369 	}
4370 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4371 	if (!config_cmd) {
4372 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4373 		return -ENOMEM;
4374 	}
4375 
4376 	spin_lock_irqsave(&xhci->lock, flags);
4377 	if (hdev->speed == USB_SPEED_HIGH &&
4378 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4379 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4380 		xhci_free_command(xhci, config_cmd);
4381 		spin_unlock_irqrestore(&xhci->lock, flags);
4382 		return -ENOMEM;
4383 	}
4384 
4385 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4386 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4387 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4388 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4389 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4390 	if (tt->multi)
4391 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4392 	if (xhci->hci_version > 0x95) {
4393 		xhci_dbg(xhci, "xHCI version %x needs hub "
4394 				"TT think time and number of ports\n",
4395 				(unsigned int) xhci->hci_version);
4396 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4397 		/* Set TT think time - convert from ns to FS bit times.
4398 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4399 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4400 		 *
4401 		 * xHCI 1.0: this field shall be 0 if the device is not a
4402 		 * High-spped hub.
4403 		 */
4404 		think_time = tt->think_time;
4405 		if (think_time != 0)
4406 			think_time = (think_time / 666) - 1;
4407 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4408 			slot_ctx->tt_info |=
4409 				cpu_to_le32(TT_THINK_TIME(think_time));
4410 	} else {
4411 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4412 				"TT think time or number of ports\n",
4413 				(unsigned int) xhci->hci_version);
4414 	}
4415 	slot_ctx->dev_state = 0;
4416 	spin_unlock_irqrestore(&xhci->lock, flags);
4417 
4418 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4419 			(xhci->hci_version > 0x95) ?
4420 			"configure endpoint" : "evaluate context");
4421 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4422 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4423 
4424 	/* Issue and wait for the configure endpoint or
4425 	 * evaluate context command.
4426 	 */
4427 	if (xhci->hci_version > 0x95)
4428 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4429 				false, false);
4430 	else
4431 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4432 				true, false);
4433 
4434 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4435 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4436 
4437 	xhci_free_command(xhci, config_cmd);
4438 	return ret;
4439 }
4440 
4441 int xhci_get_frame(struct usb_hcd *hcd)
4442 {
4443 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4444 	/* EHCI mods by the periodic size.  Why? */
4445 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4446 }
4447 
4448 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4449 {
4450 	struct xhci_hcd		*xhci;
4451 	struct device		*dev = hcd->self.controller;
4452 	int			retval;
4453 	u32			temp;
4454 
4455 	/* Accept arbitrarily long scatter-gather lists */
4456 	hcd->self.sg_tablesize = ~0;
4457 	/* XHCI controllers don't stop the ep queue on short packets :| */
4458 	hcd->self.no_stop_on_short = 1;
4459 
4460 	if (usb_hcd_is_primary_hcd(hcd)) {
4461 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4462 		if (!xhci)
4463 			return -ENOMEM;
4464 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4465 		xhci->main_hcd = hcd;
4466 		/* Mark the first roothub as being USB 2.0.
4467 		 * The xHCI driver will register the USB 3.0 roothub.
4468 		 */
4469 		hcd->speed = HCD_USB2;
4470 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4471 		/*
4472 		 * USB 2.0 roothub under xHCI has an integrated TT,
4473 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4474 		 * companion controller.
4475 		 */
4476 		hcd->has_tt = 1;
4477 	} else {
4478 		/* xHCI private pointer was set in xhci_pci_probe for the second
4479 		 * registered roothub.
4480 		 */
4481 		xhci = hcd_to_xhci(hcd);
4482 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4483 		if (HCC_64BIT_ADDR(temp)) {
4484 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4485 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4486 		} else {
4487 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4488 		}
4489 		return 0;
4490 	}
4491 
4492 	xhci->cap_regs = hcd->regs;
4493 	xhci->op_regs = hcd->regs +
4494 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4495 	xhci->run_regs = hcd->regs +
4496 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4497 	/* Cache read-only capability registers */
4498 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4499 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4500 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4501 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4502 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4503 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4504 	xhci_print_registers(xhci);
4505 
4506 	get_quirks(dev, xhci);
4507 
4508 	/* Make sure the HC is halted. */
4509 	retval = xhci_halt(xhci);
4510 	if (retval)
4511 		goto error;
4512 
4513 	xhci_dbg(xhci, "Resetting HCD\n");
4514 	/* Reset the internal HC memory state and registers. */
4515 	retval = xhci_reset(xhci);
4516 	if (retval)
4517 		goto error;
4518 	xhci_dbg(xhci, "Reset complete\n");
4519 
4520 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4521 	if (HCC_64BIT_ADDR(temp)) {
4522 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4523 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4524 	} else {
4525 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4526 	}
4527 
4528 	xhci_dbg(xhci, "Calling HCD init\n");
4529 	/* Initialize HCD and host controller data structures. */
4530 	retval = xhci_init(hcd);
4531 	if (retval)
4532 		goto error;
4533 	xhci_dbg(xhci, "Called HCD init\n");
4534 	return 0;
4535 error:
4536 	kfree(xhci);
4537 	return retval;
4538 }
4539 
4540 MODULE_DESCRIPTION(DRIVER_DESC);
4541 MODULE_AUTHOR(DRIVER_AUTHOR);
4542 MODULE_LICENSE("GPL");
4543 
4544 static int __init xhci_hcd_init(void)
4545 {
4546 	int retval;
4547 
4548 	retval = xhci_register_pci();
4549 	if (retval < 0) {
4550 		printk(KERN_DEBUG "Problem registering PCI driver.");
4551 		return retval;
4552 	}
4553 	retval = xhci_register_plat();
4554 	if (retval < 0) {
4555 		printk(KERN_DEBUG "Problem registering platform driver.");
4556 		goto unreg_pci;
4557 	}
4558 	/*
4559 	 * Check the compiler generated sizes of structures that must be laid
4560 	 * out in specific ways for hardware access.
4561 	 */
4562 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4563 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4564 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4565 	/* xhci_device_control has eight fields, and also
4566 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4567 	 */
4568 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4569 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4570 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4571 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4572 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4573 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4574 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4575 	return 0;
4576 unreg_pci:
4577 	xhci_unregister_pci();
4578 	return retval;
4579 }
4580 module_init(xhci_hcd_init);
4581 
4582 static void __exit xhci_hcd_cleanup(void)
4583 {
4584 	xhci_unregister_pci();
4585 	xhci_unregister_plat();
4586 }
4587 module_exit(xhci_hcd_cleanup);
4588