xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 82b5d164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 static void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 
793 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
794 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
795 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
796 }
797 
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 	xhci->s3.command = readl(&xhci->op_regs->command);
802 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 	writel(xhci->s3.command, &xhci->op_regs->command);
815 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824 
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 	u64	val_64;
828 
829 	/* step 2: initialize command ring buffer */
830 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 				      xhci->cmd_ring->dequeue) &
834 		 (u64) ~CMD_RING_RSVD_BITS) |
835 		xhci->cmd_ring->cycle_state;
836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 			"// Setting command ring address to 0x%llx",
838 			(long unsigned long) val_64);
839 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	seg = ring->deq_seg;
858 	do {
859 		memset(seg->trbs, 0,
860 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 			cpu_to_le32(~TRB_CYCLE);
863 		seg = seg->next;
864 	} while (seg != ring->deq_seg);
865 
866 	/* Reset the software enqueue and dequeue pointers */
867 	ring->deq_seg = ring->first_seg;
868 	ring->dequeue = ring->first_seg->trbs;
869 	ring->enq_seg = ring->deq_seg;
870 	ring->enqueue = ring->dequeue;
871 
872 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 	/*
874 	 * Ring is now zeroed, so the HW should look for change of ownership
875 	 * when the cycle bit is set to 1.
876 	 */
877 	ring->cycle_state = 1;
878 
879 	/*
880 	 * Reset the hardware dequeue pointer.
881 	 * Yes, this will need to be re-written after resume, but we're paranoid
882 	 * and want to make sure the hardware doesn't access bogus memory
883 	 * because, say, the BIOS or an SMI started the host without changing
884 	 * the command ring pointers.
885 	 */
886 	xhci_set_cmd_ring_deq(xhci);
887 }
888 
889 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
890 {
891 	struct xhci_port **ports;
892 	int port_index;
893 	unsigned long flags;
894 	u32 t1, t2, portsc;
895 
896 	spin_lock_irqsave(&xhci->lock, flags);
897 
898 	/* disable usb3 ports Wake bits */
899 	port_index = xhci->usb3_rhub.num_ports;
900 	ports = xhci->usb3_rhub.ports;
901 	while (port_index--) {
902 		t1 = readl(ports[port_index]->addr);
903 		portsc = t1;
904 		t1 = xhci_port_state_to_neutral(t1);
905 		t2 = t1 & ~PORT_WAKE_BITS;
906 		if (t1 != t2) {
907 			writel(t2, ports[port_index]->addr);
908 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
909 				 xhci->usb3_rhub.hcd->self.busnum,
910 				 port_index + 1, portsc, t2);
911 		}
912 	}
913 
914 	/* disable usb2 ports Wake bits */
915 	port_index = xhci->usb2_rhub.num_ports;
916 	ports = xhci->usb2_rhub.ports;
917 	while (port_index--) {
918 		t1 = readl(ports[port_index]->addr);
919 		portsc = t1;
920 		t1 = xhci_port_state_to_neutral(t1);
921 		t2 = t1 & ~PORT_WAKE_BITS;
922 		if (t1 != t2) {
923 			writel(t2, ports[port_index]->addr);
924 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
925 				 xhci->usb2_rhub.hcd->self.busnum,
926 				 port_index + 1, portsc, t2);
927 		}
928 	}
929 	spin_unlock_irqrestore(&xhci->lock, flags);
930 }
931 
932 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
933 {
934 	struct xhci_port	**ports;
935 	int			port_index;
936 	u32			status;
937 	u32			portsc;
938 
939 	status = readl(&xhci->op_regs->status);
940 	if (status & STS_EINT)
941 		return true;
942 	/*
943 	 * Checking STS_EINT is not enough as there is a lag between a change
944 	 * bit being set and the Port Status Change Event that it generated
945 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
946 	 */
947 
948 	port_index = xhci->usb2_rhub.num_ports;
949 	ports = xhci->usb2_rhub.ports;
950 	while (port_index--) {
951 		portsc = readl(ports[port_index]->addr);
952 		if (portsc & PORT_CHANGE_MASK ||
953 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 			return true;
955 	}
956 	port_index = xhci->usb3_rhub.num_ports;
957 	ports = xhci->usb3_rhub.ports;
958 	while (port_index--) {
959 		portsc = readl(ports[port_index]->addr);
960 		if (portsc & PORT_CHANGE_MASK ||
961 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
962 			return true;
963 	}
964 	return false;
965 }
966 
967 /*
968  * Stop HC (not bus-specific)
969  *
970  * This is called when the machine transition into S3/S4 mode.
971  *
972  */
973 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
974 {
975 	int			rc = 0;
976 	unsigned int		delay = XHCI_MAX_HALT_USEC;
977 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
978 	u32			command;
979 	u32			res;
980 
981 	if (!hcd->state)
982 		return 0;
983 
984 	if (hcd->state != HC_STATE_SUSPENDED ||
985 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
986 		return -EINVAL;
987 
988 	xhci_dbc_suspend(xhci);
989 
990 	/* Clear root port wake on bits if wakeup not allowed. */
991 	if (!do_wakeup)
992 		xhci_disable_port_wake_on_bits(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 10 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/* step 1: restore register */
1112 		xhci_restore_registers(xhci);
1113 		/* step 2: initialize command ring buffer */
1114 		xhci_set_cmd_ring_deq(xhci);
1115 		/* step 3: restore state and start state*/
1116 		/* step 3: set CRS flag */
1117 		command = readl(&xhci->op_regs->command);
1118 		command |= CMD_CRS;
1119 		writel(command, &xhci->op_regs->command);
1120 		/*
1121 		 * Some controllers take up to 55+ ms to complete the controller
1122 		 * restore so setting the timeout to 100ms. Xhci specification
1123 		 * doesn't mention any timeout value.
1124 		 */
1125 		if (xhci_handshake(&xhci->op_regs->status,
1126 			      STS_RESTORE, 0, 100 * 1000)) {
1127 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1128 			spin_unlock_irq(&xhci->lock);
1129 			return -ETIMEDOUT;
1130 		}
1131 		temp = readl(&xhci->op_regs->status);
1132 	}
1133 
1134 	/* If restore operation fails, re-initialize the HC during resume */
1135 	if ((temp & STS_SRE) || hibernated) {
1136 
1137 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1138 				!(xhci_all_ports_seen_u0(xhci))) {
1139 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1140 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1141 				"Compliance Mode Recovery Timer deleted!");
1142 		}
1143 
1144 		/* Let the USB core know _both_ roothubs lost power. */
1145 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1146 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1147 
1148 		xhci_dbg(xhci, "Stop HCD\n");
1149 		xhci_halt(xhci);
1150 		xhci_zero_64b_regs(xhci);
1151 		xhci_reset(xhci);
1152 		spin_unlock_irq(&xhci->lock);
1153 		xhci_cleanup_msix(xhci);
1154 
1155 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1156 		temp = readl(&xhci->op_regs->status);
1157 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1158 		temp = readl(&xhci->ir_set->irq_pending);
1159 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1160 
1161 		xhci_dbg(xhci, "cleaning up memory\n");
1162 		xhci_mem_cleanup(xhci);
1163 		xhci_debugfs_exit(xhci);
1164 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1165 			    readl(&xhci->op_regs->status));
1166 
1167 		/* USB core calls the PCI reinit and start functions twice:
1168 		 * first with the primary HCD, and then with the secondary HCD.
1169 		 * If we don't do the same, the host will never be started.
1170 		 */
1171 		if (!usb_hcd_is_primary_hcd(hcd))
1172 			secondary_hcd = hcd;
1173 		else
1174 			secondary_hcd = xhci->shared_hcd;
1175 
1176 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1177 		retval = xhci_init(hcd->primary_hcd);
1178 		if (retval)
1179 			return retval;
1180 		comp_timer_running = true;
1181 
1182 		xhci_dbg(xhci, "Start the primary HCD\n");
1183 		retval = xhci_run(hcd->primary_hcd);
1184 		if (!retval) {
1185 			xhci_dbg(xhci, "Start the secondary HCD\n");
1186 			retval = xhci_run(secondary_hcd);
1187 		}
1188 		hcd->state = HC_STATE_SUSPENDED;
1189 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1190 		goto done;
1191 	}
1192 
1193 	/* step 4: set Run/Stop bit */
1194 	command = readl(&xhci->op_regs->command);
1195 	command |= CMD_RUN;
1196 	writel(command, &xhci->op_regs->command);
1197 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1198 		  0, 250 * 1000);
1199 
1200 	/* step 5: walk topology and initialize portsc,
1201 	 * portpmsc and portli
1202 	 */
1203 	/* this is done in bus_resume */
1204 
1205 	/* step 6: restart each of the previously
1206 	 * Running endpoints by ringing their doorbells
1207 	 */
1208 
1209 	spin_unlock_irq(&xhci->lock);
1210 
1211 	xhci_dbc_resume(xhci);
1212 
1213  done:
1214 	if (retval == 0) {
1215 		/* Resume root hubs only when have pending events. */
1216 		if (xhci_pending_portevent(xhci)) {
1217 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1218 			usb_hcd_resume_root_hub(hcd);
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1224 	 * be re-initialized Always after a system resume. Ports are subject
1225 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1226 	 * ports have entered previously to U0 before system's suspension.
1227 	 */
1228 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1229 		compliance_mode_recovery_timer_init(xhci);
1230 
1231 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1232 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1233 
1234 	/* Re-enable port polling. */
1235 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1236 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1237 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1238 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1239 	usb_hcd_poll_rh_status(hcd);
1240 
1241 	return retval;
1242 }
1243 EXPORT_SYMBOL_GPL(xhci_resume);
1244 #endif	/* CONFIG_PM */
1245 
1246 /*-------------------------------------------------------------------------*/
1247 
1248 /*
1249  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1250  * we'll copy the actual data into the TRB address register. This is limited to
1251  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1252  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1253  */
1254 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1255 				gfp_t mem_flags)
1256 {
1257 	if (xhci_urb_suitable_for_idt(urb))
1258 		return 0;
1259 
1260 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1261 }
1262 
1263 /**
1264  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1265  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1266  * value to right shift 1 for the bitmask.
1267  *
1268  * Index  = (epnum * 2) + direction - 1,
1269  * where direction = 0 for OUT, 1 for IN.
1270  * For control endpoints, the IN index is used (OUT index is unused), so
1271  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1272  */
1273 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1274 {
1275 	unsigned int index;
1276 	if (usb_endpoint_xfer_control(desc))
1277 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1278 	else
1279 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1280 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1281 	return index;
1282 }
1283 
1284 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1285  * address from the XHCI endpoint index.
1286  */
1287 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1288 {
1289 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1290 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1291 	return direction | number;
1292 }
1293 
1294 /* Find the flag for this endpoint (for use in the control context).  Use the
1295  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1296  * bit 1, etc.
1297  */
1298 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1299 {
1300 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1301 }
1302 
1303 /* Find the flag for this endpoint (for use in the control context).  Use the
1304  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1305  * bit 1, etc.
1306  */
1307 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1308 {
1309 	return 1 << (ep_index + 1);
1310 }
1311 
1312 /* Compute the last valid endpoint context index.  Basically, this is the
1313  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1314  * we find the most significant bit set in the added contexts flags.
1315  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1316  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1317  */
1318 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1319 {
1320 	return fls(added_ctxs) - 1;
1321 }
1322 
1323 /* Returns 1 if the arguments are OK;
1324  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1325  */
1326 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1327 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1328 		const char *func) {
1329 	struct xhci_hcd	*xhci;
1330 	struct xhci_virt_device	*virt_dev;
1331 
1332 	if (!hcd || (check_ep && !ep) || !udev) {
1333 		pr_debug("xHCI %s called with invalid args\n", func);
1334 		return -EINVAL;
1335 	}
1336 	if (!udev->parent) {
1337 		pr_debug("xHCI %s called for root hub\n", func);
1338 		return 0;
1339 	}
1340 
1341 	xhci = hcd_to_xhci(hcd);
1342 	if (check_virt_dev) {
1343 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1344 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1345 					func);
1346 			return -EINVAL;
1347 		}
1348 
1349 		virt_dev = xhci->devs[udev->slot_id];
1350 		if (virt_dev->udev != udev) {
1351 			xhci_dbg(xhci, "xHCI %s called with udev and "
1352 					  "virt_dev does not match\n", func);
1353 			return -EINVAL;
1354 		}
1355 	}
1356 
1357 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1358 		return -ENODEV;
1359 
1360 	return 1;
1361 }
1362 
1363 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1364 		struct usb_device *udev, struct xhci_command *command,
1365 		bool ctx_change, bool must_succeed);
1366 
1367 /*
1368  * Full speed devices may have a max packet size greater than 8 bytes, but the
1369  * USB core doesn't know that until it reads the first 8 bytes of the
1370  * descriptor.  If the usb_device's max packet size changes after that point,
1371  * we need to issue an evaluate context command and wait on it.
1372  */
1373 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1374 		unsigned int ep_index, struct urb *urb)
1375 {
1376 	struct xhci_container_ctx *out_ctx;
1377 	struct xhci_input_control_ctx *ctrl_ctx;
1378 	struct xhci_ep_ctx *ep_ctx;
1379 	struct xhci_command *command;
1380 	int max_packet_size;
1381 	int hw_max_packet_size;
1382 	int ret = 0;
1383 
1384 	out_ctx = xhci->devs[slot_id]->out_ctx;
1385 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1386 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1387 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1388 	if (hw_max_packet_size != max_packet_size) {
1389 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1390 				"Max Packet Size for ep 0 changed.");
1391 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392 				"Max packet size in usb_device = %d",
1393 				max_packet_size);
1394 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1395 				"Max packet size in xHCI HW = %d",
1396 				hw_max_packet_size);
1397 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1398 				"Issuing evaluate context command.");
1399 
1400 		/* Set up the input context flags for the command */
1401 		/* FIXME: This won't work if a non-default control endpoint
1402 		 * changes max packet sizes.
1403 		 */
1404 
1405 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1406 		if (!command)
1407 			return -ENOMEM;
1408 
1409 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1410 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1411 		if (!ctrl_ctx) {
1412 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1413 					__func__);
1414 			ret = -ENOMEM;
1415 			goto command_cleanup;
1416 		}
1417 		/* Set up the modified control endpoint 0 */
1418 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1419 				xhci->devs[slot_id]->out_ctx, ep_index);
1420 
1421 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1422 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1423 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1424 
1425 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1426 		ctrl_ctx->drop_flags = 0;
1427 
1428 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1429 				true, false);
1430 
1431 		/* Clean up the input context for later use by bandwidth
1432 		 * functions.
1433 		 */
1434 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1435 command_cleanup:
1436 		kfree(command->completion);
1437 		kfree(command);
1438 	}
1439 	return ret;
1440 }
1441 
1442 /*
1443  * non-error returns are a promise to giveback() the urb later
1444  * we drop ownership so next owner (or urb unlink) can get it
1445  */
1446 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1447 {
1448 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1449 	unsigned long flags;
1450 	int ret = 0;
1451 	unsigned int slot_id, ep_index;
1452 	unsigned int *ep_state;
1453 	struct urb_priv	*urb_priv;
1454 	int num_tds;
1455 
1456 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1457 					true, true, __func__) <= 0)
1458 		return -EINVAL;
1459 
1460 	slot_id = urb->dev->slot_id;
1461 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1462 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1463 
1464 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1465 		if (!in_interrupt())
1466 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1467 		return -ESHUTDOWN;
1468 	}
1469 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1470 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1471 		return -ENODEV;
1472 	}
1473 
1474 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1475 		num_tds = urb->number_of_packets;
1476 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1477 	    urb->transfer_buffer_length > 0 &&
1478 	    urb->transfer_flags & URB_ZERO_PACKET &&
1479 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1480 		num_tds = 2;
1481 	else
1482 		num_tds = 1;
1483 
1484 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1485 	if (!urb_priv)
1486 		return -ENOMEM;
1487 
1488 	urb_priv->num_tds = num_tds;
1489 	urb_priv->num_tds_done = 0;
1490 	urb->hcpriv = urb_priv;
1491 
1492 	trace_xhci_urb_enqueue(urb);
1493 
1494 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1495 		/* Check to see if the max packet size for the default control
1496 		 * endpoint changed during FS device enumeration
1497 		 */
1498 		if (urb->dev->speed == USB_SPEED_FULL) {
1499 			ret = xhci_check_maxpacket(xhci, slot_id,
1500 					ep_index, urb);
1501 			if (ret < 0) {
1502 				xhci_urb_free_priv(urb_priv);
1503 				urb->hcpriv = NULL;
1504 				return ret;
1505 			}
1506 		}
1507 	}
1508 
1509 	spin_lock_irqsave(&xhci->lock, flags);
1510 
1511 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1512 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1513 			 urb->ep->desc.bEndpointAddress, urb);
1514 		ret = -ESHUTDOWN;
1515 		goto free_priv;
1516 	}
1517 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1518 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1519 			  *ep_state);
1520 		ret = -EINVAL;
1521 		goto free_priv;
1522 	}
1523 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1524 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1525 		ret = -EINVAL;
1526 		goto free_priv;
1527 	}
1528 
1529 	switch (usb_endpoint_type(&urb->ep->desc)) {
1530 
1531 	case USB_ENDPOINT_XFER_CONTROL:
1532 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1533 					 slot_id, ep_index);
1534 		break;
1535 	case USB_ENDPOINT_XFER_BULK:
1536 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1537 					 slot_id, ep_index);
1538 		break;
1539 	case USB_ENDPOINT_XFER_INT:
1540 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1541 				slot_id, ep_index);
1542 		break;
1543 	case USB_ENDPOINT_XFER_ISOC:
1544 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1545 				slot_id, ep_index);
1546 	}
1547 
1548 	if (ret) {
1549 free_priv:
1550 		xhci_urb_free_priv(urb_priv);
1551 		urb->hcpriv = NULL;
1552 	}
1553 	spin_unlock_irqrestore(&xhci->lock, flags);
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1559  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1560  * should pick up where it left off in the TD, unless a Set Transfer Ring
1561  * Dequeue Pointer is issued.
