1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 213 { 214 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 215 int err, i; 216 u64 val; 217 218 /* 219 * Some Renesas controllers get into a weird state if they are 220 * reset while programmed with 64bit addresses (they will preserve 221 * the top half of the address in internal, non visible 222 * registers). You end up with half the address coming from the 223 * kernel, and the other half coming from the firmware. Also, 224 * changing the programming leads to extra accesses even if the 225 * controller is supposed to be halted. The controller ends up with 226 * a fatal fault, and is then ripe for being properly reset. 227 * 228 * Special care is taken to only apply this if the device is behind 229 * an iommu. Doing anything when there is no iommu is definitely 230 * unsafe... 231 */ 232 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group) 233 return; 234 235 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 236 237 /* Clear HSEIE so that faults do not get signaled */ 238 val = readl(&xhci->op_regs->command); 239 val &= ~CMD_HSEIE; 240 writel(val, &xhci->op_regs->command); 241 242 /* Clear HSE (aka FATAL) */ 243 val = readl(&xhci->op_regs->status); 244 val |= STS_FATAL; 245 writel(val, &xhci->op_regs->status); 246 247 /* Now zero the registers, and brace for impact */ 248 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 249 if (upper_32_bits(val)) 250 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 251 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 252 if (upper_32_bits(val)) 253 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 254 255 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 256 struct xhci_intr_reg __iomem *ir; 257 258 ir = &xhci->run_regs->ir_set[i]; 259 val = xhci_read_64(xhci, &ir->erst_base); 260 if (upper_32_bits(val)) 261 xhci_write_64(xhci, 0, &ir->erst_base); 262 val= xhci_read_64(xhci, &ir->erst_dequeue); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &ir->erst_dequeue); 265 } 266 267 /* Wait for the fault to appear. It will be cleared on reset */ 268 err = xhci_handshake(&xhci->op_regs->status, 269 STS_FATAL, STS_FATAL, 270 XHCI_MAX_HALT_USEC); 271 if (!err) 272 xhci_info(xhci, "Fault detected\n"); 273 } 274 275 #ifdef CONFIG_USB_PCI 276 /* 277 * Set up MSI 278 */ 279 static int xhci_setup_msi(struct xhci_hcd *xhci) 280 { 281 int ret; 282 /* 283 * TODO:Check with MSI Soc for sysdev 284 */ 285 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 286 287 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 288 if (ret < 0) { 289 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 290 "failed to allocate MSI entry"); 291 return ret; 292 } 293 294 ret = request_irq(pdev->irq, xhci_msi_irq, 295 0, "xhci_hcd", xhci_to_hcd(xhci)); 296 if (ret) { 297 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 298 "disable MSI interrupt"); 299 pci_free_irq_vectors(pdev); 300 } 301 302 return ret; 303 } 304 305 /* 306 * Set up MSI-X 307 */ 308 static int xhci_setup_msix(struct xhci_hcd *xhci) 309 { 310 int i, ret = 0; 311 struct usb_hcd *hcd = xhci_to_hcd(xhci); 312 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 313 314 /* 315 * calculate number of msi-x vectors supported. 316 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 317 * with max number of interrupters based on the xhci HCSPARAMS1. 318 * - num_online_cpus: maximum msi-x vectors per CPUs core. 319 * Add additional 1 vector to ensure always available interrupt. 320 */ 321 xhci->msix_count = min(num_online_cpus() + 1, 322 HCS_MAX_INTRS(xhci->hcs_params1)); 323 324 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 325 PCI_IRQ_MSIX); 326 if (ret < 0) { 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 328 "Failed to enable MSI-X"); 329 return ret; 330 } 331 332 for (i = 0; i < xhci->msix_count; i++) { 333 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 334 "xhci_hcd", xhci_to_hcd(xhci)); 335 if (ret) 336 goto disable_msix; 337 } 338 339 hcd->msix_enabled = 1; 340 return ret; 341 342 disable_msix: 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 344 while (--i >= 0) 345 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 346 pci_free_irq_vectors(pdev); 347 return ret; 348 } 349 350 /* Free any IRQs and disable MSI-X */ 351 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 352 { 353 struct usb_hcd *hcd = xhci_to_hcd(xhci); 354 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 355 356 if (xhci->quirks & XHCI_PLAT) 357 return; 358 359 /* return if using legacy interrupt */ 360 if (hcd->irq > 0) 361 return; 362 363 if (hcd->msix_enabled) { 364 int i; 365 366 for (i = 0; i < xhci->msix_count; i++) 367 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 368 } else { 369 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 370 } 371 372 pci_free_irq_vectors(pdev); 373 hcd->msix_enabled = 0; 374 } 375 376 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 377 { 378 struct usb_hcd *hcd = xhci_to_hcd(xhci); 379 380 if (hcd->msix_enabled) { 381 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 synchronize_irq(pci_irq_vector(pdev, i)); 386 } 387 } 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 392 struct pci_dev *pdev; 393 int ret; 394 395 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 396 if (xhci->quirks & XHCI_PLAT) 397 return 0; 398 399 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 400 /* 401 * Some Fresco Logic host controllers advertise MSI, but fail to 402 * generate interrupts. Don't even try to enable MSI. 403 */ 404 if (xhci->quirks & XHCI_BROKEN_MSI) 405 goto legacy_irq; 406 407 /* unregister the legacy interrupt */ 408 if (hcd->irq) 409 free_irq(hcd->irq, hcd); 410 hcd->irq = 0; 411 412 ret = xhci_setup_msix(xhci); 413 if (ret) 414 /* fall back to msi*/ 415 ret = xhci_setup_msi(xhci); 416 417 if (!ret) { 418 hcd->msi_enabled = 1; 419 return 0; 420 } 421 422 if (!pdev->irq) { 423 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 424 return -EINVAL; 425 } 426 427 legacy_irq: 428 if (!strlen(hcd->irq_descr)) 429 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 430 hcd->driver->description, hcd->self.busnum); 431 432 /* fall back to legacy interrupt*/ 433 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 434 hcd->irq_descr, hcd); 435 if (ret) { 436 xhci_err(xhci, "request interrupt %d failed\n", 437 pdev->irq); 438 return ret; 439 } 440 hcd->irq = pdev->irq; 441 return 0; 442 } 443 444 #else 445 446 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 447 { 448 return 0; 449 } 450 451 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 452 { 453 } 454 455 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 456 { 457 } 458 459 #endif 460 461 static void compliance_mode_recovery(struct timer_list *t) 462 { 463 struct xhci_hcd *xhci; 464 struct usb_hcd *hcd; 465 struct xhci_hub *rhub; 466 u32 temp; 467 int i; 468 469 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 470 rhub = &xhci->usb3_rhub; 471 472 for (i = 0; i < rhub->num_ports; i++) { 473 temp = readl(rhub->ports[i]->addr); 474 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 475 /* 476 * Compliance Mode Detected. Letting USB Core 477 * handle the Warm Reset 478 */ 479 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 480 "Compliance mode detected->port %d", 481 i + 1); 482 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 483 "Attempting compliance mode recovery"); 484 hcd = xhci->shared_hcd; 485 486 if (hcd->state == HC_STATE_SUSPENDED) 487 usb_hcd_resume_root_hub(hcd); 488 489 usb_hcd_poll_rh_status(hcd); 490 } 491 } 492 493 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 494 mod_timer(&xhci->comp_mode_recovery_timer, 495 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 496 } 497 498 /* 499 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 500 * that causes ports behind that hardware to enter compliance mode sometimes. 501 * The quirk creates a timer that polls every 2 seconds the link state of 502 * each host controller's port and recovers it by issuing a Warm reset 503 * if Compliance mode is detected, otherwise the port will become "dead" (no 504 * device connections or disconnections will be detected anymore). Becasue no 505 * status event is generated when entering compliance mode (per xhci spec), 506 * this quirk is needed on systems that have the failing hardware installed. 507 */ 508 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 509 { 510 xhci->port_status_u0 = 0; 511 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 512 0); 513 xhci->comp_mode_recovery_timer.expires = jiffies + 514 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 515 516 add_timer(&xhci->comp_mode_recovery_timer); 517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 518 "Compliance mode recovery timer initialized"); 519 } 520 521 /* 522 * This function identifies the systems that have installed the SN65LVPE502CP 523 * USB3.0 re-driver and that need the Compliance Mode Quirk. 524 * Systems: 525 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 526 */ 527 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 528 { 529 const char *dmi_product_name, *dmi_sys_vendor; 530 531 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 532 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 533 if (!dmi_product_name || !dmi_sys_vendor) 534 return false; 535 536 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 537 return false; 538 539 if (strstr(dmi_product_name, "Z420") || 540 strstr(dmi_product_name, "Z620") || 541 strstr(dmi_product_name, "Z820") || 542 strstr(dmi_product_name, "Z1 Workstation")) 543 return true; 544 545 return false; 546 } 547 548 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 549 { 550 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 551 } 552 553 554 /* 555 * Initialize memory for HCD and xHC (one-time init). 556 * 557 * Program the PAGESIZE register, initialize the device context array, create 558 * device contexts (?), set up a command ring segment (or two?), create event 559 * ring (one for now). 560 */ 561 static int xhci_init(struct usb_hcd *hcd) 562 { 563 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 564 int retval = 0; 565 566 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 567 spin_lock_init(&xhci->lock); 568 if (xhci->hci_version == 0x95 && link_quirk) { 569 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 570 "QUIRK: Not clearing Link TRB chain bits."); 571 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 572 } else { 573 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 574 "xHCI doesn't need link TRB QUIRK"); 575 } 576 retval = xhci_mem_init(xhci, GFP_KERNEL); 577 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 578 579 /* Initializing Compliance Mode Recovery Data If Needed */ 580 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 581 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 582 compliance_mode_recovery_timer_init(xhci); 583 } 584 585 return retval; 586 } 587 588 /*-------------------------------------------------------------------------*/ 589 590 591 static int xhci_run_finished(struct xhci_hcd *xhci) 592 { 593 if (xhci_start(xhci)) { 594 xhci_halt(xhci); 595 return -ENODEV; 596 } 597 xhci->shared_hcd->state = HC_STATE_RUNNING; 598 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 599 600 if (xhci->quirks & XHCI_NEC_HOST) 601 xhci_ring_cmd_db(xhci); 602 603 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 604 "Finished xhci_run for USB3 roothub"); 605 return 0; 606 } 607 608 /* 609 * Start the HC after it was halted. 610 * 611 * This function is called by the USB core when the HC driver is added. 612 * Its opposite is xhci_stop(). 613 * 614 * xhci_init() must be called once before this function can be called. 615 * Reset the HC, enable device slot contexts, program DCBAAP, and 616 * set command ring pointer and event ring pointer. 617 * 618 * Setup MSI-X vectors and enable interrupts. 619 */ 620 int xhci_run(struct usb_hcd *hcd) 621 { 622 u32 temp; 623 u64 temp_64; 624 int ret; 625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 626 627 /* Start the xHCI host controller running only after the USB 2.0 roothub 628 * is setup. 629 */ 630 631 hcd->uses_new_polling = 1; 632 if (!usb_hcd_is_primary_hcd(hcd)) 633 return xhci_run_finished(xhci); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 636 637 ret = xhci_try_enable_msi(hcd); 638 if (ret) 639 return ret; 640 641 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 642 temp_64 &= ~ERST_PTR_MASK; 643 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 644 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 645 646 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 647 "// Set the interrupt modulation register"); 648 temp = readl(&xhci->ir_set->irq_control); 649 temp &= ~ER_IRQ_INTERVAL_MASK; 650 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 651 writel(temp, &xhci->ir_set->irq_control); 652 653 /* Set the HCD state before we enable the irqs */ 654 temp = readl(&xhci->op_regs->command); 655 temp |= (CMD_EIE); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enable interrupts, cmd = 0x%x.", temp); 658 writel(temp, &xhci->op_regs->command); 659 660 temp = readl(&xhci->ir_set->irq_pending); 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 663 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 664 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 665 666 if (xhci->quirks & XHCI_NEC_HOST) { 667 struct xhci_command *command; 668 669 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 670 if (!command) 671 return -ENOMEM; 672 673 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 674 TRB_TYPE(TRB_NEC_GET_FW)); 675 if (ret) 676 xhci_free_command(xhci, command); 677 } 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "Finished xhci_run for USB2 roothub"); 680 681 xhci_dbc_init(xhci); 682 683 xhci_debugfs_init(xhci); 684 685 return 0; 686 } 687 EXPORT_SYMBOL_GPL(xhci_run); 688 689 /* 690 * Stop xHCI driver. 691 * 692 * This function is called by the USB core when the HC driver is removed. 693 * Its opposite is xhci_run(). 694 * 695 * Disable device contexts, disable IRQs, and quiesce the HC. 696 * Reset the HC, finish any completed transactions, and cleanup memory. 697 */ 698 static void xhci_stop(struct usb_hcd *hcd) 699 { 700 u32 temp; 701 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 702 703 mutex_lock(&xhci->mutex); 704 705 /* Only halt host and free memory after both hcds are removed */ 706 if (!usb_hcd_is_primary_hcd(hcd)) { 707 /* usb core will free this hcd shortly, unset pointer */ 708 xhci->shared_hcd = NULL; 709 mutex_unlock(&xhci->mutex); 710 return; 711 } 712 713 xhci_dbc_exit(xhci); 714 715 spin_lock_irq(&xhci->lock); 716 xhci->xhc_state |= XHCI_STATE_HALTED; 717 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 718 xhci_halt(xhci); 719 xhci_reset(xhci); 720 spin_unlock_irq(&xhci->lock); 721 722 xhci_cleanup_msix(xhci); 723 724 /* Deleting Compliance Mode Recovery Timer */ 725 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 726 (!(xhci_all_ports_seen_u0(xhci)))) { 727 del_timer_sync(&xhci->comp_mode_recovery_timer); 728 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 729 "%s: compliance mode recovery timer deleted", 730 __func__); 731 } 732 733 if (xhci->quirks & XHCI_AMD_PLL_FIX) 734 usb_amd_dev_put(); 735 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 737 "// Disabling event ring interrupts"); 738 temp = readl(&xhci->op_regs->status); 739 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 740 temp = readl(&xhci->ir_set->irq_pending); 741 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 742 743 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 744 xhci_mem_cleanup(xhci); 745 xhci_debugfs_exit(xhci); 746 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 747 "xhci_stop completed - status = %x", 748 readl(&xhci->op_regs->status)); 749 mutex_unlock(&xhci->mutex); 750 } 751 752 /* 753 * Shutdown HC (not bus-specific) 754 * 755 * This is called when the machine is rebooting or halting. We assume that the 756 * machine will be powered off, and the HC's internal state will be reset. 757 * Don't bother to free memory. 758 * 759 * This will only ever be called with the main usb_hcd (the USB3 roothub). 760 */ 761 static void xhci_shutdown(struct usb_hcd *hcd) 762 { 763 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 764 765 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 766 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 767 768 spin_lock_irq(&xhci->lock); 769 xhci_halt(xhci); 770 /* Workaround for spurious wakeups at shutdown with HSW */ 771 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 772 xhci_reset(xhci); 773 spin_unlock_irq(&xhci->lock); 774 775 xhci_cleanup_msix(xhci); 776 777 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 778 "xhci_shutdown completed - status = %x", 779 readl(&xhci->op_regs->status)); 780 781 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 782 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 783 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 784 } 785 786 #ifdef CONFIG_PM 787 static void xhci_save_registers(struct xhci_hcd *xhci) 788 { 789 xhci->s3.command = readl(&xhci->op_regs->command); 790 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 791 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 792 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 793 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 794 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 795 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 796 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 797 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 798 } 799 800 static void xhci_restore_registers(struct xhci_hcd *xhci) 801 { 802 writel(xhci->s3.command, &xhci->op_regs->command); 803 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 804 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 805 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 806 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 807 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 808 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 809 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 810 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 811 } 812 813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 814 { 815 u64 val_64; 816 817 /* step 2: initialize command ring buffer */ 818 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 819 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 820 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 821 xhci->cmd_ring->dequeue) & 822 (u64) ~CMD_RING_RSVD_BITS) | 823 xhci->cmd_ring->cycle_state; 824 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 825 "// Setting command ring address to 0x%llx", 826 (long unsigned long) val_64); 827 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 828 } 829 830 /* 831 * The whole command ring must be cleared to zero when we suspend the host. 832 * 833 * The host doesn't save the command ring pointer in the suspend well, so we 834 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 835 * aligned, because of the reserved bits in the command ring dequeue pointer 836 * register. Therefore, we can't just set the dequeue pointer back in the 837 * middle of the ring (TRBs are 16-byte aligned). 838 */ 839 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 840 { 841 struct xhci_ring *ring; 842 struct xhci_segment *seg; 843 844 ring = xhci->cmd_ring; 845 seg = ring->deq_seg; 846 do { 847 memset(seg->trbs, 0, 848 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 849 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 850 cpu_to_le32(~TRB_CYCLE); 851 seg = seg->next; 852 } while (seg != ring->deq_seg); 853 854 /* Reset the software enqueue and dequeue pointers */ 855 ring->deq_seg = ring->first_seg; 856 ring->dequeue = ring->first_seg->trbs; 857 ring->enq_seg = ring->deq_seg; 858 ring->enqueue = ring->dequeue; 859 860 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 861 /* 862 * Ring is now zeroed, so the HW should look for change of ownership 863 * when the cycle bit is set to 1. 864 */ 865 ring->cycle_state = 1; 866 867 /* 868 * Reset the hardware dequeue pointer. 869 * Yes, this will need to be re-written after resume, but we're paranoid 870 * and want to make sure the hardware doesn't access bogus memory 871 * because, say, the BIOS or an SMI started the host without changing 872 * the command ring pointers. 