1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "Finished xhci_run for USB2 roothub"); 697 698 xhci_dbc_init(xhci); 699 700 xhci_debugfs_init(xhci); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(xhci_run); 705 706 /* 707 * Stop xHCI driver. 708 * 709 * This function is called by the USB core when the HC driver is removed. 710 * Its opposite is xhci_run(). 711 * 712 * Disable device contexts, disable IRQs, and quiesce the HC. 713 * Reset the HC, finish any completed transactions, and cleanup memory. 714 */ 715 static void xhci_stop(struct usb_hcd *hcd) 716 { 717 u32 temp; 718 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 719 720 mutex_lock(&xhci->mutex); 721 722 /* Only halt host and free memory after both hcds are removed */ 723 if (!usb_hcd_is_primary_hcd(hcd)) { 724 mutex_unlock(&xhci->mutex); 725 return; 726 } 727 728 xhci_dbc_exit(xhci); 729 730 spin_lock_irq(&xhci->lock); 731 xhci->xhc_state |= XHCI_STATE_HALTED; 732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 733 xhci_halt(xhci); 734 xhci_reset(xhci); 735 spin_unlock_irq(&xhci->lock); 736 737 xhci_cleanup_msix(xhci); 738 739 /* Deleting Compliance Mode Recovery Timer */ 740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 741 (!(xhci_all_ports_seen_u0(xhci)))) { 742 del_timer_sync(&xhci->comp_mode_recovery_timer); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 744 "%s: compliance mode recovery timer deleted", 745 __func__); 746 } 747 748 if (xhci->quirks & XHCI_AMD_PLL_FIX) 749 usb_amd_dev_put(); 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 752 "// Disabling event ring interrupts"); 753 temp = readl(&xhci->op_regs->status); 754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 755 temp = readl(&xhci->ir_set->irq_pending); 756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 759 xhci_mem_cleanup(xhci); 760 xhci_debugfs_exit(xhci); 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_stop completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 mutex_unlock(&xhci->mutex); 765 } 766 767 /* 768 * Shutdown HC (not bus-specific) 769 * 770 * This is called when the machine is rebooting or halting. We assume that the 771 * machine will be powered off, and the HC's internal state will be reset. 772 * Don't bother to free memory. 773 * 774 * This will only ever be called with the main usb_hcd (the USB3 roothub). 775 */ 776 void xhci_shutdown(struct usb_hcd *hcd) 777 { 778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 779 780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 782 783 spin_lock_irq(&xhci->lock); 784 xhci_halt(xhci); 785 /* Workaround for spurious wakeups at shutdown with HSW */ 786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 787 xhci_reset(xhci); 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_cleanup_msix(xhci); 791 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "xhci_shutdown completed - status = %x", 794 readl(&xhci->op_regs->status)); 795 } 796 EXPORT_SYMBOL_GPL(xhci_shutdown); 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 /* 890 * Disable port wake bits if do_wakeup is not set. 891 * 892 * Also clear a possible internal port wake state left hanging for ports that 893 * detected termination but never successfully enumerated (trained to 0U). 894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 895 * at enumeration clears this wake, force one here as well for unconnected ports 896 */ 897 898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 899 struct xhci_hub *rhub, 900 bool do_wakeup) 901 { 902 unsigned long flags; 903 u32 t1, t2, portsc; 904 int i; 905 906 spin_lock_irqsave(&xhci->lock, flags); 907 908 for (i = 0; i < rhub->num_ports; i++) { 909 portsc = readl(rhub->ports[i]->addr); 910 t1 = xhci_port_state_to_neutral(portsc); 911 t2 = t1; 912 913 /* clear wake bits if do_wake is not set */ 914 if (!do_wakeup) 915 t2 &= ~PORT_WAKE_BITS; 916 917 /* Don't touch csc bit if connected or connect change is set */ 918 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 919 t2 |= PORT_CSC; 920 921 if (t1 != t2) { 922 writel(t2, rhub->ports[i]->addr); 923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 924 rhub->hcd->self.busnum, i + 1, portsc, t2); 925 } 926 } 927 spin_unlock_irqrestore(&xhci->lock, flags); 928 } 929 930 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 931 { 932 struct xhci_port **ports; 933 int port_index; 934 u32 status; 935 u32 portsc; 936 937 status = readl(&xhci->op_regs->status); 938 if (status & STS_EINT) 939 return true; 940 /* 941 * Checking STS_EINT is not enough as there is a lag between a change 942 * bit being set and the Port Status Change Event that it generated 943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 944 */ 945 946 port_index = xhci->usb2_rhub.num_ports; 947 ports = xhci->usb2_rhub.ports; 948 while (port_index--) { 949 portsc = readl(ports[port_index]->addr); 950 if (portsc & PORT_CHANGE_MASK || 951 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 952 return true; 953 } 954 port_index = xhci->usb3_rhub.num_ports; 955 ports = xhci->usb3_rhub.ports; 956 while (port_index--) { 957 portsc = readl(ports[port_index]->addr); 958 if (portsc & PORT_CHANGE_MASK || 959 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Stop HC (not bus-specific) 967 * 968 * This is called when the machine transition into S3/S4 mode. 969 * 970 */ 971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 972 { 973 int rc = 0; 974 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 975 struct usb_hcd *hcd = xhci_to_hcd(xhci); 976 u32 command; 977 u32 res; 978 979 if (!hcd->state) 980 return 0; 981 982 if (hcd->state != HC_STATE_SUSPENDED || 983 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 984 return -EINVAL; 985 986 /* Clear root port wake on bits if wakeup not allowed. */ 987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 989 990 if (!HCD_HW_ACCESSIBLE(hcd)) 991 return 0; 992 993 xhci_dbc_suspend(xhci); 994 995 /* Don't poll the roothubs on bus suspend. */ 996 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 997 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 998 del_timer_sync(&hcd->rh_timer); 999 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1000 del_timer_sync(&xhci->shared_hcd->rh_timer); 1001 1002 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1003 usleep_range(1000, 1500); 1004 1005 spin_lock_irq(&xhci->lock); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1008 /* step 1: stop endpoint */ 1009 /* skipped assuming that port suspend has done */ 1010 1011 /* step 2: clear Run/Stop bit */ 1012 command = readl(&xhci->op_regs->command); 1013 command &= ~CMD_RUN; 1014 writel(command, &xhci->op_regs->command); 1015 1016 /* Some chips from Fresco Logic need an extraordinary delay */ 1017 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1018 1019 if (xhci_handshake(&xhci->op_regs->status, 1020 STS_HALT, STS_HALT, delay)) { 1021 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1022 spin_unlock_irq(&xhci->lock); 1023 return -ETIMEDOUT; 1024 } 1025 xhci_clear_command_ring(xhci); 1026 1027 /* step 3: save registers */ 1028 xhci_save_registers(xhci); 1029 1030 /* step 4: set CSS flag */ 1031 command = readl(&xhci->op_regs->command); 1032 command |= CMD_CSS; 1033 writel(command, &xhci->op_regs->command); 1034 xhci->broken_suspend = 0; 1035 if (xhci_handshake(&xhci->op_regs->status, 1036 STS_SAVE, 0, 20 * 1000)) { 1037 /* 1038 * AMD SNPS xHC 3.0 occasionally does not clear the 1039 * SSS bit of USBSTS and when driver tries to poll 1040 * to see if the xHC clears BIT(8) which never happens 1041 * and driver assumes that controller is not responding 1042 * and times out. To workaround this, its good to check 1043 * if SRE and HCE bits are not set (as per xhci 1044 * Section 5.4.2) and bypass the timeout. 1045 */ 1046 res = readl(&xhci->op_regs->status); 1047 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1048 (((res & STS_SRE) == 0) && 1049 ((res & STS_HCE) == 0))) { 1050 xhci->broken_suspend = 1; 1051 } else { 1052 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1053 spin_unlock_irq(&xhci->lock); 1054 return -ETIMEDOUT; 1055 } 1056 } 1057 spin_unlock_irq(&xhci->lock); 1058 1059 /* 1060 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1061 * is about to be suspended. 1062 */ 1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1064 (!(xhci_all_ports_seen_u0(xhci)))) { 1065 del_timer_sync(&xhci->comp_mode_recovery_timer); 1066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1067 "%s: compliance mode recovery timer deleted", 1068 __func__); 1069 } 1070 1071 /* step 5: remove core well power */ 1072 /* synchronize irq when using MSI-X */ 1073 xhci_msix_sync_irqs(xhci); 1074 1075 return rc; 1076 } 1077 EXPORT_SYMBOL_GPL(xhci_suspend); 1078 1079 /* 1080 * start xHC (not bus-specific) 1081 * 1082 * This is called when the machine transition from S3/S4 mode. 1083 * 1084 */ 1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1086 { 1087 u32 command, temp = 0; 1088 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1089 struct usb_hcd *secondary_hcd; 1090 int retval = 0; 1091 bool comp_timer_running = false; 1092 bool pending_portevent = false; 1093 1094 if (!hcd->state) 1095 return 0; 1096 1097 /* Wait a bit if either of the roothubs need to settle from the 1098 * transition into bus suspend. 1099 */ 1100 1101 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1102 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1103 msleep(100); 1104 1105 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1107 1108 spin_lock_irq(&xhci->lock); 1109 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1110 hibernated = true; 1111 1112 if (!hibernated) { 1113 /* 1114 * Some controllers might lose power during suspend, so wait 1115 * for controller not ready bit to clear, just as in xHC init. 1116 */ 1117 retval = xhci_handshake(&xhci->op_regs->status, 1118 STS_CNR, 0, 10 * 1000 * 1000); 1119 if (retval) { 1120 xhci_warn(xhci, "Controller not ready at resume %d\n", 1121 retval); 1122 spin_unlock_irq(&xhci->lock); 1123 return retval; 1124 } 1125 /* step 1: restore register */ 1126 xhci_restore_registers(xhci); 1127 /* step 2: initialize command ring buffer */ 1128 xhci_set_cmd_ring_deq(xhci); 1129 /* step 3: restore state and start state*/ 1130 /* step 3: set CRS flag */ 1131 command = readl(&xhci->op_regs->command); 1132 command |= CMD_CRS; 1133 writel(command, &xhci->op_regs->command); 1134 /* 1135 * Some controllers take up to 55+ ms to complete the controller 1136 * restore so setting the timeout to 100ms. Xhci specification 1137 * doesn't mention any timeout value. 1138 */ 1139 if (xhci_handshake(&xhci->op_regs->status, 1140 STS_RESTORE, 0, 100 * 1000)) { 1141 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1142 spin_unlock_irq(&xhci->lock); 1143 return -ETIMEDOUT; 1144 } 1145 temp = readl(&xhci->op_regs->status); 1146 } 1147 1148 /* If restore operation fails, re-initialize the HC during resume */ 1149 if ((temp & STS_SRE) || hibernated) { 1150 1151 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1152 !(xhci_all_ports_seen_u0(xhci))) { 1153 del_timer_sync(&xhci->comp_mode_recovery_timer); 1154 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1155 "Compliance Mode Recovery Timer deleted!"); 1156 } 1157 1158 /* Let the USB core know _both_ roothubs lost power. */ 1159 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1160 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1161 1162 xhci_dbg(xhci, "Stop HCD\n"); 1163 xhci_halt(xhci); 1164 xhci_zero_64b_regs(xhci); 1165 retval = xhci_reset(xhci); 1166 spin_unlock_irq(&xhci->lock); 1167 if (retval) 1168 return retval; 1169 xhci_cleanup_msix(xhci); 1170 1171 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1172 temp = readl(&xhci->op_regs->status); 1173 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1174 temp = readl(&xhci->ir_set->irq_pending); 1175 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1176 1177 xhci_dbg(xhci, "cleaning up memory\n"); 1178 xhci_mem_cleanup(xhci); 1179 xhci_debugfs_exit(xhci); 1180 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1181 readl(&xhci->op_regs->status)); 1182 1183 /* USB core calls the PCI reinit and start functions twice: 1184 * first with the primary HCD, and then with the secondary HCD. 1185 * If we don't do the same, the host will never be started. 1186 */ 1187 if (!usb_hcd_is_primary_hcd(hcd)) 1188 secondary_hcd = hcd; 1189 else 1190 secondary_hcd = xhci->shared_hcd; 1191 1192 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1193 retval = xhci_init(hcd->primary_hcd); 1194 if (retval) 1195 return retval; 1196 comp_timer_running = true; 1197 1198 xhci_dbg(xhci, "Start the primary HCD\n"); 1199 retval = xhci_run(hcd->primary_hcd); 1200 if (!retval) { 1201 xhci_dbg(xhci, "Start the secondary HCD\n"); 1202 retval = xhci_run(secondary_hcd); 1203 } 1204 hcd->state = HC_STATE_SUSPENDED; 1205 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1206 goto done; 1207 } 1208 1209 /* step 4: set Run/Stop bit */ 1210 command = readl(&xhci->op_regs->command); 1211 command |= CMD_RUN; 1212 writel(command, &xhci->op_regs->command); 1213 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1214 0, 250 * 1000); 1215 1216 /* step 5: walk topology and initialize portsc, 1217 * portpmsc and portli 1218 */ 1219 /* this is done in bus_resume */ 1220 1221 /* step 6: restart each of the previously 1222 * Running endpoints by ringing their doorbells 1223 */ 1224 1225 spin_unlock_irq(&xhci->lock); 1226 1227 xhci_dbc_resume(xhci); 1228 1229 done: 1230 if (retval == 0) { 1231 /* 1232 * Resume roothubs only if there are pending events. 1233 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1234 * the first wake signalling failed, give it that chance. 1235 */ 1236 pending_portevent = xhci_pending_portevent(xhci); 1237 if (!pending_portevent) { 1238 msleep(120); 1239 pending_portevent = xhci_pending_portevent(xhci); 1240 } 1241 1242 if (pending_portevent) { 1243 usb_hcd_resume_root_hub(xhci->shared_hcd); 1244 usb_hcd_resume_root_hub(hcd); 1245 } 1246 } 1247 /* 1248 * If system is subject to the Quirk, Compliance Mode Timer needs to 1249 * be re-initialized Always after a system resume. Ports are subject 1250 * to suffer the Compliance Mode issue again. It doesn't matter if 1251 * ports have entered previously to U0 before system's suspension. 1252 */ 1253 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1254 compliance_mode_recovery_timer_init(xhci); 1255 1256 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1257 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1258 1259 /* Re-enable port polling. */ 1260 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1261 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1262 usb_hcd_poll_rh_status(xhci->shared_hcd); 1263 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1264 usb_hcd_poll_rh_status(hcd); 1265 1266 return retval; 1267 } 1268 EXPORT_SYMBOL_GPL(xhci_resume); 1269 #endif /* CONFIG_PM */ 1270 1271 /*-------------------------------------------------------------------------*/ 1272 1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1274 { 1275 void *temp; 1276 int ret = 0; 1277 unsigned int buf_len; 1278 enum dma_data_direction dir; 1279 1280 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1281 buf_len = urb->transfer_buffer_length; 1282 1283 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1284 dev_to_node(hcd->self.sysdev)); 1285 1286 if (usb_urb_dir_out(urb)) 1287 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1288 temp, buf_len, 0); 1289 1290 urb->transfer_buffer = temp; 1291 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1292 urb->transfer_buffer, 1293 urb->transfer_buffer_length, 1294 dir); 1295 1296 if (dma_mapping_error(hcd->self.sysdev, 1297 urb->transfer_dma)) { 1298 ret = -EAGAIN; 1299 kfree(temp); 1300 } else { 1301 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1308 struct urb *urb) 1309 { 1310 bool ret = false; 1311 unsigned int i; 1312 unsigned int len = 0; 1313 unsigned int trb_size; 1314 unsigned int max_pkt; 1315 struct scatterlist *sg; 1316 struct scatterlist *tail_sg; 1317 1318 tail_sg = urb->sg; 1319 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1320 1321 if (!urb->num_sgs) 1322 return ret; 1323 1324 if (urb->dev->speed >= USB_SPEED_SUPER) 1325 trb_size = TRB_CACHE_SIZE_SS; 1326 else 1327 trb_size = TRB_CACHE_SIZE_HS; 1328 1329 if (urb->transfer_buffer_length != 0 && 1330 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1331 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1332 len = len + sg->length; 1333 if (i > trb_size - 2) { 1334 len = len - tail_sg->length; 1335 if (len < max_pkt) { 1336 ret = true; 1337 break; 1338 } 1339 1340 tail_sg = sg_next(tail_sg); 1341 } 1342 } 1343 } 1344 return ret; 1345 } 1346 1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1348 { 1349 unsigned int len; 1350 unsigned int buf_len; 1351 enum dma_data_direction dir; 1352 1353 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1354 1355 buf_len = urb->transfer_buffer_length; 1356 1357 if (IS_ENABLED(CONFIG_HAS_DMA) && 1358 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1359 dma_unmap_single(hcd->self.sysdev, 1360 urb->transfer_dma, 1361 urb->transfer_buffer_length, 1362 dir); 1363 1364 if (usb_urb_dir_in(urb)) 1365 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1366 urb->transfer_buffer, 1367 buf_len, 1368 0); 1369 1370 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1371 kfree(urb->transfer_buffer); 1372 urb->transfer_buffer = NULL; 1373 } 1374 1375 /* 1376 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1377 * we'll copy the actual data into the TRB address register. This is limited to 1378 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1379 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1380 */ 1381 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1382 gfp_t mem_flags) 1383 { 1384 struct xhci_hcd *xhci; 1385 1386 xhci = hcd_to_xhci(hcd); 1387 1388 if (xhci_urb_suitable_for_idt(urb)) 1389 return 0; 1390 1391 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1392 if (xhci_urb_temp_buffer_required(hcd, urb)) 1393 return xhci_map_temp_buffer(hcd, urb); 1394 } 1395 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1396 } 1397 1398 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1399 { 1400 struct xhci_hcd *xhci; 1401 bool unmap_temp_buf = false; 1402 1403 xhci = hcd_to_xhci(hcd); 1404 1405 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1406 unmap_temp_buf = true; 1407 1408 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1409 xhci_unmap_temp_buf(hcd, urb); 1410 else 1411 usb_hcd_unmap_urb_for_dma(hcd, urb); 1412 } 1413 1414 /** 1415 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1416 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1417 * value to right shift 1 for the bitmask. 1418 * 1419 * Index = (epnum * 2) + direction - 1, 1420 * where direction = 0 for OUT, 1 for IN. 1421 * For control endpoints, the IN index is used (OUT index is unused), so 1422 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1423 */ 1424 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1425 { 1426 unsigned int index; 1427 if (usb_endpoint_xfer_control(desc)) 1428 index = (unsigned int) (usb_endpoint_num(desc)*2); 1429 else 1430 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1431 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1432 return index; 1433 } 1434 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1435 1436 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1437 * address from the XHCI endpoint index. 