xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 7fbbbc78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	xhci_dbc_suspend(xhci);
986 
987 	/* Clear root port wake on bits if wakeup not allowed. */
988 	if (!do_wakeup)
989 		xhci_disable_port_wake_on_bits(xhci);
990 
991 	/* Don't poll the roothubs on bus suspend. */
992 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994 	del_timer_sync(&hcd->rh_timer);
995 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996 	del_timer_sync(&xhci->shared_hcd->rh_timer);
997 
998 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
999 		usleep_range(1000, 1500);
1000 
1001 	spin_lock_irq(&xhci->lock);
1002 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004 	/* step 1: stop endpoint */
1005 	/* skipped assuming that port suspend has done */
1006 
1007 	/* step 2: clear Run/Stop bit */
1008 	command = readl(&xhci->op_regs->command);
1009 	command &= ~CMD_RUN;
1010 	writel(command, &xhci->op_regs->command);
1011 
1012 	/* Some chips from Fresco Logic need an extraordinary delay */
1013 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014 
1015 	if (xhci_handshake(&xhci->op_regs->status,
1016 		      STS_HALT, STS_HALT, delay)) {
1017 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018 		spin_unlock_irq(&xhci->lock);
1019 		return -ETIMEDOUT;
1020 	}
1021 	xhci_clear_command_ring(xhci);
1022 
1023 	/* step 3: save registers */
1024 	xhci_save_registers(xhci);
1025 
1026 	/* step 4: set CSS flag */
1027 	command = readl(&xhci->op_regs->command);
1028 	command |= CMD_CSS;
1029 	writel(command, &xhci->op_regs->command);
1030 	xhci->broken_suspend = 0;
1031 	if (xhci_handshake(&xhci->op_regs->status,
1032 				STS_SAVE, 0, 20 * 1000)) {
1033 	/*
1034 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1035 	 * SSS bit of USBSTS and when driver tries to poll
1036 	 * to see if the xHC clears BIT(8) which never happens
1037 	 * and driver assumes that controller is not responding
1038 	 * and times out. To workaround this, its good to check
1039 	 * if SRE and HCE bits are not set (as per xhci
1040 	 * Section 5.4.2) and bypass the timeout.
1041 	 */
1042 		res = readl(&xhci->op_regs->status);
1043 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044 		    (((res & STS_SRE) == 0) &&
1045 				((res & STS_HCE) == 0))) {
1046 			xhci->broken_suspend = 1;
1047 		} else {
1048 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049 			spin_unlock_irq(&xhci->lock);
1050 			return -ETIMEDOUT;
1051 		}
1052 	}
1053 	spin_unlock_irq(&xhci->lock);
1054 
1055 	/*
1056 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057 	 * is about to be suspended.
1058 	 */
1059 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060 			(!(xhci_all_ports_seen_u0(xhci)))) {
1061 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1062 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063 				"%s: compliance mode recovery timer deleted",
1064 				__func__);
1065 	}
1066 
1067 	/* step 5: remove core well power */
1068 	/* synchronize irq when using MSI-X */
1069 	xhci_msix_sync_irqs(xhci);
1070 
1071 	return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074 
1075 /*
1076  * start xHC (not bus-specific)
1077  *
1078  * This is called when the machine transition from S3/S4 mode.
1079  *
1080  */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083 	u32			command, temp = 0;
1084 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1085 	struct usb_hcd		*secondary_hcd;
1086 	int			retval = 0;
1087 	bool			comp_timer_running = false;
1088 
1089 	if (!hcd->state)
1090 		return 0;
1091 
1092 	/* Wait a bit if either of the roothubs need to settle from the
1093 	 * transition into bus suspend.
1094 	 */
1095 
1096 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098 		msleep(100);
1099 
1100 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102 
1103 	spin_lock_irq(&xhci->lock);
1104 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105 		hibernated = true;
1106 
1107 	if (!hibernated) {
1108 		/*
1109 		 * Some controllers might lose power during suspend, so wait
1110 		 * for controller not ready bit to clear, just as in xHC init.
1111 		 */
1112 		retval = xhci_handshake(&xhci->op_regs->status,
1113 					STS_CNR, 0, 10 * 1000 * 1000);
1114 		if (retval) {
1115 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1116 				  retval);
1117 			spin_unlock_irq(&xhci->lock);
1118 			return retval;
1119 		}
1120 		/* step 1: restore register */
1121 		xhci_restore_registers(xhci);
1122 		/* step 2: initialize command ring buffer */
1123 		xhci_set_cmd_ring_deq(xhci);
1124 		/* step 3: restore state and start state*/
1125 		/* step 3: set CRS flag */
1126 		command = readl(&xhci->op_regs->command);
1127 		command |= CMD_CRS;
1128 		writel(command, &xhci->op_regs->command);
1129 		/*
1130 		 * Some controllers take up to 55+ ms to complete the controller
1131 		 * restore so setting the timeout to 100ms. Xhci specification
1132 		 * doesn't mention any timeout value.
1133 		 */
1134 		if (xhci_handshake(&xhci->op_regs->status,
1135 			      STS_RESTORE, 0, 100 * 1000)) {
1136 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137 			spin_unlock_irq(&xhci->lock);
1138 			return -ETIMEDOUT;
1139 		}
1140 		temp = readl(&xhci->op_regs->status);
1141 	}
1142 
1143 	/* If restore operation fails, re-initialize the HC during resume */
1144 	if ((temp & STS_SRE) || hibernated) {
1145 
1146 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 				!(xhci_all_ports_seen_u0(xhci))) {
1148 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1149 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 				"Compliance Mode Recovery Timer deleted!");
1151 		}
1152 
1153 		/* Let the USB core know _both_ roothubs lost power. */
1154 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156 
1157 		xhci_dbg(xhci, "Stop HCD\n");
1158 		xhci_halt(xhci);
1159 		xhci_zero_64b_regs(xhci);
1160 		xhci_reset(xhci);
1161 		spin_unlock_irq(&xhci->lock);
1162 		xhci_cleanup_msix(xhci);
1163 
1164 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1165 		temp = readl(&xhci->op_regs->status);
1166 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1167 		temp = readl(&xhci->ir_set->irq_pending);
1168 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1169 
1170 		xhci_dbg(xhci, "cleaning up memory\n");
1171 		xhci_mem_cleanup(xhci);
1172 		xhci_debugfs_exit(xhci);
1173 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1174 			    readl(&xhci->op_regs->status));
1175 
1176 		/* USB core calls the PCI reinit and start functions twice:
1177 		 * first with the primary HCD, and then with the secondary HCD.
1178 		 * If we don't do the same, the host will never be started.
1179 		 */
1180 		if (!usb_hcd_is_primary_hcd(hcd))
1181 			secondary_hcd = hcd;
1182 		else
1183 			secondary_hcd = xhci->shared_hcd;
1184 
1185 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1186 		retval = xhci_init(hcd->primary_hcd);
1187 		if (retval)
1188 			return retval;
1189 		comp_timer_running = true;
1190 
1191 		xhci_dbg(xhci, "Start the primary HCD\n");
1192 		retval = xhci_run(hcd->primary_hcd);
1193 		if (!retval) {
1194 			xhci_dbg(xhci, "Start the secondary HCD\n");
1195 			retval = xhci_run(secondary_hcd);
1196 		}
1197 		hcd->state = HC_STATE_SUSPENDED;
1198 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1199 		goto done;
1200 	}
1201 
1202 	/* step 4: set Run/Stop bit */
1203 	command = readl(&xhci->op_regs->command);
1204 	command |= CMD_RUN;
1205 	writel(command, &xhci->op_regs->command);
1206 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1207 		  0, 250 * 1000);
1208 
1209 	/* step 5: walk topology and initialize portsc,
1210 	 * portpmsc and portli
1211 	 */
1212 	/* this is done in bus_resume */
1213 
1214 	/* step 6: restart each of the previously
1215 	 * Running endpoints by ringing their doorbells
1216 	 */
1217 
1218 	spin_unlock_irq(&xhci->lock);
1219 
1220 	xhci_dbc_resume(xhci);
1221 
1222  done:
1223 	if (retval == 0) {
1224 		/* Resume root hubs only when have pending events. */
1225 		if (xhci_pending_portevent(xhci)) {
1226 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1227 			usb_hcd_resume_root_hub(hcd);
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1233 	 * be re-initialized Always after a system resume. Ports are subject
1234 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1235 	 * ports have entered previously to U0 before system's suspension.
1236 	 */
1237 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1238 		compliance_mode_recovery_timer_init(xhci);
1239 
1240 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1241 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1242 
1243 	/* Re-enable port polling. */
1244 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1245 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1246 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1247 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1248 	usb_hcd_poll_rh_status(hcd);
1249 
1250 	return retval;
1251 }
1252 EXPORT_SYMBOL_GPL(xhci_resume);
1253 #endif	/* CONFIG_PM */
1254 
1255 /*-------------------------------------------------------------------------*/
1256 
1257 /*
1258  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1259  * we'll copy the actual data into the TRB address register. This is limited to
1260  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1261  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1262  */
1263 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264 				gfp_t mem_flags)
1265 {
1266 	if (xhci_urb_suitable_for_idt(urb))
1267 		return 0;
1268 
1269 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1270 }
1271 
1272 /**
1273  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1274  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1275  * value to right shift 1 for the bitmask.
1276  *
1277  * Index  = (epnum * 2) + direction - 1,
1278  * where direction = 0 for OUT, 1 for IN.
1279  * For control endpoints, the IN index is used (OUT index is unused), so
1280  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1281  */
1282 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1283 {
1284 	unsigned int index;
1285 	if (usb_endpoint_xfer_control(desc))
1286 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1287 	else
1288 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1289 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1290 	return index;
1291 }
1292 
1293 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1294  * address from the XHCI endpoint index.
1295  */
1296 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1297 {
1298 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1299 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1300 	return direction | number;
1301 }
1302 
1303 /* Find the flag for this endpoint (for use in the control context).  Use the
1304  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1305  * bit 1, etc.
1306  */
1307 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1308 {
1309 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1310 }
1311 
1312 /* Find the flag for this endpoint (for use in the control context).  Use the
1313  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1314  * bit 1, etc.
1315  */
1316 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1317 {
1318 	return 1 << (ep_index + 1);
1319 }
1320 
1321 /* Compute the last valid endpoint context index.  Basically, this is the
1322  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1323  * we find the most significant bit set in the added contexts flags.
1324  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1325  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1326  */
1327 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1328 {
1329 	return fls(added_ctxs) - 1;
1330 }
1331 
1332 /* Returns 1 if the arguments are OK;
1333  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1334  */
1335 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1336 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1337 		const char *func) {
1338 	struct xhci_hcd	*xhci;
1339 	struct xhci_virt_device	*virt_dev;
1340 
1341 	if (!hcd || (check_ep && !ep) || !udev) {
1342 		pr_debug("xHCI %s called with invalid args\n", func);
1343 		return -EINVAL;
1344 	}
1345 	if (!udev->parent) {
1346 		pr_debug("xHCI %s called for root hub\n", func);
1347 		return 0;
1348 	}
1349 
1350 	xhci = hcd_to_xhci(hcd);
1351 	if (check_virt_dev) {
1352 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1353 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1354 					func);
1355 			return -EINVAL;
1356 		}
1357 
1358 		virt_dev = xhci->devs[udev->slot_id];
1359 		if (virt_dev->udev != udev) {
1360 			xhci_dbg(xhci, "xHCI %s called with udev and "
1361 					  "virt_dev does not match\n", func);
1362 			return -EINVAL;
1363 		}
1364 	}
1365 
1366 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1367 		return -ENODEV;
1368 
1369 	return 1;
1370 }
1371 
1372 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1373 		struct usb_device *udev, struct xhci_command *command,
1374 		bool ctx_change, bool must_succeed);
1375 
1376 /*
1377  * Full speed devices may have a max packet size greater than 8 bytes, but the
1378  * USB core doesn't know that until it reads the first 8 bytes of the
1379  * descriptor.  If the usb_device's max packet size changes after that point,
1380  * we need to issue an evaluate context command and wait on it.
1381  */
1382 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1383 		unsigned int ep_index, struct urb *urb)
1384 {
1385 	struct xhci_container_ctx *out_ctx;
1386 	struct xhci_input_control_ctx *ctrl_ctx;
1387 	struct xhci_ep_ctx *ep_ctx;
1388 	struct xhci_command *command;
1389 	int max_packet_size;
1390 	int hw_max_packet_size;
1391 	int ret = 0;
1392 
1393 	out_ctx = xhci->devs[slot_id]->out_ctx;
1394 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1395 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1396 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1397 	if (hw_max_packet_size != max_packet_size) {
1398 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1399 				"Max Packet Size for ep 0 changed.");
1400 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1401 				"Max packet size in usb_device = %d",
1402 				max_packet_size);
1403 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404 				"Max packet size in xHCI HW = %d",
1405 				hw_max_packet_size);
1406 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1407 				"Issuing evaluate context command.");
1408 
1409 		/* Set up the input context flags for the command */
1410 		/* FIXME: This won't work if a non-default control endpoint
1411 		 * changes max packet sizes.
1412 		 */
1413 
1414 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1415 		if (!command)
1416 			return -ENOMEM;
1417 
1418 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1419 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1420 		if (!ctrl_ctx) {
1421 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1422 					__func__);
1423 			ret = -ENOMEM;
1424 			goto command_cleanup;
1425 		}
1426 		/* Set up the modified control endpoint 0 */
1427 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1428 				xhci->devs[slot_id]->out_ctx, ep_index);
1429 
1430 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1431 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1432 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1433 
1434 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1435 		ctrl_ctx->drop_flags = 0;
1436 
1437 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1438 				true, false);
1439 
1440 		/* Clean up the input context for later use by bandwidth
1441 		 * functions.
1442 		 */
1443 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1444 command_cleanup:
1445 		kfree(command->completion);
1446 		kfree(command);
1447 	}
1448 	return ret;
1449 }
1450 
1451 /*
1452  * non-error returns are a promise to giveback() the urb later
1453  * we drop ownership so next owner (or urb unlink) can get it
1454  */
1455 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1456 {
1457 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1458 	unsigned long flags;
1459 	int ret = 0;
1460 	unsigned int slot_id, ep_index;
1461 	unsigned int *ep_state;
1462 	struct urb_priv	*urb_priv;
1463 	int num_tds;
1464 
1465 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1466 					true, true, __func__) <= 0)
1467 		return -EINVAL;
1468 
1469 	slot_id = urb->dev->slot_id;
1470 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1471 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1472 
1473 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1474 		if (!in_interrupt())
1475 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1476 		return -ESHUTDOWN;
1477 	}
1478 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1479 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1480 		return -ENODEV;
1481 	}
1482 
1483 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1484 		num_tds = urb->number_of_packets;
1485 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1486 	    urb->transfer_buffer_length > 0 &&
1487 	    urb->transfer_flags & URB_ZERO_PACKET &&
1488 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1489 		num_tds = 2;
1490 	else
1491 		num_tds = 1;
1492 
1493 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1494 	if (!urb_priv)
1495 		return -ENOMEM;
1496 
1497 	urb_priv->num_tds = num_tds;
1498 	urb_priv->num_tds_done = 0;
1499 	urb->hcpriv = urb_priv;
1500 
1501 	trace_xhci_urb_enqueue(urb);
1502 
1503 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1504 		/* Check to see if the max packet size for the default control
1505 		 * endpoint changed during FS device enumeration
1506 		 */
1507 		if (urb->dev->speed == USB_SPEED_FULL) {
1508 			ret = xhci_check_maxpacket(xhci, slot_id,
1509 					ep_index, urb);
1510 			if (ret < 0) {
1511 				xhci_urb_free_priv(urb_priv);
1512 				urb->hcpriv = NULL;
1513 				return ret;
1514 			}
1515 		}
1516 	}
1517 
1518 	spin_lock_irqsave(&xhci->lock, flags);
1519 
1520 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1521 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1522 			 urb->ep->desc.bEndpointAddress, urb);
1523 		ret = -ESHUTDOWN;
1524 		goto free_priv;
1525 	}
1526 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1527 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1528 			  *ep_state);
1529 		ret = -EINVAL;
1530 		goto free_priv;
1531 	}
1532 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1533 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1534 		ret = -EINVAL;
1535 		goto free_priv;
1536 	}
1537 
1538 	switch (usb_endpoint_type(&urb->ep->desc)) {
1539 
1540 	case USB_ENDPOINT_XFER_CONTROL:
1541 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1542 					 slot_id, ep_index);
1543 		break;
1544 	case USB_ENDPOINT_XFER_BULK:
1545 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1546 					 slot_id, ep_index);
1547 		break;
1548 	case USB_ENDPOINT_XFER_INT:
1549 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1550 				slot_id, ep_index);
1551 		break;
1552 	case USB_ENDPOINT_XFER_ISOC:
1553 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1554 				slot_id, ep_index);
1555 	}
1556 
1557 	if (ret) {
1558 free_priv:
1559 		xhci_urb_free_priv(urb_priv);
1560 		urb->hcpriv = NULL;
1561 	}
1562 	spin_unlock_irqrestore(&xhci->lock, flags);
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1568  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1569  * should pick up where it left off in the TD, unless a Set Transfer Ring
1570  * Dequeue Pointer is issued.
1571  *
1572  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1573  * the ring.  Since the ring is a contiguous structure, they can't be physically
1574  * removed.  Instead, there are two options:
1575  *
1576  *  1) If the HC is in the middle of processing the URB to be canceled, we
1577  *     simply move the ring's dequeue pointer past those TRBs using the Set
1578  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1579  *     when drivers timeout on the last submitted URB and attempt to cancel.