1562  *
1563  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1564  * the ring.  Since the ring is a contiguous structure, they can't be physically
1565  * removed.  Instead, there are two options:
1566  *
1567  *  1) If the HC is in the middle of processing the URB to be canceled, we
1568  *     simply move the ring's dequeue pointer past those TRBs using the Set
1569  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1570  *     when drivers timeout on the last submitted URB and attempt to cancel.
1571  *
1572  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1573  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1574  *     HC will need to invalidate the any TRBs it has cached after the stop
1575  *     endpoint command, as noted in the xHCI 0.95 errata.
1576  *
1577  *  3) The TD may have completed by the time the Stop Endpoint Command
1578  *     completes, so software needs to handle that case too.
1579  *
1580  * This function should protect against the TD enqueueing code ringing the
1581  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1582  * It also needs to account for multiple cancellations on happening at the same
1583  * time for the same endpoint.
1584  *
1585  * Note that this function can be called in any context, or so says
1586  * usb_hcd_unlink_urb()
1587  */
1588 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1589 {
1590 	unsigned long flags;
1591 	int ret, i;
1592 	u32 temp;
1593 	struct xhci_hcd *xhci;
1594 	struct urb_priv	*urb_priv;
1595 	struct xhci_td *td;
1596 	unsigned int ep_index;
1597 	struct xhci_ring *ep_ring;
1598 	struct xhci_virt_ep *ep;
1599 	struct xhci_command *command;
1600 	struct xhci_virt_device *vdev;
1601 
1602 	xhci = hcd_to_xhci(hcd);
1603 	spin_lock_irqsave(&xhci->lock, flags);
1604 
1605 	trace_xhci_urb_dequeue(urb);
1606 
1607 	/* Make sure the URB hasn't completed or been unlinked already */
1608 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1609 	if (ret)
1610 		goto done;
1611 
1612 	/* give back URB now if we can't queue it for cancel */
1613 	vdev = xhci->devs[urb->dev->slot_id];
1614 	urb_priv = urb->hcpriv;
1615 	if (!vdev || !urb_priv)
1616 		goto err_giveback;
1617 
1618 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1619 	ep = &vdev->eps[ep_index];
1620 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1621 	if (!ep || !ep_ring)
1622 		goto err_giveback;
1623 
1624 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1625 	temp = readl(&xhci->op_regs->status);
1626 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1627 		xhci_hc_died(xhci);
1628 		goto done;
1629 	}
1630 
1631 	/*
1632 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1633 	 * make sure none of the ring related pointers in this URB private data
1634 	 * are touched, such as td_list, otherwise we overwrite freed data
1635 	 */
1636 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1637 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1638 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1639 			td = &urb_priv->td[i];
1640 			if (!list_empty(&td->cancelled_td_list))
1641 				list_del_init(&td->cancelled_td_list);
1642 		}
1643 		goto err_giveback;
1644 	}
1645 
1646 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1647 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1648 				"HC halted, freeing TD manually.");
1649 		for (i = urb_priv->num_tds_done;
1650 		     i < urb_priv->num_tds;
1651 		     i++) {
1652 			td = &urb_priv->td[i];
1653 			if (!list_empty(&td->td_list))
1654 				list_del_init(&td->td_list);
1655 			if (!list_empty(&td->cancelled_td_list))
1656 				list_del_init(&td->cancelled_td_list);
1657 		}
1658 		goto err_giveback;
1659 	}
1660 
1661 	i = urb_priv->num_tds_done;
1662 	if (i < urb_priv->num_tds)
1663 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1664 				"Cancel URB %p, dev %s, ep 0x%x, "
1665 				"starting at offset 0x%llx",
1666 				urb, urb->dev->devpath,
1667 				urb->ep->desc.bEndpointAddress,
1668 				(unsigned long long) xhci_trb_virt_to_dma(
1669 					urb_priv->td[i].start_seg,
1670 					urb_priv->td[i].first_trb));
1671 
1672 	for (; i < urb_priv->num_tds; i++) {
1673 		td = &urb_priv->td[i];
1674 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1675 	}
1676 
1677 	/* Queue a stop endpoint command, but only if this is
1678 	 * the first cancellation to be handled.
1679 	 */
1680 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1681 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1682 		if (!command) {
1683 			ret = -ENOMEM;
1684 			goto done;
1685 		}
1686 		ep->ep_state |= EP_STOP_CMD_PENDING;
1687 		ep->stop_cmd_timer.expires = jiffies +
1688 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1689 		add_timer(&ep->stop_cmd_timer);
1690 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1691 					 ep_index, 0);
1692 		xhci_ring_cmd_db(xhci);
1693 	}
1694 done:
1695 	spin_unlock_irqrestore(&xhci->lock, flags);
1696 	return ret;
1697 
1698 err_giveback:
1699 	if (urb_priv)
1700 		xhci_urb_free_priv(urb_priv);
1701 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1702 	spin_unlock_irqrestore(&xhci->lock, flags);
1703 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1704 	return ret;
1705 }
1706 
1707 /* Drop an endpoint from a new bandwidth configuration for this device.
1708  * Only one call to this function is allowed per endpoint before
1709  * check_bandwidth() or reset_bandwidth() must be called.
1710  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1711  * add the endpoint to the schedule with possibly new parameters denoted by a
1712  * different endpoint descriptor in usb_host_endpoint.
1713  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1714  * not allowed.
1715  *
1716  * The USB core will not allow URBs to be queued to an endpoint that is being
1717  * disabled, so there's no need for mutual exclusion to protect
1718  * the xhci->devs[slot_id] structure.
1719  */
1720 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1721 		struct usb_host_endpoint *ep)
1722 {
1723 	struct xhci_hcd *xhci;
1724 	struct xhci_container_ctx *in_ctx, *out_ctx;
1725 	struct xhci_input_control_ctx *ctrl_ctx;
1726 	unsigned int ep_index;
1727 	struct xhci_ep_ctx *ep_ctx;
1728 	u32 drop_flag;
1729 	u32 new_add_flags, new_drop_flags;
1730 	int ret;
1731 
1732 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1733 	if (ret <= 0)
1734 		return ret;
1735 	xhci = hcd_to_xhci(hcd);
1736 	if (xhci->xhc_state & XHCI_STATE_DYING)
1737 		return -ENODEV;
1738 
1739 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1740 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1741 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1742 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1743 				__func__, drop_flag);
1744 		return 0;
1745 	}
1746 
1747 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1748 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1749 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1750 	if (!ctrl_ctx) {
1751 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1752 				__func__);
1753 		return 0;
1754 	}
1755 
1756 	ep_index = xhci_get_endpoint_index(&ep->desc);
1757 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1758 	/* If the HC already knows the endpoint is disabled,
1759 	 * or the HCD has noted it is disabled, ignore this request
1760 	 */
1761 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1762 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1763 	    xhci_get_endpoint_flag(&ep->desc)) {
1764 		/* Do not warn when called after a usb_device_reset */
1765 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1766 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1767 				  __func__, ep);
1768 		return 0;
1769 	}
1770 
1771 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1772 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1773 
1774 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1775 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1776 
1777 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1778 
1779 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1780 
1781 	if (xhci->quirks & XHCI_MTK_HOST)
1782 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1783 
1784 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1785 			(unsigned int) ep->desc.bEndpointAddress,
1786 			udev->slot_id,
1787 			(unsigned int) new_drop_flags,
1788 			(unsigned int) new_add_flags);
1789 	return 0;
1790 }
1791 
1792 /* Add an endpoint to a new possible bandwidth configuration for this device.
1793  * Only one call to this function is allowed per endpoint before
1794  * check_bandwidth() or reset_bandwidth() must be called.
1795  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1796  * add the endpoint to the schedule with possibly new parameters denoted by a
1797  * different endpoint descriptor in usb_host_endpoint.
1798  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1799  * not allowed.
1800  *
1801  * The USB core will not allow URBs to be queued to an endpoint until the
1802  * configuration or alt setting is installed in the device, so there's no need
1803  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1804  */
1805 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1806 		struct usb_host_endpoint *ep)
1807 {
1808 	struct xhci_hcd *xhci;
1809 	struct xhci_container_ctx *in_ctx;
1810 	unsigned int ep_index;
1811 	struct xhci_input_control_ctx *ctrl_ctx;
1812 	struct xhci_ep_ctx *ep_ctx;
1813 	u32 added_ctxs;
1814 	u32 new_add_flags, new_drop_flags;
1815 	struct xhci_virt_device *virt_dev;
1816 	int ret = 0;
1817 
1818 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1819 	if (ret <= 0) {
1820 		/* So we won't queue a reset ep command for a root hub */
1821 		ep->hcpriv = NULL;
1822 		return ret;
1823 	}
1824 	xhci = hcd_to_xhci(hcd);
1825 	if (xhci->xhc_state & XHCI_STATE_DYING)
1826 		return -ENODEV;
1827 
1828 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1829 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1830 		/* FIXME when we have to issue an evaluate endpoint command to
1831 		 * deal with ep0 max packet size changing once we get the
1832 		 * descriptors
1833 		 */
1834 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1835 				__func__, added_ctxs);
1836 		return 0;
1837 	}
1838 
1839 	virt_dev = xhci->devs[udev->slot_id];
1840 	in_ctx = virt_dev->in_ctx;
1841 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1842 	if (!ctrl_ctx) {
1843 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1844 				__func__);
1845 		return 0;
1846 	}
1847 
1848 	ep_index = xhci_get_endpoint_index(&ep->desc);
1849 	/* If this endpoint is already in use, and the upper layers are trying
1850 	 * to add it again without dropping it, reject the addition.
1851 	 */
1852 	if (virt_dev->eps[ep_index].ring &&
1853 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1854 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1855 				"without dropping it.\n",
1856 				(unsigned int) ep->desc.bEndpointAddress);
1857 		return -EINVAL;
1858 	}
1859 
1860 	/* If the HCD has already noted the endpoint is enabled,
1861 	 * ignore this request.
1862 	 */
1863 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1864 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1865 				__func__, ep);
1866 		return 0;
1867 	}
1868 
1869 	/*
1870 	 * Configuration and alternate setting changes must be done in
1871 	 * process context, not interrupt context (or so documenation
1872 	 * for usb_set_interface() and usb_set_configuration() claim).
1873 	 */
1874 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1875 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1876 				__func__, ep->desc.bEndpointAddress);
1877 		return -ENOMEM;
1878 	}
1879 
1880 	if (xhci->quirks & XHCI_MTK_HOST) {
1881 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1882 		if (ret < 0) {
1883 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1884 			virt_dev->eps[ep_index].new_ring = NULL;
1885 			return ret;
1886 		}
1887 	}
1888 
1889 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1890 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1891 
1892 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1893 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1894 	 * this re-adds a new state for the endpoint from the new endpoint
1895 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1896 	 * drop flags alone.
1897 	 */
1898 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1899 
1900 	/* Store the usb_device pointer for later use */
1901 	ep->hcpriv = udev;
1902 
1903 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1904 	trace_xhci_add_endpoint(ep_ctx);
1905 
1906 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1907 
1908 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1909 			(unsigned int) ep->desc.bEndpointAddress,
1910 			udev->slot_id,
1911 			(unsigned int) new_drop_flags,
1912 			(unsigned int) new_add_flags);
1913 	return 0;
1914 }
1915 
1916 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1917 {
1918 	struct xhci_input_control_ctx *ctrl_ctx;
1919 	struct xhci_ep_ctx *ep_ctx;
1920 	struct xhci_slot_ctx *slot_ctx;
1921 	int i;
1922 
1923 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1924 	if (!ctrl_ctx) {
1925 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1926 				__func__);
1927 		return;
1928 	}
1929 
1930 	/* When a device's add flag and drop flag are zero, any subsequent
1931 	 * configure endpoint command will leave that endpoint's state
1932 	 * untouched.  Make sure we don't leave any old state in the input
1933 	 * endpoint contexts.
1934 	 */
1935 	ctrl_ctx->drop_flags = 0;
1936 	ctrl_ctx->add_flags = 0;
1937 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1938 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1939 	/* Endpoint 0 is always valid */
1940 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1941 	for (i = 1; i < 31; i++) {
1942 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1943 		ep_ctx->ep_info = 0;
1944 		ep_ctx->ep_info2 = 0;
1945 		ep_ctx->deq = 0;
1946 		ep_ctx->tx_info = 0;
1947 	}
1948 }
1949 
1950 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1951 		struct usb_device *udev, u32 *cmd_status)
1952 {
1953 	int ret;
1954 
1955 	switch (*cmd_status) {
1956 	case COMP_COMMAND_ABORTED:
1957 	case COMP_COMMAND_RING_STOPPED:
1958 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1959 		ret = -ETIME;
1960 		break;
1961 	case COMP_RESOURCE_ERROR:
1962 		dev_warn(&udev->dev,
1963 			 "Not enough host controller resources for new device state.\n");
1964 		ret = -ENOMEM;
1965 		/* FIXME: can we allocate more resources for the HC? */
1966 		break;
1967 	case COMP_BANDWIDTH_ERROR:
1968 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1969 		dev_warn(&udev->dev,
1970 			 "Not enough bandwidth for new device state.\n");
1971 		ret = -ENOSPC;
1972 		/* FIXME: can we go back to the old state? */
1973 		break;
1974 	case COMP_TRB_ERROR:
1975 		/* the HCD set up something wrong */
1976 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1977 				"add flag = 1, "
1978 				"and endpoint is not disabled.\n");
1979 		ret = -EINVAL;
1980 		break;
1981 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1982 		dev_warn(&udev->dev,
1983 			 "ERROR: Incompatible device for endpoint configure command.\n");
1984 		ret = -ENODEV;
1985 		break;
1986 	case COMP_SUCCESS:
1987 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1988 				"Successful Endpoint Configure command");
1989 		ret = 0;
1990 		break;
1991 	default:
1992 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1993 				*cmd_status);
1994 		ret = -EINVAL;
1995 		break;
1996 	}
1997 	return ret;
1998 }
1999 
2000 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2001 		struct usb_device *udev, u32 *cmd_status)
2002 {
2003 	int ret;
2004 
2005 	switch (*cmd_status) {
2006 	case COMP_COMMAND_ABORTED:
2007 	case COMP_COMMAND_RING_STOPPED:
2008 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2009 		ret = -ETIME;
2010 		break;
2011 	case COMP_PARAMETER_ERROR:
2012 		dev_warn(&udev->dev,
2013 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2014 		ret = -EINVAL;
2015 		break;
2016 	case COMP_SLOT_NOT_ENABLED_ERROR:
2017 		dev_warn(&udev->dev,
2018 			"WARN: slot not enabled for evaluate context command.\n");
2019 		ret = -EINVAL;
2020 		break;
2021 	case COMP_CONTEXT_STATE_ERROR:
2022 		dev_warn(&udev->dev,
2023 			"WARN: invalid context state for evaluate context command.\n");
2024 		ret = -EINVAL;
2025 		break;
2026 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2027 		dev_warn(&udev->dev,
2028 			"ERROR: Incompatible device for evaluate context command.\n");
2029 		ret = -ENODEV;
2030 		break;
2031 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2032 		/* Max Exit Latency too large error */
2033 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2034 		ret = -EINVAL;
2035 		break;
2036 	case COMP_SUCCESS:
2037 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2038 				"Successful evaluate context command");
2039 		ret = 0;
2040 		break;
2041 	default:
2042 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2043 			*cmd_status);
2044 		ret = -EINVAL;
2045 		break;
2046 	}
2047 	return ret;
2048 }
2049 
2050 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2051 		struct xhci_input_control_ctx *ctrl_ctx)
2052 {
2053 	u32 valid_add_flags;
2054 	u32 valid_drop_flags;
2055 
2056 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2057 	 * (bit 1).  The default control endpoint is added during the Address
2058 	 * Device command and is never removed until the slot is disabled.
2059 	 */
2060 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2061 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2062 
2063 	/* Use hweight32 to count the number of ones in the add flags, or
2064 	 * number of endpoints added.  Don't count endpoints that are changed
2065 	 * (both added and dropped).