873 */ 874 xhci_set_cmd_ring_deq(xhci); 875 } 876 877 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 878 { 879 struct xhci_port **ports; 880 int port_index; 881 unsigned long flags; 882 u32 t1, t2; 883 884 spin_lock_irqsave(&xhci->lock, flags); 885 886 /* disable usb3 ports Wake bits */ 887 port_index = xhci->usb3_rhub.num_ports; 888 ports = xhci->usb3_rhub.ports; 889 while (port_index--) { 890 t1 = readl(ports[port_index]->addr); 891 t1 = xhci_port_state_to_neutral(t1); 892 t2 = t1 & ~PORT_WAKE_BITS; 893 if (t1 != t2) 894 writel(t2, ports[port_index]->addr); 895 } 896 897 /* disable usb2 ports Wake bits */ 898 port_index = xhci->usb2_rhub.num_ports; 899 ports = xhci->usb2_rhub.ports; 900 while (port_index--) { 901 t1 = readl(ports[port_index]->addr); 902 t1 = xhci_port_state_to_neutral(t1); 903 t2 = t1 & ~PORT_WAKE_BITS; 904 if (t1 != t2) 905 writel(t2, ports[port_index]->addr); 906 } 907 908 spin_unlock_irqrestore(&xhci->lock, flags); 909 } 910 911 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 912 { 913 struct xhci_port **ports; 914 int port_index; 915 u32 status; 916 u32 portsc; 917 918 status = readl(&xhci->op_regs->status); 919 if (status & STS_EINT) 920 return true; 921 /* 922 * Checking STS_EINT is not enough as there is a lag between a change 923 * bit being set and the Port Status Change Event that it generated 924 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 925 */ 926 927 port_index = xhci->usb2_rhub.num_ports; 928 ports = xhci->usb2_rhub.ports; 929 while (port_index--) { 930 portsc = readl(ports[port_index]->addr); 931 if (portsc & PORT_CHANGE_MASK || 932 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 933 return true; 934 } 935 port_index = xhci->usb3_rhub.num_ports; 936 ports = xhci->usb3_rhub.ports; 937 while (port_index--) { 938 portsc = readl(ports[port_index]->addr); 939 if (portsc & PORT_CHANGE_MASK || 940 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 941 return true; 942 } 943 return false; 944 } 945 946 /* 947 * Stop HC (not bus-specific) 948 * 949 * This is called when the machine transition into S3/S4 mode. 950 * 951 */ 952 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 953 { 954 int rc = 0; 955 unsigned int delay = XHCI_MAX_HALT_USEC; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 u32 command; 958 959 if (!hcd->state) 960 return 0; 961 962 if (hcd->state != HC_STATE_SUSPENDED || 963 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 964 return -EINVAL; 965 966 xhci_dbc_suspend(xhci); 967 968 /* Clear root port wake on bits if wakeup not allowed. */ 969 if (!do_wakeup) 970 xhci_disable_port_wake_on_bits(xhci); 971 972 /* Don't poll the roothubs on bus suspend. */ 973 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 974 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 975 del_timer_sync(&hcd->rh_timer); 976 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 977 del_timer_sync(&xhci->shared_hcd->rh_timer); 978 979 if (xhci->quirks & XHCI_SUSPEND_DELAY) 980 usleep_range(1000, 1500); 981 982 spin_lock_irq(&xhci->lock); 983 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 984 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 985 /* step 1: stop endpoint */ 986 /* skipped assuming that port suspend has done */ 987 988 /* step 2: clear Run/Stop bit */ 989 command = readl(&xhci->op_regs->command); 990 command &= ~CMD_RUN; 991 writel(command, &xhci->op_regs->command); 992 993 /* Some chips from Fresco Logic need an extraordinary delay */ 994 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 995 996 if (xhci_handshake(&xhci->op_regs->status, 997 STS_HALT, STS_HALT, delay)) { 998 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 999 spin_unlock_irq(&xhci->lock); 1000 return -ETIMEDOUT; 1001 } 1002 xhci_clear_command_ring(xhci); 1003 1004 /* step 3: save registers */ 1005 xhci_save_registers(xhci); 1006 1007 /* step 4: set CSS flag */ 1008 command = readl(&xhci->op_regs->command); 1009 command |= CMD_CSS; 1010 writel(command, &xhci->op_regs->command); 1011 if (xhci_handshake(&xhci->op_regs->status, 1012 STS_SAVE, 0, 10 * 1000)) { 1013 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1014 spin_unlock_irq(&xhci->lock); 1015 return -ETIMEDOUT; 1016 } 1017 spin_unlock_irq(&xhci->lock); 1018 1019 /* 1020 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1021 * is about to be suspended. 1022 */ 1023 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1024 (!(xhci_all_ports_seen_u0(xhci)))) { 1025 del_timer_sync(&xhci->comp_mode_recovery_timer); 1026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1027 "%s: compliance mode recovery timer deleted", 1028 __func__); 1029 } 1030 1031 /* step 5: remove core well power */ 1032 /* synchronize irq when using MSI-X */ 1033 xhci_msix_sync_irqs(xhci); 1034 1035 return rc; 1036 } 1037 EXPORT_SYMBOL_GPL(xhci_suspend); 1038 1039 /* 1040 * start xHC (not bus-specific) 1041 * 1042 * This is called when the machine transition from S3/S4 mode. 1043 * 1044 */ 1045 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1046 { 1047 u32 command, temp = 0; 1048 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1049 struct usb_hcd *secondary_hcd; 1050 int retval = 0; 1051 bool comp_timer_running = false; 1052 1053 if (!hcd->state) 1054 return 0; 1055 1056 /* Wait a bit if either of the roothubs need to settle from the 1057 * transition into bus suspend. 1058 */ 1059 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1060 time_before(jiffies, 1061 xhci->bus_state[1].next_statechange)) 1062 msleep(100); 1063 1064 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1065 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1066 1067 spin_lock_irq(&xhci->lock); 1068 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1069 hibernated = true; 1070 1071 if (!hibernated) { 1072 /* step 1: restore register */ 1073 xhci_restore_registers(xhci); 1074 /* step 2: initialize command ring buffer */ 1075 xhci_set_cmd_ring_deq(xhci); 1076 /* step 3: restore state and start state*/ 1077 /* step 3: set CRS flag */ 1078 command = readl(&xhci->op_regs->command); 1079 command |= CMD_CRS; 1080 writel(command, &xhci->op_regs->command); 1081 /* 1082 * Some controllers take up to 55+ ms to complete the controller 1083 * restore so setting the timeout to 100ms. Xhci specification 1084 * doesn't mention any timeout value. 1085 */ 1086 if (xhci_handshake(&xhci->op_regs->status, 1087 STS_RESTORE, 0, 100 * 1000)) { 1088 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1089 spin_unlock_irq(&xhci->lock); 1090 return -ETIMEDOUT; 1091 } 1092 temp = readl(&xhci->op_regs->status); 1093 } 1094 1095 /* If restore operation fails, re-initialize the HC during resume */ 1096 if ((temp & STS_SRE) || hibernated) { 1097 1098 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1099 !(xhci_all_ports_seen_u0(xhci))) { 1100 del_timer_sync(&xhci->comp_mode_recovery_timer); 1101 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1102 "Compliance Mode Recovery Timer deleted!"); 1103 } 1104 1105 /* Let the USB core know _both_ roothubs lost power. */ 1106 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1107 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1108 1109 xhci_dbg(xhci, "Stop HCD\n"); 1110 xhci_halt(xhci); 1111 xhci_zero_64b_regs(xhci); 1112 xhci_reset(xhci); 1113 spin_unlock_irq(&xhci->lock); 1114 xhci_cleanup_msix(xhci); 1115 1116 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1117 temp = readl(&xhci->op_regs->status); 1118 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1119 temp = readl(&xhci->ir_set->irq_pending); 1120 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1121 1122 xhci_dbg(xhci, "cleaning up memory\n"); 1123 xhci_mem_cleanup(xhci); 1124 xhci_debugfs_exit(xhci); 1125 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1126 readl(&xhci->op_regs->status)); 1127 1128 /* USB core calls the PCI reinit and start functions twice: 1129 * first with the primary HCD, and then with the secondary HCD. 1130 * If we don't do the same, the host will never be started. 1131 */ 1132 if (!usb_hcd_is_primary_hcd(hcd)) 1133 secondary_hcd = hcd; 1134 else 1135 secondary_hcd = xhci->shared_hcd; 1136 1137 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1138 retval = xhci_init(hcd->primary_hcd); 1139 if (retval) 1140 return retval; 1141 comp_timer_running = true; 1142 1143 xhci_dbg(xhci, "Start the primary HCD\n"); 1144 retval = xhci_run(hcd->primary_hcd); 1145 if (!retval) { 1146 xhci_dbg(xhci, "Start the secondary HCD\n"); 1147 retval = xhci_run(secondary_hcd); 1148 } 1149 hcd->state = HC_STATE_SUSPENDED; 1150 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1151 goto done; 1152 } 1153 1154 /* step 4: set Run/Stop bit */ 1155 command = readl(&xhci->op_regs->command); 1156 command |= CMD_RUN; 1157 writel(command, &xhci->op_regs->command); 1158 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1159 0, 250 * 1000); 1160 1161 /* step 5: walk topology and initialize portsc, 1162 * portpmsc and portli 1163 */ 1164 /* this is done in bus_resume */ 1165 1166 /* step 6: restart each of the previously 1167 * Running endpoints by ringing their doorbells 1168 */ 1169 1170 spin_unlock_irq(&xhci->lock); 1171 1172 xhci_dbc_resume(xhci); 1173 1174 done: 1175 if (retval == 0) { 1176 /* Resume root hubs only when have pending events. */ 1177 if (xhci_pending_portevent(xhci)) { 1178 usb_hcd_resume_root_hub(xhci->shared_hcd); 1179 usb_hcd_resume_root_hub(hcd); 1180 } 1181 } 1182 1183 /* 1184 * If system is subject to the Quirk, Compliance Mode Timer needs to 1185 * be re-initialized Always after a system resume. Ports are subject 1186 * to suffer the Compliance Mode issue again. It doesn't matter if 1187 * ports have entered previously to U0 before system's suspension. 1188 */ 1189 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1190 compliance_mode_recovery_timer_init(xhci); 1191 1192 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1193 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1194 1195 /* Re-enable port polling. */ 1196 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1198 usb_hcd_poll_rh_status(xhci->shared_hcd); 1199 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1200 usb_hcd_poll_rh_status(hcd); 1201 1202 return retval; 1203 } 1204 EXPORT_SYMBOL_GPL(xhci_resume); 1205 #endif /* CONFIG_PM */ 1206 1207 /*-------------------------------------------------------------------------*/ 1208 1209 /** 1210 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1211 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1212 * value to right shift 1 for the bitmask. 1213 * 1214 * Index = (epnum * 2) + direction - 1, 1215 * where direction = 0 for OUT, 1 for IN. 1216 * For control endpoints, the IN index is used (OUT index is unused), so 1217 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1218 */ 1219 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1220 { 1221 unsigned int index; 1222 if (usb_endpoint_xfer_control(desc)) 1223 index = (unsigned int) (usb_endpoint_num(desc)*2); 1224 else 1225 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1226 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1227 return index; 1228 } 1229 1230 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1231 * address from the XHCI endpoint index. 1232 */ 1233 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1234 { 1235 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1236 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1237 return direction | number; 1238 } 1239 1240 /* Find the flag for this endpoint (for use in the control context). Use the 1241 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1242 * bit 1, etc. 1243 */ 1244 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1245 { 1246 return 1 << (xhci_get_endpoint_index(desc) + 1); 1247 } 1248 1249 /* Find the flag for this endpoint (for use in the control context). Use the 1250 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1251 * bit 1, etc. 1252 */ 1253 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1254 { 1255 return 1 << (ep_index + 1); 1256 } 1257 1258 /* Compute the last valid endpoint context index. Basically, this is the 1259 * endpoint index plus one. For slot contexts with more than valid endpoint, 1260 * we find the most significant bit set in the added contexts flags. 1261 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1262 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1263 */ 1264 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1265 { 1266 return fls(added_ctxs) - 1; 1267 } 1268 1269 /* Returns 1 if the arguments are OK; 1270 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1271 */ 1272 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1273 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1274 const char *func) { 1275 struct xhci_hcd *xhci; 1276 struct xhci_virt_device *virt_dev; 1277 1278 if (!hcd || (check_ep && !ep) || !udev) { 1279 pr_debug("xHCI %s called with invalid args\n", func); 1280 return -EINVAL; 1281 } 1282 if (!udev->parent) { 1283 pr_debug("xHCI %s called for root hub\n", func); 1284 return 0; 1285 } 1286 1287 xhci = hcd_to_xhci(hcd); 1288 if (check_virt_dev) { 1289 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1290 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1291 func); 1292 return -EINVAL; 1293 } 1294 1295 virt_dev = xhci->devs[udev->slot_id]; 1296 if (virt_dev->udev != udev) { 1297 xhci_dbg(xhci, "xHCI %s called with udev and " 1298 "virt_dev does not match\n", func); 1299 return -EINVAL; 1300 } 1301 } 1302 1303 if (xhci->xhc_state & XHCI_STATE_HALTED) 1304 return -ENODEV; 1305 1306 return 1; 1307 } 1308 1309 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1310 struct usb_device *udev, struct xhci_command *command, 1311 bool ctx_change, bool must_succeed); 1312 1313 /* 1314 * Full speed devices may have a max packet size greater than 8 bytes, but the 1315 * USB core doesn't know that until it reads the first 8 bytes of the 1316 * descriptor. If the usb_device's max packet size changes after that point, 1317 * we need to issue an evaluate context command and wait on it. 1318 */ 1319 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1320 unsigned int ep_index, struct urb *urb) 1321 { 1322 struct xhci_container_ctx *out_ctx; 1323 struct xhci_input_control_ctx *ctrl_ctx; 1324 struct xhci_ep_ctx *ep_ctx; 1325 struct xhci_command *command; 1326 int max_packet_size; 1327 int hw_max_packet_size; 1328 int ret = 0; 1329 1330 out_ctx = xhci->devs[slot_id]->out_ctx; 1331 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1332 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1333 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1334 if (hw_max_packet_size != max_packet_size) { 1335 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1336 "Max Packet Size for ep 0 changed."); 1337 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1338 "Max packet size in usb_device = %d", 1339 max_packet_size); 1340 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1341 "Max packet size in xHCI HW = %d", 1342 hw_max_packet_size); 1343 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1344 "Issuing evaluate context command."); 1345 1346 /* Set up the input context flags for the command */ 1347 /* FIXME: This won't work if a non-default control endpoint 1348 * changes max packet sizes. 1349 */ 1350 1351 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1352 if (!command) 1353 return -ENOMEM; 1354 1355 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1356 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1357 if (!ctrl_ctx) { 1358 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1359 __func__); 1360 ret = -ENOMEM; 1361 goto command_cleanup; 1362 } 1363 /* Set up the modified control endpoint 0 */ 1364 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1365 xhci->devs[slot_id]->out_ctx, ep_index); 1366 1367 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1368 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1369 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1370 1371 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1372 ctrl_ctx->drop_flags = 0; 1373 1374 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1375 true, false); 1376 1377 /* Clean up the input context for later use by bandwidth 1378 * functions. 1379 */ 1380 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1381 command_cleanup: 1382 kfree(command->completion); 1383 kfree(command); 1384 } 1385 return ret; 1386 } 1387 1388 /* 1389 * non-error returns are a promise to giveback() the urb later 1390 * we drop ownership so next owner (or urb unlink) can get it 1391 */ 1392 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1393 { 1394 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1395 unsigned long flags; 1396 int ret = 0; 1397 unsigned int slot_id, ep_index; 1398 unsigned int *ep_state; 1399 struct urb_priv *urb_priv; 1400 int num_tds; 1401 1402 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1403 true, true, __func__) <= 0) 1404 return -EINVAL; 1405 1406 slot_id = urb->dev->slot_id; 1407 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1408 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1409 1410 if (!HCD_HW_ACCESSIBLE(hcd)) { 1411 if (!in_interrupt()) 1412 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1413 return -ESHUTDOWN; 1414 } 1415 1416 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1417 num_tds = urb->number_of_packets; 1418 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1419 urb->transfer_buffer_length > 0 && 1420 urb->transfer_flags & URB_ZERO_PACKET && 1421 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1422 num_tds = 2; 1423 else 1424 num_tds = 1; 1425 1426 urb_priv = kzalloc(sizeof(struct urb_priv) + 1427 num_tds * sizeof(struct xhci_td), mem_flags); 1428 if (!urb_priv) 1429 return -ENOMEM; 1430 1431 urb_priv->num_tds = num_tds; 1432 urb_priv->num_tds_done = 0; 1433 urb->hcpriv = urb_priv; 1434 1435 trace_xhci_urb_enqueue(urb); 1436 1437 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1438 /* Check to see if the max packet size for the default control 1439 * endpoint changed during FS device enumeration 1440 */ 1441 if (urb->dev->speed == USB_SPEED_FULL) { 1442 ret = xhci_check_maxpacket(xhci, slot_id, 1443 ep_index, urb); 1444 if (ret < 0) { 1445 xhci_urb_free_priv(urb_priv); 1446 urb->hcpriv = NULL; 1447 return ret; 1448 } 1449 } 1450 } 1451 1452 spin_lock_irqsave(&xhci->lock, flags); 1453 1454 if (xhci->xhc_state & XHCI_STATE_DYING) { 1455 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1456 urb->ep->desc.bEndpointAddress, urb); 1457 ret = -ESHUTDOWN; 1458 goto free_priv; 1459 } 1460 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1461 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1462 *ep_state); 1463 ret = -EINVAL; 1464 goto free_priv; 1465 } 1466 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1467 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1468 ret = -EINVAL; 1469 goto free_priv; 1470 } 1471 1472 switch (usb_endpoint_type(&urb->ep->desc)) { 1473 1474 case USB_ENDPOINT_XFER_CONTROL: 1475 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1476 slot_id, ep_index); 1477 break; 1478 case USB_ENDPOINT_XFER_BULK: 1479 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1480 slot_id, ep_index); 1481 break; 1482 case USB_ENDPOINT_XFER_INT: 1483 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1484 slot_id, ep_index); 1485 break; 1486 case USB_ENDPOINT_XFER_ISOC: 1487 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1488 slot_id, ep_index); 1489 } 1490 1491 if (ret) { 1492 free_priv: 1493 xhci_urb_free_priv(urb_priv); 1494 urb->hcpriv = NULL; 1495 } 1496 spin_unlock_irqrestore(&xhci->lock, flags); 1497 return ret; 1498 } 1499 1500 /* 1501 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1502 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1503 * should pick up where it left off in the TD, unless a Set Transfer Ring 1504 * Dequeue Pointer is issued. 1505 * 1506 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1507 * the ring. Since the ring is a contiguous structure, they can't be physically 1508 * removed. Instead, there are two options: 1509 * 1510 * 1) If the HC is in the middle of processing the URB to be canceled, we 1511 * simply move the ring's dequeue pointer past those TRBs using the Set 1512 * Transfer Ring Dequeue Pointer command. This will be the common case, 1513 * when drivers timeout on the last submitted URB and attempt to cancel. 