xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, usec);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 	xhci_quiesce(xhci);
115 
116 	ret = xhci_handshake(&xhci->op_regs->status,
117 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 	if (ret) {
119 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 		return ret;
121 	}
122 	xhci->xhc_state |= XHCI_STATE_HALTED;
123 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 	return ret;
125 }
126 
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 	u32 temp;
133 	int ret;
134 
135 	temp = readl(&xhci->op_regs->command);
136 	temp |= (CMD_RUN);
137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 			temp);
139 	writel(temp, &xhci->op_regs->command);
140 
141 	/*
142 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 	 * running.
144 	 */
145 	ret = xhci_handshake(&xhci->op_regs->status,
146 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 	if (ret == -ETIMEDOUT)
148 		xhci_err(xhci, "Host took too long to start, "
149 				"waited %u microseconds.\n",
150 				XHCI_MAX_HALT_USEC);
151 	if (!ret)
152 		/* clear state flags. Including dying, halted or removing */
153 		xhci->xhc_state = 0;
154 
155 	return ret;
156 }
157 
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 	u32 command;
168 	u32 state;
169 	int ret;
170 
171 	state = readl(&xhci->op_regs->status);
172 
173 	if (state == ~(u32)0) {
174 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 		return -ENODEV;
176 	}
177 
178 	if ((state & STS_HALT) == 0) {
179 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 		return 0;
181 	}
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 	command = readl(&xhci->op_regs->command);
185 	command |= CMD_RESET;
186 	writel(command, &xhci->op_regs->command);
187 
188 	/* Existing Intel xHCI controllers require a delay of 1 mS,
189 	 * after setting the CMD_RESET bit, and before accessing any
190 	 * HC registers. This allows the HC to complete the
191 	 * reset operation and be ready for HC register access.
192 	 * Without this delay, the subsequent HC register access,
193 	 * may result in a system hang very rarely.
194 	 */
195 	if (xhci->quirks & XHCI_INTEL_HOST)
196 		udelay(1000);
197 
198 	ret = xhci_handshake(&xhci->op_regs->command,
199 			CMD_RESET, 0, 10 * 1000 * 1000);
200 	if (ret)
201 		return ret;
202 
203 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205 
206 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 			 "Wait for controller to be ready for doorbell rings");
208 	/*
209 	 * xHCI cannot write to any doorbells or operational registers other
210 	 * than status until the "Controller Not Ready" flag is cleared.
211 	 */
212 	ret = xhci_handshake(&xhci->op_regs->status,
213 			STS_CNR, 0, 10 * 1000 * 1000);
214 
215 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
221 
222 	return ret;
223 }
224 
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 	int err, i;
229 	u64 val;
230 	u32 intrs;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 		      ARRAY_SIZE(xhci->run_regs->ir_set));
271 
272 	for (i = 0; i < intrs; i++) {
273 		struct xhci_intr_reg __iomem *ir;
274 
275 		ir = &xhci->run_regs->ir_set[i];
276 		val = xhci_read_64(xhci, &ir->erst_base);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_base);
279 		val= xhci_read_64(xhci, &ir->erst_dequeue);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 	}
283 
284 	/* Wait for the fault to appear. It will be cleared on reset */
285 	err = xhci_handshake(&xhci->op_regs->status,
286 			     STS_FATAL, STS_FATAL,
287 			     XHCI_MAX_HALT_USEC);
288 	if (!err)
289 		xhci_info(xhci, "Fault detected\n");
290 }
291 
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 	int ret;
299 	/*
300 	 * TODO:Check with MSI Soc for sysdev
301 	 */
302 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303 
304 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 	if (ret < 0) {
306 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 				"failed to allocate MSI entry");
308 		return ret;
309 	}
310 
311 	ret = request_irq(pdev->irq, xhci_msi_irq,
312 				0, "xhci_hcd", xhci_to_hcd(xhci));
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"disable MSI interrupt");
316 		pci_free_irq_vectors(pdev);
317 	}
318 
319 	return ret;
320 }
321 
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 	int i, ret = 0;
328 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 
331 	/*
332 	 * calculate number of msi-x vectors supported.
333 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
335 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 	 *   Add additional 1 vector to ensure always available interrupt.
337 	 */
338 	xhci->msix_count = min(num_online_cpus() + 1,
339 				HCS_MAX_INTRS(xhci->hcs_params1));
340 
341 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 			PCI_IRQ_MSIX);
343 	if (ret < 0) {
344 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 				"Failed to enable MSI-X");
346 		return ret;
347 	}
348 
349 	for (i = 0; i < xhci->msix_count; i++) {
350 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 				"xhci_hcd", xhci_to_hcd(xhci));
352 		if (ret)
353 			goto disable_msix;
354 	}
355 
356 	hcd->msix_enabled = 1;
357 	return ret;
358 
359 disable_msix:
360 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 	while (--i >= 0)
362 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 	pci_free_irq_vectors(pdev);
364 	return ret;
365 }
366 
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372 
373 	if (xhci->quirks & XHCI_PLAT)
374 		return;
375 
376 	/* return if using legacy interrupt */
377 	if (hcd->irq > 0)
378 		return;
379 
380 	if (hcd->msix_enabled) {
381 		int i;
382 
383 		for (i = 0; i < xhci->msix_count; i++)
384 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 	} else {
386 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 	}
388 
389 	pci_free_irq_vectors(pdev);
390 	hcd->msix_enabled = 0;
391 }
392 
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
396 
397 	if (hcd->msix_enabled) {
398 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 		int i;
400 
401 		for (i = 0; i < xhci->msix_count; i++)
402 			synchronize_irq(pci_irq_vector(pdev, i));
403 	}
404 }
405 
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 	struct pci_dev  *pdev;
410 	int ret;
411 
412 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
413 	if (xhci->quirks & XHCI_PLAT)
414 		return 0;
415 
416 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 	/*
418 	 * Some Fresco Logic host controllers advertise MSI, but fail to
419 	 * generate interrupts.  Don't even try to enable MSI.
420 	 */
421 	if (xhci->quirks & XHCI_BROKEN_MSI)
422 		goto legacy_irq;
423 
424 	/* unregister the legacy interrupt */
425 	if (hcd->irq)
426 		free_irq(hcd->irq, hcd);
427 	hcd->irq = 0;
428 
429 	ret = xhci_setup_msix(xhci);
430 	if (ret)
431 		/* fall back to msi*/
432 		ret = xhci_setup_msi(xhci);
433 
434 	if (!ret) {
435 		hcd->msi_enabled = 1;
436 		return 0;
437 	}
438 
439 	if (!pdev->irq) {
440 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 		return -EINVAL;
442 	}
443 
444  legacy_irq:
445 	if (!strlen(hcd->irq_descr))
446 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 			 hcd->driver->description, hcd->self.busnum);
448 
449 	/* fall back to legacy interrupt*/
450 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 			hcd->irq_descr, hcd);
452 	if (ret) {
453 		xhci_err(xhci, "request interrupt %d failed\n",
454 				pdev->irq);
455 		return ret;
456 	}
457 	hcd->irq = pdev->irq;
458 	return 0;
459 }
460 
461 #else
462 
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 	return 0;
466 }
467 
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471 
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475 
476 #endif
477 
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 	struct xhci_hcd *xhci;
481 	struct usb_hcd *hcd;
482 	struct xhci_hub *rhub;
483 	u32 temp;
484 	int i;
485 
486 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 	rhub = &xhci->usb3_rhub;
488 
489 	for (i = 0; i < rhub->num_ports; i++) {
490 		temp = readl(rhub->ports[i]->addr);
491 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 			/*
493 			 * Compliance Mode Detected. Letting USB Core
494 			 * handle the Warm Reset
495 			 */
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Compliance mode detected->port %d",
498 					i + 1);
499 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 					"Attempting compliance mode recovery");
501 			hcd = xhci->shared_hcd;
502 
503 			if (hcd->state == HC_STATE_SUSPENDED)
504 				usb_hcd_resume_root_hub(hcd);
505 
506 			usb_hcd_poll_rh_status(hcd);
507 		}
508 	}
509 
510 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 		mod_timer(&xhci->comp_mode_recovery_timer,
512 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514 
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 	xhci->port_status_u0 = 0;
528 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 		    0);
530 	xhci->comp_mode_recovery_timer.expires = jiffies +
531 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532 
533 	add_timer(&xhci->comp_mode_recovery_timer);
534 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 			"Compliance mode recovery timer initialized");
536 }
537 
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 	const char *dmi_product_name, *dmi_sys_vendor;
547 
548 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 	if (!dmi_product_name || !dmi_sys_vendor)
551 		return false;
552 
553 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 		return false;
555 
556 	if (strstr(dmi_product_name, "Z420") ||
557 			strstr(dmi_product_name, "Z620") ||
558 			strstr(dmi_product_name, "Z820") ||
559 			strstr(dmi_product_name, "Z1 Workstation"))
560 		return true;
561 
562 	return false;
563 }
564 
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569 
570 
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 	int retval = 0;
582 
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 	spin_lock_init(&xhci->lock);
585 	if (xhci->hci_version == 0x95 && link_quirk) {
586 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 				"QUIRK: Not clearing Link TRB chain bits.");
588 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 	} else {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 				"xHCI doesn't need link TRB QUIRK");
592 	}
593 	retval = xhci_mem_init(xhci, GFP_KERNEL);
594 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595 
596 	/* Initializing Compliance Mode Recovery Data If Needed */
597 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 		compliance_mode_recovery_timer_init(xhci);
600 	}
601 
602 	return retval;
603 }
604 
605 /*-------------------------------------------------------------------------*/
606 
607 
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 	if (xhci_start(xhci)) {
611 		xhci_halt(xhci);
612 		return -ENODEV;
613 	}
614 	xhci->shared_hcd->state = HC_STATE_RUNNING;
615 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616 
617 	if (xhci->quirks & XHCI_NEC_HOST)
618 		xhci_ring_cmd_db(xhci);
619 
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"Finished xhci_run for USB3 roothub");
622 	return 0;
623 }
624 
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639 	u32 temp;
640 	u64 temp_64;
641 	int ret;
642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643 
644 	/* Start the xHCI host controller running only after the USB 2.0 roothub
645 	 * is setup.
646 	 */
647 
648 	hcd->uses_new_polling = 1;
649 	if (!usb_hcd_is_primary_hcd(hcd))
650 		return xhci_run_finished(xhci);
651 
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653 
654 	ret = xhci_try_enable_msi(hcd);
655 	if (ret)
656 		return ret;
657 
658 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 	temp_64 &= ~ERST_PTR_MASK;
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662 
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"// Set the interrupt modulation register");
665 	temp = readl(&xhci->ir_set->irq_control);
666 	temp &= ~ER_IRQ_INTERVAL_MASK;
667 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 	writel(temp, &xhci->ir_set->irq_control);
669 
670 	/* Set the HCD state before we enable the irqs */
671 	temp = readl(&xhci->op_regs->command);
672 	temp |= (CMD_EIE);
673 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 			"// Enable interrupts, cmd = 0x%x.", temp);
675 	writel(temp, &xhci->op_regs->command);
676 
677 	temp = readl(&xhci->ir_set->irq_pending);
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682 
683 	if (xhci->quirks & XHCI_NEC_HOST) {
684 		struct xhci_command *command;
685 
686 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 		if (!command)
688 			return -ENOMEM;
689 
690 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 				TRB_TYPE(TRB_NEC_GET_FW));
692 		if (ret)
693 			xhci_free_command(xhci, command);
694 	}
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"Finished xhci_run for USB2 roothub");
697 
698 	xhci_dbc_init(xhci);
699 
700 	xhci_debugfs_init(xhci);
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705 
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717 	u32 temp;
718 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719 
720 	mutex_lock(&xhci->mutex);
721 
722 	/* Only halt host and free memory after both hcds are removed */
723 	if (!usb_hcd_is_primary_hcd(hcd)) {
724 		mutex_unlock(&xhci->mutex);
725 		return;
726 	}
727 
728 	xhci_dbc_exit(xhci);
729 
730 	spin_lock_irq(&xhci->lock);
731 	xhci->xhc_state |= XHCI_STATE_HALTED;
732 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733 	xhci_halt(xhci);
734 	xhci_reset(xhci);
735 	spin_unlock_irq(&xhci->lock);
736 
737 	xhci_cleanup_msix(xhci);
738 
739 	/* Deleting Compliance Mode Recovery Timer */
740 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 			(!(xhci_all_ports_seen_u0(xhci)))) {
742 		del_timer_sync(&xhci->comp_mode_recovery_timer);
743 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 				"%s: compliance mode recovery timer deleted",
745 				__func__);
746 	}
747 
748 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
749 		usb_amd_dev_put();
750 
751 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 			"// Disabling event ring interrupts");
753 	temp = readl(&xhci->op_regs->status);
754 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 	temp = readl(&xhci->ir_set->irq_pending);
756 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 	xhci_mem_cleanup(xhci);
760 	xhci_debugfs_exit(xhci);
761 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 			"xhci_stop completed - status = %x",
763 			readl(&xhci->op_regs->status));
764 	mutex_unlock(&xhci->mutex);
765 }
766 
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779 
780 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782 
783 	spin_lock_irq(&xhci->lock);
784 	xhci_halt(xhci);
785 	/* Workaround for spurious wakeups at shutdown with HSW */
786 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787 		xhci_reset(xhci);
788 	spin_unlock_irq(&xhci->lock);
789 
790 	xhci_cleanup_msix(xhci);
791 
792 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 			"xhci_shutdown completed - status = %x",
794 			readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797 
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 	xhci->s3.command = readl(&xhci->op_regs->command);
802 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 	writel(xhci->s3.command, &xhci->op_regs->command);
815 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824 
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 	u64	val_64;
828 
829 	/* step 2: initialize command ring buffer */
830 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 				      xhci->cmd_ring->dequeue) &
834 		 (u64) ~CMD_RING_RSVD_BITS) |
835 		xhci->cmd_ring->cycle_state;
836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 			"// Setting command ring address to 0x%llx",
838 			(long unsigned long) val_64);
839 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	seg = ring->deq_seg;
858 	do {
859 		memset(seg->trbs, 0,
860 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 			cpu_to_le32(~TRB_CYCLE);
863 		seg = seg->next;
864 	} while (seg != ring->deq_seg);
865 
866 	/* Reset the software enqueue and dequeue pointers */
867 	ring->deq_seg = ring->first_seg;
868 	ring->dequeue = ring->first_seg->trbs;
869 	ring->enq_seg = ring->deq_seg;
870 	ring->enqueue = ring->dequeue;
871 
872 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 	/*
874 	 * Ring is now zeroed, so the HW should look for change of ownership
875 	 * when the cycle bit is set to 1.
876 	 */
877 	ring->cycle_state = 1;
878 
879 	/*
880 	 * Reset the hardware dequeue pointer.
881 	 * Yes, this will need to be re-written after resume, but we're paranoid
882 	 * and want to make sure the hardware doesn't access bogus memory
883 	 * because, say, the BIOS or an SMI started the host without changing
884 	 * the command ring pointers.
885 	 */
886 	xhci_set_cmd_ring_deq(xhci);
887 }
888 
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897 
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899 				       struct xhci_hub *rhub,
900 				       bool do_wakeup)
901 {
902 	unsigned long flags;
903 	u32 t1, t2, portsc;
904 	int i;
905 
906 	spin_lock_irqsave(&xhci->lock, flags);
907 
908 	for (i = 0; i < rhub->num_ports; i++) {
909 		portsc = readl(rhub->ports[i]->addr);
910 		t1 = xhci_port_state_to_neutral(portsc);
911 		t2 = t1;
912 
913 		/* clear wake bits if do_wake is not set */
914 		if (!do_wakeup)
915 			t2 &= ~PORT_WAKE_BITS;
916 
917 		/* Don't touch csc bit if connected or connect change is set */
918 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919 			t2 |= PORT_CSC;
920 
921 		if (t1 != t2) {
922 			writel(t2, rhub->ports[i]->addr);
923 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
925 		}
926 	}
927 	spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929 
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932 	struct xhci_port	**ports;
933 	int			port_index;
934 	u32			status;
935 	u32			portsc;
936 
937 	status = readl(&xhci->op_regs->status);
938 	if (status & STS_EINT)
939 		return true;
940 	/*
941 	 * Checking STS_EINT is not enough as there is a lag between a change
942 	 * bit being set and the Port Status Change Event that it generated
943 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944 	 */
945 
946 	port_index = xhci->usb2_rhub.num_ports;
947 	ports = xhci->usb2_rhub.ports;
948 	while (port_index--) {
949 		portsc = readl(ports[port_index]->addr);
950 		if (portsc & PORT_CHANGE_MASK ||
951 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952 			return true;
953 	}
954 	port_index = xhci->usb3_rhub.num_ports;
955 	ports = xhci->usb3_rhub.ports;
956 	while (port_index--) {
957 		portsc = readl(ports[port_index]->addr);
958 		if (portsc & PORT_CHANGE_MASK ||
959 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960 			return true;
961 	}
962 	return false;
963 }
964 
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973 	int			rc = 0;
974 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
975 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
976 	u32			command;
977 	u32			res;
978 
979 	if (!hcd->state)
980 		return 0;
981 
982 	if (hcd->state != HC_STATE_SUSPENDED ||
983 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984 		return -EINVAL;
985 
986 	/* Clear root port wake on bits if wakeup not allowed. */
987 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989 
990 	if (!HCD_HW_ACCESSIBLE(hcd))
991 		return 0;
992 
993 	xhci_dbc_suspend(xhci);
994 
995 	/* Don't poll the roothubs on bus suspend. */
996 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
997 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
998 	del_timer_sync(&hcd->rh_timer);
999 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1000 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1001 
1002 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1003 		usleep_range(1000, 1500);
1004 
1005 	spin_lock_irq(&xhci->lock);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008 	/* step 1: stop endpoint */
1009 	/* skipped assuming that port suspend has done */
1010 
1011 	/* step 2: clear Run/Stop bit */
1012 	command = readl(&xhci->op_regs->command);
1013 	command &= ~CMD_RUN;
1014 	writel(command, &xhci->op_regs->command);
1015 
1016 	/* Some chips from Fresco Logic need an extraordinary delay */
1017 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1018 
1019 	if (xhci_handshake(&xhci->op_regs->status,
1020 		      STS_HALT, STS_HALT, delay)) {
1021 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1022 		spin_unlock_irq(&xhci->lock);
1023 		return -ETIMEDOUT;
1024 	}
1025 	xhci_clear_command_ring(xhci);
1026 
1027 	/* step 3: save registers */
1028 	xhci_save_registers(xhci);
1029 
1030 	/* step 4: set CSS flag */
1031 	command = readl(&xhci->op_regs->command);
1032 	command |= CMD_CSS;
1033 	writel(command, &xhci->op_regs->command);
1034 	xhci->broken_suspend = 0;
1035 	if (xhci_handshake(&xhci->op_regs->status,
1036 				STS_SAVE, 0, 20 * 1000)) {
1037 	/*
1038 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1039 	 * SSS bit of USBSTS and when driver tries to poll
1040 	 * to see if the xHC clears BIT(8) which never happens
1041 	 * and driver assumes that controller is not responding
1042 	 * and times out. To workaround this, its good to check
1043 	 * if SRE and HCE bits are not set (as per xhci
1044 	 * Section 5.4.2) and bypass the timeout.
1045 	 */
1046 		res = readl(&xhci->op_regs->status);
1047 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1048 		    (((res & STS_SRE) == 0) &&
1049 				((res & STS_HCE) == 0))) {
1050 			xhci->broken_suspend = 1;
1051 		} else {
1052 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1053 			spin_unlock_irq(&xhci->lock);
1054 			return -ETIMEDOUT;
1055 		}
1056 	}
1057 	spin_unlock_irq(&xhci->lock);
1058 
1059 	/*
1060 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1061 	 * is about to be suspended.
