1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 static unsigned int quirks; 44 module_param(quirks, uint, S_IRUGO); 45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 46 47 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 48 /* 49 * xhci_handshake - spin reading hc until handshake completes or fails 50 * @ptr: address of hc register to be read 51 * @mask: bits to look at in result of read 52 * @done: value of those bits when handshake succeeds 53 * @usec: timeout in microseconds 54 * 55 * Returns negative errno, or zero on success 56 * 57 * Success happens when the "mask" bits have the specified value (hardware 58 * handshake done). There are two failure modes: "usec" have passed (major 59 * hardware flakeout), or the register reads as all-ones (hardware removed). 60 */ 61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 62 u32 mask, u32 done, int usec) 63 { 64 u32 result; 65 66 do { 67 result = readl(ptr); 68 if (result == ~(u32)0) /* card removed */ 69 return -ENODEV; 70 result &= mask; 71 if (result == done) 72 return 0; 73 udelay(1); 74 usec--; 75 } while (usec > 0); 76 return -ETIMEDOUT; 77 } 78 79 /* 80 * Disable interrupts and begin the xHCI halting process. 81 */ 82 void xhci_quiesce(struct xhci_hcd *xhci) 83 { 84 u32 halted; 85 u32 cmd; 86 u32 mask; 87 88 mask = ~(XHCI_IRQS); 89 halted = readl(&xhci->op_regs->status) & STS_HALT; 90 if (!halted) 91 mask &= ~CMD_RUN; 92 93 cmd = readl(&xhci->op_regs->command); 94 cmd &= mask; 95 writel(cmd, &xhci->op_regs->command); 96 } 97 98 /* 99 * Force HC into halt state. 100 * 101 * Disable any IRQs and clear the run/stop bit. 102 * HC will complete any current and actively pipelined transactions, and 103 * should halt within 16 ms of the run/stop bit being cleared. 104 * Read HC Halted bit in the status register to see when the HC is finished. 105 */ 106 int xhci_halt(struct xhci_hcd *xhci) 107 { 108 int ret; 109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 110 xhci_quiesce(xhci); 111 112 ret = xhci_handshake(xhci, &xhci->op_regs->status, 113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 114 if (!ret) { 115 xhci->xhc_state |= XHCI_STATE_HALTED; 116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 117 } else 118 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 119 XHCI_MAX_HALT_USEC); 120 return ret; 121 } 122 123 /* 124 * Set the run bit and wait for the host to be running. 125 */ 126 static int xhci_start(struct xhci_hcd *xhci) 127 { 128 u32 temp; 129 int ret; 130 131 temp = readl(&xhci->op_regs->command); 132 temp |= (CMD_RUN); 133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 134 temp); 135 writel(temp, &xhci->op_regs->command); 136 137 /* 138 * Wait for the HCHalted Status bit to be 0 to indicate the host is 139 * running. 140 */ 141 ret = xhci_handshake(xhci, &xhci->op_regs->status, 142 STS_HALT, 0, XHCI_MAX_HALT_USEC); 143 if (ret == -ETIMEDOUT) 144 xhci_err(xhci, "Host took too long to start, " 145 "waited %u microseconds.\n", 146 XHCI_MAX_HALT_USEC); 147 if (!ret) 148 xhci->xhc_state &= ~XHCI_STATE_HALTED; 149 return ret; 150 } 151 152 /* 153 * Reset a halted HC. 154 * 155 * This resets pipelines, timers, counters, state machines, etc. 156 * Transactions will be terminated immediately, and operational registers 157 * will be set to their defaults. 158 */ 159 int xhci_reset(struct xhci_hcd *xhci) 160 { 161 u32 command; 162 u32 state; 163 int ret, i; 164 165 state = readl(&xhci->op_regs->status); 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 ret = xhci_handshake(xhci, &xhci->op_regs->command, 177 CMD_RESET, 0, 10 * 1000 * 1000); 178 if (ret) 179 return ret; 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 182 "Wait for controller to be ready for doorbell rings"); 183 /* 184 * xHCI cannot write to any doorbells or operational registers other 185 * than status until the "Controller Not Ready" flag is cleared. 186 */ 187 ret = xhci_handshake(xhci, &xhci->op_regs->status, 188 STS_CNR, 0, 10 * 1000 * 1000); 189 190 for (i = 0; i < 2; ++i) { 191 xhci->bus_state[i].port_c_suspend = 0; 192 xhci->bus_state[i].suspended_ports = 0; 193 xhci->bus_state[i].resuming_ports = 0; 194 } 195 196 return ret; 197 } 198 199 #ifdef CONFIG_PCI 200 static int xhci_free_msi(struct xhci_hcd *xhci) 201 { 202 int i; 203 204 if (!xhci->msix_entries) 205 return -EINVAL; 206 207 for (i = 0; i < xhci->msix_count; i++) 208 if (xhci->msix_entries[i].vector) 209 free_irq(xhci->msix_entries[i].vector, 210 xhci_to_hcd(xhci)); 211 return 0; 212 } 213 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 221 222 ret = pci_enable_msi(pdev); 223 if (ret) { 224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 225 "failed to allocate MSI entry"); 226 return ret; 227 } 228 229 ret = request_irq(pdev->irq, xhci_msi_irq, 230 0, "xhci_hcd", xhci_to_hcd(xhci)); 231 if (ret) { 232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 233 "disable MSI interrupt"); 234 pci_disable_msi(pdev); 235 } 236 237 return ret; 238 } 239 240 /* 241 * Free IRQs 242 * free all IRQs request 243 */ 244 static void xhci_free_irq(struct xhci_hcd *xhci) 245 { 246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 247 int ret; 248 249 /* return if using legacy interrupt */ 250 if (xhci_to_hcd(xhci)->irq > 0) 251 return; 252 253 ret = xhci_free_msi(xhci); 254 if (!ret) 255 return; 256 if (pdev->irq > 0) 257 free_irq(pdev->irq, xhci_to_hcd(xhci)); 258 259 return; 260 } 261 262 /* 263 * Set up MSI-X 264 */ 265 static int xhci_setup_msix(struct xhci_hcd *xhci) 266 { 267 int i, ret = 0; 268 struct usb_hcd *hcd = xhci_to_hcd(xhci); 269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 270 271 /* 272 * calculate number of msi-x vectors supported. 273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 274 * with max number of interrupters based on the xhci HCSPARAMS1. 275 * - num_online_cpus: maximum msi-x vectors per CPUs core. 276 * Add additional 1 vector to ensure always available interrupt. 277 */ 278 xhci->msix_count = min(num_online_cpus() + 1, 279 HCS_MAX_INTRS(xhci->hcs_params1)); 280 281 xhci->msix_entries = 282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 283 GFP_KERNEL); 284 if (!xhci->msix_entries) { 285 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 286 return -ENOMEM; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 xhci->msix_entries[i].entry = i; 291 xhci->msix_entries[i].vector = 0; 292 } 293 294 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 295 if (ret) { 296 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 297 "Failed to enable MSI-X"); 298 goto free_entries; 299 } 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 ret = request_irq(xhci->msix_entries[i].vector, 303 xhci_msi_irq, 304 0, "xhci_hcd", xhci_to_hcd(xhci)); 305 if (ret) 306 goto disable_msix; 307 } 308 309 hcd->msix_enabled = 1; 310 return ret; 311 312 disable_msix: 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 314 xhci_free_irq(xhci); 315 pci_disable_msix(pdev); 316 free_entries: 317 kfree(xhci->msix_entries); 318 xhci->msix_entries = NULL; 319 return ret; 320 } 321 322 /* Free any IRQs and disable MSI-X */ 323 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 324 { 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 if (xhci->quirks & XHCI_PLAT) 329 return; 330 331 xhci_free_irq(xhci); 332 333 if (xhci->msix_entries) { 334 pci_disable_msix(pdev); 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 } else { 338 pci_disable_msi(pdev); 339 } 340 341 hcd->msix_enabled = 0; 342 return; 343 } 344 345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 346 { 347 int i; 348 349 if (xhci->msix_entries) { 350 for (i = 0; i < xhci->msix_count; i++) 351 synchronize_irq(xhci->msix_entries[i].vector); 352 } 353 } 354 355 static int xhci_try_enable_msi(struct usb_hcd *hcd) 356 { 357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 358 struct pci_dev *pdev; 359 int ret; 360 361 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 362 if (xhci->quirks & XHCI_PLAT) 363 return 0; 364 365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 366 /* 367 * Some Fresco Logic host controllers advertise MSI, but fail to 368 * generate interrupts. Don't even try to enable MSI. 369 */ 370 if (xhci->quirks & XHCI_BROKEN_MSI) 371 goto legacy_irq; 372 373 /* unregister the legacy interrupt */ 374 if (hcd->irq) 375 free_irq(hcd->irq, hcd); 376 hcd->irq = 0; 377 378 ret = xhci_setup_msix(xhci); 379 if (ret) 380 /* fall back to msi*/ 381 ret = xhci_setup_msi(xhci); 382 383 if (!ret) 384 /* hcd->irq is 0, we have MSI */ 385 return 0; 386 387 if (!pdev->irq) { 388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 389 return -EINVAL; 390 } 391 392 legacy_irq: 393 if (!strlen(hcd->irq_descr)) 394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 395 hcd->driver->description, hcd->self.busnum); 396 397 /* fall back to legacy interrupt*/ 398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 399 hcd->irq_descr, hcd); 400 if (ret) { 401 xhci_err(xhci, "request interrupt %d failed\n", 402 pdev->irq); 403 return ret; 404 } 405 hcd->irq = pdev->irq; 406 return 0; 407 } 408 409 #else 410 411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 412 { 413 return 0; 414 } 415 416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 417 { 418 } 419 420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 421 { 422 } 423 424 #endif 425 426 static void compliance_mode_recovery(unsigned long arg) 427 { 428 struct xhci_hcd *xhci; 429 struct usb_hcd *hcd; 430 u32 temp; 431 int i; 432 433 xhci = (struct xhci_hcd *)arg; 434 435 for (i = 0; i < xhci->num_usb3_ports; i++) { 436 temp = readl(xhci->usb3_ports[i]); 437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 438 /* 439 * Compliance Mode Detected. Letting USB Core 440 * handle the Warm Reset 441 */ 442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 443 "Compliance mode detected->port %d", 444 i + 1); 445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 446 "Attempting compliance mode recovery"); 447 hcd = xhci->shared_hcd; 448 449 if (hcd->state == HC_STATE_SUSPENDED) 450 usb_hcd_resume_root_hub(hcd); 451 452 usb_hcd_poll_rh_status(hcd); 453 } 454 } 455 456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 457 mod_timer(&xhci->comp_mode_recovery_timer, 458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 } 460 461 /* 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 463 * that causes ports behind that hardware to enter compliance mode sometimes. 464 * The quirk creates a timer that polls every 2 seconds the link state of 465 * each host controller's port and recovers it by issuing a Warm reset 466 * if Compliance mode is detected, otherwise the port will become "dead" (no 467 * device connections or disconnections will be detected anymore). Becasue no 468 * status event is generated when entering compliance mode (per xhci spec), 469 * this quirk is needed on systems that have the failing hardware installed. 470 */ 471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 472 { 473 xhci->port_status_u0 = 0; 474 init_timer(&xhci->comp_mode_recovery_timer); 475 476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 478 xhci->comp_mode_recovery_timer.expires = jiffies + 479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 480 481 set_timer_slack(&xhci->comp_mode_recovery_timer, 482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 483 add_timer(&xhci->comp_mode_recovery_timer); 484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 485 "Compliance mode recovery timer initialized"); 486 } 487 488 /* 489 * This function identifies the systems that have installed the SN65LVPE502CP 490 * USB3.0 re-driver and that need the Compliance Mode Quirk. 491 * Systems: 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 493 */ 494 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 495 { 496 const char *dmi_product_name, *dmi_sys_vendor; 497 498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 500 if (!dmi_product_name || !dmi_sys_vendor) 501 return false; 502 503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 504 return false; 505 506 if (strstr(dmi_product_name, "Z420") || 507 strstr(dmi_product_name, "Z620") || 508 strstr(dmi_product_name, "Z820") || 509 strstr(dmi_product_name, "Z1 Workstation")) 510 return true; 511 512 return false; 513 } 514 515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 516 { 517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 518 } 519 520 521 /* 522 * Initialize memory for HCD and xHC (one-time init). 523 * 524 * Program the PAGESIZE register, initialize the device context array, create 525 * device contexts (?), set up a command ring segment (or two?), create event 526 * ring (one for now). 527 */ 528 int xhci_init(struct usb_hcd *hcd) 529 { 530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 531 int retval = 0; 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 534 spin_lock_init(&xhci->lock); 535 if (xhci->hci_version == 0x95 && link_quirk) { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "QUIRK: Not clearing Link TRB chain bits."); 538 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 539 } else { 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 541 "xHCI doesn't need link TRB QUIRK"); 542 } 543 retval = xhci_mem_init(xhci, GFP_KERNEL); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 545 546 /* Initializing Compliance Mode Recovery Data If Needed */ 547 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 548 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 549 compliance_mode_recovery_timer_init(xhci); 550 } 551 552 return retval; 553 } 554 555 /*-------------------------------------------------------------------------*/ 556 557 558 static int xhci_run_finished(struct xhci_hcd *xhci) 559 { 560 if (xhci_start(xhci)) { 561 xhci_halt(xhci); 562 return -ENODEV; 563 } 564 xhci->shared_hcd->state = HC_STATE_RUNNING; 565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 566 567 if (xhci->quirks & XHCI_NEC_HOST) 568 xhci_ring_cmd_db(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished xhci_run for USB3 roothub"); 572 return 0; 573 } 574 575 /* 576 * Start the HC after it was halted. 577 * 578 * This function is called by the USB core when the HC driver is added. 579 * Its opposite is xhci_stop(). 580 * 581 * xhci_init() must be called once before this function can be called. 582 * Reset the HC, enable device slot contexts, program DCBAAP, and 583 * set command ring pointer and event ring pointer. 584 * 585 * Setup MSI-X vectors and enable interrupts. 586 */ 587 int xhci_run(struct usb_hcd *hcd) 588 { 589 u32 temp; 590 u64 temp_64; 591 int ret; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 /* Start the xHCI host controller running only after the USB 2.0 roothub 595 * is setup. 596 */ 597 598 hcd->uses_new_polling = 1; 599 if (!usb_hcd_is_primary_hcd(hcd)) 600 return xhci_run_finished(xhci); 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 603 604 ret = xhci_try_enable_msi(hcd); 605 if (ret) 606 return ret; 607 608 xhci_dbg(xhci, "Command ring memory map follows:\n"); 609 xhci_debug_ring(xhci, xhci->cmd_ring); 610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 611 xhci_dbg_cmd_ptrs(xhci); 612 613 xhci_dbg(xhci, "ERST memory map follows:\n"); 614 xhci_dbg_erst(xhci, &xhci->erst); 615 xhci_dbg(xhci, "Event ring:\n"); 616 xhci_debug_ring(xhci, xhci->event_ring); 617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 619 temp_64 &= ~ERST_PTR_MASK; 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 624 "// Set the interrupt modulation register"); 625 temp = readl(&xhci->ir_set->irq_control); 626 temp &= ~ER_IRQ_INTERVAL_MASK; 627 temp |= (u32) 160; 628 writel(temp, &xhci->ir_set->irq_control); 629 630 /* Set the HCD state before we enable the irqs */ 631 temp = readl(&xhci->op_regs->command); 632 temp |= (CMD_EIE); 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Enable interrupts, cmd = 0x%x.", temp); 635 writel(temp, &xhci->op_regs->command); 636 637 temp = readl(&xhci->ir_set->irq_pending); 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 642 xhci_print_ir_set(xhci, 0); 643 644 if (xhci->quirks & XHCI_NEC_HOST) { 645 struct xhci_command *command; 646 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 647 if (!command) 648 return -ENOMEM; 649 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 650 TRB_TYPE(TRB_NEC_GET_FW)); 651 } 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 653 "Finished xhci_run for USB2 roothub"); 654 return 0; 655 } 656 657 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 658 { 659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 660 661 spin_lock_irq(&xhci->lock); 662 xhci_halt(xhci); 663 664 /* The shared_hcd is going to be deallocated shortly (the USB core only 665 * calls this function when allocation fails in usb_add_hcd(), or 666 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 667 */ 668 xhci->shared_hcd = NULL; 669 spin_unlock_irq(&xhci->lock); 670 } 671 672 /* 673 * Stop xHCI driver. 674 * 675 * This function is called by the USB core when the HC driver is removed. 676 * Its opposite is xhci_run(). 677 * 678 * Disable device contexts, disable IRQs, and quiesce the HC. 679 * Reset the HC, finish any completed transactions, and cleanup memory. 680 */ 681 void xhci_stop(struct usb_hcd *hcd) 682 { 683 u32 temp; 684 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 685 686 if (!usb_hcd_is_primary_hcd(hcd)) { 687 xhci_only_stop_hcd(xhci->shared_hcd); 688 return; 689 } 690 691 spin_lock_irq(&xhci->lock); 692 /* Make sure the xHC is halted for a USB3 roothub 693 * (xhci_stop() could be called as part of failed init). 694 */ 695 xhci_halt(xhci); 696 xhci_reset(xhci); 697 spin_unlock_irq(&xhci->lock); 698 699 xhci_cleanup_msix(xhci); 700 701 /* Deleting Compliance Mode Recovery Timer */ 702 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 703 (!(xhci_all_ports_seen_u0(xhci)))) { 704 del_timer_sync(&xhci->comp_mode_recovery_timer); 705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 706 "%s: compliance mode recovery timer deleted", 707 __func__); 708 } 709 710 if (xhci->quirks & XHCI_AMD_PLL_FIX) 711 usb_amd_dev_put(); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "// Disabling event ring interrupts"); 715 temp = readl(&xhci->op_regs->status); 716 writel(temp & ~STS_EINT, &xhci->op_regs->status); 717 temp = readl(&xhci->ir_set->irq_pending); 718 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 719 xhci_print_ir_set(xhci, 0); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 722 xhci_mem_cleanup(xhci); 723 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 724 "xhci_stop completed - status = %x", 725 readl(&xhci->op_regs->status)); 726 } 727 728 /* 729 * Shutdown HC (not bus-specific) 730 * 731 * This is called when the machine is rebooting or halting. We assume that the 732 * machine will be powered off, and the HC's internal state will be reset. 733 * Don't bother to free memory. 734 * 735 * This will only ever be called with the main usb_hcd (the USB3 roothub). 