1514 * 1515 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1516 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1517 * HC will need to invalidate the any TRBs it has cached after the stop 1518 * endpoint command, as noted in the xHCI 0.95 errata. 1519 * 1520 * 3) The TD may have completed by the time the Stop Endpoint Command 1521 * completes, so software needs to handle that case too. 1522 * 1523 * This function should protect against the TD enqueueing code ringing the 1524 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1525 * It also needs to account for multiple cancellations on happening at the same 1526 * time for the same endpoint. 1527 * 1528 * Note that this function can be called in any context, or so says 1529 * usb_hcd_unlink_urb() 1530 */ 1531 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1532 { 1533 unsigned long flags; 1534 int ret, i; 1535 u32 temp; 1536 struct xhci_hcd *xhci; 1537 struct urb_priv *urb_priv; 1538 struct xhci_td *td; 1539 unsigned int ep_index; 1540 struct xhci_ring *ep_ring; 1541 struct xhci_virt_ep *ep; 1542 struct xhci_command *command; 1543 struct xhci_virt_device *vdev; 1544 1545 xhci = hcd_to_xhci(hcd); 1546 spin_lock_irqsave(&xhci->lock, flags); 1547 1548 trace_xhci_urb_dequeue(urb); 1549 1550 /* Make sure the URB hasn't completed or been unlinked already */ 1551 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1552 if (ret) 1553 goto done; 1554 1555 /* give back URB now if we can't queue it for cancel */ 1556 vdev = xhci->devs[urb->dev->slot_id]; 1557 urb_priv = urb->hcpriv; 1558 if (!vdev || !urb_priv) 1559 goto err_giveback; 1560 1561 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1562 ep = &vdev->eps[ep_index]; 1563 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1564 if (!ep || !ep_ring) 1565 goto err_giveback; 1566 1567 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1568 temp = readl(&xhci->op_regs->status); 1569 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1570 xhci_hc_died(xhci); 1571 goto done; 1572 } 1573 1574 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1575 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1576 "HC halted, freeing TD manually."); 1577 for (i = urb_priv->num_tds_done; 1578 i < urb_priv->num_tds; 1579 i++) { 1580 td = &urb_priv->td[i]; 1581 if (!list_empty(&td->td_list)) 1582 list_del_init(&td->td_list); 1583 if (!list_empty(&td->cancelled_td_list)) 1584 list_del_init(&td->cancelled_td_list); 1585 } 1586 goto err_giveback; 1587 } 1588 1589 i = urb_priv->num_tds_done; 1590 if (i < urb_priv->num_tds) 1591 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1592 "Cancel URB %p, dev %s, ep 0x%x, " 1593 "starting at offset 0x%llx", 1594 urb, urb->dev->devpath, 1595 urb->ep->desc.bEndpointAddress, 1596 (unsigned long long) xhci_trb_virt_to_dma( 1597 urb_priv->td[i].start_seg, 1598 urb_priv->td[i].first_trb)); 1599 1600 for (; i < urb_priv->num_tds; i++) { 1601 td = &urb_priv->td[i]; 1602 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1603 } 1604 1605 /* Queue a stop endpoint command, but only if this is 1606 * the first cancellation to be handled. 1607 */ 1608 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1609 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1610 if (!command) { 1611 ret = -ENOMEM; 1612 goto done; 1613 } 1614 ep->ep_state |= EP_STOP_CMD_PENDING; 1615 ep->stop_cmd_timer.expires = jiffies + 1616 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1617 add_timer(&ep->stop_cmd_timer); 1618 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1619 ep_index, 0); 1620 xhci_ring_cmd_db(xhci); 1621 } 1622 done: 1623 spin_unlock_irqrestore(&xhci->lock, flags); 1624 return ret; 1625 1626 err_giveback: 1627 if (urb_priv) 1628 xhci_urb_free_priv(urb_priv); 1629 usb_hcd_unlink_urb_from_ep(hcd, urb); 1630 spin_unlock_irqrestore(&xhci->lock, flags); 1631 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1632 return ret; 1633 } 1634 1635 /* Drop an endpoint from a new bandwidth configuration for this device. 1636 * Only one call to this function is allowed per endpoint before 1637 * check_bandwidth() or reset_bandwidth() must be called. 1638 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1639 * add the endpoint to the schedule with possibly new parameters denoted by a 1640 * different endpoint descriptor in usb_host_endpoint. 1641 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1642 * not allowed. 1643 * 1644 * The USB core will not allow URBs to be queued to an endpoint that is being 1645 * disabled, so there's no need for mutual exclusion to protect 1646 * the xhci->devs[slot_id] structure. 1647 */ 1648 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1649 struct usb_host_endpoint *ep) 1650 { 1651 struct xhci_hcd *xhci; 1652 struct xhci_container_ctx *in_ctx, *out_ctx; 1653 struct xhci_input_control_ctx *ctrl_ctx; 1654 unsigned int ep_index; 1655 struct xhci_ep_ctx *ep_ctx; 1656 u32 drop_flag; 1657 u32 new_add_flags, new_drop_flags; 1658 int ret; 1659 1660 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1661 if (ret <= 0) 1662 return ret; 1663 xhci = hcd_to_xhci(hcd); 1664 if (xhci->xhc_state & XHCI_STATE_DYING) 1665 return -ENODEV; 1666 1667 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1668 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1669 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1670 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1671 __func__, drop_flag); 1672 return 0; 1673 } 1674 1675 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1676 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1677 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1678 if (!ctrl_ctx) { 1679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1680 __func__); 1681 return 0; 1682 } 1683 1684 ep_index = xhci_get_endpoint_index(&ep->desc); 1685 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1686 /* If the HC already knows the endpoint is disabled, 1687 * or the HCD has noted it is disabled, ignore this request 1688 */ 1689 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1690 le32_to_cpu(ctrl_ctx->drop_flags) & 1691 xhci_get_endpoint_flag(&ep->desc)) { 1692 /* Do not warn when called after a usb_device_reset */ 1693 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1694 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1695 __func__, ep); 1696 return 0; 1697 } 1698 1699 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1700 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1701 1702 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1703 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1704 1705 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1706 1707 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1708 1709 if (xhci->quirks & XHCI_MTK_HOST) 1710 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1711 1712 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1713 (unsigned int) ep->desc.bEndpointAddress, 1714 udev->slot_id, 1715 (unsigned int) new_drop_flags, 1716 (unsigned int) new_add_flags); 1717 return 0; 1718 } 1719 1720 /* Add an endpoint to a new possible bandwidth configuration for this device. 1721 * Only one call to this function is allowed per endpoint before 1722 * check_bandwidth() or reset_bandwidth() must be called. 1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1724 * add the endpoint to the schedule with possibly new parameters denoted by a 1725 * different endpoint descriptor in usb_host_endpoint. 1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1727 * not allowed. 1728 * 1729 * The USB core will not allow URBs to be queued to an endpoint until the 1730 * configuration or alt setting is installed in the device, so there's no need 1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1732 */ 1733 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1734 struct usb_host_endpoint *ep) 1735 { 1736 struct xhci_hcd *xhci; 1737 struct xhci_container_ctx *in_ctx; 1738 unsigned int ep_index; 1739 struct xhci_input_control_ctx *ctrl_ctx; 1740 u32 added_ctxs; 1741 u32 new_add_flags, new_drop_flags; 1742 struct xhci_virt_device *virt_dev; 1743 int ret = 0; 1744 1745 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1746 if (ret <= 0) { 1747 /* So we won't queue a reset ep command for a root hub */ 1748 ep->hcpriv = NULL; 1749 return ret; 1750 } 1751 xhci = hcd_to_xhci(hcd); 1752 if (xhci->xhc_state & XHCI_STATE_DYING) 1753 return -ENODEV; 1754 1755 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1756 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1757 /* FIXME when we have to issue an evaluate endpoint command to 1758 * deal with ep0 max packet size changing once we get the 1759 * descriptors 1760 */ 1761 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1762 __func__, added_ctxs); 1763 return 0; 1764 } 1765 1766 virt_dev = xhci->devs[udev->slot_id]; 1767 in_ctx = virt_dev->in_ctx; 1768 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1769 if (!ctrl_ctx) { 1770 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1771 __func__); 1772 return 0; 1773 } 1774 1775 ep_index = xhci_get_endpoint_index(&ep->desc); 1776 /* If this endpoint is already in use, and the upper layers are trying 1777 * to add it again without dropping it, reject the addition. 1778 */ 1779 if (virt_dev->eps[ep_index].ring && 1780 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1781 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1782 "without dropping it.\n", 1783 (unsigned int) ep->desc.bEndpointAddress); 1784 return -EINVAL; 1785 } 1786 1787 /* If the HCD has already noted the endpoint is enabled, 1788 * ignore this request. 1789 */ 1790 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1791 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1792 __func__, ep); 1793 return 0; 1794 } 1795 1796 /* 1797 * Configuration and alternate setting changes must be done in 1798 * process context, not interrupt context (or so documenation 1799 * for usb_set_interface() and usb_set_configuration() claim). 1800 */ 1801 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1802 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1803 __func__, ep->desc.bEndpointAddress); 1804 return -ENOMEM; 1805 } 1806 1807 if (xhci->quirks & XHCI_MTK_HOST) { 1808 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1809 if (ret < 0) { 1810 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1811 virt_dev->eps[ep_index].new_ring = NULL; 1812 return ret; 1813 } 1814 } 1815 1816 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1817 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1818 1819 /* If xhci_endpoint_disable() was called for this endpoint, but the 1820 * xHC hasn't been notified yet through the check_bandwidth() call, 1821 * this re-adds a new state for the endpoint from the new endpoint 1822 * descriptors. We must drop and re-add this endpoint, so we leave the 1823 * drop flags alone. 1824 */ 1825 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1826 1827 /* Store the usb_device pointer for later use */ 1828 ep->hcpriv = udev; 1829 1830 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1831 1832 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1833 (unsigned int) ep->desc.bEndpointAddress, 1834 udev->slot_id, 1835 (unsigned int) new_drop_flags, 1836 (unsigned int) new_add_flags); 1837 return 0; 1838 } 1839 1840 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1841 { 1842 struct xhci_input_control_ctx *ctrl_ctx; 1843 struct xhci_ep_ctx *ep_ctx; 1844 struct xhci_slot_ctx *slot_ctx; 1845 int i; 1846 1847 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1848 if (!ctrl_ctx) { 1849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1850 __func__); 1851 return; 1852 } 1853 1854 /* When a device's add flag and drop flag are zero, any subsequent 1855 * configure endpoint command will leave that endpoint's state 1856 * untouched. Make sure we don't leave any old state in the input 1857 * endpoint contexts. 1858 */ 1859 ctrl_ctx->drop_flags = 0; 1860 ctrl_ctx->add_flags = 0; 1861 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1862 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1863 /* Endpoint 0 is always valid */ 1864 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1865 for (i = 1; i < 31; i++) { 1866 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1867 ep_ctx->ep_info = 0; 1868 ep_ctx->ep_info2 = 0; 1869 ep_ctx->deq = 0; 1870 ep_ctx->tx_info = 0; 1871 } 1872 } 1873 1874 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1875 struct usb_device *udev, u32 *cmd_status) 1876 { 1877 int ret; 1878 1879 switch (*cmd_status) { 1880 case COMP_COMMAND_ABORTED: 1881 case COMP_COMMAND_RING_STOPPED: 1882 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1883 ret = -ETIME; 1884 break; 1885 case COMP_RESOURCE_ERROR: 1886 dev_warn(&udev->dev, 1887 "Not enough host controller resources for new device state.\n"); 1888 ret = -ENOMEM; 1889 /* FIXME: can we allocate more resources for the HC? */ 1890 break; 1891 case COMP_BANDWIDTH_ERROR: 1892 case COMP_SECONDARY_BANDWIDTH_ERROR: 1893 dev_warn(&udev->dev, 1894 "Not enough bandwidth for new device state.\n"); 1895 ret = -ENOSPC; 1896 /* FIXME: can we go back to the old state? */ 1897 break; 1898 case COMP_TRB_ERROR: 1899 /* the HCD set up something wrong */ 1900 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1901 "add flag = 1, " 1902 "and endpoint is not disabled.\n"); 1903 ret = -EINVAL; 1904 break; 1905 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1906 dev_warn(&udev->dev, 1907 "ERROR: Incompatible device for endpoint configure command.\n"); 1908 ret = -ENODEV; 1909 break; 1910 case COMP_SUCCESS: 1911 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1912 "Successful Endpoint Configure command"); 1913 ret = 0; 1914 break; 1915 default: 1916 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1917 *cmd_status); 1918 ret = -EINVAL; 1919 break; 1920 } 1921 return ret; 1922 } 1923 1924 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1925 struct usb_device *udev, u32 *cmd_status) 1926 { 1927 int ret; 1928 1929 switch (*cmd_status) { 1930 case COMP_COMMAND_ABORTED: 1931 case COMP_COMMAND_RING_STOPPED: 1932 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1933 ret = -ETIME; 1934 break; 1935 case COMP_PARAMETER_ERROR: 1936 dev_warn(&udev->dev, 1937 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1938 ret = -EINVAL; 1939 break; 1940 case COMP_SLOT_NOT_ENABLED_ERROR: 1941 dev_warn(&udev->dev, 1942 "WARN: slot not enabled for evaluate context command.\n"); 1943 ret = -EINVAL; 1944 break; 1945 case COMP_CONTEXT_STATE_ERROR: 1946 dev_warn(&udev->dev, 1947 "WARN: invalid context state for evaluate context command.\n"); 1948 ret = -EINVAL; 1949 break; 1950 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1951 dev_warn(&udev->dev, 1952 "ERROR: Incompatible device for evaluate context command.\n"); 1953 ret = -ENODEV; 1954 break; 1955 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1956 /* Max Exit Latency too large error */ 1957 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1958 ret = -EINVAL; 1959 break; 1960 case COMP_SUCCESS: 1961 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1962 "Successful evaluate context command"); 1963 ret = 0; 1964 break; 1965 default: 1966 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1967 *cmd_status); 1968 ret = -EINVAL; 1969 break; 1970 } 1971 return ret; 1972 } 1973 1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1975 struct xhci_input_control_ctx *ctrl_ctx) 1976 { 1977 u32 valid_add_flags; 1978 u32 valid_drop_flags; 1979 1980 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1981 * (bit 1). The default control endpoint is added during the Address 1982 * Device command and is never removed until the slot is disabled. 1983 */ 1984 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1985 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1986 1987 /* Use hweight32 to count the number of ones in the add flags, or 1988 * number of endpoints added. Don't count endpoints that are changed 1989 * (both added and dropped). 1990 */ 1991 return hweight32(valid_add_flags) - 1992 hweight32(valid_add_flags & valid_drop_flags); 1993 } 1994 1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1996 struct xhci_input_control_ctx *ctrl_ctx) 1997 { 1998 u32 valid_add_flags; 1999 u32 valid_drop_flags; 2000 2001 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2002 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2003 2004 return hweight32(valid_drop_flags) - 2005 hweight32(valid_add_flags & valid_drop_flags); 2006 } 2007 2008 /* 2009 * We need to reserve the new number of endpoints before the configure endpoint 2010 * command completes. We can't subtract the dropped endpoints from the number 2011 * of active endpoints until the command completes because we can oversubscribe 2012 * the host in this case: 2013 * 2014 * - the first configure endpoint command drops more endpoints than it adds 2015 * - a second configure endpoint command that adds more endpoints is queued 2016 * - the first configure endpoint command fails, so the config is unchanged 2017 * - the second command may succeed, even though there isn't enough resources 2018 * 2019 * Must be called with xhci->lock held. 2020 */ 2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2022 struct xhci_input_control_ctx *ctrl_ctx) 2023 { 2024 u32 added_eps; 2025 2026 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2027 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2028 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2029 "Not enough ep ctxs: " 2030 "%u active, need to add %u, limit is %u.", 2031 xhci->num_active_eps, added_eps, 2032 xhci->limit_active_eps); 2033 return -ENOMEM; 2034 } 2035 xhci->num_active_eps += added_eps; 2036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2037 "Adding %u ep ctxs, %u now active.", added_eps, 2038 xhci->num_active_eps); 2039 return 0; 2040 } 2041 2042 /* 2043 * The configure endpoint was failed by the xHC for some other reason, so we 2044 * need to revert the resources that failed configuration would have used. 2045 * 2046 * Must be called with xhci->lock held. 2047 */ 2048 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2049 struct xhci_input_control_ctx *ctrl_ctx) 2050 { 2051 u32 num_failed_eps; 2052 2053 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2054 xhci->num_active_eps -= num_failed_eps; 2055 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2056 "Removing %u failed ep ctxs, %u now active.", 2057 num_failed_eps, 2058 xhci->num_active_eps); 2059 } 2060 2061 /* 2062 * Now that the command has completed, clean up the active endpoint count by 2063 * subtracting out the endpoints that were dropped (but not changed). 2064 * 2065 * Must be called with xhci->lock held. 2066 */ 2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2068 struct xhci_input_control_ctx *ctrl_ctx) 2069 { 2070 u32 num_dropped_eps; 2071 2072 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2073 xhci->num_active_eps -= num_dropped_eps; 2074 if (num_dropped_eps) 2075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2076 "Removing %u dropped ep ctxs, %u now active.", 2077 num_dropped_eps, 2078 xhci->num_active_eps); 2079 } 2080 2081 static unsigned int xhci_get_block_size(struct usb_device *udev) 2082 { 2083 switch (udev->speed) { 2084 case USB_SPEED_LOW: 2085 case USB_SPEED_FULL: 2086 return FS_BLOCK; 2087 case USB_SPEED_HIGH: 2088 return HS_BLOCK; 2089 case USB_SPEED_SUPER: 2090 case USB_SPEED_SUPER_PLUS: 2091 return SS_BLOCK; 2092 case USB_SPEED_UNKNOWN: 2093 case USB_SPEED_WIRELESS: 2094 default: 2095 /* Should never happen */ 2096 return 1; 2097 } 2098 } 2099 2100 static unsigned int 2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2102 { 2103 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2104 return LS_OVERHEAD; 2105 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2106 return FS_OVERHEAD; 2107 return HS_OVERHEAD; 2108 } 2109 2110 /* If we are changing a LS/FS device under a HS hub, 2111 * make sure (if we are activating a new TT) that the HS bus has enough 2112 * bandwidth for this new TT. 2113 */ 2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2115 struct xhci_virt_device *virt_dev, 2116 int old_active_eps) 2117 { 2118 struct xhci_interval_bw_table *bw_table; 2119 struct xhci_tt_bw_info *tt_info; 2120 2121 /* Find the bandwidth table for the root port this TT is attached to. */ 2122 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2123 tt_info = virt_dev->tt_info; 2124 /* If this TT already had active endpoints, the bandwidth for this TT 2125 * has already been added. Removing all periodic endpoints (and thus 2126 * making the TT enactive) will only decrease the bandwidth used. 2127 */ 2128 if (old_active_eps) 2129 return 0; 2130 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2131 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2132 return -ENOMEM; 2133 return 0; 2134 } 2135 /* Not sure why we would have no new active endpoints... 