xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 9134211f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 	struct xhci_hcd *xhci;
328 	struct usb_hcd *hcd;
329 	struct xhci_hub *rhub;
330 	u32 temp;
331 	int i;
332 
333 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 	rhub = &xhci->usb3_rhub;
335 	hcd = rhub->hcd;
336 
337 	if (!hcd)
338 		return;
339 
340 	for (i = 0; i < rhub->num_ports; i++) {
341 		temp = readl(rhub->ports[i]->addr);
342 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 			/*
344 			 * Compliance Mode Detected. Letting USB Core
345 			 * handle the Warm Reset
346 			 */
347 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 					"Compliance mode detected->port %d",
349 					i + 1);
350 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 					"Attempting compliance mode recovery");
352 
353 			if (hcd->state == HC_STATE_SUSPENDED)
354 				usb_hcd_resume_root_hub(hcd);
355 
356 			usb_hcd_poll_rh_status(hcd);
357 		}
358 	}
359 
360 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 		mod_timer(&xhci->comp_mode_recovery_timer,
362 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364 
365 /*
366  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367  * that causes ports behind that hardware to enter compliance mode sometimes.
368  * The quirk creates a timer that polls every 2 seconds the link state of
369  * each host controller's port and recovers it by issuing a Warm reset
370  * if Compliance mode is detected, otherwise the port will become "dead" (no
371  * device connections or disconnections will be detected anymore). Becasue no
372  * status event is generated when entering compliance mode (per xhci spec),
373  * this quirk is needed on systems that have the failing hardware installed.
374  */
375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 	xhci->port_status_u0 = 0;
378 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 		    0);
380 	xhci->comp_mode_recovery_timer.expires = jiffies +
381 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382 
383 	add_timer(&xhci->comp_mode_recovery_timer);
384 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 			"Compliance mode recovery timer initialized");
386 }
387 
388 /*
389  * This function identifies the systems that have installed the SN65LVPE502CP
390  * USB3.0 re-driver and that need the Compliance Mode Quirk.
391  * Systems:
392  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393  */
394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 	const char *dmi_product_name, *dmi_sys_vendor;
397 
398 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 	if (!dmi_product_name || !dmi_sys_vendor)
401 		return false;
402 
403 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 		return false;
405 
406 	if (strstr(dmi_product_name, "Z420") ||
407 			strstr(dmi_product_name, "Z620") ||
408 			strstr(dmi_product_name, "Z820") ||
409 			strstr(dmi_product_name, "Z1 Workstation"))
410 		return true;
411 
412 	return false;
413 }
414 
415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419 
420 
421 /*
422  * Initialize memory for HCD and xHC (one-time init).
423  *
424  * Program the PAGESIZE register, initialize the device context array, create
425  * device contexts (?), set up a command ring segment (or two?), create event
426  * ring (one for now).
427  */
428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 	int retval;
432 
433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 	spin_lock_init(&xhci->lock);
435 	if (xhci->hci_version == 0x95 && link_quirk) {
436 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 				"QUIRK: Not clearing Link TRB chain bits.");
438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 	} else {
440 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 				"xHCI doesn't need link TRB QUIRK");
442 	}
443 	retval = xhci_mem_init(xhci, GFP_KERNEL);
444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445 
446 	/* Initializing Compliance Mode Recovery Data If Needed */
447 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 		compliance_mode_recovery_timer_init(xhci);
450 	}
451 
452 	return retval;
453 }
454 
455 /*-------------------------------------------------------------------------*/
456 
457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 	struct xhci_interrupter *ir = xhci->interrupter;
460 	unsigned long	flags;
461 	u32		temp;
462 
463 	/*
464 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 	 * Protect the short window before host is running with a lock
466 	 */
467 	spin_lock_irqsave(&xhci->lock, flags);
468 
469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 	temp = readl(&xhci->op_regs->command);
471 	temp |= (CMD_EIE);
472 	writel(temp, &xhci->op_regs->command);
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 	xhci_enable_interrupter(ir);
476 
477 	if (xhci_start(xhci)) {
478 		xhci_halt(xhci);
479 		spin_unlock_irqrestore(&xhci->lock, flags);
480 		return -ENODEV;
481 	}
482 
483 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484 
485 	if (xhci->quirks & XHCI_NEC_HOST)
486 		xhci_ring_cmd_db(xhci);
487 
488 	spin_unlock_irqrestore(&xhci->lock, flags);
489 
490 	return 0;
491 }
492 
493 /*
494  * Start the HC after it was halted.
495  *
496  * This function is called by the USB core when the HC driver is added.
497  * Its opposite is xhci_stop().
498  *
499  * xhci_init() must be called once before this function can be called.
500  * Reset the HC, enable device slot contexts, program DCBAAP, and
501  * set command ring pointer and event ring pointer.
502  *
503  * Setup MSI-X vectors and enable interrupts.
504  */
505 int xhci_run(struct usb_hcd *hcd)
506 {
507 	u32 temp;
508 	u64 temp_64;
509 	int ret;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 	struct xhci_interrupter *ir = xhci->interrupter;
512 	/* Start the xHCI host controller running only after the USB 2.0 roothub
513 	 * is setup.
514 	 */
515 
516 	hcd->uses_new_polling = 1;
517 	if (!usb_hcd_is_primary_hcd(hcd))
518 		return xhci_run_finished(xhci);
519 
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521 
522 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 	temp_64 &= ~ERST_PTR_MASK;
524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526 
527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 			"// Set the interrupt modulation register");
529 	temp = readl(&ir->ir_set->irq_control);
530 	temp &= ~ER_IRQ_INTERVAL_MASK;
531 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 	writel(temp, &ir->ir_set->irq_control);
533 
534 	if (xhci->quirks & XHCI_NEC_HOST) {
535 		struct xhci_command *command;
536 
537 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 		if (!command)
539 			return -ENOMEM;
540 
541 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 				TRB_TYPE(TRB_NEC_GET_FW));
543 		if (ret)
544 			xhci_free_command(xhci, command);
545 	}
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished %s for main hcd", __func__);
548 
549 	xhci_create_dbc_dev(xhci);
550 
551 	xhci_debugfs_init(xhci);
552 
553 	if (xhci_has_one_roothub(xhci))
554 		return xhci_run_finished(xhci);
555 
556 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561 
562 /*
563  * Stop xHCI driver.
564  *
565  * This function is called by the USB core when the HC driver is removed.
566  * Its opposite is xhci_run().
567  *
568  * Disable device contexts, disable IRQs, and quiesce the HC.
569  * Reset the HC, finish any completed transactions, and cleanup memory.
570  */
571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 	u32 temp;
574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 	struct xhci_interrupter *ir = xhci->interrupter;
576 
577 	mutex_lock(&xhci->mutex);
578 
579 	/* Only halt host and free memory after both hcds are removed */
580 	if (!usb_hcd_is_primary_hcd(hcd)) {
581 		mutex_unlock(&xhci->mutex);
582 		return;
583 	}
584 
585 	xhci_remove_dbc_dev(xhci);
586 
587 	spin_lock_irq(&xhci->lock);
588 	xhci->xhc_state |= XHCI_STATE_HALTED;
589 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 	xhci_halt(xhci);
591 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 	spin_unlock_irq(&xhci->lock);
593 
594 	/* Deleting Compliance Mode Recovery Timer */
595 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 			(!(xhci_all_ports_seen_u0(xhci)))) {
597 		del_timer_sync(&xhci->comp_mode_recovery_timer);
598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 				"%s: compliance mode recovery timer deleted",
600 				__func__);
601 	}
602 
603 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 		usb_amd_dev_put();
605 
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Disabling event ring interrupts");
608 	temp = readl(&xhci->op_regs->status);
609 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 	xhci_disable_interrupter(ir);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 	xhci_mem_cleanup(xhci);
614 	xhci_debugfs_exit(xhci);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"xhci_stop completed - status = %x",
617 			readl(&xhci->op_regs->status));
618 	mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621 
622 /*
623  * Shutdown HC (not bus-specific)
624  *
625  * This is called when the machine is rebooting or halting.  We assume that the
626  * machine will be powered off, and the HC's internal state will be reset.
627  * Don't bother to free memory.
628  *
629  * This will only ever be called with the main usb_hcd (the USB3 roothub).
630  */
631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634 
635 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637 
638 	/* Don't poll the roothubs after shutdown. */
639 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 			__func__, hcd->self.busnum);
641 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 	del_timer_sync(&hcd->rh_timer);
643 
644 	if (xhci->shared_hcd) {
645 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 		del_timer_sync(&xhci->shared_hcd->rh_timer);
647 	}
648 
649 	spin_lock_irq(&xhci->lock);
650 	xhci_halt(xhci);
651 
652 	/*
653 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 	 */
656 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659 
660 	spin_unlock_irq(&xhci->lock);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"xhci_shutdown completed - status = %x",
664 			readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667 
668 #ifdef CONFIG_PM
669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 	struct xhci_interrupter *ir = xhci->interrupter;
672 
673 	xhci->s3.command = readl(&xhci->op_regs->command);
674 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677 
678 	if (!ir)
679 		return;
680 
681 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687 
688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 	struct xhci_interrupter *ir = xhci->interrupter;
691 
692 	writel(xhci->s3.command, &xhci->op_regs->command);
693 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702 
703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 	u64	val_64;
706 
707 	/* step 2: initialize command ring buffer */
708 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 				      xhci->cmd_ring->dequeue) &
712 		 (u64) ~CMD_RING_RSVD_BITS) |
713 		xhci->cmd_ring->cycle_state;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Setting command ring address to 0x%llx",
716 			(long unsigned long) val_64);
717 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719 
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 	struct xhci_ring *ring;
732 	struct xhci_segment *seg;
733 
734 	ring = xhci->cmd_ring;
735 	seg = ring->deq_seg;
736 	do {
737 		memset(seg->trbs, 0,
738 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 			cpu_to_le32(~TRB_CYCLE);
741 		seg = seg->next;
742 	} while (seg != ring->deq_seg);
743 
744 	/* Reset the software enqueue and dequeue pointers */
745 	ring->deq_seg = ring->first_seg;
746 	ring->dequeue = ring->first_seg->trbs;
747 	ring->enq_seg = ring->deq_seg;
748 	ring->enqueue = ring->dequeue;
749 
750 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 	/*
752 	 * Ring is now zeroed, so the HW should look for change of ownership
753 	 * when the cycle bit is set to 1.
754 	 */
755 	ring->cycle_state = 1;
756 
757 	/*
758 	 * Reset the hardware dequeue pointer.
759 	 * Yes, this will need to be re-written after resume, but we're paranoid
760 	 * and want to make sure the hardware doesn't access bogus memory
761 	 * because, say, the BIOS or an SMI started the host without changing
762 	 * the command ring pointers.
763 	 */
764 	xhci_set_cmd_ring_deq(xhci);
765 }
766 
767 /*
768  * Disable port wake bits if do_wakeup is not set.
769  *
770  * Also clear a possible internal port wake state left hanging for ports that
771  * detected termination but never successfully enumerated (trained to 0U).
772  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773  * at enumeration clears this wake, force one here as well for unconnected ports
774  */
775 
776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 				       struct xhci_hub *rhub,
778 				       bool do_wakeup)
779 {
780 	unsigned long flags;
781 	u32 t1, t2, portsc;
782 	int i;
783 
784 	spin_lock_irqsave(&xhci->lock, flags);
785 
786 	for (i = 0; i < rhub->num_ports; i++) {
787 		portsc = readl(rhub->ports[i]->addr);
788 		t1 = xhci_port_state_to_neutral(portsc);
789 		t2 = t1;
790 
791 		/* clear wake bits if do_wake is not set */
792 		if (!do_wakeup)
793 			t2 &= ~PORT_WAKE_BITS;
794 
795 		/* Don't touch csc bit if connected or connect change is set */
796 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 			t2 |= PORT_CSC;
798 
799 		if (t1 != t2) {
800 			writel(t2, rhub->ports[i]->addr);
801 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 		}
804 	}
805 	spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807 
808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 	struct xhci_port	**ports;
811 	int			port_index;
812 	u32			status;
813 	u32			portsc;
814 
815 	status = readl(&xhci->op_regs->status);
816 	if (status & STS_EINT)
817 		return true;
818 	/*
819 	 * Checking STS_EINT is not enough as there is a lag between a change
820 	 * bit being set and the Port Status Change Event that it generated
821 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 	 */
823 
824 	port_index = xhci->usb2_rhub.num_ports;
825 	ports = xhci->usb2_rhub.ports;
826 	while (port_index--) {
827 		portsc = readl(ports[port_index]->addr);
828 		if (portsc & PORT_CHANGE_MASK ||
829 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 			return true;
831 	}
832 	port_index = xhci->usb3_rhub.num_ports;
833 	ports = xhci->usb3_rhub.ports;
834 	while (port_index--) {
835 		portsc = readl(ports[port_index]->addr);
836 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 			return true;
839 	}
840 	return false;
841 }
842 
843 /*
844  * Stop HC (not bus-specific)
845  *
846  * This is called when the machine transition into S3/S4 mode.
847  *
848  */
849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 	int			rc = 0;
852 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
853 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
854 	u32			command;
855 	u32			res;
856 
857 	if (!hcd->state)
858 		return 0;
859 
860 	if (hcd->state != HC_STATE_SUSPENDED ||
861 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 		return -EINVAL;
863 
864 	/* Clear root port wake on bits if wakeup not allowed. */
865 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867 
868 	if (!HCD_HW_ACCESSIBLE(hcd))
869 		return 0;
870 
871 	xhci_dbc_suspend(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 		 __func__, hcd->self.busnum);
876 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 	del_timer_sync(&hcd->rh_timer);
878 	if (xhci->shared_hcd) {
879 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 		del_timer_sync(&xhci->shared_hcd->rh_timer);
881 	}
882 
883 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 		usleep_range(1000, 1500);
885 
886 	spin_lock_irq(&xhci->lock);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 	if (xhci->shared_hcd)
889 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = readl(&xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	writel(command, &xhci->op_regs->command);
897 
898 	/* Some chips from Fresco Logic need an extraordinary delay */
899 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900 
901 	if (xhci_handshake(&xhci->op_regs->status,
902 		      STS_HALT, STS_HALT, delay)) {
903 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 		spin_unlock_irq(&xhci->lock);
905 		return -ETIMEDOUT;
906 	}
907 	xhci_clear_command_ring(xhci);
908 
909 	/* step 3: save registers */
910 	xhci_save_registers(xhci);
911 
912 	/* step 4: set CSS flag */
913 	command = readl(&xhci->op_regs->command);
914 	command |= CMD_CSS;
915 	writel(command, &xhci->op_regs->command);
916 	xhci->broken_suspend = 0;
917 	if (xhci_handshake(&xhci->op_regs->status,
918 				STS_SAVE, 0, 20 * 1000)) {
919 	/*
920 	 * AMD SNPS xHC 3.0 occasionally does not clear the
921 	 * SSS bit of USBSTS and when driver tries to poll
922 	 * to see if the xHC clears BIT(8) which never happens
923 	 * and driver assumes that controller is not responding
924 	 * and times out. To workaround this, its good to check
925 	 * if SRE and HCE bits are not set (as per xhci
926 	 * Section 5.4.2) and bypass the timeout.
927 	 */
928 		res = readl(&xhci->op_regs->status);
929 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 		    (((res & STS_SRE) == 0) &&
931 				((res & STS_HCE) == 0))) {
932 			xhci->broken_suspend = 1;
933 		} else {
934 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 			spin_unlock_irq(&xhci->lock);
936 			return -ETIMEDOUT;
937 		}
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 				"%s: compliance mode recovery timer deleted",
950 				__func__);
951 	}
952 
953 	return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956 
957 /*
958  * start xHC (not bus-specific)
959  *
960  * This is called when the machine transition from S3/S4 mode.
961  *
962  */
963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
966 	u32			command, temp = 0;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	int			retval = 0;
969 	bool			comp_timer_running = false;
970 	bool			pending_portevent = false;
971 	bool			reinit_xhc = false;
972 
973 	if (!hcd->state)
974 		return 0;
975 
976 	/* Wait a bit if either of the roothubs need to settle from the
977 	 * transition into bus suspend.
978 	 */
979 
980 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
981 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
982 		msleep(100);
983 
984 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
985 	if (xhci->shared_hcd)
986 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
987 
988 	spin_lock_irq(&xhci->lock);
989 
990 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
991 		reinit_xhc = true;
992 
993 	if (!reinit_xhc) {
994 		/*
995 		 * Some controllers might lose power during suspend, so wait
996 		 * for controller not ready bit to clear, just as in xHC init.
997 		 */
998 		retval = xhci_handshake(&xhci->op_regs->status,
999 					STS_CNR, 0, 10 * 1000 * 1000);
1000 		if (retval) {
1001 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1002 				  retval);
1003 			spin_unlock_irq(&xhci->lock);
1004 			return retval;
1005 		}
1006 		/* step 1: restore register */
1007 		xhci_restore_registers(xhci);
1008 		/* step 2: initialize command ring buffer */
1009 		xhci_set_cmd_ring_deq(xhci);
1010 		/* step 3: restore state and start state*/
1011 		/* step 3: set CRS flag */
1012 		command = readl(&xhci->op_regs->command);
1013 		command |= CMD_CRS;
1014 		writel(command, &xhci->op_regs->command);
1015 		/*
1016 		 * Some controllers take up to 55+ ms to complete the controller
1017 		 * restore so setting the timeout to 100ms. Xhci specification
1018 		 * doesn't mention any timeout value.
1019 		 */
1020 		if (xhci_handshake(&xhci->op_regs->status,
1021 			      STS_RESTORE, 0, 100 * 1000)) {
1022 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023 			spin_unlock_irq(&xhci->lock);
1024 			return -ETIMEDOUT;
1025 		}
1026 	}
1027 
1028 	temp = readl(&xhci->op_regs->status);
1029 
1030 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1031 	if ((temp & (STS_SRE | STS_HCE)) &&
1032 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1033 		reinit_xhc = true;
1034 		if (!xhci->broken_suspend)
1035 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1036 	}
1037 
1038 	if (reinit_xhc) {
1039 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1040 				!(xhci_all_ports_seen_u0(xhci))) {
1041 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1042 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1043 				"Compliance Mode Recovery Timer deleted!");
1044 		}
1045 
1046 		/* Let the USB core know _both_ roothubs lost power. */
1047 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1048 		if (xhci->shared_hcd)
1049 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1050 
1051 		xhci_dbg(xhci, "Stop HCD\n");
1052 		xhci_halt(xhci);
1053 		xhci_zero_64b_regs(xhci);
1054 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1055 		spin_unlock_irq(&xhci->lock);
1056 		if (retval)
1057 			return retval;
1058 
1059 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1060 		temp = readl(&xhci->op_regs->status);
1061 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1062 		xhci_disable_interrupter(xhci->interrupter);
1063 
1064 		xhci_dbg(xhci, "cleaning up memory\n");
1065 		xhci_mem_cleanup(xhci);
1066 		xhci_debugfs_exit(xhci);
1067 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1068 			    readl(&xhci->op_regs->status));
1069 
1070 		/* USB core calls the PCI reinit and start functions twice:
1071 		 * first with the primary HCD, and then with the secondary HCD.
1072 		 * If we don't do the same, the host will never be started.