736 */ 737 void xhci_shutdown(struct usb_hcd *hcd) 738 { 739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 740 741 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 742 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 743 744 spin_lock_irq(&xhci->lock); 745 xhci_halt(xhci); 746 /* Workaround for spurious wakeups at shutdown with HSW */ 747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 748 xhci_reset(xhci); 749 spin_unlock_irq(&xhci->lock); 750 751 xhci_cleanup_msix(xhci); 752 753 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 754 "xhci_shutdown completed - status = %x", 755 readl(&xhci->op_regs->status)); 756 757 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 758 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 759 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 760 } 761 762 #ifdef CONFIG_PM 763 static void xhci_save_registers(struct xhci_hcd *xhci) 764 { 765 xhci->s3.command = readl(&xhci->op_regs->command); 766 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 767 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 768 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 769 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 770 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 771 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 772 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 773 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 774 } 775 776 static void xhci_restore_registers(struct xhci_hcd *xhci) 777 { 778 writel(xhci->s3.command, &xhci->op_regs->command); 779 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 780 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 781 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 782 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 783 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 784 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 785 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 786 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 787 } 788 789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 790 { 791 u64 val_64; 792 793 /* step 2: initialize command ring buffer */ 794 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 795 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 796 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 797 xhci->cmd_ring->dequeue) & 798 (u64) ~CMD_RING_RSVD_BITS) | 799 xhci->cmd_ring->cycle_state; 800 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 801 "// Setting command ring address to 0x%llx", 802 (long unsigned long) val_64); 803 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 804 } 805 806 /* 807 * The whole command ring must be cleared to zero when we suspend the host. 808 * 809 * The host doesn't save the command ring pointer in the suspend well, so we 810 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 811 * aligned, because of the reserved bits in the command ring dequeue pointer 812 * register. Therefore, we can't just set the dequeue pointer back in the 813 * middle of the ring (TRBs are 16-byte aligned). 814 */ 815 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 816 { 817 struct xhci_ring *ring; 818 struct xhci_segment *seg; 819 820 ring = xhci->cmd_ring; 821 seg = ring->deq_seg; 822 do { 823 memset(seg->trbs, 0, 824 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 825 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 826 cpu_to_le32(~TRB_CYCLE); 827 seg = seg->next; 828 } while (seg != ring->deq_seg); 829 830 /* Reset the software enqueue and dequeue pointers */ 831 ring->deq_seg = ring->first_seg; 832 ring->dequeue = ring->first_seg->trbs; 833 ring->enq_seg = ring->deq_seg; 834 ring->enqueue = ring->dequeue; 835 836 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 837 /* 838 * Ring is now zeroed, so the HW should look for change of ownership 839 * when the cycle bit is set to 1. 840 */ 841 ring->cycle_state = 1; 842 843 /* 844 * Reset the hardware dequeue pointer. 845 * Yes, this will need to be re-written after resume, but we're paranoid 846 * and want to make sure the hardware doesn't access bogus memory 847 * because, say, the BIOS or an SMI started the host without changing 848 * the command ring pointers. 849 */ 850 xhci_set_cmd_ring_deq(xhci); 851 } 852 853 /* 854 * Stop HC (not bus-specific) 855 * 856 * This is called when the machine transition into S3/S4 mode. 857 * 858 */ 859 int xhci_suspend(struct xhci_hcd *xhci) 860 { 861 int rc = 0; 862 unsigned int delay = XHCI_MAX_HALT_USEC; 863 struct usb_hcd *hcd = xhci_to_hcd(xhci); 864 u32 command; 865 866 if (hcd->state != HC_STATE_SUSPENDED || 867 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 868 return -EINVAL; 869 870 /* Don't poll the roothubs on bus suspend. */ 871 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 872 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 873 del_timer_sync(&hcd->rh_timer); 874 875 spin_lock_irq(&xhci->lock); 876 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 877 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 878 /* step 1: stop endpoint */ 879 /* skipped assuming that port suspend has done */ 880 881 /* step 2: clear Run/Stop bit */ 882 command = readl(&xhci->op_regs->command); 883 command &= ~CMD_RUN; 884 writel(command, &xhci->op_regs->command); 885 886 /* Some chips from Fresco Logic need an extraordinary delay */ 887 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 888 889 if (xhci_handshake(xhci, &xhci->op_regs->status, 890 STS_HALT, STS_HALT, delay)) { 891 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 892 spin_unlock_irq(&xhci->lock); 893 return -ETIMEDOUT; 894 } 895 xhci_clear_command_ring(xhci); 896 897 /* step 3: save registers */ 898 xhci_save_registers(xhci); 899 900 /* step 4: set CSS flag */ 901 command = readl(&xhci->op_regs->command); 902 command |= CMD_CSS; 903 writel(command, &xhci->op_regs->command); 904 if (xhci_handshake(xhci, &xhci->op_regs->status, 905 STS_SAVE, 0, 10 * 1000)) { 906 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 907 spin_unlock_irq(&xhci->lock); 908 return -ETIMEDOUT; 909 } 910 spin_unlock_irq(&xhci->lock); 911 912 /* 913 * Deleting Compliance Mode Recovery Timer because the xHCI Host 914 * is about to be suspended. 915 */ 916 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 917 (!(xhci_all_ports_seen_u0(xhci)))) { 918 del_timer_sync(&xhci->comp_mode_recovery_timer); 919 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 920 "%s: compliance mode recovery timer deleted", 921 __func__); 922 } 923 924 /* step 5: remove core well power */ 925 /* synchronize irq when using MSI-X */ 926 xhci_msix_sync_irqs(xhci); 927 928 return rc; 929 } 930 931 /* 932 * start xHC (not bus-specific) 933 * 934 * This is called when the machine transition from S3/S4 mode. 935 * 936 */ 937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 938 { 939 u32 command, temp = 0; 940 struct usb_hcd *hcd = xhci_to_hcd(xhci); 941 struct usb_hcd *secondary_hcd; 942 int retval = 0; 943 bool comp_timer_running = false; 944 945 /* Wait a bit if either of the roothubs need to settle from the 946 * transition into bus suspend. 947 */ 948 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 949 time_before(jiffies, 950 xhci->bus_state[1].next_statechange)) 951 msleep(100); 952 953 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 954 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 955 956 spin_lock_irq(&xhci->lock); 957 if (xhci->quirks & XHCI_RESET_ON_RESUME) 958 hibernated = true; 959 960 if (!hibernated) { 961 /* step 1: restore register */ 962 xhci_restore_registers(xhci); 963 /* step 2: initialize command ring buffer */ 964 xhci_set_cmd_ring_deq(xhci); 965 /* step 3: restore state and start state*/ 966 /* step 3: set CRS flag */ 967 command = readl(&xhci->op_regs->command); 968 command |= CMD_CRS; 969 writel(command, &xhci->op_regs->command); 970 if (xhci_handshake(xhci, &xhci->op_regs->status, 971 STS_RESTORE, 0, 10 * 1000)) { 972 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 973 spin_unlock_irq(&xhci->lock); 974 return -ETIMEDOUT; 975 } 976 temp = readl(&xhci->op_regs->status); 977 } 978 979 /* If restore operation fails, re-initialize the HC during resume */ 980 if ((temp & STS_SRE) || hibernated) { 981 982 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 983 !(xhci_all_ports_seen_u0(xhci))) { 984 del_timer_sync(&xhci->comp_mode_recovery_timer); 985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 986 "Compliance Mode Recovery Timer deleted!"); 987 } 988 989 /* Let the USB core know _both_ roothubs lost power. */ 990 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 991 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 992 993 xhci_dbg(xhci, "Stop HCD\n"); 994 xhci_halt(xhci); 995 xhci_reset(xhci); 996 spin_unlock_irq(&xhci->lock); 997 xhci_cleanup_msix(xhci); 998 999 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1000 temp = readl(&xhci->op_regs->status); 1001 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1002 temp = readl(&xhci->ir_set->irq_pending); 1003 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1004 xhci_print_ir_set(xhci, 0); 1005 1006 xhci_dbg(xhci, "cleaning up memory\n"); 1007 xhci_mem_cleanup(xhci); 1008 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1009 readl(&xhci->op_regs->status)); 1010 1011 /* USB core calls the PCI reinit and start functions twice: 1012 * first with the primary HCD, and then with the secondary HCD. 1013 * If we don't do the same, the host will never be started. 1014 */ 1015 if (!usb_hcd_is_primary_hcd(hcd)) 1016 secondary_hcd = hcd; 1017 else 1018 secondary_hcd = xhci->shared_hcd; 1019 1020 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1021 retval = xhci_init(hcd->primary_hcd); 1022 if (retval) 1023 return retval; 1024 comp_timer_running = true; 1025 1026 xhci_dbg(xhci, "Start the primary HCD\n"); 1027 retval = xhci_run(hcd->primary_hcd); 1028 if (!retval) { 1029 xhci_dbg(xhci, "Start the secondary HCD\n"); 1030 retval = xhci_run(secondary_hcd); 1031 } 1032 hcd->state = HC_STATE_SUSPENDED; 1033 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1034 goto done; 1035 } 1036 1037 /* step 4: set Run/Stop bit */ 1038 command = readl(&xhci->op_regs->command); 1039 command |= CMD_RUN; 1040 writel(command, &xhci->op_regs->command); 1041 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1042 0, 250 * 1000); 1043 1044 /* step 5: walk topology and initialize portsc, 1045 * portpmsc and portli 1046 */ 1047 /* this is done in bus_resume */ 1048 1049 /* step 6: restart each of the previously 1050 * Running endpoints by ringing their doorbells 1051 */ 1052 1053 spin_unlock_irq(&xhci->lock); 1054 1055 done: 1056 if (retval == 0) { 1057 usb_hcd_resume_root_hub(hcd); 1058 usb_hcd_resume_root_hub(xhci->shared_hcd); 1059 } 1060 1061 /* 1062 * If system is subject to the Quirk, Compliance Mode Timer needs to 1063 * be re-initialized Always after a system resume. Ports are subject 1064 * to suffer the Compliance Mode issue again. It doesn't matter if 1065 * ports have entered previously to U0 before system's suspension. 1066 */ 1067 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1068 compliance_mode_recovery_timer_init(xhci); 1069 1070 /* Re-enable port polling. */ 1071 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1072 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1073 usb_hcd_poll_rh_status(hcd); 1074 1075 return retval; 1076 } 1077 #endif /* CONFIG_PM */ 1078 1079 /*-------------------------------------------------------------------------*/ 1080 1081 /** 1082 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1083 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1084 * value to right shift 1 for the bitmask. 1085 * 1086 * Index = (epnum * 2) + direction - 1, 1087 * where direction = 0 for OUT, 1 for IN. 1088 * For control endpoints, the IN index is used (OUT index is unused), so 1089 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1090 */ 1091 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1092 { 1093 unsigned int index; 1094 if (usb_endpoint_xfer_control(desc)) 1095 index = (unsigned int) (usb_endpoint_num(desc)*2); 1096 else 1097 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1098 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1099 return index; 1100 } 1101 1102 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1103 * address from the XHCI endpoint index. 1104 */ 1105 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1106 { 1107 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1108 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1109 return direction | number; 1110 } 1111 1112 /* Find the flag for this endpoint (for use in the control context). Use the 1113 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1114 * bit 1, etc. 1115 */ 1116 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1117 { 1118 return 1 << (xhci_get_endpoint_index(desc) + 1); 1119 } 1120 1121 /* Find the flag for this endpoint (for use in the control context). Use the 1122 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1123 * bit 1, etc. 1124 */ 1125 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1126 { 1127 return 1 << (ep_index + 1); 1128 } 1129 1130 /* Compute the last valid endpoint context index. Basically, this is the 1131 * endpoint index plus one. For slot contexts with more than valid endpoint, 1132 * we find the most significant bit set in the added contexts flags. 1133 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1134 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1135 */ 1136 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1137 { 1138 return fls(added_ctxs) - 1; 1139 } 1140 1141 /* Returns 1 if the arguments are OK; 1142 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1143 */ 1144 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1145 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1146 const char *func) { 1147 struct xhci_hcd *xhci; 1148 struct xhci_virt_device *virt_dev; 1149 1150 if (!hcd || (check_ep && !ep) || !udev) { 1151 pr_debug("xHCI %s called with invalid args\n", func); 1152 return -EINVAL; 1153 } 1154 if (!udev->parent) { 1155 pr_debug("xHCI %s called for root hub\n", func); 1156 return 0; 1157 } 1158 1159 xhci = hcd_to_xhci(hcd); 1160 if (check_virt_dev) { 1161 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1162 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1163 func); 1164 return -EINVAL; 1165 } 1166 1167 virt_dev = xhci->devs[udev->slot_id]; 1168 if (virt_dev->udev != udev) { 1169 xhci_dbg(xhci, "xHCI %s called with udev and " 1170 "virt_dev does not match\n", func); 1171 return -EINVAL; 1172 } 1173 } 1174 1175 if (xhci->xhc_state & XHCI_STATE_HALTED) 1176 return -ENODEV; 1177 1178 return 1; 1179 } 1180 1181 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1182 struct usb_device *udev, struct xhci_command *command, 1183 bool ctx_change, bool must_succeed); 1184 1185 /* 1186 * Full speed devices may have a max packet size greater than 8 bytes, but the 1187 * USB core doesn't know that until it reads the first 8 bytes of the 1188 * descriptor. If the usb_device's max packet size changes after that point, 1189 * we need to issue an evaluate context command and wait on it. 1190 */ 1191 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1192 unsigned int ep_index, struct urb *urb) 1193 { 1194 struct xhci_container_ctx *out_ctx; 1195 struct xhci_input_control_ctx *ctrl_ctx; 1196 struct xhci_ep_ctx *ep_ctx; 1197 struct xhci_command *command; 1198 int max_packet_size; 1199 int hw_max_packet_size; 1200 int ret = 0; 1201 1202 out_ctx = xhci->devs[slot_id]->out_ctx; 1203 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1204 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1205 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1206 if (hw_max_packet_size != max_packet_size) { 1207 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1208 "Max Packet Size for ep 0 changed."); 1209 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1210 "Max packet size in usb_device = %d", 1211 max_packet_size); 1212 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1213 "Max packet size in xHCI HW = %d", 1214 hw_max_packet_size); 1215 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1216 "Issuing evaluate context command."); 1217 1218 /* Set up the input context flags for the command */ 1219 /* FIXME: This won't work if a non-default control endpoint 1220 * changes max packet sizes. 1221 */ 1222 1223 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1224 if (!command) 1225 return -ENOMEM; 1226 1227 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1228 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 1229 if (!ctrl_ctx) { 1230 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1231 __func__); 1232 ret = -ENOMEM; 1233 goto command_cleanup; 1234 } 1235 /* Set up the modified control endpoint 0 */ 1236 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1237 xhci->devs[slot_id]->out_ctx, ep_index); 1238 1239 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1240 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1241 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1242 1243 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1244 ctrl_ctx->drop_flags = 0; 1245 1246 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1247 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1248 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1249 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1250 1251 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1252 true, false); 1253 1254 /* Clean up the input context for later use by bandwidth 1255 * functions. 1256 */ 1257 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1258 command_cleanup: 1259 kfree(command->completion); 1260 kfree(command); 1261 } 1262 return ret; 1263 } 1264 1265 /* 1266 * non-error returns are a promise to giveback() the urb later 1267 * we drop ownership so next owner (or urb unlink) can get it 1268 */ 1269 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1270 { 1271 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1272 struct xhci_td *buffer; 1273 unsigned long flags; 1274 int ret = 0; 1275 unsigned int slot_id, ep_index; 1276 struct urb_priv *urb_priv; 1277 int size, i; 1278 1279 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1280 true, true, __func__) <= 0) 1281 return -EINVAL; 1282 1283 slot_id = urb->dev->slot_id; 1284 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1285 1286 if (!HCD_HW_ACCESSIBLE(hcd)) { 1287 if (!in_interrupt()) 1288 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1289 ret = -ESHUTDOWN; 1290 goto exit; 1291 } 1292 1293 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1294 size = urb->number_of_packets; 1295 else 1296 size = 1; 1297 1298 urb_priv = kzalloc(sizeof(struct urb_priv) + 1299 size * sizeof(struct xhci_td *), mem_flags); 1300 if (!urb_priv) 1301 return -ENOMEM; 1302 1303 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1304 if (!buffer) { 1305 kfree(urb_priv); 1306 return -ENOMEM; 1307 } 1308 1309 for (i = 0; i < size; i++) { 1310 urb_priv->td[i] = buffer; 1311 buffer++; 1312 } 1313 1314 urb_priv->length = size; 1315 urb_priv->td_cnt = 0; 1316 urb->hcpriv = urb_priv; 1317 1318 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1319 /* Check to see if the max packet size for the default control 1320 * endpoint changed during FS device enumeration 1321 */ 1322 if (urb->dev->speed == USB_SPEED_FULL) { 1323 ret = xhci_check_maxpacket(xhci, slot_id, 1324 ep_index, urb); 1325 if (ret < 0) { 1326 xhci_urb_free_priv(xhci, urb_priv); 1327 urb->hcpriv = NULL; 1328 return ret; 1329 } 1330 } 1331 1332 /* We have a spinlock and interrupts disabled, so we must pass 1333 * atomic context to this function, which may allocate memory. 1334 */ 1335 spin_lock_irqsave(&xhci->lock, flags); 1336 if (xhci->xhc_state & XHCI_STATE_DYING) 1337 goto dying; 1338 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1339 slot_id, ep_index); 1340 if (ret) 1341 goto free_priv; 1342 spin_unlock_irqrestore(&xhci->lock, flags); 1343 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1344 spin_lock_irqsave(&xhci->lock, flags); 1345 if (xhci->xhc_state & XHCI_STATE_DYING) 1346 goto dying; 1347 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1348 EP_GETTING_STREAMS) { 1349 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1350 "is transitioning to using streams.\n"); 1351 ret = -EINVAL; 1352 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1353 EP_GETTING_NO_STREAMS) { 1354 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1355 "is transitioning to " 1356 "not having streams.