2136 * 2137 * Maybe because of an Evaluate Context change for a hub update or a 2138 * control endpoint 0 max packet size change? 2139 * FIXME: skip the bandwidth calculation in that case. 2140 */ 2141 return 0; 2142 } 2143 2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2145 struct xhci_virt_device *virt_dev) 2146 { 2147 unsigned int bw_reserved; 2148 2149 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2150 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2151 return -ENOMEM; 2152 2153 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2154 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2155 return -ENOMEM; 2156 2157 return 0; 2158 } 2159 2160 /* 2161 * This algorithm is a very conservative estimate of the worst-case scheduling 2162 * scenario for any one interval. The hardware dynamically schedules the 2163 * packets, so we can't tell which microframe could be the limiting factor in 2164 * the bandwidth scheduling. This only takes into account periodic endpoints. 2165 * 2166 * Obviously, we can't solve an NP complete problem to find the minimum worst 2167 * case scenario. Instead, we come up with an estimate that is no less than 2168 * the worst case bandwidth used for any one microframe, but may be an 2169 * over-estimate. 2170 * 2171 * We walk the requirements for each endpoint by interval, starting with the 2172 * smallest interval, and place packets in the schedule where there is only one 2173 * possible way to schedule packets for that interval. In order to simplify 2174 * this algorithm, we record the largest max packet size for each interval, and 2175 * assume all packets will be that size. 2176 * 2177 * For interval 0, we obviously must schedule all packets for each interval. 2178 * The bandwidth for interval 0 is just the amount of data to be transmitted 2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2180 * the number of packets). 2181 * 2182 * For interval 1, we have two possible microframes to schedule those packets 2183 * in. For this algorithm, if we can schedule the same number of packets for 2184 * each possible scheduling opportunity (each microframe), we will do so. The 2185 * remaining number of packets will be saved to be transmitted in the gaps in 2186 * the next interval's scheduling sequence. 2187 * 2188 * As we move those remaining packets to be scheduled with interval 2 packets, 2189 * we have to double the number of remaining packets to transmit. This is 2190 * because the intervals are actually powers of 2, and we would be transmitting 2191 * the previous interval's packets twice in this interval. We also have to be 2192 * sure that when we look at the largest max packet size for this interval, we 2193 * also look at the largest max packet size for the remaining packets and take 2194 * the greater of the two. 2195 * 2196 * The algorithm continues to evenly distribute packets in each scheduling 2197 * opportunity, and push the remaining packets out, until we get to the last 2198 * interval. Then those packets and their associated overhead are just added 2199 * to the bandwidth used. 2200 */ 2201 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2202 struct xhci_virt_device *virt_dev, 2203 int old_active_eps) 2204 { 2205 unsigned int bw_reserved; 2206 unsigned int max_bandwidth; 2207 unsigned int bw_used; 2208 unsigned int block_size; 2209 struct xhci_interval_bw_table *bw_table; 2210 unsigned int packet_size = 0; 2211 unsigned int overhead = 0; 2212 unsigned int packets_transmitted = 0; 2213 unsigned int packets_remaining = 0; 2214 unsigned int i; 2215 2216 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2217 return xhci_check_ss_bw(xhci, virt_dev); 2218 2219 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2220 max_bandwidth = HS_BW_LIMIT; 2221 /* Convert percent of bus BW reserved to blocks reserved */ 2222 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2223 } else { 2224 max_bandwidth = FS_BW_LIMIT; 2225 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2226 } 2227 2228 bw_table = virt_dev->bw_table; 2229 /* We need to translate the max packet size and max ESIT payloads into 2230 * the units the hardware uses. 2231 */ 2232 block_size = xhci_get_block_size(virt_dev->udev); 2233 2234 /* If we are manipulating a LS/FS device under a HS hub, double check 2235 * that the HS bus has enough bandwidth if we are activing a new TT. 2236 */ 2237 if (virt_dev->tt_info) { 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2239 "Recalculating BW for rootport %u", 2240 virt_dev->real_port); 2241 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2242 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2243 "newly activated TT.\n"); 2244 return -ENOMEM; 2245 } 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Recalculating BW for TT slot %u port %u", 2248 virt_dev->tt_info->slot_id, 2249 virt_dev->tt_info->ttport); 2250 } else { 2251 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2252 "Recalculating BW for rootport %u", 2253 virt_dev->real_port); 2254 } 2255 2256 /* Add in how much bandwidth will be used for interval zero, or the 2257 * rounded max ESIT payload + number of packets * largest overhead. 2258 */ 2259 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2260 bw_table->interval_bw[0].num_packets * 2261 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2262 2263 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2264 unsigned int bw_added; 2265 unsigned int largest_mps; 2266 unsigned int interval_overhead; 2267 2268 /* 2269 * How many packets could we transmit in this interval? 2270 * If packets didn't fit in the previous interval, we will need 2271 * to transmit that many packets twice within this interval. 2272 */ 2273 packets_remaining = 2 * packets_remaining + 2274 bw_table->interval_bw[i].num_packets; 2275 2276 /* Find the largest max packet size of this or the previous 2277 * interval. 2278 */ 2279 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2280 largest_mps = 0; 2281 else { 2282 struct xhci_virt_ep *virt_ep; 2283 struct list_head *ep_entry; 2284 2285 ep_entry = bw_table->interval_bw[i].endpoints.next; 2286 virt_ep = list_entry(ep_entry, 2287 struct xhci_virt_ep, bw_endpoint_list); 2288 /* Convert to blocks, rounding up */ 2289 largest_mps = DIV_ROUND_UP( 2290 virt_ep->bw_info.max_packet_size, 2291 block_size); 2292 } 2293 if (largest_mps > packet_size) 2294 packet_size = largest_mps; 2295 2296 /* Use the larger overhead of this or the previous interval. */ 2297 interval_overhead = xhci_get_largest_overhead( 2298 &bw_table->interval_bw[i]); 2299 if (interval_overhead > overhead) 2300 overhead = interval_overhead; 2301 2302 /* How many packets can we evenly distribute across 2303 * (1 << (i + 1)) possible scheduling opportunities? 2304 */ 2305 packets_transmitted = packets_remaining >> (i + 1); 2306 2307 /* Add in the bandwidth used for those scheduled packets */ 2308 bw_added = packets_transmitted * (overhead + packet_size); 2309 2310 /* How many packets do we have remaining to transmit? */ 2311 packets_remaining = packets_remaining % (1 << (i + 1)); 2312 2313 /* What largest max packet size should those packets have? */ 2314 /* If we've transmitted all packets, don't carry over the 2315 * largest packet size. 2316 */ 2317 if (packets_remaining == 0) { 2318 packet_size = 0; 2319 overhead = 0; 2320 } else if (packets_transmitted > 0) { 2321 /* Otherwise if we do have remaining packets, and we've 2322 * scheduled some packets in this interval, take the 2323 * largest max packet size from endpoints with this 2324 * interval. 2325 */ 2326 packet_size = largest_mps; 2327 overhead = interval_overhead; 2328 } 2329 /* Otherwise carry over packet_size and overhead from the last 2330 * time we had a remainder. 2331 */ 2332 bw_used += bw_added; 2333 if (bw_used > max_bandwidth) { 2334 xhci_warn(xhci, "Not enough bandwidth. " 2335 "Proposed: %u, Max: %u\n", 2336 bw_used, max_bandwidth); 2337 return -ENOMEM; 2338 } 2339 } 2340 /* 2341 * Ok, we know we have some packets left over after even-handedly 2342 * scheduling interval 15. We don't know which microframes they will 2343 * fit into, so we over-schedule and say they will be scheduled every 2344 * microframe. 2345 */ 2346 if (packets_remaining > 0) 2347 bw_used += overhead + packet_size; 2348 2349 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2350 unsigned int port_index = virt_dev->real_port - 1; 2351 2352 /* OK, we're manipulating a HS device attached to a 2353 * root port bandwidth domain. Include the number of active TTs 2354 * in the bandwidth used. 2355 */ 2356 bw_used += TT_HS_OVERHEAD * 2357 xhci->rh_bw[port_index].num_active_tts; 2358 } 2359 2360 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2361 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2362 "Available: %u " "percent", 2363 bw_used, max_bandwidth, bw_reserved, 2364 (max_bandwidth - bw_used - bw_reserved) * 100 / 2365 max_bandwidth); 2366 2367 bw_used += bw_reserved; 2368 if (bw_used > max_bandwidth) { 2369 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2370 bw_used, max_bandwidth); 2371 return -ENOMEM; 2372 } 2373 2374 bw_table->bw_used = bw_used; 2375 return 0; 2376 } 2377 2378 static bool xhci_is_async_ep(unsigned int ep_type) 2379 { 2380 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2381 ep_type != ISOC_IN_EP && 2382 ep_type != INT_IN_EP); 2383 } 2384 2385 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2386 { 2387 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2388 } 2389 2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2391 { 2392 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2393 2394 if (ep_bw->ep_interval == 0) 2395 return SS_OVERHEAD_BURST + 2396 (ep_bw->mult * ep_bw->num_packets * 2397 (SS_OVERHEAD + mps)); 2398 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2399 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2400 1 << ep_bw->ep_interval); 2401 2402 } 2403 2404 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2405 struct xhci_bw_info *ep_bw, 2406 struct xhci_interval_bw_table *bw_table, 2407 struct usb_device *udev, 2408 struct xhci_virt_ep *virt_ep, 2409 struct xhci_tt_bw_info *tt_info) 2410 { 2411 struct xhci_interval_bw *interval_bw; 2412 int normalized_interval; 2413 2414 if (xhci_is_async_ep(ep_bw->type)) 2415 return; 2416 2417 if (udev->speed >= USB_SPEED_SUPER) { 2418 if (xhci_is_sync_in_ep(ep_bw->type)) 2419 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2420 xhci_get_ss_bw_consumed(ep_bw); 2421 else 2422 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2423 xhci_get_ss_bw_consumed(ep_bw); 2424 return; 2425 } 2426 2427 /* SuperSpeed endpoints never get added to intervals in the table, so 2428 * this check is only valid for HS/FS/LS devices. 2429 */ 2430 if (list_empty(&virt_ep->bw_endpoint_list)) 2431 return; 2432 /* For LS/FS devices, we need to translate the interval expressed in 2433 * microframes to frames. 2434 */ 2435 if (udev->speed == USB_SPEED_HIGH) 2436 normalized_interval = ep_bw->ep_interval; 2437 else 2438 normalized_interval = ep_bw->ep_interval - 3; 2439 2440 if (normalized_interval == 0) 2441 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2442 interval_bw = &bw_table->interval_bw[normalized_interval]; 2443 interval_bw->num_packets -= ep_bw->num_packets; 2444 switch (udev->speed) { 2445 case USB_SPEED_LOW: 2446 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2447 break; 2448 case USB_SPEED_FULL: 2449 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2450 break; 2451 case USB_SPEED_HIGH: 2452 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2453 break; 2454 case USB_SPEED_SUPER: 2455 case USB_SPEED_SUPER_PLUS: 2456 case USB_SPEED_UNKNOWN: 2457 case USB_SPEED_WIRELESS: 2458 /* Should never happen because only LS/FS/HS endpoints will get 2459 * added to the endpoint list. 2460 */ 2461 return; 2462 } 2463 if (tt_info) 2464 tt_info->active_eps -= 1; 2465 list_del_init(&virt_ep->bw_endpoint_list); 2466 } 2467 2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2469 struct xhci_bw_info *ep_bw, 2470 struct xhci_interval_bw_table *bw_table, 2471 struct usb_device *udev, 2472 struct xhci_virt_ep *virt_ep, 2473 struct xhci_tt_bw_info *tt_info) 2474 { 2475 struct xhci_interval_bw *interval_bw; 2476 struct xhci_virt_ep *smaller_ep; 2477 int normalized_interval; 2478 2479 if (xhci_is_async_ep(ep_bw->type)) 2480 return; 2481 2482 if (udev->speed == USB_SPEED_SUPER) { 2483 if (xhci_is_sync_in_ep(ep_bw->type)) 2484 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2485 xhci_get_ss_bw_consumed(ep_bw); 2486 else 2487 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2488 xhci_get_ss_bw_consumed(ep_bw); 2489 return; 2490 } 2491 2492 /* For LS/FS devices, we need to translate the interval expressed in 2493 * microframes to frames. 2494 */ 2495 if (udev->speed == USB_SPEED_HIGH) 2496 normalized_interval = ep_bw->ep_interval; 2497 else 2498 normalized_interval = ep_bw->ep_interval - 3; 2499 2500 if (normalized_interval == 0) 2501 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2502 interval_bw = &bw_table->interval_bw[normalized_interval]; 2503 interval_bw->num_packets += ep_bw->num_packets; 2504 switch (udev->speed) { 2505 case USB_SPEED_LOW: 2506 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2507 break; 2508 case USB_SPEED_FULL: 2509 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2510 break; 2511 case USB_SPEED_HIGH: 2512 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2513 break; 2514 case USB_SPEED_SUPER: 2515 case USB_SPEED_SUPER_PLUS: 2516 case USB_SPEED_UNKNOWN: 2517 case USB_SPEED_WIRELESS: 2518 /* Should never happen because only LS/FS/HS endpoints will get 2519 * added to the endpoint list. 2520 */ 2521 return; 2522 } 2523 2524 if (tt_info) 2525 tt_info->active_eps += 1; 2526 /* Insert the endpoint into the list, largest max packet size first. */ 2527 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2528 bw_endpoint_list) { 2529 if (ep_bw->max_packet_size >= 2530 smaller_ep->bw_info.max_packet_size) { 2531 /* Add the new ep before the smaller endpoint */ 2532 list_add_tail(&virt_ep->bw_endpoint_list, 2533 &smaller_ep->bw_endpoint_list); 2534 return; 2535 } 2536 } 2537 /* Add the new endpoint at the end of the list. */ 2538 list_add_tail(&virt_ep->bw_endpoint_list, 2539 &interval_bw->endpoints); 2540 } 2541 2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2543 struct xhci_virt_device *virt_dev, 2544 int old_active_eps) 2545 { 2546 struct xhci_root_port_bw_info *rh_bw_info; 2547 if (!virt_dev->tt_info) 2548 return; 2549 2550 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2551 if (old_active_eps == 0 && 2552 virt_dev->tt_info->active_eps != 0) { 2553 rh_bw_info->num_active_tts += 1; 2554 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2555 } else if (old_active_eps != 0 && 2556 virt_dev->tt_info->active_eps == 0) { 2557 rh_bw_info->num_active_tts -= 1; 2558 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2559 } 2560 } 2561 2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2563 struct xhci_virt_device *virt_dev, 2564 struct xhci_container_ctx *in_ctx) 2565 { 2566 struct xhci_bw_info ep_bw_info[31]; 2567 int i; 2568 struct xhci_input_control_ctx *ctrl_ctx; 2569 int old_active_eps = 0; 2570 2571 if (virt_dev->tt_info) 2572 old_active_eps = virt_dev->tt_info->active_eps; 2573 2574 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2575 if (!ctrl_ctx) { 2576 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2577 __func__); 2578 return -ENOMEM; 2579 } 2580 2581 for (i = 0; i < 31; i++) { 2582 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2583 continue; 2584 2585 /* Make a copy of the BW info in case we need to revert this */ 2586 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2587 sizeof(ep_bw_info[i])); 2588 /* Drop the endpoint from the interval table if the endpoint is 2589 * being dropped or changed. 2590 */ 2591 if (EP_IS_DROPPED(ctrl_ctx, i)) 2592 xhci_drop_ep_from_interval_table(xhci, 2593 &virt_dev->eps[i].bw_info, 2594 virt_dev->bw_table, 2595 virt_dev->udev, 2596 &virt_dev->eps[i], 2597 virt_dev->tt_info); 2598 } 2599 /* Overwrite the information stored in the endpoints' bw_info */ 2600 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2601 for (i = 0; i < 31; i++) { 2602 /* Add any changed or added endpoints to the interval table */ 2603 if (EP_IS_ADDED(ctrl_ctx, i)) 2604 xhci_add_ep_to_interval_table(xhci, 2605 &virt_dev->eps[i].bw_info, 2606 virt_dev->bw_table, 2607 virt_dev->udev, 2608 &virt_dev->eps[i], 2609 virt_dev->tt_info); 2610 } 2611 2612 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2613 /* Ok, this fits in the bandwidth we have. 2614 * Update the number of active TTs. 2615 */ 2616 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2617 return 0; 2618 } 2619 2620 /* We don't have enough bandwidth for this, revert the stored info. */ 2621 for (i = 0; i < 31; i++) { 2622 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2623 continue; 2624 2625 /* Drop the new copies of any added or changed endpoints from 2626 * the interval table. 2627 */ 2628 if (EP_IS_ADDED(ctrl_ctx, i)) { 2629 xhci_drop_ep_from_interval_table(xhci, 2630 &virt_dev->eps[i].bw_info, 2631 virt_dev->bw_table, 2632 virt_dev->udev, 2633 &virt_dev->eps[i], 2634 virt_dev->tt_info); 2635 } 2636 /* Revert the endpoint back to its old information */ 2637 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2638 sizeof(ep_bw_info[i])); 2639 /* Add any changed or dropped endpoints back into the table */ 2640 if (EP_IS_DROPPED(ctrl_ctx, i)) 2641 xhci_add_ep_to_interval_table(xhci, 2642 &virt_dev->eps[i].bw_info, 2643 virt_dev->bw_table, 2644 virt_dev->udev, 2645 &virt_dev->eps[i], 2646 virt_dev->tt_info); 2647 } 2648 return -ENOMEM; 2649 } 2650 2651 2652 /* Issue a configure endpoint command or evaluate context command 2653 * and wait for it to finish. 2654 */ 2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2656 struct usb_device *udev, 2657 struct xhci_command *command, 2658 bool ctx_change, bool must_succeed) 2659 { 2660 int ret; 2661 unsigned long flags; 2662 struct xhci_input_control_ctx *ctrl_ctx; 2663 struct xhci_virt_device *virt_dev; 2664 struct xhci_slot_ctx *slot_ctx; 2665 2666 if (!command) 2667 return -EINVAL; 2668 2669 spin_lock_irqsave(&xhci->lock, flags); 2670 2671 if (xhci->xhc_state & XHCI_STATE_DYING) { 2672 spin_unlock_irqrestore(&xhci->lock, flags); 2673 return -ESHUTDOWN; 2674 } 2675 2676 virt_dev = xhci->devs[udev->slot_id]; 2677 2678 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2679 if (!ctrl_ctx) { 2680 spin_unlock_irqrestore(&xhci->lock, flags); 2681 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2682 __func__); 2683 return -ENOMEM; 2684 } 2685 2686 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2687 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2688 spin_unlock_irqrestore(&xhci->lock, flags); 2689 xhci_warn(xhci, "Not enough host resources, " 2690 "active endpoint contexts = %u\n", 2691 xhci->num_active_eps); 2692 return -ENOMEM; 2693 } 2694 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2695 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2696 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2697 xhci_free_host_resources(xhci, ctrl_ctx); 2698 spin_unlock_irqrestore(&xhci->lock, flags); 2699 xhci_warn(xhci, "Not enough bandwidth\n"); 2700 return -ENOMEM; 2701 } 2702 2703 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2704 trace_xhci_configure_endpoint(slot_ctx); 2705 2706 if (!ctx_change) 2707 ret = xhci_queue_configure_endpoint(xhci, command, 2708 command->in_ctx->dma, 2709 udev->slot_id, must_succeed); 2710 else 2711 ret = xhci_queue_evaluate_context(xhci, command, 2712 command->in_ctx->dma, 2713 udev->slot_id, must_succeed); 2714 if (ret < 0) { 2715 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2716 xhci_free_host_resources(xhci, ctrl_ctx); 2717 spin_unlock_irqrestore(&xhci->lock, flags); 2718 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2719 "FIXME allocate a new ring segment"); 2720 return -ENOMEM; 2721 } 2722 xhci_ring_cmd_db(xhci); 2723 spin_unlock_irqrestore(&xhci->lock, flags); 2724 2725 /* Wait for the configure endpoint command to complete */ 2726 wait_for_completion(command->completion); 2727 2728 if (!ctx_change) 2729 ret = xhci_configure_endpoint_result(xhci, udev, 2730 &command->status); 2731 else 2732 ret = xhci_evaluate_context_result(xhci, udev, 2733 &command->status); 2734 2735 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2736 spin_lock_irqsave(&xhci->lock, flags); 2737 /* If the command failed, remove the reserved resources. 