1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 static void compliance_mode_recovery(struct timer_list *t) 326 { 327 struct xhci_hcd *xhci; 328 struct usb_hcd *hcd; 329 struct xhci_hub *rhub; 330 u32 temp; 331 int i; 332 333 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 334 rhub = &xhci->usb3_rhub; 335 hcd = rhub->hcd; 336 337 if (!hcd) 338 return; 339 340 for (i = 0; i < rhub->num_ports; i++) { 341 temp = readl(rhub->ports[i]->addr); 342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 343 /* 344 * Compliance Mode Detected. Letting USB Core 345 * handle the Warm Reset 346 */ 347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 348 "Compliance mode detected->port %d", 349 i + 1); 350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 351 "Attempting compliance mode recovery"); 352 353 if (hcd->state == HC_STATE_SUSPENDED) 354 usb_hcd_resume_root_hub(hcd); 355 356 usb_hcd_poll_rh_status(hcd); 357 } 358 } 359 360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 361 mod_timer(&xhci->comp_mode_recovery_timer, 362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 363 } 364 365 /* 366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 367 * that causes ports behind that hardware to enter compliance mode sometimes. 368 * The quirk creates a timer that polls every 2 seconds the link state of 369 * each host controller's port and recovers it by issuing a Warm reset 370 * if Compliance mode is detected, otherwise the port will become "dead" (no 371 * device connections or disconnections will be detected anymore). Becasue no 372 * status event is generated when entering compliance mode (per xhci spec), 373 * this quirk is needed on systems that have the failing hardware installed. 374 */ 375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 376 { 377 xhci->port_status_u0 = 0; 378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 379 0); 380 xhci->comp_mode_recovery_timer.expires = jiffies + 381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 382 383 add_timer(&xhci->comp_mode_recovery_timer); 384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 385 "Compliance mode recovery timer initialized"); 386 } 387 388 /* 389 * This function identifies the systems that have installed the SN65LVPE502CP 390 * USB3.0 re-driver and that need the Compliance Mode Quirk. 391 * Systems: 392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 393 */ 394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 395 { 396 const char *dmi_product_name, *dmi_sys_vendor; 397 398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 400 if (!dmi_product_name || !dmi_sys_vendor) 401 return false; 402 403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 404 return false; 405 406 if (strstr(dmi_product_name, "Z420") || 407 strstr(dmi_product_name, "Z620") || 408 strstr(dmi_product_name, "Z820") || 409 strstr(dmi_product_name, "Z1 Workstation")) 410 return true; 411 412 return false; 413 } 414 415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 416 { 417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 418 } 419 420 421 /* 422 * Initialize memory for HCD and xHC (one-time init). 423 * 424 * Program the PAGESIZE register, initialize the device context array, create 425 * device contexts (?), set up a command ring segment (or two?), create event 426 * ring (one for now). 427 */ 428 static int xhci_init(struct usb_hcd *hcd) 429 { 430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 431 int retval; 432 433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 434 spin_lock_init(&xhci->lock); 435 if (xhci->hci_version == 0x95 && link_quirk) { 436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 437 "QUIRK: Not clearing Link TRB chain bits."); 438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 439 } else { 440 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 441 "xHCI doesn't need link TRB QUIRK"); 442 } 443 retval = xhci_mem_init(xhci, GFP_KERNEL); 444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 445 446 /* Initializing Compliance Mode Recovery Data If Needed */ 447 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 448 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 449 compliance_mode_recovery_timer_init(xhci); 450 } 451 452 return retval; 453 } 454 455 /*-------------------------------------------------------------------------*/ 456 457 static int xhci_run_finished(struct xhci_hcd *xhci) 458 { 459 struct xhci_interrupter *ir = xhci->interrupter; 460 unsigned long flags; 461 u32 temp; 462 463 /* 464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 465 * Protect the short window before host is running with a lock 466 */ 467 spin_lock_irqsave(&xhci->lock, flags); 468 469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 470 temp = readl(&xhci->op_regs->command); 471 temp |= (CMD_EIE); 472 writel(temp, &xhci->op_regs->command); 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 475 xhci_enable_interrupter(ir); 476 477 if (xhci_start(xhci)) { 478 xhci_halt(xhci); 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 return -ENODEV; 481 } 482 483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 484 485 if (xhci->quirks & XHCI_NEC_HOST) 486 xhci_ring_cmd_db(xhci); 487 488 spin_unlock_irqrestore(&xhci->lock, flags); 489 490 return 0; 491 } 492 493 /* 494 * Start the HC after it was halted. 495 * 496 * This function is called by the USB core when the HC driver is added. 497 * Its opposite is xhci_stop(). 498 * 499 * xhci_init() must be called once before this function can be called. 500 * Reset the HC, enable device slot contexts, program DCBAAP, and 501 * set command ring pointer and event ring pointer. 502 * 503 * Setup MSI-X vectors and enable interrupts. 504 */ 505 int xhci_run(struct usb_hcd *hcd) 506 { 507 u32 temp; 508 u64 temp_64; 509 int ret; 510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 511 struct xhci_interrupter *ir = xhci->interrupter; 512 /* Start the xHCI host controller running only after the USB 2.0 roothub 513 * is setup. 514 */ 515 516 hcd->uses_new_polling = 1; 517 if (!usb_hcd_is_primary_hcd(hcd)) 518 return xhci_run_finished(xhci); 519 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 521 522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 523 temp_64 &= ~ERST_PTR_MASK; 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 526 527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 528 "// Set the interrupt modulation register"); 529 temp = readl(&ir->ir_set->irq_control); 530 temp &= ~ER_IRQ_INTERVAL_MASK; 531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 532 writel(temp, &ir->ir_set->irq_control); 533 534 if (xhci->quirks & XHCI_NEC_HOST) { 535 struct xhci_command *command; 536 537 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 538 if (!command) 539 return -ENOMEM; 540 541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 542 TRB_TYPE(TRB_NEC_GET_FW)); 543 if (ret) 544 xhci_free_command(xhci, command); 545 } 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished %s for main hcd", __func__); 548 549 xhci_create_dbc_dev(xhci); 550 551 xhci_debugfs_init(xhci); 552 553 if (xhci_has_one_roothub(xhci)) 554 return xhci_run_finished(xhci); 555 556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 557 558 return 0; 559 } 560 EXPORT_SYMBOL_GPL(xhci_run); 561 562 /* 563 * Stop xHCI driver. 564 * 565 * This function is called by the USB core when the HC driver is removed. 566 * Its opposite is xhci_run(). 567 * 568 * Disable device contexts, disable IRQs, and quiesce the HC. 569 * Reset the HC, finish any completed transactions, and cleanup memory. 570 */ 571 void xhci_stop(struct usb_hcd *hcd) 572 { 573 u32 temp; 574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 575 struct xhci_interrupter *ir = xhci->interrupter; 576 577 mutex_lock(&xhci->mutex); 578 579 /* Only halt host and free memory after both hcds are removed */ 580 if (!usb_hcd_is_primary_hcd(hcd)) { 581 mutex_unlock(&xhci->mutex); 582 return; 583 } 584 585 xhci_remove_dbc_dev(xhci); 586 587 spin_lock_irq(&xhci->lock); 588 xhci->xhc_state |= XHCI_STATE_HALTED; 589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 590 xhci_halt(xhci); 591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 592 spin_unlock_irq(&xhci->lock); 593 594 /* Deleting Compliance Mode Recovery Timer */ 595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 596 (!(xhci_all_ports_seen_u0(xhci)))) { 597 del_timer_sync(&xhci->comp_mode_recovery_timer); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 599 "%s: compliance mode recovery timer deleted", 600 __func__); 601 } 602 603 if (xhci->quirks & XHCI_AMD_PLL_FIX) 604 usb_amd_dev_put(); 605 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Disabling event ring interrupts"); 608 temp = readl(&xhci->op_regs->status); 609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 610 xhci_disable_interrupter(ir); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 613 xhci_mem_cleanup(xhci); 614 xhci_debugfs_exit(xhci); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "xhci_stop completed - status = %x", 617 readl(&xhci->op_regs->status)); 618 mutex_unlock(&xhci->mutex); 619 } 620 EXPORT_SYMBOL_GPL(xhci_stop); 621 622 /* 623 * Shutdown HC (not bus-specific) 624 * 625 * This is called when the machine is rebooting or halting. We assume that the 626 * machine will be powered off, and the HC's internal state will be reset. 627 * Don't bother to free memory. 628 * 629 * This will only ever be called with the main usb_hcd (the USB3 roothub). 630 */ 631 void xhci_shutdown(struct usb_hcd *hcd) 632 { 633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 634 635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 637 638 /* Don't poll the roothubs after shutdown. */ 639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 640 __func__, hcd->self.busnum); 641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 642 del_timer_sync(&hcd->rh_timer); 643 644 if (xhci->shared_hcd) { 645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 646 del_timer_sync(&xhci->shared_hcd->rh_timer); 647 } 648 649 spin_lock_irq(&xhci->lock); 650 xhci_halt(xhci); 651 652 /* 653 * Workaround for spurious wakeps at shutdown with HSW, and for boot 654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 655 */ 656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 657 xhci->quirks & XHCI_RESET_TO_DEFAULT) 658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 659 660 spin_unlock_irq(&xhci->lock); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "xhci_shutdown completed - status = %x", 664 readl(&xhci->op_regs->status)); 665 } 666 EXPORT_SYMBOL_GPL(xhci_shutdown); 667 668 #ifdef CONFIG_PM 669 static void xhci_save_registers(struct xhci_hcd *xhci) 670 { 671 struct xhci_interrupter *ir = xhci->interrupter; 672 673 xhci->s3.command = readl(&xhci->op_regs->command); 674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 677 678 if (!ir) 679 return; 680 681 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 685 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 686 } 687 688 static void xhci_restore_registers(struct xhci_hcd *xhci) 689 { 690 struct xhci_interrupter *ir = xhci->interrupter; 691 692 writel(xhci->s3.command, &xhci->op_regs->command); 693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 696 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 700 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 701 } 702 703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 704 { 705 u64 val_64; 706 707 /* step 2: initialize command ring buffer */ 708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 711 xhci->cmd_ring->dequeue) & 712 (u64) ~CMD_RING_RSVD_BITS) | 713 xhci->cmd_ring->cycle_state; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Setting command ring address to 0x%llx", 716 (long unsigned long) val_64); 717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 718 } 719 720 /* 721 * The whole command ring must be cleared to zero when we suspend the host. 722 * 723 * The host doesn't save the command ring pointer in the suspend well, so we 724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 725 * aligned, because of the reserved bits in the command ring dequeue pointer 726 * register. Therefore, we can't just set the dequeue pointer back in the 727 * middle of the ring (TRBs are 16-byte aligned). 728 */ 729 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 730 { 731 struct xhci_ring *ring; 732 struct xhci_segment *seg; 733 734 ring = xhci->cmd_ring; 735 seg = ring->deq_seg; 736 do { 737 memset(seg->trbs, 0, 738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 740 cpu_to_le32(~TRB_CYCLE); 741 seg = seg->next; 742 } while (seg != ring->deq_seg); 743 744 /* Reset the software enqueue and dequeue pointers */ 745 ring->deq_seg = ring->first_seg; 746 ring->dequeue = ring->first_seg->trbs; 747 ring->enq_seg = ring->deq_seg; 748 ring->enqueue = ring->dequeue; 749 750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 751 /* 752 * Ring is now zeroed, so the HW should look for change of ownership 753 * when the cycle bit is set to 1. 754 */ 755 ring->cycle_state = 1; 756 757 /* 758 * Reset the hardware dequeue pointer. 759 * Yes, this will need to be re-written after resume, but we're paranoid 760 * and want to make sure the hardware doesn't access bogus memory 761 * because, say, the BIOS or an SMI started the host without changing 762 * the command ring pointers. 763 */ 764 xhci_set_cmd_ring_deq(xhci); 765 } 766 767 /* 768 * Disable port wake bits if do_wakeup is not set. 769 * 770 * Also clear a possible internal port wake state left hanging for ports that 771 * detected termination but never successfully enumerated (trained to 0U). 772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 773 * at enumeration clears this wake, force one here as well for unconnected ports 774 */ 775 776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 777 struct xhci_hub *rhub, 778 bool do_wakeup) 779 { 780 unsigned long flags; 781 u32 t1, t2, portsc; 782 int i; 783 784 spin_lock_irqsave(&xhci->lock, flags); 785 786 for (i = 0; i < rhub->num_ports; i++) { 787 portsc = readl(rhub->ports[i]->addr); 788 t1 = xhci_port_state_to_neutral(portsc); 789 t2 = t1; 790 791 /* clear wake bits if do_wake is not set */ 792 if (!do_wakeup) 793 t2 &= ~PORT_WAKE_BITS; 794 795 /* Don't touch csc bit if connected or connect change is set */ 796 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 797 t2 |= PORT_CSC; 798 799 if (t1 != t2) { 800 writel(t2, rhub->ports[i]->addr); 801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 802 rhub->hcd->self.busnum, i + 1, portsc, t2); 803 } 804 } 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 } 807 808 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 809 { 810 struct xhci_port **ports; 811 int port_index; 812 u32 status; 813 u32 portsc; 814 815 status = readl(&xhci->op_regs->status); 816 if (status & STS_EINT) 817 return true; 818 /* 819 * Checking STS_EINT is not enough as there is a lag between a change 820 * bit being set and the Port Status Change Event that it generated 821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 822 */ 823 824 port_index = xhci->usb2_rhub.num_ports; 825 ports = xhci->usb2_rhub.ports; 826 while (port_index--) { 827 portsc = readl(ports[port_index]->addr); 828 if (portsc & PORT_CHANGE_MASK || 829 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 830 return true; 831 } 832 port_index = xhci->usb3_rhub.num_ports; 833 ports = xhci->usb3_rhub.ports; 834 while (port_index--) { 835 portsc = readl(ports[port_index]->addr); 836 if (portsc & PORT_CHANGE_MASK || 837 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 838 return true; 839 } 840 return false; 841 } 842 843 /* 844 * Stop HC (not bus-specific) 845 * 846 * This is called when the machine transition into S3/S4 mode. 847 * 848 */ 849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 850 { 851 int rc = 0; 852 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 853 struct usb_hcd *hcd = xhci_to_hcd(xhci); 854 u32 command; 855 u32 res; 856 857 if (!hcd->state) 858 return 0; 859 860 if (hcd->state != HC_STATE_SUSPENDED || 861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 862 return -EINVAL; 863 864 /* Clear root port wake on bits if wakeup not allowed. */ 865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 867 868 if (!HCD_HW_ACCESSIBLE(hcd)) 869 return 0; 870 871 xhci_dbc_suspend(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 875 __func__, hcd->self.busnum); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 if (xhci->shared_hcd) { 879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 880 del_timer_sync(&xhci->shared_hcd->rh_timer); 881 } 882 883 if (xhci->quirks & XHCI_SUSPEND_DELAY) 884 usleep_range(1000, 1500); 885 886 spin_lock_irq(&xhci->lock); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 if (xhci->shared_hcd) 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = readl(&xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 writel(command, &xhci->op_regs->command); 897 898 /* Some chips from Fresco Logic need an extraordinary delay */ 899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 900 901 if (xhci_handshake(&xhci->op_regs->status, 902 STS_HALT, STS_HALT, delay)) { 903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 904 spin_unlock_irq(&xhci->lock); 905 return -ETIMEDOUT; 906 } 907 xhci_clear_command_ring(xhci); 908 909 /* step 3: save registers */ 910 xhci_save_registers(xhci); 911 912 /* step 4: set CSS flag */ 913 command = readl(&xhci->op_regs->command); 914 command |= CMD_CSS; 915 writel(command, &xhci->op_regs->command); 916 xhci->broken_suspend = 0; 917 if (xhci_handshake(&xhci->op_regs->status, 918 STS_SAVE, 0, 20 * 1000)) { 919 /* 920 * AMD SNPS xHC 3.0 occasionally does not clear the 921 * SSS bit of USBSTS and when driver tries to poll 922 * to see if the xHC clears BIT(8) which never happens 923 * and driver assumes that controller is not responding 924 * and times out. To workaround this, its good to check 925 * if SRE and HCE bits are not set (as per xhci 926 * Section 5.4.2) and bypass the timeout. 927 */ 928 res = readl(&xhci->op_regs->status); 929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 930 (((res & STS_SRE) == 0) && 931 ((res & STS_HCE) == 0))) { 932 xhci->broken_suspend = 1; 933 } else { 934 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 } 939 spin_unlock_irq(&xhci->lock); 940 941 /* 942 * Deleting Compliance Mode Recovery Timer because the xHCI Host 943 * is about to be suspended. 944 */ 945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 946 (!(xhci_all_ports_seen_u0(xhci)))) { 947 del_timer_sync(&xhci->comp_mode_recovery_timer); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 949 "%s: compliance mode recovery timer deleted", 950 __func__); 951 } 952 953 return rc; 954 } 955 EXPORT_SYMBOL_GPL(xhci_suspend); 956 957 /* 958 * start xHC (not bus-specific) 959 * 960 * This is called when the machine transition from S3/S4 mode. 961 * 962 */ 963 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 964 { 965 u32 command, temp = 0; 966 struct usb_hcd *hcd = xhci_to_hcd(xhci); 967 int retval = 0; 968 bool comp_timer_running = false; 969 bool pending_portevent = false; 970 bool reinit_xhc = false; 971 972 if (!hcd->state) 973 return 0; 974 975 /* Wait a bit if either of the roothubs need to settle from the 976 * transition into bus suspend. 977 */ 978 979 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 980 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 981 msleep(100); 982 983 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 984 if (xhci->shared_hcd) 985 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 986 987 spin_lock_irq(&xhci->lock); 988 989 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 990 reinit_xhc = true; 991 992 if (!reinit_xhc) { 993 /* 994 * Some controllers might lose power during suspend, so wait 995 * for controller not ready bit to clear, just as in xHC init. 996 */ 997 retval = xhci_handshake(&xhci->op_regs->status, 998 STS_CNR, 0, 10 * 1000 * 1000); 999 if (retval) { 1000 xhci_warn(xhci, "Controller not ready at resume %d\n", 1001 retval); 1002 spin_unlock_irq(&xhci->lock); 1003 return retval; 1004 } 1005 /* step 1: restore register */ 1006 xhci_restore_registers(xhci); 1007 /* step 2: initialize command ring buffer */ 1008 xhci_set_cmd_ring_deq(xhci); 1009 /* step 3: restore state and start state*/ 1010 /* step 3: set CRS flag */ 1011 command = readl(&xhci->op_regs->command); 1012 command |= CMD_CRS; 1013 writel(command, &xhci->op_regs->command); 1014 /* 1015 * Some controllers take up to 55+ ms to complete the controller 1016 * restore so setting the timeout to 100ms. Xhci specification 1017 * doesn't mention any timeout value. 