xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 7f3650a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 	struct xhci_hcd *xhci;
328 	struct usb_hcd *hcd;
329 	struct xhci_hub *rhub;
330 	u32 temp;
331 	int i;
332 
333 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 	rhub = &xhci->usb3_rhub;
335 	hcd = rhub->hcd;
336 
337 	if (!hcd)
338 		return;
339 
340 	for (i = 0; i < rhub->num_ports; i++) {
341 		temp = readl(rhub->ports[i]->addr);
342 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 			/*
344 			 * Compliance Mode Detected. Letting USB Core
345 			 * handle the Warm Reset
346 			 */
347 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 					"Compliance mode detected->port %d",
349 					i + 1);
350 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 					"Attempting compliance mode recovery");
352 
353 			if (hcd->state == HC_STATE_SUSPENDED)
354 				usb_hcd_resume_root_hub(hcd);
355 
356 			usb_hcd_poll_rh_status(hcd);
357 		}
358 	}
359 
360 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 		mod_timer(&xhci->comp_mode_recovery_timer,
362 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364 
365 /*
366  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367  * that causes ports behind that hardware to enter compliance mode sometimes.
368  * The quirk creates a timer that polls every 2 seconds the link state of
369  * each host controller's port and recovers it by issuing a Warm reset
370  * if Compliance mode is detected, otherwise the port will become "dead" (no
371  * device connections or disconnections will be detected anymore). Becasue no
372  * status event is generated when entering compliance mode (per xhci spec),
373  * this quirk is needed on systems that have the failing hardware installed.
374  */
375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 	xhci->port_status_u0 = 0;
378 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 		    0);
380 	xhci->comp_mode_recovery_timer.expires = jiffies +
381 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382 
383 	add_timer(&xhci->comp_mode_recovery_timer);
384 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 			"Compliance mode recovery timer initialized");
386 }
387 
388 /*
389  * This function identifies the systems that have installed the SN65LVPE502CP
390  * USB3.0 re-driver and that need the Compliance Mode Quirk.
391  * Systems:
392  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393  */
394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 	const char *dmi_product_name, *dmi_sys_vendor;
397 
398 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 	if (!dmi_product_name || !dmi_sys_vendor)
401 		return false;
402 
403 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 		return false;
405 
406 	if (strstr(dmi_product_name, "Z420") ||
407 			strstr(dmi_product_name, "Z620") ||
408 			strstr(dmi_product_name, "Z820") ||
409 			strstr(dmi_product_name, "Z1 Workstation"))
410 		return true;
411 
412 	return false;
413 }
414 
415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419 
420 
421 /*
422  * Initialize memory for HCD and xHC (one-time init).
423  *
424  * Program the PAGESIZE register, initialize the device context array, create
425  * device contexts (?), set up a command ring segment (or two?), create event
426  * ring (one for now).
427  */
428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 	int retval;
432 
433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 	spin_lock_init(&xhci->lock);
435 	if (xhci->hci_version == 0x95 && link_quirk) {
436 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 				"QUIRK: Not clearing Link TRB chain bits.");
438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 	} else {
440 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 				"xHCI doesn't need link TRB QUIRK");
442 	}
443 	retval = xhci_mem_init(xhci, GFP_KERNEL);
444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445 
446 	/* Initializing Compliance Mode Recovery Data If Needed */
447 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 		compliance_mode_recovery_timer_init(xhci);
450 	}
451 
452 	return retval;
453 }
454 
455 /*-------------------------------------------------------------------------*/
456 
457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 	struct xhci_interrupter *ir = xhci->interrupter;
460 	unsigned long	flags;
461 	u32		temp;
462 
463 	/*
464 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 	 * Protect the short window before host is running with a lock
466 	 */
467 	spin_lock_irqsave(&xhci->lock, flags);
468 
469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 	temp = readl(&xhci->op_regs->command);
471 	temp |= (CMD_EIE);
472 	writel(temp, &xhci->op_regs->command);
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 	xhci_enable_interrupter(ir);
476 
477 	if (xhci_start(xhci)) {
478 		xhci_halt(xhci);
479 		spin_unlock_irqrestore(&xhci->lock, flags);
480 		return -ENODEV;
481 	}
482 
483 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484 
485 	if (xhci->quirks & XHCI_NEC_HOST)
486 		xhci_ring_cmd_db(xhci);
487 
488 	spin_unlock_irqrestore(&xhci->lock, flags);
489 
490 	return 0;
491 }
492 
493 /*
494  * Start the HC after it was halted.
495  *
496  * This function is called by the USB core when the HC driver is added.
497  * Its opposite is xhci_stop().
498  *
499  * xhci_init() must be called once before this function can be called.
500  * Reset the HC, enable device slot contexts, program DCBAAP, and
501  * set command ring pointer and event ring pointer.
502  *
503  * Setup MSI-X vectors and enable interrupts.
504  */
505 int xhci_run(struct usb_hcd *hcd)
506 {
507 	u32 temp;
508 	u64 temp_64;
509 	int ret;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 	struct xhci_interrupter *ir = xhci->interrupter;
512 	/* Start the xHCI host controller running only after the USB 2.0 roothub
513 	 * is setup.
514 	 */
515 
516 	hcd->uses_new_polling = 1;
517 	if (!usb_hcd_is_primary_hcd(hcd))
518 		return xhci_run_finished(xhci);
519 
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521 
522 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 	temp_64 &= ~ERST_PTR_MASK;
524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526 
527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 			"// Set the interrupt modulation register");
529 	temp = readl(&ir->ir_set->irq_control);
530 	temp &= ~ER_IRQ_INTERVAL_MASK;
531 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 	writel(temp, &ir->ir_set->irq_control);
533 
534 	if (xhci->quirks & XHCI_NEC_HOST) {
535 		struct xhci_command *command;
536 
537 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 		if (!command)
539 			return -ENOMEM;
540 
541 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 				TRB_TYPE(TRB_NEC_GET_FW));
543 		if (ret)
544 			xhci_free_command(xhci, command);
545 	}
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished %s for main hcd", __func__);
548 
549 	xhci_create_dbc_dev(xhci);
550 
551 	xhci_debugfs_init(xhci);
552 
553 	if (xhci_has_one_roothub(xhci))
554 		return xhci_run_finished(xhci);
555 
556 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561 
562 /*
563  * Stop xHCI driver.