1073 		 */
1074 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1075 		retval = xhci_init(hcd);
1076 		if (retval)
1077 			return retval;
1078 		comp_timer_running = true;
1079 
1080 		xhci_dbg(xhci, "Start the primary HCD\n");
1081 		retval = xhci_run(hcd);
1082 		if (!retval && xhci->shared_hcd) {
1083 			xhci_dbg(xhci, "Start the secondary HCD\n");
1084 			retval = xhci_run(xhci->shared_hcd);
1085 		}
1086 
1087 		hcd->state = HC_STATE_SUSPENDED;
1088 		if (xhci->shared_hcd)
1089 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111 	xhci_dbc_resume(xhci);
1112 
1113  done:
1114 	if (retval == 0) {
1115 		/*
1116 		 * Resume roothubs only if there are pending events.
1117 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1118 		 * the first wake signalling failed, give it that chance.
1119 		 */
1120 		pending_portevent = xhci_pending_portevent(xhci);
1121 		if (!pending_portevent && msg.event == PM_EVENT_AUTO_RESUME) {
1122 			msleep(120);
1123 			pending_portevent = xhci_pending_portevent(xhci);
1124 		}
1125 
1126 		if (pending_portevent) {
1127 			if (xhci->shared_hcd)
1128 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1129 			usb_hcd_resume_root_hub(hcd);
1130 		}
1131 	}
1132 	/*
1133 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1134 	 * be re-initialized Always after a system resume. Ports are subject
1135 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1136 	 * ports have entered previously to U0 before system's suspension.
1137 	 */
1138 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1139 		compliance_mode_recovery_timer_init(xhci);
1140 
1141 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1142 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1143 
1144 	/* Re-enable port polling. */
1145 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1146 		 __func__, hcd->self.busnum);
1147 	if (xhci->shared_hcd) {
1148 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1149 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1150 	}
1151 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1152 	usb_hcd_poll_rh_status(hcd);
1153 
1154 	return retval;
1155 }
1156 EXPORT_SYMBOL_GPL(xhci_resume);
1157 #endif	/* CONFIG_PM */
1158 
1159 /*-------------------------------------------------------------------------*/
1160 
1161 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1162 {
1163 	void *temp;
1164 	int ret = 0;
1165 	unsigned int buf_len;
1166 	enum dma_data_direction dir;
1167 
1168 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1169 	buf_len = urb->transfer_buffer_length;
1170 
1171 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1172 			    dev_to_node(hcd->self.sysdev));
1173 
1174 	if (usb_urb_dir_out(urb))
1175 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1176 				   temp, buf_len, 0);
1177 
1178 	urb->transfer_buffer = temp;
1179 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1180 					   urb->transfer_buffer,
1181 					   urb->transfer_buffer_length,
1182 					   dir);
1183 
1184 	if (dma_mapping_error(hcd->self.sysdev,
1185 			      urb->transfer_dma)) {
1186 		ret = -EAGAIN;
1187 		kfree(temp);
1188 	} else {
1189 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1196 					  struct urb *urb)
1197 {
1198 	bool ret = false;
1199 	unsigned int i;
1200 	unsigned int len = 0;
1201 	unsigned int trb_size;
1202 	unsigned int max_pkt;
1203 	struct scatterlist *sg;
1204 	struct scatterlist *tail_sg;
1205 
1206 	tail_sg = urb->sg;
1207 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1208 
1209 	if (!urb->num_sgs)
1210 		return ret;
1211 
1212 	if (urb->dev->speed >= USB_SPEED_SUPER)
1213 		trb_size = TRB_CACHE_SIZE_SS;
1214 	else
1215 		trb_size = TRB_CACHE_SIZE_HS;
1216 
1217 	if (urb->transfer_buffer_length != 0 &&
1218 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1219 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1220 			len = len + sg->length;
1221 			if (i > trb_size - 2) {
1222 				len = len - tail_sg->length;
1223 				if (len < max_pkt) {
1224 					ret = true;
1225 					break;
1226 				}
1227 
1228 				tail_sg = sg_next(tail_sg);
1229 			}
1230 		}
1231 	}
1232 	return ret;
1233 }
1234 
1235 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1236 {
1237 	unsigned int len;
1238 	unsigned int buf_len;
1239 	enum dma_data_direction dir;
1240 
1241 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1242 
1243 	buf_len = urb->transfer_buffer_length;
1244 
1245 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1246 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1247 		dma_unmap_single(hcd->self.sysdev,
1248 				 urb->transfer_dma,
1249 				 urb->transfer_buffer_length,
1250 				 dir);
1251 
1252 	if (usb_urb_dir_in(urb)) {
1253 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1254 					   urb->transfer_buffer,
1255 					   buf_len,
1256 					   0);
1257 		if (len != buf_len) {
1258 			xhci_dbg(hcd_to_xhci(hcd),
1259 				 "Copy from tmp buf to urb sg list failed\n");
1260 			urb->actual_length = len;
1261 		}
1262 	}
1263 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1264 	kfree(urb->transfer_buffer);
1265 	urb->transfer_buffer = NULL;
1266 }
1267 
1268 /*
1269  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1270  * we'll copy the actual data into the TRB address register. This is limited to
1271  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1272  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1273  */
1274 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1275 				gfp_t mem_flags)
1276 {
1277 	struct xhci_hcd *xhci;
1278 
1279 	xhci = hcd_to_xhci(hcd);
1280 
1281 	if (xhci_urb_suitable_for_idt(urb))
1282 		return 0;
1283 
1284 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1285 		if (xhci_urb_temp_buffer_required(hcd, urb))
1286 			return xhci_map_temp_buffer(hcd, urb);
1287 	}
1288 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1289 }
1290 
1291 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1292 {
1293 	struct xhci_hcd *xhci;
1294 	bool unmap_temp_buf = false;
1295 
1296 	xhci = hcd_to_xhci(hcd);
1297 
1298 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299 		unmap_temp_buf = true;
1300 
1301 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1302 		xhci_unmap_temp_buf(hcd, urb);
1303 	else
1304 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1305 }
1306 
1307 /**
1308  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1309  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1310  * value to right shift 1 for the bitmask.
1311  *
1312  * Index  = (epnum * 2) + direction - 1,
1313  * where direction = 0 for OUT, 1 for IN.
1314  * For control endpoints, the IN index is used (OUT index is unused), so
1315  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1316  */
1317 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1318 {
1319 	unsigned int index;
1320 	if (usb_endpoint_xfer_control(desc))
1321 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1322 	else
1323 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1324 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1325 	return index;
1326 }
1327 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1328 
1329 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1330  * address from the XHCI endpoint index.
1331  */
1332 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1333 {
1334 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1335 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1336 	return direction | number;
1337 }
1338 
1339 /* Find the flag for this endpoint (for use in the control context).  Use the
1340  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1341  * bit 1, etc.
1342  */
1343 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1344 {
1345 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1346 }
1347 
1348 /* Compute the last valid endpoint context index.  Basically, this is the
1349  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1350  * we find the most significant bit set in the added contexts flags.
1351  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1352  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1353  */
1354 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1355 {
1356 	return fls(added_ctxs) - 1;
1357 }
1358 
1359 /* Returns 1 if the arguments are OK;
1360  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1361  */
1362 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1363 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1364 		const char *func) {
1365 	struct xhci_hcd	*xhci;
1366 	struct xhci_virt_device	*virt_dev;
1367 
1368 	if (!hcd || (check_ep && !ep) || !udev) {
1369 		pr_debug("xHCI %s called with invalid args\n", func);
1370 		return -EINVAL;
1371 	}
1372 	if (!udev->parent) {
1373 		pr_debug("xHCI %s called for root hub\n", func);
1374 		return 0;
1375 	}
1376 
1377 	xhci = hcd_to_xhci(hcd);
1378 	if (check_virt_dev) {
1379 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1380 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1381 					func);
1382 			return -EINVAL;
1383 		}
1384 
1385 		virt_dev = xhci->devs[udev->slot_id];
1386 		if (virt_dev->udev != udev) {
1387 			xhci_dbg(xhci, "xHCI %s called with udev and "
1388 					  "virt_dev does not match\n", func);
1389 			return -EINVAL;
1390 		}
1391 	}
1392 
1393 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1394 		return -ENODEV;
1395 
1396 	return 1;
1397 }
1398 
1399 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1400 		struct usb_device *udev, struct xhci_command *command,
1401 		bool ctx_change, bool must_succeed);
1402 
1403 /*
1404  * Full speed devices may have a max packet size greater than 8 bytes, but the
1405  * USB core doesn't know that until it reads the first 8 bytes of the
1406  * descriptor.  If the usb_device's max packet size changes after that point,
1407  * we need to issue an evaluate context command and wait on it.
1408  */
1409 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1410 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1411 {
1412 	struct xhci_container_ctx *out_ctx;
1413 	struct xhci_input_control_ctx *ctrl_ctx;
1414 	struct xhci_ep_ctx *ep_ctx;
1415 	struct xhci_command *command;
1416 	int max_packet_size;
1417 	int hw_max_packet_size;
1418 	int ret = 0;
1419 
1420 	out_ctx = xhci->devs[slot_id]->out_ctx;
1421 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1422 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1423 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1424 	if (hw_max_packet_size != max_packet_size) {
1425 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1426 				"Max Packet Size for ep 0 changed.");
1427 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1428 				"Max packet size in usb_device = %d",
1429 				max_packet_size);
1430 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1431 				"Max packet size in xHCI HW = %d",
1432 				hw_max_packet_size);
1433 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1434 				"Issuing evaluate context command.");
1435 
1436 		/* Set up the input context flags for the command */
1437 		/* FIXME: This won't work if a non-default control endpoint
1438 		 * changes max packet sizes.
1439 		 */
1440 
1441 		command = xhci_alloc_command(xhci, true, mem_flags);
1442 		if (!command)
1443 			return -ENOMEM;
1444 
1445 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1446 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1447 		if (!ctrl_ctx) {
1448 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1449 					__func__);
1450 			ret = -ENOMEM;
1451 			goto command_cleanup;
1452 		}
1453 		/* Set up the modified control endpoint 0 */
1454 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1455 				xhci->devs[slot_id]->out_ctx, ep_index);
1456 
1457 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1458 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1459 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1460 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1461 
1462 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1463 		ctrl_ctx->drop_flags = 0;
1464 
1465 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1466 				true, false);
1467 
1468 		/* Clean up the input context for later use by bandwidth
1469 		 * functions.
1470 		 */
1471 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1472 command_cleanup:
1473 		kfree(command->completion);
1474 		kfree(command);
1475 	}
1476 	return ret;
1477 }
1478 
1479 /*
1480  * non-error returns are a promise to giveback() the urb later
1481  * we drop ownership so next owner (or urb unlink) can get it
1482  */
1483 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1484 {
1485 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1486 	unsigned long flags;
1487 	int ret = 0;
1488 	unsigned int slot_id, ep_index;
1489 	unsigned int *ep_state;
1490 	struct urb_priv	*urb_priv;
1491 	int num_tds;
1492 
1493 	if (!urb)
1494 		return -EINVAL;
1495 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1496 					true, true, __func__);
1497 	if (ret <= 0)
1498 		return ret ? ret : -EINVAL;
1499 
1500 	slot_id = urb->dev->slot_id;
1501 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1502 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1503 
1504 	if (!HCD_HW_ACCESSIBLE(hcd))
1505 		return -ESHUTDOWN;
1506 
1507 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1508 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1509 		return -ENODEV;
1510 	}
1511 
1512 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1513 		num_tds = urb->number_of_packets;
1514 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1515 	    urb->transfer_buffer_length > 0 &&
1516 	    urb->transfer_flags & URB_ZERO_PACKET &&
1517 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1518 		num_tds = 2;
1519 	else
1520 		num_tds = 1;
1521 
1522 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1523 	if (!urb_priv)
1524 		return -ENOMEM;
1525 
1526 	urb_priv->num_tds = num_tds;
1527 	urb_priv->num_tds_done = 0;
1528 	urb->hcpriv = urb_priv;
1529 
1530 	trace_xhci_urb_enqueue(urb);
1531 
1532 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1533 		/* Check to see if the max packet size for the default control
1534 		 * endpoint changed during FS device enumeration
1535 		 */
1536 		if (urb->dev->speed == USB_SPEED_FULL) {
1537 			ret = xhci_check_maxpacket(xhci, slot_id,
1538 					ep_index, urb, mem_flags);
1539 			if (ret < 0) {
1540 				xhci_urb_free_priv(urb_priv);
1541 				urb->hcpriv = NULL;
1542 				return ret;
1543 			}
1544 		}
1545 	}
1546 
1547 	spin_lock_irqsave(&xhci->lock, flags);
1548 
1549 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1550 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1551 			 urb->ep->desc.bEndpointAddress, urb);
1552 		ret = -ESHUTDOWN;
1553 		goto free_priv;
1554 	}
1555 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1556 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1557 			  *ep_state);
1558 		ret = -EINVAL;
1559 		goto free_priv;
1560 	}
1561 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1562 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1563 		ret = -EINVAL;
1564 		goto free_priv;
1565 	}
1566 
1567 	switch (usb_endpoint_type(&urb->ep->desc)) {
1568 
1569 	case USB_ENDPOINT_XFER_CONTROL:
1570 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1571 					 slot_id, ep_index);
1572 		break;
1573 	case USB_ENDPOINT_XFER_BULK:
1574 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1575 					 slot_id, ep_index);
1576 		break;
1577 	case USB_ENDPOINT_XFER_INT:
1578 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1579 				slot_id, ep_index);
1580 		break;
1581 	case USB_ENDPOINT_XFER_ISOC:
1582 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1583 				slot_id, ep_index);
1584 	}
1585 
1586 	if (ret) {
1587 free_priv:
1588 		xhci_urb_free_priv(urb_priv);
1589 		urb->hcpriv = NULL;
1590 	}
1591 	spin_unlock_irqrestore(&xhci->lock, flags);
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1597  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1598  * should pick up where it left off in the TD, unless a Set Transfer Ring
1599  * Dequeue Pointer is issued.
1600  *
1601  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1602  * the ring.  Since the ring is a contiguous structure, they can't be physically
1603  * removed.  Instead, there are two options:
1604  *
1605  *  1) If the HC is in the middle of processing the URB to be canceled, we
1606  *     simply move the ring's dequeue pointer past those TRBs using the Set
1607  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1608  *     when drivers timeout on the last submitted URB and attempt to cancel.
1609  *
1610  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1611  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1612  *     HC will need to invalidate the any TRBs it has cached after the stop
1613  *     endpoint command, as noted in the xHCI 0.95 errata.
1614  *
1615  *  3) The TD may have completed by the time the Stop Endpoint Command
1616  *     completes, so software needs to handle that case too.
1617  *
1618  * This function should protect against the TD enqueueing code ringing the
1619  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1620  * It also needs to account for multiple cancellations on happening at the same
1621  * time for the same endpoint.
1622  *
1623  * Note that this function can be called in any context, or so says
1624  * usb_hcd_unlink_urb()
1625  */
1626 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1627 {
1628 	unsigned long flags;
1629 	int ret, i;
1630 	u32 temp;
1631 	struct xhci_hcd *xhci;
1632 	struct urb_priv	*urb_priv;
1633 	struct xhci_td *td;
1634 	unsigned int ep_index;
1635 	struct xhci_ring *ep_ring;
1636 	struct xhci_virt_ep *ep;
1637 	struct xhci_command *command;
1638 	struct xhci_virt_device *vdev;
1639 
1640 	xhci = hcd_to_xhci(hcd);
1641 	spin_lock_irqsave(&xhci->lock, flags);
1642 
1643 	trace_xhci_urb_dequeue(urb);
1644 
1645 	/* Make sure the URB hasn't completed or been unlinked already */
1646 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1647 	if (ret)
1648 		goto done;
1649 
1650 	/* give back URB now if we can't queue it for cancel */
1651 	vdev = xhci->devs[urb->dev->slot_id];
1652 	urb_priv = urb->hcpriv;
1653 	if (!vdev || !urb_priv)
1654 		goto err_giveback;
1655 
1656 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1657 	ep = &vdev->eps[ep_index];
1658 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1659 	if (!ep || !ep_ring)
1660 		goto err_giveback;
1661 
1662 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1663 	temp = readl(&xhci->op_regs->status);
1664 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1665 		xhci_hc_died(xhci);
1666 		goto done;
1667 	}
1668 
1669 	/*
1670 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1671 	 * make sure none of the ring related pointers in this URB private data
1672 	 * are touched, such as td_list, otherwise we overwrite freed data
1673 	 */
1674 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1675 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1676 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1677 			td = &urb_priv->td[i];
1678 			if (!list_empty(&td->cancelled_td_list))
1679 				list_del_init(&td->cancelled_td_list);
1680 		}
1681 		goto err_giveback;
1682 	}
1683 
1684 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1685 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1686 				"HC halted, freeing TD manually.");
1687 		for (i = urb_priv->num_tds_done;
1688 		     i < urb_priv->num_tds;
1689 		     i++) {
1690 			td = &urb_priv->td[i];
1691 			if (!list_empty(&td->td_list))
1692 				list_del_init(&td->td_list);
1693 			if (!list_empty(&td->cancelled_td_list))
1694 				list_del_init(&td->cancelled_td_list);
1695 		}
1696 		goto err_giveback;
1697 	}
1698 
1699 	i = urb_priv->num_tds_done;
1700 	if (i < urb_priv->num_tds)
1701 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1702 				"Cancel URB %p, dev %s, ep 0x%x, "
1703 				"starting at offset 0x%llx",
1704 				urb, urb->dev->devpath,
1705 				urb->ep->desc.bEndpointAddress,
1706 				(unsigned long long) xhci_trb_virt_to_dma(
1707 					urb_priv->td[i].start_seg,
1708 					urb_priv->td[i].first_trb));
1709 
1710 	for (; i < urb_priv->num_tds; i++) {
1711 		td = &urb_priv->td[i];
1712 		/* TD can already be on cancelled list if ep halted on it */
1713 		if (list_empty(&td->cancelled_td_list)) {
1714 			td->cancel_status = TD_DIRTY;
1715 			list_add_tail(&td->cancelled_td_list,
1716 				      &ep->cancelled_td_list);
1717 		}
1718 	}
1719 
1720 	/* Queue a stop endpoint command, but only if this is
1721 	 * the first cancellation to be handled.
1722 	 */
1723 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1724 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1725 		if (!command) {
1726 			ret = -ENOMEM;
1727 			goto done;
1728 		}
1729 		ep->ep_state |= EP_STOP_CMD_PENDING;
1730 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1731 					 ep_index, 0);
1732 		xhci_ring_cmd_db(xhci);
1733 	}
1734 done:
1735 	spin_unlock_irqrestore(&xhci->lock, flags);
1736 	return ret;
1737 
1738 err_giveback:
1739 	if (urb_priv)
1740 		xhci_urb_free_priv(urb_priv);
1741 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1742 	spin_unlock_irqrestore(&xhci->lock, flags);
1743 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1744 	return ret;
1745 }
1746 
1747 /* Drop an endpoint from a new bandwidth configuration for this device.
1748  * Only one call to this function is allowed per endpoint before
1749  * check_bandwidth() or reset_bandwidth() must be called.
1750  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1751  * add the endpoint to the schedule with possibly new parameters denoted by a
1752  * different endpoint descriptor in usb_host_endpoint.
1753  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1754  * not allowed.