1018 */ 1019 if (xhci_handshake(&xhci->op_regs->status, 1020 STS_RESTORE, 0, 100 * 1000)) { 1021 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1022 spin_unlock_irq(&xhci->lock); 1023 return -ETIMEDOUT; 1024 } 1025 } 1026 1027 temp = readl(&xhci->op_regs->status); 1028 1029 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1030 if (temp & (STS_SRE | STS_HCE)) { 1031 reinit_xhc = true; 1032 if (!xhci->broken_suspend) 1033 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1034 } 1035 1036 if (reinit_xhc) { 1037 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1038 !(xhci_all_ports_seen_u0(xhci))) { 1039 del_timer_sync(&xhci->comp_mode_recovery_timer); 1040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1041 "Compliance Mode Recovery Timer deleted!"); 1042 } 1043 1044 /* Let the USB core know _both_ roothubs lost power. */ 1045 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1046 if (xhci->shared_hcd) 1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1048 1049 xhci_dbg(xhci, "Stop HCD\n"); 1050 xhci_halt(xhci); 1051 xhci_zero_64b_regs(xhci); 1052 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1053 spin_unlock_irq(&xhci->lock); 1054 if (retval) 1055 return retval; 1056 1057 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1058 temp = readl(&xhci->op_regs->status); 1059 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1060 xhci_disable_interrupter(xhci->interrupter); 1061 1062 xhci_dbg(xhci, "cleaning up memory\n"); 1063 xhci_mem_cleanup(xhci); 1064 xhci_debugfs_exit(xhci); 1065 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1066 readl(&xhci->op_regs->status)); 1067 1068 /* USB core calls the PCI reinit and start functions twice: 1069 * first with the primary HCD, and then with the secondary HCD. 1070 * If we don't do the same, the host will never be started. 1071 */ 1072 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1073 retval = xhci_init(hcd); 1074 if (retval) 1075 return retval; 1076 comp_timer_running = true; 1077 1078 xhci_dbg(xhci, "Start the primary HCD\n"); 1079 retval = xhci_run(hcd); 1080 if (!retval && xhci->shared_hcd) { 1081 xhci_dbg(xhci, "Start the secondary HCD\n"); 1082 retval = xhci_run(xhci->shared_hcd); 1083 } 1084 1085 hcd->state = HC_STATE_SUSPENDED; 1086 if (xhci->shared_hcd) 1087 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1088 goto done; 1089 } 1090 1091 /* step 4: set Run/Stop bit */ 1092 command = readl(&xhci->op_regs->command); 1093 command |= CMD_RUN; 1094 writel(command, &xhci->op_regs->command); 1095 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1096 0, 250 * 1000); 1097 1098 /* step 5: walk topology and initialize portsc, 1099 * portpmsc and portli 1100 */ 1101 /* this is done in bus_resume */ 1102 1103 /* step 6: restart each of the previously 1104 * Running endpoints by ringing their doorbells 1105 */ 1106 1107 spin_unlock_irq(&xhci->lock); 1108 1109 xhci_dbc_resume(xhci); 1110 1111 done: 1112 if (retval == 0) { 1113 /* 1114 * Resume roothubs only if there are pending events. 1115 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1116 * the first wake signalling failed, give it that chance. 1117 */ 1118 pending_portevent = xhci_pending_portevent(xhci); 1119 if (!pending_portevent) { 1120 msleep(120); 1121 pending_portevent = xhci_pending_portevent(xhci); 1122 } 1123 1124 if (pending_portevent) { 1125 if (xhci->shared_hcd) 1126 usb_hcd_resume_root_hub(xhci->shared_hcd); 1127 usb_hcd_resume_root_hub(hcd); 1128 } 1129 } 1130 /* 1131 * If system is subject to the Quirk, Compliance Mode Timer needs to 1132 * be re-initialized Always after a system resume. Ports are subject 1133 * to suffer the Compliance Mode issue again. It doesn't matter if 1134 * ports have entered previously to U0 before system's suspension. 1135 */ 1136 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1137 compliance_mode_recovery_timer_init(xhci); 1138 1139 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1140 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1141 1142 /* Re-enable port polling. */ 1143 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1144 __func__, hcd->self.busnum); 1145 if (xhci->shared_hcd) { 1146 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1147 usb_hcd_poll_rh_status(xhci->shared_hcd); 1148 } 1149 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1150 usb_hcd_poll_rh_status(hcd); 1151 1152 return retval; 1153 } 1154 EXPORT_SYMBOL_GPL(xhci_resume); 1155 #endif /* CONFIG_PM */ 1156 1157 /*-------------------------------------------------------------------------*/ 1158 1159 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1160 { 1161 void *temp; 1162 int ret = 0; 1163 unsigned int buf_len; 1164 enum dma_data_direction dir; 1165 1166 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1167 buf_len = urb->transfer_buffer_length; 1168 1169 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1170 dev_to_node(hcd->self.sysdev)); 1171 1172 if (usb_urb_dir_out(urb)) 1173 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1174 temp, buf_len, 0); 1175 1176 urb->transfer_buffer = temp; 1177 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1178 urb->transfer_buffer, 1179 urb->transfer_buffer_length, 1180 dir); 1181 1182 if (dma_mapping_error(hcd->self.sysdev, 1183 urb->transfer_dma)) { 1184 ret = -EAGAIN; 1185 kfree(temp); 1186 } else { 1187 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1188 } 1189 1190 return ret; 1191 } 1192 1193 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1194 struct urb *urb) 1195 { 1196 bool ret = false; 1197 unsigned int i; 1198 unsigned int len = 0; 1199 unsigned int trb_size; 1200 unsigned int max_pkt; 1201 struct scatterlist *sg; 1202 struct scatterlist *tail_sg; 1203 1204 tail_sg = urb->sg; 1205 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1206 1207 if (!urb->num_sgs) 1208 return ret; 1209 1210 if (urb->dev->speed >= USB_SPEED_SUPER) 1211 trb_size = TRB_CACHE_SIZE_SS; 1212 else 1213 trb_size = TRB_CACHE_SIZE_HS; 1214 1215 if (urb->transfer_buffer_length != 0 && 1216 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1217 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1218 len = len + sg->length; 1219 if (i > trb_size - 2) { 1220 len = len - tail_sg->length; 1221 if (len < max_pkt) { 1222 ret = true; 1223 break; 1224 } 1225 1226 tail_sg = sg_next(tail_sg); 1227 } 1228 } 1229 } 1230 return ret; 1231 } 1232 1233 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1234 { 1235 unsigned int len; 1236 unsigned int buf_len; 1237 enum dma_data_direction dir; 1238 1239 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1240 1241 buf_len = urb->transfer_buffer_length; 1242 1243 if (IS_ENABLED(CONFIG_HAS_DMA) && 1244 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1245 dma_unmap_single(hcd->self.sysdev, 1246 urb->transfer_dma, 1247 urb->transfer_buffer_length, 1248 dir); 1249 1250 if (usb_urb_dir_in(urb)) { 1251 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1252 urb->transfer_buffer, 1253 buf_len, 1254 0); 1255 if (len != buf_len) { 1256 xhci_dbg(hcd_to_xhci(hcd), 1257 "Copy from tmp buf to urb sg list failed\n"); 1258 urb->actual_length = len; 1259 } 1260 } 1261 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1262 kfree(urb->transfer_buffer); 1263 urb->transfer_buffer = NULL; 1264 } 1265 1266 /* 1267 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1268 * we'll copy the actual data into the TRB address register. This is limited to 1269 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1270 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1271 */ 1272 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1273 gfp_t mem_flags) 1274 { 1275 struct xhci_hcd *xhci; 1276 1277 xhci = hcd_to_xhci(hcd); 1278 1279 if (xhci_urb_suitable_for_idt(urb)) 1280 return 0; 1281 1282 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1283 if (xhci_urb_temp_buffer_required(hcd, urb)) 1284 return xhci_map_temp_buffer(hcd, urb); 1285 } 1286 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1287 } 1288 1289 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1290 { 1291 struct xhci_hcd *xhci; 1292 bool unmap_temp_buf = false; 1293 1294 xhci = hcd_to_xhci(hcd); 1295 1296 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1297 unmap_temp_buf = true; 1298 1299 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1300 xhci_unmap_temp_buf(hcd, urb); 1301 else 1302 usb_hcd_unmap_urb_for_dma(hcd, urb); 1303 } 1304 1305 /** 1306 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1307 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1308 * value to right shift 1 for the bitmask. 1309 * 1310 * Index = (epnum * 2) + direction - 1, 1311 * where direction = 0 for OUT, 1 for IN. 1312 * For control endpoints, the IN index is used (OUT index is unused), so 1313 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1314 */ 1315 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1316 { 1317 unsigned int index; 1318 if (usb_endpoint_xfer_control(desc)) 1319 index = (unsigned int) (usb_endpoint_num(desc)*2); 1320 else 1321 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1322 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1323 return index; 1324 } 1325 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1326 1327 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1328 * address from the XHCI endpoint index. 1329 */ 1330 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1331 { 1332 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1333 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1334 return direction | number; 1335 } 1336 1337 /* Find the flag for this endpoint (for use in the control context). Use the 1338 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1339 * bit 1, etc. 1340 */ 1341 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1342 { 1343 return 1 << (xhci_get_endpoint_index(desc) + 1); 1344 } 1345 1346 /* Compute the last valid endpoint context index. Basically, this is the 1347 * endpoint index plus one. For slot contexts with more than valid endpoint, 1348 * we find the most significant bit set in the added contexts flags. 1349 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1350 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1351 */ 1352 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1353 { 1354 return fls(added_ctxs) - 1; 1355 } 1356 1357 /* Returns 1 if the arguments are OK; 1358 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1359 */ 1360 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1361 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1362 const char *func) { 1363 struct xhci_hcd *xhci; 1364 struct xhci_virt_device *virt_dev; 1365 1366 if (!hcd || (check_ep && !ep) || !udev) { 1367 pr_debug("xHCI %s called with invalid args\n", func); 1368 return -EINVAL; 1369 } 1370 if (!udev->parent) { 1371 pr_debug("xHCI %s called for root hub\n", func); 1372 return 0; 1373 } 1374 1375 xhci = hcd_to_xhci(hcd); 1376 if (check_virt_dev) { 1377 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1378 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1379 func); 1380 return -EINVAL; 1381 } 1382 1383 virt_dev = xhci->devs[udev->slot_id]; 1384 if (virt_dev->udev != udev) { 1385 xhci_dbg(xhci, "xHCI %s called with udev and " 1386 "virt_dev does not match\n", func); 1387 return -EINVAL; 1388 } 1389 } 1390 1391 if (xhci->xhc_state & XHCI_STATE_HALTED) 1392 return -ENODEV; 1393 1394 return 1; 1395 } 1396 1397 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1398 struct usb_device *udev, struct xhci_command *command, 1399 bool ctx_change, bool must_succeed); 1400 1401 /* 1402 * Full speed devices may have a max packet size greater than 8 bytes, but the 1403 * USB core doesn't know that until it reads the first 8 bytes of the 1404 * descriptor. If the usb_device's max packet size changes after that point, 1405 * we need to issue an evaluate context command and wait on it. 1406 */ 1407 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1408 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1409 { 1410 struct xhci_container_ctx *out_ctx; 1411 struct xhci_input_control_ctx *ctrl_ctx; 1412 struct xhci_ep_ctx *ep_ctx; 1413 struct xhci_command *command; 1414 int max_packet_size; 1415 int hw_max_packet_size; 1416 int ret = 0; 1417 1418 out_ctx = xhci->devs[slot_id]->out_ctx; 1419 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1420 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1421 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1422 if (hw_max_packet_size != max_packet_size) { 1423 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1424 "Max Packet Size for ep 0 changed."); 1425 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1426 "Max packet size in usb_device = %d", 1427 max_packet_size); 1428 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1429 "Max packet size in xHCI HW = %d", 1430 hw_max_packet_size); 1431 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1432 "Issuing evaluate context command."); 1433 1434 /* Set up the input context flags for the command */ 1435 /* FIXME: This won't work if a non-default control endpoint 1436 * changes max packet sizes. 1437 */ 1438 1439 command = xhci_alloc_command(xhci, true, mem_flags); 1440 if (!command) 1441 return -ENOMEM; 1442 1443 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1444 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1445 if (!ctrl_ctx) { 1446 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1447 __func__); 1448 ret = -ENOMEM; 1449 goto command_cleanup; 1450 } 1451 /* Set up the modified control endpoint 0 */ 1452 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1453 xhci->devs[slot_id]->out_ctx, ep_index); 1454 1455 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1456 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1457 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1458 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1459 1460 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1461 ctrl_ctx->drop_flags = 0; 1462 1463 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1464 true, false); 1465 1466 /* Clean up the input context for later use by bandwidth 1467 * functions. 1468 */ 1469 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1470 command_cleanup: 1471 kfree(command->completion); 1472 kfree(command); 1473 } 1474 return ret; 1475 } 1476 1477 /* 1478 * non-error returns are a promise to giveback() the urb later 1479 * we drop ownership so next owner (or urb unlink) can get it 1480 */ 1481 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1482 { 1483 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1484 unsigned long flags; 1485 int ret = 0; 1486 unsigned int slot_id, ep_index; 1487 unsigned int *ep_state; 1488 struct urb_priv *urb_priv; 1489 int num_tds; 1490 1491 if (!urb) 1492 return -EINVAL; 1493 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1494 true, true, __func__); 1495 if (ret <= 0) 1496 return ret ? ret : -EINVAL; 1497 1498 slot_id = urb->dev->slot_id; 1499 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1500 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1501 1502 if (!HCD_HW_ACCESSIBLE(hcd)) 1503 return -ESHUTDOWN; 1504 1505 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1506 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1507 return -ENODEV; 1508 } 1509 1510 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1511 num_tds = urb->number_of_packets; 1512 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1513 urb->transfer_buffer_length > 0 && 1514 urb->transfer_flags & URB_ZERO_PACKET && 1515 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1516 num_tds = 2; 1517 else 1518 num_tds = 1; 1519 1520 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1521 if (!urb_priv) 1522 return -ENOMEM; 1523 1524 urb_priv->num_tds = num_tds; 1525 urb_priv->num_tds_done = 0; 1526 urb->hcpriv = urb_priv; 1527 1528 trace_xhci_urb_enqueue(urb); 1529 1530 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1531 /* Check to see if the max packet size for the default control 1532 * endpoint changed during FS device enumeration 1533 */ 1534 if (urb->dev->speed == USB_SPEED_FULL) { 1535 ret = xhci_check_maxpacket(xhci, slot_id, 1536 ep_index, urb, mem_flags); 1537 if (ret < 0) { 1538 xhci_urb_free_priv(urb_priv); 1539 urb->hcpriv = NULL; 1540 return ret; 1541 } 1542 } 1543 } 1544 1545 spin_lock_irqsave(&xhci->lock, flags); 1546 1547 if (xhci->xhc_state & XHCI_STATE_DYING) { 1548 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1549 urb->ep->desc.bEndpointAddress, urb); 1550 ret = -ESHUTDOWN; 1551 goto free_priv; 1552 } 1553 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1554 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1555 *ep_state); 1556 ret = -EINVAL; 1557 goto free_priv; 1558 } 1559 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1560 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1561 ret = -EINVAL; 1562 goto free_priv; 1563 } 1564 1565 switch (usb_endpoint_type(&urb->ep->desc)) { 1566 1567 case USB_ENDPOINT_XFER_CONTROL: 1568 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1569 slot_id, ep_index); 1570 break; 1571 case USB_ENDPOINT_XFER_BULK: 1572 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1573 slot_id, ep_index); 1574 break; 1575 case USB_ENDPOINT_XFER_INT: 1576 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1577 slot_id, ep_index); 1578 break; 1579 case USB_ENDPOINT_XFER_ISOC: 1580 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1581 slot_id, ep_index); 1582 } 1583 1584 if (ret) { 1585 free_priv: 1586 xhci_urb_free_priv(urb_priv); 1587 urb->hcpriv = NULL; 1588 } 1589 spin_unlock_irqrestore(&xhci->lock, flags); 1590 return ret; 1591 } 1592 1593 /* 1594 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1595 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1596 * should pick up where it left off in the TD, unless a Set Transfer Ring 1597 * Dequeue Pointer is issued. 1598 * 1599 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1600 * the ring. Since the ring is a contiguous structure, they can't be physically 1601 * removed. Instead, there are two options: 1602 * 1603 * 1) If the HC is in the middle of processing the URB to be canceled, we 1604 * simply move the ring's dequeue pointer past those TRBs using the Set 1605 * Transfer Ring Dequeue Pointer command. This will be the common case, 1606 * when drivers timeout on the last submitted URB and attempt to cancel. 1607 * 1608 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1609 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1610 * HC will need to invalidate the any TRBs it has cached after the stop 1611 * endpoint command, as noted in the xHCI 0.95 errata. 1612 * 1613 * 3) The TD may have completed by the time the Stop Endpoint Command 1614 * completes, so software needs to handle that case too. 1615 * 1616 * This function should protect against the TD enqueueing code ringing the 1617 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1618 * It also needs to account for multiple cancellations on happening at the same 1619 * time for the same endpoint. 