1062 	 */
1063 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1064 			(!(xhci_all_ports_seen_u0(xhci)))) {
1065 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1066 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1067 				"%s: compliance mode recovery timer deleted",
1068 				__func__);
1069 	}
1070 
1071 	/* step 5: remove core well power */
1072 	/* synchronize irq when using MSI-X */
1073 	xhci_msix_sync_irqs(xhci);
1074 
1075 	return rc;
1076 }
1077 EXPORT_SYMBOL_GPL(xhci_suspend);
1078 
1079 /*
1080  * start xHC (not bus-specific)
1081  *
1082  * This is called when the machine transition from S3/S4 mode.
1083  *
1084  */
1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1086 {
1087 	u32			command, temp = 0;
1088 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1089 	struct usb_hcd		*secondary_hcd;
1090 	int			retval = 0;
1091 	bool			comp_timer_running = false;
1092 	bool			pending_portevent = false;
1093 
1094 	if (!hcd->state)
1095 		return 0;
1096 
1097 	/* Wait a bit if either of the roothubs need to settle from the
1098 	 * transition into bus suspend.
1099 	 */
1100 
1101 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103 		msleep(100);
1104 
1105 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107 
1108 	spin_lock_irq(&xhci->lock);
1109 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110 		hibernated = true;
1111 
1112 	if (!hibernated) {
1113 		/*
1114 		 * Some controllers might lose power during suspend, so wait
1115 		 * for controller not ready bit to clear, just as in xHC init.
1116 		 */
1117 		retval = xhci_handshake(&xhci->op_regs->status,
1118 					STS_CNR, 0, 10 * 1000 * 1000);
1119 		if (retval) {
1120 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1121 				  retval);
1122 			spin_unlock_irq(&xhci->lock);
1123 			return retval;
1124 		}
1125 		/* step 1: restore register */
1126 		xhci_restore_registers(xhci);
1127 		/* step 2: initialize command ring buffer */
1128 		xhci_set_cmd_ring_deq(xhci);
1129 		/* step 3: restore state and start state*/
1130 		/* step 3: set CRS flag */
1131 		command = readl(&xhci->op_regs->command);
1132 		command |= CMD_CRS;
1133 		writel(command, &xhci->op_regs->command);
1134 		/*
1135 		 * Some controllers take up to 55+ ms to complete the controller
1136 		 * restore so setting the timeout to 100ms. Xhci specification
1137 		 * doesn't mention any timeout value.
1138 		 */
1139 		if (xhci_handshake(&xhci->op_regs->status,
1140 			      STS_RESTORE, 0, 100 * 1000)) {
1141 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1142 			spin_unlock_irq(&xhci->lock);
1143 			return -ETIMEDOUT;
1144 		}
1145 		temp = readl(&xhci->op_regs->status);
1146 	}
1147 
1148 	/* If restore operation fails, re-initialize the HC during resume */
1149 	if ((temp & STS_SRE) || hibernated) {
1150 
1151 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1152 				!(xhci_all_ports_seen_u0(xhci))) {
1153 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1154 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1155 				"Compliance Mode Recovery Timer deleted!");
1156 		}
1157 
1158 		/* Let the USB core know _both_ roothubs lost power. */
1159 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1160 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1161 
1162 		xhci_dbg(xhci, "Stop HCD\n");
1163 		xhci_halt(xhci);
1164 		xhci_zero_64b_regs(xhci);
1165 		retval = xhci_reset(xhci);
1166 		spin_unlock_irq(&xhci->lock);
1167 		if (retval)
1168 			return retval;
1169 		xhci_cleanup_msix(xhci);
1170 
1171 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172 		temp = readl(&xhci->op_regs->status);
1173 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174 		temp = readl(&xhci->ir_set->irq_pending);
1175 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1176 
1177 		xhci_dbg(xhci, "cleaning up memory\n");
1178 		xhci_mem_cleanup(xhci);
1179 		xhci_debugfs_exit(xhci);
1180 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1181 			    readl(&xhci->op_regs->status));
1182 
1183 		/* USB core calls the PCI reinit and start functions twice:
1184 		 * first with the primary HCD, and then with the secondary HCD.
1185 		 * If we don't do the same, the host will never be started.
1186 		 */
1187 		if (!usb_hcd_is_primary_hcd(hcd))
1188 			secondary_hcd = hcd;
1189 		else
1190 			secondary_hcd = xhci->shared_hcd;
1191 
1192 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1193 		retval = xhci_init(hcd->primary_hcd);
1194 		if (retval)
1195 			return retval;
1196 		comp_timer_running = true;
1197 
1198 		xhci_dbg(xhci, "Start the primary HCD\n");
1199 		retval = xhci_run(hcd->primary_hcd);
1200 		if (!retval) {
1201 			xhci_dbg(xhci, "Start the secondary HCD\n");
1202 			retval = xhci_run(secondary_hcd);
1203 		}
1204 		hcd->state = HC_STATE_SUSPENDED;
1205 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206 		goto done;
1207 	}
1208 
1209 	/* step 4: set Run/Stop bit */
1210 	command = readl(&xhci->op_regs->command);
1211 	command |= CMD_RUN;
1212 	writel(command, &xhci->op_regs->command);
1213 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1214 		  0, 250 * 1000);
1215 
1216 	/* step 5: walk topology and initialize portsc,
1217 	 * portpmsc and portli
1218 	 */
1219 	/* this is done in bus_resume */
1220 
1221 	/* step 6: restart each of the previously
1222 	 * Running endpoints by ringing their doorbells
1223 	 */
1224 
1225 	spin_unlock_irq(&xhci->lock);
1226 
1227 	xhci_dbc_resume(xhci);
1228 
1229  done:
1230 	if (retval == 0) {
1231 		/*
1232 		 * Resume roothubs only if there are pending events.
1233 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1234 		 * the first wake signalling failed, give it that chance.
1235 		 */
1236 		pending_portevent = xhci_pending_portevent(xhci);
1237 		if (!pending_portevent) {
1238 			msleep(120);
1239 			pending_portevent = xhci_pending_portevent(xhci);
1240 		}
1241 
1242 		if (pending_portevent) {
1243 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1244 			usb_hcd_resume_root_hub(hcd);
1245 		}
1246 	}
1247 	/*
1248 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1249 	 * be re-initialized Always after a system resume. Ports are subject
1250 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1251 	 * ports have entered previously to U0 before system's suspension.
1252 	 */
1253 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1254 		compliance_mode_recovery_timer_init(xhci);
1255 
1256 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1257 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1258 
1259 	/* Re-enable port polling. */
1260 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1261 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1262 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1263 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1264 	usb_hcd_poll_rh_status(hcd);
1265 
1266 	return retval;
1267 }
1268 EXPORT_SYMBOL_GPL(xhci_resume);
1269 #endif	/* CONFIG_PM */
1270 
1271 /*-------------------------------------------------------------------------*/
1272 
1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1274 {
1275 	void *temp;
1276 	int ret = 0;
1277 	unsigned int buf_len;
1278 	enum dma_data_direction dir;
1279 
1280 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281 	buf_len = urb->transfer_buffer_length;
1282 
1283 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1284 			    dev_to_node(hcd->self.sysdev));
1285 
1286 	if (usb_urb_dir_out(urb))
1287 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1288 				   temp, buf_len, 0);
1289 
1290 	urb->transfer_buffer = temp;
1291 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1292 					   urb->transfer_buffer,
1293 					   urb->transfer_buffer_length,
1294 					   dir);
1295 
1296 	if (dma_mapping_error(hcd->self.sysdev,
1297 			      urb->transfer_dma)) {
1298 		ret = -EAGAIN;
1299 		kfree(temp);
1300 	} else {
1301 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1308 					  struct urb *urb)
1309 {
1310 	bool ret = false;
1311 	unsigned int i;
1312 	unsigned int len = 0;
1313 	unsigned int trb_size;
1314 	unsigned int max_pkt;
1315 	struct scatterlist *sg;
1316 	struct scatterlist *tail_sg;
1317 
1318 	tail_sg = urb->sg;
1319 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1320 
1321 	if (!urb->num_sgs)
1322 		return ret;
1323 
1324 	if (urb->dev->speed >= USB_SPEED_SUPER)
1325 		trb_size = TRB_CACHE_SIZE_SS;
1326 	else
1327 		trb_size = TRB_CACHE_SIZE_HS;
1328 
1329 	if (urb->transfer_buffer_length != 0 &&
1330 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1331 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1332 			len = len + sg->length;
1333 			if (i > trb_size - 2) {
1334 				len = len - tail_sg->length;
1335 				if (len < max_pkt) {
1336 					ret = true;
1337 					break;
1338 				}
1339 
1340 				tail_sg = sg_next(tail_sg);
1341 			}
1342 		}
1343 	}
1344 	return ret;
1345 }
1346 
1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1348 {
1349 	unsigned int len;
1350 	unsigned int buf_len;
1351 	enum dma_data_direction dir;
1352 
1353 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1354 
1355 	buf_len = urb->transfer_buffer_length;
1356 
1357 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1359 		dma_unmap_single(hcd->self.sysdev,
1360 				 urb->transfer_dma,
1361 				 urb->transfer_buffer_length,
1362 				 dir);
1363 
1364 	if (usb_urb_dir_in(urb)) {
1365 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1366 					   urb->transfer_buffer,
1367 					   buf_len,
1368 					   0);
1369 		if (len != buf_len) {
1370 			xhci_dbg(hcd_to_xhci(hcd),
1371 				 "Copy from tmp buf to urb sg list failed\n");
1372 			urb->actual_length = len;
1373 		}
1374 	}
1375 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1376 	kfree(urb->transfer_buffer);
1377 	urb->transfer_buffer = NULL;
1378 }
1379 
1380 /*
1381  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1382  * we'll copy the actual data into the TRB address register. This is limited to
1383  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1384  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1385  */
1386 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387 				gfp_t mem_flags)
1388 {
1389 	struct xhci_hcd *xhci;
1390 
1391 	xhci = hcd_to_xhci(hcd);
1392 
1393 	if (xhci_urb_suitable_for_idt(urb))
1394 		return 0;
1395 
1396 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1397 		if (xhci_urb_temp_buffer_required(hcd, urb))
1398 			return xhci_map_temp_buffer(hcd, urb);
1399 	}
1400 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1401 }
1402 
1403 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1404 {
1405 	struct xhci_hcd *xhci;
1406 	bool unmap_temp_buf = false;
1407 
1408 	xhci = hcd_to_xhci(hcd);
1409 
1410 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1411 		unmap_temp_buf = true;
1412 
1413 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1414 		xhci_unmap_temp_buf(hcd, urb);
1415 	else
1416 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1417 }
1418 
1419 /**
1420  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1421  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1422  * value to right shift 1 for the bitmask.
1423  *
1424  * Index  = (epnum * 2) + direction - 1,
1425  * where direction = 0 for OUT, 1 for IN.
1426  * For control endpoints, the IN index is used (OUT index is unused), so
1427  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1428  */
1429 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1430 {
1431 	unsigned int index;
1432 	if (usb_endpoint_xfer_control(desc))
1433 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1434 	else
1435 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1436 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1437 	return index;
1438 }
1439 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1440 
1441 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1442  * address from the XHCI endpoint index.
1443  */
1444 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1445 {
1446 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1447 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1448 	return direction | number;
1449 }
1450 
1451 /* Find the flag for this endpoint (for use in the control context).  Use the
1452  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1453  * bit 1, etc.
1454  */
1455 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1456 {
1457 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1458 }
1459 
1460 /* Compute the last valid endpoint context index.  Basically, this is the
1461  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1462  * we find the most significant bit set in the added contexts flags.
1463  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1464  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1465  */
1466 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1467 {
1468 	return fls(added_ctxs) - 1;
1469 }
1470 
1471 /* Returns 1 if the arguments are OK;
1472  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1473  */
1474 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1475 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1476 		const char *func) {
1477 	struct xhci_hcd	*xhci;
1478 	struct xhci_virt_device	*virt_dev;
1479 
1480 	if (!hcd || (check_ep && !ep) || !udev) {
1481 		pr_debug("xHCI %s called with invalid args\n", func);
1482 		return -EINVAL;
1483 	}
1484 	if (!udev->parent) {
1485 		pr_debug("xHCI %s called for root hub\n", func);
1486 		return 0;
1487 	}
1488 
1489 	xhci = hcd_to_xhci(hcd);
1490 	if (check_virt_dev) {
1491 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1492 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1493 					func);
1494 			return -EINVAL;
1495 		}
1496 
1497 		virt_dev = xhci->devs[udev->slot_id];
1498 		if (virt_dev->udev != udev) {
1499 			xhci_dbg(xhci, "xHCI %s called with udev and "
1500 					  "virt_dev does not match\n", func);
1501 			return -EINVAL;
1502 		}
1503 	}
1504 
1505 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1506 		return -ENODEV;
1507 
1508 	return 1;
1509 }
1510 
1511 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1512 		struct usb_device *udev, struct xhci_command *command,
1513 		bool ctx_change, bool must_succeed);
1514 
1515 /*
1516  * Full speed devices may have a max packet size greater than 8 bytes, but the
1517  * USB core doesn't know that until it reads the first 8 bytes of the
1518  * descriptor.  If the usb_device's max packet size changes after that point,
1519  * we need to issue an evaluate context command and wait on it.
1520  */
1521 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1522 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1523 {
1524 	struct xhci_container_ctx *out_ctx;
1525 	struct xhci_input_control_ctx *ctrl_ctx;
1526 	struct xhci_ep_ctx *ep_ctx;
1527 	struct xhci_command *command;
1528 	int max_packet_size;
1529 	int hw_max_packet_size;
1530 	int ret = 0;
1531 
1532 	out_ctx = xhci->devs[slot_id]->out_ctx;
1533 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1534 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1535 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1536 	if (hw_max_packet_size != max_packet_size) {
1537 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1538 				"Max Packet Size for ep 0 changed.");
1539 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1540 				"Max packet size in usb_device = %d",
1541 				max_packet_size);
1542 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1543 				"Max packet size in xHCI HW = %d",
1544 				hw_max_packet_size);
1545 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1546 				"Issuing evaluate context command.");
1547 
1548 		/* Set up the input context flags for the command */
1549 		/* FIXME: This won't work if a non-default control endpoint
1550 		 * changes max packet sizes.
1551 		 */
1552 
1553 		command = xhci_alloc_command(xhci, true, mem_flags);
1554 		if (!command)
1555 			return -ENOMEM;
1556 
1557 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1558 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1559 		if (!ctrl_ctx) {
1560 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1561 					__func__);
1562 			ret = -ENOMEM;
1563 			goto command_cleanup;
1564 		}
1565 		/* Set up the modified control endpoint 0 */
1566 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1567 				xhci->devs[slot_id]->out_ctx, ep_index);
1568 
1569 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1570 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1571 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1572 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1573 
1574 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1575 		ctrl_ctx->drop_flags = 0;
1576 
1577 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1578 				true, false);
1579 
1580 		/* Clean up the input context for later use by bandwidth
1581 		 * functions.
1582 		 */
1583 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1584 command_cleanup:
1585 		kfree(command->completion);
1586 		kfree(command);
1587 	}
1588 	return ret;
1589 }
1590 
1591 /*
1592  * non-error returns are a promise to giveback() the urb later
1593  * we drop ownership so next owner (or urb unlink) can get it
1594  */
1595 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1596 {
1597 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1598 	unsigned long flags;
1599 	int ret = 0;
1600 	unsigned int slot_id, ep_index;
1601 	unsigned int *ep_state;
1602 	struct urb_priv	*urb_priv;
1603 	int num_tds;
1604 
1605 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1606 					true, true, __func__) <= 0)
1607 		return -EINVAL;
1608 
1609 	slot_id = urb->dev->slot_id;
1610 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1611 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1612 
1613 	if (!HCD_HW_ACCESSIBLE(hcd))
1614 		return -ESHUTDOWN;
1615 
1616 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1617 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1618 		return -ENODEV;
1619 	}
1620 
1621 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1622 		num_tds = urb->number_of_packets;
1623 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1624 	    urb->transfer_buffer_length > 0 &&
1625 	    urb->transfer_flags & URB_ZERO_PACKET &&
1626 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1627 		num_tds = 2;
1628 	else
1629 		num_tds = 1;
1630 
1631 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1632 	if (!urb_priv)
1633 		return -ENOMEM;
1634 
1635 	urb_priv->num_tds = num_tds;
1636 	urb_priv->num_tds_done = 0;
1637 	urb->hcpriv = urb_priv;
1638 
1639 	trace_xhci_urb_enqueue(urb);
1640 
1641 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1642 		/* Check to see if the max packet size for the default control
1643 		 * endpoint changed during FS device enumeration
1644 		 */
1645 		if (urb->dev->speed == USB_SPEED_FULL) {
1646 			ret = xhci_check_maxpacket(xhci, slot_id,
1647 					ep_index, urb, mem_flags);
1648 			if (ret < 0) {
1649 				xhci_urb_free_priv(urb_priv);
1650 				urb->hcpriv = NULL;
1651 				return ret;
1652 			}
1653 		}
1654 	}
1655 
1656 	spin_lock_irqsave(&xhci->lock, flags);
1657 
1658 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1659 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1660 			 urb->ep->desc.bEndpointAddress, urb);
1661 		ret = -ESHUTDOWN;
1662 		goto free_priv;
1663 	}
1664 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1665 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1666 			  *ep_state);
1667 		ret = -EINVAL;
1668 		goto free_priv;
1669 	}
1670 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1671 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1672 		ret = -EINVAL;
1673 		goto free_priv;
1674 	}
1675 
1676 	switch (usb_endpoint_type(&urb->ep->desc)) {
1677 
1678 	case USB_ENDPOINT_XFER_CONTROL:
1679 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1680 					 slot_id, ep_index);
1681 		break;
1682 	case USB_ENDPOINT_XFER_BULK:
1683 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1684 					 slot_id, ep_index);
1685 		break;
1686 	case USB_ENDPOINT_XFER_INT:
1687 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1688 				slot_id, ep_index);
1689 		break;
1690 	case USB_ENDPOINT_XFER_ISOC:
1691 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1692 				slot_id, ep_index);
1693 	}
1694 
1695 	if (ret) {
1696 free_priv:
1697 		xhci_urb_free_priv(urb_priv);
1698 		urb->hcpriv = NULL;
1699 	}
1700 	spin_unlock_irqrestore(&xhci->lock, flags);
1701 	return ret;
1702 }
1703 
1704 /*
1705  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1706  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1707  * should pick up where it left off in the TD, unless a Set Transfer Ring
1708  * Dequeue Pointer is issued.
1709  *
1710  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1711  * the ring.  Since the ring is a contiguous structure, they can't be physically
1712  * removed.  Instead, there are two options:
1713  *
1714  *  1) If the HC is in the middle of processing the URB to be canceled, we
1715  *     simply move the ring's dequeue pointer past those TRBs using the Set
1716  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1717  *     when drivers timeout on the last submitted URB and attempt to cancel.
1718  *
1719  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1720  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1721  *     HC will need to invalidate the any TRBs it has cached after the stop
1722  *     endpoint command, as noted in the xHCI 0.95 errata.
1723  *
1724  *  3) The TD may have completed by the time the Stop Endpoint Command
1725  *     completes, so software needs to handle that case too.
1726  *
1727  * This function should protect against the TD enqueueing code ringing the
1728  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1729  * It also needs to account for multiple cancellations on happening at the same
1730  * time for the same endpoint.
