xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 84d517f3)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	if (!strlen(hcd->irq_descr))
394 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 			 hcd->driver->description, hcd->self.busnum);
396 
397 	/* fall back to legacy interrupt*/
398 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 			hcd->irq_descr, hcd);
400 	if (ret) {
401 		xhci_err(xhci, "request interrupt %d failed\n",
402 				pdev->irq);
403 		return ret;
404 	}
405 	hcd->irq = pdev->irq;
406 	return 0;
407 }
408 
409 #else
410 
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	return 0;
414 }
415 
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419 
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423 
424 #endif
425 
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 	struct xhci_hcd *xhci;
429 	struct usb_hcd *hcd;
430 	u32 temp;
431 	int i;
432 
433 	xhci = (struct xhci_hcd *)arg;
434 
435 	for (i = 0; i < xhci->num_usb3_ports; i++) {
436 		temp = readl(xhci->usb3_ports[i]);
437 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 			/*
439 			 * Compliance Mode Detected. Letting USB Core
440 			 * handle the Warm Reset
441 			 */
442 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 					"Compliance mode detected->port %d",
444 					i + 1);
445 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 					"Attempting compliance mode recovery");
447 			hcd = xhci->shared_hcd;
448 
449 			if (hcd->state == HC_STATE_SUSPENDED)
450 				usb_hcd_resume_root_hub(hcd);
451 
452 			usb_hcd_poll_rh_status(hcd);
453 		}
454 	}
455 
456 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 		mod_timer(&xhci->comp_mode_recovery_timer,
458 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460 
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 	xhci->port_status_u0 = 0;
474 	init_timer(&xhci->comp_mode_recovery_timer);
475 
476 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST) {
645 		struct xhci_command *command;
646 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 		if (!command)
648 			return -ENOMEM;
649 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 				TRB_TYPE(TRB_NEC_GET_FW));
651 	}
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"Finished xhci_run for USB2 roothub");
654 	return 0;
655 }
656 
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660 
661 	spin_lock_irq(&xhci->lock);
662 	xhci_halt(xhci);
663 
664 	/* The shared_hcd is going to be deallocated shortly (the USB core only
665 	 * calls this function when allocation fails in usb_add_hcd(), or
666 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667 	 */
668 	xhci->shared_hcd = NULL;
669 	spin_unlock_irq(&xhci->lock);
670 }
671 
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683 	u32 temp;
684 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685 
686 	if (!usb_hcd_is_primary_hcd(hcd)) {
687 		xhci_only_stop_hcd(xhci->shared_hcd);
688 		return;
689 	}
690 
691 	spin_lock_irq(&xhci->lock);
692 	/* Make sure the xHC is halted for a USB3 roothub
693 	 * (xhci_stop() could be called as part of failed init).
694 	 */
695 	xhci_halt(xhci);
696 	xhci_reset(xhci);
697 	spin_unlock_irq(&xhci->lock);
698 
699 	xhci_cleanup_msix(xhci);
700 
701 	/* Deleting Compliance Mode Recovery Timer */
702 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 			(!(xhci_all_ports_seen_u0(xhci)))) {
704 		del_timer_sync(&xhci->comp_mode_recovery_timer);
705 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 				"%s: compliance mode recovery timer deleted",
707 				__func__);
708 	}
709 
710 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 		usb_amd_dev_put();
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"// Disabling event ring interrupts");
715 	temp = readl(&xhci->op_regs->status);
716 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 	temp = readl(&xhci->ir_set->irq_pending);
718 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 	xhci_print_ir_set(xhci, 0);
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 	xhci_mem_cleanup(xhci);
723 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 			"xhci_stop completed - status = %x",
725 			readl(&xhci->op_regs->status));
726 }
727 
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740 
741 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743 
744 	spin_lock_irq(&xhci->lock);
745 	xhci_halt(xhci);
746 	/* Workaround for spurious wakeups at shutdown with HSW */
747 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 		xhci_reset(xhci);
749 	spin_unlock_irq(&xhci->lock);
750 
751 	xhci_cleanup_msix(xhci);
752 
753 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 			"xhci_shutdown completed - status = %x",
755 			readl(&xhci->op_regs->status));
756 
757 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
758 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761 
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765 	xhci->s3.command = readl(&xhci->op_regs->command);
766 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775 
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778 	writel(xhci->s3.command, &xhci->op_regs->command);
779 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788 
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791 	u64	val_64;
792 
793 	/* step 2: initialize command ring buffer */
794 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797 				      xhci->cmd_ring->dequeue) &
798 		 (u64) ~CMD_RING_RSVD_BITS) |
799 		xhci->cmd_ring->cycle_state;
800 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801 			"// Setting command ring address to 0x%llx",
802 			(long unsigned long) val_64);
803 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805 
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817 	struct xhci_ring *ring;
818 	struct xhci_segment *seg;
819 
820 	ring = xhci->cmd_ring;
821 	seg = ring->deq_seg;
822 	do {
823 		memset(seg->trbs, 0,
824 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826 			cpu_to_le32(~TRB_CYCLE);
827 		seg = seg->next;
828 	} while (seg != ring->deq_seg);
829 
830 	/* Reset the software enqueue and dequeue pointers */
831 	ring->deq_seg = ring->first_seg;
832 	ring->dequeue = ring->first_seg->trbs;
833 	ring->enq_seg = ring->deq_seg;
834 	ring->enqueue = ring->dequeue;
835 
836 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 	/*
838 	 * Ring is now zeroed, so the HW should look for change of ownership
839 	 * when the cycle bit is set to 1.
840 	 */
841 	ring->cycle_state = 1;
842 
843 	/*
844 	 * Reset the hardware dequeue pointer.
845 	 * Yes, this will need to be re-written after resume, but we're paranoid
846 	 * and want to make sure the hardware doesn't access bogus memory
847 	 * because, say, the BIOS or an SMI started the host without changing
848 	 * the command ring pointers.
849 	 */
850 	xhci_set_cmd_ring_deq(xhci);
851 }
852 
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861 	int			rc = 0;
862 	unsigned int		delay = XHCI_MAX_HALT_USEC;
863 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
864 	u32			command;
865 
866 	if (hcd->state != HC_STATE_SUSPENDED ||
867 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868 		return -EINVAL;
869 
870 	/* Don't poll the roothubs on bus suspend. */
871 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873 	del_timer_sync(&hcd->rh_timer);
874 
875 	spin_lock_irq(&xhci->lock);
876 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878 	/* step 1: stop endpoint */
879 	/* skipped assuming that port suspend has done */
880 
881 	/* step 2: clear Run/Stop bit */
882 	command = readl(&xhci->op_regs->command);
883 	command &= ~CMD_RUN;
884 	writel(command, &xhci->op_regs->command);
885 
886 	/* Some chips from Fresco Logic need an extraordinary delay */
887 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888 
889 	if (xhci_handshake(xhci, &xhci->op_regs->status,
890 		      STS_HALT, STS_HALT, delay)) {
891 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892 		spin_unlock_irq(&xhci->lock);
893 		return -ETIMEDOUT;
894 	}
895 	xhci_clear_command_ring(xhci);
896 
897 	/* step 3: save registers */
898 	xhci_save_registers(xhci);
899 
900 	/* step 4: set CSS flag */
901 	command = readl(&xhci->op_regs->command);
902 	command |= CMD_CSS;
903 	writel(command, &xhci->op_regs->command);
904 	if (xhci_handshake(xhci, &xhci->op_regs->status,
905 				STS_SAVE, 0, 10 * 1000)) {
906 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
907 		spin_unlock_irq(&xhci->lock);
908 		return -ETIMEDOUT;
909 	}
910 	spin_unlock_irq(&xhci->lock);
911 
912 	/*
913 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
914 	 * is about to be suspended.
915 	 */
916 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917 			(!(xhci_all_ports_seen_u0(xhci)))) {
918 		del_timer_sync(&xhci->comp_mode_recovery_timer);
919 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920 				"%s: compliance mode recovery timer deleted",
921 				__func__);
922 	}
923 
924 	/* step 5: remove core well power */
925 	/* synchronize irq when using MSI-X */
926 	xhci_msix_sync_irqs(xhci);
927 
928 	return rc;
929 }
930 
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 	u32			command, temp = 0;
940 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
941 	struct usb_hcd		*secondary_hcd;
942 	int			retval = 0;
943 	bool			comp_timer_running = false;
944 
945 	/* Wait a bit if either of the roothubs need to settle from the
946 	 * transition into bus suspend.
947 	 */
948 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949 			time_before(jiffies,
950 				xhci->bus_state[1].next_statechange))
951 		msleep(100);
952 
953 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955 
956 	spin_lock_irq(&xhci->lock);
957 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
958 		hibernated = true;
959 
960 	if (!hibernated) {
961 		/* step 1: restore register */
962 		xhci_restore_registers(xhci);
963 		/* step 2: initialize command ring buffer */
964 		xhci_set_cmd_ring_deq(xhci);
965 		/* step 3: restore state and start state*/
966 		/* step 3: set CRS flag */
967 		command = readl(&xhci->op_regs->command);
968 		command |= CMD_CRS;
969 		writel(command, &xhci->op_regs->command);
970 		if (xhci_handshake(xhci, &xhci->op_regs->status,
971 			      STS_RESTORE, 0, 10 * 1000)) {
972 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973 			spin_unlock_irq(&xhci->lock);
974 			return -ETIMEDOUT;
975 		}
976 		temp = readl(&xhci->op_regs->status);
977 	}
978 
979 	/* If restore operation fails, re-initialize the HC during resume */
980 	if ((temp & STS_SRE) || hibernated) {
981 
982 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983 				!(xhci_all_ports_seen_u0(xhci))) {
984 			del_timer_sync(&xhci->comp_mode_recovery_timer);
985 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986 				"Compliance Mode Recovery Timer deleted!");
987 		}
988 
989 		/* Let the USB core know _both_ roothubs lost power. */
990 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992 
993 		xhci_dbg(xhci, "Stop HCD\n");
994 		xhci_halt(xhci);
995 		xhci_reset(xhci);
996 		spin_unlock_irq(&xhci->lock);
997 		xhci_cleanup_msix(xhci);
998 
999 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000 		temp = readl(&xhci->op_regs->status);
1001 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002 		temp = readl(&xhci->ir_set->irq_pending);
1003 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004 		xhci_print_ir_set(xhci, 0);
1005 
1006 		xhci_dbg(xhci, "cleaning up memory\n");
1007 		xhci_mem_cleanup(xhci);
1008 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009 			    readl(&xhci->op_regs->status));
1010 
1011 		/* USB core calls the PCI reinit and start functions twice:
1012 		 * first with the primary HCD, and then with the secondary HCD.
1013 		 * If we don't do the same, the host will never be started.
1014 		 */
1015 		if (!usb_hcd_is_primary_hcd(hcd))
1016 			secondary_hcd = hcd;
1017 		else
1018 			secondary_hcd = xhci->shared_hcd;
1019 
1020 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021 		retval = xhci_init(hcd->primary_hcd);
1022 		if (retval)
1023 			return retval;
1024 		comp_timer_running = true;
1025 
1026 		xhci_dbg(xhci, "Start the primary HCD\n");
1027 		retval = xhci_run(hcd->primary_hcd);
1028 		if (!retval) {
1029 			xhci_dbg(xhci, "Start the secondary HCD\n");
1030 			retval = xhci_run(secondary_hcd);
1031 		}
1032 		hcd->state = HC_STATE_SUSPENDED;
1033 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034 		goto done;
1035 	}
1036 
1037 	/* step 4: set Run/Stop bit */
1038 	command = readl(&xhci->op_regs->command);
1039 	command |= CMD_RUN;
1040 	writel(command, &xhci->op_regs->command);
1041 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042 		  0, 250 * 1000);
1043 
1044 	/* step 5: walk topology and initialize portsc,
1045 	 * portpmsc and portli
1046 	 */
1047 	/* this is done in bus_resume */
1048 
1049 	/* step 6: restart each of the previously
1050 	 * Running endpoints by ringing their doorbells
1051 	 */
1052 
1053 	spin_unlock_irq(&xhci->lock);
1054 
1055  done:
1056 	if (retval == 0) {
1057 		usb_hcd_resume_root_hub(hcd);
1058 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1059 	}
1060 
1061 	/*
1062 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1063 	 * be re-initialized Always after a system resume. Ports are subject
1064 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1065 	 * ports have entered previously to U0 before system's suspension.
1066 	 */
1067 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1068 		compliance_mode_recovery_timer_init(xhci);
1069 
1070 	/* Re-enable port polling. */
1071 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1072 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1073 	usb_hcd_poll_rh_status(hcd);
1074 
1075 	return retval;
1076 }
1077 #endif	/* CONFIG_PM */
1078 
1079 /*-------------------------------------------------------------------------*/
1080 
1081 /**
1082  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1083  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1084  * value to right shift 1 for the bitmask.
1085  *
1086  * Index  = (epnum * 2) + direction - 1,
1087  * where direction = 0 for OUT, 1 for IN.
1088  * For control endpoints, the IN index is used (OUT index is unused), so
1089  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1090  */
1091 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1092 {
1093 	unsigned int index;
1094 	if (usb_endpoint_xfer_control(desc))
1095 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1096 	else
1097 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1098 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1099 	return index;
1100 }
1101 
1102 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1103  * address from the XHCI endpoint index.
1104  */
1105 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1106 {
1107 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1108 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1109 	return direction | number;
1110 }
1111 
1112 /* Find the flag for this endpoint (for use in the control context).  Use the
1113  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1114  * bit 1, etc.
1115  */
1116 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1117 {
1118 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1119 }
1120 
1121 /* Find the flag for this endpoint (for use in the control context).  Use the
1122  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1123  * bit 1, etc.
1124  */
1125 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1126 {
1127 	return 1 << (ep_index + 1);
1128 }
1129 
1130 /* Compute the last valid endpoint context index.  Basically, this is the
1131  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1132  * we find the most significant bit set in the added contexts flags.
1133  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1134  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1135  */
1136 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1137 {
1138 	return fls(added_ctxs) - 1;
1139 }
1140 
1141 /* Returns 1 if the arguments are OK;
1142  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1143  */
1144 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1145 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1146 		const char *func) {
1147 	struct xhci_hcd	*xhci;
1148 	struct xhci_virt_device	*virt_dev;
1149 
1150 	if (!hcd || (check_ep && !ep) || !udev) {
1151 		pr_debug("xHCI %s called with invalid args\n", func);
1152 		return -EINVAL;
1153 	}
1154 	if (!udev->parent) {
1155 		pr_debug("xHCI %s called for root hub\n", func);
1156 		return 0;
1157 	}
1158 
1159 	xhci = hcd_to_xhci(hcd);
1160 	if (check_virt_dev) {
1161 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1162 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1163 					func);
1164 			return -EINVAL;
1165 		}
1166 
1167 		virt_dev = xhci->devs[udev->slot_id];
1168 		if (virt_dev->udev != udev) {
1169 			xhci_dbg(xhci, "xHCI %s called with udev and "
1170 					  "virt_dev does not match\n", func);
1171 			return -EINVAL;
1172 		}
1173 	}
1174 
1175 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1176 		return -ENODEV;
1177 
1178 	return 1;
1179 }
1180 
1181 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1182 		struct usb_device *udev, struct xhci_command *command,
1183 		bool ctx_change, bool must_succeed);
1184 
1185 /*
1186  * Full speed devices may have a max packet size greater than 8 bytes, but the
1187  * USB core doesn't know that until it reads the first 8 bytes of the
1188  * descriptor.  If the usb_device's max packet size changes after that point,
1189  * we need to issue an evaluate context command and wait on it.
1190  */
1191 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1192 		unsigned int ep_index, struct urb *urb)
1193 {
1194 	struct xhci_container_ctx *out_ctx;
1195 	struct xhci_input_control_ctx *ctrl_ctx;
1196 	struct xhci_ep_ctx *ep_ctx;
1197 	struct xhci_command *command;
1198 	int max_packet_size;
1199 	int hw_max_packet_size;
1200 	int ret = 0;
1201 
1202 	out_ctx = xhci->devs[slot_id]->out_ctx;
1203 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1204 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1205 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1206 	if (hw_max_packet_size != max_packet_size) {
1207 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1208 				"Max Packet Size for ep 0 changed.");
1209 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1210 				"Max packet size in usb_device = %d",
1211 				max_packet_size);
1212 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1213 				"Max packet size in xHCI HW = %d",
1214 				hw_max_packet_size);
1215 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1216 				"Issuing evaluate context command.");
1217 
1218 		/* Set up the input context flags for the command */
1219 		/* FIXME: This won't work if a non-default control endpoint
1220 		 * changes max packet sizes.