1620 * 1621 * Note that this function can be called in any context, or so says 1622 * usb_hcd_unlink_urb() 1623 */ 1624 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1625 { 1626 unsigned long flags; 1627 int ret, i; 1628 u32 temp; 1629 struct xhci_hcd *xhci; 1630 struct urb_priv *urb_priv; 1631 struct xhci_td *td; 1632 unsigned int ep_index; 1633 struct xhci_ring *ep_ring; 1634 struct xhci_virt_ep *ep; 1635 struct xhci_command *command; 1636 struct xhci_virt_device *vdev; 1637 1638 xhci = hcd_to_xhci(hcd); 1639 spin_lock_irqsave(&xhci->lock, flags); 1640 1641 trace_xhci_urb_dequeue(urb); 1642 1643 /* Make sure the URB hasn't completed or been unlinked already */ 1644 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1645 if (ret) 1646 goto done; 1647 1648 /* give back URB now if we can't queue it for cancel */ 1649 vdev = xhci->devs[urb->dev->slot_id]; 1650 urb_priv = urb->hcpriv; 1651 if (!vdev || !urb_priv) 1652 goto err_giveback; 1653 1654 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1655 ep = &vdev->eps[ep_index]; 1656 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1657 if (!ep || !ep_ring) 1658 goto err_giveback; 1659 1660 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1661 temp = readl(&xhci->op_regs->status); 1662 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1663 xhci_hc_died(xhci); 1664 goto done; 1665 } 1666 1667 /* 1668 * check ring is not re-allocated since URB was enqueued. If it is, then 1669 * make sure none of the ring related pointers in this URB private data 1670 * are touched, such as td_list, otherwise we overwrite freed data 1671 */ 1672 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1673 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1674 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1675 td = &urb_priv->td[i]; 1676 if (!list_empty(&td->cancelled_td_list)) 1677 list_del_init(&td->cancelled_td_list); 1678 } 1679 goto err_giveback; 1680 } 1681 1682 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1683 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1684 "HC halted, freeing TD manually."); 1685 for (i = urb_priv->num_tds_done; 1686 i < urb_priv->num_tds; 1687 i++) { 1688 td = &urb_priv->td[i]; 1689 if (!list_empty(&td->td_list)) 1690 list_del_init(&td->td_list); 1691 if (!list_empty(&td->cancelled_td_list)) 1692 list_del_init(&td->cancelled_td_list); 1693 } 1694 goto err_giveback; 1695 } 1696 1697 i = urb_priv->num_tds_done; 1698 if (i < urb_priv->num_tds) 1699 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1700 "Cancel URB %p, dev %s, ep 0x%x, " 1701 "starting at offset 0x%llx", 1702 urb, urb->dev->devpath, 1703 urb->ep->desc.bEndpointAddress, 1704 (unsigned long long) xhci_trb_virt_to_dma( 1705 urb_priv->td[i].start_seg, 1706 urb_priv->td[i].first_trb)); 1707 1708 for (; i < urb_priv->num_tds; i++) { 1709 td = &urb_priv->td[i]; 1710 /* TD can already be on cancelled list if ep halted on it */ 1711 if (list_empty(&td->cancelled_td_list)) { 1712 td->cancel_status = TD_DIRTY; 1713 list_add_tail(&td->cancelled_td_list, 1714 &ep->cancelled_td_list); 1715 } 1716 } 1717 1718 /* Queue a stop endpoint command, but only if this is 1719 * the first cancellation to be handled. 1720 */ 1721 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1722 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1723 if (!command) { 1724 ret = -ENOMEM; 1725 goto done; 1726 } 1727 ep->ep_state |= EP_STOP_CMD_PENDING; 1728 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1729 ep_index, 0); 1730 xhci_ring_cmd_db(xhci); 1731 } 1732 done: 1733 spin_unlock_irqrestore(&xhci->lock, flags); 1734 return ret; 1735 1736 err_giveback: 1737 if (urb_priv) 1738 xhci_urb_free_priv(urb_priv); 1739 usb_hcd_unlink_urb_from_ep(hcd, urb); 1740 spin_unlock_irqrestore(&xhci->lock, flags); 1741 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1742 return ret; 1743 } 1744 1745 /* Drop an endpoint from a new bandwidth configuration for this device. 1746 * Only one call to this function is allowed per endpoint before 1747 * check_bandwidth() or reset_bandwidth() must be called. 1748 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1749 * add the endpoint to the schedule with possibly new parameters denoted by a 1750 * different endpoint descriptor in usb_host_endpoint. 1751 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1752 * not allowed. 1753 * 1754 * The USB core will not allow URBs to be queued to an endpoint that is being 1755 * disabled, so there's no need for mutual exclusion to protect 1756 * the xhci->devs[slot_id] structure. 1757 */ 1758 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1759 struct usb_host_endpoint *ep) 1760 { 1761 struct xhci_hcd *xhci; 1762 struct xhci_container_ctx *in_ctx, *out_ctx; 1763 struct xhci_input_control_ctx *ctrl_ctx; 1764 unsigned int ep_index; 1765 struct xhci_ep_ctx *ep_ctx; 1766 u32 drop_flag; 1767 u32 new_add_flags, new_drop_flags; 1768 int ret; 1769 1770 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1771 if (ret <= 0) 1772 return ret; 1773 xhci = hcd_to_xhci(hcd); 1774 if (xhci->xhc_state & XHCI_STATE_DYING) 1775 return -ENODEV; 1776 1777 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1778 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1779 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1780 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1781 __func__, drop_flag); 1782 return 0; 1783 } 1784 1785 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1786 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1787 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1788 if (!ctrl_ctx) { 1789 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1790 __func__); 1791 return 0; 1792 } 1793 1794 ep_index = xhci_get_endpoint_index(&ep->desc); 1795 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1796 /* If the HC already knows the endpoint is disabled, 1797 * or the HCD has noted it is disabled, ignore this request 1798 */ 1799 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1800 le32_to_cpu(ctrl_ctx->drop_flags) & 1801 xhci_get_endpoint_flag(&ep->desc)) { 1802 /* Do not warn when called after a usb_device_reset */ 1803 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1804 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1805 __func__, ep); 1806 return 0; 1807 } 1808 1809 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1810 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1811 1812 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1813 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1814 1815 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1816 1817 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1818 1819 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1820 (unsigned int) ep->desc.bEndpointAddress, 1821 udev->slot_id, 1822 (unsigned int) new_drop_flags, 1823 (unsigned int) new_add_flags); 1824 return 0; 1825 } 1826 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1827 1828 /* Add an endpoint to a new possible bandwidth configuration for this device. 1829 * Only one call to this function is allowed per endpoint before 1830 * check_bandwidth() or reset_bandwidth() must be called. 1831 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1832 * add the endpoint to the schedule with possibly new parameters denoted by a 1833 * different endpoint descriptor in usb_host_endpoint. 1834 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1835 * not allowed. 1836 * 1837 * The USB core will not allow URBs to be queued to an endpoint until the 1838 * configuration or alt setting is installed in the device, so there's no need 1839 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1840 */ 1841 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1842 struct usb_host_endpoint *ep) 1843 { 1844 struct xhci_hcd *xhci; 1845 struct xhci_container_ctx *in_ctx; 1846 unsigned int ep_index; 1847 struct xhci_input_control_ctx *ctrl_ctx; 1848 struct xhci_ep_ctx *ep_ctx; 1849 u32 added_ctxs; 1850 u32 new_add_flags, new_drop_flags; 1851 struct xhci_virt_device *virt_dev; 1852 int ret = 0; 1853 1854 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1855 if (ret <= 0) { 1856 /* So we won't queue a reset ep command for a root hub */ 1857 ep->hcpriv = NULL; 1858 return ret; 1859 } 1860 xhci = hcd_to_xhci(hcd); 1861 if (xhci->xhc_state & XHCI_STATE_DYING) 1862 return -ENODEV; 1863 1864 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1865 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1866 /* FIXME when we have to issue an evaluate endpoint command to 1867 * deal with ep0 max packet size changing once we get the 1868 * descriptors 1869 */ 1870 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1871 __func__, added_ctxs); 1872 return 0; 1873 } 1874 1875 virt_dev = xhci->devs[udev->slot_id]; 1876 in_ctx = virt_dev->in_ctx; 1877 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1878 if (!ctrl_ctx) { 1879 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1880 __func__); 1881 return 0; 1882 } 1883 1884 ep_index = xhci_get_endpoint_index(&ep->desc); 1885 /* If this endpoint is already in use, and the upper layers are trying 1886 * to add it again without dropping it, reject the addition. 1887 */ 1888 if (virt_dev->eps[ep_index].ring && 1889 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1890 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1891 "without dropping it.\n", 1892 (unsigned int) ep->desc.bEndpointAddress); 1893 return -EINVAL; 1894 } 1895 1896 /* If the HCD has already noted the endpoint is enabled, 1897 * ignore this request. 1898 */ 1899 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1900 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1901 __func__, ep); 1902 return 0; 1903 } 1904 1905 /* 1906 * Configuration and alternate setting changes must be done in 1907 * process context, not interrupt context (or so documenation 1908 * for usb_set_interface() and usb_set_configuration() claim). 1909 */ 1910 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1911 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1912 __func__, ep->desc.bEndpointAddress); 1913 return -ENOMEM; 1914 } 1915 1916 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1917 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1918 1919 /* If xhci_endpoint_disable() was called for this endpoint, but the 1920 * xHC hasn't been notified yet through the check_bandwidth() call, 1921 * this re-adds a new state for the endpoint from the new endpoint 1922 * descriptors. We must drop and re-add this endpoint, so we leave the 1923 * drop flags alone. 1924 */ 1925 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1926 1927 /* Store the usb_device pointer for later use */ 1928 ep->hcpriv = udev; 1929 1930 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1931 trace_xhci_add_endpoint(ep_ctx); 1932 1933 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1934 (unsigned int) ep->desc.bEndpointAddress, 1935 udev->slot_id, 1936 (unsigned int) new_drop_flags, 1937 (unsigned int) new_add_flags); 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1941 1942 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1943 { 1944 struct xhci_input_control_ctx *ctrl_ctx; 1945 struct xhci_ep_ctx *ep_ctx; 1946 struct xhci_slot_ctx *slot_ctx; 1947 int i; 1948 1949 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1950 if (!ctrl_ctx) { 1951 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1952 __func__); 1953 return; 1954 } 1955 1956 /* When a device's add flag and drop flag are zero, any subsequent 1957 * configure endpoint command will leave that endpoint's state 1958 * untouched. Make sure we don't leave any old state in the input 1959 * endpoint contexts. 1960 */ 1961 ctrl_ctx->drop_flags = 0; 1962 ctrl_ctx->add_flags = 0; 1963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1964 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1965 /* Endpoint 0 is always valid */ 1966 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1967 for (i = 1; i < 31; i++) { 1968 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1969 ep_ctx->ep_info = 0; 1970 ep_ctx->ep_info2 = 0; 1971 ep_ctx->deq = 0; 1972 ep_ctx->tx_info = 0; 1973 } 1974 } 1975 1976 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1977 struct usb_device *udev, u32 *cmd_status) 1978 { 1979 int ret; 1980 1981 switch (*cmd_status) { 1982 case COMP_COMMAND_ABORTED: 1983 case COMP_COMMAND_RING_STOPPED: 1984 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1985 ret = -ETIME; 1986 break; 1987 case COMP_RESOURCE_ERROR: 1988 dev_warn(&udev->dev, 1989 "Not enough host controller resources for new device state.\n"); 1990 ret = -ENOMEM; 1991 /* FIXME: can we allocate more resources for the HC? */ 1992 break; 1993 case COMP_BANDWIDTH_ERROR: 1994 case COMP_SECONDARY_BANDWIDTH_ERROR: 1995 dev_warn(&udev->dev, 1996 "Not enough bandwidth for new device state.\n"); 1997 ret = -ENOSPC; 1998 /* FIXME: can we go back to the old state? */ 1999 break; 2000 case COMP_TRB_ERROR: 2001 /* the HCD set up something wrong */ 2002 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2003 "add flag = 1, " 2004 "and endpoint is not disabled.\n"); 2005 ret = -EINVAL; 2006 break; 2007 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2008 dev_warn(&udev->dev, 2009 "ERROR: Incompatible device for endpoint configure command.\n"); 2010 ret = -ENODEV; 2011 break; 2012 case COMP_SUCCESS: 2013 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2014 "Successful Endpoint Configure command"); 2015 ret = 0; 2016 break; 2017 default: 2018 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2019 *cmd_status); 2020 ret = -EINVAL; 2021 break; 2022 } 2023 return ret; 2024 } 2025 2026 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2027 struct usb_device *udev, u32 *cmd_status) 2028 { 2029 int ret; 2030 2031 switch (*cmd_status) { 2032 case COMP_COMMAND_ABORTED: 2033 case COMP_COMMAND_RING_STOPPED: 2034 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2035 ret = -ETIME; 2036 break; 2037 case COMP_PARAMETER_ERROR: 2038 dev_warn(&udev->dev, 2039 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2040 ret = -EINVAL; 2041 break; 2042 case COMP_SLOT_NOT_ENABLED_ERROR: 2043 dev_warn(&udev->dev, 2044 "WARN: slot not enabled for evaluate context command.\n"); 2045 ret = -EINVAL; 2046 break; 2047 case COMP_CONTEXT_STATE_ERROR: 2048 dev_warn(&udev->dev, 2049 "WARN: invalid context state for evaluate context command.\n"); 2050 ret = -EINVAL; 2051 break; 2052 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2053 dev_warn(&udev->dev, 2054 "ERROR: Incompatible device for evaluate context command.\n"); 2055 ret = -ENODEV; 2056 break; 2057 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2058 /* Max Exit Latency too large error */ 2059 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2060 ret = -EINVAL; 2061 break; 2062 case COMP_SUCCESS: 2063 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2064 "Successful evaluate context command"); 2065 ret = 0; 2066 break; 2067 default: 2068 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2069 *cmd_status); 2070 ret = -EINVAL; 2071 break; 2072 } 2073 return ret; 2074 } 2075 2076 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2077 struct xhci_input_control_ctx *ctrl_ctx) 2078 { 2079 u32 valid_add_flags; 2080 u32 valid_drop_flags; 2081 2082 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2083 * (bit 1). The default control endpoint is added during the Address 2084 * Device command and is never removed until the slot is disabled. 2085 */ 2086 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2087 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2088 2089 /* Use hweight32 to count the number of ones in the add flags, or 2090 * number of endpoints added. Don't count endpoints that are changed 2091 * (both added and dropped). 2092 */ 2093 return hweight32(valid_add_flags) - 2094 hweight32(valid_add_flags & valid_drop_flags); 2095 } 2096 2097 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2098 struct xhci_input_control_ctx *ctrl_ctx) 2099 { 2100 u32 valid_add_flags; 2101 u32 valid_drop_flags; 2102 2103 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2104 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2105 2106 return hweight32(valid_drop_flags) - 2107 hweight32(valid_add_flags & valid_drop_flags); 2108 } 2109 2110 /* 2111 * We need to reserve the new number of endpoints before the configure endpoint 2112 * command completes. We can't subtract the dropped endpoints from the number 2113 * of active endpoints until the command completes because we can oversubscribe 2114 * the host in this case: 2115 * 2116 * - the first configure endpoint command drops more endpoints than it adds 2117 * - a second configure endpoint command that adds more endpoints is queued 2118 * - the first configure endpoint command fails, so the config is unchanged 2119 * - the second command may succeed, even though there isn't enough resources 2120 * 2121 * Must be called with xhci->lock held. 2122 */ 2123 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2124 struct xhci_input_control_ctx *ctrl_ctx) 2125 { 2126 u32 added_eps; 2127 2128 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2129 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2130 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2131 "Not enough ep ctxs: " 2132 "%u active, need to add %u, limit is %u.", 2133 xhci->num_active_eps, added_eps, 2134 xhci->limit_active_eps); 2135 return -ENOMEM; 2136 } 2137 xhci->num_active_eps += added_eps; 2138 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2139 "Adding %u ep ctxs, %u now active.", added_eps, 2140 xhci->num_active_eps); 2141 return 0; 2142 } 2143 2144 /* 2145 * The configure endpoint was failed by the xHC for some other reason, so we 2146 * need to revert the resources that failed configuration would have used. 2147 * 2148 * Must be called with xhci->lock held. 2149 */ 2150 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2151 struct xhci_input_control_ctx *ctrl_ctx) 2152 { 2153 u32 num_failed_eps; 2154 2155 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2156 xhci->num_active_eps -= num_failed_eps; 2157 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2158 "Removing %u failed ep ctxs, %u now active.", 2159 num_failed_eps, 2160 xhci->num_active_eps); 2161 } 2162 2163 /* 2164 * Now that the command has completed, clean up the active endpoint count by 2165 * subtracting out the endpoints that were dropped (but not changed). 2166 * 2167 * Must be called with xhci->lock held. 2168 */ 2169 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2170 struct xhci_input_control_ctx *ctrl_ctx) 2171 { 2172 u32 num_dropped_eps; 2173 2174 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2175 xhci->num_active_eps -= num_dropped_eps; 2176 if (num_dropped_eps) 2177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2178 "Removing %u dropped ep ctxs, %u now active.", 2179 num_dropped_eps, 2180 xhci->num_active_eps); 2181 } 2182 2183 static unsigned int xhci_get_block_size(struct usb_device *udev) 2184 { 2185 switch (udev->speed) { 2186 case USB_SPEED_LOW: 2187 case USB_SPEED_FULL: 2188 return FS_BLOCK; 2189 case USB_SPEED_HIGH: 2190 return HS_BLOCK; 2191 case USB_SPEED_SUPER: 2192 case USB_SPEED_SUPER_PLUS: 2193 return SS_BLOCK; 2194 case USB_SPEED_UNKNOWN: 2195 case USB_SPEED_WIRELESS: 2196 default: 2197 /* Should never happen */ 2198 return 1; 2199 } 2200 } 2201 2202 static unsigned int 2203 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2204 { 2205 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2206 return LS_OVERHEAD; 2207 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2208 return FS_OVERHEAD; 2209 return HS_OVERHEAD; 2210 } 2211 2212 /* If we are changing a LS/FS device under a HS hub, 2213 * make sure (if we are activating a new TT) that the HS bus has enough 2214 * bandwidth for this new TT. 2215 */ 2216 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2217 struct xhci_virt_device *virt_dev, 2218 int old_active_eps) 2219 { 2220 struct xhci_interval_bw_table *bw_table; 2221 struct xhci_tt_bw_info *tt_info; 2222 2223 /* Find the bandwidth table for the root port this TT is attached to. */ 2224 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2225 tt_info = virt_dev->tt_info; 2226 /* If this TT already had active endpoints, the bandwidth for this TT 2227 * has already been added. Removing all periodic endpoints (and thus 2228 * making the TT enactive) will only decrease the bandwidth used. 2229 */ 2230 if (old_active_eps) 2231 return 0; 2232 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2233 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2234 return -ENOMEM; 2235 return 0; 2236 } 2237 /* Not sure why we would have no new active endpoints... 2238 * 2239 * Maybe because of an Evaluate Context change for a hub update or a 2240 * control endpoint 0 max packet size change? 2241 * FIXME: skip the bandwidth calculation in that case. 2242 */ 2243 return 0; 2244 } 2245 2246 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2247 struct xhci_virt_device *virt_dev) 2248 { 2249 unsigned int bw_reserved; 2250 2251 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2252 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2253 return -ENOMEM; 2254 2255 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2256 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2257 return -ENOMEM; 2258 2259 return 0; 2260 } 2261 2262 /* 2263 * This algorithm is a very conservative estimate of the worst-case scheduling 2264 * scenario for any one interval. The hardware dynamically schedules the 2265 * packets, so we can't tell which microframe could be the limiting factor in 2266 * the bandwidth scheduling. This only takes into account periodic endpoints. 2267 * 2268 * Obviously, we can't solve an NP complete problem to find the minimum worst 2269 * case scenario. Instead, we come up with an estimate that is no less than 2270 * the worst case bandwidth used for any one microframe, but may be an 2271 * over-estimate. 