2738 * Otherwise, clean up the estimate to include dropped eps. 2739 */ 2740 if (ret) 2741 xhci_free_host_resources(xhci, ctrl_ctx); 2742 else 2743 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2744 spin_unlock_irqrestore(&xhci->lock, flags); 2745 } 2746 return ret; 2747 } 2748 2749 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2750 struct xhci_virt_device *vdev, int i) 2751 { 2752 struct xhci_virt_ep *ep = &vdev->eps[i]; 2753 2754 if (ep->ep_state & EP_HAS_STREAMS) { 2755 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2756 xhci_get_endpoint_address(i)); 2757 xhci_free_stream_info(xhci, ep->stream_info); 2758 ep->stream_info = NULL; 2759 ep->ep_state &= ~EP_HAS_STREAMS; 2760 } 2761 } 2762 2763 /* Called after one or more calls to xhci_add_endpoint() or 2764 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2765 * to call xhci_reset_bandwidth(). 2766 * 2767 * Since we are in the middle of changing either configuration or 2768 * installing a new alt setting, the USB core won't allow URBs to be 2769 * enqueued for any endpoint on the old config or interface. Nothing 2770 * else should be touching the xhci->devs[slot_id] structure, so we 2771 * don't need to take the xhci->lock for manipulating that. 2772 */ 2773 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2774 { 2775 int i; 2776 int ret = 0; 2777 struct xhci_hcd *xhci; 2778 struct xhci_virt_device *virt_dev; 2779 struct xhci_input_control_ctx *ctrl_ctx; 2780 struct xhci_slot_ctx *slot_ctx; 2781 struct xhci_command *command; 2782 2783 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2784 if (ret <= 0) 2785 return ret; 2786 xhci = hcd_to_xhci(hcd); 2787 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2788 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2789 return -ENODEV; 2790 2791 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2792 virt_dev = xhci->devs[udev->slot_id]; 2793 2794 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2795 if (!command) 2796 return -ENOMEM; 2797 2798 command->in_ctx = virt_dev->in_ctx; 2799 2800 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2801 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2802 if (!ctrl_ctx) { 2803 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2804 __func__); 2805 ret = -ENOMEM; 2806 goto command_cleanup; 2807 } 2808 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2809 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2810 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2811 2812 /* Don't issue the command if there's no endpoints to update. */ 2813 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2814 ctrl_ctx->drop_flags == 0) { 2815 ret = 0; 2816 goto command_cleanup; 2817 } 2818 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2819 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2820 for (i = 31; i >= 1; i--) { 2821 __le32 le32 = cpu_to_le32(BIT(i)); 2822 2823 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2824 || (ctrl_ctx->add_flags & le32) || i == 1) { 2825 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2826 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2827 break; 2828 } 2829 } 2830 2831 ret = xhci_configure_endpoint(xhci, udev, command, 2832 false, false); 2833 if (ret) 2834 /* Callee should call reset_bandwidth() */ 2835 goto command_cleanup; 2836 2837 /* Free any rings that were dropped, but not changed. */ 2838 for (i = 1; i < 31; i++) { 2839 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2840 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2841 xhci_free_endpoint_ring(xhci, virt_dev, i); 2842 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2843 } 2844 } 2845 xhci_zero_in_ctx(xhci, virt_dev); 2846 /* 2847 * Install any rings for completely new endpoints or changed endpoints, 2848 * and free any old rings from changed endpoints. 2849 */ 2850 for (i = 1; i < 31; i++) { 2851 if (!virt_dev->eps[i].new_ring) 2852 continue; 2853 /* Only free the old ring if it exists. 2854 * It may not if this is the first add of an endpoint. 2855 */ 2856 if (virt_dev->eps[i].ring) { 2857 xhci_free_endpoint_ring(xhci, virt_dev, i); 2858 } 2859 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2860 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2861 virt_dev->eps[i].new_ring = NULL; 2862 } 2863 command_cleanup: 2864 kfree(command->completion); 2865 kfree(command); 2866 2867 return ret; 2868 } 2869 2870 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2871 { 2872 struct xhci_hcd *xhci; 2873 struct xhci_virt_device *virt_dev; 2874 int i, ret; 2875 2876 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2877 if (ret <= 0) 2878 return; 2879 xhci = hcd_to_xhci(hcd); 2880 2881 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2882 virt_dev = xhci->devs[udev->slot_id]; 2883 /* Free any rings allocated for added endpoints */ 2884 for (i = 0; i < 31; i++) { 2885 if (virt_dev->eps[i].new_ring) { 2886 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2887 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2888 virt_dev->eps[i].new_ring = NULL; 2889 } 2890 } 2891 xhci_zero_in_ctx(xhci, virt_dev); 2892 } 2893 2894 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2895 struct xhci_container_ctx *in_ctx, 2896 struct xhci_container_ctx *out_ctx, 2897 struct xhci_input_control_ctx *ctrl_ctx, 2898 u32 add_flags, u32 drop_flags) 2899 { 2900 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2901 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2902 xhci_slot_copy(xhci, in_ctx, out_ctx); 2903 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2904 } 2905 2906 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2907 unsigned int slot_id, unsigned int ep_index, 2908 struct xhci_dequeue_state *deq_state) 2909 { 2910 struct xhci_input_control_ctx *ctrl_ctx; 2911 struct xhci_container_ctx *in_ctx; 2912 struct xhci_ep_ctx *ep_ctx; 2913 u32 added_ctxs; 2914 dma_addr_t addr; 2915 2916 in_ctx = xhci->devs[slot_id]->in_ctx; 2917 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2918 if (!ctrl_ctx) { 2919 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2920 __func__); 2921 return; 2922 } 2923 2924 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2925 xhci->devs[slot_id]->out_ctx, ep_index); 2926 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2927 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2928 deq_state->new_deq_ptr); 2929 if (addr == 0) { 2930 xhci_warn(xhci, "WARN Cannot submit config ep after " 2931 "reset ep command\n"); 2932 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2933 deq_state->new_deq_seg, 2934 deq_state->new_deq_ptr); 2935 return; 2936 } 2937 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2938 2939 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2940 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2941 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2942 added_ctxs, added_ctxs); 2943 } 2944 2945 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2946 unsigned int stream_id, struct xhci_td *td) 2947 { 2948 struct xhci_dequeue_state deq_state; 2949 struct usb_device *udev = td->urb->dev; 2950 2951 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2952 "Cleaning up stalled endpoint ring"); 2953 /* We need to move the HW's dequeue pointer past this TD, 2954 * or it will attempt to resend it on the next doorbell ring. 2955 */ 2956 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2957 ep_index, stream_id, td, &deq_state); 2958 2959 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2960 return; 2961 2962 /* HW with the reset endpoint quirk will use the saved dequeue state to 2963 * issue a configure endpoint command later. 2964 */ 2965 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2966 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2967 "Queueing new dequeue state"); 2968 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2969 ep_index, &deq_state); 2970 } else { 2971 /* Better hope no one uses the input context between now and the 2972 * reset endpoint completion! 2973 * XXX: No idea how this hardware will react when stream rings 2974 * are enabled. 2975 */ 2976 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2977 "Setting up input context for " 2978 "configure endpoint command"); 2979 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2980 ep_index, &deq_state); 2981 } 2982 } 2983 2984 /* 2985 * Called after usb core issues a clear halt control message. 2986 * The host side of the halt should already be cleared by a reset endpoint 2987 * command issued when the STALL event was received. 2988 * 2989 * The reset endpoint command may only be issued to endpoints in the halted 2990 * state. For software that wishes to reset the data toggle or sequence number 2991 * of an endpoint that isn't in the halted state this function will issue a 2992 * configure endpoint command with the Drop and Add bits set for the target 2993 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 2994 */ 2995 2996 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2997 struct usb_host_endpoint *host_ep) 2998 { 2999 struct xhci_hcd *xhci; 3000 struct usb_device *udev; 3001 struct xhci_virt_device *vdev; 3002 struct xhci_virt_ep *ep; 3003 struct xhci_input_control_ctx *ctrl_ctx; 3004 struct xhci_command *stop_cmd, *cfg_cmd; 3005 unsigned int ep_index; 3006 unsigned long flags; 3007 u32 ep_flag; 3008 3009 xhci = hcd_to_xhci(hcd); 3010 if (!host_ep->hcpriv) 3011 return; 3012 udev = (struct usb_device *) host_ep->hcpriv; 3013 vdev = xhci->devs[udev->slot_id]; 3014 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3015 ep = &vdev->eps[ep_index]; 3016 3017 /* Bail out if toggle is already being cleared by a endpoint reset */ 3018 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3019 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3020 return; 3021 } 3022 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3023 if (usb_endpoint_xfer_control(&host_ep->desc) || 3024 usb_endpoint_xfer_isoc(&host_ep->desc)) 3025 return; 3026 3027 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3028 3029 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3030 return; 3031 3032 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3033 if (!stop_cmd) 3034 return; 3035 3036 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3037 if (!cfg_cmd) 3038 goto cleanup; 3039 3040 spin_lock_irqsave(&xhci->lock, flags); 3041 3042 /* block queuing new trbs and ringing ep doorbell */ 3043 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3044 3045 /* 3046 * Make sure endpoint ring is empty before resetting the toggle/seq. 3047 * Driver is required to synchronously cancel all transfer request. 3048 * Stop the endpoint to force xHC to update the output context 3049 */ 3050 3051 if (!list_empty(&ep->ring->td_list)) { 3052 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3053 spin_unlock_irqrestore(&xhci->lock, flags); 3054 xhci_free_command(xhci, cfg_cmd); 3055 goto cleanup; 3056 } 3057 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3058 xhci_ring_cmd_db(xhci); 3059 spin_unlock_irqrestore(&xhci->lock, flags); 3060 3061 wait_for_completion(stop_cmd->completion); 3062 3063 spin_lock_irqsave(&xhci->lock, flags); 3064 3065 /* config ep command clears toggle if add and drop ep flags are set */ 3066 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3067 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3068 ctrl_ctx, ep_flag, ep_flag); 3069 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3070 3071 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3072 udev->slot_id, false); 3073 xhci_ring_cmd_db(xhci); 3074 spin_unlock_irqrestore(&xhci->lock, flags); 3075 3076 wait_for_completion(cfg_cmd->completion); 3077 3078 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3079 xhci_free_command(xhci, cfg_cmd); 3080 cleanup: 3081 xhci_free_command(xhci, stop_cmd); 3082 } 3083 3084 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3085 struct usb_device *udev, struct usb_host_endpoint *ep, 3086 unsigned int slot_id) 3087 { 3088 int ret; 3089 unsigned int ep_index; 3090 unsigned int ep_state; 3091 3092 if (!ep) 3093 return -EINVAL; 3094 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3095 if (ret <= 0) 3096 return -EINVAL; 3097 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3098 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3099 " descriptor for ep 0x%x does not support streams\n", 3100 ep->desc.bEndpointAddress); 3101 return -EINVAL; 3102 } 3103 3104 ep_index = xhci_get_endpoint_index(&ep->desc); 3105 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3106 if (ep_state & EP_HAS_STREAMS || 3107 ep_state & EP_GETTING_STREAMS) { 3108 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3109 "already has streams set up.\n", 3110 ep->desc.bEndpointAddress); 3111 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3112 "dynamic stream context array reallocation.\n"); 3113 return -EINVAL; 3114 } 3115 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3116 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3117 "endpoint 0x%x; URBs are pending.\n", 3118 ep->desc.bEndpointAddress); 3119 return -EINVAL; 3120 } 3121 return 0; 3122 } 3123 3124 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3125 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3126 { 3127 unsigned int max_streams; 3128 3129 /* The stream context array size must be a power of two */ 3130 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3131 /* 3132 * Find out how many primary stream array entries the host controller 3133 * supports. Later we may use secondary stream arrays (similar to 2nd 3134 * level page entries), but that's an optional feature for xHCI host 3135 * controllers. xHCs must support at least 4 stream IDs. 3136 */ 3137 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3138 if (*num_stream_ctxs > max_streams) { 3139 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3140 max_streams); 3141 *num_stream_ctxs = max_streams; 3142 *num_streams = max_streams; 3143 } 3144 } 3145 3146 /* Returns an error code if one of the endpoint already has streams. 3147 * This does not change any data structures, it only checks and gathers 3148 * information. 3149 */ 3150 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3151 struct usb_device *udev, 3152 struct usb_host_endpoint **eps, unsigned int num_eps, 3153 unsigned int *num_streams, u32 *changed_ep_bitmask) 3154 { 3155 unsigned int max_streams; 3156 unsigned int endpoint_flag; 3157 int i; 3158 int ret; 3159 3160 for (i = 0; i < num_eps; i++) { 3161 ret = xhci_check_streams_endpoint(xhci, udev, 3162 eps[i], udev->slot_id); 3163 if (ret < 0) 3164 return ret; 3165 3166 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3167 if (max_streams < (*num_streams - 1)) { 3168 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3169 eps[i]->desc.bEndpointAddress, 3170 max_streams); 3171 *num_streams = max_streams+1; 3172 } 3173 3174 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3175 if (*changed_ep_bitmask & endpoint_flag) 3176 return -EINVAL; 3177 *changed_ep_bitmask |= endpoint_flag; 3178 } 3179 return 0; 3180 } 3181 3182 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3183 struct usb_device *udev, 3184 struct usb_host_endpoint **eps, unsigned int num_eps) 3185 { 3186 u32 changed_ep_bitmask = 0; 3187 unsigned int slot_id; 3188 unsigned int ep_index; 3189 unsigned int ep_state; 3190 int i; 3191 3192 slot_id = udev->slot_id; 3193 if (!xhci->devs[slot_id]) 3194 return 0; 3195 3196 for (i = 0; i < num_eps; i++) { 3197 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3198 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3199 /* Are streams already being freed for the endpoint? */ 3200 if (ep_state & EP_GETTING_NO_STREAMS) { 3201 xhci_warn(xhci, "WARN Can't disable streams for " 3202 "endpoint 0x%x, " 3203 "streams are being disabled already\n", 3204 eps[i]->desc.bEndpointAddress); 3205 return 0; 3206 } 3207 /* Are there actually any streams to free? */ 3208 if (!(ep_state & EP_HAS_STREAMS) && 3209 !(ep_state & EP_GETTING_STREAMS)) { 3210 xhci_warn(xhci, "WARN Can't disable streams for " 3211 "endpoint 0x%x, " 3212 "streams are already disabled!\n", 3213 eps[i]->desc.bEndpointAddress); 3214 xhci_warn(xhci, "WARN xhci_free_streams() called " 3215 "with non-streams endpoint\n"); 3216 return 0; 3217 } 3218 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3219 } 3220 return changed_ep_bitmask; 3221 } 3222 3223 /* 3224 * The USB device drivers use this function (through the HCD interface in USB 3225 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3226 * coordinate mass storage command queueing across multiple endpoints (basically 3227 * a stream ID == a task ID). 3228 * 3229 * Setting up streams involves allocating the same size stream context array 3230 * for each endpoint and issuing a configure endpoint command for all endpoints. 3231 * 3232 * Don't allow the call to succeed if one endpoint only supports one stream 3233 * (which means it doesn't support streams at all). 3234 * 3235 * Drivers may get less stream IDs than they asked for, if the host controller 3236 * hardware or endpoints claim they can't support the number of requested 3237 * stream IDs. 3238 */ 3239 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3240 struct usb_host_endpoint **eps, unsigned int num_eps, 3241 unsigned int num_streams, gfp_t mem_flags) 3242 { 3243 int i, ret; 3244 struct xhci_hcd *xhci; 3245 struct xhci_virt_device *vdev; 3246 struct xhci_command *config_cmd; 3247 struct xhci_input_control_ctx *ctrl_ctx; 3248 unsigned int ep_index; 3249 unsigned int num_stream_ctxs; 3250 unsigned int max_packet; 3251 unsigned long flags; 3252 u32 changed_ep_bitmask = 0; 3253 3254 if (!eps) 3255 return -EINVAL; 3256 3257 /* Add one to the number of streams requested to account for 3258 * stream 0 that is reserved for xHCI usage. 3259 */ 3260 num_streams += 1; 3261 xhci = hcd_to_xhci(hcd); 3262 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3263 num_streams); 3264 3265 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3266 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3267 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3268 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3269 return -ENOSYS; 3270 } 3271 3272 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3273 if (!config_cmd) 3274 return -ENOMEM; 3275 3276 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3277 if (!ctrl_ctx) { 3278 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3279 __func__); 3280 xhci_free_command(xhci, config_cmd); 3281 return -ENOMEM; 3282 } 3283 3284 /* Check to make sure all endpoints are not already configured for 3285 * streams. While we're at it, find the maximum number of streams that 3286 * all the endpoints will support and check for duplicate endpoints. 3287 */ 3288 spin_lock_irqsave(&xhci->lock, flags); 3289 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3290 num_eps, &num_streams, &changed_ep_bitmask); 3291 if (ret < 0) { 3292 xhci_free_command(xhci, config_cmd); 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 return ret; 3295 } 3296 if (num_streams <= 1) { 3297 xhci_warn(xhci, "WARN: endpoints can't handle " 3298 "more than one stream.