1580  *
1581  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1582  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1583  *     HC will need to invalidate the any TRBs it has cached after the stop
1584  *     endpoint command, as noted in the xHCI 0.95 errata.
1585  *
1586  *  3) The TD may have completed by the time the Stop Endpoint Command
1587  *     completes, so software needs to handle that case too.
1588  *
1589  * This function should protect against the TD enqueueing code ringing the
1590  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1591  * It also needs to account for multiple cancellations on happening at the same
1592  * time for the same endpoint.
1593  *
1594  * Note that this function can be called in any context, or so says
1595  * usb_hcd_unlink_urb()
1596  */
1597 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1598 {
1599 	unsigned long flags;
1600 	int ret, i;
1601 	u32 temp;
1602 	struct xhci_hcd *xhci;
1603 	struct urb_priv	*urb_priv;
1604 	struct xhci_td *td;
1605 	unsigned int ep_index;
1606 	struct xhci_ring *ep_ring;
1607 	struct xhci_virt_ep *ep;
1608 	struct xhci_command *command;
1609 	struct xhci_virt_device *vdev;
1610 
1611 	xhci = hcd_to_xhci(hcd);
1612 	spin_lock_irqsave(&xhci->lock, flags);
1613 
1614 	trace_xhci_urb_dequeue(urb);
1615 
1616 	/* Make sure the URB hasn't completed or been unlinked already */
1617 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1618 	if (ret)
1619 		goto done;
1620 
1621 	/* give back URB now if we can't queue it for cancel */
1622 	vdev = xhci->devs[urb->dev->slot_id];
1623 	urb_priv = urb->hcpriv;
1624 	if (!vdev || !urb_priv)
1625 		goto err_giveback;
1626 
1627 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1628 	ep = &vdev->eps[ep_index];
1629 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1630 	if (!ep || !ep_ring)
1631 		goto err_giveback;
1632 
1633 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1634 	temp = readl(&xhci->op_regs->status);
1635 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1636 		xhci_hc_died(xhci);
1637 		goto done;
1638 	}
1639 
1640 	/*
1641 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1642 	 * make sure none of the ring related pointers in this URB private data
1643 	 * are touched, such as td_list, otherwise we overwrite freed data
1644 	 */
1645 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1646 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1647 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1648 			td = &urb_priv->td[i];
1649 			if (!list_empty(&td->cancelled_td_list))
1650 				list_del_init(&td->cancelled_td_list);
1651 		}
1652 		goto err_giveback;
1653 	}
1654 
1655 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1656 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1657 				"HC halted, freeing TD manually.");
1658 		for (i = urb_priv->num_tds_done;
1659 		     i < urb_priv->num_tds;
1660 		     i++) {
1661 			td = &urb_priv->td[i];
1662 			if (!list_empty(&td->td_list))
1663 				list_del_init(&td->td_list);
1664 			if (!list_empty(&td->cancelled_td_list))
1665 				list_del_init(&td->cancelled_td_list);
1666 		}
1667 		goto err_giveback;
1668 	}
1669 
1670 	i = urb_priv->num_tds_done;
1671 	if (i < urb_priv->num_tds)
1672 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1673 				"Cancel URB %p, dev %s, ep 0x%x, "
1674 				"starting at offset 0x%llx",
1675 				urb, urb->dev->devpath,
1676 				urb->ep->desc.bEndpointAddress,
1677 				(unsigned long long) xhci_trb_virt_to_dma(
1678 					urb_priv->td[i].start_seg,
1679 					urb_priv->td[i].first_trb));
1680 
1681 	for (; i < urb_priv->num_tds; i++) {
1682 		td = &urb_priv->td[i];
1683 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1684 	}
1685 
1686 	/* Queue a stop endpoint command, but only if this is
1687 	 * the first cancellation to be handled.
1688 	 */
1689 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1690 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1691 		if (!command) {
1692 			ret = -ENOMEM;
1693 			goto done;
1694 		}
1695 		ep->ep_state |= EP_STOP_CMD_PENDING;
1696 		ep->stop_cmd_timer.expires = jiffies +
1697 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1698 		add_timer(&ep->stop_cmd_timer);
1699 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1700 					 ep_index, 0);
1701 		xhci_ring_cmd_db(xhci);
1702 	}
1703 done:
1704 	spin_unlock_irqrestore(&xhci->lock, flags);
1705 	return ret;
1706 
1707 err_giveback:
1708 	if (urb_priv)
1709 		xhci_urb_free_priv(urb_priv);
1710 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1711 	spin_unlock_irqrestore(&xhci->lock, flags);
1712 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1713 	return ret;
1714 }
1715 
1716 /* Drop an endpoint from a new bandwidth configuration for this device.
1717  * Only one call to this function is allowed per endpoint before
1718  * check_bandwidth() or reset_bandwidth() must be called.
1719  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1720  * add the endpoint to the schedule with possibly new parameters denoted by a
1721  * different endpoint descriptor in usb_host_endpoint.
1722  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1723  * not allowed.
1724  *
1725  * The USB core will not allow URBs to be queued to an endpoint that is being
1726  * disabled, so there's no need for mutual exclusion to protect
1727  * the xhci->devs[slot_id] structure.
1728  */
1729 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1730 		struct usb_host_endpoint *ep)
1731 {
1732 	struct xhci_hcd *xhci;
1733 	struct xhci_container_ctx *in_ctx, *out_ctx;
1734 	struct xhci_input_control_ctx *ctrl_ctx;
1735 	unsigned int ep_index;
1736 	struct xhci_ep_ctx *ep_ctx;
1737 	u32 drop_flag;
1738 	u32 new_add_flags, new_drop_flags;
1739 	int ret;
1740 
1741 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1742 	if (ret <= 0)
1743 		return ret;
1744 	xhci = hcd_to_xhci(hcd);
1745 	if (xhci->xhc_state & XHCI_STATE_DYING)
1746 		return -ENODEV;
1747 
1748 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1749 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1750 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1751 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1752 				__func__, drop_flag);
1753 		return 0;
1754 	}
1755 
1756 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1757 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1758 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1759 	if (!ctrl_ctx) {
1760 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1761 				__func__);
1762 		return 0;
1763 	}
1764 
1765 	ep_index = xhci_get_endpoint_index(&ep->desc);
1766 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1767 	/* If the HC already knows the endpoint is disabled,
1768 	 * or the HCD has noted it is disabled, ignore this request
1769 	 */
1770 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1771 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1772 	    xhci_get_endpoint_flag(&ep->desc)) {
1773 		/* Do not warn when called after a usb_device_reset */
1774 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1775 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1776 				  __func__, ep);
1777 		return 0;
1778 	}
1779 
1780 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1781 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1782 
1783 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1784 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1785 
1786 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1787 
1788 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1789 
1790 	if (xhci->quirks & XHCI_MTK_HOST)
1791 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1792 
1793 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1794 			(unsigned int) ep->desc.bEndpointAddress,
1795 			udev->slot_id,
1796 			(unsigned int) new_drop_flags,
1797 			(unsigned int) new_add_flags);
1798 	return 0;
1799 }
1800 
1801 /* Add an endpoint to a new possible bandwidth configuration for this device.
1802  * Only one call to this function is allowed per endpoint before
1803  * check_bandwidth() or reset_bandwidth() must be called.
1804  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1805  * add the endpoint to the schedule with possibly new parameters denoted by a
1806  * different endpoint descriptor in usb_host_endpoint.
1807  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1808  * not allowed.
1809  *
1810  * The USB core will not allow URBs to be queued to an endpoint until the
1811  * configuration or alt setting is installed in the device, so there's no need
1812  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1813  */
1814 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1815 		struct usb_host_endpoint *ep)
1816 {
1817 	struct xhci_hcd *xhci;
1818 	struct xhci_container_ctx *in_ctx;
1819 	unsigned int ep_index;
1820 	struct xhci_input_control_ctx *ctrl_ctx;
1821 	struct xhci_ep_ctx *ep_ctx;
1822 	u32 added_ctxs;
1823 	u32 new_add_flags, new_drop_flags;
1824 	struct xhci_virt_device *virt_dev;
1825 	int ret = 0;
1826 
1827 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1828 	if (ret <= 0) {
1829 		/* So we won't queue a reset ep command for a root hub */
1830 		ep->hcpriv = NULL;
1831 		return ret;
1832 	}
1833 	xhci = hcd_to_xhci(hcd);
1834 	if (xhci->xhc_state & XHCI_STATE_DYING)
1835 		return -ENODEV;
1836 
1837 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1838 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1839 		/* FIXME when we have to issue an evaluate endpoint command to
1840 		 * deal with ep0 max packet size changing once we get the
1841 		 * descriptors
1842 		 */
1843 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1844 				__func__, added_ctxs);
1845 		return 0;
1846 	}
1847 
1848 	virt_dev = xhci->devs[udev->slot_id];
1849 	in_ctx = virt_dev->in_ctx;
1850 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1851 	if (!ctrl_ctx) {
1852 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1853 				__func__);
1854 		return 0;
1855 	}
1856 
1857 	ep_index = xhci_get_endpoint_index(&ep->desc);
1858 	/* If this endpoint is already in use, and the upper layers are trying
1859 	 * to add it again without dropping it, reject the addition.
1860 	 */
1861 	if (virt_dev->eps[ep_index].ring &&
1862 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1863 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1864 				"without dropping it.\n",
1865 				(unsigned int) ep->desc.bEndpointAddress);
1866 		return -EINVAL;
1867 	}
1868 
1869 	/* If the HCD has already noted the endpoint is enabled,
1870 	 * ignore this request.
1871 	 */
1872 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1873 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1874 				__func__, ep);
1875 		return 0;
1876 	}
1877 
1878 	/*
1879 	 * Configuration and alternate setting changes must be done in
1880 	 * process context, not interrupt context (or so documenation
1881 	 * for usb_set_interface() and usb_set_configuration() claim).
1882 	 */
1883 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1884 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1885 				__func__, ep->desc.bEndpointAddress);
1886 		return -ENOMEM;
1887 	}
1888 
1889 	if (xhci->quirks & XHCI_MTK_HOST) {
1890 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1891 		if (ret < 0) {
1892 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1893 			virt_dev->eps[ep_index].new_ring = NULL;
1894 			return ret;
1895 		}
1896 	}
1897 
1898 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1899 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1900 
1901 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1902 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1903 	 * this re-adds a new state for the endpoint from the new endpoint
1904 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1905 	 * drop flags alone.
1906 	 */
1907 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1908 
1909 	/* Store the usb_device pointer for later use */
1910 	ep->hcpriv = udev;
1911 
1912 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1913 	trace_xhci_add_endpoint(ep_ctx);
1914 
1915 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1916 
1917 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1918 			(unsigned int) ep->desc.bEndpointAddress,
1919 			udev->slot_id,
1920 			(unsigned int) new_drop_flags,
1921 			(unsigned int) new_add_flags);
1922 	return 0;
1923 }
1924 
1925 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1926 {
1927 	struct xhci_input_control_ctx *ctrl_ctx;
1928 	struct xhci_ep_ctx *ep_ctx;
1929 	struct xhci_slot_ctx *slot_ctx;
1930 	int i;
1931 
1932 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1933 	if (!ctrl_ctx) {
1934 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1935 				__func__);
1936 		return;
1937 	}
1938 
1939 	/* When a device's add flag and drop flag are zero, any subsequent
1940 	 * configure endpoint command will leave that endpoint's state
1941 	 * untouched.  Make sure we don't leave any old state in the input
1942 	 * endpoint contexts.
1943 	 */
1944 	ctrl_ctx->drop_flags = 0;
1945 	ctrl_ctx->add_flags = 0;
1946 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1947 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1948 	/* Endpoint 0 is always valid */
1949 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1950 	for (i = 1; i < 31; i++) {
1951 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1952 		ep_ctx->ep_info = 0;
1953 		ep_ctx->ep_info2 = 0;
1954 		ep_ctx->deq = 0;
1955 		ep_ctx->tx_info = 0;
1956 	}
1957 }
1958 
1959 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1960 		struct usb_device *udev, u32 *cmd_status)
1961 {
1962 	int ret;
1963 
1964 	switch (*cmd_status) {
1965 	case COMP_COMMAND_ABORTED:
1966 	case COMP_COMMAND_RING_STOPPED:
1967 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1968 		ret = -ETIME;
1969 		break;
1970 	case COMP_RESOURCE_ERROR:
1971 		dev_warn(&udev->dev,
1972 			 "Not enough host controller resources for new device state.\n");
1973 		ret = -ENOMEM;
1974 		/* FIXME: can we allocate more resources for the HC? */
1975 		break;
1976 	case COMP_BANDWIDTH_ERROR:
1977 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1978 		dev_warn(&udev->dev,
1979 			 "Not enough bandwidth for new device state.\n");
1980 		ret = -ENOSPC;
1981 		/* FIXME: can we go back to the old state? */
1982 		break;
1983 	case COMP_TRB_ERROR:
1984 		/* the HCD set up something wrong */
1985 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1986 				"add flag = 1, "
1987 				"and endpoint is not disabled.\n");
1988 		ret = -EINVAL;
1989 		break;
1990 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1991 		dev_warn(&udev->dev,
1992 			 "ERROR: Incompatible device for endpoint configure command.\n");
1993 		ret = -ENODEV;
1994 		break;
1995 	case COMP_SUCCESS:
1996 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1997 				"Successful Endpoint Configure command");
1998 		ret = 0;
1999 		break;
2000 	default:
2001 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2002 				*cmd_status);
2003 		ret = -EINVAL;
2004 		break;
2005 	}
2006 	return ret;
2007 }
2008 
2009 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2010 		struct usb_device *udev, u32 *cmd_status)
2011 {
2012 	int ret;
2013 
2014 	switch (*cmd_status) {
2015 	case COMP_COMMAND_ABORTED:
2016 	case COMP_COMMAND_RING_STOPPED:
2017 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2018 		ret = -ETIME;
2019 		break;
2020 	case COMP_PARAMETER_ERROR:
2021 		dev_warn(&udev->dev,
2022 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2023 		ret = -EINVAL;
2024 		break;
2025 	case COMP_SLOT_NOT_ENABLED_ERROR:
2026 		dev_warn(&udev->dev,
2027 			"WARN: slot not enabled for evaluate context command.\n");
2028 		ret = -EINVAL;
2029 		break;
2030 	case COMP_CONTEXT_STATE_ERROR:
2031 		dev_warn(&udev->dev,
2032 			"WARN: invalid context state for evaluate context command.\n");
2033 		ret = -EINVAL;
2034 		break;
2035 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2036 		dev_warn(&udev->dev,
2037 			"ERROR: Incompatible device for evaluate context command.\n");
2038 		ret = -ENODEV;
2039 		break;
2040 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2041 		/* Max Exit Latency too large error */
2042 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2043 		ret = -EINVAL;
2044 		break;
2045 	case COMP_SUCCESS:
2046 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2047 				"Successful evaluate context command");
2048 		ret = 0;
2049 		break;
2050 	default:
2051 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2052 			*cmd_status);
2053 		ret = -EINVAL;
2054 		break;
2055 	}
2056 	return ret;
2057 }
2058 
2059 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2060 		struct xhci_input_control_ctx *ctrl_ctx)
2061 {
2062 	u32 valid_add_flags;
2063 	u32 valid_drop_flags;
2064 
2065 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2066 	 * (bit 1).  The default control endpoint is added during the Address
2067 	 * Device command and is never removed until the slot is disabled.
2068 	 */
2069 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2070 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2071 
2072 	/* Use hweight32 to count the number of ones in the add flags, or
2073 	 * number of endpoints added.  Don't count endpoints that are changed
2074 	 * (both added and dropped).
2075 	 */
2076 	return hweight32(valid_add_flags) -
2077 		hweight32(valid_add_flags & valid_drop_flags);
2078 }
2079 
2080 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2081 		struct xhci_input_control_ctx *ctrl_ctx)
2082 {
2083 	u32 valid_add_flags;
2084 	u32 valid_drop_flags;
2085 
2086 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2087 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2088 
2089 	return hweight32(valid_drop_flags) -
2090 		hweight32(valid_add_flags & valid_drop_flags);
2091 }
2092 
2093 /*
2094  * We need to reserve the new number of endpoints before the configure endpoint
2095  * command completes.  We can't subtract the dropped endpoints from the number
2096  * of active endpoints until the command completes because we can oversubscribe
2097  * the host in this case:
2098  *
2099  *  - the first configure endpoint command drops more endpoints than it adds
2100  *  - a second configure endpoint command that adds more endpoints is queued
2101  *  - the first configure endpoint command fails, so the config is unchanged
2102  *  - the second command may succeed, even though there isn't enough resources
2103  *
2104  * Must be called with xhci->lock held.
2105  */
2106 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2107 		struct xhci_input_control_ctx *ctrl_ctx)
2108 {
2109 	u32 added_eps;
2110 
2111 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2112 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2113 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2114 				"Not enough ep ctxs: "
2115 				"%u active, need to add %u, limit is %u.",
2116 				xhci->num_active_eps, added_eps,
2117 				xhci->limit_active_eps);
2118 		return -ENOMEM;
2119 	}
2120 	xhci->num_active_eps += added_eps;
2121 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122 			"Adding %u ep ctxs, %u now active.", added_eps,
2123 			xhci->num_active_eps);
2124 	return 0;
2125 }
2126 
2127 /*
2128  * The configure endpoint was failed by the xHC for some other reason, so we
2129  * need to revert the resources that failed configuration would have used.