2272 * 2273 * We walk the requirements for each endpoint by interval, starting with the 2274 * smallest interval, and place packets in the schedule where there is only one 2275 * possible way to schedule packets for that interval. In order to simplify 2276 * this algorithm, we record the largest max packet size for each interval, and 2277 * assume all packets will be that size. 2278 * 2279 * For interval 0, we obviously must schedule all packets for each interval. 2280 * The bandwidth for interval 0 is just the amount of data to be transmitted 2281 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2282 * the number of packets). 2283 * 2284 * For interval 1, we have two possible microframes to schedule those packets 2285 * in. For this algorithm, if we can schedule the same number of packets for 2286 * each possible scheduling opportunity (each microframe), we will do so. The 2287 * remaining number of packets will be saved to be transmitted in the gaps in 2288 * the next interval's scheduling sequence. 2289 * 2290 * As we move those remaining packets to be scheduled with interval 2 packets, 2291 * we have to double the number of remaining packets to transmit. This is 2292 * because the intervals are actually powers of 2, and we would be transmitting 2293 * the previous interval's packets twice in this interval. We also have to be 2294 * sure that when we look at the largest max packet size for this interval, we 2295 * also look at the largest max packet size for the remaining packets and take 2296 * the greater of the two. 2297 * 2298 * The algorithm continues to evenly distribute packets in each scheduling 2299 * opportunity, and push the remaining packets out, until we get to the last 2300 * interval. Then those packets and their associated overhead are just added 2301 * to the bandwidth used. 2302 */ 2303 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2304 struct xhci_virt_device *virt_dev, 2305 int old_active_eps) 2306 { 2307 unsigned int bw_reserved; 2308 unsigned int max_bandwidth; 2309 unsigned int bw_used; 2310 unsigned int block_size; 2311 struct xhci_interval_bw_table *bw_table; 2312 unsigned int packet_size = 0; 2313 unsigned int overhead = 0; 2314 unsigned int packets_transmitted = 0; 2315 unsigned int packets_remaining = 0; 2316 unsigned int i; 2317 2318 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2319 return xhci_check_ss_bw(xhci, virt_dev); 2320 2321 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2322 max_bandwidth = HS_BW_LIMIT; 2323 /* Convert percent of bus BW reserved to blocks reserved */ 2324 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2325 } else { 2326 max_bandwidth = FS_BW_LIMIT; 2327 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2328 } 2329 2330 bw_table = virt_dev->bw_table; 2331 /* We need to translate the max packet size and max ESIT payloads into 2332 * the units the hardware uses. 2333 */ 2334 block_size = xhci_get_block_size(virt_dev->udev); 2335 2336 /* If we are manipulating a LS/FS device under a HS hub, double check 2337 * that the HS bus has enough bandwidth if we are activing a new TT. 2338 */ 2339 if (virt_dev->tt_info) { 2340 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2341 "Recalculating BW for rootport %u", 2342 virt_dev->real_port); 2343 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2344 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2345 "newly activated TT.\n"); 2346 return -ENOMEM; 2347 } 2348 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2349 "Recalculating BW for TT slot %u port %u", 2350 virt_dev->tt_info->slot_id, 2351 virt_dev->tt_info->ttport); 2352 } else { 2353 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2354 "Recalculating BW for rootport %u", 2355 virt_dev->real_port); 2356 } 2357 2358 /* Add in how much bandwidth will be used for interval zero, or the 2359 * rounded max ESIT payload + number of packets * largest overhead. 2360 */ 2361 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2362 bw_table->interval_bw[0].num_packets * 2363 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2364 2365 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2366 unsigned int bw_added; 2367 unsigned int largest_mps; 2368 unsigned int interval_overhead; 2369 2370 /* 2371 * How many packets could we transmit in this interval? 2372 * If packets didn't fit in the previous interval, we will need 2373 * to transmit that many packets twice within this interval. 2374 */ 2375 packets_remaining = 2 * packets_remaining + 2376 bw_table->interval_bw[i].num_packets; 2377 2378 /* Find the largest max packet size of this or the previous 2379 * interval. 2380 */ 2381 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2382 largest_mps = 0; 2383 else { 2384 struct xhci_virt_ep *virt_ep; 2385 struct list_head *ep_entry; 2386 2387 ep_entry = bw_table->interval_bw[i].endpoints.next; 2388 virt_ep = list_entry(ep_entry, 2389 struct xhci_virt_ep, bw_endpoint_list); 2390 /* Convert to blocks, rounding up */ 2391 largest_mps = DIV_ROUND_UP( 2392 virt_ep->bw_info.max_packet_size, 2393 block_size); 2394 } 2395 if (largest_mps > packet_size) 2396 packet_size = largest_mps; 2397 2398 /* Use the larger overhead of this or the previous interval. */ 2399 interval_overhead = xhci_get_largest_overhead( 2400 &bw_table->interval_bw[i]); 2401 if (interval_overhead > overhead) 2402 overhead = interval_overhead; 2403 2404 /* How many packets can we evenly distribute across 2405 * (1 << (i + 1)) possible scheduling opportunities? 2406 */ 2407 packets_transmitted = packets_remaining >> (i + 1); 2408 2409 /* Add in the bandwidth used for those scheduled packets */ 2410 bw_added = packets_transmitted * (overhead + packet_size); 2411 2412 /* How many packets do we have remaining to transmit? */ 2413 packets_remaining = packets_remaining % (1 << (i + 1)); 2414 2415 /* What largest max packet size should those packets have? */ 2416 /* If we've transmitted all packets, don't carry over the 2417 * largest packet size. 2418 */ 2419 if (packets_remaining == 0) { 2420 packet_size = 0; 2421 overhead = 0; 2422 } else if (packets_transmitted > 0) { 2423 /* Otherwise if we do have remaining packets, and we've 2424 * scheduled some packets in this interval, take the 2425 * largest max packet size from endpoints with this 2426 * interval. 2427 */ 2428 packet_size = largest_mps; 2429 overhead = interval_overhead; 2430 } 2431 /* Otherwise carry over packet_size and overhead from the last 2432 * time we had a remainder. 2433 */ 2434 bw_used += bw_added; 2435 if (bw_used > max_bandwidth) { 2436 xhci_warn(xhci, "Not enough bandwidth. " 2437 "Proposed: %u, Max: %u\n", 2438 bw_used, max_bandwidth); 2439 return -ENOMEM; 2440 } 2441 } 2442 /* 2443 * Ok, we know we have some packets left over after even-handedly 2444 * scheduling interval 15. We don't know which microframes they will 2445 * fit into, so we over-schedule and say they will be scheduled every 2446 * microframe. 2447 */ 2448 if (packets_remaining > 0) 2449 bw_used += overhead + packet_size; 2450 2451 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2452 unsigned int port_index = virt_dev->real_port - 1; 2453 2454 /* OK, we're manipulating a HS device attached to a 2455 * root port bandwidth domain. Include the number of active TTs 2456 * in the bandwidth used. 2457 */ 2458 bw_used += TT_HS_OVERHEAD * 2459 xhci->rh_bw[port_index].num_active_tts; 2460 } 2461 2462 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2463 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2464 "Available: %u " "percent", 2465 bw_used, max_bandwidth, bw_reserved, 2466 (max_bandwidth - bw_used - bw_reserved) * 100 / 2467 max_bandwidth); 2468 2469 bw_used += bw_reserved; 2470 if (bw_used > max_bandwidth) { 2471 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2472 bw_used, max_bandwidth); 2473 return -ENOMEM; 2474 } 2475 2476 bw_table->bw_used = bw_used; 2477 return 0; 2478 } 2479 2480 static bool xhci_is_async_ep(unsigned int ep_type) 2481 { 2482 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2483 ep_type != ISOC_IN_EP && 2484 ep_type != INT_IN_EP); 2485 } 2486 2487 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2488 { 2489 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2490 } 2491 2492 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2493 { 2494 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2495 2496 if (ep_bw->ep_interval == 0) 2497 return SS_OVERHEAD_BURST + 2498 (ep_bw->mult * ep_bw->num_packets * 2499 (SS_OVERHEAD + mps)); 2500 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2501 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2502 1 << ep_bw->ep_interval); 2503 2504 } 2505 2506 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2507 struct xhci_bw_info *ep_bw, 2508 struct xhci_interval_bw_table *bw_table, 2509 struct usb_device *udev, 2510 struct xhci_virt_ep *virt_ep, 2511 struct xhci_tt_bw_info *tt_info) 2512 { 2513 struct xhci_interval_bw *interval_bw; 2514 int normalized_interval; 2515 2516 if (xhci_is_async_ep(ep_bw->type)) 2517 return; 2518 2519 if (udev->speed >= USB_SPEED_SUPER) { 2520 if (xhci_is_sync_in_ep(ep_bw->type)) 2521 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2522 xhci_get_ss_bw_consumed(ep_bw); 2523 else 2524 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2525 xhci_get_ss_bw_consumed(ep_bw); 2526 return; 2527 } 2528 2529 /* SuperSpeed endpoints never get added to intervals in the table, so 2530 * this check is only valid for HS/FS/LS devices. 2531 */ 2532 if (list_empty(&virt_ep->bw_endpoint_list)) 2533 return; 2534 /* For LS/FS devices, we need to translate the interval expressed in 2535 * microframes to frames. 2536 */ 2537 if (udev->speed == USB_SPEED_HIGH) 2538 normalized_interval = ep_bw->ep_interval; 2539 else 2540 normalized_interval = ep_bw->ep_interval - 3; 2541 2542 if (normalized_interval == 0) 2543 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2544 interval_bw = &bw_table->interval_bw[normalized_interval]; 2545 interval_bw->num_packets -= ep_bw->num_packets; 2546 switch (udev->speed) { 2547 case USB_SPEED_LOW: 2548 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2549 break; 2550 case USB_SPEED_FULL: 2551 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2552 break; 2553 case USB_SPEED_HIGH: 2554 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2555 break; 2556 case USB_SPEED_SUPER: 2557 case USB_SPEED_SUPER_PLUS: 2558 case USB_SPEED_UNKNOWN: 2559 case USB_SPEED_WIRELESS: 2560 /* Should never happen because only LS/FS/HS endpoints will get 2561 * added to the endpoint list. 2562 */ 2563 return; 2564 } 2565 if (tt_info) 2566 tt_info->active_eps -= 1; 2567 list_del_init(&virt_ep->bw_endpoint_list); 2568 } 2569 2570 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2571 struct xhci_bw_info *ep_bw, 2572 struct xhci_interval_bw_table *bw_table, 2573 struct usb_device *udev, 2574 struct xhci_virt_ep *virt_ep, 2575 struct xhci_tt_bw_info *tt_info) 2576 { 2577 struct xhci_interval_bw *interval_bw; 2578 struct xhci_virt_ep *smaller_ep; 2579 int normalized_interval; 2580 2581 if (xhci_is_async_ep(ep_bw->type)) 2582 return; 2583 2584 if (udev->speed == USB_SPEED_SUPER) { 2585 if (xhci_is_sync_in_ep(ep_bw->type)) 2586 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2587 xhci_get_ss_bw_consumed(ep_bw); 2588 else 2589 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2590 xhci_get_ss_bw_consumed(ep_bw); 2591 return; 2592 } 2593 2594 /* For LS/FS devices, we need to translate the interval expressed in 2595 * microframes to frames. 2596 */ 2597 if (udev->speed == USB_SPEED_HIGH) 2598 normalized_interval = ep_bw->ep_interval; 2599 else 2600 normalized_interval = ep_bw->ep_interval - 3; 2601 2602 if (normalized_interval == 0) 2603 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2604 interval_bw = &bw_table->interval_bw[normalized_interval]; 2605 interval_bw->num_packets += ep_bw->num_packets; 2606 switch (udev->speed) { 2607 case USB_SPEED_LOW: 2608 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2609 break; 2610 case USB_SPEED_FULL: 2611 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2612 break; 2613 case USB_SPEED_HIGH: 2614 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2615 break; 2616 case USB_SPEED_SUPER: 2617 case USB_SPEED_SUPER_PLUS: 2618 case USB_SPEED_UNKNOWN: 2619 case USB_SPEED_WIRELESS: 2620 /* Should never happen because only LS/FS/HS endpoints will get 2621 * added to the endpoint list. 2622 */ 2623 return; 2624 } 2625 2626 if (tt_info) 2627 tt_info->active_eps += 1; 2628 /* Insert the endpoint into the list, largest max packet size first. */ 2629 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2630 bw_endpoint_list) { 2631 if (ep_bw->max_packet_size >= 2632 smaller_ep->bw_info.max_packet_size) { 2633 /* Add the new ep before the smaller endpoint */ 2634 list_add_tail(&virt_ep->bw_endpoint_list, 2635 &smaller_ep->bw_endpoint_list); 2636 return; 2637 } 2638 } 2639 /* Add the new endpoint at the end of the list. */ 2640 list_add_tail(&virt_ep->bw_endpoint_list, 2641 &interval_bw->endpoints); 2642 } 2643 2644 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2645 struct xhci_virt_device *virt_dev, 2646 int old_active_eps) 2647 { 2648 struct xhci_root_port_bw_info *rh_bw_info; 2649 if (!virt_dev->tt_info) 2650 return; 2651 2652 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2653 if (old_active_eps == 0 && 2654 virt_dev->tt_info->active_eps != 0) { 2655 rh_bw_info->num_active_tts += 1; 2656 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2657 } else if (old_active_eps != 0 && 2658 virt_dev->tt_info->active_eps == 0) { 2659 rh_bw_info->num_active_tts -= 1; 2660 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2661 } 2662 } 2663 2664 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2665 struct xhci_virt_device *virt_dev, 2666 struct xhci_container_ctx *in_ctx) 2667 { 2668 struct xhci_bw_info ep_bw_info[31]; 2669 int i; 2670 struct xhci_input_control_ctx *ctrl_ctx; 2671 int old_active_eps = 0; 2672 2673 if (virt_dev->tt_info) 2674 old_active_eps = virt_dev->tt_info->active_eps; 2675 2676 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2677 if (!ctrl_ctx) { 2678 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2679 __func__); 2680 return -ENOMEM; 2681 } 2682 2683 for (i = 0; i < 31; i++) { 2684 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2685 continue; 2686 2687 /* Make a copy of the BW info in case we need to revert this */ 2688 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2689 sizeof(ep_bw_info[i])); 2690 /* Drop the endpoint from the interval table if the endpoint is 2691 * being dropped or changed. 2692 */ 2693 if (EP_IS_DROPPED(ctrl_ctx, i)) 2694 xhci_drop_ep_from_interval_table(xhci, 2695 &virt_dev->eps[i].bw_info, 2696 virt_dev->bw_table, 2697 virt_dev->udev, 2698 &virt_dev->eps[i], 2699 virt_dev->tt_info); 2700 } 2701 /* Overwrite the information stored in the endpoints' bw_info */ 2702 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2703 for (i = 0; i < 31; i++) { 2704 /* Add any changed or added endpoints to the interval table */ 2705 if (EP_IS_ADDED(ctrl_ctx, i)) 2706 xhci_add_ep_to_interval_table(xhci, 2707 &virt_dev->eps[i].bw_info, 2708 virt_dev->bw_table, 2709 virt_dev->udev, 2710 &virt_dev->eps[i], 2711 virt_dev->tt_info); 2712 } 2713 2714 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2715 /* Ok, this fits in the bandwidth we have. 2716 * Update the number of active TTs. 2717 */ 2718 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2719 return 0; 2720 } 2721 2722 /* We don't have enough bandwidth for this, revert the stored info. */ 2723 for (i = 0; i < 31; i++) { 2724 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2725 continue; 2726 2727 /* Drop the new copies of any added or changed endpoints from 2728 * the interval table. 2729 */ 2730 if (EP_IS_ADDED(ctrl_ctx, i)) { 2731 xhci_drop_ep_from_interval_table(xhci, 2732 &virt_dev->eps[i].bw_info, 2733 virt_dev->bw_table, 2734 virt_dev->udev, 2735 &virt_dev->eps[i], 2736 virt_dev->tt_info); 2737 } 2738 /* Revert the endpoint back to its old information */ 2739 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2740 sizeof(ep_bw_info[i])); 2741 /* Add any changed or dropped endpoints back into the table */ 2742 if (EP_IS_DROPPED(ctrl_ctx, i)) 2743 xhci_add_ep_to_interval_table(xhci, 2744 &virt_dev->eps[i].bw_info, 2745 virt_dev->bw_table, 2746 virt_dev->udev, 2747 &virt_dev->eps[i], 2748 virt_dev->tt_info); 2749 } 2750 return -ENOMEM; 2751 } 2752 2753 2754 /* Issue a configure endpoint command or evaluate context command 2755 * and wait for it to finish. 2756 */ 2757 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2758 struct usb_device *udev, 2759 struct xhci_command *command, 2760 bool ctx_change, bool must_succeed) 2761 { 2762 int ret; 2763 unsigned long flags; 2764 struct xhci_input_control_ctx *ctrl_ctx; 2765 struct xhci_virt_device *virt_dev; 2766 struct xhci_slot_ctx *slot_ctx; 2767 2768 if (!command) 2769 return -EINVAL; 2770 2771 spin_lock_irqsave(&xhci->lock, flags); 2772 2773 if (xhci->xhc_state & XHCI_STATE_DYING) { 2774 spin_unlock_irqrestore(&xhci->lock, flags); 2775 return -ESHUTDOWN; 2776 } 2777 2778 virt_dev = xhci->devs[udev->slot_id]; 2779 2780 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2781 if (!ctrl_ctx) { 2782 spin_unlock_irqrestore(&xhci->lock, flags); 2783 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2784 __func__); 2785 return -ENOMEM; 2786 } 2787 2788 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2789 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2790 spin_unlock_irqrestore(&xhci->lock, flags); 2791 xhci_warn(xhci, "Not enough host resources, " 2792 "active endpoint contexts = %u\n", 2793 xhci->num_active_eps); 2794 return -ENOMEM; 2795 } 2796 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2797 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2798 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2799 xhci_free_host_resources(xhci, ctrl_ctx); 2800 spin_unlock_irqrestore(&xhci->lock, flags); 2801 xhci_warn(xhci, "Not enough bandwidth\n"); 2802 return -ENOMEM; 2803 } 2804 2805 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2806 2807 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2808 trace_xhci_configure_endpoint(slot_ctx); 2809 2810 if (!ctx_change) 2811 ret = xhci_queue_configure_endpoint(xhci, command, 2812 command->in_ctx->dma, 2813 udev->slot_id, must_succeed); 2814 else 2815 ret = xhci_queue_evaluate_context(xhci, command, 2816 command->in_ctx->dma, 2817 udev->slot_id, must_succeed); 2818 if (ret < 0) { 2819 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2820 xhci_free_host_resources(xhci, ctrl_ctx); 2821 spin_unlock_irqrestore(&xhci->lock, flags); 2822 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2823 "FIXME allocate a new ring segment"); 2824 return -ENOMEM; 2825 } 2826 xhci_ring_cmd_db(xhci); 2827 spin_unlock_irqrestore(&xhci->lock, flags); 2828 2829 /* Wait for the configure endpoint command to complete */ 2830 wait_for_completion(command->completion); 2831 2832 if (!ctx_change) 2833 ret = xhci_configure_endpoint_result(xhci, udev, 2834 &command->status); 2835 else 2836 ret = xhci_evaluate_context_result(xhci, udev, 2837 &command->status); 2838 2839 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2840 spin_lock_irqsave(&xhci->lock, flags); 2841 /* If the command failed, remove the reserved resources. 2842 * Otherwise, clean up the estimate to include dropped eps. 2843 */ 2844 if (ret) 2845 xhci_free_host_resources(xhci, ctrl_ctx); 2846 else 2847 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2848 spin_unlock_irqrestore(&xhci->lock, flags); 2849 } 2850 return ret; 2851 } 2852 2853 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2854 struct xhci_virt_device *vdev, int i) 2855 { 2856 struct xhci_virt_ep *ep = &vdev->eps[i]; 2857 2858 if (ep->ep_state & EP_HAS_STREAMS) { 2859 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2860 xhci_get_endpoint_address(i)); 2861 xhci_free_stream_info(xhci, ep->stream_info); 2862 ep->stream_info = NULL; 2863 ep->ep_state &= ~EP_HAS_STREAMS; 2864 } 2865 } 2866 2867 /* Called after one or more calls to xhci_add_endpoint() or 2868 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2869 * to call xhci_reset_bandwidth(). 