1755  *
1756  * The USB core will not allow URBs to be queued to an endpoint that is being
1757  * disabled, so there's no need for mutual exclusion to protect
1758  * the xhci->devs[slot_id] structure.
1759  */
1760 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1761 		       struct usb_host_endpoint *ep)
1762 {
1763 	struct xhci_hcd *xhci;
1764 	struct xhci_container_ctx *in_ctx, *out_ctx;
1765 	struct xhci_input_control_ctx *ctrl_ctx;
1766 	unsigned int ep_index;
1767 	struct xhci_ep_ctx *ep_ctx;
1768 	u32 drop_flag;
1769 	u32 new_add_flags, new_drop_flags;
1770 	int ret;
1771 
1772 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1773 	if (ret <= 0)
1774 		return ret;
1775 	xhci = hcd_to_xhci(hcd);
1776 	if (xhci->xhc_state & XHCI_STATE_DYING)
1777 		return -ENODEV;
1778 
1779 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1780 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1781 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1782 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1783 				__func__, drop_flag);
1784 		return 0;
1785 	}
1786 
1787 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1788 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1789 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1790 	if (!ctrl_ctx) {
1791 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1792 				__func__);
1793 		return 0;
1794 	}
1795 
1796 	ep_index = xhci_get_endpoint_index(&ep->desc);
1797 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1798 	/* If the HC already knows the endpoint is disabled,
1799 	 * or the HCD has noted it is disabled, ignore this request
1800 	 */
1801 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1802 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1803 	    xhci_get_endpoint_flag(&ep->desc)) {
1804 		/* Do not warn when called after a usb_device_reset */
1805 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1806 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1807 				  __func__, ep);
1808 		return 0;
1809 	}
1810 
1811 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1812 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1813 
1814 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1815 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1816 
1817 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1818 
1819 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1820 
1821 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1822 			(unsigned int) ep->desc.bEndpointAddress,
1823 			udev->slot_id,
1824 			(unsigned int) new_drop_flags,
1825 			(unsigned int) new_add_flags);
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1829 
1830 /* Add an endpoint to a new possible bandwidth configuration for this device.
1831  * Only one call to this function is allowed per endpoint before
1832  * check_bandwidth() or reset_bandwidth() must be called.
1833  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1834  * add the endpoint to the schedule with possibly new parameters denoted by a
1835  * different endpoint descriptor in usb_host_endpoint.
1836  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1837  * not allowed.
1838  *
1839  * The USB core will not allow URBs to be queued to an endpoint until the
1840  * configuration or alt setting is installed in the device, so there's no need
1841  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1842  */
1843 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1844 		      struct usb_host_endpoint *ep)
1845 {
1846 	struct xhci_hcd *xhci;
1847 	struct xhci_container_ctx *in_ctx;
1848 	unsigned int ep_index;
1849 	struct xhci_input_control_ctx *ctrl_ctx;
1850 	struct xhci_ep_ctx *ep_ctx;
1851 	u32 added_ctxs;
1852 	u32 new_add_flags, new_drop_flags;
1853 	struct xhci_virt_device *virt_dev;
1854 	int ret = 0;
1855 
1856 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1857 	if (ret <= 0) {
1858 		/* So we won't queue a reset ep command for a root hub */
1859 		ep->hcpriv = NULL;
1860 		return ret;
1861 	}
1862 	xhci = hcd_to_xhci(hcd);
1863 	if (xhci->xhc_state & XHCI_STATE_DYING)
1864 		return -ENODEV;
1865 
1866 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1867 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1868 		/* FIXME when we have to issue an evaluate endpoint command to
1869 		 * deal with ep0 max packet size changing once we get the
1870 		 * descriptors
1871 		 */
1872 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1873 				__func__, added_ctxs);
1874 		return 0;
1875 	}
1876 
1877 	virt_dev = xhci->devs[udev->slot_id];
1878 	in_ctx = virt_dev->in_ctx;
1879 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1880 	if (!ctrl_ctx) {
1881 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1882 				__func__);
1883 		return 0;
1884 	}
1885 
1886 	ep_index = xhci_get_endpoint_index(&ep->desc);
1887 	/* If this endpoint is already in use, and the upper layers are trying
1888 	 * to add it again without dropping it, reject the addition.
1889 	 */
1890 	if (virt_dev->eps[ep_index].ring &&
1891 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1892 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1893 				"without dropping it.\n",
1894 				(unsigned int) ep->desc.bEndpointAddress);
1895 		return -EINVAL;
1896 	}
1897 
1898 	/* If the HCD has already noted the endpoint is enabled,
1899 	 * ignore this request.
1900 	 */
1901 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1902 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1903 				__func__, ep);
1904 		return 0;
1905 	}
1906 
1907 	/*
1908 	 * Configuration and alternate setting changes must be done in
1909 	 * process context, not interrupt context (or so documenation
1910 	 * for usb_set_interface() and usb_set_configuration() claim).
1911 	 */
1912 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1913 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1914 				__func__, ep->desc.bEndpointAddress);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1919 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1920 
1921 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1922 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1923 	 * this re-adds a new state for the endpoint from the new endpoint
1924 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1925 	 * drop flags alone.
1926 	 */
1927 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928 
1929 	/* Store the usb_device pointer for later use */
1930 	ep->hcpriv = udev;
1931 
1932 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1933 	trace_xhci_add_endpoint(ep_ctx);
1934 
1935 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936 			(unsigned int) ep->desc.bEndpointAddress,
1937 			udev->slot_id,
1938 			(unsigned int) new_drop_flags,
1939 			(unsigned int) new_add_flags);
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1943 
1944 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1945 {
1946 	struct xhci_input_control_ctx *ctrl_ctx;
1947 	struct xhci_ep_ctx *ep_ctx;
1948 	struct xhci_slot_ctx *slot_ctx;
1949 	int i;
1950 
1951 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1952 	if (!ctrl_ctx) {
1953 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1954 				__func__);
1955 		return;
1956 	}
1957 
1958 	/* When a device's add flag and drop flag are zero, any subsequent
1959 	 * configure endpoint command will leave that endpoint's state
1960 	 * untouched.  Make sure we don't leave any old state in the input
1961 	 * endpoint contexts.
1962 	 */
1963 	ctrl_ctx->drop_flags = 0;
1964 	ctrl_ctx->add_flags = 0;
1965 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1966 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1967 	/* Endpoint 0 is always valid */
1968 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1969 	for (i = 1; i < 31; i++) {
1970 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1971 		ep_ctx->ep_info = 0;
1972 		ep_ctx->ep_info2 = 0;
1973 		ep_ctx->deq = 0;
1974 		ep_ctx->tx_info = 0;
1975 	}
1976 }
1977 
1978 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1979 		struct usb_device *udev, u32 *cmd_status)
1980 {
1981 	int ret;
1982 
1983 	switch (*cmd_status) {
1984 	case COMP_COMMAND_ABORTED:
1985 	case COMP_COMMAND_RING_STOPPED:
1986 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1987 		ret = -ETIME;
1988 		break;
1989 	case COMP_RESOURCE_ERROR:
1990 		dev_warn(&udev->dev,
1991 			 "Not enough host controller resources for new device state.\n");
1992 		ret = -ENOMEM;
1993 		/* FIXME: can we allocate more resources for the HC? */
1994 		break;
1995 	case COMP_BANDWIDTH_ERROR:
1996 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1997 		dev_warn(&udev->dev,
1998 			 "Not enough bandwidth for new device state.\n");
1999 		ret = -ENOSPC;
2000 		/* FIXME: can we go back to the old state? */
2001 		break;
2002 	case COMP_TRB_ERROR:
2003 		/* the HCD set up something wrong */
2004 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2005 				"add flag = 1, "
2006 				"and endpoint is not disabled.\n");
2007 		ret = -EINVAL;
2008 		break;
2009 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2010 		dev_warn(&udev->dev,
2011 			 "ERROR: Incompatible device for endpoint configure command.\n");
2012 		ret = -ENODEV;
2013 		break;
2014 	case COMP_SUCCESS:
2015 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2016 				"Successful Endpoint Configure command");
2017 		ret = 0;
2018 		break;
2019 	default:
2020 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2021 				*cmd_status);
2022 		ret = -EINVAL;
2023 		break;
2024 	}
2025 	return ret;
2026 }
2027 
2028 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2029 		struct usb_device *udev, u32 *cmd_status)
2030 {
2031 	int ret;
2032 
2033 	switch (*cmd_status) {
2034 	case COMP_COMMAND_ABORTED:
2035 	case COMP_COMMAND_RING_STOPPED:
2036 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2037 		ret = -ETIME;
2038 		break;
2039 	case COMP_PARAMETER_ERROR:
2040 		dev_warn(&udev->dev,
2041 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2042 		ret = -EINVAL;
2043 		break;
2044 	case COMP_SLOT_NOT_ENABLED_ERROR:
2045 		dev_warn(&udev->dev,
2046 			"WARN: slot not enabled for evaluate context command.\n");
2047 		ret = -EINVAL;
2048 		break;
2049 	case COMP_CONTEXT_STATE_ERROR:
2050 		dev_warn(&udev->dev,
2051 			"WARN: invalid context state for evaluate context command.\n");
2052 		ret = -EINVAL;
2053 		break;
2054 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2055 		dev_warn(&udev->dev,
2056 			"ERROR: Incompatible device for evaluate context command.\n");
2057 		ret = -ENODEV;
2058 		break;
2059 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2060 		/* Max Exit Latency too large error */
2061 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2062 		ret = -EINVAL;
2063 		break;
2064 	case COMP_SUCCESS:
2065 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2066 				"Successful evaluate context command");
2067 		ret = 0;
2068 		break;
2069 	default:
2070 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2071 			*cmd_status);
2072 		ret = -EINVAL;
2073 		break;
2074 	}
2075 	return ret;
2076 }
2077 
2078 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2079 		struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081 	u32 valid_add_flags;
2082 	u32 valid_drop_flags;
2083 
2084 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2085 	 * (bit 1).  The default control endpoint is added during the Address
2086 	 * Device command and is never removed until the slot is disabled.
2087 	 */
2088 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090 
2091 	/* Use hweight32 to count the number of ones in the add flags, or
2092 	 * number of endpoints added.  Don't count endpoints that are changed
2093 	 * (both added and dropped).
2094 	 */
2095 	return hweight32(valid_add_flags) -
2096 		hweight32(valid_add_flags & valid_drop_flags);
2097 }
2098 
2099 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2100 		struct xhci_input_control_ctx *ctrl_ctx)
2101 {
2102 	u32 valid_add_flags;
2103 	u32 valid_drop_flags;
2104 
2105 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2106 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2107 
2108 	return hweight32(valid_drop_flags) -
2109 		hweight32(valid_add_flags & valid_drop_flags);
2110 }
2111 
2112 /*
2113  * We need to reserve the new number of endpoints before the configure endpoint
2114  * command completes.  We can't subtract the dropped endpoints from the number
2115  * of active endpoints until the command completes because we can oversubscribe
2116  * the host in this case:
2117  *
2118  *  - the first configure endpoint command drops more endpoints than it adds
2119  *  - a second configure endpoint command that adds more endpoints is queued
2120  *  - the first configure endpoint command fails, so the config is unchanged
2121  *  - the second command may succeed, even though there isn't enough resources
2122  *
2123  * Must be called with xhci->lock held.
2124  */
2125 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2126 		struct xhci_input_control_ctx *ctrl_ctx)
2127 {
2128 	u32 added_eps;
2129 
2130 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2131 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2132 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 				"Not enough ep ctxs: "
2134 				"%u active, need to add %u, limit is %u.",
2135 				xhci->num_active_eps, added_eps,
2136 				xhci->limit_active_eps);
2137 		return -ENOMEM;
2138 	}
2139 	xhci->num_active_eps += added_eps;
2140 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 			"Adding %u ep ctxs, %u now active.", added_eps,
2142 			xhci->num_active_eps);
2143 	return 0;
2144 }
2145 
2146 /*
2147  * The configure endpoint was failed by the xHC for some other reason, so we
2148  * need to revert the resources that failed configuration would have used.
2149  *
2150  * Must be called with xhci->lock held.
2151  */
2152 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2153 		struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155 	u32 num_failed_eps;
2156 
2157 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2158 	xhci->num_active_eps -= num_failed_eps;
2159 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2160 			"Removing %u failed ep ctxs, %u now active.",
2161 			num_failed_eps,
2162 			xhci->num_active_eps);
2163 }
2164 
2165 /*
2166  * Now that the command has completed, clean up the active endpoint count by
2167  * subtracting out the endpoints that were dropped (but not changed).
2168  *
2169  * Must be called with xhci->lock held.
2170  */
2171 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2172 		struct xhci_input_control_ctx *ctrl_ctx)
2173 {
2174 	u32 num_dropped_eps;
2175 
2176 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2177 	xhci->num_active_eps -= num_dropped_eps;
2178 	if (num_dropped_eps)
2179 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 				"Removing %u dropped ep ctxs, %u now active.",
2181 				num_dropped_eps,
2182 				xhci->num_active_eps);
2183 }
2184 
2185 static unsigned int xhci_get_block_size(struct usb_device *udev)
2186 {
2187 	switch (udev->speed) {
2188 	case USB_SPEED_LOW:
2189 	case USB_SPEED_FULL:
2190 		return FS_BLOCK;
2191 	case USB_SPEED_HIGH:
2192 		return HS_BLOCK;
2193 	case USB_SPEED_SUPER:
2194 	case USB_SPEED_SUPER_PLUS:
2195 		return SS_BLOCK;
2196 	case USB_SPEED_UNKNOWN:
2197 	case USB_SPEED_WIRELESS:
2198 	default:
2199 		/* Should never happen */
2200 		return 1;
2201 	}
2202 }
2203 
2204 static unsigned int
2205 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2206 {
2207 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2208 		return LS_OVERHEAD;
2209 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2210 		return FS_OVERHEAD;
2211 	return HS_OVERHEAD;
2212 }
2213 
2214 /* If we are changing a LS/FS device under a HS hub,
2215  * make sure (if we are activating a new TT) that the HS bus has enough
2216  * bandwidth for this new TT.
2217  */
2218 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2219 		struct xhci_virt_device *virt_dev,
2220 		int old_active_eps)
2221 {
2222 	struct xhci_interval_bw_table *bw_table;
2223 	struct xhci_tt_bw_info *tt_info;
2224 
2225 	/* Find the bandwidth table for the root port this TT is attached to. */
2226 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2227 	tt_info = virt_dev->tt_info;
2228 	/* If this TT already had active endpoints, the bandwidth for this TT
2229 	 * has already been added.  Removing all periodic endpoints (and thus
2230 	 * making the TT enactive) will only decrease the bandwidth used.
2231 	 */
2232 	if (old_active_eps)
2233 		return 0;
2234 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2235 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2236 			return -ENOMEM;
2237 		return 0;
2238 	}
2239 	/* Not sure why we would have no new active endpoints...
2240 	 *
2241 	 * Maybe because of an Evaluate Context change for a hub update or a
2242 	 * control endpoint 0 max packet size change?
2243 	 * FIXME: skip the bandwidth calculation in that case.
2244 	 */
2245 	return 0;
2246 }
2247 
2248 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2249 		struct xhci_virt_device *virt_dev)
2250 {
2251 	unsigned int bw_reserved;
2252 
2253 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2254 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2255 		return -ENOMEM;
2256 
2257 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2258 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2259 		return -ENOMEM;
2260 
2261 	return 0;
2262 }
2263 
2264 /*
2265  * This algorithm is a very conservative estimate of the worst-case scheduling
2266  * scenario for any one interval.  The hardware dynamically schedules the
2267  * packets, so we can't tell which microframe could be the limiting factor in
2268  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2269  *
2270  * Obviously, we can't solve an NP complete problem to find the minimum worst
2271  * case scenario.  Instead, we come up with an estimate that is no less than
2272  * the worst case bandwidth used for any one microframe, but may be an
2273  * over-estimate.
2274  *
2275  * We walk the requirements for each endpoint by interval, starting with the
2276  * smallest interval, and place packets in the schedule where there is only one
2277  * possible way to schedule packets for that interval.  In order to simplify
2278  * this algorithm, we record the largest max packet size for each interval, and
2279  * assume all packets will be that size.
2280  *
2281  * For interval 0, we obviously must schedule all packets for each interval.
2282  * The bandwidth for interval 0 is just the amount of data to be transmitted
2283  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2284  * the number of packets).
2285  *
2286  * For interval 1, we have two possible microframes to schedule those packets
2287  * in.  For this algorithm, if we can schedule the same number of packets for
2288  * each possible scheduling opportunity (each microframe), we will do so.  The
2289  * remaining number of packets will be saved to be transmitted in the gaps in
2290  * the next interval's scheduling sequence.
2291  *
2292  * As we move those remaining packets to be scheduled with interval 2 packets,
2293  * we have to double the number of remaining packets to transmit.  This is
2294  * because the intervals are actually powers of 2, and we would be transmitting
2295  * the previous interval's packets twice in this interval.  We also have to be
2296  * sure that when we look at the largest max packet size for this interval, we
2297  * also look at the largest max packet size for the remaining packets and take
2298  * the greater of the two.
2299  *
2300  * The algorithm continues to evenly distribute packets in each scheduling
2301  * opportunity, and push the remaining packets out, until we get to the last
2302  * interval.  Then those packets and their associated overhead are just added
2303  * to the bandwidth used.
2304  */
2305 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2306 		struct xhci_virt_device *virt_dev,
2307 		int old_active_eps)
2308 {
2309 	unsigned int bw_reserved;
2310 	unsigned int max_bandwidth;
2311 	unsigned int bw_used;
2312 	unsigned int block_size;
2313 	struct xhci_interval_bw_table *bw_table;
2314 	unsigned int packet_size = 0;
2315 	unsigned int overhead = 0;
2316 	unsigned int packets_transmitted = 0;
2317 	unsigned int packets_remaining = 0;
2318 	unsigned int i;
2319 
2320 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2321 		return xhci_check_ss_bw(xhci, virt_dev);
2322 
2323 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2324 		max_bandwidth = HS_BW_LIMIT;
2325 		/* Convert percent of bus BW reserved to blocks reserved */
2326 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2327 	} else {
2328 		max_bandwidth = FS_BW_LIMIT;
2329 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2330 	}
2331 
2332 	bw_table = virt_dev->bw_table;
2333 	/* We need to translate the max packet size and max ESIT payloads into
2334 	 * the units the hardware uses.
2335 	 */
2336 	block_size = xhci_get_block_size(virt_dev->udev);
2337 
2338 	/* If we are manipulating a LS/FS device under a HS hub, double check
2339 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2340 	 */
2341 	if (virt_dev->tt_info) {
2342 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2343 				"Recalculating BW for rootport %u",
2344 				virt_dev->real_port);
2345 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2346 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2347 					"newly activated TT.\n");
2348 			return -ENOMEM;
2349 		}
2350 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2351 				"Recalculating BW for TT slot %u port %u",
2352 				virt_dev->tt_info->slot_id,
2353 				virt_dev->tt_info->ttport);
2354 	} else {
2355 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2356 				"Recalculating BW for rootport %u",
2357 				virt_dev->real_port);
2358 	}
2359 
2360 	/* Add in how much bandwidth will be used for interval zero, or the
2361 	 * rounded max ESIT payload + number of packets * largest overhead.