564  *
565  * This function is called by the USB core when the HC driver is removed.
566  * Its opposite is xhci_run().
567  *
568  * Disable device contexts, disable IRQs, and quiesce the HC.
569  * Reset the HC, finish any completed transactions, and cleanup memory.
570  */
571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 	u32 temp;
574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 	struct xhci_interrupter *ir = xhci->interrupter;
576 
577 	mutex_lock(&xhci->mutex);
578 
579 	/* Only halt host and free memory after both hcds are removed */
580 	if (!usb_hcd_is_primary_hcd(hcd)) {
581 		mutex_unlock(&xhci->mutex);
582 		return;
583 	}
584 
585 	xhci_remove_dbc_dev(xhci);
586 
587 	spin_lock_irq(&xhci->lock);
588 	xhci->xhc_state |= XHCI_STATE_HALTED;
589 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 	xhci_halt(xhci);
591 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 	spin_unlock_irq(&xhci->lock);
593 
594 	/* Deleting Compliance Mode Recovery Timer */
595 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 			(!(xhci_all_ports_seen_u0(xhci)))) {
597 		del_timer_sync(&xhci->comp_mode_recovery_timer);
598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 				"%s: compliance mode recovery timer deleted",
600 				__func__);
601 	}
602 
603 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 		usb_amd_dev_put();
605 
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Disabling event ring interrupts");
608 	temp = readl(&xhci->op_regs->status);
609 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 	xhci_disable_interrupter(ir);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 	xhci_mem_cleanup(xhci);
614 	xhci_debugfs_exit(xhci);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"xhci_stop completed - status = %x",
617 			readl(&xhci->op_regs->status));
618 	mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621 
622 /*
623  * Shutdown HC (not bus-specific)
624  *
625  * This is called when the machine is rebooting or halting.  We assume that the
626  * machine will be powered off, and the HC's internal state will be reset.
627  * Don't bother to free memory.
628  *
629  * This will only ever be called with the main usb_hcd (the USB3 roothub).
630  */
631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634 
635 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637 
638 	/* Don't poll the roothubs after shutdown. */
639 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 			__func__, hcd->self.busnum);
641 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 	del_timer_sync(&hcd->rh_timer);
643 
644 	if (xhci->shared_hcd) {
645 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 		del_timer_sync(&xhci->shared_hcd->rh_timer);
647 	}
648 
649 	spin_lock_irq(&xhci->lock);
650 	xhci_halt(xhci);
651 
652 	/*
653 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 	 */
656 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659 
660 	spin_unlock_irq(&xhci->lock);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"xhci_shutdown completed - status = %x",
664 			readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667 
668 #ifdef CONFIG_PM
669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 	struct xhci_interrupter *ir = xhci->interrupter;
672 
673 	xhci->s3.command = readl(&xhci->op_regs->command);
674 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677 
678 	if (!ir)
679 		return;
680 
681 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687 
688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 	struct xhci_interrupter *ir = xhci->interrupter;
691 
692 	writel(xhci->s3.command, &xhci->op_regs->command);
693 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702 
703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 	u64	val_64;
706 
707 	/* step 2: initialize command ring buffer */
708 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 				      xhci->cmd_ring->dequeue) &
712 		 (u64) ~CMD_RING_RSVD_BITS) |
713 		xhci->cmd_ring->cycle_state;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Setting command ring address to 0x%llx",
716 			(long unsigned long) val_64);
717 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719 
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 	struct xhci_ring *ring;
732 	struct xhci_segment *seg;
733 
734 	ring = xhci->cmd_ring;
735 	seg = ring->deq_seg;
736 	do {
737 		memset(seg->trbs, 0,
738 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 			cpu_to_le32(~TRB_CYCLE);
741 		seg = seg->next;
742 	} while (seg != ring->deq_seg);
743 
744 	/* Reset the software enqueue and dequeue pointers */
745 	ring->deq_seg = ring->first_seg;
746 	ring->dequeue = ring->first_seg->trbs;
747 	ring->enq_seg = ring->deq_seg;
748 	ring->enqueue = ring->dequeue;
749 
750 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 	/*
752 	 * Ring is now zeroed, so the HW should look for change of ownership
753 	 * when the cycle bit is set to 1.
754 	 */
755 	ring->cycle_state = 1;
756 
757 	/*
758 	 * Reset the hardware dequeue pointer.
759 	 * Yes, this will need to be re-written after resume, but we're paranoid
760 	 * and want to make sure the hardware doesn't access bogus memory
761 	 * because, say, the BIOS or an SMI started the host without changing
762 	 * the command ring pointers.
763 	 */
764 	xhci_set_cmd_ring_deq(xhci);
765 }
766 
767 /*
768  * Disable port wake bits if do_wakeup is not set.
769  *
770  * Also clear a possible internal port wake state left hanging for ports that
771  * detected termination but never successfully enumerated (trained to 0U).