2066 	 */
2067 	return hweight32(valid_add_flags) -
2068 		hweight32(valid_add_flags & valid_drop_flags);
2069 }
2070 
2071 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2072 		struct xhci_input_control_ctx *ctrl_ctx)
2073 {
2074 	u32 valid_add_flags;
2075 	u32 valid_drop_flags;
2076 
2077 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2078 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2079 
2080 	return hweight32(valid_drop_flags) -
2081 		hweight32(valid_add_flags & valid_drop_flags);
2082 }
2083 
2084 /*
2085  * We need to reserve the new number of endpoints before the configure endpoint
2086  * command completes.  We can't subtract the dropped endpoints from the number
2087  * of active endpoints until the command completes because we can oversubscribe
2088  * the host in this case:
2089  *
2090  *  - the first configure endpoint command drops more endpoints than it adds
2091  *  - a second configure endpoint command that adds more endpoints is queued
2092  *  - the first configure endpoint command fails, so the config is unchanged
2093  *  - the second command may succeed, even though there isn't enough resources
2094  *
2095  * Must be called with xhci->lock held.
2096  */
2097 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2098 		struct xhci_input_control_ctx *ctrl_ctx)
2099 {
2100 	u32 added_eps;
2101 
2102 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2103 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2104 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2105 				"Not enough ep ctxs: "
2106 				"%u active, need to add %u, limit is %u.",
2107 				xhci->num_active_eps, added_eps,
2108 				xhci->limit_active_eps);
2109 		return -ENOMEM;
2110 	}
2111 	xhci->num_active_eps += added_eps;
2112 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2113 			"Adding %u ep ctxs, %u now active.", added_eps,
2114 			xhci->num_active_eps);
2115 	return 0;
2116 }
2117 
2118 /*
2119  * The configure endpoint was failed by the xHC for some other reason, so we
2120  * need to revert the resources that failed configuration would have used.
2121  *
2122  * Must be called with xhci->lock held.
2123  */
2124 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2125 		struct xhci_input_control_ctx *ctrl_ctx)
2126 {
2127 	u32 num_failed_eps;
2128 
2129 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2130 	xhci->num_active_eps -= num_failed_eps;
2131 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132 			"Removing %u failed ep ctxs, %u now active.",
2133 			num_failed_eps,
2134 			xhci->num_active_eps);
2135 }
2136 
2137 /*
2138  * Now that the command has completed, clean up the active endpoint count by
2139  * subtracting out the endpoints that were dropped (but not changed).
2140  *
2141  * Must be called with xhci->lock held.
2142  */
2143 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2144 		struct xhci_input_control_ctx *ctrl_ctx)
2145 {
2146 	u32 num_dropped_eps;
2147 
2148 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2149 	xhci->num_active_eps -= num_dropped_eps;
2150 	if (num_dropped_eps)
2151 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2152 				"Removing %u dropped ep ctxs, %u now active.",
2153 				num_dropped_eps,
2154 				xhci->num_active_eps);
2155 }
2156 
2157 static unsigned int xhci_get_block_size(struct usb_device *udev)
2158 {
2159 	switch (udev->speed) {
2160 	case USB_SPEED_LOW:
2161 	case USB_SPEED_FULL:
2162 		return FS_BLOCK;
2163 	case USB_SPEED_HIGH:
2164 		return HS_BLOCK;
2165 	case USB_SPEED_SUPER:
2166 	case USB_SPEED_SUPER_PLUS:
2167 		return SS_BLOCK;
2168 	case USB_SPEED_UNKNOWN:
2169 	case USB_SPEED_WIRELESS:
2170 	default:
2171 		/* Should never happen */
2172 		return 1;
2173 	}
2174 }
2175 
2176 static unsigned int
2177 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2178 {
2179 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2180 		return LS_OVERHEAD;
2181 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2182 		return FS_OVERHEAD;
2183 	return HS_OVERHEAD;
2184 }
2185 
2186 /* If we are changing a LS/FS device under a HS hub,
2187  * make sure (if we are activating a new TT) that the HS bus has enough
2188  * bandwidth for this new TT.
2189  */
2190 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2191 		struct xhci_virt_device *virt_dev,
2192 		int old_active_eps)
2193 {
2194 	struct xhci_interval_bw_table *bw_table;
2195 	struct xhci_tt_bw_info *tt_info;
2196 
2197 	/* Find the bandwidth table for the root port this TT is attached to. */
2198 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2199 	tt_info = virt_dev->tt_info;
2200 	/* If this TT already had active endpoints, the bandwidth for this TT
2201 	 * has already been added.  Removing all periodic endpoints (and thus
2202 	 * making the TT enactive) will only decrease the bandwidth used.
2203 	 */
2204 	if (old_active_eps)
2205 		return 0;
2206 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2207 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2208 			return -ENOMEM;
2209 		return 0;
2210 	}
2211 	/* Not sure why we would have no new active endpoints...
2212 	 *
2213 	 * Maybe because of an Evaluate Context change for a hub update or a
2214 	 * control endpoint 0 max packet size change?
2215 	 * FIXME: skip the bandwidth calculation in that case.
2216 	 */
2217 	return 0;
2218 }
2219 
2220 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2221 		struct xhci_virt_device *virt_dev)
2222 {
2223 	unsigned int bw_reserved;
2224 
2225 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2226 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2227 		return -ENOMEM;
2228 
2229 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2230 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2231 		return -ENOMEM;
2232 
2233 	return 0;
2234 }
2235 
2236 /*
2237  * This algorithm is a very conservative estimate of the worst-case scheduling
2238  * scenario for any one interval.  The hardware dynamically schedules the
2239  * packets, so we can't tell which microframe could be the limiting factor in
2240  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2241  *
2242  * Obviously, we can't solve an NP complete problem to find the minimum worst
2243  * case scenario.  Instead, we come up with an estimate that is no less than
2244  * the worst case bandwidth used for any one microframe, but may be an
2245  * over-estimate.
2246  *
2247  * We walk the requirements for each endpoint by interval, starting with the
2248  * smallest interval, and place packets in the schedule where there is only one
2249  * possible way to schedule packets for that interval.  In order to simplify
2250  * this algorithm, we record the largest max packet size for each interval, and
2251  * assume all packets will be that size.
2252  *
2253  * For interval 0, we obviously must schedule all packets for each interval.
2254  * The bandwidth for interval 0 is just the amount of data to be transmitted
2255  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2256  * the number of packets).
2257  *
2258  * For interval 1, we have two possible microframes to schedule those packets
2259  * in.  For this algorithm, if we can schedule the same number of packets for
2260  * each possible scheduling opportunity (each microframe), we will do so.  The
2261  * remaining number of packets will be saved to be transmitted in the gaps in
2262  * the next interval's scheduling sequence.
2263  *
2264  * As we move those remaining packets to be scheduled with interval 2 packets,
2265  * we have to double the number of remaining packets to transmit.  This is
2266  * because the intervals are actually powers of 2, and we would be transmitting
2267  * the previous interval's packets twice in this interval.  We also have to be
2268  * sure that when we look at the largest max packet size for this interval, we
2269  * also look at the largest max packet size for the remaining packets and take
2270  * the greater of the two.
2271  *
2272  * The algorithm continues to evenly distribute packets in each scheduling
2273  * opportunity, and push the remaining packets out, until we get to the last
2274  * interval.  Then those packets and their associated overhead are just added
2275  * to the bandwidth used.
2276  */
2277 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2278 		struct xhci_virt_device *virt_dev,
2279 		int old_active_eps)
2280 {
2281 	unsigned int bw_reserved;
2282 	unsigned int max_bandwidth;
2283 	unsigned int bw_used;
2284 	unsigned int block_size;
2285 	struct xhci_interval_bw_table *bw_table;
2286 	unsigned int packet_size = 0;
2287 	unsigned int overhead = 0;
2288 	unsigned int packets_transmitted = 0;
2289 	unsigned int packets_remaining = 0;
2290 	unsigned int i;
2291 
2292 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2293 		return xhci_check_ss_bw(xhci, virt_dev);
2294 
2295 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2296 		max_bandwidth = HS_BW_LIMIT;
2297 		/* Convert percent of bus BW reserved to blocks reserved */
2298 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2299 	} else {
2300 		max_bandwidth = FS_BW_LIMIT;
2301 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2302 	}
2303 
2304 	bw_table = virt_dev->bw_table;
2305 	/* We need to translate the max packet size and max ESIT payloads into
2306 	 * the units the hardware uses.
2307 	 */
2308 	block_size = xhci_get_block_size(virt_dev->udev);
2309 
2310 	/* If we are manipulating a LS/FS device under a HS hub, double check
2311 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2312 	 */
2313 	if (virt_dev->tt_info) {
2314 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2315 				"Recalculating BW for rootport %u",
2316 				virt_dev->real_port);
2317 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2318 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2319 					"newly activated TT.\n");
2320 			return -ENOMEM;
2321 		}
2322 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2323 				"Recalculating BW for TT slot %u port %u",
2324 				virt_dev->tt_info->slot_id,
2325 				virt_dev->tt_info->ttport);
2326 	} else {
2327 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2328 				"Recalculating BW for rootport %u",
2329 				virt_dev->real_port);
2330 	}
2331 
2332 	/* Add in how much bandwidth will be used for interval zero, or the
2333 	 * rounded max ESIT payload + number of packets * largest overhead.
2334 	 */
2335 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2336 		bw_table->interval_bw[0].num_packets *
2337 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2338 
2339 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2340 		unsigned int bw_added;
2341 		unsigned int largest_mps;
2342 		unsigned int interval_overhead;
2343 
2344 		/*
2345 		 * How many packets could we transmit in this interval?
2346 		 * If packets didn't fit in the previous interval, we will need
2347 		 * to transmit that many packets twice within this interval.
2348 		 */
2349 		packets_remaining = 2 * packets_remaining +
2350 			bw_table->interval_bw[i].num_packets;
2351 
2352 		/* Find the largest max packet size of this or the previous
2353 		 * interval.
2354 		 */
2355 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2356 			largest_mps = 0;
2357 		else {
2358 			struct xhci_virt_ep *virt_ep;
2359 			struct list_head *ep_entry;
2360 
2361 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2362 			virt_ep = list_entry(ep_entry,
2363 					struct xhci_virt_ep, bw_endpoint_list);
2364 			/* Convert to blocks, rounding up */
2365 			largest_mps = DIV_ROUND_UP(
2366 					virt_ep->bw_info.max_packet_size,
2367 					block_size);
2368 		}
2369 		if (largest_mps > packet_size)
2370 			packet_size = largest_mps;
2371 
2372 		/* Use the larger overhead of this or the previous interval. */
2373 		interval_overhead = xhci_get_largest_overhead(
2374 				&bw_table->interval_bw[i]);
2375 		if (interval_overhead > overhead)
2376 			overhead = interval_overhead;
2377 
2378 		/* How many packets can we evenly distribute across
2379 		 * (1 << (i + 1)) possible scheduling opportunities?
2380 		 */
2381 		packets_transmitted = packets_remaining >> (i + 1);
2382 
2383 		/* Add in the bandwidth used for those scheduled packets */
2384 		bw_added = packets_transmitted * (overhead + packet_size);
2385 
2386 		/* How many packets do we have remaining to transmit? */
2387 		packets_remaining = packets_remaining % (1 << (i + 1));
2388 
2389 		/* What largest max packet size should those packets have? */
2390 		/* If we've transmitted all packets, don't carry over the
2391 		 * largest packet size.
2392 		 */
2393 		if (packets_remaining == 0) {
2394 			packet_size = 0;
2395 			overhead = 0;
2396 		} else if (packets_transmitted > 0) {
2397 			/* Otherwise if we do have remaining packets, and we've
2398 			 * scheduled some packets in this interval, take the
2399 			 * largest max packet size from endpoints with this
2400 			 * interval.
2401 			 */
2402 			packet_size = largest_mps;
2403 			overhead = interval_overhead;
2404 		}
2405 		/* Otherwise carry over packet_size and overhead from the last
2406 		 * time we had a remainder.
2407 		 */
2408 		bw_used += bw_added;
2409 		if (bw_used > max_bandwidth) {
2410 			xhci_warn(xhci, "Not enough bandwidth. "
2411 					"Proposed: %u, Max: %u\n",
2412 				bw_used, max_bandwidth);
2413 			return -ENOMEM;
2414 		}
2415 	}
2416 	/*
2417 	 * Ok, we know we have some packets left over after even-handedly
2418 	 * scheduling interval 15.  We don't know which microframes they will
2419 	 * fit into, so we over-schedule and say they will be scheduled every
2420 	 * microframe.
2421 	 */
2422 	if (packets_remaining > 0)
2423 		bw_used += overhead + packet_size;
2424 
2425 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2426 		unsigned int port_index = virt_dev->real_port - 1;
2427 
2428 		/* OK, we're manipulating a HS device attached to a
2429 		 * root port bandwidth domain.  Include the number of active TTs
2430 		 * in the bandwidth used.
2431 		 */
2432 		bw_used += TT_HS_OVERHEAD *
2433 			xhci->rh_bw[port_index].num_active_tts;
2434 	}
2435 
2436 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2437 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2438 		"Available: %u " "percent",
2439 		bw_used, max_bandwidth, bw_reserved,
2440 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2441 		max_bandwidth);
2442 
2443 	bw_used += bw_reserved;
2444 	if (bw_used > max_bandwidth) {
2445 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2446 				bw_used, max_bandwidth);
2447 		return -ENOMEM;
2448 	}
2449 
2450 	bw_table->bw_used = bw_used;
2451 	return 0;
2452 }
2453 
2454 static bool xhci_is_async_ep(unsigned int ep_type)
2455 {
2456 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2457 					ep_type != ISOC_IN_EP &&
2458 					ep_type != INT_IN_EP);
2459 }
2460 
2461 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2462 {
2463 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2464 }
2465 
2466 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2467 {
2468 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2469 
2470 	if (ep_bw->ep_interval == 0)
2471 		return SS_OVERHEAD_BURST +
2472 			(ep_bw->mult * ep_bw->num_packets *
2473 					(SS_OVERHEAD + mps));
2474 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2475 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2476 				1 << ep_bw->ep_interval);
2477 
2478 }
2479 
2480 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2481 		struct xhci_bw_info *ep_bw,
2482 		struct xhci_interval_bw_table *bw_table,
2483 		struct usb_device *udev,
2484 		struct xhci_virt_ep *virt_ep,
2485 		struct xhci_tt_bw_info *tt_info)
2486 {
2487 	struct xhci_interval_bw	*interval_bw;
2488 	int normalized_interval;
2489 
2490 	if (xhci_is_async_ep(ep_bw->type))
2491 		return;
2492 
2493 	if (udev->speed >= USB_SPEED_SUPER) {
2494 		if (xhci_is_sync_in_ep(ep_bw->type))
2495 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2496 				xhci_get_ss_bw_consumed(ep_bw);
2497 		else
2498 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2499 				xhci_get_ss_bw_consumed(ep_bw);
2500 		return;
2501 	}
2502 
2503 	/* SuperSpeed endpoints never get added to intervals in the table, so
2504 	 * this check is only valid for HS/FS/LS devices.
2505 	 */
2506 	if (list_empty(&virt_ep->bw_endpoint_list))
2507 		return;
2508 	/* For LS/FS devices, we need to translate the interval expressed in
2509 	 * microframes to frames.
2510 	 */
2511 	if (udev->speed == USB_SPEED_HIGH)
2512 		normalized_interval = ep_bw->ep_interval;
2513 	else
2514 		normalized_interval = ep_bw->ep_interval - 3;
2515 
2516 	if (normalized_interval == 0)
2517 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2518 	interval_bw = &bw_table->interval_bw[normalized_interval];
2519 	interval_bw->num_packets -= ep_bw->num_packets;
2520 	switch (udev->speed) {
2521 	case USB_SPEED_LOW:
2522 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2523 		break;
2524 	case USB_SPEED_FULL:
2525 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2526 		break;
2527 	case USB_SPEED_HIGH:
2528 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2529 		break;
2530 	case USB_SPEED_SUPER:
2531 	case USB_SPEED_SUPER_PLUS:
2532 	case USB_SPEED_UNKNOWN:
2533 	case USB_SPEED_WIRELESS:
2534 		/* Should never happen because only LS/FS/HS endpoints will get
2535 		 * added to the endpoint list.
2536 		 */
2537 		return;
2538 	}
2539 	if (tt_info)
2540 		tt_info->active_eps -= 1;
2541 	list_del_init(&virt_ep->bw_endpoint_list);
2542 }
2543 
2544 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2545 		struct xhci_bw_info *ep_bw,
2546 		struct xhci_interval_bw_table *bw_table,
2547 		struct usb_device *udev,
2548 		struct xhci_virt_ep *virt_ep,
2549 		struct xhci_tt_bw_info *tt_info)
2550 {
2551 	struct xhci_interval_bw	*interval_bw;
2552 	struct xhci_virt_ep *smaller_ep;
2553 	int normalized_interval;
2554 
2555 	if (xhci_is_async_ep(ep_bw->type))
2556 		return;
2557 
2558 	if (udev->speed == USB_SPEED_SUPER) {
2559 		if (xhci_is_sync_in_ep(ep_bw->type))
2560 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2561 				xhci_get_ss_bw_consumed(ep_bw);
2562 		else
2563 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2564 				xhci_get_ss_bw_consumed(ep_bw);
2565 		return;
2566 	}
2567 
2568 	/* For LS/FS devices, we need to translate the interval expressed in
2569 	 * microframes to frames.