1731  *
1732  * Note that this function can be called in any context, or so says
1733  * usb_hcd_unlink_urb()
1734  */
1735 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1736 {
1737 	unsigned long flags;
1738 	int ret, i;
1739 	u32 temp;
1740 	struct xhci_hcd *xhci;
1741 	struct urb_priv	*urb_priv;
1742 	struct xhci_td *td;
1743 	unsigned int ep_index;
1744 	struct xhci_ring *ep_ring;
1745 	struct xhci_virt_ep *ep;
1746 	struct xhci_command *command;
1747 	struct xhci_virt_device *vdev;
1748 
1749 	xhci = hcd_to_xhci(hcd);
1750 	spin_lock_irqsave(&xhci->lock, flags);
1751 
1752 	trace_xhci_urb_dequeue(urb);
1753 
1754 	/* Make sure the URB hasn't completed or been unlinked already */
1755 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1756 	if (ret)
1757 		goto done;
1758 
1759 	/* give back URB now if we can't queue it for cancel */
1760 	vdev = xhci->devs[urb->dev->slot_id];
1761 	urb_priv = urb->hcpriv;
1762 	if (!vdev || !urb_priv)
1763 		goto err_giveback;
1764 
1765 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1766 	ep = &vdev->eps[ep_index];
1767 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1768 	if (!ep || !ep_ring)
1769 		goto err_giveback;
1770 
1771 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1772 	temp = readl(&xhci->op_regs->status);
1773 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1774 		xhci_hc_died(xhci);
1775 		goto done;
1776 	}
1777 
1778 	/*
1779 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1780 	 * make sure none of the ring related pointers in this URB private data
1781 	 * are touched, such as td_list, otherwise we overwrite freed data
1782 	 */
1783 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1784 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1785 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1786 			td = &urb_priv->td[i];
1787 			if (!list_empty(&td->cancelled_td_list))
1788 				list_del_init(&td->cancelled_td_list);
1789 		}
1790 		goto err_giveback;
1791 	}
1792 
1793 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1794 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1795 				"HC halted, freeing TD manually.");
1796 		for (i = urb_priv->num_tds_done;
1797 		     i < urb_priv->num_tds;
1798 		     i++) {
1799 			td = &urb_priv->td[i];
1800 			if (!list_empty(&td->td_list))
1801 				list_del_init(&td->td_list);
1802 			if (!list_empty(&td->cancelled_td_list))
1803 				list_del_init(&td->cancelled_td_list);
1804 		}
1805 		goto err_giveback;
1806 	}
1807 
1808 	i = urb_priv->num_tds_done;
1809 	if (i < urb_priv->num_tds)
1810 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1811 				"Cancel URB %p, dev %s, ep 0x%x, "
1812 				"starting at offset 0x%llx",
1813 				urb, urb->dev->devpath,
1814 				urb->ep->desc.bEndpointAddress,
1815 				(unsigned long long) xhci_trb_virt_to_dma(
1816 					urb_priv->td[i].start_seg,
1817 					urb_priv->td[i].first_trb));
1818 
1819 	for (; i < urb_priv->num_tds; i++) {
1820 		td = &urb_priv->td[i];
1821 		/* TD can already be on cancelled list if ep halted on it */
1822 		if (list_empty(&td->cancelled_td_list)) {
1823 			td->cancel_status = TD_DIRTY;
1824 			list_add_tail(&td->cancelled_td_list,
1825 				      &ep->cancelled_td_list);
1826 		}
1827 	}
1828 
1829 	/* Queue a stop endpoint command, but only if this is
1830 	 * the first cancellation to be handled.
1831 	 */
1832 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1833 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1834 		if (!command) {
1835 			ret = -ENOMEM;
1836 			goto done;
1837 		}
1838 		ep->ep_state |= EP_STOP_CMD_PENDING;
1839 		ep->stop_cmd_timer.expires = jiffies +
1840 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1841 		add_timer(&ep->stop_cmd_timer);
1842 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1843 					 ep_index, 0);
1844 		xhci_ring_cmd_db(xhci);
1845 	}
1846 done:
1847 	spin_unlock_irqrestore(&xhci->lock, flags);
1848 	return ret;
1849 
1850 err_giveback:
1851 	if (urb_priv)
1852 		xhci_urb_free_priv(urb_priv);
1853 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1854 	spin_unlock_irqrestore(&xhci->lock, flags);
1855 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1856 	return ret;
1857 }
1858 
1859 /* Drop an endpoint from a new bandwidth configuration for this device.
1860  * Only one call to this function is allowed per endpoint before
1861  * check_bandwidth() or reset_bandwidth() must be called.
1862  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1863  * add the endpoint to the schedule with possibly new parameters denoted by a
1864  * different endpoint descriptor in usb_host_endpoint.
1865  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1866  * not allowed.
1867  *
1868  * The USB core will not allow URBs to be queued to an endpoint that is being
1869  * disabled, so there's no need for mutual exclusion to protect
1870  * the xhci->devs[slot_id] structure.
1871  */
1872 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1873 		       struct usb_host_endpoint *ep)
1874 {
1875 	struct xhci_hcd *xhci;
1876 	struct xhci_container_ctx *in_ctx, *out_ctx;
1877 	struct xhci_input_control_ctx *ctrl_ctx;
1878 	unsigned int ep_index;
1879 	struct xhci_ep_ctx *ep_ctx;
1880 	u32 drop_flag;
1881 	u32 new_add_flags, new_drop_flags;
1882 	int ret;
1883 
1884 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1885 	if (ret <= 0)
1886 		return ret;
1887 	xhci = hcd_to_xhci(hcd);
1888 	if (xhci->xhc_state & XHCI_STATE_DYING)
1889 		return -ENODEV;
1890 
1891 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1892 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1893 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1894 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1895 				__func__, drop_flag);
1896 		return 0;
1897 	}
1898 
1899 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1900 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1901 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1902 	if (!ctrl_ctx) {
1903 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1904 				__func__);
1905 		return 0;
1906 	}
1907 
1908 	ep_index = xhci_get_endpoint_index(&ep->desc);
1909 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1910 	/* If the HC already knows the endpoint is disabled,
1911 	 * or the HCD has noted it is disabled, ignore this request
1912 	 */
1913 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1914 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1915 	    xhci_get_endpoint_flag(&ep->desc)) {
1916 		/* Do not warn when called after a usb_device_reset */
1917 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1918 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1919 				  __func__, ep);
1920 		return 0;
1921 	}
1922 
1923 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1924 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1925 
1926 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1927 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1928 
1929 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1930 
1931 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1932 
1933 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1934 			(unsigned int) ep->desc.bEndpointAddress,
1935 			udev->slot_id,
1936 			(unsigned int) new_drop_flags,
1937 			(unsigned int) new_add_flags);
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1941 
1942 /* Add an endpoint to a new possible bandwidth configuration for this device.
1943  * Only one call to this function is allowed per endpoint before
1944  * check_bandwidth() or reset_bandwidth() must be called.
1945  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1946  * add the endpoint to the schedule with possibly new parameters denoted by a
1947  * different endpoint descriptor in usb_host_endpoint.
1948  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1949  * not allowed.
1950  *
1951  * The USB core will not allow URBs to be queued to an endpoint until the
1952  * configuration or alt setting is installed in the device, so there's no need
1953  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1954  */
1955 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1956 		      struct usb_host_endpoint *ep)
1957 {
1958 	struct xhci_hcd *xhci;
1959 	struct xhci_container_ctx *in_ctx;
1960 	unsigned int ep_index;
1961 	struct xhci_input_control_ctx *ctrl_ctx;
1962 	struct xhci_ep_ctx *ep_ctx;
1963 	u32 added_ctxs;
1964 	u32 new_add_flags, new_drop_flags;
1965 	struct xhci_virt_device *virt_dev;
1966 	int ret = 0;
1967 
1968 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1969 	if (ret <= 0) {
1970 		/* So we won't queue a reset ep command for a root hub */
1971 		ep->hcpriv = NULL;
1972 		return ret;
1973 	}
1974 	xhci = hcd_to_xhci(hcd);
1975 	if (xhci->xhc_state & XHCI_STATE_DYING)
1976 		return -ENODEV;
1977 
1978 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1979 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1980 		/* FIXME when we have to issue an evaluate endpoint command to
1981 		 * deal with ep0 max packet size changing once we get the
1982 		 * descriptors
1983 		 */
1984 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1985 				__func__, added_ctxs);
1986 		return 0;
1987 	}
1988 
1989 	virt_dev = xhci->devs[udev->slot_id];
1990 	in_ctx = virt_dev->in_ctx;
1991 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1992 	if (!ctrl_ctx) {
1993 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1994 				__func__);
1995 		return 0;
1996 	}
1997 
1998 	ep_index = xhci_get_endpoint_index(&ep->desc);
1999 	/* If this endpoint is already in use, and the upper layers are trying
2000 	 * to add it again without dropping it, reject the addition.
2001 	 */
2002 	if (virt_dev->eps[ep_index].ring &&
2003 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2004 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2005 				"without dropping it.\n",
2006 				(unsigned int) ep->desc.bEndpointAddress);
2007 		return -EINVAL;
2008 	}
2009 
2010 	/* If the HCD has already noted the endpoint is enabled,
2011 	 * ignore this request.
2012 	 */
2013 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2014 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2015 				__func__, ep);
2016 		return 0;
2017 	}
2018 
2019 	/*
2020 	 * Configuration and alternate setting changes must be done in
2021 	 * process context, not interrupt context (or so documenation
2022 	 * for usb_set_interface() and usb_set_configuration() claim).
2023 	 */
2024 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2025 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2026 				__func__, ep->desc.bEndpointAddress);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2031 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2032 
2033 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2034 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2035 	 * this re-adds a new state for the endpoint from the new endpoint
2036 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2037 	 * drop flags alone.
2038 	 */
2039 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2040 
2041 	/* Store the usb_device pointer for later use */
2042 	ep->hcpriv = udev;
2043 
2044 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2045 	trace_xhci_add_endpoint(ep_ctx);
2046 
2047 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2048 			(unsigned int) ep->desc.bEndpointAddress,
2049 			udev->slot_id,
2050 			(unsigned int) new_drop_flags,
2051 			(unsigned int) new_add_flags);
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2055 
2056 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2057 {
2058 	struct xhci_input_control_ctx *ctrl_ctx;
2059 	struct xhci_ep_ctx *ep_ctx;
2060 	struct xhci_slot_ctx *slot_ctx;
2061 	int i;
2062 
2063 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2064 	if (!ctrl_ctx) {
2065 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2066 				__func__);
2067 		return;
2068 	}
2069 
2070 	/* When a device's add flag and drop flag are zero, any subsequent
2071 	 * configure endpoint command will leave that endpoint's state
2072 	 * untouched.  Make sure we don't leave any old state in the input
2073 	 * endpoint contexts.
2074 	 */
2075 	ctrl_ctx->drop_flags = 0;
2076 	ctrl_ctx->add_flags = 0;
2077 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2078 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2079 	/* Endpoint 0 is always valid */
2080 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2081 	for (i = 1; i < 31; i++) {
2082 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2083 		ep_ctx->ep_info = 0;
2084 		ep_ctx->ep_info2 = 0;
2085 		ep_ctx->deq = 0;
2086 		ep_ctx->tx_info = 0;
2087 	}
2088 }
2089 
2090 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2091 		struct usb_device *udev, u32 *cmd_status)
2092 {
2093 	int ret;
2094 
2095 	switch (*cmd_status) {
2096 	case COMP_COMMAND_ABORTED:
2097 	case COMP_COMMAND_RING_STOPPED:
2098 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2099 		ret = -ETIME;
2100 		break;
2101 	case COMP_RESOURCE_ERROR:
2102 		dev_warn(&udev->dev,
2103 			 "Not enough host controller resources for new device state.\n");
2104 		ret = -ENOMEM;
2105 		/* FIXME: can we allocate more resources for the HC? */
2106 		break;
2107 	case COMP_BANDWIDTH_ERROR:
2108 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2109 		dev_warn(&udev->dev,
2110 			 "Not enough bandwidth for new device state.\n");
2111 		ret = -ENOSPC;
2112 		/* FIXME: can we go back to the old state? */
2113 		break;
2114 	case COMP_TRB_ERROR:
2115 		/* the HCD set up something wrong */
2116 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2117 				"add flag = 1, "
2118 				"and endpoint is not disabled.\n");
2119 		ret = -EINVAL;
2120 		break;
2121 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2122 		dev_warn(&udev->dev,
2123 			 "ERROR: Incompatible device for endpoint configure command.\n");
2124 		ret = -ENODEV;
2125 		break;
2126 	case COMP_SUCCESS:
2127 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2128 				"Successful Endpoint Configure command");
2129 		ret = 0;
2130 		break;
2131 	default:
2132 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2133 				*cmd_status);
2134 		ret = -EINVAL;
2135 		break;
2136 	}
2137 	return ret;
2138 }
2139 
2140 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2141 		struct usb_device *udev, u32 *cmd_status)
2142 {
2143 	int ret;
2144 
2145 	switch (*cmd_status) {
2146 	case COMP_COMMAND_ABORTED:
2147 	case COMP_COMMAND_RING_STOPPED:
2148 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2149 		ret = -ETIME;
2150 		break;
2151 	case COMP_PARAMETER_ERROR:
2152 		dev_warn(&udev->dev,
2153 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2154 		ret = -EINVAL;
2155 		break;
2156 	case COMP_SLOT_NOT_ENABLED_ERROR:
2157 		dev_warn(&udev->dev,
2158 			"WARN: slot not enabled for evaluate context command.\n");
2159 		ret = -EINVAL;
2160 		break;
2161 	case COMP_CONTEXT_STATE_ERROR:
2162 		dev_warn(&udev->dev,
2163 			"WARN: invalid context state for evaluate context command.\n");
2164 		ret = -EINVAL;
2165 		break;
2166 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2167 		dev_warn(&udev->dev,
2168 			"ERROR: Incompatible device for evaluate context command.\n");
2169 		ret = -ENODEV;
2170 		break;
2171 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2172 		/* Max Exit Latency too large error */
2173 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2174 		ret = -EINVAL;
2175 		break;
2176 	case COMP_SUCCESS:
2177 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2178 				"Successful evaluate context command");
2179 		ret = 0;
2180 		break;
2181 	default:
2182 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2183 			*cmd_status);
2184 		ret = -EINVAL;
2185 		break;
2186 	}
2187 	return ret;
2188 }
2189 
2190 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2191 		struct xhci_input_control_ctx *ctrl_ctx)
2192 {
2193 	u32 valid_add_flags;
2194 	u32 valid_drop_flags;
2195 
2196 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2197 	 * (bit 1).  The default control endpoint is added during the Address
2198 	 * Device command and is never removed until the slot is disabled.
2199 	 */
2200 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2201 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2202 
2203 	/* Use hweight32 to count the number of ones in the add flags, or
2204 	 * number of endpoints added.  Don't count endpoints that are changed
2205 	 * (both added and dropped).
2206 	 */
2207 	return hweight32(valid_add_flags) -
2208 		hweight32(valid_add_flags & valid_drop_flags);
2209 }
2210 
2211 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2212 		struct xhci_input_control_ctx *ctrl_ctx)
2213 {
2214 	u32 valid_add_flags;
2215 	u32 valid_drop_flags;
2216 
2217 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2218 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2219 
2220 	return hweight32(valid_drop_flags) -
2221 		hweight32(valid_add_flags & valid_drop_flags);
2222 }
2223 
2224 /*
2225  * We need to reserve the new number of endpoints before the configure endpoint
2226  * command completes.  We can't subtract the dropped endpoints from the number
2227  * of active endpoints until the command completes because we can oversubscribe
2228  * the host in this case:
2229  *
2230  *  - the first configure endpoint command drops more endpoints than it adds
2231  *  - a second configure endpoint command that adds more endpoints is queued
2232  *  - the first configure endpoint command fails, so the config is unchanged
2233  *  - the second command may succeed, even though there isn't enough resources
2234  *
2235  * Must be called with xhci->lock held.
2236  */
2237 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2238 		struct xhci_input_control_ctx *ctrl_ctx)
2239 {
2240 	u32 added_eps;
2241 
2242 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2243 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2244 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2245 				"Not enough ep ctxs: "
2246 				"%u active, need to add %u, limit is %u.",
2247 				xhci->num_active_eps, added_eps,
2248 				xhci->limit_active_eps);
2249 		return -ENOMEM;
2250 	}
2251 	xhci->num_active_eps += added_eps;
2252 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2253 			"Adding %u ep ctxs, %u now active.", added_eps,
2254 			xhci->num_active_eps);
2255 	return 0;
2256 }
2257 
2258 /*
2259  * The configure endpoint was failed by the xHC for some other reason, so we
2260  * need to revert the resources that failed configuration would have used.
2261  *
2262  * Must be called with xhci->lock held.
2263  */
2264 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2265 		struct xhci_input_control_ctx *ctrl_ctx)
2266 {
2267 	u32 num_failed_eps;
2268 
2269 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2270 	xhci->num_active_eps -= num_failed_eps;
2271 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2272 			"Removing %u failed ep ctxs, %u now active.",
2273 			num_failed_eps,
2274 			xhci->num_active_eps);
2275 }
2276 
2277 /*
2278  * Now that the command has completed, clean up the active endpoint count by
2279  * subtracting out the endpoints that were dropped (but not changed).
2280  *
2281  * Must be called with xhci->lock held.
2282  */
2283 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2284 		struct xhci_input_control_ctx *ctrl_ctx)
2285 {
2286 	u32 num_dropped_eps;
2287 
2288 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2289 	xhci->num_active_eps -= num_dropped_eps;
2290 	if (num_dropped_eps)
2291 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2292 				"Removing %u dropped ep ctxs, %u now active.",
2293 				num_dropped_eps,
2294 				xhci->num_active_eps);
2295 }
2296 
2297 static unsigned int xhci_get_block_size(struct usb_device *udev)
2298 {
2299 	switch (udev->speed) {
2300 	case USB_SPEED_LOW:
2301 	case USB_SPEED_FULL:
2302 		return FS_BLOCK;
2303 	case USB_SPEED_HIGH:
2304 		return HS_BLOCK;
2305 	case USB_SPEED_SUPER:
2306 	case USB_SPEED_SUPER_PLUS:
2307 		return SS_BLOCK;
2308 	case USB_SPEED_UNKNOWN:
2309 	case USB_SPEED_WIRELESS:
2310 	default:
2311 		/* Should never happen */
2312 		return 1;
2313 	}
2314 }
2315 
2316 static unsigned int
2317 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2318 {
2319 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2320 		return LS_OVERHEAD;
2321 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2322 		return FS_OVERHEAD;
2323 	return HS_OVERHEAD;
2324 }
2325 
2326 /* If we are changing a LS/FS device under a HS hub,
2327  * make sure (if we are activating a new TT) that the HS bus has enough
2328  * bandwidth for this new TT.
2329  */
2330 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2331 		struct xhci_virt_device *virt_dev,
2332 		int old_active_eps)
2333 {
2334 	struct xhci_interval_bw_table *bw_table;
2335 	struct xhci_tt_bw_info *tt_info;
2336 
2337 	/* Find the bandwidth table for the root port this TT is attached to. */
2338 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2339 	tt_info = virt_dev->tt_info;
2340 	/* If this TT already had active endpoints, the bandwidth for this TT
2341 	 * has already been added.  Removing all periodic endpoints (and thus
2342 	 * making the TT enactive) will only decrease the bandwidth used.
2343 	 */
2344 	if (old_active_eps)
2345 		return 0;
2346 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2347 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2348 			return -ENOMEM;
2349 		return 0;
2350 	}
2351 	/* Not sure why we would have no new active endpoints...
2352 	 *
2353 	 * Maybe because of an Evaluate Context change for a hub update or a
2354 	 * control endpoint 0 max packet size change?
2355 	 * FIXME: skip the bandwidth calculation in that case.
2356 	 */
2357 	return 0;
2358 }
2359 
2360 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2361 		struct xhci_virt_device *virt_dev)
2362 {
2363 	unsigned int bw_reserved;
2364 
2365 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2366 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2367 		return -ENOMEM;
2368 
2369 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2370 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2371 		return -ENOMEM;
2372 
2373 	return 0;
2374 }
2375 
2376 /*
2377  * This algorithm is a very conservative estimate of the worst-case scheduling
2378  * scenario for any one interval.  The hardware dynamically schedules the
2379  * packets, so we can't tell which microframe could be the limiting factor in
2380  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2381  *
2382  * Obviously, we can't solve an NP complete problem to find the minimum worst
2383  * case scenario.  Instead, we come up with an estimate that is no less than
2384  * the worst case bandwidth used for any one microframe, but may be an
2385  * over-estimate.