1438 */ 1439 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1440 { 1441 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1442 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1443 return direction | number; 1444 } 1445 1446 /* Find the flag for this endpoint (for use in the control context). Use the 1447 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1448 * bit 1, etc. 1449 */ 1450 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1451 { 1452 return 1 << (xhci_get_endpoint_index(desc) + 1); 1453 } 1454 1455 /* Compute the last valid endpoint context index. Basically, this is the 1456 * endpoint index plus one. For slot contexts with more than valid endpoint, 1457 * we find the most significant bit set in the added contexts flags. 1458 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1459 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1460 */ 1461 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1462 { 1463 return fls(added_ctxs) - 1; 1464 } 1465 1466 /* Returns 1 if the arguments are OK; 1467 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1468 */ 1469 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1470 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1471 const char *func) { 1472 struct xhci_hcd *xhci; 1473 struct xhci_virt_device *virt_dev; 1474 1475 if (!hcd || (check_ep && !ep) || !udev) { 1476 pr_debug("xHCI %s called with invalid args\n", func); 1477 return -EINVAL; 1478 } 1479 if (!udev->parent) { 1480 pr_debug("xHCI %s called for root hub\n", func); 1481 return 0; 1482 } 1483 1484 xhci = hcd_to_xhci(hcd); 1485 if (check_virt_dev) { 1486 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1487 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1488 func); 1489 return -EINVAL; 1490 } 1491 1492 virt_dev = xhci->devs[udev->slot_id]; 1493 if (virt_dev->udev != udev) { 1494 xhci_dbg(xhci, "xHCI %s called with udev and " 1495 "virt_dev does not match\n", func); 1496 return -EINVAL; 1497 } 1498 } 1499 1500 if (xhci->xhc_state & XHCI_STATE_HALTED) 1501 return -ENODEV; 1502 1503 return 1; 1504 } 1505 1506 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1507 struct usb_device *udev, struct xhci_command *command, 1508 bool ctx_change, bool must_succeed); 1509 1510 /* 1511 * Full speed devices may have a max packet size greater than 8 bytes, but the 1512 * USB core doesn't know that until it reads the first 8 bytes of the 1513 * descriptor. If the usb_device's max packet size changes after that point, 1514 * we need to issue an evaluate context command and wait on it. 1515 */ 1516 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1517 unsigned int ep_index, struct urb *urb) 1518 { 1519 struct xhci_container_ctx *out_ctx; 1520 struct xhci_input_control_ctx *ctrl_ctx; 1521 struct xhci_ep_ctx *ep_ctx; 1522 struct xhci_command *command; 1523 int max_packet_size; 1524 int hw_max_packet_size; 1525 int ret = 0; 1526 1527 out_ctx = xhci->devs[slot_id]->out_ctx; 1528 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1529 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1530 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1531 if (hw_max_packet_size != max_packet_size) { 1532 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1533 "Max Packet Size for ep 0 changed."); 1534 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1535 "Max packet size in usb_device = %d", 1536 max_packet_size); 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1538 "Max packet size in xHCI HW = %d", 1539 hw_max_packet_size); 1540 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1541 "Issuing evaluate context command."); 1542 1543 /* Set up the input context flags for the command */ 1544 /* FIXME: This won't work if a non-default control endpoint 1545 * changes max packet sizes. 1546 */ 1547 1548 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1549 if (!command) 1550 return -ENOMEM; 1551 1552 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1553 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1554 if (!ctrl_ctx) { 1555 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1556 __func__); 1557 ret = -ENOMEM; 1558 goto command_cleanup; 1559 } 1560 /* Set up the modified control endpoint 0 */ 1561 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1562 xhci->devs[slot_id]->out_ctx, ep_index); 1563 1564 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1565 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1566 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1567 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1568 1569 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1570 ctrl_ctx->drop_flags = 0; 1571 1572 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1573 true, false); 1574 1575 /* Clean up the input context for later use by bandwidth 1576 * functions. 1577 */ 1578 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1579 command_cleanup: 1580 kfree(command->completion); 1581 kfree(command); 1582 } 1583 return ret; 1584 } 1585 1586 /* 1587 * non-error returns are a promise to giveback() the urb later 1588 * we drop ownership so next owner (or urb unlink) can get it 1589 */ 1590 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1591 { 1592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1593 unsigned long flags; 1594 int ret = 0; 1595 unsigned int slot_id, ep_index; 1596 unsigned int *ep_state; 1597 struct urb_priv *urb_priv; 1598 int num_tds; 1599 1600 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1601 true, true, __func__) <= 0) 1602 return -EINVAL; 1603 1604 slot_id = urb->dev->slot_id; 1605 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1606 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1607 1608 if (!HCD_HW_ACCESSIBLE(hcd)) 1609 return -ESHUTDOWN; 1610 1611 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1612 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1613 return -ENODEV; 1614 } 1615 1616 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1617 num_tds = urb->number_of_packets; 1618 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1619 urb->transfer_buffer_length > 0 && 1620 urb->transfer_flags & URB_ZERO_PACKET && 1621 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1622 num_tds = 2; 1623 else 1624 num_tds = 1; 1625 1626 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1627 if (!urb_priv) 1628 return -ENOMEM; 1629 1630 urb_priv->num_tds = num_tds; 1631 urb_priv->num_tds_done = 0; 1632 urb->hcpriv = urb_priv; 1633 1634 trace_xhci_urb_enqueue(urb); 1635 1636 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1637 /* Check to see if the max packet size for the default control 1638 * endpoint changed during FS device enumeration 1639 */ 1640 if (urb->dev->speed == USB_SPEED_FULL) { 1641 ret = xhci_check_maxpacket(xhci, slot_id, 1642 ep_index, urb); 1643 if (ret < 0) { 1644 xhci_urb_free_priv(urb_priv); 1645 urb->hcpriv = NULL; 1646 return ret; 1647 } 1648 } 1649 } 1650 1651 spin_lock_irqsave(&xhci->lock, flags); 1652 1653 if (xhci->xhc_state & XHCI_STATE_DYING) { 1654 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1655 urb->ep->desc.bEndpointAddress, urb); 1656 ret = -ESHUTDOWN; 1657 goto free_priv; 1658 } 1659 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1660 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1661 *ep_state); 1662 ret = -EINVAL; 1663 goto free_priv; 1664 } 1665 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1666 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1667 ret = -EINVAL; 1668 goto free_priv; 1669 } 1670 1671 switch (usb_endpoint_type(&urb->ep->desc)) { 1672 1673 case USB_ENDPOINT_XFER_CONTROL: 1674 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1675 slot_id, ep_index); 1676 break; 1677 case USB_ENDPOINT_XFER_BULK: 1678 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1679 slot_id, ep_index); 1680 break; 1681 case USB_ENDPOINT_XFER_INT: 1682 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1683 slot_id, ep_index); 1684 break; 1685 case USB_ENDPOINT_XFER_ISOC: 1686 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1687 slot_id, ep_index); 1688 } 1689 1690 if (ret) { 1691 free_priv: 1692 xhci_urb_free_priv(urb_priv); 1693 urb->hcpriv = NULL; 1694 } 1695 spin_unlock_irqrestore(&xhci->lock, flags); 1696 return ret; 1697 } 1698 1699 /* 1700 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1701 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1702 * should pick up where it left off in the TD, unless a Set Transfer Ring 1703 * Dequeue Pointer is issued. 1704 * 1705 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1706 * the ring. Since the ring is a contiguous structure, they can't be physically 1707 * removed. Instead, there are two options: 1708 * 1709 * 1) If the HC is in the middle of processing the URB to be canceled, we 1710 * simply move the ring's dequeue pointer past those TRBs using the Set 1711 * Transfer Ring Dequeue Pointer command. This will be the common case, 1712 * when drivers timeout on the last submitted URB and attempt to cancel. 1713 * 1714 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1715 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1716 * HC will need to invalidate the any TRBs it has cached after the stop 1717 * endpoint command, as noted in the xHCI 0.95 errata. 1718 * 1719 * 3) The TD may have completed by the time the Stop Endpoint Command 1720 * completes, so software needs to handle that case too. 1721 * 1722 * This function should protect against the TD enqueueing code ringing the 1723 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1724 * It also needs to account for multiple cancellations on happening at the same 1725 * time for the same endpoint. 1726 * 1727 * Note that this function can be called in any context, or so says 1728 * usb_hcd_unlink_urb() 1729 */ 1730 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1731 { 1732 unsigned long flags; 1733 int ret, i; 1734 u32 temp; 1735 struct xhci_hcd *xhci; 1736 struct urb_priv *urb_priv; 1737 struct xhci_td *td; 1738 unsigned int ep_index; 1739 struct xhci_ring *ep_ring; 1740 struct xhci_virt_ep *ep; 1741 struct xhci_command *command; 1742 struct xhci_virt_device *vdev; 1743 1744 xhci = hcd_to_xhci(hcd); 1745 spin_lock_irqsave(&xhci->lock, flags); 1746 1747 trace_xhci_urb_dequeue(urb); 1748 1749 /* Make sure the URB hasn't completed or been unlinked already */ 1750 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1751 if (ret) 1752 goto done; 1753 1754 /* give back URB now if we can't queue it for cancel */ 1755 vdev = xhci->devs[urb->dev->slot_id]; 1756 urb_priv = urb->hcpriv; 1757 if (!vdev || !urb_priv) 1758 goto err_giveback; 1759 1760 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1761 ep = &vdev->eps[ep_index]; 1762 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1763 if (!ep || !ep_ring) 1764 goto err_giveback; 1765 1766 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1767 temp = readl(&xhci->op_regs->status); 1768 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1769 xhci_hc_died(xhci); 1770 goto done; 1771 } 1772 1773 /* 1774 * check ring is not re-allocated since URB was enqueued. If it is, then 1775 * make sure none of the ring related pointers in this URB private data 1776 * are touched, such as td_list, otherwise we overwrite freed data 1777 */ 1778 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1779 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1780 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1781 td = &urb_priv->td[i]; 1782 if (!list_empty(&td->cancelled_td_list)) 1783 list_del_init(&td->cancelled_td_list); 1784 } 1785 goto err_giveback; 1786 } 1787 1788 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1789 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1790 "HC halted, freeing TD manually."); 1791 for (i = urb_priv->num_tds_done; 1792 i < urb_priv->num_tds; 1793 i++) { 1794 td = &urb_priv->td[i]; 1795 if (!list_empty(&td->td_list)) 1796 list_del_init(&td->td_list); 1797 if (!list_empty(&td->cancelled_td_list)) 1798 list_del_init(&td->cancelled_td_list); 1799 } 1800 goto err_giveback; 1801 } 1802 1803 i = urb_priv->num_tds_done; 1804 if (i < urb_priv->num_tds) 1805 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1806 "Cancel URB %p, dev %s, ep 0x%x, " 1807 "starting at offset 0x%llx", 1808 urb, urb->dev->devpath, 1809 urb->ep->desc.bEndpointAddress, 1810 (unsigned long long) xhci_trb_virt_to_dma( 1811 urb_priv->td[i].start_seg, 1812 urb_priv->td[i].first_trb)); 1813 1814 for (; i < urb_priv->num_tds; i++) { 1815 td = &urb_priv->td[i]; 1816 /* TD can already be on cancelled list if ep halted on it */ 1817 if (list_empty(&td->cancelled_td_list)) { 1818 td->cancel_status = TD_DIRTY; 1819 list_add_tail(&td->cancelled_td_list, 1820 &ep->cancelled_td_list); 1821 } 1822 } 1823 1824 /* Queue a stop endpoint command, but only if this is 1825 * the first cancellation to be handled. 1826 */ 1827 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1828 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1829 if (!command) { 1830 ret = -ENOMEM; 1831 goto done; 1832 } 1833 ep->ep_state |= EP_STOP_CMD_PENDING; 1834 ep->stop_cmd_timer.expires = jiffies + 1835 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1836 add_timer(&ep->stop_cmd_timer); 1837 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1838 ep_index, 0); 1839 xhci_ring_cmd_db(xhci); 1840 } 1841 done: 1842 spin_unlock_irqrestore(&xhci->lock, flags); 1843 return ret; 1844 1845 err_giveback: 1846 if (urb_priv) 1847 xhci_urb_free_priv(urb_priv); 1848 usb_hcd_unlink_urb_from_ep(hcd, urb); 1849 spin_unlock_irqrestore(&xhci->lock, flags); 1850 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1851 return ret; 1852 } 1853 1854 /* Drop an endpoint from a new bandwidth configuration for this device. 1855 * Only one call to this function is allowed per endpoint before 1856 * check_bandwidth() or reset_bandwidth() must be called. 1857 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1858 * add the endpoint to the schedule with possibly new parameters denoted by a 1859 * different endpoint descriptor in usb_host_endpoint. 1860 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1861 * not allowed. 1862 * 1863 * The USB core will not allow URBs to be queued to an endpoint that is being 1864 * disabled, so there's no need for mutual exclusion to protect 1865 * the xhci->devs[slot_id] structure. 1866 */ 1867 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1868 struct usb_host_endpoint *ep) 1869 { 1870 struct xhci_hcd *xhci; 1871 struct xhci_container_ctx *in_ctx, *out_ctx; 1872 struct xhci_input_control_ctx *ctrl_ctx; 1873 unsigned int ep_index; 1874 struct xhci_ep_ctx *ep_ctx; 1875 u32 drop_flag; 1876 u32 new_add_flags, new_drop_flags; 1877 int ret; 1878 1879 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1880 if (ret <= 0) 1881 return ret; 1882 xhci = hcd_to_xhci(hcd); 1883 if (xhci->xhc_state & XHCI_STATE_DYING) 1884 return -ENODEV; 1885 1886 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1887 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1888 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1889 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1890 __func__, drop_flag); 1891 return 0; 1892 } 1893 1894 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1895 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1896 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1897 if (!ctrl_ctx) { 1898 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1899 __func__); 1900 return 0; 1901 } 1902 1903 ep_index = xhci_get_endpoint_index(&ep->desc); 1904 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1905 /* If the HC already knows the endpoint is disabled, 1906 * or the HCD has noted it is disabled, ignore this request 1907 */ 1908 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1909 le32_to_cpu(ctrl_ctx->drop_flags) & 1910 xhci_get_endpoint_flag(&ep->desc)) { 1911 /* Do not warn when called after a usb_device_reset */ 1912 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1913 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1914 __func__, ep); 1915 return 0; 1916 } 1917 1918 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1919 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1920 1921 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1922 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1923 1924 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1925 1926 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1927 1928 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1929 (unsigned int) ep->desc.bEndpointAddress, 1930 udev->slot_id, 1931 (unsigned int) new_drop_flags, 1932 (unsigned int) new_add_flags); 1933 return 0; 1934 } 1935 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1936 1937 /* Add an endpoint to a new possible bandwidth configuration for this device. 1938 * Only one call to this function is allowed per endpoint before 1939 * check_bandwidth() or reset_bandwidth() must be called. 1940 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1941 * add the endpoint to the schedule with possibly new parameters denoted by a 1942 * different endpoint descriptor in usb_host_endpoint. 1943 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1944 * not allowed. 1945 * 1946 * The USB core will not allow URBs to be queued to an endpoint until the 1947 * configuration or alt setting is installed in the device, so there's no need 1948 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1949 */ 1950 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1951 struct usb_host_endpoint *ep) 1952 { 1953 struct xhci_hcd *xhci; 1954 struct xhci_container_ctx *in_ctx; 1955 unsigned int ep_index; 1956 struct xhci_input_control_ctx *ctrl_ctx; 1957 struct xhci_ep_ctx *ep_ctx; 1958 u32 added_ctxs; 1959 u32 new_add_flags, new_drop_flags; 1960 struct xhci_virt_device *virt_dev; 1961 int ret = 0; 1962 1963 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1964 if (ret <= 0) { 1965 /* So we won't queue a reset ep command for a root hub */ 1966 ep->hcpriv = NULL; 1967 return ret; 1968 } 1969 xhci = hcd_to_xhci(hcd); 1970 if (xhci->xhc_state & XHCI_STATE_DYING) 1971 return -ENODEV; 1972 1973 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1974 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1975 /* FIXME when we have to issue an evaluate endpoint command to 1976 * deal with ep0 max packet size changing once we get the 1977 * descriptors 1978 */ 1979 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1980 __func__, added_ctxs); 1981 return 0; 1982 } 1983 1984 virt_dev = xhci->devs[udev->slot_id]; 1985 in_ctx = virt_dev->in_ctx; 1986 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1987 if (!ctrl_ctx) { 1988 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1989 __func__); 1990 return 0; 1991 } 1992 1993 ep_index = xhci_get_endpoint_index(&ep->desc); 1994 /* If this endpoint is already in use, and the upper layers are trying 1995 * to add it again without dropping it, reject the addition. 