2362 	 */
2363 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2364 		bw_table->interval_bw[0].num_packets *
2365 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2366 
2367 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2368 		unsigned int bw_added;
2369 		unsigned int largest_mps;
2370 		unsigned int interval_overhead;
2371 
2372 		/*
2373 		 * How many packets could we transmit in this interval?
2374 		 * If packets didn't fit in the previous interval, we will need
2375 		 * to transmit that many packets twice within this interval.
2376 		 */
2377 		packets_remaining = 2 * packets_remaining +
2378 			bw_table->interval_bw[i].num_packets;
2379 
2380 		/* Find the largest max packet size of this or the previous
2381 		 * interval.
2382 		 */
2383 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2384 			largest_mps = 0;
2385 		else {
2386 			struct xhci_virt_ep *virt_ep;
2387 			struct list_head *ep_entry;
2388 
2389 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2390 			virt_ep = list_entry(ep_entry,
2391 					struct xhci_virt_ep, bw_endpoint_list);
2392 			/* Convert to blocks, rounding up */
2393 			largest_mps = DIV_ROUND_UP(
2394 					virt_ep->bw_info.max_packet_size,
2395 					block_size);
2396 		}
2397 		if (largest_mps > packet_size)
2398 			packet_size = largest_mps;
2399 
2400 		/* Use the larger overhead of this or the previous interval. */
2401 		interval_overhead = xhci_get_largest_overhead(
2402 				&bw_table->interval_bw[i]);
2403 		if (interval_overhead > overhead)
2404 			overhead = interval_overhead;
2405 
2406 		/* How many packets can we evenly distribute across
2407 		 * (1 << (i + 1)) possible scheduling opportunities?
2408 		 */
2409 		packets_transmitted = packets_remaining >> (i + 1);
2410 
2411 		/* Add in the bandwidth used for those scheduled packets */
2412 		bw_added = packets_transmitted * (overhead + packet_size);
2413 
2414 		/* How many packets do we have remaining to transmit? */
2415 		packets_remaining = packets_remaining % (1 << (i + 1));
2416 
2417 		/* What largest max packet size should those packets have? */
2418 		/* If we've transmitted all packets, don't carry over the
2419 		 * largest packet size.
2420 		 */
2421 		if (packets_remaining == 0) {
2422 			packet_size = 0;
2423 			overhead = 0;
2424 		} else if (packets_transmitted > 0) {
2425 			/* Otherwise if we do have remaining packets, and we've
2426 			 * scheduled some packets in this interval, take the
2427 			 * largest max packet size from endpoints with this
2428 			 * interval.
2429 			 */
2430 			packet_size = largest_mps;
2431 			overhead = interval_overhead;
2432 		}
2433 		/* Otherwise carry over packet_size and overhead from the last
2434 		 * time we had a remainder.
2435 		 */
2436 		bw_used += bw_added;
2437 		if (bw_used > max_bandwidth) {
2438 			xhci_warn(xhci, "Not enough bandwidth. "
2439 					"Proposed: %u, Max: %u\n",
2440 				bw_used, max_bandwidth);
2441 			return -ENOMEM;
2442 		}
2443 	}
2444 	/*
2445 	 * Ok, we know we have some packets left over after even-handedly
2446 	 * scheduling interval 15.  We don't know which microframes they will
2447 	 * fit into, so we over-schedule and say they will be scheduled every
2448 	 * microframe.
2449 	 */
2450 	if (packets_remaining > 0)
2451 		bw_used += overhead + packet_size;
2452 
2453 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2454 		unsigned int port_index = virt_dev->real_port - 1;
2455 
2456 		/* OK, we're manipulating a HS device attached to a
2457 		 * root port bandwidth domain.  Include the number of active TTs
2458 		 * in the bandwidth used.
2459 		 */
2460 		bw_used += TT_HS_OVERHEAD *
2461 			xhci->rh_bw[port_index].num_active_tts;
2462 	}
2463 
2464 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2466 		"Available: %u " "percent",
2467 		bw_used, max_bandwidth, bw_reserved,
2468 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2469 		max_bandwidth);
2470 
2471 	bw_used += bw_reserved;
2472 	if (bw_used > max_bandwidth) {
2473 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2474 				bw_used, max_bandwidth);
2475 		return -ENOMEM;
2476 	}
2477 
2478 	bw_table->bw_used = bw_used;
2479 	return 0;
2480 }
2481 
2482 static bool xhci_is_async_ep(unsigned int ep_type)
2483 {
2484 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2485 					ep_type != ISOC_IN_EP &&
2486 					ep_type != INT_IN_EP);
2487 }
2488 
2489 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2490 {
2491 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2492 }
2493 
2494 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2495 {
2496 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2497 
2498 	if (ep_bw->ep_interval == 0)
2499 		return SS_OVERHEAD_BURST +
2500 			(ep_bw->mult * ep_bw->num_packets *
2501 					(SS_OVERHEAD + mps));
2502 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2503 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2504 				1 << ep_bw->ep_interval);
2505 
2506 }
2507 
2508 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2509 		struct xhci_bw_info *ep_bw,
2510 		struct xhci_interval_bw_table *bw_table,
2511 		struct usb_device *udev,
2512 		struct xhci_virt_ep *virt_ep,
2513 		struct xhci_tt_bw_info *tt_info)
2514 {
2515 	struct xhci_interval_bw	*interval_bw;
2516 	int normalized_interval;
2517 
2518 	if (xhci_is_async_ep(ep_bw->type))
2519 		return;
2520 
2521 	if (udev->speed >= USB_SPEED_SUPER) {
2522 		if (xhci_is_sync_in_ep(ep_bw->type))
2523 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2524 				xhci_get_ss_bw_consumed(ep_bw);
2525 		else
2526 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2527 				xhci_get_ss_bw_consumed(ep_bw);
2528 		return;
2529 	}
2530 
2531 	/* SuperSpeed endpoints never get added to intervals in the table, so
2532 	 * this check is only valid for HS/FS/LS devices.
2533 	 */
2534 	if (list_empty(&virt_ep->bw_endpoint_list))
2535 		return;
2536 	/* For LS/FS devices, we need to translate the interval expressed in
2537 	 * microframes to frames.
2538 	 */
2539 	if (udev->speed == USB_SPEED_HIGH)
2540 		normalized_interval = ep_bw->ep_interval;
2541 	else
2542 		normalized_interval = ep_bw->ep_interval - 3;
2543 
2544 	if (normalized_interval == 0)
2545 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2546 	interval_bw = &bw_table->interval_bw[normalized_interval];
2547 	interval_bw->num_packets -= ep_bw->num_packets;
2548 	switch (udev->speed) {
2549 	case USB_SPEED_LOW:
2550 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2551 		break;
2552 	case USB_SPEED_FULL:
2553 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2554 		break;
2555 	case USB_SPEED_HIGH:
2556 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2557 		break;
2558 	case USB_SPEED_SUPER:
2559 	case USB_SPEED_SUPER_PLUS:
2560 	case USB_SPEED_UNKNOWN:
2561 	case USB_SPEED_WIRELESS:
2562 		/* Should never happen because only LS/FS/HS endpoints will get
2563 		 * added to the endpoint list.
2564 		 */
2565 		return;
2566 	}
2567 	if (tt_info)
2568 		tt_info->active_eps -= 1;
2569 	list_del_init(&virt_ep->bw_endpoint_list);
2570 }
2571 
2572 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2573 		struct xhci_bw_info *ep_bw,
2574 		struct xhci_interval_bw_table *bw_table,
2575 		struct usb_device *udev,
2576 		struct xhci_virt_ep *virt_ep,
2577 		struct xhci_tt_bw_info *tt_info)
2578 {
2579 	struct xhci_interval_bw	*interval_bw;
2580 	struct xhci_virt_ep *smaller_ep;
2581 	int normalized_interval;
2582 
2583 	if (xhci_is_async_ep(ep_bw->type))
2584 		return;
2585 
2586 	if (udev->speed == USB_SPEED_SUPER) {
2587 		if (xhci_is_sync_in_ep(ep_bw->type))
2588 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2589 				xhci_get_ss_bw_consumed(ep_bw);
2590 		else
2591 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2592 				xhci_get_ss_bw_consumed(ep_bw);
2593 		return;
2594 	}
2595 
2596 	/* For LS/FS devices, we need to translate the interval expressed in
2597 	 * microframes to frames.
2598 	 */
2599 	if (udev->speed == USB_SPEED_HIGH)
2600 		normalized_interval = ep_bw->ep_interval;
2601 	else
2602 		normalized_interval = ep_bw->ep_interval - 3;
2603 
2604 	if (normalized_interval == 0)
2605 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2606 	interval_bw = &bw_table->interval_bw[normalized_interval];
2607 	interval_bw->num_packets += ep_bw->num_packets;
2608 	switch (udev->speed) {
2609 	case USB_SPEED_LOW:
2610 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2611 		break;
2612 	case USB_SPEED_FULL:
2613 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2614 		break;
2615 	case USB_SPEED_HIGH:
2616 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2617 		break;
2618 	case USB_SPEED_SUPER:
2619 	case USB_SPEED_SUPER_PLUS:
2620 	case USB_SPEED_UNKNOWN:
2621 	case USB_SPEED_WIRELESS:
2622 		/* Should never happen because only LS/FS/HS endpoints will get
2623 		 * added to the endpoint list.
2624 		 */
2625 		return;
2626 	}
2627 
2628 	if (tt_info)
2629 		tt_info->active_eps += 1;
2630 	/* Insert the endpoint into the list, largest max packet size first. */
2631 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2632 			bw_endpoint_list) {
2633 		if (ep_bw->max_packet_size >=
2634 				smaller_ep->bw_info.max_packet_size) {
2635 			/* Add the new ep before the smaller endpoint */
2636 			list_add_tail(&virt_ep->bw_endpoint_list,
2637 					&smaller_ep->bw_endpoint_list);
2638 			return;
2639 		}
2640 	}
2641 	/* Add the new endpoint at the end of the list. */
2642 	list_add_tail(&virt_ep->bw_endpoint_list,
2643 			&interval_bw->endpoints);
2644 }
2645 
2646 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2647 		struct xhci_virt_device *virt_dev,
2648 		int old_active_eps)
2649 {
2650 	struct xhci_root_port_bw_info *rh_bw_info;
2651 	if (!virt_dev->tt_info)
2652 		return;
2653 
2654 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2655 	if (old_active_eps == 0 &&
2656 				virt_dev->tt_info->active_eps != 0) {
2657 		rh_bw_info->num_active_tts += 1;
2658 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2659 	} else if (old_active_eps != 0 &&
2660 				virt_dev->tt_info->active_eps == 0) {
2661 		rh_bw_info->num_active_tts -= 1;
2662 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2663 	}
2664 }
2665 
2666 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2667 		struct xhci_virt_device *virt_dev,
2668 		struct xhci_container_ctx *in_ctx)
2669 {
2670 	struct xhci_bw_info ep_bw_info[31];
2671 	int i;
2672 	struct xhci_input_control_ctx *ctrl_ctx;
2673 	int old_active_eps = 0;
2674 
2675 	if (virt_dev->tt_info)
2676 		old_active_eps = virt_dev->tt_info->active_eps;
2677 
2678 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2679 	if (!ctrl_ctx) {
2680 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2681 				__func__);
2682 		return -ENOMEM;
2683 	}
2684 
2685 	for (i = 0; i < 31; i++) {
2686 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2687 			continue;
2688 
2689 		/* Make a copy of the BW info in case we need to revert this */
2690 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2691 				sizeof(ep_bw_info[i]));
2692 		/* Drop the endpoint from the interval table if the endpoint is
2693 		 * being dropped or changed.
2694 		 */
2695 		if (EP_IS_DROPPED(ctrl_ctx, i))
2696 			xhci_drop_ep_from_interval_table(xhci,
2697 					&virt_dev->eps[i].bw_info,
2698 					virt_dev->bw_table,
2699 					virt_dev->udev,
2700 					&virt_dev->eps[i],
2701 					virt_dev->tt_info);
2702 	}
2703 	/* Overwrite the information stored in the endpoints' bw_info */
2704 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2705 	for (i = 0; i < 31; i++) {
2706 		/* Add any changed or added endpoints to the interval table */
2707 		if (EP_IS_ADDED(ctrl_ctx, i))
2708 			xhci_add_ep_to_interval_table(xhci,
2709 					&virt_dev->eps[i].bw_info,
2710 					virt_dev->bw_table,
2711 					virt_dev->udev,
2712 					&virt_dev->eps[i],
2713 					virt_dev->tt_info);
2714 	}
2715 
2716 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2717 		/* Ok, this fits in the bandwidth we have.
2718 		 * Update the number of active TTs.
2719 		 */
2720 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2721 		return 0;
2722 	}
2723 
2724 	/* We don't have enough bandwidth for this, revert the stored info. */
2725 	for (i = 0; i < 31; i++) {
2726 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2727 			continue;
2728 
2729 		/* Drop the new copies of any added or changed endpoints from
2730 		 * the interval table.
2731 		 */
2732 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2733 			xhci_drop_ep_from_interval_table(xhci,
2734 					&virt_dev->eps[i].bw_info,
2735 					virt_dev->bw_table,
2736 					virt_dev->udev,
2737 					&virt_dev->eps[i],
2738 					virt_dev->tt_info);
2739 		}
2740 		/* Revert the endpoint back to its old information */
2741 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2742 				sizeof(ep_bw_info[i]));
2743 		/* Add any changed or dropped endpoints back into the table */
2744 		if (EP_IS_DROPPED(ctrl_ctx, i))
2745 			xhci_add_ep_to_interval_table(xhci,
2746 					&virt_dev->eps[i].bw_info,
2747 					virt_dev->bw_table,
2748 					virt_dev->udev,
2749 					&virt_dev->eps[i],
2750 					virt_dev->tt_info);
2751 	}
2752 	return -ENOMEM;
2753 }
2754 
2755 
2756 /* Issue a configure endpoint command or evaluate context command
2757  * and wait for it to finish.
2758  */
2759 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2760 		struct usb_device *udev,
2761 		struct xhci_command *command,
2762 		bool ctx_change, bool must_succeed)
2763 {
2764 	int ret;
2765 	unsigned long flags;
2766 	struct xhci_input_control_ctx *ctrl_ctx;
2767 	struct xhci_virt_device *virt_dev;
2768 	struct xhci_slot_ctx *slot_ctx;
2769 
2770 	if (!command)
2771 		return -EINVAL;
2772 
2773 	spin_lock_irqsave(&xhci->lock, flags);
2774 
2775 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2776 		spin_unlock_irqrestore(&xhci->lock, flags);
2777 		return -ESHUTDOWN;
2778 	}
2779 
2780 	virt_dev = xhci->devs[udev->slot_id];
2781 
2782 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2783 	if (!ctrl_ctx) {
2784 		spin_unlock_irqrestore(&xhci->lock, flags);
2785 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2786 				__func__);
2787 		return -ENOMEM;
2788 	}
2789 
2790 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2791 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2792 		spin_unlock_irqrestore(&xhci->lock, flags);
2793 		xhci_warn(xhci, "Not enough host resources, "
2794 				"active endpoint contexts = %u\n",
2795 				xhci->num_active_eps);
2796 		return -ENOMEM;
2797 	}
2798 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2799 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2800 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2801 			xhci_free_host_resources(xhci, ctrl_ctx);
2802 		spin_unlock_irqrestore(&xhci->lock, flags);
2803 		xhci_warn(xhci, "Not enough bandwidth\n");
2804 		return -ENOMEM;
2805 	}
2806 
2807 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2808 
2809 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2810 	trace_xhci_configure_endpoint(slot_ctx);
2811 
2812 	if (!ctx_change)
2813 		ret = xhci_queue_configure_endpoint(xhci, command,
2814 				command->in_ctx->dma,
2815 				udev->slot_id, must_succeed);
2816 	else
2817 		ret = xhci_queue_evaluate_context(xhci, command,
2818 				command->in_ctx->dma,
2819 				udev->slot_id, must_succeed);
2820 	if (ret < 0) {
2821 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2822 			xhci_free_host_resources(xhci, ctrl_ctx);
2823 		spin_unlock_irqrestore(&xhci->lock, flags);
2824 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2825 				"FIXME allocate a new ring segment");
2826 		return -ENOMEM;
2827 	}
2828 	xhci_ring_cmd_db(xhci);
2829 	spin_unlock_irqrestore(&xhci->lock, flags);
2830 
2831 	/* Wait for the configure endpoint command to complete */
2832 	wait_for_completion(command->completion);
2833 
2834 	if (!ctx_change)
2835 		ret = xhci_configure_endpoint_result(xhci, udev,
2836 						     &command->status);
2837 	else
2838 		ret = xhci_evaluate_context_result(xhci, udev,
2839 						   &command->status);
2840 
2841 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2842 		spin_lock_irqsave(&xhci->lock, flags);
2843 		/* If the command failed, remove the reserved resources.
2844 		 * Otherwise, clean up the estimate to include dropped eps.
2845 		 */
2846 		if (ret)
2847 			xhci_free_host_resources(xhci, ctrl_ctx);
2848 		else
2849 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2850 		spin_unlock_irqrestore(&xhci->lock, flags);
2851 	}
2852 	return ret;
2853 }
2854 
2855 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2856 	struct xhci_virt_device *vdev, int i)
2857 {
2858 	struct xhci_virt_ep *ep = &vdev->eps[i];
2859 
2860 	if (ep->ep_state & EP_HAS_STREAMS) {
2861 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2862 				xhci_get_endpoint_address(i));
2863 		xhci_free_stream_info(xhci, ep->stream_info);
2864 		ep->stream_info = NULL;
2865 		ep->ep_state &= ~EP_HAS_STREAMS;
2866 	}
2867 }
2868 
2869 /* Called after one or more calls to xhci_add_endpoint() or
2870  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2871  * to call xhci_reset_bandwidth().
2872  *
2873  * Since we are in the middle of changing either configuration or
2874  * installing a new alt setting, the USB core won't allow URBs to be
2875  * enqueued for any endpoint on the old config or interface.  Nothing
2876  * else should be touching the xhci->devs[slot_id] structure, so we
2877  * don't need to take the xhci->lock for manipulating that.
2878  */
2879 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2880 {
2881 	int i;
2882 	int ret = 0;
2883 	struct xhci_hcd *xhci;
2884 	struct xhci_virt_device	*virt_dev;
2885 	struct xhci_input_control_ctx *ctrl_ctx;
2886 	struct xhci_slot_ctx *slot_ctx;
2887 	struct xhci_command *command;
2888 
2889 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2890 	if (ret <= 0)
2891 		return ret;
2892 	xhci = hcd_to_xhci(hcd);
2893 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2894 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2895 		return -ENODEV;
2896 
2897 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2898 	virt_dev = xhci->devs[udev->slot_id];
2899 
2900 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2901 	if (!command)
2902 		return -ENOMEM;
2903 
2904 	command->in_ctx = virt_dev->in_ctx;
2905 
2906 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2907 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2908 	if (!ctrl_ctx) {
2909 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2910 				__func__);
2911 		ret = -ENOMEM;
2912 		goto command_cleanup;
2913 	}
2914 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2915 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2916 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2917 
2918 	/* Don't issue the command if there's no endpoints to update. */
2919 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2920 	    ctrl_ctx->drop_flags == 0) {
2921 		ret = 0;
2922 		goto command_cleanup;
2923 	}
2924 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2925 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2926 	for (i = 31; i >= 1; i--) {
2927 		__le32 le32 = cpu_to_le32(BIT(i));
2928 
2929 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2930 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2931 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2932 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2933 			break;
2934 		}
2935 	}
2936 
2937 	ret = xhci_configure_endpoint(xhci, udev, command,
2938 			false, false);
2939 	if (ret)
2940 		/* Callee should call reset_bandwidth() */
2941 		goto command_cleanup;
2942 
2943 	/* Free any rings that were dropped, but not changed. */
2944 	for (i = 1; i < 31; i++) {
2945 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2946 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2947 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2948 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2949 		}
2950 	}
2951 	xhci_zero_in_ctx(xhci, virt_dev);
2952 	/*
2953 	 * Install any rings for completely new endpoints or changed endpoints,
2954 	 * and free any old rings from changed endpoints.