772  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773  * at enumeration clears this wake, force one here as well for unconnected ports
774  */
775 
776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 				       struct xhci_hub *rhub,
778 				       bool do_wakeup)
779 {
780 	unsigned long flags;
781 	u32 t1, t2, portsc;
782 	int i;
783 
784 	spin_lock_irqsave(&xhci->lock, flags);
785 
786 	for (i = 0; i < rhub->num_ports; i++) {
787 		portsc = readl(rhub->ports[i]->addr);
788 		t1 = xhci_port_state_to_neutral(portsc);
789 		t2 = t1;
790 
791 		/* clear wake bits if do_wake is not set */
792 		if (!do_wakeup)
793 			t2 &= ~PORT_WAKE_BITS;
794 
795 		/* Don't touch csc bit if connected or connect change is set */
796 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 			t2 |= PORT_CSC;
798 
799 		if (t1 != t2) {
800 			writel(t2, rhub->ports[i]->addr);
801 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 		}
804 	}
805 	spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807 
808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 	struct xhci_port	**ports;
811 	int			port_index;
812 	u32			status;
813 	u32			portsc;
814 
815 	status = readl(&xhci->op_regs->status);
816 	if (status & STS_EINT)
817 		return true;
818 	/*
819 	 * Checking STS_EINT is not enough as there is a lag between a change
820 	 * bit being set and the Port Status Change Event that it generated
821 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 	 */
823 
824 	port_index = xhci->usb2_rhub.num_ports;
825 	ports = xhci->usb2_rhub.ports;
826 	while (port_index--) {
827 		portsc = readl(ports[port_index]->addr);
828 		if (portsc & PORT_CHANGE_MASK ||
829 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 			return true;
831 	}
832 	port_index = xhci->usb3_rhub.num_ports;
833 	ports = xhci->usb3_rhub.ports;
834 	while (port_index--) {
835 		portsc = readl(ports[port_index]->addr);
836 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 			return true;
839 	}
840 	return false;
841 }
842 
843 /*
844  * Stop HC (not bus-specific)
845  *
846  * This is called when the machine transition into S3/S4 mode.
847  *
848  */
849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 	int			rc = 0;
852 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
853 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
854 	u32			command;
855 	u32			res;
856 
857 	if (!hcd->state)
858 		return 0;
859 
860 	if (hcd->state != HC_STATE_SUSPENDED ||
861 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 		return -EINVAL;
863 
864 	/* Clear root port wake on bits if wakeup not allowed. */
865 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867 
868 	if (!HCD_HW_ACCESSIBLE(hcd))
869 		return 0;
870 
871 	xhci_dbc_suspend(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 		 __func__, hcd->self.busnum);
876 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 	del_timer_sync(&hcd->rh_timer);
878 	if (xhci->shared_hcd) {
879 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 		del_timer_sync(&xhci->shared_hcd->rh_timer);
881 	}
882 
883 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 		usleep_range(1000, 1500);
885 
886 	spin_lock_irq(&xhci->lock);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 	if (xhci->shared_hcd)
889 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = readl(&xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	writel(command, &xhci->op_regs->command);
897 
898 	/* Some chips from Fresco Logic need an extraordinary delay */
899 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900 
901 	if (xhci_handshake(&xhci->op_regs->status,
902 		      STS_HALT, STS_HALT, delay)) {
903 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 		spin_unlock_irq(&xhci->lock);
905 		return -ETIMEDOUT;
906 	}
907 	xhci_clear_command_ring(xhci);
908 
909 	/* step 3: save registers */
910 	xhci_save_registers(xhci);
911 
912 	/* step 4: set CSS flag */
913 	command = readl(&xhci->op_regs->command);
914 	command |= CMD_CSS;
915 	writel(command, &xhci->op_regs->command);
916 	xhci->broken_suspend = 0;
917 	if (xhci_handshake(&xhci->op_regs->status,
918 				STS_SAVE, 0, 20 * 1000)) {
919 	/*
920 	 * AMD SNPS xHC 3.0 occasionally does not clear the
921 	 * SSS bit of USBSTS and when driver tries to poll
922 	 * to see if the xHC clears BIT(8) which never happens
923 	 * and driver assumes that controller is not responding
924 	 * and times out. To workaround this, its good to check
925 	 * if SRE and HCE bits are not set (as per xhci
926 	 * Section 5.4.2) and bypass the timeout.
927 	 */
928 		res = readl(&xhci->op_regs->status);
929 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 		    (((res & STS_SRE) == 0) &&
931 				((res & STS_HCE) == 0))) {
932 			xhci->broken_suspend = 1;
933 		} else {
934 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 			spin_unlock_irq(&xhci->lock);
936 			return -ETIMEDOUT;
937 		}
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 				"%s: compliance mode recovery timer deleted",
950 				__func__);
951 	}
952 
953 	return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956 
957 /*
958  * start xHC (not bus-specific)
959  *
960  * This is called when the machine transition from S3/S4 mode.
961  *
962  */
963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
966 	u32			command, temp = 0;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	int			retval = 0;
969 	bool			comp_timer_running = false;
970 	bool			pending_portevent = false;
971 	bool			reinit_xhc = false;
972 
973 	if (!hcd->state)
974 		return 0;
975 
976 	/* Wait a bit if either of the roothubs need to settle from the
977 	 * transition into bus suspend.
978 	 */
979 
980 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
981 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
982 		msleep(100);
983 
984 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
985 	if (xhci->shared_hcd)
986 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
987 
988 	spin_lock_irq(&xhci->lock);
989 
990 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
991 		reinit_xhc = true;
992 
993 	if (!reinit_xhc) {
994 		/*
995 		 * Some controllers might lose power during suspend, so wait
996 		 * for controller not ready bit to clear, just as in xHC init.
997 		 */
998 		retval = xhci_handshake(&xhci->op_regs->status,
999 					STS_CNR, 0, 10 * 1000 * 1000);
1000 		if (retval) {
1001 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1002 				  retval);
1003 			spin_unlock_irq(&xhci->lock);
1004 			return retval;
1005 		}
1006 		/* step 1: restore register */
1007 		xhci_restore_registers(xhci);
1008 		/* step 2: initialize command ring buffer */
1009 		xhci_set_cmd_ring_deq(xhci);
1010 		/* step 3: restore state and start state*/
1011 		/* step 3: set CRS flag */
1012 		command = readl(&xhci->op_regs->command);
1013 		command |= CMD_CRS;
1014 		writel(command, &xhci->op_regs->command);
1015 		/*
1016 		 * Some controllers take up to 55+ ms to complete the controller
1017 		 * restore so setting the timeout to 100ms. Xhci specification
1018 		 * doesn't mention any timeout value.