2870 * 2871 * Since we are in the middle of changing either configuration or 2872 * installing a new alt setting, the USB core won't allow URBs to be 2873 * enqueued for any endpoint on the old config or interface. Nothing 2874 * else should be touching the xhci->devs[slot_id] structure, so we 2875 * don't need to take the xhci->lock for manipulating that. 2876 */ 2877 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2878 { 2879 int i; 2880 int ret = 0; 2881 struct xhci_hcd *xhci; 2882 struct xhci_virt_device *virt_dev; 2883 struct xhci_input_control_ctx *ctrl_ctx; 2884 struct xhci_slot_ctx *slot_ctx; 2885 struct xhci_command *command; 2886 2887 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2888 if (ret <= 0) 2889 return ret; 2890 xhci = hcd_to_xhci(hcd); 2891 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2892 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2893 return -ENODEV; 2894 2895 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2896 virt_dev = xhci->devs[udev->slot_id]; 2897 2898 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2899 if (!command) 2900 return -ENOMEM; 2901 2902 command->in_ctx = virt_dev->in_ctx; 2903 2904 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2905 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2906 if (!ctrl_ctx) { 2907 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2908 __func__); 2909 ret = -ENOMEM; 2910 goto command_cleanup; 2911 } 2912 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2913 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2914 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2915 2916 /* Don't issue the command if there's no endpoints to update. */ 2917 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2918 ctrl_ctx->drop_flags == 0) { 2919 ret = 0; 2920 goto command_cleanup; 2921 } 2922 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2923 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2924 for (i = 31; i >= 1; i--) { 2925 __le32 le32 = cpu_to_le32(BIT(i)); 2926 2927 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2928 || (ctrl_ctx->add_flags & le32) || i == 1) { 2929 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2930 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2931 break; 2932 } 2933 } 2934 2935 ret = xhci_configure_endpoint(xhci, udev, command, 2936 false, false); 2937 if (ret) 2938 /* Callee should call reset_bandwidth() */ 2939 goto command_cleanup; 2940 2941 /* Free any rings that were dropped, but not changed. */ 2942 for (i = 1; i < 31; i++) { 2943 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2944 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2945 xhci_free_endpoint_ring(xhci, virt_dev, i); 2946 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2947 } 2948 } 2949 xhci_zero_in_ctx(xhci, virt_dev); 2950 /* 2951 * Install any rings for completely new endpoints or changed endpoints, 2952 * and free any old rings from changed endpoints. 2953 */ 2954 for (i = 1; i < 31; i++) { 2955 if (!virt_dev->eps[i].new_ring) 2956 continue; 2957 /* Only free the old ring if it exists. 2958 * It may not if this is the first add of an endpoint. 2959 */ 2960 if (virt_dev->eps[i].ring) { 2961 xhci_free_endpoint_ring(xhci, virt_dev, i); 2962 } 2963 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2964 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2965 virt_dev->eps[i].new_ring = NULL; 2966 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2967 } 2968 command_cleanup: 2969 kfree(command->completion); 2970 kfree(command); 2971 2972 return ret; 2973 } 2974 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 2975 2976 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2977 { 2978 struct xhci_hcd *xhci; 2979 struct xhci_virt_device *virt_dev; 2980 int i, ret; 2981 2982 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2983 if (ret <= 0) 2984 return; 2985 xhci = hcd_to_xhci(hcd); 2986 2987 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2988 virt_dev = xhci->devs[udev->slot_id]; 2989 /* Free any rings allocated for added endpoints */ 2990 for (i = 0; i < 31; i++) { 2991 if (virt_dev->eps[i].new_ring) { 2992 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2993 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2994 virt_dev->eps[i].new_ring = NULL; 2995 } 2996 } 2997 xhci_zero_in_ctx(xhci, virt_dev); 2998 } 2999 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3000 3001 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3002 struct xhci_container_ctx *in_ctx, 3003 struct xhci_container_ctx *out_ctx, 3004 struct xhci_input_control_ctx *ctrl_ctx, 3005 u32 add_flags, u32 drop_flags) 3006 { 3007 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3008 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3009 xhci_slot_copy(xhci, in_ctx, out_ctx); 3010 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3011 } 3012 3013 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3014 struct usb_host_endpoint *host_ep) 3015 { 3016 struct xhci_hcd *xhci; 3017 struct xhci_virt_device *vdev; 3018 struct xhci_virt_ep *ep; 3019 struct usb_device *udev; 3020 unsigned long flags; 3021 unsigned int ep_index; 3022 3023 xhci = hcd_to_xhci(hcd); 3024 rescan: 3025 spin_lock_irqsave(&xhci->lock, flags); 3026 3027 udev = (struct usb_device *)host_ep->hcpriv; 3028 if (!udev || !udev->slot_id) 3029 goto done; 3030 3031 vdev = xhci->devs[udev->slot_id]; 3032 if (!vdev) 3033 goto done; 3034 3035 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3036 ep = &vdev->eps[ep_index]; 3037 3038 /* wait for hub_tt_work to finish clearing hub TT */ 3039 if (ep->ep_state & EP_CLEARING_TT) { 3040 spin_unlock_irqrestore(&xhci->lock, flags); 3041 schedule_timeout_uninterruptible(1); 3042 goto rescan; 3043 } 3044 3045 if (ep->ep_state) 3046 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3047 ep->ep_state); 3048 done: 3049 host_ep->hcpriv = NULL; 3050 spin_unlock_irqrestore(&xhci->lock, flags); 3051 } 3052 3053 /* 3054 * Called after usb core issues a clear halt control message. 3055 * The host side of the halt should already be cleared by a reset endpoint 3056 * command issued when the STALL event was received. 3057 * 3058 * The reset endpoint command may only be issued to endpoints in the halted 3059 * state. For software that wishes to reset the data toggle or sequence number 3060 * of an endpoint that isn't in the halted state this function will issue a 3061 * configure endpoint command with the Drop and Add bits set for the target 3062 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3063 */ 3064 3065 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3066 struct usb_host_endpoint *host_ep) 3067 { 3068 struct xhci_hcd *xhci; 3069 struct usb_device *udev; 3070 struct xhci_virt_device *vdev; 3071 struct xhci_virt_ep *ep; 3072 struct xhci_input_control_ctx *ctrl_ctx; 3073 struct xhci_command *stop_cmd, *cfg_cmd; 3074 unsigned int ep_index; 3075 unsigned long flags; 3076 u32 ep_flag; 3077 int err; 3078 3079 xhci = hcd_to_xhci(hcd); 3080 if (!host_ep->hcpriv) 3081 return; 3082 udev = (struct usb_device *) host_ep->hcpriv; 3083 vdev = xhci->devs[udev->slot_id]; 3084 3085 /* 3086 * vdev may be lost due to xHC restore error and re-initialization 3087 * during S3/S4 resume. A new vdev will be allocated later by 3088 * xhci_discover_or_reset_device() 3089 */ 3090 if (!udev->slot_id || !vdev) 3091 return; 3092 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3093 ep = &vdev->eps[ep_index]; 3094 3095 /* Bail out if toggle is already being cleared by a endpoint reset */ 3096 spin_lock_irqsave(&xhci->lock, flags); 3097 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3098 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3099 spin_unlock_irqrestore(&xhci->lock, flags); 3100 return; 3101 } 3102 spin_unlock_irqrestore(&xhci->lock, flags); 3103 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3104 if (usb_endpoint_xfer_control(&host_ep->desc) || 3105 usb_endpoint_xfer_isoc(&host_ep->desc)) 3106 return; 3107 3108 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3109 3110 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3111 return; 3112 3113 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3114 if (!stop_cmd) 3115 return; 3116 3117 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3118 if (!cfg_cmd) 3119 goto cleanup; 3120 3121 spin_lock_irqsave(&xhci->lock, flags); 3122 3123 /* block queuing new trbs and ringing ep doorbell */ 3124 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3125 3126 /* 3127 * Make sure endpoint ring is empty before resetting the toggle/seq. 3128 * Driver is required to synchronously cancel all transfer request. 3129 * Stop the endpoint to force xHC to update the output context 3130 */ 3131 3132 if (!list_empty(&ep->ring->td_list)) { 3133 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3134 spin_unlock_irqrestore(&xhci->lock, flags); 3135 xhci_free_command(xhci, cfg_cmd); 3136 goto cleanup; 3137 } 3138 3139 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3140 ep_index, 0); 3141 if (err < 0) { 3142 spin_unlock_irqrestore(&xhci->lock, flags); 3143 xhci_free_command(xhci, cfg_cmd); 3144 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3145 __func__, err); 3146 goto cleanup; 3147 } 3148 3149 xhci_ring_cmd_db(xhci); 3150 spin_unlock_irqrestore(&xhci->lock, flags); 3151 3152 wait_for_completion(stop_cmd->completion); 3153 3154 spin_lock_irqsave(&xhci->lock, flags); 3155 3156 /* config ep command clears toggle if add and drop ep flags are set */ 3157 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3158 if (!ctrl_ctx) { 3159 spin_unlock_irqrestore(&xhci->lock, flags); 3160 xhci_free_command(xhci, cfg_cmd); 3161 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3162 __func__); 3163 goto cleanup; 3164 } 3165 3166 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3167 ctrl_ctx, ep_flag, ep_flag); 3168 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3169 3170 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3171 udev->slot_id, false); 3172 if (err < 0) { 3173 spin_unlock_irqrestore(&xhci->lock, flags); 3174 xhci_free_command(xhci, cfg_cmd); 3175 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3176 __func__, err); 3177 goto cleanup; 3178 } 3179 3180 xhci_ring_cmd_db(xhci); 3181 spin_unlock_irqrestore(&xhci->lock, flags); 3182 3183 wait_for_completion(cfg_cmd->completion); 3184 3185 xhci_free_command(xhci, cfg_cmd); 3186 cleanup: 3187 xhci_free_command(xhci, stop_cmd); 3188 spin_lock_irqsave(&xhci->lock, flags); 3189 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3190 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3191 spin_unlock_irqrestore(&xhci->lock, flags); 3192 } 3193 3194 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3195 struct usb_device *udev, struct usb_host_endpoint *ep, 3196 unsigned int slot_id) 3197 { 3198 int ret; 3199 unsigned int ep_index; 3200 unsigned int ep_state; 3201 3202 if (!ep) 3203 return -EINVAL; 3204 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3205 if (ret <= 0) 3206 return ret ? ret : -EINVAL; 3207 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3208 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3209 " descriptor for ep 0x%x does not support streams\n", 3210 ep->desc.bEndpointAddress); 3211 return -EINVAL; 3212 } 3213 3214 ep_index = xhci_get_endpoint_index(&ep->desc); 3215 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3216 if (ep_state & EP_HAS_STREAMS || 3217 ep_state & EP_GETTING_STREAMS) { 3218 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3219 "already has streams set up.\n", 3220 ep->desc.bEndpointAddress); 3221 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3222 "dynamic stream context array reallocation.\n"); 3223 return -EINVAL; 3224 } 3225 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3226 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3227 "endpoint 0x%x; URBs are pending.\n", 3228 ep->desc.bEndpointAddress); 3229 return -EINVAL; 3230 } 3231 return 0; 3232 } 3233 3234 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3235 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3236 { 3237 unsigned int max_streams; 3238 3239 /* The stream context array size must be a power of two */ 3240 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3241 /* 3242 * Find out how many primary stream array entries the host controller 3243 * supports. Later we may use secondary stream arrays (similar to 2nd 3244 * level page entries), but that's an optional feature for xHCI host 3245 * controllers. xHCs must support at least 4 stream IDs. 3246 */ 3247 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3248 if (*num_stream_ctxs > max_streams) { 3249 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3250 max_streams); 3251 *num_stream_ctxs = max_streams; 3252 *num_streams = max_streams; 3253 } 3254 } 3255 3256 /* Returns an error code if one of the endpoint already has streams. 3257 * This does not change any data structures, it only checks and gathers 3258 * information. 3259 */ 3260 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3261 struct usb_device *udev, 3262 struct usb_host_endpoint **eps, unsigned int num_eps, 3263 unsigned int *num_streams, u32 *changed_ep_bitmask) 3264 { 3265 unsigned int max_streams; 3266 unsigned int endpoint_flag; 3267 int i; 3268 int ret; 3269 3270 for (i = 0; i < num_eps; i++) { 3271 ret = xhci_check_streams_endpoint(xhci, udev, 3272 eps[i], udev->slot_id); 3273 if (ret < 0) 3274 return ret; 3275 3276 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3277 if (max_streams < (*num_streams - 1)) { 3278 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3279 eps[i]->desc.bEndpointAddress, 3280 max_streams); 3281 *num_streams = max_streams+1; 3282 } 3283 3284 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3285 if (*changed_ep_bitmask & endpoint_flag) 3286 return -EINVAL; 3287 *changed_ep_bitmask |= endpoint_flag; 3288 } 3289 return 0; 3290 } 3291 3292 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3293 struct usb_device *udev, 3294 struct usb_host_endpoint **eps, unsigned int num_eps) 3295 { 3296 u32 changed_ep_bitmask = 0; 3297 unsigned int slot_id; 3298 unsigned int ep_index; 3299 unsigned int ep_state; 3300 int i; 3301 3302 slot_id = udev->slot_id; 3303 if (!xhci->devs[slot_id]) 3304 return 0; 3305 3306 for (i = 0; i < num_eps; i++) { 3307 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3308 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3309 /* Are streams already being freed for the endpoint? */ 3310 if (ep_state & EP_GETTING_NO_STREAMS) { 3311 xhci_warn(xhci, "WARN Can't disable streams for " 3312 "endpoint 0x%x, " 3313 "streams are being disabled already\n", 3314 eps[i]->desc.bEndpointAddress); 3315 return 0; 3316 } 3317 /* Are there actually any streams to free? */ 3318 if (!(ep_state & EP_HAS_STREAMS) && 3319 !(ep_state & EP_GETTING_STREAMS)) { 3320 xhci_warn(xhci, "WARN Can't disable streams for " 3321 "endpoint 0x%x, " 3322 "streams are already disabled!\n", 3323 eps[i]->desc.bEndpointAddress); 3324 xhci_warn(xhci, "WARN xhci_free_streams() called " 3325 "with non-streams endpoint\n"); 3326 return 0; 3327 } 3328 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3329 } 3330 return changed_ep_bitmask; 3331 } 3332 3333 /* 3334 * The USB device drivers use this function (through the HCD interface in USB 3335 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3336 * coordinate mass storage command queueing across multiple endpoints (basically 3337 * a stream ID == a task ID). 3338 * 3339 * Setting up streams involves allocating the same size stream context array 3340 * for each endpoint and issuing a configure endpoint command for all endpoints. 3341 * 3342 * Don't allow the call to succeed if one endpoint only supports one stream 3343 * (which means it doesn't support streams at all). 3344 * 3345 * Drivers may get less stream IDs than they asked for, if the host controller 3346 * hardware or endpoints claim they can't support the number of requested 3347 * stream IDs. 3348 */ 3349 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3350 struct usb_host_endpoint **eps, unsigned int num_eps, 3351 unsigned int num_streams, gfp_t mem_flags) 3352 { 3353 int i, ret; 3354 struct xhci_hcd *xhci; 3355 struct xhci_virt_device *vdev; 3356 struct xhci_command *config_cmd; 3357 struct xhci_input_control_ctx *ctrl_ctx; 3358 unsigned int ep_index; 3359 unsigned int num_stream_ctxs; 3360 unsigned int max_packet; 3361 unsigned long flags; 3362 u32 changed_ep_bitmask = 0; 3363 3364 if (!eps) 3365 return -EINVAL; 3366 3367 /* Add one to the number of streams requested to account for 3368 * stream 0 that is reserved for xHCI usage. 3369 */ 3370 num_streams += 1; 3371 xhci = hcd_to_xhci(hcd); 3372 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3373 num_streams); 3374 3375 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3376 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3377 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3378 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3379 return -ENOSYS; 3380 } 3381 3382 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3383 if (!config_cmd) 3384 return -ENOMEM; 3385 3386 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3387 if (!ctrl_ctx) { 3388 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3389 __func__); 3390 xhci_free_command(xhci, config_cmd); 3391 return -ENOMEM; 3392 } 3393 3394 /* Check to make sure all endpoints are not already configured for 3395 * streams. While we're at it, find the maximum number of streams that 3396 * all the endpoints will support and check for duplicate endpoints. 3397 */ 3398 spin_lock_irqsave(&xhci->lock, flags); 3399 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3400 num_eps, &num_streams, &changed_ep_bitmask); 3401 if (ret < 0) { 3402 xhci_free_command(xhci, config_cmd); 3403 spin_unlock_irqrestore(&xhci->lock, flags); 3404 return ret; 3405 } 3406 if (num_streams <= 1) { 3407 xhci_warn(xhci, "WARN: endpoints can't handle " 3408 "more than one stream.\n"); 3409 xhci_free_command(xhci, config_cmd); 3410 spin_unlock_irqrestore(&xhci->lock, flags); 3411 return -EINVAL; 3412 } 3413 vdev = xhci->devs[udev->slot_id]; 3414 /* Mark each endpoint as being in transition, so 3415 * xhci_urb_enqueue() will reject all URBs. 3416 */ 3417 for (i = 0; i < num_eps; i++) { 3418 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3419 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3420 } 3421 spin_unlock_irqrestore(&xhci->lock, flags); 3422 3423 /* Setup internal data structures and allocate HW data structures for 3424 * streams (but don't install the HW structures in the input context 3425 * until we're sure all memory allocation succeeded). 3426 */ 3427 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3428 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3429 num_stream_ctxs, num_streams); 3430 3431 for (i = 0; i < num_eps; i++) { 3432 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3433 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3434 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3435 num_stream_ctxs, 3436 num_streams, 3437 max_packet, mem_flags); 3438 if (!vdev->eps[ep_index].stream_info) 3439 goto cleanup; 3440 /* Set maxPstreams in endpoint context and update deq ptr to 3441 * point to stream context array. FIXME 3442 */ 3443 } 3444 3445 /* Set up the input context for a configure endpoint command. */ 3446 for (i = 0; i < num_eps; i++) { 3447 struct xhci_ep_ctx *ep_ctx; 3448 3449 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3450 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3451 3452 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3453 vdev->out_ctx, ep_index); 3454 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3455 vdev->eps[ep_index].stream_info); 3456 } 3457 /* Tell the HW to drop its old copy of the endpoint context info 3458 * and add the updated copy from the input context. 3459 */ 3460 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3461 vdev->out_ctx, ctrl_ctx, 3462 changed_ep_bitmask, changed_ep_bitmask); 3463 3464 /* Issue and wait for the configure endpoint command */ 3465 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3466 false, false); 3467 3468 /* xHC rejected the configure endpoint command for some reason, so we 3469 * leave the old ring intact and free our internal streams data 3470 * structure. 