2955 	 */
2956 	for (i = 1; i < 31; i++) {
2957 		if (!virt_dev->eps[i].new_ring)
2958 			continue;
2959 		/* Only free the old ring if it exists.
2960 		 * It may not if this is the first add of an endpoint.
2961 		 */
2962 		if (virt_dev->eps[i].ring) {
2963 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2964 		}
2965 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2966 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2967 		virt_dev->eps[i].new_ring = NULL;
2968 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2969 	}
2970 command_cleanup:
2971 	kfree(command->completion);
2972 	kfree(command);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2977 
2978 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2979 {
2980 	struct xhci_hcd *xhci;
2981 	struct xhci_virt_device	*virt_dev;
2982 	int i, ret;
2983 
2984 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2985 	if (ret <= 0)
2986 		return;
2987 	xhci = hcd_to_xhci(hcd);
2988 
2989 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2990 	virt_dev = xhci->devs[udev->slot_id];
2991 	/* Free any rings allocated for added endpoints */
2992 	for (i = 0; i < 31; i++) {
2993 		if (virt_dev->eps[i].new_ring) {
2994 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2995 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2996 			virt_dev->eps[i].new_ring = NULL;
2997 		}
2998 	}
2999 	xhci_zero_in_ctx(xhci, virt_dev);
3000 }
3001 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3002 
3003 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3004 		struct xhci_container_ctx *in_ctx,
3005 		struct xhci_container_ctx *out_ctx,
3006 		struct xhci_input_control_ctx *ctrl_ctx,
3007 		u32 add_flags, u32 drop_flags)
3008 {
3009 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3010 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3011 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3012 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3013 }
3014 
3015 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3016 				  struct usb_host_endpoint *host_ep)
3017 {
3018 	struct xhci_hcd		*xhci;
3019 	struct xhci_virt_device	*vdev;
3020 	struct xhci_virt_ep	*ep;
3021 	struct usb_device	*udev;
3022 	unsigned long		flags;
3023 	unsigned int		ep_index;
3024 
3025 	xhci = hcd_to_xhci(hcd);
3026 rescan:
3027 	spin_lock_irqsave(&xhci->lock, flags);
3028 
3029 	udev = (struct usb_device *)host_ep->hcpriv;
3030 	if (!udev || !udev->slot_id)
3031 		goto done;
3032 
3033 	vdev = xhci->devs[udev->slot_id];
3034 	if (!vdev)
3035 		goto done;
3036 
3037 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3038 	ep = &vdev->eps[ep_index];
3039 
3040 	/* wait for hub_tt_work to finish clearing hub TT */
3041 	if (ep->ep_state & EP_CLEARING_TT) {
3042 		spin_unlock_irqrestore(&xhci->lock, flags);
3043 		schedule_timeout_uninterruptible(1);
3044 		goto rescan;
3045 	}
3046 
3047 	if (ep->ep_state)
3048 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3049 			 ep->ep_state);
3050 done:
3051 	host_ep->hcpriv = NULL;
3052 	spin_unlock_irqrestore(&xhci->lock, flags);
3053 }
3054 
3055 /*
3056  * Called after usb core issues a clear halt control message.
3057  * The host side of the halt should already be cleared by a reset endpoint
3058  * command issued when the STALL event was received.
3059  *
3060  * The reset endpoint command may only be issued to endpoints in the halted
3061  * state. For software that wishes to reset the data toggle or sequence number
3062  * of an endpoint that isn't in the halted state this function will issue a
3063  * configure endpoint command with the Drop and Add bits set for the target
3064  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3065  */
3066 
3067 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3068 		struct usb_host_endpoint *host_ep)
3069 {
3070 	struct xhci_hcd *xhci;
3071 	struct usb_device *udev;
3072 	struct xhci_virt_device *vdev;
3073 	struct xhci_virt_ep *ep;
3074 	struct xhci_input_control_ctx *ctrl_ctx;
3075 	struct xhci_command *stop_cmd, *cfg_cmd;
3076 	unsigned int ep_index;
3077 	unsigned long flags;
3078 	u32 ep_flag;
3079 	int err;
3080 
3081 	xhci = hcd_to_xhci(hcd);
3082 	if (!host_ep->hcpriv)
3083 		return;
3084 	udev = (struct usb_device *) host_ep->hcpriv;
3085 	vdev = xhci->devs[udev->slot_id];
3086 
3087 	/*
3088 	 * vdev may be lost due to xHC restore error and re-initialization
3089 	 * during S3/S4 resume. A new vdev will be allocated later by
3090 	 * xhci_discover_or_reset_device()
3091 	 */
3092 	if (!udev->slot_id || !vdev)
3093 		return;
3094 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3095 	ep = &vdev->eps[ep_index];
3096 
3097 	/* Bail out if toggle is already being cleared by a endpoint reset */
3098 	spin_lock_irqsave(&xhci->lock, flags);
3099 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3100 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3101 		spin_unlock_irqrestore(&xhci->lock, flags);
3102 		return;
3103 	}
3104 	spin_unlock_irqrestore(&xhci->lock, flags);
3105 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3106 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3107 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3108 		return;
3109 
3110 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3111 
3112 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3113 		return;
3114 
3115 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3116 	if (!stop_cmd)
3117 		return;
3118 
3119 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3120 	if (!cfg_cmd)
3121 		goto cleanup;
3122 
3123 	spin_lock_irqsave(&xhci->lock, flags);
3124 
3125 	/* block queuing new trbs and ringing ep doorbell */
3126 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3127 
3128 	/*
3129 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3130 	 * Driver is required to synchronously cancel all transfer request.
3131 	 * Stop the endpoint to force xHC to update the output context
3132 	 */
3133 
3134 	if (!list_empty(&ep->ring->td_list)) {
3135 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3136 		spin_unlock_irqrestore(&xhci->lock, flags);
3137 		xhci_free_command(xhci, cfg_cmd);
3138 		goto cleanup;
3139 	}
3140 
3141 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3142 					ep_index, 0);
3143 	if (err < 0) {
3144 		spin_unlock_irqrestore(&xhci->lock, flags);
3145 		xhci_free_command(xhci, cfg_cmd);
3146 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3147 				__func__, err);
3148 		goto cleanup;
3149 	}
3150 
3151 	xhci_ring_cmd_db(xhci);
3152 	spin_unlock_irqrestore(&xhci->lock, flags);
3153 
3154 	wait_for_completion(stop_cmd->completion);
3155 
3156 	spin_lock_irqsave(&xhci->lock, flags);
3157 
3158 	/* config ep command clears toggle if add and drop ep flags are set */
3159 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3160 	if (!ctrl_ctx) {
3161 		spin_unlock_irqrestore(&xhci->lock, flags);
3162 		xhci_free_command(xhci, cfg_cmd);
3163 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3164 				__func__);
3165 		goto cleanup;
3166 	}
3167 
3168 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3169 					   ctrl_ctx, ep_flag, ep_flag);
3170 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3171 
3172 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3173 				      udev->slot_id, false);
3174 	if (err < 0) {
3175 		spin_unlock_irqrestore(&xhci->lock, flags);
3176 		xhci_free_command(xhci, cfg_cmd);
3177 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3178 				__func__, err);
3179 		goto cleanup;
3180 	}
3181 
3182 	xhci_ring_cmd_db(xhci);
3183 	spin_unlock_irqrestore(&xhci->lock, flags);
3184 
3185 	wait_for_completion(cfg_cmd->completion);
3186 
3187 	xhci_free_command(xhci, cfg_cmd);
3188 cleanup:
3189 	xhci_free_command(xhci, stop_cmd);
3190 	spin_lock_irqsave(&xhci->lock, flags);
3191 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3192 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3193 	spin_unlock_irqrestore(&xhci->lock, flags);
3194 }
3195 
3196 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3197 		struct usb_device *udev, struct usb_host_endpoint *ep,
3198 		unsigned int slot_id)
3199 {
3200 	int ret;
3201 	unsigned int ep_index;
3202 	unsigned int ep_state;
3203 
3204 	if (!ep)
3205 		return -EINVAL;
3206 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3207 	if (ret <= 0)
3208 		return ret ? ret : -EINVAL;
3209 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3210 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3211 				" descriptor for ep 0x%x does not support streams\n",
3212 				ep->desc.bEndpointAddress);
3213 		return -EINVAL;
3214 	}
3215 
3216 	ep_index = xhci_get_endpoint_index(&ep->desc);
3217 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3218 	if (ep_state & EP_HAS_STREAMS ||
3219 			ep_state & EP_GETTING_STREAMS) {
3220 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3221 				"already has streams set up.\n",
3222 				ep->desc.bEndpointAddress);
3223 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3224 				"dynamic stream context array reallocation.\n");
3225 		return -EINVAL;
3226 	}
3227 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3228 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3229 				"endpoint 0x%x; URBs are pending.\n",
3230 				ep->desc.bEndpointAddress);
3231 		return -EINVAL;
3232 	}
3233 	return 0;
3234 }
3235 
3236 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3237 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3238 {
3239 	unsigned int max_streams;
3240 
3241 	/* The stream context array size must be a power of two */
3242 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3243 	/*
3244 	 * Find out how many primary stream array entries the host controller
3245 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3246 	 * level page entries), but that's an optional feature for xHCI host
3247 	 * controllers. xHCs must support at least 4 stream IDs.
3248 	 */
3249 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3250 	if (*num_stream_ctxs > max_streams) {
3251 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3252 				max_streams);
3253 		*num_stream_ctxs = max_streams;
3254 		*num_streams = max_streams;
3255 	}
3256 }
3257 
3258 /* Returns an error code if one of the endpoint already has streams.
3259  * This does not change any data structures, it only checks and gathers
3260  * information.
3261  */
3262 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3263 		struct usb_device *udev,
3264 		struct usb_host_endpoint **eps, unsigned int num_eps,
3265 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3266 {
3267 	unsigned int max_streams;
3268 	unsigned int endpoint_flag;
3269 	int i;
3270 	int ret;
3271 
3272 	for (i = 0; i < num_eps; i++) {
3273 		ret = xhci_check_streams_endpoint(xhci, udev,
3274 				eps[i], udev->slot_id);
3275 		if (ret < 0)
3276 			return ret;
3277 
3278 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3279 		if (max_streams < (*num_streams - 1)) {
3280 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3281 					eps[i]->desc.bEndpointAddress,
3282 					max_streams);
3283 			*num_streams = max_streams+1;
3284 		}
3285 
3286 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3287 		if (*changed_ep_bitmask & endpoint_flag)
3288 			return -EINVAL;
3289 		*changed_ep_bitmask |= endpoint_flag;
3290 	}
3291 	return 0;
3292 }
3293 
3294 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3295 		struct usb_device *udev,
3296 		struct usb_host_endpoint **eps, unsigned int num_eps)
3297 {
3298 	u32 changed_ep_bitmask = 0;
3299 	unsigned int slot_id;
3300 	unsigned int ep_index;
3301 	unsigned int ep_state;
3302 	int i;
3303 
3304 	slot_id = udev->slot_id;
3305 	if (!xhci->devs[slot_id])
3306 		return 0;
3307 
3308 	for (i = 0; i < num_eps; i++) {
3309 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3310 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3311 		/* Are streams already being freed for the endpoint? */
3312 		if (ep_state & EP_GETTING_NO_STREAMS) {
3313 			xhci_warn(xhci, "WARN Can't disable streams for "
3314 					"endpoint 0x%x, "
3315 					"streams are being disabled already\n",
3316 					eps[i]->desc.bEndpointAddress);
3317 			return 0;
3318 		}
3319 		/* Are there actually any streams to free? */
3320 		if (!(ep_state & EP_HAS_STREAMS) &&
3321 				!(ep_state & EP_GETTING_STREAMS)) {
3322 			xhci_warn(xhci, "WARN Can't disable streams for "
3323 					"endpoint 0x%x, "
3324 					"streams are already disabled!\n",
3325 					eps[i]->desc.bEndpointAddress);
3326 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3327 					"with non-streams endpoint\n");
3328 			return 0;
3329 		}
3330 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3331 	}
3332 	return changed_ep_bitmask;
3333 }
3334 
3335 /*
3336  * The USB device drivers use this function (through the HCD interface in USB
3337  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3338  * coordinate mass storage command queueing across multiple endpoints (basically
3339  * a stream ID == a task ID).
3340  *
3341  * Setting up streams involves allocating the same size stream context array
3342  * for each endpoint and issuing a configure endpoint command for all endpoints.
3343  *
3344  * Don't allow the call to succeed if one endpoint only supports one stream
3345  * (which means it doesn't support streams at all).
3346  *
3347  * Drivers may get less stream IDs than they asked for, if the host controller
3348  * hardware or endpoints claim they can't support the number of requested
3349  * stream IDs.
3350  */
3351 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3352 		struct usb_host_endpoint **eps, unsigned int num_eps,
3353 		unsigned int num_streams, gfp_t mem_flags)
3354 {
3355 	int i, ret;
3356 	struct xhci_hcd *xhci;
3357 	struct xhci_virt_device *vdev;
3358 	struct xhci_command *config_cmd;
3359 	struct xhci_input_control_ctx *ctrl_ctx;
3360 	unsigned int ep_index;
3361 	unsigned int num_stream_ctxs;
3362 	unsigned int max_packet;
3363 	unsigned long flags;
3364 	u32 changed_ep_bitmask = 0;
3365 
3366 	if (!eps)
3367 		return -EINVAL;
3368 
3369 	/* Add one to the number of streams requested to account for
3370 	 * stream 0 that is reserved for xHCI usage.
3371 	 */
3372 	num_streams += 1;
3373 	xhci = hcd_to_xhci(hcd);
3374 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3375 			num_streams);
3376 
3377 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3378 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3379 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3380 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3381 		return -ENOSYS;
3382 	}
3383 
3384 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3385 	if (!config_cmd)
3386 		return -ENOMEM;
3387 
3388 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3389 	if (!ctrl_ctx) {
3390 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3391 				__func__);
3392 		xhci_free_command(xhci, config_cmd);
3393 		return -ENOMEM;
3394 	}
3395 
3396 	/* Check to make sure all endpoints are not already configured for
3397 	 * streams.  While we're at it, find the maximum number of streams that
3398 	 * all the endpoints will support and check for duplicate endpoints.
3399 	 */
3400 	spin_lock_irqsave(&xhci->lock, flags);
3401 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3402 			num_eps, &num_streams, &changed_ep_bitmask);
3403 	if (ret < 0) {
3404 		xhci_free_command(xhci, config_cmd);
3405 		spin_unlock_irqrestore(&xhci->lock, flags);
3406 		return ret;
3407 	}
3408 	if (num_streams <= 1) {
3409 		xhci_warn(xhci, "WARN: endpoints can't handle "
3410 				"more than one stream.\n");
3411 		xhci_free_command(xhci, config_cmd);
3412 		spin_unlock_irqrestore(&xhci->lock, flags);
3413 		return -EINVAL;
3414 	}
3415 	vdev = xhci->devs[udev->slot_id];
3416 	/* Mark each endpoint as being in transition, so
3417 	 * xhci_urb_enqueue() will reject all URBs.
3418 	 */
3419 	for (i = 0; i < num_eps; i++) {
3420 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3421 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3422 	}
3423 	spin_unlock_irqrestore(&xhci->lock, flags);
3424 
3425 	/* Setup internal data structures and allocate HW data structures for
3426 	 * streams (but don't install the HW structures in the input context
3427 	 * until we're sure all memory allocation succeeded).
3428 	 */
3429 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3430 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3431 			num_stream_ctxs, num_streams);
3432 
3433 	for (i = 0; i < num_eps; i++) {
3434 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3435 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3436 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3437 				num_stream_ctxs,
3438 				num_streams,
3439 				max_packet, mem_flags);
3440 		if (!vdev->eps[ep_index].stream_info)
3441 			goto cleanup;
3442 		/* Set maxPstreams in endpoint context and update deq ptr to
3443 		 * point to stream context array. FIXME
3444 		 */
3445 	}
3446 
3447 	/* Set up the input context for a configure endpoint command. */
3448 	for (i = 0; i < num_eps; i++) {
3449 		struct xhci_ep_ctx *ep_ctx;
3450 
3451 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3452 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3453 
3454 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3455 				vdev->out_ctx, ep_index);
3456 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3457 				vdev->eps[ep_index].stream_info);
3458 	}
3459 	/* Tell the HW to drop its old copy of the endpoint context info
3460 	 * and add the updated copy from the input context.
3461 	 */
3462 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3463 			vdev->out_ctx, ctrl_ctx,
3464 			changed_ep_bitmask, changed_ep_bitmask);
3465 
3466 	/* Issue and wait for the configure endpoint command */
3467 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3468 			false, false);
3469 
3470 	/* xHC rejected the configure endpoint command for some reason, so we
3471 	 * leave the old ring intact and free our internal streams data
3472 	 * structure.
3473 	 */
3474 	if (ret < 0)
3475 		goto cleanup;
3476 
3477 	spin_lock_irqsave(&xhci->lock, flags);
3478 	for (i = 0; i < num_eps; i++) {
3479 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3480 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3481 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3482 			 udev->slot_id, ep_index);
3483 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3484 	}
3485 	xhci_free_command(xhci, config_cmd);
3486 	spin_unlock_irqrestore(&xhci->lock, flags);
3487 
3488 	for (i = 0; i < num_eps; i++) {
3489 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3490 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3491 	}
3492 	/* Subtract 1 for stream 0, which drivers can't use */
3493 	return num_streams - 1;
3494 
3495 cleanup:
3496 	/* If it didn't work, free the streams! */
3497 	for (i = 0; i < num_eps; i++) {
3498 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3499 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3500 		vdev->eps[ep_index].stream_info = NULL;
3501 		/* FIXME Unset maxPstreams in endpoint context and
3502 		 * update deq ptr to point to normal string ring.
3503 		 */
3504 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3505 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3506 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3507 	}
3508 	xhci_free_command(xhci, config_cmd);
3509 	return -ENOMEM;
3510 }
3511 
3512 /* Transition the endpoint from using streams to being a "normal" endpoint
3513  * without streams.
3514  *
3515  * Modify the endpoint context state, submit a configure endpoint command,
3516  * and free all endpoint rings for streams if that completes successfully.