1019 		 */
1020 		if (xhci_handshake(&xhci->op_regs->status,
1021 			      STS_RESTORE, 0, 100 * 1000)) {
1022 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1023 			spin_unlock_irq(&xhci->lock);
1024 			return -ETIMEDOUT;
1025 		}
1026 	}
1027 
1028 	temp = readl(&xhci->op_regs->status);
1029 
1030 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1031 	if ((temp & (STS_SRE | STS_HCE)) &&
1032 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1033 		reinit_xhc = true;
1034 		if (!xhci->broken_suspend)
1035 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1036 	}
1037 
1038 	if (reinit_xhc) {
1039 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1040 				!(xhci_all_ports_seen_u0(xhci))) {
1041 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1042 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1043 				"Compliance Mode Recovery Timer deleted!");
1044 		}
1045 
1046 		/* Let the USB core know _both_ roothubs lost power. */
1047 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1048 		if (xhci->shared_hcd)
1049 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1050 
1051 		xhci_dbg(xhci, "Stop HCD\n");
1052 		xhci_halt(xhci);
1053 		xhci_zero_64b_regs(xhci);
1054 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1055 		spin_unlock_irq(&xhci->lock);
1056 		if (retval)
1057 			return retval;
1058 
1059 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1060 		temp = readl(&xhci->op_regs->status);
1061 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1062 		xhci_disable_interrupter(xhci->interrupter);
1063 
1064 		xhci_dbg(xhci, "cleaning up memory\n");
1065 		xhci_mem_cleanup(xhci);
1066 		xhci_debugfs_exit(xhci);
1067 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1068 			    readl(&xhci->op_regs->status));
1069 
1070 		/* USB core calls the PCI reinit and start functions twice:
1071 		 * first with the primary HCD, and then with the secondary HCD.
1072 		 * If we don't do the same, the host will never be started.
1073 		 */
1074 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1075 		retval = xhci_init(hcd);
1076 		if (retval)
1077 			return retval;
1078 		comp_timer_running = true;
1079 
1080 		xhci_dbg(xhci, "Start the primary HCD\n");
1081 		retval = xhci_run(hcd);
1082 		if (!retval && xhci->shared_hcd) {
1083 			xhci_dbg(xhci, "Start the secondary HCD\n");
1084 			retval = xhci_run(xhci->shared_hcd);
1085 		}
1086 
1087 		hcd->state = HC_STATE_SUSPENDED;
1088 		if (xhci->shared_hcd)
1089 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111 	xhci_dbc_resume(xhci);
1112 
1113  done:
1114 	if (retval == 0) {
1115 		/*
1116 		 * Resume roothubs only if there are pending events.
1117 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1118 		 * the first wake signalling failed, give it that chance.
1119 		 */
1120 		pending_portevent = xhci_pending_portevent(xhci);
1121 		if (!pending_portevent && msg.event == PM_EVENT_AUTO_RESUME) {
1122 			msleep(120);
1123 			pending_portevent = xhci_pending_portevent(xhci);
1124 		}
1125 
1126 		if (pending_portevent) {
1127 			if (xhci->shared_hcd)
1128 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1129 			usb_hcd_resume_root_hub(hcd);
1130 		}
1131 	}
1132 	/*
1133 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1134 	 * be re-initialized Always after a system resume. Ports are subject
1135 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1136 	 * ports have entered previously to U0 before system's suspension.
1137 	 */
1138 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1139 		compliance_mode_recovery_timer_init(xhci);
1140 
1141 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1142 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1143 
1144 	/* Re-enable port polling. */
1145 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1146 		 __func__, hcd->self.busnum);
1147 	if (xhci->shared_hcd) {
1148 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1149 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1150 	}
1151 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1152 	usb_hcd_poll_rh_status(hcd);
1153 
1154 	return retval;
1155 }
1156 EXPORT_SYMBOL_GPL(xhci_resume);
1157 #endif	/* CONFIG_PM */
1158 
1159 /*-------------------------------------------------------------------------*/
1160 
1161 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1162 {
1163 	void *temp;
1164 	int ret = 0;
1165 	unsigned int buf_len;
1166 	enum dma_data_direction dir;
1167 
1168 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1169 	buf_len = urb->transfer_buffer_length;
1170 
1171 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1172 			    dev_to_node(hcd->self.sysdev));
1173 
1174 	if (usb_urb_dir_out(urb))
1175 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1176 				   temp, buf_len, 0);
1177 
1178 	urb->transfer_buffer = temp;
1179 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1180 					   urb->transfer_buffer,
1181 					   urb->transfer_buffer_length,
1182 					   dir);
1183 
1184 	if (dma_mapping_error(hcd->self.sysdev,
1185 			      urb->transfer_dma)) {
1186 		ret = -EAGAIN;
1187 		kfree(temp);
1188 	} else {
1189 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1196 					  struct urb *urb)
1197 {
1198 	bool ret = false;
1199 	unsigned int i;
1200 	unsigned int len = 0;
1201 	unsigned int trb_size;
1202 	unsigned int max_pkt;
1203 	struct scatterlist *sg;
1204 	struct scatterlist *tail_sg;
1205 
1206 	tail_sg = urb->sg;
1207 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1208 
1209 	if (!urb->num_sgs)
1210 		return ret;
1211 
1212 	if (urb->dev->speed >= USB_SPEED_SUPER)
1213 		trb_size = TRB_CACHE_SIZE_SS;
1214 	else
1215 		trb_size = TRB_CACHE_SIZE_HS;
1216 
1217 	if (urb->transfer_buffer_length != 0 &&
1218 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1219 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1220 			len = len + sg->length;
1221 			if (i > trb_size - 2) {
1222 				len = len - tail_sg->length;
1223 				if (len < max_pkt) {
1224 					ret = true;
1225 					break;
1226 				}
1227 
1228 				tail_sg = sg_next(tail_sg);
1229 			}
1230 		}
1231 	}
1232 	return ret;
1233 }
1234 
1235 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1236 {
1237 	unsigned int len;
1238 	unsigned int buf_len;
1239 	enum dma_data_direction dir;
1240 
1241 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1242 
1243 	buf_len = urb->transfer_buffer_length;
1244 
1245 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1246 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1247 		dma_unmap_single(hcd->self.sysdev,