\n"); 1357 ret = -EINVAL; 1358 } else { 1359 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1360 slot_id, ep_index); 1361 } 1362 if (ret) 1363 goto free_priv; 1364 spin_unlock_irqrestore(&xhci->lock, flags); 1365 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1366 spin_lock_irqsave(&xhci->lock, flags); 1367 if (xhci->xhc_state & XHCI_STATE_DYING) 1368 goto dying; 1369 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1370 slot_id, ep_index); 1371 if (ret) 1372 goto free_priv; 1373 spin_unlock_irqrestore(&xhci->lock, flags); 1374 } else { 1375 spin_lock_irqsave(&xhci->lock, flags); 1376 if (xhci->xhc_state & XHCI_STATE_DYING) 1377 goto dying; 1378 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1379 slot_id, ep_index); 1380 if (ret) 1381 goto free_priv; 1382 spin_unlock_irqrestore(&xhci->lock, flags); 1383 } 1384 exit: 1385 return ret; 1386 dying: 1387 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1388 "non-responsive xHCI host.\n", 1389 urb->ep->desc.bEndpointAddress, urb); 1390 ret = -ESHUTDOWN; 1391 free_priv: 1392 xhci_urb_free_priv(xhci, urb_priv); 1393 urb->hcpriv = NULL; 1394 spin_unlock_irqrestore(&xhci->lock, flags); 1395 return ret; 1396 } 1397 1398 /* Get the right ring for the given URB. 1399 * If the endpoint supports streams, boundary check the URB's stream ID. 1400 * If the endpoint doesn't support streams, return the singular endpoint ring. 1401 */ 1402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1403 struct urb *urb) 1404 { 1405 unsigned int slot_id; 1406 unsigned int ep_index; 1407 unsigned int stream_id; 1408 struct xhci_virt_ep *ep; 1409 1410 slot_id = urb->dev->slot_id; 1411 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1412 stream_id = urb->stream_id; 1413 ep = &xhci->devs[slot_id]->eps[ep_index]; 1414 /* Common case: no streams */ 1415 if (!(ep->ep_state & EP_HAS_STREAMS)) 1416 return ep->ring; 1417 1418 if (stream_id == 0) { 1419 xhci_warn(xhci, 1420 "WARN: Slot ID %u, ep index %u has streams, " 1421 "but URB has no stream ID.\n", 1422 slot_id, ep_index); 1423 return NULL; 1424 } 1425 1426 if (stream_id < ep->stream_info->num_streams) 1427 return ep->stream_info->stream_rings[stream_id]; 1428 1429 xhci_warn(xhci, 1430 "WARN: Slot ID %u, ep index %u has " 1431 "stream IDs 1 to %u allocated, " 1432 "but stream ID %u is requested.\n", 1433 slot_id, ep_index, 1434 ep->stream_info->num_streams - 1, 1435 stream_id); 1436 return NULL; 1437 } 1438 1439 /* 1440 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1441 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1442 * should pick up where it left off in the TD, unless a Set Transfer Ring 1443 * Dequeue Pointer is issued. 1444 * 1445 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1446 * the ring. Since the ring is a contiguous structure, they can't be physically 1447 * removed. Instead, there are two options: 1448 * 1449 * 1) If the HC is in the middle of processing the URB to be canceled, we 1450 * simply move the ring's dequeue pointer past those TRBs using the Set 1451 * Transfer Ring Dequeue Pointer command. This will be the common case, 1452 * when drivers timeout on the last submitted URB and attempt to cancel. 1453 * 1454 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1455 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1456 * HC will need to invalidate the any TRBs it has cached after the stop 1457 * endpoint command, as noted in the xHCI 0.95 errata. 1458 * 1459 * 3) The TD may have completed by the time the Stop Endpoint Command 1460 * completes, so software needs to handle that case too. 1461 * 1462 * This function should protect against the TD enqueueing code ringing the 1463 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1464 * It also needs to account for multiple cancellations on happening at the same 1465 * time for the same endpoint. 1466 * 1467 * Note that this function can be called in any context, or so says 1468 * usb_hcd_unlink_urb() 1469 */ 1470 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1471 { 1472 unsigned long flags; 1473 int ret, i; 1474 u32 temp; 1475 struct xhci_hcd *xhci; 1476 struct urb_priv *urb_priv; 1477 struct xhci_td *td; 1478 unsigned int ep_index; 1479 struct xhci_ring *ep_ring; 1480 struct xhci_virt_ep *ep; 1481 struct xhci_command *command; 1482 1483 xhci = hcd_to_xhci(hcd); 1484 spin_lock_irqsave(&xhci->lock, flags); 1485 /* Make sure the URB hasn't completed or been unlinked already */ 1486 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1487 if (ret || !urb->hcpriv) 1488 goto done; 1489 temp = readl(&xhci->op_regs->status); 1490 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1491 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1492 "HW died, freeing TD."); 1493 urb_priv = urb->hcpriv; 1494 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1495 td = urb_priv->td[i]; 1496 if (!list_empty(&td->td_list)) 1497 list_del_init(&td->td_list); 1498 if (!list_empty(&td->cancelled_td_list)) 1499 list_del_init(&td->cancelled_td_list); 1500 } 1501 1502 usb_hcd_unlink_urb_from_ep(hcd, urb); 1503 spin_unlock_irqrestore(&xhci->lock, flags); 1504 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1505 xhci_urb_free_priv(xhci, urb_priv); 1506 return ret; 1507 } 1508 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1509 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1510 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1511 "Ep 0x%x: URB %p to be canceled on " 1512 "non-responsive xHCI host.", 1513 urb->ep->desc.bEndpointAddress, urb); 1514 /* Let the stop endpoint command watchdog timer (which set this 1515 * state) finish cleaning up the endpoint TD lists. We must 1516 * have caught it in the middle of dropping a lock and giving 1517 * back an URB. 1518 */ 1519 goto done; 1520 } 1521 1522 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1523 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1524 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1525 if (!ep_ring) { 1526 ret = -EINVAL; 1527 goto done; 1528 } 1529 1530 urb_priv = urb->hcpriv; 1531 i = urb_priv->td_cnt; 1532 if (i < urb_priv->length) 1533 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1534 "Cancel URB %p, dev %s, ep 0x%x, " 1535 "starting at offset 0x%llx", 1536 urb, urb->dev->devpath, 1537 urb->ep->desc.bEndpointAddress, 1538 (unsigned long long) xhci_trb_virt_to_dma( 1539 urb_priv->td[i]->start_seg, 1540 urb_priv->td[i]->first_trb)); 1541 1542 for (; i < urb_priv->length; i++) { 1543 td = urb_priv->td[i]; 1544 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1545 } 1546 1547 /* Queue a stop endpoint command, but only if this is 1548 * the first cancellation to be handled. 1549 */ 1550 if (!(ep->ep_state & EP_HALT_PENDING)) { 1551 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1552 ep->ep_state |= EP_HALT_PENDING; 1553 ep->stop_cmds_pending++; 1554 ep->stop_cmd_timer.expires = jiffies + 1555 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1556 add_timer(&ep->stop_cmd_timer); 1557 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1558 ep_index, 0); 1559 xhci_ring_cmd_db(xhci); 1560 } 1561 done: 1562 spin_unlock_irqrestore(&xhci->lock, flags); 1563 return ret; 1564 } 1565 1566 /* Drop an endpoint from a new bandwidth configuration for this device. 1567 * Only one call to this function is allowed per endpoint before 1568 * check_bandwidth() or reset_bandwidth() must be called. 1569 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1570 * add the endpoint to the schedule with possibly new parameters denoted by a 1571 * different endpoint descriptor in usb_host_endpoint. 1572 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1573 * not allowed. 1574 * 1575 * The USB core will not allow URBs to be queued to an endpoint that is being 1576 * disabled, so there's no need for mutual exclusion to protect 1577 * the xhci->devs[slot_id] structure. 1578 */ 1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1580 struct usb_host_endpoint *ep) 1581 { 1582 struct xhci_hcd *xhci; 1583 struct xhci_container_ctx *in_ctx, *out_ctx; 1584 struct xhci_input_control_ctx *ctrl_ctx; 1585 struct xhci_slot_ctx *slot_ctx; 1586 unsigned int last_ctx; 1587 unsigned int ep_index; 1588 struct xhci_ep_ctx *ep_ctx; 1589 u32 drop_flag; 1590 u32 new_add_flags, new_drop_flags, new_slot_info; 1591 int ret; 1592 1593 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1594 if (ret <= 0) 1595 return ret; 1596 xhci = hcd_to_xhci(hcd); 1597 if (xhci->xhc_state & XHCI_STATE_DYING) 1598 return -ENODEV; 1599 1600 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1601 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1602 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1603 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1604 __func__, drop_flag); 1605 return 0; 1606 } 1607 1608 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1609 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1610 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1611 if (!ctrl_ctx) { 1612 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1613 __func__); 1614 return 0; 1615 } 1616 1617 ep_index = xhci_get_endpoint_index(&ep->desc); 1618 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1619 /* If the HC already knows the endpoint is disabled, 1620 * or the HCD has noted it is disabled, ignore this request 1621 */ 1622 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1623 cpu_to_le32(EP_STATE_DISABLED)) || 1624 le32_to_cpu(ctrl_ctx->drop_flags) & 1625 xhci_get_endpoint_flag(&ep->desc)) { 1626 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1627 __func__, ep); 1628 return 0; 1629 } 1630 1631 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1632 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1633 1634 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1635 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1636 1637 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1638 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1639 /* Update the last valid endpoint context, if we deleted the last one */ 1640 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1641 LAST_CTX(last_ctx)) { 1642 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1643 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1644 } 1645 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1646 1647 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1648 1649 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1650 (unsigned int) ep->desc.bEndpointAddress, 1651 udev->slot_id, 1652 (unsigned int) new_drop_flags, 1653 (unsigned int) new_add_flags, 1654 (unsigned int) new_slot_info); 1655 return 0; 1656 } 1657 1658 /* Add an endpoint to a new possible bandwidth configuration for this device. 1659 * Only one call to this function is allowed per endpoint before 1660 * check_bandwidth() or reset_bandwidth() must be called. 1661 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1662 * add the endpoint to the schedule with possibly new parameters denoted by a 1663 * different endpoint descriptor in usb_host_endpoint. 1664 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1665 * not allowed. 1666 * 1667 * The USB core will not allow URBs to be queued to an endpoint until the 1668 * configuration or alt setting is installed in the device, so there's no need 1669 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1670 */ 1671 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1672 struct usb_host_endpoint *ep) 1673 { 1674 struct xhci_hcd *xhci; 1675 struct xhci_container_ctx *in_ctx, *out_ctx; 1676 unsigned int ep_index; 1677 struct xhci_slot_ctx *slot_ctx; 1678 struct xhci_input_control_ctx *ctrl_ctx; 1679 u32 added_ctxs; 1680 unsigned int last_ctx; 1681 u32 new_add_flags, new_drop_flags, new_slot_info; 1682 struct xhci_virt_device *virt_dev; 1683 int ret = 0; 1684 1685 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1686 if (ret <= 0) { 1687 /* So we won't queue a reset ep command for a root hub */ 1688 ep->hcpriv = NULL; 1689 return ret; 1690 } 1691 xhci = hcd_to_xhci(hcd); 1692 if (xhci->xhc_state & XHCI_STATE_DYING) 1693 return -ENODEV; 1694 1695 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1696 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1697 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1698 /* FIXME when we have to issue an evaluate endpoint command to 1699 * deal with ep0 max packet size changing once we get the 1700 * descriptors 1701 */ 1702 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1703 __func__, added_ctxs); 1704 return 0; 1705 } 1706 1707 virt_dev = xhci->devs[udev->slot_id]; 1708 in_ctx = virt_dev->in_ctx; 1709 out_ctx = virt_dev->out_ctx; 1710 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1711 if (!ctrl_ctx) { 1712 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1713 __func__); 1714 return 0; 1715 } 1716 1717 ep_index = xhci_get_endpoint_index(&ep->desc); 1718 /* If this endpoint is already in use, and the upper layers are trying 1719 * to add it again without dropping it, reject the addition. 1720 */ 1721 if (virt_dev->eps[ep_index].ring && 1722 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1723 xhci_get_endpoint_flag(&ep->desc))) { 1724 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1725 "without dropping it.\n", 1726 (unsigned int) ep->desc.bEndpointAddress); 1727 return -EINVAL; 1728 } 1729 1730 /* If the HCD has already noted the endpoint is enabled, 1731 * ignore this request. 1732 */ 1733 if (le32_to_cpu(ctrl_ctx->add_flags) & 1734 xhci_get_endpoint_flag(&ep->desc)) { 1735 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1736 __func__, ep); 1737 return 0; 1738 } 1739 1740 /* 1741 * Configuration and alternate setting changes must be done in 1742 * process context, not interrupt context (or so documenation 1743 * for usb_set_interface() and usb_set_configuration() claim). 1744 */ 1745 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1746 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1747 __func__, ep->desc.bEndpointAddress); 1748 return -ENOMEM; 1749 } 1750 1751 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1752 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1753 1754 /* If xhci_endpoint_disable() was called for this endpoint, but the 1755 * xHC hasn't been notified yet through the check_bandwidth() call, 1756 * this re-adds a new state for the endpoint from the new endpoint 1757 * descriptors. We must drop and re-add this endpoint, so we leave the 1758 * drop flags alone. 1759 */ 1760 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1761 1762 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1763 /* Update the last valid endpoint context, if we just added one past */ 1764 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1765 LAST_CTX(last_ctx)) { 1766 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1767 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1768 } 1769 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1770 1771 /* Store the usb_device pointer for later use */ 1772 ep->hcpriv = udev; 1773 1774 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1775 (unsigned int) ep->desc.bEndpointAddress, 1776 udev->slot_id, 1777 (unsigned int) new_drop_flags, 1778 (unsigned int) new_add_flags, 1779 (unsigned int) new_slot_info); 1780 return 0; 1781 } 1782 1783 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1784 { 1785 struct xhci_input_control_ctx *ctrl_ctx; 1786 struct xhci_ep_ctx *ep_ctx; 1787 struct xhci_slot_ctx *slot_ctx; 1788 int i; 1789 1790 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1791 if (!ctrl_ctx) { 1792 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1793 __func__); 1794 return; 1795 } 1796 1797 /* When a device's add flag and drop flag are zero, any subsequent 1798 * configure endpoint command will leave that endpoint's state 1799 * untouched. Make sure we don't leave any old state in the input 1800 * endpoint contexts. 1801 */ 1802 ctrl_ctx->drop_flags = 0; 1803 ctrl_ctx->add_flags = 0; 1804 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1805 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1806 /* Endpoint 0 is always valid */ 1807 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1808 for (i = 1; i < 31; ++i) { 1809 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1810 ep_ctx->ep_info = 0; 1811 ep_ctx->ep_info2 = 0; 1812 ep_ctx->deq = 0; 1813 ep_ctx->tx_info = 0; 1814 } 1815 } 1816 1817 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1818 struct usb_device *udev, u32 *cmd_status) 1819 { 1820 int ret; 1821 1822 switch (*cmd_status) { 1823 case COMP_CMD_ABORT: 1824 case COMP_CMD_STOP: 1825 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1826 ret = -ETIME; 1827 break; 1828 case COMP_ENOMEM: 1829 dev_warn(&udev->dev, "Not enough host controller resources " 1830 "for new device state.\n"); 1831 ret = -ENOMEM; 1832 /* FIXME: can we allocate more resources for the HC? */ 1833 break; 1834 case COMP_BW_ERR: 1835 case COMP_2ND_BW_ERR: 1836 dev_warn(&udev->dev, "Not enough bandwidth " 1837 "for new device state.\n"); 1838 ret = -ENOSPC; 1839 /* FIXME: can we go back to the old state? */ 1840 break; 1841 case COMP_TRB_ERR: 1842 /* the HCD set up something wrong */ 1843 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1844 "add flag = 1, " 1845 "and endpoint is not disabled.\n"); 1846 ret = -EINVAL; 1847 break; 1848 case COMP_DEV_ERR: 1849 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1850 "configure command.\n"); 1851 ret = -ENODEV; 1852 break; 1853 case COMP_SUCCESS: 1854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1855 "Successful Endpoint Configure command"); 1856 ret = 0; 1857 break; 1858 default: 1859 xhci_err(xhci, "ERROR: unexpected command completion " 1860 "code 0x%x.\n", *cmd_status); 1861 ret = -EINVAL; 1862 break; 1863 } 1864 return ret; 1865 } 1866 1867 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1868 struct usb_device *udev, u32 *cmd_status) 1869 { 1870 int ret; 1871 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1872 1873 switch (*cmd_status) { 1874 case COMP_CMD_ABORT: 1875 case COMP_CMD_STOP: 1876 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1877 ret = -ETIME; 1878 break; 1879 case COMP_EINVAL: 1880 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1881 "context command.\n"); 1882 ret = -EINVAL; 1883 break; 1884 case COMP_EBADSLT: 1885 dev_warn(&udev->dev, "WARN: slot not enabled for" 1886 "evaluate context command.\n"); 1887 ret = -EINVAL; 1888 break; 1889 case COMP_CTX_STATE: 1890 dev_warn(&udev->dev, "WARN: invalid context state for " 1891 "evaluate context command.\n"); 1892 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1893 ret = -EINVAL; 1894 break; 1895 case COMP_DEV_ERR: 1896 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1897 "context command.\n"); 1898 ret = -ENODEV; 1899 break; 1900 case COMP_MEL_ERR: 1901 /* Max Exit Latency too large error */ 1902 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1903 ret = -EINVAL; 1904 break; 1905 case COMP_SUCCESS: 1906 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1907 "Successful evaluate context command"); 1908 ret = 0; 1909 break; 1910 default: 1911 xhci_err(xhci, "ERROR: unexpected command completion " 1912 "code 0x%x.\n", *cmd_status); 1913 ret = -EINVAL; 1914 break; 1915 } 1916 return ret; 1917 } 1918 1919 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1920 struct xhci_input_control_ctx *ctrl_ctx) 1921 { 1922 u32 valid_add_flags; 1923 u32 valid_drop_flags; 1924 1925 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1926 * (bit 1). The default control endpoint is added during the Address 1927 * Device command and is never removed until the slot is disabled. 1928 */ 1929 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1930 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1931 1932 /* Use hweight32 to count the number of ones in the add flags, or 1933 * number of endpoints added. Don't count endpoints that are changed 1934 * (both added and dropped). 