\n"); 3299 xhci_free_command(xhci, config_cmd); 3300 spin_unlock_irqrestore(&xhci->lock, flags); 3301 return -EINVAL; 3302 } 3303 vdev = xhci->devs[udev->slot_id]; 3304 /* Mark each endpoint as being in transition, so 3305 * xhci_urb_enqueue() will reject all URBs. 3306 */ 3307 for (i = 0; i < num_eps; i++) { 3308 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3309 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3310 } 3311 spin_unlock_irqrestore(&xhci->lock, flags); 3312 3313 /* Setup internal data structures and allocate HW data structures for 3314 * streams (but don't install the HW structures in the input context 3315 * until we're sure all memory allocation succeeded). 3316 */ 3317 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3318 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3319 num_stream_ctxs, num_streams); 3320 3321 for (i = 0; i < num_eps; i++) { 3322 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3323 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3324 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3325 num_stream_ctxs, 3326 num_streams, 3327 max_packet, mem_flags); 3328 if (!vdev->eps[ep_index].stream_info) 3329 goto cleanup; 3330 /* Set maxPstreams in endpoint context and update deq ptr to 3331 * point to stream context array. FIXME 3332 */ 3333 } 3334 3335 /* Set up the input context for a configure endpoint command. */ 3336 for (i = 0; i < num_eps; i++) { 3337 struct xhci_ep_ctx *ep_ctx; 3338 3339 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3340 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3341 3342 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3343 vdev->out_ctx, ep_index); 3344 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3345 vdev->eps[ep_index].stream_info); 3346 } 3347 /* Tell the HW to drop its old copy of the endpoint context info 3348 * and add the updated copy from the input context. 3349 */ 3350 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3351 vdev->out_ctx, ctrl_ctx, 3352 changed_ep_bitmask, changed_ep_bitmask); 3353 3354 /* Issue and wait for the configure endpoint command */ 3355 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3356 false, false); 3357 3358 /* xHC rejected the configure endpoint command for some reason, so we 3359 * leave the old ring intact and free our internal streams data 3360 * structure. 3361 */ 3362 if (ret < 0) 3363 goto cleanup; 3364 3365 spin_lock_irqsave(&xhci->lock, flags); 3366 for (i = 0; i < num_eps; i++) { 3367 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3368 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3369 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3370 udev->slot_id, ep_index); 3371 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3372 } 3373 xhci_free_command(xhci, config_cmd); 3374 spin_unlock_irqrestore(&xhci->lock, flags); 3375 3376 /* Subtract 1 for stream 0, which drivers can't use */ 3377 return num_streams - 1; 3378 3379 cleanup: 3380 /* If it didn't work, free the streams! */ 3381 for (i = 0; i < num_eps; i++) { 3382 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3383 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3384 vdev->eps[ep_index].stream_info = NULL; 3385 /* FIXME Unset maxPstreams in endpoint context and 3386 * update deq ptr to point to normal string ring. 3387 */ 3388 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3389 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3390 xhci_endpoint_zero(xhci, vdev, eps[i]); 3391 } 3392 xhci_free_command(xhci, config_cmd); 3393 return -ENOMEM; 3394 } 3395 3396 /* Transition the endpoint from using streams to being a "normal" endpoint 3397 * without streams. 3398 * 3399 * Modify the endpoint context state, submit a configure endpoint command, 3400 * and free all endpoint rings for streams if that completes successfully. 3401 */ 3402 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3403 struct usb_host_endpoint **eps, unsigned int num_eps, 3404 gfp_t mem_flags) 3405 { 3406 int i, ret; 3407 struct xhci_hcd *xhci; 3408 struct xhci_virt_device *vdev; 3409 struct xhci_command *command; 3410 struct xhci_input_control_ctx *ctrl_ctx; 3411 unsigned int ep_index; 3412 unsigned long flags; 3413 u32 changed_ep_bitmask; 3414 3415 xhci = hcd_to_xhci(hcd); 3416 vdev = xhci->devs[udev->slot_id]; 3417 3418 /* Set up a configure endpoint command to remove the streams rings */ 3419 spin_lock_irqsave(&xhci->lock, flags); 3420 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3421 udev, eps, num_eps); 3422 if (changed_ep_bitmask == 0) { 3423 spin_unlock_irqrestore(&xhci->lock, flags); 3424 return -EINVAL; 3425 } 3426 3427 /* Use the xhci_command structure from the first endpoint. We may have 3428 * allocated too many, but the driver may call xhci_free_streams() for 3429 * each endpoint it grouped into one call to xhci_alloc_streams(). 3430 */ 3431 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3432 command = vdev->eps[ep_index].stream_info->free_streams_command; 3433 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3434 if (!ctrl_ctx) { 3435 spin_unlock_irqrestore(&xhci->lock, flags); 3436 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3437 __func__); 3438 return -EINVAL; 3439 } 3440 3441 for (i = 0; i < num_eps; i++) { 3442 struct xhci_ep_ctx *ep_ctx; 3443 3444 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3445 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3446 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3447 EP_GETTING_NO_STREAMS; 3448 3449 xhci_endpoint_copy(xhci, command->in_ctx, 3450 vdev->out_ctx, ep_index); 3451 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3452 &vdev->eps[ep_index]); 3453 } 3454 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3455 vdev->out_ctx, ctrl_ctx, 3456 changed_ep_bitmask, changed_ep_bitmask); 3457 spin_unlock_irqrestore(&xhci->lock, flags); 3458 3459 /* Issue and wait for the configure endpoint command, 3460 * which must succeed. 3461 */ 3462 ret = xhci_configure_endpoint(xhci, udev, command, 3463 false, true); 3464 3465 /* xHC rejected the configure endpoint command for some reason, so we 3466 * leave the streams rings intact. 3467 */ 3468 if (ret < 0) 3469 return ret; 3470 3471 spin_lock_irqsave(&xhci->lock, flags); 3472 for (i = 0; i < num_eps; i++) { 3473 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3474 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3475 vdev->eps[ep_index].stream_info = NULL; 3476 /* FIXME Unset maxPstreams in endpoint context and 3477 * update deq ptr to point to normal string ring. 3478 */ 3479 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3480 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3481 } 3482 spin_unlock_irqrestore(&xhci->lock, flags); 3483 3484 return 0; 3485 } 3486 3487 /* 3488 * Deletes endpoint resources for endpoints that were active before a Reset 3489 * Device command, or a Disable Slot command. The Reset Device command leaves 3490 * the control endpoint intact, whereas the Disable Slot command deletes it. 3491 * 3492 * Must be called with xhci->lock held. 3493 */ 3494 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3495 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3496 { 3497 int i; 3498 unsigned int num_dropped_eps = 0; 3499 unsigned int drop_flags = 0; 3500 3501 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3502 if (virt_dev->eps[i].ring) { 3503 drop_flags |= 1 << i; 3504 num_dropped_eps++; 3505 } 3506 } 3507 xhci->num_active_eps -= num_dropped_eps; 3508 if (num_dropped_eps) 3509 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3510 "Dropped %u ep ctxs, flags = 0x%x, " 3511 "%u now active.", 3512 num_dropped_eps, drop_flags, 3513 xhci->num_active_eps); 3514 } 3515 3516 /* 3517 * This submits a Reset Device Command, which will set the device state to 0, 3518 * set the device address to 0, and disable all the endpoints except the default 3519 * control endpoint. The USB core should come back and call 3520 * xhci_address_device(), and then re-set up the configuration. If this is 3521 * called because of a usb_reset_and_verify_device(), then the old alternate 3522 * settings will be re-installed through the normal bandwidth allocation 3523 * functions. 3524 * 3525 * Wait for the Reset Device command to finish. Remove all structures 3526 * associated with the endpoints that were disabled. Clear the input device 3527 * structure? Reset the control endpoint 0 max packet size? 3528 * 3529 * If the virt_dev to be reset does not exist or does not match the udev, 3530 * it means the device is lost, possibly due to the xHC restore error and 3531 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3532 * re-allocate the device. 3533 */ 3534 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3535 struct usb_device *udev) 3536 { 3537 int ret, i; 3538 unsigned long flags; 3539 struct xhci_hcd *xhci; 3540 unsigned int slot_id; 3541 struct xhci_virt_device *virt_dev; 3542 struct xhci_command *reset_device_cmd; 3543 struct xhci_slot_ctx *slot_ctx; 3544 int old_active_eps = 0; 3545 3546 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3547 if (ret <= 0) 3548 return ret; 3549 xhci = hcd_to_xhci(hcd); 3550 slot_id = udev->slot_id; 3551 virt_dev = xhci->devs[slot_id]; 3552 if (!virt_dev) { 3553 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3554 "not exist. Re-allocate the device\n", slot_id); 3555 ret = xhci_alloc_dev(hcd, udev); 3556 if (ret == 1) 3557 return 0; 3558 else 3559 return -EINVAL; 3560 } 3561 3562 if (virt_dev->tt_info) 3563 old_active_eps = virt_dev->tt_info->active_eps; 3564 3565 if (virt_dev->udev != udev) { 3566 /* If the virt_dev and the udev does not match, this virt_dev 3567 * may belong to another udev. 3568 * Re-allocate the device. 3569 */ 3570 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3571 "not match the udev. Re-allocate the device\n", 3572 slot_id); 3573 ret = xhci_alloc_dev(hcd, udev); 3574 if (ret == 1) 3575 return 0; 3576 else 3577 return -EINVAL; 3578 } 3579 3580 /* If device is not setup, there is no point in resetting it */ 3581 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3582 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3583 SLOT_STATE_DISABLED) 3584 return 0; 3585 3586 trace_xhci_discover_or_reset_device(slot_ctx); 3587 3588 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3589 /* Allocate the command structure that holds the struct completion. 3590 * Assume we're in process context, since the normal device reset 3591 * process has to wait for the device anyway. Storage devices are 3592 * reset as part of error handling, so use GFP_NOIO instead of 3593 * GFP_KERNEL. 3594 */ 3595 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3596 if (!reset_device_cmd) { 3597 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3598 return -ENOMEM; 3599 } 3600 3601 /* Attempt to submit the Reset Device command to the command ring */ 3602 spin_lock_irqsave(&xhci->lock, flags); 3603 3604 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3605 if (ret) { 3606 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3607 spin_unlock_irqrestore(&xhci->lock, flags); 3608 goto command_cleanup; 3609 } 3610 xhci_ring_cmd_db(xhci); 3611 spin_unlock_irqrestore(&xhci->lock, flags); 3612 3613 /* Wait for the Reset Device command to finish */ 3614 wait_for_completion(reset_device_cmd->completion); 3615 3616 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3617 * unless we tried to reset a slot ID that wasn't enabled, 3618 * or the device wasn't in the addressed or configured state. 3619 */ 3620 ret = reset_device_cmd->status; 3621 switch (ret) { 3622 case COMP_COMMAND_ABORTED: 3623 case COMP_COMMAND_RING_STOPPED: 3624 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3625 ret = -ETIME; 3626 goto command_cleanup; 3627 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3628 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3629 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3630 slot_id, 3631 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3632 xhci_dbg(xhci, "Not freeing device rings.\n"); 3633 /* Don't treat this as an error. May change my mind later. */ 3634 ret = 0; 3635 goto command_cleanup; 3636 case COMP_SUCCESS: 3637 xhci_dbg(xhci, "Successful reset device command.\n"); 3638 break; 3639 default: 3640 if (xhci_is_vendor_info_code(xhci, ret)) 3641 break; 3642 xhci_warn(xhci, "Unknown completion code %u for " 3643 "reset device command.\n", ret); 3644 ret = -EINVAL; 3645 goto command_cleanup; 3646 } 3647 3648 /* Free up host controller endpoint resources */ 3649 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3650 spin_lock_irqsave(&xhci->lock, flags); 3651 /* Don't delete the default control endpoint resources */ 3652 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3653 spin_unlock_irqrestore(&xhci->lock, flags); 3654 } 3655 3656 /* Everything but endpoint 0 is disabled, so free the rings. */ 3657 for (i = 1; i < 31; i++) { 3658 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3659 3660 if (ep->ep_state & EP_HAS_STREAMS) { 3661 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3662 xhci_get_endpoint_address(i)); 3663 xhci_free_stream_info(xhci, ep->stream_info); 3664 ep->stream_info = NULL; 3665 ep->ep_state &= ~EP_HAS_STREAMS; 3666 } 3667 3668 if (ep->ring) { 3669 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3670 xhci_free_endpoint_ring(xhci, virt_dev, i); 3671 } 3672 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3673 xhci_drop_ep_from_interval_table(xhci, 3674 &virt_dev->eps[i].bw_info, 3675 virt_dev->bw_table, 3676 udev, 3677 &virt_dev->eps[i], 3678 virt_dev->tt_info); 3679 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3680 } 3681 /* If necessary, update the number of active TTs on this root port */ 3682 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3683 ret = 0; 3684 3685 command_cleanup: 3686 xhci_free_command(xhci, reset_device_cmd); 3687 return ret; 3688 } 3689 3690 /* 3691 * At this point, the struct usb_device is about to go away, the device has 3692 * disconnected, and all traffic has been stopped and the endpoints have been 3693 * disabled. Free any HC data structures associated with that device. 3694 */ 3695 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3696 { 3697 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3698 struct xhci_virt_device *virt_dev; 3699 struct xhci_slot_ctx *slot_ctx; 3700 int i, ret; 3701 3702 #ifndef CONFIG_USB_DEFAULT_PERSIST 3703 /* 3704 * We called pm_runtime_get_noresume when the device was attached. 3705 * Decrement the counter here to allow controller to runtime suspend 3706 * if no devices remain. 3707 */ 3708 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3709 pm_runtime_put_noidle(hcd->self.controller); 3710 #endif 3711 3712 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3713 /* If the host is halted due to driver unload, we still need to free the 3714 * device. 3715 */ 3716 if (ret <= 0 && ret != -ENODEV) 3717 return; 3718 3719 virt_dev = xhci->devs[udev->slot_id]; 3720 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3721 trace_xhci_free_dev(slot_ctx); 3722 3723 /* Stop any wayward timer functions (which may grab the lock) */ 3724 for (i = 0; i < 31; i++) { 3725 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3726 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3727 } 3728 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3729 virt_dev->udev = NULL; 3730 ret = xhci_disable_slot(xhci, udev->slot_id); 3731 if (ret) 3732 xhci_free_virt_device(xhci, udev->slot_id); 3733 } 3734 3735 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3736 { 3737 struct xhci_command *command; 3738 unsigned long flags; 3739 u32 state; 3740 int ret = 0; 3741 3742 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3743 if (!command) 3744 return -ENOMEM; 3745 3746 spin_lock_irqsave(&xhci->lock, flags); 3747 /* Don't disable the slot if the host controller is dead. */ 3748 state = readl(&xhci->op_regs->status); 3749 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3750 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3751 spin_unlock_irqrestore(&xhci->lock, flags); 3752 kfree(command); 3753 return -ENODEV; 3754 } 3755 3756 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3757 slot_id); 3758 if (ret) { 3759 spin_unlock_irqrestore(&xhci->lock, flags); 3760 kfree(command); 3761 return ret; 3762 } 3763 xhci_ring_cmd_db(xhci); 3764 spin_unlock_irqrestore(&xhci->lock, flags); 3765 return ret; 3766 } 3767 3768 /* 3769 * Checks if we have enough host controller resources for the default control 3770 * endpoint. 3771 * 3772 * Must be called with xhci->lock held. 3773 */ 3774 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3775 { 3776 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3777 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3778 "Not enough ep ctxs: " 3779 "%u active, need to add 1, limit is %u.", 3780 xhci->num_active_eps, xhci->limit_active_eps); 3781 return -ENOMEM; 3782 } 3783 xhci->num_active_eps += 1; 3784 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3785 "Adding 1 ep ctx, %u now active.", 3786 xhci->num_active_eps); 3787 return 0; 3788 } 3789 3790 3791 /* 3792 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3793 * timed out, or allocating memory failed. Returns 1 on success. 3794 */ 3795 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3796 { 3797 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3798 struct xhci_virt_device *vdev; 3799 struct xhci_slot_ctx *slot_ctx; 3800 unsigned long flags; 3801 int ret, slot_id; 3802 struct xhci_command *command; 3803 3804 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3805 if (!command) 3806 return 0; 3807 3808 spin_lock_irqsave(&xhci->lock, flags); 3809 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3810 if (ret) { 3811 spin_unlock_irqrestore(&xhci->lock, flags); 3812 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3813 xhci_free_command(xhci, command); 3814 return 0; 3815 } 3816 xhci_ring_cmd_db(xhci); 3817 spin_unlock_irqrestore(&xhci->lock, flags); 3818 3819 wait_for_completion(command->completion); 3820 slot_id = command->slot_id; 3821 3822 if (!slot_id || command->status != COMP_SUCCESS) { 3823 xhci_err(xhci, "Error while assigning device slot ID\n"); 3824 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3825 HCS_MAX_SLOTS( 3826 readl(&xhci->cap_regs->hcs_params1))); 3827 xhci_free_command(xhci, command); 3828 return 0; 3829 } 3830 3831 xhci_free_command(xhci, command); 3832 3833 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3834 spin_lock_irqsave(&xhci->lock, flags); 3835 ret = xhci_reserve_host_control_ep_resources(xhci); 3836 if (ret) { 3837 spin_unlock_irqrestore(&xhci->lock, flags); 3838 xhci_warn(xhci, "Not enough host resources, " 3839 "active endpoint contexts = %u\n", 3840 xhci->num_active_eps); 3841 goto disable_slot; 3842 } 3843 spin_unlock_irqrestore(&xhci->lock, flags); 3844 } 3845 /* Use GFP_NOIO, since this function can be called from 3846 * xhci_discover_or_reset_device(), which may be called as part of 3847 * mass storage driver error handling. 3848 */ 3849 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3850 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3851 goto disable_slot; 3852 } 3853 vdev = xhci->devs[slot_id]; 3854 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3855 trace_xhci_alloc_dev(slot_ctx); 3856 3857 udev->slot_id = slot_id; 3858 3859 xhci_debugfs_create_slot(xhci, slot_id); 3860 3861 #ifndef CONFIG_USB_DEFAULT_PERSIST 3862 /* 3863 * If resetting upon resume, we can't put the controller into runtime 3864 * suspend if there is a device attached. 3865 */ 3866 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3867 pm_runtime_get_noresume(hcd->self.controller); 3868 #endif 3869 3870 /* Is this a LS or FS device under a HS hub? */ 3871 /* Hub or peripherial? */ 3872 return 1; 3873 3874 disable_slot: 3875 ret = xhci_disable_slot(xhci, udev->slot_id); 3876 if (ret) 3877 xhci_free_virt_device(xhci, udev->slot_id); 3878 3879 return 0; 3880 } 3881 3882 /* 3883 * Issue an Address Device command and optionally send a corresponding 3884 * SetAddress request to the device. 3885 */ 3886 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3887 enum xhci_setup_dev setup) 3888 { 3889 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3890 unsigned long flags; 3891 struct xhci_virt_device *virt_dev; 3892 int ret = 0; 3893 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3894 struct xhci_slot_ctx *slot_ctx; 3895 struct xhci_input_control_ctx *ctrl_ctx; 3896 u64 temp_64; 3897 struct xhci_command *command = NULL; 3898 3899 mutex_lock(&xhci->mutex); 3900 3901 if (xhci->xhc_state) { /* dying, removing or halted */ 3902 ret = -ESHUTDOWN; 3903 goto out; 3904 } 3905 3906 if (!udev->slot_id) { 3907 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3908 "Bad Slot ID %d", udev->slot_id); 3909 ret = -EINVAL; 3910 goto out; 3911 } 3912 3913 virt_dev = xhci->devs[udev->slot_id]; 3914 3915 if (WARN_ON(!virt_dev)) { 3916 /* 3917 * In plug/unplug torture test with an NEC controller, 3918 * a zero-dereference was observed once due to virt_dev = 0. 