1248 				 urb->transfer_dma,
1249 				 urb->transfer_buffer_length,
1250 				 dir);
1251 
1252 	if (usb_urb_dir_in(urb)) {
1253 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1254 					   urb->transfer_buffer,
1255 					   buf_len,
1256 					   0);
1257 		if (len != buf_len) {
1258 			xhci_dbg(hcd_to_xhci(hcd),
1259 				 "Copy from tmp buf to urb sg list failed\n");
1260 			urb->actual_length = len;
1261 		}
1262 	}
1263 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1264 	kfree(urb->transfer_buffer);
1265 	urb->transfer_buffer = NULL;
1266 }
1267 
1268 /*
1269  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1270  * we'll copy the actual data into the TRB address register. This is limited to
1271  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1272  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1273  */
1274 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1275 				gfp_t mem_flags)
1276 {
1277 	struct xhci_hcd *xhci;
1278 
1279 	xhci = hcd_to_xhci(hcd);
1280 
1281 	if (xhci_urb_suitable_for_idt(urb))
1282 		return 0;
1283 
1284 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1285 		if (xhci_urb_temp_buffer_required(hcd, urb))
1286 			return xhci_map_temp_buffer(hcd, urb);
1287 	}
1288 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1289 }
1290 
1291 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1292 {
1293 	struct xhci_hcd *xhci;
1294 	bool unmap_temp_buf = false;
1295 
1296 	xhci = hcd_to_xhci(hcd);
1297 
1298 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299 		unmap_temp_buf = true;
1300 
1301 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1302 		xhci_unmap_temp_buf(hcd, urb);
1303 	else
1304 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1305 }
1306 
1307 /**
1308  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1309  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1310  * value to right shift 1 for the bitmask.
1311  *
1312  * Index  = (epnum * 2) + direction - 1,
1313  * where direction = 0 for OUT, 1 for IN.
1314  * For control endpoints, the IN index is used (OUT index is unused), so
1315  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1316  */
1317 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1318 {
1319 	unsigned int index;
1320 	if (usb_endpoint_xfer_control(desc))
1321 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1322 	else
1323 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1324 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1325 	return index;
1326 }
1327 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1328 
1329 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1330  * address from the XHCI endpoint index.
1331  */
1332 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1333 {
1334 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1335 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1336 	return direction | number;
1337 }
1338 
1339 /* Find the flag for this endpoint (for use in the control context).  Use the
1340  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1341  * bit 1, etc.
1342  */
1343 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1344 {
1345 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1346 }
1347 
1348 /* Compute the last valid endpoint context index.  Basically, this is the
1349  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1350  * we find the most significant bit set in the added contexts flags.
1351  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1352  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1353  */
1354 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1355 {
1356 	return fls(added_ctxs) - 1;
1357 }
1358 
1359 /* Returns 1 if the arguments are OK;
1360  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1361  */
1362 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1363 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1364 		const char *func) {
1365 	struct xhci_hcd	*xhci;
1366 	struct xhci_virt_device	*virt_dev;
1367 
1368 	if (!hcd || (check_ep && !ep) || !udev) {
1369 		pr_debug("xHCI %s called with invalid args\n", func);
1370 		return -EINVAL;
1371 	}
1372 	if (!udev->parent) {
1373 		pr_debug("xHCI %s called for root hub\n", func);
1374 		return 0;
1375 	}
1376 
1377 	xhci = hcd_to_xhci(hcd);
1378 	if (check_virt_dev) {
1379 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1380 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1381 					func);
1382 			return -EINVAL;
1383 		}
1384 
1385 		virt_dev = xhci->devs[udev->slot_id];
1386 		if (virt_dev->udev != udev) {
1387 			xhci_dbg(xhci, "xHCI %s called with udev and "
1388 					  "virt_dev does not match\n", func);
1389 			return -EINVAL;
1390 		}
1391 	}
1392 
1393 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1394 		return -ENODEV;
1395 
1396 	return 1;
1397 }
1398 
1399 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1400 		struct usb_device *udev, struct xhci_command *command,
1401 		bool ctx_change, bool must_succeed);
1402 
1403 /*
1404  * Full speed devices may have a max packet size greater than 8 bytes, but the
1405  * USB core doesn't know that until it reads the first 8 bytes of the
1406  * descriptor.  If the usb_device's max packet size changes after that point,
1407  * we need to issue an evaluate context command and wait on it.
1408  */
1409 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1410 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1411 {
1412 	struct xhci_container_ctx *out_ctx;
1413 	struct xhci_input_control_ctx *ctrl_ctx;
1414 	struct xhci_ep_ctx *ep_ctx;
1415 	struct xhci_command *command;
1416 	int max_packet_size;
1417 	int hw_max_packet_size;
1418 	int ret = 0;
1419 
1420 	out_ctx = xhci->devs[slot_id]->out_ctx;
1421 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1422 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1423 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1424 	if (hw_max_packet_size != max_packet_size) {
1425 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1426 				"Max Packet Size for ep 0 changed.");
1427 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1428 				"Max packet size in usb_device = %d",
1429 				max_packet_size);
1430 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1431 				"Max packet size in xHCI HW = %d",
1432 				hw_max_packet_size);
1433 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1434 				"Issuing evaluate context command.");
1435 
1436 		/* Set up the input context flags for the command */
1437 		/* FIXME: This won't work if a non-default control endpoint
1438 		 * changes max packet sizes.