1996 */ 1997 if (virt_dev->eps[ep_index].ring && 1998 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1999 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2000 "without dropping it.\n", 2001 (unsigned int) ep->desc.bEndpointAddress); 2002 return -EINVAL; 2003 } 2004 2005 /* If the HCD has already noted the endpoint is enabled, 2006 * ignore this request. 2007 */ 2008 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2009 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2010 __func__, ep); 2011 return 0; 2012 } 2013 2014 /* 2015 * Configuration and alternate setting changes must be done in 2016 * process context, not interrupt context (or so documenation 2017 * for usb_set_interface() and usb_set_configuration() claim). 2018 */ 2019 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2020 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2021 __func__, ep->desc.bEndpointAddress); 2022 return -ENOMEM; 2023 } 2024 2025 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2026 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2027 2028 /* If xhci_endpoint_disable() was called for this endpoint, but the 2029 * xHC hasn't been notified yet through the check_bandwidth() call, 2030 * this re-adds a new state for the endpoint from the new endpoint 2031 * descriptors. We must drop and re-add this endpoint, so we leave the 2032 * drop flags alone. 2033 */ 2034 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2035 2036 /* Store the usb_device pointer for later use */ 2037 ep->hcpriv = udev; 2038 2039 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2040 trace_xhci_add_endpoint(ep_ctx); 2041 2042 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2043 (unsigned int) ep->desc.bEndpointAddress, 2044 udev->slot_id, 2045 (unsigned int) new_drop_flags, 2046 (unsigned int) new_add_flags); 2047 return 0; 2048 } 2049 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2050 2051 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2052 { 2053 struct xhci_input_control_ctx *ctrl_ctx; 2054 struct xhci_ep_ctx *ep_ctx; 2055 struct xhci_slot_ctx *slot_ctx; 2056 int i; 2057 2058 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2059 if (!ctrl_ctx) { 2060 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2061 __func__); 2062 return; 2063 } 2064 2065 /* When a device's add flag and drop flag are zero, any subsequent 2066 * configure endpoint command will leave that endpoint's state 2067 * untouched. Make sure we don't leave any old state in the input 2068 * endpoint contexts. 2069 */ 2070 ctrl_ctx->drop_flags = 0; 2071 ctrl_ctx->add_flags = 0; 2072 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2073 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2074 /* Endpoint 0 is always valid */ 2075 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2076 for (i = 1; i < 31; i++) { 2077 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2078 ep_ctx->ep_info = 0; 2079 ep_ctx->ep_info2 = 0; 2080 ep_ctx->deq = 0; 2081 ep_ctx->tx_info = 0; 2082 } 2083 } 2084 2085 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2086 struct usb_device *udev, u32 *cmd_status) 2087 { 2088 int ret; 2089 2090 switch (*cmd_status) { 2091 case COMP_COMMAND_ABORTED: 2092 case COMP_COMMAND_RING_STOPPED: 2093 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2094 ret = -ETIME; 2095 break; 2096 case COMP_RESOURCE_ERROR: 2097 dev_warn(&udev->dev, 2098 "Not enough host controller resources for new device state.\n"); 2099 ret = -ENOMEM; 2100 /* FIXME: can we allocate more resources for the HC? */ 2101 break; 2102 case COMP_BANDWIDTH_ERROR: 2103 case COMP_SECONDARY_BANDWIDTH_ERROR: 2104 dev_warn(&udev->dev, 2105 "Not enough bandwidth for new device state.\n"); 2106 ret = -ENOSPC; 2107 /* FIXME: can we go back to the old state? */ 2108 break; 2109 case COMP_TRB_ERROR: 2110 /* the HCD set up something wrong */ 2111 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2112 "add flag = 1, " 2113 "and endpoint is not disabled.\n"); 2114 ret = -EINVAL; 2115 break; 2116 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2117 dev_warn(&udev->dev, 2118 "ERROR: Incompatible device for endpoint configure command.\n"); 2119 ret = -ENODEV; 2120 break; 2121 case COMP_SUCCESS: 2122 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2123 "Successful Endpoint Configure command"); 2124 ret = 0; 2125 break; 2126 default: 2127 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2128 *cmd_status); 2129 ret = -EINVAL; 2130 break; 2131 } 2132 return ret; 2133 } 2134 2135 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2136 struct usb_device *udev, u32 *cmd_status) 2137 { 2138 int ret; 2139 2140 switch (*cmd_status) { 2141 case COMP_COMMAND_ABORTED: 2142 case COMP_COMMAND_RING_STOPPED: 2143 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2144 ret = -ETIME; 2145 break; 2146 case COMP_PARAMETER_ERROR: 2147 dev_warn(&udev->dev, 2148 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2149 ret = -EINVAL; 2150 break; 2151 case COMP_SLOT_NOT_ENABLED_ERROR: 2152 dev_warn(&udev->dev, 2153 "WARN: slot not enabled for evaluate context command.\n"); 2154 ret = -EINVAL; 2155 break; 2156 case COMP_CONTEXT_STATE_ERROR: 2157 dev_warn(&udev->dev, 2158 "WARN: invalid context state for evaluate context command.\n"); 2159 ret = -EINVAL; 2160 break; 2161 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2162 dev_warn(&udev->dev, 2163 "ERROR: Incompatible device for evaluate context command.\n"); 2164 ret = -ENODEV; 2165 break; 2166 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2167 /* Max Exit Latency too large error */ 2168 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2169 ret = -EINVAL; 2170 break; 2171 case COMP_SUCCESS: 2172 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2173 "Successful evaluate context command"); 2174 ret = 0; 2175 break; 2176 default: 2177 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2178 *cmd_status); 2179 ret = -EINVAL; 2180 break; 2181 } 2182 return ret; 2183 } 2184 2185 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2186 struct xhci_input_control_ctx *ctrl_ctx) 2187 { 2188 u32 valid_add_flags; 2189 u32 valid_drop_flags; 2190 2191 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2192 * (bit 1). The default control endpoint is added during the Address 2193 * Device command and is never removed until the slot is disabled. 2194 */ 2195 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2196 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2197 2198 /* Use hweight32 to count the number of ones in the add flags, or 2199 * number of endpoints added. Don't count endpoints that are changed 2200 * (both added and dropped). 2201 */ 2202 return hweight32(valid_add_flags) - 2203 hweight32(valid_add_flags & valid_drop_flags); 2204 } 2205 2206 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2207 struct xhci_input_control_ctx *ctrl_ctx) 2208 { 2209 u32 valid_add_flags; 2210 u32 valid_drop_flags; 2211 2212 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2213 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2214 2215 return hweight32(valid_drop_flags) - 2216 hweight32(valid_add_flags & valid_drop_flags); 2217 } 2218 2219 /* 2220 * We need to reserve the new number of endpoints before the configure endpoint 2221 * command completes. We can't subtract the dropped endpoints from the number 2222 * of active endpoints until the command completes because we can oversubscribe 2223 * the host in this case: 2224 * 2225 * - the first configure endpoint command drops more endpoints than it adds 2226 * - a second configure endpoint command that adds more endpoints is queued 2227 * - the first configure endpoint command fails, so the config is unchanged 2228 * - the second command may succeed, even though there isn't enough resources 2229 * 2230 * Must be called with xhci->lock held. 2231 */ 2232 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2233 struct xhci_input_control_ctx *ctrl_ctx) 2234 { 2235 u32 added_eps; 2236 2237 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2238 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2239 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2240 "Not enough ep ctxs: " 2241 "%u active, need to add %u, limit is %u.", 2242 xhci->num_active_eps, added_eps, 2243 xhci->limit_active_eps); 2244 return -ENOMEM; 2245 } 2246 xhci->num_active_eps += added_eps; 2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2248 "Adding %u ep ctxs, %u now active.", added_eps, 2249 xhci->num_active_eps); 2250 return 0; 2251 } 2252 2253 /* 2254 * The configure endpoint was failed by the xHC for some other reason, so we 2255 * need to revert the resources that failed configuration would have used. 2256 * 2257 * Must be called with xhci->lock held. 2258 */ 2259 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2260 struct xhci_input_control_ctx *ctrl_ctx) 2261 { 2262 u32 num_failed_eps; 2263 2264 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2265 xhci->num_active_eps -= num_failed_eps; 2266 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2267 "Removing %u failed ep ctxs, %u now active.", 2268 num_failed_eps, 2269 xhci->num_active_eps); 2270 } 2271 2272 /* 2273 * Now that the command has completed, clean up the active endpoint count by 2274 * subtracting out the endpoints that were dropped (but not changed). 2275 * 2276 * Must be called with xhci->lock held. 2277 */ 2278 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2279 struct xhci_input_control_ctx *ctrl_ctx) 2280 { 2281 u32 num_dropped_eps; 2282 2283 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2284 xhci->num_active_eps -= num_dropped_eps; 2285 if (num_dropped_eps) 2286 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2287 "Removing %u dropped ep ctxs, %u now active.", 2288 num_dropped_eps, 2289 xhci->num_active_eps); 2290 } 2291 2292 static unsigned int xhci_get_block_size(struct usb_device *udev) 2293 { 2294 switch (udev->speed) { 2295 case USB_SPEED_LOW: 2296 case USB_SPEED_FULL: 2297 return FS_BLOCK; 2298 case USB_SPEED_HIGH: 2299 return HS_BLOCK; 2300 case USB_SPEED_SUPER: 2301 case USB_SPEED_SUPER_PLUS: 2302 return SS_BLOCK; 2303 case USB_SPEED_UNKNOWN: 2304 case USB_SPEED_WIRELESS: 2305 default: 2306 /* Should never happen */ 2307 return 1; 2308 } 2309 } 2310 2311 static unsigned int 2312 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2313 { 2314 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2315 return LS_OVERHEAD; 2316 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2317 return FS_OVERHEAD; 2318 return HS_OVERHEAD; 2319 } 2320 2321 /* If we are changing a LS/FS device under a HS hub, 2322 * make sure (if we are activating a new TT) that the HS bus has enough 2323 * bandwidth for this new TT. 2324 */ 2325 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2326 struct xhci_virt_device *virt_dev, 2327 int old_active_eps) 2328 { 2329 struct xhci_interval_bw_table *bw_table; 2330 struct xhci_tt_bw_info *tt_info; 2331 2332 /* Find the bandwidth table for the root port this TT is attached to. */ 2333 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2334 tt_info = virt_dev->tt_info; 2335 /* If this TT already had active endpoints, the bandwidth for this TT 2336 * has already been added. Removing all periodic endpoints (and thus 2337 * making the TT enactive) will only decrease the bandwidth used. 2338 */ 2339 if (old_active_eps) 2340 return 0; 2341 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2342 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2343 return -ENOMEM; 2344 return 0; 2345 } 2346 /* Not sure why we would have no new active endpoints... 2347 * 2348 * Maybe because of an Evaluate Context change for a hub update or a 2349 * control endpoint 0 max packet size change? 2350 * FIXME: skip the bandwidth calculation in that case. 2351 */ 2352 return 0; 2353 } 2354 2355 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2356 struct xhci_virt_device *virt_dev) 2357 { 2358 unsigned int bw_reserved; 2359 2360 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2361 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2362 return -ENOMEM; 2363 2364 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2365 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2366 return -ENOMEM; 2367 2368 return 0; 2369 } 2370 2371 /* 2372 * This algorithm is a very conservative estimate of the worst-case scheduling 2373 * scenario for any one interval. The hardware dynamically schedules the 2374 * packets, so we can't tell which microframe could be the limiting factor in 2375 * the bandwidth scheduling. This only takes into account periodic endpoints. 2376 * 2377 * Obviously, we can't solve an NP complete problem to find the minimum worst 2378 * case scenario. Instead, we come up with an estimate that is no less than 2379 * the worst case bandwidth used for any one microframe, but may be an 2380 * over-estimate. 2381 * 2382 * We walk the requirements for each endpoint by interval, starting with the 2383 * smallest interval, and place packets in the schedule where there is only one 2384 * possible way to schedule packets for that interval. In order to simplify 2385 * this algorithm, we record the largest max packet size for each interval, and 2386 * assume all packets will be that size. 2387 * 2388 * For interval 0, we obviously must schedule all packets for each interval. 2389 * The bandwidth for interval 0 is just the amount of data to be transmitted 2390 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2391 * the number of packets). 2392 * 2393 * For interval 1, we have two possible microframes to schedule those packets 2394 * in. For this algorithm, if we can schedule the same number of packets for 2395 * each possible scheduling opportunity (each microframe), we will do so. The 2396 * remaining number of packets will be saved to be transmitted in the gaps in 2397 * the next interval's scheduling sequence. 2398 * 2399 * As we move those remaining packets to be scheduled with interval 2 packets, 2400 * we have to double the number of remaining packets to transmit. This is 2401 * because the intervals are actually powers of 2, and we would be transmitting 2402 * the previous interval's packets twice in this interval. We also have to be 2403 * sure that when we look at the largest max packet size for this interval, we 2404 * also look at the largest max packet size for the remaining packets and take 2405 * the greater of the two. 2406 * 2407 * The algorithm continues to evenly distribute packets in each scheduling 2408 * opportunity, and push the remaining packets out, until we get to the last 2409 * interval. Then those packets and their associated overhead are just added 2410 * to the bandwidth used. 2411 */ 2412 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2413 struct xhci_virt_device *virt_dev, 2414 int old_active_eps) 2415 { 2416 unsigned int bw_reserved; 2417 unsigned int max_bandwidth; 2418 unsigned int bw_used; 2419 unsigned int block_size; 2420 struct xhci_interval_bw_table *bw_table; 2421 unsigned int packet_size = 0; 2422 unsigned int overhead = 0; 2423 unsigned int packets_transmitted = 0; 2424 unsigned int packets_remaining = 0; 2425 unsigned int i; 2426 2427 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2428 return xhci_check_ss_bw(xhci, virt_dev); 2429 2430 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2431 max_bandwidth = HS_BW_LIMIT; 2432 /* Convert percent of bus BW reserved to blocks reserved */ 2433 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2434 } else { 2435 max_bandwidth = FS_BW_LIMIT; 2436 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2437 } 2438 2439 bw_table = virt_dev->bw_table; 2440 /* We need to translate the max packet size and max ESIT payloads into 2441 * the units the hardware uses. 2442 */ 2443 block_size = xhci_get_block_size(virt_dev->udev); 2444 2445 /* If we are manipulating a LS/FS device under a HS hub, double check 2446 * that the HS bus has enough bandwidth if we are activing a new TT. 2447 */ 2448 if (virt_dev->tt_info) { 2449 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2450 "Recalculating BW for rootport %u", 2451 virt_dev->real_port); 2452 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2453 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2454 "newly activated TT.\n"); 2455 return -ENOMEM; 2456 } 2457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2458 "Recalculating BW for TT slot %u port %u", 2459 virt_dev->tt_info->slot_id, 2460 virt_dev->tt_info->ttport); 2461 } else { 2462 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2463 "Recalculating BW for rootport %u", 2464 virt_dev->real_port); 2465 } 2466 2467 /* Add in how much bandwidth will be used for interval zero, or the 2468 * rounded max ESIT payload + number of packets * largest overhead. 2469 */ 2470 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2471 bw_table->interval_bw[0].num_packets * 2472 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2473 2474 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2475 unsigned int bw_added; 2476 unsigned int largest_mps; 2477 unsigned int interval_overhead; 2478 2479 /* 2480 * How many packets could we transmit in this interval? 2481 * If packets didn't fit in the previous interval, we will need 2482 * to transmit that many packets twice within this interval. 2483 */ 2484 packets_remaining = 2 * packets_remaining + 2485 bw_table->interval_bw[i].num_packets; 2486 2487 /* Find the largest max packet size of this or the previous 2488 * interval. 2489 */ 2490 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2491 largest_mps = 0; 2492 else { 2493 struct xhci_virt_ep *virt_ep; 2494 struct list_head *ep_entry; 2495 2496 ep_entry = bw_table->interval_bw[i].endpoints.next; 2497 virt_ep = list_entry(ep_entry, 2498 struct xhci_virt_ep, bw_endpoint_list); 2499 /* Convert to blocks, rounding up */ 2500 largest_mps = DIV_ROUND_UP( 2501 virt_ep->bw_info.max_packet_size, 2502 block_size); 2503 } 2504 if (largest_mps > packet_size) 2505 packet_size = largest_mps; 2506 2507 /* Use the larger overhead of this or the previous interval. */ 2508 interval_overhead = xhci_get_largest_overhead( 2509 &bw_table->interval_bw[i]); 2510 if (interval_overhead > overhead) 2511 overhead = interval_overhead; 2512 2513 /* How many packets can we evenly distribute across 2514 * (1 << (i + 1)) possible scheduling opportunities? 2515 */ 2516 packets_transmitted = packets_remaining >> (i + 1); 2517 2518 /* Add in the bandwidth used for those scheduled packets */ 2519 bw_added = packets_transmitted * (overhead + packet_size); 2520 2521 /* How many packets do we have remaining to transmit? */ 2522 packets_remaining = packets_remaining % (1 << (i + 1)); 2523 2524 /* What largest max packet size should those packets have? */ 2525 /* If we've transmitted all packets, don't carry over the 2526 * largest packet size. 2527 */ 2528 if (packets_remaining == 0) { 2529 packet_size = 0; 2530 overhead = 0; 2531 } else if (packets_transmitted > 0) { 2532 /* Otherwise if we do have remaining packets, and we've 2533 * scheduled some packets in this interval, take the 2534 * largest max packet size from endpoints with this 2535 * interval. 