3517  */
3518 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3519 		struct usb_host_endpoint **eps, unsigned int num_eps,
3520 		gfp_t mem_flags)
3521 {
3522 	int i, ret;
3523 	struct xhci_hcd *xhci;
3524 	struct xhci_virt_device *vdev;
3525 	struct xhci_command *command;
3526 	struct xhci_input_control_ctx *ctrl_ctx;
3527 	unsigned int ep_index;
3528 	unsigned long flags;
3529 	u32 changed_ep_bitmask;
3530 
3531 	xhci = hcd_to_xhci(hcd);
3532 	vdev = xhci->devs[udev->slot_id];
3533 
3534 	/* Set up a configure endpoint command to remove the streams rings */
3535 	spin_lock_irqsave(&xhci->lock, flags);
3536 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3537 			udev, eps, num_eps);
3538 	if (changed_ep_bitmask == 0) {
3539 		spin_unlock_irqrestore(&xhci->lock, flags);
3540 		return -EINVAL;
3541 	}
3542 
3543 	/* Use the xhci_command structure from the first endpoint.  We may have
3544 	 * allocated too many, but the driver may call xhci_free_streams() for
3545 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3546 	 */
3547 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3548 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3549 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3550 	if (!ctrl_ctx) {
3551 		spin_unlock_irqrestore(&xhci->lock, flags);
3552 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3553 				__func__);
3554 		return -EINVAL;
3555 	}
3556 
3557 	for (i = 0; i < num_eps; i++) {
3558 		struct xhci_ep_ctx *ep_ctx;
3559 
3560 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3561 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3562 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3563 			EP_GETTING_NO_STREAMS;
3564 
3565 		xhci_endpoint_copy(xhci, command->in_ctx,
3566 				vdev->out_ctx, ep_index);
3567 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3568 				&vdev->eps[ep_index]);
3569 	}
3570 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3571 			vdev->out_ctx, ctrl_ctx,
3572 			changed_ep_bitmask, changed_ep_bitmask);
3573 	spin_unlock_irqrestore(&xhci->lock, flags);
3574 
3575 	/* Issue and wait for the configure endpoint command,
3576 	 * which must succeed.
3577 	 */
3578 	ret = xhci_configure_endpoint(xhci, udev, command,
3579 			false, true);
3580 
3581 	/* xHC rejected the configure endpoint command for some reason, so we
3582 	 * leave the streams rings intact.
3583 	 */
3584 	if (ret < 0)
3585 		return ret;
3586 
3587 	spin_lock_irqsave(&xhci->lock, flags);
3588 	for (i = 0; i < num_eps; i++) {
3589 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3590 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3591 		vdev->eps[ep_index].stream_info = NULL;
3592 		/* FIXME Unset maxPstreams in endpoint context and
3593 		 * update deq ptr to point to normal string ring.
3594 		 */
3595 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3596 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3597 	}
3598 	spin_unlock_irqrestore(&xhci->lock, flags);
3599 
3600 	return 0;
3601 }
3602 
3603 /*
3604  * Deletes endpoint resources for endpoints that were active before a Reset
3605  * Device command, or a Disable Slot command.  The Reset Device command leaves
3606  * the control endpoint intact, whereas the Disable Slot command deletes it.
3607  *
3608  * Must be called with xhci->lock held.
3609  */
3610 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3611 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3612 {
3613 	int i;
3614 	unsigned int num_dropped_eps = 0;
3615 	unsigned int drop_flags = 0;
3616 
3617 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3618 		if (virt_dev->eps[i].ring) {
3619 			drop_flags |= 1 << i;
3620 			num_dropped_eps++;
3621 		}
3622 	}
3623 	xhci->num_active_eps -= num_dropped_eps;
3624 	if (num_dropped_eps)
3625 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3626 				"Dropped %u ep ctxs, flags = 0x%x, "
3627 				"%u now active.",
3628 				num_dropped_eps, drop_flags,
3629 				xhci->num_active_eps);
3630 }
3631 
3632 /*
3633  * This submits a Reset Device Command, which will set the device state to 0,
3634  * set the device address to 0, and disable all the endpoints except the default
3635  * control endpoint.  The USB core should come back and call
3636  * xhci_address_device(), and then re-set up the configuration.  If this is
3637  * called because of a usb_reset_and_verify_device(), then the old alternate
3638  * settings will be re-installed through the normal bandwidth allocation
3639  * functions.
3640  *
3641  * Wait for the Reset Device command to finish.  Remove all structures
3642  * associated with the endpoints that were disabled.  Clear the input device
3643  * structure? Reset the control endpoint 0 max packet size?
3644  *
3645  * If the virt_dev to be reset does not exist or does not match the udev,
3646  * it means the device is lost, possibly due to the xHC restore error and
3647  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3648  * re-allocate the device.
3649  */
3650 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3651 		struct usb_device *udev)
3652 {
3653 	int ret, i;
3654 	unsigned long flags;
3655 	struct xhci_hcd *xhci;
3656 	unsigned int slot_id;
3657 	struct xhci_virt_device *virt_dev;
3658 	struct xhci_command *reset_device_cmd;
3659 	struct xhci_slot_ctx *slot_ctx;
3660 	int old_active_eps = 0;
3661 
3662 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3663 	if (ret <= 0)
3664 		return ret;
3665 	xhci = hcd_to_xhci(hcd);
3666 	slot_id = udev->slot_id;
3667 	virt_dev = xhci->devs[slot_id];
3668 	if (!virt_dev) {
3669 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3670 				"not exist. Re-allocate the device\n", slot_id);
3671 		ret = xhci_alloc_dev(hcd, udev);
3672 		if (ret == 1)
3673 			return 0;
3674 		else
3675 			return -EINVAL;
3676 	}
3677 
3678 	if (virt_dev->tt_info)
3679 		old_active_eps = virt_dev->tt_info->active_eps;
3680 
3681 	if (virt_dev->udev != udev) {
3682 		/* If the virt_dev and the udev does not match, this virt_dev
3683 		 * may belong to another udev.
3684 		 * Re-allocate the device.
3685 		 */
3686 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3687 				"not match the udev. Re-allocate the device\n",
3688 				slot_id);
3689 		ret = xhci_alloc_dev(hcd, udev);
3690 		if (ret == 1)
3691 			return 0;
3692 		else
3693 			return -EINVAL;
3694 	}
3695 
3696 	/* If device is not setup, there is no point in resetting it */
3697 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3698 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3699 						SLOT_STATE_DISABLED)
3700 		return 0;
3701 
3702 	trace_xhci_discover_or_reset_device(slot_ctx);
3703 
3704 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3705 	/* Allocate the command structure that holds the struct completion.
3706 	 * Assume we're in process context, since the normal device reset
3707 	 * process has to wait for the device anyway.  Storage devices are
3708 	 * reset as part of error handling, so use GFP_NOIO instead of
3709 	 * GFP_KERNEL.
3710 	 */
3711 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3712 	if (!reset_device_cmd) {
3713 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3714 		return -ENOMEM;
3715 	}
3716 
3717 	/* Attempt to submit the Reset Device command to the command ring */
3718 	spin_lock_irqsave(&xhci->lock, flags);
3719 
3720 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3721 	if (ret) {
3722 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3723 		spin_unlock_irqrestore(&xhci->lock, flags);
3724 		goto command_cleanup;
3725 	}
3726 	xhci_ring_cmd_db(xhci);
3727 	spin_unlock_irqrestore(&xhci->lock, flags);
3728 
3729 	/* Wait for the Reset Device command to finish */
3730 	wait_for_completion(reset_device_cmd->completion);
3731 
3732 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3733 	 * unless we tried to reset a slot ID that wasn't enabled,
3734 	 * or the device wasn't in the addressed or configured state.
3735 	 */
3736 	ret = reset_device_cmd->status;
3737 	switch (ret) {
3738 	case COMP_COMMAND_ABORTED:
3739 	case COMP_COMMAND_RING_STOPPED:
3740 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3741 		ret = -ETIME;
3742 		goto command_cleanup;
3743 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3744 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3745 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3746 				slot_id,
3747 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3748 		xhci_dbg(xhci, "Not freeing device rings.\n");
3749 		/* Don't treat this as an error.  May change my mind later. */
3750 		ret = 0;
3751 		goto command_cleanup;
3752 	case COMP_SUCCESS:
3753 		xhci_dbg(xhci, "Successful reset device command.\n");
3754 		break;
3755 	default:
3756 		if (xhci_is_vendor_info_code(xhci, ret))
3757 			break;
3758 		xhci_warn(xhci, "Unknown completion code %u for "
3759 				"reset device command.\n", ret);
3760 		ret = -EINVAL;
3761 		goto command_cleanup;
3762 	}
3763 
3764 	/* Free up host controller endpoint resources */
3765 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3766 		spin_lock_irqsave(&xhci->lock, flags);
3767 		/* Don't delete the default control endpoint resources */
3768 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3769 		spin_unlock_irqrestore(&xhci->lock, flags);
3770 	}
3771 
3772 	/* Everything but endpoint 0 is disabled, so free the rings. */
3773 	for (i = 1; i < 31; i++) {
3774 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3775 
3776 		if (ep->ep_state & EP_HAS_STREAMS) {
3777 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3778 					xhci_get_endpoint_address(i));
3779 			xhci_free_stream_info(xhci, ep->stream_info);
3780 			ep->stream_info = NULL;
3781 			ep->ep_state &= ~EP_HAS_STREAMS;
3782 		}
3783 
3784 		if (ep->ring) {
3785 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3786 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3787 		}
3788 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3789 			xhci_drop_ep_from_interval_table(xhci,
3790 					&virt_dev->eps[i].bw_info,
3791 					virt_dev->bw_table,
3792 					udev,
3793 					&virt_dev->eps[i],
3794 					virt_dev->tt_info);
3795 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3796 	}
3797 	/* If necessary, update the number of active TTs on this root port */
3798 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3799 	virt_dev->flags = 0;
3800 	ret = 0;
3801 
3802 command_cleanup:
3803 	xhci_free_command(xhci, reset_device_cmd);
3804 	return ret;
3805 }
3806 
3807 /*
3808  * At this point, the struct usb_device is about to go away, the device has
3809  * disconnected, and all traffic has been stopped and the endpoints have been
3810  * disabled.  Free any HC data structures associated with that device.
3811  */
3812 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3813 {
3814 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3815 	struct xhci_virt_device *virt_dev;
3816 	struct xhci_slot_ctx *slot_ctx;
3817 	unsigned long flags;
3818 	int i, ret;
3819 
3820 	/*
3821 	 * We called pm_runtime_get_noresume when the device was attached.
3822 	 * Decrement the counter here to allow controller to runtime suspend
3823 	 * if no devices remain.
3824 	 */
3825 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3826 		pm_runtime_put_noidle(hcd->self.controller);
3827 
3828 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3829 	/* If the host is halted due to driver unload, we still need to free the
3830 	 * device.
3831 	 */
3832 	if (ret <= 0 && ret != -ENODEV)
3833 		return;
3834 
3835 	virt_dev = xhci->devs[udev->slot_id];
3836 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3837 	trace_xhci_free_dev(slot_ctx);
3838 
3839 	/* Stop any wayward timer functions (which may grab the lock) */
3840 	for (i = 0; i < 31; i++)
3841 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3842 	virt_dev->udev = NULL;
3843 	xhci_disable_slot(xhci, udev->slot_id);
3844 
3845 	spin_lock_irqsave(&xhci->lock, flags);
3846 	xhci_free_virt_device(xhci, udev->slot_id);
3847 	spin_unlock_irqrestore(&xhci->lock, flags);
3848 
3849 }
3850 
3851 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3852 {
3853 	struct xhci_command *command;
3854 	unsigned long flags;
3855 	u32 state;
3856 	int ret;
3857 
3858 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3859 	if (!command)
3860 		return -ENOMEM;
3861 
3862 	xhci_debugfs_remove_slot(xhci, slot_id);
3863 
3864 	spin_lock_irqsave(&xhci->lock, flags);
3865 	/* Don't disable the slot if the host controller is dead. */
3866 	state = readl(&xhci->op_regs->status);
3867 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3868 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3869 		spin_unlock_irqrestore(&xhci->lock, flags);
3870 		kfree(command);
3871 		return -ENODEV;
3872 	}
3873 
3874 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3875 				slot_id);
3876 	if (ret) {
3877 		spin_unlock_irqrestore(&xhci->lock, flags);
3878 		kfree(command);
3879 		return ret;
3880 	}
3881 	xhci_ring_cmd_db(xhci);
3882 	spin_unlock_irqrestore(&xhci->lock, flags);
3883 
3884 	wait_for_completion(command->completion);
3885 
3886 	if (command->status != COMP_SUCCESS)
3887 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3888 			  slot_id, command->status);
3889 
3890 	xhci_free_command(xhci, command);
3891 
3892 	return 0;
3893 }
3894 
3895 /*
3896  * Checks if we have enough host controller resources for the default control
3897  * endpoint.
3898  *
3899  * Must be called with xhci->lock held.
3900  */
3901 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3902 {
3903 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3904 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3905 				"Not enough ep ctxs: "
3906 				"%u active, need to add 1, limit is %u.",
3907 				xhci->num_active_eps, xhci->limit_active_eps);
3908 		return -ENOMEM;
3909 	}
3910 	xhci->num_active_eps += 1;
3911 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3912 			"Adding 1 ep ctx, %u now active.",
3913 			xhci->num_active_eps);
3914 	return 0;
3915 }
3916 
3917 
3918 /*
3919  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3920  * timed out, or allocating memory failed.  Returns 1 on success.
3921  */
3922 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3923 {
3924 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3925 	struct xhci_virt_device *vdev;
3926 	struct xhci_slot_ctx *slot_ctx;
3927 	unsigned long flags;
3928 	int ret, slot_id;
3929 	struct xhci_command *command;
3930 
3931 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3932 	if (!command)
3933 		return 0;
3934 
3935 	spin_lock_irqsave(&xhci->lock, flags);
3936 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3937 	if (ret) {
3938 		spin_unlock_irqrestore(&xhci->lock, flags);
3939 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3940 		xhci_free_command(xhci, command);
3941 		return 0;
3942 	}
3943 	xhci_ring_cmd_db(xhci);
3944 	spin_unlock_irqrestore(&xhci->lock, flags);
3945 
3946 	wait_for_completion(command->completion);
3947 	slot_id = command->slot_id;
3948 
3949 	if (!slot_id || command->status != COMP_SUCCESS) {
3950 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3951 			 xhci_trb_comp_code_string(command->status));
3952 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3953 				HCS_MAX_SLOTS(
3954 					readl(&xhci->cap_regs->hcs_params1)));
3955 		xhci_free_command(xhci, command);
3956 		return 0;
3957 	}
3958 
3959 	xhci_free_command(xhci, command);
3960 
3961 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3962 		spin_lock_irqsave(&xhci->lock, flags);
3963 		ret = xhci_reserve_host_control_ep_resources(xhci);
3964 		if (ret) {
3965 			spin_unlock_irqrestore(&xhci->lock, flags);
3966 			xhci_warn(xhci, "Not enough host resources, "
3967 					"active endpoint contexts = %u\n",
3968 					xhci->num_active_eps);
3969 			goto disable_slot;
3970 		}
3971 		spin_unlock_irqrestore(&xhci->lock, flags);
3972 	}
3973 	/* Use GFP_NOIO, since this function can be called from
3974 	 * xhci_discover_or_reset_device(), which may be called as part of
3975 	 * mass storage driver error handling.
3976 	 */
3977 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3978 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3979 		goto disable_slot;
3980 	}
3981 	vdev = xhci->devs[slot_id];
3982 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3983 	trace_xhci_alloc_dev(slot_ctx);
3984 
3985 	udev->slot_id = slot_id;
3986 
3987 	xhci_debugfs_create_slot(xhci, slot_id);
3988 
3989 	/*
3990 	 * If resetting upon resume, we can't put the controller into runtime
3991 	 * suspend if there is a device attached.
3992 	 */
3993 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3994 		pm_runtime_get_noresume(hcd->self.controller);
3995 
3996 	/* Is this a LS or FS device under a HS hub? */
3997 	/* Hub or peripherial? */
3998 	return 1;
3999 
4000 disable_slot:
4001 	xhci_disable_slot(xhci, udev->slot_id);
4002 	xhci_free_virt_device(xhci, udev->slot_id);
4003 
4004 	return 0;
4005 }
4006 
4007 /*
4008  * Issue an Address Device command and optionally send a corresponding
4009  * SetAddress request to the device.
4010  */
4011 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4012 			     enum xhci_setup_dev setup)
4013 {
4014 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4015 	unsigned long flags;
4016 	struct xhci_virt_device *virt_dev;
4017 	int ret = 0;
4018 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4019 	struct xhci_slot_ctx *slot_ctx;
4020 	struct xhci_input_control_ctx *ctrl_ctx;
4021 	u64 temp_64;
4022 	struct xhci_command *command = NULL;
4023 
4024 	mutex_lock(&xhci->mutex);
4025 
4026 	if (xhci->xhc_state) {	/* dying, removing or halted */
4027 		ret = -ESHUTDOWN;
4028 		goto out;
4029 	}
4030 
4031 	if (!udev->slot_id) {
4032 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4033 				"Bad Slot ID %d", udev->slot_id);
4034 		ret = -EINVAL;
4035 		goto out;
4036 	}
4037 
4038 	virt_dev = xhci->devs[udev->slot_id];
4039 
4040 	if (WARN_ON(!virt_dev)) {
4041 		/*
4042 		 * In plug/unplug torture test with an NEC controller,
4043 		 * a zero-dereference was observed once due to virt_dev = 0.
4044 		 * Print useful debug rather than crash if it is observed again!
4045 		 */
4046 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4047 			udev->slot_id);
4048 		ret = -EINVAL;
4049 		goto out;
4050 	}
4051 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4052 	trace_xhci_setup_device_slot(slot_ctx);
4053 
4054 	if (setup == SETUP_CONTEXT_ONLY) {
4055 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4056 		    SLOT_STATE_DEFAULT) {
4057 			xhci_dbg(xhci, "Slot already in default state\n");
4058 			goto out;
4059 		}
4060 	}
4061 
4062 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4063 	if (!command) {
4064 		ret = -ENOMEM;
4065 		goto out;
4066 	}
4067 
4068 	command->in_ctx = virt_dev->in_ctx;
4069 
4070 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4071 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4072 	if (!ctrl_ctx) {
4073 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4074 				__func__);
4075 		ret = -EINVAL;
4076 		goto out;
4077 	}
4078 	/*
4079 	 * If this is the first Set Address since device plug-in or
4080 	 * virt_device realloaction after a resume with an xHCI power loss,
4081 	 * then set up the slot context.
4082 	 */
4083 	if (!slot_ctx->dev_info)
4084 		xhci_setup_addressable_virt_dev(xhci, udev);
4085 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4086 	else
4087 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4088 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4089 	ctrl_ctx->drop_flags = 0;
4090 
4091 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4092 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4093 
4094 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4095 	spin_lock_irqsave(&xhci->lock, flags);
4096 	trace_xhci_setup_device(virt_dev);
4097 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4098 					udev->slot_id, setup);
4099 	if (ret) {
4100 		spin_unlock_irqrestore(&xhci->lock, flags);
4101 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4102 				"FIXME: allocate a command ring segment");
4103 		goto out;
4104 	}
4105 	xhci_ring_cmd_db(xhci);
4106 	spin_unlock_irqrestore(&xhci->lock, flags);
4107 
4108 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4109 	wait_for_completion(command->completion);
4110 
4111 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4112 	 * the SetAddress() "recovery interval" required by USB and aborting the
4113 	 * command on a timeout.