1935 */ 1936 return hweight32(valid_add_flags) - 1937 hweight32(valid_add_flags & valid_drop_flags); 1938 } 1939 1940 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1941 struct xhci_input_control_ctx *ctrl_ctx) 1942 { 1943 u32 valid_add_flags; 1944 u32 valid_drop_flags; 1945 1946 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1947 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1948 1949 return hweight32(valid_drop_flags) - 1950 hweight32(valid_add_flags & valid_drop_flags); 1951 } 1952 1953 /* 1954 * We need to reserve the new number of endpoints before the configure endpoint 1955 * command completes. We can't subtract the dropped endpoints from the number 1956 * of active endpoints until the command completes because we can oversubscribe 1957 * the host in this case: 1958 * 1959 * - the first configure endpoint command drops more endpoints than it adds 1960 * - a second configure endpoint command that adds more endpoints is queued 1961 * - the first configure endpoint command fails, so the config is unchanged 1962 * - the second command may succeed, even though there isn't enough resources 1963 * 1964 * Must be called with xhci->lock held. 1965 */ 1966 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1967 struct xhci_input_control_ctx *ctrl_ctx) 1968 { 1969 u32 added_eps; 1970 1971 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1972 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1973 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1974 "Not enough ep ctxs: " 1975 "%u active, need to add %u, limit is %u.", 1976 xhci->num_active_eps, added_eps, 1977 xhci->limit_active_eps); 1978 return -ENOMEM; 1979 } 1980 xhci->num_active_eps += added_eps; 1981 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1982 "Adding %u ep ctxs, %u now active.", added_eps, 1983 xhci->num_active_eps); 1984 return 0; 1985 } 1986 1987 /* 1988 * The configure endpoint was failed by the xHC for some other reason, so we 1989 * need to revert the resources that failed configuration would have used. 1990 * 1991 * Must be called with xhci->lock held. 1992 */ 1993 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1994 struct xhci_input_control_ctx *ctrl_ctx) 1995 { 1996 u32 num_failed_eps; 1997 1998 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1999 xhci->num_active_eps -= num_failed_eps; 2000 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2001 "Removing %u failed ep ctxs, %u now active.", 2002 num_failed_eps, 2003 xhci->num_active_eps); 2004 } 2005 2006 /* 2007 * Now that the command has completed, clean up the active endpoint count by 2008 * subtracting out the endpoints that were dropped (but not changed). 2009 * 2010 * Must be called with xhci->lock held. 2011 */ 2012 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2013 struct xhci_input_control_ctx *ctrl_ctx) 2014 { 2015 u32 num_dropped_eps; 2016 2017 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2018 xhci->num_active_eps -= num_dropped_eps; 2019 if (num_dropped_eps) 2020 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2021 "Removing %u dropped ep ctxs, %u now active.", 2022 num_dropped_eps, 2023 xhci->num_active_eps); 2024 } 2025 2026 static unsigned int xhci_get_block_size(struct usb_device *udev) 2027 { 2028 switch (udev->speed) { 2029 case USB_SPEED_LOW: 2030 case USB_SPEED_FULL: 2031 return FS_BLOCK; 2032 case USB_SPEED_HIGH: 2033 return HS_BLOCK; 2034 case USB_SPEED_SUPER: 2035 return SS_BLOCK; 2036 case USB_SPEED_UNKNOWN: 2037 case USB_SPEED_WIRELESS: 2038 default: 2039 /* Should never happen */ 2040 return 1; 2041 } 2042 } 2043 2044 static unsigned int 2045 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2046 { 2047 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2048 return LS_OVERHEAD; 2049 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2050 return FS_OVERHEAD; 2051 return HS_OVERHEAD; 2052 } 2053 2054 /* If we are changing a LS/FS device under a HS hub, 2055 * make sure (if we are activating a new TT) that the HS bus has enough 2056 * bandwidth for this new TT. 2057 */ 2058 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2059 struct xhci_virt_device *virt_dev, 2060 int old_active_eps) 2061 { 2062 struct xhci_interval_bw_table *bw_table; 2063 struct xhci_tt_bw_info *tt_info; 2064 2065 /* Find the bandwidth table for the root port this TT is attached to. */ 2066 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2067 tt_info = virt_dev->tt_info; 2068 /* If this TT already had active endpoints, the bandwidth for this TT 2069 * has already been added. Removing all periodic endpoints (and thus 2070 * making the TT enactive) will only decrease the bandwidth used. 2071 */ 2072 if (old_active_eps) 2073 return 0; 2074 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2075 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2076 return -ENOMEM; 2077 return 0; 2078 } 2079 /* Not sure why we would have no new active endpoints... 2080 * 2081 * Maybe because of an Evaluate Context change for a hub update or a 2082 * control endpoint 0 max packet size change? 2083 * FIXME: skip the bandwidth calculation in that case. 2084 */ 2085 return 0; 2086 } 2087 2088 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2089 struct xhci_virt_device *virt_dev) 2090 { 2091 unsigned int bw_reserved; 2092 2093 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2094 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2095 return -ENOMEM; 2096 2097 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2098 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2099 return -ENOMEM; 2100 2101 return 0; 2102 } 2103 2104 /* 2105 * This algorithm is a very conservative estimate of the worst-case scheduling 2106 * scenario for any one interval. The hardware dynamically schedules the 2107 * packets, so we can't tell which microframe could be the limiting factor in 2108 * the bandwidth scheduling. This only takes into account periodic endpoints. 2109 * 2110 * Obviously, we can't solve an NP complete problem to find the minimum worst 2111 * case scenario. Instead, we come up with an estimate that is no less than 2112 * the worst case bandwidth used for any one microframe, but may be an 2113 * over-estimate. 2114 * 2115 * We walk the requirements for each endpoint by interval, starting with the 2116 * smallest interval, and place packets in the schedule where there is only one 2117 * possible way to schedule packets for that interval. In order to simplify 2118 * this algorithm, we record the largest max packet size for each interval, and 2119 * assume all packets will be that size. 2120 * 2121 * For interval 0, we obviously must schedule all packets for each interval. 2122 * The bandwidth for interval 0 is just the amount of data to be transmitted 2123 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2124 * the number of packets). 2125 * 2126 * For interval 1, we have two possible microframes to schedule those packets 2127 * in. For this algorithm, if we can schedule the same number of packets for 2128 * each possible scheduling opportunity (each microframe), we will do so. The 2129 * remaining number of packets will be saved to be transmitted in the gaps in 2130 * the next interval's scheduling sequence. 2131 * 2132 * As we move those remaining packets to be scheduled with interval 2 packets, 2133 * we have to double the number of remaining packets to transmit. This is 2134 * because the intervals are actually powers of 2, and we would be transmitting 2135 * the previous interval's packets twice in this interval. We also have to be 2136 * sure that when we look at the largest max packet size for this interval, we 2137 * also look at the largest max packet size for the remaining packets and take 2138 * the greater of the two. 2139 * 2140 * The algorithm continues to evenly distribute packets in each scheduling 2141 * opportunity, and push the remaining packets out, until we get to the last 2142 * interval. Then those packets and their associated overhead are just added 2143 * to the bandwidth used. 2144 */ 2145 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2146 struct xhci_virt_device *virt_dev, 2147 int old_active_eps) 2148 { 2149 unsigned int bw_reserved; 2150 unsigned int max_bandwidth; 2151 unsigned int bw_used; 2152 unsigned int block_size; 2153 struct xhci_interval_bw_table *bw_table; 2154 unsigned int packet_size = 0; 2155 unsigned int overhead = 0; 2156 unsigned int packets_transmitted = 0; 2157 unsigned int packets_remaining = 0; 2158 unsigned int i; 2159 2160 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2161 return xhci_check_ss_bw(xhci, virt_dev); 2162 2163 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2164 max_bandwidth = HS_BW_LIMIT; 2165 /* Convert percent of bus BW reserved to blocks reserved */ 2166 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2167 } else { 2168 max_bandwidth = FS_BW_LIMIT; 2169 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2170 } 2171 2172 bw_table = virt_dev->bw_table; 2173 /* We need to translate the max packet size and max ESIT payloads into 2174 * the units the hardware uses. 2175 */ 2176 block_size = xhci_get_block_size(virt_dev->udev); 2177 2178 /* If we are manipulating a LS/FS device under a HS hub, double check 2179 * that the HS bus has enough bandwidth if we are activing a new TT. 2180 */ 2181 if (virt_dev->tt_info) { 2182 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2183 "Recalculating BW for rootport %u", 2184 virt_dev->real_port); 2185 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2186 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2187 "newly activated TT.\n"); 2188 return -ENOMEM; 2189 } 2190 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2191 "Recalculating BW for TT slot %u port %u", 2192 virt_dev->tt_info->slot_id, 2193 virt_dev->tt_info->ttport); 2194 } else { 2195 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2196 "Recalculating BW for rootport %u", 2197 virt_dev->real_port); 2198 } 2199 2200 /* Add in how much bandwidth will be used for interval zero, or the 2201 * rounded max ESIT payload + number of packets * largest overhead. 2202 */ 2203 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2204 bw_table->interval_bw[0].num_packets * 2205 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2206 2207 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2208 unsigned int bw_added; 2209 unsigned int largest_mps; 2210 unsigned int interval_overhead; 2211 2212 /* 2213 * How many packets could we transmit in this interval? 2214 * If packets didn't fit in the previous interval, we will need 2215 * to transmit that many packets twice within this interval. 2216 */ 2217 packets_remaining = 2 * packets_remaining + 2218 bw_table->interval_bw[i].num_packets; 2219 2220 /* Find the largest max packet size of this or the previous 2221 * interval. 2222 */ 2223 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2224 largest_mps = 0; 2225 else { 2226 struct xhci_virt_ep *virt_ep; 2227 struct list_head *ep_entry; 2228 2229 ep_entry = bw_table->interval_bw[i].endpoints.next; 2230 virt_ep = list_entry(ep_entry, 2231 struct xhci_virt_ep, bw_endpoint_list); 2232 /* Convert to blocks, rounding up */ 2233 largest_mps = DIV_ROUND_UP( 2234 virt_ep->bw_info.max_packet_size, 2235 block_size); 2236 } 2237 if (largest_mps > packet_size) 2238 packet_size = largest_mps; 2239 2240 /* Use the larger overhead of this or the previous interval. */ 2241 interval_overhead = xhci_get_largest_overhead( 2242 &bw_table->interval_bw[i]); 2243 if (interval_overhead > overhead) 2244 overhead = interval_overhead; 2245 2246 /* How many packets can we evenly distribute across 2247 * (1 << (i + 1)) possible scheduling opportunities? 2248 */ 2249 packets_transmitted = packets_remaining >> (i + 1); 2250 2251 /* Add in the bandwidth used for those scheduled packets */ 2252 bw_added = packets_transmitted * (overhead + packet_size); 2253 2254 /* How many packets do we have remaining to transmit? */ 2255 packets_remaining = packets_remaining % (1 << (i + 1)); 2256 2257 /* What largest max packet size should those packets have? */ 2258 /* If we've transmitted all packets, don't carry over the 2259 * largest packet size. 2260 */ 2261 if (packets_remaining == 0) { 2262 packet_size = 0; 2263 overhead = 0; 2264 } else if (packets_transmitted > 0) { 2265 /* Otherwise if we do have remaining packets, and we've 2266 * scheduled some packets in this interval, take the 2267 * largest max packet size from endpoints with this 2268 * interval. 2269 */ 2270 packet_size = largest_mps; 2271 overhead = interval_overhead; 2272 } 2273 /* Otherwise carry over packet_size and overhead from the last 2274 * time we had a remainder. 2275 */ 2276 bw_used += bw_added; 2277 if (bw_used > max_bandwidth) { 2278 xhci_warn(xhci, "Not enough bandwidth. " 2279 "Proposed: %u, Max: %u\n", 2280 bw_used, max_bandwidth); 2281 return -ENOMEM; 2282 } 2283 } 2284 /* 2285 * Ok, we know we have some packets left over after even-handedly 2286 * scheduling interval 15. We don't know which microframes they will 2287 * fit into, so we over-schedule and say they will be scheduled every 2288 * microframe. 2289 */ 2290 if (packets_remaining > 0) 2291 bw_used += overhead + packet_size; 2292 2293 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2294 unsigned int port_index = virt_dev->real_port - 1; 2295 2296 /* OK, we're manipulating a HS device attached to a 2297 * root port bandwidth domain. Include the number of active TTs 2298 * in the bandwidth used. 2299 */ 2300 bw_used += TT_HS_OVERHEAD * 2301 xhci->rh_bw[port_index].num_active_tts; 2302 } 2303 2304 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2305 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2306 "Available: %u " "percent", 2307 bw_used, max_bandwidth, bw_reserved, 2308 (max_bandwidth - bw_used - bw_reserved) * 100 / 2309 max_bandwidth); 2310 2311 bw_used += bw_reserved; 2312 if (bw_used > max_bandwidth) { 2313 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2314 bw_used, max_bandwidth); 2315 return -ENOMEM; 2316 } 2317 2318 bw_table->bw_used = bw_used; 2319 return 0; 2320 } 2321 2322 static bool xhci_is_async_ep(unsigned int ep_type) 2323 { 2324 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2325 ep_type != ISOC_IN_EP && 2326 ep_type != INT_IN_EP); 2327 } 2328 2329 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2330 { 2331 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2332 } 2333 2334 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2335 { 2336 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2337 2338 if (ep_bw->ep_interval == 0) 2339 return SS_OVERHEAD_BURST + 2340 (ep_bw->mult * ep_bw->num_packets * 2341 (SS_OVERHEAD + mps)); 2342 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2343 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2344 1 << ep_bw->ep_interval); 2345 2346 } 2347 2348 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2349 struct xhci_bw_info *ep_bw, 2350 struct xhci_interval_bw_table *bw_table, 2351 struct usb_device *udev, 2352 struct xhci_virt_ep *virt_ep, 2353 struct xhci_tt_bw_info *tt_info) 2354 { 2355 struct xhci_interval_bw *interval_bw; 2356 int normalized_interval; 2357 2358 if (xhci_is_async_ep(ep_bw->type)) 2359 return; 2360 2361 if (udev->speed == USB_SPEED_SUPER) { 2362 if (xhci_is_sync_in_ep(ep_bw->type)) 2363 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2364 xhci_get_ss_bw_consumed(ep_bw); 2365 else 2366 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2367 xhci_get_ss_bw_consumed(ep_bw); 2368 return; 2369 } 2370 2371 /* SuperSpeed endpoints never get added to intervals in the table, so 2372 * this check is only valid for HS/FS/LS devices. 2373 */ 2374 if (list_empty(&virt_ep->bw_endpoint_list)) 2375 return; 2376 /* For LS/FS devices, we need to translate the interval expressed in 2377 * microframes to frames. 2378 */ 2379 if (udev->speed == USB_SPEED_HIGH) 2380 normalized_interval = ep_bw->ep_interval; 2381 else 2382 normalized_interval = ep_bw->ep_interval - 3; 2383 2384 if (normalized_interval == 0) 2385 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2386 interval_bw = &bw_table->interval_bw[normalized_interval]; 2387 interval_bw->num_packets -= ep_bw->num_packets; 2388 switch (udev->speed) { 2389 case USB_SPEED_LOW: 2390 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2391 break; 2392 case USB_SPEED_FULL: 2393 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2394 break; 2395 case USB_SPEED_HIGH: 2396 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2397 break; 2398 case USB_SPEED_SUPER: 2399 case USB_SPEED_UNKNOWN: 2400 case USB_SPEED_WIRELESS: 2401 /* Should never happen because only LS/FS/HS endpoints will get 2402 * added to the endpoint list. 2403 */ 2404 return; 2405 } 2406 if (tt_info) 2407 tt_info->active_eps -= 1; 2408 list_del_init(&virt_ep->bw_endpoint_list); 2409 } 2410 2411 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2412 struct xhci_bw_info *ep_bw, 2413 struct xhci_interval_bw_table *bw_table, 2414 struct usb_device *udev, 2415 struct xhci_virt_ep *virt_ep, 2416 struct xhci_tt_bw_info *tt_info) 2417 { 2418 struct xhci_interval_bw *interval_bw; 2419 struct xhci_virt_ep *smaller_ep; 2420 int normalized_interval; 2421 2422 if (xhci_is_async_ep(ep_bw->type)) 2423 return; 2424 2425 if (udev->speed == USB_SPEED_SUPER) { 2426 if (xhci_is_sync_in_ep(ep_bw->type)) 2427 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2428 xhci_get_ss_bw_consumed(ep_bw); 2429 else 2430 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2431 xhci_get_ss_bw_consumed(ep_bw); 2432 return; 2433 } 2434 2435 /* For LS/FS devices, we need to translate the interval expressed in 2436 * microframes to frames. 2437 */ 2438 if (udev->speed == USB_SPEED_HIGH) 2439 normalized_interval = ep_bw->ep_interval; 2440 else 2441 normalized_interval = ep_bw->ep_interval - 3; 2442 2443 if (normalized_interval == 0) 2444 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2445 interval_bw = &bw_table->interval_bw[normalized_interval]; 2446 interval_bw->num_packets += ep_bw->num_packets; 2447 switch (udev->speed) { 2448 case USB_SPEED_LOW: 2449 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2450 break; 2451 case USB_SPEED_FULL: 2452 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2453 break; 2454 case USB_SPEED_HIGH: 2455 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2456 break; 2457 case USB_SPEED_SUPER: 2458 case USB_SPEED_UNKNOWN: 2459 case USB_SPEED_WIRELESS: 2460 /* Should never happen because only LS/FS/HS endpoints will get 2461 * added to the endpoint list. 2462 */ 2463 return; 2464 } 2465 2466 if (tt_info) 2467 tt_info->active_eps += 1; 2468 /* Insert the endpoint into the list, largest max packet size first. */ 2469 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2470 bw_endpoint_list) { 2471 if (ep_bw->max_packet_size >= 2472 smaller_ep->bw_info.max_packet_size) { 2473 /* Add the new ep before the smaller endpoint */ 2474 list_add_tail(&virt_ep->bw_endpoint_list, 2475 &smaller_ep->bw_endpoint_list); 2476 return; 2477 } 2478 } 2479 /* Add the new endpoint at the end of the list. */ 2480 list_add_tail(&virt_ep->bw_endpoint_list, 2481 &interval_bw->endpoints); 2482 } 2483 2484 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2485 struct xhci_virt_device *virt_dev, 2486 int old_active_eps) 2487 { 2488 struct xhci_root_port_bw_info *rh_bw_info; 2489 if (!virt_dev->tt_info) 2490 return; 2491 2492 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2493 if (old_active_eps == 0 && 2494 virt_dev->tt_info->active_eps != 0) { 2495 rh_bw_info->num_active_tts += 1; 2496 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2497 } else if (old_active_eps != 0 && 2498 virt_dev->tt_info->active_eps == 0) { 2499 rh_bw_info->num_active_tts -= 1; 2500 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2501 } 2502 } 2503 2504 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2505 struct xhci_virt_device *virt_dev, 2506 struct xhci_container_ctx *in_ctx) 2507 { 2508 struct xhci_bw_info ep_bw_info[31]; 2509 int i; 2510 struct xhci_input_control_ctx *ctrl_ctx; 2511 int old_active_eps = 0; 2512 2513 if (virt_dev->tt_info) 2514 old_active_eps = virt_dev->tt_info->active_eps; 2515 2516 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2517 if (!ctrl_ctx) { 2518 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2519 __func__); 2520 return -ENOMEM; 2521 } 2522 2523 for (i = 0; i < 31; i++) { 2524 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2525 continue; 2526 2527 /* Make a copy of the BW info in case we need to revert this */ 2528 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2529 sizeof(ep_bw_info[i])); 2530 /* Drop the endpoint from the interval table if the endpoint is 2531 * being dropped or changed. 