2536 */ 2537 packet_size = largest_mps; 2538 overhead = interval_overhead; 2539 } 2540 /* Otherwise carry over packet_size and overhead from the last 2541 * time we had a remainder. 2542 */ 2543 bw_used += bw_added; 2544 if (bw_used > max_bandwidth) { 2545 xhci_warn(xhci, "Not enough bandwidth. " 2546 "Proposed: %u, Max: %u\n", 2547 bw_used, max_bandwidth); 2548 return -ENOMEM; 2549 } 2550 } 2551 /* 2552 * Ok, we know we have some packets left over after even-handedly 2553 * scheduling interval 15. We don't know which microframes they will 2554 * fit into, so we over-schedule and say they will be scheduled every 2555 * microframe. 2556 */ 2557 if (packets_remaining > 0) 2558 bw_used += overhead + packet_size; 2559 2560 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2561 unsigned int port_index = virt_dev->real_port - 1; 2562 2563 /* OK, we're manipulating a HS device attached to a 2564 * root port bandwidth domain. Include the number of active TTs 2565 * in the bandwidth used. 2566 */ 2567 bw_used += TT_HS_OVERHEAD * 2568 xhci->rh_bw[port_index].num_active_tts; 2569 } 2570 2571 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2572 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2573 "Available: %u " "percent", 2574 bw_used, max_bandwidth, bw_reserved, 2575 (max_bandwidth - bw_used - bw_reserved) * 100 / 2576 max_bandwidth); 2577 2578 bw_used += bw_reserved; 2579 if (bw_used > max_bandwidth) { 2580 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2581 bw_used, max_bandwidth); 2582 return -ENOMEM; 2583 } 2584 2585 bw_table->bw_used = bw_used; 2586 return 0; 2587 } 2588 2589 static bool xhci_is_async_ep(unsigned int ep_type) 2590 { 2591 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2592 ep_type != ISOC_IN_EP && 2593 ep_type != INT_IN_EP); 2594 } 2595 2596 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2597 { 2598 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2599 } 2600 2601 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2602 { 2603 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2604 2605 if (ep_bw->ep_interval == 0) 2606 return SS_OVERHEAD_BURST + 2607 (ep_bw->mult * ep_bw->num_packets * 2608 (SS_OVERHEAD + mps)); 2609 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2610 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2611 1 << ep_bw->ep_interval); 2612 2613 } 2614 2615 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2616 struct xhci_bw_info *ep_bw, 2617 struct xhci_interval_bw_table *bw_table, 2618 struct usb_device *udev, 2619 struct xhci_virt_ep *virt_ep, 2620 struct xhci_tt_bw_info *tt_info) 2621 { 2622 struct xhci_interval_bw *interval_bw; 2623 int normalized_interval; 2624 2625 if (xhci_is_async_ep(ep_bw->type)) 2626 return; 2627 2628 if (udev->speed >= USB_SPEED_SUPER) { 2629 if (xhci_is_sync_in_ep(ep_bw->type)) 2630 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2631 xhci_get_ss_bw_consumed(ep_bw); 2632 else 2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2634 xhci_get_ss_bw_consumed(ep_bw); 2635 return; 2636 } 2637 2638 /* SuperSpeed endpoints never get added to intervals in the table, so 2639 * this check is only valid for HS/FS/LS devices. 2640 */ 2641 if (list_empty(&virt_ep->bw_endpoint_list)) 2642 return; 2643 /* For LS/FS devices, we need to translate the interval expressed in 2644 * microframes to frames. 2645 */ 2646 if (udev->speed == USB_SPEED_HIGH) 2647 normalized_interval = ep_bw->ep_interval; 2648 else 2649 normalized_interval = ep_bw->ep_interval - 3; 2650 2651 if (normalized_interval == 0) 2652 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2653 interval_bw = &bw_table->interval_bw[normalized_interval]; 2654 interval_bw->num_packets -= ep_bw->num_packets; 2655 switch (udev->speed) { 2656 case USB_SPEED_LOW: 2657 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2658 break; 2659 case USB_SPEED_FULL: 2660 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2661 break; 2662 case USB_SPEED_HIGH: 2663 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2664 break; 2665 case USB_SPEED_SUPER: 2666 case USB_SPEED_SUPER_PLUS: 2667 case USB_SPEED_UNKNOWN: 2668 case USB_SPEED_WIRELESS: 2669 /* Should never happen because only LS/FS/HS endpoints will get 2670 * added to the endpoint list. 2671 */ 2672 return; 2673 } 2674 if (tt_info) 2675 tt_info->active_eps -= 1; 2676 list_del_init(&virt_ep->bw_endpoint_list); 2677 } 2678 2679 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2680 struct xhci_bw_info *ep_bw, 2681 struct xhci_interval_bw_table *bw_table, 2682 struct usb_device *udev, 2683 struct xhci_virt_ep *virt_ep, 2684 struct xhci_tt_bw_info *tt_info) 2685 { 2686 struct xhci_interval_bw *interval_bw; 2687 struct xhci_virt_ep *smaller_ep; 2688 int normalized_interval; 2689 2690 if (xhci_is_async_ep(ep_bw->type)) 2691 return; 2692 2693 if (udev->speed == USB_SPEED_SUPER) { 2694 if (xhci_is_sync_in_ep(ep_bw->type)) 2695 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2696 xhci_get_ss_bw_consumed(ep_bw); 2697 else 2698 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2699 xhci_get_ss_bw_consumed(ep_bw); 2700 return; 2701 } 2702 2703 /* For LS/FS devices, we need to translate the interval expressed in 2704 * microframes to frames. 2705 */ 2706 if (udev->speed == USB_SPEED_HIGH) 2707 normalized_interval = ep_bw->ep_interval; 2708 else 2709 normalized_interval = ep_bw->ep_interval - 3; 2710 2711 if (normalized_interval == 0) 2712 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2713 interval_bw = &bw_table->interval_bw[normalized_interval]; 2714 interval_bw->num_packets += ep_bw->num_packets; 2715 switch (udev->speed) { 2716 case USB_SPEED_LOW: 2717 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2718 break; 2719 case USB_SPEED_FULL: 2720 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2721 break; 2722 case USB_SPEED_HIGH: 2723 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2724 break; 2725 case USB_SPEED_SUPER: 2726 case USB_SPEED_SUPER_PLUS: 2727 case USB_SPEED_UNKNOWN: 2728 case USB_SPEED_WIRELESS: 2729 /* Should never happen because only LS/FS/HS endpoints will get 2730 * added to the endpoint list. 2731 */ 2732 return; 2733 } 2734 2735 if (tt_info) 2736 tt_info->active_eps += 1; 2737 /* Insert the endpoint into the list, largest max packet size first. */ 2738 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2739 bw_endpoint_list) { 2740 if (ep_bw->max_packet_size >= 2741 smaller_ep->bw_info.max_packet_size) { 2742 /* Add the new ep before the smaller endpoint */ 2743 list_add_tail(&virt_ep->bw_endpoint_list, 2744 &smaller_ep->bw_endpoint_list); 2745 return; 2746 } 2747 } 2748 /* Add the new endpoint at the end of the list. */ 2749 list_add_tail(&virt_ep->bw_endpoint_list, 2750 &interval_bw->endpoints); 2751 } 2752 2753 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2754 struct xhci_virt_device *virt_dev, 2755 int old_active_eps) 2756 { 2757 struct xhci_root_port_bw_info *rh_bw_info; 2758 if (!virt_dev->tt_info) 2759 return; 2760 2761 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2762 if (old_active_eps == 0 && 2763 virt_dev->tt_info->active_eps != 0) { 2764 rh_bw_info->num_active_tts += 1; 2765 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2766 } else if (old_active_eps != 0 && 2767 virt_dev->tt_info->active_eps == 0) { 2768 rh_bw_info->num_active_tts -= 1; 2769 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2770 } 2771 } 2772 2773 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2774 struct xhci_virt_device *virt_dev, 2775 struct xhci_container_ctx *in_ctx) 2776 { 2777 struct xhci_bw_info ep_bw_info[31]; 2778 int i; 2779 struct xhci_input_control_ctx *ctrl_ctx; 2780 int old_active_eps = 0; 2781 2782 if (virt_dev->tt_info) 2783 old_active_eps = virt_dev->tt_info->active_eps; 2784 2785 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2786 if (!ctrl_ctx) { 2787 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2788 __func__); 2789 return -ENOMEM; 2790 } 2791 2792 for (i = 0; i < 31; i++) { 2793 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2794 continue; 2795 2796 /* Make a copy of the BW info in case we need to revert this */ 2797 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2798 sizeof(ep_bw_info[i])); 2799 /* Drop the endpoint from the interval table if the endpoint is 2800 * being dropped or changed. 2801 */ 2802 if (EP_IS_DROPPED(ctrl_ctx, i)) 2803 xhci_drop_ep_from_interval_table(xhci, 2804 &virt_dev->eps[i].bw_info, 2805 virt_dev->bw_table, 2806 virt_dev->udev, 2807 &virt_dev->eps[i], 2808 virt_dev->tt_info); 2809 } 2810 /* Overwrite the information stored in the endpoints' bw_info */ 2811 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2812 for (i = 0; i < 31; i++) { 2813 /* Add any changed or added endpoints to the interval table */ 2814 if (EP_IS_ADDED(ctrl_ctx, i)) 2815 xhci_add_ep_to_interval_table(xhci, 2816 &virt_dev->eps[i].bw_info, 2817 virt_dev->bw_table, 2818 virt_dev->udev, 2819 &virt_dev->eps[i], 2820 virt_dev->tt_info); 2821 } 2822 2823 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2824 /* Ok, this fits in the bandwidth we have. 2825 * Update the number of active TTs. 2826 */ 2827 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2828 return 0; 2829 } 2830 2831 /* We don't have enough bandwidth for this, revert the stored info. */ 2832 for (i = 0; i < 31; i++) { 2833 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2834 continue; 2835 2836 /* Drop the new copies of any added or changed endpoints from 2837 * the interval table. 2838 */ 2839 if (EP_IS_ADDED(ctrl_ctx, i)) { 2840 xhci_drop_ep_from_interval_table(xhci, 2841 &virt_dev->eps[i].bw_info, 2842 virt_dev->bw_table, 2843 virt_dev->udev, 2844 &virt_dev->eps[i], 2845 virt_dev->tt_info); 2846 } 2847 /* Revert the endpoint back to its old information */ 2848 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2849 sizeof(ep_bw_info[i])); 2850 /* Add any changed or dropped endpoints back into the table */ 2851 if (EP_IS_DROPPED(ctrl_ctx, i)) 2852 xhci_add_ep_to_interval_table(xhci, 2853 &virt_dev->eps[i].bw_info, 2854 virt_dev->bw_table, 2855 virt_dev->udev, 2856 &virt_dev->eps[i], 2857 virt_dev->tt_info); 2858 } 2859 return -ENOMEM; 2860 } 2861 2862 2863 /* Issue a configure endpoint command or evaluate context command 2864 * and wait for it to finish. 2865 */ 2866 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2867 struct usb_device *udev, 2868 struct xhci_command *command, 2869 bool ctx_change, bool must_succeed) 2870 { 2871 int ret; 2872 unsigned long flags; 2873 struct xhci_input_control_ctx *ctrl_ctx; 2874 struct xhci_virt_device *virt_dev; 2875 struct xhci_slot_ctx *slot_ctx; 2876 2877 if (!command) 2878 return -EINVAL; 2879 2880 spin_lock_irqsave(&xhci->lock, flags); 2881 2882 if (xhci->xhc_state & XHCI_STATE_DYING) { 2883 spin_unlock_irqrestore(&xhci->lock, flags); 2884 return -ESHUTDOWN; 2885 } 2886 2887 virt_dev = xhci->devs[udev->slot_id]; 2888 2889 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2890 if (!ctrl_ctx) { 2891 spin_unlock_irqrestore(&xhci->lock, flags); 2892 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2893 __func__); 2894 return -ENOMEM; 2895 } 2896 2897 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2898 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2899 spin_unlock_irqrestore(&xhci->lock, flags); 2900 xhci_warn(xhci, "Not enough host resources, " 2901 "active endpoint contexts = %u\n", 2902 xhci->num_active_eps); 2903 return -ENOMEM; 2904 } 2905 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2906 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2907 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2908 xhci_free_host_resources(xhci, ctrl_ctx); 2909 spin_unlock_irqrestore(&xhci->lock, flags); 2910 xhci_warn(xhci, "Not enough bandwidth\n"); 2911 return -ENOMEM; 2912 } 2913 2914 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2915 2916 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2917 trace_xhci_configure_endpoint(slot_ctx); 2918 2919 if (!ctx_change) 2920 ret = xhci_queue_configure_endpoint(xhci, command, 2921 command->in_ctx->dma, 2922 udev->slot_id, must_succeed); 2923 else 2924 ret = xhci_queue_evaluate_context(xhci, command, 2925 command->in_ctx->dma, 2926 udev->slot_id, must_succeed); 2927 if (ret < 0) { 2928 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2929 xhci_free_host_resources(xhci, ctrl_ctx); 2930 spin_unlock_irqrestore(&xhci->lock, flags); 2931 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2932 "FIXME allocate a new ring segment"); 2933 return -ENOMEM; 2934 } 2935 xhci_ring_cmd_db(xhci); 2936 spin_unlock_irqrestore(&xhci->lock, flags); 2937 2938 /* Wait for the configure endpoint command to complete */ 2939 wait_for_completion(command->completion); 2940 2941 if (!ctx_change) 2942 ret = xhci_configure_endpoint_result(xhci, udev, 2943 &command->status); 2944 else 2945 ret = xhci_evaluate_context_result(xhci, udev, 2946 &command->status); 2947 2948 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2949 spin_lock_irqsave(&xhci->lock, flags); 2950 /* If the command failed, remove the reserved resources. 2951 * Otherwise, clean up the estimate to include dropped eps. 2952 */ 2953 if (ret) 2954 xhci_free_host_resources(xhci, ctrl_ctx); 2955 else 2956 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2957 spin_unlock_irqrestore(&xhci->lock, flags); 2958 } 2959 return ret; 2960 } 2961 2962 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2963 struct xhci_virt_device *vdev, int i) 2964 { 2965 struct xhci_virt_ep *ep = &vdev->eps[i]; 2966 2967 if (ep->ep_state & EP_HAS_STREAMS) { 2968 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2969 xhci_get_endpoint_address(i)); 2970 xhci_free_stream_info(xhci, ep->stream_info); 2971 ep->stream_info = NULL; 2972 ep->ep_state &= ~EP_HAS_STREAMS; 2973 } 2974 } 2975 2976 /* Called after one or more calls to xhci_add_endpoint() or 2977 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2978 * to call xhci_reset_bandwidth(). 2979 * 2980 * Since we are in the middle of changing either configuration or 2981 * installing a new alt setting, the USB core won't allow URBs to be 2982 * enqueued for any endpoint on the old config or interface. Nothing 2983 * else should be touching the xhci->devs[slot_id] structure, so we 2984 * don't need to take the xhci->lock for manipulating that. 2985 */ 2986 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2987 { 2988 int i; 2989 int ret = 0; 2990 struct xhci_hcd *xhci; 2991 struct xhci_virt_device *virt_dev; 2992 struct xhci_input_control_ctx *ctrl_ctx; 2993 struct xhci_slot_ctx *slot_ctx; 2994 struct xhci_command *command; 2995 2996 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2997 if (ret <= 0) 2998 return ret; 2999 xhci = hcd_to_xhci(hcd); 3000 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3001 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3002 return -ENODEV; 3003 3004 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3005 virt_dev = xhci->devs[udev->slot_id]; 3006 3007 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3008 if (!command) 3009 return -ENOMEM; 3010 3011 command->in_ctx = virt_dev->in_ctx; 3012 3013 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3014 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3015 if (!ctrl_ctx) { 3016 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3017 __func__); 3018 ret = -ENOMEM; 3019 goto command_cleanup; 3020 } 3021 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3022 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3023 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3024 3025 /* Don't issue the command if there's no endpoints to update. */ 3026 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3027 ctrl_ctx->drop_flags == 0) { 3028 ret = 0; 3029 goto command_cleanup; 3030 } 3031 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3032 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3033 for (i = 31; i >= 1; i--) { 3034 __le32 le32 = cpu_to_le32(BIT(i)); 3035 3036 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3037 || (ctrl_ctx->add_flags & le32) || i == 1) { 3038 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3039 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3040 break; 3041 } 3042 } 3043 3044 ret = xhci_configure_endpoint(xhci, udev, command, 3045 false, false); 3046 if (ret) 3047 /* Callee should call reset_bandwidth() */ 3048 goto command_cleanup; 3049 3050 /* Free any rings that were dropped, but not changed. */ 3051 for (i = 1; i < 31; i++) { 3052 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3053 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3054 xhci_free_endpoint_ring(xhci, virt_dev, i); 3055 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3056 } 3057 } 3058 xhci_zero_in_ctx(xhci, virt_dev); 3059 /* 3060 * Install any rings for completely new endpoints or changed endpoints, 3061 * and free any old rings from changed endpoints. 3062 */ 3063 for (i = 1; i < 31; i++) { 3064 if (!virt_dev->eps[i].new_ring) 3065 continue; 3066 /* Only free the old ring if it exists. 3067 * It may not if this is the first add of an endpoint. 3068 */ 3069 if (virt_dev->eps[i].ring) { 3070 xhci_free_endpoint_ring(xhci, virt_dev, i); 3071 } 3072 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3073 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3074 virt_dev->eps[i].new_ring = NULL; 3075 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3076 } 3077 command_cleanup: 3078 kfree(command->completion); 3079 kfree(command); 3080 3081 return ret; 3082 } 3083 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3084 3085 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3086 { 3087 struct xhci_hcd *xhci; 3088 struct xhci_virt_device *virt_dev; 3089 int i, ret; 3090 3091 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3092 if (ret <= 0) 3093 return; 3094 xhci = hcd_to_xhci(hcd); 3095 3096 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3097 virt_dev = xhci->devs[udev->slot_id]; 3098 /* Free any rings allocated for added endpoints */ 3099 for (i = 0; i < 31; i++) { 3100 if (virt_dev->eps[i].new_ring) { 3101 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3102 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3103 virt_dev->eps[i].new_ring = NULL; 3104 } 3105 } 3106 xhci_zero_in_ctx(xhci, virt_dev); 3107 } 3108 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3109 3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3111 struct xhci_container_ctx *in_ctx, 3112 struct xhci_container_ctx *out_ctx, 3113 struct xhci_input_control_ctx *ctrl_ctx, 3114 u32 add_flags, u32 drop_flags) 3115 { 3116 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3117 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3118 xhci_slot_copy(xhci, in_ctx, out_ctx); 3119 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3120 } 3121 3122 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3123 struct usb_host_endpoint *host_ep) 3124 { 3125 struct xhci_hcd *xhci; 3126 struct xhci_virt_device *vdev; 3127 struct xhci_virt_ep *ep; 3128 struct usb_device *udev; 3129 unsigned long flags; 3130 unsigned int ep_index; 3131 3132 xhci = hcd_to_xhci(hcd); 3133 rescan: 3134 spin_lock_irqsave(&xhci->lock, flags); 3135 3136 udev = (struct usb_device *)host_ep->hcpriv; 3137 if (!udev || !udev->slot_id) 3138 goto done; 3139 3140 vdev = xhci->devs[udev->slot_id]; 3141 if (!vdev) 3142 goto done; 3143 3144 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3145 ep = &vdev->eps[ep_index]; 3146 if (!ep) 3147 goto done; 3148 3149 /* wait for hub_tt_work to finish clearing hub TT */ 3150 if (ep->ep_state & EP_CLEARING_TT) { 3151 spin_unlock_irqrestore(&xhci->lock, flags); 3152 schedule_timeout_uninterruptible(1); 3153 goto rescan; 3154 } 3155 3156 if (ep->ep_state) 3157 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3158 ep->ep_state); 3159 done: 3160 host_ep->hcpriv = NULL; 3161 spin_unlock_irqrestore(&xhci->lock, flags); 3162 } 3163 3164 /* 3165 * Called after usb core issues a clear halt control message. 