2130  *
2131  * Must be called with xhci->lock held.
2132  */
2133 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2134 		struct xhci_input_control_ctx *ctrl_ctx)
2135 {
2136 	u32 num_failed_eps;
2137 
2138 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2139 	xhci->num_active_eps -= num_failed_eps;
2140 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 			"Removing %u failed ep ctxs, %u now active.",
2142 			num_failed_eps,
2143 			xhci->num_active_eps);
2144 }
2145 
2146 /*
2147  * Now that the command has completed, clean up the active endpoint count by
2148  * subtracting out the endpoints that were dropped (but not changed).
2149  *
2150  * Must be called with xhci->lock held.
2151  */
2152 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2153 		struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155 	u32 num_dropped_eps;
2156 
2157 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2158 	xhci->num_active_eps -= num_dropped_eps;
2159 	if (num_dropped_eps)
2160 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 				"Removing %u dropped ep ctxs, %u now active.",
2162 				num_dropped_eps,
2163 				xhci->num_active_eps);
2164 }
2165 
2166 static unsigned int xhci_get_block_size(struct usb_device *udev)
2167 {
2168 	switch (udev->speed) {
2169 	case USB_SPEED_LOW:
2170 	case USB_SPEED_FULL:
2171 		return FS_BLOCK;
2172 	case USB_SPEED_HIGH:
2173 		return HS_BLOCK;
2174 	case USB_SPEED_SUPER:
2175 	case USB_SPEED_SUPER_PLUS:
2176 		return SS_BLOCK;
2177 	case USB_SPEED_UNKNOWN:
2178 	case USB_SPEED_WIRELESS:
2179 	default:
2180 		/* Should never happen */
2181 		return 1;
2182 	}
2183 }
2184 
2185 static unsigned int
2186 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2187 {
2188 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2189 		return LS_OVERHEAD;
2190 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2191 		return FS_OVERHEAD;
2192 	return HS_OVERHEAD;
2193 }
2194 
2195 /* If we are changing a LS/FS device under a HS hub,
2196  * make sure (if we are activating a new TT) that the HS bus has enough
2197  * bandwidth for this new TT.
2198  */
2199 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2200 		struct xhci_virt_device *virt_dev,
2201 		int old_active_eps)
2202 {
2203 	struct xhci_interval_bw_table *bw_table;
2204 	struct xhci_tt_bw_info *tt_info;
2205 
2206 	/* Find the bandwidth table for the root port this TT is attached to. */
2207 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2208 	tt_info = virt_dev->tt_info;
2209 	/* If this TT already had active endpoints, the bandwidth for this TT
2210 	 * has already been added.  Removing all periodic endpoints (and thus
2211 	 * making the TT enactive) will only decrease the bandwidth used.
2212 	 */
2213 	if (old_active_eps)
2214 		return 0;
2215 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2216 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2217 			return -ENOMEM;
2218 		return 0;
2219 	}
2220 	/* Not sure why we would have no new active endpoints...
2221 	 *
2222 	 * Maybe because of an Evaluate Context change for a hub update or a
2223 	 * control endpoint 0 max packet size change?
2224 	 * FIXME: skip the bandwidth calculation in that case.
2225 	 */
2226 	return 0;
2227 }
2228 
2229 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2230 		struct xhci_virt_device *virt_dev)
2231 {
2232 	unsigned int bw_reserved;
2233 
2234 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2235 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2236 		return -ENOMEM;
2237 
2238 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2239 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2240 		return -ENOMEM;
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * This algorithm is a very conservative estimate of the worst-case scheduling
2247  * scenario for any one interval.  The hardware dynamically schedules the
2248  * packets, so we can't tell which microframe could be the limiting factor in
2249  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2250  *
2251  * Obviously, we can't solve an NP complete problem to find the minimum worst
2252  * case scenario.  Instead, we come up with an estimate that is no less than
2253  * the worst case bandwidth used for any one microframe, but may be an
2254  * over-estimate.
2255  *
2256  * We walk the requirements for each endpoint by interval, starting with the
2257  * smallest interval, and place packets in the schedule where there is only one
2258  * possible way to schedule packets for that interval.  In order to simplify
2259  * this algorithm, we record the largest max packet size for each interval, and
2260  * assume all packets will be that size.
2261  *
2262  * For interval 0, we obviously must schedule all packets for each interval.
2263  * The bandwidth for interval 0 is just the amount of data to be transmitted
2264  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2265  * the number of packets).
2266  *
2267  * For interval 1, we have two possible microframes to schedule those packets
2268  * in.  For this algorithm, if we can schedule the same number of packets for
2269  * each possible scheduling opportunity (each microframe), we will do so.  The
2270  * remaining number of packets will be saved to be transmitted in the gaps in
2271  * the next interval's scheduling sequence.
2272  *
2273  * As we move those remaining packets to be scheduled with interval 2 packets,
2274  * we have to double the number of remaining packets to transmit.  This is
2275  * because the intervals are actually powers of 2, and we would be transmitting
2276  * the previous interval's packets twice in this interval.  We also have to be
2277  * sure that when we look at the largest max packet size for this interval, we
2278  * also look at the largest max packet size for the remaining packets and take
2279  * the greater of the two.
2280  *
2281  * The algorithm continues to evenly distribute packets in each scheduling
2282  * opportunity, and push the remaining packets out, until we get to the last
2283  * interval.  Then those packets and their associated overhead are just added
2284  * to the bandwidth used.
2285  */
2286 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2287 		struct xhci_virt_device *virt_dev,
2288 		int old_active_eps)
2289 {
2290 	unsigned int bw_reserved;
2291 	unsigned int max_bandwidth;
2292 	unsigned int bw_used;
2293 	unsigned int block_size;
2294 	struct xhci_interval_bw_table *bw_table;
2295 	unsigned int packet_size = 0;
2296 	unsigned int overhead = 0;
2297 	unsigned int packets_transmitted = 0;
2298 	unsigned int packets_remaining = 0;
2299 	unsigned int i;
2300 
2301 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2302 		return xhci_check_ss_bw(xhci, virt_dev);
2303 
2304 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2305 		max_bandwidth = HS_BW_LIMIT;
2306 		/* Convert percent of bus BW reserved to blocks reserved */
2307 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2308 	} else {
2309 		max_bandwidth = FS_BW_LIMIT;
2310 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2311 	}
2312 
2313 	bw_table = virt_dev->bw_table;
2314 	/* We need to translate the max packet size and max ESIT payloads into
2315 	 * the units the hardware uses.
2316 	 */
2317 	block_size = xhci_get_block_size(virt_dev->udev);
2318 
2319 	/* If we are manipulating a LS/FS device under a HS hub, double check
2320 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2321 	 */
2322 	if (virt_dev->tt_info) {
2323 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324 				"Recalculating BW for rootport %u",
2325 				virt_dev->real_port);
2326 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2327 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2328 					"newly activated TT.\n");
2329 			return -ENOMEM;
2330 		}
2331 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2332 				"Recalculating BW for TT slot %u port %u",
2333 				virt_dev->tt_info->slot_id,
2334 				virt_dev->tt_info->ttport);
2335 	} else {
2336 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2337 				"Recalculating BW for rootport %u",
2338 				virt_dev->real_port);
2339 	}
2340 
2341 	/* Add in how much bandwidth will be used for interval zero, or the
2342 	 * rounded max ESIT payload + number of packets * largest overhead.
2343 	 */
2344 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2345 		bw_table->interval_bw[0].num_packets *
2346 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2347 
2348 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2349 		unsigned int bw_added;
2350 		unsigned int largest_mps;
2351 		unsigned int interval_overhead;
2352 
2353 		/*
2354 		 * How many packets could we transmit in this interval?
2355 		 * If packets didn't fit in the previous interval, we will need
2356 		 * to transmit that many packets twice within this interval.
2357 		 */
2358 		packets_remaining = 2 * packets_remaining +
2359 			bw_table->interval_bw[i].num_packets;
2360 
2361 		/* Find the largest max packet size of this or the previous
2362 		 * interval.
2363 		 */
2364 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2365 			largest_mps = 0;
2366 		else {
2367 			struct xhci_virt_ep *virt_ep;
2368 			struct list_head *ep_entry;
2369 
2370 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2371 			virt_ep = list_entry(ep_entry,
2372 					struct xhci_virt_ep, bw_endpoint_list);
2373 			/* Convert to blocks, rounding up */
2374 			largest_mps = DIV_ROUND_UP(
2375 					virt_ep->bw_info.max_packet_size,
2376 					block_size);
2377 		}
2378 		if (largest_mps > packet_size)
2379 			packet_size = largest_mps;
2380 
2381 		/* Use the larger overhead of this or the previous interval. */
2382 		interval_overhead = xhci_get_largest_overhead(
2383 				&bw_table->interval_bw[i]);
2384 		if (interval_overhead > overhead)
2385 			overhead = interval_overhead;
2386 
2387 		/* How many packets can we evenly distribute across
2388 		 * (1 << (i + 1)) possible scheduling opportunities?
2389 		 */
2390 		packets_transmitted = packets_remaining >> (i + 1);
2391 
2392 		/* Add in the bandwidth used for those scheduled packets */
2393 		bw_added = packets_transmitted * (overhead + packet_size);
2394 
2395 		/* How many packets do we have remaining to transmit? */
2396 		packets_remaining = packets_remaining % (1 << (i + 1));
2397 
2398 		/* What largest max packet size should those packets have? */
2399 		/* If we've transmitted all packets, don't carry over the
2400 		 * largest packet size.
2401 		 */
2402 		if (packets_remaining == 0) {
2403 			packet_size = 0;
2404 			overhead = 0;
2405 		} else if (packets_transmitted > 0) {
2406 			/* Otherwise if we do have remaining packets, and we've
2407 			 * scheduled some packets in this interval, take the
2408 			 * largest max packet size from endpoints with this
2409 			 * interval.
2410 			 */
2411 			packet_size = largest_mps;
2412 			overhead = interval_overhead;
2413 		}
2414 		/* Otherwise carry over packet_size and overhead from the last
2415 		 * time we had a remainder.
2416 		 */
2417 		bw_used += bw_added;
2418 		if (bw_used > max_bandwidth) {
2419 			xhci_warn(xhci, "Not enough bandwidth. "
2420 					"Proposed: %u, Max: %u\n",
2421 				bw_used, max_bandwidth);
2422 			return -ENOMEM;
2423 		}
2424 	}
2425 	/*
2426 	 * Ok, we know we have some packets left over after even-handedly
2427 	 * scheduling interval 15.  We don't know which microframes they will
2428 	 * fit into, so we over-schedule and say they will be scheduled every
2429 	 * microframe.
2430 	 */
2431 	if (packets_remaining > 0)
2432 		bw_used += overhead + packet_size;
2433 
2434 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2435 		unsigned int port_index = virt_dev->real_port - 1;
2436 
2437 		/* OK, we're manipulating a HS device attached to a
2438 		 * root port bandwidth domain.  Include the number of active TTs
2439 		 * in the bandwidth used.
2440 		 */
2441 		bw_used += TT_HS_OVERHEAD *
2442 			xhci->rh_bw[port_index].num_active_tts;
2443 	}
2444 
2445 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2446 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2447 		"Available: %u " "percent",
2448 		bw_used, max_bandwidth, bw_reserved,
2449 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2450 		max_bandwidth);
2451 
2452 	bw_used += bw_reserved;
2453 	if (bw_used > max_bandwidth) {
2454 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2455 				bw_used, max_bandwidth);
2456 		return -ENOMEM;
2457 	}
2458 
2459 	bw_table->bw_used = bw_used;
2460 	return 0;
2461 }
2462 
2463 static bool xhci_is_async_ep(unsigned int ep_type)
2464 {
2465 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2466 					ep_type != ISOC_IN_EP &&
2467 					ep_type != INT_IN_EP);
2468 }
2469 
2470 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2471 {
2472 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2473 }
2474 
2475 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2476 {
2477 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2478 
2479 	if (ep_bw->ep_interval == 0)
2480 		return SS_OVERHEAD_BURST +
2481 			(ep_bw->mult * ep_bw->num_packets *
2482 					(SS_OVERHEAD + mps));
2483 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2484 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2485 				1 << ep_bw->ep_interval);
2486 
2487 }
2488 
2489 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2490 		struct xhci_bw_info *ep_bw,
2491 		struct xhci_interval_bw_table *bw_table,
2492 		struct usb_device *udev,
2493 		struct xhci_virt_ep *virt_ep,
2494 		struct xhci_tt_bw_info *tt_info)
2495 {
2496 	struct xhci_interval_bw	*interval_bw;
2497 	int normalized_interval;
2498 
2499 	if (xhci_is_async_ep(ep_bw->type))
2500 		return;
2501 
2502 	if (udev->speed >= USB_SPEED_SUPER) {
2503 		if (xhci_is_sync_in_ep(ep_bw->type))
2504 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2505 				xhci_get_ss_bw_consumed(ep_bw);
2506 		else
2507 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2508 				xhci_get_ss_bw_consumed(ep_bw);
2509 		return;
2510 	}
2511 
2512 	/* SuperSpeed endpoints never get added to intervals in the table, so
2513 	 * this check is only valid for HS/FS/LS devices.
2514 	 */
2515 	if (list_empty(&virt_ep->bw_endpoint_list))
2516 		return;
2517 	/* For LS/FS devices, we need to translate the interval expressed in
2518 	 * microframes to frames.
2519 	 */
2520 	if (udev->speed == USB_SPEED_HIGH)
2521 		normalized_interval = ep_bw->ep_interval;
2522 	else
2523 		normalized_interval = ep_bw->ep_interval - 3;
2524 
2525 	if (normalized_interval == 0)
2526 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2527 	interval_bw = &bw_table->interval_bw[normalized_interval];
2528 	interval_bw->num_packets -= ep_bw->num_packets;
2529 	switch (udev->speed) {
2530 	case USB_SPEED_LOW:
2531 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2532 		break;
2533 	case USB_SPEED_FULL:
2534 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2535 		break;
2536 	case USB_SPEED_HIGH:
2537 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2538 		break;
2539 	case USB_SPEED_SUPER:
2540 	case USB_SPEED_SUPER_PLUS:
2541 	case USB_SPEED_UNKNOWN:
2542 	case USB_SPEED_WIRELESS:
2543 		/* Should never happen because only LS/FS/HS endpoints will get
2544 		 * added to the endpoint list.
2545 		 */
2546 		return;
2547 	}
2548 	if (tt_info)
2549 		tt_info->active_eps -= 1;
2550 	list_del_init(&virt_ep->bw_endpoint_list);
2551 }
2552 
2553 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2554 		struct xhci_bw_info *ep_bw,
2555 		struct xhci_interval_bw_table *bw_table,
2556 		struct usb_device *udev,
2557 		struct xhci_virt_ep *virt_ep,
2558 		struct xhci_tt_bw_info *tt_info)
2559 {
2560 	struct xhci_interval_bw	*interval_bw;
2561 	struct xhci_virt_ep *smaller_ep;
2562 	int normalized_interval;
2563 
2564 	if (xhci_is_async_ep(ep_bw->type))
2565 		return;
2566 
2567 	if (udev->speed == USB_SPEED_SUPER) {
2568 		if (xhci_is_sync_in_ep(ep_bw->type))
2569 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2570 				xhci_get_ss_bw_consumed(ep_bw);
2571 		else
2572 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2573 				xhci_get_ss_bw_consumed(ep_bw);
2574 		return;
2575 	}
2576 
2577 	/* For LS/FS devices, we need to translate the interval expressed in
2578 	 * microframes to frames.
2579 	 */
2580 	if (udev->speed == USB_SPEED_HIGH)
2581 		normalized_interval = ep_bw->ep_interval;
2582 	else
2583 		normalized_interval = ep_bw->ep_interval - 3;
2584 
2585 	if (normalized_interval == 0)
2586 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2587 	interval_bw = &bw_table->interval_bw[normalized_interval];
2588 	interval_bw->num_packets += ep_bw->num_packets;
2589 	switch (udev->speed) {
2590 	case USB_SPEED_LOW:
2591 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2592 		break;
2593 	case USB_SPEED_FULL:
2594 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2595 		break;
2596 	case USB_SPEED_HIGH:
2597 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2598 		break;
2599 	case USB_SPEED_SUPER:
2600 	case USB_SPEED_SUPER_PLUS:
2601 	case USB_SPEED_UNKNOWN:
2602 	case USB_SPEED_WIRELESS:
2603 		/* Should never happen because only LS/FS/HS endpoints will get
2604 		 * added to the endpoint list.