2570 	 */
2571 	if (udev->speed == USB_SPEED_HIGH)
2572 		normalized_interval = ep_bw->ep_interval;
2573 	else
2574 		normalized_interval = ep_bw->ep_interval - 3;
2575 
2576 	if (normalized_interval == 0)
2577 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2578 	interval_bw = &bw_table->interval_bw[normalized_interval];
2579 	interval_bw->num_packets += ep_bw->num_packets;
2580 	switch (udev->speed) {
2581 	case USB_SPEED_LOW:
2582 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2583 		break;
2584 	case USB_SPEED_FULL:
2585 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2586 		break;
2587 	case USB_SPEED_HIGH:
2588 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2589 		break;
2590 	case USB_SPEED_SUPER:
2591 	case USB_SPEED_SUPER_PLUS:
2592 	case USB_SPEED_UNKNOWN:
2593 	case USB_SPEED_WIRELESS:
2594 		/* Should never happen because only LS/FS/HS endpoints will get
2595 		 * added to the endpoint list.
2596 		 */
2597 		return;
2598 	}
2599 
2600 	if (tt_info)
2601 		tt_info->active_eps += 1;
2602 	/* Insert the endpoint into the list, largest max packet size first. */
2603 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2604 			bw_endpoint_list) {
2605 		if (ep_bw->max_packet_size >=
2606 				smaller_ep->bw_info.max_packet_size) {
2607 			/* Add the new ep before the smaller endpoint */
2608 			list_add_tail(&virt_ep->bw_endpoint_list,
2609 					&smaller_ep->bw_endpoint_list);
2610 			return;
2611 		}
2612 	}
2613 	/* Add the new endpoint at the end of the list. */
2614 	list_add_tail(&virt_ep->bw_endpoint_list,
2615 			&interval_bw->endpoints);
2616 }
2617 
2618 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2619 		struct xhci_virt_device *virt_dev,
2620 		int old_active_eps)
2621 {
2622 	struct xhci_root_port_bw_info *rh_bw_info;
2623 	if (!virt_dev->tt_info)
2624 		return;
2625 
2626 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2627 	if (old_active_eps == 0 &&
2628 				virt_dev->tt_info->active_eps != 0) {
2629 		rh_bw_info->num_active_tts += 1;
2630 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2631 	} else if (old_active_eps != 0 &&
2632 				virt_dev->tt_info->active_eps == 0) {
2633 		rh_bw_info->num_active_tts -= 1;
2634 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2635 	}
2636 }
2637 
2638 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2639 		struct xhci_virt_device *virt_dev,
2640 		struct xhci_container_ctx *in_ctx)
2641 {
2642 	struct xhci_bw_info ep_bw_info[31];
2643 	int i;
2644 	struct xhci_input_control_ctx *ctrl_ctx;
2645 	int old_active_eps = 0;
2646 
2647 	if (virt_dev->tt_info)
2648 		old_active_eps = virt_dev->tt_info->active_eps;
2649 
2650 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2651 	if (!ctrl_ctx) {
2652 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2653 				__func__);
2654 		return -ENOMEM;
2655 	}
2656 
2657 	for (i = 0; i < 31; i++) {
2658 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2659 			continue;
2660 
2661 		/* Make a copy of the BW info in case we need to revert this */
2662 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2663 				sizeof(ep_bw_info[i]));
2664 		/* Drop the endpoint from the interval table if the endpoint is
2665 		 * being dropped or changed.
2666 		 */
2667 		if (EP_IS_DROPPED(ctrl_ctx, i))
2668 			xhci_drop_ep_from_interval_table(xhci,
2669 					&virt_dev->eps[i].bw_info,
2670 					virt_dev->bw_table,
2671 					virt_dev->udev,
2672 					&virt_dev->eps[i],
2673 					virt_dev->tt_info);
2674 	}
2675 	/* Overwrite the information stored in the endpoints' bw_info */
2676 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2677 	for (i = 0; i < 31; i++) {
2678 		/* Add any changed or added endpoints to the interval table */
2679 		if (EP_IS_ADDED(ctrl_ctx, i))
2680 			xhci_add_ep_to_interval_table(xhci,
2681 					&virt_dev->eps[i].bw_info,
2682 					virt_dev->bw_table,
2683 					virt_dev->udev,
2684 					&virt_dev->eps[i],
2685 					virt_dev->tt_info);
2686 	}
2687 
2688 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2689 		/* Ok, this fits in the bandwidth we have.
2690 		 * Update the number of active TTs.
2691 		 */
2692 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2693 		return 0;
2694 	}
2695 
2696 	/* We don't have enough bandwidth for this, revert the stored info. */
2697 	for (i = 0; i < 31; i++) {
2698 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2699 			continue;
2700 
2701 		/* Drop the new copies of any added or changed endpoints from
2702 		 * the interval table.
2703 		 */
2704 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2705 			xhci_drop_ep_from_interval_table(xhci,
2706 					&virt_dev->eps[i].bw_info,
2707 					virt_dev->bw_table,
2708 					virt_dev->udev,
2709 					&virt_dev->eps[i],
2710 					virt_dev->tt_info);
2711 		}
2712 		/* Revert the endpoint back to its old information */
2713 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2714 				sizeof(ep_bw_info[i]));
2715 		/* Add any changed or dropped endpoints back into the table */
2716 		if (EP_IS_DROPPED(ctrl_ctx, i))
2717 			xhci_add_ep_to_interval_table(xhci,
2718 					&virt_dev->eps[i].bw_info,
2719 					virt_dev->bw_table,
2720 					virt_dev->udev,
2721 					&virt_dev->eps[i],
2722 					virt_dev->tt_info);
2723 	}
2724 	return -ENOMEM;
2725 }
2726 
2727 
2728 /* Issue a configure endpoint command or evaluate context command
2729  * and wait for it to finish.
2730  */
2731 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2732 		struct usb_device *udev,
2733 		struct xhci_command *command,
2734 		bool ctx_change, bool must_succeed)
2735 {
2736 	int ret;
2737 	unsigned long flags;
2738 	struct xhci_input_control_ctx *ctrl_ctx;
2739 	struct xhci_virt_device *virt_dev;
2740 	struct xhci_slot_ctx *slot_ctx;
2741 
2742 	if (!command)
2743 		return -EINVAL;
2744 
2745 	spin_lock_irqsave(&xhci->lock, flags);
2746 
2747 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2748 		spin_unlock_irqrestore(&xhci->lock, flags);
2749 		return -ESHUTDOWN;
2750 	}
2751 
2752 	virt_dev = xhci->devs[udev->slot_id];
2753 
2754 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2755 	if (!ctrl_ctx) {
2756 		spin_unlock_irqrestore(&xhci->lock, flags);
2757 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2758 				__func__);
2759 		return -ENOMEM;
2760 	}
2761 
2762 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2763 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2764 		spin_unlock_irqrestore(&xhci->lock, flags);
2765 		xhci_warn(xhci, "Not enough host resources, "
2766 				"active endpoint contexts = %u\n",
2767 				xhci->num_active_eps);
2768 		return -ENOMEM;
2769 	}
2770 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2771 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2772 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2773 			xhci_free_host_resources(xhci, ctrl_ctx);
2774 		spin_unlock_irqrestore(&xhci->lock, flags);
2775 		xhci_warn(xhci, "Not enough bandwidth\n");
2776 		return -ENOMEM;
2777 	}
2778 
2779 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2780 
2781 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2782 	trace_xhci_configure_endpoint(slot_ctx);
2783 
2784 	if (!ctx_change)
2785 		ret = xhci_queue_configure_endpoint(xhci, command,
2786 				command->in_ctx->dma,
2787 				udev->slot_id, must_succeed);
2788 	else
2789 		ret = xhci_queue_evaluate_context(xhci, command,
2790 				command->in_ctx->dma,
2791 				udev->slot_id, must_succeed);
2792 	if (ret < 0) {
2793 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2794 			xhci_free_host_resources(xhci, ctrl_ctx);
2795 		spin_unlock_irqrestore(&xhci->lock, flags);
2796 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2797 				"FIXME allocate a new ring segment");
2798 		return -ENOMEM;
2799 	}
2800 	xhci_ring_cmd_db(xhci);
2801 	spin_unlock_irqrestore(&xhci->lock, flags);
2802 
2803 	/* Wait for the configure endpoint command to complete */
2804 	wait_for_completion(command->completion);
2805 
2806 	if (!ctx_change)
2807 		ret = xhci_configure_endpoint_result(xhci, udev,
2808 						     &command->status);
2809 	else
2810 		ret = xhci_evaluate_context_result(xhci, udev,
2811 						   &command->status);
2812 
2813 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2814 		spin_lock_irqsave(&xhci->lock, flags);
2815 		/* If the command failed, remove the reserved resources.
2816 		 * Otherwise, clean up the estimate to include dropped eps.
2817 		 */
2818 		if (ret)
2819 			xhci_free_host_resources(xhci, ctrl_ctx);
2820 		else
2821 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2822 		spin_unlock_irqrestore(&xhci->lock, flags);
2823 	}
2824 	return ret;
2825 }
2826 
2827 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2828 	struct xhci_virt_device *vdev, int i)
2829 {
2830 	struct xhci_virt_ep *ep = &vdev->eps[i];
2831 
2832 	if (ep->ep_state & EP_HAS_STREAMS) {
2833 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2834 				xhci_get_endpoint_address(i));
2835 		xhci_free_stream_info(xhci, ep->stream_info);
2836 		ep->stream_info = NULL;
2837 		ep->ep_state &= ~EP_HAS_STREAMS;
2838 	}
2839 }
2840 
2841 /* Called after one or more calls to xhci_add_endpoint() or
2842  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2843  * to call xhci_reset_bandwidth().
2844  *
2845  * Since we are in the middle of changing either configuration or
2846  * installing a new alt setting, the USB core won't allow URBs to be
2847  * enqueued for any endpoint on the old config or interface.  Nothing
2848  * else should be touching the xhci->devs[slot_id] structure, so we
2849  * don't need to take the xhci->lock for manipulating that.
2850  */
2851 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2852 {
2853 	int i;
2854 	int ret = 0;
2855 	struct xhci_hcd *xhci;
2856 	struct xhci_virt_device	*virt_dev;
2857 	struct xhci_input_control_ctx *ctrl_ctx;
2858 	struct xhci_slot_ctx *slot_ctx;
2859 	struct xhci_command *command;
2860 
2861 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2862 	if (ret <= 0)
2863 		return ret;
2864 	xhci = hcd_to_xhci(hcd);
2865 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2866 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2867 		return -ENODEV;
2868 
2869 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2870 	virt_dev = xhci->devs[udev->slot_id];
2871 
2872 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2873 	if (!command)
2874 		return -ENOMEM;
2875 
2876 	command->in_ctx = virt_dev->in_ctx;
2877 
2878 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2879 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2880 	if (!ctrl_ctx) {
2881 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2882 				__func__);
2883 		ret = -ENOMEM;
2884 		goto command_cleanup;
2885 	}
2886 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2887 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2888 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2889 
2890 	/* Don't issue the command if there's no endpoints to update. */
2891 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2892 	    ctrl_ctx->drop_flags == 0) {
2893 		ret = 0;
2894 		goto command_cleanup;
2895 	}
2896 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2897 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2898 	for (i = 31; i >= 1; i--) {
2899 		__le32 le32 = cpu_to_le32(BIT(i));
2900 
2901 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2902 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2903 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2904 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2905 			break;
2906 		}
2907 	}
2908 
2909 	ret = xhci_configure_endpoint(xhci, udev, command,
2910 			false, false);
2911 	if (ret)
2912 		/* Callee should call reset_bandwidth() */
2913 		goto command_cleanup;
2914 
2915 	/* Free any rings that were dropped, but not changed. */
2916 	for (i = 1; i < 31; i++) {
2917 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2918 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2919 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2920 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2921 		}
2922 	}
2923 	xhci_zero_in_ctx(xhci, virt_dev);
2924 	/*
2925 	 * Install any rings for completely new endpoints or changed endpoints,
2926 	 * and free any old rings from changed endpoints.
2927 	 */
2928 	for (i = 1; i < 31; i++) {
2929 		if (!virt_dev->eps[i].new_ring)
2930 			continue;
2931 		/* Only free the old ring if it exists.
2932 		 * It may not if this is the first add of an endpoint.
2933 		 */
2934 		if (virt_dev->eps[i].ring) {
2935 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2936 		}
2937 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2938 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2939 		virt_dev->eps[i].new_ring = NULL;
2940 	}
2941 command_cleanup:
2942 	kfree(command->completion);
2943 	kfree(command);
2944 
2945 	return ret;
2946 }
2947 
2948 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2949 {
2950 	struct xhci_hcd *xhci;
2951 	struct xhci_virt_device	*virt_dev;
2952 	int i, ret;
2953 
2954 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2955 	if (ret <= 0)
2956 		return;
2957 	xhci = hcd_to_xhci(hcd);
2958 
2959 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2960 	virt_dev = xhci->devs[udev->slot_id];
2961 	/* Free any rings allocated for added endpoints */
2962 	for (i = 0; i < 31; i++) {
2963 		if (virt_dev->eps[i].new_ring) {
2964 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2965 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2966 			virt_dev->eps[i].new_ring = NULL;
2967 		}
2968 	}
2969 	xhci_zero_in_ctx(xhci, virt_dev);
2970 }
2971 
2972 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2973 		struct xhci_container_ctx *in_ctx,
2974 		struct xhci_container_ctx *out_ctx,
2975 		struct xhci_input_control_ctx *ctrl_ctx,
2976 		u32 add_flags, u32 drop_flags)
2977 {
2978 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2979 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2980 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2981 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2982 }
2983 
2984 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2985 		unsigned int slot_id, unsigned int ep_index,
2986 		struct xhci_dequeue_state *deq_state)
2987 {
2988 	struct xhci_input_control_ctx *ctrl_ctx;
2989 	struct xhci_container_ctx *in_ctx;
2990 	struct xhci_ep_ctx *ep_ctx;
2991 	u32 added_ctxs;
2992 	dma_addr_t addr;
2993 
2994 	in_ctx = xhci->devs[slot_id]->in_ctx;
2995 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2996 	if (!ctrl_ctx) {
2997 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2998 				__func__);
2999 		return;
3000 	}
3001 
3002 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3003 			xhci->devs[slot_id]->out_ctx, ep_index);
3004 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3005 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3006 			deq_state->new_deq_ptr);
3007 	if (addr == 0) {
3008 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3009 				"reset ep command\n");
3010 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3011 				deq_state->new_deq_seg,
3012 				deq_state->new_deq_ptr);
3013 		return;
3014 	}
3015 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3016 
3017 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3018 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3019 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3020 			added_ctxs, added_ctxs);
3021 }
3022 
3023 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3024 			       unsigned int stream_id, struct xhci_td *td)
3025 {
3026 	struct xhci_dequeue_state deq_state;
3027 	struct usb_device *udev = td->urb->dev;
3028 
3029 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3030 			"Cleaning up stalled endpoint ring");
3031 	/* We need to move the HW's dequeue pointer past this TD,
3032 	 * or it will attempt to resend it on the next doorbell ring.
3033 	 */
3034 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3035 			ep_index, stream_id, td, &deq_state);
3036 
3037 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3038 		return;
3039 
3040 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3041 	 * issue a configure endpoint command later.
3042 	 */
3043 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3044 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3045 				"Queueing new dequeue state");
3046 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3047 				ep_index, &deq_state);
3048 	} else {
3049 		/* Better hope no one uses the input context between now and the
3050 		 * reset endpoint completion!
3051 		 * XXX: No idea how this hardware will react when stream rings
3052 		 * are enabled.
3053 		 */
3054 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3055 				"Setting up input context for "
3056 				"configure endpoint command");
3057 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3058 				ep_index, &deq_state);
3059 	}
3060 }
3061 
3062 /*
3063  * Called after usb core issues a clear halt control message.
3064  * The host side of the halt should already be cleared by a reset endpoint
3065  * command issued when the STALL event was received.
3066  *
3067  * The reset endpoint command may only be issued to endpoints in the halted
3068  * state. For software that wishes to reset the data toggle or sequence number
3069  * of an endpoint that isn't in the halted state this function will issue a
3070  * configure endpoint command with the Drop and Add bits set for the target
3071  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3072  */
3073 
3074 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3075 		struct usb_host_endpoint *host_ep)
3076 {
3077 	struct xhci_hcd *xhci;
3078 	struct usb_device *udev;
3079 	struct xhci_virt_device *vdev;
3080 	struct xhci_virt_ep *ep;
3081 	struct xhci_input_control_ctx *ctrl_ctx;
3082 	struct xhci_command *stop_cmd, *cfg_cmd;
3083 	unsigned int ep_index;
3084 	unsigned long flags;
3085 	u32 ep_flag;
3086 
3087 	xhci = hcd_to_xhci(hcd);
3088 	if (!host_ep->hcpriv)
3089 		return;
3090 	udev = (struct usb_device *) host_ep->hcpriv;
3091 	vdev = xhci->devs[udev->slot_id];
3092 
3093 	/*
3094 	 * vdev may be lost due to xHC restore error and re-initialization
3095 	 * during S3/S4 resume. A new vdev will be allocated later by
3096 	 * xhci_discover_or_reset_device()
3097 	 */
3098 	if (!udev->slot_id || !vdev)
3099 		return;
3100 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3101 	ep = &vdev->eps[ep_index];
3102 	if (!ep)
3103 		return;
3104 
3105 	/* Bail out if toggle is already being cleared by a endpoint reset */
3106 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3107 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3108 		return;
3109 	}
3110 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3111 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3112 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3113 		return;
3114 
3115 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3116 
3117 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3118 		return;
3119 
3120 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3121 	if (!stop_cmd)
3122 		return;
3123 
3124 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3125 	if (!cfg_cmd)
3126 		goto cleanup;
3127 
3128 	spin_lock_irqsave(&xhci->lock, flags);
3129 
3130 	/* block queuing new trbs and ringing ep doorbell */
3131 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3132 
3133 	/*
3134 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3135 	 * Driver is required to synchronously cancel all transfer request.