3166 * The host side of the halt should already be cleared by a reset endpoint 3167 * command issued when the STALL event was received. 3168 * 3169 * The reset endpoint command may only be issued to endpoints in the halted 3170 * state. For software that wishes to reset the data toggle or sequence number 3171 * of an endpoint that isn't in the halted state this function will issue a 3172 * configure endpoint command with the Drop and Add bits set for the target 3173 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3174 */ 3175 3176 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3177 struct usb_host_endpoint *host_ep) 3178 { 3179 struct xhci_hcd *xhci; 3180 struct usb_device *udev; 3181 struct xhci_virt_device *vdev; 3182 struct xhci_virt_ep *ep; 3183 struct xhci_input_control_ctx *ctrl_ctx; 3184 struct xhci_command *stop_cmd, *cfg_cmd; 3185 unsigned int ep_index; 3186 unsigned long flags; 3187 u32 ep_flag; 3188 int err; 3189 3190 xhci = hcd_to_xhci(hcd); 3191 if (!host_ep->hcpriv) 3192 return; 3193 udev = (struct usb_device *) host_ep->hcpriv; 3194 vdev = xhci->devs[udev->slot_id]; 3195 3196 /* 3197 * vdev may be lost due to xHC restore error and re-initialization 3198 * during S3/S4 resume. A new vdev will be allocated later by 3199 * xhci_discover_or_reset_device() 3200 */ 3201 if (!udev->slot_id || !vdev) 3202 return; 3203 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3204 ep = &vdev->eps[ep_index]; 3205 if (!ep) 3206 return; 3207 3208 /* Bail out if toggle is already being cleared by a endpoint reset */ 3209 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3210 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3211 return; 3212 } 3213 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3214 if (usb_endpoint_xfer_control(&host_ep->desc) || 3215 usb_endpoint_xfer_isoc(&host_ep->desc)) 3216 return; 3217 3218 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3219 3220 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3221 return; 3222 3223 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3224 if (!stop_cmd) 3225 return; 3226 3227 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3228 if (!cfg_cmd) 3229 goto cleanup; 3230 3231 spin_lock_irqsave(&xhci->lock, flags); 3232 3233 /* block queuing new trbs and ringing ep doorbell */ 3234 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3235 3236 /* 3237 * Make sure endpoint ring is empty before resetting the toggle/seq. 3238 * Driver is required to synchronously cancel all transfer request. 3239 * Stop the endpoint to force xHC to update the output context 3240 */ 3241 3242 if (!list_empty(&ep->ring->td_list)) { 3243 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3244 spin_unlock_irqrestore(&xhci->lock, flags); 3245 xhci_free_command(xhci, cfg_cmd); 3246 goto cleanup; 3247 } 3248 3249 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3250 ep_index, 0); 3251 if (err < 0) { 3252 spin_unlock_irqrestore(&xhci->lock, flags); 3253 xhci_free_command(xhci, cfg_cmd); 3254 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3255 __func__, err); 3256 goto cleanup; 3257 } 3258 3259 xhci_ring_cmd_db(xhci); 3260 spin_unlock_irqrestore(&xhci->lock, flags); 3261 3262 wait_for_completion(stop_cmd->completion); 3263 3264 spin_lock_irqsave(&xhci->lock, flags); 3265 3266 /* config ep command clears toggle if add and drop ep flags are set */ 3267 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3268 if (!ctrl_ctx) { 3269 spin_unlock_irqrestore(&xhci->lock, flags); 3270 xhci_free_command(xhci, cfg_cmd); 3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3272 __func__); 3273 goto cleanup; 3274 } 3275 3276 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3277 ctrl_ctx, ep_flag, ep_flag); 3278 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3279 3280 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3281 udev->slot_id, false); 3282 if (err < 0) { 3283 spin_unlock_irqrestore(&xhci->lock, flags); 3284 xhci_free_command(xhci, cfg_cmd); 3285 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3286 __func__, err); 3287 goto cleanup; 3288 } 3289 3290 xhci_ring_cmd_db(xhci); 3291 spin_unlock_irqrestore(&xhci->lock, flags); 3292 3293 wait_for_completion(cfg_cmd->completion); 3294 3295 xhci_free_command(xhci, cfg_cmd); 3296 cleanup: 3297 xhci_free_command(xhci, stop_cmd); 3298 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3299 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3300 } 3301 3302 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3303 struct usb_device *udev, struct usb_host_endpoint *ep, 3304 unsigned int slot_id) 3305 { 3306 int ret; 3307 unsigned int ep_index; 3308 unsigned int ep_state; 3309 3310 if (!ep) 3311 return -EINVAL; 3312 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3313 if (ret <= 0) 3314 return -EINVAL; 3315 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3316 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3317 " descriptor for ep 0x%x does not support streams\n", 3318 ep->desc.bEndpointAddress); 3319 return -EINVAL; 3320 } 3321 3322 ep_index = xhci_get_endpoint_index(&ep->desc); 3323 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3324 if (ep_state & EP_HAS_STREAMS || 3325 ep_state & EP_GETTING_STREAMS) { 3326 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3327 "already has streams set up.\n", 3328 ep->desc.bEndpointAddress); 3329 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3330 "dynamic stream context array reallocation.\n"); 3331 return -EINVAL; 3332 } 3333 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3334 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3335 "endpoint 0x%x; URBs are pending.\n", 3336 ep->desc.bEndpointAddress); 3337 return -EINVAL; 3338 } 3339 return 0; 3340 } 3341 3342 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3343 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3344 { 3345 unsigned int max_streams; 3346 3347 /* The stream context array size must be a power of two */ 3348 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3349 /* 3350 * Find out how many primary stream array entries the host controller 3351 * supports. Later we may use secondary stream arrays (similar to 2nd 3352 * level page entries), but that's an optional feature for xHCI host 3353 * controllers. xHCs must support at least 4 stream IDs. 3354 */ 3355 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3356 if (*num_stream_ctxs > max_streams) { 3357 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3358 max_streams); 3359 *num_stream_ctxs = max_streams; 3360 *num_streams = max_streams; 3361 } 3362 } 3363 3364 /* Returns an error code if one of the endpoint already has streams. 3365 * This does not change any data structures, it only checks and gathers 3366 * information. 3367 */ 3368 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3369 struct usb_device *udev, 3370 struct usb_host_endpoint **eps, unsigned int num_eps, 3371 unsigned int *num_streams, u32 *changed_ep_bitmask) 3372 { 3373 unsigned int max_streams; 3374 unsigned int endpoint_flag; 3375 int i; 3376 int ret; 3377 3378 for (i = 0; i < num_eps; i++) { 3379 ret = xhci_check_streams_endpoint(xhci, udev, 3380 eps[i], udev->slot_id); 3381 if (ret < 0) 3382 return ret; 3383 3384 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3385 if (max_streams < (*num_streams - 1)) { 3386 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3387 eps[i]->desc.bEndpointAddress, 3388 max_streams); 3389 *num_streams = max_streams+1; 3390 } 3391 3392 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3393 if (*changed_ep_bitmask & endpoint_flag) 3394 return -EINVAL; 3395 *changed_ep_bitmask |= endpoint_flag; 3396 } 3397 return 0; 3398 } 3399 3400 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3401 struct usb_device *udev, 3402 struct usb_host_endpoint **eps, unsigned int num_eps) 3403 { 3404 u32 changed_ep_bitmask = 0; 3405 unsigned int slot_id; 3406 unsigned int ep_index; 3407 unsigned int ep_state; 3408 int i; 3409 3410 slot_id = udev->slot_id; 3411 if (!xhci->devs[slot_id]) 3412 return 0; 3413 3414 for (i = 0; i < num_eps; i++) { 3415 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3416 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3417 /* Are streams already being freed for the endpoint? */ 3418 if (ep_state & EP_GETTING_NO_STREAMS) { 3419 xhci_warn(xhci, "WARN Can't disable streams for " 3420 "endpoint 0x%x, " 3421 "streams are being disabled already\n", 3422 eps[i]->desc.bEndpointAddress); 3423 return 0; 3424 } 3425 /* Are there actually any streams to free? */ 3426 if (!(ep_state & EP_HAS_STREAMS) && 3427 !(ep_state & EP_GETTING_STREAMS)) { 3428 xhci_warn(xhci, "WARN Can't disable streams for " 3429 "endpoint 0x%x, " 3430 "streams are already disabled!\n", 3431 eps[i]->desc.bEndpointAddress); 3432 xhci_warn(xhci, "WARN xhci_free_streams() called " 3433 "with non-streams endpoint\n"); 3434 return 0; 3435 } 3436 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3437 } 3438 return changed_ep_bitmask; 3439 } 3440 3441 /* 3442 * The USB device drivers use this function (through the HCD interface in USB 3443 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3444 * coordinate mass storage command queueing across multiple endpoints (basically 3445 * a stream ID == a task ID). 3446 * 3447 * Setting up streams involves allocating the same size stream context array 3448 * for each endpoint and issuing a configure endpoint command for all endpoints. 3449 * 3450 * Don't allow the call to succeed if one endpoint only supports one stream 3451 * (which means it doesn't support streams at all). 3452 * 3453 * Drivers may get less stream IDs than they asked for, if the host controller 3454 * hardware or endpoints claim they can't support the number of requested 3455 * stream IDs. 3456 */ 3457 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3458 struct usb_host_endpoint **eps, unsigned int num_eps, 3459 unsigned int num_streams, gfp_t mem_flags) 3460 { 3461 int i, ret; 3462 struct xhci_hcd *xhci; 3463 struct xhci_virt_device *vdev; 3464 struct xhci_command *config_cmd; 3465 struct xhci_input_control_ctx *ctrl_ctx; 3466 unsigned int ep_index; 3467 unsigned int num_stream_ctxs; 3468 unsigned int max_packet; 3469 unsigned long flags; 3470 u32 changed_ep_bitmask = 0; 3471 3472 if (!eps) 3473 return -EINVAL; 3474 3475 /* Add one to the number of streams requested to account for 3476 * stream 0 that is reserved for xHCI usage. 3477 */ 3478 num_streams += 1; 3479 xhci = hcd_to_xhci(hcd); 3480 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3481 num_streams); 3482 3483 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3484 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3485 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3486 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3487 return -ENOSYS; 3488 } 3489 3490 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3491 if (!config_cmd) 3492 return -ENOMEM; 3493 3494 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3495 if (!ctrl_ctx) { 3496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3497 __func__); 3498 xhci_free_command(xhci, config_cmd); 3499 return -ENOMEM; 3500 } 3501 3502 /* Check to make sure all endpoints are not already configured for 3503 * streams. While we're at it, find the maximum number of streams that 3504 * all the endpoints will support and check for duplicate endpoints. 3505 */ 3506 spin_lock_irqsave(&xhci->lock, flags); 3507 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3508 num_eps, &num_streams, &changed_ep_bitmask); 3509 if (ret < 0) { 3510 xhci_free_command(xhci, config_cmd); 3511 spin_unlock_irqrestore(&xhci->lock, flags); 3512 return ret; 3513 } 3514 if (num_streams <= 1) { 3515 xhci_warn(xhci, "WARN: endpoints can't handle " 3516 "more than one stream.\n"); 3517 xhci_free_command(xhci, config_cmd); 3518 spin_unlock_irqrestore(&xhci->lock, flags); 3519 return -EINVAL; 3520 } 3521 vdev = xhci->devs[udev->slot_id]; 3522 /* Mark each endpoint as being in transition, so 3523 * xhci_urb_enqueue() will reject all URBs. 3524 */ 3525 for (i = 0; i < num_eps; i++) { 3526 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3527 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3528 } 3529 spin_unlock_irqrestore(&xhci->lock, flags); 3530 3531 /* Setup internal data structures and allocate HW data structures for 3532 * streams (but don't install the HW structures in the input context 3533 * until we're sure all memory allocation succeeded). 3534 */ 3535 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3536 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3537 num_stream_ctxs, num_streams); 3538 3539 for (i = 0; i < num_eps; i++) { 3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3541 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3542 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3543 num_stream_ctxs, 3544 num_streams, 3545 max_packet, mem_flags); 3546 if (!vdev->eps[ep_index].stream_info) 3547 goto cleanup; 3548 /* Set maxPstreams in endpoint context and update deq ptr to 3549 * point to stream context array. FIXME 3550 */ 3551 } 3552 3553 /* Set up the input context for a configure endpoint command. */ 3554 for (i = 0; i < num_eps; i++) { 3555 struct xhci_ep_ctx *ep_ctx; 3556 3557 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3558 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3559 3560 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3561 vdev->out_ctx, ep_index); 3562 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3563 vdev->eps[ep_index].stream_info); 3564 } 3565 /* Tell the HW to drop its old copy of the endpoint context info 3566 * and add the updated copy from the input context. 3567 */ 3568 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3569 vdev->out_ctx, ctrl_ctx, 3570 changed_ep_bitmask, changed_ep_bitmask); 3571 3572 /* Issue and wait for the configure endpoint command */ 3573 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3574 false, false); 3575 3576 /* xHC rejected the configure endpoint command for some reason, so we 3577 * leave the old ring intact and free our internal streams data 3578 * structure. 3579 */ 3580 if (ret < 0) 3581 goto cleanup; 3582 3583 spin_lock_irqsave(&xhci->lock, flags); 3584 for (i = 0; i < num_eps; i++) { 3585 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3586 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3587 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3588 udev->slot_id, ep_index); 3589 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3590 } 3591 xhci_free_command(xhci, config_cmd); 3592 spin_unlock_irqrestore(&xhci->lock, flags); 3593 3594 for (i = 0; i < num_eps; i++) { 3595 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3596 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3597 } 3598 /* Subtract 1 for stream 0, which drivers can't use */ 3599 return num_streams - 1; 3600 3601 cleanup: 3602 /* If it didn't work, free the streams! */ 3603 for (i = 0; i < num_eps; i++) { 3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3605 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3606 vdev->eps[ep_index].stream_info = NULL; 3607 /* FIXME Unset maxPstreams in endpoint context and 3608 * update deq ptr to point to normal string ring. 3609 */ 3610 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3611 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3612 xhci_endpoint_zero(xhci, vdev, eps[i]); 3613 } 3614 xhci_free_command(xhci, config_cmd); 3615 return -ENOMEM; 3616 } 3617 3618 /* Transition the endpoint from using streams to being a "normal" endpoint 3619 * without streams. 3620 * 3621 * Modify the endpoint context state, submit a configure endpoint command, 3622 * and free all endpoint rings for streams if that completes successfully. 3623 */ 3624 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3625 struct usb_host_endpoint **eps, unsigned int num_eps, 3626 gfp_t mem_flags) 3627 { 3628 int i, ret; 3629 struct xhci_hcd *xhci; 3630 struct xhci_virt_device *vdev; 3631 struct xhci_command *command; 3632 struct xhci_input_control_ctx *ctrl_ctx; 3633 unsigned int ep_index; 3634 unsigned long flags; 3635 u32 changed_ep_bitmask; 3636 3637 xhci = hcd_to_xhci(hcd); 3638 vdev = xhci->devs[udev->slot_id]; 3639 3640 /* Set up a configure endpoint command to remove the streams rings */ 3641 spin_lock_irqsave(&xhci->lock, flags); 3642 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3643 udev, eps, num_eps); 3644 if (changed_ep_bitmask == 0) { 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 return -EINVAL; 3647 } 3648 3649 /* Use the xhci_command structure from the first endpoint. We may have 3650 * allocated too many, but the driver may call xhci_free_streams() for 3651 * each endpoint it grouped into one call to xhci_alloc_streams(). 3652 */ 3653 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3654 command = vdev->eps[ep_index].stream_info->free_streams_command; 3655 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3656 if (!ctrl_ctx) { 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3659 __func__); 3660 return -EINVAL; 3661 } 3662 3663 for (i = 0; i < num_eps; i++) { 3664 struct xhci_ep_ctx *ep_ctx; 3665 3666 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3667 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3668 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3669 EP_GETTING_NO_STREAMS; 3670 3671 xhci_endpoint_copy(xhci, command->in_ctx, 3672 vdev->out_ctx, ep_index); 3673 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3674 &vdev->eps[ep_index]); 3675 } 3676 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3677 vdev->out_ctx, ctrl_ctx, 3678 changed_ep_bitmask, changed_ep_bitmask); 3679 spin_unlock_irqrestore(&xhci->lock, flags); 3680 3681 /* Issue and wait for the configure endpoint command, 3682 * which must succeed. 3683 */ 3684 ret = xhci_configure_endpoint(xhci, udev, command, 3685 false, true); 3686 3687 /* xHC rejected the configure endpoint command for some reason, so we 3688 * leave the streams rings intact. 