1439 		 */
1440 
1441 		command = xhci_alloc_command(xhci, true, mem_flags);
1442 		if (!command)
1443 			return -ENOMEM;
1444 
1445 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1446 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1447 		if (!ctrl_ctx) {
1448 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1449 					__func__);
1450 			ret = -ENOMEM;
1451 			goto command_cleanup;
1452 		}
1453 		/* Set up the modified control endpoint 0 */
1454 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1455 				xhci->devs[slot_id]->out_ctx, ep_index);
1456 
1457 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1458 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1459 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1460 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1461 
1462 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1463 		ctrl_ctx->drop_flags = 0;
1464 
1465 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1466 				true, false);
1467 
1468 		/* Clean up the input context for later use by bandwidth
1469 		 * functions.
1470 		 */
1471 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1472 command_cleanup:
1473 		kfree(command->completion);
1474 		kfree(command);
1475 	}
1476 	return ret;
1477 }
1478 
1479 /*
1480  * non-error returns are a promise to giveback() the urb later
1481  * we drop ownership so next owner (or urb unlink) can get it
1482  */
1483 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1484 {
1485 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1486 	unsigned long flags;
1487 	int ret = 0;
1488 	unsigned int slot_id, ep_index;
1489 	unsigned int *ep_state;
1490 	struct urb_priv	*urb_priv;
1491 	int num_tds;
1492 
1493 	if (!urb)
1494 		return -EINVAL;
1495 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1496 					true, true, __func__);
1497 	if (ret <= 0)
1498 		return ret ? ret : -EINVAL;
1499 
1500 	slot_id = urb->dev->slot_id;
1501 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1502 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1503 
1504 	if (!HCD_HW_ACCESSIBLE(hcd))
1505 		return -ESHUTDOWN;
1506 
1507 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1508 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1509 		return -ENODEV;
1510 	}
1511 
1512 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1513 		num_tds = urb->number_of_packets;
1514 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1515 	    urb->transfer_buffer_length > 0 &&
1516 	    urb->transfer_flags & URB_ZERO_PACKET &&
1517 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1518 		num_tds = 2;
1519 	else
1520 		num_tds = 1;
1521 
1522 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1523 	if (!urb_priv)
1524 		return -ENOMEM;
1525 
1526 	urb_priv->num_tds = num_tds;
1527 	urb_priv->num_tds_done = 0;
1528 	urb->hcpriv = urb_priv;
1529 
1530 	trace_xhci_urb_enqueue(urb);
1531 
1532 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1533 		/* Check to see if the max packet size for the default control
1534 		 * endpoint changed during FS device enumeration
1535 		 */
1536 		if (urb->dev->speed == USB_SPEED_FULL) {
1537 			ret = xhci_check_maxpacket(xhci, slot_id,
1538 					ep_index, urb, mem_flags);
1539 			if (ret < 0) {
1540 				xhci_urb_free_priv(urb_priv);
1541 				urb->hcpriv = NULL;
1542 				return ret;
1543 			}
1544 		}
1545 	}
1546 
1547 	spin_lock_irqsave(&xhci->lock, flags);
1548 
1549 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1550 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1551 			 urb->ep->desc.bEndpointAddress, urb);
1552 		ret = -ESHUTDOWN;
1553 		goto free_priv;
1554 	}
1555 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1556 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1557 			  *ep_state);
1558 		ret = -EINVAL;
1559 		goto free_priv;
1560 	}
1561 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1562 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1563 		ret = -EINVAL;
1564 		goto free_priv;
1565 	}
1566 
1567 	switch (usb_endpoint_type(&urb->ep->desc)) {
1568 
1569 	case USB_ENDPOINT_XFER_CONTROL:
1570 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1571 					 slot_id, ep_index);
1572 		break;
1573 	case USB_ENDPOINT_XFER_BULK:
1574 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1575 					 slot_id, ep_index);
1576 		break;
1577 	case USB_ENDPOINT_XFER_INT:
1578 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1579 				slot_id, ep_index);
1580 		break;
1581 	case USB_ENDPOINT_XFER_ISOC:
1582 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1583 				slot_id, ep_index);
1584 	}
1585 
1586 	if (ret) {
1587 free_priv:
1588 		xhci_urb_free_priv(urb_priv);
1589 		urb->hcpriv = NULL;
1590 	}
1591 	spin_unlock_irqrestore(&xhci->lock, flags);
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1597  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1598  * should pick up where it left off in the TD, unless a Set Transfer Ring
1599  * Dequeue Pointer is issued.
1600  *
1601  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1602  * the ring.  Since the ring is a contiguous structure, they can't be physically
1603  * removed.  Instead, there are two options:
1604  *
1605  *  1) If the HC is in the middle of processing the URB to be canceled, we
1606  *     simply move the ring's dequeue pointer past those TRBs using the Set
1607  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1608  *     when drivers timeout on the last submitted URB and attempt to cancel.
1609  *
1610  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1611  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1612  *     HC will need to invalidate the any TRBs it has cached after the stop
1613  *     endpoint command, as noted in the xHCI 0.95 errata.
1614  *
1615  *  3) The TD may have completed by the time the Stop Endpoint Command
1616  *     completes, so software needs to handle that case too.
1617  *
1618  * This function should protect against the TD enqueueing code ringing the
1619  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1620  * It also needs to account for multiple cancellations on happening at the same
1621  * time for the same endpoint.