4114 	 */
4115 	switch (command->status) {
4116 	case COMP_COMMAND_ABORTED:
4117 	case COMP_COMMAND_RING_STOPPED:
4118 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4119 		ret = -ETIME;
4120 		break;
4121 	case COMP_CONTEXT_STATE_ERROR:
4122 	case COMP_SLOT_NOT_ENABLED_ERROR:
4123 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4124 			 act, udev->slot_id);
4125 		ret = -EINVAL;
4126 		break;
4127 	case COMP_USB_TRANSACTION_ERROR:
4128 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4129 
4130 		mutex_unlock(&xhci->mutex);
4131 		ret = xhci_disable_slot(xhci, udev->slot_id);
4132 		xhci_free_virt_device(xhci, udev->slot_id);
4133 		if (!ret)
4134 			xhci_alloc_dev(hcd, udev);
4135 		kfree(command->completion);
4136 		kfree(command);
4137 		return -EPROTO;
4138 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4139 		dev_warn(&udev->dev,
4140 			 "ERROR: Incompatible device for setup %s command\n", act);
4141 		ret = -ENODEV;
4142 		break;
4143 	case COMP_SUCCESS:
4144 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145 			       "Successful setup %s command", act);
4146 		break;
4147 	default:
4148 		xhci_err(xhci,
4149 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4150 			 act, command->status);
4151 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4152 		ret = -EINVAL;
4153 		break;
4154 	}
4155 	if (ret)
4156 		goto out;
4157 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4158 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4159 			"Op regs DCBAA ptr = %#016llx", temp_64);
4160 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4161 		"Slot ID %d dcbaa entry @%p = %#016llx",
4162 		udev->slot_id,
4163 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4164 		(unsigned long long)
4165 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4166 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4167 			"Output Context DMA address = %#08llx",
4168 			(unsigned long long)virt_dev->out_ctx->dma);
4169 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4170 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4171 	/*
4172 	 * USB core uses address 1 for the roothubs, so we add one to the
4173 	 * address given back to us by the HC.
4174 	 */
4175 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4176 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4177 	/* Zero the input context control for later use */
4178 	ctrl_ctx->add_flags = 0;
4179 	ctrl_ctx->drop_flags = 0;
4180 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4181 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4182 
4183 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4184 		       "Internal device address = %d",
4185 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4186 out:
4187 	mutex_unlock(&xhci->mutex);
4188 	if (command) {
4189 		kfree(command->completion);
4190 		kfree(command);
4191 	}
4192 	return ret;
4193 }
4194 
4195 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4196 {
4197 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4198 }
4199 
4200 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4201 {
4202 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4203 }
4204 
4205 /*
4206  * Transfer the port index into real index in the HW port status
4207  * registers. Caculate offset between the port's PORTSC register
4208  * and port status base. Divide the number of per port register
4209  * to get the real index. The raw port number bases 1.
4210  */
4211 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4212 {
4213 	struct xhci_hub *rhub;
4214 
4215 	rhub = xhci_get_rhub(hcd);
4216 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4217 }
4218 
4219 /*
4220  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4221  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4222  */
4223 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4224 			struct usb_device *udev, u16 max_exit_latency)
4225 {
4226 	struct xhci_virt_device *virt_dev;
4227 	struct xhci_command *command;
4228 	struct xhci_input_control_ctx *ctrl_ctx;
4229 	struct xhci_slot_ctx *slot_ctx;
4230 	unsigned long flags;
4231 	int ret;
4232 
4233 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4234 	if (!command)
4235 		return -ENOMEM;
4236 
4237 	spin_lock_irqsave(&xhci->lock, flags);
4238 
4239 	virt_dev = xhci->devs[udev->slot_id];
4240 
4241 	/*
4242 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4243 	 * xHC was re-initialized. Exit latency will be set later after
4244 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4245 	 */
4246 
4247 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4248 		spin_unlock_irqrestore(&xhci->lock, flags);
4249 		xhci_free_command(xhci, command);
4250 		return 0;
4251 	}
4252 
4253 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4254 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4255 	if (!ctrl_ctx) {
4256 		spin_unlock_irqrestore(&xhci->lock, flags);
4257 		xhci_free_command(xhci, command);
4258 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4259 				__func__);
4260 		return -ENOMEM;
4261 	}
4262 
4263 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4264 	spin_unlock_irqrestore(&xhci->lock, flags);
4265 
4266 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4267 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4268 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4269 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4270 	slot_ctx->dev_state = 0;
4271 
4272 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4273 			"Set up evaluate context for LPM MEL change.");
4274 
4275 	/* Issue and wait for the evaluate context command. */
4276 	ret = xhci_configure_endpoint(xhci, udev, command,
4277 			true, true);
4278 
4279 	if (!ret) {
4280 		spin_lock_irqsave(&xhci->lock, flags);
4281 		virt_dev->current_mel = max_exit_latency;
4282 		spin_unlock_irqrestore(&xhci->lock, flags);
4283 	}
4284 
4285 	xhci_free_command(xhci, command);
4286 
4287 	return ret;
4288 }
4289 
4290 #ifdef CONFIG_PM
4291 
4292 /* BESL to HIRD Encoding array for USB2 LPM */
4293 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4294 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4295 
4296 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4297 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4298 					struct usb_device *udev)
4299 {
4300 	int u2del, besl, besl_host;
4301 	int besl_device = 0;
4302 	u32 field;
4303 
4304 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4305 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4306 
4307 	if (field & USB_BESL_SUPPORT) {
4308 		for (besl_host = 0; besl_host < 16; besl_host++) {
4309 			if (xhci_besl_encoding[besl_host] >= u2del)
4310 				break;
4311 		}
4312 		/* Use baseline BESL value as default */
4313 		if (field & USB_BESL_BASELINE_VALID)
4314 			besl_device = USB_GET_BESL_BASELINE(field);
4315 		else if (field & USB_BESL_DEEP_VALID)
4316 			besl_device = USB_GET_BESL_DEEP(field);
4317 	} else {
4318 		if (u2del <= 50)
4319 			besl_host = 0;
4320 		else
4321 			besl_host = (u2del - 51) / 75 + 1;
4322 	}
4323 
4324 	besl = besl_host + besl_device;
4325 	if (besl > 15)
4326 		besl = 15;
4327 
4328 	return besl;
4329 }
4330 
4331 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4332 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4333 {
4334 	u32 field;
4335 	int l1;
4336 	int besld = 0;
4337 	int hirdm = 0;
4338 
4339 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4340 
4341 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4342 	l1 = udev->l1_params.timeout / 256;
4343 
4344 	/* device has preferred BESLD */
4345 	if (field & USB_BESL_DEEP_VALID) {
4346 		besld = USB_GET_BESL_DEEP(field);
4347 		hirdm = 1;
4348 	}
4349 
4350 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4351 }
4352 
4353 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4354 			struct usb_device *udev, int enable)
4355 {
4356 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4357 	struct xhci_port **ports;
4358 	__le32 __iomem	*pm_addr, *hlpm_addr;
4359 	u32		pm_val, hlpm_val, field;
4360 	unsigned int	port_num;
4361 	unsigned long	flags;
4362 	int		hird, exit_latency;
4363 	int		ret;
4364 
4365 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4366 		return -EPERM;
4367 
4368 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4369 			!udev->lpm_capable)
4370 		return -EPERM;
4371 
4372 	if (!udev->parent || udev->parent->parent ||
4373 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4374 		return -EPERM;
4375 
4376 	if (udev->usb2_hw_lpm_capable != 1)
4377 		return -EPERM;
4378 
4379 	spin_lock_irqsave(&xhci->lock, flags);
4380 
4381 	ports = xhci->usb2_rhub.ports;
4382 	port_num = udev->portnum - 1;
4383 	pm_addr = ports[port_num]->addr + PORTPMSC;
4384 	pm_val = readl(pm_addr);
4385 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4386 
4387 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4388 			enable ? "enable" : "disable", port_num + 1);
4389 
4390 	if (enable) {
4391 		/* Host supports BESL timeout instead of HIRD */
4392 		if (udev->usb2_hw_lpm_besl_capable) {
4393 			/* if device doesn't have a preferred BESL value use a
4394 			 * default one which works with mixed HIRD and BESL
4395 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4396 			 */
4397 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4398 			if ((field & USB_BESL_SUPPORT) &&
4399 			    (field & USB_BESL_BASELINE_VALID))
4400 				hird = USB_GET_BESL_BASELINE(field);
4401 			else
4402 				hird = udev->l1_params.besl;
4403 
4404 			exit_latency = xhci_besl_encoding[hird];
4405 			spin_unlock_irqrestore(&xhci->lock, flags);
4406 
4407 			ret = xhci_change_max_exit_latency(xhci, udev,
4408 							   exit_latency);
4409 			if (ret < 0)
4410 				return ret;
4411 			spin_lock_irqsave(&xhci->lock, flags);
4412 
4413 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4414 			writel(hlpm_val, hlpm_addr);
4415 			/* flush write */
4416 			readl(hlpm_addr);
4417 		} else {
4418 			hird = xhci_calculate_hird_besl(xhci, udev);
4419 		}
4420 
4421 		pm_val &= ~PORT_HIRD_MASK;
4422 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4423 		writel(pm_val, pm_addr);
4424 		pm_val = readl(pm_addr);
4425 		pm_val |= PORT_HLE;
4426 		writel(pm_val, pm_addr);
4427 		/* flush write */
4428 		readl(pm_addr);
4429 	} else {
4430 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4431 		writel(pm_val, pm_addr);
4432 		/* flush write */
4433 		readl(pm_addr);
4434 		if (udev->usb2_hw_lpm_besl_capable) {
4435 			spin_unlock_irqrestore(&xhci->lock, flags);
4436 			xhci_change_max_exit_latency(xhci, udev, 0);
4437 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4438 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4439 					   100, 10000);
4440 			return 0;
4441 		}
4442 	}
4443 
4444 	spin_unlock_irqrestore(&xhci->lock, flags);
4445 	return 0;
4446 }
4447 
4448 /* check if a usb2 port supports a given extened capability protocol
4449  * only USB2 ports extended protocol capability values are cached.
4450  * Return 1 if capability is supported
4451  */
4452 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4453 					   unsigned capability)
4454 {
4455 	u32 port_offset, port_count;
4456 	int i;
4457 
4458 	for (i = 0; i < xhci->num_ext_caps; i++) {
4459 		if (xhci->ext_caps[i] & capability) {
4460 			/* port offsets starts at 1 */
4461 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4462 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4463 			if (port >= port_offset &&
4464 			    port < port_offset + port_count)
4465 				return 1;
4466 		}
4467 	}
4468 	return 0;
4469 }
4470 
4471 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4472 {
4473 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4474 	int		portnum = udev->portnum - 1;
4475 
4476 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4477 		return 0;
4478 
4479 	/* we only support lpm for non-hub device connected to root hub yet */
4480 	if (!udev->parent || udev->parent->parent ||
4481 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4482 		return 0;
4483 
4484 	if (xhci->hw_lpm_support == 1 &&
4485 			xhci_check_usb2_port_capability(
4486 				xhci, portnum, XHCI_HLC)) {
4487 		udev->usb2_hw_lpm_capable = 1;
4488 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4489 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4490 		if (xhci_check_usb2_port_capability(xhci, portnum,
4491 					XHCI_BLC))
4492 			udev->usb2_hw_lpm_besl_capable = 1;
4493 	}
4494 
4495 	return 0;
4496 }
4497 
4498 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4499 
4500 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4501 static unsigned long long xhci_service_interval_to_ns(
4502 		struct usb_endpoint_descriptor *desc)
4503 {
4504 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4505 }
4506 
4507 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4508 		enum usb3_link_state state)
4509 {
4510 	unsigned long long sel;
4511 	unsigned long long pel;
4512 	unsigned int max_sel_pel;
4513 	char *state_name;
4514 
4515 	switch (state) {
4516 	case USB3_LPM_U1:
4517 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4518 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4519 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4520 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4521 		state_name = "U1";
4522 		break;
4523 	case USB3_LPM_U2:
4524 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4525 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4526 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4527 		state_name = "U2";
4528 		break;
4529 	default:
4530 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4531 				__func__);
4532 		return USB3_LPM_DISABLED;
4533 	}
4534 
4535 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4536 		return USB3_LPM_DEVICE_INITIATED;
4537 
4538 	if (sel > max_sel_pel)
4539 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4540 				"due to long SEL %llu ms\n",
4541 				state_name, sel);
4542 	else
4543 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4544 				"due to long PEL %llu ms\n",
4545 				state_name, pel);
4546 	return USB3_LPM_DISABLED;
4547 }
4548 
4549 /* The U1 timeout should be the maximum of the following values:
4550  *  - For control endpoints, U1 system exit latency (SEL) * 3
4551  *  - For bulk endpoints, U1 SEL * 5
4552  *  - For interrupt endpoints:
4553  *    - Notification EPs, U1 SEL * 3
4554  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4555  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4556  */
4557 static unsigned long long xhci_calculate_intel_u1_timeout(
4558 		struct usb_device *udev,
4559 		struct usb_endpoint_descriptor *desc)
4560 {
4561 	unsigned long long timeout_ns;
4562 	int ep_type;
4563 	int intr_type;
4564 
4565 	ep_type = usb_endpoint_type(desc);
4566 	switch (ep_type) {
4567 	case USB_ENDPOINT_XFER_CONTROL:
4568 		timeout_ns = udev->u1_params.sel * 3;
4569 		break;
4570 	case USB_ENDPOINT_XFER_BULK:
4571 		timeout_ns = udev->u1_params.sel * 5;
4572 		break;
4573 	case USB_ENDPOINT_XFER_INT:
4574 		intr_type = usb_endpoint_interrupt_type(desc);
4575 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4576 			timeout_ns = udev->u1_params.sel * 3;
4577 			break;
4578 		}
4579 		/* Otherwise the calculation is the same as isoc eps */
4580 		fallthrough;
4581 	case USB_ENDPOINT_XFER_ISOC:
4582 		timeout_ns = xhci_service_interval_to_ns(desc);
4583 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4584 		if (timeout_ns < udev->u1_params.sel * 2)
4585 			timeout_ns = udev->u1_params.sel * 2;
4586 		break;
4587 	default:
4588 		return 0;
4589 	}
4590 
4591 	return timeout_ns;
4592 }
4593 
4594 /* Returns the hub-encoded U1 timeout value. */
4595 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4596 		struct usb_device *udev,
4597 		struct usb_endpoint_descriptor *desc)
4598 {
4599 	unsigned long long timeout_ns;
4600 
4601 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4602 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4603 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4604 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4605 			return USB3_LPM_DISABLED;
4606 		}
4607 	}
4608 
4609 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4610 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4611 	else
4612 		timeout_ns = udev->u1_params.sel;
4613 
4614 	/* The U1 timeout is encoded in 1us intervals.
4615 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4616 	 */
4617 	if (timeout_ns == USB3_LPM_DISABLED)
4618 		timeout_ns = 1;
4619 	else
4620 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4621 
4622 	/* If the necessary timeout value is bigger than what we can set in the
4623 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4624 	 */
4625 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4626 		return timeout_ns;
4627 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4628 			"due to long timeout %llu ms\n", timeout_ns);
4629 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4630 }
4631 
4632 /* The U2 timeout should be the maximum of:
4633  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4634  *  - largest bInterval of any active periodic endpoint (to avoid going
4635  *    into lower power link states between intervals).
4636  *  - the U2 Exit Latency of the device
4637  */
4638 static unsigned long long xhci_calculate_intel_u2_timeout(
4639 		struct usb_device *udev,
4640 		struct usb_endpoint_descriptor *desc)
4641 {
4642 	unsigned long long timeout_ns;
4643 	unsigned long long u2_del_ns;
4644 
4645 	timeout_ns = 10 * 1000 * 1000;
4646 
4647 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4648 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4649 		timeout_ns = xhci_service_interval_to_ns(desc);
4650 
4651 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4652 	if (u2_del_ns > timeout_ns)
4653 		timeout_ns = u2_del_ns;
4654 
4655 	return timeout_ns;
4656 }
4657 
4658 /* Returns the hub-encoded U2 timeout value. */
4659 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4660 		struct usb_device *udev,
4661 		struct usb_endpoint_descriptor *desc)
4662 {
4663 	unsigned long long timeout_ns;
4664 
4665 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4666 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4667 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4668 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4669 			return USB3_LPM_DISABLED;
4670 		}
4671 	}
4672 
4673 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4674 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4675 	else
4676 		timeout_ns = udev->u2_params.sel;
4677 
4678 	/* The U2 timeout is encoded in 256us intervals */
4679 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4680 	/* If the necessary timeout value is bigger than what we can set in the
4681 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4682 	 */
4683 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4684 		return timeout_ns;
4685 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4686 			"due to long timeout %llu ms\n", timeout_ns);
4687 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4688 }
4689 
4690 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4691 		struct usb_device *udev,
4692 		struct usb_endpoint_descriptor *desc,
4693 		enum usb3_link_state state,
4694 		u16 *timeout)
4695 {
4696 	if (state == USB3_LPM_U1)
4697 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4698 	else if (state == USB3_LPM_U2)
4699 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4700 
4701 	return USB3_LPM_DISABLED;
4702 }
4703 
4704 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4705 		struct usb_device *udev,
4706 		struct usb_endpoint_descriptor *desc,
4707 		enum usb3_link_state state,
4708 		u16 *timeout)
4709 {
4710 	u16 alt_timeout;
4711 
4712 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4713 		desc, state, timeout);
4714 
4715 	/* If we found we can't enable hub-initiated LPM, and
4716 	 * the U1 or U2 exit latency was too high to allow
4717 	 * device-initiated LPM as well, then we will disable LPM
4718 	 * for this device, so stop searching any further.
4719 	 */
4720 	if (alt_timeout == USB3_LPM_DISABLED) {
4721 		*timeout = alt_timeout;
4722 		return -E2BIG;
4723 	}
4724 	if (alt_timeout > *timeout)
4725 		*timeout = alt_timeout;
4726 	return 0;
4727 }
4728 
4729 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4730 		struct usb_device *udev,
4731 		struct usb_host_interface *alt,
4732 		enum usb3_link_state state,
4733 		u16 *timeout)
4734 {
4735 	int j;
4736 
4737 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4738 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4739 					&alt->endpoint[j].desc, state, timeout))
4740 			return -E2BIG;
4741 	}
4742 	return 0;
4743 }
4744 
4745 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4746 		struct usb_device *udev,
4747 		enum usb3_link_state state)
4748 {
4749 	struct usb_device *parent = udev->parent;
4750 	int tier = 1; /* roothub is tier1 */
4751 
4752 	while (parent) {
4753 		parent = parent->parent;
4754 		tier++;
4755 	}
4756 
4757 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4758 		goto fail;
4759 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4760 		goto fail;
4761 
4762 	return 0;
4763 fail:
4764 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4765 			tier);
4766 	return -E2BIG;
4767 }
4768 
4769 /* Returns the U1 or U2 timeout that should be enabled.
4770  * If the tier check or timeout setting functions return with a non-zero exit
4771  * code, that means the timeout value has been finalized and we shouldn't look
4772  * at any more endpoints.