3689 */ 3690 if (ret < 0) 3691 return ret; 3692 3693 spin_lock_irqsave(&xhci->lock, flags); 3694 for (i = 0; i < num_eps; i++) { 3695 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3696 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3697 vdev->eps[ep_index].stream_info = NULL; 3698 /* FIXME Unset maxPstreams in endpoint context and 3699 * update deq ptr to point to normal string ring. 3700 */ 3701 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3702 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3703 } 3704 spin_unlock_irqrestore(&xhci->lock, flags); 3705 3706 return 0; 3707 } 3708 3709 /* 3710 * Deletes endpoint resources for endpoints that were active before a Reset 3711 * Device command, or a Disable Slot command. The Reset Device command leaves 3712 * the control endpoint intact, whereas the Disable Slot command deletes it. 3713 * 3714 * Must be called with xhci->lock held. 3715 */ 3716 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3717 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3718 { 3719 int i; 3720 unsigned int num_dropped_eps = 0; 3721 unsigned int drop_flags = 0; 3722 3723 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3724 if (virt_dev->eps[i].ring) { 3725 drop_flags |= 1 << i; 3726 num_dropped_eps++; 3727 } 3728 } 3729 xhci->num_active_eps -= num_dropped_eps; 3730 if (num_dropped_eps) 3731 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3732 "Dropped %u ep ctxs, flags = 0x%x, " 3733 "%u now active.", 3734 num_dropped_eps, drop_flags, 3735 xhci->num_active_eps); 3736 } 3737 3738 /* 3739 * This submits a Reset Device Command, which will set the device state to 0, 3740 * set the device address to 0, and disable all the endpoints except the default 3741 * control endpoint. The USB core should come back and call 3742 * xhci_address_device(), and then re-set up the configuration. If this is 3743 * called because of a usb_reset_and_verify_device(), then the old alternate 3744 * settings will be re-installed through the normal bandwidth allocation 3745 * functions. 3746 * 3747 * Wait for the Reset Device command to finish. Remove all structures 3748 * associated with the endpoints that were disabled. Clear the input device 3749 * structure? Reset the control endpoint 0 max packet size? 3750 * 3751 * If the virt_dev to be reset does not exist or does not match the udev, 3752 * it means the device is lost, possibly due to the xHC restore error and 3753 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3754 * re-allocate the device. 3755 */ 3756 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3757 struct usb_device *udev) 3758 { 3759 int ret, i; 3760 unsigned long flags; 3761 struct xhci_hcd *xhci; 3762 unsigned int slot_id; 3763 struct xhci_virt_device *virt_dev; 3764 struct xhci_command *reset_device_cmd; 3765 struct xhci_slot_ctx *slot_ctx; 3766 int old_active_eps = 0; 3767 3768 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3769 if (ret <= 0) 3770 return ret; 3771 xhci = hcd_to_xhci(hcd); 3772 slot_id = udev->slot_id; 3773 virt_dev = xhci->devs[slot_id]; 3774 if (!virt_dev) { 3775 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3776 "not exist. Re-allocate the device\n", slot_id); 3777 ret = xhci_alloc_dev(hcd, udev); 3778 if (ret == 1) 3779 return 0; 3780 else 3781 return -EINVAL; 3782 } 3783 3784 if (virt_dev->tt_info) 3785 old_active_eps = virt_dev->tt_info->active_eps; 3786 3787 if (virt_dev->udev != udev) { 3788 /* If the virt_dev and the udev does not match, this virt_dev 3789 * may belong to another udev. 3790 * Re-allocate the device. 3791 */ 3792 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3793 "not match the udev. Re-allocate the device\n", 3794 slot_id); 3795 ret = xhci_alloc_dev(hcd, udev); 3796 if (ret == 1) 3797 return 0; 3798 else 3799 return -EINVAL; 3800 } 3801 3802 /* If device is not setup, there is no point in resetting it */ 3803 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3804 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3805 SLOT_STATE_DISABLED) 3806 return 0; 3807 3808 trace_xhci_discover_or_reset_device(slot_ctx); 3809 3810 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3811 /* Allocate the command structure that holds the struct completion. 3812 * Assume we're in process context, since the normal device reset 3813 * process has to wait for the device anyway. Storage devices are 3814 * reset as part of error handling, so use GFP_NOIO instead of 3815 * GFP_KERNEL. 3816 */ 3817 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3818 if (!reset_device_cmd) { 3819 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3820 return -ENOMEM; 3821 } 3822 3823 /* Attempt to submit the Reset Device command to the command ring */ 3824 spin_lock_irqsave(&xhci->lock, flags); 3825 3826 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3827 if (ret) { 3828 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3829 spin_unlock_irqrestore(&xhci->lock, flags); 3830 goto command_cleanup; 3831 } 3832 xhci_ring_cmd_db(xhci); 3833 spin_unlock_irqrestore(&xhci->lock, flags); 3834 3835 /* Wait for the Reset Device command to finish */ 3836 wait_for_completion(reset_device_cmd->completion); 3837 3838 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3839 * unless we tried to reset a slot ID that wasn't enabled, 3840 * or the device wasn't in the addressed or configured state. 3841 */ 3842 ret = reset_device_cmd->status; 3843 switch (ret) { 3844 case COMP_COMMAND_ABORTED: 3845 case COMP_COMMAND_RING_STOPPED: 3846 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3847 ret = -ETIME; 3848 goto command_cleanup; 3849 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3850 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3851 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3852 slot_id, 3853 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3854 xhci_dbg(xhci, "Not freeing device rings.\n"); 3855 /* Don't treat this as an error. May change my mind later. */ 3856 ret = 0; 3857 goto command_cleanup; 3858 case COMP_SUCCESS: 3859 xhci_dbg(xhci, "Successful reset device command.\n"); 3860 break; 3861 default: 3862 if (xhci_is_vendor_info_code(xhci, ret)) 3863 break; 3864 xhci_warn(xhci, "Unknown completion code %u for " 3865 "reset device command.\n", ret); 3866 ret = -EINVAL; 3867 goto command_cleanup; 3868 } 3869 3870 /* Free up host controller endpoint resources */ 3871 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3872 spin_lock_irqsave(&xhci->lock, flags); 3873 /* Don't delete the default control endpoint resources */ 3874 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3875 spin_unlock_irqrestore(&xhci->lock, flags); 3876 } 3877 3878 /* Everything but endpoint 0 is disabled, so free the rings. */ 3879 for (i = 1; i < 31; i++) { 3880 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3881 3882 if (ep->ep_state & EP_HAS_STREAMS) { 3883 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3884 xhci_get_endpoint_address(i)); 3885 xhci_free_stream_info(xhci, ep->stream_info); 3886 ep->stream_info = NULL; 3887 ep->ep_state &= ~EP_HAS_STREAMS; 3888 } 3889 3890 if (ep->ring) { 3891 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3892 xhci_free_endpoint_ring(xhci, virt_dev, i); 3893 } 3894 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3895 xhci_drop_ep_from_interval_table(xhci, 3896 &virt_dev->eps[i].bw_info, 3897 virt_dev->bw_table, 3898 udev, 3899 &virt_dev->eps[i], 3900 virt_dev->tt_info); 3901 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3902 } 3903 /* If necessary, update the number of active TTs on this root port */ 3904 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3905 virt_dev->flags = 0; 3906 ret = 0; 3907 3908 command_cleanup: 3909 xhci_free_command(xhci, reset_device_cmd); 3910 return ret; 3911 } 3912 3913 /* 3914 * At this point, the struct usb_device is about to go away, the device has 3915 * disconnected, and all traffic has been stopped and the endpoints have been 3916 * disabled. Free any HC data structures associated with that device. 3917 */ 3918 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3919 { 3920 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3921 struct xhci_virt_device *virt_dev; 3922 struct xhci_slot_ctx *slot_ctx; 3923 int i, ret; 3924 3925 #ifndef CONFIG_USB_DEFAULT_PERSIST 3926 /* 3927 * We called pm_runtime_get_noresume when the device was attached. 3928 * Decrement the counter here to allow controller to runtime suspend 3929 * if no devices remain. 3930 */ 3931 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3932 pm_runtime_put_noidle(hcd->self.controller); 3933 #endif 3934 3935 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3936 /* If the host is halted due to driver unload, we still need to free the 3937 * device. 3938 */ 3939 if (ret <= 0 && ret != -ENODEV) 3940 return; 3941 3942 virt_dev = xhci->devs[udev->slot_id]; 3943 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3944 trace_xhci_free_dev(slot_ctx); 3945 3946 /* Stop any wayward timer functions (which may grab the lock) */ 3947 for (i = 0; i < 31; i++) { 3948 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3949 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3950 } 3951 virt_dev->udev = NULL; 3952 ret = xhci_disable_slot(xhci, udev->slot_id); 3953 if (ret) 3954 xhci_free_virt_device(xhci, udev->slot_id); 3955 } 3956 3957 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3958 { 3959 struct xhci_command *command; 3960 unsigned long flags; 3961 u32 state; 3962 int ret = 0; 3963 3964 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3965 if (!command) 3966 return -ENOMEM; 3967 3968 xhci_debugfs_remove_slot(xhci, slot_id); 3969 3970 spin_lock_irqsave(&xhci->lock, flags); 3971 /* Don't disable the slot if the host controller is dead. */ 3972 state = readl(&xhci->op_regs->status); 3973 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3974 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3975 spin_unlock_irqrestore(&xhci->lock, flags); 3976 kfree(command); 3977 return -ENODEV; 3978 } 3979 3980 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3981 slot_id); 3982 if (ret) { 3983 spin_unlock_irqrestore(&xhci->lock, flags); 3984 kfree(command); 3985 return ret; 3986 } 3987 xhci_ring_cmd_db(xhci); 3988 spin_unlock_irqrestore(&xhci->lock, flags); 3989 return ret; 3990 } 3991 3992 /* 3993 * Checks if we have enough host controller resources for the default control 3994 * endpoint. 3995 * 3996 * Must be called with xhci->lock held. 3997 */ 3998 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3999 { 4000 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4001 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4002 "Not enough ep ctxs: " 4003 "%u active, need to add 1, limit is %u.", 4004 xhci->num_active_eps, xhci->limit_active_eps); 4005 return -ENOMEM; 4006 } 4007 xhci->num_active_eps += 1; 4008 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4009 "Adding 1 ep ctx, %u now active.", 4010 xhci->num_active_eps); 4011 return 0; 4012 } 4013 4014 4015 /* 4016 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4017 * timed out, or allocating memory failed. Returns 1 on success. 4018 */ 4019 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4020 { 4021 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4022 struct xhci_virt_device *vdev; 4023 struct xhci_slot_ctx *slot_ctx; 4024 unsigned long flags; 4025 int ret, slot_id; 4026 struct xhci_command *command; 4027 4028 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4029 if (!command) 4030 return 0; 4031 4032 spin_lock_irqsave(&xhci->lock, flags); 4033 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4034 if (ret) { 4035 spin_unlock_irqrestore(&xhci->lock, flags); 4036 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4037 xhci_free_command(xhci, command); 4038 return 0; 4039 } 4040 xhci_ring_cmd_db(xhci); 4041 spin_unlock_irqrestore(&xhci->lock, flags); 4042 4043 wait_for_completion(command->completion); 4044 slot_id = command->slot_id; 4045 4046 if (!slot_id || command->status != COMP_SUCCESS) { 4047 xhci_err(xhci, "Error while assigning device slot ID\n"); 4048 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4049 HCS_MAX_SLOTS( 4050 readl(&xhci->cap_regs->hcs_params1))); 4051 xhci_free_command(xhci, command); 4052 return 0; 4053 } 4054 4055 xhci_free_command(xhci, command); 4056 4057 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4058 spin_lock_irqsave(&xhci->lock, flags); 4059 ret = xhci_reserve_host_control_ep_resources(xhci); 4060 if (ret) { 4061 spin_unlock_irqrestore(&xhci->lock, flags); 4062 xhci_warn(xhci, "Not enough host resources, " 4063 "active endpoint contexts = %u\n", 4064 xhci->num_active_eps); 4065 goto disable_slot; 4066 } 4067 spin_unlock_irqrestore(&xhci->lock, flags); 4068 } 4069 /* Use GFP_NOIO, since this function can be called from 4070 * xhci_discover_or_reset_device(), which may be called as part of 4071 * mass storage driver error handling. 4072 */ 4073 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4074 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4075 goto disable_slot; 4076 } 4077 vdev = xhci->devs[slot_id]; 4078 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4079 trace_xhci_alloc_dev(slot_ctx); 4080 4081 udev->slot_id = slot_id; 4082 4083 xhci_debugfs_create_slot(xhci, slot_id); 4084 4085 #ifndef CONFIG_USB_DEFAULT_PERSIST 4086 /* 4087 * If resetting upon resume, we can't put the controller into runtime 4088 * suspend if there is a device attached. 4089 */ 4090 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4091 pm_runtime_get_noresume(hcd->self.controller); 4092 #endif 4093 4094 /* Is this a LS or FS device under a HS hub? */ 4095 /* Hub or peripherial? */ 4096 return 1; 4097 4098 disable_slot: 4099 ret = xhci_disable_slot(xhci, udev->slot_id); 4100 if (ret) 4101 xhci_free_virt_device(xhci, udev->slot_id); 4102 4103 return 0; 4104 } 4105 4106 /* 4107 * Issue an Address Device command and optionally send a corresponding 4108 * SetAddress request to the device. 4109 */ 4110 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4111 enum xhci_setup_dev setup) 4112 { 4113 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4114 unsigned long flags; 4115 struct xhci_virt_device *virt_dev; 4116 int ret = 0; 4117 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4118 struct xhci_slot_ctx *slot_ctx; 4119 struct xhci_input_control_ctx *ctrl_ctx; 4120 u64 temp_64; 4121 struct xhci_command *command = NULL; 4122 4123 mutex_lock(&xhci->mutex); 4124 4125 if (xhci->xhc_state) { /* dying, removing or halted */ 4126 ret = -ESHUTDOWN; 4127 goto out; 4128 } 4129 4130 if (!udev->slot_id) { 4131 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4132 "Bad Slot ID %d", udev->slot_id); 4133 ret = -EINVAL; 4134 goto out; 4135 } 4136 4137 virt_dev = xhci->devs[udev->slot_id]; 4138 4139 if (WARN_ON(!virt_dev)) { 4140 /* 4141 * In plug/unplug torture test with an NEC controller, 4142 * a zero-dereference was observed once due to virt_dev = 0. 4143 * Print useful debug rather than crash if it is observed again! 4144 */ 4145 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4146 udev->slot_id); 4147 ret = -EINVAL; 4148 goto out; 4149 } 4150 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4151 trace_xhci_setup_device_slot(slot_ctx); 4152 4153 if (setup == SETUP_CONTEXT_ONLY) { 4154 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4155 SLOT_STATE_DEFAULT) { 4156 xhci_dbg(xhci, "Slot already in default state\n"); 4157 goto out; 4158 } 4159 } 4160 4161 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4162 if (!command) { 4163 ret = -ENOMEM; 4164 goto out; 4165 } 4166 4167 command->in_ctx = virt_dev->in_ctx; 4168 4169 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4170 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4171 if (!ctrl_ctx) { 4172 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4173 __func__); 4174 ret = -EINVAL; 4175 goto out; 4176 } 4177 /* 4178 * If this is the first Set Address since device plug-in or 4179 * virt_device realloaction after a resume with an xHCI power loss, 4180 * then set up the slot context. 4181 */ 4182 if (!slot_ctx->dev_info) 4183 xhci_setup_addressable_virt_dev(xhci, udev); 4184 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4185 else 4186 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4187 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4188 ctrl_ctx->drop_flags = 0; 4189 4190 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4191 le32_to_cpu(slot_ctx->dev_info) >> 27); 4192 4193 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4194 spin_lock_irqsave(&xhci->lock, flags); 4195 trace_xhci_setup_device(virt_dev); 4196 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4197 udev->slot_id, setup); 4198 if (ret) { 4199 spin_unlock_irqrestore(&xhci->lock, flags); 4200 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4201 "FIXME: allocate a command ring segment"); 4202 goto out; 4203 } 4204 xhci_ring_cmd_db(xhci); 4205 spin_unlock_irqrestore(&xhci->lock, flags); 4206 4207 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4208 wait_for_completion(command->completion); 4209 4210 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4211 * the SetAddress() "recovery interval" required by USB and aborting the 4212 * command on a timeout. 4213 */ 4214 switch (command->status) { 4215 case COMP_COMMAND_ABORTED: 4216 case COMP_COMMAND_RING_STOPPED: 4217 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4218 ret = -ETIME; 4219 break; 4220 case COMP_CONTEXT_STATE_ERROR: 4221 case COMP_SLOT_NOT_ENABLED_ERROR: 4222 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4223 act, udev->slot_id); 4224 ret = -EINVAL; 4225 break; 4226 case COMP_USB_TRANSACTION_ERROR: 4227 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4228 4229 mutex_unlock(&xhci->mutex); 4230 ret = xhci_disable_slot(xhci, udev->slot_id); 4231 if (!ret) 4232 xhci_alloc_dev(hcd, udev); 4233 kfree(command->completion); 4234 kfree(command); 4235 return -EPROTO; 4236 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4237 dev_warn(&udev->dev, 4238 "ERROR: Incompatible device for setup %s command\n", act); 4239 ret = -ENODEV; 4240 break; 4241 case COMP_SUCCESS: 4242 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4243 "Successful setup %s command", act); 4244 break; 4245 default: 4246 xhci_err(xhci, 4247 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4248 act, command->status); 4249 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4250 ret = -EINVAL; 4251 break; 4252 } 4253 if (ret) 4254 goto out; 4255 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4256 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4257 "Op regs DCBAA ptr = %#016llx", temp_64); 4258 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4259 "Slot ID %d dcbaa entry @%p = %#016llx", 4260 udev->slot_id, 4261 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4262 (unsigned long long) 4263 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4264 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4265 "Output Context DMA address = %#08llx", 4266 (unsigned long long)virt_dev->out_ctx->dma); 4267 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4268 le32_to_cpu(slot_ctx->dev_info) >> 27); 4269 /* 4270 * USB core uses address 1 for the roothubs, so we add one to the 4271 * address given back to us by the HC. 4272 */ 4273 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4274 le32_to_cpu(slot_ctx->dev_info) >> 27); 4275 /* Zero the input context control for later use */ 4276 ctrl_ctx->add_flags = 0; 4277 ctrl_ctx->drop_flags = 0; 4278 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4279 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4280 4281 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4282 "Internal device address = %d", 4283 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4284 out: 4285 mutex_unlock(&xhci->mutex); 4286 if (command) { 4287 kfree(command->completion); 4288 kfree(command); 4289 } 4290 return ret; 4291 } 4292 4293 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4294 { 4295 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4296 } 4297 4298 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4299 { 4300 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4301 } 4302 4303 /* 4304 * Transfer the port index into real index in the HW port status 4305 * registers. Caculate offset between the port's PORTSC register 4306 * and port status base. Divide the number of per port register 4307 * to get the real index. The raw port number bases 1. 