2386  *
2387  * We walk the requirements for each endpoint by interval, starting with the
2388  * smallest interval, and place packets in the schedule where there is only one
2389  * possible way to schedule packets for that interval.  In order to simplify
2390  * this algorithm, we record the largest max packet size for each interval, and
2391  * assume all packets will be that size.
2392  *
2393  * For interval 0, we obviously must schedule all packets for each interval.
2394  * The bandwidth for interval 0 is just the amount of data to be transmitted
2395  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2396  * the number of packets).
2397  *
2398  * For interval 1, we have two possible microframes to schedule those packets
2399  * in.  For this algorithm, if we can schedule the same number of packets for
2400  * each possible scheduling opportunity (each microframe), we will do so.  The
2401  * remaining number of packets will be saved to be transmitted in the gaps in
2402  * the next interval's scheduling sequence.
2403  *
2404  * As we move those remaining packets to be scheduled with interval 2 packets,
2405  * we have to double the number of remaining packets to transmit.  This is
2406  * because the intervals are actually powers of 2, and we would be transmitting
2407  * the previous interval's packets twice in this interval.  We also have to be
2408  * sure that when we look at the largest max packet size for this interval, we
2409  * also look at the largest max packet size for the remaining packets and take
2410  * the greater of the two.
2411  *
2412  * The algorithm continues to evenly distribute packets in each scheduling
2413  * opportunity, and push the remaining packets out, until we get to the last
2414  * interval.  Then those packets and their associated overhead are just added
2415  * to the bandwidth used.
2416  */
2417 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2418 		struct xhci_virt_device *virt_dev,
2419 		int old_active_eps)
2420 {
2421 	unsigned int bw_reserved;
2422 	unsigned int max_bandwidth;
2423 	unsigned int bw_used;
2424 	unsigned int block_size;
2425 	struct xhci_interval_bw_table *bw_table;
2426 	unsigned int packet_size = 0;
2427 	unsigned int overhead = 0;
2428 	unsigned int packets_transmitted = 0;
2429 	unsigned int packets_remaining = 0;
2430 	unsigned int i;
2431 
2432 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2433 		return xhci_check_ss_bw(xhci, virt_dev);
2434 
2435 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2436 		max_bandwidth = HS_BW_LIMIT;
2437 		/* Convert percent of bus BW reserved to blocks reserved */
2438 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2439 	} else {
2440 		max_bandwidth = FS_BW_LIMIT;
2441 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2442 	}
2443 
2444 	bw_table = virt_dev->bw_table;
2445 	/* We need to translate the max packet size and max ESIT payloads into
2446 	 * the units the hardware uses.
2447 	 */
2448 	block_size = xhci_get_block_size(virt_dev->udev);
2449 
2450 	/* If we are manipulating a LS/FS device under a HS hub, double check
2451 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2452 	 */
2453 	if (virt_dev->tt_info) {
2454 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2455 				"Recalculating BW for rootport %u",
2456 				virt_dev->real_port);
2457 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2458 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2459 					"newly activated TT.\n");
2460 			return -ENOMEM;
2461 		}
2462 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2463 				"Recalculating BW for TT slot %u port %u",
2464 				virt_dev->tt_info->slot_id,
2465 				virt_dev->tt_info->ttport);
2466 	} else {
2467 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2468 				"Recalculating BW for rootport %u",
2469 				virt_dev->real_port);
2470 	}
2471 
2472 	/* Add in how much bandwidth will be used for interval zero, or the
2473 	 * rounded max ESIT payload + number of packets * largest overhead.
2474 	 */
2475 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2476 		bw_table->interval_bw[0].num_packets *
2477 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2478 
2479 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2480 		unsigned int bw_added;
2481 		unsigned int largest_mps;
2482 		unsigned int interval_overhead;
2483 
2484 		/*
2485 		 * How many packets could we transmit in this interval?
2486 		 * If packets didn't fit in the previous interval, we will need
2487 		 * to transmit that many packets twice within this interval.
2488 		 */
2489 		packets_remaining = 2 * packets_remaining +
2490 			bw_table->interval_bw[i].num_packets;
2491 
2492 		/* Find the largest max packet size of this or the previous
2493 		 * interval.
2494 		 */
2495 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2496 			largest_mps = 0;
2497 		else {
2498 			struct xhci_virt_ep *virt_ep;
2499 			struct list_head *ep_entry;
2500 
2501 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2502 			virt_ep = list_entry(ep_entry,
2503 					struct xhci_virt_ep, bw_endpoint_list);
2504 			/* Convert to blocks, rounding up */
2505 			largest_mps = DIV_ROUND_UP(
2506 					virt_ep->bw_info.max_packet_size,
2507 					block_size);
2508 		}
2509 		if (largest_mps > packet_size)
2510 			packet_size = largest_mps;
2511 
2512 		/* Use the larger overhead of this or the previous interval. */
2513 		interval_overhead = xhci_get_largest_overhead(
2514 				&bw_table->interval_bw[i]);
2515 		if (interval_overhead > overhead)
2516 			overhead = interval_overhead;
2517 
2518 		/* How many packets can we evenly distribute across
2519 		 * (1 << (i + 1)) possible scheduling opportunities?
2520 		 */
2521 		packets_transmitted = packets_remaining >> (i + 1);
2522 
2523 		/* Add in the bandwidth used for those scheduled packets */
2524 		bw_added = packets_transmitted * (overhead + packet_size);
2525 
2526 		/* How many packets do we have remaining to transmit? */
2527 		packets_remaining = packets_remaining % (1 << (i + 1));
2528 
2529 		/* What largest max packet size should those packets have? */
2530 		/* If we've transmitted all packets, don't carry over the
2531 		 * largest packet size.
2532 		 */
2533 		if (packets_remaining == 0) {
2534 			packet_size = 0;
2535 			overhead = 0;
2536 		} else if (packets_transmitted > 0) {
2537 			/* Otherwise if we do have remaining packets, and we've
2538 			 * scheduled some packets in this interval, take the
2539 			 * largest max packet size from endpoints with this
2540 			 * interval.
2541 			 */
2542 			packet_size = largest_mps;
2543 			overhead = interval_overhead;
2544 		}
2545 		/* Otherwise carry over packet_size and overhead from the last
2546 		 * time we had a remainder.
2547 		 */
2548 		bw_used += bw_added;
2549 		if (bw_used > max_bandwidth) {
2550 			xhci_warn(xhci, "Not enough bandwidth. "
2551 					"Proposed: %u, Max: %u\n",
2552 				bw_used, max_bandwidth);
2553 			return -ENOMEM;
2554 		}
2555 	}
2556 	/*
2557 	 * Ok, we know we have some packets left over after even-handedly
2558 	 * scheduling interval 15.  We don't know which microframes they will
2559 	 * fit into, so we over-schedule and say they will be scheduled every
2560 	 * microframe.
2561 	 */
2562 	if (packets_remaining > 0)
2563 		bw_used += overhead + packet_size;
2564 
2565 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2566 		unsigned int port_index = virt_dev->real_port - 1;
2567 
2568 		/* OK, we're manipulating a HS device attached to a
2569 		 * root port bandwidth domain.  Include the number of active TTs
2570 		 * in the bandwidth used.
2571 		 */
2572 		bw_used += TT_HS_OVERHEAD *
2573 			xhci->rh_bw[port_index].num_active_tts;
2574 	}
2575 
2576 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2577 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2578 		"Available: %u " "percent",
2579 		bw_used, max_bandwidth, bw_reserved,
2580 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2581 		max_bandwidth);
2582 
2583 	bw_used += bw_reserved;
2584 	if (bw_used > max_bandwidth) {
2585 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2586 				bw_used, max_bandwidth);
2587 		return -ENOMEM;
2588 	}
2589 
2590 	bw_table->bw_used = bw_used;
2591 	return 0;
2592 }
2593 
2594 static bool xhci_is_async_ep(unsigned int ep_type)
2595 {
2596 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2597 					ep_type != ISOC_IN_EP &&
2598 					ep_type != INT_IN_EP);
2599 }
2600 
2601 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2602 {
2603 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2604 }
2605 
2606 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2607 {
2608 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2609 
2610 	if (ep_bw->ep_interval == 0)
2611 		return SS_OVERHEAD_BURST +
2612 			(ep_bw->mult * ep_bw->num_packets *
2613 					(SS_OVERHEAD + mps));
2614 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2615 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2616 				1 << ep_bw->ep_interval);
2617 
2618 }
2619 
2620 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2621 		struct xhci_bw_info *ep_bw,
2622 		struct xhci_interval_bw_table *bw_table,
2623 		struct usb_device *udev,
2624 		struct xhci_virt_ep *virt_ep,
2625 		struct xhci_tt_bw_info *tt_info)
2626 {
2627 	struct xhci_interval_bw	*interval_bw;
2628 	int normalized_interval;
2629 
2630 	if (xhci_is_async_ep(ep_bw->type))
2631 		return;
2632 
2633 	if (udev->speed >= USB_SPEED_SUPER) {
2634 		if (xhci_is_sync_in_ep(ep_bw->type))
2635 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2636 				xhci_get_ss_bw_consumed(ep_bw);
2637 		else
2638 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2639 				xhci_get_ss_bw_consumed(ep_bw);
2640 		return;
2641 	}
2642 
2643 	/* SuperSpeed endpoints never get added to intervals in the table, so
2644 	 * this check is only valid for HS/FS/LS devices.
2645 	 */
2646 	if (list_empty(&virt_ep->bw_endpoint_list))
2647 		return;
2648 	/* For LS/FS devices, we need to translate the interval expressed in
2649 	 * microframes to frames.
2650 	 */
2651 	if (udev->speed == USB_SPEED_HIGH)
2652 		normalized_interval = ep_bw->ep_interval;
2653 	else
2654 		normalized_interval = ep_bw->ep_interval - 3;
2655 
2656 	if (normalized_interval == 0)
2657 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2658 	interval_bw = &bw_table->interval_bw[normalized_interval];
2659 	interval_bw->num_packets -= ep_bw->num_packets;
2660 	switch (udev->speed) {
2661 	case USB_SPEED_LOW:
2662 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2663 		break;
2664 	case USB_SPEED_FULL:
2665 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2666 		break;
2667 	case USB_SPEED_HIGH:
2668 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2669 		break;
2670 	case USB_SPEED_SUPER:
2671 	case USB_SPEED_SUPER_PLUS:
2672 	case USB_SPEED_UNKNOWN:
2673 	case USB_SPEED_WIRELESS:
2674 		/* Should never happen because only LS/FS/HS endpoints will get
2675 		 * added to the endpoint list.
2676 		 */
2677 		return;
2678 	}
2679 	if (tt_info)
2680 		tt_info->active_eps -= 1;
2681 	list_del_init(&virt_ep->bw_endpoint_list);
2682 }
2683 
2684 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2685 		struct xhci_bw_info *ep_bw,
2686 		struct xhci_interval_bw_table *bw_table,
2687 		struct usb_device *udev,
2688 		struct xhci_virt_ep *virt_ep,
2689 		struct xhci_tt_bw_info *tt_info)
2690 {
2691 	struct xhci_interval_bw	*interval_bw;
2692 	struct xhci_virt_ep *smaller_ep;
2693 	int normalized_interval;
2694 
2695 	if (xhci_is_async_ep(ep_bw->type))
2696 		return;
2697 
2698 	if (udev->speed == USB_SPEED_SUPER) {
2699 		if (xhci_is_sync_in_ep(ep_bw->type))
2700 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2701 				xhci_get_ss_bw_consumed(ep_bw);
2702 		else
2703 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2704 				xhci_get_ss_bw_consumed(ep_bw);
2705 		return;
2706 	}
2707 
2708 	/* For LS/FS devices, we need to translate the interval expressed in
2709 	 * microframes to frames.
2710 	 */
2711 	if (udev->speed == USB_SPEED_HIGH)
2712 		normalized_interval = ep_bw->ep_interval;
2713 	else
2714 		normalized_interval = ep_bw->ep_interval - 3;
2715 
2716 	if (normalized_interval == 0)
2717 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2718 	interval_bw = &bw_table->interval_bw[normalized_interval];
2719 	interval_bw->num_packets += ep_bw->num_packets;
2720 	switch (udev->speed) {
2721 	case USB_SPEED_LOW:
2722 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2723 		break;
2724 	case USB_SPEED_FULL:
2725 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2726 		break;
2727 	case USB_SPEED_HIGH:
2728 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2729 		break;
2730 	case USB_SPEED_SUPER:
2731 	case USB_SPEED_SUPER_PLUS:
2732 	case USB_SPEED_UNKNOWN:
2733 	case USB_SPEED_WIRELESS:
2734 		/* Should never happen because only LS/FS/HS endpoints will get
2735 		 * added to the endpoint list.
2736 		 */
2737 		return;
2738 	}
2739 
2740 	if (tt_info)
2741 		tt_info->active_eps += 1;
2742 	/* Insert the endpoint into the list, largest max packet size first. */
2743 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2744 			bw_endpoint_list) {
2745 		if (ep_bw->max_packet_size >=
2746 				smaller_ep->bw_info.max_packet_size) {
2747 			/* Add the new ep before the smaller endpoint */
2748 			list_add_tail(&virt_ep->bw_endpoint_list,
2749 					&smaller_ep->bw_endpoint_list);
2750 			return;
2751 		}
2752 	}
2753 	/* Add the new endpoint at the end of the list. */
2754 	list_add_tail(&virt_ep->bw_endpoint_list,
2755 			&interval_bw->endpoints);
2756 }
2757 
2758 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2759 		struct xhci_virt_device *virt_dev,
2760 		int old_active_eps)
2761 {
2762 	struct xhci_root_port_bw_info *rh_bw_info;
2763 	if (!virt_dev->tt_info)
2764 		return;
2765 
2766 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2767 	if (old_active_eps == 0 &&
2768 				virt_dev->tt_info->active_eps != 0) {
2769 		rh_bw_info->num_active_tts += 1;
2770 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2771 	} else if (old_active_eps != 0 &&
2772 				virt_dev->tt_info->active_eps == 0) {
2773 		rh_bw_info->num_active_tts -= 1;
2774 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2775 	}
2776 }
2777 
2778 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2779 		struct xhci_virt_device *virt_dev,
2780 		struct xhci_container_ctx *in_ctx)
2781 {
2782 	struct xhci_bw_info ep_bw_info[31];
2783 	int i;
2784 	struct xhci_input_control_ctx *ctrl_ctx;
2785 	int old_active_eps = 0;
2786 
2787 	if (virt_dev->tt_info)
2788 		old_active_eps = virt_dev->tt_info->active_eps;
2789 
2790 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2791 	if (!ctrl_ctx) {
2792 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2793 				__func__);
2794 		return -ENOMEM;
2795 	}
2796 
2797 	for (i = 0; i < 31; i++) {
2798 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2799 			continue;
2800 
2801 		/* Make a copy of the BW info in case we need to revert this */
2802 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2803 				sizeof(ep_bw_info[i]));
2804 		/* Drop the endpoint from the interval table if the endpoint is
2805 		 * being dropped or changed.
2806 		 */
2807 		if (EP_IS_DROPPED(ctrl_ctx, i))
2808 			xhci_drop_ep_from_interval_table(xhci,
2809 					&virt_dev->eps[i].bw_info,
2810 					virt_dev->bw_table,
2811 					virt_dev->udev,
2812 					&virt_dev->eps[i],
2813 					virt_dev->tt_info);
2814 	}
2815 	/* Overwrite the information stored in the endpoints' bw_info */
2816 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2817 	for (i = 0; i < 31; i++) {
2818 		/* Add any changed or added endpoints to the interval table */
2819 		if (EP_IS_ADDED(ctrl_ctx, i))
2820 			xhci_add_ep_to_interval_table(xhci,
2821 					&virt_dev->eps[i].bw_info,
2822 					virt_dev->bw_table,
2823 					virt_dev->udev,
2824 					&virt_dev->eps[i],
2825 					virt_dev->tt_info);
2826 	}
2827 
2828 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2829 		/* Ok, this fits in the bandwidth we have.
2830 		 * Update the number of active TTs.
2831 		 */
2832 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2833 		return 0;
2834 	}
2835 
2836 	/* We don't have enough bandwidth for this, revert the stored info. */
2837 	for (i = 0; i < 31; i++) {
2838 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2839 			continue;
2840 
2841 		/* Drop the new copies of any added or changed endpoints from
2842 		 * the interval table.
2843 		 */
2844 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2845 			xhci_drop_ep_from_interval_table(xhci,
2846 					&virt_dev->eps[i].bw_info,
2847 					virt_dev->bw_table,
2848 					virt_dev->udev,
2849 					&virt_dev->eps[i],
2850 					virt_dev->tt_info);
2851 		}
2852 		/* Revert the endpoint back to its old information */
2853 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2854 				sizeof(ep_bw_info[i]));
2855 		/* Add any changed or dropped endpoints back into the table */
2856 		if (EP_IS_DROPPED(ctrl_ctx, i))
2857 			xhci_add_ep_to_interval_table(xhci,
2858 					&virt_dev->eps[i].bw_info,
2859 					virt_dev->bw_table,
2860 					virt_dev->udev,
2861 					&virt_dev->eps[i],
2862 					virt_dev->tt_info);
2863 	}
2864 	return -ENOMEM;
2865 }
2866 
2867 
2868 /* Issue a configure endpoint command or evaluate context command
2869  * and wait for it to finish.
2870  */
2871 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2872 		struct usb_device *udev,
2873 		struct xhci_command *command,
2874 		bool ctx_change, bool must_succeed)
2875 {
2876 	int ret;
2877 	unsigned long flags;
2878 	struct xhci_input_control_ctx *ctrl_ctx;
2879 	struct xhci_virt_device *virt_dev;
2880 	struct xhci_slot_ctx *slot_ctx;
2881 
2882 	if (!command)
2883 		return -EINVAL;
2884 
2885 	spin_lock_irqsave(&xhci->lock, flags);
2886 
2887 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2888 		spin_unlock_irqrestore(&xhci->lock, flags);
2889 		return -ESHUTDOWN;
2890 	}
2891 
2892 	virt_dev = xhci->devs[udev->slot_id];
2893 
2894 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2895 	if (!ctrl_ctx) {
2896 		spin_unlock_irqrestore(&xhci->lock, flags);
2897 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2898 				__func__);
2899 		return -ENOMEM;
2900 	}
2901 
2902 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2903 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2904 		spin_unlock_irqrestore(&xhci->lock, flags);
2905 		xhci_warn(xhci, "Not enough host resources, "
2906 				"active endpoint contexts = %u\n",
2907 				xhci->num_active_eps);
2908 		return -ENOMEM;
2909 	}
2910 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2911 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2912 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2913 			xhci_free_host_resources(xhci, ctrl_ctx);
2914 		spin_unlock_irqrestore(&xhci->lock, flags);
2915 		xhci_warn(xhci, "Not enough bandwidth\n");
2916 		return -ENOMEM;
2917 	}
2918 
2919 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2920 
2921 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2922 	trace_xhci_configure_endpoint(slot_ctx);
2923 
2924 	if (!ctx_change)
2925 		ret = xhci_queue_configure_endpoint(xhci, command,
2926 				command->in_ctx->dma,
2927 				udev->slot_id, must_succeed);
2928 	else
2929 		ret = xhci_queue_evaluate_context(xhci, command,
2930 				command->in_ctx->dma,
2931 				udev->slot_id, must_succeed);
2932 	if (ret < 0) {
2933 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2934 			xhci_free_host_resources(xhci, ctrl_ctx);
2935 		spin_unlock_irqrestore(&xhci->lock, flags);
2936 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2937 				"FIXME allocate a new ring segment");
2938 		return -ENOMEM;
2939 	}
2940 	xhci_ring_cmd_db(xhci);
2941 	spin_unlock_irqrestore(&xhci->lock, flags);
2942 
2943 	/* Wait for the configure endpoint command to complete */
2944 	wait_for_completion(command->completion);
2945 
2946 	if (!ctx_change)
2947 		ret = xhci_configure_endpoint_result(xhci, udev,
2948 						     &command->status);
2949 	else
2950 		ret = xhci_evaluate_context_result(xhci, udev,
2951 						   &command->status);
2952 
2953 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2954 		spin_lock_irqsave(&xhci->lock, flags);
2955 		/* If the command failed, remove the reserved resources.