3471 */ 3472 if (ret < 0) 3473 goto cleanup; 3474 3475 spin_lock_irqsave(&xhci->lock, flags); 3476 for (i = 0; i < num_eps; i++) { 3477 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3478 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3479 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3480 udev->slot_id, ep_index); 3481 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3482 } 3483 xhci_free_command(xhci, config_cmd); 3484 spin_unlock_irqrestore(&xhci->lock, flags); 3485 3486 for (i = 0; i < num_eps; i++) { 3487 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3488 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3489 } 3490 /* Subtract 1 for stream 0, which drivers can't use */ 3491 return num_streams - 1; 3492 3493 cleanup: 3494 /* If it didn't work, free the streams! */ 3495 for (i = 0; i < num_eps; i++) { 3496 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3497 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3498 vdev->eps[ep_index].stream_info = NULL; 3499 /* FIXME Unset maxPstreams in endpoint context and 3500 * update deq ptr to point to normal string ring. 3501 */ 3502 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3503 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3504 xhci_endpoint_zero(xhci, vdev, eps[i]); 3505 } 3506 xhci_free_command(xhci, config_cmd); 3507 return -ENOMEM; 3508 } 3509 3510 /* Transition the endpoint from using streams to being a "normal" endpoint 3511 * without streams. 3512 * 3513 * Modify the endpoint context state, submit a configure endpoint command, 3514 * and free all endpoint rings for streams if that completes successfully. 3515 */ 3516 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3517 struct usb_host_endpoint **eps, unsigned int num_eps, 3518 gfp_t mem_flags) 3519 { 3520 int i, ret; 3521 struct xhci_hcd *xhci; 3522 struct xhci_virt_device *vdev; 3523 struct xhci_command *command; 3524 struct xhci_input_control_ctx *ctrl_ctx; 3525 unsigned int ep_index; 3526 unsigned long flags; 3527 u32 changed_ep_bitmask; 3528 3529 xhci = hcd_to_xhci(hcd); 3530 vdev = xhci->devs[udev->slot_id]; 3531 3532 /* Set up a configure endpoint command to remove the streams rings */ 3533 spin_lock_irqsave(&xhci->lock, flags); 3534 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3535 udev, eps, num_eps); 3536 if (changed_ep_bitmask == 0) { 3537 spin_unlock_irqrestore(&xhci->lock, flags); 3538 return -EINVAL; 3539 } 3540 3541 /* Use the xhci_command structure from the first endpoint. We may have 3542 * allocated too many, but the driver may call xhci_free_streams() for 3543 * each endpoint it grouped into one call to xhci_alloc_streams(). 3544 */ 3545 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3546 command = vdev->eps[ep_index].stream_info->free_streams_command; 3547 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3548 if (!ctrl_ctx) { 3549 spin_unlock_irqrestore(&xhci->lock, flags); 3550 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3551 __func__); 3552 return -EINVAL; 3553 } 3554 3555 for (i = 0; i < num_eps; i++) { 3556 struct xhci_ep_ctx *ep_ctx; 3557 3558 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3559 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3560 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3561 EP_GETTING_NO_STREAMS; 3562 3563 xhci_endpoint_copy(xhci, command->in_ctx, 3564 vdev->out_ctx, ep_index); 3565 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3566 &vdev->eps[ep_index]); 3567 } 3568 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3569 vdev->out_ctx, ctrl_ctx, 3570 changed_ep_bitmask, changed_ep_bitmask); 3571 spin_unlock_irqrestore(&xhci->lock, flags); 3572 3573 /* Issue and wait for the configure endpoint command, 3574 * which must succeed. 3575 */ 3576 ret = xhci_configure_endpoint(xhci, udev, command, 3577 false, true); 3578 3579 /* xHC rejected the configure endpoint command for some reason, so we 3580 * leave the streams rings intact. 3581 */ 3582 if (ret < 0) 3583 return ret; 3584 3585 spin_lock_irqsave(&xhci->lock, flags); 3586 for (i = 0; i < num_eps; i++) { 3587 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3588 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3589 vdev->eps[ep_index].stream_info = NULL; 3590 /* FIXME Unset maxPstreams in endpoint context and 3591 * update deq ptr to point to normal string ring. 3592 */ 3593 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3594 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3595 } 3596 spin_unlock_irqrestore(&xhci->lock, flags); 3597 3598 return 0; 3599 } 3600 3601 /* 3602 * Deletes endpoint resources for endpoints that were active before a Reset 3603 * Device command, or a Disable Slot command. The Reset Device command leaves 3604 * the control endpoint intact, whereas the Disable Slot command deletes it. 3605 * 3606 * Must be called with xhci->lock held. 3607 */ 3608 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3609 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3610 { 3611 int i; 3612 unsigned int num_dropped_eps = 0; 3613 unsigned int drop_flags = 0; 3614 3615 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3616 if (virt_dev->eps[i].ring) { 3617 drop_flags |= 1 << i; 3618 num_dropped_eps++; 3619 } 3620 } 3621 xhci->num_active_eps -= num_dropped_eps; 3622 if (num_dropped_eps) 3623 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3624 "Dropped %u ep ctxs, flags = 0x%x, " 3625 "%u now active.", 3626 num_dropped_eps, drop_flags, 3627 xhci->num_active_eps); 3628 } 3629 3630 /* 3631 * This submits a Reset Device Command, which will set the device state to 0, 3632 * set the device address to 0, and disable all the endpoints except the default 3633 * control endpoint. The USB core should come back and call 3634 * xhci_address_device(), and then re-set up the configuration. If this is 3635 * called because of a usb_reset_and_verify_device(), then the old alternate 3636 * settings will be re-installed through the normal bandwidth allocation 3637 * functions. 3638 * 3639 * Wait for the Reset Device command to finish. Remove all structures 3640 * associated with the endpoints that were disabled. Clear the input device 3641 * structure? Reset the control endpoint 0 max packet size? 3642 * 3643 * If the virt_dev to be reset does not exist or does not match the udev, 3644 * it means the device is lost, possibly due to the xHC restore error and 3645 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3646 * re-allocate the device. 3647 */ 3648 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3649 struct usb_device *udev) 3650 { 3651 int ret, i; 3652 unsigned long flags; 3653 struct xhci_hcd *xhci; 3654 unsigned int slot_id; 3655 struct xhci_virt_device *virt_dev; 3656 struct xhci_command *reset_device_cmd; 3657 struct xhci_slot_ctx *slot_ctx; 3658 int old_active_eps = 0; 3659 3660 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3661 if (ret <= 0) 3662 return ret; 3663 xhci = hcd_to_xhci(hcd); 3664 slot_id = udev->slot_id; 3665 virt_dev = xhci->devs[slot_id]; 3666 if (!virt_dev) { 3667 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3668 "not exist. Re-allocate the device\n", slot_id); 3669 ret = xhci_alloc_dev(hcd, udev); 3670 if (ret == 1) 3671 return 0; 3672 else 3673 return -EINVAL; 3674 } 3675 3676 if (virt_dev->tt_info) 3677 old_active_eps = virt_dev->tt_info->active_eps; 3678 3679 if (virt_dev->udev != udev) { 3680 /* If the virt_dev and the udev does not match, this virt_dev 3681 * may belong to another udev. 3682 * Re-allocate the device. 3683 */ 3684 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3685 "not match the udev. Re-allocate the device\n", 3686 slot_id); 3687 ret = xhci_alloc_dev(hcd, udev); 3688 if (ret == 1) 3689 return 0; 3690 else 3691 return -EINVAL; 3692 } 3693 3694 /* If device is not setup, there is no point in resetting it */ 3695 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3696 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3697 SLOT_STATE_DISABLED) 3698 return 0; 3699 3700 trace_xhci_discover_or_reset_device(slot_ctx); 3701 3702 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3703 /* Allocate the command structure that holds the struct completion. 3704 * Assume we're in process context, since the normal device reset 3705 * process has to wait for the device anyway. Storage devices are 3706 * reset as part of error handling, so use GFP_NOIO instead of 3707 * GFP_KERNEL. 3708 */ 3709 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3710 if (!reset_device_cmd) { 3711 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3712 return -ENOMEM; 3713 } 3714 3715 /* Attempt to submit the Reset Device command to the command ring */ 3716 spin_lock_irqsave(&xhci->lock, flags); 3717 3718 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3719 if (ret) { 3720 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3721 spin_unlock_irqrestore(&xhci->lock, flags); 3722 goto command_cleanup; 3723 } 3724 xhci_ring_cmd_db(xhci); 3725 spin_unlock_irqrestore(&xhci->lock, flags); 3726 3727 /* Wait for the Reset Device command to finish */ 3728 wait_for_completion(reset_device_cmd->completion); 3729 3730 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3731 * unless we tried to reset a slot ID that wasn't enabled, 3732 * or the device wasn't in the addressed or configured state. 3733 */ 3734 ret = reset_device_cmd->status; 3735 switch (ret) { 3736 case COMP_COMMAND_ABORTED: 3737 case COMP_COMMAND_RING_STOPPED: 3738 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3739 ret = -ETIME; 3740 goto command_cleanup; 3741 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3742 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3743 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3744 slot_id, 3745 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3746 xhci_dbg(xhci, "Not freeing device rings.\n"); 3747 /* Don't treat this as an error. May change my mind later. */ 3748 ret = 0; 3749 goto command_cleanup; 3750 case COMP_SUCCESS: 3751 xhci_dbg(xhci, "Successful reset device command.\n"); 3752 break; 3753 default: 3754 if (xhci_is_vendor_info_code(xhci, ret)) 3755 break; 3756 xhci_warn(xhci, "Unknown completion code %u for " 3757 "reset device command.\n", ret); 3758 ret = -EINVAL; 3759 goto command_cleanup; 3760 } 3761 3762 /* Free up host controller endpoint resources */ 3763 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3764 spin_lock_irqsave(&xhci->lock, flags); 3765 /* Don't delete the default control endpoint resources */ 3766 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3767 spin_unlock_irqrestore(&xhci->lock, flags); 3768 } 3769 3770 /* Everything but endpoint 0 is disabled, so free the rings. */ 3771 for (i = 1; i < 31; i++) { 3772 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3773 3774 if (ep->ep_state & EP_HAS_STREAMS) { 3775 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3776 xhci_get_endpoint_address(i)); 3777 xhci_free_stream_info(xhci, ep->stream_info); 3778 ep->stream_info = NULL; 3779 ep->ep_state &= ~EP_HAS_STREAMS; 3780 } 3781 3782 if (ep->ring) { 3783 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3784 xhci_free_endpoint_ring(xhci, virt_dev, i); 3785 } 3786 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3787 xhci_drop_ep_from_interval_table(xhci, 3788 &virt_dev->eps[i].bw_info, 3789 virt_dev->bw_table, 3790 udev, 3791 &virt_dev->eps[i], 3792 virt_dev->tt_info); 3793 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3794 } 3795 /* If necessary, update the number of active TTs on this root port */ 3796 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3797 virt_dev->flags = 0; 3798 ret = 0; 3799 3800 command_cleanup: 3801 xhci_free_command(xhci, reset_device_cmd); 3802 return ret; 3803 } 3804 3805 /* 3806 * At this point, the struct usb_device is about to go away, the device has 3807 * disconnected, and all traffic has been stopped and the endpoints have been 3808 * disabled. Free any HC data structures associated with that device. 3809 */ 3810 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3811 { 3812 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3813 struct xhci_virt_device *virt_dev; 3814 struct xhci_slot_ctx *slot_ctx; 3815 unsigned long flags; 3816 int i, ret; 3817 3818 /* 3819 * We called pm_runtime_get_noresume when the device was attached. 3820 * Decrement the counter here to allow controller to runtime suspend 3821 * if no devices remain. 3822 */ 3823 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3824 pm_runtime_put_noidle(hcd->self.controller); 3825 3826 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3827 /* If the host is halted due to driver unload, we still need to free the 3828 * device. 3829 */ 3830 if (ret <= 0 && ret != -ENODEV) 3831 return; 3832 3833 virt_dev = xhci->devs[udev->slot_id]; 3834 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3835 trace_xhci_free_dev(slot_ctx); 3836 3837 /* Stop any wayward timer functions (which may grab the lock) */ 3838 for (i = 0; i < 31; i++) 3839 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3840 virt_dev->udev = NULL; 3841 xhci_disable_slot(xhci, udev->slot_id); 3842 3843 spin_lock_irqsave(&xhci->lock, flags); 3844 xhci_free_virt_device(xhci, udev->slot_id); 3845 spin_unlock_irqrestore(&xhci->lock, flags); 3846 3847 } 3848 3849 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3850 { 3851 struct xhci_command *command; 3852 unsigned long flags; 3853 u32 state; 3854 int ret; 3855 3856 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3857 if (!command) 3858 return -ENOMEM; 3859 3860 xhci_debugfs_remove_slot(xhci, slot_id); 3861 3862 spin_lock_irqsave(&xhci->lock, flags); 3863 /* Don't disable the slot if the host controller is dead. */ 3864 state = readl(&xhci->op_regs->status); 3865 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3866 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3867 spin_unlock_irqrestore(&xhci->lock, flags); 3868 kfree(command); 3869 return -ENODEV; 3870 } 3871 3872 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3873 slot_id); 3874 if (ret) { 3875 spin_unlock_irqrestore(&xhci->lock, flags); 3876 kfree(command); 3877 return ret; 3878 } 3879 xhci_ring_cmd_db(xhci); 3880 spin_unlock_irqrestore(&xhci->lock, flags); 3881 3882 wait_for_completion(command->completion); 3883 3884 if (command->status != COMP_SUCCESS) 3885 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3886 slot_id, command->status); 3887 3888 xhci_free_command(xhci, command); 3889 3890 return 0; 3891 } 3892 3893 /* 3894 * Checks if we have enough host controller resources for the default control 3895 * endpoint. 3896 * 3897 * Must be called with xhci->lock held. 3898 */ 3899 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3900 { 3901 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3902 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3903 "Not enough ep ctxs: " 3904 "%u active, need to add 1, limit is %u.", 3905 xhci->num_active_eps, xhci->limit_active_eps); 3906 return -ENOMEM; 3907 } 3908 xhci->num_active_eps += 1; 3909 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3910 "Adding 1 ep ctx, %u now active.", 3911 xhci->num_active_eps); 3912 return 0; 3913 } 3914 3915 3916 /* 3917 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3918 * timed out, or allocating memory failed. Returns 1 on success. 3919 */ 3920 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3921 { 3922 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3923 struct xhci_virt_device *vdev; 3924 struct xhci_slot_ctx *slot_ctx; 3925 unsigned long flags; 3926 int ret, slot_id; 3927 struct xhci_command *command; 3928 3929 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3930 if (!command) 3931 return 0; 3932 3933 spin_lock_irqsave(&xhci->lock, flags); 3934 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3935 if (ret) { 3936 spin_unlock_irqrestore(&xhci->lock, flags); 3937 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3938 xhci_free_command(xhci, command); 3939 return 0; 3940 } 3941 xhci_ring_cmd_db(xhci); 3942 spin_unlock_irqrestore(&xhci->lock, flags); 3943 3944 wait_for_completion(command->completion); 3945 slot_id = command->slot_id; 3946 3947 if (!slot_id || command->status != COMP_SUCCESS) { 3948 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3949 xhci_trb_comp_code_string(command->status)); 3950 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3951 HCS_MAX_SLOTS( 3952 readl(&xhci->cap_regs->hcs_params1))); 3953 xhci_free_command(xhci, command); 3954 return 0; 3955 } 3956 3957 xhci_free_command(xhci, command); 3958 3959 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3960 spin_lock_irqsave(&xhci->lock, flags); 3961 ret = xhci_reserve_host_control_ep_resources(xhci); 3962 if (ret) { 3963 spin_unlock_irqrestore(&xhci->lock, flags); 3964 xhci_warn(xhci, "Not enough host resources, " 3965 "active endpoint contexts = %u\n", 3966 xhci->num_active_eps); 3967 goto disable_slot; 3968 } 3969 spin_unlock_irqrestore(&xhci->lock, flags); 3970 } 3971 /* Use GFP_NOIO, since this function can be called from 3972 * xhci_discover_or_reset_device(), which may be called as part of 3973 * mass storage driver error handling. 3974 */ 3975 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3976 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3977 goto disable_slot; 3978 } 3979 vdev = xhci->devs[slot_id]; 3980 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3981 trace_xhci_alloc_dev(slot_ctx); 3982 3983 udev->slot_id = slot_id; 3984 3985 xhci_debugfs_create_slot(xhci, slot_id); 3986 3987 /* 3988 * If resetting upon resume, we can't put the controller into runtime 3989 * suspend if there is a device attached. 3990 */ 3991 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3992 pm_runtime_get_noresume(hcd->self.controller); 3993 3994 /* Is this a LS or FS device under a HS hub? */ 3995 /* Hub or peripherial? */ 3996 return 1; 3997 3998 disable_slot: 3999 xhci_disable_slot(xhci, udev->slot_id); 4000 xhci_free_virt_device(xhci, udev->slot_id); 4001 4002 return 0; 4003 } 4004 4005 /* 4006 * Issue an Address Device command and optionally send a corresponding 4007 * SetAddress request to the device. 4008 */ 4009 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4010 enum xhci_setup_dev setup) 4011 { 4012 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4013 unsigned long flags; 4014 struct xhci_virt_device *virt_dev; 4015 int ret = 0; 4016 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4017 struct xhci_slot_ctx *slot_ctx; 4018 struct xhci_input_control_ctx *ctrl_ctx; 4019 u64 temp_64; 4020 struct xhci_command *command = NULL; 4021 4022 mutex_lock(&xhci->mutex); 4023 4024 if (xhci->xhc_state) { /* dying, removing or halted */ 4025 ret = -ESHUTDOWN; 4026 goto out; 4027 } 4028 4029 if (!udev->slot_id) { 4030 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4031 "Bad Slot ID %d", udev->slot_id); 4032 ret = -EINVAL; 4033 goto out; 4034 } 4035 4036 virt_dev = xhci->devs[udev->slot_id]; 4037 4038 if (WARN_ON(!virt_dev)) { 4039 /* 4040 * In plug/unplug torture test with an NEC controller, 4041 * a zero-dereference was observed once due to virt_dev = 0. 4042 * Print useful debug rather than crash if it is observed again! 4043 */ 4044 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4045 udev->slot_id); 4046 ret = -EINVAL; 4047 goto out; 4048 } 4049 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4050 trace_xhci_setup_device_slot(slot_ctx); 4051 4052 if (setup == SETUP_CONTEXT_ONLY) { 4053 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4054 SLOT_STATE_DEFAULT) { 4055 xhci_dbg(xhci, "Slot already in default state\n"); 4056 goto out; 4057 } 4058 } 4059 4060 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4061 if (!command) { 4062 ret = -ENOMEM; 4063 goto out; 4064 } 4065 4066 command->in_ctx = virt_dev->in_ctx; 4067 4068 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4069 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4070 if (!ctrl_ctx) { 4071 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4072 __func__); 4073 ret = -EINVAL; 4074 goto out; 4075 } 4076 /* 4077 * If this is the first Set Address since device plug-in or 4078 * virt_device realloaction after a resume with an xHCI power loss, 4079 * then set up the slot context. 4080 */ 4081 if (!slot_ctx->dev_info) 4082 xhci_setup_addressable_virt_dev(xhci, udev); 4083 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4084 else 4085 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4086 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4087 ctrl_ctx->drop_flags = 0; 4088 4089 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4090 le32_to_cpu(slot_ctx->dev_info) >> 27); 4091 4092 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4093 spin_lock_irqsave(&xhci->lock, flags); 4094 trace_xhci_setup_device(virt_dev); 4095 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4096 udev->slot_id, setup); 4097 if (ret) { 4098 spin_unlock_irqrestore(&xhci->lock, flags); 4099 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4100 "FIXME: allocate a command ring segment"); 4101 goto out; 4102 } 4103 xhci_ring_cmd_db(xhci); 4104 spin_unlock_irqrestore(&xhci->lock, flags); 4105 4106 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4107 wait_for_completion(command->completion); 4108 4109 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4110 * the SetAddress() "recovery interval" required by USB and aborting the 4111 * command on a timeout. 