1221 		 */
1222 
1223 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1224 		if (!command)
1225 			return -ENOMEM;
1226 
1227 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1228 		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1229 		if (!ctrl_ctx) {
1230 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1231 					__func__);
1232 			ret = -ENOMEM;
1233 			goto command_cleanup;
1234 		}
1235 		/* Set up the modified control endpoint 0 */
1236 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1237 				xhci->devs[slot_id]->out_ctx, ep_index);
1238 
1239 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1240 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1241 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1242 
1243 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1244 		ctrl_ctx->drop_flags = 0;
1245 
1246 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1247 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1248 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1249 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1250 
1251 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1252 				true, false);
1253 
1254 		/* Clean up the input context for later use by bandwidth
1255 		 * functions.
1256 		 */
1257 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1258 command_cleanup:
1259 		kfree(command->completion);
1260 		kfree(command);
1261 	}
1262 	return ret;
1263 }
1264 
1265 /*
1266  * non-error returns are a promise to giveback() the urb later
1267  * we drop ownership so next owner (or urb unlink) can get it
1268  */
1269 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1270 {
1271 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1272 	struct xhci_td *buffer;
1273 	unsigned long flags;
1274 	int ret = 0;
1275 	unsigned int slot_id, ep_index;
1276 	struct urb_priv	*urb_priv;
1277 	int size, i;
1278 
1279 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1280 					true, true, __func__) <= 0)
1281 		return -EINVAL;
1282 
1283 	slot_id = urb->dev->slot_id;
1284 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1285 
1286 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1287 		if (!in_interrupt())
1288 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1289 		ret = -ESHUTDOWN;
1290 		goto exit;
1291 	}
1292 
1293 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1294 		size = urb->number_of_packets;
1295 	else
1296 		size = 1;
1297 
1298 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1299 				  size * sizeof(struct xhci_td *), mem_flags);
1300 	if (!urb_priv)
1301 		return -ENOMEM;
1302 
1303 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1304 	if (!buffer) {
1305 		kfree(urb_priv);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	for (i = 0; i < size; i++) {
1310 		urb_priv->td[i] = buffer;
1311 		buffer++;
1312 	}
1313 
1314 	urb_priv->length = size;
1315 	urb_priv->td_cnt = 0;
1316 	urb->hcpriv = urb_priv;
1317 
1318 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1319 		/* Check to see if the max packet size for the default control
1320 		 * endpoint changed during FS device enumeration
1321 		 */
1322 		if (urb->dev->speed == USB_SPEED_FULL) {
1323 			ret = xhci_check_maxpacket(xhci, slot_id,
1324 					ep_index, urb);
1325 			if (ret < 0) {
1326 				xhci_urb_free_priv(xhci, urb_priv);
1327 				urb->hcpriv = NULL;
1328 				return ret;
1329 			}
1330 		}
1331 
1332 		/* We have a spinlock and interrupts disabled, so we must pass
1333 		 * atomic context to this function, which may allocate memory.
1334 		 */
1335 		spin_lock_irqsave(&xhci->lock, flags);
1336 		if (xhci->xhc_state & XHCI_STATE_DYING)
1337 			goto dying;
1338 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1339 				slot_id, ep_index);
1340 		if (ret)
1341 			goto free_priv;
1342 		spin_unlock_irqrestore(&xhci->lock, flags);
1343 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1344 		spin_lock_irqsave(&xhci->lock, flags);
1345 		if (xhci->xhc_state & XHCI_STATE_DYING)
1346 			goto dying;
1347 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348 				EP_GETTING_STREAMS) {
1349 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350 					"is transitioning to using streams.\n");
1351 			ret = -EINVAL;
1352 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1353 				EP_GETTING_NO_STREAMS) {
1354 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1355 					"is transitioning to "
1356 					"not having streams.\n");
1357 			ret = -EINVAL;
1358 		} else {
1359 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1360 					slot_id, ep_index);
1361 		}
1362 		if (ret)
1363 			goto free_priv;
1364 		spin_unlock_irqrestore(&xhci->lock, flags);
1365 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1366 		spin_lock_irqsave(&xhci->lock, flags);
1367 		if (xhci->xhc_state & XHCI_STATE_DYING)
1368 			goto dying;
1369 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1370 				slot_id, ep_index);
1371 		if (ret)
1372 			goto free_priv;
1373 		spin_unlock_irqrestore(&xhci->lock, flags);
1374 	} else {
1375 		spin_lock_irqsave(&xhci->lock, flags);
1376 		if (xhci->xhc_state & XHCI_STATE_DYING)
1377 			goto dying;
1378 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1379 				slot_id, ep_index);
1380 		if (ret)
1381 			goto free_priv;
1382 		spin_unlock_irqrestore(&xhci->lock, flags);
1383 	}
1384 exit:
1385 	return ret;
1386 dying:
1387 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1388 			"non-responsive xHCI host.\n",
1389 			urb->ep->desc.bEndpointAddress, urb);
1390 	ret = -ESHUTDOWN;
1391 free_priv:
1392 	xhci_urb_free_priv(xhci, urb_priv);
1393 	urb->hcpriv = NULL;
1394 	spin_unlock_irqrestore(&xhci->lock, flags);
1395 	return ret;
1396 }
1397 
1398 /* Get the right ring for the given URB.
1399  * If the endpoint supports streams, boundary check the URB's stream ID.
1400  * If the endpoint doesn't support streams, return the singular endpoint ring.
1401  */
1402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1403 		struct urb *urb)
1404 {
1405 	unsigned int slot_id;
1406 	unsigned int ep_index;
1407 	unsigned int stream_id;
1408 	struct xhci_virt_ep *ep;
1409 
1410 	slot_id = urb->dev->slot_id;
1411 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1412 	stream_id = urb->stream_id;
1413 	ep = &xhci->devs[slot_id]->eps[ep_index];
1414 	/* Common case: no streams */
1415 	if (!(ep->ep_state & EP_HAS_STREAMS))
1416 		return ep->ring;
1417 
1418 	if (stream_id == 0) {
1419 		xhci_warn(xhci,
1420 				"WARN: Slot ID %u, ep index %u has streams, "
1421 				"but URB has no stream ID.\n",
1422 				slot_id, ep_index);
1423 		return NULL;
1424 	}
1425 
1426 	if (stream_id < ep->stream_info->num_streams)
1427 		return ep->stream_info->stream_rings[stream_id];
1428 
1429 	xhci_warn(xhci,
1430 			"WARN: Slot ID %u, ep index %u has "
1431 			"stream IDs 1 to %u allocated, "
1432 			"but stream ID %u is requested.\n",
1433 			slot_id, ep_index,
1434 			ep->stream_info->num_streams - 1,
1435 			stream_id);
1436 	return NULL;
1437 }
1438 
1439 /*
1440  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1441  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1442  * should pick up where it left off in the TD, unless a Set Transfer Ring
1443  * Dequeue Pointer is issued.
1444  *
1445  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1446  * the ring.  Since the ring is a contiguous structure, they can't be physically
1447  * removed.  Instead, there are two options:
1448  *
1449  *  1) If the HC is in the middle of processing the URB to be canceled, we
1450  *     simply move the ring's dequeue pointer past those TRBs using the Set
1451  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1452  *     when drivers timeout on the last submitted URB and attempt to cancel.
1453  *
1454  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1455  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1456  *     HC will need to invalidate the any TRBs it has cached after the stop
1457  *     endpoint command, as noted in the xHCI 0.95 errata.
1458  *
1459  *  3) The TD may have completed by the time the Stop Endpoint Command
1460  *     completes, so software needs to handle that case too.
1461  *
1462  * This function should protect against the TD enqueueing code ringing the
1463  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1464  * It also needs to account for multiple cancellations on happening at the same
1465  * time for the same endpoint.
1466  *
1467  * Note that this function can be called in any context, or so says
1468  * usb_hcd_unlink_urb()
1469  */
1470 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1471 {
1472 	unsigned long flags;
1473 	int ret, i;
1474 	u32 temp;
1475 	struct xhci_hcd *xhci;
1476 	struct urb_priv	*urb_priv;
1477 	struct xhci_td *td;
1478 	unsigned int ep_index;
1479 	struct xhci_ring *ep_ring;
1480 	struct xhci_virt_ep *ep;
1481 	struct xhci_command *command;
1482 
1483 	xhci = hcd_to_xhci(hcd);
1484 	spin_lock_irqsave(&xhci->lock, flags);
1485 	/* Make sure the URB hasn't completed or been unlinked already */
1486 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1487 	if (ret || !urb->hcpriv)
1488 		goto done;
1489 	temp = readl(&xhci->op_regs->status);
1490 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1491 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1492 				"HW died, freeing TD.");
1493 		urb_priv = urb->hcpriv;
1494 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1495 			td = urb_priv->td[i];
1496 			if (!list_empty(&td->td_list))
1497 				list_del_init(&td->td_list);
1498 			if (!list_empty(&td->cancelled_td_list))
1499 				list_del_init(&td->cancelled_td_list);
1500 		}
1501 
1502 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1503 		spin_unlock_irqrestore(&xhci->lock, flags);
1504 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1505 		xhci_urb_free_priv(xhci, urb_priv);
1506 		return ret;
1507 	}
1508 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1509 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1510 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1511 				"Ep 0x%x: URB %p to be canceled on "
1512 				"non-responsive xHCI host.",
1513 				urb->ep->desc.bEndpointAddress, urb);
1514 		/* Let the stop endpoint command watchdog timer (which set this
1515 		 * state) finish cleaning up the endpoint TD lists.  We must
1516 		 * have caught it in the middle of dropping a lock and giving
1517 		 * back an URB.
1518 		 */
1519 		goto done;
1520 	}
1521 
1522 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1524 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1525 	if (!ep_ring) {
1526 		ret = -EINVAL;
1527 		goto done;
1528 	}
1529 
1530 	urb_priv = urb->hcpriv;
1531 	i = urb_priv->td_cnt;
1532 	if (i < urb_priv->length)
1533 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1534 				"Cancel URB %p, dev %s, ep 0x%x, "
1535 				"starting at offset 0x%llx",
1536 				urb, urb->dev->devpath,
1537 				urb->ep->desc.bEndpointAddress,
1538 				(unsigned long long) xhci_trb_virt_to_dma(
1539 					urb_priv->td[i]->start_seg,
1540 					urb_priv->td[i]->first_trb));
1541 
1542 	for (; i < urb_priv->length; i++) {
1543 		td = urb_priv->td[i];
1544 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1545 	}
1546 
1547 	/* Queue a stop endpoint command, but only if this is
1548 	 * the first cancellation to be handled.
1549 	 */
1550 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1551 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1552 		ep->ep_state |= EP_HALT_PENDING;
1553 		ep->stop_cmds_pending++;
1554 		ep->stop_cmd_timer.expires = jiffies +
1555 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1556 		add_timer(&ep->stop_cmd_timer);
1557 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1558 					 ep_index, 0);
1559 		xhci_ring_cmd_db(xhci);
1560 	}
1561 done:
1562 	spin_unlock_irqrestore(&xhci->lock, flags);
1563 	return ret;
1564 }
1565 
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567  * Only one call to this function is allowed per endpoint before
1568  * check_bandwidth() or reset_bandwidth() must be called.
1569  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570  * add the endpoint to the schedule with possibly new parameters denoted by a
1571  * different endpoint descriptor in usb_host_endpoint.
1572  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1573  * not allowed.
1574  *
1575  * The USB core will not allow URBs to be queued to an endpoint that is being
1576  * disabled, so there's no need for mutual exclusion to protect
1577  * the xhci->devs[slot_id] structure.
1578  */
1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1580 		struct usb_host_endpoint *ep)
1581 {
1582 	struct xhci_hcd *xhci;
1583 	struct xhci_container_ctx *in_ctx, *out_ctx;
1584 	struct xhci_input_control_ctx *ctrl_ctx;
1585 	struct xhci_slot_ctx *slot_ctx;
1586 	unsigned int last_ctx;
1587 	unsigned int ep_index;
1588 	struct xhci_ep_ctx *ep_ctx;
1589 	u32 drop_flag;
1590 	u32 new_add_flags, new_drop_flags, new_slot_info;
1591 	int ret;
1592 
1593 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1594 	if (ret <= 0)
1595 		return ret;
1596 	xhci = hcd_to_xhci(hcd);
1597 	if (xhci->xhc_state & XHCI_STATE_DYING)
1598 		return -ENODEV;
1599 
1600 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1601 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1602 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1603 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1604 				__func__, drop_flag);
1605 		return 0;
1606 	}
1607 
1608 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1609 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1610 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1611 	if (!ctrl_ctx) {
1612 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1613 				__func__);
1614 		return 0;
1615 	}
1616 
1617 	ep_index = xhci_get_endpoint_index(&ep->desc);
1618 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1619 	/* If the HC already knows the endpoint is disabled,
1620 	 * or the HCD has noted it is disabled, ignore this request
1621 	 */
1622 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1623 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1624 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1625 	    xhci_get_endpoint_flag(&ep->desc)) {
1626 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1627 				__func__, ep);
1628 		return 0;
1629 	}
1630 
1631 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1632 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1633 
1634 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1635 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1636 
1637 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1638 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1639 	/* Update the last valid endpoint context, if we deleted the last one */
1640 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1641 	    LAST_CTX(last_ctx)) {
1642 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1643 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1644 	}
1645 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1646 
1647 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1648 
1649 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1650 			(unsigned int) ep->desc.bEndpointAddress,
1651 			udev->slot_id,
1652 			(unsigned int) new_drop_flags,
1653 			(unsigned int) new_add_flags,
1654 			(unsigned int) new_slot_info);
1655 	return 0;
1656 }
1657 
1658 /* Add an endpoint to a new possible bandwidth configuration for this device.
1659  * Only one call to this function is allowed per endpoint before
1660  * check_bandwidth() or reset_bandwidth() must be called.
1661  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1662  * add the endpoint to the schedule with possibly new parameters denoted by a
1663  * different endpoint descriptor in usb_host_endpoint.
1664  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1665  * not allowed.
1666  *
1667  * The USB core will not allow URBs to be queued to an endpoint until the
1668  * configuration or alt setting is installed in the device, so there's no need
1669  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1670  */
1671 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1672 		struct usb_host_endpoint *ep)
1673 {
1674 	struct xhci_hcd *xhci;
1675 	struct xhci_container_ctx *in_ctx, *out_ctx;
1676 	unsigned int ep_index;
1677 	struct xhci_slot_ctx *slot_ctx;
1678 	struct xhci_input_control_ctx *ctrl_ctx;
1679 	u32 added_ctxs;
1680 	unsigned int last_ctx;
1681 	u32 new_add_flags, new_drop_flags, new_slot_info;
1682 	struct xhci_virt_device *virt_dev;
1683 	int ret = 0;
1684 
1685 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1686 	if (ret <= 0) {
1687 		/* So we won't queue a reset ep command for a root hub */
1688 		ep->hcpriv = NULL;
1689 		return ret;
1690 	}
1691 	xhci = hcd_to_xhci(hcd);
1692 	if (xhci->xhc_state & XHCI_STATE_DYING)
1693 		return -ENODEV;
1694 
1695 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1696 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1697 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1698 		/* FIXME when we have to issue an evaluate endpoint command to
1699 		 * deal with ep0 max packet size changing once we get the
1700 		 * descriptors
1701 		 */
1702 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1703 				__func__, added_ctxs);
1704 		return 0;
1705 	}
1706 
1707 	virt_dev = xhci->devs[udev->slot_id];
1708 	in_ctx = virt_dev->in_ctx;
1709 	out_ctx = virt_dev->out_ctx;
1710 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1711 	if (!ctrl_ctx) {
1712 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1713 				__func__);
1714 		return 0;
1715 	}
1716 
1717 	ep_index = xhci_get_endpoint_index(&ep->desc);
1718 	/* If this endpoint is already in use, and the upper layers are trying
1719 	 * to add it again without dropping it, reject the addition.
1720 	 */
1721 	if (virt_dev->eps[ep_index].ring &&
1722 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1723 				xhci_get_endpoint_flag(&ep->desc))) {
1724 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1725 				"without dropping it.\n",
1726 				(unsigned int) ep->desc.bEndpointAddress);
1727 		return -EINVAL;
1728 	}
1729 
1730 	/* If the HCD has already noted the endpoint is enabled,
1731 	 * ignore this request.
1732 	 */
1733 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1734 	    xhci_get_endpoint_flag(&ep->desc)) {
1735 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1736 				__func__, ep);
1737 		return 0;
1738 	}
1739 
1740 	/*
1741 	 * Configuration and alternate setting changes must be done in
1742 	 * process context, not interrupt context (or so documenation
1743 	 * for usb_set_interface() and usb_set_configuration() claim).