4773  */
4774 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4775 			struct usb_device *udev, enum usb3_link_state state)
4776 {
4777 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4778 	struct usb_host_config *config;
4779 	char *state_name;
4780 	int i;
4781 	u16 timeout = USB3_LPM_DISABLED;
4782 
4783 	if (state == USB3_LPM_U1)
4784 		state_name = "U1";
4785 	else if (state == USB3_LPM_U2)
4786 		state_name = "U2";
4787 	else {
4788 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4789 				state);
4790 		return timeout;
4791 	}
4792 
4793 	/* Gather some information about the currently installed configuration
4794 	 * and alternate interface settings.
4795 	 */
4796 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4797 			state, &timeout))
4798 		return timeout;
4799 
4800 	config = udev->actconfig;
4801 	if (!config)
4802 		return timeout;
4803 
4804 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4805 		struct usb_driver *driver;
4806 		struct usb_interface *intf = config->interface[i];
4807 
4808 		if (!intf)
4809 			continue;
4810 
4811 		/* Check if any currently bound drivers want hub-initiated LPM
4812 		 * disabled.
4813 		 */
4814 		if (intf->dev.driver) {
4815 			driver = to_usb_driver(intf->dev.driver);
4816 			if (driver && driver->disable_hub_initiated_lpm) {
4817 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4818 					state_name, driver->name);
4819 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4820 								      state);
4821 				if (timeout == USB3_LPM_DISABLED)
4822 					return timeout;
4823 			}
4824 		}
4825 
4826 		/* Not sure how this could happen... */
4827 		if (!intf->cur_altsetting)
4828 			continue;
4829 
4830 		if (xhci_update_timeout_for_interface(xhci, udev,
4831 					intf->cur_altsetting,
4832 					state, &timeout))
4833 			return timeout;
4834 	}
4835 	return timeout;
4836 }
4837 
4838 static int calculate_max_exit_latency(struct usb_device *udev,
4839 		enum usb3_link_state state_changed,
4840 		u16 hub_encoded_timeout)
4841 {
4842 	unsigned long long u1_mel_us = 0;
4843 	unsigned long long u2_mel_us = 0;
4844 	unsigned long long mel_us = 0;
4845 	bool disabling_u1;
4846 	bool disabling_u2;
4847 	bool enabling_u1;
4848 	bool enabling_u2;
4849 
4850 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4851 			hub_encoded_timeout == USB3_LPM_DISABLED);
4852 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4853 			hub_encoded_timeout == USB3_LPM_DISABLED);
4854 
4855 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4856 			hub_encoded_timeout != USB3_LPM_DISABLED);
4857 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4858 			hub_encoded_timeout != USB3_LPM_DISABLED);
4859 
4860 	/* If U1 was already enabled and we're not disabling it,
4861 	 * or we're going to enable U1, account for the U1 max exit latency.
4862 	 */
4863 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4864 			enabling_u1)
4865 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4866 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4867 			enabling_u2)
4868 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4869 
4870 	mel_us = max(u1_mel_us, u2_mel_us);
4871 
4872 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4873 	if (mel_us > MAX_EXIT) {
4874 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4875 				"is too big.\n", mel_us);
4876 		return -E2BIG;
4877 	}
4878 	return mel_us;
4879 }
4880 
4881 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4882 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4883 			struct usb_device *udev, enum usb3_link_state state)
4884 {
4885 	struct xhci_hcd	*xhci;
4886 	struct xhci_port *port;
4887 	u16 hub_encoded_timeout;
4888 	int mel;
4889 	int ret;
4890 
4891 	xhci = hcd_to_xhci(hcd);
4892 	/* The LPM timeout values are pretty host-controller specific, so don't
4893 	 * enable hub-initiated timeouts unless the vendor has provided
4894 	 * information about their timeout algorithm.
4895 	 */
4896 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4897 			!xhci->devs[udev->slot_id])
4898 		return USB3_LPM_DISABLED;
4899 
4900 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4901 		return USB3_LPM_DISABLED;
4902 
4903 	/* If connected to root port then check port can handle lpm */
4904 	if (udev->parent && !udev->parent->parent) {
4905 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4906 		if (port->lpm_incapable)
4907 			return USB3_LPM_DISABLED;
4908 	}
4909 
4910 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4911 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4912 	if (mel < 0) {
4913 		/* Max Exit Latency is too big, disable LPM. */
4914 		hub_encoded_timeout = USB3_LPM_DISABLED;
4915 		mel = 0;
4916 	}
4917 
4918 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4919 	if (ret)
4920 		return ret;
4921 	return hub_encoded_timeout;
4922 }
4923 
4924 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4925 			struct usb_device *udev, enum usb3_link_state state)
4926 {
4927 	struct xhci_hcd	*xhci;
4928 	u16 mel;
4929 
4930 	xhci = hcd_to_xhci(hcd);
4931 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4932 			!xhci->devs[udev->slot_id])
4933 		return 0;
4934 
4935 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4936 	return xhci_change_max_exit_latency(xhci, udev, mel);
4937 }
4938 #else /* CONFIG_PM */
4939 
4940 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4941 				struct usb_device *udev, int enable)
4942 {
4943 	return 0;
4944 }
4945 
4946 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4947 {
4948 	return 0;
4949 }
4950 
4951 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4952 			struct usb_device *udev, enum usb3_link_state state)
4953 {
4954 	return USB3_LPM_DISABLED;
4955 }
4956 
4957 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4958 			struct usb_device *udev, enum usb3_link_state state)
4959 {
4960 	return 0;
4961 }
4962 #endif	/* CONFIG_PM */
4963 
4964 /*-------------------------------------------------------------------------*/
4965 
4966 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4967  * internal data structures for the device.
4968  */
4969 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4970 			struct usb_tt *tt, gfp_t mem_flags)
4971 {
4972 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4973 	struct xhci_virt_device *vdev;
4974 	struct xhci_command *config_cmd;
4975 	struct xhci_input_control_ctx *ctrl_ctx;
4976 	struct xhci_slot_ctx *slot_ctx;
4977 	unsigned long flags;
4978 	unsigned think_time;
4979 	int ret;
4980 
4981 	/* Ignore root hubs */
4982 	if (!hdev->parent)
4983 		return 0;
4984 
4985 	vdev = xhci->devs[hdev->slot_id];
4986 	if (!vdev) {
4987 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4988 		return -EINVAL;
4989 	}
4990 
4991 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4992 	if (!config_cmd)
4993 		return -ENOMEM;
4994 
4995 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4996 	if (!ctrl_ctx) {
4997 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4998 				__func__);
4999 		xhci_free_command(xhci, config_cmd);
5000 		return -ENOMEM;
5001 	}
5002 
5003 	spin_lock_irqsave(&xhci->lock, flags);
5004 	if (hdev->speed == USB_SPEED_HIGH &&
5005 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5006 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5007 		xhci_free_command(xhci, config_cmd);
5008 		spin_unlock_irqrestore(&xhci->lock, flags);
5009 		return -ENOMEM;
5010 	}
5011 
5012 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5013 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5014 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5015 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5016 	/*
5017 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5018 	 * but it may be already set to 1 when setup an xHCI virtual
5019 	 * device, so clear it anyway.
5020 	 */
5021 	if (tt->multi)
5022 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5023 	else if (hdev->speed == USB_SPEED_FULL)
5024 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5025 
5026 	if (xhci->hci_version > 0x95) {
5027 		xhci_dbg(xhci, "xHCI version %x needs hub "
5028 				"TT think time and number of ports\n",
5029 				(unsigned int) xhci->hci_version);
5030 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5031 		/* Set TT think time - convert from ns to FS bit times.
5032 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5033 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5034 		 *
5035 		 * xHCI 1.0: this field shall be 0 if the device is not a
5036 		 * High-spped hub.
5037 		 */
5038 		think_time = tt->think_time;
5039 		if (think_time != 0)
5040 			think_time = (think_time / 666) - 1;
5041 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5042 			slot_ctx->tt_info |=
5043 				cpu_to_le32(TT_THINK_TIME(think_time));
5044 	} else {
5045 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5046 				"TT think time or number of ports\n",
5047 				(unsigned int) xhci->hci_version);
5048 	}
5049 	slot_ctx->dev_state = 0;
5050 	spin_unlock_irqrestore(&xhci->lock, flags);
5051 
5052 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5053 			(xhci->hci_version > 0x95) ?
5054 			"configure endpoint" : "evaluate context");
5055 
5056 	/* Issue and wait for the configure endpoint or
5057 	 * evaluate context command.
5058 	 */
5059 	if (xhci->hci_version > 0x95)
5060 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5061 				false, false);
5062 	else
5063 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5064 				true, false);
5065 
5066 	xhci_free_command(xhci, config_cmd);
5067 	return ret;
5068 }
5069 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5070 
5071 static int xhci_get_frame(struct usb_hcd *hcd)
5072 {
5073 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5074 	/* EHCI mods by the periodic size.  Why? */
5075 	return readl(&xhci->run_regs->microframe_index) >> 3;
5076 }
5077 
5078 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5079 {
5080 	xhci->usb2_rhub.hcd = hcd;
5081 	hcd->speed = HCD_USB2;
5082 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5083 	/*
5084 	 * USB 2.0 roothub under xHCI has an integrated TT,
5085 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5086 	 * companion controller.
5087 	 */
5088 	hcd->has_tt = 1;
5089 }
5090 
5091 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5092 {
5093 	unsigned int minor_rev;
5094 
5095 	/*
5096 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5097 	 * should return 0x31 for sbrn, or that the minor revision
5098 	 * is a two digit BCD containig minor and sub-minor numbers.
5099 	 * This was later clarified in xHCI 1.2.
5100 	 *
5101 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5102 	 * minor revision set to 0x1 instead of 0x10.
5103 	 */
5104 	if (xhci->usb3_rhub.min_rev == 0x1)
5105 		minor_rev = 1;
5106 	else
5107 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5108 
5109 	switch (minor_rev) {
5110 	case 2:
5111 		hcd->speed = HCD_USB32;
5112 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5113 		hcd->self.root_hub->rx_lanes = 2;
5114 		hcd->self.root_hub->tx_lanes = 2;
5115 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5116 		break;
5117 	case 1:
5118 		hcd->speed = HCD_USB31;
5119 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5120 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5121 		break;
5122 	}
5123 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5124 		  minor_rev, minor_rev ? "Enhanced " : "");
5125 
5126 	xhci->usb3_rhub.hcd = hcd;
5127 }
5128 
5129 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5130 {
5131 	struct xhci_hcd		*xhci;
5132 	/*
5133 	 * TODO: Check with DWC3 clients for sysdev according to
5134 	 * quirks
5135 	 */
5136 	struct device		*dev = hcd->self.sysdev;
5137 	int			retval;
5138 
5139 	/* Accept arbitrarily long scatter-gather lists */
5140 	hcd->self.sg_tablesize = ~0;
5141 
5142 	/* support to build packet from discontinuous buffers */
5143 	hcd->self.no_sg_constraint = 1;
5144 
5145 	/* XHCI controllers don't stop the ep queue on short packets :| */
5146 	hcd->self.no_stop_on_short = 1;
5147 
5148 	xhci = hcd_to_xhci(hcd);
5149 
5150 	if (!usb_hcd_is_primary_hcd(hcd)) {
5151 		xhci_hcd_init_usb3_data(xhci, hcd);
5152 		return 0;
5153 	}
5154 
5155 	mutex_init(&xhci->mutex);
5156 	xhci->main_hcd = hcd;
5157 	xhci->cap_regs = hcd->regs;
5158 	xhci->op_regs = hcd->regs +
5159 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5160 	xhci->run_regs = hcd->regs +
5161 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5162 	/* Cache read-only capability registers */
5163 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5164 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5165 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5166 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5167 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5168 	if (xhci->hci_version > 0x100)
5169 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5170 
5171 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5172 	if ((!xhci->max_interrupters) ||
5173 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5174 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5175 
5176 	xhci->quirks |= quirks;
5177 
5178 	if (get_quirks)
5179 		get_quirks(dev, xhci);
5180 
5181 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5182 	 * success event after a short transfer. This quirk will ignore such
5183 	 * spurious event.
5184 	 */
5185 	if (xhci->hci_version > 0x96)
5186 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5187 
5188 	/* Make sure the HC is halted. */
5189 	retval = xhci_halt(xhci);
5190 	if (retval)
5191 		return retval;
5192 
5193 	xhci_zero_64b_regs(xhci);
5194 
5195 	xhci_dbg(xhci, "Resetting HCD\n");
5196 	/* Reset the internal HC memory state and registers. */
5197 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5198 	if (retval)
5199 		return retval;
5200 	xhci_dbg(xhci, "Reset complete\n");
5201 
5202 	/*
5203 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5204 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5205 	 * address memory pointers actually. So, this driver clears the AC64
5206 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5207 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5208 	 */
5209 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5210 		xhci->hcc_params &= ~BIT(0);
5211 
5212 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5213 	 * if xHC supports 64-bit addressing */
5214 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5215 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5216 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5217 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5218 	} else {
5219 		/*
5220 		 * This is to avoid error in cases where a 32-bit USB
5221 		 * controller is used on a 64-bit capable system.
5222 		 */
5223 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5224 		if (retval)
5225 			return retval;
5226 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5227 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5228 	}
5229 
5230 	xhci_dbg(xhci, "Calling HCD init\n");
5231 	/* Initialize HCD and host controller data structures. */
5232 	retval = xhci_init(hcd);
5233 	if (retval)
5234 		return retval;
5235 	xhci_dbg(xhci, "Called HCD init\n");
5236 
5237 	if (xhci_hcd_is_usb3(hcd))
5238 		xhci_hcd_init_usb3_data(xhci, hcd);
5239 	else
5240 		xhci_hcd_init_usb2_data(xhci, hcd);
5241 
5242 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5243 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5244 
5245 	return 0;
5246 }
5247 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5248 
5249 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5250 		struct usb_host_endpoint *ep)
5251 {
5252 	struct xhci_hcd *xhci;
5253 	struct usb_device *udev;
5254 	unsigned int slot_id;
5255 	unsigned int ep_index;
5256 	unsigned long flags;
5257 
5258 	xhci = hcd_to_xhci(hcd);
5259 
5260 	spin_lock_irqsave(&xhci->lock, flags);
5261 	udev = (struct usb_device *)ep->hcpriv;
5262 	slot_id = udev->slot_id;
5263 	ep_index = xhci_get_endpoint_index(&ep->desc);
5264 
5265 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5266 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5267 	spin_unlock_irqrestore(&xhci->lock, flags);
5268 }
5269 
5270 static const struct hc_driver xhci_hc_driver = {
5271 	.description =		"xhci-hcd",
5272 	.product_desc =		"xHCI Host Controller",
5273 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5274 
5275 	/*
5276 	 * generic hardware linkage
5277 	 */
5278 	.irq =			xhci_irq,
5279 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5280 				HCD_BH,
5281 
5282 	/*
5283 	 * basic lifecycle operations
5284 	 */
5285 	.reset =		NULL, /* set in xhci_init_driver() */
5286 	.start =		xhci_run,
5287 	.stop =			xhci_stop,
5288 	.shutdown =		xhci_shutdown,
5289 
5290 	/*
5291 	 * managing i/o requests and associated device resources
5292 	 */
5293 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5294 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5295 	.urb_enqueue =		xhci_urb_enqueue,
5296 	.urb_dequeue =		xhci_urb_dequeue,
5297 	.alloc_dev =		xhci_alloc_dev,
5298 	.free_dev =		xhci_free_dev,
5299 	.alloc_streams =	xhci_alloc_streams,
5300 	.free_streams =		xhci_free_streams,
5301 	.add_endpoint =		xhci_add_endpoint,
5302 	.drop_endpoint =	xhci_drop_endpoint,
5303 	.endpoint_disable =	xhci_endpoint_disable,
5304 	.endpoint_reset =	xhci_endpoint_reset,
5305 	.check_bandwidth =	xhci_check_bandwidth,
5306 	.reset_bandwidth =	xhci_reset_bandwidth,
5307 	.address_device =	xhci_address_device,
5308 	.enable_device =	xhci_enable_device,
5309 	.update_hub_device =	xhci_update_hub_device,
5310 	.reset_device =		xhci_discover_or_reset_device,
5311 
5312 	/*
5313 	 * scheduling support
5314 	 */
5315 	.get_frame_number =	xhci_get_frame,
5316 
5317 	/*
5318 	 * root hub support
5319 	 */
5320 	.hub_control =		xhci_hub_control,
5321 	.hub_status_data =	xhci_hub_status_data,
5322 	.bus_suspend =		xhci_bus_suspend,
5323 	.bus_resume =		xhci_bus_resume,
5324 	.get_resuming_ports =	xhci_get_resuming_ports,
5325 
5326 	/*
5327 	 * call back when device connected and addressed
5328 	 */
5329 	.update_device =        xhci_update_device,
5330 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5331 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5332 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5333 	.find_raw_port_number =	xhci_find_raw_port_number,
5334 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5335 };
5336 
5337 void xhci_init_driver(struct hc_driver *drv,
5338 		      const struct xhci_driver_overrides *over)
5339 {
5340 	BUG_ON(!over);
5341 
5342 	/* Copy the generic table to drv then apply the overrides */
5343 	*drv = xhci_hc_driver;
5344 
5345 	if (over) {
5346 		drv->hcd_priv_size += over->extra_priv_size;
5347 		if (over->reset)
5348 			drv->reset = over->reset;
5349 		if (over->start)
5350 			drv->start = over->start;
5351 		if (over->add_endpoint)
5352 			drv->add_endpoint = over->add_endpoint;
5353 		if (over->drop_endpoint)
5354 			drv->drop_endpoint = over->drop_endpoint;
5355 		if (over->check_bandwidth)
5356 			drv->check_bandwidth = over->check_bandwidth;
5357 		if (over->reset_bandwidth)
5358 			drv->reset_bandwidth = over->reset_bandwidth;
5359 		if (over->update_hub_device)
5360 			drv->update_hub_device = over->update_hub_device;
5361 		if (over->hub_control)
5362 			drv->hub_control = over->hub_control;
5363 	}
5364 }
5365 EXPORT_SYMBOL_GPL(xhci_init_driver);
5366 
5367 MODULE_DESCRIPTION(DRIVER_DESC);
5368 MODULE_AUTHOR(DRIVER_AUTHOR);
5369 MODULE_LICENSE("GPL");
5370 
5371 static int __init xhci_hcd_init(void)
5372 {
5373 	/*
5374 	 * Check the compiler generated sizes of structures that must be laid
5375 	 * out in specific ways for hardware access.
5376 	 */
5377 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5378 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5379 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5380 	/* xhci_device_control has eight fields, and also
5381 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5382 	 */
5383 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5384 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5385 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5386 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5387 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5388 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5389 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5390 
5391 	if (usb_disabled())
5392 		return -ENODEV;
5393 
5394 	xhci_debugfs_create_root();
5395 	xhci_dbc_init();
5396 
5397 	return 0;
5398 }
5399 
5400 /*
5401  * If an init function is provided, an exit function must also be provided
5402  * to allow module unload.
5403  */
5404 static void __exit xhci_hcd_fini(void)
5405 {
5406 	xhci_debugfs_remove_root();
5407 	xhci_dbc_exit();
5408 }
5409 
5410 module_init(xhci_hcd_init);
5411 module_exit(xhci_hcd_fini);
5412