2956 		 * Otherwise, clean up the estimate to include dropped eps.
2957 		 */
2958 		if (ret)
2959 			xhci_free_host_resources(xhci, ctrl_ctx);
2960 		else
2961 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2962 		spin_unlock_irqrestore(&xhci->lock, flags);
2963 	}
2964 	return ret;
2965 }
2966 
2967 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2968 	struct xhci_virt_device *vdev, int i)
2969 {
2970 	struct xhci_virt_ep *ep = &vdev->eps[i];
2971 
2972 	if (ep->ep_state & EP_HAS_STREAMS) {
2973 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2974 				xhci_get_endpoint_address(i));
2975 		xhci_free_stream_info(xhci, ep->stream_info);
2976 		ep->stream_info = NULL;
2977 		ep->ep_state &= ~EP_HAS_STREAMS;
2978 	}
2979 }
2980 
2981 /* Called after one or more calls to xhci_add_endpoint() or
2982  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2983  * to call xhci_reset_bandwidth().
2984  *
2985  * Since we are in the middle of changing either configuration or
2986  * installing a new alt setting, the USB core won't allow URBs to be
2987  * enqueued for any endpoint on the old config or interface.  Nothing
2988  * else should be touching the xhci->devs[slot_id] structure, so we
2989  * don't need to take the xhci->lock for manipulating that.
2990  */
2991 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2992 {
2993 	int i;
2994 	int ret = 0;
2995 	struct xhci_hcd *xhci;
2996 	struct xhci_virt_device	*virt_dev;
2997 	struct xhci_input_control_ctx *ctrl_ctx;
2998 	struct xhci_slot_ctx *slot_ctx;
2999 	struct xhci_command *command;
3000 
3001 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3002 	if (ret <= 0)
3003 		return ret;
3004 	xhci = hcd_to_xhci(hcd);
3005 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3006 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3007 		return -ENODEV;
3008 
3009 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3010 	virt_dev = xhci->devs[udev->slot_id];
3011 
3012 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3013 	if (!command)
3014 		return -ENOMEM;
3015 
3016 	command->in_ctx = virt_dev->in_ctx;
3017 
3018 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3019 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3020 	if (!ctrl_ctx) {
3021 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3022 				__func__);
3023 		ret = -ENOMEM;
3024 		goto command_cleanup;
3025 	}
3026 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3027 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3028 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3029 
3030 	/* Don't issue the command if there's no endpoints to update. */
3031 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3032 	    ctrl_ctx->drop_flags == 0) {
3033 		ret = 0;
3034 		goto command_cleanup;
3035 	}
3036 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3037 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3038 	for (i = 31; i >= 1; i--) {
3039 		__le32 le32 = cpu_to_le32(BIT(i));
3040 
3041 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3042 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3043 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3044 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3045 			break;
3046 		}
3047 	}
3048 
3049 	ret = xhci_configure_endpoint(xhci, udev, command,
3050 			false, false);
3051 	if (ret)
3052 		/* Callee should call reset_bandwidth() */
3053 		goto command_cleanup;
3054 
3055 	/* Free any rings that were dropped, but not changed. */
3056 	for (i = 1; i < 31; i++) {
3057 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3058 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3059 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3060 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3061 		}
3062 	}
3063 	xhci_zero_in_ctx(xhci, virt_dev);
3064 	/*
3065 	 * Install any rings for completely new endpoints or changed endpoints,
3066 	 * and free any old rings from changed endpoints.
3067 	 */
3068 	for (i = 1; i < 31; i++) {
3069 		if (!virt_dev->eps[i].new_ring)
3070 			continue;
3071 		/* Only free the old ring if it exists.
3072 		 * It may not if this is the first add of an endpoint.
3073 		 */
3074 		if (virt_dev->eps[i].ring) {
3075 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3076 		}
3077 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3078 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3079 		virt_dev->eps[i].new_ring = NULL;
3080 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3081 	}
3082 command_cleanup:
3083 	kfree(command->completion);
3084 	kfree(command);
3085 
3086 	return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3089 
3090 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3091 {
3092 	struct xhci_hcd *xhci;
3093 	struct xhci_virt_device	*virt_dev;
3094 	int i, ret;
3095 
3096 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3097 	if (ret <= 0)
3098 		return;
3099 	xhci = hcd_to_xhci(hcd);
3100 
3101 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3102 	virt_dev = xhci->devs[udev->slot_id];
3103 	/* Free any rings allocated for added endpoints */
3104 	for (i = 0; i < 31; i++) {
3105 		if (virt_dev->eps[i].new_ring) {
3106 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3107 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3108 			virt_dev->eps[i].new_ring = NULL;
3109 		}
3110 	}
3111 	xhci_zero_in_ctx(xhci, virt_dev);
3112 }
3113 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3114 
3115 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3116 		struct xhci_container_ctx *in_ctx,
3117 		struct xhci_container_ctx *out_ctx,
3118 		struct xhci_input_control_ctx *ctrl_ctx,
3119 		u32 add_flags, u32 drop_flags)
3120 {
3121 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3122 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3123 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3124 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3125 }
3126 
3127 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3128 				  struct usb_host_endpoint *host_ep)
3129 {
3130 	struct xhci_hcd		*xhci;
3131 	struct xhci_virt_device	*vdev;
3132 	struct xhci_virt_ep	*ep;
3133 	struct usb_device	*udev;
3134 	unsigned long		flags;
3135 	unsigned int		ep_index;
3136 
3137 	xhci = hcd_to_xhci(hcd);
3138 rescan:
3139 	spin_lock_irqsave(&xhci->lock, flags);
3140 
3141 	udev = (struct usb_device *)host_ep->hcpriv;
3142 	if (!udev || !udev->slot_id)
3143 		goto done;
3144 
3145 	vdev = xhci->devs[udev->slot_id];
3146 	if (!vdev)
3147 		goto done;
3148 
3149 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3150 	ep = &vdev->eps[ep_index];
3151 	if (!ep)
3152 		goto done;
3153 
3154 	/* wait for hub_tt_work to finish clearing hub TT */
3155 	if (ep->ep_state & EP_CLEARING_TT) {
3156 		spin_unlock_irqrestore(&xhci->lock, flags);
3157 		schedule_timeout_uninterruptible(1);
3158 		goto rescan;
3159 	}
3160 
3161 	if (ep->ep_state)
3162 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3163 			 ep->ep_state);
3164 done:
3165 	host_ep->hcpriv = NULL;
3166 	spin_unlock_irqrestore(&xhci->lock, flags);
3167 }
3168 
3169 /*
3170  * Called after usb core issues a clear halt control message.
3171  * The host side of the halt should already be cleared by a reset endpoint
3172  * command issued when the STALL event was received.
3173  *
3174  * The reset endpoint command may only be issued to endpoints in the halted
3175  * state. For software that wishes to reset the data toggle or sequence number
3176  * of an endpoint that isn't in the halted state this function will issue a
3177  * configure endpoint command with the Drop and Add bits set for the target
3178  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3179  */
3180 
3181 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3182 		struct usb_host_endpoint *host_ep)
3183 {
3184 	struct xhci_hcd *xhci;
3185 	struct usb_device *udev;
3186 	struct xhci_virt_device *vdev;
3187 	struct xhci_virt_ep *ep;
3188 	struct xhci_input_control_ctx *ctrl_ctx;
3189 	struct xhci_command *stop_cmd, *cfg_cmd;
3190 	unsigned int ep_index;
3191 	unsigned long flags;
3192 	u32 ep_flag;
3193 	int err;
3194 
3195 	xhci = hcd_to_xhci(hcd);
3196 	if (!host_ep->hcpriv)
3197 		return;
3198 	udev = (struct usb_device *) host_ep->hcpriv;
3199 	vdev = xhci->devs[udev->slot_id];
3200 
3201 	/*
3202 	 * vdev may be lost due to xHC restore error and re-initialization
3203 	 * during S3/S4 resume. A new vdev will be allocated later by
3204 	 * xhci_discover_or_reset_device()
3205 	 */
3206 	if (!udev->slot_id || !vdev)
3207 		return;
3208 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3209 	ep = &vdev->eps[ep_index];
3210 	if (!ep)
3211 		return;
3212 
3213 	/* Bail out if toggle is already being cleared by a endpoint reset */
3214 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3215 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3216 		return;
3217 	}
3218 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3219 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3220 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3221 		return;
3222 
3223 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3224 
3225 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3226 		return;
3227 
3228 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3229 	if (!stop_cmd)
3230 		return;
3231 
3232 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3233 	if (!cfg_cmd)
3234 		goto cleanup;
3235 
3236 	spin_lock_irqsave(&xhci->lock, flags);
3237 
3238 	/* block queuing new trbs and ringing ep doorbell */
3239 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3240 
3241 	/*
3242 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3243 	 * Driver is required to synchronously cancel all transfer request.
3244 	 * Stop the endpoint to force xHC to update the output context
3245 	 */
3246 
3247 	if (!list_empty(&ep->ring->td_list)) {
3248 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3249 		spin_unlock_irqrestore(&xhci->lock, flags);
3250 		xhci_free_command(xhci, cfg_cmd);
3251 		goto cleanup;
3252 	}
3253 
3254 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3255 					ep_index, 0);
3256 	if (err < 0) {
3257 		spin_unlock_irqrestore(&xhci->lock, flags);
3258 		xhci_free_command(xhci, cfg_cmd);
3259 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3260 				__func__, err);
3261 		goto cleanup;
3262 	}
3263 
3264 	xhci_ring_cmd_db(xhci);
3265 	spin_unlock_irqrestore(&xhci->lock, flags);
3266 
3267 	wait_for_completion(stop_cmd->completion);
3268 
3269 	spin_lock_irqsave(&xhci->lock, flags);
3270 
3271 	/* config ep command clears toggle if add and drop ep flags are set */
3272 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3273 	if (!ctrl_ctx) {
3274 		spin_unlock_irqrestore(&xhci->lock, flags);
3275 		xhci_free_command(xhci, cfg_cmd);
3276 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3277 				__func__);
3278 		goto cleanup;
3279 	}
3280 
3281 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3282 					   ctrl_ctx, ep_flag, ep_flag);
3283 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3284 
3285 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3286 				      udev->slot_id, false);
3287 	if (err < 0) {
3288 		spin_unlock_irqrestore(&xhci->lock, flags);
3289 		xhci_free_command(xhci, cfg_cmd);
3290 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3291 				__func__, err);
3292 		goto cleanup;
3293 	}
3294 
3295 	xhci_ring_cmd_db(xhci);
3296 	spin_unlock_irqrestore(&xhci->lock, flags);
3297 
3298 	wait_for_completion(cfg_cmd->completion);
3299 
3300 	xhci_free_command(xhci, cfg_cmd);
3301 cleanup:
3302 	xhci_free_command(xhci, stop_cmd);
3303 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3304 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3305 }
3306 
3307 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3308 		struct usb_device *udev, struct usb_host_endpoint *ep,
3309 		unsigned int slot_id)
3310 {
3311 	int ret;
3312 	unsigned int ep_index;
3313 	unsigned int ep_state;
3314 
3315 	if (!ep)
3316 		return -EINVAL;
3317 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3318 	if (ret <= 0)
3319 		return -EINVAL;
3320 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3321 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3322 				" descriptor for ep 0x%x does not support streams\n",
3323 				ep->desc.bEndpointAddress);
3324 		return -EINVAL;
3325 	}
3326 
3327 	ep_index = xhci_get_endpoint_index(&ep->desc);
3328 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3329 	if (ep_state & EP_HAS_STREAMS ||
3330 			ep_state & EP_GETTING_STREAMS) {
3331 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3332 				"already has streams set up.\n",
3333 				ep->desc.bEndpointAddress);
3334 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3335 				"dynamic stream context array reallocation.\n");
3336 		return -EINVAL;
3337 	}
3338 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3339 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3340 				"endpoint 0x%x; URBs are pending.\n",
3341 				ep->desc.bEndpointAddress);
3342 		return -EINVAL;
3343 	}
3344 	return 0;
3345 }
3346 
3347 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3348 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3349 {
3350 	unsigned int max_streams;
3351 
3352 	/* The stream context array size must be a power of two */
3353 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3354 	/*
3355 	 * Find out how many primary stream array entries the host controller
3356 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3357 	 * level page entries), but that's an optional feature for xHCI host
3358 	 * controllers. xHCs must support at least 4 stream IDs.
3359 	 */
3360 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3361 	if (*num_stream_ctxs > max_streams) {
3362 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3363 				max_streams);
3364 		*num_stream_ctxs = max_streams;
3365 		*num_streams = max_streams;
3366 	}
3367 }
3368 
3369 /* Returns an error code if one of the endpoint already has streams.
3370  * This does not change any data structures, it only checks and gathers
3371  * information.
3372  */
3373 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3374 		struct usb_device *udev,
3375 		struct usb_host_endpoint **eps, unsigned int num_eps,
3376 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3377 {
3378 	unsigned int max_streams;
3379 	unsigned int endpoint_flag;
3380 	int i;
3381 	int ret;
3382 
3383 	for (i = 0; i < num_eps; i++) {
3384 		ret = xhci_check_streams_endpoint(xhci, udev,
3385 				eps[i], udev->slot_id);
3386 		if (ret < 0)
3387 			return ret;
3388 
3389 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3390 		if (max_streams < (*num_streams - 1)) {
3391 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3392 					eps[i]->desc.bEndpointAddress,
3393 					max_streams);
3394 			*num_streams = max_streams+1;
3395 		}
3396 
3397 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3398 		if (*changed_ep_bitmask & endpoint_flag)
3399 			return -EINVAL;
3400 		*changed_ep_bitmask |= endpoint_flag;
3401 	}
3402 	return 0;
3403 }
3404 
3405 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3406 		struct usb_device *udev,
3407 		struct usb_host_endpoint **eps, unsigned int num_eps)
3408 {
3409 	u32 changed_ep_bitmask = 0;
3410 	unsigned int slot_id;
3411 	unsigned int ep_index;
3412 	unsigned int ep_state;
3413 	int i;
3414 
3415 	slot_id = udev->slot_id;
3416 	if (!xhci->devs[slot_id])
3417 		return 0;
3418 
3419 	for (i = 0; i < num_eps; i++) {
3420 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3421 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3422 		/* Are streams already being freed for the endpoint? */
3423 		if (ep_state & EP_GETTING_NO_STREAMS) {
3424 			xhci_warn(xhci, "WARN Can't disable streams for "
3425 					"endpoint 0x%x, "
3426 					"streams are being disabled already\n",
3427 					eps[i]->desc.bEndpointAddress);
3428 			return 0;
3429 		}
3430 		/* Are there actually any streams to free? */
3431 		if (!(ep_state & EP_HAS_STREAMS) &&
3432 				!(ep_state & EP_GETTING_STREAMS)) {
3433 			xhci_warn(xhci, "WARN Can't disable streams for "
3434 					"endpoint 0x%x, "
3435 					"streams are already disabled!\n",
3436 					eps[i]->desc.bEndpointAddress);
3437 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3438 					"with non-streams endpoint\n");
3439 			return 0;
3440 		}
3441 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3442 	}
3443 	return changed_ep_bitmask;
3444 }
3445 
3446 /*
3447  * The USB device drivers use this function (through the HCD interface in USB
3448  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3449  * coordinate mass storage command queueing across multiple endpoints (basically
3450  * a stream ID == a task ID).
3451  *
3452  * Setting up streams involves allocating the same size stream context array
3453  * for each endpoint and issuing a configure endpoint command for all endpoints.
3454  *
3455  * Don't allow the call to succeed if one endpoint only supports one stream
3456  * (which means it doesn't support streams at all).
3457  *
3458  * Drivers may get less stream IDs than they asked for, if the host controller
3459  * hardware or endpoints claim they can't support the number of requested
3460  * stream IDs.
3461  */
3462 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3463 		struct usb_host_endpoint **eps, unsigned int num_eps,
3464 		unsigned int num_streams, gfp_t mem_flags)
3465 {
3466 	int i, ret;
3467 	struct xhci_hcd *xhci;
3468 	struct xhci_virt_device *vdev;
3469 	struct xhci_command *config_cmd;
3470 	struct xhci_input_control_ctx *ctrl_ctx;
3471 	unsigned int ep_index;
3472 	unsigned int num_stream_ctxs;
3473 	unsigned int max_packet;
3474 	unsigned long flags;
3475 	u32 changed_ep_bitmask = 0;
3476 
3477 	if (!eps)
3478 		return -EINVAL;
3479 
3480 	/* Add one to the number of streams requested to account for
3481 	 * stream 0 that is reserved for xHCI usage.
3482 	 */
3483 	num_streams += 1;
3484 	xhci = hcd_to_xhci(hcd);
3485 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3486 			num_streams);
3487 
3488 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3489 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3490 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3491 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3492 		return -ENOSYS;
3493 	}
3494 
3495 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3496 	if (!config_cmd)
3497 		return -ENOMEM;
3498 
3499 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3500 	if (!ctrl_ctx) {
3501 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3502 				__func__);
3503 		xhci_free_command(xhci, config_cmd);
3504 		return -ENOMEM;
3505 	}
3506 
3507 	/* Check to make sure all endpoints are not already configured for
3508 	 * streams.  While we're at it, find the maximum number of streams that
3509 	 * all the endpoints will support and check for duplicate endpoints.
3510 	 */
3511 	spin_lock_irqsave(&xhci->lock, flags);
3512 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3513 			num_eps, &num_streams, &changed_ep_bitmask);
3514 	if (ret < 0) {
3515 		xhci_free_command(xhci, config_cmd);
3516 		spin_unlock_irqrestore(&xhci->lock, flags);
3517 		return ret;
3518 	}
3519 	if (num_streams <= 1) {
3520 		xhci_warn(xhci, "WARN: endpoints can't handle "
3521 				"more than one stream.\n");
3522 		xhci_free_command(xhci, config_cmd);
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		return -EINVAL;
3525 	}
3526 	vdev = xhci->devs[udev->slot_id];
3527 	/* Mark each endpoint as being in transition, so
3528 	 * xhci_urb_enqueue() will reject all URBs.
3529 	 */
3530 	for (i = 0; i < num_eps; i++) {
3531 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3533 	}
3534 	spin_unlock_irqrestore(&xhci->lock, flags);
3535 
3536 	/* Setup internal data structures and allocate HW data structures for
3537 	 * streams (but don't install the HW structures in the input context
3538 	 * until we're sure all memory allocation succeeded).
3539 	 */
3540 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3541 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3542 			num_stream_ctxs, num_streams);
3543 
3544 	for (i = 0; i < num_eps; i++) {
3545 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3547 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3548 				num_stream_ctxs,
3549 				num_streams,
3550 				max_packet, mem_flags);
3551 		if (!vdev->eps[ep_index].stream_info)
3552 			goto cleanup;
3553 		/* Set maxPstreams in endpoint context and update deq ptr to
3554 		 * point to stream context array. FIXME
3555 		 */
3556 	}
3557 
3558 	/* Set up the input context for a configure endpoint command. */
3559 	for (i = 0; i < num_eps; i++) {
3560 		struct xhci_ep_ctx *ep_ctx;
3561 
3562 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3564 
3565 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3566 				vdev->out_ctx, ep_index);
3567 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3568 				vdev->eps[ep_index].stream_info);
3569 	}
3570 	/* Tell the HW to drop its old copy of the endpoint context info
3571 	 * and add the updated copy from the input context.