1744 	 */
1745 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1746 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1747 				__func__, ep->desc.bEndpointAddress);
1748 		return -ENOMEM;
1749 	}
1750 
1751 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1752 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1753 
1754 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1755 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1756 	 * this re-adds a new state for the endpoint from the new endpoint
1757 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1758 	 * drop flags alone.
1759 	 */
1760 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1761 
1762 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1763 	/* Update the last valid endpoint context, if we just added one past */
1764 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1765 	    LAST_CTX(last_ctx)) {
1766 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1767 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1768 	}
1769 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1770 
1771 	/* Store the usb_device pointer for later use */
1772 	ep->hcpriv = udev;
1773 
1774 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1775 			(unsigned int) ep->desc.bEndpointAddress,
1776 			udev->slot_id,
1777 			(unsigned int) new_drop_flags,
1778 			(unsigned int) new_add_flags,
1779 			(unsigned int) new_slot_info);
1780 	return 0;
1781 }
1782 
1783 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1784 {
1785 	struct xhci_input_control_ctx *ctrl_ctx;
1786 	struct xhci_ep_ctx *ep_ctx;
1787 	struct xhci_slot_ctx *slot_ctx;
1788 	int i;
1789 
1790 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1791 	if (!ctrl_ctx) {
1792 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1793 				__func__);
1794 		return;
1795 	}
1796 
1797 	/* When a device's add flag and drop flag are zero, any subsequent
1798 	 * configure endpoint command will leave that endpoint's state
1799 	 * untouched.  Make sure we don't leave any old state in the input
1800 	 * endpoint contexts.
1801 	 */
1802 	ctrl_ctx->drop_flags = 0;
1803 	ctrl_ctx->add_flags = 0;
1804 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1805 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1806 	/* Endpoint 0 is always valid */
1807 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1808 	for (i = 1; i < 31; ++i) {
1809 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1810 		ep_ctx->ep_info = 0;
1811 		ep_ctx->ep_info2 = 0;
1812 		ep_ctx->deq = 0;
1813 		ep_ctx->tx_info = 0;
1814 	}
1815 }
1816 
1817 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1818 		struct usb_device *udev, u32 *cmd_status)
1819 {
1820 	int ret;
1821 
1822 	switch (*cmd_status) {
1823 	case COMP_CMD_ABORT:
1824 	case COMP_CMD_STOP:
1825 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1826 		ret = -ETIME;
1827 		break;
1828 	case COMP_ENOMEM:
1829 		dev_warn(&udev->dev, "Not enough host controller resources "
1830 				"for new device state.\n");
1831 		ret = -ENOMEM;
1832 		/* FIXME: can we allocate more resources for the HC? */
1833 		break;
1834 	case COMP_BW_ERR:
1835 	case COMP_2ND_BW_ERR:
1836 		dev_warn(&udev->dev, "Not enough bandwidth "
1837 				"for new device state.\n");
1838 		ret = -ENOSPC;
1839 		/* FIXME: can we go back to the old state? */
1840 		break;
1841 	case COMP_TRB_ERR:
1842 		/* the HCD set up something wrong */
1843 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1844 				"add flag = 1, "
1845 				"and endpoint is not disabled.\n");
1846 		ret = -EINVAL;
1847 		break;
1848 	case COMP_DEV_ERR:
1849 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1850 				"configure command.\n");
1851 		ret = -ENODEV;
1852 		break;
1853 	case COMP_SUCCESS:
1854 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855 				"Successful Endpoint Configure command");
1856 		ret = 0;
1857 		break;
1858 	default:
1859 		xhci_err(xhci, "ERROR: unexpected command completion "
1860 				"code 0x%x.\n", *cmd_status);
1861 		ret = -EINVAL;
1862 		break;
1863 	}
1864 	return ret;
1865 }
1866 
1867 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1868 		struct usb_device *udev, u32 *cmd_status)
1869 {
1870 	int ret;
1871 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1872 
1873 	switch (*cmd_status) {
1874 	case COMP_CMD_ABORT:
1875 	case COMP_CMD_STOP:
1876 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1877 		ret = -ETIME;
1878 		break;
1879 	case COMP_EINVAL:
1880 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1881 				"context command.\n");
1882 		ret = -EINVAL;
1883 		break;
1884 	case COMP_EBADSLT:
1885 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1886 				"evaluate context command.\n");
1887 		ret = -EINVAL;
1888 		break;
1889 	case COMP_CTX_STATE:
1890 		dev_warn(&udev->dev, "WARN: invalid context state for "
1891 				"evaluate context command.\n");
1892 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1893 		ret = -EINVAL;
1894 		break;
1895 	case COMP_DEV_ERR:
1896 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1897 				"context command.\n");
1898 		ret = -ENODEV;
1899 		break;
1900 	case COMP_MEL_ERR:
1901 		/* Max Exit Latency too large error */
1902 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1903 		ret = -EINVAL;
1904 		break;
1905 	case COMP_SUCCESS:
1906 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1907 				"Successful evaluate context command");
1908 		ret = 0;
1909 		break;
1910 	default:
1911 		xhci_err(xhci, "ERROR: unexpected command completion "
1912 				"code 0x%x.\n", *cmd_status);
1913 		ret = -EINVAL;
1914 		break;
1915 	}
1916 	return ret;
1917 }
1918 
1919 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1920 		struct xhci_input_control_ctx *ctrl_ctx)
1921 {
1922 	u32 valid_add_flags;
1923 	u32 valid_drop_flags;
1924 
1925 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1926 	 * (bit 1).  The default control endpoint is added during the Address
1927 	 * Device command and is never removed until the slot is disabled.
1928 	 */
1929 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1930 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1931 
1932 	/* Use hweight32 to count the number of ones in the add flags, or
1933 	 * number of endpoints added.  Don't count endpoints that are changed
1934 	 * (both added and dropped).
1935 	 */
1936 	return hweight32(valid_add_flags) -
1937 		hweight32(valid_add_flags & valid_drop_flags);
1938 }
1939 
1940 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1941 		struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943 	u32 valid_add_flags;
1944 	u32 valid_drop_flags;
1945 
1946 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1947 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1948 
1949 	return hweight32(valid_drop_flags) -
1950 		hweight32(valid_add_flags & valid_drop_flags);
1951 }
1952 
1953 /*
1954  * We need to reserve the new number of endpoints before the configure endpoint
1955  * command completes.  We can't subtract the dropped endpoints from the number
1956  * of active endpoints until the command completes because we can oversubscribe
1957  * the host in this case:
1958  *
1959  *  - the first configure endpoint command drops more endpoints than it adds
1960  *  - a second configure endpoint command that adds more endpoints is queued
1961  *  - the first configure endpoint command fails, so the config is unchanged
1962  *  - the second command may succeed, even though there isn't enough resources
1963  *
1964  * Must be called with xhci->lock held.
1965  */
1966 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1967 		struct xhci_input_control_ctx *ctrl_ctx)
1968 {
1969 	u32 added_eps;
1970 
1971 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1972 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1973 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1974 				"Not enough ep ctxs: "
1975 				"%u active, need to add %u, limit is %u.",
1976 				xhci->num_active_eps, added_eps,
1977 				xhci->limit_active_eps);
1978 		return -ENOMEM;
1979 	}
1980 	xhci->num_active_eps += added_eps;
1981 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1982 			"Adding %u ep ctxs, %u now active.", added_eps,
1983 			xhci->num_active_eps);
1984 	return 0;
1985 }
1986 
1987 /*
1988  * The configure endpoint was failed by the xHC for some other reason, so we
1989  * need to revert the resources that failed configuration would have used.
1990  *
1991  * Must be called with xhci->lock held.
1992  */
1993 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1994 		struct xhci_input_control_ctx *ctrl_ctx)
1995 {
1996 	u32 num_failed_eps;
1997 
1998 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1999 	xhci->num_active_eps -= num_failed_eps;
2000 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2001 			"Removing %u failed ep ctxs, %u now active.",
2002 			num_failed_eps,
2003 			xhci->num_active_eps);
2004 }
2005 
2006 /*
2007  * Now that the command has completed, clean up the active endpoint count by
2008  * subtracting out the endpoints that were dropped (but not changed).
2009  *
2010  * Must be called with xhci->lock held.
2011  */
2012 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2013 		struct xhci_input_control_ctx *ctrl_ctx)
2014 {
2015 	u32 num_dropped_eps;
2016 
2017 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2018 	xhci->num_active_eps -= num_dropped_eps;
2019 	if (num_dropped_eps)
2020 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2021 				"Removing %u dropped ep ctxs, %u now active.",
2022 				num_dropped_eps,
2023 				xhci->num_active_eps);
2024 }
2025 
2026 static unsigned int xhci_get_block_size(struct usb_device *udev)
2027 {
2028 	switch (udev->speed) {
2029 	case USB_SPEED_LOW:
2030 	case USB_SPEED_FULL:
2031 		return FS_BLOCK;
2032 	case USB_SPEED_HIGH:
2033 		return HS_BLOCK;
2034 	case USB_SPEED_SUPER:
2035 		return SS_BLOCK;
2036 	case USB_SPEED_UNKNOWN:
2037 	case USB_SPEED_WIRELESS:
2038 	default:
2039 		/* Should never happen */
2040 		return 1;
2041 	}
2042 }
2043 
2044 static unsigned int
2045 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2046 {
2047 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2048 		return LS_OVERHEAD;
2049 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2050 		return FS_OVERHEAD;
2051 	return HS_OVERHEAD;
2052 }
2053 
2054 /* If we are changing a LS/FS device under a HS hub,
2055  * make sure (if we are activating a new TT) that the HS bus has enough
2056  * bandwidth for this new TT.
2057  */
2058 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2059 		struct xhci_virt_device *virt_dev,
2060 		int old_active_eps)
2061 {
2062 	struct xhci_interval_bw_table *bw_table;
2063 	struct xhci_tt_bw_info *tt_info;
2064 
2065 	/* Find the bandwidth table for the root port this TT is attached to. */
2066 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2067 	tt_info = virt_dev->tt_info;
2068 	/* If this TT already had active endpoints, the bandwidth for this TT
2069 	 * has already been added.  Removing all periodic endpoints (and thus
2070 	 * making the TT enactive) will only decrease the bandwidth used.
2071 	 */
2072 	if (old_active_eps)
2073 		return 0;
2074 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2075 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2076 			return -ENOMEM;
2077 		return 0;
2078 	}
2079 	/* Not sure why we would have no new active endpoints...
2080 	 *
2081 	 * Maybe because of an Evaluate Context change for a hub update or a
2082 	 * control endpoint 0 max packet size change?
2083 	 * FIXME: skip the bandwidth calculation in that case.
2084 	 */
2085 	return 0;
2086 }
2087 
2088 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2089 		struct xhci_virt_device *virt_dev)
2090 {
2091 	unsigned int bw_reserved;
2092 
2093 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2094 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2095 		return -ENOMEM;
2096 
2097 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2098 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2099 		return -ENOMEM;
2100 
2101 	return 0;
2102 }
2103 
2104 /*
2105  * This algorithm is a very conservative estimate of the worst-case scheduling
2106  * scenario for any one interval.  The hardware dynamically schedules the
2107  * packets, so we can't tell which microframe could be the limiting factor in
2108  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2109  *
2110  * Obviously, we can't solve an NP complete problem to find the minimum worst
2111  * case scenario.  Instead, we come up with an estimate that is no less than
2112  * the worst case bandwidth used for any one microframe, but may be an
2113  * over-estimate.
2114  *
2115  * We walk the requirements for each endpoint by interval, starting with the
2116  * smallest interval, and place packets in the schedule where there is only one
2117  * possible way to schedule packets for that interval.  In order to simplify
2118  * this algorithm, we record the largest max packet size for each interval, and
2119  * assume all packets will be that size.
2120  *
2121  * For interval 0, we obviously must schedule all packets for each interval.
2122  * The bandwidth for interval 0 is just the amount of data to be transmitted
2123  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2124  * the number of packets).
2125  *
2126  * For interval 1, we have two possible microframes to schedule those packets
2127  * in.  For this algorithm, if we can schedule the same number of packets for
2128  * each possible scheduling opportunity (each microframe), we will do so.  The
2129  * remaining number of packets will be saved to be transmitted in the gaps in
2130  * the next interval's scheduling sequence.
2131  *
2132  * As we move those remaining packets to be scheduled with interval 2 packets,
2133  * we have to double the number of remaining packets to transmit.  This is
2134  * because the intervals are actually powers of 2, and we would be transmitting
2135  * the previous interval's packets twice in this interval.  We also have to be
2136  * sure that when we look at the largest max packet size for this interval, we
2137  * also look at the largest max packet size for the remaining packets and take
2138  * the greater of the two.
2139  *
2140  * The algorithm continues to evenly distribute packets in each scheduling
2141  * opportunity, and push the remaining packets out, until we get to the last
2142  * interval.  Then those packets and their associated overhead are just added
2143  * to the bandwidth used.
2144  */
2145 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2146 		struct xhci_virt_device *virt_dev,
2147 		int old_active_eps)
2148 {
2149 	unsigned int bw_reserved;
2150 	unsigned int max_bandwidth;
2151 	unsigned int bw_used;
2152 	unsigned int block_size;
2153 	struct xhci_interval_bw_table *bw_table;
2154 	unsigned int packet_size = 0;
2155 	unsigned int overhead = 0;
2156 	unsigned int packets_transmitted = 0;
2157 	unsigned int packets_remaining = 0;
2158 	unsigned int i;
2159 
2160 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2161 		return xhci_check_ss_bw(xhci, virt_dev);
2162 
2163 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2164 		max_bandwidth = HS_BW_LIMIT;
2165 		/* Convert percent of bus BW reserved to blocks reserved */
2166 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2167 	} else {
2168 		max_bandwidth = FS_BW_LIMIT;
2169 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2170 	}
2171 
2172 	bw_table = virt_dev->bw_table;
2173 	/* We need to translate the max packet size and max ESIT payloads into
2174 	 * the units the hardware uses.
2175 	 */
2176 	block_size = xhci_get_block_size(virt_dev->udev);
2177 
2178 	/* If we are manipulating a LS/FS device under a HS hub, double check
2179 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2180 	 */
2181 	if (virt_dev->tt_info) {
2182 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2183 				"Recalculating BW for rootport %u",
2184 				virt_dev->real_port);
2185 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2186 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2187 					"newly activated TT.\n");
2188 			return -ENOMEM;
2189 		}
2190 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2191 				"Recalculating BW for TT slot %u port %u",
2192 				virt_dev->tt_info->slot_id,
2193 				virt_dev->tt_info->ttport);
2194 	} else {
2195 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196 				"Recalculating BW for rootport %u",
2197 				virt_dev->real_port);
2198 	}
2199 
2200 	/* Add in how much bandwidth will be used for interval zero, or the
2201 	 * rounded max ESIT payload + number of packets * largest overhead.
2202 	 */
2203 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2204 		bw_table->interval_bw[0].num_packets *
2205 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2206 
2207 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2208 		unsigned int bw_added;
2209 		unsigned int largest_mps;
2210 		unsigned int interval_overhead;
2211 
2212 		/*
2213 		 * How many packets could we transmit in this interval?
2214 		 * If packets didn't fit in the previous interval, we will need
2215 		 * to transmit that many packets twice within this interval.
2216 		 */
2217 		packets_remaining = 2 * packets_remaining +
2218 			bw_table->interval_bw[i].num_packets;
2219 
2220 		/* Find the largest max packet size of this or the previous
2221 		 * interval.
2222 		 */
2223 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2224 			largest_mps = 0;
2225 		else {
2226 			struct xhci_virt_ep *virt_ep;
2227 			struct list_head *ep_entry;
2228 
2229 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2230 			virt_ep = list_entry(ep_entry,
2231 					struct xhci_virt_ep, bw_endpoint_list);
2232 			/* Convert to blocks, rounding up */
2233 			largest_mps = DIV_ROUND_UP(
2234 					virt_ep->bw_info.max_packet_size,
2235 					block_size);
2236 		}
2237 		if (largest_mps > packet_size)
2238 			packet_size = largest_mps;
2239 
2240 		/* Use the larger overhead of this or the previous interval. */
2241 		interval_overhead = xhci_get_largest_overhead(
2242 				&bw_table->interval_bw[i]);
2243 		if (interval_overhead > overhead)
2244 			overhead = interval_overhead;
2245 
2246 		/* How many packets can we evenly distribute across
2247 		 * (1 << (i + 1)) possible scheduling opportunities?
2248 		 */
2249 		packets_transmitted = packets_remaining >> (i + 1);
2250 
2251 		/* Add in the bandwidth used for those scheduled packets */
2252 		bw_added = packets_transmitted * (overhead + packet_size);
2253 
2254 		/* How many packets do we have remaining to transmit? */
2255 		packets_remaining = packets_remaining % (1 << (i + 1));
2256 
2257 		/* What largest max packet size should those packets have? */
2258 		/* If we've transmitted all packets, don't carry over the
2259 		 * largest packet size.