2605 		 */
2606 		return;
2607 	}
2608 
2609 	if (tt_info)
2610 		tt_info->active_eps += 1;
2611 	/* Insert the endpoint into the list, largest max packet size first. */
2612 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2613 			bw_endpoint_list) {
2614 		if (ep_bw->max_packet_size >=
2615 				smaller_ep->bw_info.max_packet_size) {
2616 			/* Add the new ep before the smaller endpoint */
2617 			list_add_tail(&virt_ep->bw_endpoint_list,
2618 					&smaller_ep->bw_endpoint_list);
2619 			return;
2620 		}
2621 	}
2622 	/* Add the new endpoint at the end of the list. */
2623 	list_add_tail(&virt_ep->bw_endpoint_list,
2624 			&interval_bw->endpoints);
2625 }
2626 
2627 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2628 		struct xhci_virt_device *virt_dev,
2629 		int old_active_eps)
2630 {
2631 	struct xhci_root_port_bw_info *rh_bw_info;
2632 	if (!virt_dev->tt_info)
2633 		return;
2634 
2635 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2636 	if (old_active_eps == 0 &&
2637 				virt_dev->tt_info->active_eps != 0) {
2638 		rh_bw_info->num_active_tts += 1;
2639 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2640 	} else if (old_active_eps != 0 &&
2641 				virt_dev->tt_info->active_eps == 0) {
2642 		rh_bw_info->num_active_tts -= 1;
2643 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2644 	}
2645 }
2646 
2647 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2648 		struct xhci_virt_device *virt_dev,
2649 		struct xhci_container_ctx *in_ctx)
2650 {
2651 	struct xhci_bw_info ep_bw_info[31];
2652 	int i;
2653 	struct xhci_input_control_ctx *ctrl_ctx;
2654 	int old_active_eps = 0;
2655 
2656 	if (virt_dev->tt_info)
2657 		old_active_eps = virt_dev->tt_info->active_eps;
2658 
2659 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2660 	if (!ctrl_ctx) {
2661 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2662 				__func__);
2663 		return -ENOMEM;
2664 	}
2665 
2666 	for (i = 0; i < 31; i++) {
2667 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2668 			continue;
2669 
2670 		/* Make a copy of the BW info in case we need to revert this */
2671 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2672 				sizeof(ep_bw_info[i]));
2673 		/* Drop the endpoint from the interval table if the endpoint is
2674 		 * being dropped or changed.
2675 		 */
2676 		if (EP_IS_DROPPED(ctrl_ctx, i))
2677 			xhci_drop_ep_from_interval_table(xhci,
2678 					&virt_dev->eps[i].bw_info,
2679 					virt_dev->bw_table,
2680 					virt_dev->udev,
2681 					&virt_dev->eps[i],
2682 					virt_dev->tt_info);
2683 	}
2684 	/* Overwrite the information stored in the endpoints' bw_info */
2685 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2686 	for (i = 0; i < 31; i++) {
2687 		/* Add any changed or added endpoints to the interval table */
2688 		if (EP_IS_ADDED(ctrl_ctx, i))
2689 			xhci_add_ep_to_interval_table(xhci,
2690 					&virt_dev->eps[i].bw_info,
2691 					virt_dev->bw_table,
2692 					virt_dev->udev,
2693 					&virt_dev->eps[i],
2694 					virt_dev->tt_info);
2695 	}
2696 
2697 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2698 		/* Ok, this fits in the bandwidth we have.
2699 		 * Update the number of active TTs.
2700 		 */
2701 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2702 		return 0;
2703 	}
2704 
2705 	/* We don't have enough bandwidth for this, revert the stored info. */
2706 	for (i = 0; i < 31; i++) {
2707 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2708 			continue;
2709 
2710 		/* Drop the new copies of any added or changed endpoints from
2711 		 * the interval table.
2712 		 */
2713 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2714 			xhci_drop_ep_from_interval_table(xhci,
2715 					&virt_dev->eps[i].bw_info,
2716 					virt_dev->bw_table,
2717 					virt_dev->udev,
2718 					&virt_dev->eps[i],
2719 					virt_dev->tt_info);
2720 		}
2721 		/* Revert the endpoint back to its old information */
2722 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2723 				sizeof(ep_bw_info[i]));
2724 		/* Add any changed or dropped endpoints back into the table */
2725 		if (EP_IS_DROPPED(ctrl_ctx, i))
2726 			xhci_add_ep_to_interval_table(xhci,
2727 					&virt_dev->eps[i].bw_info,
2728 					virt_dev->bw_table,
2729 					virt_dev->udev,
2730 					&virt_dev->eps[i],
2731 					virt_dev->tt_info);
2732 	}
2733 	return -ENOMEM;
2734 }
2735 
2736 
2737 /* Issue a configure endpoint command or evaluate context command
2738  * and wait for it to finish.
2739  */
2740 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2741 		struct usb_device *udev,
2742 		struct xhci_command *command,
2743 		bool ctx_change, bool must_succeed)
2744 {
2745 	int ret;
2746 	unsigned long flags;
2747 	struct xhci_input_control_ctx *ctrl_ctx;
2748 	struct xhci_virt_device *virt_dev;
2749 	struct xhci_slot_ctx *slot_ctx;
2750 
2751 	if (!command)
2752 		return -EINVAL;
2753 
2754 	spin_lock_irqsave(&xhci->lock, flags);
2755 
2756 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2757 		spin_unlock_irqrestore(&xhci->lock, flags);
2758 		return -ESHUTDOWN;
2759 	}
2760 
2761 	virt_dev = xhci->devs[udev->slot_id];
2762 
2763 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2764 	if (!ctrl_ctx) {
2765 		spin_unlock_irqrestore(&xhci->lock, flags);
2766 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2767 				__func__);
2768 		return -ENOMEM;
2769 	}
2770 
2771 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2772 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2773 		spin_unlock_irqrestore(&xhci->lock, flags);
2774 		xhci_warn(xhci, "Not enough host resources, "
2775 				"active endpoint contexts = %u\n",
2776 				xhci->num_active_eps);
2777 		return -ENOMEM;
2778 	}
2779 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2780 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2781 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2782 			xhci_free_host_resources(xhci, ctrl_ctx);
2783 		spin_unlock_irqrestore(&xhci->lock, flags);
2784 		xhci_warn(xhci, "Not enough bandwidth\n");
2785 		return -ENOMEM;
2786 	}
2787 
2788 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2789 
2790 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2791 	trace_xhci_configure_endpoint(slot_ctx);
2792 
2793 	if (!ctx_change)
2794 		ret = xhci_queue_configure_endpoint(xhci, command,
2795 				command->in_ctx->dma,
2796 				udev->slot_id, must_succeed);
2797 	else
2798 		ret = xhci_queue_evaluate_context(xhci, command,
2799 				command->in_ctx->dma,
2800 				udev->slot_id, must_succeed);
2801 	if (ret < 0) {
2802 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2803 			xhci_free_host_resources(xhci, ctrl_ctx);
2804 		spin_unlock_irqrestore(&xhci->lock, flags);
2805 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2806 				"FIXME allocate a new ring segment");
2807 		return -ENOMEM;
2808 	}
2809 	xhci_ring_cmd_db(xhci);
2810 	spin_unlock_irqrestore(&xhci->lock, flags);
2811 
2812 	/* Wait for the configure endpoint command to complete */
2813 	wait_for_completion(command->completion);
2814 
2815 	if (!ctx_change)
2816 		ret = xhci_configure_endpoint_result(xhci, udev,
2817 						     &command->status);
2818 	else
2819 		ret = xhci_evaluate_context_result(xhci, udev,
2820 						   &command->status);
2821 
2822 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2823 		spin_lock_irqsave(&xhci->lock, flags);
2824 		/* If the command failed, remove the reserved resources.
2825 		 * Otherwise, clean up the estimate to include dropped eps.
2826 		 */
2827 		if (ret)
2828 			xhci_free_host_resources(xhci, ctrl_ctx);
2829 		else
2830 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2831 		spin_unlock_irqrestore(&xhci->lock, flags);
2832 	}
2833 	return ret;
2834 }
2835 
2836 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2837 	struct xhci_virt_device *vdev, int i)
2838 {
2839 	struct xhci_virt_ep *ep = &vdev->eps[i];
2840 
2841 	if (ep->ep_state & EP_HAS_STREAMS) {
2842 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2843 				xhci_get_endpoint_address(i));
2844 		xhci_free_stream_info(xhci, ep->stream_info);
2845 		ep->stream_info = NULL;
2846 		ep->ep_state &= ~EP_HAS_STREAMS;
2847 	}
2848 }
2849 
2850 /* Called after one or more calls to xhci_add_endpoint() or
2851  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2852  * to call xhci_reset_bandwidth().
2853  *
2854  * Since we are in the middle of changing either configuration or
2855  * installing a new alt setting, the USB core won't allow URBs to be
2856  * enqueued for any endpoint on the old config or interface.  Nothing
2857  * else should be touching the xhci->devs[slot_id] structure, so we
2858  * don't need to take the xhci->lock for manipulating that.
2859  */
2860 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2861 {
2862 	int i;
2863 	int ret = 0;
2864 	struct xhci_hcd *xhci;
2865 	struct xhci_virt_device	*virt_dev;
2866 	struct xhci_input_control_ctx *ctrl_ctx;
2867 	struct xhci_slot_ctx *slot_ctx;
2868 	struct xhci_command *command;
2869 
2870 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2871 	if (ret <= 0)
2872 		return ret;
2873 	xhci = hcd_to_xhci(hcd);
2874 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2875 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2876 		return -ENODEV;
2877 
2878 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879 	virt_dev = xhci->devs[udev->slot_id];
2880 
2881 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2882 	if (!command)
2883 		return -ENOMEM;
2884 
2885 	command->in_ctx = virt_dev->in_ctx;
2886 
2887 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2888 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2889 	if (!ctrl_ctx) {
2890 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2891 				__func__);
2892 		ret = -ENOMEM;
2893 		goto command_cleanup;
2894 	}
2895 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2896 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2897 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2898 
2899 	/* Don't issue the command if there's no endpoints to update. */
2900 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2901 	    ctrl_ctx->drop_flags == 0) {
2902 		ret = 0;
2903 		goto command_cleanup;
2904 	}
2905 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2906 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2907 	for (i = 31; i >= 1; i--) {
2908 		__le32 le32 = cpu_to_le32(BIT(i));
2909 
2910 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2911 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2912 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2913 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2914 			break;
2915 		}
2916 	}
2917 
2918 	ret = xhci_configure_endpoint(xhci, udev, command,
2919 			false, false);
2920 	if (ret)
2921 		/* Callee should call reset_bandwidth() */
2922 		goto command_cleanup;
2923 
2924 	/* Free any rings that were dropped, but not changed. */
2925 	for (i = 1; i < 31; i++) {
2926 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2927 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2928 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2929 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2930 		}
2931 	}
2932 	xhci_zero_in_ctx(xhci, virt_dev);
2933 	/*
2934 	 * Install any rings for completely new endpoints or changed endpoints,
2935 	 * and free any old rings from changed endpoints.
2936 	 */
2937 	for (i = 1; i < 31; i++) {
2938 		if (!virt_dev->eps[i].new_ring)
2939 			continue;
2940 		/* Only free the old ring if it exists.
2941 		 * It may not if this is the first add of an endpoint.
2942 		 */
2943 		if (virt_dev->eps[i].ring) {
2944 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2945 		}
2946 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2947 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2948 		virt_dev->eps[i].new_ring = NULL;
2949 	}
2950 command_cleanup:
2951 	kfree(command->completion);
2952 	kfree(command);
2953 
2954 	return ret;
2955 }
2956 
2957 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2958 {
2959 	struct xhci_hcd *xhci;
2960 	struct xhci_virt_device	*virt_dev;
2961 	int i, ret;
2962 
2963 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2964 	if (ret <= 0)
2965 		return;
2966 	xhci = hcd_to_xhci(hcd);
2967 
2968 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2969 	virt_dev = xhci->devs[udev->slot_id];
2970 	/* Free any rings allocated for added endpoints */
2971 	for (i = 0; i < 31; i++) {
2972 		if (virt_dev->eps[i].new_ring) {
2973 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2974 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2975 			virt_dev->eps[i].new_ring = NULL;
2976 		}
2977 	}
2978 	xhci_zero_in_ctx(xhci, virt_dev);
2979 }
2980 
2981 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2982 		struct xhci_container_ctx *in_ctx,
2983 		struct xhci_container_ctx *out_ctx,
2984 		struct xhci_input_control_ctx *ctrl_ctx,
2985 		u32 add_flags, u32 drop_flags)
2986 {
2987 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2988 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2989 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2990 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2991 }
2992 
2993 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2994 		unsigned int slot_id, unsigned int ep_index,
2995 		struct xhci_dequeue_state *deq_state)
2996 {
2997 	struct xhci_input_control_ctx *ctrl_ctx;
2998 	struct xhci_container_ctx *in_ctx;
2999 	struct xhci_ep_ctx *ep_ctx;
3000 	u32 added_ctxs;
3001 	dma_addr_t addr;
3002 
3003 	in_ctx = xhci->devs[slot_id]->in_ctx;
3004 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3005 	if (!ctrl_ctx) {
3006 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3007 				__func__);
3008 		return;
3009 	}
3010 
3011 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3012 			xhci->devs[slot_id]->out_ctx, ep_index);
3013 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3014 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3015 			deq_state->new_deq_ptr);
3016 	if (addr == 0) {
3017 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3018 				"reset ep command\n");
3019 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3020 				deq_state->new_deq_seg,
3021 				deq_state->new_deq_ptr);
3022 		return;
3023 	}
3024 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3025 
3026 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3027 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3028 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3029 			added_ctxs, added_ctxs);
3030 }
3031 
3032 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3033 			       unsigned int stream_id, struct xhci_td *td)
3034 {
3035 	struct xhci_dequeue_state deq_state;
3036 	struct usb_device *udev = td->urb->dev;
3037 
3038 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3039 			"Cleaning up stalled endpoint ring");
3040 	/* We need to move the HW's dequeue pointer past this TD,
3041 	 * or it will attempt to resend it on the next doorbell ring.
3042 	 */
3043 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3044 			ep_index, stream_id, td, &deq_state);
3045 
3046 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3047 		return;
3048 
3049 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3050 	 * issue a configure endpoint command later.
3051 	 */
3052 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3053 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3054 				"Queueing new dequeue state");
3055 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3056 				ep_index, &deq_state);
3057 	} else {
3058 		/* Better hope no one uses the input context between now and the
3059 		 * reset endpoint completion!
3060 		 * XXX: No idea how this hardware will react when stream rings
3061 		 * are enabled.
3062 		 */
3063 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3064 				"Setting up input context for "
3065 				"configure endpoint command");
3066 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3067 				ep_index, &deq_state);
3068 	}
3069 }
3070 
3071 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3072 				  struct usb_host_endpoint *host_ep)
3073 {
3074 	struct xhci_hcd		*xhci;
3075 	struct xhci_virt_device	*vdev;
3076 	struct xhci_virt_ep	*ep;
3077 	struct usb_device	*udev;
3078 	unsigned long		flags;
3079 	unsigned int		ep_index;
3080 
3081 	xhci = hcd_to_xhci(hcd);
3082 rescan:
3083 	spin_lock_irqsave(&xhci->lock, flags);
3084 
3085 	udev = (struct usb_device *)host_ep->hcpriv;
3086 	if (!udev || !udev->slot_id)
3087 		goto done;
3088 
3089 	vdev = xhci->devs[udev->slot_id];
3090 	if (!vdev)
3091 		goto done;
3092 
3093 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3094 	ep = &vdev->eps[ep_index];
3095 	if (!ep)
3096 		goto done;
3097 
3098 	/* wait for hub_tt_work to finish clearing hub TT */
3099 	if (ep->ep_state & EP_CLEARING_TT) {
3100 		spin_unlock_irqrestore(&xhci->lock, flags);
3101 		schedule_timeout_uninterruptible(1);
3102 		goto rescan;
3103 	}
3104 
3105 	if (ep->ep_state)
3106 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3107 			 ep->ep_state);
3108 done:
3109 	host_ep->hcpriv = NULL;
3110 	spin_unlock_irqrestore(&xhci->lock, flags);
3111 }
3112 
3113 /*
3114  * Called after usb core issues a clear halt control message.
3115  * The host side of the halt should already be cleared by a reset endpoint
3116  * command issued when the STALL event was received.
3117  *
3118  * The reset endpoint command may only be issued to endpoints in the halted
3119  * state. For software that wishes to reset the data toggle or sequence number
3120  * of an endpoint that isn't in the halted state this function will issue a
3121  * configure endpoint command with the Drop and Add bits set for the target
3122  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3123  */
3124 
3125 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3126 		struct usb_host_endpoint *host_ep)
3127 {
3128 	struct xhci_hcd *xhci;
3129 	struct usb_device *udev;
3130 	struct xhci_virt_device *vdev;
3131 	struct xhci_virt_ep *ep;
3132 	struct xhci_input_control_ctx *ctrl_ctx;
3133 	struct xhci_command *stop_cmd, *cfg_cmd;
3134 	unsigned int ep_index;
3135 	unsigned long flags;
3136 	u32 ep_flag;
3137 	int err;
3138 
3139 	xhci = hcd_to_xhci(hcd);
3140 	if (!host_ep->hcpriv)
3141 		return;
3142 	udev = (struct usb_device *) host_ep->hcpriv;
3143 	vdev = xhci->devs[udev->slot_id];
3144 
3145 	/*
3146 	 * vdev may be lost due to xHC restore error and re-initialization
3147 	 * during S3/S4 resume. A new vdev will be allocated later by
3148 	 * xhci_discover_or_reset_device()
3149 	 */
3150 	if (!udev->slot_id || !vdev)
3151 		return;
3152 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153 	ep = &vdev->eps[ep_index];
3154 	if (!ep)
3155 		return;
3156 
3157 	/* Bail out if toggle is already being cleared by a endpoint reset */
3158 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3159 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3160 		return;
3161 	}
3162 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3163 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3164 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3165 		return;
3166 
3167 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3168 
3169 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3170 		return;
3171 
3172 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3173 	if (!stop_cmd)
3174 		return;
3175 
3176 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3177 	if (!cfg_cmd)
3178 		goto cleanup;
3179 
3180 	spin_lock_irqsave(&xhci->lock, flags);
3181 
3182 	/* block queuing new trbs and ringing ep doorbell */
3183 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3184 
3185 	/*
3186 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3187 	 * Driver is required to synchronously cancel all transfer request.