4112 */ 4113 switch (command->status) { 4114 case COMP_COMMAND_ABORTED: 4115 case COMP_COMMAND_RING_STOPPED: 4116 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4117 ret = -ETIME; 4118 break; 4119 case COMP_CONTEXT_STATE_ERROR: 4120 case COMP_SLOT_NOT_ENABLED_ERROR: 4121 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4122 act, udev->slot_id); 4123 ret = -EINVAL; 4124 break; 4125 case COMP_USB_TRANSACTION_ERROR: 4126 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4127 4128 mutex_unlock(&xhci->mutex); 4129 ret = xhci_disable_slot(xhci, udev->slot_id); 4130 xhci_free_virt_device(xhci, udev->slot_id); 4131 if (!ret) 4132 xhci_alloc_dev(hcd, udev); 4133 kfree(command->completion); 4134 kfree(command); 4135 return -EPROTO; 4136 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4137 dev_warn(&udev->dev, 4138 "ERROR: Incompatible device for setup %s command\n", act); 4139 ret = -ENODEV; 4140 break; 4141 case COMP_SUCCESS: 4142 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4143 "Successful setup %s command", act); 4144 break; 4145 default: 4146 xhci_err(xhci, 4147 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4148 act, command->status); 4149 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4150 ret = -EINVAL; 4151 break; 4152 } 4153 if (ret) 4154 goto out; 4155 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4156 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4157 "Op regs DCBAA ptr = %#016llx", temp_64); 4158 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4159 "Slot ID %d dcbaa entry @%p = %#016llx", 4160 udev->slot_id, 4161 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4162 (unsigned long long) 4163 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4164 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4165 "Output Context DMA address = %#08llx", 4166 (unsigned long long)virt_dev->out_ctx->dma); 4167 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4168 le32_to_cpu(slot_ctx->dev_info) >> 27); 4169 /* 4170 * USB core uses address 1 for the roothubs, so we add one to the 4171 * address given back to us by the HC. 4172 */ 4173 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4174 le32_to_cpu(slot_ctx->dev_info) >> 27); 4175 /* Zero the input context control for later use */ 4176 ctrl_ctx->add_flags = 0; 4177 ctrl_ctx->drop_flags = 0; 4178 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4179 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4180 4181 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4182 "Internal device address = %d", 4183 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4184 out: 4185 mutex_unlock(&xhci->mutex); 4186 if (command) { 4187 kfree(command->completion); 4188 kfree(command); 4189 } 4190 return ret; 4191 } 4192 4193 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4194 { 4195 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4196 } 4197 4198 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4199 { 4200 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4201 } 4202 4203 /* 4204 * Transfer the port index into real index in the HW port status 4205 * registers. Caculate offset between the port's PORTSC register 4206 * and port status base. Divide the number of per port register 4207 * to get the real index. The raw port number bases 1. 4208 */ 4209 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4210 { 4211 struct xhci_hub *rhub; 4212 4213 rhub = xhci_get_rhub(hcd); 4214 return rhub->ports[port1 - 1]->hw_portnum + 1; 4215 } 4216 4217 /* 4218 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4219 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4220 */ 4221 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4222 struct usb_device *udev, u16 max_exit_latency) 4223 { 4224 struct xhci_virt_device *virt_dev; 4225 struct xhci_command *command; 4226 struct xhci_input_control_ctx *ctrl_ctx; 4227 struct xhci_slot_ctx *slot_ctx; 4228 unsigned long flags; 4229 int ret; 4230 4231 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4232 if (!command) 4233 return -ENOMEM; 4234 4235 spin_lock_irqsave(&xhci->lock, flags); 4236 4237 virt_dev = xhci->devs[udev->slot_id]; 4238 4239 /* 4240 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4241 * xHC was re-initialized. Exit latency will be set later after 4242 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4243 */ 4244 4245 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4246 spin_unlock_irqrestore(&xhci->lock, flags); 4247 xhci_free_command(xhci, command); 4248 return 0; 4249 } 4250 4251 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4253 if (!ctrl_ctx) { 4254 spin_unlock_irqrestore(&xhci->lock, flags); 4255 xhci_free_command(xhci, command); 4256 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4257 __func__); 4258 return -ENOMEM; 4259 } 4260 4261 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4262 spin_unlock_irqrestore(&xhci->lock, flags); 4263 4264 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4265 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4266 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4267 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4268 slot_ctx->dev_state = 0; 4269 4270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4271 "Set up evaluate context for LPM MEL change."); 4272 4273 /* Issue and wait for the evaluate context command. */ 4274 ret = xhci_configure_endpoint(xhci, udev, command, 4275 true, true); 4276 4277 if (!ret) { 4278 spin_lock_irqsave(&xhci->lock, flags); 4279 virt_dev->current_mel = max_exit_latency; 4280 spin_unlock_irqrestore(&xhci->lock, flags); 4281 } 4282 4283 xhci_free_command(xhci, command); 4284 4285 return ret; 4286 } 4287 4288 #ifdef CONFIG_PM 4289 4290 /* BESL to HIRD Encoding array for USB2 LPM */ 4291 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4292 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4293 4294 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4295 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4296 struct usb_device *udev) 4297 { 4298 int u2del, besl, besl_host; 4299 int besl_device = 0; 4300 u32 field; 4301 4302 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4303 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4304 4305 if (field & USB_BESL_SUPPORT) { 4306 for (besl_host = 0; besl_host < 16; besl_host++) { 4307 if (xhci_besl_encoding[besl_host] >= u2del) 4308 break; 4309 } 4310 /* Use baseline BESL value as default */ 4311 if (field & USB_BESL_BASELINE_VALID) 4312 besl_device = USB_GET_BESL_BASELINE(field); 4313 else if (field & USB_BESL_DEEP_VALID) 4314 besl_device = USB_GET_BESL_DEEP(field); 4315 } else { 4316 if (u2del <= 50) 4317 besl_host = 0; 4318 else 4319 besl_host = (u2del - 51) / 75 + 1; 4320 } 4321 4322 besl = besl_host + besl_device; 4323 if (besl > 15) 4324 besl = 15; 4325 4326 return besl; 4327 } 4328 4329 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4330 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4331 { 4332 u32 field; 4333 int l1; 4334 int besld = 0; 4335 int hirdm = 0; 4336 4337 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4338 4339 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4340 l1 = udev->l1_params.timeout / 256; 4341 4342 /* device has preferred BESLD */ 4343 if (field & USB_BESL_DEEP_VALID) { 4344 besld = USB_GET_BESL_DEEP(field); 4345 hirdm = 1; 4346 } 4347 4348 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4349 } 4350 4351 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4352 struct usb_device *udev, int enable) 4353 { 4354 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4355 struct xhci_port **ports; 4356 __le32 __iomem *pm_addr, *hlpm_addr; 4357 u32 pm_val, hlpm_val, field; 4358 unsigned int port_num; 4359 unsigned long flags; 4360 int hird, exit_latency; 4361 int ret; 4362 4363 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4364 return -EPERM; 4365 4366 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4367 !udev->lpm_capable) 4368 return -EPERM; 4369 4370 if (!udev->parent || udev->parent->parent || 4371 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4372 return -EPERM; 4373 4374 if (udev->usb2_hw_lpm_capable != 1) 4375 return -EPERM; 4376 4377 spin_lock_irqsave(&xhci->lock, flags); 4378 4379 ports = xhci->usb2_rhub.ports; 4380 port_num = udev->portnum - 1; 4381 pm_addr = ports[port_num]->addr + PORTPMSC; 4382 pm_val = readl(pm_addr); 4383 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4384 4385 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4386 enable ? "enable" : "disable", port_num + 1); 4387 4388 if (enable) { 4389 /* Host supports BESL timeout instead of HIRD */ 4390 if (udev->usb2_hw_lpm_besl_capable) { 4391 /* if device doesn't have a preferred BESL value use a 4392 * default one which works with mixed HIRD and BESL 4393 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4394 */ 4395 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4396 if ((field & USB_BESL_SUPPORT) && 4397 (field & USB_BESL_BASELINE_VALID)) 4398 hird = USB_GET_BESL_BASELINE(field); 4399 else 4400 hird = udev->l1_params.besl; 4401 4402 exit_latency = xhci_besl_encoding[hird]; 4403 spin_unlock_irqrestore(&xhci->lock, flags); 4404 4405 ret = xhci_change_max_exit_latency(xhci, udev, 4406 exit_latency); 4407 if (ret < 0) 4408 return ret; 4409 spin_lock_irqsave(&xhci->lock, flags); 4410 4411 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4412 writel(hlpm_val, hlpm_addr); 4413 /* flush write */ 4414 readl(hlpm_addr); 4415 } else { 4416 hird = xhci_calculate_hird_besl(xhci, udev); 4417 } 4418 4419 pm_val &= ~PORT_HIRD_MASK; 4420 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4421 writel(pm_val, pm_addr); 4422 pm_val = readl(pm_addr); 4423 pm_val |= PORT_HLE; 4424 writel(pm_val, pm_addr); 4425 /* flush write */ 4426 readl(pm_addr); 4427 } else { 4428 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4429 writel(pm_val, pm_addr); 4430 /* flush write */ 4431 readl(pm_addr); 4432 if (udev->usb2_hw_lpm_besl_capable) { 4433 spin_unlock_irqrestore(&xhci->lock, flags); 4434 xhci_change_max_exit_latency(xhci, udev, 0); 4435 readl_poll_timeout(ports[port_num]->addr, pm_val, 4436 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4437 100, 10000); 4438 return 0; 4439 } 4440 } 4441 4442 spin_unlock_irqrestore(&xhci->lock, flags); 4443 return 0; 4444 } 4445 4446 /* check if a usb2 port supports a given extened capability protocol 4447 * only USB2 ports extended protocol capability values are cached. 4448 * Return 1 if capability is supported 4449 */ 4450 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4451 unsigned capability) 4452 { 4453 u32 port_offset, port_count; 4454 int i; 4455 4456 for (i = 0; i < xhci->num_ext_caps; i++) { 4457 if (xhci->ext_caps[i] & capability) { 4458 /* port offsets starts at 1 */ 4459 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4460 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4461 if (port >= port_offset && 4462 port < port_offset + port_count) 4463 return 1; 4464 } 4465 } 4466 return 0; 4467 } 4468 4469 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4470 { 4471 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4472 int portnum = udev->portnum - 1; 4473 4474 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4475 return 0; 4476 4477 /* we only support lpm for non-hub device connected to root hub yet */ 4478 if (!udev->parent || udev->parent->parent || 4479 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4480 return 0; 4481 4482 if (xhci->hw_lpm_support == 1 && 4483 xhci_check_usb2_port_capability( 4484 xhci, portnum, XHCI_HLC)) { 4485 udev->usb2_hw_lpm_capable = 1; 4486 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4487 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4488 if (xhci_check_usb2_port_capability(xhci, portnum, 4489 XHCI_BLC)) 4490 udev->usb2_hw_lpm_besl_capable = 1; 4491 } 4492 4493 return 0; 4494 } 4495 4496 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4497 4498 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4499 static unsigned long long xhci_service_interval_to_ns( 4500 struct usb_endpoint_descriptor *desc) 4501 { 4502 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4503 } 4504 4505 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4506 enum usb3_link_state state) 4507 { 4508 unsigned long long sel; 4509 unsigned long long pel; 4510 unsigned int max_sel_pel; 4511 char *state_name; 4512 4513 switch (state) { 4514 case USB3_LPM_U1: 4515 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4516 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4517 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4518 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4519 state_name = "U1"; 4520 break; 4521 case USB3_LPM_U2: 4522 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4523 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4524 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4525 state_name = "U2"; 4526 break; 4527 default: 4528 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4529 __func__); 4530 return USB3_LPM_DISABLED; 4531 } 4532 4533 if (sel <= max_sel_pel && pel <= max_sel_pel) 4534 return USB3_LPM_DEVICE_INITIATED; 4535 4536 if (sel > max_sel_pel) 4537 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4538 "due to long SEL %llu ms\n", 4539 state_name, sel); 4540 else 4541 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4542 "due to long PEL %llu ms\n", 4543 state_name, pel); 4544 return USB3_LPM_DISABLED; 4545 } 4546 4547 /* The U1 timeout should be the maximum of the following values: 4548 * - For control endpoints, U1 system exit latency (SEL) * 3 4549 * - For bulk endpoints, U1 SEL * 5 4550 * - For interrupt endpoints: 4551 * - Notification EPs, U1 SEL * 3 4552 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4553 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4554 */ 4555 static unsigned long long xhci_calculate_intel_u1_timeout( 4556 struct usb_device *udev, 4557 struct usb_endpoint_descriptor *desc) 4558 { 4559 unsigned long long timeout_ns; 4560 int ep_type; 4561 int intr_type; 4562 4563 ep_type = usb_endpoint_type(desc); 4564 switch (ep_type) { 4565 case USB_ENDPOINT_XFER_CONTROL: 4566 timeout_ns = udev->u1_params.sel * 3; 4567 break; 4568 case USB_ENDPOINT_XFER_BULK: 4569 timeout_ns = udev->u1_params.sel * 5; 4570 break; 4571 case USB_ENDPOINT_XFER_INT: 4572 intr_type = usb_endpoint_interrupt_type(desc); 4573 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4574 timeout_ns = udev->u1_params.sel * 3; 4575 break; 4576 } 4577 /* Otherwise the calculation is the same as isoc eps */ 4578 fallthrough; 4579 case USB_ENDPOINT_XFER_ISOC: 4580 timeout_ns = xhci_service_interval_to_ns(desc); 4581 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4582 if (timeout_ns < udev->u1_params.sel * 2) 4583 timeout_ns = udev->u1_params.sel * 2; 4584 break; 4585 default: 4586 return 0; 4587 } 4588 4589 return timeout_ns; 4590 } 4591 4592 /* Returns the hub-encoded U1 timeout value. */ 4593 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4594 struct usb_device *udev, 4595 struct usb_endpoint_descriptor *desc) 4596 { 4597 unsigned long long timeout_ns; 4598 4599 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4600 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4601 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4602 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4603 return USB3_LPM_DISABLED; 4604 } 4605 } 4606 4607 if (xhci->quirks & XHCI_INTEL_HOST) 4608 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4609 else 4610 timeout_ns = udev->u1_params.sel; 4611 4612 /* The U1 timeout is encoded in 1us intervals. 4613 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4614 */ 4615 if (timeout_ns == USB3_LPM_DISABLED) 4616 timeout_ns = 1; 4617 else 4618 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4619 4620 /* If the necessary timeout value is bigger than what we can set in the 4621 * USB 3.0 hub, we have to disable hub-initiated U1. 4622 */ 4623 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4624 return timeout_ns; 4625 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4626 "due to long timeout %llu ms\n", timeout_ns); 4627 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4628 } 4629 4630 /* The U2 timeout should be the maximum of: 4631 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4632 * - largest bInterval of any active periodic endpoint (to avoid going 4633 * into lower power link states between intervals). 4634 * - the U2 Exit Latency of the device 4635 */ 4636 static unsigned long long xhci_calculate_intel_u2_timeout( 4637 struct usb_device *udev, 4638 struct usb_endpoint_descriptor *desc) 4639 { 4640 unsigned long long timeout_ns; 4641 unsigned long long u2_del_ns; 4642 4643 timeout_ns = 10 * 1000 * 1000; 4644 4645 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4646 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4647 timeout_ns = xhci_service_interval_to_ns(desc); 4648 4649 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4650 if (u2_del_ns > timeout_ns) 4651 timeout_ns = u2_del_ns; 4652 4653 return timeout_ns; 4654 } 4655 4656 /* Returns the hub-encoded U2 timeout value. */ 4657 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4658 struct usb_device *udev, 4659 struct usb_endpoint_descriptor *desc) 4660 { 4661 unsigned long long timeout_ns; 4662 4663 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4664 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4665 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4666 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4667 return USB3_LPM_DISABLED; 4668 } 4669 } 4670 4671 if (xhci->quirks & XHCI_INTEL_HOST) 4672 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4673 else 4674 timeout_ns = udev->u2_params.sel; 4675 4676 /* The U2 timeout is encoded in 256us intervals */ 4677 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4678 /* If the necessary timeout value is bigger than what we can set in the 4679 * USB 3.0 hub, we have to disable hub-initiated U2. 4680 */ 4681 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4682 return timeout_ns; 4683 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4684 "due to long timeout %llu ms\n", timeout_ns); 4685 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4686 } 4687 4688 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4689 struct usb_device *udev, 4690 struct usb_endpoint_descriptor *desc, 4691 enum usb3_link_state state, 4692 u16 *timeout) 4693 { 4694 if (state == USB3_LPM_U1) 4695 return xhci_calculate_u1_timeout(xhci, udev, desc); 4696 else if (state == USB3_LPM_U2) 4697 return xhci_calculate_u2_timeout(xhci, udev, desc); 4698 4699 return USB3_LPM_DISABLED; 4700 } 4701 4702 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4703 struct usb_device *udev, 4704 struct usb_endpoint_descriptor *desc, 4705 enum usb3_link_state state, 4706 u16 *timeout) 4707 { 4708 u16 alt_timeout; 4709 4710 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4711 desc, state, timeout); 4712 4713 /* If we found we can't enable hub-initiated LPM, and 4714 * the U1 or U2 exit latency was too high to allow 4715 * device-initiated LPM as well, then we will disable LPM 4716 * for this device, so stop searching any further. 4717 */ 4718 if (alt_timeout == USB3_LPM_DISABLED) { 4719 *timeout = alt_timeout; 4720 return -E2BIG; 4721 } 4722 if (alt_timeout > *timeout) 4723 *timeout = alt_timeout; 4724 return 0; 4725 } 4726 4727 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4728 struct usb_device *udev, 4729 struct usb_host_interface *alt, 4730 enum usb3_link_state state, 4731 u16 *timeout) 4732 { 4733 int j; 4734 4735 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4736 if (xhci_update_timeout_for_endpoint(xhci, udev, 4737 &alt->endpoint[j].desc, state, timeout)) 4738 return -E2BIG; 4739 } 4740 return 0; 4741 } 4742 4743 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4744 enum usb3_link_state state) 4745 { 4746 struct usb_device *parent; 4747 unsigned int num_hubs; 4748 4749 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4750 for (parent = udev->parent, num_hubs = 0; parent->parent; 4751 parent = parent->parent) 4752 num_hubs++; 4753 4754 if (num_hubs < 2) 4755 return 0; 4756 4757 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4758 " below second-tier hub.\n"); 4759 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4760 "to decrease power consumption.