2260 		 */
2261 		if (packets_remaining == 0) {
2262 			packet_size = 0;
2263 			overhead = 0;
2264 		} else if (packets_transmitted > 0) {
2265 			/* Otherwise if we do have remaining packets, and we've
2266 			 * scheduled some packets in this interval, take the
2267 			 * largest max packet size from endpoints with this
2268 			 * interval.
2269 			 */
2270 			packet_size = largest_mps;
2271 			overhead = interval_overhead;
2272 		}
2273 		/* Otherwise carry over packet_size and overhead from the last
2274 		 * time we had a remainder.
2275 		 */
2276 		bw_used += bw_added;
2277 		if (bw_used > max_bandwidth) {
2278 			xhci_warn(xhci, "Not enough bandwidth. "
2279 					"Proposed: %u, Max: %u\n",
2280 				bw_used, max_bandwidth);
2281 			return -ENOMEM;
2282 		}
2283 	}
2284 	/*
2285 	 * Ok, we know we have some packets left over after even-handedly
2286 	 * scheduling interval 15.  We don't know which microframes they will
2287 	 * fit into, so we over-schedule and say they will be scheduled every
2288 	 * microframe.
2289 	 */
2290 	if (packets_remaining > 0)
2291 		bw_used += overhead + packet_size;
2292 
2293 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2294 		unsigned int port_index = virt_dev->real_port - 1;
2295 
2296 		/* OK, we're manipulating a HS device attached to a
2297 		 * root port bandwidth domain.  Include the number of active TTs
2298 		 * in the bandwidth used.
2299 		 */
2300 		bw_used += TT_HS_OVERHEAD *
2301 			xhci->rh_bw[port_index].num_active_tts;
2302 	}
2303 
2304 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2305 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2306 		"Available: %u " "percent",
2307 		bw_used, max_bandwidth, bw_reserved,
2308 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2309 		max_bandwidth);
2310 
2311 	bw_used += bw_reserved;
2312 	if (bw_used > max_bandwidth) {
2313 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2314 				bw_used, max_bandwidth);
2315 		return -ENOMEM;
2316 	}
2317 
2318 	bw_table->bw_used = bw_used;
2319 	return 0;
2320 }
2321 
2322 static bool xhci_is_async_ep(unsigned int ep_type)
2323 {
2324 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2325 					ep_type != ISOC_IN_EP &&
2326 					ep_type != INT_IN_EP);
2327 }
2328 
2329 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2330 {
2331 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2332 }
2333 
2334 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2335 {
2336 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2337 
2338 	if (ep_bw->ep_interval == 0)
2339 		return SS_OVERHEAD_BURST +
2340 			(ep_bw->mult * ep_bw->num_packets *
2341 					(SS_OVERHEAD + mps));
2342 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2343 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2344 				1 << ep_bw->ep_interval);
2345 
2346 }
2347 
2348 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2349 		struct xhci_bw_info *ep_bw,
2350 		struct xhci_interval_bw_table *bw_table,
2351 		struct usb_device *udev,
2352 		struct xhci_virt_ep *virt_ep,
2353 		struct xhci_tt_bw_info *tt_info)
2354 {
2355 	struct xhci_interval_bw	*interval_bw;
2356 	int normalized_interval;
2357 
2358 	if (xhci_is_async_ep(ep_bw->type))
2359 		return;
2360 
2361 	if (udev->speed == USB_SPEED_SUPER) {
2362 		if (xhci_is_sync_in_ep(ep_bw->type))
2363 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2364 				xhci_get_ss_bw_consumed(ep_bw);
2365 		else
2366 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2367 				xhci_get_ss_bw_consumed(ep_bw);
2368 		return;
2369 	}
2370 
2371 	/* SuperSpeed endpoints never get added to intervals in the table, so
2372 	 * this check is only valid for HS/FS/LS devices.
2373 	 */
2374 	if (list_empty(&virt_ep->bw_endpoint_list))
2375 		return;
2376 	/* For LS/FS devices, we need to translate the interval expressed in
2377 	 * microframes to frames.
2378 	 */
2379 	if (udev->speed == USB_SPEED_HIGH)
2380 		normalized_interval = ep_bw->ep_interval;
2381 	else
2382 		normalized_interval = ep_bw->ep_interval - 3;
2383 
2384 	if (normalized_interval == 0)
2385 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2386 	interval_bw = &bw_table->interval_bw[normalized_interval];
2387 	interval_bw->num_packets -= ep_bw->num_packets;
2388 	switch (udev->speed) {
2389 	case USB_SPEED_LOW:
2390 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2391 		break;
2392 	case USB_SPEED_FULL:
2393 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2394 		break;
2395 	case USB_SPEED_HIGH:
2396 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2397 		break;
2398 	case USB_SPEED_SUPER:
2399 	case USB_SPEED_UNKNOWN:
2400 	case USB_SPEED_WIRELESS:
2401 		/* Should never happen because only LS/FS/HS endpoints will get
2402 		 * added to the endpoint list.
2403 		 */
2404 		return;
2405 	}
2406 	if (tt_info)
2407 		tt_info->active_eps -= 1;
2408 	list_del_init(&virt_ep->bw_endpoint_list);
2409 }
2410 
2411 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2412 		struct xhci_bw_info *ep_bw,
2413 		struct xhci_interval_bw_table *bw_table,
2414 		struct usb_device *udev,
2415 		struct xhci_virt_ep *virt_ep,
2416 		struct xhci_tt_bw_info *tt_info)
2417 {
2418 	struct xhci_interval_bw	*interval_bw;
2419 	struct xhci_virt_ep *smaller_ep;
2420 	int normalized_interval;
2421 
2422 	if (xhci_is_async_ep(ep_bw->type))
2423 		return;
2424 
2425 	if (udev->speed == USB_SPEED_SUPER) {
2426 		if (xhci_is_sync_in_ep(ep_bw->type))
2427 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2428 				xhci_get_ss_bw_consumed(ep_bw);
2429 		else
2430 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2431 				xhci_get_ss_bw_consumed(ep_bw);
2432 		return;
2433 	}
2434 
2435 	/* For LS/FS devices, we need to translate the interval expressed in
2436 	 * microframes to frames.
2437 	 */
2438 	if (udev->speed == USB_SPEED_HIGH)
2439 		normalized_interval = ep_bw->ep_interval;
2440 	else
2441 		normalized_interval = ep_bw->ep_interval - 3;
2442 
2443 	if (normalized_interval == 0)
2444 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2445 	interval_bw = &bw_table->interval_bw[normalized_interval];
2446 	interval_bw->num_packets += ep_bw->num_packets;
2447 	switch (udev->speed) {
2448 	case USB_SPEED_LOW:
2449 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2450 		break;
2451 	case USB_SPEED_FULL:
2452 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2453 		break;
2454 	case USB_SPEED_HIGH:
2455 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2456 		break;
2457 	case USB_SPEED_SUPER:
2458 	case USB_SPEED_UNKNOWN:
2459 	case USB_SPEED_WIRELESS:
2460 		/* Should never happen because only LS/FS/HS endpoints will get
2461 		 * added to the endpoint list.
2462 		 */
2463 		return;
2464 	}
2465 
2466 	if (tt_info)
2467 		tt_info->active_eps += 1;
2468 	/* Insert the endpoint into the list, largest max packet size first. */
2469 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2470 			bw_endpoint_list) {
2471 		if (ep_bw->max_packet_size >=
2472 				smaller_ep->bw_info.max_packet_size) {
2473 			/* Add the new ep before the smaller endpoint */
2474 			list_add_tail(&virt_ep->bw_endpoint_list,
2475 					&smaller_ep->bw_endpoint_list);
2476 			return;
2477 		}
2478 	}
2479 	/* Add the new endpoint at the end of the list. */
2480 	list_add_tail(&virt_ep->bw_endpoint_list,
2481 			&interval_bw->endpoints);
2482 }
2483 
2484 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2485 		struct xhci_virt_device *virt_dev,
2486 		int old_active_eps)
2487 {
2488 	struct xhci_root_port_bw_info *rh_bw_info;
2489 	if (!virt_dev->tt_info)
2490 		return;
2491 
2492 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2493 	if (old_active_eps == 0 &&
2494 				virt_dev->tt_info->active_eps != 0) {
2495 		rh_bw_info->num_active_tts += 1;
2496 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2497 	} else if (old_active_eps != 0 &&
2498 				virt_dev->tt_info->active_eps == 0) {
2499 		rh_bw_info->num_active_tts -= 1;
2500 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2501 	}
2502 }
2503 
2504 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2505 		struct xhci_virt_device *virt_dev,
2506 		struct xhci_container_ctx *in_ctx)
2507 {
2508 	struct xhci_bw_info ep_bw_info[31];
2509 	int i;
2510 	struct xhci_input_control_ctx *ctrl_ctx;
2511 	int old_active_eps = 0;
2512 
2513 	if (virt_dev->tt_info)
2514 		old_active_eps = virt_dev->tt_info->active_eps;
2515 
2516 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2517 	if (!ctrl_ctx) {
2518 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2519 				__func__);
2520 		return -ENOMEM;
2521 	}
2522 
2523 	for (i = 0; i < 31; i++) {
2524 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2525 			continue;
2526 
2527 		/* Make a copy of the BW info in case we need to revert this */
2528 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2529 				sizeof(ep_bw_info[i]));
2530 		/* Drop the endpoint from the interval table if the endpoint is
2531 		 * being dropped or changed.
2532 		 */
2533 		if (EP_IS_DROPPED(ctrl_ctx, i))
2534 			xhci_drop_ep_from_interval_table(xhci,
2535 					&virt_dev->eps[i].bw_info,
2536 					virt_dev->bw_table,
2537 					virt_dev->udev,
2538 					&virt_dev->eps[i],
2539 					virt_dev->tt_info);
2540 	}
2541 	/* Overwrite the information stored in the endpoints' bw_info */
2542 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2543 	for (i = 0; i < 31; i++) {
2544 		/* Add any changed or added endpoints to the interval table */
2545 		if (EP_IS_ADDED(ctrl_ctx, i))
2546 			xhci_add_ep_to_interval_table(xhci,
2547 					&virt_dev->eps[i].bw_info,
2548 					virt_dev->bw_table,
2549 					virt_dev->udev,
2550 					&virt_dev->eps[i],
2551 					virt_dev->tt_info);
2552 	}
2553 
2554 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2555 		/* Ok, this fits in the bandwidth we have.
2556 		 * Update the number of active TTs.
2557 		 */
2558 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2559 		return 0;
2560 	}
2561 
2562 	/* We don't have enough bandwidth for this, revert the stored info. */
2563 	for (i = 0; i < 31; i++) {
2564 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2565 			continue;
2566 
2567 		/* Drop the new copies of any added or changed endpoints from
2568 		 * the interval table.
2569 		 */
2570 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2571 			xhci_drop_ep_from_interval_table(xhci,
2572 					&virt_dev->eps[i].bw_info,
2573 					virt_dev->bw_table,
2574 					virt_dev->udev,
2575 					&virt_dev->eps[i],
2576 					virt_dev->tt_info);
2577 		}
2578 		/* Revert the endpoint back to its old information */
2579 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2580 				sizeof(ep_bw_info[i]));
2581 		/* Add any changed or dropped endpoints back into the table */
2582 		if (EP_IS_DROPPED(ctrl_ctx, i))
2583 			xhci_add_ep_to_interval_table(xhci,
2584 					&virt_dev->eps[i].bw_info,
2585 					virt_dev->bw_table,
2586 					virt_dev->udev,
2587 					&virt_dev->eps[i],
2588 					virt_dev->tt_info);
2589 	}
2590 	return -ENOMEM;
2591 }
2592 
2593 
2594 /* Issue a configure endpoint command or evaluate context command
2595  * and wait for it to finish.
2596  */
2597 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2598 		struct usb_device *udev,
2599 		struct xhci_command *command,
2600 		bool ctx_change, bool must_succeed)
2601 {
2602 	int ret;
2603 	unsigned long flags;
2604 	struct xhci_input_control_ctx *ctrl_ctx;
2605 	struct xhci_virt_device *virt_dev;
2606 
2607 	if (!command)
2608 		return -EINVAL;
2609 
2610 	spin_lock_irqsave(&xhci->lock, flags);
2611 	virt_dev = xhci->devs[udev->slot_id];
2612 
2613 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2614 	if (!ctrl_ctx) {
2615 		spin_unlock_irqrestore(&xhci->lock, flags);
2616 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2617 				__func__);
2618 		return -ENOMEM;
2619 	}
2620 
2621 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2622 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2623 		spin_unlock_irqrestore(&xhci->lock, flags);
2624 		xhci_warn(xhci, "Not enough host resources, "
2625 				"active endpoint contexts = %u\n",
2626 				xhci->num_active_eps);
2627 		return -ENOMEM;
2628 	}
2629 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2630 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2631 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2632 			xhci_free_host_resources(xhci, ctrl_ctx);
2633 		spin_unlock_irqrestore(&xhci->lock, flags);
2634 		xhci_warn(xhci, "Not enough bandwidth\n");
2635 		return -ENOMEM;
2636 	}
2637 
2638 	if (!ctx_change)
2639 		ret = xhci_queue_configure_endpoint(xhci, command,
2640 				command->in_ctx->dma,
2641 				udev->slot_id, must_succeed);
2642 	else
2643 		ret = xhci_queue_evaluate_context(xhci, command,
2644 				command->in_ctx->dma,
2645 				udev->slot_id, must_succeed);
2646 	if (ret < 0) {
2647 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2648 			xhci_free_host_resources(xhci, ctrl_ctx);
2649 		spin_unlock_irqrestore(&xhci->lock, flags);
2650 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2651 				"FIXME allocate a new ring segment");
2652 		return -ENOMEM;
2653 	}
2654 	xhci_ring_cmd_db(xhci);
2655 	spin_unlock_irqrestore(&xhci->lock, flags);
2656 
2657 	/* Wait for the configure endpoint command to complete */
2658 	wait_for_completion(command->completion);
2659 
2660 	if (!ctx_change)
2661 		ret = xhci_configure_endpoint_result(xhci, udev,
2662 						     &command->status);
2663 	else
2664 		ret = xhci_evaluate_context_result(xhci, udev,
2665 						   &command->status);
2666 
2667 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2668 		spin_lock_irqsave(&xhci->lock, flags);
2669 		/* If the command failed, remove the reserved resources.
2670 		 * Otherwise, clean up the estimate to include dropped eps.
2671 		 */
2672 		if (ret)
2673 			xhci_free_host_resources(xhci, ctrl_ctx);
2674 		else
2675 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2676 		spin_unlock_irqrestore(&xhci->lock, flags);
2677 	}
2678 	return ret;
2679 }
2680 
2681 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2682 	struct xhci_virt_device *vdev, int i)
2683 {
2684 	struct xhci_virt_ep *ep = &vdev->eps[i];
2685 
2686 	if (ep->ep_state & EP_HAS_STREAMS) {
2687 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2688 				xhci_get_endpoint_address(i));
2689 		xhci_free_stream_info(xhci, ep->stream_info);
2690 		ep->stream_info = NULL;
2691 		ep->ep_state &= ~EP_HAS_STREAMS;
2692 	}
2693 }
2694 
2695 /* Called after one or more calls to xhci_add_endpoint() or
2696  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2697  * to call xhci_reset_bandwidth().
2698  *
2699  * Since we are in the middle of changing either configuration or
2700  * installing a new alt setting, the USB core won't allow URBs to be
2701  * enqueued for any endpoint on the old config or interface.  Nothing
2702  * else should be touching the xhci->devs[slot_id] structure, so we
2703  * don't need to take the xhci->lock for manipulating that.
2704  */
2705 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2706 {
2707 	int i;
2708 	int ret = 0;
2709 	struct xhci_hcd *xhci;
2710 	struct xhci_virt_device	*virt_dev;
2711 	struct xhci_input_control_ctx *ctrl_ctx;
2712 	struct xhci_slot_ctx *slot_ctx;
2713 	struct xhci_command *command;
2714 
2715 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2716 	if (ret <= 0)
2717 		return ret;
2718 	xhci = hcd_to_xhci(hcd);
2719 	if (xhci->xhc_state & XHCI_STATE_DYING)
2720 		return -ENODEV;
2721 
2722 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2723 	virt_dev = xhci->devs[udev->slot_id];
2724 
2725 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2726 	if (!command)
2727 		return -ENOMEM;
2728 
2729 	command->in_ctx = virt_dev->in_ctx;
2730 
2731 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2732 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2733 	if (!ctrl_ctx) {
2734 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2735 				__func__);
2736 		ret = -ENOMEM;
2737 		goto command_cleanup;
2738 	}
2739 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2740 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2741 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2742 
2743 	/* Don't issue the command if there's no endpoints to update. */
2744 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2745 	    ctrl_ctx->drop_flags == 0) {
2746 		ret = 0;
2747 		goto command_cleanup;
2748 	}
2749 	xhci_dbg(xhci, "New Input Control Context:\n");
2750 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2751 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2752 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2753 
2754 	ret = xhci_configure_endpoint(xhci, udev, command,
2755 			false, false);
2756 	if (ret)
2757 		/* Callee should call reset_bandwidth() */
2758 		goto command_cleanup;
2759 
2760 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763 
2764 	/* Free any rings that were dropped, but not changed. */
2765 	for (i = 1; i < 31; ++i) {
2766 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2768 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2770 		}
2771 	}
2772 	xhci_zero_in_ctx(xhci, virt_dev);
2773 	/*
2774 	 * Install any rings for completely new endpoints or changed endpoints,
2775 	 * and free or cache any old rings from changed endpoints.