3188 	 * Stop the endpoint to force xHC to update the output context
3189 	 */
3190 
3191 	if (!list_empty(&ep->ring->td_list)) {
3192 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3193 		spin_unlock_irqrestore(&xhci->lock, flags);
3194 		xhci_free_command(xhci, cfg_cmd);
3195 		goto cleanup;
3196 	}
3197 
3198 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3199 					ep_index, 0);
3200 	if (err < 0) {
3201 		spin_unlock_irqrestore(&xhci->lock, flags);
3202 		xhci_free_command(xhci, cfg_cmd);
3203 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3204 				__func__, err);
3205 		goto cleanup;
3206 	}
3207 
3208 	xhci_ring_cmd_db(xhci);
3209 	spin_unlock_irqrestore(&xhci->lock, flags);
3210 
3211 	wait_for_completion(stop_cmd->completion);
3212 
3213 	spin_lock_irqsave(&xhci->lock, flags);
3214 
3215 	/* config ep command clears toggle if add and drop ep flags are set */
3216 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3217 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3218 					   ctrl_ctx, ep_flag, ep_flag);
3219 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3220 
3221 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3222 				      udev->slot_id, false);
3223 	if (err < 0) {
3224 		spin_unlock_irqrestore(&xhci->lock, flags);
3225 		xhci_free_command(xhci, cfg_cmd);
3226 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3227 				__func__, err);
3228 		goto cleanup;
3229 	}
3230 
3231 	xhci_ring_cmd_db(xhci);
3232 	spin_unlock_irqrestore(&xhci->lock, flags);
3233 
3234 	wait_for_completion(cfg_cmd->completion);
3235 
3236 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3237 	xhci_free_command(xhci, cfg_cmd);
3238 cleanup:
3239 	xhci_free_command(xhci, stop_cmd);
3240 }
3241 
3242 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3243 		struct usb_device *udev, struct usb_host_endpoint *ep,
3244 		unsigned int slot_id)
3245 {
3246 	int ret;
3247 	unsigned int ep_index;
3248 	unsigned int ep_state;
3249 
3250 	if (!ep)
3251 		return -EINVAL;
3252 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3253 	if (ret <= 0)
3254 		return -EINVAL;
3255 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3256 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3257 				" descriptor for ep 0x%x does not support streams\n",
3258 				ep->desc.bEndpointAddress);
3259 		return -EINVAL;
3260 	}
3261 
3262 	ep_index = xhci_get_endpoint_index(&ep->desc);
3263 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3264 	if (ep_state & EP_HAS_STREAMS ||
3265 			ep_state & EP_GETTING_STREAMS) {
3266 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3267 				"already has streams set up.\n",
3268 				ep->desc.bEndpointAddress);
3269 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3270 				"dynamic stream context array reallocation.\n");
3271 		return -EINVAL;
3272 	}
3273 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3274 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3275 				"endpoint 0x%x; URBs are pending.\n",
3276 				ep->desc.bEndpointAddress);
3277 		return -EINVAL;
3278 	}
3279 	return 0;
3280 }
3281 
3282 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3283 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3284 {
3285 	unsigned int max_streams;
3286 
3287 	/* The stream context array size must be a power of two */
3288 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3289 	/*
3290 	 * Find out how many primary stream array entries the host controller
3291 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3292 	 * level page entries), but that's an optional feature for xHCI host
3293 	 * controllers. xHCs must support at least 4 stream IDs.
3294 	 */
3295 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3296 	if (*num_stream_ctxs > max_streams) {
3297 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3298 				max_streams);
3299 		*num_stream_ctxs = max_streams;
3300 		*num_streams = max_streams;
3301 	}
3302 }
3303 
3304 /* Returns an error code if one of the endpoint already has streams.
3305  * This does not change any data structures, it only checks and gathers
3306  * information.
3307  */
3308 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3309 		struct usb_device *udev,
3310 		struct usb_host_endpoint **eps, unsigned int num_eps,
3311 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3312 {
3313 	unsigned int max_streams;
3314 	unsigned int endpoint_flag;
3315 	int i;
3316 	int ret;
3317 
3318 	for (i = 0; i < num_eps; i++) {
3319 		ret = xhci_check_streams_endpoint(xhci, udev,
3320 				eps[i], udev->slot_id);
3321 		if (ret < 0)
3322 			return ret;
3323 
3324 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3325 		if (max_streams < (*num_streams - 1)) {
3326 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3327 					eps[i]->desc.bEndpointAddress,
3328 					max_streams);
3329 			*num_streams = max_streams+1;
3330 		}
3331 
3332 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3333 		if (*changed_ep_bitmask & endpoint_flag)
3334 			return -EINVAL;
3335 		*changed_ep_bitmask |= endpoint_flag;
3336 	}
3337 	return 0;
3338 }
3339 
3340 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3341 		struct usb_device *udev,
3342 		struct usb_host_endpoint **eps, unsigned int num_eps)
3343 {
3344 	u32 changed_ep_bitmask = 0;
3345 	unsigned int slot_id;
3346 	unsigned int ep_index;
3347 	unsigned int ep_state;
3348 	int i;
3349 
3350 	slot_id = udev->slot_id;
3351 	if (!xhci->devs[slot_id])
3352 		return 0;
3353 
3354 	for (i = 0; i < num_eps; i++) {
3355 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3357 		/* Are streams already being freed for the endpoint? */
3358 		if (ep_state & EP_GETTING_NO_STREAMS) {
3359 			xhci_warn(xhci, "WARN Can't disable streams for "
3360 					"endpoint 0x%x, "
3361 					"streams are being disabled already\n",
3362 					eps[i]->desc.bEndpointAddress);
3363 			return 0;
3364 		}
3365 		/* Are there actually any streams to free? */
3366 		if (!(ep_state & EP_HAS_STREAMS) &&
3367 				!(ep_state & EP_GETTING_STREAMS)) {
3368 			xhci_warn(xhci, "WARN Can't disable streams for "
3369 					"endpoint 0x%x, "
3370 					"streams are already disabled!\n",
3371 					eps[i]->desc.bEndpointAddress);
3372 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3373 					"with non-streams endpoint\n");
3374 			return 0;
3375 		}
3376 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3377 	}
3378 	return changed_ep_bitmask;
3379 }
3380 
3381 /*
3382  * The USB device drivers use this function (through the HCD interface in USB
3383  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3384  * coordinate mass storage command queueing across multiple endpoints (basically
3385  * a stream ID == a task ID).
3386  *
3387  * Setting up streams involves allocating the same size stream context array
3388  * for each endpoint and issuing a configure endpoint command for all endpoints.
3389  *
3390  * Don't allow the call to succeed if one endpoint only supports one stream
3391  * (which means it doesn't support streams at all).
3392  *
3393  * Drivers may get less stream IDs than they asked for, if the host controller
3394  * hardware or endpoints claim they can't support the number of requested
3395  * stream IDs.
3396  */
3397 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3398 		struct usb_host_endpoint **eps, unsigned int num_eps,
3399 		unsigned int num_streams, gfp_t mem_flags)
3400 {
3401 	int i, ret;
3402 	struct xhci_hcd *xhci;
3403 	struct xhci_virt_device *vdev;
3404 	struct xhci_command *config_cmd;
3405 	struct xhci_input_control_ctx *ctrl_ctx;
3406 	unsigned int ep_index;
3407 	unsigned int num_stream_ctxs;
3408 	unsigned int max_packet;
3409 	unsigned long flags;
3410 	u32 changed_ep_bitmask = 0;
3411 
3412 	if (!eps)
3413 		return -EINVAL;
3414 
3415 	/* Add one to the number of streams requested to account for
3416 	 * stream 0 that is reserved for xHCI usage.
3417 	 */
3418 	num_streams += 1;
3419 	xhci = hcd_to_xhci(hcd);
3420 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3421 			num_streams);
3422 
3423 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3424 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3425 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3426 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3427 		return -ENOSYS;
3428 	}
3429 
3430 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3431 	if (!config_cmd)
3432 		return -ENOMEM;
3433 
3434 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3435 	if (!ctrl_ctx) {
3436 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3437 				__func__);
3438 		xhci_free_command(xhci, config_cmd);
3439 		return -ENOMEM;
3440 	}
3441 
3442 	/* Check to make sure all endpoints are not already configured for
3443 	 * streams.  While we're at it, find the maximum number of streams that
3444 	 * all the endpoints will support and check for duplicate endpoints.
3445 	 */
3446 	spin_lock_irqsave(&xhci->lock, flags);
3447 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3448 			num_eps, &num_streams, &changed_ep_bitmask);
3449 	if (ret < 0) {
3450 		xhci_free_command(xhci, config_cmd);
3451 		spin_unlock_irqrestore(&xhci->lock, flags);
3452 		return ret;
3453 	}
3454 	if (num_streams <= 1) {
3455 		xhci_warn(xhci, "WARN: endpoints can't handle "
3456 				"more than one stream.\n");
3457 		xhci_free_command(xhci, config_cmd);
3458 		spin_unlock_irqrestore(&xhci->lock, flags);
3459 		return -EINVAL;
3460 	}
3461 	vdev = xhci->devs[udev->slot_id];
3462 	/* Mark each endpoint as being in transition, so
3463 	 * xhci_urb_enqueue() will reject all URBs.
3464 	 */
3465 	for (i = 0; i < num_eps; i++) {
3466 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3467 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3468 	}
3469 	spin_unlock_irqrestore(&xhci->lock, flags);
3470 
3471 	/* Setup internal data structures and allocate HW data structures for
3472 	 * streams (but don't install the HW structures in the input context
3473 	 * until we're sure all memory allocation succeeded).
3474 	 */
3475 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3476 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3477 			num_stream_ctxs, num_streams);
3478 
3479 	for (i = 0; i < num_eps; i++) {
3480 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3481 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3482 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3483 				num_stream_ctxs,
3484 				num_streams,
3485 				max_packet, mem_flags);
3486 		if (!vdev->eps[ep_index].stream_info)
3487 			goto cleanup;
3488 		/* Set maxPstreams in endpoint context and update deq ptr to
3489 		 * point to stream context array. FIXME
3490 		 */
3491 	}
3492 
3493 	/* Set up the input context for a configure endpoint command. */
3494 	for (i = 0; i < num_eps; i++) {
3495 		struct xhci_ep_ctx *ep_ctx;
3496 
3497 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3498 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3499 
3500 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3501 				vdev->out_ctx, ep_index);
3502 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3503 				vdev->eps[ep_index].stream_info);
3504 	}
3505 	/* Tell the HW to drop its old copy of the endpoint context info
3506 	 * and add the updated copy from the input context.
3507 	 */
3508 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3509 			vdev->out_ctx, ctrl_ctx,
3510 			changed_ep_bitmask, changed_ep_bitmask);
3511 
3512 	/* Issue and wait for the configure endpoint command */
3513 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3514 			false, false);
3515 
3516 	/* xHC rejected the configure endpoint command for some reason, so we
3517 	 * leave the old ring intact and free our internal streams data
3518 	 * structure.
3519 	 */
3520 	if (ret < 0)
3521 		goto cleanup;
3522 
3523 	spin_lock_irqsave(&xhci->lock, flags);
3524 	for (i = 0; i < num_eps; i++) {
3525 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3527 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3528 			 udev->slot_id, ep_index);
3529 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3530 	}
3531 	xhci_free_command(xhci, config_cmd);
3532 	spin_unlock_irqrestore(&xhci->lock, flags);
3533 
3534 	/* Subtract 1 for stream 0, which drivers can't use */
3535 	return num_streams - 1;
3536 
3537 cleanup:
3538 	/* If it didn't work, free the streams! */
3539 	for (i = 0; i < num_eps; i++) {
3540 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3542 		vdev->eps[ep_index].stream_info = NULL;
3543 		/* FIXME Unset maxPstreams in endpoint context and
3544 		 * update deq ptr to point to normal string ring.
3545 		 */
3546 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3547 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3548 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3549 	}
3550 	xhci_free_command(xhci, config_cmd);
3551 	return -ENOMEM;
3552 }
3553 
3554 /* Transition the endpoint from using streams to being a "normal" endpoint
3555  * without streams.
3556  *
3557  * Modify the endpoint context state, submit a configure endpoint command,
3558  * and free all endpoint rings for streams if that completes successfully.
3559  */
3560 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3561 		struct usb_host_endpoint **eps, unsigned int num_eps,
3562 		gfp_t mem_flags)
3563 {
3564 	int i, ret;
3565 	struct xhci_hcd *xhci;
3566 	struct xhci_virt_device *vdev;
3567 	struct xhci_command *command;
3568 	struct xhci_input_control_ctx *ctrl_ctx;
3569 	unsigned int ep_index;
3570 	unsigned long flags;
3571 	u32 changed_ep_bitmask;
3572 
3573 	xhci = hcd_to_xhci(hcd);
3574 	vdev = xhci->devs[udev->slot_id];
3575 
3576 	/* Set up a configure endpoint command to remove the streams rings */
3577 	spin_lock_irqsave(&xhci->lock, flags);
3578 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3579 			udev, eps, num_eps);
3580 	if (changed_ep_bitmask == 0) {
3581 		spin_unlock_irqrestore(&xhci->lock, flags);
3582 		return -EINVAL;
3583 	}
3584 
3585 	/* Use the xhci_command structure from the first endpoint.  We may have
3586 	 * allocated too many, but the driver may call xhci_free_streams() for
3587 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3588 	 */
3589 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3590 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3591 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3592 	if (!ctrl_ctx) {
3593 		spin_unlock_irqrestore(&xhci->lock, flags);
3594 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3595 				__func__);
3596 		return -EINVAL;
3597 	}
3598 
3599 	for (i = 0; i < num_eps; i++) {
3600 		struct xhci_ep_ctx *ep_ctx;
3601 
3602 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3604 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3605 			EP_GETTING_NO_STREAMS;
3606 
3607 		xhci_endpoint_copy(xhci, command->in_ctx,
3608 				vdev->out_ctx, ep_index);
3609 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3610 				&vdev->eps[ep_index]);
3611 	}
3612 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3613 			vdev->out_ctx, ctrl_ctx,
3614 			changed_ep_bitmask, changed_ep_bitmask);
3615 	spin_unlock_irqrestore(&xhci->lock, flags);
3616 
3617 	/* Issue and wait for the configure endpoint command,
3618 	 * which must succeed.
3619 	 */
3620 	ret = xhci_configure_endpoint(xhci, udev, command,
3621 			false, true);
3622 
3623 	/* xHC rejected the configure endpoint command for some reason, so we
3624 	 * leave the streams rings intact.
3625 	 */
3626 	if (ret < 0)
3627 		return ret;
3628 
3629 	spin_lock_irqsave(&xhci->lock, flags);
3630 	for (i = 0; i < num_eps; i++) {
3631 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3632 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3633 		vdev->eps[ep_index].stream_info = NULL;
3634 		/* FIXME Unset maxPstreams in endpoint context and
3635 		 * update deq ptr to point to normal string ring.
3636 		 */
3637 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3638 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3639 	}
3640 	spin_unlock_irqrestore(&xhci->lock, flags);
3641 
3642 	return 0;
3643 }
3644 
3645 /*
3646  * Deletes endpoint resources for endpoints that were active before a Reset
3647  * Device command, or a Disable Slot command.  The Reset Device command leaves
3648  * the control endpoint intact, whereas the Disable Slot command deletes it.
3649  *
3650  * Must be called with xhci->lock held.
3651  */
3652 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3653 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3654 {
3655 	int i;
3656 	unsigned int num_dropped_eps = 0;
3657 	unsigned int drop_flags = 0;
3658 
3659 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3660 		if (virt_dev->eps[i].ring) {
3661 			drop_flags |= 1 << i;
3662 			num_dropped_eps++;
3663 		}
3664 	}
3665 	xhci->num_active_eps -= num_dropped_eps;
3666 	if (num_dropped_eps)
3667 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 				"Dropped %u ep ctxs, flags = 0x%x, "
3669 				"%u now active.",
3670 				num_dropped_eps, drop_flags,
3671 				xhci->num_active_eps);
3672 }
3673 
3674 /*
3675  * This submits a Reset Device Command, which will set the device state to 0,
3676  * set the device address to 0, and disable all the endpoints except the default
3677  * control endpoint.  The USB core should come back and call
3678  * xhci_address_device(), and then re-set up the configuration.  If this is
3679  * called because of a usb_reset_and_verify_device(), then the old alternate
3680  * settings will be re-installed through the normal bandwidth allocation
3681  * functions.
3682  *
3683  * Wait for the Reset Device command to finish.  Remove all structures
3684  * associated with the endpoints that were disabled.  Clear the input device
3685  * structure? Reset the control endpoint 0 max packet size?
3686  *
3687  * If the virt_dev to be reset does not exist or does not match the udev,
3688  * it means the device is lost, possibly due to the xHC restore error and
3689  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3690  * re-allocate the device.