3919 * Print useful debug rather than crash if it is observed again! 3920 */ 3921 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3922 udev->slot_id); 3923 ret = -EINVAL; 3924 goto out; 3925 } 3926 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3927 trace_xhci_setup_device_slot(slot_ctx); 3928 3929 if (setup == SETUP_CONTEXT_ONLY) { 3930 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3931 SLOT_STATE_DEFAULT) { 3932 xhci_dbg(xhci, "Slot already in default state\n"); 3933 goto out; 3934 } 3935 } 3936 3937 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3938 if (!command) { 3939 ret = -ENOMEM; 3940 goto out; 3941 } 3942 3943 command->in_ctx = virt_dev->in_ctx; 3944 3945 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3946 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3947 if (!ctrl_ctx) { 3948 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3949 __func__); 3950 ret = -EINVAL; 3951 goto out; 3952 } 3953 /* 3954 * If this is the first Set Address since device plug-in or 3955 * virt_device realloaction after a resume with an xHCI power loss, 3956 * then set up the slot context. 3957 */ 3958 if (!slot_ctx->dev_info) 3959 xhci_setup_addressable_virt_dev(xhci, udev); 3960 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3961 else 3962 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3963 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3964 ctrl_ctx->drop_flags = 0; 3965 3966 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3967 le32_to_cpu(slot_ctx->dev_info) >> 27); 3968 3969 spin_lock_irqsave(&xhci->lock, flags); 3970 trace_xhci_setup_device(virt_dev); 3971 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3972 udev->slot_id, setup); 3973 if (ret) { 3974 spin_unlock_irqrestore(&xhci->lock, flags); 3975 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3976 "FIXME: allocate a command ring segment"); 3977 goto out; 3978 } 3979 xhci_ring_cmd_db(xhci); 3980 spin_unlock_irqrestore(&xhci->lock, flags); 3981 3982 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3983 wait_for_completion(command->completion); 3984 3985 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3986 * the SetAddress() "recovery interval" required by USB and aborting the 3987 * command on a timeout. 3988 */ 3989 switch (command->status) { 3990 case COMP_COMMAND_ABORTED: 3991 case COMP_COMMAND_RING_STOPPED: 3992 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3993 ret = -ETIME; 3994 break; 3995 case COMP_CONTEXT_STATE_ERROR: 3996 case COMP_SLOT_NOT_ENABLED_ERROR: 3997 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3998 act, udev->slot_id); 3999 ret = -EINVAL; 4000 break; 4001 case COMP_USB_TRANSACTION_ERROR: 4002 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4003 4004 mutex_unlock(&xhci->mutex); 4005 ret = xhci_disable_slot(xhci, udev->slot_id); 4006 if (!ret) 4007 xhci_alloc_dev(hcd, udev); 4008 kfree(command->completion); 4009 kfree(command); 4010 return -EPROTO; 4011 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4012 dev_warn(&udev->dev, 4013 "ERROR: Incompatible device for setup %s command\n", act); 4014 ret = -ENODEV; 4015 break; 4016 case COMP_SUCCESS: 4017 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4018 "Successful setup %s command", act); 4019 break; 4020 default: 4021 xhci_err(xhci, 4022 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4023 act, command->status); 4024 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4025 ret = -EINVAL; 4026 break; 4027 } 4028 if (ret) 4029 goto out; 4030 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4031 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4032 "Op regs DCBAA ptr = %#016llx", temp_64); 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4034 "Slot ID %d dcbaa entry @%p = %#016llx", 4035 udev->slot_id, 4036 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4037 (unsigned long long) 4038 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4039 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4040 "Output Context DMA address = %#08llx", 4041 (unsigned long long)virt_dev->out_ctx->dma); 4042 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4043 le32_to_cpu(slot_ctx->dev_info) >> 27); 4044 /* 4045 * USB core uses address 1 for the roothubs, so we add one to the 4046 * address given back to us by the HC. 4047 */ 4048 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4049 le32_to_cpu(slot_ctx->dev_info) >> 27); 4050 /* Zero the input context control for later use */ 4051 ctrl_ctx->add_flags = 0; 4052 ctrl_ctx->drop_flags = 0; 4053 4054 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4055 "Internal device address = %d", 4056 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4057 out: 4058 mutex_unlock(&xhci->mutex); 4059 if (command) { 4060 kfree(command->completion); 4061 kfree(command); 4062 } 4063 return ret; 4064 } 4065 4066 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4067 { 4068 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4069 } 4070 4071 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4072 { 4073 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4074 } 4075 4076 /* 4077 * Transfer the port index into real index in the HW port status 4078 * registers. Caculate offset between the port's PORTSC register 4079 * and port status base. Divide the number of per port register 4080 * to get the real index. The raw port number bases 1. 4081 */ 4082 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4083 { 4084 struct xhci_hub *rhub; 4085 4086 rhub = xhci_get_rhub(hcd); 4087 return rhub->ports[port1 - 1]->hw_portnum + 1; 4088 } 4089 4090 /* 4091 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4092 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4093 */ 4094 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4095 struct usb_device *udev, u16 max_exit_latency) 4096 { 4097 struct xhci_virt_device *virt_dev; 4098 struct xhci_command *command; 4099 struct xhci_input_control_ctx *ctrl_ctx; 4100 struct xhci_slot_ctx *slot_ctx; 4101 unsigned long flags; 4102 int ret; 4103 4104 spin_lock_irqsave(&xhci->lock, flags); 4105 4106 virt_dev = xhci->devs[udev->slot_id]; 4107 4108 /* 4109 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4110 * xHC was re-initialized. Exit latency will be set later after 4111 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4112 */ 4113 4114 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4115 spin_unlock_irqrestore(&xhci->lock, flags); 4116 return 0; 4117 } 4118 4119 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4120 command = xhci->lpm_command; 4121 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4122 if (!ctrl_ctx) { 4123 spin_unlock_irqrestore(&xhci->lock, flags); 4124 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4125 __func__); 4126 return -ENOMEM; 4127 } 4128 4129 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4130 spin_unlock_irqrestore(&xhci->lock, flags); 4131 4132 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4133 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4134 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4135 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4136 slot_ctx->dev_state = 0; 4137 4138 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4139 "Set up evaluate context for LPM MEL change."); 4140 4141 /* Issue and wait for the evaluate context command. */ 4142 ret = xhci_configure_endpoint(xhci, udev, command, 4143 true, true); 4144 4145 if (!ret) { 4146 spin_lock_irqsave(&xhci->lock, flags); 4147 virt_dev->current_mel = max_exit_latency; 4148 spin_unlock_irqrestore(&xhci->lock, flags); 4149 } 4150 return ret; 4151 } 4152 4153 #ifdef CONFIG_PM 4154 4155 /* BESL to HIRD Encoding array for USB2 LPM */ 4156 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4157 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4158 4159 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4160 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4161 struct usb_device *udev) 4162 { 4163 int u2del, besl, besl_host; 4164 int besl_device = 0; 4165 u32 field; 4166 4167 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4168 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4169 4170 if (field & USB_BESL_SUPPORT) { 4171 for (besl_host = 0; besl_host < 16; besl_host++) { 4172 if (xhci_besl_encoding[besl_host] >= u2del) 4173 break; 4174 } 4175 /* Use baseline BESL value as default */ 4176 if (field & USB_BESL_BASELINE_VALID) 4177 besl_device = USB_GET_BESL_BASELINE(field); 4178 else if (field & USB_BESL_DEEP_VALID) 4179 besl_device = USB_GET_BESL_DEEP(field); 4180 } else { 4181 if (u2del <= 50) 4182 besl_host = 0; 4183 else 4184 besl_host = (u2del - 51) / 75 + 1; 4185 } 4186 4187 besl = besl_host + besl_device; 4188 if (besl > 15) 4189 besl = 15; 4190 4191 return besl; 4192 } 4193 4194 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4195 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4196 { 4197 u32 field; 4198 int l1; 4199 int besld = 0; 4200 int hirdm = 0; 4201 4202 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4203 4204 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4205 l1 = udev->l1_params.timeout / 256; 4206 4207 /* device has preferred BESLD */ 4208 if (field & USB_BESL_DEEP_VALID) { 4209 besld = USB_GET_BESL_DEEP(field); 4210 hirdm = 1; 4211 } 4212 4213 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4214 } 4215 4216 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4217 struct usb_device *udev, int enable) 4218 { 4219 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4220 struct xhci_port **ports; 4221 __le32 __iomem *pm_addr, *hlpm_addr; 4222 u32 pm_val, hlpm_val, field; 4223 unsigned int port_num; 4224 unsigned long flags; 4225 int hird, exit_latency; 4226 int ret; 4227 4228 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4229 !udev->lpm_capable) 4230 return -EPERM; 4231 4232 if (!udev->parent || udev->parent->parent || 4233 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4234 return -EPERM; 4235 4236 if (udev->usb2_hw_lpm_capable != 1) 4237 return -EPERM; 4238 4239 spin_lock_irqsave(&xhci->lock, flags); 4240 4241 ports = xhci->usb2_rhub.ports; 4242 port_num = udev->portnum - 1; 4243 pm_addr = ports[port_num]->addr + PORTPMSC; 4244 pm_val = readl(pm_addr); 4245 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4246 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4247 4248 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4249 enable ? "enable" : "disable", port_num + 1); 4250 4251 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4252 /* Host supports BESL timeout instead of HIRD */ 4253 if (udev->usb2_hw_lpm_besl_capable) { 4254 /* if device doesn't have a preferred BESL value use a 4255 * default one which works with mixed HIRD and BESL 4256 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4257 */ 4258 if ((field & USB_BESL_SUPPORT) && 4259 (field & USB_BESL_BASELINE_VALID)) 4260 hird = USB_GET_BESL_BASELINE(field); 4261 else 4262 hird = udev->l1_params.besl; 4263 4264 exit_latency = xhci_besl_encoding[hird]; 4265 spin_unlock_irqrestore(&xhci->lock, flags); 4266 4267 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4268 * input context for link powermanagement evaluate 4269 * context commands. It is protected by hcd->bandwidth 4270 * mutex and is shared by all devices. We need to set 4271 * the max ext latency in USB 2 BESL LPM as well, so 4272 * use the same mutex and xhci_change_max_exit_latency() 4273 */ 4274 mutex_lock(hcd->bandwidth_mutex); 4275 ret = xhci_change_max_exit_latency(xhci, udev, 4276 exit_latency); 4277 mutex_unlock(hcd->bandwidth_mutex); 4278 4279 if (ret < 0) 4280 return ret; 4281 spin_lock_irqsave(&xhci->lock, flags); 4282 4283 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4284 writel(hlpm_val, hlpm_addr); 4285 /* flush write */ 4286 readl(hlpm_addr); 4287 } else { 4288 hird = xhci_calculate_hird_besl(xhci, udev); 4289 } 4290 4291 pm_val &= ~PORT_HIRD_MASK; 4292 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4293 writel(pm_val, pm_addr); 4294 pm_val = readl(pm_addr); 4295 pm_val |= PORT_HLE; 4296 writel(pm_val, pm_addr); 4297 /* flush write */ 4298 readl(pm_addr); 4299 } else { 4300 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4301 writel(pm_val, pm_addr); 4302 /* flush write */ 4303 readl(pm_addr); 4304 if (udev->usb2_hw_lpm_besl_capable) { 4305 spin_unlock_irqrestore(&xhci->lock, flags); 4306 mutex_lock(hcd->bandwidth_mutex); 4307 xhci_change_max_exit_latency(xhci, udev, 0); 4308 mutex_unlock(hcd->bandwidth_mutex); 4309 return 0; 4310 } 4311 } 4312 4313 spin_unlock_irqrestore(&xhci->lock, flags); 4314 return 0; 4315 } 4316 4317 /* check if a usb2 port supports a given extened capability protocol 4318 * only USB2 ports extended protocol capability values are cached. 4319 * Return 1 if capability is supported 4320 */ 4321 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4322 unsigned capability) 4323 { 4324 u32 port_offset, port_count; 4325 int i; 4326 4327 for (i = 0; i < xhci->num_ext_caps; i++) { 4328 if (xhci->ext_caps[i] & capability) { 4329 /* port offsets starts at 1 */ 4330 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4331 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4332 if (port >= port_offset && 4333 port < port_offset + port_count) 4334 return 1; 4335 } 4336 } 4337 return 0; 4338 } 4339 4340 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4341 { 4342 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4343 int portnum = udev->portnum - 1; 4344 4345 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4346 !udev->lpm_capable) 4347 return 0; 4348 4349 /* we only support lpm for non-hub device connected to root hub yet */ 4350 if (!udev->parent || udev->parent->parent || 4351 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4352 return 0; 4353 4354 if (xhci->hw_lpm_support == 1 && 4355 xhci_check_usb2_port_capability( 4356 xhci, portnum, XHCI_HLC)) { 4357 udev->usb2_hw_lpm_capable = 1; 4358 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4359 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4360 if (xhci_check_usb2_port_capability(xhci, portnum, 4361 XHCI_BLC)) 4362 udev->usb2_hw_lpm_besl_capable = 1; 4363 } 4364 4365 return 0; 4366 } 4367 4368 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4369 4370 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4371 static unsigned long long xhci_service_interval_to_ns( 4372 struct usb_endpoint_descriptor *desc) 4373 { 4374 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4375 } 4376 4377 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4378 enum usb3_link_state state) 4379 { 4380 unsigned long long sel; 4381 unsigned long long pel; 4382 unsigned int max_sel_pel; 4383 char *state_name; 4384 4385 switch (state) { 4386 case USB3_LPM_U1: 4387 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4388 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4389 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4390 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4391 state_name = "U1"; 4392 break; 4393 case USB3_LPM_U2: 4394 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4395 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4396 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4397 state_name = "U2"; 4398 break; 4399 default: 4400 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4401 __func__); 4402 return USB3_LPM_DISABLED; 4403 } 4404 4405 if (sel <= max_sel_pel && pel <= max_sel_pel) 4406 return USB3_LPM_DEVICE_INITIATED; 4407 4408 if (sel > max_sel_pel) 4409 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4410 "due to long SEL %llu ms\n", 4411 state_name, sel); 4412 else 4413 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4414 "due to long PEL %llu ms\n", 4415 state_name, pel); 4416 return USB3_LPM_DISABLED; 4417 } 4418 4419 /* The U1 timeout should be the maximum of the following values: 4420 * - For control endpoints, U1 system exit latency (SEL) * 3 4421 * - For bulk endpoints, U1 SEL * 5 4422 * - For interrupt endpoints: 4423 * - Notification EPs, U1 SEL * 3 4424 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4425 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4426 */ 4427 static unsigned long long xhci_calculate_intel_u1_timeout( 4428 struct usb_device *udev, 4429 struct usb_endpoint_descriptor *desc) 4430 { 4431 unsigned long long timeout_ns; 4432 int ep_type; 4433 int intr_type; 4434 4435 ep_type = usb_endpoint_type(desc); 4436 switch (ep_type) { 4437 case USB_ENDPOINT_XFER_CONTROL: 4438 timeout_ns = udev->u1_params.sel * 3; 4439 break; 4440 case USB_ENDPOINT_XFER_BULK: 4441 timeout_ns = udev->u1_params.sel * 5; 4442 break; 4443 case USB_ENDPOINT_XFER_INT: 4444 intr_type = usb_endpoint_interrupt_type(desc); 4445 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4446 timeout_ns = udev->u1_params.sel * 3; 4447 break; 4448 } 4449 /* Otherwise the calculation is the same as isoc eps */ 4450 /* fall through */ 4451 case USB_ENDPOINT_XFER_ISOC: 4452 timeout_ns = xhci_service_interval_to_ns(desc); 4453 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4454 if (timeout_ns < udev->u1_params.sel * 2) 4455 timeout_ns = udev->u1_params.sel * 2; 4456 break; 4457 default: 4458 return 0; 4459 } 4460 4461 return timeout_ns; 4462 } 4463 4464 /* Returns the hub-encoded U1 timeout value. */ 4465 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4466 struct usb_device *udev, 4467 struct usb_endpoint_descriptor *desc) 4468 { 4469 unsigned long long timeout_ns; 4470 4471 if (xhci->quirks & XHCI_INTEL_HOST) 4472 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4473 else 4474 timeout_ns = udev->u1_params.sel; 4475 4476 /* The U1 timeout is encoded in 1us intervals. 4477 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4478 */ 4479 if (timeout_ns == USB3_LPM_DISABLED) 4480 timeout_ns = 1; 4481 else 4482 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4483 4484 /* If the necessary timeout value is bigger than what we can set in the 4485 * USB 3.0 hub, we have to disable hub-initiated U1. 4486 */ 4487 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4488 return timeout_ns; 4489 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4490 "due to long timeout %llu ms\n", timeout_ns); 4491 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4492 } 4493 4494 /* The U2 timeout should be the maximum of: 4495 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4496 * - largest bInterval of any active periodic endpoint (to avoid going 4497 * into lower power link states between intervals). 4498 * - the U2 Exit Latency of the device 4499 */ 4500 static unsigned long long xhci_calculate_intel_u2_timeout( 4501 struct usb_device *udev, 4502 struct usb_endpoint_descriptor *desc) 4503 { 4504 unsigned long long timeout_ns; 4505 unsigned long long u2_del_ns; 4506 4507 timeout_ns = 10 * 1000 * 1000; 4508 4509 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4510 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4511 timeout_ns = xhci_service_interval_to_ns(desc); 4512 4513 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4514 if (u2_del_ns > timeout_ns) 4515 timeout_ns = u2_del_ns; 4516 4517 return timeout_ns; 4518 } 4519 4520 /* Returns the hub-encoded U2 timeout value. */ 4521 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4522 struct usb_device *udev, 4523 struct usb_endpoint_descriptor *desc) 4524 { 4525 unsigned long long timeout_ns; 4526 4527 if (xhci->quirks & XHCI_INTEL_HOST) 4528 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4529 else 4530 timeout_ns = udev->u2_params.sel; 4531 4532 /* The U2 timeout is encoded in 256us intervals */ 4533 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4534 /* If the necessary timeout value is bigger than what we can set in the 4535 * USB 3.0 hub, we have to disable hub-initiated U2. 