4308 */ 4309 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4310 { 4311 struct xhci_hub *rhub; 4312 4313 rhub = xhci_get_rhub(hcd); 4314 return rhub->ports[port1 - 1]->hw_portnum + 1; 4315 } 4316 4317 /* 4318 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4319 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4320 */ 4321 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4322 struct usb_device *udev, u16 max_exit_latency) 4323 { 4324 struct xhci_virt_device *virt_dev; 4325 struct xhci_command *command; 4326 struct xhci_input_control_ctx *ctrl_ctx; 4327 struct xhci_slot_ctx *slot_ctx; 4328 unsigned long flags; 4329 int ret; 4330 4331 spin_lock_irqsave(&xhci->lock, flags); 4332 4333 virt_dev = xhci->devs[udev->slot_id]; 4334 4335 /* 4336 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4337 * xHC was re-initialized. Exit latency will be set later after 4338 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4339 */ 4340 4341 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4342 spin_unlock_irqrestore(&xhci->lock, flags); 4343 return 0; 4344 } 4345 4346 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4347 command = xhci->lpm_command; 4348 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4349 if (!ctrl_ctx) { 4350 spin_unlock_irqrestore(&xhci->lock, flags); 4351 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4352 __func__); 4353 return -ENOMEM; 4354 } 4355 4356 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4357 spin_unlock_irqrestore(&xhci->lock, flags); 4358 4359 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4360 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4361 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4362 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4363 slot_ctx->dev_state = 0; 4364 4365 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4366 "Set up evaluate context for LPM MEL change."); 4367 4368 /* Issue and wait for the evaluate context command. */ 4369 ret = xhci_configure_endpoint(xhci, udev, command, 4370 true, true); 4371 4372 if (!ret) { 4373 spin_lock_irqsave(&xhci->lock, flags); 4374 virt_dev->current_mel = max_exit_latency; 4375 spin_unlock_irqrestore(&xhci->lock, flags); 4376 } 4377 return ret; 4378 } 4379 4380 #ifdef CONFIG_PM 4381 4382 /* BESL to HIRD Encoding array for USB2 LPM */ 4383 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4384 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4385 4386 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4387 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4388 struct usb_device *udev) 4389 { 4390 int u2del, besl, besl_host; 4391 int besl_device = 0; 4392 u32 field; 4393 4394 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4395 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4396 4397 if (field & USB_BESL_SUPPORT) { 4398 for (besl_host = 0; besl_host < 16; besl_host++) { 4399 if (xhci_besl_encoding[besl_host] >= u2del) 4400 break; 4401 } 4402 /* Use baseline BESL value as default */ 4403 if (field & USB_BESL_BASELINE_VALID) 4404 besl_device = USB_GET_BESL_BASELINE(field); 4405 else if (field & USB_BESL_DEEP_VALID) 4406 besl_device = USB_GET_BESL_DEEP(field); 4407 } else { 4408 if (u2del <= 50) 4409 besl_host = 0; 4410 else 4411 besl_host = (u2del - 51) / 75 + 1; 4412 } 4413 4414 besl = besl_host + besl_device; 4415 if (besl > 15) 4416 besl = 15; 4417 4418 return besl; 4419 } 4420 4421 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4422 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4423 { 4424 u32 field; 4425 int l1; 4426 int besld = 0; 4427 int hirdm = 0; 4428 4429 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4430 4431 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4432 l1 = udev->l1_params.timeout / 256; 4433 4434 /* device has preferred BESLD */ 4435 if (field & USB_BESL_DEEP_VALID) { 4436 besld = USB_GET_BESL_DEEP(field); 4437 hirdm = 1; 4438 } 4439 4440 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4441 } 4442 4443 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4444 struct usb_device *udev, int enable) 4445 { 4446 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4447 struct xhci_port **ports; 4448 __le32 __iomem *pm_addr, *hlpm_addr; 4449 u32 pm_val, hlpm_val, field; 4450 unsigned int port_num; 4451 unsigned long flags; 4452 int hird, exit_latency; 4453 int ret; 4454 4455 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4456 return -EPERM; 4457 4458 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4459 !udev->lpm_capable) 4460 return -EPERM; 4461 4462 if (!udev->parent || udev->parent->parent || 4463 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4464 return -EPERM; 4465 4466 if (udev->usb2_hw_lpm_capable != 1) 4467 return -EPERM; 4468 4469 spin_lock_irqsave(&xhci->lock, flags); 4470 4471 ports = xhci->usb2_rhub.ports; 4472 port_num = udev->portnum - 1; 4473 pm_addr = ports[port_num]->addr + PORTPMSC; 4474 pm_val = readl(pm_addr); 4475 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4476 4477 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4478 enable ? "enable" : "disable", port_num + 1); 4479 4480 if (enable) { 4481 /* Host supports BESL timeout instead of HIRD */ 4482 if (udev->usb2_hw_lpm_besl_capable) { 4483 /* if device doesn't have a preferred BESL value use a 4484 * default one which works with mixed HIRD and BESL 4485 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4486 */ 4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4488 if ((field & USB_BESL_SUPPORT) && 4489 (field & USB_BESL_BASELINE_VALID)) 4490 hird = USB_GET_BESL_BASELINE(field); 4491 else 4492 hird = udev->l1_params.besl; 4493 4494 exit_latency = xhci_besl_encoding[hird]; 4495 spin_unlock_irqrestore(&xhci->lock, flags); 4496 4497 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4498 * input context for link powermanagement evaluate 4499 * context commands. It is protected by hcd->bandwidth 4500 * mutex and is shared by all devices. We need to set 4501 * the max ext latency in USB 2 BESL LPM as well, so 4502 * use the same mutex and xhci_change_max_exit_latency() 4503 */ 4504 mutex_lock(hcd->bandwidth_mutex); 4505 ret = xhci_change_max_exit_latency(xhci, udev, 4506 exit_latency); 4507 mutex_unlock(hcd->bandwidth_mutex); 4508 4509 if (ret < 0) 4510 return ret; 4511 spin_lock_irqsave(&xhci->lock, flags); 4512 4513 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4514 writel(hlpm_val, hlpm_addr); 4515 /* flush write */ 4516 readl(hlpm_addr); 4517 } else { 4518 hird = xhci_calculate_hird_besl(xhci, udev); 4519 } 4520 4521 pm_val &= ~PORT_HIRD_MASK; 4522 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4523 writel(pm_val, pm_addr); 4524 pm_val = readl(pm_addr); 4525 pm_val |= PORT_HLE; 4526 writel(pm_val, pm_addr); 4527 /* flush write */ 4528 readl(pm_addr); 4529 } else { 4530 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4531 writel(pm_val, pm_addr); 4532 /* flush write */ 4533 readl(pm_addr); 4534 if (udev->usb2_hw_lpm_besl_capable) { 4535 spin_unlock_irqrestore(&xhci->lock, flags); 4536 mutex_lock(hcd->bandwidth_mutex); 4537 xhci_change_max_exit_latency(xhci, udev, 0); 4538 mutex_unlock(hcd->bandwidth_mutex); 4539 readl_poll_timeout(ports[port_num]->addr, pm_val, 4540 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4541 100, 10000); 4542 return 0; 4543 } 4544 } 4545 4546 spin_unlock_irqrestore(&xhci->lock, flags); 4547 return 0; 4548 } 4549 4550 /* check if a usb2 port supports a given extened capability protocol 4551 * only USB2 ports extended protocol capability values are cached. 4552 * Return 1 if capability is supported 4553 */ 4554 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4555 unsigned capability) 4556 { 4557 u32 port_offset, port_count; 4558 int i; 4559 4560 for (i = 0; i < xhci->num_ext_caps; i++) { 4561 if (xhci->ext_caps[i] & capability) { 4562 /* port offsets starts at 1 */ 4563 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4564 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4565 if (port >= port_offset && 4566 port < port_offset + port_count) 4567 return 1; 4568 } 4569 } 4570 return 0; 4571 } 4572 4573 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4574 { 4575 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4576 int portnum = udev->portnum - 1; 4577 4578 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4579 return 0; 4580 4581 /* we only support lpm for non-hub device connected to root hub yet */ 4582 if (!udev->parent || udev->parent->parent || 4583 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4584 return 0; 4585 4586 if (xhci->hw_lpm_support == 1 && 4587 xhci_check_usb2_port_capability( 4588 xhci, portnum, XHCI_HLC)) { 4589 udev->usb2_hw_lpm_capable = 1; 4590 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4591 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4592 if (xhci_check_usb2_port_capability(xhci, portnum, 4593 XHCI_BLC)) 4594 udev->usb2_hw_lpm_besl_capable = 1; 4595 } 4596 4597 return 0; 4598 } 4599 4600 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4601 4602 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4603 static unsigned long long xhci_service_interval_to_ns( 4604 struct usb_endpoint_descriptor *desc) 4605 { 4606 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4607 } 4608 4609 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4610 enum usb3_link_state state) 4611 { 4612 unsigned long long sel; 4613 unsigned long long pel; 4614 unsigned int max_sel_pel; 4615 char *state_name; 4616 4617 switch (state) { 4618 case USB3_LPM_U1: 4619 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4620 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4621 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4622 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4623 state_name = "U1"; 4624 break; 4625 case USB3_LPM_U2: 4626 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4627 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4628 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4629 state_name = "U2"; 4630 break; 4631 default: 4632 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4633 __func__); 4634 return USB3_LPM_DISABLED; 4635 } 4636 4637 if (sel <= max_sel_pel && pel <= max_sel_pel) 4638 return USB3_LPM_DEVICE_INITIATED; 4639 4640 if (sel > max_sel_pel) 4641 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4642 "due to long SEL %llu ms\n", 4643 state_name, sel); 4644 else 4645 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4646 "due to long PEL %llu ms\n", 4647 state_name, pel); 4648 return USB3_LPM_DISABLED; 4649 } 4650 4651 /* The U1 timeout should be the maximum of the following values: 4652 * - For control endpoints, U1 system exit latency (SEL) * 3 4653 * - For bulk endpoints, U1 SEL * 5 4654 * - For interrupt endpoints: 4655 * - Notification EPs, U1 SEL * 3 4656 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4657 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4658 */ 4659 static unsigned long long xhci_calculate_intel_u1_timeout( 4660 struct usb_device *udev, 4661 struct usb_endpoint_descriptor *desc) 4662 { 4663 unsigned long long timeout_ns; 4664 int ep_type; 4665 int intr_type; 4666 4667 ep_type = usb_endpoint_type(desc); 4668 switch (ep_type) { 4669 case USB_ENDPOINT_XFER_CONTROL: 4670 timeout_ns = udev->u1_params.sel * 3; 4671 break; 4672 case USB_ENDPOINT_XFER_BULK: 4673 timeout_ns = udev->u1_params.sel * 5; 4674 break; 4675 case USB_ENDPOINT_XFER_INT: 4676 intr_type = usb_endpoint_interrupt_type(desc); 4677 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4678 timeout_ns = udev->u1_params.sel * 3; 4679 break; 4680 } 4681 /* Otherwise the calculation is the same as isoc eps */ 4682 fallthrough; 4683 case USB_ENDPOINT_XFER_ISOC: 4684 timeout_ns = xhci_service_interval_to_ns(desc); 4685 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4686 if (timeout_ns < udev->u1_params.sel * 2) 4687 timeout_ns = udev->u1_params.sel * 2; 4688 break; 4689 default: 4690 return 0; 4691 } 4692 4693 return timeout_ns; 4694 } 4695 4696 /* Returns the hub-encoded U1 timeout value. */ 4697 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4698 struct usb_device *udev, 4699 struct usb_endpoint_descriptor *desc) 4700 { 4701 unsigned long long timeout_ns; 4702 4703 if (xhci->quirks & XHCI_INTEL_HOST) 4704 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4705 else 4706 timeout_ns = udev->u1_params.sel; 4707 4708 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4709 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4710 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4711 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4712 return USB3_LPM_DISABLED; 4713 } 4714 } 4715 4716 /* The U1 timeout is encoded in 1us intervals. 4717 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4718 */ 4719 if (timeout_ns == USB3_LPM_DISABLED) 4720 timeout_ns = 1; 4721 else 4722 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4723 4724 /* If the necessary timeout value is bigger than what we can set in the 4725 * USB 3.0 hub, we have to disable hub-initiated U1. 4726 */ 4727 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4728 return timeout_ns; 4729 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4730 "due to long timeout %llu ms\n", timeout_ns); 4731 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4732 } 4733 4734 /* The U2 timeout should be the maximum of: 4735 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4736 * - largest bInterval of any active periodic endpoint (to avoid going 4737 * into lower power link states between intervals). 4738 * - the U2 Exit Latency of the device 4739 */ 4740 static unsigned long long xhci_calculate_intel_u2_timeout( 4741 struct usb_device *udev, 4742 struct usb_endpoint_descriptor *desc) 4743 { 4744 unsigned long long timeout_ns; 4745 unsigned long long u2_del_ns; 4746 4747 timeout_ns = 10 * 1000 * 1000; 4748 4749 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4750 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4751 timeout_ns = xhci_service_interval_to_ns(desc); 4752 4753 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4754 if (u2_del_ns > timeout_ns) 4755 timeout_ns = u2_del_ns; 4756 4757 return timeout_ns; 4758 } 4759 4760 /* Returns the hub-encoded U2 timeout value. */ 4761 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4762 struct usb_device *udev, 4763 struct usb_endpoint_descriptor *desc) 4764 { 4765 unsigned long long timeout_ns; 4766 4767 if (xhci->quirks & XHCI_INTEL_HOST) 4768 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4769 else 4770 timeout_ns = udev->u2_params.sel; 4771 4772 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4773 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4774 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4775 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4776 return USB3_LPM_DISABLED; 4777 } 4778 } 4779 4780 /* The U2 timeout is encoded in 256us intervals */ 4781 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4782 /* If the necessary timeout value is bigger than what we can set in the 4783 * USB 3.0 hub, we have to disable hub-initiated U2. 4784 */ 4785 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4786 return timeout_ns; 4787 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4788 "due to long timeout %llu ms\n", timeout_ns); 4789 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4790 } 4791 4792 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4793 struct usb_device *udev, 4794 struct usb_endpoint_descriptor *desc, 4795 enum usb3_link_state state, 4796 u16 *timeout) 4797 { 4798 if (state == USB3_LPM_U1) 4799 return xhci_calculate_u1_timeout(xhci, udev, desc); 4800 else if (state == USB3_LPM_U2) 4801 return xhci_calculate_u2_timeout(xhci, udev, desc); 4802 4803 return USB3_LPM_DISABLED; 4804 } 4805 4806 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4807 struct usb_device *udev, 4808 struct usb_endpoint_descriptor *desc, 4809 enum usb3_link_state state, 4810 u16 *timeout) 4811 { 4812 u16 alt_timeout; 4813 4814 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4815 desc, state, timeout); 4816 4817 /* If we found we can't enable hub-initiated LPM, and 4818 * the U1 or U2 exit latency was too high to allow 4819 * device-initiated LPM as well, then we will disable LPM 4820 * for this device, so stop searching any further. 4821 */ 4822 if (alt_timeout == USB3_LPM_DISABLED) { 4823 *timeout = alt_timeout; 4824 return -E2BIG; 4825 } 4826 if (alt_timeout > *timeout) 4827 *timeout = alt_timeout; 4828 return 0; 4829 } 4830 4831 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4832 struct usb_device *udev, 4833 struct usb_host_interface *alt, 4834 enum usb3_link_state state, 4835 u16 *timeout) 4836 { 4837 int j; 4838 4839 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4840 if (xhci_update_timeout_for_endpoint(xhci, udev, 4841 &alt->endpoint[j].desc, state, timeout)) 4842 return -E2BIG; 4843 continue; 4844 } 4845 return 0; 4846 } 4847 4848 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4849 enum usb3_link_state state) 4850 { 4851 struct usb_device *parent; 4852 unsigned int num_hubs; 4853 4854 if (state == USB3_LPM_U2) 4855 return 0; 4856 4857 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4858 for (parent = udev->parent, num_hubs = 0; parent->parent; 4859 parent = parent->parent) 4860 num_hubs++; 4861 4862 if (num_hubs < 2) 4863 return 0; 4864 4865 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4866 " below second-tier hub.\n"); 4867 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4868 "to decrease power consumption.\n"); 4869 return -E2BIG; 4870 } 4871 4872 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4873 struct usb_device *udev, 4874 enum usb3_link_state state) 4875 { 4876 if (xhci->quirks & XHCI_INTEL_HOST) 4877 return xhci_check_intel_tier_policy(udev, state); 4878 else 4879 return 0; 4880 } 4881 4882 /* Returns the U1 or U2 timeout that should be enabled. 4883 * If the tier check or timeout setting functions return with a non-zero exit 4884 * code, that means the timeout value has been finalized and we shouldn't look 4885 * at any more endpoints. 