3691  */
3692 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3693 		struct usb_device *udev)
3694 {
3695 	int ret, i;
3696 	unsigned long flags;
3697 	struct xhci_hcd *xhci;
3698 	unsigned int slot_id;
3699 	struct xhci_virt_device *virt_dev;
3700 	struct xhci_command *reset_device_cmd;
3701 	struct xhci_slot_ctx *slot_ctx;
3702 	int old_active_eps = 0;
3703 
3704 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3705 	if (ret <= 0)
3706 		return ret;
3707 	xhci = hcd_to_xhci(hcd);
3708 	slot_id = udev->slot_id;
3709 	virt_dev = xhci->devs[slot_id];
3710 	if (!virt_dev) {
3711 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3712 				"not exist. Re-allocate the device\n", slot_id);
3713 		ret = xhci_alloc_dev(hcd, udev);
3714 		if (ret == 1)
3715 			return 0;
3716 		else
3717 			return -EINVAL;
3718 	}
3719 
3720 	if (virt_dev->tt_info)
3721 		old_active_eps = virt_dev->tt_info->active_eps;
3722 
3723 	if (virt_dev->udev != udev) {
3724 		/* If the virt_dev and the udev does not match, this virt_dev
3725 		 * may belong to another udev.
3726 		 * Re-allocate the device.
3727 		 */
3728 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3729 				"not match the udev. Re-allocate the device\n",
3730 				slot_id);
3731 		ret = xhci_alloc_dev(hcd, udev);
3732 		if (ret == 1)
3733 			return 0;
3734 		else
3735 			return -EINVAL;
3736 	}
3737 
3738 	/* If device is not setup, there is no point in resetting it */
3739 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3740 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3741 						SLOT_STATE_DISABLED)
3742 		return 0;
3743 
3744 	trace_xhci_discover_or_reset_device(slot_ctx);
3745 
3746 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3747 	/* Allocate the command structure that holds the struct completion.
3748 	 * Assume we're in process context, since the normal device reset
3749 	 * process has to wait for the device anyway.  Storage devices are
3750 	 * reset as part of error handling, so use GFP_NOIO instead of
3751 	 * GFP_KERNEL.
3752 	 */
3753 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3754 	if (!reset_device_cmd) {
3755 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3756 		return -ENOMEM;
3757 	}
3758 
3759 	/* Attempt to submit the Reset Device command to the command ring */
3760 	spin_lock_irqsave(&xhci->lock, flags);
3761 
3762 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3763 	if (ret) {
3764 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3765 		spin_unlock_irqrestore(&xhci->lock, flags);
3766 		goto command_cleanup;
3767 	}
3768 	xhci_ring_cmd_db(xhci);
3769 	spin_unlock_irqrestore(&xhci->lock, flags);
3770 
3771 	/* Wait for the Reset Device command to finish */
3772 	wait_for_completion(reset_device_cmd->completion);
3773 
3774 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3775 	 * unless we tried to reset a slot ID that wasn't enabled,
3776 	 * or the device wasn't in the addressed or configured state.
3777 	 */
3778 	ret = reset_device_cmd->status;
3779 	switch (ret) {
3780 	case COMP_COMMAND_ABORTED:
3781 	case COMP_COMMAND_RING_STOPPED:
3782 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3783 		ret = -ETIME;
3784 		goto command_cleanup;
3785 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3786 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3787 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3788 				slot_id,
3789 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3790 		xhci_dbg(xhci, "Not freeing device rings.\n");
3791 		/* Don't treat this as an error.  May change my mind later. */
3792 		ret = 0;
3793 		goto command_cleanup;
3794 	case COMP_SUCCESS:
3795 		xhci_dbg(xhci, "Successful reset device command.\n");
3796 		break;
3797 	default:
3798 		if (xhci_is_vendor_info_code(xhci, ret))
3799 			break;
3800 		xhci_warn(xhci, "Unknown completion code %u for "
3801 				"reset device command.\n", ret);
3802 		ret = -EINVAL;
3803 		goto command_cleanup;
3804 	}
3805 
3806 	/* Free up host controller endpoint resources */
3807 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3808 		spin_lock_irqsave(&xhci->lock, flags);
3809 		/* Don't delete the default control endpoint resources */
3810 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3811 		spin_unlock_irqrestore(&xhci->lock, flags);
3812 	}
3813 
3814 	/* Everything but endpoint 0 is disabled, so free the rings. */
3815 	for (i = 1; i < 31; i++) {
3816 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3817 
3818 		if (ep->ep_state & EP_HAS_STREAMS) {
3819 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3820 					xhci_get_endpoint_address(i));
3821 			xhci_free_stream_info(xhci, ep->stream_info);
3822 			ep->stream_info = NULL;
3823 			ep->ep_state &= ~EP_HAS_STREAMS;
3824 		}
3825 
3826 		if (ep->ring) {
3827 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3828 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3829 		}
3830 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3831 			xhci_drop_ep_from_interval_table(xhci,
3832 					&virt_dev->eps[i].bw_info,
3833 					virt_dev->bw_table,
3834 					udev,
3835 					&virt_dev->eps[i],
3836 					virt_dev->tt_info);
3837 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3838 	}
3839 	/* If necessary, update the number of active TTs on this root port */
3840 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3841 	virt_dev->flags = 0;
3842 	ret = 0;
3843 
3844 command_cleanup:
3845 	xhci_free_command(xhci, reset_device_cmd);
3846 	return ret;
3847 }
3848 
3849 /*
3850  * At this point, the struct usb_device is about to go away, the device has
3851  * disconnected, and all traffic has been stopped and the endpoints have been
3852  * disabled.  Free any HC data structures associated with that device.
3853  */
3854 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3855 {
3856 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3857 	struct xhci_virt_device *virt_dev;
3858 	struct xhci_slot_ctx *slot_ctx;
3859 	int i, ret;
3860 
3861 #ifndef CONFIG_USB_DEFAULT_PERSIST
3862 	/*
3863 	 * We called pm_runtime_get_noresume when the device was attached.
3864 	 * Decrement the counter here to allow controller to runtime suspend
3865 	 * if no devices remain.
3866 	 */
3867 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3868 		pm_runtime_put_noidle(hcd->self.controller);
3869 #endif
3870 
3871 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3872 	/* If the host is halted due to driver unload, we still need to free the
3873 	 * device.
3874 	 */
3875 	if (ret <= 0 && ret != -ENODEV)
3876 		return;
3877 
3878 	virt_dev = xhci->devs[udev->slot_id];
3879 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3880 	trace_xhci_free_dev(slot_ctx);
3881 
3882 	/* Stop any wayward timer functions (which may grab the lock) */
3883 	for (i = 0; i < 31; i++) {
3884 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3885 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3886 	}
3887 	virt_dev->udev = NULL;
3888 	ret = xhci_disable_slot(xhci, udev->slot_id);
3889 	if (ret)
3890 		xhci_free_virt_device(xhci, udev->slot_id);
3891 }
3892 
3893 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3894 {
3895 	struct xhci_command *command;
3896 	unsigned long flags;
3897 	u32 state;
3898 	int ret = 0;
3899 
3900 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3901 	if (!command)
3902 		return -ENOMEM;
3903 
3904 	xhci_debugfs_remove_slot(xhci, slot_id);
3905 
3906 	spin_lock_irqsave(&xhci->lock, flags);
3907 	/* Don't disable the slot if the host controller is dead. */
3908 	state = readl(&xhci->op_regs->status);
3909 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3910 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3911 		spin_unlock_irqrestore(&xhci->lock, flags);
3912 		kfree(command);
3913 		return -ENODEV;
3914 	}
3915 
3916 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3917 				slot_id);
3918 	if (ret) {
3919 		spin_unlock_irqrestore(&xhci->lock, flags);
3920 		kfree(command);
3921 		return ret;
3922 	}
3923 	xhci_ring_cmd_db(xhci);
3924 	spin_unlock_irqrestore(&xhci->lock, flags);
3925 	return ret;
3926 }
3927 
3928 /*
3929  * Checks if we have enough host controller resources for the default control
3930  * endpoint.
3931  *
3932  * Must be called with xhci->lock held.
3933  */
3934 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3935 {
3936 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3937 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3938 				"Not enough ep ctxs: "
3939 				"%u active, need to add 1, limit is %u.",
3940 				xhci->num_active_eps, xhci->limit_active_eps);
3941 		return -ENOMEM;
3942 	}
3943 	xhci->num_active_eps += 1;
3944 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3945 			"Adding 1 ep ctx, %u now active.",
3946 			xhci->num_active_eps);
3947 	return 0;
3948 }
3949 
3950 
3951 /*
3952  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3953  * timed out, or allocating memory failed.  Returns 1 on success.
3954  */
3955 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3958 	struct xhci_virt_device *vdev;
3959 	struct xhci_slot_ctx *slot_ctx;
3960 	unsigned long flags;
3961 	int ret, slot_id;
3962 	struct xhci_command *command;
3963 
3964 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3965 	if (!command)
3966 		return 0;
3967 
3968 	spin_lock_irqsave(&xhci->lock, flags);
3969 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3970 	if (ret) {
3971 		spin_unlock_irqrestore(&xhci->lock, flags);
3972 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3973 		xhci_free_command(xhci, command);
3974 		return 0;
3975 	}
3976 	xhci_ring_cmd_db(xhci);
3977 	spin_unlock_irqrestore(&xhci->lock, flags);
3978 
3979 	wait_for_completion(command->completion);
3980 	slot_id = command->slot_id;
3981 
3982 	if (!slot_id || command->status != COMP_SUCCESS) {
3983 		xhci_err(xhci, "Error while assigning device slot ID\n");
3984 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3985 				HCS_MAX_SLOTS(
3986 					readl(&xhci->cap_regs->hcs_params1)));
3987 		xhci_free_command(xhci, command);
3988 		return 0;
3989 	}
3990 
3991 	xhci_free_command(xhci, command);
3992 
3993 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3994 		spin_lock_irqsave(&xhci->lock, flags);
3995 		ret = xhci_reserve_host_control_ep_resources(xhci);
3996 		if (ret) {
3997 			spin_unlock_irqrestore(&xhci->lock, flags);
3998 			xhci_warn(xhci, "Not enough host resources, "
3999 					"active endpoint contexts = %u\n",
4000 					xhci->num_active_eps);
4001 			goto disable_slot;
4002 		}
4003 		spin_unlock_irqrestore(&xhci->lock, flags);
4004 	}
4005 	/* Use GFP_NOIO, since this function can be called from
4006 	 * xhci_discover_or_reset_device(), which may be called as part of
4007 	 * mass storage driver error handling.
4008 	 */
4009 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4010 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4011 		goto disable_slot;
4012 	}
4013 	vdev = xhci->devs[slot_id];
4014 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4015 	trace_xhci_alloc_dev(slot_ctx);
4016 
4017 	udev->slot_id = slot_id;
4018 
4019 	xhci_debugfs_create_slot(xhci, slot_id);
4020 
4021 #ifndef CONFIG_USB_DEFAULT_PERSIST
4022 	/*
4023 	 * If resetting upon resume, we can't put the controller into runtime
4024 	 * suspend if there is a device attached.
4025 	 */
4026 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4027 		pm_runtime_get_noresume(hcd->self.controller);
4028 #endif
4029 
4030 	/* Is this a LS or FS device under a HS hub? */
4031 	/* Hub or peripherial? */
4032 	return 1;
4033 
4034 disable_slot:
4035 	ret = xhci_disable_slot(xhci, udev->slot_id);
4036 	if (ret)
4037 		xhci_free_virt_device(xhci, udev->slot_id);
4038 
4039 	return 0;
4040 }
4041 
4042 /*
4043  * Issue an Address Device command and optionally send a corresponding
4044  * SetAddress request to the device.
4045  */
4046 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4047 			     enum xhci_setup_dev setup)
4048 {
4049 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4050 	unsigned long flags;
4051 	struct xhci_virt_device *virt_dev;
4052 	int ret = 0;
4053 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4054 	struct xhci_slot_ctx *slot_ctx;
4055 	struct xhci_input_control_ctx *ctrl_ctx;
4056 	u64 temp_64;
4057 	struct xhci_command *command = NULL;
4058 
4059 	mutex_lock(&xhci->mutex);
4060 
4061 	if (xhci->xhc_state) {	/* dying, removing or halted */
4062 		ret = -ESHUTDOWN;
4063 		goto out;
4064 	}
4065 
4066 	if (!udev->slot_id) {
4067 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4068 				"Bad Slot ID %d", udev->slot_id);
4069 		ret = -EINVAL;
4070 		goto out;
4071 	}
4072 
4073 	virt_dev = xhci->devs[udev->slot_id];
4074 
4075 	if (WARN_ON(!virt_dev)) {
4076 		/*
4077 		 * In plug/unplug torture test with an NEC controller,
4078 		 * a zero-dereference was observed once due to virt_dev = 0.
4079 		 * Print useful debug rather than crash if it is observed again!
4080 		 */
4081 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4082 			udev->slot_id);
4083 		ret = -EINVAL;
4084 		goto out;
4085 	}
4086 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4087 	trace_xhci_setup_device_slot(slot_ctx);
4088 
4089 	if (setup == SETUP_CONTEXT_ONLY) {
4090 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4091 		    SLOT_STATE_DEFAULT) {
4092 			xhci_dbg(xhci, "Slot already in default state\n");
4093 			goto out;
4094 		}
4095 	}
4096 
4097 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4098 	if (!command) {
4099 		ret = -ENOMEM;
4100 		goto out;
4101 	}
4102 
4103 	command->in_ctx = virt_dev->in_ctx;
4104 
4105 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4106 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4107 	if (!ctrl_ctx) {
4108 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4109 				__func__);
4110 		ret = -EINVAL;
4111 		goto out;
4112 	}
4113 	/*
4114 	 * If this is the first Set Address since device plug-in or
4115 	 * virt_device realloaction after a resume with an xHCI power loss,
4116 	 * then set up the slot context.
4117 	 */
4118 	if (!slot_ctx->dev_info)
4119 		xhci_setup_addressable_virt_dev(xhci, udev);
4120 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4121 	else
4122 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4123 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4124 	ctrl_ctx->drop_flags = 0;
4125 
4126 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4127 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4128 
4129 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4130 	spin_lock_irqsave(&xhci->lock, flags);
4131 	trace_xhci_setup_device(virt_dev);
4132 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4133 					udev->slot_id, setup);
4134 	if (ret) {
4135 		spin_unlock_irqrestore(&xhci->lock, flags);
4136 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4137 				"FIXME: allocate a command ring segment");
4138 		goto out;
4139 	}
4140 	xhci_ring_cmd_db(xhci);
4141 	spin_unlock_irqrestore(&xhci->lock, flags);
4142 
4143 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4144 	wait_for_completion(command->completion);
4145 
4146 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4147 	 * the SetAddress() "recovery interval" required by USB and aborting the
4148 	 * command on a timeout.
4149 	 */
4150 	switch (command->status) {
4151 	case COMP_COMMAND_ABORTED:
4152 	case COMP_COMMAND_RING_STOPPED:
4153 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4154 		ret = -ETIME;
4155 		break;
4156 	case COMP_CONTEXT_STATE_ERROR:
4157 	case COMP_SLOT_NOT_ENABLED_ERROR:
4158 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4159 			 act, udev->slot_id);
4160 		ret = -EINVAL;
4161 		break;
4162 	case COMP_USB_TRANSACTION_ERROR:
4163 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4164 
4165 		mutex_unlock(&xhci->mutex);
4166 		ret = xhci_disable_slot(xhci, udev->slot_id);
4167 		if (!ret)
4168 			xhci_alloc_dev(hcd, udev);
4169 		kfree(command->completion);
4170 		kfree(command);
4171 		return -EPROTO;
4172 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4173 		dev_warn(&udev->dev,
4174 			 "ERROR: Incompatible device for setup %s command\n", act);
4175 		ret = -ENODEV;
4176 		break;
4177 	case COMP_SUCCESS:
4178 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4179 			       "Successful setup %s command", act);
4180 		break;
4181 	default:
4182 		xhci_err(xhci,
4183 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4184 			 act, command->status);
4185 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4186 		ret = -EINVAL;
4187 		break;
4188 	}
4189 	if (ret)
4190 		goto out;
4191 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4192 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 			"Op regs DCBAA ptr = %#016llx", temp_64);
4194 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4195 		"Slot ID %d dcbaa entry @%p = %#016llx",
4196 		udev->slot_id,
4197 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4198 		(unsigned long long)
4199 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4200 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201 			"Output Context DMA address = %#08llx",
4202 			(unsigned long long)virt_dev->out_ctx->dma);
4203 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4205 	/*
4206 	 * USB core uses address 1 for the roothubs, so we add one to the
4207 	 * address given back to us by the HC.
4208 	 */
4209 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4210 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4211 	/* Zero the input context control for later use */
4212 	ctrl_ctx->add_flags = 0;
4213 	ctrl_ctx->drop_flags = 0;
4214 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4215 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4216 
4217 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4218 		       "Internal device address = %d",
4219 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4220 out:
4221 	mutex_unlock(&xhci->mutex);
4222 	if (command) {
4223 		kfree(command->completion);
4224 		kfree(command);
4225 	}
4226 	return ret;
4227 }
4228 
4229 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4230 {
4231 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4232 }
4233 
4234 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4237 }
4238 
4239 /*
4240  * Transfer the port index into real index in the HW port status
4241  * registers. Caculate offset between the port's PORTSC register
4242  * and port status base. Divide the number of per port register
4243  * to get the real index. The raw port number bases 1.