2532 */ 2533 if (EP_IS_DROPPED(ctrl_ctx, i)) 2534 xhci_drop_ep_from_interval_table(xhci, 2535 &virt_dev->eps[i].bw_info, 2536 virt_dev->bw_table, 2537 virt_dev->udev, 2538 &virt_dev->eps[i], 2539 virt_dev->tt_info); 2540 } 2541 /* Overwrite the information stored in the endpoints' bw_info */ 2542 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2543 for (i = 0; i < 31; i++) { 2544 /* Add any changed or added endpoints to the interval table */ 2545 if (EP_IS_ADDED(ctrl_ctx, i)) 2546 xhci_add_ep_to_interval_table(xhci, 2547 &virt_dev->eps[i].bw_info, 2548 virt_dev->bw_table, 2549 virt_dev->udev, 2550 &virt_dev->eps[i], 2551 virt_dev->tt_info); 2552 } 2553 2554 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2555 /* Ok, this fits in the bandwidth we have. 2556 * Update the number of active TTs. 2557 */ 2558 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2559 return 0; 2560 } 2561 2562 /* We don't have enough bandwidth for this, revert the stored info. */ 2563 for (i = 0; i < 31; i++) { 2564 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2565 continue; 2566 2567 /* Drop the new copies of any added or changed endpoints from 2568 * the interval table. 2569 */ 2570 if (EP_IS_ADDED(ctrl_ctx, i)) { 2571 xhci_drop_ep_from_interval_table(xhci, 2572 &virt_dev->eps[i].bw_info, 2573 virt_dev->bw_table, 2574 virt_dev->udev, 2575 &virt_dev->eps[i], 2576 virt_dev->tt_info); 2577 } 2578 /* Revert the endpoint back to its old information */ 2579 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2580 sizeof(ep_bw_info[i])); 2581 /* Add any changed or dropped endpoints back into the table */ 2582 if (EP_IS_DROPPED(ctrl_ctx, i)) 2583 xhci_add_ep_to_interval_table(xhci, 2584 &virt_dev->eps[i].bw_info, 2585 virt_dev->bw_table, 2586 virt_dev->udev, 2587 &virt_dev->eps[i], 2588 virt_dev->tt_info); 2589 } 2590 return -ENOMEM; 2591 } 2592 2593 2594 /* Issue a configure endpoint command or evaluate context command 2595 * and wait for it to finish. 2596 */ 2597 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2598 struct usb_device *udev, 2599 struct xhci_command *command, 2600 bool ctx_change, bool must_succeed) 2601 { 2602 int ret; 2603 unsigned long flags; 2604 struct xhci_input_control_ctx *ctrl_ctx; 2605 struct xhci_virt_device *virt_dev; 2606 2607 if (!command) 2608 return -EINVAL; 2609 2610 spin_lock_irqsave(&xhci->lock, flags); 2611 virt_dev = xhci->devs[udev->slot_id]; 2612 2613 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2614 if (!ctrl_ctx) { 2615 spin_unlock_irqrestore(&xhci->lock, flags); 2616 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2617 __func__); 2618 return -ENOMEM; 2619 } 2620 2621 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2622 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2623 spin_unlock_irqrestore(&xhci->lock, flags); 2624 xhci_warn(xhci, "Not enough host resources, " 2625 "active endpoint contexts = %u\n", 2626 xhci->num_active_eps); 2627 return -ENOMEM; 2628 } 2629 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2630 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2632 xhci_free_host_resources(xhci, ctrl_ctx); 2633 spin_unlock_irqrestore(&xhci->lock, flags); 2634 xhci_warn(xhci, "Not enough bandwidth\n"); 2635 return -ENOMEM; 2636 } 2637 2638 if (!ctx_change) 2639 ret = xhci_queue_configure_endpoint(xhci, command, 2640 command->in_ctx->dma, 2641 udev->slot_id, must_succeed); 2642 else 2643 ret = xhci_queue_evaluate_context(xhci, command, 2644 command->in_ctx->dma, 2645 udev->slot_id, must_succeed); 2646 if (ret < 0) { 2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2648 xhci_free_host_resources(xhci, ctrl_ctx); 2649 spin_unlock_irqrestore(&xhci->lock, flags); 2650 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2651 "FIXME allocate a new ring segment"); 2652 return -ENOMEM; 2653 } 2654 xhci_ring_cmd_db(xhci); 2655 spin_unlock_irqrestore(&xhci->lock, flags); 2656 2657 /* Wait for the configure endpoint command to complete */ 2658 wait_for_completion(command->completion); 2659 2660 if (!ctx_change) 2661 ret = xhci_configure_endpoint_result(xhci, udev, 2662 &command->status); 2663 else 2664 ret = xhci_evaluate_context_result(xhci, udev, 2665 &command->status); 2666 2667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2668 spin_lock_irqsave(&xhci->lock, flags); 2669 /* If the command failed, remove the reserved resources. 2670 * Otherwise, clean up the estimate to include dropped eps. 2671 */ 2672 if (ret) 2673 xhci_free_host_resources(xhci, ctrl_ctx); 2674 else 2675 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2676 spin_unlock_irqrestore(&xhci->lock, flags); 2677 } 2678 return ret; 2679 } 2680 2681 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2682 struct xhci_virt_device *vdev, int i) 2683 { 2684 struct xhci_virt_ep *ep = &vdev->eps[i]; 2685 2686 if (ep->ep_state & EP_HAS_STREAMS) { 2687 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2688 xhci_get_endpoint_address(i)); 2689 xhci_free_stream_info(xhci, ep->stream_info); 2690 ep->stream_info = NULL; 2691 ep->ep_state &= ~EP_HAS_STREAMS; 2692 } 2693 } 2694 2695 /* Called after one or more calls to xhci_add_endpoint() or 2696 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2697 * to call xhci_reset_bandwidth(). 2698 * 2699 * Since we are in the middle of changing either configuration or 2700 * installing a new alt setting, the USB core won't allow URBs to be 2701 * enqueued for any endpoint on the old config or interface. Nothing 2702 * else should be touching the xhci->devs[slot_id] structure, so we 2703 * don't need to take the xhci->lock for manipulating that. 2704 */ 2705 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2706 { 2707 int i; 2708 int ret = 0; 2709 struct xhci_hcd *xhci; 2710 struct xhci_virt_device *virt_dev; 2711 struct xhci_input_control_ctx *ctrl_ctx; 2712 struct xhci_slot_ctx *slot_ctx; 2713 struct xhci_command *command; 2714 2715 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2716 if (ret <= 0) 2717 return ret; 2718 xhci = hcd_to_xhci(hcd); 2719 if (xhci->xhc_state & XHCI_STATE_DYING) 2720 return -ENODEV; 2721 2722 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2723 virt_dev = xhci->devs[udev->slot_id]; 2724 2725 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2726 if (!command) 2727 return -ENOMEM; 2728 2729 command->in_ctx = virt_dev->in_ctx; 2730 2731 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2732 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2733 if (!ctrl_ctx) { 2734 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2735 __func__); 2736 ret = -ENOMEM; 2737 goto command_cleanup; 2738 } 2739 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2740 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2741 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2742 2743 /* Don't issue the command if there's no endpoints to update. */ 2744 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2745 ctrl_ctx->drop_flags == 0) { 2746 ret = 0; 2747 goto command_cleanup; 2748 } 2749 xhci_dbg(xhci, "New Input Control Context:\n"); 2750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2751 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2752 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2753 2754 ret = xhci_configure_endpoint(xhci, udev, command, 2755 false, false); 2756 if (ret) 2757 /* Callee should call reset_bandwidth() */ 2758 goto command_cleanup; 2759 2760 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2761 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2762 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2763 2764 /* Free any rings that were dropped, but not changed. */ 2765 for (i = 1; i < 31; ++i) { 2766 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2767 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2768 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2769 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2770 } 2771 } 2772 xhci_zero_in_ctx(xhci, virt_dev); 2773 /* 2774 * Install any rings for completely new endpoints or changed endpoints, 2775 * and free or cache any old rings from changed endpoints. 2776 */ 2777 for (i = 1; i < 31; ++i) { 2778 if (!virt_dev->eps[i].new_ring) 2779 continue; 2780 /* Only cache or free the old ring if it exists. 2781 * It may not if this is the first add of an endpoint. 2782 */ 2783 if (virt_dev->eps[i].ring) { 2784 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2785 } 2786 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2787 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2788 virt_dev->eps[i].new_ring = NULL; 2789 } 2790 command_cleanup: 2791 kfree(command->completion); 2792 kfree(command); 2793 2794 return ret; 2795 } 2796 2797 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2798 { 2799 struct xhci_hcd *xhci; 2800 struct xhci_virt_device *virt_dev; 2801 int i, ret; 2802 2803 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2804 if (ret <= 0) 2805 return; 2806 xhci = hcd_to_xhci(hcd); 2807 2808 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2809 virt_dev = xhci->devs[udev->slot_id]; 2810 /* Free any rings allocated for added endpoints */ 2811 for (i = 0; i < 31; ++i) { 2812 if (virt_dev->eps[i].new_ring) { 2813 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2814 virt_dev->eps[i].new_ring = NULL; 2815 } 2816 } 2817 xhci_zero_in_ctx(xhci, virt_dev); 2818 } 2819 2820 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2821 struct xhci_container_ctx *in_ctx, 2822 struct xhci_container_ctx *out_ctx, 2823 struct xhci_input_control_ctx *ctrl_ctx, 2824 u32 add_flags, u32 drop_flags) 2825 { 2826 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2827 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2828 xhci_slot_copy(xhci, in_ctx, out_ctx); 2829 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2830 2831 xhci_dbg(xhci, "Input Context:\n"); 2832 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2833 } 2834 2835 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2836 unsigned int slot_id, unsigned int ep_index, 2837 struct xhci_dequeue_state *deq_state) 2838 { 2839 struct xhci_input_control_ctx *ctrl_ctx; 2840 struct xhci_container_ctx *in_ctx; 2841 struct xhci_ep_ctx *ep_ctx; 2842 u32 added_ctxs; 2843 dma_addr_t addr; 2844 2845 in_ctx = xhci->devs[slot_id]->in_ctx; 2846 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2847 if (!ctrl_ctx) { 2848 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2849 __func__); 2850 return; 2851 } 2852 2853 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2854 xhci->devs[slot_id]->out_ctx, ep_index); 2855 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2856 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2857 deq_state->new_deq_ptr); 2858 if (addr == 0) { 2859 xhci_warn(xhci, "WARN Cannot submit config ep after " 2860 "reset ep command\n"); 2861 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2862 deq_state->new_deq_seg, 2863 deq_state->new_deq_ptr); 2864 return; 2865 } 2866 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2867 2868 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2869 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2870 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2871 added_ctxs, added_ctxs); 2872 } 2873 2874 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2875 struct usb_device *udev, unsigned int ep_index) 2876 { 2877 struct xhci_dequeue_state deq_state; 2878 struct xhci_virt_ep *ep; 2879 2880 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2881 "Cleaning up stalled endpoint ring"); 2882 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2883 /* We need to move the HW's dequeue pointer past this TD, 2884 * or it will attempt to resend it on the next doorbell ring. 2885 */ 2886 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2887 ep_index, ep->stopped_stream, ep->stopped_td, 2888 &deq_state); 2889 2890 /* HW with the reset endpoint quirk will use the saved dequeue state to 2891 * issue a configure endpoint command later. 2892 */ 2893 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2894 struct xhci_command *command; 2895 /* Can't sleep if we're called from cleanup_halted_endpoint() */ 2896 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 2897 if (!command) 2898 return; 2899 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2900 "Queueing new dequeue state"); 2901 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id, 2902 ep_index, ep->stopped_stream, &deq_state); 2903 } else { 2904 /* Better hope no one uses the input context between now and the 2905 * reset endpoint completion! 2906 * XXX: No idea how this hardware will react when stream rings 2907 * are enabled. 2908 */ 2909 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2910 "Setting up input context for " 2911 "configure endpoint command"); 2912 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2913 ep_index, &deq_state); 2914 } 2915 } 2916 2917 /* Deal with stalled endpoints. The core should have sent the control message 2918 * to clear the halt condition. However, we need to make the xHCI hardware 2919 * reset its sequence number, since a device will expect a sequence number of 2920 * zero after the halt condition is cleared. 2921 * Context: in_interrupt 2922 */ 2923 void xhci_endpoint_reset(struct usb_hcd *hcd, 2924 struct usb_host_endpoint *ep) 2925 { 2926 struct xhci_hcd *xhci; 2927 struct usb_device *udev; 2928 unsigned int ep_index; 2929 unsigned long flags; 2930 int ret; 2931 struct xhci_virt_ep *virt_ep; 2932 struct xhci_command *command; 2933 2934 xhci = hcd_to_xhci(hcd); 2935 udev = (struct usb_device *) ep->hcpriv; 2936 /* Called with a root hub endpoint (or an endpoint that wasn't added 2937 * with xhci_add_endpoint() 2938 */ 2939 if (!ep->hcpriv) 2940 return; 2941 ep_index = xhci_get_endpoint_index(&ep->desc); 2942 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2943 if (!virt_ep->stopped_td) { 2944 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2945 "Endpoint 0x%x not halted, refusing to reset.", 2946 ep->desc.bEndpointAddress); 2947 return; 2948 } 2949 if (usb_endpoint_xfer_control(&ep->desc)) { 2950 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2951 "Control endpoint stall already handled."); 2952 return; 2953 } 2954 2955 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 2956 if (!command) 2957 return; 2958 2959 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2960 "Queueing reset endpoint command"); 2961 spin_lock_irqsave(&xhci->lock, flags); 2962 ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index); 2963 /* 2964 * Can't change the ring dequeue pointer until it's transitioned to the 2965 * stopped state, which is only upon a successful reset endpoint 2966 * command. Better hope that last command worked! 2967 */ 2968 if (!ret) { 2969 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2970 kfree(virt_ep->stopped_td); 2971 xhci_ring_cmd_db(xhci); 2972 } 2973 virt_ep->stopped_td = NULL; 2974 virt_ep->stopped_stream = 0; 2975 spin_unlock_irqrestore(&xhci->lock, flags); 2976 2977 if (ret) 2978 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2979 } 2980 2981 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2982 struct usb_device *udev, struct usb_host_endpoint *ep, 2983 unsigned int slot_id) 2984 { 2985 int ret; 2986 unsigned int ep_index; 2987 unsigned int ep_state; 2988 2989 if (!ep) 2990 return -EINVAL; 2991 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2992 if (ret <= 0) 2993 return -EINVAL; 2994 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2995 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2996 " descriptor for ep 0x%x does not support streams\n", 2997 ep->desc.bEndpointAddress); 2998 return -EINVAL; 2999 } 3000 3001 ep_index = xhci_get_endpoint_index(&ep->desc); 3002 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3003 if (ep_state & EP_HAS_STREAMS || 3004 ep_state & EP_GETTING_STREAMS) { 3005 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3006 "already has streams set up.\n", 3007 ep->desc.bEndpointAddress); 3008 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3009 "dynamic stream context array reallocation.\n"); 3010 return -EINVAL; 3011 } 3012 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3013 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3014 "endpoint 0x%x; URBs are pending.\n", 3015 ep->desc.bEndpointAddress); 3016 return -EINVAL; 3017 } 3018 return 0; 3019 } 3020 3021 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3022 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3023 { 3024 unsigned int max_streams; 3025 3026 /* The stream context array size must be a power of two */ 3027 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3028 /* 3029 * Find out how many primary stream array entries the host controller 3030 * supports. Later we may use secondary stream arrays (similar to 2nd 3031 * level page entries), but that's an optional feature for xHCI host 3032 * controllers. xHCs must support at least 4 stream IDs. 3033 */ 3034 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3035 if (*num_stream_ctxs > max_streams) { 3036 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3037 max_streams); 3038 *num_stream_ctxs = max_streams; 3039 *num_streams = max_streams; 3040 } 3041 } 3042 3043 /* Returns an error code if one of the endpoint already has streams. 3044 * This does not change any data structures, it only checks and gathers 3045 * information. 3046 */ 3047 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3048 struct usb_device *udev, 3049 struct usb_host_endpoint **eps, unsigned int num_eps, 3050 unsigned int *num_streams, u32 *changed_ep_bitmask) 3051 { 3052 unsigned int max_streams; 3053 unsigned int endpoint_flag; 3054 int i; 3055 int ret; 3056 3057 for (i = 0; i < num_eps; i++) { 3058 ret = xhci_check_streams_endpoint(xhci, udev, 3059 eps[i], udev->slot_id); 3060 if (ret < 0) 3061 return ret; 3062 3063 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3064 if (max_streams < (*num_streams - 1)) { 3065 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3066 eps[i]->desc.bEndpointAddress, 3067 max_streams); 3068 *num_streams = max_streams+1; 3069 } 3070 3071 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3072 if (*changed_ep_bitmask & endpoint_flag) 3073 return -EINVAL; 3074 *changed_ep_bitmask |= endpoint_flag; 3075 } 3076 return 0; 3077 } 3078 3079 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3080 struct usb_device *udev, 3081 struct usb_host_endpoint **eps, unsigned int num_eps) 3082 { 3083 u32 changed_ep_bitmask = 0; 3084 unsigned int slot_id; 3085 unsigned int ep_index; 3086 unsigned int ep_state; 3087 int i; 3088 3089 slot_id = udev->slot_id; 3090 if (!xhci->devs[slot_id]) 3091 return 0; 3092 3093 for (i = 0; i < num_eps; i++) { 3094 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3095 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3096 /* Are streams already being freed for the endpoint? */ 3097 if (ep_state & EP_GETTING_NO_STREAMS) { 3098 xhci_warn(xhci, "WARN Can't disable streams for " 3099 "endpoint 0x%x, " 3100 "streams are being disabled already\n", 3101 eps[i]->desc.bEndpointAddress); 3102 return 0; 3103 } 3104 /* Are there actually any streams to free? */ 3105 if (!(ep_state & EP_HAS_STREAMS) && 3106 !(ep_state & EP_GETTING_STREAMS)) { 3107 xhci_warn(xhci, "WARN Can't disable streams for " 3108 "endpoint 0x%x, " 3109 "streams are already disabled!