2776 	 */
2777 	for (i = 1; i < 31; ++i) {
2778 		if (!virt_dev->eps[i].new_ring)
2779 			continue;
2780 		/* Only cache or free the old ring if it exists.
2781 		 * It may not if this is the first add of an endpoint.
2782 		 */
2783 		if (virt_dev->eps[i].ring) {
2784 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2785 		}
2786 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2787 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2788 		virt_dev->eps[i].new_ring = NULL;
2789 	}
2790 command_cleanup:
2791 	kfree(command->completion);
2792 	kfree(command);
2793 
2794 	return ret;
2795 }
2796 
2797 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2798 {
2799 	struct xhci_hcd *xhci;
2800 	struct xhci_virt_device	*virt_dev;
2801 	int i, ret;
2802 
2803 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804 	if (ret <= 0)
2805 		return;
2806 	xhci = hcd_to_xhci(hcd);
2807 
2808 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2809 	virt_dev = xhci->devs[udev->slot_id];
2810 	/* Free any rings allocated for added endpoints */
2811 	for (i = 0; i < 31; ++i) {
2812 		if (virt_dev->eps[i].new_ring) {
2813 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2814 			virt_dev->eps[i].new_ring = NULL;
2815 		}
2816 	}
2817 	xhci_zero_in_ctx(xhci, virt_dev);
2818 }
2819 
2820 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2821 		struct xhci_container_ctx *in_ctx,
2822 		struct xhci_container_ctx *out_ctx,
2823 		struct xhci_input_control_ctx *ctrl_ctx,
2824 		u32 add_flags, u32 drop_flags)
2825 {
2826 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2827 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2828 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2829 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2830 
2831 	xhci_dbg(xhci, "Input Context:\n");
2832 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2833 }
2834 
2835 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2836 		unsigned int slot_id, unsigned int ep_index,
2837 		struct xhci_dequeue_state *deq_state)
2838 {
2839 	struct xhci_input_control_ctx *ctrl_ctx;
2840 	struct xhci_container_ctx *in_ctx;
2841 	struct xhci_ep_ctx *ep_ctx;
2842 	u32 added_ctxs;
2843 	dma_addr_t addr;
2844 
2845 	in_ctx = xhci->devs[slot_id]->in_ctx;
2846 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2847 	if (!ctrl_ctx) {
2848 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2849 				__func__);
2850 		return;
2851 	}
2852 
2853 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2854 			xhci->devs[slot_id]->out_ctx, ep_index);
2855 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2856 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2857 			deq_state->new_deq_ptr);
2858 	if (addr == 0) {
2859 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2860 				"reset ep command\n");
2861 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2862 				deq_state->new_deq_seg,
2863 				deq_state->new_deq_ptr);
2864 		return;
2865 	}
2866 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2867 
2868 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2869 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2870 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2871 			added_ctxs, added_ctxs);
2872 }
2873 
2874 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2875 		struct usb_device *udev, unsigned int ep_index)
2876 {
2877 	struct xhci_dequeue_state deq_state;
2878 	struct xhci_virt_ep *ep;
2879 
2880 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881 			"Cleaning up stalled endpoint ring");
2882 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883 	/* We need to move the HW's dequeue pointer past this TD,
2884 	 * or it will attempt to resend it on the next doorbell ring.
2885 	 */
2886 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887 			ep_index, ep->stopped_stream, ep->stopped_td,
2888 			&deq_state);
2889 
2890 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2891 	 * issue a configure endpoint command later.
2892 	 */
2893 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2894 		struct xhci_command *command;
2895 		/* Can't sleep if we're called from cleanup_halted_endpoint() */
2896 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2897 		if (!command)
2898 			return;
2899 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2900 				"Queueing new dequeue state");
2901 		xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2902 				ep_index, ep->stopped_stream, &deq_state);
2903 	} else {
2904 		/* Better hope no one uses the input context between now and the
2905 		 * reset endpoint completion!
2906 		 * XXX: No idea how this hardware will react when stream rings
2907 		 * are enabled.
2908 		 */
2909 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2910 				"Setting up input context for "
2911 				"configure endpoint command");
2912 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2913 				ep_index, &deq_state);
2914 	}
2915 }
2916 
2917 /* Deal with stalled endpoints.  The core should have sent the control message
2918  * to clear the halt condition.  However, we need to make the xHCI hardware
2919  * reset its sequence number, since a device will expect a sequence number of
2920  * zero after the halt condition is cleared.
2921  * Context: in_interrupt
2922  */
2923 void xhci_endpoint_reset(struct usb_hcd *hcd,
2924 		struct usb_host_endpoint *ep)
2925 {
2926 	struct xhci_hcd *xhci;
2927 	struct usb_device *udev;
2928 	unsigned int ep_index;
2929 	unsigned long flags;
2930 	int ret;
2931 	struct xhci_virt_ep *virt_ep;
2932 	struct xhci_command *command;
2933 
2934 	xhci = hcd_to_xhci(hcd);
2935 	udev = (struct usb_device *) ep->hcpriv;
2936 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2937 	 * with xhci_add_endpoint()
2938 	 */
2939 	if (!ep->hcpriv)
2940 		return;
2941 	ep_index = xhci_get_endpoint_index(&ep->desc);
2942 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2943 	if (!virt_ep->stopped_td) {
2944 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2945 			"Endpoint 0x%x not halted, refusing to reset.",
2946 			ep->desc.bEndpointAddress);
2947 		return;
2948 	}
2949 	if (usb_endpoint_xfer_control(&ep->desc)) {
2950 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2951 				"Control endpoint stall already handled.");
2952 		return;
2953 	}
2954 
2955 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2956 	if (!command)
2957 		return;
2958 
2959 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2960 			"Queueing reset endpoint command");
2961 	spin_lock_irqsave(&xhci->lock, flags);
2962 	ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2963 	/*
2964 	 * Can't change the ring dequeue pointer until it's transitioned to the
2965 	 * stopped state, which is only upon a successful reset endpoint
2966 	 * command.  Better hope that last command worked!
2967 	 */
2968 	if (!ret) {
2969 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2970 		kfree(virt_ep->stopped_td);
2971 		xhci_ring_cmd_db(xhci);
2972 	}
2973 	virt_ep->stopped_td = NULL;
2974 	virt_ep->stopped_stream = 0;
2975 	spin_unlock_irqrestore(&xhci->lock, flags);
2976 
2977 	if (ret)
2978 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2979 }
2980 
2981 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2982 		struct usb_device *udev, struct usb_host_endpoint *ep,
2983 		unsigned int slot_id)
2984 {
2985 	int ret;
2986 	unsigned int ep_index;
2987 	unsigned int ep_state;
2988 
2989 	if (!ep)
2990 		return -EINVAL;
2991 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2992 	if (ret <= 0)
2993 		return -EINVAL;
2994 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2995 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2996 				" descriptor for ep 0x%x does not support streams\n",
2997 				ep->desc.bEndpointAddress);
2998 		return -EINVAL;
2999 	}
3000 
3001 	ep_index = xhci_get_endpoint_index(&ep->desc);
3002 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3003 	if (ep_state & EP_HAS_STREAMS ||
3004 			ep_state & EP_GETTING_STREAMS) {
3005 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3006 				"already has streams set up.\n",
3007 				ep->desc.bEndpointAddress);
3008 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3009 				"dynamic stream context array reallocation.\n");
3010 		return -EINVAL;
3011 	}
3012 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3013 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3014 				"endpoint 0x%x; URBs are pending.\n",
3015 				ep->desc.bEndpointAddress);
3016 		return -EINVAL;
3017 	}
3018 	return 0;
3019 }
3020 
3021 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3022 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3023 {
3024 	unsigned int max_streams;
3025 
3026 	/* The stream context array size must be a power of two */
3027 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3028 	/*
3029 	 * Find out how many primary stream array entries the host controller
3030 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3031 	 * level page entries), but that's an optional feature for xHCI host
3032 	 * controllers. xHCs must support at least 4 stream IDs.
3033 	 */
3034 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3035 	if (*num_stream_ctxs > max_streams) {
3036 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3037 				max_streams);
3038 		*num_stream_ctxs = max_streams;
3039 		*num_streams = max_streams;
3040 	}
3041 }
3042 
3043 /* Returns an error code if one of the endpoint already has streams.
3044  * This does not change any data structures, it only checks and gathers
3045  * information.
3046  */
3047 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3048 		struct usb_device *udev,
3049 		struct usb_host_endpoint **eps, unsigned int num_eps,
3050 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3051 {
3052 	unsigned int max_streams;
3053 	unsigned int endpoint_flag;
3054 	int i;
3055 	int ret;
3056 
3057 	for (i = 0; i < num_eps; i++) {
3058 		ret = xhci_check_streams_endpoint(xhci, udev,
3059 				eps[i], udev->slot_id);
3060 		if (ret < 0)
3061 			return ret;
3062 
3063 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3064 		if (max_streams < (*num_streams - 1)) {
3065 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3066 					eps[i]->desc.bEndpointAddress,
3067 					max_streams);
3068 			*num_streams = max_streams+1;
3069 		}
3070 
3071 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3072 		if (*changed_ep_bitmask & endpoint_flag)
3073 			return -EINVAL;
3074 		*changed_ep_bitmask |= endpoint_flag;
3075 	}
3076 	return 0;
3077 }
3078 
3079 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3080 		struct usb_device *udev,
3081 		struct usb_host_endpoint **eps, unsigned int num_eps)
3082 {
3083 	u32 changed_ep_bitmask = 0;
3084 	unsigned int slot_id;
3085 	unsigned int ep_index;
3086 	unsigned int ep_state;
3087 	int i;
3088 
3089 	slot_id = udev->slot_id;
3090 	if (!xhci->devs[slot_id])
3091 		return 0;
3092 
3093 	for (i = 0; i < num_eps; i++) {
3094 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3095 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3096 		/* Are streams already being freed for the endpoint? */
3097 		if (ep_state & EP_GETTING_NO_STREAMS) {
3098 			xhci_warn(xhci, "WARN Can't disable streams for "
3099 					"endpoint 0x%x, "
3100 					"streams are being disabled already\n",
3101 					eps[i]->desc.bEndpointAddress);
3102 			return 0;
3103 		}
3104 		/* Are there actually any streams to free? */
3105 		if (!(ep_state & EP_HAS_STREAMS) &&
3106 				!(ep_state & EP_GETTING_STREAMS)) {
3107 			xhci_warn(xhci, "WARN Can't disable streams for "
3108 					"endpoint 0x%x, "
3109 					"streams are already disabled!\n",
3110 					eps[i]->desc.bEndpointAddress);
3111 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3112 					"with non-streams endpoint\n");
3113 			return 0;
3114 		}
3115 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3116 	}
3117 	return changed_ep_bitmask;
3118 }
3119 
3120 /*
3121  * The USB device drivers use this function (though the HCD interface in USB
3122  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3123  * coordinate mass storage command queueing across multiple endpoints (basically
3124  * a stream ID == a task ID).
3125  *
3126  * Setting up streams involves allocating the same size stream context array
3127  * for each endpoint and issuing a configure endpoint command for all endpoints.
3128  *
3129  * Don't allow the call to succeed if one endpoint only supports one stream
3130  * (which means it doesn't support streams at all).
3131  *
3132  * Drivers may get less stream IDs than they asked for, if the host controller
3133  * hardware or endpoints claim they can't support the number of requested
3134  * stream IDs.
3135  */
3136 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3137 		struct usb_host_endpoint **eps, unsigned int num_eps,
3138 		unsigned int num_streams, gfp_t mem_flags)
3139 {
3140 	int i, ret;
3141 	struct xhci_hcd *xhci;
3142 	struct xhci_virt_device *vdev;
3143 	struct xhci_command *config_cmd;
3144 	struct xhci_input_control_ctx *ctrl_ctx;
3145 	unsigned int ep_index;
3146 	unsigned int num_stream_ctxs;
3147 	unsigned long flags;
3148 	u32 changed_ep_bitmask = 0;
3149 
3150 	if (!eps)
3151 		return -EINVAL;
3152 
3153 	/* Add one to the number of streams requested to account for
3154 	 * stream 0 that is reserved for xHCI usage.
3155 	 */
3156 	num_streams += 1;
3157 	xhci = hcd_to_xhci(hcd);
3158 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3159 			num_streams);
3160 
3161 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3162 	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164 		return -ENOSYS;
3165 	}
3166 
3167 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3168 	if (!config_cmd) {
3169 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3170 		return -ENOMEM;
3171 	}
3172 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3173 	if (!ctrl_ctx) {
3174 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3175 				__func__);
3176 		xhci_free_command(xhci, config_cmd);
3177 		return -ENOMEM;
3178 	}
3179 
3180 	/* Check to make sure all endpoints are not already configured for
3181 	 * streams.  While we're at it, find the maximum number of streams that
3182 	 * all the endpoints will support and check for duplicate endpoints.
3183 	 */
3184 	spin_lock_irqsave(&xhci->lock, flags);
3185 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3186 			num_eps, &num_streams, &changed_ep_bitmask);
3187 	if (ret < 0) {
3188 		xhci_free_command(xhci, config_cmd);
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		return ret;
3191 	}
3192 	if (num_streams <= 1) {
3193 		xhci_warn(xhci, "WARN: endpoints can't handle "
3194 				"more than one stream.\n");
3195 		xhci_free_command(xhci, config_cmd);
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		return -EINVAL;
3198 	}
3199 	vdev = xhci->devs[udev->slot_id];
3200 	/* Mark each endpoint as being in transition, so
3201 	 * xhci_urb_enqueue() will reject all URBs.
3202 	 */
3203 	for (i = 0; i < num_eps; i++) {
3204 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3206 	}
3207 	spin_unlock_irqrestore(&xhci->lock, flags);
3208 
3209 	/* Setup internal data structures and allocate HW data structures for
3210 	 * streams (but don't install the HW structures in the input context
3211 	 * until we're sure all memory allocation succeeded).
3212 	 */
3213 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3214 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3215 			num_stream_ctxs, num_streams);
3216 
3217 	for (i = 0; i < num_eps; i++) {
3218 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220 				num_stream_ctxs,
3221 				num_streams, mem_flags);
3222 		if (!vdev->eps[ep_index].stream_info)
3223 			goto cleanup;
3224 		/* Set maxPstreams in endpoint context and update deq ptr to
3225 		 * point to stream context array. FIXME
3226 		 */
3227 	}
3228 
3229 	/* Set up the input context for a configure endpoint command. */
3230 	for (i = 0; i < num_eps; i++) {
3231 		struct xhci_ep_ctx *ep_ctx;
3232 
3233 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3235 
3236 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3237 				vdev->out_ctx, ep_index);
3238 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3239 				vdev->eps[ep_index].stream_info);
3240 	}
3241 	/* Tell the HW to drop its old copy of the endpoint context info
3242 	 * and add the updated copy from the input context.
3243 	 */
3244 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3245 			vdev->out_ctx, ctrl_ctx,
3246 			changed_ep_bitmask, changed_ep_bitmask);
3247 
3248 	/* Issue and wait for the configure endpoint command */
3249 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3250 			false, false);
3251 
3252 	/* xHC rejected the configure endpoint command for some reason, so we
3253 	 * leave the old ring intact and free our internal streams data
3254 	 * structure.
3255 	 */
3256 	if (ret < 0)
3257 		goto cleanup;
3258 
3259 	spin_lock_irqsave(&xhci->lock, flags);
3260 	for (i = 0; i < num_eps; i++) {
3261 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3263 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3264 			 udev->slot_id, ep_index);
3265 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3266 	}
3267 	xhci_free_command(xhci, config_cmd);
3268 	spin_unlock_irqrestore(&xhci->lock, flags);
3269 
3270 	/* Subtract 1 for stream 0, which drivers can't use */
3271 	return num_streams - 1;
3272 
3273 cleanup:
3274 	/* If it didn't work, free the streams! */
3275 	for (i = 0; i < num_eps; i++) {
3276 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3277 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3278 		vdev->eps[ep_index].stream_info = NULL;
3279 		/* FIXME Unset maxPstreams in endpoint context and
3280 		 * update deq ptr to point to normal string ring.