3572 	 */
3573 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3574 			vdev->out_ctx, ctrl_ctx,
3575 			changed_ep_bitmask, changed_ep_bitmask);
3576 
3577 	/* Issue and wait for the configure endpoint command */
3578 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3579 			false, false);
3580 
3581 	/* xHC rejected the configure endpoint command for some reason, so we
3582 	 * leave the old ring intact and free our internal streams data
3583 	 * structure.
3584 	 */
3585 	if (ret < 0)
3586 		goto cleanup;
3587 
3588 	spin_lock_irqsave(&xhci->lock, flags);
3589 	for (i = 0; i < num_eps; i++) {
3590 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3592 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3593 			 udev->slot_id, ep_index);
3594 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3595 	}
3596 	xhci_free_command(xhci, config_cmd);
3597 	spin_unlock_irqrestore(&xhci->lock, flags);
3598 
3599 	for (i = 0; i < num_eps; i++) {
3600 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3601 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3602 	}
3603 	/* Subtract 1 for stream 0, which drivers can't use */
3604 	return num_streams - 1;
3605 
3606 cleanup:
3607 	/* If it didn't work, free the streams! */
3608 	for (i = 0; i < num_eps; i++) {
3609 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3610 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3611 		vdev->eps[ep_index].stream_info = NULL;
3612 		/* FIXME Unset maxPstreams in endpoint context and
3613 		 * update deq ptr to point to normal string ring.
3614 		 */
3615 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3616 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3617 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3618 	}
3619 	xhci_free_command(xhci, config_cmd);
3620 	return -ENOMEM;
3621 }
3622 
3623 /* Transition the endpoint from using streams to being a "normal" endpoint
3624  * without streams.
3625  *
3626  * Modify the endpoint context state, submit a configure endpoint command,
3627  * and free all endpoint rings for streams if that completes successfully.
3628  */
3629 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3630 		struct usb_host_endpoint **eps, unsigned int num_eps,
3631 		gfp_t mem_flags)
3632 {
3633 	int i, ret;
3634 	struct xhci_hcd *xhci;
3635 	struct xhci_virt_device *vdev;
3636 	struct xhci_command *command;
3637 	struct xhci_input_control_ctx *ctrl_ctx;
3638 	unsigned int ep_index;
3639 	unsigned long flags;
3640 	u32 changed_ep_bitmask;
3641 
3642 	xhci = hcd_to_xhci(hcd);
3643 	vdev = xhci->devs[udev->slot_id];
3644 
3645 	/* Set up a configure endpoint command to remove the streams rings */
3646 	spin_lock_irqsave(&xhci->lock, flags);
3647 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3648 			udev, eps, num_eps);
3649 	if (changed_ep_bitmask == 0) {
3650 		spin_unlock_irqrestore(&xhci->lock, flags);
3651 		return -EINVAL;
3652 	}
3653 
3654 	/* Use the xhci_command structure from the first endpoint.  We may have
3655 	 * allocated too many, but the driver may call xhci_free_streams() for
3656 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3657 	 */
3658 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3659 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3660 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3661 	if (!ctrl_ctx) {
3662 		spin_unlock_irqrestore(&xhci->lock, flags);
3663 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3664 				__func__);
3665 		return -EINVAL;
3666 	}
3667 
3668 	for (i = 0; i < num_eps; i++) {
3669 		struct xhci_ep_ctx *ep_ctx;
3670 
3671 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3672 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3673 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3674 			EP_GETTING_NO_STREAMS;
3675 
3676 		xhci_endpoint_copy(xhci, command->in_ctx,
3677 				vdev->out_ctx, ep_index);
3678 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3679 				&vdev->eps[ep_index]);
3680 	}
3681 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3682 			vdev->out_ctx, ctrl_ctx,
3683 			changed_ep_bitmask, changed_ep_bitmask);
3684 	spin_unlock_irqrestore(&xhci->lock, flags);
3685 
3686 	/* Issue and wait for the configure endpoint command,
3687 	 * which must succeed.
3688 	 */
3689 	ret = xhci_configure_endpoint(xhci, udev, command,
3690 			false, true);
3691 
3692 	/* xHC rejected the configure endpoint command for some reason, so we
3693 	 * leave the streams rings intact.
3694 	 */
3695 	if (ret < 0)
3696 		return ret;
3697 
3698 	spin_lock_irqsave(&xhci->lock, flags);
3699 	for (i = 0; i < num_eps; i++) {
3700 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3701 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3702 		vdev->eps[ep_index].stream_info = NULL;
3703 		/* FIXME Unset maxPstreams in endpoint context and
3704 		 * update deq ptr to point to normal string ring.
3705 		 */
3706 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3707 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3708 	}
3709 	spin_unlock_irqrestore(&xhci->lock, flags);
3710 
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Deletes endpoint resources for endpoints that were active before a Reset
3716  * Device command, or a Disable Slot command.  The Reset Device command leaves
3717  * the control endpoint intact, whereas the Disable Slot command deletes it.
3718  *
3719  * Must be called with xhci->lock held.
3720  */
3721 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3722 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3723 {
3724 	int i;
3725 	unsigned int num_dropped_eps = 0;
3726 	unsigned int drop_flags = 0;
3727 
3728 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3729 		if (virt_dev->eps[i].ring) {
3730 			drop_flags |= 1 << i;
3731 			num_dropped_eps++;
3732 		}
3733 	}
3734 	xhci->num_active_eps -= num_dropped_eps;
3735 	if (num_dropped_eps)
3736 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3737 				"Dropped %u ep ctxs, flags = 0x%x, "
3738 				"%u now active.",
3739 				num_dropped_eps, drop_flags,
3740 				xhci->num_active_eps);
3741 }
3742 
3743 /*
3744  * This submits a Reset Device Command, which will set the device state to 0,
3745  * set the device address to 0, and disable all the endpoints except the default
3746  * control endpoint.  The USB core should come back and call
3747  * xhci_address_device(), and then re-set up the configuration.  If this is
3748  * called because of a usb_reset_and_verify_device(), then the old alternate
3749  * settings will be re-installed through the normal bandwidth allocation
3750  * functions.
3751  *
3752  * Wait for the Reset Device command to finish.  Remove all structures
3753  * associated with the endpoints that were disabled.  Clear the input device
3754  * structure? Reset the control endpoint 0 max packet size?
3755  *
3756  * If the virt_dev to be reset does not exist or does not match the udev,
3757  * it means the device is lost, possibly due to the xHC restore error and
3758  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3759  * re-allocate the device.
3760  */
3761 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3762 		struct usb_device *udev)
3763 {
3764 	int ret, i;
3765 	unsigned long flags;
3766 	struct xhci_hcd *xhci;
3767 	unsigned int slot_id;
3768 	struct xhci_virt_device *virt_dev;
3769 	struct xhci_command *reset_device_cmd;
3770 	struct xhci_slot_ctx *slot_ctx;
3771 	int old_active_eps = 0;
3772 
3773 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3774 	if (ret <= 0)
3775 		return ret;
3776 	xhci = hcd_to_xhci(hcd);
3777 	slot_id = udev->slot_id;
3778 	virt_dev = xhci->devs[slot_id];
3779 	if (!virt_dev) {
3780 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781 				"not exist. Re-allocate the device\n", slot_id);
3782 		ret = xhci_alloc_dev(hcd, udev);
3783 		if (ret == 1)
3784 			return 0;
3785 		else
3786 			return -EINVAL;
3787 	}
3788 
3789 	if (virt_dev->tt_info)
3790 		old_active_eps = virt_dev->tt_info->active_eps;
3791 
3792 	if (virt_dev->udev != udev) {
3793 		/* If the virt_dev and the udev does not match, this virt_dev
3794 		 * may belong to another udev.
3795 		 * Re-allocate the device.
3796 		 */
3797 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3798 				"not match the udev. Re-allocate the device\n",
3799 				slot_id);
3800 		ret = xhci_alloc_dev(hcd, udev);
3801 		if (ret == 1)
3802 			return 0;
3803 		else
3804 			return -EINVAL;
3805 	}
3806 
3807 	/* If device is not setup, there is no point in resetting it */
3808 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3809 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3810 						SLOT_STATE_DISABLED)
3811 		return 0;
3812 
3813 	trace_xhci_discover_or_reset_device(slot_ctx);
3814 
3815 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3816 	/* Allocate the command structure that holds the struct completion.
3817 	 * Assume we're in process context, since the normal device reset
3818 	 * process has to wait for the device anyway.  Storage devices are
3819 	 * reset as part of error handling, so use GFP_NOIO instead of
3820 	 * GFP_KERNEL.
3821 	 */
3822 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3823 	if (!reset_device_cmd) {
3824 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3825 		return -ENOMEM;
3826 	}
3827 
3828 	/* Attempt to submit the Reset Device command to the command ring */
3829 	spin_lock_irqsave(&xhci->lock, flags);
3830 
3831 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3832 	if (ret) {
3833 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3834 		spin_unlock_irqrestore(&xhci->lock, flags);
3835 		goto command_cleanup;
3836 	}
3837 	xhci_ring_cmd_db(xhci);
3838 	spin_unlock_irqrestore(&xhci->lock, flags);
3839 
3840 	/* Wait for the Reset Device command to finish */
3841 	wait_for_completion(reset_device_cmd->completion);
3842 
3843 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3844 	 * unless we tried to reset a slot ID that wasn't enabled,
3845 	 * or the device wasn't in the addressed or configured state.
3846 	 */
3847 	ret = reset_device_cmd->status;
3848 	switch (ret) {
3849 	case COMP_COMMAND_ABORTED:
3850 	case COMP_COMMAND_RING_STOPPED:
3851 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3852 		ret = -ETIME;
3853 		goto command_cleanup;
3854 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3855 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3856 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3857 				slot_id,
3858 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3859 		xhci_dbg(xhci, "Not freeing device rings.\n");
3860 		/* Don't treat this as an error.  May change my mind later. */
3861 		ret = 0;
3862 		goto command_cleanup;
3863 	case COMP_SUCCESS:
3864 		xhci_dbg(xhci, "Successful reset device command.\n");
3865 		break;
3866 	default:
3867 		if (xhci_is_vendor_info_code(xhci, ret))
3868 			break;
3869 		xhci_warn(xhci, "Unknown completion code %u for "
3870 				"reset device command.\n", ret);
3871 		ret = -EINVAL;
3872 		goto command_cleanup;
3873 	}
3874 
3875 	/* Free up host controller endpoint resources */
3876 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3877 		spin_lock_irqsave(&xhci->lock, flags);
3878 		/* Don't delete the default control endpoint resources */
3879 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3880 		spin_unlock_irqrestore(&xhci->lock, flags);
3881 	}
3882 
3883 	/* Everything but endpoint 0 is disabled, so free the rings. */
3884 	for (i = 1; i < 31; i++) {
3885 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3886 
3887 		if (ep->ep_state & EP_HAS_STREAMS) {
3888 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3889 					xhci_get_endpoint_address(i));
3890 			xhci_free_stream_info(xhci, ep->stream_info);
3891 			ep->stream_info = NULL;
3892 			ep->ep_state &= ~EP_HAS_STREAMS;
3893 		}
3894 
3895 		if (ep->ring) {
3896 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3897 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3898 		}
3899 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3900 			xhci_drop_ep_from_interval_table(xhci,
3901 					&virt_dev->eps[i].bw_info,
3902 					virt_dev->bw_table,
3903 					udev,
3904 					&virt_dev->eps[i],
3905 					virt_dev->tt_info);
3906 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3907 	}
3908 	/* If necessary, update the number of active TTs on this root port */
3909 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3910 	virt_dev->flags = 0;
3911 	ret = 0;
3912 
3913 command_cleanup:
3914 	xhci_free_command(xhci, reset_device_cmd);
3915 	return ret;
3916 }
3917 
3918 /*
3919  * At this point, the struct usb_device is about to go away, the device has
3920  * disconnected, and all traffic has been stopped and the endpoints have been
3921  * disabled.  Free any HC data structures associated with that device.
3922  */
3923 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926 	struct xhci_virt_device *virt_dev;
3927 	struct xhci_slot_ctx *slot_ctx;
3928 	int i, ret;
3929 
3930 #ifndef CONFIG_USB_DEFAULT_PERSIST
3931 	/*
3932 	 * We called pm_runtime_get_noresume when the device was attached.
3933 	 * Decrement the counter here to allow controller to runtime suspend
3934 	 * if no devices remain.
3935 	 */
3936 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3937 		pm_runtime_put_noidle(hcd->self.controller);
3938 #endif
3939 
3940 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3941 	/* If the host is halted due to driver unload, we still need to free the
3942 	 * device.
3943 	 */
3944 	if (ret <= 0 && ret != -ENODEV)
3945 		return;
3946 
3947 	virt_dev = xhci->devs[udev->slot_id];
3948 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3949 	trace_xhci_free_dev(slot_ctx);
3950 
3951 	/* Stop any wayward timer functions (which may grab the lock) */
3952 	for (i = 0; i < 31; i++) {
3953 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3954 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3955 	}
3956 	virt_dev->udev = NULL;
3957 	ret = xhci_disable_slot(xhci, udev->slot_id);
3958 	if (ret)
3959 		xhci_free_virt_device(xhci, udev->slot_id);
3960 }
3961 
3962 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3963 {
3964 	struct xhci_command *command;
3965 	unsigned long flags;
3966 	u32 state;
3967 	int ret = 0;
3968 
3969 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3970 	if (!command)
3971 		return -ENOMEM;
3972 
3973 	xhci_debugfs_remove_slot(xhci, slot_id);
3974 
3975 	spin_lock_irqsave(&xhci->lock, flags);
3976 	/* Don't disable the slot if the host controller is dead. */
3977 	state = readl(&xhci->op_regs->status);
3978 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3979 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3980 		spin_unlock_irqrestore(&xhci->lock, flags);
3981 		kfree(command);
3982 		return -ENODEV;
3983 	}
3984 
3985 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3986 				slot_id);
3987 	if (ret) {
3988 		spin_unlock_irqrestore(&xhci->lock, flags);
3989 		kfree(command);
3990 		return ret;
3991 	}
3992 	xhci_ring_cmd_db(xhci);
3993 	spin_unlock_irqrestore(&xhci->lock, flags);
3994 	return ret;
3995 }
3996 
3997 /*
3998  * Checks if we have enough host controller resources for the default control
3999  * endpoint.
4000  *
4001  * Must be called with xhci->lock held.
4002  */
4003 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4004 {
4005 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4006 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4007 				"Not enough ep ctxs: "
4008 				"%u active, need to add 1, limit is %u.",
4009 				xhci->num_active_eps, xhci->limit_active_eps);
4010 		return -ENOMEM;
4011 	}
4012 	xhci->num_active_eps += 1;
4013 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4014 			"Adding 1 ep ctx, %u now active.",
4015 			xhci->num_active_eps);
4016 	return 0;
4017 }
4018 
4019 
4020 /*
4021  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4022  * timed out, or allocating memory failed.  Returns 1 on success.
4023  */
4024 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4025 {
4026 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4027 	struct xhci_virt_device *vdev;
4028 	struct xhci_slot_ctx *slot_ctx;
4029 	unsigned long flags;
4030 	int ret, slot_id;
4031 	struct xhci_command *command;
4032 
4033 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4034 	if (!command)
4035 		return 0;
4036 
4037 	spin_lock_irqsave(&xhci->lock, flags);
4038 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4039 	if (ret) {
4040 		spin_unlock_irqrestore(&xhci->lock, flags);
4041 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4042 		xhci_free_command(xhci, command);
4043 		return 0;
4044 	}
4045 	xhci_ring_cmd_db(xhci);
4046 	spin_unlock_irqrestore(&xhci->lock, flags);
4047 
4048 	wait_for_completion(command->completion);
4049 	slot_id = command->slot_id;
4050 
4051 	if (!slot_id || command->status != COMP_SUCCESS) {
4052 		xhci_err(xhci, "Error while assigning device slot ID\n");
4053 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4054 				HCS_MAX_SLOTS(
4055 					readl(&xhci->cap_regs->hcs_params1)));
4056 		xhci_free_command(xhci, command);
4057 		return 0;
4058 	}
4059 
4060 	xhci_free_command(xhci, command);
4061 
4062 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4063 		spin_lock_irqsave(&xhci->lock, flags);
4064 		ret = xhci_reserve_host_control_ep_resources(xhci);
4065 		if (ret) {
4066 			spin_unlock_irqrestore(&xhci->lock, flags);
4067 			xhci_warn(xhci, "Not enough host resources, "
4068 					"active endpoint contexts = %u\n",
4069 					xhci->num_active_eps);
4070 			goto disable_slot;
4071 		}
4072 		spin_unlock_irqrestore(&xhci->lock, flags);
4073 	}
4074 	/* Use GFP_NOIO, since this function can be called from
4075 	 * xhci_discover_or_reset_device(), which may be called as part of
4076 	 * mass storage driver error handling.
4077 	 */
4078 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4079 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4080 		goto disable_slot;
4081 	}
4082 	vdev = xhci->devs[slot_id];
4083 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4084 	trace_xhci_alloc_dev(slot_ctx);
4085 
4086 	udev->slot_id = slot_id;
4087 
4088 	xhci_debugfs_create_slot(xhci, slot_id);
4089 
4090 #ifndef CONFIG_USB_DEFAULT_PERSIST
4091 	/*
4092 	 * If resetting upon resume, we can't put the controller into runtime
4093 	 * suspend if there is a device attached.
4094 	 */
4095 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4096 		pm_runtime_get_noresume(hcd->self.controller);
4097 #endif
4098 
4099 	/* Is this a LS or FS device under a HS hub? */
4100 	/* Hub or peripherial? */
4101 	return 1;
4102 
4103 disable_slot:
4104 	ret = xhci_disable_slot(xhci, udev->slot_id);
4105 	if (ret)
4106 		xhci_free_virt_device(xhci, udev->slot_id);
4107 
4108 	return 0;
4109 }
4110 
4111 /*
4112  * Issue an Address Device command and optionally send a corresponding
4113  * SetAddress request to the device.
4114  */
4115 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4116 			     enum xhci_setup_dev setup)
4117 {
4118 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4119 	unsigned long flags;
4120 	struct xhci_virt_device *virt_dev;
4121 	int ret = 0;
4122 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123 	struct xhci_slot_ctx *slot_ctx;
4124 	struct xhci_input_control_ctx *ctrl_ctx;
4125 	u64 temp_64;
4126 	struct xhci_command *command = NULL;
4127 
4128 	mutex_lock(&xhci->mutex);
4129 
4130 	if (xhci->xhc_state) {	/* dying, removing or halted */
4131 		ret = -ESHUTDOWN;
4132 		goto out;
4133 	}
4134 
4135 	if (!udev->slot_id) {
4136 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4137 				"Bad Slot ID %d", udev->slot_id);
4138 		ret = -EINVAL;
4139 		goto out;
4140 	}
4141 
4142 	virt_dev = xhci->devs[udev->slot_id];
4143 
4144 	if (WARN_ON(!virt_dev)) {
4145 		/*
4146 		 * In plug/unplug torture test with an NEC controller,
4147 		 * a zero-dereference was observed once due to virt_dev = 0.
4148 		 * Print useful debug rather than crash if it is observed again!
4149 		 */
4150 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4151 			udev->slot_id);
4152 		ret = -EINVAL;
4153 		goto out;
4154 	}
4155 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4156 	trace_xhci_setup_device_slot(slot_ctx);
4157 
4158 	if (setup == SETUP_CONTEXT_ONLY) {
4159 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4160 		    SLOT_STATE_DEFAULT) {
4161 			xhci_dbg(xhci, "Slot already in default state\n");
4162 			goto out;
4163 		}
4164 	}
4165 
4166 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4167 	if (!command) {
4168 		ret = -ENOMEM;
4169 		goto out;
4170 	}
4171 
4172 	command->in_ctx = virt_dev->in_ctx;
4173 
4174 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4175 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4176 	if (!ctrl_ctx) {
4177 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4178 				__func__);
4179 		ret = -EINVAL;
4180 		goto out;
4181 	}
4182 	/*
4183 	 * If this is the first Set Address since device plug-in or
4184 	 * virt_device realloaction after a resume with an xHCI power loss,
4185 	 * then set up the slot context.