\n", 3110 eps[i]->desc.bEndpointAddress); 3111 xhci_warn(xhci, "WARN xhci_free_streams() called " 3112 "with non-streams endpoint\n"); 3113 return 0; 3114 } 3115 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3116 } 3117 return changed_ep_bitmask; 3118 } 3119 3120 /* 3121 * The USB device drivers use this function (though the HCD interface in USB 3122 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3123 * coordinate mass storage command queueing across multiple endpoints (basically 3124 * a stream ID == a task ID). 3125 * 3126 * Setting up streams involves allocating the same size stream context array 3127 * for each endpoint and issuing a configure endpoint command for all endpoints. 3128 * 3129 * Don't allow the call to succeed if one endpoint only supports one stream 3130 * (which means it doesn't support streams at all). 3131 * 3132 * Drivers may get less stream IDs than they asked for, if the host controller 3133 * hardware or endpoints claim they can't support the number of requested 3134 * stream IDs. 3135 */ 3136 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3137 struct usb_host_endpoint **eps, unsigned int num_eps, 3138 unsigned int num_streams, gfp_t mem_flags) 3139 { 3140 int i, ret; 3141 struct xhci_hcd *xhci; 3142 struct xhci_virt_device *vdev; 3143 struct xhci_command *config_cmd; 3144 struct xhci_input_control_ctx *ctrl_ctx; 3145 unsigned int ep_index; 3146 unsigned int num_stream_ctxs; 3147 unsigned long flags; 3148 u32 changed_ep_bitmask = 0; 3149 3150 if (!eps) 3151 return -EINVAL; 3152 3153 /* Add one to the number of streams requested to account for 3154 * stream 0 that is reserved for xHCI usage. 3155 */ 3156 num_streams += 1; 3157 xhci = hcd_to_xhci(hcd); 3158 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3159 num_streams); 3160 3161 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3162 if (HCC_MAX_PSA(xhci->hcc_params) < 4) { 3163 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3164 return -ENOSYS; 3165 } 3166 3167 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3168 if (!config_cmd) { 3169 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3170 return -ENOMEM; 3171 } 3172 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3173 if (!ctrl_ctx) { 3174 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3175 __func__); 3176 xhci_free_command(xhci, config_cmd); 3177 return -ENOMEM; 3178 } 3179 3180 /* Check to make sure all endpoints are not already configured for 3181 * streams. While we're at it, find the maximum number of streams that 3182 * all the endpoints will support and check for duplicate endpoints. 3183 */ 3184 spin_lock_irqsave(&xhci->lock, flags); 3185 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3186 num_eps, &num_streams, &changed_ep_bitmask); 3187 if (ret < 0) { 3188 xhci_free_command(xhci, config_cmd); 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 return ret; 3191 } 3192 if (num_streams <= 1) { 3193 xhci_warn(xhci, "WARN: endpoints can't handle " 3194 "more than one stream.\n"); 3195 xhci_free_command(xhci, config_cmd); 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 return -EINVAL; 3198 } 3199 vdev = xhci->devs[udev->slot_id]; 3200 /* Mark each endpoint as being in transition, so 3201 * xhci_urb_enqueue() will reject all URBs. 3202 */ 3203 for (i = 0; i < num_eps; i++) { 3204 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3205 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3206 } 3207 spin_unlock_irqrestore(&xhci->lock, flags); 3208 3209 /* Setup internal data structures and allocate HW data structures for 3210 * streams (but don't install the HW structures in the input context 3211 * until we're sure all memory allocation succeeded). 3212 */ 3213 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3214 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3215 num_stream_ctxs, num_streams); 3216 3217 for (i = 0; i < num_eps; i++) { 3218 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3219 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3220 num_stream_ctxs, 3221 num_streams, mem_flags); 3222 if (!vdev->eps[ep_index].stream_info) 3223 goto cleanup; 3224 /* Set maxPstreams in endpoint context and update deq ptr to 3225 * point to stream context array. FIXME 3226 */ 3227 } 3228 3229 /* Set up the input context for a configure endpoint command. */ 3230 for (i = 0; i < num_eps; i++) { 3231 struct xhci_ep_ctx *ep_ctx; 3232 3233 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3234 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3235 3236 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3237 vdev->out_ctx, ep_index); 3238 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3239 vdev->eps[ep_index].stream_info); 3240 } 3241 /* Tell the HW to drop its old copy of the endpoint context info 3242 * and add the updated copy from the input context. 3243 */ 3244 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3245 vdev->out_ctx, ctrl_ctx, 3246 changed_ep_bitmask, changed_ep_bitmask); 3247 3248 /* Issue and wait for the configure endpoint command */ 3249 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3250 false, false); 3251 3252 /* xHC rejected the configure endpoint command for some reason, so we 3253 * leave the old ring intact and free our internal streams data 3254 * structure. 3255 */ 3256 if (ret < 0) 3257 goto cleanup; 3258 3259 spin_lock_irqsave(&xhci->lock, flags); 3260 for (i = 0; i < num_eps; i++) { 3261 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3262 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3263 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3264 udev->slot_id, ep_index); 3265 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3266 } 3267 xhci_free_command(xhci, config_cmd); 3268 spin_unlock_irqrestore(&xhci->lock, flags); 3269 3270 /* Subtract 1 for stream 0, which drivers can't use */ 3271 return num_streams - 1; 3272 3273 cleanup: 3274 /* If it didn't work, free the streams! */ 3275 for (i = 0; i < num_eps; i++) { 3276 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3277 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3278 vdev->eps[ep_index].stream_info = NULL; 3279 /* FIXME Unset maxPstreams in endpoint context and 3280 * update deq ptr to point to normal string ring. 3281 */ 3282 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3283 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3284 xhci_endpoint_zero(xhci, vdev, eps[i]); 3285 } 3286 xhci_free_command(xhci, config_cmd); 3287 return -ENOMEM; 3288 } 3289 3290 /* Transition the endpoint from using streams to being a "normal" endpoint 3291 * without streams. 3292 * 3293 * Modify the endpoint context state, submit a configure endpoint command, 3294 * and free all endpoint rings for streams if that completes successfully. 3295 */ 3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3297 struct usb_host_endpoint **eps, unsigned int num_eps, 3298 gfp_t mem_flags) 3299 { 3300 int i, ret; 3301 struct xhci_hcd *xhci; 3302 struct xhci_virt_device *vdev; 3303 struct xhci_command *command; 3304 struct xhci_input_control_ctx *ctrl_ctx; 3305 unsigned int ep_index; 3306 unsigned long flags; 3307 u32 changed_ep_bitmask; 3308 3309 xhci = hcd_to_xhci(hcd); 3310 vdev = xhci->devs[udev->slot_id]; 3311 3312 /* Set up a configure endpoint command to remove the streams rings */ 3313 spin_lock_irqsave(&xhci->lock, flags); 3314 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3315 udev, eps, num_eps); 3316 if (changed_ep_bitmask == 0) { 3317 spin_unlock_irqrestore(&xhci->lock, flags); 3318 return -EINVAL; 3319 } 3320 3321 /* Use the xhci_command structure from the first endpoint. We may have 3322 * allocated too many, but the driver may call xhci_free_streams() for 3323 * each endpoint it grouped into one call to xhci_alloc_streams(). 3324 */ 3325 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3326 command = vdev->eps[ep_index].stream_info->free_streams_command; 3327 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3328 if (!ctrl_ctx) { 3329 spin_unlock_irqrestore(&xhci->lock, flags); 3330 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3331 __func__); 3332 return -EINVAL; 3333 } 3334 3335 for (i = 0; i < num_eps; i++) { 3336 struct xhci_ep_ctx *ep_ctx; 3337 3338 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3339 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3340 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3341 EP_GETTING_NO_STREAMS; 3342 3343 xhci_endpoint_copy(xhci, command->in_ctx, 3344 vdev->out_ctx, ep_index); 3345 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3346 &vdev->eps[ep_index]); 3347 } 3348 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3349 vdev->out_ctx, ctrl_ctx, 3350 changed_ep_bitmask, changed_ep_bitmask); 3351 spin_unlock_irqrestore(&xhci->lock, flags); 3352 3353 /* Issue and wait for the configure endpoint command, 3354 * which must succeed. 3355 */ 3356 ret = xhci_configure_endpoint(xhci, udev, command, 3357 false, true); 3358 3359 /* xHC rejected the configure endpoint command for some reason, so we 3360 * leave the streams rings intact. 3361 */ 3362 if (ret < 0) 3363 return ret; 3364 3365 spin_lock_irqsave(&xhci->lock, flags); 3366 for (i = 0; i < num_eps; i++) { 3367 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3368 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3369 vdev->eps[ep_index].stream_info = NULL; 3370 /* FIXME Unset maxPstreams in endpoint context and 3371 * update deq ptr to point to normal string ring. 3372 */ 3373 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3374 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3375 } 3376 spin_unlock_irqrestore(&xhci->lock, flags); 3377 3378 return 0; 3379 } 3380 3381 /* 3382 * Deletes endpoint resources for endpoints that were active before a Reset 3383 * Device command, or a Disable Slot command. The Reset Device command leaves 3384 * the control endpoint intact, whereas the Disable Slot command deletes it. 3385 * 3386 * Must be called with xhci->lock held. 3387 */ 3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3389 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3390 { 3391 int i; 3392 unsigned int num_dropped_eps = 0; 3393 unsigned int drop_flags = 0; 3394 3395 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3396 if (virt_dev->eps[i].ring) { 3397 drop_flags |= 1 << i; 3398 num_dropped_eps++; 3399 } 3400 } 3401 xhci->num_active_eps -= num_dropped_eps; 3402 if (num_dropped_eps) 3403 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3404 "Dropped %u ep ctxs, flags = 0x%x, " 3405 "%u now active.", 3406 num_dropped_eps, drop_flags, 3407 xhci->num_active_eps); 3408 } 3409 3410 /* 3411 * This submits a Reset Device Command, which will set the device state to 0, 3412 * set the device address to 0, and disable all the endpoints except the default 3413 * control endpoint. The USB core should come back and call 3414 * xhci_address_device(), and then re-set up the configuration. If this is 3415 * called because of a usb_reset_and_verify_device(), then the old alternate 3416 * settings will be re-installed through the normal bandwidth allocation 3417 * functions. 3418 * 3419 * Wait for the Reset Device command to finish. Remove all structures 3420 * associated with the endpoints that were disabled. Clear the input device 3421 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3422 * 3423 * If the virt_dev to be reset does not exist or does not match the udev, 3424 * it means the device is lost, possibly due to the xHC restore error and 3425 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3426 * re-allocate the device. 3427 */ 3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3429 { 3430 int ret, i; 3431 unsigned long flags; 3432 struct xhci_hcd *xhci; 3433 unsigned int slot_id; 3434 struct xhci_virt_device *virt_dev; 3435 struct xhci_command *reset_device_cmd; 3436 int last_freed_endpoint; 3437 struct xhci_slot_ctx *slot_ctx; 3438 int old_active_eps = 0; 3439 3440 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3441 if (ret <= 0) 3442 return ret; 3443 xhci = hcd_to_xhci(hcd); 3444 slot_id = udev->slot_id; 3445 virt_dev = xhci->devs[slot_id]; 3446 if (!virt_dev) { 3447 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3448 "not exist. Re-allocate the device\n", slot_id); 3449 ret = xhci_alloc_dev(hcd, udev); 3450 if (ret == 1) 3451 return 0; 3452 else 3453 return -EINVAL; 3454 } 3455 3456 if (virt_dev->udev != udev) { 3457 /* If the virt_dev and the udev does not match, this virt_dev 3458 * may belong to another udev. 3459 * Re-allocate the device. 3460 */ 3461 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3462 "not match the udev. Re-allocate the device\n", 3463 slot_id); 3464 ret = xhci_alloc_dev(hcd, udev); 3465 if (ret == 1) 3466 return 0; 3467 else 3468 return -EINVAL; 3469 } 3470 3471 /* If device is not setup, there is no point in resetting it */ 3472 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3473 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3474 SLOT_STATE_DISABLED) 3475 return 0; 3476 3477 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3478 /* Allocate the command structure that holds the struct completion. 3479 * Assume we're in process context, since the normal device reset 3480 * process has to wait for the device anyway. Storage devices are 3481 * reset as part of error handling, so use GFP_NOIO instead of 3482 * GFP_KERNEL. 3483 */ 3484 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3485 if (!reset_device_cmd) { 3486 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3487 return -ENOMEM; 3488 } 3489 3490 /* Attempt to submit the Reset Device command to the command ring */ 3491 spin_lock_irqsave(&xhci->lock, flags); 3492 3493 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3494 if (ret) { 3495 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3496 spin_unlock_irqrestore(&xhci->lock, flags); 3497 goto command_cleanup; 3498 } 3499 xhci_ring_cmd_db(xhci); 3500 spin_unlock_irqrestore(&xhci->lock, flags); 3501 3502 /* Wait for the Reset Device command to finish */ 3503 wait_for_completion(reset_device_cmd->completion); 3504 3505 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3506 * unless we tried to reset a slot ID that wasn't enabled, 3507 * or the device wasn't in the addressed or configured state. 3508 */ 3509 ret = reset_device_cmd->status; 3510 switch (ret) { 3511 case COMP_CMD_ABORT: 3512 case COMP_CMD_STOP: 3513 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3514 ret = -ETIME; 3515 goto command_cleanup; 3516 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3517 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3518 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3519 slot_id, 3520 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3521 xhci_dbg(xhci, "Not freeing device rings.\n"); 3522 /* Don't treat this as an error. May change my mind later. */ 3523 ret = 0; 3524 goto command_cleanup; 3525 case COMP_SUCCESS: 3526 xhci_dbg(xhci, "Successful reset device command.\n"); 3527 break; 3528 default: 3529 if (xhci_is_vendor_info_code(xhci, ret)) 3530 break; 3531 xhci_warn(xhci, "Unknown completion code %u for " 3532 "reset device command.\n", ret); 3533 ret = -EINVAL; 3534 goto command_cleanup; 3535 } 3536 3537 /* Free up host controller endpoint resources */ 3538 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3539 spin_lock_irqsave(&xhci->lock, flags); 3540 /* Don't delete the default control endpoint resources */ 3541 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3542 spin_unlock_irqrestore(&xhci->lock, flags); 3543 } 3544 3545 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3546 last_freed_endpoint = 1; 3547 for (i = 1; i < 31; ++i) { 3548 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3549 3550 if (ep->ep_state & EP_HAS_STREAMS) { 3551 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3552 xhci_get_endpoint_address(i)); 3553 xhci_free_stream_info(xhci, ep->stream_info); 3554 ep->stream_info = NULL; 3555 ep->ep_state &= ~EP_HAS_STREAMS; 3556 } 3557 3558 if (ep->ring) { 3559 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3560 last_freed_endpoint = i; 3561 } 3562 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3563 xhci_drop_ep_from_interval_table(xhci, 3564 &virt_dev->eps[i].bw_info, 3565 virt_dev->bw_table, 3566 udev, 3567 &virt_dev->eps[i], 3568 virt_dev->tt_info); 3569 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3570 } 3571 /* If necessary, update the number of active TTs on this root port */ 3572 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3573 3574 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3575 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3576 ret = 0; 3577 3578 command_cleanup: 3579 xhci_free_command(xhci, reset_device_cmd); 3580 return ret; 3581 } 3582 3583 /* 3584 * At this point, the struct usb_device is about to go away, the device has 3585 * disconnected, and all traffic has been stopped and the endpoints have been 3586 * disabled. Free any HC data structures associated with that device. 3587 */ 3588 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3589 { 3590 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3591 struct xhci_virt_device *virt_dev; 3592 unsigned long flags; 3593 u32 state; 3594 int i, ret; 3595 struct xhci_command *command; 3596 3597 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3598 if (!command) 3599 return; 3600 3601 #ifndef CONFIG_USB_DEFAULT_PERSIST 3602 /* 3603 * We called pm_runtime_get_noresume when the device was attached. 3604 * Decrement the counter here to allow controller to runtime suspend 3605 * if no devices remain. 3606 */ 3607 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3608 pm_runtime_put_noidle(hcd->self.controller); 3609 #endif 3610 3611 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3612 /* If the host is halted due to driver unload, we still need to free the 3613 * device. 3614 */ 3615 if (ret <= 0 && ret != -ENODEV) { 3616 kfree(command); 3617 return; 3618 } 3619 3620 virt_dev = xhci->devs[udev->slot_id]; 3621 3622 /* Stop any wayward timer functions (which may grab the lock) */ 3623 for (i = 0; i < 31; ++i) { 3624 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3625 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3626 } 3627 3628 spin_lock_irqsave(&xhci->lock, flags); 3629 /* Don't disable the slot if the host controller is dead. */ 3630 state = readl(&xhci->op_regs->status); 3631 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3632 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3633 xhci_free_virt_device(xhci, udev->slot_id); 3634 spin_unlock_irqrestore(&xhci->lock, flags); 3635 kfree(command); 3636 return; 3637 } 3638 3639 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3640 udev->slot_id)) { 3641 spin_unlock_irqrestore(&xhci->lock, flags); 3642 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3643 return; 3644 } 3645 xhci_ring_cmd_db(xhci); 3646 spin_unlock_irqrestore(&xhci->lock, flags); 3647 3648 /* 3649 * Event command completion handler will free any data structures 3650 * associated with the slot. XXX Can free sleep? 3651 */ 3652 } 3653 3654 /* 3655 * Checks if we have enough host controller resources for the default control 3656 * endpoint. 3657 * 3658 * Must be called with xhci->lock held. 3659 */ 3660 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3661 { 3662 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3663 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3664 "Not enough ep ctxs: " 3665 "%u active, need to add 1, limit is %u.", 3666 xhci->num_active_eps, xhci->limit_active_eps); 3667 return -ENOMEM; 3668 } 3669 xhci->num_active_eps += 1; 3670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3671 "Adding 1 ep ctx, %u now active.", 3672 xhci->num_active_eps); 3673 return 0; 3674 } 3675 3676 3677 /* 3678 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3679 * timed out, or allocating memory failed. Returns 1 on success. 