4244  */
4245 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4246 {
4247 	struct xhci_hub *rhub;
4248 
4249 	rhub = xhci_get_rhub(hcd);
4250 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4251 }
4252 
4253 /*
4254  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4255  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4256  */
4257 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4258 			struct usb_device *udev, u16 max_exit_latency)
4259 {
4260 	struct xhci_virt_device *virt_dev;
4261 	struct xhci_command *command;
4262 	struct xhci_input_control_ctx *ctrl_ctx;
4263 	struct xhci_slot_ctx *slot_ctx;
4264 	unsigned long flags;
4265 	int ret;
4266 
4267 	spin_lock_irqsave(&xhci->lock, flags);
4268 
4269 	virt_dev = xhci->devs[udev->slot_id];
4270 
4271 	/*
4272 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4273 	 * xHC was re-initialized. Exit latency will be set later after
4274 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4275 	 */
4276 
4277 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4278 		spin_unlock_irqrestore(&xhci->lock, flags);
4279 		return 0;
4280 	}
4281 
4282 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4283 	command = xhci->lpm_command;
4284 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4285 	if (!ctrl_ctx) {
4286 		spin_unlock_irqrestore(&xhci->lock, flags);
4287 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4288 				__func__);
4289 		return -ENOMEM;
4290 	}
4291 
4292 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4293 	spin_unlock_irqrestore(&xhci->lock, flags);
4294 
4295 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4296 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4297 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4298 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4299 	slot_ctx->dev_state = 0;
4300 
4301 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4302 			"Set up evaluate context for LPM MEL change.");
4303 
4304 	/* Issue and wait for the evaluate context command. */
4305 	ret = xhci_configure_endpoint(xhci, udev, command,
4306 			true, true);
4307 
4308 	if (!ret) {
4309 		spin_lock_irqsave(&xhci->lock, flags);
4310 		virt_dev->current_mel = max_exit_latency;
4311 		spin_unlock_irqrestore(&xhci->lock, flags);
4312 	}
4313 	return ret;
4314 }
4315 
4316 #ifdef CONFIG_PM
4317 
4318 /* BESL to HIRD Encoding array for USB2 LPM */
4319 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4320 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4321 
4322 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4323 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4324 					struct usb_device *udev)
4325 {
4326 	int u2del, besl, besl_host;
4327 	int besl_device = 0;
4328 	u32 field;
4329 
4330 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4331 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4332 
4333 	if (field & USB_BESL_SUPPORT) {
4334 		for (besl_host = 0; besl_host < 16; besl_host++) {
4335 			if (xhci_besl_encoding[besl_host] >= u2del)
4336 				break;
4337 		}
4338 		/* Use baseline BESL value as default */
4339 		if (field & USB_BESL_BASELINE_VALID)
4340 			besl_device = USB_GET_BESL_BASELINE(field);
4341 		else if (field & USB_BESL_DEEP_VALID)
4342 			besl_device = USB_GET_BESL_DEEP(field);
4343 	} else {
4344 		if (u2del <= 50)
4345 			besl_host = 0;
4346 		else
4347 			besl_host = (u2del - 51) / 75 + 1;
4348 	}
4349 
4350 	besl = besl_host + besl_device;
4351 	if (besl > 15)
4352 		besl = 15;
4353 
4354 	return besl;
4355 }
4356 
4357 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4358 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4359 {
4360 	u32 field;
4361 	int l1;
4362 	int besld = 0;
4363 	int hirdm = 0;
4364 
4365 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4366 
4367 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4368 	l1 = udev->l1_params.timeout / 256;
4369 
4370 	/* device has preferred BESLD */
4371 	if (field & USB_BESL_DEEP_VALID) {
4372 		besld = USB_GET_BESL_DEEP(field);
4373 		hirdm = 1;
4374 	}
4375 
4376 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4377 }
4378 
4379 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4380 			struct usb_device *udev, int enable)
4381 {
4382 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4383 	struct xhci_port **ports;
4384 	__le32 __iomem	*pm_addr, *hlpm_addr;
4385 	u32		pm_val, hlpm_val, field;
4386 	unsigned int	port_num;
4387 	unsigned long	flags;
4388 	int		hird, exit_latency;
4389 	int		ret;
4390 
4391 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4392 			!udev->lpm_capable)
4393 		return -EPERM;
4394 
4395 	if (!udev->parent || udev->parent->parent ||
4396 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4397 		return -EPERM;
4398 
4399 	if (udev->usb2_hw_lpm_capable != 1)
4400 		return -EPERM;
4401 
4402 	spin_lock_irqsave(&xhci->lock, flags);
4403 
4404 	ports = xhci->usb2_rhub.ports;
4405 	port_num = udev->portnum - 1;
4406 	pm_addr = ports[port_num]->addr + PORTPMSC;
4407 	pm_val = readl(pm_addr);
4408 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4409 
4410 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4411 			enable ? "enable" : "disable", port_num + 1);
4412 
4413 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4414 		/* Host supports BESL timeout instead of HIRD */
4415 		if (udev->usb2_hw_lpm_besl_capable) {
4416 			/* if device doesn't have a preferred BESL value use a
4417 			 * default one which works with mixed HIRD and BESL
4418 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4419 			 */
4420 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4421 			if ((field & USB_BESL_SUPPORT) &&
4422 			    (field & USB_BESL_BASELINE_VALID))
4423 				hird = USB_GET_BESL_BASELINE(field);
4424 			else
4425 				hird = udev->l1_params.besl;
4426 
4427 			exit_latency = xhci_besl_encoding[hird];
4428 			spin_unlock_irqrestore(&xhci->lock, flags);
4429 
4430 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4431 			 * input context for link powermanagement evaluate
4432 			 * context commands. It is protected by hcd->bandwidth
4433 			 * mutex and is shared by all devices. We need to set
4434 			 * the max ext latency in USB 2 BESL LPM as well, so
4435 			 * use the same mutex and xhci_change_max_exit_latency()
4436 			 */
4437 			mutex_lock(hcd->bandwidth_mutex);
4438 			ret = xhci_change_max_exit_latency(xhci, udev,
4439 							   exit_latency);
4440 			mutex_unlock(hcd->bandwidth_mutex);
4441 
4442 			if (ret < 0)
4443 				return ret;
4444 			spin_lock_irqsave(&xhci->lock, flags);
4445 
4446 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4447 			writel(hlpm_val, hlpm_addr);
4448 			/* flush write */
4449 			readl(hlpm_addr);
4450 		} else {
4451 			hird = xhci_calculate_hird_besl(xhci, udev);
4452 		}
4453 
4454 		pm_val &= ~PORT_HIRD_MASK;
4455 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4456 		writel(pm_val, pm_addr);
4457 		pm_val = readl(pm_addr);
4458 		pm_val |= PORT_HLE;
4459 		writel(pm_val, pm_addr);
4460 		/* flush write */
4461 		readl(pm_addr);
4462 	} else {
4463 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4464 		writel(pm_val, pm_addr);
4465 		/* flush write */
4466 		readl(pm_addr);
4467 		if (udev->usb2_hw_lpm_besl_capable) {
4468 			spin_unlock_irqrestore(&xhci->lock, flags);
4469 			mutex_lock(hcd->bandwidth_mutex);
4470 			xhci_change_max_exit_latency(xhci, udev, 0);
4471 			mutex_unlock(hcd->bandwidth_mutex);
4472 			return 0;
4473 		}
4474 	}
4475 
4476 	spin_unlock_irqrestore(&xhci->lock, flags);
4477 	return 0;
4478 }
4479 
4480 /* check if a usb2 port supports a given extened capability protocol
4481  * only USB2 ports extended protocol capability values are cached.
4482  * Return 1 if capability is supported
4483  */
4484 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4485 					   unsigned capability)
4486 {
4487 	u32 port_offset, port_count;
4488 	int i;
4489 
4490 	for (i = 0; i < xhci->num_ext_caps; i++) {
4491 		if (xhci->ext_caps[i] & capability) {
4492 			/* port offsets starts at 1 */
4493 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4494 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4495 			if (port >= port_offset &&
4496 			    port < port_offset + port_count)
4497 				return 1;
4498 		}
4499 	}
4500 	return 0;
4501 }
4502 
4503 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4504 {
4505 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4506 	int		portnum = udev->portnum - 1;
4507 
4508 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4509 		return 0;
4510 
4511 	/* we only support lpm for non-hub device connected to root hub yet */
4512 	if (!udev->parent || udev->parent->parent ||
4513 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514 		return 0;
4515 
4516 	if (xhci->hw_lpm_support == 1 &&
4517 			xhci_check_usb2_port_capability(
4518 				xhci, portnum, XHCI_HLC)) {
4519 		udev->usb2_hw_lpm_capable = 1;
4520 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4521 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4522 		if (xhci_check_usb2_port_capability(xhci, portnum,
4523 					XHCI_BLC))
4524 			udev->usb2_hw_lpm_besl_capable = 1;
4525 	}
4526 
4527 	return 0;
4528 }
4529 
4530 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4531 
4532 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4533 static unsigned long long xhci_service_interval_to_ns(
4534 		struct usb_endpoint_descriptor *desc)
4535 {
4536 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4537 }
4538 
4539 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4540 		enum usb3_link_state state)
4541 {
4542 	unsigned long long sel;
4543 	unsigned long long pel;
4544 	unsigned int max_sel_pel;
4545 	char *state_name;
4546 
4547 	switch (state) {
4548 	case USB3_LPM_U1:
4549 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4550 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4551 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4552 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4553 		state_name = "U1";
4554 		break;
4555 	case USB3_LPM_U2:
4556 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4557 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4558 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4559 		state_name = "U2";
4560 		break;
4561 	default:
4562 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4563 				__func__);
4564 		return USB3_LPM_DISABLED;
4565 	}
4566 
4567 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4568 		return USB3_LPM_DEVICE_INITIATED;
4569 
4570 	if (sel > max_sel_pel)
4571 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4572 				"due to long SEL %llu ms\n",
4573 				state_name, sel);
4574 	else
4575 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4576 				"due to long PEL %llu ms\n",
4577 				state_name, pel);
4578 	return USB3_LPM_DISABLED;
4579 }
4580 
4581 /* The U1 timeout should be the maximum of the following values:
4582  *  - For control endpoints, U1 system exit latency (SEL) * 3
4583  *  - For bulk endpoints, U1 SEL * 5
4584  *  - For interrupt endpoints:
4585  *    - Notification EPs, U1 SEL * 3
4586  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4587  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4588  */
4589 static unsigned long long xhci_calculate_intel_u1_timeout(
4590 		struct usb_device *udev,
4591 		struct usb_endpoint_descriptor *desc)
4592 {
4593 	unsigned long long timeout_ns;
4594 	int ep_type;
4595 	int intr_type;
4596 
4597 	ep_type = usb_endpoint_type(desc);
4598 	switch (ep_type) {
4599 	case USB_ENDPOINT_XFER_CONTROL:
4600 		timeout_ns = udev->u1_params.sel * 3;
4601 		break;
4602 	case USB_ENDPOINT_XFER_BULK:
4603 		timeout_ns = udev->u1_params.sel * 5;
4604 		break;
4605 	case USB_ENDPOINT_XFER_INT:
4606 		intr_type = usb_endpoint_interrupt_type(desc);
4607 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4608 			timeout_ns = udev->u1_params.sel * 3;
4609 			break;
4610 		}
4611 		/* Otherwise the calculation is the same as isoc eps */
4612 		/* fall through */
4613 	case USB_ENDPOINT_XFER_ISOC:
4614 		timeout_ns = xhci_service_interval_to_ns(desc);
4615 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4616 		if (timeout_ns < udev->u1_params.sel * 2)
4617 			timeout_ns = udev->u1_params.sel * 2;
4618 		break;
4619 	default:
4620 		return 0;
4621 	}
4622 
4623 	return timeout_ns;
4624 }
4625 
4626 /* Returns the hub-encoded U1 timeout value. */
4627 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4628 		struct usb_device *udev,
4629 		struct usb_endpoint_descriptor *desc)
4630 {
4631 	unsigned long long timeout_ns;
4632 
4633 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4634 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4635 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4636 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4637 			return USB3_LPM_DISABLED;
4638 		}
4639 	}
4640 
4641 	if (xhci->quirks & XHCI_INTEL_HOST)
4642 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4643 	else
4644 		timeout_ns = udev->u1_params.sel;
4645 
4646 	/* The U1 timeout is encoded in 1us intervals.
4647 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4648 	 */
4649 	if (timeout_ns == USB3_LPM_DISABLED)
4650 		timeout_ns = 1;
4651 	else
4652 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4653 
4654 	/* If the necessary timeout value is bigger than what we can set in the
4655 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4656 	 */
4657 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4658 		return timeout_ns;
4659 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4660 			"due to long timeout %llu ms\n", timeout_ns);
4661 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4662 }
4663 
4664 /* The U2 timeout should be the maximum of:
4665  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4666  *  - largest bInterval of any active periodic endpoint (to avoid going
4667  *    into lower power link states between intervals).
4668  *  - the U2 Exit Latency of the device
4669  */
4670 static unsigned long long xhci_calculate_intel_u2_timeout(
4671 		struct usb_device *udev,
4672 		struct usb_endpoint_descriptor *desc)
4673 {
4674 	unsigned long long timeout_ns;
4675 	unsigned long long u2_del_ns;
4676 
4677 	timeout_ns = 10 * 1000 * 1000;
4678 
4679 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4680 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4681 		timeout_ns = xhci_service_interval_to_ns(desc);
4682 
4683 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4684 	if (u2_del_ns > timeout_ns)
4685 		timeout_ns = u2_del_ns;
4686 
4687 	return timeout_ns;
4688 }
4689 
4690 /* Returns the hub-encoded U2 timeout value. */
4691 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4692 		struct usb_device *udev,
4693 		struct usb_endpoint_descriptor *desc)
4694 {
4695 	unsigned long long timeout_ns;
4696 
4697 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4698 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4699 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4700 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4701 			return USB3_LPM_DISABLED;
4702 		}
4703 	}
4704 
4705 	if (xhci->quirks & XHCI_INTEL_HOST)
4706 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4707 	else
4708 		timeout_ns = udev->u2_params.sel;
4709 
4710 	/* The U2 timeout is encoded in 256us intervals */
4711 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4712 	/* If the necessary timeout value is bigger than what we can set in the
4713 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4714 	 */
4715 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4716 		return timeout_ns;
4717 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4718 			"due to long timeout %llu ms\n", timeout_ns);
4719 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4720 }
4721 
4722 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4723 		struct usb_device *udev,
4724 		struct usb_endpoint_descriptor *desc,
4725 		enum usb3_link_state state,
4726 		u16 *timeout)
4727 {
4728 	if (state == USB3_LPM_U1)
4729 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4730 	else if (state == USB3_LPM_U2)
4731 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4732 
4733 	return USB3_LPM_DISABLED;
4734 }
4735 
4736 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4737 		struct usb_device *udev,
4738 		struct usb_endpoint_descriptor *desc,
4739 		enum usb3_link_state state,
4740 		u16 *timeout)
4741 {
4742 	u16 alt_timeout;
4743 
4744 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4745 		desc, state, timeout);
4746 
4747 	/* If we found we can't enable hub-initiated LPM, and
4748 	 * the U1 or U2 exit latency was too high to allow
4749 	 * device-initiated LPM as well, then we will disable LPM
4750 	 * for this device, so stop searching any further.
4751 	 */
4752 	if (alt_timeout == USB3_LPM_DISABLED) {
4753 		*timeout = alt_timeout;
4754 		return -E2BIG;
4755 	}
4756 	if (alt_timeout > *timeout)
4757 		*timeout = alt_timeout;
4758 	return 0;
4759 }
4760 
4761 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4762 		struct usb_device *udev,
4763 		struct usb_host_interface *alt,
4764 		enum usb3_link_state state,
4765 		u16 *timeout)
4766 {
4767 	int j;
4768 
4769 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4770 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4771 					&alt->endpoint[j].desc, state, timeout))
4772 			return -E2BIG;
4773 		continue;
4774 	}
4775 	return 0;
4776 }
4777 
4778 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4779 		enum usb3_link_state state)
4780 {
4781 	struct usb_device *parent;
4782 	unsigned int num_hubs;
4783 
4784 	if (state == USB3_LPM_U2)
4785 		return 0;
4786 
4787 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4788 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4789 			parent = parent->parent)
4790 		num_hubs++;
4791 
4792 	if (num_hubs < 2)
4793 		return 0;
4794 
4795 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4796 			" below second-tier hub.\n");
4797 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4798 			"to decrease power consumption.\n");
4799 	return -E2BIG;
4800 }
4801 
4802 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4803 		struct usb_device *udev,
4804 		enum usb3_link_state state)
4805 {
4806 	if (xhci->quirks & XHCI_INTEL_HOST)
4807 		return xhci_check_intel_tier_policy(udev, state);
4808 	else
4809 		return 0;
4810 }
4811 
4812 /* Returns the U1 or U2 timeout that should be enabled.
4813  * If the tier check or timeout setting functions return with a non-zero exit
4814  * code, that means the timeout value has been finalized and we shouldn't look
4815  * at any more endpoints.
4816  */
4817 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4818 			struct usb_device *udev, enum usb3_link_state state)
4819 {
4820 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4821 	struct usb_host_config *config;
4822 	char *state_name;
4823 	int i;
4824 	u16 timeout = USB3_LPM_DISABLED;
4825 
4826 	if (state == USB3_LPM_U1)
4827 		state_name = "U1";
4828 	else if (state == USB3_LPM_U2)
4829 		state_name = "U2";
4830 	else {
4831 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4832 				state);
4833 		return timeout;
4834 	}
4835 
4836 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4837 		return timeout;
4838 
4839 	/* Gather some information about the currently installed configuration
4840 	 * and alternate interface settings.