3136 	 * Stop the endpoint to force xHC to update the output context
3137 	 */
3138 
3139 	if (!list_empty(&ep->ring->td_list)) {
3140 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3141 		spin_unlock_irqrestore(&xhci->lock, flags);
3142 		xhci_free_command(xhci, cfg_cmd);
3143 		goto cleanup;
3144 	}
3145 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3146 	xhci_ring_cmd_db(xhci);
3147 	spin_unlock_irqrestore(&xhci->lock, flags);
3148 
3149 	wait_for_completion(stop_cmd->completion);
3150 
3151 	spin_lock_irqsave(&xhci->lock, flags);
3152 
3153 	/* config ep command clears toggle if add and drop ep flags are set */
3154 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3155 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3156 					   ctrl_ctx, ep_flag, ep_flag);
3157 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3158 
3159 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3160 				      udev->slot_id, false);
3161 	xhci_ring_cmd_db(xhci);
3162 	spin_unlock_irqrestore(&xhci->lock, flags);
3163 
3164 	wait_for_completion(cfg_cmd->completion);
3165 
3166 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3167 	xhci_free_command(xhci, cfg_cmd);
3168 cleanup:
3169 	xhci_free_command(xhci, stop_cmd);
3170 }
3171 
3172 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3173 		struct usb_device *udev, struct usb_host_endpoint *ep,
3174 		unsigned int slot_id)
3175 {
3176 	int ret;
3177 	unsigned int ep_index;
3178 	unsigned int ep_state;
3179 
3180 	if (!ep)
3181 		return -EINVAL;
3182 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3183 	if (ret <= 0)
3184 		return -EINVAL;
3185 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3186 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3187 				" descriptor for ep 0x%x does not support streams\n",
3188 				ep->desc.bEndpointAddress);
3189 		return -EINVAL;
3190 	}
3191 
3192 	ep_index = xhci_get_endpoint_index(&ep->desc);
3193 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3194 	if (ep_state & EP_HAS_STREAMS ||
3195 			ep_state & EP_GETTING_STREAMS) {
3196 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3197 				"already has streams set up.\n",
3198 				ep->desc.bEndpointAddress);
3199 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3200 				"dynamic stream context array reallocation.\n");
3201 		return -EINVAL;
3202 	}
3203 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3204 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3205 				"endpoint 0x%x; URBs are pending.\n",
3206 				ep->desc.bEndpointAddress);
3207 		return -EINVAL;
3208 	}
3209 	return 0;
3210 }
3211 
3212 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3213 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3214 {
3215 	unsigned int max_streams;
3216 
3217 	/* The stream context array size must be a power of two */
3218 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3219 	/*
3220 	 * Find out how many primary stream array entries the host controller
3221 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3222 	 * level page entries), but that's an optional feature for xHCI host
3223 	 * controllers. xHCs must support at least 4 stream IDs.
3224 	 */
3225 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3226 	if (*num_stream_ctxs > max_streams) {
3227 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3228 				max_streams);
3229 		*num_stream_ctxs = max_streams;
3230 		*num_streams = max_streams;
3231 	}
3232 }
3233 
3234 /* Returns an error code if one of the endpoint already has streams.
3235  * This does not change any data structures, it only checks and gathers
3236  * information.
3237  */
3238 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3239 		struct usb_device *udev,
3240 		struct usb_host_endpoint **eps, unsigned int num_eps,
3241 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3242 {
3243 	unsigned int max_streams;
3244 	unsigned int endpoint_flag;
3245 	int i;
3246 	int ret;
3247 
3248 	for (i = 0; i < num_eps; i++) {
3249 		ret = xhci_check_streams_endpoint(xhci, udev,
3250 				eps[i], udev->slot_id);
3251 		if (ret < 0)
3252 			return ret;
3253 
3254 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3255 		if (max_streams < (*num_streams - 1)) {
3256 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3257 					eps[i]->desc.bEndpointAddress,
3258 					max_streams);
3259 			*num_streams = max_streams+1;
3260 		}
3261 
3262 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3263 		if (*changed_ep_bitmask & endpoint_flag)
3264 			return -EINVAL;
3265 		*changed_ep_bitmask |= endpoint_flag;
3266 	}
3267 	return 0;
3268 }
3269 
3270 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3271 		struct usb_device *udev,
3272 		struct usb_host_endpoint **eps, unsigned int num_eps)
3273 {
3274 	u32 changed_ep_bitmask = 0;
3275 	unsigned int slot_id;
3276 	unsigned int ep_index;
3277 	unsigned int ep_state;
3278 	int i;
3279 
3280 	slot_id = udev->slot_id;
3281 	if (!xhci->devs[slot_id])
3282 		return 0;
3283 
3284 	for (i = 0; i < num_eps; i++) {
3285 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3287 		/* Are streams already being freed for the endpoint? */
3288 		if (ep_state & EP_GETTING_NO_STREAMS) {
3289 			xhci_warn(xhci, "WARN Can't disable streams for "
3290 					"endpoint 0x%x, "
3291 					"streams are being disabled already\n",
3292 					eps[i]->desc.bEndpointAddress);
3293 			return 0;
3294 		}
3295 		/* Are there actually any streams to free? */
3296 		if (!(ep_state & EP_HAS_STREAMS) &&
3297 				!(ep_state & EP_GETTING_STREAMS)) {
3298 			xhci_warn(xhci, "WARN Can't disable streams for "
3299 					"endpoint 0x%x, "
3300 					"streams are already disabled!\n",
3301 					eps[i]->desc.bEndpointAddress);
3302 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3303 					"with non-streams endpoint\n");
3304 			return 0;
3305 		}
3306 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3307 	}
3308 	return changed_ep_bitmask;
3309 }
3310 
3311 /*
3312  * The USB device drivers use this function (through the HCD interface in USB
3313  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3314  * coordinate mass storage command queueing across multiple endpoints (basically
3315  * a stream ID == a task ID).
3316  *
3317  * Setting up streams involves allocating the same size stream context array
3318  * for each endpoint and issuing a configure endpoint command for all endpoints.
3319  *
3320  * Don't allow the call to succeed if one endpoint only supports one stream
3321  * (which means it doesn't support streams at all).
3322  *
3323  * Drivers may get less stream IDs than they asked for, if the host controller
3324  * hardware or endpoints claim they can't support the number of requested
3325  * stream IDs.
3326  */
3327 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3328 		struct usb_host_endpoint **eps, unsigned int num_eps,
3329 		unsigned int num_streams, gfp_t mem_flags)
3330 {
3331 	int i, ret;
3332 	struct xhci_hcd *xhci;
3333 	struct xhci_virt_device *vdev;
3334 	struct xhci_command *config_cmd;
3335 	struct xhci_input_control_ctx *ctrl_ctx;
3336 	unsigned int ep_index;
3337 	unsigned int num_stream_ctxs;
3338 	unsigned int max_packet;
3339 	unsigned long flags;
3340 	u32 changed_ep_bitmask = 0;
3341 
3342 	if (!eps)
3343 		return -EINVAL;
3344 
3345 	/* Add one to the number of streams requested to account for
3346 	 * stream 0 that is reserved for xHCI usage.
3347 	 */
3348 	num_streams += 1;
3349 	xhci = hcd_to_xhci(hcd);
3350 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3351 			num_streams);
3352 
3353 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3354 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3355 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3356 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3357 		return -ENOSYS;
3358 	}
3359 
3360 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3361 	if (!config_cmd)
3362 		return -ENOMEM;
3363 
3364 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3365 	if (!ctrl_ctx) {
3366 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3367 				__func__);
3368 		xhci_free_command(xhci, config_cmd);
3369 		return -ENOMEM;
3370 	}
3371 
3372 	/* Check to make sure all endpoints are not already configured for
3373 	 * streams.  While we're at it, find the maximum number of streams that
3374 	 * all the endpoints will support and check for duplicate endpoints.
3375 	 */
3376 	spin_lock_irqsave(&xhci->lock, flags);
3377 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3378 			num_eps, &num_streams, &changed_ep_bitmask);
3379 	if (ret < 0) {
3380 		xhci_free_command(xhci, config_cmd);
3381 		spin_unlock_irqrestore(&xhci->lock, flags);
3382 		return ret;
3383 	}
3384 	if (num_streams <= 1) {
3385 		xhci_warn(xhci, "WARN: endpoints can't handle "
3386 				"more than one stream.\n");
3387 		xhci_free_command(xhci, config_cmd);
3388 		spin_unlock_irqrestore(&xhci->lock, flags);
3389 		return -EINVAL;
3390 	}
3391 	vdev = xhci->devs[udev->slot_id];
3392 	/* Mark each endpoint as being in transition, so
3393 	 * xhci_urb_enqueue() will reject all URBs.
3394 	 */
3395 	for (i = 0; i < num_eps; i++) {
3396 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3397 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3398 	}
3399 	spin_unlock_irqrestore(&xhci->lock, flags);
3400 
3401 	/* Setup internal data structures and allocate HW data structures for
3402 	 * streams (but don't install the HW structures in the input context
3403 	 * until we're sure all memory allocation succeeded).
3404 	 */
3405 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3406 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3407 			num_stream_ctxs, num_streams);
3408 
3409 	for (i = 0; i < num_eps; i++) {
3410 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3411 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3412 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3413 				num_stream_ctxs,
3414 				num_streams,
3415 				max_packet, mem_flags);
3416 		if (!vdev->eps[ep_index].stream_info)
3417 			goto cleanup;
3418 		/* Set maxPstreams in endpoint context and update deq ptr to
3419 		 * point to stream context array. FIXME
3420 		 */
3421 	}
3422 
3423 	/* Set up the input context for a configure endpoint command. */
3424 	for (i = 0; i < num_eps; i++) {
3425 		struct xhci_ep_ctx *ep_ctx;
3426 
3427 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3429 
3430 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3431 				vdev->out_ctx, ep_index);
3432 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3433 				vdev->eps[ep_index].stream_info);
3434 	}
3435 	/* Tell the HW to drop its old copy of the endpoint context info
3436 	 * and add the updated copy from the input context.
3437 	 */
3438 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3439 			vdev->out_ctx, ctrl_ctx,
3440 			changed_ep_bitmask, changed_ep_bitmask);
3441 
3442 	/* Issue and wait for the configure endpoint command */
3443 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3444 			false, false);
3445 
3446 	/* xHC rejected the configure endpoint command for some reason, so we
3447 	 * leave the old ring intact and free our internal streams data
3448 	 * structure.
3449 	 */
3450 	if (ret < 0)
3451 		goto cleanup;
3452 
3453 	spin_lock_irqsave(&xhci->lock, flags);
3454 	for (i = 0; i < num_eps; i++) {
3455 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3456 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3457 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3458 			 udev->slot_id, ep_index);
3459 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3460 	}
3461 	xhci_free_command(xhci, config_cmd);
3462 	spin_unlock_irqrestore(&xhci->lock, flags);
3463 
3464 	/* Subtract 1 for stream 0, which drivers can't use */
3465 	return num_streams - 1;
3466 
3467 cleanup:
3468 	/* If it didn't work, free the streams! */
3469 	for (i = 0; i < num_eps; i++) {
3470 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3471 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3472 		vdev->eps[ep_index].stream_info = NULL;
3473 		/* FIXME Unset maxPstreams in endpoint context and
3474 		 * update deq ptr to point to normal string ring.
3475 		 */
3476 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3477 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3478 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3479 	}
3480 	xhci_free_command(xhci, config_cmd);
3481 	return -ENOMEM;
3482 }
3483 
3484 /* Transition the endpoint from using streams to being a "normal" endpoint
3485  * without streams.
3486  *
3487  * Modify the endpoint context state, submit a configure endpoint command,
3488  * and free all endpoint rings for streams if that completes successfully.
3489  */
3490 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3491 		struct usb_host_endpoint **eps, unsigned int num_eps,
3492 		gfp_t mem_flags)
3493 {
3494 	int i, ret;
3495 	struct xhci_hcd *xhci;
3496 	struct xhci_virt_device *vdev;
3497 	struct xhci_command *command;
3498 	struct xhci_input_control_ctx *ctrl_ctx;
3499 	unsigned int ep_index;
3500 	unsigned long flags;
3501 	u32 changed_ep_bitmask;
3502 
3503 	xhci = hcd_to_xhci(hcd);
3504 	vdev = xhci->devs[udev->slot_id];
3505 
3506 	/* Set up a configure endpoint command to remove the streams rings */
3507 	spin_lock_irqsave(&xhci->lock, flags);
3508 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3509 			udev, eps, num_eps);
3510 	if (changed_ep_bitmask == 0) {
3511 		spin_unlock_irqrestore(&xhci->lock, flags);
3512 		return -EINVAL;
3513 	}
3514 
3515 	/* Use the xhci_command structure from the first endpoint.  We may have
3516 	 * allocated too many, but the driver may call xhci_free_streams() for
3517 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3518 	 */
3519 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3520 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3521 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3522 	if (!ctrl_ctx) {
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3525 				__func__);
3526 		return -EINVAL;
3527 	}
3528 
3529 	for (i = 0; i < num_eps; i++) {
3530 		struct xhci_ep_ctx *ep_ctx;
3531 
3532 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3534 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3535 			EP_GETTING_NO_STREAMS;
3536 
3537 		xhci_endpoint_copy(xhci, command->in_ctx,
3538 				vdev->out_ctx, ep_index);
3539 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3540 				&vdev->eps[ep_index]);
3541 	}
3542 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3543 			vdev->out_ctx, ctrl_ctx,
3544 			changed_ep_bitmask, changed_ep_bitmask);
3545 	spin_unlock_irqrestore(&xhci->lock, flags);
3546 
3547 	/* Issue and wait for the configure endpoint command,
3548 	 * which must succeed.
3549 	 */
3550 	ret = xhci_configure_endpoint(xhci, udev, command,
3551 			false, true);
3552 
3553 	/* xHC rejected the configure endpoint command for some reason, so we
3554 	 * leave the streams rings intact.
3555 	 */
3556 	if (ret < 0)
3557 		return ret;
3558 
3559 	spin_lock_irqsave(&xhci->lock, flags);
3560 	for (i = 0; i < num_eps; i++) {
3561 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3563 		vdev->eps[ep_index].stream_info = NULL;
3564 		/* FIXME Unset maxPstreams in endpoint context and
3565 		 * update deq ptr to point to normal string ring.
3566 		 */
3567 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3568 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3569 	}
3570 	spin_unlock_irqrestore(&xhci->lock, flags);
3571 
3572 	return 0;
3573 }
3574 
3575 /*
3576  * Deletes endpoint resources for endpoints that were active before a Reset
3577  * Device command, or a Disable Slot command.  The Reset Device command leaves
3578  * the control endpoint intact, whereas the Disable Slot command deletes it.
3579  *
3580  * Must be called with xhci->lock held.
3581  */
3582 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3583 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3584 {
3585 	int i;
3586 	unsigned int num_dropped_eps = 0;
3587 	unsigned int drop_flags = 0;
3588 
3589 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3590 		if (virt_dev->eps[i].ring) {
3591 			drop_flags |= 1 << i;
3592 			num_dropped_eps++;
3593 		}
3594 	}
3595 	xhci->num_active_eps -= num_dropped_eps;
3596 	if (num_dropped_eps)
3597 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3598 				"Dropped %u ep ctxs, flags = 0x%x, "
3599 				"%u now active.",
3600 				num_dropped_eps, drop_flags,
3601 				xhci->num_active_eps);
3602 }
3603 
3604 /*
3605  * This submits a Reset Device Command, which will set the device state to 0,
3606  * set the device address to 0, and disable all the endpoints except the default
3607  * control endpoint.  The USB core should come back and call
3608  * xhci_address_device(), and then re-set up the configuration.  If this is
3609  * called because of a usb_reset_and_verify_device(), then the old alternate
3610  * settings will be re-installed through the normal bandwidth allocation
3611  * functions.
3612  *
3613  * Wait for the Reset Device command to finish.  Remove all structures
3614  * associated with the endpoints that were disabled.  Clear the input device
3615  * structure? Reset the control endpoint 0 max packet size?
3616  *
3617  * If the virt_dev to be reset does not exist or does not match the udev,
3618  * it means the device is lost, possibly due to the xHC restore error and
3619  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3620  * re-allocate the device.