3680 */ 3681 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3682 { 3683 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3684 unsigned long flags; 3685 int ret; 3686 struct xhci_command *command; 3687 3688 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3689 if (!command) 3690 return 0; 3691 3692 spin_lock_irqsave(&xhci->lock, flags); 3693 command->completion = &xhci->addr_dev; 3694 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3695 if (ret) { 3696 spin_unlock_irqrestore(&xhci->lock, flags); 3697 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3698 kfree(command); 3699 return 0; 3700 } 3701 xhci_ring_cmd_db(xhci); 3702 spin_unlock_irqrestore(&xhci->lock, flags); 3703 3704 wait_for_completion(command->completion); 3705 3706 if (!xhci->slot_id || command->status != COMP_SUCCESS) { 3707 xhci_err(xhci, "Error while assigning device slot ID\n"); 3708 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3709 HCS_MAX_SLOTS( 3710 readl(&xhci->cap_regs->hcs_params1))); 3711 kfree(command); 3712 return 0; 3713 } 3714 3715 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3716 spin_lock_irqsave(&xhci->lock, flags); 3717 ret = xhci_reserve_host_control_ep_resources(xhci); 3718 if (ret) { 3719 spin_unlock_irqrestore(&xhci->lock, flags); 3720 xhci_warn(xhci, "Not enough host resources, " 3721 "active endpoint contexts = %u\n", 3722 xhci->num_active_eps); 3723 goto disable_slot; 3724 } 3725 spin_unlock_irqrestore(&xhci->lock, flags); 3726 } 3727 /* Use GFP_NOIO, since this function can be called from 3728 * xhci_discover_or_reset_device(), which may be called as part of 3729 * mass storage driver error handling. 3730 */ 3731 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3732 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3733 goto disable_slot; 3734 } 3735 udev->slot_id = xhci->slot_id; 3736 3737 #ifndef CONFIG_USB_DEFAULT_PERSIST 3738 /* 3739 * If resetting upon resume, we can't put the controller into runtime 3740 * suspend if there is a device attached. 3741 */ 3742 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3743 pm_runtime_get_noresume(hcd->self.controller); 3744 #endif 3745 3746 3747 kfree(command); 3748 /* Is this a LS or FS device under a HS hub? */ 3749 /* Hub or peripherial? */ 3750 return 1; 3751 3752 disable_slot: 3753 /* Disable slot, if we can do it without mem alloc */ 3754 spin_lock_irqsave(&xhci->lock, flags); 3755 command->completion = NULL; 3756 command->status = 0; 3757 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3758 udev->slot_id)) 3759 xhci_ring_cmd_db(xhci); 3760 spin_unlock_irqrestore(&xhci->lock, flags); 3761 return 0; 3762 } 3763 3764 /* 3765 * Issue an Address Device command and optionally send a corresponding 3766 * SetAddress request to the device. 3767 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3768 * we should only issue and wait on one address command at the same time. 3769 */ 3770 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3771 enum xhci_setup_dev setup) 3772 { 3773 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3774 unsigned long flags; 3775 struct xhci_virt_device *virt_dev; 3776 int ret = 0; 3777 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3778 struct xhci_slot_ctx *slot_ctx; 3779 struct xhci_input_control_ctx *ctrl_ctx; 3780 u64 temp_64; 3781 struct xhci_command *command; 3782 3783 if (!udev->slot_id) { 3784 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3785 "Bad Slot ID %d", udev->slot_id); 3786 return -EINVAL; 3787 } 3788 3789 virt_dev = xhci->devs[udev->slot_id]; 3790 3791 if (WARN_ON(!virt_dev)) { 3792 /* 3793 * In plug/unplug torture test with an NEC controller, 3794 * a zero-dereference was observed once due to virt_dev = 0. 3795 * Print useful debug rather than crash if it is observed again! 3796 */ 3797 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3798 udev->slot_id); 3799 return -EINVAL; 3800 } 3801 3802 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3803 if (!command) 3804 return -ENOMEM; 3805 3806 command->in_ctx = virt_dev->in_ctx; 3807 command->completion = &xhci->addr_dev; 3808 3809 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3810 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3811 if (!ctrl_ctx) { 3812 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3813 __func__); 3814 kfree(command); 3815 return -EINVAL; 3816 } 3817 /* 3818 * If this is the first Set Address since device plug-in or 3819 * virt_device realloaction after a resume with an xHCI power loss, 3820 * then set up the slot context. 3821 */ 3822 if (!slot_ctx->dev_info) 3823 xhci_setup_addressable_virt_dev(xhci, udev); 3824 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3825 else 3826 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3827 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3828 ctrl_ctx->drop_flags = 0; 3829 3830 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3831 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3832 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3833 le32_to_cpu(slot_ctx->dev_info) >> 27); 3834 3835 spin_lock_irqsave(&xhci->lock, flags); 3836 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3837 udev->slot_id, setup); 3838 if (ret) { 3839 spin_unlock_irqrestore(&xhci->lock, flags); 3840 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3841 "FIXME: allocate a command ring segment"); 3842 kfree(command); 3843 return ret; 3844 } 3845 xhci_ring_cmd_db(xhci); 3846 spin_unlock_irqrestore(&xhci->lock, flags); 3847 3848 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3849 wait_for_completion(command->completion); 3850 3851 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3852 * the SetAddress() "recovery interval" required by USB and aborting the 3853 * command on a timeout. 3854 */ 3855 switch (command->status) { 3856 case COMP_CMD_ABORT: 3857 case COMP_CMD_STOP: 3858 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3859 ret = -ETIME; 3860 break; 3861 case COMP_CTX_STATE: 3862 case COMP_EBADSLT: 3863 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3864 act, udev->slot_id); 3865 ret = -EINVAL; 3866 break; 3867 case COMP_TX_ERR: 3868 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3869 ret = -EPROTO; 3870 break; 3871 case COMP_DEV_ERR: 3872 dev_warn(&udev->dev, 3873 "ERROR: Incompatible device for setup %s command\n", act); 3874 ret = -ENODEV; 3875 break; 3876 case COMP_SUCCESS: 3877 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3878 "Successful setup %s command", act); 3879 break; 3880 default: 3881 xhci_err(xhci, 3882 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3883 act, command->status); 3884 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3885 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3886 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3887 ret = -EINVAL; 3888 break; 3889 } 3890 if (ret) { 3891 kfree(command); 3892 return ret; 3893 } 3894 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3895 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3896 "Op regs DCBAA ptr = %#016llx", temp_64); 3897 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3898 "Slot ID %d dcbaa entry @%p = %#016llx", 3899 udev->slot_id, 3900 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3901 (unsigned long long) 3902 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3903 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3904 "Output Context DMA address = %#08llx", 3905 (unsigned long long)virt_dev->out_ctx->dma); 3906 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3907 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3908 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3909 le32_to_cpu(slot_ctx->dev_info) >> 27); 3910 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3911 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3912 /* 3913 * USB core uses address 1 for the roothubs, so we add one to the 3914 * address given back to us by the HC. 3915 */ 3916 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3917 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3918 le32_to_cpu(slot_ctx->dev_info) >> 27); 3919 /* Zero the input context control for later use */ 3920 ctrl_ctx->add_flags = 0; 3921 ctrl_ctx->drop_flags = 0; 3922 3923 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3924 "Internal device address = %d", 3925 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3926 kfree(command); 3927 return 0; 3928 } 3929 3930 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3931 { 3932 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3933 } 3934 3935 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3936 { 3937 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3938 } 3939 3940 /* 3941 * Transfer the port index into real index in the HW port status 3942 * registers. Caculate offset between the port's PORTSC register 3943 * and port status base. Divide the number of per port register 3944 * to get the real index. The raw port number bases 1. 3945 */ 3946 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3947 { 3948 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3949 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3950 __le32 __iomem *addr; 3951 int raw_port; 3952 3953 if (hcd->speed != HCD_USB3) 3954 addr = xhci->usb2_ports[port1 - 1]; 3955 else 3956 addr = xhci->usb3_ports[port1 - 1]; 3957 3958 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3959 return raw_port; 3960 } 3961 3962 /* 3963 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3964 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3965 */ 3966 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3967 struct usb_device *udev, u16 max_exit_latency) 3968 { 3969 struct xhci_virt_device *virt_dev; 3970 struct xhci_command *command; 3971 struct xhci_input_control_ctx *ctrl_ctx; 3972 struct xhci_slot_ctx *slot_ctx; 3973 unsigned long flags; 3974 int ret; 3975 3976 spin_lock_irqsave(&xhci->lock, flags); 3977 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3978 spin_unlock_irqrestore(&xhci->lock, flags); 3979 return 0; 3980 } 3981 3982 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3983 virt_dev = xhci->devs[udev->slot_id]; 3984 command = xhci->lpm_command; 3985 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3986 if (!ctrl_ctx) { 3987 spin_unlock_irqrestore(&xhci->lock, flags); 3988 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3989 __func__); 3990 return -ENOMEM; 3991 } 3992 3993 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3994 spin_unlock_irqrestore(&xhci->lock, flags); 3995 3996 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3997 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3998 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3999 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4000 4001 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4002 "Set up evaluate context for LPM MEL change."); 4003 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4004 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4005 4006 /* Issue and wait for the evaluate context command. */ 4007 ret = xhci_configure_endpoint(xhci, udev, command, 4008 true, true); 4009 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4010 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4011 4012 if (!ret) { 4013 spin_lock_irqsave(&xhci->lock, flags); 4014 virt_dev->current_mel = max_exit_latency; 4015 spin_unlock_irqrestore(&xhci->lock, flags); 4016 } 4017 return ret; 4018 } 4019 4020 #ifdef CONFIG_PM_RUNTIME 4021 4022 /* BESL to HIRD Encoding array for USB2 LPM */ 4023 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4024 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4025 4026 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4027 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4028 struct usb_device *udev) 4029 { 4030 int u2del, besl, besl_host; 4031 int besl_device = 0; 4032 u32 field; 4033 4034 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4035 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4036 4037 if (field & USB_BESL_SUPPORT) { 4038 for (besl_host = 0; besl_host < 16; besl_host++) { 4039 if (xhci_besl_encoding[besl_host] >= u2del) 4040 break; 4041 } 4042 /* Use baseline BESL value as default */ 4043 if (field & USB_BESL_BASELINE_VALID) 4044 besl_device = USB_GET_BESL_BASELINE(field); 4045 else if (field & USB_BESL_DEEP_VALID) 4046 besl_device = USB_GET_BESL_DEEP(field); 4047 } else { 4048 if (u2del <= 50) 4049 besl_host = 0; 4050 else 4051 besl_host = (u2del - 51) / 75 + 1; 4052 } 4053 4054 besl = besl_host + besl_device; 4055 if (besl > 15) 4056 besl = 15; 4057 4058 return besl; 4059 } 4060 4061 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4062 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4063 { 4064 u32 field; 4065 int l1; 4066 int besld = 0; 4067 int hirdm = 0; 4068 4069 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4070 4071 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4072 l1 = udev->l1_params.timeout / 256; 4073 4074 /* device has preferred BESLD */ 4075 if (field & USB_BESL_DEEP_VALID) { 4076 besld = USB_GET_BESL_DEEP(field); 4077 hirdm = 1; 4078 } 4079 4080 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4081 } 4082 4083 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4084 struct usb_device *udev, int enable) 4085 { 4086 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4087 __le32 __iomem **port_array; 4088 __le32 __iomem *pm_addr, *hlpm_addr; 4089 u32 pm_val, hlpm_val, field; 4090 unsigned int port_num; 4091 unsigned long flags; 4092 int hird, exit_latency; 4093 int ret; 4094 4095 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4096 !udev->lpm_capable) 4097 return -EPERM; 4098 4099 if (!udev->parent || udev->parent->parent || 4100 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4101 return -EPERM; 4102 4103 if (udev->usb2_hw_lpm_capable != 1) 4104 return -EPERM; 4105 4106 spin_lock_irqsave(&xhci->lock, flags); 4107 4108 port_array = xhci->usb2_ports; 4109 port_num = udev->portnum - 1; 4110 pm_addr = port_array[port_num] + PORTPMSC; 4111 pm_val = readl(pm_addr); 4112 hlpm_addr = port_array[port_num] + PORTHLPMC; 4113 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4114 4115 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4116 enable ? "enable" : "disable", port_num + 1); 4117 4118 if (enable) { 4119 /* Host supports BESL timeout instead of HIRD */ 4120 if (udev->usb2_hw_lpm_besl_capable) { 4121 /* if device doesn't have a preferred BESL value use a 4122 * default one which works with mixed HIRD and BESL 4123 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4124 */ 4125 if ((field & USB_BESL_SUPPORT) && 4126 (field & USB_BESL_BASELINE_VALID)) 4127 hird = USB_GET_BESL_BASELINE(field); 4128 else 4129 hird = udev->l1_params.besl; 4130 4131 exit_latency = xhci_besl_encoding[hird]; 4132 spin_unlock_irqrestore(&xhci->lock, flags); 4133 4134 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4135 * input context for link powermanagement evaluate 4136 * context commands. It is protected by hcd->bandwidth 4137 * mutex and is shared by all devices. We need to set 4138 * the max ext latency in USB 2 BESL LPM as well, so 4139 * use the same mutex and xhci_change_max_exit_latency() 4140 */ 4141 mutex_lock(hcd->bandwidth_mutex); 4142 ret = xhci_change_max_exit_latency(xhci, udev, 4143 exit_latency); 4144 mutex_unlock(hcd->bandwidth_mutex); 4145 4146 if (ret < 0) 4147 return ret; 4148 spin_lock_irqsave(&xhci->lock, flags); 4149 4150 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4151 writel(hlpm_val, hlpm_addr); 4152 /* flush write */ 4153 readl(hlpm_addr); 4154 } else { 4155 hird = xhci_calculate_hird_besl(xhci, udev); 4156 } 4157 4158 pm_val &= ~PORT_HIRD_MASK; 4159 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4160 writel(pm_val, pm_addr); 4161 pm_val = readl(pm_addr); 4162 pm_val |= PORT_HLE; 4163 writel(pm_val, pm_addr); 4164 /* flush write */ 4165 readl(pm_addr); 4166 } else { 4167 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4168 writel(pm_val, pm_addr); 4169 /* flush write */ 4170 readl(pm_addr); 4171 if (udev->usb2_hw_lpm_besl_capable) { 4172 spin_unlock_irqrestore(&xhci->lock, flags); 4173 mutex_lock(hcd->bandwidth_mutex); 4174 xhci_change_max_exit_latency(xhci, udev, 0); 4175 mutex_unlock(hcd->bandwidth_mutex); 4176 return 0; 4177 } 4178 } 4179 4180 spin_unlock_irqrestore(&xhci->lock, flags); 4181 return 0; 4182 } 4183 4184 /* check if a usb2 port supports a given extened capability protocol 4185 * only USB2 ports extended protocol capability values are cached. 4186 * Return 1 if capability is supported 4187 */ 4188 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4189 unsigned capability) 4190 { 4191 u32 port_offset, port_count; 4192 int i; 4193 4194 for (i = 0; i < xhci->num_ext_caps; i++) { 4195 if (xhci->ext_caps[i] & capability) { 4196 /* port offsets starts at 1 */ 4197 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4198 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4199 if (port >= port_offset && 4200 port < port_offset + port_count) 4201 return 1; 4202 } 4203 } 4204 return 0; 4205 } 4206 4207 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4208 { 4209 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4210 int portnum = udev->portnum - 1; 4211 4212 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4213 !udev->lpm_capable) 4214 return 0; 4215 4216 /* we only support lpm for non-hub device connected to root hub yet */ 4217 if (!udev->parent || udev->parent->parent || 4218 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4219 return 0; 4220 4221 if (xhci->hw_lpm_support == 1 && 4222 xhci_check_usb2_port_capability( 4223 xhci, portnum, XHCI_HLC)) { 4224 udev->usb2_hw_lpm_capable = 1; 4225 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4226 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4227 if (xhci_check_usb2_port_capability(xhci, portnum, 4228 XHCI_BLC)) 4229 udev->usb2_hw_lpm_besl_capable = 1; 4230 } 4231 4232 return 0; 4233 } 4234 4235 #else 4236 4237 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4238 struct usb_device *udev, int enable) 4239 { 4240 return 0; 4241 } 4242 4243 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4244 { 4245 return 0; 4246 } 4247 4248 #endif /* CONFIG_PM_RUNTIME */ 4249 4250 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4251 4252 #ifdef CONFIG_PM 4253 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4254 static unsigned long long xhci_service_interval_to_ns( 4255 struct usb_endpoint_descriptor *desc) 4256 { 4257 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4258 } 4259 4260 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4261 enum usb3_link_state state) 4262 { 4263 unsigned long long sel; 4264 unsigned long long pel; 4265 unsigned int max_sel_pel; 4266 char *state_name; 4267 4268 switch (state) { 4269 case USB3_LPM_U1: 4270 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4271 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4272 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4273 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4274 state_name = "U1"; 4275 break; 4276 case USB3_LPM_U2: 4277 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4278 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4279 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4280 state_name = "U2"; 4281 break; 4282 default: 4283 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4284 __func__); 4285 return USB3_LPM_DISABLED; 4286 } 4287 4288 if (sel <= max_sel_pel && pel <= max_sel_pel) 4289 return USB3_LPM_DEVICE_INITIATED; 4290 4291 if (sel > max_sel_pel) 4292 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4293 "due to long SEL %llu ms\n", 4294 state_name, sel); 4295 else 4296 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4297 "due to long PEL %llu ms\n", 4298 state_name, pel); 4299 return USB3_LPM_DISABLED; 4300 } 4301 4302 /* Returns the hub-encoded U1 timeout value. 