4841 	 */
4842 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4843 			state, &timeout))
4844 		return timeout;
4845 
4846 	config = udev->actconfig;
4847 	if (!config)
4848 		return timeout;
4849 
4850 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4851 		struct usb_driver *driver;
4852 		struct usb_interface *intf = config->interface[i];
4853 
4854 		if (!intf)
4855 			continue;
4856 
4857 		/* Check if any currently bound drivers want hub-initiated LPM
4858 		 * disabled.
4859 		 */
4860 		if (intf->dev.driver) {
4861 			driver = to_usb_driver(intf->dev.driver);
4862 			if (driver && driver->disable_hub_initiated_lpm) {
4863 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4864 					state_name, driver->name);
4865 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4866 								      state);
4867 				if (timeout == USB3_LPM_DISABLED)
4868 					return timeout;
4869 			}
4870 		}
4871 
4872 		/* Not sure how this could happen... */
4873 		if (!intf->cur_altsetting)
4874 			continue;
4875 
4876 		if (xhci_update_timeout_for_interface(xhci, udev,
4877 					intf->cur_altsetting,
4878 					state, &timeout))
4879 			return timeout;
4880 	}
4881 	return timeout;
4882 }
4883 
4884 static int calculate_max_exit_latency(struct usb_device *udev,
4885 		enum usb3_link_state state_changed,
4886 		u16 hub_encoded_timeout)
4887 {
4888 	unsigned long long u1_mel_us = 0;
4889 	unsigned long long u2_mel_us = 0;
4890 	unsigned long long mel_us = 0;
4891 	bool disabling_u1;
4892 	bool disabling_u2;
4893 	bool enabling_u1;
4894 	bool enabling_u2;
4895 
4896 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4897 			hub_encoded_timeout == USB3_LPM_DISABLED);
4898 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4899 			hub_encoded_timeout == USB3_LPM_DISABLED);
4900 
4901 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4902 			hub_encoded_timeout != USB3_LPM_DISABLED);
4903 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4904 			hub_encoded_timeout != USB3_LPM_DISABLED);
4905 
4906 	/* If U1 was already enabled and we're not disabling it,
4907 	 * or we're going to enable U1, account for the U1 max exit latency.
4908 	 */
4909 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4910 			enabling_u1)
4911 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4912 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4913 			enabling_u2)
4914 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4915 
4916 	if (u1_mel_us > u2_mel_us)
4917 		mel_us = u1_mel_us;
4918 	else
4919 		mel_us = u2_mel_us;
4920 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4921 	if (mel_us > MAX_EXIT) {
4922 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4923 				"is too big.\n", mel_us);
4924 		return -E2BIG;
4925 	}
4926 	return mel_us;
4927 }
4928 
4929 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4930 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4931 			struct usb_device *udev, enum usb3_link_state state)
4932 {
4933 	struct xhci_hcd	*xhci;
4934 	u16 hub_encoded_timeout;
4935 	int mel;
4936 	int ret;
4937 
4938 	xhci = hcd_to_xhci(hcd);
4939 	/* The LPM timeout values are pretty host-controller specific, so don't
4940 	 * enable hub-initiated timeouts unless the vendor has provided
4941 	 * information about their timeout algorithm.
4942 	 */
4943 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4944 			!xhci->devs[udev->slot_id])
4945 		return USB3_LPM_DISABLED;
4946 
4947 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4948 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4949 	if (mel < 0) {
4950 		/* Max Exit Latency is too big, disable LPM. */
4951 		hub_encoded_timeout = USB3_LPM_DISABLED;
4952 		mel = 0;
4953 	}
4954 
4955 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4956 	if (ret)
4957 		return ret;
4958 	return hub_encoded_timeout;
4959 }
4960 
4961 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4962 			struct usb_device *udev, enum usb3_link_state state)
4963 {
4964 	struct xhci_hcd	*xhci;
4965 	u16 mel;
4966 
4967 	xhci = hcd_to_xhci(hcd);
4968 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4969 			!xhci->devs[udev->slot_id])
4970 		return 0;
4971 
4972 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4973 	return xhci_change_max_exit_latency(xhci, udev, mel);
4974 }
4975 #else /* CONFIG_PM */
4976 
4977 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4978 				struct usb_device *udev, int enable)
4979 {
4980 	return 0;
4981 }
4982 
4983 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4984 {
4985 	return 0;
4986 }
4987 
4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4989 			struct usb_device *udev, enum usb3_link_state state)
4990 {
4991 	return USB3_LPM_DISABLED;
4992 }
4993 
4994 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4995 			struct usb_device *udev, enum usb3_link_state state)
4996 {
4997 	return 0;
4998 }
4999 #endif	/* CONFIG_PM */
5000 
5001 /*-------------------------------------------------------------------------*/
5002 
5003 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5004  * internal data structures for the device.
5005  */
5006 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5007 			struct usb_tt *tt, gfp_t mem_flags)
5008 {
5009 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5010 	struct xhci_virt_device *vdev;
5011 	struct xhci_command *config_cmd;
5012 	struct xhci_input_control_ctx *ctrl_ctx;
5013 	struct xhci_slot_ctx *slot_ctx;
5014 	unsigned long flags;
5015 	unsigned think_time;
5016 	int ret;
5017 
5018 	/* Ignore root hubs */
5019 	if (!hdev->parent)
5020 		return 0;
5021 
5022 	vdev = xhci->devs[hdev->slot_id];
5023 	if (!vdev) {
5024 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5025 		return -EINVAL;
5026 	}
5027 
5028 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5029 	if (!config_cmd)
5030 		return -ENOMEM;
5031 
5032 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5033 	if (!ctrl_ctx) {
5034 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5035 				__func__);
5036 		xhci_free_command(xhci, config_cmd);
5037 		return -ENOMEM;
5038 	}
5039 
5040 	spin_lock_irqsave(&xhci->lock, flags);
5041 	if (hdev->speed == USB_SPEED_HIGH &&
5042 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5043 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5044 		xhci_free_command(xhci, config_cmd);
5045 		spin_unlock_irqrestore(&xhci->lock, flags);
5046 		return -ENOMEM;
5047 	}
5048 
5049 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5050 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5051 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5052 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5053 	/*
5054 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5055 	 * but it may be already set to 1 when setup an xHCI virtual
5056 	 * device, so clear it anyway.
5057 	 */
5058 	if (tt->multi)
5059 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5060 	else if (hdev->speed == USB_SPEED_FULL)
5061 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5062 
5063 	if (xhci->hci_version > 0x95) {
5064 		xhci_dbg(xhci, "xHCI version %x needs hub "
5065 				"TT think time and number of ports\n",
5066 				(unsigned int) xhci->hci_version);
5067 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5068 		/* Set TT think time - convert from ns to FS bit times.
5069 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5070 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5071 		 *
5072 		 * xHCI 1.0: this field shall be 0 if the device is not a
5073 		 * High-spped hub.
5074 		 */
5075 		think_time = tt->think_time;
5076 		if (think_time != 0)
5077 			think_time = (think_time / 666) - 1;
5078 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5079 			slot_ctx->tt_info |=
5080 				cpu_to_le32(TT_THINK_TIME(think_time));
5081 	} else {
5082 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5083 				"TT think time or number of ports\n",
5084 				(unsigned int) xhci->hci_version);
5085 	}
5086 	slot_ctx->dev_state = 0;
5087 	spin_unlock_irqrestore(&xhci->lock, flags);
5088 
5089 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5090 			(xhci->hci_version > 0x95) ?
5091 			"configure endpoint" : "evaluate context");
5092 
5093 	/* Issue and wait for the configure endpoint or
5094 	 * evaluate context command.
5095 	 */
5096 	if (xhci->hci_version > 0x95)
5097 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5098 				false, false);
5099 	else
5100 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101 				true, false);
5102 
5103 	xhci_free_command(xhci, config_cmd);
5104 	return ret;
5105 }
5106 
5107 static int xhci_get_frame(struct usb_hcd *hcd)
5108 {
5109 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5110 	/* EHCI mods by the periodic size.  Why? */
5111 	return readl(&xhci->run_regs->microframe_index) >> 3;
5112 }
5113 
5114 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5115 {
5116 	struct xhci_hcd		*xhci;
5117 	/*
5118 	 * TODO: Check with DWC3 clients for sysdev according to
5119 	 * quirks
5120 	 */
5121 	struct device		*dev = hcd->self.sysdev;
5122 	unsigned int		minor_rev;
5123 	int			retval;
5124 
5125 	/* Accept arbitrarily long scatter-gather lists */
5126 	hcd->self.sg_tablesize = ~0;
5127 
5128 	/* support to build packet from discontinuous buffers */
5129 	hcd->self.no_sg_constraint = 1;
5130 
5131 	/* XHCI controllers don't stop the ep queue on short packets :| */
5132 	hcd->self.no_stop_on_short = 1;
5133 
5134 	xhci = hcd_to_xhci(hcd);
5135 
5136 	if (usb_hcd_is_primary_hcd(hcd)) {
5137 		xhci->main_hcd = hcd;
5138 		xhci->usb2_rhub.hcd = hcd;
5139 		/* Mark the first roothub as being USB 2.0.
5140 		 * The xHCI driver will register the USB 3.0 roothub.
5141 		 */
5142 		hcd->speed = HCD_USB2;
5143 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5144 		/*
5145 		 * USB 2.0 roothub under xHCI has an integrated TT,
5146 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5147 		 * companion controller.
5148 		 */
5149 		hcd->has_tt = 1;
5150 	} else {
5151 		/*
5152 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153 		 * should return 0x31 for sbrn, or that the minor revision
5154 		 * is a two digit BCD containig minor and sub-minor numbers.
5155 		 * This was later clarified in xHCI 1.2.
5156 		 *
5157 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158 		 * minor revision set to 0x1 instead of 0x10.
5159 		 */
5160 		if (xhci->usb3_rhub.min_rev == 0x1)
5161 			minor_rev = 1;
5162 		else
5163 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5164 
5165 		switch (minor_rev) {
5166 		case 2:
5167 			hcd->speed = HCD_USB32;
5168 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169 			hcd->self.root_hub->rx_lanes = 2;
5170 			hcd->self.root_hub->tx_lanes = 2;
5171 			break;
5172 		case 1:
5173 			hcd->speed = HCD_USB31;
5174 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175 			break;
5176 		}
5177 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5178 			  minor_rev,
5179 			  minor_rev ? "Enhanced " : "");
5180 
5181 		xhci->usb3_rhub.hcd = hcd;
5182 		/* xHCI private pointer was set in xhci_pci_probe for the second
5183 		 * registered roothub.
5184 		 */
5185 		return 0;
5186 	}
5187 
5188 	mutex_init(&xhci->mutex);
5189 	xhci->cap_regs = hcd->regs;
5190 	xhci->op_regs = hcd->regs +
5191 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5192 	xhci->run_regs = hcd->regs +
5193 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5194 	/* Cache read-only capability registers */
5195 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5196 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5197 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5198 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5199 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5200 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5201 	if (xhci->hci_version > 0x100)
5202 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5203 
5204 	xhci->quirks |= quirks;
5205 
5206 	get_quirks(dev, xhci);
5207 
5208 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5209 	 * success event after a short transfer. This quirk will ignore such
5210 	 * spurious event.
5211 	 */
5212 	if (xhci->hci_version > 0x96)
5213 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5214 
5215 	/* Make sure the HC is halted. */
5216 	retval = xhci_halt(xhci);
5217 	if (retval)
5218 		return retval;
5219 
5220 	xhci_zero_64b_regs(xhci);
5221 
5222 	xhci_dbg(xhci, "Resetting HCD\n");
5223 	/* Reset the internal HC memory state and registers. */
5224 	retval = xhci_reset(xhci);
5225 	if (retval)
5226 		return retval;
5227 	xhci_dbg(xhci, "Reset complete\n");
5228 
5229 	/*
5230 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5231 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5232 	 * address memory pointers actually. So, this driver clears the AC64
5233 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5234 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5235 	 */
5236 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5237 		xhci->hcc_params &= ~BIT(0);
5238 
5239 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5240 	 * if xHC supports 64-bit addressing */
5241 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5242 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5243 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5244 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5245 	} else {
5246 		/*
5247 		 * This is to avoid error in cases where a 32-bit USB
5248 		 * controller is used on a 64-bit capable system.
5249 		 */
5250 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5251 		if (retval)
5252 			return retval;
5253 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5254 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5255 	}
5256 
5257 	xhci_dbg(xhci, "Calling HCD init\n");
5258 	/* Initialize HCD and host controller data structures. */
5259 	retval = xhci_init(hcd);
5260 	if (retval)
5261 		return retval;
5262 	xhci_dbg(xhci, "Called HCD init\n");
5263 
5264 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5265 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5266 
5267 	return 0;
5268 }
5269 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5270 
5271 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5272 		struct usb_host_endpoint *ep)
5273 {
5274 	struct xhci_hcd *xhci;
5275 	struct usb_device *udev;
5276 	unsigned int slot_id;
5277 	unsigned int ep_index;
5278 	unsigned long flags;
5279 
5280 	xhci = hcd_to_xhci(hcd);
5281 
5282 	spin_lock_irqsave(&xhci->lock, flags);
5283 	udev = (struct usb_device *)ep->hcpriv;
5284 	slot_id = udev->slot_id;
5285 	ep_index = xhci_get_endpoint_index(&ep->desc);
5286 
5287 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5288 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5289 	spin_unlock_irqrestore(&xhci->lock, flags);
5290 }
5291 
5292 static const struct hc_driver xhci_hc_driver = {
5293 	.description =		"xhci-hcd",
5294 	.product_desc =		"xHCI Host Controller",
5295 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5296 
5297 	/*
5298 	 * generic hardware linkage
5299 	 */
5300 	.irq =			xhci_irq,
5301 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5302 				HCD_BH,
5303 
5304 	/*
5305 	 * basic lifecycle operations
5306 	 */
5307 	.reset =		NULL, /* set in xhci_init_driver() */
5308 	.start =		xhci_run,
5309 	.stop =			xhci_stop,
5310 	.shutdown =		xhci_shutdown,
5311 
5312 	/*
5313 	 * managing i/o requests and associated device resources
5314 	 */
5315 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5316 	.urb_enqueue =		xhci_urb_enqueue,
5317 	.urb_dequeue =		xhci_urb_dequeue,
5318 	.alloc_dev =		xhci_alloc_dev,
5319 	.free_dev =		xhci_free_dev,
5320 	.alloc_streams =	xhci_alloc_streams,
5321 	.free_streams =		xhci_free_streams,
5322 	.add_endpoint =		xhci_add_endpoint,
5323 	.drop_endpoint =	xhci_drop_endpoint,
5324 	.endpoint_disable =	xhci_endpoint_disable,
5325 	.endpoint_reset =	xhci_endpoint_reset,
5326 	.check_bandwidth =	xhci_check_bandwidth,
5327 	.reset_bandwidth =	xhci_reset_bandwidth,
5328 	.address_device =	xhci_address_device,
5329 	.enable_device =	xhci_enable_device,
5330 	.update_hub_device =	xhci_update_hub_device,
5331 	.reset_device =		xhci_discover_or_reset_device,
5332 
5333 	/*
5334 	 * scheduling support
5335 	 */
5336 	.get_frame_number =	xhci_get_frame,
5337 
5338 	/*
5339 	 * root hub support
5340 	 */
5341 	.hub_control =		xhci_hub_control,
5342 	.hub_status_data =	xhci_hub_status_data,
5343 	.bus_suspend =		xhci_bus_suspend,
5344 	.bus_resume =		xhci_bus_resume,
5345 	.get_resuming_ports =	xhci_get_resuming_ports,
5346 
5347 	/*
5348 	 * call back when device connected and addressed
5349 	 */
5350 	.update_device =        xhci_update_device,
5351 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5352 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5353 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5354 	.find_raw_port_number =	xhci_find_raw_port_number,
5355 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5356 };
5357 
5358 void xhci_init_driver(struct hc_driver *drv,
5359 		      const struct xhci_driver_overrides *over)
5360 {
5361 	BUG_ON(!over);
5362 
5363 	/* Copy the generic table to drv then apply the overrides */
5364 	*drv = xhci_hc_driver;
5365 
5366 	if (over) {
5367 		drv->hcd_priv_size += over->extra_priv_size;
5368 		if (over->reset)
5369 			drv->reset = over->reset;
5370 		if (over->start)
5371 			drv->start = over->start;
5372 	}
5373 }
5374 EXPORT_SYMBOL_GPL(xhci_init_driver);
5375 
5376 MODULE_DESCRIPTION(DRIVER_DESC);
5377 MODULE_AUTHOR(DRIVER_AUTHOR);
5378 MODULE_LICENSE("GPL");
5379 
5380 static int __init xhci_hcd_init(void)
5381 {
5382 	/*
5383 	 * Check the compiler generated sizes of structures that must be laid
5384 	 * out in specific ways for hardware access.
5385 	 */
5386 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5387 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5388 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5389 	/* xhci_device_control has eight fields, and also
5390 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5391 	 */
5392 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5393 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5394 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5395 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5396 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5397 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5398 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5399 
5400 	if (usb_disabled())
5401 		return -ENODEV;
5402 
5403 	xhci_debugfs_create_root();
5404 
5405 	return 0;
5406 }
5407 
5408 /*
5409  * If an init function is provided, an exit function must also be provided
5410  * to allow module unload.
5411  */
5412 static void __exit xhci_hcd_fini(void)
5413 {
5414 	xhci_debugfs_remove_root();
5415 }
5416 
5417 module_init(xhci_hcd_init);
5418 module_exit(xhci_hcd_fini);
5419