3621  */
3622 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3623 		struct usb_device *udev)
3624 {
3625 	int ret, i;
3626 	unsigned long flags;
3627 	struct xhci_hcd *xhci;
3628 	unsigned int slot_id;
3629 	struct xhci_virt_device *virt_dev;
3630 	struct xhci_command *reset_device_cmd;
3631 	struct xhci_slot_ctx *slot_ctx;
3632 	int old_active_eps = 0;
3633 
3634 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3635 	if (ret <= 0)
3636 		return ret;
3637 	xhci = hcd_to_xhci(hcd);
3638 	slot_id = udev->slot_id;
3639 	virt_dev = xhci->devs[slot_id];
3640 	if (!virt_dev) {
3641 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3642 				"not exist. Re-allocate the device\n", slot_id);
3643 		ret = xhci_alloc_dev(hcd, udev);
3644 		if (ret == 1)
3645 			return 0;
3646 		else
3647 			return -EINVAL;
3648 	}
3649 
3650 	if (virt_dev->tt_info)
3651 		old_active_eps = virt_dev->tt_info->active_eps;
3652 
3653 	if (virt_dev->udev != udev) {
3654 		/* If the virt_dev and the udev does not match, this virt_dev
3655 		 * may belong to another udev.
3656 		 * Re-allocate the device.
3657 		 */
3658 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3659 				"not match the udev. Re-allocate the device\n",
3660 				slot_id);
3661 		ret = xhci_alloc_dev(hcd, udev);
3662 		if (ret == 1)
3663 			return 0;
3664 		else
3665 			return -EINVAL;
3666 	}
3667 
3668 	/* If device is not setup, there is no point in resetting it */
3669 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3670 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3671 						SLOT_STATE_DISABLED)
3672 		return 0;
3673 
3674 	trace_xhci_discover_or_reset_device(slot_ctx);
3675 
3676 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3677 	/* Allocate the command structure that holds the struct completion.
3678 	 * Assume we're in process context, since the normal device reset
3679 	 * process has to wait for the device anyway.  Storage devices are
3680 	 * reset as part of error handling, so use GFP_NOIO instead of
3681 	 * GFP_KERNEL.
3682 	 */
3683 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3684 	if (!reset_device_cmd) {
3685 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3686 		return -ENOMEM;
3687 	}
3688 
3689 	/* Attempt to submit the Reset Device command to the command ring */
3690 	spin_lock_irqsave(&xhci->lock, flags);
3691 
3692 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3693 	if (ret) {
3694 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3695 		spin_unlock_irqrestore(&xhci->lock, flags);
3696 		goto command_cleanup;
3697 	}
3698 	xhci_ring_cmd_db(xhci);
3699 	spin_unlock_irqrestore(&xhci->lock, flags);
3700 
3701 	/* Wait for the Reset Device command to finish */
3702 	wait_for_completion(reset_device_cmd->completion);
3703 
3704 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3705 	 * unless we tried to reset a slot ID that wasn't enabled,
3706 	 * or the device wasn't in the addressed or configured state.
3707 	 */
3708 	ret = reset_device_cmd->status;
3709 	switch (ret) {
3710 	case COMP_COMMAND_ABORTED:
3711 	case COMP_COMMAND_RING_STOPPED:
3712 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3713 		ret = -ETIME;
3714 		goto command_cleanup;
3715 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3716 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3717 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3718 				slot_id,
3719 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3720 		xhci_dbg(xhci, "Not freeing device rings.\n");
3721 		/* Don't treat this as an error.  May change my mind later. */
3722 		ret = 0;
3723 		goto command_cleanup;
3724 	case COMP_SUCCESS:
3725 		xhci_dbg(xhci, "Successful reset device command.\n");
3726 		break;
3727 	default:
3728 		if (xhci_is_vendor_info_code(xhci, ret))
3729 			break;
3730 		xhci_warn(xhci, "Unknown completion code %u for "
3731 				"reset device command.\n", ret);
3732 		ret = -EINVAL;
3733 		goto command_cleanup;
3734 	}
3735 
3736 	/* Free up host controller endpoint resources */
3737 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3738 		spin_lock_irqsave(&xhci->lock, flags);
3739 		/* Don't delete the default control endpoint resources */
3740 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3741 		spin_unlock_irqrestore(&xhci->lock, flags);
3742 	}
3743 
3744 	/* Everything but endpoint 0 is disabled, so free the rings. */
3745 	for (i = 1; i < 31; i++) {
3746 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3747 
3748 		if (ep->ep_state & EP_HAS_STREAMS) {
3749 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3750 					xhci_get_endpoint_address(i));
3751 			xhci_free_stream_info(xhci, ep->stream_info);
3752 			ep->stream_info = NULL;
3753 			ep->ep_state &= ~EP_HAS_STREAMS;
3754 		}
3755 
3756 		if (ep->ring) {
3757 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3758 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3759 		}
3760 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3761 			xhci_drop_ep_from_interval_table(xhci,
3762 					&virt_dev->eps[i].bw_info,
3763 					virt_dev->bw_table,
3764 					udev,
3765 					&virt_dev->eps[i],
3766 					virt_dev->tt_info);
3767 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3768 	}
3769 	/* If necessary, update the number of active TTs on this root port */
3770 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3771 	virt_dev->flags = 0;
3772 	ret = 0;
3773 
3774 command_cleanup:
3775 	xhci_free_command(xhci, reset_device_cmd);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * At this point, the struct usb_device is about to go away, the device has
3781  * disconnected, and all traffic has been stopped and the endpoints have been
3782  * disabled.  Free any HC data structures associated with that device.
3783  */
3784 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3785 {
3786 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3787 	struct xhci_virt_device *virt_dev;
3788 	struct xhci_slot_ctx *slot_ctx;
3789 	int i, ret;
3790 
3791 #ifndef CONFIG_USB_DEFAULT_PERSIST
3792 	/*
3793 	 * We called pm_runtime_get_noresume when the device was attached.
3794 	 * Decrement the counter here to allow controller to runtime suspend
3795 	 * if no devices remain.
3796 	 */
3797 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3798 		pm_runtime_put_noidle(hcd->self.controller);
3799 #endif
3800 
3801 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3802 	/* If the host is halted due to driver unload, we still need to free the
3803 	 * device.
3804 	 */
3805 	if (ret <= 0 && ret != -ENODEV)
3806 		return;
3807 
3808 	virt_dev = xhci->devs[udev->slot_id];
3809 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3810 	trace_xhci_free_dev(slot_ctx);
3811 
3812 	/* Stop any wayward timer functions (which may grab the lock) */
3813 	for (i = 0; i < 31; i++) {
3814 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3815 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3816 	}
3817 	virt_dev->udev = NULL;
3818 	ret = xhci_disable_slot(xhci, udev->slot_id);
3819 	if (ret)
3820 		xhci_free_virt_device(xhci, udev->slot_id);
3821 }
3822 
3823 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3824 {
3825 	struct xhci_command *command;
3826 	unsigned long flags;
3827 	u32 state;
3828 	int ret = 0;
3829 
3830 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3831 	if (!command)
3832 		return -ENOMEM;
3833 
3834 	xhci_debugfs_remove_slot(xhci, slot_id);
3835 
3836 	spin_lock_irqsave(&xhci->lock, flags);
3837 	/* Don't disable the slot if the host controller is dead. */
3838 	state = readl(&xhci->op_regs->status);
3839 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3840 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3841 		spin_unlock_irqrestore(&xhci->lock, flags);
3842 		kfree(command);
3843 		return -ENODEV;
3844 	}
3845 
3846 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3847 				slot_id);
3848 	if (ret) {
3849 		spin_unlock_irqrestore(&xhci->lock, flags);
3850 		kfree(command);
3851 		return ret;
3852 	}
3853 	xhci_ring_cmd_db(xhci);
3854 	spin_unlock_irqrestore(&xhci->lock, flags);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * Checks if we have enough host controller resources for the default control
3860  * endpoint.
3861  *
3862  * Must be called with xhci->lock held.
3863  */
3864 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3865 {
3866 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3867 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3868 				"Not enough ep ctxs: "
3869 				"%u active, need to add 1, limit is %u.",
3870 				xhci->num_active_eps, xhci->limit_active_eps);
3871 		return -ENOMEM;
3872 	}
3873 	xhci->num_active_eps += 1;
3874 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3875 			"Adding 1 ep ctx, %u now active.",
3876 			xhci->num_active_eps);
3877 	return 0;
3878 }
3879 
3880 
3881 /*
3882  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3883  * timed out, or allocating memory failed.  Returns 1 on success.
3884  */
3885 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3886 {
3887 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3888 	struct xhci_virt_device *vdev;
3889 	struct xhci_slot_ctx *slot_ctx;
3890 	unsigned long flags;
3891 	int ret, slot_id;
3892 	struct xhci_command *command;
3893 
3894 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3895 	if (!command)
3896 		return 0;
3897 
3898 	spin_lock_irqsave(&xhci->lock, flags);
3899 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3900 	if (ret) {
3901 		spin_unlock_irqrestore(&xhci->lock, flags);
3902 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3903 		xhci_free_command(xhci, command);
3904 		return 0;
3905 	}
3906 	xhci_ring_cmd_db(xhci);
3907 	spin_unlock_irqrestore(&xhci->lock, flags);
3908 
3909 	wait_for_completion(command->completion);
3910 	slot_id = command->slot_id;
3911 
3912 	if (!slot_id || command->status != COMP_SUCCESS) {
3913 		xhci_err(xhci, "Error while assigning device slot ID\n");
3914 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3915 				HCS_MAX_SLOTS(
3916 					readl(&xhci->cap_regs->hcs_params1)));
3917 		xhci_free_command(xhci, command);
3918 		return 0;
3919 	}
3920 
3921 	xhci_free_command(xhci, command);
3922 
3923 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3924 		spin_lock_irqsave(&xhci->lock, flags);
3925 		ret = xhci_reserve_host_control_ep_resources(xhci);
3926 		if (ret) {
3927 			spin_unlock_irqrestore(&xhci->lock, flags);
3928 			xhci_warn(xhci, "Not enough host resources, "
3929 					"active endpoint contexts = %u\n",
3930 					xhci->num_active_eps);
3931 			goto disable_slot;
3932 		}
3933 		spin_unlock_irqrestore(&xhci->lock, flags);
3934 	}
3935 	/* Use GFP_NOIO, since this function can be called from
3936 	 * xhci_discover_or_reset_device(), which may be called as part of
3937 	 * mass storage driver error handling.
3938 	 */
3939 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3940 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3941 		goto disable_slot;
3942 	}
3943 	vdev = xhci->devs[slot_id];
3944 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3945 	trace_xhci_alloc_dev(slot_ctx);
3946 
3947 	udev->slot_id = slot_id;
3948 
3949 	xhci_debugfs_create_slot(xhci, slot_id);
3950 
3951 #ifndef CONFIG_USB_DEFAULT_PERSIST
3952 	/*
3953 	 * If resetting upon resume, we can't put the controller into runtime
3954 	 * suspend if there is a device attached.
3955 	 */
3956 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3957 		pm_runtime_get_noresume(hcd->self.controller);
3958 #endif
3959 
3960 	/* Is this a LS or FS device under a HS hub? */
3961 	/* Hub or peripherial? */
3962 	return 1;
3963 
3964 disable_slot:
3965 	ret = xhci_disable_slot(xhci, udev->slot_id);
3966 	if (ret)
3967 		xhci_free_virt_device(xhci, udev->slot_id);
3968 
3969 	return 0;
3970 }
3971 
3972 /*
3973  * Issue an Address Device command and optionally send a corresponding
3974  * SetAddress request to the device.
3975  */
3976 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3977 			     enum xhci_setup_dev setup)
3978 {
3979 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3980 	unsigned long flags;
3981 	struct xhci_virt_device *virt_dev;
3982 	int ret = 0;
3983 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3984 	struct xhci_slot_ctx *slot_ctx;
3985 	struct xhci_input_control_ctx *ctrl_ctx;
3986 	u64 temp_64;
3987 	struct xhci_command *command = NULL;
3988 
3989 	mutex_lock(&xhci->mutex);
3990 
3991 	if (xhci->xhc_state) {	/* dying, removing or halted */
3992 		ret = -ESHUTDOWN;
3993 		goto out;
3994 	}
3995 
3996 	if (!udev->slot_id) {
3997 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3998 				"Bad Slot ID %d", udev->slot_id);
3999 		ret = -EINVAL;
4000 		goto out;
4001 	}
4002 
4003 	virt_dev = xhci->devs[udev->slot_id];
4004 
4005 	if (WARN_ON(!virt_dev)) {
4006 		/*
4007 		 * In plug/unplug torture test with an NEC controller,
4008 		 * a zero-dereference was observed once due to virt_dev = 0.
4009 		 * Print useful debug rather than crash if it is observed again!
4010 		 */
4011 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4012 			udev->slot_id);
4013 		ret = -EINVAL;
4014 		goto out;
4015 	}
4016 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4017 	trace_xhci_setup_device_slot(slot_ctx);
4018 
4019 	if (setup == SETUP_CONTEXT_ONLY) {
4020 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4021 		    SLOT_STATE_DEFAULT) {
4022 			xhci_dbg(xhci, "Slot already in default state\n");
4023 			goto out;
4024 		}
4025 	}
4026 
4027 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4028 	if (!command) {
4029 		ret = -ENOMEM;
4030 		goto out;
4031 	}
4032 
4033 	command->in_ctx = virt_dev->in_ctx;
4034 
4035 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4036 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4037 	if (!ctrl_ctx) {
4038 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4039 				__func__);
4040 		ret = -EINVAL;
4041 		goto out;
4042 	}
4043 	/*
4044 	 * If this is the first Set Address since device plug-in or
4045 	 * virt_device realloaction after a resume with an xHCI power loss,
4046 	 * then set up the slot context.
4047 	 */
4048 	if (!slot_ctx->dev_info)
4049 		xhci_setup_addressable_virt_dev(xhci, udev);
4050 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4051 	else
4052 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4053 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4054 	ctrl_ctx->drop_flags = 0;
4055 
4056 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4057 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4058 
4059 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4060 	spin_lock_irqsave(&xhci->lock, flags);
4061 	trace_xhci_setup_device(virt_dev);
4062 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4063 					udev->slot_id, setup);
4064 	if (ret) {
4065 		spin_unlock_irqrestore(&xhci->lock, flags);
4066 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4067 				"FIXME: allocate a command ring segment");
4068 		goto out;
4069 	}
4070 	xhci_ring_cmd_db(xhci);
4071 	spin_unlock_irqrestore(&xhci->lock, flags);
4072 
4073 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4074 	wait_for_completion(command->completion);
4075 
4076 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4077 	 * the SetAddress() "recovery interval" required by USB and aborting the
4078 	 * command on a timeout.
4079 	 */
4080 	switch (command->status) {
4081 	case COMP_COMMAND_ABORTED:
4082 	case COMP_COMMAND_RING_STOPPED:
4083 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4084 		ret = -ETIME;
4085 		break;
4086 	case COMP_CONTEXT_STATE_ERROR:
4087 	case COMP_SLOT_NOT_ENABLED_ERROR:
4088 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4089 			 act, udev->slot_id);
4090 		ret = -EINVAL;
4091 		break;
4092 	case COMP_USB_TRANSACTION_ERROR:
4093 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4094 
4095 		mutex_unlock(&xhci->mutex);
4096 		ret = xhci_disable_slot(xhci, udev->slot_id);
4097 		if (!ret)
4098 			xhci_alloc_dev(hcd, udev);
4099 		kfree(command->completion);
4100 		kfree(command);
4101 		return -EPROTO;
4102 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4103 		dev_warn(&udev->dev,
4104 			 "ERROR: Incompatible device for setup %s command\n", act);
4105 		ret = -ENODEV;
4106 		break;
4107 	case COMP_SUCCESS:
4108 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4109 			       "Successful setup %s command", act);
4110 		break;
4111 	default:
4112 		xhci_err(xhci,
4113 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4114 			 act, command->status);
4115 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4116 		ret = -EINVAL;
4117 		break;
4118 	}
4119 	if (ret)
4120 		goto out;
4121 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4122 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4123 			"Op regs DCBAA ptr = %#016llx", temp_64);
4124 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4125 		"Slot ID %d dcbaa entry @%p = %#016llx",
4126 		udev->slot_id,
4127 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4128 		(unsigned long long)
4129 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4130 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4131 			"Output Context DMA address = %#08llx",
4132 			(unsigned long long)virt_dev->out_ctx->dma);
4133 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4134 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4135 	/*
4136 	 * USB core uses address 1 for the roothubs, so we add one to the
4137 	 * address given back to us by the HC.
4138 	 */
4139 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4140 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4141 	/* Zero the input context control for later use */
4142 	ctrl_ctx->add_flags = 0;
4143 	ctrl_ctx->drop_flags = 0;
4144 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4145 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4146 
4147 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4148 		       "Internal device address = %d",
4149 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4150 out:
4151 	mutex_unlock(&xhci->mutex);
4152 	if (command) {
4153 		kfree(command->completion);
4154 		kfree(command);
4155 	}
4156 	return ret;
4157 }
4158 
4159 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4160 {
4161 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4162 }
4163 
4164 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4165 {
4166 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4167 }
4168 
4169 /*
4170  * Transfer the port index into real index in the HW port status
4171  * registers. Caculate offset between the port's PORTSC register
4172  * and port status base. Divide the number of per port register
4173  * to get the real index. The raw port number bases 1.