3281 		 */
3282 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3283 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3284 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3285 	}
3286 	xhci_free_command(xhci, config_cmd);
3287 	return -ENOMEM;
3288 }
3289 
3290 /* Transition the endpoint from using streams to being a "normal" endpoint
3291  * without streams.
3292  *
3293  * Modify the endpoint context state, submit a configure endpoint command,
3294  * and free all endpoint rings for streams if that completes successfully.
3295  */
3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3297 		struct usb_host_endpoint **eps, unsigned int num_eps,
3298 		gfp_t mem_flags)
3299 {
3300 	int i, ret;
3301 	struct xhci_hcd *xhci;
3302 	struct xhci_virt_device *vdev;
3303 	struct xhci_command *command;
3304 	struct xhci_input_control_ctx *ctrl_ctx;
3305 	unsigned int ep_index;
3306 	unsigned long flags;
3307 	u32 changed_ep_bitmask;
3308 
3309 	xhci = hcd_to_xhci(hcd);
3310 	vdev = xhci->devs[udev->slot_id];
3311 
3312 	/* Set up a configure endpoint command to remove the streams rings */
3313 	spin_lock_irqsave(&xhci->lock, flags);
3314 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3315 			udev, eps, num_eps);
3316 	if (changed_ep_bitmask == 0) {
3317 		spin_unlock_irqrestore(&xhci->lock, flags);
3318 		return -EINVAL;
3319 	}
3320 
3321 	/* Use the xhci_command structure from the first endpoint.  We may have
3322 	 * allocated too many, but the driver may call xhci_free_streams() for
3323 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3324 	 */
3325 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3326 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3327 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3328 	if (!ctrl_ctx) {
3329 		spin_unlock_irqrestore(&xhci->lock, flags);
3330 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3331 				__func__);
3332 		return -EINVAL;
3333 	}
3334 
3335 	for (i = 0; i < num_eps; i++) {
3336 		struct xhci_ep_ctx *ep_ctx;
3337 
3338 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3340 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3341 			EP_GETTING_NO_STREAMS;
3342 
3343 		xhci_endpoint_copy(xhci, command->in_ctx,
3344 				vdev->out_ctx, ep_index);
3345 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3346 				&vdev->eps[ep_index]);
3347 	}
3348 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3349 			vdev->out_ctx, ctrl_ctx,
3350 			changed_ep_bitmask, changed_ep_bitmask);
3351 	spin_unlock_irqrestore(&xhci->lock, flags);
3352 
3353 	/* Issue and wait for the configure endpoint command,
3354 	 * which must succeed.
3355 	 */
3356 	ret = xhci_configure_endpoint(xhci, udev, command,
3357 			false, true);
3358 
3359 	/* xHC rejected the configure endpoint command for some reason, so we
3360 	 * leave the streams rings intact.
3361 	 */
3362 	if (ret < 0)
3363 		return ret;
3364 
3365 	spin_lock_irqsave(&xhci->lock, flags);
3366 	for (i = 0; i < num_eps; i++) {
3367 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3369 		vdev->eps[ep_index].stream_info = NULL;
3370 		/* FIXME Unset maxPstreams in endpoint context and
3371 		 * update deq ptr to point to normal string ring.
3372 		 */
3373 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3374 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3375 	}
3376 	spin_unlock_irqrestore(&xhci->lock, flags);
3377 
3378 	return 0;
3379 }
3380 
3381 /*
3382  * Deletes endpoint resources for endpoints that were active before a Reset
3383  * Device command, or a Disable Slot command.  The Reset Device command leaves
3384  * the control endpoint intact, whereas the Disable Slot command deletes it.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3389 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3390 {
3391 	int i;
3392 	unsigned int num_dropped_eps = 0;
3393 	unsigned int drop_flags = 0;
3394 
3395 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3396 		if (virt_dev->eps[i].ring) {
3397 			drop_flags |= 1 << i;
3398 			num_dropped_eps++;
3399 		}
3400 	}
3401 	xhci->num_active_eps -= num_dropped_eps;
3402 	if (num_dropped_eps)
3403 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3404 				"Dropped %u ep ctxs, flags = 0x%x, "
3405 				"%u now active.",
3406 				num_dropped_eps, drop_flags,
3407 				xhci->num_active_eps);
3408 }
3409 
3410 /*
3411  * This submits a Reset Device Command, which will set the device state to 0,
3412  * set the device address to 0, and disable all the endpoints except the default
3413  * control endpoint.  The USB core should come back and call
3414  * xhci_address_device(), and then re-set up the configuration.  If this is
3415  * called because of a usb_reset_and_verify_device(), then the old alternate
3416  * settings will be re-installed through the normal bandwidth allocation
3417  * functions.
3418  *
3419  * Wait for the Reset Device command to finish.  Remove all structures
3420  * associated with the endpoints that were disabled.  Clear the input device
3421  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3422  *
3423  * If the virt_dev to be reset does not exist or does not match the udev,
3424  * it means the device is lost, possibly due to the xHC restore error and
3425  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3426  * re-allocate the device.
3427  */
3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3429 {
3430 	int ret, i;
3431 	unsigned long flags;
3432 	struct xhci_hcd *xhci;
3433 	unsigned int slot_id;
3434 	struct xhci_virt_device *virt_dev;
3435 	struct xhci_command *reset_device_cmd;
3436 	int last_freed_endpoint;
3437 	struct xhci_slot_ctx *slot_ctx;
3438 	int old_active_eps = 0;
3439 
3440 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3441 	if (ret <= 0)
3442 		return ret;
3443 	xhci = hcd_to_xhci(hcd);
3444 	slot_id = udev->slot_id;
3445 	virt_dev = xhci->devs[slot_id];
3446 	if (!virt_dev) {
3447 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3448 				"not exist. Re-allocate the device\n", slot_id);
3449 		ret = xhci_alloc_dev(hcd, udev);
3450 		if (ret == 1)
3451 			return 0;
3452 		else
3453 			return -EINVAL;
3454 	}
3455 
3456 	if (virt_dev->udev != udev) {
3457 		/* If the virt_dev and the udev does not match, this virt_dev
3458 		 * may belong to another udev.
3459 		 * Re-allocate the device.
3460 		 */
3461 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462 				"not match the udev. Re-allocate the device\n",
3463 				slot_id);
3464 		ret = xhci_alloc_dev(hcd, udev);
3465 		if (ret == 1)
3466 			return 0;
3467 		else
3468 			return -EINVAL;
3469 	}
3470 
3471 	/* If device is not setup, there is no point in resetting it */
3472 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3473 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3474 						SLOT_STATE_DISABLED)
3475 		return 0;
3476 
3477 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3478 	/* Allocate the command structure that holds the struct completion.
3479 	 * Assume we're in process context, since the normal device reset
3480 	 * process has to wait for the device anyway.  Storage devices are
3481 	 * reset as part of error handling, so use GFP_NOIO instead of
3482 	 * GFP_KERNEL.
3483 	 */
3484 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3485 	if (!reset_device_cmd) {
3486 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3487 		return -ENOMEM;
3488 	}
3489 
3490 	/* Attempt to submit the Reset Device command to the command ring */
3491 	spin_lock_irqsave(&xhci->lock, flags);
3492 
3493 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3494 	if (ret) {
3495 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3496 		spin_unlock_irqrestore(&xhci->lock, flags);
3497 		goto command_cleanup;
3498 	}
3499 	xhci_ring_cmd_db(xhci);
3500 	spin_unlock_irqrestore(&xhci->lock, flags);
3501 
3502 	/* Wait for the Reset Device command to finish */
3503 	wait_for_completion(reset_device_cmd->completion);
3504 
3505 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3506 	 * unless we tried to reset a slot ID that wasn't enabled,
3507 	 * or the device wasn't in the addressed or configured state.
3508 	 */
3509 	ret = reset_device_cmd->status;
3510 	switch (ret) {
3511 	case COMP_CMD_ABORT:
3512 	case COMP_CMD_STOP:
3513 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3514 		ret = -ETIME;
3515 		goto command_cleanup;
3516 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3517 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3518 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3519 				slot_id,
3520 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3521 		xhci_dbg(xhci, "Not freeing device rings.\n");
3522 		/* Don't treat this as an error.  May change my mind later. */
3523 		ret = 0;
3524 		goto command_cleanup;
3525 	case COMP_SUCCESS:
3526 		xhci_dbg(xhci, "Successful reset device command.\n");
3527 		break;
3528 	default:
3529 		if (xhci_is_vendor_info_code(xhci, ret))
3530 			break;
3531 		xhci_warn(xhci, "Unknown completion code %u for "
3532 				"reset device command.\n", ret);
3533 		ret = -EINVAL;
3534 		goto command_cleanup;
3535 	}
3536 
3537 	/* Free up host controller endpoint resources */
3538 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3539 		spin_lock_irqsave(&xhci->lock, flags);
3540 		/* Don't delete the default control endpoint resources */
3541 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3542 		spin_unlock_irqrestore(&xhci->lock, flags);
3543 	}
3544 
3545 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3546 	last_freed_endpoint = 1;
3547 	for (i = 1; i < 31; ++i) {
3548 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3549 
3550 		if (ep->ep_state & EP_HAS_STREAMS) {
3551 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3552 					xhci_get_endpoint_address(i));
3553 			xhci_free_stream_info(xhci, ep->stream_info);
3554 			ep->stream_info = NULL;
3555 			ep->ep_state &= ~EP_HAS_STREAMS;
3556 		}
3557 
3558 		if (ep->ring) {
3559 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3560 			last_freed_endpoint = i;
3561 		}
3562 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3563 			xhci_drop_ep_from_interval_table(xhci,
3564 					&virt_dev->eps[i].bw_info,
3565 					virt_dev->bw_table,
3566 					udev,
3567 					&virt_dev->eps[i],
3568 					virt_dev->tt_info);
3569 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3570 	}
3571 	/* If necessary, update the number of active TTs on this root port */
3572 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3573 
3574 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3575 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3576 	ret = 0;
3577 
3578 command_cleanup:
3579 	xhci_free_command(xhci, reset_device_cmd);
3580 	return ret;
3581 }
3582 
3583 /*
3584  * At this point, the struct usb_device is about to go away, the device has
3585  * disconnected, and all traffic has been stopped and the endpoints have been
3586  * disabled.  Free any HC data structures associated with that device.
3587  */
3588 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3589 {
3590 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3591 	struct xhci_virt_device *virt_dev;
3592 	unsigned long flags;
3593 	u32 state;
3594 	int i, ret;
3595 	struct xhci_command *command;
3596 
3597 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3598 	if (!command)
3599 		return;
3600 
3601 #ifndef CONFIG_USB_DEFAULT_PERSIST
3602 	/*
3603 	 * We called pm_runtime_get_noresume when the device was attached.
3604 	 * Decrement the counter here to allow controller to runtime suspend
3605 	 * if no devices remain.
3606 	 */
3607 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3608 		pm_runtime_put_noidle(hcd->self.controller);
3609 #endif
3610 
3611 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3612 	/* If the host is halted due to driver unload, we still need to free the
3613 	 * device.
3614 	 */
3615 	if (ret <= 0 && ret != -ENODEV) {
3616 		kfree(command);
3617 		return;
3618 	}
3619 
3620 	virt_dev = xhci->devs[udev->slot_id];
3621 
3622 	/* Stop any wayward timer functions (which may grab the lock) */
3623 	for (i = 0; i < 31; ++i) {
3624 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3625 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3626 	}
3627 
3628 	spin_lock_irqsave(&xhci->lock, flags);
3629 	/* Don't disable the slot if the host controller is dead. */
3630 	state = readl(&xhci->op_regs->status);
3631 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3632 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3633 		xhci_free_virt_device(xhci, udev->slot_id);
3634 		spin_unlock_irqrestore(&xhci->lock, flags);
3635 		kfree(command);
3636 		return;
3637 	}
3638 
3639 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3640 				    udev->slot_id)) {
3641 		spin_unlock_irqrestore(&xhci->lock, flags);
3642 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643 		return;
3644 	}
3645 	xhci_ring_cmd_db(xhci);
3646 	spin_unlock_irqrestore(&xhci->lock, flags);
3647 
3648 	/*
3649 	 * Event command completion handler will free any data structures
3650 	 * associated with the slot.  XXX Can free sleep?
3651 	 */
3652 }
3653 
3654 /*
3655  * Checks if we have enough host controller resources for the default control
3656  * endpoint.
3657  *
3658  * Must be called with xhci->lock held.
3659  */
3660 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3661 {
3662 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3663 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3664 				"Not enough ep ctxs: "
3665 				"%u active, need to add 1, limit is %u.",
3666 				xhci->num_active_eps, xhci->limit_active_eps);
3667 		return -ENOMEM;
3668 	}
3669 	xhci->num_active_eps += 1;
3670 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671 			"Adding 1 ep ctx, %u now active.",
3672 			xhci->num_active_eps);
3673 	return 0;
3674 }
3675 
3676 
3677 /*
3678  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3679  * timed out, or allocating memory failed.  Returns 1 on success.
3680  */
3681 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3682 {
3683 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3684 	unsigned long flags;
3685 	int ret;
3686 	struct xhci_command *command;
3687 
3688 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3689 	if (!command)
3690 		return 0;
3691 
3692 	spin_lock_irqsave(&xhci->lock, flags);
3693 	command->completion = &xhci->addr_dev;
3694 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3695 	if (ret) {
3696 		spin_unlock_irqrestore(&xhci->lock, flags);
3697 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3698 		kfree(command);
3699 		return 0;
3700 	}
3701 	xhci_ring_cmd_db(xhci);
3702 	spin_unlock_irqrestore(&xhci->lock, flags);
3703 
3704 	wait_for_completion(command->completion);
3705 
3706 	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3707 		xhci_err(xhci, "Error while assigning device slot ID\n");
3708 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3709 				HCS_MAX_SLOTS(
3710 					readl(&xhci->cap_regs->hcs_params1)));
3711 		kfree(command);
3712 		return 0;
3713 	}
3714 
3715 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3716 		spin_lock_irqsave(&xhci->lock, flags);
3717 		ret = xhci_reserve_host_control_ep_resources(xhci);
3718 		if (ret) {
3719 			spin_unlock_irqrestore(&xhci->lock, flags);
3720 			xhci_warn(xhci, "Not enough host resources, "
3721 					"active endpoint contexts = %u\n",
3722 					xhci->num_active_eps);
3723 			goto disable_slot;
3724 		}
3725 		spin_unlock_irqrestore(&xhci->lock, flags);
3726 	}
3727 	/* Use GFP_NOIO, since this function can be called from
3728 	 * xhci_discover_or_reset_device(), which may be called as part of
3729 	 * mass storage driver error handling.
3730 	 */
3731 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3732 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3733 		goto disable_slot;
3734 	}
3735 	udev->slot_id = xhci->slot_id;
3736 
3737 #ifndef CONFIG_USB_DEFAULT_PERSIST
3738 	/*
3739 	 * If resetting upon resume, we can't put the controller into runtime
3740 	 * suspend if there is a device attached.
3741 	 */
3742 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3743 		pm_runtime_get_noresume(hcd->self.controller);
3744 #endif
3745 
3746 
3747 	kfree(command);
3748 	/* Is this a LS or FS device under a HS hub? */
3749 	/* Hub or peripherial? */
3750 	return 1;
3751 
3752 disable_slot:
3753 	/* Disable slot, if we can do it without mem alloc */
3754 	spin_lock_irqsave(&xhci->lock, flags);
3755 	command->completion = NULL;
3756 	command->status = 0;
3757 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3758 				     udev->slot_id))
3759 		xhci_ring_cmd_db(xhci);
3760 	spin_unlock_irqrestore(&xhci->lock, flags);
3761 	return 0;
3762 }
3763 
3764 /*
3765  * Issue an Address Device command and optionally send a corresponding
3766  * SetAddress request to the device.
3767  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3768  * we should only issue and wait on one address command at the same time.
3769  */
3770 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3771 			     enum xhci_setup_dev setup)
3772 {
3773 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3774 	unsigned long flags;
3775 	struct xhci_virt_device *virt_dev;
3776 	int ret = 0;
3777 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3778 	struct xhci_slot_ctx *slot_ctx;
3779 	struct xhci_input_control_ctx *ctrl_ctx;
3780 	u64 temp_64;
3781 	struct xhci_command *command;
3782 
3783 	if (!udev->slot_id) {
3784 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3785 				"Bad Slot ID %d", udev->slot_id);
3786 		return -EINVAL;
3787 	}
3788 
3789 	virt_dev = xhci->devs[udev->slot_id];
3790 
3791 	if (WARN_ON(!virt_dev)) {
3792 		/*
3793 		 * In plug/unplug torture test with an NEC controller,
3794 		 * a zero-dereference was observed once due to virt_dev = 0.