1622  *
1623  * Note that this function can be called in any context, or so says
1624  * usb_hcd_unlink_urb()
1625  */
1626 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1627 {
1628 	unsigned long flags;
1629 	int ret, i;
1630 	u32 temp;
1631 	struct xhci_hcd *xhci;
1632 	struct urb_priv	*urb_priv;
1633 	struct xhci_td *td;
1634 	unsigned int ep_index;
1635 	struct xhci_ring *ep_ring;
1636 	struct xhci_virt_ep *ep;
1637 	struct xhci_command *command;
1638 	struct xhci_virt_device *vdev;
1639 
1640 	xhci = hcd_to_xhci(hcd);
1641 	spin_lock_irqsave(&xhci->lock, flags);
1642 
1643 	trace_xhci_urb_dequeue(urb);
1644 
1645 	/* Make sure the URB hasn't completed or been unlinked already */
1646 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1647 	if (ret)
1648 		goto done;
1649 
1650 	/* give back URB now if we can't queue it for cancel */
1651 	vdev = xhci->devs[urb->dev->slot_id];
1652 	urb_priv = urb->hcpriv;
1653 	if (!vdev || !urb_priv)
1654 		goto err_giveback;
1655 
1656 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1657 	ep = &vdev->eps[ep_index];
1658 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1659 	if (!ep || !ep_ring)
1660 		goto err_giveback;
1661 
1662 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1663 	temp = readl(&xhci->op_regs->status);
1664 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1665 		xhci_hc_died(xhci);
1666 		goto done;
1667 	}
1668 
1669 	/*
1670 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1671 	 * make sure none of the ring related pointers in this URB private data
1672 	 * are touched, such as td_list, otherwise we overwrite freed data
1673 	 */
1674 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1675 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1676 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1677 			td = &urb_priv->td[i];
1678 			if (!list_empty(&td->cancelled_td_list))
1679 				list_del_init(&td->cancelled_td_list);
1680 		}
1681 		goto err_giveback;
1682 	}
1683 
1684 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1685 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1686 				"HC halted, freeing TD manually.");
1687 		for (i = urb_priv->num_tds_done;
1688 		     i < urb_priv->num_tds;
1689 		     i++) {
1690 			td = &urb_priv->td[i];
1691 			if (!list_empty(&td->td_list))
1692 				list_del_init(&td->td_list);
1693 			if (!list_empty(&td->cancelled_td_list))
1694 				list_del_init(&td->cancelled_td_list);
1695 		}
1696 		goto err_giveback;
1697 	}
1698 
1699 	i = urb_priv->num_tds_done;
1700 	if (i < urb_priv->num_tds)
1701 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1702 				"Cancel URB %p, dev %s, ep 0x%x, "
1703 				"starting at offset 0x%llx",
1704 				urb, urb->dev->devpath,
1705 				urb->ep->desc.bEndpointAddress,
1706 				(unsigned long long) xhci_trb_virt_to_dma(
1707 					urb_priv->td[i].start_seg,
1708 					urb_priv->td[i].first_trb));
1709 
1710 	for (; i < urb_priv->num_tds; i++) {
1711 		td = &urb_priv->td[i];
1712 		/* TD can already be on cancelled list if ep halted on it */
1713 		if (list_empty(&td->cancelled_td_list)) {
1714 			td->cancel_status = TD_DIRTY;
1715 			list_add_tail(&td->cancelled_td_list,
1716 				      &ep->cancelled_td_list);
1717 		}
1718 	}
1719 
1720 	/* Queue a stop endpoint command, but only if this is
1721 	 * the first cancellation to be handled.
1722 	 */
1723 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1724 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1725 		if (!command) {
1726 			ret = -ENOMEM;
1727 			goto done;
1728 		}
1729 		ep->ep_state |= EP_STOP_CMD_PENDING;
1730 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1731 					 ep_index, 0);
1732 		xhci_ring_cmd_db(xhci);
1733 	}
1734 done:
1735 	spin_unlock_irqrestore(&xhci->lock, flags);
1736 	return ret;
1737 
1738 err_giveback:
1739 	if (urb_priv)
1740 		xhci_urb_free_priv(urb_priv);
1741 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1742 	spin_unlock_irqrestore(&xhci->lock, flags);
1743 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1744 	return ret;
1745 }
1746 
1747 /* Drop an endpoint from a new bandwidth configuration for this device.
1748  * Only one call to this function is allowed per endpoint before
1749  * check_bandwidth() or reset_bandwidth() must be called.
1750  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1751  * add the endpoint to the schedule with possibly new parameters denoted by a
1752  * different endpoint descriptor in usb_host_endpoint.
1753  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1754  * not allowed.
1755  *
1756  * The USB core will not allow URBs to be queued to an endpoint that is being
1757  * disabled, so there's no need for mutual exclusion to protect
1758  * the xhci->devs[slot_id] structure.
1759  */
1760 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1761 		       struct usb_host_endpoint *ep)
1762 {
1763 	struct xhci_hcd *xhci;
1764 	struct xhci_container_ctx *in_ctx, *out_ctx;
1765 	struct xhci_input_control_ctx *ctrl_ctx;
1766 	unsigned int ep_index;
1767 	struct xhci_ep_ctx *ep_ctx;
1768 	u32 drop_flag;
1769 	u32 new_add_flags, new_drop_flags;
1770 	int ret;
1771 
1772 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1773 	if (ret <= 0)
1774 		return ret;
1775 	xhci = hcd_to_xhci(hcd);
1776 	if (xhci->xhc_state & XHCI_STATE_DYING)
1777 		return -ENODEV;
1778 
1779 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1780 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1781 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1782 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1783 				__func__, drop_flag);
1784 		return 0;
1785 	}
1786 
1787 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1788 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1789 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1790 	if (!ctrl_ctx) {
1791 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1792 				__func__);
1793 		return 0;
1794 	}
1795 
1796 	ep_index = xhci_get_endpoint_index(&ep->desc);
1797 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1798 	/* If the HC already knows the endpoint is disabled,
1799 	 * or the HCD has noted it is disabled, ignore this request
1800 	 */
1801 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1802 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1803 	    xhci_get_endpoint_flag(&ep->desc)) {
1804 		/* Do not warn when called after a usb_device_reset */
1805 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1806 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1807 				  __func__, ep);
1808 		return 0;
1809 	}
1810 
1811 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1812 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1813 
1814 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1815 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1816 
1817 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1818 
1819 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1820 
1821 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1822 			(unsigned int) ep->desc.bEndpointAddress,
1823 			udev->slot_id,
1824 			(unsigned int) new_drop_flags,
1825 			(unsigned int) new_add_flags);
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1829 
1830 /* Add an endpoint to a new possible bandwidth configuration for this device.