4174  */
4175 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4176 {
4177 	struct xhci_hub *rhub;
4178 
4179 	rhub = xhci_get_rhub(hcd);
4180 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4181 }
4182 
4183 /*
4184  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4185  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4186  */
4187 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4188 			struct usb_device *udev, u16 max_exit_latency)
4189 {
4190 	struct xhci_virt_device *virt_dev;
4191 	struct xhci_command *command;
4192 	struct xhci_input_control_ctx *ctrl_ctx;
4193 	struct xhci_slot_ctx *slot_ctx;
4194 	unsigned long flags;
4195 	int ret;
4196 
4197 	spin_lock_irqsave(&xhci->lock, flags);
4198 
4199 	virt_dev = xhci->devs[udev->slot_id];
4200 
4201 	/*
4202 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4203 	 * xHC was re-initialized. Exit latency will be set later after
4204 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4205 	 */
4206 
4207 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4208 		spin_unlock_irqrestore(&xhci->lock, flags);
4209 		return 0;
4210 	}
4211 
4212 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4213 	command = xhci->lpm_command;
4214 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4215 	if (!ctrl_ctx) {
4216 		spin_unlock_irqrestore(&xhci->lock, flags);
4217 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4218 				__func__);
4219 		return -ENOMEM;
4220 	}
4221 
4222 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4223 	spin_unlock_irqrestore(&xhci->lock, flags);
4224 
4225 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4226 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4227 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4228 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4229 	slot_ctx->dev_state = 0;
4230 
4231 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4232 			"Set up evaluate context for LPM MEL change.");
4233 
4234 	/* Issue and wait for the evaluate context command. */
4235 	ret = xhci_configure_endpoint(xhci, udev, command,
4236 			true, true);
4237 
4238 	if (!ret) {
4239 		spin_lock_irqsave(&xhci->lock, flags);
4240 		virt_dev->current_mel = max_exit_latency;
4241 		spin_unlock_irqrestore(&xhci->lock, flags);
4242 	}
4243 	return ret;
4244 }
4245 
4246 #ifdef CONFIG_PM
4247 
4248 /* BESL to HIRD Encoding array for USB2 LPM */
4249 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4250 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4251 
4252 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4253 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4254 					struct usb_device *udev)
4255 {
4256 	int u2del, besl, besl_host;
4257 	int besl_device = 0;
4258 	u32 field;
4259 
4260 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4261 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4262 
4263 	if (field & USB_BESL_SUPPORT) {
4264 		for (besl_host = 0; besl_host < 16; besl_host++) {
4265 			if (xhci_besl_encoding[besl_host] >= u2del)
4266 				break;
4267 		}
4268 		/* Use baseline BESL value as default */
4269 		if (field & USB_BESL_BASELINE_VALID)
4270 			besl_device = USB_GET_BESL_BASELINE(field);
4271 		else if (field & USB_BESL_DEEP_VALID)
4272 			besl_device = USB_GET_BESL_DEEP(field);
4273 	} else {
4274 		if (u2del <= 50)
4275 			besl_host = 0;
4276 		else
4277 			besl_host = (u2del - 51) / 75 + 1;
4278 	}
4279 
4280 	besl = besl_host + besl_device;
4281 	if (besl > 15)
4282 		besl = 15;
4283 
4284 	return besl;
4285 }
4286 
4287 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4288 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4289 {
4290 	u32 field;
4291 	int l1;
4292 	int besld = 0;
4293 	int hirdm = 0;
4294 
4295 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4296 
4297 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4298 	l1 = udev->l1_params.timeout / 256;
4299 
4300 	/* device has preferred BESLD */
4301 	if (field & USB_BESL_DEEP_VALID) {
4302 		besld = USB_GET_BESL_DEEP(field);
4303 		hirdm = 1;
4304 	}
4305 
4306 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4307 }
4308 
4309 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4310 			struct usb_device *udev, int enable)
4311 {
4312 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4313 	struct xhci_port **ports;
4314 	__le32 __iomem	*pm_addr, *hlpm_addr;
4315 	u32		pm_val, hlpm_val, field;
4316 	unsigned int	port_num;
4317 	unsigned long	flags;
4318 	int		hird, exit_latency;
4319 	int		ret;
4320 
4321 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4322 			!udev->lpm_capable)
4323 		return -EPERM;
4324 
4325 	if (!udev->parent || udev->parent->parent ||
4326 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4327 		return -EPERM;
4328 
4329 	if (udev->usb2_hw_lpm_capable != 1)
4330 		return -EPERM;
4331 
4332 	spin_lock_irqsave(&xhci->lock, flags);
4333 
4334 	ports = xhci->usb2_rhub.ports;
4335 	port_num = udev->portnum - 1;
4336 	pm_addr = ports[port_num]->addr + PORTPMSC;
4337 	pm_val = readl(pm_addr);
4338 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4339 
4340 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4341 			enable ? "enable" : "disable", port_num + 1);
4342 
4343 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4344 		/* Host supports BESL timeout instead of HIRD */
4345 		if (udev->usb2_hw_lpm_besl_capable) {
4346 			/* if device doesn't have a preferred BESL value use a
4347 			 * default one which works with mixed HIRD and BESL
4348 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4349 			 */
4350 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4351 			if ((field & USB_BESL_SUPPORT) &&
4352 			    (field & USB_BESL_BASELINE_VALID))
4353 				hird = USB_GET_BESL_BASELINE(field);
4354 			else
4355 				hird = udev->l1_params.besl;
4356 
4357 			exit_latency = xhci_besl_encoding[hird];
4358 			spin_unlock_irqrestore(&xhci->lock, flags);
4359 
4360 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4361 			 * input context for link powermanagement evaluate
4362 			 * context commands. It is protected by hcd->bandwidth
4363 			 * mutex and is shared by all devices. We need to set
4364 			 * the max ext latency in USB 2 BESL LPM as well, so
4365 			 * use the same mutex and xhci_change_max_exit_latency()
4366 			 */
4367 			mutex_lock(hcd->bandwidth_mutex);
4368 			ret = xhci_change_max_exit_latency(xhci, udev,
4369 							   exit_latency);
4370 			mutex_unlock(hcd->bandwidth_mutex);
4371 
4372 			if (ret < 0)
4373 				return ret;
4374 			spin_lock_irqsave(&xhci->lock, flags);
4375 
4376 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4377 			writel(hlpm_val, hlpm_addr);
4378 			/* flush write */
4379 			readl(hlpm_addr);
4380 		} else {
4381 			hird = xhci_calculate_hird_besl(xhci, udev);
4382 		}
4383 
4384 		pm_val &= ~PORT_HIRD_MASK;
4385 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4386 		writel(pm_val, pm_addr);
4387 		pm_val = readl(pm_addr);
4388 		pm_val |= PORT_HLE;
4389 		writel(pm_val, pm_addr);
4390 		/* flush write */
4391 		readl(pm_addr);
4392 	} else {
4393 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4394 		writel(pm_val, pm_addr);
4395 		/* flush write */
4396 		readl(pm_addr);
4397 		if (udev->usb2_hw_lpm_besl_capable) {
4398 			spin_unlock_irqrestore(&xhci->lock, flags);
4399 			mutex_lock(hcd->bandwidth_mutex);
4400 			xhci_change_max_exit_latency(xhci, udev, 0);
4401 			mutex_unlock(hcd->bandwidth_mutex);
4402 			return 0;
4403 		}
4404 	}
4405 
4406 	spin_unlock_irqrestore(&xhci->lock, flags);
4407 	return 0;
4408 }
4409 
4410 /* check if a usb2 port supports a given extened capability protocol
4411  * only USB2 ports extended protocol capability values are cached.
4412  * Return 1 if capability is supported
4413  */
4414 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4415 					   unsigned capability)
4416 {
4417 	u32 port_offset, port_count;
4418 	int i;
4419 
4420 	for (i = 0; i < xhci->num_ext_caps; i++) {
4421 		if (xhci->ext_caps[i] & capability) {
4422 			/* port offsets starts at 1 */
4423 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4424 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4425 			if (port >= port_offset &&
4426 			    port < port_offset + port_count)
4427 				return 1;
4428 		}
4429 	}
4430 	return 0;
4431 }
4432 
4433 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4434 {
4435 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4436 	int		portnum = udev->portnum - 1;
4437 
4438 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4439 		return 0;
4440 
4441 	/* we only support lpm for non-hub device connected to root hub yet */
4442 	if (!udev->parent || udev->parent->parent ||
4443 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4444 		return 0;
4445 
4446 	if (xhci->hw_lpm_support == 1 &&
4447 			xhci_check_usb2_port_capability(
4448 				xhci, portnum, XHCI_HLC)) {
4449 		udev->usb2_hw_lpm_capable = 1;
4450 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4451 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4452 		if (xhci_check_usb2_port_capability(xhci, portnum,
4453 					XHCI_BLC))
4454 			udev->usb2_hw_lpm_besl_capable = 1;
4455 	}
4456 
4457 	return 0;
4458 }
4459 
4460 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4461 
4462 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4463 static unsigned long long xhci_service_interval_to_ns(
4464 		struct usb_endpoint_descriptor *desc)
4465 {
4466 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4467 }
4468 
4469 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4470 		enum usb3_link_state state)
4471 {
4472 	unsigned long long sel;
4473 	unsigned long long pel;
4474 	unsigned int max_sel_pel;
4475 	char *state_name;
4476 
4477 	switch (state) {
4478 	case USB3_LPM_U1:
4479 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4480 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4481 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4482 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4483 		state_name = "U1";
4484 		break;
4485 	case USB3_LPM_U2:
4486 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4487 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4488 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4489 		state_name = "U2";
4490 		break;
4491 	default:
4492 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4493 				__func__);
4494 		return USB3_LPM_DISABLED;
4495 	}
4496 
4497 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4498 		return USB3_LPM_DEVICE_INITIATED;
4499 
4500 	if (sel > max_sel_pel)
4501 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4502 				"due to long SEL %llu ms\n",
4503 				state_name, sel);
4504 	else
4505 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4506 				"due to long PEL %llu ms\n",
4507 				state_name, pel);
4508 	return USB3_LPM_DISABLED;
4509 }
4510 
4511 /* The U1 timeout should be the maximum of the following values:
4512  *  - For control endpoints, U1 system exit latency (SEL) * 3
4513  *  - For bulk endpoints, U1 SEL * 5
4514  *  - For interrupt endpoints:
4515  *    - Notification EPs, U1 SEL * 3
4516  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4517  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4518  */
4519 static unsigned long long xhci_calculate_intel_u1_timeout(
4520 		struct usb_device *udev,
4521 		struct usb_endpoint_descriptor *desc)
4522 {
4523 	unsigned long long timeout_ns;
4524 	int ep_type;
4525 	int intr_type;
4526 
4527 	ep_type = usb_endpoint_type(desc);
4528 	switch (ep_type) {
4529 	case USB_ENDPOINT_XFER_CONTROL:
4530 		timeout_ns = udev->u1_params.sel * 3;
4531 		break;
4532 	case USB_ENDPOINT_XFER_BULK:
4533 		timeout_ns = udev->u1_params.sel * 5;
4534 		break;
4535 	case USB_ENDPOINT_XFER_INT:
4536 		intr_type = usb_endpoint_interrupt_type(desc);
4537 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4538 			timeout_ns = udev->u1_params.sel * 3;
4539 			break;
4540 		}
4541 		/* Otherwise the calculation is the same as isoc eps */
4542 		/* fall through */
4543 	case USB_ENDPOINT_XFER_ISOC:
4544 		timeout_ns = xhci_service_interval_to_ns(desc);
4545 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4546 		if (timeout_ns < udev->u1_params.sel * 2)
4547 			timeout_ns = udev->u1_params.sel * 2;
4548 		break;
4549 	default:
4550 		return 0;
4551 	}
4552 
4553 	return timeout_ns;
4554 }
4555 
4556 /* Returns the hub-encoded U1 timeout value. */
4557 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4558 		struct usb_device *udev,
4559 		struct usb_endpoint_descriptor *desc)
4560 {
4561 	unsigned long long timeout_ns;
4562 
4563 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4564 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4565 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4566 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4567 			return USB3_LPM_DISABLED;
4568 		}
4569 	}
4570 
4571 	if (xhci->quirks & XHCI_INTEL_HOST)
4572 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4573 	else
4574 		timeout_ns = udev->u1_params.sel;
4575 
4576 	/* The U1 timeout is encoded in 1us intervals.
4577 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4578 	 */
4579 	if (timeout_ns == USB3_LPM_DISABLED)
4580 		timeout_ns = 1;
4581 	else
4582 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4583 
4584 	/* If the necessary timeout value is bigger than what we can set in the
4585 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4586 	 */
4587 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4588 		return timeout_ns;
4589 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4590 			"due to long timeout %llu ms\n", timeout_ns);
4591 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4592 }
4593 
4594 /* The U2 timeout should be the maximum of:
4595  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4596  *  - largest bInterval of any active periodic endpoint (to avoid going
4597  *    into lower power link states between intervals).
4598  *  - the U2 Exit Latency of the device
4599  */
4600 static unsigned long long xhci_calculate_intel_u2_timeout(
4601 		struct usb_device *udev,
4602 		struct usb_endpoint_descriptor *desc)
4603 {
4604 	unsigned long long timeout_ns;
4605 	unsigned long long u2_del_ns;
4606 
4607 	timeout_ns = 10 * 1000 * 1000;
4608 
4609 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4610 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4611 		timeout_ns = xhci_service_interval_to_ns(desc);
4612 
4613 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4614 	if (u2_del_ns > timeout_ns)
4615 		timeout_ns = u2_del_ns;
4616 
4617 	return timeout_ns;
4618 }
4619 
4620 /* Returns the hub-encoded U2 timeout value. */
4621 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4622 		struct usb_device *udev,
4623 		struct usb_endpoint_descriptor *desc)
4624 {
4625 	unsigned long long timeout_ns;
4626 
4627 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4628 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4629 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4630 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4631 			return USB3_LPM_DISABLED;
4632 		}
4633 	}
4634 
4635 	if (xhci->quirks & XHCI_INTEL_HOST)
4636 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4637 	else
4638 		timeout_ns = udev->u2_params.sel;
4639 
4640 	/* The U2 timeout is encoded in 256us intervals */
4641 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4642 	/* If the necessary timeout value is bigger than what we can set in the
4643 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4644 	 */
4645 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4646 		return timeout_ns;
4647 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4648 			"due to long timeout %llu ms\n", timeout_ns);
4649 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4650 }
4651 
4652 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4653 		struct usb_device *udev,
4654 		struct usb_endpoint_descriptor *desc,
4655 		enum usb3_link_state state,
4656 		u16 *timeout)
4657 {
4658 	if (state == USB3_LPM_U1)
4659 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4660 	else if (state == USB3_LPM_U2)
4661 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4662 
4663 	return USB3_LPM_DISABLED;
4664 }
4665 
4666 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4667 		struct usb_device *udev,
4668 		struct usb_endpoint_descriptor *desc,
4669 		enum usb3_link_state state,
4670 		u16 *timeout)
4671 {
4672 	u16 alt_timeout;
4673 
4674 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4675 		desc, state, timeout);
4676 
4677 	/* If we found we can't enable hub-initiated LPM, or
4678 	 * the U1 or U2 exit latency was too high to allow
4679 	 * device-initiated LPM as well, just stop searching.
4680 	 */
4681 	if (alt_timeout == USB3_LPM_DISABLED ||
4682 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4683 		*timeout = alt_timeout;
4684 		return -E2BIG;
4685 	}
4686 	if (alt_timeout > *timeout)
4687 		*timeout = alt_timeout;
4688 	return 0;
4689 }
4690 
4691 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4692 		struct usb_device *udev,
4693 		struct usb_host_interface *alt,
4694 		enum usb3_link_state state,
4695 		u16 *timeout)
4696 {
4697 	int j;
4698 
4699 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4700 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4701 					&alt->endpoint[j].desc, state, timeout))
4702 			return -E2BIG;
4703 		continue;
4704 	}
4705 	return 0;
4706 }
4707 
4708 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4709 		enum usb3_link_state state)
4710 {
4711 	struct usb_device *parent;
4712 	unsigned int num_hubs;
4713 
4714 	if (state == USB3_LPM_U2)
4715 		return 0;
4716 
4717 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4718 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4719 			parent = parent->parent)
4720 		num_hubs++;
4721 
4722 	if (num_hubs < 2)
4723 		return 0;
4724 
4725 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4726 			" below second-tier hub.\n");
4727 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4728 			"to decrease power consumption.\n");
4729 	return -E2BIG;
4730 }
4731 
4732 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4733 		struct usb_device *udev,
4734 		enum usb3_link_state state)
4735 {
4736 	if (xhci->quirks & XHCI_INTEL_HOST)
4737 		return xhci_check_intel_tier_policy(udev, state);
4738 	else
4739 		return 0;
4740 }
4741 
4742 /* Returns the U1 or U2 timeout that should be enabled.
4743  * If the tier check or timeout setting functions return with a non-zero exit
4744  * code, that means the timeout value has been finalized and we shouldn't look
4745  * at any more endpoints.
4746  */
4747 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4748 			struct usb_device *udev, enum usb3_link_state state)
4749 {
4750 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4751 	struct usb_host_config *config;
4752 	char *state_name;
4753 	int i;
4754 	u16 timeout = USB3_LPM_DISABLED;
4755 
4756 	if (state == USB3_LPM_U1)
4757 		state_name = "U1";
4758 	else if (state == USB3_LPM_U2)
4759 		state_name = "U2";
4760 	else {
4761 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4762 				state);
4763 		return timeout;
4764 	}
4765 
4766 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4767 		return timeout;
4768 
4769 	/* Gather some information about the currently installed configuration
4770 	 * and alternate interface settings.