3795 		 * Print useful debug rather than crash if it is observed again!
3796 		 */
3797 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3798 			udev->slot_id);
3799 		return -EINVAL;
3800 	}
3801 
3802 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3803 	if (!command)
3804 		return -ENOMEM;
3805 
3806 	command->in_ctx = virt_dev->in_ctx;
3807 	command->completion = &xhci->addr_dev;
3808 
3809 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3810 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3811 	if (!ctrl_ctx) {
3812 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3813 				__func__);
3814 		kfree(command);
3815 		return -EINVAL;
3816 	}
3817 	/*
3818 	 * If this is the first Set Address since device plug-in or
3819 	 * virt_device realloaction after a resume with an xHCI power loss,
3820 	 * then set up the slot context.
3821 	 */
3822 	if (!slot_ctx->dev_info)
3823 		xhci_setup_addressable_virt_dev(xhci, udev);
3824 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3825 	else
3826 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3827 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3828 	ctrl_ctx->drop_flags = 0;
3829 
3830 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3831 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3832 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3833 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3834 
3835 	spin_lock_irqsave(&xhci->lock, flags);
3836 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3837 					udev->slot_id, setup);
3838 	if (ret) {
3839 		spin_unlock_irqrestore(&xhci->lock, flags);
3840 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3841 				"FIXME: allocate a command ring segment");
3842 		kfree(command);
3843 		return ret;
3844 	}
3845 	xhci_ring_cmd_db(xhci);
3846 	spin_unlock_irqrestore(&xhci->lock, flags);
3847 
3848 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3849 	wait_for_completion(command->completion);
3850 
3851 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3852 	 * the SetAddress() "recovery interval" required by USB and aborting the
3853 	 * command on a timeout.
3854 	 */
3855 	switch (command->status) {
3856 	case COMP_CMD_ABORT:
3857 	case COMP_CMD_STOP:
3858 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3859 		ret = -ETIME;
3860 		break;
3861 	case COMP_CTX_STATE:
3862 	case COMP_EBADSLT:
3863 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3864 			 act, udev->slot_id);
3865 		ret = -EINVAL;
3866 		break;
3867 	case COMP_TX_ERR:
3868 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3869 		ret = -EPROTO;
3870 		break;
3871 	case COMP_DEV_ERR:
3872 		dev_warn(&udev->dev,
3873 			 "ERROR: Incompatible device for setup %s command\n", act);
3874 		ret = -ENODEV;
3875 		break;
3876 	case COMP_SUCCESS:
3877 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 			       "Successful setup %s command", act);
3879 		break;
3880 	default:
3881 		xhci_err(xhci,
3882 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3883 			 act, command->status);
3884 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3885 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3886 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3887 		ret = -EINVAL;
3888 		break;
3889 	}
3890 	if (ret) {
3891 		kfree(command);
3892 		return ret;
3893 	}
3894 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3895 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3896 			"Op regs DCBAA ptr = %#016llx", temp_64);
3897 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898 		"Slot ID %d dcbaa entry @%p = %#016llx",
3899 		udev->slot_id,
3900 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3901 		(unsigned long long)
3902 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3903 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904 			"Output Context DMA address = %#08llx",
3905 			(unsigned long long)virt_dev->out_ctx->dma);
3906 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3907 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3908 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3909 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3910 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3911 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3912 	/*
3913 	 * USB core uses address 1 for the roothubs, so we add one to the
3914 	 * address given back to us by the HC.
3915 	 */
3916 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3917 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3918 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3919 	/* Zero the input context control for later use */
3920 	ctrl_ctx->add_flags = 0;
3921 	ctrl_ctx->drop_flags = 0;
3922 
3923 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3924 		       "Internal device address = %d",
3925 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3926 	kfree(command);
3927 	return 0;
3928 }
3929 
3930 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3931 {
3932 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3933 }
3934 
3935 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3936 {
3937 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3938 }
3939 
3940 /*
3941  * Transfer the port index into real index in the HW port status
3942  * registers. Caculate offset between the port's PORTSC register
3943  * and port status base. Divide the number of per port register
3944  * to get the real index. The raw port number bases 1.
3945  */
3946 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3947 {
3948 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3949 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3950 	__le32 __iomem *addr;
3951 	int raw_port;
3952 
3953 	if (hcd->speed != HCD_USB3)
3954 		addr = xhci->usb2_ports[port1 - 1];
3955 	else
3956 		addr = xhci->usb3_ports[port1 - 1];
3957 
3958 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3959 	return raw_port;
3960 }
3961 
3962 /*
3963  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3964  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3965  */
3966 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3967 			struct usb_device *udev, u16 max_exit_latency)
3968 {
3969 	struct xhci_virt_device *virt_dev;
3970 	struct xhci_command *command;
3971 	struct xhci_input_control_ctx *ctrl_ctx;
3972 	struct xhci_slot_ctx *slot_ctx;
3973 	unsigned long flags;
3974 	int ret;
3975 
3976 	spin_lock_irqsave(&xhci->lock, flags);
3977 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3978 		spin_unlock_irqrestore(&xhci->lock, flags);
3979 		return 0;
3980 	}
3981 
3982 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3983 	virt_dev = xhci->devs[udev->slot_id];
3984 	command = xhci->lpm_command;
3985 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3986 	if (!ctrl_ctx) {
3987 		spin_unlock_irqrestore(&xhci->lock, flags);
3988 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3989 				__func__);
3990 		return -ENOMEM;
3991 	}
3992 
3993 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3994 	spin_unlock_irqrestore(&xhci->lock, flags);
3995 
3996 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3997 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3998 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3999 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4000 
4001 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4002 			"Set up evaluate context for LPM MEL change.");
4003 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4004 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4005 
4006 	/* Issue and wait for the evaluate context command. */
4007 	ret = xhci_configure_endpoint(xhci, udev, command,
4008 			true, true);
4009 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4010 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4011 
4012 	if (!ret) {
4013 		spin_lock_irqsave(&xhci->lock, flags);
4014 		virt_dev->current_mel = max_exit_latency;
4015 		spin_unlock_irqrestore(&xhci->lock, flags);
4016 	}
4017 	return ret;
4018 }
4019 
4020 #ifdef CONFIG_PM_RUNTIME
4021 
4022 /* BESL to HIRD Encoding array for USB2 LPM */
4023 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4024 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4025 
4026 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4027 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4028 					struct usb_device *udev)
4029 {
4030 	int u2del, besl, besl_host;
4031 	int besl_device = 0;
4032 	u32 field;
4033 
4034 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4035 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4036 
4037 	if (field & USB_BESL_SUPPORT) {
4038 		for (besl_host = 0; besl_host < 16; besl_host++) {
4039 			if (xhci_besl_encoding[besl_host] >= u2del)
4040 				break;
4041 		}
4042 		/* Use baseline BESL value as default */
4043 		if (field & USB_BESL_BASELINE_VALID)
4044 			besl_device = USB_GET_BESL_BASELINE(field);
4045 		else if (field & USB_BESL_DEEP_VALID)
4046 			besl_device = USB_GET_BESL_DEEP(field);
4047 	} else {
4048 		if (u2del <= 50)
4049 			besl_host = 0;
4050 		else
4051 			besl_host = (u2del - 51) / 75 + 1;
4052 	}
4053 
4054 	besl = besl_host + besl_device;
4055 	if (besl > 15)
4056 		besl = 15;
4057 
4058 	return besl;
4059 }
4060 
4061 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4062 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4063 {
4064 	u32 field;
4065 	int l1;
4066 	int besld = 0;
4067 	int hirdm = 0;
4068 
4069 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4070 
4071 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4072 	l1 = udev->l1_params.timeout / 256;
4073 
4074 	/* device has preferred BESLD */
4075 	if (field & USB_BESL_DEEP_VALID) {
4076 		besld = USB_GET_BESL_DEEP(field);
4077 		hirdm = 1;
4078 	}
4079 
4080 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4081 }
4082 
4083 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4084 			struct usb_device *udev, int enable)
4085 {
4086 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4087 	__le32 __iomem	**port_array;
4088 	__le32 __iomem	*pm_addr, *hlpm_addr;
4089 	u32		pm_val, hlpm_val, field;
4090 	unsigned int	port_num;
4091 	unsigned long	flags;
4092 	int		hird, exit_latency;
4093 	int		ret;
4094 
4095 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4096 			!udev->lpm_capable)
4097 		return -EPERM;
4098 
4099 	if (!udev->parent || udev->parent->parent ||
4100 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4101 		return -EPERM;
4102 
4103 	if (udev->usb2_hw_lpm_capable != 1)
4104 		return -EPERM;
4105 
4106 	spin_lock_irqsave(&xhci->lock, flags);
4107 
4108 	port_array = xhci->usb2_ports;
4109 	port_num = udev->portnum - 1;
4110 	pm_addr = port_array[port_num] + PORTPMSC;
4111 	pm_val = readl(pm_addr);
4112 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4113 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4114 
4115 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4116 			enable ? "enable" : "disable", port_num + 1);
4117 
4118 	if (enable) {
4119 		/* Host supports BESL timeout instead of HIRD */
4120 		if (udev->usb2_hw_lpm_besl_capable) {
4121 			/* if device doesn't have a preferred BESL value use a
4122 			 * default one which works with mixed HIRD and BESL
4123 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4124 			 */
4125 			if ((field & USB_BESL_SUPPORT) &&
4126 			    (field & USB_BESL_BASELINE_VALID))
4127 				hird = USB_GET_BESL_BASELINE(field);
4128 			else
4129 				hird = udev->l1_params.besl;
4130 
4131 			exit_latency = xhci_besl_encoding[hird];
4132 			spin_unlock_irqrestore(&xhci->lock, flags);
4133 
4134 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4135 			 * input context for link powermanagement evaluate
4136 			 * context commands. It is protected by hcd->bandwidth
4137 			 * mutex and is shared by all devices. We need to set
4138 			 * the max ext latency in USB 2 BESL LPM as well, so
4139 			 * use the same mutex and xhci_change_max_exit_latency()
4140 			 */
4141 			mutex_lock(hcd->bandwidth_mutex);
4142 			ret = xhci_change_max_exit_latency(xhci, udev,
4143 							   exit_latency);
4144 			mutex_unlock(hcd->bandwidth_mutex);
4145 
4146 			if (ret < 0)
4147 				return ret;
4148 			spin_lock_irqsave(&xhci->lock, flags);
4149 
4150 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4151 			writel(hlpm_val, hlpm_addr);
4152 			/* flush write */
4153 			readl(hlpm_addr);
4154 		} else {
4155 			hird = xhci_calculate_hird_besl(xhci, udev);
4156 		}
4157 
4158 		pm_val &= ~PORT_HIRD_MASK;
4159 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4160 		writel(pm_val, pm_addr);
4161 		pm_val = readl(pm_addr);
4162 		pm_val |= PORT_HLE;
4163 		writel(pm_val, pm_addr);
4164 		/* flush write */
4165 		readl(pm_addr);
4166 	} else {
4167 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4168 		writel(pm_val, pm_addr);
4169 		/* flush write */
4170 		readl(pm_addr);
4171 		if (udev->usb2_hw_lpm_besl_capable) {
4172 			spin_unlock_irqrestore(&xhci->lock, flags);
4173 			mutex_lock(hcd->bandwidth_mutex);
4174 			xhci_change_max_exit_latency(xhci, udev, 0);
4175 			mutex_unlock(hcd->bandwidth_mutex);
4176 			return 0;
4177 		}
4178 	}
4179 
4180 	spin_unlock_irqrestore(&xhci->lock, flags);
4181 	return 0;
4182 }
4183 
4184 /* check if a usb2 port supports a given extened capability protocol
4185  * only USB2 ports extended protocol capability values are cached.
4186  * Return 1 if capability is supported
4187  */
4188 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4189 					   unsigned capability)
4190 {
4191 	u32 port_offset, port_count;
4192 	int i;
4193 
4194 	for (i = 0; i < xhci->num_ext_caps; i++) {
4195 		if (xhci->ext_caps[i] & capability) {
4196 			/* port offsets starts at 1 */
4197 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4198 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4199 			if (port >= port_offset &&
4200 			    port < port_offset + port_count)
4201 				return 1;
4202 		}
4203 	}
4204 	return 0;
4205 }
4206 
4207 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4208 {
4209 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4210 	int		portnum = udev->portnum - 1;
4211 
4212 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4213 			!udev->lpm_capable)
4214 		return 0;
4215 
4216 	/* we only support lpm for non-hub device connected to root hub yet */
4217 	if (!udev->parent || udev->parent->parent ||
4218 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4219 		return 0;
4220 
4221 	if (xhci->hw_lpm_support == 1 &&
4222 			xhci_check_usb2_port_capability(
4223 				xhci, portnum, XHCI_HLC)) {
4224 		udev->usb2_hw_lpm_capable = 1;
4225 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4226 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4227 		if (xhci_check_usb2_port_capability(xhci, portnum,
4228 					XHCI_BLC))
4229 			udev->usb2_hw_lpm_besl_capable = 1;
4230 	}
4231 
4232 	return 0;
4233 }
4234 
4235 #else
4236 
4237 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4238 				struct usb_device *udev, int enable)
4239 {
4240 	return 0;
4241 }
4242 
4243 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244 {
4245 	return 0;
4246 }
4247 
4248 #endif /* CONFIG_PM_RUNTIME */
4249 
4250 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4251 
4252 #ifdef CONFIG_PM
4253 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4254 static unsigned long long xhci_service_interval_to_ns(
4255 		struct usb_endpoint_descriptor *desc)
4256 {
4257 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4258 }
4259 
4260 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4261 		enum usb3_link_state state)
4262 {
4263 	unsigned long long sel;
4264 	unsigned long long pel;
4265 	unsigned int max_sel_pel;
4266 	char *state_name;
4267 
4268 	switch (state) {
4269 	case USB3_LPM_U1:
4270 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4271 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4272 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4273 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4274 		state_name = "U1";
4275 		break;
4276 	case USB3_LPM_U2:
4277 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4278 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4279 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4280 		state_name = "U2";
4281 		break;
4282 	default:
4283 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4284 				__func__);
4285 		return USB3_LPM_DISABLED;
4286 	}
4287 
4288 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4289 		return USB3_LPM_DEVICE_INITIATED;
4290 
4291 	if (sel > max_sel_pel)
4292 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4293 				"due to long SEL %llu ms\n",
4294 				state_name, sel);
4295 	else
4296 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4297 				"due to long PEL %llu ms\n",
4298 				state_name, pel);
4299 	return USB3_LPM_DISABLED;
4300 }
4301 
4302 /* Returns the hub-encoded U1 timeout value.
4303  * The U1 timeout should be the maximum of the following values:
4304  *  - For control endpoints, U1 system exit latency (SEL) * 3
4305  *  - For bulk endpoints, U1 SEL * 5
4306  *  - For interrupt endpoints:
4307  *    - Notification EPs, U1 SEL * 3
4308  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4309  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4310  */
4311 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4312 		struct usb_endpoint_descriptor *desc)
4313 {
4314 	unsigned long long timeout_ns;
4315 	int ep_type;
4316 	int intr_type;
4317 
4318 	ep_type = usb_endpoint_type(desc);
4319 	switch (ep_type) {
4320 	case USB_ENDPOINT_XFER_CONTROL:
4321 		timeout_ns = udev->u1_params.sel * 3;
4322 		break;
4323 	case USB_ENDPOINT_XFER_BULK:
4324 		timeout_ns = udev->u1_params.sel * 5;
4325 		break;
4326 	case USB_ENDPOINT_XFER_INT:
4327 		intr_type = usb_endpoint_interrupt_type(desc);
4328 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4329 			timeout_ns = udev->u1_params.sel * 3;
4330 			break;
4331 		}
4332 		/* Otherwise the calculation is the same as isoc eps */
4333 	case USB_ENDPOINT_XFER_ISOC:
4334 		timeout_ns = xhci_service_interval_to_ns(desc);
4335 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4336 		if (timeout_ns < udev->u1_params.sel * 2)
4337 			timeout_ns = udev->u1_params.sel * 2;
4338 		break;
4339 	default:
4340 		return 0;
4341 	}
4342 
4343 	/* The U1 timeout is encoded in 1us intervals. */
4344 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4345 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4346 	if (timeout_ns == USB3_LPM_DISABLED)
4347 		timeout_ns++;
4348 
4349 	/* If the necessary timeout value is bigger than what we can set in the
4350 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4351 	 */
4352 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4353 		return timeout_ns;
4354 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4355 			"due to long timeout %llu ms\n", timeout_ns);
4356 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4357 }
4358 
4359 /* Returns the hub-encoded U2 timeout value.