4186 	 */
4187 	if (!slot_ctx->dev_info)
4188 		xhci_setup_addressable_virt_dev(xhci, udev);
4189 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4190 	else
4191 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4192 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4193 	ctrl_ctx->drop_flags = 0;
4194 
4195 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4196 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4197 
4198 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4199 	spin_lock_irqsave(&xhci->lock, flags);
4200 	trace_xhci_setup_device(virt_dev);
4201 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4202 					udev->slot_id, setup);
4203 	if (ret) {
4204 		spin_unlock_irqrestore(&xhci->lock, flags);
4205 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4206 				"FIXME: allocate a command ring segment");
4207 		goto out;
4208 	}
4209 	xhci_ring_cmd_db(xhci);
4210 	spin_unlock_irqrestore(&xhci->lock, flags);
4211 
4212 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4213 	wait_for_completion(command->completion);
4214 
4215 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4216 	 * the SetAddress() "recovery interval" required by USB and aborting the
4217 	 * command on a timeout.
4218 	 */
4219 	switch (command->status) {
4220 	case COMP_COMMAND_ABORTED:
4221 	case COMP_COMMAND_RING_STOPPED:
4222 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4223 		ret = -ETIME;
4224 		break;
4225 	case COMP_CONTEXT_STATE_ERROR:
4226 	case COMP_SLOT_NOT_ENABLED_ERROR:
4227 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4228 			 act, udev->slot_id);
4229 		ret = -EINVAL;
4230 		break;
4231 	case COMP_USB_TRANSACTION_ERROR:
4232 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4233 
4234 		mutex_unlock(&xhci->mutex);
4235 		ret = xhci_disable_slot(xhci, udev->slot_id);
4236 		if (!ret)
4237 			xhci_alloc_dev(hcd, udev);
4238 		kfree(command->completion);
4239 		kfree(command);
4240 		return -EPROTO;
4241 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4242 		dev_warn(&udev->dev,
4243 			 "ERROR: Incompatible device for setup %s command\n", act);
4244 		ret = -ENODEV;
4245 		break;
4246 	case COMP_SUCCESS:
4247 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4248 			       "Successful setup %s command", act);
4249 		break;
4250 	default:
4251 		xhci_err(xhci,
4252 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4253 			 act, command->status);
4254 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4255 		ret = -EINVAL;
4256 		break;
4257 	}
4258 	if (ret)
4259 		goto out;
4260 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4261 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262 			"Op regs DCBAA ptr = %#016llx", temp_64);
4263 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4264 		"Slot ID %d dcbaa entry @%p = %#016llx",
4265 		udev->slot_id,
4266 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4267 		(unsigned long long)
4268 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4269 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270 			"Output Context DMA address = %#08llx",
4271 			(unsigned long long)virt_dev->out_ctx->dma);
4272 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4273 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4274 	/*
4275 	 * USB core uses address 1 for the roothubs, so we add one to the
4276 	 * address given back to us by the HC.
4277 	 */
4278 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4279 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4280 	/* Zero the input context control for later use */
4281 	ctrl_ctx->add_flags = 0;
4282 	ctrl_ctx->drop_flags = 0;
4283 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4284 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4285 
4286 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4287 		       "Internal device address = %d",
4288 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4289 out:
4290 	mutex_unlock(&xhci->mutex);
4291 	if (command) {
4292 		kfree(command->completion);
4293 		kfree(command);
4294 	}
4295 	return ret;
4296 }
4297 
4298 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4299 {
4300 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4301 }
4302 
4303 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4304 {
4305 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4306 }
4307 
4308 /*
4309  * Transfer the port index into real index in the HW port status
4310  * registers. Caculate offset between the port's PORTSC register
4311  * and port status base. Divide the number of per port register
4312  * to get the real index. The raw port number bases 1.
4313  */
4314 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4315 {
4316 	struct xhci_hub *rhub;
4317 
4318 	rhub = xhci_get_rhub(hcd);
4319 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4320 }
4321 
4322 /*
4323  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4324  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4325  */
4326 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4327 			struct usb_device *udev, u16 max_exit_latency)
4328 {
4329 	struct xhci_virt_device *virt_dev;
4330 	struct xhci_command *command;
4331 	struct xhci_input_control_ctx *ctrl_ctx;
4332 	struct xhci_slot_ctx *slot_ctx;
4333 	unsigned long flags;
4334 	int ret;
4335 
4336 	spin_lock_irqsave(&xhci->lock, flags);
4337 
4338 	virt_dev = xhci->devs[udev->slot_id];
4339 
4340 	/*
4341 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4342 	 * xHC was re-initialized. Exit latency will be set later after
4343 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4344 	 */
4345 
4346 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4347 		spin_unlock_irqrestore(&xhci->lock, flags);
4348 		return 0;
4349 	}
4350 
4351 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4352 	command = xhci->lpm_command;
4353 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4354 	if (!ctrl_ctx) {
4355 		spin_unlock_irqrestore(&xhci->lock, flags);
4356 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4357 				__func__);
4358 		return -ENOMEM;
4359 	}
4360 
4361 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4362 	spin_unlock_irqrestore(&xhci->lock, flags);
4363 
4364 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4365 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4366 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4367 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4368 	slot_ctx->dev_state = 0;
4369 
4370 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4371 			"Set up evaluate context for LPM MEL change.");
4372 
4373 	/* Issue and wait for the evaluate context command. */
4374 	ret = xhci_configure_endpoint(xhci, udev, command,
4375 			true, true);
4376 
4377 	if (!ret) {
4378 		spin_lock_irqsave(&xhci->lock, flags);
4379 		virt_dev->current_mel = max_exit_latency;
4380 		spin_unlock_irqrestore(&xhci->lock, flags);
4381 	}
4382 	return ret;
4383 }
4384 
4385 #ifdef CONFIG_PM
4386 
4387 /* BESL to HIRD Encoding array for USB2 LPM */
4388 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4389 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4390 
4391 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4392 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4393 					struct usb_device *udev)
4394 {
4395 	int u2del, besl, besl_host;
4396 	int besl_device = 0;
4397 	u32 field;
4398 
4399 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4400 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4401 
4402 	if (field & USB_BESL_SUPPORT) {
4403 		for (besl_host = 0; besl_host < 16; besl_host++) {
4404 			if (xhci_besl_encoding[besl_host] >= u2del)
4405 				break;
4406 		}
4407 		/* Use baseline BESL value as default */
4408 		if (field & USB_BESL_BASELINE_VALID)
4409 			besl_device = USB_GET_BESL_BASELINE(field);
4410 		else if (field & USB_BESL_DEEP_VALID)
4411 			besl_device = USB_GET_BESL_DEEP(field);
4412 	} else {
4413 		if (u2del <= 50)
4414 			besl_host = 0;
4415 		else
4416 			besl_host = (u2del - 51) / 75 + 1;
4417 	}
4418 
4419 	besl = besl_host + besl_device;
4420 	if (besl > 15)
4421 		besl = 15;
4422 
4423 	return besl;
4424 }
4425 
4426 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4427 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4428 {
4429 	u32 field;
4430 	int l1;
4431 	int besld = 0;
4432 	int hirdm = 0;
4433 
4434 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4435 
4436 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4437 	l1 = udev->l1_params.timeout / 256;
4438 
4439 	/* device has preferred BESLD */
4440 	if (field & USB_BESL_DEEP_VALID) {
4441 		besld = USB_GET_BESL_DEEP(field);
4442 		hirdm = 1;
4443 	}
4444 
4445 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4446 }
4447 
4448 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4449 			struct usb_device *udev, int enable)
4450 {
4451 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4452 	struct xhci_port **ports;
4453 	__le32 __iomem	*pm_addr, *hlpm_addr;
4454 	u32		pm_val, hlpm_val, field;
4455 	unsigned int	port_num;
4456 	unsigned long	flags;
4457 	int		hird, exit_latency;
4458 	int		ret;
4459 
4460 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4461 		return -EPERM;
4462 
4463 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4464 			!udev->lpm_capable)
4465 		return -EPERM;
4466 
4467 	if (!udev->parent || udev->parent->parent ||
4468 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4469 		return -EPERM;
4470 
4471 	if (udev->usb2_hw_lpm_capable != 1)
4472 		return -EPERM;
4473 
4474 	spin_lock_irqsave(&xhci->lock, flags);
4475 
4476 	ports = xhci->usb2_rhub.ports;
4477 	port_num = udev->portnum - 1;
4478 	pm_addr = ports[port_num]->addr + PORTPMSC;
4479 	pm_val = readl(pm_addr);
4480 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4481 
4482 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4483 			enable ? "enable" : "disable", port_num + 1);
4484 
4485 	if (enable) {
4486 		/* Host supports BESL timeout instead of HIRD */
4487 		if (udev->usb2_hw_lpm_besl_capable) {
4488 			/* if device doesn't have a preferred BESL value use a
4489 			 * default one which works with mixed HIRD and BESL
4490 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4491 			 */
4492 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4493 			if ((field & USB_BESL_SUPPORT) &&
4494 			    (field & USB_BESL_BASELINE_VALID))
4495 				hird = USB_GET_BESL_BASELINE(field);
4496 			else
4497 				hird = udev->l1_params.besl;
4498 
4499 			exit_latency = xhci_besl_encoding[hird];
4500 			spin_unlock_irqrestore(&xhci->lock, flags);
4501 
4502 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4503 			 * input context for link powermanagement evaluate
4504 			 * context commands. It is protected by hcd->bandwidth
4505 			 * mutex and is shared by all devices. We need to set
4506 			 * the max ext latency in USB 2 BESL LPM as well, so
4507 			 * use the same mutex and xhci_change_max_exit_latency()
4508 			 */
4509 			mutex_lock(hcd->bandwidth_mutex);
4510 			ret = xhci_change_max_exit_latency(xhci, udev,
4511 							   exit_latency);
4512 			mutex_unlock(hcd->bandwidth_mutex);
4513 
4514 			if (ret < 0)
4515 				return ret;
4516 			spin_lock_irqsave(&xhci->lock, flags);
4517 
4518 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4519 			writel(hlpm_val, hlpm_addr);
4520 			/* flush write */
4521 			readl(hlpm_addr);
4522 		} else {
4523 			hird = xhci_calculate_hird_besl(xhci, udev);
4524 		}
4525 
4526 		pm_val &= ~PORT_HIRD_MASK;
4527 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4528 		writel(pm_val, pm_addr);
4529 		pm_val = readl(pm_addr);
4530 		pm_val |= PORT_HLE;
4531 		writel(pm_val, pm_addr);
4532 		/* flush write */
4533 		readl(pm_addr);
4534 	} else {
4535 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4536 		writel(pm_val, pm_addr);
4537 		/* flush write */
4538 		readl(pm_addr);
4539 		if (udev->usb2_hw_lpm_besl_capable) {
4540 			spin_unlock_irqrestore(&xhci->lock, flags);
4541 			mutex_lock(hcd->bandwidth_mutex);
4542 			xhci_change_max_exit_latency(xhci, udev, 0);
4543 			mutex_unlock(hcd->bandwidth_mutex);
4544 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4545 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4546 					   100, 10000);
4547 			return 0;
4548 		}
4549 	}
4550 
4551 	spin_unlock_irqrestore(&xhci->lock, flags);
4552 	return 0;
4553 }
4554 
4555 /* check if a usb2 port supports a given extened capability protocol
4556  * only USB2 ports extended protocol capability values are cached.
4557  * Return 1 if capability is supported
4558  */
4559 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4560 					   unsigned capability)
4561 {
4562 	u32 port_offset, port_count;
4563 	int i;
4564 
4565 	for (i = 0; i < xhci->num_ext_caps; i++) {
4566 		if (xhci->ext_caps[i] & capability) {
4567 			/* port offsets starts at 1 */
4568 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4569 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4570 			if (port >= port_offset &&
4571 			    port < port_offset + port_count)
4572 				return 1;
4573 		}
4574 	}
4575 	return 0;
4576 }
4577 
4578 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4579 {
4580 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4581 	int		portnum = udev->portnum - 1;
4582 
4583 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4584 		return 0;
4585 
4586 	/* we only support lpm for non-hub device connected to root hub yet */
4587 	if (!udev->parent || udev->parent->parent ||
4588 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4589 		return 0;
4590 
4591 	if (xhci->hw_lpm_support == 1 &&
4592 			xhci_check_usb2_port_capability(
4593 				xhci, portnum, XHCI_HLC)) {
4594 		udev->usb2_hw_lpm_capable = 1;
4595 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4596 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4597 		if (xhci_check_usb2_port_capability(xhci, portnum,
4598 					XHCI_BLC))
4599 			udev->usb2_hw_lpm_besl_capable = 1;
4600 	}
4601 
4602 	return 0;
4603 }
4604 
4605 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4606 
4607 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4608 static unsigned long long xhci_service_interval_to_ns(
4609 		struct usb_endpoint_descriptor *desc)
4610 {
4611 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4612 }
4613 
4614 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4615 		enum usb3_link_state state)
4616 {
4617 	unsigned long long sel;
4618 	unsigned long long pel;
4619 	unsigned int max_sel_pel;
4620 	char *state_name;
4621 
4622 	switch (state) {
4623 	case USB3_LPM_U1:
4624 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4625 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4626 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4627 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4628 		state_name = "U1";
4629 		break;
4630 	case USB3_LPM_U2:
4631 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4632 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4633 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4634 		state_name = "U2";
4635 		break;
4636 	default:
4637 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4638 				__func__);
4639 		return USB3_LPM_DISABLED;
4640 	}
4641 
4642 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4643 		return USB3_LPM_DEVICE_INITIATED;
4644 
4645 	if (sel > max_sel_pel)
4646 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4647 				"due to long SEL %llu ms\n",
4648 				state_name, sel);
4649 	else
4650 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4651 				"due to long PEL %llu ms\n",
4652 				state_name, pel);
4653 	return USB3_LPM_DISABLED;
4654 }
4655 
4656 /* The U1 timeout should be the maximum of the following values:
4657  *  - For control endpoints, U1 system exit latency (SEL) * 3
4658  *  - For bulk endpoints, U1 SEL * 5
4659  *  - For interrupt endpoints:
4660  *    - Notification EPs, U1 SEL * 3
4661  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4662  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4663  */
4664 static unsigned long long xhci_calculate_intel_u1_timeout(
4665 		struct usb_device *udev,
4666 		struct usb_endpoint_descriptor *desc)
4667 {
4668 	unsigned long long timeout_ns;
4669 	int ep_type;
4670 	int intr_type;
4671 
4672 	ep_type = usb_endpoint_type(desc);
4673 	switch (ep_type) {
4674 	case USB_ENDPOINT_XFER_CONTROL:
4675 		timeout_ns = udev->u1_params.sel * 3;
4676 		break;
4677 	case USB_ENDPOINT_XFER_BULK:
4678 		timeout_ns = udev->u1_params.sel * 5;
4679 		break;
4680 	case USB_ENDPOINT_XFER_INT:
4681 		intr_type = usb_endpoint_interrupt_type(desc);
4682 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4683 			timeout_ns = udev->u1_params.sel * 3;
4684 			break;
4685 		}
4686 		/* Otherwise the calculation is the same as isoc eps */
4687 		fallthrough;
4688 	case USB_ENDPOINT_XFER_ISOC:
4689 		timeout_ns = xhci_service_interval_to_ns(desc);
4690 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4691 		if (timeout_ns < udev->u1_params.sel * 2)
4692 			timeout_ns = udev->u1_params.sel * 2;
4693 		break;
4694 	default:
4695 		return 0;
4696 	}
4697 
4698 	return timeout_ns;
4699 }
4700 
4701 /* Returns the hub-encoded U1 timeout value. */
4702 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4703 		struct usb_device *udev,
4704 		struct usb_endpoint_descriptor *desc)
4705 {
4706 	unsigned long long timeout_ns;
4707 
4708 	if (xhci->quirks & XHCI_INTEL_HOST)
4709 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4710 	else
4711 		timeout_ns = udev->u1_params.sel;
4712 
4713 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4714 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4715 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4716 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4717 			return USB3_LPM_DISABLED;
4718 		}
4719 	}
4720 
4721 	/* The U1 timeout is encoded in 1us intervals.
4722 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4723 	 */
4724 	if (timeout_ns == USB3_LPM_DISABLED)
4725 		timeout_ns = 1;
4726 	else
4727 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4728 
4729 	/* If the necessary timeout value is bigger than what we can set in the
4730 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4731 	 */
4732 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4733 		return timeout_ns;
4734 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4735 			"due to long timeout %llu ms\n", timeout_ns);
4736 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4737 }
4738 
4739 /* The U2 timeout should be the maximum of:
4740  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4741  *  - largest bInterval of any active periodic endpoint (to avoid going
4742  *    into lower power link states between intervals).
4743  *  - the U2 Exit Latency of the device
4744  */
4745 static unsigned long long xhci_calculate_intel_u2_timeout(
4746 		struct usb_device *udev,
4747 		struct usb_endpoint_descriptor *desc)
4748 {
4749 	unsigned long long timeout_ns;
4750 	unsigned long long u2_del_ns;
4751 
4752 	timeout_ns = 10 * 1000 * 1000;
4753 
4754 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4755 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4756 		timeout_ns = xhci_service_interval_to_ns(desc);
4757 
4758 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4759 	if (u2_del_ns > timeout_ns)
4760 		timeout_ns = u2_del_ns;
4761 
4762 	return timeout_ns;
4763 }
4764 
4765 /* Returns the hub-encoded U2 timeout value. */
4766 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4767 		struct usb_device *udev,
4768 		struct usb_endpoint_descriptor *desc)
4769 {
4770 	unsigned long long timeout_ns;
4771 
4772 	if (xhci->quirks & XHCI_INTEL_HOST)
4773 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4774 	else
4775 		timeout_ns = udev->u2_params.sel;
4776 
4777 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4778 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4779 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4780 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4781 			return USB3_LPM_DISABLED;
4782 		}
4783 	}
4784 
4785 	/* The U2 timeout is encoded in 256us intervals */
4786 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4787 	/* If the necessary timeout value is bigger than what we can set in the
4788 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4789 	 */
4790 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4791 		return timeout_ns;
4792 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4793 			"due to long timeout %llu ms\n", timeout_ns);
4794 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4795 }
4796 
4797 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4798 		struct usb_device *udev,
4799 		struct usb_endpoint_descriptor *desc,
4800 		enum usb3_link_state state,
4801 		u16 *timeout)
4802 {
4803 	if (state == USB3_LPM_U1)
4804 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4805 	else if (state == USB3_LPM_U2)
4806 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4807 
4808 	return USB3_LPM_DISABLED;
4809 }
4810 
4811 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4812 		struct usb_device *udev,
4813 		struct usb_endpoint_descriptor *desc,
4814 		enum usb3_link_state state,
4815 		u16 *timeout)
4816 {
4817 	u16 alt_timeout;
4818 
4819 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4820 		desc, state, timeout);
4821 
4822 	/* If we found we can't enable hub-initiated LPM, and
4823 	 * the U1 or U2 exit latency was too high to allow
4824 	 * device-initiated LPM as well, then we will disable LPM
4825 	 * for this device, so stop searching any further.