\n"); 4761 return -E2BIG; 4762 } 4763 4764 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4765 struct usb_device *udev, 4766 enum usb3_link_state state) 4767 { 4768 if (xhci->quirks & XHCI_INTEL_HOST) 4769 return xhci_check_intel_tier_policy(udev, state); 4770 else 4771 return 0; 4772 } 4773 4774 /* Returns the U1 or U2 timeout that should be enabled. 4775 * If the tier check or timeout setting functions return with a non-zero exit 4776 * code, that means the timeout value has been finalized and we shouldn't look 4777 * at any more endpoints. 4778 */ 4779 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4780 struct usb_device *udev, enum usb3_link_state state) 4781 { 4782 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4783 struct usb_host_config *config; 4784 char *state_name; 4785 int i; 4786 u16 timeout = USB3_LPM_DISABLED; 4787 4788 if (state == USB3_LPM_U1) 4789 state_name = "U1"; 4790 else if (state == USB3_LPM_U2) 4791 state_name = "U2"; 4792 else { 4793 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4794 state); 4795 return timeout; 4796 } 4797 4798 /* Gather some information about the currently installed configuration 4799 * and alternate interface settings. 4800 */ 4801 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4802 state, &timeout)) 4803 return timeout; 4804 4805 config = udev->actconfig; 4806 if (!config) 4807 return timeout; 4808 4809 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4810 struct usb_driver *driver; 4811 struct usb_interface *intf = config->interface[i]; 4812 4813 if (!intf) 4814 continue; 4815 4816 /* Check if any currently bound drivers want hub-initiated LPM 4817 * disabled. 4818 */ 4819 if (intf->dev.driver) { 4820 driver = to_usb_driver(intf->dev.driver); 4821 if (driver && driver->disable_hub_initiated_lpm) { 4822 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4823 state_name, driver->name); 4824 timeout = xhci_get_timeout_no_hub_lpm(udev, 4825 state); 4826 if (timeout == USB3_LPM_DISABLED) 4827 return timeout; 4828 } 4829 } 4830 4831 /* Not sure how this could happen... */ 4832 if (!intf->cur_altsetting) 4833 continue; 4834 4835 if (xhci_update_timeout_for_interface(xhci, udev, 4836 intf->cur_altsetting, 4837 state, &timeout)) 4838 return timeout; 4839 } 4840 return timeout; 4841 } 4842 4843 static int calculate_max_exit_latency(struct usb_device *udev, 4844 enum usb3_link_state state_changed, 4845 u16 hub_encoded_timeout) 4846 { 4847 unsigned long long u1_mel_us = 0; 4848 unsigned long long u2_mel_us = 0; 4849 unsigned long long mel_us = 0; 4850 bool disabling_u1; 4851 bool disabling_u2; 4852 bool enabling_u1; 4853 bool enabling_u2; 4854 4855 disabling_u1 = (state_changed == USB3_LPM_U1 && 4856 hub_encoded_timeout == USB3_LPM_DISABLED); 4857 disabling_u2 = (state_changed == USB3_LPM_U2 && 4858 hub_encoded_timeout == USB3_LPM_DISABLED); 4859 4860 enabling_u1 = (state_changed == USB3_LPM_U1 && 4861 hub_encoded_timeout != USB3_LPM_DISABLED); 4862 enabling_u2 = (state_changed == USB3_LPM_U2 && 4863 hub_encoded_timeout != USB3_LPM_DISABLED); 4864 4865 /* If U1 was already enabled and we're not disabling it, 4866 * or we're going to enable U1, account for the U1 max exit latency. 4867 */ 4868 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4869 enabling_u1) 4870 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4871 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4872 enabling_u2) 4873 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4874 4875 mel_us = max(u1_mel_us, u2_mel_us); 4876 4877 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4878 if (mel_us > MAX_EXIT) { 4879 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4880 "is too big.\n", mel_us); 4881 return -E2BIG; 4882 } 4883 return mel_us; 4884 } 4885 4886 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4887 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4888 struct usb_device *udev, enum usb3_link_state state) 4889 { 4890 struct xhci_hcd *xhci; 4891 struct xhci_port *port; 4892 u16 hub_encoded_timeout; 4893 int mel; 4894 int ret; 4895 4896 xhci = hcd_to_xhci(hcd); 4897 /* The LPM timeout values are pretty host-controller specific, so don't 4898 * enable hub-initiated timeouts unless the vendor has provided 4899 * information about their timeout algorithm. 4900 */ 4901 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4902 !xhci->devs[udev->slot_id]) 4903 return USB3_LPM_DISABLED; 4904 4905 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4906 return USB3_LPM_DISABLED; 4907 4908 /* If connected to root port then check port can handle lpm */ 4909 if (udev->parent && !udev->parent->parent) { 4910 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4911 if (port->lpm_incapable) 4912 return USB3_LPM_DISABLED; 4913 } 4914 4915 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4916 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4917 if (mel < 0) { 4918 /* Max Exit Latency is too big, disable LPM. */ 4919 hub_encoded_timeout = USB3_LPM_DISABLED; 4920 mel = 0; 4921 } 4922 4923 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4924 if (ret) 4925 return ret; 4926 return hub_encoded_timeout; 4927 } 4928 4929 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4930 struct usb_device *udev, enum usb3_link_state state) 4931 { 4932 struct xhci_hcd *xhci; 4933 u16 mel; 4934 4935 xhci = hcd_to_xhci(hcd); 4936 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4937 !xhci->devs[udev->slot_id]) 4938 return 0; 4939 4940 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4941 return xhci_change_max_exit_latency(xhci, udev, mel); 4942 } 4943 #else /* CONFIG_PM */ 4944 4945 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4946 struct usb_device *udev, int enable) 4947 { 4948 return 0; 4949 } 4950 4951 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4952 { 4953 return 0; 4954 } 4955 4956 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4957 struct usb_device *udev, enum usb3_link_state state) 4958 { 4959 return USB3_LPM_DISABLED; 4960 } 4961 4962 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4963 struct usb_device *udev, enum usb3_link_state state) 4964 { 4965 return 0; 4966 } 4967 #endif /* CONFIG_PM */ 4968 4969 /*-------------------------------------------------------------------------*/ 4970 4971 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4972 * internal data structures for the device. 4973 */ 4974 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4975 struct usb_tt *tt, gfp_t mem_flags) 4976 { 4977 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4978 struct xhci_virt_device *vdev; 4979 struct xhci_command *config_cmd; 4980 struct xhci_input_control_ctx *ctrl_ctx; 4981 struct xhci_slot_ctx *slot_ctx; 4982 unsigned long flags; 4983 unsigned think_time; 4984 int ret; 4985 4986 /* Ignore root hubs */ 4987 if (!hdev->parent) 4988 return 0; 4989 4990 vdev = xhci->devs[hdev->slot_id]; 4991 if (!vdev) { 4992 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4993 return -EINVAL; 4994 } 4995 4996 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4997 if (!config_cmd) 4998 return -ENOMEM; 4999 5000 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5001 if (!ctrl_ctx) { 5002 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5003 __func__); 5004 xhci_free_command(xhci, config_cmd); 5005 return -ENOMEM; 5006 } 5007 5008 spin_lock_irqsave(&xhci->lock, flags); 5009 if (hdev->speed == USB_SPEED_HIGH && 5010 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5011 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5012 xhci_free_command(xhci, config_cmd); 5013 spin_unlock_irqrestore(&xhci->lock, flags); 5014 return -ENOMEM; 5015 } 5016 5017 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5018 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5019 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5020 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5021 /* 5022 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5023 * but it may be already set to 1 when setup an xHCI virtual 5024 * device, so clear it anyway. 5025 */ 5026 if (tt->multi) 5027 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5028 else if (hdev->speed == USB_SPEED_FULL) 5029 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5030 5031 if (xhci->hci_version > 0x95) { 5032 xhci_dbg(xhci, "xHCI version %x needs hub " 5033 "TT think time and number of ports\n", 5034 (unsigned int) xhci->hci_version); 5035 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5036 /* Set TT think time - convert from ns to FS bit times. 5037 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5038 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5039 * 5040 * xHCI 1.0: this field shall be 0 if the device is not a 5041 * High-spped hub. 5042 */ 5043 think_time = tt->think_time; 5044 if (think_time != 0) 5045 think_time = (think_time / 666) - 1; 5046 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5047 slot_ctx->tt_info |= 5048 cpu_to_le32(TT_THINK_TIME(think_time)); 5049 } else { 5050 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5051 "TT think time or number of ports\n", 5052 (unsigned int) xhci->hci_version); 5053 } 5054 slot_ctx->dev_state = 0; 5055 spin_unlock_irqrestore(&xhci->lock, flags); 5056 5057 xhci_dbg(xhci, "Set up %s for hub device.\n", 5058 (xhci->hci_version > 0x95) ? 5059 "configure endpoint" : "evaluate context"); 5060 5061 /* Issue and wait for the configure endpoint or 5062 * evaluate context command. 5063 */ 5064 if (xhci->hci_version > 0x95) 5065 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5066 false, false); 5067 else 5068 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5069 true, false); 5070 5071 xhci_free_command(xhci, config_cmd); 5072 return ret; 5073 } 5074 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5075 5076 static int xhci_get_frame(struct usb_hcd *hcd) 5077 { 5078 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5079 /* EHCI mods by the periodic size. Why? */ 5080 return readl(&xhci->run_regs->microframe_index) >> 3; 5081 } 5082 5083 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5084 { 5085 xhci->usb2_rhub.hcd = hcd; 5086 hcd->speed = HCD_USB2; 5087 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5088 /* 5089 * USB 2.0 roothub under xHCI has an integrated TT, 5090 * (rate matching hub) as opposed to having an OHCI/UHCI 5091 * companion controller. 5092 */ 5093 hcd->has_tt = 1; 5094 } 5095 5096 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5097 { 5098 unsigned int minor_rev; 5099 5100 /* 5101 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5102 * should return 0x31 for sbrn, or that the minor revision 5103 * is a two digit BCD containig minor and sub-minor numbers. 5104 * This was later clarified in xHCI 1.2. 5105 * 5106 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5107 * minor revision set to 0x1 instead of 0x10. 5108 */ 5109 if (xhci->usb3_rhub.min_rev == 0x1) 5110 minor_rev = 1; 5111 else 5112 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5113 5114 switch (minor_rev) { 5115 case 2: 5116 hcd->speed = HCD_USB32; 5117 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5118 hcd->self.root_hub->rx_lanes = 2; 5119 hcd->self.root_hub->tx_lanes = 2; 5120 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5121 break; 5122 case 1: 5123 hcd->speed = HCD_USB31; 5124 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5125 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5126 break; 5127 } 5128 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5129 minor_rev, minor_rev ? "Enhanced " : ""); 5130 5131 xhci->usb3_rhub.hcd = hcd; 5132 } 5133 5134 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5135 { 5136 struct xhci_hcd *xhci; 5137 /* 5138 * TODO: Check with DWC3 clients for sysdev according to 5139 * quirks 5140 */ 5141 struct device *dev = hcd->self.sysdev; 5142 int retval; 5143 5144 /* Accept arbitrarily long scatter-gather lists */ 5145 hcd->self.sg_tablesize = ~0; 5146 5147 /* support to build packet from discontinuous buffers */ 5148 hcd->self.no_sg_constraint = 1; 5149 5150 /* XHCI controllers don't stop the ep queue on short packets :| */ 5151 hcd->self.no_stop_on_short = 1; 5152 5153 xhci = hcd_to_xhci(hcd); 5154 5155 if (!usb_hcd_is_primary_hcd(hcd)) { 5156 xhci_hcd_init_usb3_data(xhci, hcd); 5157 return 0; 5158 } 5159 5160 mutex_init(&xhci->mutex); 5161 xhci->main_hcd = hcd; 5162 xhci->cap_regs = hcd->regs; 5163 xhci->op_regs = hcd->regs + 5164 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5165 xhci->run_regs = hcd->regs + 5166 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5167 /* Cache read-only capability registers */ 5168 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5169 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5170 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5171 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5172 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5173 if (xhci->hci_version > 0x100) 5174 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5175 5176 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5177 if ((!xhci->max_interrupters) || 5178 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5179 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5180 5181 xhci->quirks |= quirks; 5182 5183 get_quirks(dev, xhci); 5184 5185 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5186 * success event after a short transfer. This quirk will ignore such 5187 * spurious event. 5188 */ 5189 if (xhci->hci_version > 0x96) 5190 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5191 5192 /* Make sure the HC is halted. */ 5193 retval = xhci_halt(xhci); 5194 if (retval) 5195 return retval; 5196 5197 xhci_zero_64b_regs(xhci); 5198 5199 xhci_dbg(xhci, "Resetting HCD\n"); 5200 /* Reset the internal HC memory state and registers. */ 5201 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5202 if (retval) 5203 return retval; 5204 xhci_dbg(xhci, "Reset complete\n"); 5205 5206 /* 5207 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5208 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5209 * address memory pointers actually. So, this driver clears the AC64 5210 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5211 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5212 */ 5213 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5214 xhci->hcc_params &= ~BIT(0); 5215 5216 /* Set dma_mask and coherent_dma_mask to 64-bits, 5217 * if xHC supports 64-bit addressing */ 5218 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5219 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5220 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5221 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5222 } else { 5223 /* 5224 * This is to avoid error in cases where a 32-bit USB 5225 * controller is used on a 64-bit capable system. 5226 */ 5227 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5228 if (retval) 5229 return retval; 5230 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5231 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5232 } 5233 5234 xhci_dbg(xhci, "Calling HCD init\n"); 5235 /* Initialize HCD and host controller data structures. */ 5236 retval = xhci_init(hcd); 5237 if (retval) 5238 return retval; 5239 xhci_dbg(xhci, "Called HCD init\n"); 5240 5241 if (xhci_hcd_is_usb3(hcd)) 5242 xhci_hcd_init_usb3_data(xhci, hcd); 5243 else 5244 xhci_hcd_init_usb2_data(xhci, hcd); 5245 5246 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5247 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5248 5249 return 0; 5250 } 5251 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5252 5253 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5254 struct usb_host_endpoint *ep) 5255 { 5256 struct xhci_hcd *xhci; 5257 struct usb_device *udev; 5258 unsigned int slot_id; 5259 unsigned int ep_index; 5260 unsigned long flags; 5261 5262 xhci = hcd_to_xhci(hcd); 5263 5264 spin_lock_irqsave(&xhci->lock, flags); 5265 udev = (struct usb_device *)ep->hcpriv; 5266 slot_id = udev->slot_id; 5267 ep_index = xhci_get_endpoint_index(&ep->desc); 5268 5269 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5270 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5271 spin_unlock_irqrestore(&xhci->lock, flags); 5272 } 5273 5274 static const struct hc_driver xhci_hc_driver = { 5275 .description = "xhci-hcd", 5276 .product_desc = "xHCI Host Controller", 5277 .hcd_priv_size = sizeof(struct xhci_hcd), 5278 5279 /* 5280 * generic hardware linkage 5281 */ 5282 .irq = xhci_irq, 5283 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5284 HCD_BH, 5285 5286 /* 5287 * basic lifecycle operations 5288 */ 5289 .reset = NULL, /* set in xhci_init_driver() */ 5290 .start = xhci_run, 5291 .stop = xhci_stop, 5292 .shutdown = xhci_shutdown, 5293 5294 /* 5295 * managing i/o requests and associated device resources 5296 */ 5297 .map_urb_for_dma = xhci_map_urb_for_dma, 5298 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5299 .urb_enqueue = xhci_urb_enqueue, 5300 .urb_dequeue = xhci_urb_dequeue, 5301 .alloc_dev = xhci_alloc_dev, 5302 .free_dev = xhci_free_dev, 5303 .alloc_streams = xhci_alloc_streams, 5304 .free_streams = xhci_free_streams, 5305 .add_endpoint = xhci_add_endpoint, 5306 .drop_endpoint = xhci_drop_endpoint, 5307 .endpoint_disable = xhci_endpoint_disable, 5308 .endpoint_reset = xhci_endpoint_reset, 5309 .check_bandwidth = xhci_check_bandwidth, 5310 .reset_bandwidth = xhci_reset_bandwidth, 5311 .address_device = xhci_address_device, 5312 .enable_device = xhci_enable_device, 5313 .update_hub_device = xhci_update_hub_device, 5314 .reset_device = xhci_discover_or_reset_device, 5315 5316 /* 5317 * scheduling support 5318 */ 5319 .get_frame_number = xhci_get_frame, 5320 5321 /* 5322 * root hub support 5323 */ 5324 .hub_control = xhci_hub_control, 5325 .hub_status_data = xhci_hub_status_data, 5326 .bus_suspend = xhci_bus_suspend, 5327 .bus_resume = xhci_bus_resume, 5328 .get_resuming_ports = xhci_get_resuming_ports, 5329 5330 /* 5331 * call back when device connected and addressed 5332 */ 5333 .update_device = xhci_update_device, 5334 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5335 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5336 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5337 .find_raw_port_number = xhci_find_raw_port_number, 5338 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5339 }; 5340 5341 void xhci_init_driver(struct hc_driver *drv, 5342 const struct xhci_driver_overrides *over) 5343 { 5344 BUG_ON(!over); 5345 5346 /* Copy the generic table to drv then apply the overrides */ 5347 *drv = xhci_hc_driver; 5348 5349 if (over) { 5350 drv->hcd_priv_size += over->extra_priv_size; 5351 if (over->reset) 5352 drv->reset = over->reset; 5353 if (over->start) 5354 drv->start = over->start; 5355 if (over->add_endpoint) 5356 drv->add_endpoint = over->add_endpoint; 5357 if (over->drop_endpoint) 5358 drv->drop_endpoint = over->drop_endpoint; 5359 if (over->check_bandwidth) 5360 drv->check_bandwidth = over->check_bandwidth; 5361 if (over->reset_bandwidth) 5362 drv->reset_bandwidth = over->reset_bandwidth; 5363 if (over->update_hub_device) 5364 drv->update_hub_device = over->update_hub_device; 5365 if (over->hub_control) 5366 drv->hub_control = over->hub_control; 5367 } 5368 } 5369 EXPORT_SYMBOL_GPL(xhci_init_driver); 5370 5371 MODULE_DESCRIPTION(DRIVER_DESC); 5372 MODULE_AUTHOR(DRIVER_AUTHOR); 5373 MODULE_LICENSE("GPL"); 5374 5375 static int __init xhci_hcd_init(void) 5376 { 5377 /* 5378 * Check the compiler generated sizes of structures that must be laid 5379 * out in specific ways for hardware access. 5380 */ 5381 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5382 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5383 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5384 /* xhci_device_control has eight fields, and also 5385 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5386 */ 5387 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5388 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5389 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5390 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5391 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5392 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5393 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5394 5395 if (usb_disabled()) 5396 return -ENODEV; 5397 5398 xhci_debugfs_create_root(); 5399 xhci_dbc_init(); 5400 5401 return 0; 5402 } 5403 5404 /* 5405 * If an init function is provided, an exit function must also be provided 5406 * to allow module unload. 5407 */ 5408 static void __exit xhci_hcd_fini(void) 5409 { 5410 xhci_debugfs_remove_root(); 5411 xhci_dbc_exit(); 5412 } 5413 5414 module_init(xhci_hcd_init); 5415 module_exit(xhci_hcd_fini); 5416