4360  * The U2 timeout should be the maximum of:
4361  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4362  *  - largest bInterval of any active periodic endpoint (to avoid going
4363  *    into lower power link states between intervals).
4364  *  - the U2 Exit Latency of the device
4365  */
4366 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4367 		struct usb_endpoint_descriptor *desc)
4368 {
4369 	unsigned long long timeout_ns;
4370 	unsigned long long u2_del_ns;
4371 
4372 	timeout_ns = 10 * 1000 * 1000;
4373 
4374 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4375 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4376 		timeout_ns = xhci_service_interval_to_ns(desc);
4377 
4378 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4379 	if (u2_del_ns > timeout_ns)
4380 		timeout_ns = u2_del_ns;
4381 
4382 	/* The U2 timeout is encoded in 256us intervals */
4383 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4384 	/* If the necessary timeout value is bigger than what we can set in the
4385 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4386 	 */
4387 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4388 		return timeout_ns;
4389 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4390 			"due to long timeout %llu ms\n", timeout_ns);
4391 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4392 }
4393 
4394 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4395 		struct usb_device *udev,
4396 		struct usb_endpoint_descriptor *desc,
4397 		enum usb3_link_state state,
4398 		u16 *timeout)
4399 {
4400 	if (state == USB3_LPM_U1) {
4401 		if (xhci->quirks & XHCI_INTEL_HOST)
4402 			return xhci_calculate_intel_u1_timeout(udev, desc);
4403 	} else {
4404 		if (xhci->quirks & XHCI_INTEL_HOST)
4405 			return xhci_calculate_intel_u2_timeout(udev, desc);
4406 	}
4407 
4408 	return USB3_LPM_DISABLED;
4409 }
4410 
4411 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4412 		struct usb_device *udev,
4413 		struct usb_endpoint_descriptor *desc,
4414 		enum usb3_link_state state,
4415 		u16 *timeout)
4416 {
4417 	u16 alt_timeout;
4418 
4419 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4420 		desc, state, timeout);
4421 
4422 	/* If we found we can't enable hub-initiated LPM, or
4423 	 * the U1 or U2 exit latency was too high to allow
4424 	 * device-initiated LPM as well, just stop searching.
4425 	 */
4426 	if (alt_timeout == USB3_LPM_DISABLED ||
4427 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4428 		*timeout = alt_timeout;
4429 		return -E2BIG;
4430 	}
4431 	if (alt_timeout > *timeout)
4432 		*timeout = alt_timeout;
4433 	return 0;
4434 }
4435 
4436 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4437 		struct usb_device *udev,
4438 		struct usb_host_interface *alt,
4439 		enum usb3_link_state state,
4440 		u16 *timeout)
4441 {
4442 	int j;
4443 
4444 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4445 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4446 					&alt->endpoint[j].desc, state, timeout))
4447 			return -E2BIG;
4448 		continue;
4449 	}
4450 	return 0;
4451 }
4452 
4453 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4454 		enum usb3_link_state state)
4455 {
4456 	struct usb_device *parent;
4457 	unsigned int num_hubs;
4458 
4459 	if (state == USB3_LPM_U2)
4460 		return 0;
4461 
4462 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4463 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4464 			parent = parent->parent)
4465 		num_hubs++;
4466 
4467 	if (num_hubs < 2)
4468 		return 0;
4469 
4470 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4471 			" below second-tier hub.\n");
4472 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4473 			"to decrease power consumption.\n");
4474 	return -E2BIG;
4475 }
4476 
4477 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4478 		struct usb_device *udev,
4479 		enum usb3_link_state state)
4480 {
4481 	if (xhci->quirks & XHCI_INTEL_HOST)
4482 		return xhci_check_intel_tier_policy(udev, state);
4483 	return -EINVAL;
4484 }
4485 
4486 /* Returns the U1 or U2 timeout that should be enabled.
4487  * If the tier check or timeout setting functions return with a non-zero exit
4488  * code, that means the timeout value has been finalized and we shouldn't look
4489  * at any more endpoints.
4490  */
4491 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4492 			struct usb_device *udev, enum usb3_link_state state)
4493 {
4494 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4495 	struct usb_host_config *config;
4496 	char *state_name;
4497 	int i;
4498 	u16 timeout = USB3_LPM_DISABLED;
4499 
4500 	if (state == USB3_LPM_U1)
4501 		state_name = "U1";
4502 	else if (state == USB3_LPM_U2)
4503 		state_name = "U2";
4504 	else {
4505 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4506 				state);
4507 		return timeout;
4508 	}
4509 
4510 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4511 		return timeout;
4512 
4513 	/* Gather some information about the currently installed configuration
4514 	 * and alternate interface settings.
4515 	 */
4516 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4517 			state, &timeout))
4518 		return timeout;
4519 
4520 	config = udev->actconfig;
4521 	if (!config)
4522 		return timeout;
4523 
4524 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4525 		struct usb_driver *driver;
4526 		struct usb_interface *intf = config->interface[i];
4527 
4528 		if (!intf)
4529 			continue;
4530 
4531 		/* Check if any currently bound drivers want hub-initiated LPM
4532 		 * disabled.
4533 		 */
4534 		if (intf->dev.driver) {
4535 			driver = to_usb_driver(intf->dev.driver);
4536 			if (driver && driver->disable_hub_initiated_lpm) {
4537 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4538 						"at request of driver %s\n",
4539 						state_name, driver->name);
4540 				return xhci_get_timeout_no_hub_lpm(udev, state);
4541 			}
4542 		}
4543 
4544 		/* Not sure how this could happen... */
4545 		if (!intf->cur_altsetting)
4546 			continue;
4547 
4548 		if (xhci_update_timeout_for_interface(xhci, udev,
4549 					intf->cur_altsetting,
4550 					state, &timeout))
4551 			return timeout;
4552 	}
4553 	return timeout;
4554 }
4555 
4556 static int calculate_max_exit_latency(struct usb_device *udev,
4557 		enum usb3_link_state state_changed,
4558 		u16 hub_encoded_timeout)
4559 {
4560 	unsigned long long u1_mel_us = 0;
4561 	unsigned long long u2_mel_us = 0;
4562 	unsigned long long mel_us = 0;
4563 	bool disabling_u1;
4564 	bool disabling_u2;
4565 	bool enabling_u1;
4566 	bool enabling_u2;
4567 
4568 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4569 			hub_encoded_timeout == USB3_LPM_DISABLED);
4570 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4571 			hub_encoded_timeout == USB3_LPM_DISABLED);
4572 
4573 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4574 			hub_encoded_timeout != USB3_LPM_DISABLED);
4575 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4576 			hub_encoded_timeout != USB3_LPM_DISABLED);
4577 
4578 	/* If U1 was already enabled and we're not disabling it,
4579 	 * or we're going to enable U1, account for the U1 max exit latency.
4580 	 */
4581 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4582 			enabling_u1)
4583 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4584 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4585 			enabling_u2)
4586 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4587 
4588 	if (u1_mel_us > u2_mel_us)
4589 		mel_us = u1_mel_us;
4590 	else
4591 		mel_us = u2_mel_us;
4592 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4593 	if (mel_us > MAX_EXIT) {
4594 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4595 				"is too big.\n", mel_us);
4596 		return -E2BIG;
4597 	}
4598 	return mel_us;
4599 }
4600 
4601 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4602 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4603 			struct usb_device *udev, enum usb3_link_state state)
4604 {
4605 	struct xhci_hcd	*xhci;
4606 	u16 hub_encoded_timeout;
4607 	int mel;
4608 	int ret;
4609 
4610 	xhci = hcd_to_xhci(hcd);
4611 	/* The LPM timeout values are pretty host-controller specific, so don't
4612 	 * enable hub-initiated timeouts unless the vendor has provided
4613 	 * information about their timeout algorithm.
4614 	 */
4615 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4616 			!xhci->devs[udev->slot_id])
4617 		return USB3_LPM_DISABLED;
4618 
4619 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4620 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4621 	if (mel < 0) {
4622 		/* Max Exit Latency is too big, disable LPM. */
4623 		hub_encoded_timeout = USB3_LPM_DISABLED;
4624 		mel = 0;
4625 	}
4626 
4627 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4628 	if (ret)
4629 		return ret;
4630 	return hub_encoded_timeout;
4631 }
4632 
4633 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4634 			struct usb_device *udev, enum usb3_link_state state)
4635 {
4636 	struct xhci_hcd	*xhci;
4637 	u16 mel;
4638 	int ret;
4639 
4640 	xhci = hcd_to_xhci(hcd);
4641 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4642 			!xhci->devs[udev->slot_id])
4643 		return 0;
4644 
4645 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4646 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4647 	if (ret)
4648 		return ret;
4649 	return 0;
4650 }
4651 #else /* CONFIG_PM */
4652 
4653 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654 			struct usb_device *udev, enum usb3_link_state state)
4655 {
4656 	return USB3_LPM_DISABLED;
4657 }
4658 
4659 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4660 			struct usb_device *udev, enum usb3_link_state state)
4661 {
4662 	return 0;
4663 }
4664 #endif	/* CONFIG_PM */
4665 
4666 /*-------------------------------------------------------------------------*/
4667 
4668 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4669  * internal data structures for the device.
4670  */
4671 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4672 			struct usb_tt *tt, gfp_t mem_flags)
4673 {
4674 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4675 	struct xhci_virt_device *vdev;
4676 	struct xhci_command *config_cmd;
4677 	struct xhci_input_control_ctx *ctrl_ctx;
4678 	struct xhci_slot_ctx *slot_ctx;
4679 	unsigned long flags;
4680 	unsigned think_time;
4681 	int ret;
4682 
4683 	/* Ignore root hubs */
4684 	if (!hdev->parent)
4685 		return 0;
4686 
4687 	vdev = xhci->devs[hdev->slot_id];
4688 	if (!vdev) {
4689 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4690 		return -EINVAL;
4691 	}
4692 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4693 	if (!config_cmd) {
4694 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4695 		return -ENOMEM;
4696 	}
4697 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4698 	if (!ctrl_ctx) {
4699 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4700 				__func__);
4701 		xhci_free_command(xhci, config_cmd);
4702 		return -ENOMEM;
4703 	}
4704 
4705 	spin_lock_irqsave(&xhci->lock, flags);
4706 	if (hdev->speed == USB_SPEED_HIGH &&
4707 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4708 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4709 		xhci_free_command(xhci, config_cmd);
4710 		spin_unlock_irqrestore(&xhci->lock, flags);
4711 		return -ENOMEM;
4712 	}
4713 
4714 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4715 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4716 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4717 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4718 	if (tt->multi)
4719 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4720 	if (xhci->hci_version > 0x95) {
4721 		xhci_dbg(xhci, "xHCI version %x needs hub "
4722 				"TT think time and number of ports\n",
4723 				(unsigned int) xhci->hci_version);
4724 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4725 		/* Set TT think time - convert from ns to FS bit times.
4726 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4727 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4728 		 *
4729 		 * xHCI 1.0: this field shall be 0 if the device is not a
4730 		 * High-spped hub.
4731 		 */
4732 		think_time = tt->think_time;
4733 		if (think_time != 0)
4734 			think_time = (think_time / 666) - 1;
4735 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4736 			slot_ctx->tt_info |=
4737 				cpu_to_le32(TT_THINK_TIME(think_time));
4738 	} else {
4739 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4740 				"TT think time or number of ports\n",
4741 				(unsigned int) xhci->hci_version);
4742 	}
4743 	slot_ctx->dev_state = 0;
4744 	spin_unlock_irqrestore(&xhci->lock, flags);
4745 
4746 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4747 			(xhci->hci_version > 0x95) ?
4748 			"configure endpoint" : "evaluate context");
4749 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4750 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4751 
4752 	/* Issue and wait for the configure endpoint or
4753 	 * evaluate context command.
4754 	 */
4755 	if (xhci->hci_version > 0x95)
4756 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4757 				false, false);
4758 	else
4759 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4760 				true, false);
4761 
4762 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4763 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4764 
4765 	xhci_free_command(xhci, config_cmd);
4766 	return ret;
4767 }
4768 
4769 int xhci_get_frame(struct usb_hcd *hcd)
4770 {
4771 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4772 	/* EHCI mods by the periodic size.  Why? */
4773 	return readl(&xhci->run_regs->microframe_index) >> 3;
4774 }
4775 
4776 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4777 {
4778 	struct xhci_hcd		*xhci;
4779 	struct device		*dev = hcd->self.controller;
4780 	int			retval;
4781 
4782 	/* Accept arbitrarily long scatter-gather lists */
4783 	hcd->self.sg_tablesize = ~0;
4784 
4785 	/* support to build packet from discontinuous buffers */
4786 	hcd->self.no_sg_constraint = 1;
4787 
4788 	/* XHCI controllers don't stop the ep queue on short packets :| */
4789 	hcd->self.no_stop_on_short = 1;
4790 
4791 	if (usb_hcd_is_primary_hcd(hcd)) {
4792 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4793 		if (!xhci)
4794 			return -ENOMEM;
4795 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4796 		xhci->main_hcd = hcd;
4797 		/* Mark the first roothub as being USB 2.0.
4798 		 * The xHCI driver will register the USB 3.0 roothub.
4799 		 */
4800 		hcd->speed = HCD_USB2;
4801 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4802 		/*
4803 		 * USB 2.0 roothub under xHCI has an integrated TT,
4804 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4805 		 * companion controller.
4806 		 */
4807 		hcd->has_tt = 1;
4808 	} else {
4809 		/* xHCI private pointer was set in xhci_pci_probe for the second
4810 		 * registered roothub.
4811 		 */
4812 		return 0;
4813 	}
4814 
4815 	xhci->cap_regs = hcd->regs;
4816 	xhci->op_regs = hcd->regs +
4817 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4818 	xhci->run_regs = hcd->regs +
4819 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4820 	/* Cache read-only capability registers */
4821 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4822 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4823 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4824 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4825 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4826 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4827 	xhci_print_registers(xhci);
4828 
4829 	xhci->quirks = quirks;
4830 
4831 	get_quirks(dev, xhci);
4832 
4833 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4834 	 * success event after a short transfer. This quirk will ignore such
4835 	 * spurious event.
4836 	 */
4837 	if (xhci->hci_version > 0x96)
4838 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4839 
4840 	/* Make sure the HC is halted. */
4841 	retval = xhci_halt(xhci);
4842 	if (retval)
4843 		goto error;
4844 
4845 	xhci_dbg(xhci, "Resetting HCD\n");
4846 	/* Reset the internal HC memory state and registers. */
4847 	retval = xhci_reset(xhci);
4848 	if (retval)
4849 		goto error;
4850 	xhci_dbg(xhci, "Reset complete\n");
4851 
4852 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4853 	 * if xHC supports 64-bit addressing */
4854 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4855 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4856 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4857 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4858 	}
4859 
4860 	xhci_dbg(xhci, "Calling HCD init\n");
4861 	/* Initialize HCD and host controller data structures. */
4862 	retval = xhci_init(hcd);
4863 	if (retval)
4864 		goto error;
4865 	xhci_dbg(xhci, "Called HCD init\n");
4866 	return 0;
4867 error:
4868 	kfree(xhci);
4869 	return retval;
4870 }
4871 
4872 MODULE_DESCRIPTION(DRIVER_DESC);
4873 MODULE_AUTHOR(DRIVER_AUTHOR);
4874 MODULE_LICENSE("GPL");
4875 
4876 static int __init xhci_hcd_init(void)
4877 {
4878 	int retval;
4879 
4880 	retval = xhci_register_pci();
4881 	if (retval < 0) {
4882 		pr_debug("Problem registering PCI driver.\n");
4883 		return retval;
4884 	}
4885 	retval = xhci_register_plat();
4886 	if (retval < 0) {
4887 		pr_debug("Problem registering platform driver.\n");
4888 		goto unreg_pci;
4889 	}
4890 	/*
4891 	 * Check the compiler generated sizes of structures that must be laid
4892 	 * out in specific ways for hardware access.
4893 	 */
4894 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4895 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4896 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4897 	/* xhci_device_control has eight fields, and also
4898 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4899 	 */
4900 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4901 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4902 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4903 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4904 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4905 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4906 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4907 	return 0;
4908 unreg_pci:
4909 	xhci_unregister_pci();
4910 	return retval;
4911 }
4912 module_init(xhci_hcd_init);
4913 
4914 static void __exit xhci_hcd_cleanup(void)
4915 {
4916 	xhci_unregister_pci();
4917 	xhci_unregister_plat();
4918 }
4919 module_exit(xhci_hcd_cleanup);
4920