4303 * The U1 timeout should be the maximum of the following values: 4304 * - For control endpoints, U1 system exit latency (SEL) * 3 4305 * - For bulk endpoints, U1 SEL * 5 4306 * - For interrupt endpoints: 4307 * - Notification EPs, U1 SEL * 3 4308 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4309 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4310 */ 4311 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4312 struct usb_endpoint_descriptor *desc) 4313 { 4314 unsigned long long timeout_ns; 4315 int ep_type; 4316 int intr_type; 4317 4318 ep_type = usb_endpoint_type(desc); 4319 switch (ep_type) { 4320 case USB_ENDPOINT_XFER_CONTROL: 4321 timeout_ns = udev->u1_params.sel * 3; 4322 break; 4323 case USB_ENDPOINT_XFER_BULK: 4324 timeout_ns = udev->u1_params.sel * 5; 4325 break; 4326 case USB_ENDPOINT_XFER_INT: 4327 intr_type = usb_endpoint_interrupt_type(desc); 4328 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4329 timeout_ns = udev->u1_params.sel * 3; 4330 break; 4331 } 4332 /* Otherwise the calculation is the same as isoc eps */ 4333 case USB_ENDPOINT_XFER_ISOC: 4334 timeout_ns = xhci_service_interval_to_ns(desc); 4335 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4336 if (timeout_ns < udev->u1_params.sel * 2) 4337 timeout_ns = udev->u1_params.sel * 2; 4338 break; 4339 default: 4340 return 0; 4341 } 4342 4343 /* The U1 timeout is encoded in 1us intervals. */ 4344 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4345 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4346 if (timeout_ns == USB3_LPM_DISABLED) 4347 timeout_ns++; 4348 4349 /* If the necessary timeout value is bigger than what we can set in the 4350 * USB 3.0 hub, we have to disable hub-initiated U1. 4351 */ 4352 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4353 return timeout_ns; 4354 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4355 "due to long timeout %llu ms\n", timeout_ns); 4356 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4357 } 4358 4359 /* Returns the hub-encoded U2 timeout value. 4360 * The U2 timeout should be the maximum of: 4361 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4362 * - largest bInterval of any active periodic endpoint (to avoid going 4363 * into lower power link states between intervals). 4364 * - the U2 Exit Latency of the device 4365 */ 4366 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4367 struct usb_endpoint_descriptor *desc) 4368 { 4369 unsigned long long timeout_ns; 4370 unsigned long long u2_del_ns; 4371 4372 timeout_ns = 10 * 1000 * 1000; 4373 4374 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4375 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4376 timeout_ns = xhci_service_interval_to_ns(desc); 4377 4378 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4379 if (u2_del_ns > timeout_ns) 4380 timeout_ns = u2_del_ns; 4381 4382 /* The U2 timeout is encoded in 256us intervals */ 4383 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4384 /* If the necessary timeout value is bigger than what we can set in the 4385 * USB 3.0 hub, we have to disable hub-initiated U2. 4386 */ 4387 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4388 return timeout_ns; 4389 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4390 "due to long timeout %llu ms\n", timeout_ns); 4391 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4392 } 4393 4394 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4395 struct usb_device *udev, 4396 struct usb_endpoint_descriptor *desc, 4397 enum usb3_link_state state, 4398 u16 *timeout) 4399 { 4400 if (state == USB3_LPM_U1) { 4401 if (xhci->quirks & XHCI_INTEL_HOST) 4402 return xhci_calculate_intel_u1_timeout(udev, desc); 4403 } else { 4404 if (xhci->quirks & XHCI_INTEL_HOST) 4405 return xhci_calculate_intel_u2_timeout(udev, desc); 4406 } 4407 4408 return USB3_LPM_DISABLED; 4409 } 4410 4411 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4412 struct usb_device *udev, 4413 struct usb_endpoint_descriptor *desc, 4414 enum usb3_link_state state, 4415 u16 *timeout) 4416 { 4417 u16 alt_timeout; 4418 4419 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4420 desc, state, timeout); 4421 4422 /* If we found we can't enable hub-initiated LPM, or 4423 * the U1 or U2 exit latency was too high to allow 4424 * device-initiated LPM as well, just stop searching. 4425 */ 4426 if (alt_timeout == USB3_LPM_DISABLED || 4427 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4428 *timeout = alt_timeout; 4429 return -E2BIG; 4430 } 4431 if (alt_timeout > *timeout) 4432 *timeout = alt_timeout; 4433 return 0; 4434 } 4435 4436 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4437 struct usb_device *udev, 4438 struct usb_host_interface *alt, 4439 enum usb3_link_state state, 4440 u16 *timeout) 4441 { 4442 int j; 4443 4444 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4445 if (xhci_update_timeout_for_endpoint(xhci, udev, 4446 &alt->endpoint[j].desc, state, timeout)) 4447 return -E2BIG; 4448 continue; 4449 } 4450 return 0; 4451 } 4452 4453 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4454 enum usb3_link_state state) 4455 { 4456 struct usb_device *parent; 4457 unsigned int num_hubs; 4458 4459 if (state == USB3_LPM_U2) 4460 return 0; 4461 4462 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4463 for (parent = udev->parent, num_hubs = 0; parent->parent; 4464 parent = parent->parent) 4465 num_hubs++; 4466 4467 if (num_hubs < 2) 4468 return 0; 4469 4470 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4471 " below second-tier hub.\n"); 4472 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4473 "to decrease power consumption.\n"); 4474 return -E2BIG; 4475 } 4476 4477 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4478 struct usb_device *udev, 4479 enum usb3_link_state state) 4480 { 4481 if (xhci->quirks & XHCI_INTEL_HOST) 4482 return xhci_check_intel_tier_policy(udev, state); 4483 return -EINVAL; 4484 } 4485 4486 /* Returns the U1 or U2 timeout that should be enabled. 4487 * If the tier check or timeout setting functions return with a non-zero exit 4488 * code, that means the timeout value has been finalized and we shouldn't look 4489 * at any more endpoints. 4490 */ 4491 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4492 struct usb_device *udev, enum usb3_link_state state) 4493 { 4494 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4495 struct usb_host_config *config; 4496 char *state_name; 4497 int i; 4498 u16 timeout = USB3_LPM_DISABLED; 4499 4500 if (state == USB3_LPM_U1) 4501 state_name = "U1"; 4502 else if (state == USB3_LPM_U2) 4503 state_name = "U2"; 4504 else { 4505 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4506 state); 4507 return timeout; 4508 } 4509 4510 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4511 return timeout; 4512 4513 /* Gather some information about the currently installed configuration 4514 * and alternate interface settings. 4515 */ 4516 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4517 state, &timeout)) 4518 return timeout; 4519 4520 config = udev->actconfig; 4521 if (!config) 4522 return timeout; 4523 4524 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4525 struct usb_driver *driver; 4526 struct usb_interface *intf = config->interface[i]; 4527 4528 if (!intf) 4529 continue; 4530 4531 /* Check if any currently bound drivers want hub-initiated LPM 4532 * disabled. 4533 */ 4534 if (intf->dev.driver) { 4535 driver = to_usb_driver(intf->dev.driver); 4536 if (driver && driver->disable_hub_initiated_lpm) { 4537 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4538 "at request of driver %s\n", 4539 state_name, driver->name); 4540 return xhci_get_timeout_no_hub_lpm(udev, state); 4541 } 4542 } 4543 4544 /* Not sure how this could happen... */ 4545 if (!intf->cur_altsetting) 4546 continue; 4547 4548 if (xhci_update_timeout_for_interface(xhci, udev, 4549 intf->cur_altsetting, 4550 state, &timeout)) 4551 return timeout; 4552 } 4553 return timeout; 4554 } 4555 4556 static int calculate_max_exit_latency(struct usb_device *udev, 4557 enum usb3_link_state state_changed, 4558 u16 hub_encoded_timeout) 4559 { 4560 unsigned long long u1_mel_us = 0; 4561 unsigned long long u2_mel_us = 0; 4562 unsigned long long mel_us = 0; 4563 bool disabling_u1; 4564 bool disabling_u2; 4565 bool enabling_u1; 4566 bool enabling_u2; 4567 4568 disabling_u1 = (state_changed == USB3_LPM_U1 && 4569 hub_encoded_timeout == USB3_LPM_DISABLED); 4570 disabling_u2 = (state_changed == USB3_LPM_U2 && 4571 hub_encoded_timeout == USB3_LPM_DISABLED); 4572 4573 enabling_u1 = (state_changed == USB3_LPM_U1 && 4574 hub_encoded_timeout != USB3_LPM_DISABLED); 4575 enabling_u2 = (state_changed == USB3_LPM_U2 && 4576 hub_encoded_timeout != USB3_LPM_DISABLED); 4577 4578 /* If U1 was already enabled and we're not disabling it, 4579 * or we're going to enable U1, account for the U1 max exit latency. 4580 */ 4581 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4582 enabling_u1) 4583 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4584 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4585 enabling_u2) 4586 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4587 4588 if (u1_mel_us > u2_mel_us) 4589 mel_us = u1_mel_us; 4590 else 4591 mel_us = u2_mel_us; 4592 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4593 if (mel_us > MAX_EXIT) { 4594 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4595 "is too big.\n", mel_us); 4596 return -E2BIG; 4597 } 4598 return mel_us; 4599 } 4600 4601 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4602 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4603 struct usb_device *udev, enum usb3_link_state state) 4604 { 4605 struct xhci_hcd *xhci; 4606 u16 hub_encoded_timeout; 4607 int mel; 4608 int ret; 4609 4610 xhci = hcd_to_xhci(hcd); 4611 /* The LPM timeout values are pretty host-controller specific, so don't 4612 * enable hub-initiated timeouts unless the vendor has provided 4613 * information about their timeout algorithm. 4614 */ 4615 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4616 !xhci->devs[udev->slot_id]) 4617 return USB3_LPM_DISABLED; 4618 4619 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4620 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4621 if (mel < 0) { 4622 /* Max Exit Latency is too big, disable LPM. */ 4623 hub_encoded_timeout = USB3_LPM_DISABLED; 4624 mel = 0; 4625 } 4626 4627 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4628 if (ret) 4629 return ret; 4630 return hub_encoded_timeout; 4631 } 4632 4633 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4634 struct usb_device *udev, enum usb3_link_state state) 4635 { 4636 struct xhci_hcd *xhci; 4637 u16 mel; 4638 int ret; 4639 4640 xhci = hcd_to_xhci(hcd); 4641 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4642 !xhci->devs[udev->slot_id]) 4643 return 0; 4644 4645 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4646 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4647 if (ret) 4648 return ret; 4649 return 0; 4650 } 4651 #else /* CONFIG_PM */ 4652 4653 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4654 struct usb_device *udev, enum usb3_link_state state) 4655 { 4656 return USB3_LPM_DISABLED; 4657 } 4658 4659 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4660 struct usb_device *udev, enum usb3_link_state state) 4661 { 4662 return 0; 4663 } 4664 #endif /* CONFIG_PM */ 4665 4666 /*-------------------------------------------------------------------------*/ 4667 4668 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4669 * internal data structures for the device. 4670 */ 4671 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4672 struct usb_tt *tt, gfp_t mem_flags) 4673 { 4674 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4675 struct xhci_virt_device *vdev; 4676 struct xhci_command *config_cmd; 4677 struct xhci_input_control_ctx *ctrl_ctx; 4678 struct xhci_slot_ctx *slot_ctx; 4679 unsigned long flags; 4680 unsigned think_time; 4681 int ret; 4682 4683 /* Ignore root hubs */ 4684 if (!hdev->parent) 4685 return 0; 4686 4687 vdev = xhci->devs[hdev->slot_id]; 4688 if (!vdev) { 4689 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4690 return -EINVAL; 4691 } 4692 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4693 if (!config_cmd) { 4694 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4695 return -ENOMEM; 4696 } 4697 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4698 if (!ctrl_ctx) { 4699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4700 __func__); 4701 xhci_free_command(xhci, config_cmd); 4702 return -ENOMEM; 4703 } 4704 4705 spin_lock_irqsave(&xhci->lock, flags); 4706 if (hdev->speed == USB_SPEED_HIGH && 4707 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4708 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4709 xhci_free_command(xhci, config_cmd); 4710 spin_unlock_irqrestore(&xhci->lock, flags); 4711 return -ENOMEM; 4712 } 4713 4714 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4715 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4716 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4717 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4718 if (tt->multi) 4719 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4720 if (xhci->hci_version > 0x95) { 4721 xhci_dbg(xhci, "xHCI version %x needs hub " 4722 "TT think time and number of ports\n", 4723 (unsigned int) xhci->hci_version); 4724 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4725 /* Set TT think time - convert from ns to FS bit times. 4726 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4727 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4728 * 4729 * xHCI 1.0: this field shall be 0 if the device is not a 4730 * High-spped hub. 4731 */ 4732 think_time = tt->think_time; 4733 if (think_time != 0) 4734 think_time = (think_time / 666) - 1; 4735 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4736 slot_ctx->tt_info |= 4737 cpu_to_le32(TT_THINK_TIME(think_time)); 4738 } else { 4739 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4740 "TT think time or number of ports\n", 4741 (unsigned int) xhci->hci_version); 4742 } 4743 slot_ctx->dev_state = 0; 4744 spin_unlock_irqrestore(&xhci->lock, flags); 4745 4746 xhci_dbg(xhci, "Set up %s for hub device.\n", 4747 (xhci->hci_version > 0x95) ? 4748 "configure endpoint" : "evaluate context"); 4749 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4750 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4751 4752 /* Issue and wait for the configure endpoint or 4753 * evaluate context command. 4754 */ 4755 if (xhci->hci_version > 0x95) 4756 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4757 false, false); 4758 else 4759 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4760 true, false); 4761 4762 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4763 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4764 4765 xhci_free_command(xhci, config_cmd); 4766 return ret; 4767 } 4768 4769 int xhci_get_frame(struct usb_hcd *hcd) 4770 { 4771 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4772 /* EHCI mods by the periodic size. Why? */ 4773 return readl(&xhci->run_regs->microframe_index) >> 3; 4774 } 4775 4776 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4777 { 4778 struct xhci_hcd *xhci; 4779 struct device *dev = hcd->self.controller; 4780 int retval; 4781 4782 /* Accept arbitrarily long scatter-gather lists */ 4783 hcd->self.sg_tablesize = ~0; 4784 4785 /* support to build packet from discontinuous buffers */ 4786 hcd->self.no_sg_constraint = 1; 4787 4788 /* XHCI controllers don't stop the ep queue on short packets :| */ 4789 hcd->self.no_stop_on_short = 1; 4790 4791 if (usb_hcd_is_primary_hcd(hcd)) { 4792 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4793 if (!xhci) 4794 return -ENOMEM; 4795 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4796 xhci->main_hcd = hcd; 4797 /* Mark the first roothub as being USB 2.0. 4798 * The xHCI driver will register the USB 3.0 roothub. 4799 */ 4800 hcd->speed = HCD_USB2; 4801 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4802 /* 4803 * USB 2.0 roothub under xHCI has an integrated TT, 4804 * (rate matching hub) as opposed to having an OHCI/UHCI 4805 * companion controller. 4806 */ 4807 hcd->has_tt = 1; 4808 } else { 4809 /* xHCI private pointer was set in xhci_pci_probe for the second 4810 * registered roothub. 4811 */ 4812 return 0; 4813 } 4814 4815 xhci->cap_regs = hcd->regs; 4816 xhci->op_regs = hcd->regs + 4817 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4818 xhci->run_regs = hcd->regs + 4819 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4820 /* Cache read-only capability registers */ 4821 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4822 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4823 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4824 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4825 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4826 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4827 xhci_print_registers(xhci); 4828 4829 xhci->quirks = quirks; 4830 4831 get_quirks(dev, xhci); 4832 4833 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4834 * success event after a short transfer. This quirk will ignore such 4835 * spurious event. 4836 */ 4837 if (xhci->hci_version > 0x96) 4838 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4839 4840 /* Make sure the HC is halted. */ 4841 retval = xhci_halt(xhci); 4842 if (retval) 4843 goto error; 4844 4845 xhci_dbg(xhci, "Resetting HCD\n"); 4846 /* Reset the internal HC memory state and registers. */ 4847 retval = xhci_reset(xhci); 4848 if (retval) 4849 goto error; 4850 xhci_dbg(xhci, "Reset complete\n"); 4851 4852 /* Set dma_mask and coherent_dma_mask to 64-bits, 4853 * if xHC supports 64-bit addressing */ 4854 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4855 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4856 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4857 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4858 } 4859 4860 xhci_dbg(xhci, "Calling HCD init\n"); 4861 /* Initialize HCD and host controller data structures. */ 4862 retval = xhci_init(hcd); 4863 if (retval) 4864 goto error; 4865 xhci_dbg(xhci, "Called HCD init\n"); 4866 return 0; 4867 error: 4868 kfree(xhci); 4869 return retval; 4870 } 4871 4872 MODULE_DESCRIPTION(DRIVER_DESC); 4873 MODULE_AUTHOR(DRIVER_AUTHOR); 4874 MODULE_LICENSE("GPL"); 4875 4876 static int __init xhci_hcd_init(void) 4877 { 4878 int retval; 4879 4880 retval = xhci_register_pci(); 4881 if (retval < 0) { 4882 pr_debug("Problem registering PCI driver.\n"); 4883 return retval; 4884 } 4885 retval = xhci_register_plat(); 4886 if (retval < 0) { 4887 pr_debug("Problem registering platform driver.\n"); 4888 goto unreg_pci; 4889 } 4890 /* 4891 * Check the compiler generated sizes of structures that must be laid 4892 * out in specific ways for hardware access. 4893 */ 4894 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4895 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4896 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4897 /* xhci_device_control has eight fields, and also 4898 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4899 */ 4900 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4901 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4902 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4903 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4904 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4905 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4906 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4907 return 0; 4908 unreg_pci: 4909 xhci_unregister_pci(); 4910 return retval; 4911 } 4912 module_init(xhci_hcd_init); 4913 4914 static void __exit xhci_hcd_cleanup(void) 4915 { 4916 xhci_unregister_pci(); 4917 xhci_unregister_plat(); 4918 } 4919 module_exit(xhci_hcd_cleanup); 4920