4536 */ 4537 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4538 return timeout_ns; 4539 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4540 "due to long timeout %llu ms\n", timeout_ns); 4541 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4542 } 4543 4544 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4545 struct usb_device *udev, 4546 struct usb_endpoint_descriptor *desc, 4547 enum usb3_link_state state, 4548 u16 *timeout) 4549 { 4550 if (state == USB3_LPM_U1) 4551 return xhci_calculate_u1_timeout(xhci, udev, desc); 4552 else if (state == USB3_LPM_U2) 4553 return xhci_calculate_u2_timeout(xhci, udev, desc); 4554 4555 return USB3_LPM_DISABLED; 4556 } 4557 4558 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4559 struct usb_device *udev, 4560 struct usb_endpoint_descriptor *desc, 4561 enum usb3_link_state state, 4562 u16 *timeout) 4563 { 4564 u16 alt_timeout; 4565 4566 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4567 desc, state, timeout); 4568 4569 /* If we found we can't enable hub-initiated LPM, or 4570 * the U1 or U2 exit latency was too high to allow 4571 * device-initiated LPM as well, just stop searching. 4572 */ 4573 if (alt_timeout == USB3_LPM_DISABLED || 4574 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4575 *timeout = alt_timeout; 4576 return -E2BIG; 4577 } 4578 if (alt_timeout > *timeout) 4579 *timeout = alt_timeout; 4580 return 0; 4581 } 4582 4583 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4584 struct usb_device *udev, 4585 struct usb_host_interface *alt, 4586 enum usb3_link_state state, 4587 u16 *timeout) 4588 { 4589 int j; 4590 4591 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4592 if (xhci_update_timeout_for_endpoint(xhci, udev, 4593 &alt->endpoint[j].desc, state, timeout)) 4594 return -E2BIG; 4595 continue; 4596 } 4597 return 0; 4598 } 4599 4600 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4601 enum usb3_link_state state) 4602 { 4603 struct usb_device *parent; 4604 unsigned int num_hubs; 4605 4606 if (state == USB3_LPM_U2) 4607 return 0; 4608 4609 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4610 for (parent = udev->parent, num_hubs = 0; parent->parent; 4611 parent = parent->parent) 4612 num_hubs++; 4613 4614 if (num_hubs < 2) 4615 return 0; 4616 4617 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4618 " below second-tier hub.\n"); 4619 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4620 "to decrease power consumption.\n"); 4621 return -E2BIG; 4622 } 4623 4624 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4625 struct usb_device *udev, 4626 enum usb3_link_state state) 4627 { 4628 if (xhci->quirks & XHCI_INTEL_HOST) 4629 return xhci_check_intel_tier_policy(udev, state); 4630 else 4631 return 0; 4632 } 4633 4634 /* Returns the U1 or U2 timeout that should be enabled. 4635 * If the tier check or timeout setting functions return with a non-zero exit 4636 * code, that means the timeout value has been finalized and we shouldn't look 4637 * at any more endpoints. 4638 */ 4639 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4640 struct usb_device *udev, enum usb3_link_state state) 4641 { 4642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4643 struct usb_host_config *config; 4644 char *state_name; 4645 int i; 4646 u16 timeout = USB3_LPM_DISABLED; 4647 4648 if (state == USB3_LPM_U1) 4649 state_name = "U1"; 4650 else if (state == USB3_LPM_U2) 4651 state_name = "U2"; 4652 else { 4653 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4654 state); 4655 return timeout; 4656 } 4657 4658 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4659 return timeout; 4660 4661 /* Gather some information about the currently installed configuration 4662 * and alternate interface settings. 4663 */ 4664 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4665 state, &timeout)) 4666 return timeout; 4667 4668 config = udev->actconfig; 4669 if (!config) 4670 return timeout; 4671 4672 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4673 struct usb_driver *driver; 4674 struct usb_interface *intf = config->interface[i]; 4675 4676 if (!intf) 4677 continue; 4678 4679 /* Check if any currently bound drivers want hub-initiated LPM 4680 * disabled. 4681 */ 4682 if (intf->dev.driver) { 4683 driver = to_usb_driver(intf->dev.driver); 4684 if (driver && driver->disable_hub_initiated_lpm) { 4685 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4686 "at request of driver %s\n", 4687 state_name, driver->name); 4688 return xhci_get_timeout_no_hub_lpm(udev, state); 4689 } 4690 } 4691 4692 /* Not sure how this could happen... */ 4693 if (!intf->cur_altsetting) 4694 continue; 4695 4696 if (xhci_update_timeout_for_interface(xhci, udev, 4697 intf->cur_altsetting, 4698 state, &timeout)) 4699 return timeout; 4700 } 4701 return timeout; 4702 } 4703 4704 static int calculate_max_exit_latency(struct usb_device *udev, 4705 enum usb3_link_state state_changed, 4706 u16 hub_encoded_timeout) 4707 { 4708 unsigned long long u1_mel_us = 0; 4709 unsigned long long u2_mel_us = 0; 4710 unsigned long long mel_us = 0; 4711 bool disabling_u1; 4712 bool disabling_u2; 4713 bool enabling_u1; 4714 bool enabling_u2; 4715 4716 disabling_u1 = (state_changed == USB3_LPM_U1 && 4717 hub_encoded_timeout == USB3_LPM_DISABLED); 4718 disabling_u2 = (state_changed == USB3_LPM_U2 && 4719 hub_encoded_timeout == USB3_LPM_DISABLED); 4720 4721 enabling_u1 = (state_changed == USB3_LPM_U1 && 4722 hub_encoded_timeout != USB3_LPM_DISABLED); 4723 enabling_u2 = (state_changed == USB3_LPM_U2 && 4724 hub_encoded_timeout != USB3_LPM_DISABLED); 4725 4726 /* If U1 was already enabled and we're not disabling it, 4727 * or we're going to enable U1, account for the U1 max exit latency. 4728 */ 4729 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4730 enabling_u1) 4731 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4732 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4733 enabling_u2) 4734 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4735 4736 if (u1_mel_us > u2_mel_us) 4737 mel_us = u1_mel_us; 4738 else 4739 mel_us = u2_mel_us; 4740 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4741 if (mel_us > MAX_EXIT) { 4742 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4743 "is too big.\n", mel_us); 4744 return -E2BIG; 4745 } 4746 return mel_us; 4747 } 4748 4749 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4750 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4751 struct usb_device *udev, enum usb3_link_state state) 4752 { 4753 struct xhci_hcd *xhci; 4754 u16 hub_encoded_timeout; 4755 int mel; 4756 int ret; 4757 4758 xhci = hcd_to_xhci(hcd); 4759 /* The LPM timeout values are pretty host-controller specific, so don't 4760 * enable hub-initiated timeouts unless the vendor has provided 4761 * information about their timeout algorithm. 4762 */ 4763 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4764 !xhci->devs[udev->slot_id]) 4765 return USB3_LPM_DISABLED; 4766 4767 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4768 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4769 if (mel < 0) { 4770 /* Max Exit Latency is too big, disable LPM. */ 4771 hub_encoded_timeout = USB3_LPM_DISABLED; 4772 mel = 0; 4773 } 4774 4775 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4776 if (ret) 4777 return ret; 4778 return hub_encoded_timeout; 4779 } 4780 4781 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4782 struct usb_device *udev, enum usb3_link_state state) 4783 { 4784 struct xhci_hcd *xhci; 4785 u16 mel; 4786 4787 xhci = hcd_to_xhci(hcd); 4788 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4789 !xhci->devs[udev->slot_id]) 4790 return 0; 4791 4792 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4793 return xhci_change_max_exit_latency(xhci, udev, mel); 4794 } 4795 #else /* CONFIG_PM */ 4796 4797 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4798 struct usb_device *udev, int enable) 4799 { 4800 return 0; 4801 } 4802 4803 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4804 { 4805 return 0; 4806 } 4807 4808 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4809 struct usb_device *udev, enum usb3_link_state state) 4810 { 4811 return USB3_LPM_DISABLED; 4812 } 4813 4814 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4815 struct usb_device *udev, enum usb3_link_state state) 4816 { 4817 return 0; 4818 } 4819 #endif /* CONFIG_PM */ 4820 4821 /*-------------------------------------------------------------------------*/ 4822 4823 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4824 * internal data structures for the device. 4825 */ 4826 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4827 struct usb_tt *tt, gfp_t mem_flags) 4828 { 4829 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4830 struct xhci_virt_device *vdev; 4831 struct xhci_command *config_cmd; 4832 struct xhci_input_control_ctx *ctrl_ctx; 4833 struct xhci_slot_ctx *slot_ctx; 4834 unsigned long flags; 4835 unsigned think_time; 4836 int ret; 4837 4838 /* Ignore root hubs */ 4839 if (!hdev->parent) 4840 return 0; 4841 4842 vdev = xhci->devs[hdev->slot_id]; 4843 if (!vdev) { 4844 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4845 return -EINVAL; 4846 } 4847 4848 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4849 if (!config_cmd) 4850 return -ENOMEM; 4851 4852 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4853 if (!ctrl_ctx) { 4854 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4855 __func__); 4856 xhci_free_command(xhci, config_cmd); 4857 return -ENOMEM; 4858 } 4859 4860 spin_lock_irqsave(&xhci->lock, flags); 4861 if (hdev->speed == USB_SPEED_HIGH && 4862 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4863 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4864 xhci_free_command(xhci, config_cmd); 4865 spin_unlock_irqrestore(&xhci->lock, flags); 4866 return -ENOMEM; 4867 } 4868 4869 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4870 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4871 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4872 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4873 /* 4874 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4875 * but it may be already set to 1 when setup an xHCI virtual 4876 * device, so clear it anyway. 4877 */ 4878 if (tt->multi) 4879 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4880 else if (hdev->speed == USB_SPEED_FULL) 4881 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4882 4883 if (xhci->hci_version > 0x95) { 4884 xhci_dbg(xhci, "xHCI version %x needs hub " 4885 "TT think time and number of ports\n", 4886 (unsigned int) xhci->hci_version); 4887 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4888 /* Set TT think time - convert from ns to FS bit times. 4889 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4890 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4891 * 4892 * xHCI 1.0: this field shall be 0 if the device is not a 4893 * High-spped hub. 4894 */ 4895 think_time = tt->think_time; 4896 if (think_time != 0) 4897 think_time = (think_time / 666) - 1; 4898 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4899 slot_ctx->tt_info |= 4900 cpu_to_le32(TT_THINK_TIME(think_time)); 4901 } else { 4902 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4903 "TT think time or number of ports\n", 4904 (unsigned int) xhci->hci_version); 4905 } 4906 slot_ctx->dev_state = 0; 4907 spin_unlock_irqrestore(&xhci->lock, flags); 4908 4909 xhci_dbg(xhci, "Set up %s for hub device.\n", 4910 (xhci->hci_version > 0x95) ? 4911 "configure endpoint" : "evaluate context"); 4912 4913 /* Issue and wait for the configure endpoint or 4914 * evaluate context command. 4915 */ 4916 if (xhci->hci_version > 0x95) 4917 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4918 false, false); 4919 else 4920 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4921 true, false); 4922 4923 xhci_free_command(xhci, config_cmd); 4924 return ret; 4925 } 4926 4927 static int xhci_get_frame(struct usb_hcd *hcd) 4928 { 4929 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4930 /* EHCI mods by the periodic size. Why? */ 4931 return readl(&xhci->run_regs->microframe_index) >> 3; 4932 } 4933 4934 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4935 { 4936 struct xhci_hcd *xhci; 4937 /* 4938 * TODO: Check with DWC3 clients for sysdev according to 4939 * quirks 4940 */ 4941 struct device *dev = hcd->self.sysdev; 4942 unsigned int minor_rev; 4943 int retval; 4944 4945 /* Accept arbitrarily long scatter-gather lists */ 4946 hcd->self.sg_tablesize = ~0; 4947 4948 /* support to build packet from discontinuous buffers */ 4949 hcd->self.no_sg_constraint = 1; 4950 4951 /* XHCI controllers don't stop the ep queue on short packets :| */ 4952 hcd->self.no_stop_on_short = 1; 4953 4954 xhci = hcd_to_xhci(hcd); 4955 4956 if (usb_hcd_is_primary_hcd(hcd)) { 4957 xhci->main_hcd = hcd; 4958 xhci->usb2_rhub.hcd = hcd; 4959 /* Mark the first roothub as being USB 2.0. 4960 * The xHCI driver will register the USB 3.0 roothub. 4961 */ 4962 hcd->speed = HCD_USB2; 4963 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4964 /* 4965 * USB 2.0 roothub under xHCI has an integrated TT, 4966 * (rate matching hub) as opposed to having an OHCI/UHCI 4967 * companion controller. 4968 */ 4969 hcd->has_tt = 1; 4970 } else { 4971 /* 4972 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 4973 * minor revision instead of sbrn 4974 */ 4975 minor_rev = xhci->usb3_rhub.min_rev; 4976 if (minor_rev) { 4977 hcd->speed = HCD_USB31; 4978 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4979 } 4980 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 4981 minor_rev, 4982 minor_rev ? "Enhanced" : ""); 4983 4984 xhci->usb3_rhub.hcd = hcd; 4985 /* xHCI private pointer was set in xhci_pci_probe for the second 4986 * registered roothub. 4987 */ 4988 return 0; 4989 } 4990 4991 mutex_init(&xhci->mutex); 4992 xhci->cap_regs = hcd->regs; 4993 xhci->op_regs = hcd->regs + 4994 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4995 xhci->run_regs = hcd->regs + 4996 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4997 /* Cache read-only capability registers */ 4998 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4999 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5000 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5001 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5002 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5003 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5004 if (xhci->hci_version > 0x100) 5005 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5006 5007 xhci->quirks |= quirks; 5008 5009 get_quirks(dev, xhci); 5010 5011 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5012 * success event after a short transfer. This quirk will ignore such 5013 * spurious event. 5014 */ 5015 if (xhci->hci_version > 0x96) 5016 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5017 5018 /* Make sure the HC is halted. */ 5019 retval = xhci_halt(xhci); 5020 if (retval) 5021 return retval; 5022 5023 xhci_zero_64b_regs(xhci); 5024 5025 xhci_dbg(xhci, "Resetting HCD\n"); 5026 /* Reset the internal HC memory state and registers. */ 5027 retval = xhci_reset(xhci); 5028 if (retval) 5029 return retval; 5030 xhci_dbg(xhci, "Reset complete\n"); 5031 5032 /* 5033 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5034 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5035 * address memory pointers actually. So, this driver clears the AC64 5036 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5037 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5038 */ 5039 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5040 xhci->hcc_params &= ~BIT(0); 5041 5042 /* Set dma_mask and coherent_dma_mask to 64-bits, 5043 * if xHC supports 64-bit addressing */ 5044 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5045 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5046 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5047 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5048 } else { 5049 /* 5050 * This is to avoid error in cases where a 32-bit USB 5051 * controller is used on a 64-bit capable system. 5052 */ 5053 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5054 if (retval) 5055 return retval; 5056 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5057 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5058 } 5059 5060 xhci_dbg(xhci, "Calling HCD init\n"); 5061 /* Initialize HCD and host controller data structures. */ 5062 retval = xhci_init(hcd); 5063 if (retval) 5064 return retval; 5065 xhci_dbg(xhci, "Called HCD init\n"); 5066 5067 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5068 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5069 5070 return 0; 5071 } 5072 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5073 5074 static const struct hc_driver xhci_hc_driver = { 5075 .description = "xhci-hcd", 5076 .product_desc = "xHCI Host Controller", 5077 .hcd_priv_size = sizeof(struct xhci_hcd), 5078 5079 /* 5080 * generic hardware linkage 5081 */ 5082 .irq = xhci_irq, 5083 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5084 5085 /* 5086 * basic lifecycle operations 5087 */ 5088 .reset = NULL, /* set in xhci_init_driver() */ 5089 .start = xhci_run, 5090 .stop = xhci_stop, 5091 .shutdown = xhci_shutdown, 5092 5093 /* 5094 * managing i/o requests and associated device resources 5095 */ 5096 .urb_enqueue = xhci_urb_enqueue, 5097 .urb_dequeue = xhci_urb_dequeue, 5098 .alloc_dev = xhci_alloc_dev, 5099 .free_dev = xhci_free_dev, 5100 .alloc_streams = xhci_alloc_streams, 5101 .free_streams = xhci_free_streams, 5102 .add_endpoint = xhci_add_endpoint, 5103 .drop_endpoint = xhci_drop_endpoint, 5104 .endpoint_reset = xhci_endpoint_reset, 5105 .check_bandwidth = xhci_check_bandwidth, 5106 .reset_bandwidth = xhci_reset_bandwidth, 5107 .address_device = xhci_address_device, 5108 .enable_device = xhci_enable_device, 5109 .update_hub_device = xhci_update_hub_device, 5110 .reset_device = xhci_discover_or_reset_device, 5111 5112 /* 5113 * scheduling support 5114 */ 5115 .get_frame_number = xhci_get_frame, 5116 5117 /* 5118 * root hub support 5119 */ 5120 .hub_control = xhci_hub_control, 5121 .hub_status_data = xhci_hub_status_data, 5122 .bus_suspend = xhci_bus_suspend, 5123 .bus_resume = xhci_bus_resume, 5124 .get_resuming_ports = xhci_get_resuming_ports, 5125 5126 /* 5127 * call back when device connected and addressed 5128 */ 5129 .update_device = xhci_update_device, 5130 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5131 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5132 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5133 .find_raw_port_number = xhci_find_raw_port_number, 5134 }; 5135 5136 void xhci_init_driver(struct hc_driver *drv, 5137 const struct xhci_driver_overrides *over) 5138 { 5139 BUG_ON(!over); 5140 5141 /* Copy the generic table to drv then apply the overrides */ 5142 *drv = xhci_hc_driver; 5143 5144 if (over) { 5145 drv->hcd_priv_size += over->extra_priv_size; 5146 if (over->reset) 5147 drv->reset = over->reset; 5148 if (over->start) 5149 drv->start = over->start; 5150 } 5151 } 5152 EXPORT_SYMBOL_GPL(xhci_init_driver); 5153 5154 MODULE_DESCRIPTION(DRIVER_DESC); 5155 MODULE_AUTHOR(DRIVER_AUTHOR); 5156 MODULE_LICENSE("GPL"); 5157 5158 static int __init xhci_hcd_init(void) 5159 { 5160 /* 5161 * Check the compiler generated sizes of structures that must be laid 5162 * out in specific ways for hardware access. 5163 */ 5164 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5165 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5166 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5167 /* xhci_device_control has eight fields, and also 5168 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5169 */ 5170 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5171 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5172 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5173 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5174 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5175 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5176 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5177 5178 if (usb_disabled()) 5179 return -ENODEV; 5180 5181 xhci_debugfs_create_root(); 5182 5183 return 0; 5184 } 5185 5186 /* 5187 * If an init function is provided, an exit function must also be provided 5188 * to allow module unload. 5189 */ 5190 static void __exit xhci_hcd_fini(void) 5191 { 5192 xhci_debugfs_remove_root(); 5193 } 5194 5195 module_init(xhci_hcd_init); 5196 module_exit(xhci_hcd_fini); 5197