4886 */ 4887 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4888 struct usb_device *udev, enum usb3_link_state state) 4889 { 4890 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4891 struct usb_host_config *config; 4892 char *state_name; 4893 int i; 4894 u16 timeout = USB3_LPM_DISABLED; 4895 4896 if (state == USB3_LPM_U1) 4897 state_name = "U1"; 4898 else if (state == USB3_LPM_U2) 4899 state_name = "U2"; 4900 else { 4901 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4902 state); 4903 return timeout; 4904 } 4905 4906 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4907 return timeout; 4908 4909 /* Gather some information about the currently installed configuration 4910 * and alternate interface settings. 4911 */ 4912 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4913 state, &timeout)) 4914 return timeout; 4915 4916 config = udev->actconfig; 4917 if (!config) 4918 return timeout; 4919 4920 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4921 struct usb_driver *driver; 4922 struct usb_interface *intf = config->interface[i]; 4923 4924 if (!intf) 4925 continue; 4926 4927 /* Check if any currently bound drivers want hub-initiated LPM 4928 * disabled. 4929 */ 4930 if (intf->dev.driver) { 4931 driver = to_usb_driver(intf->dev.driver); 4932 if (driver && driver->disable_hub_initiated_lpm) { 4933 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4934 state_name, driver->name); 4935 timeout = xhci_get_timeout_no_hub_lpm(udev, 4936 state); 4937 if (timeout == USB3_LPM_DISABLED) 4938 return timeout; 4939 } 4940 } 4941 4942 /* Not sure how this could happen... */ 4943 if (!intf->cur_altsetting) 4944 continue; 4945 4946 if (xhci_update_timeout_for_interface(xhci, udev, 4947 intf->cur_altsetting, 4948 state, &timeout)) 4949 return timeout; 4950 } 4951 return timeout; 4952 } 4953 4954 static int calculate_max_exit_latency(struct usb_device *udev, 4955 enum usb3_link_state state_changed, 4956 u16 hub_encoded_timeout) 4957 { 4958 unsigned long long u1_mel_us = 0; 4959 unsigned long long u2_mel_us = 0; 4960 unsigned long long mel_us = 0; 4961 bool disabling_u1; 4962 bool disabling_u2; 4963 bool enabling_u1; 4964 bool enabling_u2; 4965 4966 disabling_u1 = (state_changed == USB3_LPM_U1 && 4967 hub_encoded_timeout == USB3_LPM_DISABLED); 4968 disabling_u2 = (state_changed == USB3_LPM_U2 && 4969 hub_encoded_timeout == USB3_LPM_DISABLED); 4970 4971 enabling_u1 = (state_changed == USB3_LPM_U1 && 4972 hub_encoded_timeout != USB3_LPM_DISABLED); 4973 enabling_u2 = (state_changed == USB3_LPM_U2 && 4974 hub_encoded_timeout != USB3_LPM_DISABLED); 4975 4976 /* If U1 was already enabled and we're not disabling it, 4977 * or we're going to enable U1, account for the U1 max exit latency. 4978 */ 4979 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4980 enabling_u1) 4981 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4982 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4983 enabling_u2) 4984 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4985 4986 if (u1_mel_us > u2_mel_us) 4987 mel_us = u1_mel_us; 4988 else 4989 mel_us = u2_mel_us; 4990 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4991 if (mel_us > MAX_EXIT) { 4992 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4993 "is too big.\n", mel_us); 4994 return -E2BIG; 4995 } 4996 return mel_us; 4997 } 4998 4999 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5000 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5001 struct usb_device *udev, enum usb3_link_state state) 5002 { 5003 struct xhci_hcd *xhci; 5004 u16 hub_encoded_timeout; 5005 int mel; 5006 int ret; 5007 5008 xhci = hcd_to_xhci(hcd); 5009 /* The LPM timeout values are pretty host-controller specific, so don't 5010 * enable hub-initiated timeouts unless the vendor has provided 5011 * information about their timeout algorithm. 5012 */ 5013 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5014 !xhci->devs[udev->slot_id]) 5015 return USB3_LPM_DISABLED; 5016 5017 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5018 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5019 if (mel < 0) { 5020 /* Max Exit Latency is too big, disable LPM. */ 5021 hub_encoded_timeout = USB3_LPM_DISABLED; 5022 mel = 0; 5023 } 5024 5025 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5026 if (ret) 5027 return ret; 5028 return hub_encoded_timeout; 5029 } 5030 5031 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5032 struct usb_device *udev, enum usb3_link_state state) 5033 { 5034 struct xhci_hcd *xhci; 5035 u16 mel; 5036 5037 xhci = hcd_to_xhci(hcd); 5038 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5039 !xhci->devs[udev->slot_id]) 5040 return 0; 5041 5042 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5043 return xhci_change_max_exit_latency(xhci, udev, mel); 5044 } 5045 #else /* CONFIG_PM */ 5046 5047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5048 struct usb_device *udev, int enable) 5049 { 5050 return 0; 5051 } 5052 5053 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5054 { 5055 return 0; 5056 } 5057 5058 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5059 struct usb_device *udev, enum usb3_link_state state) 5060 { 5061 return USB3_LPM_DISABLED; 5062 } 5063 5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5065 struct usb_device *udev, enum usb3_link_state state) 5066 { 5067 return 0; 5068 } 5069 #endif /* CONFIG_PM */ 5070 5071 /*-------------------------------------------------------------------------*/ 5072 5073 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5074 * internal data structures for the device. 5075 */ 5076 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5077 struct usb_tt *tt, gfp_t mem_flags) 5078 { 5079 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5080 struct xhci_virt_device *vdev; 5081 struct xhci_command *config_cmd; 5082 struct xhci_input_control_ctx *ctrl_ctx; 5083 struct xhci_slot_ctx *slot_ctx; 5084 unsigned long flags; 5085 unsigned think_time; 5086 int ret; 5087 5088 /* Ignore root hubs */ 5089 if (!hdev->parent) 5090 return 0; 5091 5092 vdev = xhci->devs[hdev->slot_id]; 5093 if (!vdev) { 5094 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5095 return -EINVAL; 5096 } 5097 5098 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5099 if (!config_cmd) 5100 return -ENOMEM; 5101 5102 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5103 if (!ctrl_ctx) { 5104 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5105 __func__); 5106 xhci_free_command(xhci, config_cmd); 5107 return -ENOMEM; 5108 } 5109 5110 spin_lock_irqsave(&xhci->lock, flags); 5111 if (hdev->speed == USB_SPEED_HIGH && 5112 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5113 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5114 xhci_free_command(xhci, config_cmd); 5115 spin_unlock_irqrestore(&xhci->lock, flags); 5116 return -ENOMEM; 5117 } 5118 5119 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5120 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5121 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5122 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5123 /* 5124 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5125 * but it may be already set to 1 when setup an xHCI virtual 5126 * device, so clear it anyway. 5127 */ 5128 if (tt->multi) 5129 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5130 else if (hdev->speed == USB_SPEED_FULL) 5131 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5132 5133 if (xhci->hci_version > 0x95) { 5134 xhci_dbg(xhci, "xHCI version %x needs hub " 5135 "TT think time and number of ports\n", 5136 (unsigned int) xhci->hci_version); 5137 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5138 /* Set TT think time - convert from ns to FS bit times. 5139 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5140 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5141 * 5142 * xHCI 1.0: this field shall be 0 if the device is not a 5143 * High-spped hub. 5144 */ 5145 think_time = tt->think_time; 5146 if (think_time != 0) 5147 think_time = (think_time / 666) - 1; 5148 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5149 slot_ctx->tt_info |= 5150 cpu_to_le32(TT_THINK_TIME(think_time)); 5151 } else { 5152 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5153 "TT think time or number of ports\n", 5154 (unsigned int) xhci->hci_version); 5155 } 5156 slot_ctx->dev_state = 0; 5157 spin_unlock_irqrestore(&xhci->lock, flags); 5158 5159 xhci_dbg(xhci, "Set up %s for hub device.\n", 5160 (xhci->hci_version > 0x95) ? 5161 "configure endpoint" : "evaluate context"); 5162 5163 /* Issue and wait for the configure endpoint or 5164 * evaluate context command. 5165 */ 5166 if (xhci->hci_version > 0x95) 5167 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5168 false, false); 5169 else 5170 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5171 true, false); 5172 5173 xhci_free_command(xhci, config_cmd); 5174 return ret; 5175 } 5176 5177 static int xhci_get_frame(struct usb_hcd *hcd) 5178 { 5179 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5180 /* EHCI mods by the periodic size. Why? */ 5181 return readl(&xhci->run_regs->microframe_index) >> 3; 5182 } 5183 5184 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5185 { 5186 struct xhci_hcd *xhci; 5187 /* 5188 * TODO: Check with DWC3 clients for sysdev according to 5189 * quirks 5190 */ 5191 struct device *dev = hcd->self.sysdev; 5192 unsigned int minor_rev; 5193 int retval; 5194 5195 /* Accept arbitrarily long scatter-gather lists */ 5196 hcd->self.sg_tablesize = ~0; 5197 5198 /* support to build packet from discontinuous buffers */ 5199 hcd->self.no_sg_constraint = 1; 5200 5201 /* XHCI controllers don't stop the ep queue on short packets :| */ 5202 hcd->self.no_stop_on_short = 1; 5203 5204 xhci = hcd_to_xhci(hcd); 5205 5206 if (usb_hcd_is_primary_hcd(hcd)) { 5207 xhci->main_hcd = hcd; 5208 xhci->usb2_rhub.hcd = hcd; 5209 /* Mark the first roothub as being USB 2.0. 5210 * The xHCI driver will register the USB 3.0 roothub. 5211 */ 5212 hcd->speed = HCD_USB2; 5213 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5214 /* 5215 * USB 2.0 roothub under xHCI has an integrated TT, 5216 * (rate matching hub) as opposed to having an OHCI/UHCI 5217 * companion controller. 5218 */ 5219 hcd->has_tt = 1; 5220 } else { 5221 /* 5222 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5223 * should return 0x31 for sbrn, or that the minor revision 5224 * is a two digit BCD containig minor and sub-minor numbers. 5225 * This was later clarified in xHCI 1.2. 5226 * 5227 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5228 * minor revision set to 0x1 instead of 0x10. 5229 */ 5230 if (xhci->usb3_rhub.min_rev == 0x1) 5231 minor_rev = 1; 5232 else 5233 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5234 5235 switch (minor_rev) { 5236 case 2: 5237 hcd->speed = HCD_USB32; 5238 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5239 hcd->self.root_hub->rx_lanes = 2; 5240 hcd->self.root_hub->tx_lanes = 2; 5241 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5242 break; 5243 case 1: 5244 hcd->speed = HCD_USB31; 5245 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5246 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5247 break; 5248 } 5249 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5250 minor_rev, 5251 minor_rev ? "Enhanced " : ""); 5252 5253 xhci->usb3_rhub.hcd = hcd; 5254 /* xHCI private pointer was set in xhci_pci_probe for the second 5255 * registered roothub. 5256 */ 5257 return 0; 5258 } 5259 5260 mutex_init(&xhci->mutex); 5261 xhci->cap_regs = hcd->regs; 5262 xhci->op_regs = hcd->regs + 5263 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5264 xhci->run_regs = hcd->regs + 5265 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5266 /* Cache read-only capability registers */ 5267 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5268 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5269 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5270 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5271 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5272 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5273 if (xhci->hci_version > 0x100) 5274 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5275 5276 xhci->quirks |= quirks; 5277 5278 get_quirks(dev, xhci); 5279 5280 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5281 * success event after a short transfer. This quirk will ignore such 5282 * spurious event. 5283 */ 5284 if (xhci->hci_version > 0x96) 5285 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5286 5287 /* Make sure the HC is halted. */ 5288 retval = xhci_halt(xhci); 5289 if (retval) 5290 return retval; 5291 5292 xhci_zero_64b_regs(xhci); 5293 5294 xhci_dbg(xhci, "Resetting HCD\n"); 5295 /* Reset the internal HC memory state and registers. */ 5296 retval = xhci_reset(xhci); 5297 if (retval) 5298 return retval; 5299 xhci_dbg(xhci, "Reset complete\n"); 5300 5301 /* 5302 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5303 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5304 * address memory pointers actually. So, this driver clears the AC64 5305 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5306 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5307 */ 5308 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5309 xhci->hcc_params &= ~BIT(0); 5310 5311 /* Set dma_mask and coherent_dma_mask to 64-bits, 5312 * if xHC supports 64-bit addressing */ 5313 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5314 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5315 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5316 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5317 } else { 5318 /* 5319 * This is to avoid error in cases where a 32-bit USB 5320 * controller is used on a 64-bit capable system. 5321 */ 5322 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5323 if (retval) 5324 return retval; 5325 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5326 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5327 } 5328 5329 xhci_dbg(xhci, "Calling HCD init\n"); 5330 /* Initialize HCD and host controller data structures. */ 5331 retval = xhci_init(hcd); 5332 if (retval) 5333 return retval; 5334 xhci_dbg(xhci, "Called HCD init\n"); 5335 5336 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5337 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5338 5339 return 0; 5340 } 5341 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5342 5343 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5344 struct usb_host_endpoint *ep) 5345 { 5346 struct xhci_hcd *xhci; 5347 struct usb_device *udev; 5348 unsigned int slot_id; 5349 unsigned int ep_index; 5350 unsigned long flags; 5351 5352 xhci = hcd_to_xhci(hcd); 5353 5354 spin_lock_irqsave(&xhci->lock, flags); 5355 udev = (struct usb_device *)ep->hcpriv; 5356 slot_id = udev->slot_id; 5357 ep_index = xhci_get_endpoint_index(&ep->desc); 5358 5359 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5360 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5361 spin_unlock_irqrestore(&xhci->lock, flags); 5362 } 5363 5364 static const struct hc_driver xhci_hc_driver = { 5365 .description = "xhci-hcd", 5366 .product_desc = "xHCI Host Controller", 5367 .hcd_priv_size = sizeof(struct xhci_hcd), 5368 5369 /* 5370 * generic hardware linkage 5371 */ 5372 .irq = xhci_irq, 5373 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5374 HCD_BH, 5375 5376 /* 5377 * basic lifecycle operations 5378 */ 5379 .reset = NULL, /* set in xhci_init_driver() */ 5380 .start = xhci_run, 5381 .stop = xhci_stop, 5382 .shutdown = xhci_shutdown, 5383 5384 /* 5385 * managing i/o requests and associated device resources 5386 */ 5387 .map_urb_for_dma = xhci_map_urb_for_dma, 5388 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5389 .urb_enqueue = xhci_urb_enqueue, 5390 .urb_dequeue = xhci_urb_dequeue, 5391 .alloc_dev = xhci_alloc_dev, 5392 .free_dev = xhci_free_dev, 5393 .alloc_streams = xhci_alloc_streams, 5394 .free_streams = xhci_free_streams, 5395 .add_endpoint = xhci_add_endpoint, 5396 .drop_endpoint = xhci_drop_endpoint, 5397 .endpoint_disable = xhci_endpoint_disable, 5398 .endpoint_reset = xhci_endpoint_reset, 5399 .check_bandwidth = xhci_check_bandwidth, 5400 .reset_bandwidth = xhci_reset_bandwidth, 5401 .address_device = xhci_address_device, 5402 .enable_device = xhci_enable_device, 5403 .update_hub_device = xhci_update_hub_device, 5404 .reset_device = xhci_discover_or_reset_device, 5405 5406 /* 5407 * scheduling support 5408 */ 5409 .get_frame_number = xhci_get_frame, 5410 5411 /* 5412 * root hub support 5413 */ 5414 .hub_control = xhci_hub_control, 5415 .hub_status_data = xhci_hub_status_data, 5416 .bus_suspend = xhci_bus_suspend, 5417 .bus_resume = xhci_bus_resume, 5418 .get_resuming_ports = xhci_get_resuming_ports, 5419 5420 /* 5421 * call back when device connected and addressed 5422 */ 5423 .update_device = xhci_update_device, 5424 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5425 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5426 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5427 .find_raw_port_number = xhci_find_raw_port_number, 5428 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5429 }; 5430 5431 void xhci_init_driver(struct hc_driver *drv, 5432 const struct xhci_driver_overrides *over) 5433 { 5434 BUG_ON(!over); 5435 5436 /* Copy the generic table to drv then apply the overrides */ 5437 *drv = xhci_hc_driver; 5438 5439 if (over) { 5440 drv->hcd_priv_size += over->extra_priv_size; 5441 if (over->reset) 5442 drv->reset = over->reset; 5443 if (over->start) 5444 drv->start = over->start; 5445 if (over->add_endpoint) 5446 drv->add_endpoint = over->add_endpoint; 5447 if (over->drop_endpoint) 5448 drv->drop_endpoint = over->drop_endpoint; 5449 if (over->check_bandwidth) 5450 drv->check_bandwidth = over->check_bandwidth; 5451 if (over->reset_bandwidth) 5452 drv->reset_bandwidth = over->reset_bandwidth; 5453 } 5454 } 5455 EXPORT_SYMBOL_GPL(xhci_init_driver); 5456 5457 MODULE_DESCRIPTION(DRIVER_DESC); 5458 MODULE_AUTHOR(DRIVER_AUTHOR); 5459 MODULE_LICENSE("GPL"); 5460 5461 static int __init xhci_hcd_init(void) 5462 { 5463 /* 5464 * Check the compiler generated sizes of structures that must be laid 5465 * out in specific ways for hardware access. 5466 */ 5467 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5468 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5469 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5470 /* xhci_device_control has eight fields, and also 5471 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5472 */ 5473 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5474 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5475 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5476 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5477 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5478 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5479 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5480 5481 if (usb_disabled()) 5482 return -ENODEV; 5483 5484 xhci_debugfs_create_root(); 5485 5486 return 0; 5487 } 5488 5489 /* 5490 * If an init function is provided, an exit function must also be provided 5491 * to allow module unload. 5492 */ 5493 static void __exit xhci_hcd_fini(void) 5494 { 5495 xhci_debugfs_remove_root(); 5496 } 5497 5498 module_init(xhci_hcd_init); 5499 module_exit(xhci_hcd_fini); 5500