4826 	 */
4827 	if (alt_timeout == USB3_LPM_DISABLED) {
4828 		*timeout = alt_timeout;
4829 		return -E2BIG;
4830 	}
4831 	if (alt_timeout > *timeout)
4832 		*timeout = alt_timeout;
4833 	return 0;
4834 }
4835 
4836 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4837 		struct usb_device *udev,
4838 		struct usb_host_interface *alt,
4839 		enum usb3_link_state state,
4840 		u16 *timeout)
4841 {
4842 	int j;
4843 
4844 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4845 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4846 					&alt->endpoint[j].desc, state, timeout))
4847 			return -E2BIG;
4848 	}
4849 	return 0;
4850 }
4851 
4852 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4853 		enum usb3_link_state state)
4854 {
4855 	struct usb_device *parent;
4856 	unsigned int num_hubs;
4857 
4858 	if (state == USB3_LPM_U2)
4859 		return 0;
4860 
4861 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4862 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4863 			parent = parent->parent)
4864 		num_hubs++;
4865 
4866 	if (num_hubs < 2)
4867 		return 0;
4868 
4869 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4870 			" below second-tier hub.\n");
4871 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4872 			"to decrease power consumption.\n");
4873 	return -E2BIG;
4874 }
4875 
4876 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4877 		struct usb_device *udev,
4878 		enum usb3_link_state state)
4879 {
4880 	if (xhci->quirks & XHCI_INTEL_HOST)
4881 		return xhci_check_intel_tier_policy(udev, state);
4882 	else
4883 		return 0;
4884 }
4885 
4886 /* Returns the U1 or U2 timeout that should be enabled.
4887  * If the tier check or timeout setting functions return with a non-zero exit
4888  * code, that means the timeout value has been finalized and we shouldn't look
4889  * at any more endpoints.
4890  */
4891 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4892 			struct usb_device *udev, enum usb3_link_state state)
4893 {
4894 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4895 	struct usb_host_config *config;
4896 	char *state_name;
4897 	int i;
4898 	u16 timeout = USB3_LPM_DISABLED;
4899 
4900 	if (state == USB3_LPM_U1)
4901 		state_name = "U1";
4902 	else if (state == USB3_LPM_U2)
4903 		state_name = "U2";
4904 	else {
4905 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4906 				state);
4907 		return timeout;
4908 	}
4909 
4910 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4911 		return timeout;
4912 
4913 	/* Gather some information about the currently installed configuration
4914 	 * and alternate interface settings.
4915 	 */
4916 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4917 			state, &timeout))
4918 		return timeout;
4919 
4920 	config = udev->actconfig;
4921 	if (!config)
4922 		return timeout;
4923 
4924 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4925 		struct usb_driver *driver;
4926 		struct usb_interface *intf = config->interface[i];
4927 
4928 		if (!intf)
4929 			continue;
4930 
4931 		/* Check if any currently bound drivers want hub-initiated LPM
4932 		 * disabled.
4933 		 */
4934 		if (intf->dev.driver) {
4935 			driver = to_usb_driver(intf->dev.driver);
4936 			if (driver && driver->disable_hub_initiated_lpm) {
4937 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4938 					state_name, driver->name);
4939 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4940 								      state);
4941 				if (timeout == USB3_LPM_DISABLED)
4942 					return timeout;
4943 			}
4944 		}
4945 
4946 		/* Not sure how this could happen... */
4947 		if (!intf->cur_altsetting)
4948 			continue;
4949 
4950 		if (xhci_update_timeout_for_interface(xhci, udev,
4951 					intf->cur_altsetting,
4952 					state, &timeout))
4953 			return timeout;
4954 	}
4955 	return timeout;
4956 }
4957 
4958 static int calculate_max_exit_latency(struct usb_device *udev,
4959 		enum usb3_link_state state_changed,
4960 		u16 hub_encoded_timeout)
4961 {
4962 	unsigned long long u1_mel_us = 0;
4963 	unsigned long long u2_mel_us = 0;
4964 	unsigned long long mel_us = 0;
4965 	bool disabling_u1;
4966 	bool disabling_u2;
4967 	bool enabling_u1;
4968 	bool enabling_u2;
4969 
4970 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4971 			hub_encoded_timeout == USB3_LPM_DISABLED);
4972 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4973 			hub_encoded_timeout == USB3_LPM_DISABLED);
4974 
4975 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4976 			hub_encoded_timeout != USB3_LPM_DISABLED);
4977 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4978 			hub_encoded_timeout != USB3_LPM_DISABLED);
4979 
4980 	/* If U1 was already enabled and we're not disabling it,
4981 	 * or we're going to enable U1, account for the U1 max exit latency.
4982 	 */
4983 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4984 			enabling_u1)
4985 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4986 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4987 			enabling_u2)
4988 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4989 
4990 	if (u1_mel_us > u2_mel_us)
4991 		mel_us = u1_mel_us;
4992 	else
4993 		mel_us = u2_mel_us;
4994 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4995 	if (mel_us > MAX_EXIT) {
4996 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4997 				"is too big.\n", mel_us);
4998 		return -E2BIG;
4999 	}
5000 	return mel_us;
5001 }
5002 
5003 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5004 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5005 			struct usb_device *udev, enum usb3_link_state state)
5006 {
5007 	struct xhci_hcd	*xhci;
5008 	u16 hub_encoded_timeout;
5009 	int mel;
5010 	int ret;
5011 
5012 	xhci = hcd_to_xhci(hcd);
5013 	/* The LPM timeout values are pretty host-controller specific, so don't
5014 	 * enable hub-initiated timeouts unless the vendor has provided
5015 	 * information about their timeout algorithm.
5016 	 */
5017 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5018 			!xhci->devs[udev->slot_id])
5019 		return USB3_LPM_DISABLED;
5020 
5021 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5022 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5023 	if (mel < 0) {
5024 		/* Max Exit Latency is too big, disable LPM. */
5025 		hub_encoded_timeout = USB3_LPM_DISABLED;
5026 		mel = 0;
5027 	}
5028 
5029 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5030 	if (ret)
5031 		return ret;
5032 	return hub_encoded_timeout;
5033 }
5034 
5035 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036 			struct usb_device *udev, enum usb3_link_state state)
5037 {
5038 	struct xhci_hcd	*xhci;
5039 	u16 mel;
5040 
5041 	xhci = hcd_to_xhci(hcd);
5042 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5043 			!xhci->devs[udev->slot_id])
5044 		return 0;
5045 
5046 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5047 	return xhci_change_max_exit_latency(xhci, udev, mel);
5048 }
5049 #else /* CONFIG_PM */
5050 
5051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5052 				struct usb_device *udev, int enable)
5053 {
5054 	return 0;
5055 }
5056 
5057 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5058 {
5059 	return 0;
5060 }
5061 
5062 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5063 			struct usb_device *udev, enum usb3_link_state state)
5064 {
5065 	return USB3_LPM_DISABLED;
5066 }
5067 
5068 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5069 			struct usb_device *udev, enum usb3_link_state state)
5070 {
5071 	return 0;
5072 }
5073 #endif	/* CONFIG_PM */
5074 
5075 /*-------------------------------------------------------------------------*/
5076 
5077 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5078  * internal data structures for the device.
5079  */
5080 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5081 			struct usb_tt *tt, gfp_t mem_flags)
5082 {
5083 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5084 	struct xhci_virt_device *vdev;
5085 	struct xhci_command *config_cmd;
5086 	struct xhci_input_control_ctx *ctrl_ctx;
5087 	struct xhci_slot_ctx *slot_ctx;
5088 	unsigned long flags;
5089 	unsigned think_time;
5090 	int ret;
5091 
5092 	/* Ignore root hubs */
5093 	if (!hdev->parent)
5094 		return 0;
5095 
5096 	vdev = xhci->devs[hdev->slot_id];
5097 	if (!vdev) {
5098 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5099 		return -EINVAL;
5100 	}
5101 
5102 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5103 	if (!config_cmd)
5104 		return -ENOMEM;
5105 
5106 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5107 	if (!ctrl_ctx) {
5108 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5109 				__func__);
5110 		xhci_free_command(xhci, config_cmd);
5111 		return -ENOMEM;
5112 	}
5113 
5114 	spin_lock_irqsave(&xhci->lock, flags);
5115 	if (hdev->speed == USB_SPEED_HIGH &&
5116 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5117 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5118 		xhci_free_command(xhci, config_cmd);
5119 		spin_unlock_irqrestore(&xhci->lock, flags);
5120 		return -ENOMEM;
5121 	}
5122 
5123 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5124 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5125 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5126 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5127 	/*
5128 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5129 	 * but it may be already set to 1 when setup an xHCI virtual
5130 	 * device, so clear it anyway.
5131 	 */
5132 	if (tt->multi)
5133 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5134 	else if (hdev->speed == USB_SPEED_FULL)
5135 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5136 
5137 	if (xhci->hci_version > 0x95) {
5138 		xhci_dbg(xhci, "xHCI version %x needs hub "
5139 				"TT think time and number of ports\n",
5140 				(unsigned int) xhci->hci_version);
5141 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5142 		/* Set TT think time - convert from ns to FS bit times.
5143 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5144 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5145 		 *
5146 		 * xHCI 1.0: this field shall be 0 if the device is not a
5147 		 * High-spped hub.
5148 		 */
5149 		think_time = tt->think_time;
5150 		if (think_time != 0)
5151 			think_time = (think_time / 666) - 1;
5152 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5153 			slot_ctx->tt_info |=
5154 				cpu_to_le32(TT_THINK_TIME(think_time));
5155 	} else {
5156 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5157 				"TT think time or number of ports\n",
5158 				(unsigned int) xhci->hci_version);
5159 	}
5160 	slot_ctx->dev_state = 0;
5161 	spin_unlock_irqrestore(&xhci->lock, flags);
5162 
5163 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5164 			(xhci->hci_version > 0x95) ?
5165 			"configure endpoint" : "evaluate context");
5166 
5167 	/* Issue and wait for the configure endpoint or
5168 	 * evaluate context command.
5169 	 */
5170 	if (xhci->hci_version > 0x95)
5171 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5172 				false, false);
5173 	else
5174 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5175 				true, false);
5176 
5177 	xhci_free_command(xhci, config_cmd);
5178 	return ret;
5179 }
5180 
5181 static int xhci_get_frame(struct usb_hcd *hcd)
5182 {
5183 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5184 	/* EHCI mods by the periodic size.  Why? */
5185 	return readl(&xhci->run_regs->microframe_index) >> 3;
5186 }
5187 
5188 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5189 {
5190 	struct xhci_hcd		*xhci;
5191 	/*
5192 	 * TODO: Check with DWC3 clients for sysdev according to
5193 	 * quirks
5194 	 */
5195 	struct device		*dev = hcd->self.sysdev;
5196 	unsigned int		minor_rev;
5197 	int			retval;
5198 
5199 	/* Accept arbitrarily long scatter-gather lists */
5200 	hcd->self.sg_tablesize = ~0;
5201 
5202 	/* support to build packet from discontinuous buffers */
5203 	hcd->self.no_sg_constraint = 1;
5204 
5205 	/* XHCI controllers don't stop the ep queue on short packets :| */
5206 	hcd->self.no_stop_on_short = 1;
5207 
5208 	xhci = hcd_to_xhci(hcd);
5209 
5210 	if (usb_hcd_is_primary_hcd(hcd)) {
5211 		xhci->main_hcd = hcd;
5212 		xhci->usb2_rhub.hcd = hcd;
5213 		/* Mark the first roothub as being USB 2.0.
5214 		 * The xHCI driver will register the USB 3.0 roothub.
5215 		 */
5216 		hcd->speed = HCD_USB2;
5217 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5218 		/*
5219 		 * USB 2.0 roothub under xHCI has an integrated TT,
5220 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5221 		 * companion controller.
5222 		 */
5223 		hcd->has_tt = 1;
5224 	} else {
5225 		/*
5226 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5227 		 * should return 0x31 for sbrn, or that the minor revision
5228 		 * is a two digit BCD containig minor and sub-minor numbers.
5229 		 * This was later clarified in xHCI 1.2.
5230 		 *
5231 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5232 		 * minor revision set to 0x1 instead of 0x10.
5233 		 */
5234 		if (xhci->usb3_rhub.min_rev == 0x1)
5235 			minor_rev = 1;
5236 		else
5237 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5238 
5239 		switch (minor_rev) {
5240 		case 2:
5241 			hcd->speed = HCD_USB32;
5242 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243 			hcd->self.root_hub->rx_lanes = 2;
5244 			hcd->self.root_hub->tx_lanes = 2;
5245 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5246 			break;
5247 		case 1:
5248 			hcd->speed = HCD_USB31;
5249 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5250 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5251 			break;
5252 		}
5253 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254 			  minor_rev,
5255 			  minor_rev ? "Enhanced " : "");
5256 
5257 		xhci->usb3_rhub.hcd = hcd;
5258 		/* xHCI private pointer was set in xhci_pci_probe for the second
5259 		 * registered roothub.
5260 		 */
5261 		return 0;
5262 	}
5263 
5264 	mutex_init(&xhci->mutex);
5265 	xhci->cap_regs = hcd->regs;
5266 	xhci->op_regs = hcd->regs +
5267 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5268 	xhci->run_regs = hcd->regs +
5269 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5270 	/* Cache read-only capability registers */
5271 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5272 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5273 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5274 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5275 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5276 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5277 	if (xhci->hci_version > 0x100)
5278 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5279 
5280 	xhci->quirks |= quirks;
5281 
5282 	get_quirks(dev, xhci);
5283 
5284 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5285 	 * success event after a short transfer. This quirk will ignore such
5286 	 * spurious event.
5287 	 */
5288 	if (xhci->hci_version > 0x96)
5289 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5290 
5291 	/* Make sure the HC is halted. */
5292 	retval = xhci_halt(xhci);
5293 	if (retval)
5294 		return retval;
5295 
5296 	xhci_zero_64b_regs(xhci);
5297 
5298 	xhci_dbg(xhci, "Resetting HCD\n");
5299 	/* Reset the internal HC memory state and registers. */
5300 	retval = xhci_reset(xhci);
5301 	if (retval)
5302 		return retval;
5303 	xhci_dbg(xhci, "Reset complete\n");
5304 
5305 	/*
5306 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5307 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5308 	 * address memory pointers actually. So, this driver clears the AC64
5309 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5310 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5311 	 */
5312 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5313 		xhci->hcc_params &= ~BIT(0);
5314 
5315 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5316 	 * if xHC supports 64-bit addressing */
5317 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5318 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5319 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5320 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5321 	} else {
5322 		/*
5323 		 * This is to avoid error in cases where a 32-bit USB
5324 		 * controller is used on a 64-bit capable system.
5325 		 */
5326 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5327 		if (retval)
5328 			return retval;
5329 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5330 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5331 	}
5332 
5333 	xhci_dbg(xhci, "Calling HCD init\n");
5334 	/* Initialize HCD and host controller data structures. */
5335 	retval = xhci_init(hcd);
5336 	if (retval)
5337 		return retval;
5338 	xhci_dbg(xhci, "Called HCD init\n");
5339 
5340 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5341 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5342 
5343 	return 0;
5344 }
5345 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5346 
5347 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5348 		struct usb_host_endpoint *ep)
5349 {
5350 	struct xhci_hcd *xhci;
5351 	struct usb_device *udev;
5352 	unsigned int slot_id;
5353 	unsigned int ep_index;
5354 	unsigned long flags;
5355 
5356 	xhci = hcd_to_xhci(hcd);
5357 
5358 	spin_lock_irqsave(&xhci->lock, flags);
5359 	udev = (struct usb_device *)ep->hcpriv;
5360 	slot_id = udev->slot_id;
5361 	ep_index = xhci_get_endpoint_index(&ep->desc);
5362 
5363 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5364 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5365 	spin_unlock_irqrestore(&xhci->lock, flags);
5366 }
5367 
5368 static const struct hc_driver xhci_hc_driver = {
5369 	.description =		"xhci-hcd",
5370 	.product_desc =		"xHCI Host Controller",
5371 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5372 
5373 	/*
5374 	 * generic hardware linkage
5375 	 */
5376 	.irq =			xhci_irq,
5377 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5378 				HCD_BH,
5379 
5380 	/*
5381 	 * basic lifecycle operations
5382 	 */
5383 	.reset =		NULL, /* set in xhci_init_driver() */
5384 	.start =		xhci_run,
5385 	.stop =			xhci_stop,
5386 	.shutdown =		xhci_shutdown,
5387 
5388 	/*
5389 	 * managing i/o requests and associated device resources
5390 	 */
5391 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5392 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5393 	.urb_enqueue =		xhci_urb_enqueue,
5394 	.urb_dequeue =		xhci_urb_dequeue,
5395 	.alloc_dev =		xhci_alloc_dev,
5396 	.free_dev =		xhci_free_dev,
5397 	.alloc_streams =	xhci_alloc_streams,
5398 	.free_streams =		xhci_free_streams,
5399 	.add_endpoint =		xhci_add_endpoint,
5400 	.drop_endpoint =	xhci_drop_endpoint,
5401 	.endpoint_disable =	xhci_endpoint_disable,
5402 	.endpoint_reset =	xhci_endpoint_reset,
5403 	.check_bandwidth =	xhci_check_bandwidth,
5404 	.reset_bandwidth =	xhci_reset_bandwidth,
5405 	.address_device =	xhci_address_device,
5406 	.enable_device =	xhci_enable_device,
5407 	.update_hub_device =	xhci_update_hub_device,
5408 	.reset_device =		xhci_discover_or_reset_device,
5409 
5410 	/*
5411 	 * scheduling support
5412 	 */
5413 	.get_frame_number =	xhci_get_frame,
5414 
5415 	/*
5416 	 * root hub support
5417 	 */
5418 	.hub_control =		xhci_hub_control,
5419 	.hub_status_data =	xhci_hub_status_data,
5420 	.bus_suspend =		xhci_bus_suspend,
5421 	.bus_resume =		xhci_bus_resume,
5422 	.get_resuming_ports =	xhci_get_resuming_ports,
5423 
5424 	/*
5425 	 * call back when device connected and addressed
5426 	 */
5427 	.update_device =        xhci_update_device,
5428 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5429 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5430 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5431 	.find_raw_port_number =	xhci_find_raw_port_number,
5432 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5433 };
5434 
5435 void xhci_init_driver(struct hc_driver *drv,
5436 		      const struct xhci_driver_overrides *over)
5437 {
5438 	BUG_ON(!over);
5439 
5440 	/* Copy the generic table to drv then apply the overrides */
5441 	*drv = xhci_hc_driver;
5442 
5443 	if (over) {
5444 		drv->hcd_priv_size += over->extra_priv_size;
5445 		if (over->reset)
5446 			drv->reset = over->reset;
5447 		if (over->start)
5448 			drv->start = over->start;
5449 		if (over->add_endpoint)
5450 			drv->add_endpoint = over->add_endpoint;
5451 		if (over->drop_endpoint)
5452 			drv->drop_endpoint = over->drop_endpoint;
5453 		if (over->check_bandwidth)
5454 			drv->check_bandwidth = over->check_bandwidth;
5455 		if (over->reset_bandwidth)
5456 			drv->reset_bandwidth = over->reset_bandwidth;
5457 	}
5458 }
5459 EXPORT_SYMBOL_GPL(xhci_init_driver);
5460 
5461 MODULE_DESCRIPTION(DRIVER_DESC);
5462 MODULE_AUTHOR(DRIVER_AUTHOR);
5463 MODULE_LICENSE("GPL");
5464 
5465 static int __init xhci_hcd_init(void)
5466 {
5467 	/*
5468 	 * Check the compiler generated sizes of structures that must be laid
5469 	 * out in specific ways for hardware access.
5470 	 */
5471 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5472 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5473 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5474 	/* xhci_device_control has eight fields, and also
5475 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5476 	 */
5477 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5478 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5479 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5480 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5481 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5482 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5483 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5484 
5485 	if (usb_disabled())
5486 		return -ENODEV;
5487 
5488 	xhci_debugfs_create_root();
5489 
5490 	return 0;
5491 }
5492 
5493 /*
5494  * If an init function is provided, an exit function must also be provided
5495  * to allow module unload.
5496  */
5497 static void __exit xhci_hcd_fini(void)
5498 {
5499 	xhci_debugfs_remove_root();
5500 }
5501 
5502 module_init(xhci_hcd_init);
5503 module_exit(xhci_hcd_fini);
5504