4771 	 */
4772 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4773 			state, &timeout))
4774 		return timeout;
4775 
4776 	config = udev->actconfig;
4777 	if (!config)
4778 		return timeout;
4779 
4780 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4781 		struct usb_driver *driver;
4782 		struct usb_interface *intf = config->interface[i];
4783 
4784 		if (!intf)
4785 			continue;
4786 
4787 		/* Check if any currently bound drivers want hub-initiated LPM
4788 		 * disabled.
4789 		 */
4790 		if (intf->dev.driver) {
4791 			driver = to_usb_driver(intf->dev.driver);
4792 			if (driver && driver->disable_hub_initiated_lpm) {
4793 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4794 						"at request of driver %s\n",
4795 						state_name, driver->name);
4796 				return xhci_get_timeout_no_hub_lpm(udev, state);
4797 			}
4798 		}
4799 
4800 		/* Not sure how this could happen... */
4801 		if (!intf->cur_altsetting)
4802 			continue;
4803 
4804 		if (xhci_update_timeout_for_interface(xhci, udev,
4805 					intf->cur_altsetting,
4806 					state, &timeout))
4807 			return timeout;
4808 	}
4809 	return timeout;
4810 }
4811 
4812 static int calculate_max_exit_latency(struct usb_device *udev,
4813 		enum usb3_link_state state_changed,
4814 		u16 hub_encoded_timeout)
4815 {
4816 	unsigned long long u1_mel_us = 0;
4817 	unsigned long long u2_mel_us = 0;
4818 	unsigned long long mel_us = 0;
4819 	bool disabling_u1;
4820 	bool disabling_u2;
4821 	bool enabling_u1;
4822 	bool enabling_u2;
4823 
4824 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4825 			hub_encoded_timeout == USB3_LPM_DISABLED);
4826 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4827 			hub_encoded_timeout == USB3_LPM_DISABLED);
4828 
4829 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4830 			hub_encoded_timeout != USB3_LPM_DISABLED);
4831 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4832 			hub_encoded_timeout != USB3_LPM_DISABLED);
4833 
4834 	/* If U1 was already enabled and we're not disabling it,
4835 	 * or we're going to enable U1, account for the U1 max exit latency.
4836 	 */
4837 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4838 			enabling_u1)
4839 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4840 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4841 			enabling_u2)
4842 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4843 
4844 	if (u1_mel_us > u2_mel_us)
4845 		mel_us = u1_mel_us;
4846 	else
4847 		mel_us = u2_mel_us;
4848 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4849 	if (mel_us > MAX_EXIT) {
4850 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4851 				"is too big.\n", mel_us);
4852 		return -E2BIG;
4853 	}
4854 	return mel_us;
4855 }
4856 
4857 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4858 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4859 			struct usb_device *udev, enum usb3_link_state state)
4860 {
4861 	struct xhci_hcd	*xhci;
4862 	u16 hub_encoded_timeout;
4863 	int mel;
4864 	int ret;
4865 
4866 	xhci = hcd_to_xhci(hcd);
4867 	/* The LPM timeout values are pretty host-controller specific, so don't
4868 	 * enable hub-initiated timeouts unless the vendor has provided
4869 	 * information about their timeout algorithm.
4870 	 */
4871 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4872 			!xhci->devs[udev->slot_id])
4873 		return USB3_LPM_DISABLED;
4874 
4875 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4876 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4877 	if (mel < 0) {
4878 		/* Max Exit Latency is too big, disable LPM. */
4879 		hub_encoded_timeout = USB3_LPM_DISABLED;
4880 		mel = 0;
4881 	}
4882 
4883 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4884 	if (ret)
4885 		return ret;
4886 	return hub_encoded_timeout;
4887 }
4888 
4889 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4890 			struct usb_device *udev, enum usb3_link_state state)
4891 {
4892 	struct xhci_hcd	*xhci;
4893 	u16 mel;
4894 
4895 	xhci = hcd_to_xhci(hcd);
4896 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4897 			!xhci->devs[udev->slot_id])
4898 		return 0;
4899 
4900 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4901 	return xhci_change_max_exit_latency(xhci, udev, mel);
4902 }
4903 #else /* CONFIG_PM */
4904 
4905 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4906 				struct usb_device *udev, int enable)
4907 {
4908 	return 0;
4909 }
4910 
4911 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4912 {
4913 	return 0;
4914 }
4915 
4916 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4917 			struct usb_device *udev, enum usb3_link_state state)
4918 {
4919 	return USB3_LPM_DISABLED;
4920 }
4921 
4922 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4923 			struct usb_device *udev, enum usb3_link_state state)
4924 {
4925 	return 0;
4926 }
4927 #endif	/* CONFIG_PM */
4928 
4929 /*-------------------------------------------------------------------------*/
4930 
4931 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4932  * internal data structures for the device.
4933  */
4934 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4935 			struct usb_tt *tt, gfp_t mem_flags)
4936 {
4937 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4938 	struct xhci_virt_device *vdev;
4939 	struct xhci_command *config_cmd;
4940 	struct xhci_input_control_ctx *ctrl_ctx;
4941 	struct xhci_slot_ctx *slot_ctx;
4942 	unsigned long flags;
4943 	unsigned think_time;
4944 	int ret;
4945 
4946 	/* Ignore root hubs */
4947 	if (!hdev->parent)
4948 		return 0;
4949 
4950 	vdev = xhci->devs[hdev->slot_id];
4951 	if (!vdev) {
4952 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4953 		return -EINVAL;
4954 	}
4955 
4956 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4957 	if (!config_cmd)
4958 		return -ENOMEM;
4959 
4960 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4961 	if (!ctrl_ctx) {
4962 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4963 				__func__);
4964 		xhci_free_command(xhci, config_cmd);
4965 		return -ENOMEM;
4966 	}
4967 
4968 	spin_lock_irqsave(&xhci->lock, flags);
4969 	if (hdev->speed == USB_SPEED_HIGH &&
4970 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4971 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4972 		xhci_free_command(xhci, config_cmd);
4973 		spin_unlock_irqrestore(&xhci->lock, flags);
4974 		return -ENOMEM;
4975 	}
4976 
4977 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4978 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4979 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4980 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4981 	/*
4982 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4983 	 * but it may be already set to 1 when setup an xHCI virtual
4984 	 * device, so clear it anyway.
4985 	 */
4986 	if (tt->multi)
4987 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4988 	else if (hdev->speed == USB_SPEED_FULL)
4989 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4990 
4991 	if (xhci->hci_version > 0x95) {
4992 		xhci_dbg(xhci, "xHCI version %x needs hub "
4993 				"TT think time and number of ports\n",
4994 				(unsigned int) xhci->hci_version);
4995 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4996 		/* Set TT think time - convert from ns to FS bit times.
4997 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4998 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4999 		 *
5000 		 * xHCI 1.0: this field shall be 0 if the device is not a
5001 		 * High-spped hub.
5002 		 */
5003 		think_time = tt->think_time;
5004 		if (think_time != 0)
5005 			think_time = (think_time / 666) - 1;
5006 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5007 			slot_ctx->tt_info |=
5008 				cpu_to_le32(TT_THINK_TIME(think_time));
5009 	} else {
5010 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5011 				"TT think time or number of ports\n",
5012 				(unsigned int) xhci->hci_version);
5013 	}
5014 	slot_ctx->dev_state = 0;
5015 	spin_unlock_irqrestore(&xhci->lock, flags);
5016 
5017 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5018 			(xhci->hci_version > 0x95) ?
5019 			"configure endpoint" : "evaluate context");
5020 
5021 	/* Issue and wait for the configure endpoint or
5022 	 * evaluate context command.
5023 	 */
5024 	if (xhci->hci_version > 0x95)
5025 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5026 				false, false);
5027 	else
5028 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5029 				true, false);
5030 
5031 	xhci_free_command(xhci, config_cmd);
5032 	return ret;
5033 }
5034 
5035 static int xhci_get_frame(struct usb_hcd *hcd)
5036 {
5037 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5038 	/* EHCI mods by the periodic size.  Why? */
5039 	return readl(&xhci->run_regs->microframe_index) >> 3;
5040 }
5041 
5042 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5043 {
5044 	struct xhci_hcd		*xhci;
5045 	/*
5046 	 * TODO: Check with DWC3 clients for sysdev according to
5047 	 * quirks
5048 	 */
5049 	struct device		*dev = hcd->self.sysdev;
5050 	unsigned int		minor_rev;
5051 	int			retval;
5052 
5053 	/* Accept arbitrarily long scatter-gather lists */
5054 	hcd->self.sg_tablesize = ~0;
5055 
5056 	/* support to build packet from discontinuous buffers */
5057 	hcd->self.no_sg_constraint = 1;
5058 
5059 	/* XHCI controllers don't stop the ep queue on short packets :| */
5060 	hcd->self.no_stop_on_short = 1;
5061 
5062 	xhci = hcd_to_xhci(hcd);
5063 
5064 	if (usb_hcd_is_primary_hcd(hcd)) {
5065 		xhci->main_hcd = hcd;
5066 		xhci->usb2_rhub.hcd = hcd;
5067 		/* Mark the first roothub as being USB 2.0.
5068 		 * The xHCI driver will register the USB 3.0 roothub.
5069 		 */
5070 		hcd->speed = HCD_USB2;
5071 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5072 		/*
5073 		 * USB 2.0 roothub under xHCI has an integrated TT,
5074 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5075 		 * companion controller.
5076 		 */
5077 		hcd->has_tt = 1;
5078 	} else {
5079 		/*
5080 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5081 		 * minor revision instead of sbrn. Minor revision is a two digit
5082 		 * BCD containing minor and sub-minor numbers, only show minor.
5083 		 */
5084 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5085 
5086 		switch (minor_rev) {
5087 		case 2:
5088 			hcd->speed = HCD_USB32;
5089 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5090 			hcd->self.root_hub->rx_lanes = 2;
5091 			hcd->self.root_hub->tx_lanes = 2;
5092 			break;
5093 		case 1:
5094 			hcd->speed = HCD_USB31;
5095 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5096 			break;
5097 		}
5098 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5099 			  minor_rev,
5100 			  minor_rev ? "Enhanced " : "");
5101 
5102 		xhci->usb3_rhub.hcd = hcd;
5103 		/* xHCI private pointer was set in xhci_pci_probe for the second
5104 		 * registered roothub.
5105 		 */
5106 		return 0;
5107 	}
5108 
5109 	mutex_init(&xhci->mutex);
5110 	xhci->cap_regs = hcd->regs;
5111 	xhci->op_regs = hcd->regs +
5112 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5113 	xhci->run_regs = hcd->regs +
5114 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5115 	/* Cache read-only capability registers */
5116 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5117 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5118 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5119 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5120 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5121 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5122 	if (xhci->hci_version > 0x100)
5123 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5124 
5125 	xhci->quirks |= quirks;
5126 
5127 	get_quirks(dev, xhci);
5128 
5129 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5130 	 * success event after a short transfer. This quirk will ignore such
5131 	 * spurious event.
5132 	 */
5133 	if (xhci->hci_version > 0x96)
5134 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5135 
5136 	/* Make sure the HC is halted. */
5137 	retval = xhci_halt(xhci);
5138 	if (retval)
5139 		return retval;
5140 
5141 	xhci_zero_64b_regs(xhci);
5142 
5143 	xhci_dbg(xhci, "Resetting HCD\n");
5144 	/* Reset the internal HC memory state and registers. */
5145 	retval = xhci_reset(xhci);
5146 	if (retval)
5147 		return retval;
5148 	xhci_dbg(xhci, "Reset complete\n");
5149 
5150 	/*
5151 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5152 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5153 	 * address memory pointers actually. So, this driver clears the AC64
5154 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5155 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5156 	 */
5157 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5158 		xhci->hcc_params &= ~BIT(0);
5159 
5160 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5161 	 * if xHC supports 64-bit addressing */
5162 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5163 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5164 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5165 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5166 	} else {
5167 		/*
5168 		 * This is to avoid error in cases where a 32-bit USB
5169 		 * controller is used on a 64-bit capable system.
5170 		 */
5171 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5172 		if (retval)
5173 			return retval;
5174 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5175 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5176 	}
5177 
5178 	xhci_dbg(xhci, "Calling HCD init\n");
5179 	/* Initialize HCD and host controller data structures. */
5180 	retval = xhci_init(hcd);
5181 	if (retval)
5182 		return retval;
5183 	xhci_dbg(xhci, "Called HCD init\n");
5184 
5185 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5186 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5187 
5188 	return 0;
5189 }
5190 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5191 
5192 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5193 		struct usb_host_endpoint *ep)
5194 {
5195 	struct xhci_hcd *xhci;
5196 	struct usb_device *udev;
5197 	unsigned int slot_id;
5198 	unsigned int ep_index;
5199 	unsigned long flags;
5200 
5201 	xhci = hcd_to_xhci(hcd);
5202 	udev = (struct usb_device *)ep->hcpriv;
5203 	slot_id = udev->slot_id;
5204 	ep_index = xhci_get_endpoint_index(&ep->desc);
5205 
5206 	spin_lock_irqsave(&xhci->lock, flags);
5207 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5208 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5209 	spin_unlock_irqrestore(&xhci->lock, flags);
5210 }
5211 
5212 static const struct hc_driver xhci_hc_driver = {
5213 	.description =		"xhci-hcd",
5214 	.product_desc =		"xHCI Host Controller",
5215 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5216 
5217 	/*
5218 	 * generic hardware linkage
5219 	 */
5220 	.irq =			xhci_irq,
5221 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5222 
5223 	/*
5224 	 * basic lifecycle operations
5225 	 */
5226 	.reset =		NULL, /* set in xhci_init_driver() */
5227 	.start =		xhci_run,
5228 	.stop =			xhci_stop,
5229 	.shutdown =		xhci_shutdown,
5230 
5231 	/*
5232 	 * managing i/o requests and associated device resources
5233 	 */
5234 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5235 	.urb_enqueue =		xhci_urb_enqueue,
5236 	.urb_dequeue =		xhci_urb_dequeue,
5237 	.alloc_dev =		xhci_alloc_dev,
5238 	.free_dev =		xhci_free_dev,
5239 	.alloc_streams =	xhci_alloc_streams,
5240 	.free_streams =		xhci_free_streams,
5241 	.add_endpoint =		xhci_add_endpoint,
5242 	.drop_endpoint =	xhci_drop_endpoint,
5243 	.endpoint_reset =	xhci_endpoint_reset,
5244 	.check_bandwidth =	xhci_check_bandwidth,
5245 	.reset_bandwidth =	xhci_reset_bandwidth,
5246 	.address_device =	xhci_address_device,
5247 	.enable_device =	xhci_enable_device,
5248 	.update_hub_device =	xhci_update_hub_device,
5249 	.reset_device =		xhci_discover_or_reset_device,
5250 
5251 	/*
5252 	 * scheduling support
5253 	 */
5254 	.get_frame_number =	xhci_get_frame,
5255 
5256 	/*
5257 	 * root hub support
5258 	 */
5259 	.hub_control =		xhci_hub_control,
5260 	.hub_status_data =	xhci_hub_status_data,
5261 	.bus_suspend =		xhci_bus_suspend,
5262 	.bus_resume =		xhci_bus_resume,
5263 	.get_resuming_ports =	xhci_get_resuming_ports,
5264 
5265 	/*
5266 	 * call back when device connected and addressed
5267 	 */
5268 	.update_device =        xhci_update_device,
5269 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5270 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5271 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5272 	.find_raw_port_number =	xhci_find_raw_port_number,
5273 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5274 };
5275 
5276 void xhci_init_driver(struct hc_driver *drv,
5277 		      const struct xhci_driver_overrides *over)
5278 {
5279 	BUG_ON(!over);
5280 
5281 	/* Copy the generic table to drv then apply the overrides */
5282 	*drv = xhci_hc_driver;
5283 
5284 	if (over) {
5285 		drv->hcd_priv_size += over->extra_priv_size;
5286 		if (over->reset)
5287 			drv->reset = over->reset;
5288 		if (over->start)
5289 			drv->start = over->start;
5290 	}
5291 }
5292 EXPORT_SYMBOL_GPL(xhci_init_driver);
5293 
5294 MODULE_DESCRIPTION(DRIVER_DESC);
5295 MODULE_AUTHOR(DRIVER_AUTHOR);
5296 MODULE_LICENSE("GPL");
5297 
5298 static int __init xhci_hcd_init(void)
5299 {
5300 	/*
5301 	 * Check the compiler generated sizes of structures that must be laid
5302 	 * out in specific ways for hardware access.
5303 	 */
5304 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5305 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5306 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5307 	/* xhci_device_control has eight fields, and also
5308 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5309 	 */
5310 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5311 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5312 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5313 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5314 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5315 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5316 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5317 
5318 	if (usb_disabled())
5319 		return -ENODEV;
5320 
5321 	xhci_debugfs_create_root();
5322 
5323 	return 0;
5324 }
5325 
5326 /*
5327  * If an init function is provided, an exit function must also be provided
5328  * to allow module unload.
5329  */
5330 static void __exit xhci_hcd_fini(void)
5331 {
5332 	xhci_debugfs_remove_root();
5333 }
5334 
5335 module_init(xhci_hcd_init);
5336 module_exit(xhci_hcd_fini);
5337