1831  * Only one call to this function is allowed per endpoint before
1832  * check_bandwidth() or reset_bandwidth() must be called.
1833  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1834  * add the endpoint to the schedule with possibly new parameters denoted by a
1835  * different endpoint descriptor in usb_host_endpoint.
1836  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1837  * not allowed.
1838  *
1839  * The USB core will not allow URBs to be queued to an endpoint until the
1840  * configuration or alt setting is installed in the device, so there's no need
1841  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1842  */
1843 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1844 		      struct usb_host_endpoint *ep)
1845 {
1846 	struct xhci_hcd *xhci;
1847 	struct xhci_container_ctx *in_ctx;
1848 	unsigned int ep_index;
1849 	struct xhci_input_control_ctx *ctrl_ctx;
1850 	struct xhci_ep_ctx *ep_ctx;
1851 	u32 added_ctxs;
1852 	u32 new_add_flags, new_drop_flags;
1853 	struct xhci_virt_device *virt_dev;
1854 	int ret = 0;
1855 
1856 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1857 	if (ret <= 0) {
1858 		/* So we won't queue a reset ep command for a root hub */
1859 		ep->hcpriv = NULL;
1860 		return ret;
1861 	}
1862 	xhci = hcd_to_xhci(hcd);
1863 	if (xhci->xhc_state & XHCI_STATE_DYING)
1864 		return -ENODEV;
1865 
1866 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1867 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1868 		/* FIXME when we have to issue an evaluate endpoint command to
1869 		 * deal with ep0 max packet size changing once we get the
1870 		 * descriptors
1871 		 */
1872 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1873 				__func__, added_ctxs);
1874 		return 0;
1875 	}
1876 
1877 	virt_dev = xhci->devs[udev->slot_id];
1878 	in_ctx = virt_dev->in_ctx;
1879 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1880 	if (!ctrl_ctx) {
1881 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1882 				__func__);
1883 		return 0;
1884 	}
1885 
1886 	ep_index = xhci_get_endpoint_index(&ep->desc);
1887 	/* If this endpoint is already in use, and the upper layers are trying
1888 	 * to add it again without dropping it, reject the addition.
1889 	 */
1890 	if (virt_dev->eps[ep_index].ring &&
1891 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1892 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1893 				"without dropping it.\n",
1894 				(unsigned int) ep->desc.bEndpointAddress);
1895 		return -EINVAL;
1896 	}
1897 
1898 	/* If the HCD has already noted the endpoint is enabled,
1899 	 * ignore this request.
1900 	 */
1901 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1902 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1903 				__func__, ep);
1904 		return 0;
1905 	}
1906 
1907 	/*
1908 	 * Configuration and alternate setting changes must be done in
1909 	 * process context, not interrupt context (or so documenation
1910 	 * for usb_set_interface() and usb_set_configuration() claim).
1911 	 */
1912 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1913 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1914 				__func__, ep->desc.bEndpointAddress);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1919 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1920 
1921 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1922 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1923 	 * this re-adds a new state for the endpoint from the new endpoint
1924 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1925 	 * drop flags alone.
1926 	 */
1927 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928 
1929 	/* Store the usb_device pointer for later use */
1930 	ep->hcpriv = udev;
1931 
1932 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1933 	trace_xhci_add_endpoint(ep_ctx);
1934 
1935 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936 			(unsigned int) ep->desc.bEndpointAddress,
1937 			udev->slot_id,
1938 			(unsigned int) new_drop_flags,
1939 			(unsigned int) new_add_flags);
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1943 
1944 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1945 {
1946 	struct xhci_input_control_ctx *ctrl_ctx;
1947 	struct xhci_ep_ctx *ep_ctx;
1948 	struct xhci_slot_ctx *slot_ctx;
1949 	int i;
1950 
1951 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1952 	if (!ctrl_ctx) {
1953 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1954 				__func__);
1955 		return;
1956 	}
1957 
1958 	/* When a device's add flag and drop flag are zero, any subsequent
1959 	 * configure endpoint command will leave that endpoint's state
1960 	 * untouched.  Make sure we don't leave any old state in the input
1961 	 * endpoint contexts.
1962 	 */
1963 	ctrl_ctx->drop_flags = 0;
1964 	ctrl_ctx->add_flags = 0;
1965 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1966 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1967 	/* Endpoint 0 is always valid */
1968 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1969 	for (i = 1; i < 31; i++) {
1970 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1971 		ep_ctx->ep_info = 0;
1972 		ep_ctx->ep_info2 = 0;
1973 		ep_ctx->deq = 0;
1974 		ep_ctx->tx_info = 0;
1975 	}
1976 }
1977 
1978 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1979 		struct usb_device *udev, u32 *cmd_status)
1980 {
1981 	int ret;
1982 
1983 	switch (*cmd_status) {
1984 	case COMP_COMMAND_ABORTED:
1985 	case COMP_COMMAND_RING_STOPPED:
1986 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1987 		ret = -ETIME;
1988 		break;
1989 	case COMP_RESOURCE_ERROR:
1990 		dev_warn(&udev->dev,
1991 			 "Not enough host controller resources for new device state.\n");
1992 		ret = -ENOMEM;
1993 		/* FIXME: can we allocate more resources for the HC? */
1994 		break;
1995 	case COMP_BANDWIDTH_ERROR:
1996 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1997 		dev_warn(&udev->dev,
1998 			 "Not enough bandwidth for new device state.\n");
1999 		ret = -ENOSPC;
2000 		/* FIXME: can we go back to the old state? */
2001 		break;
2002 	case COMP_TRB_ERROR:
2003 		/* the HCD set up something wrong */
2004 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2005 				"add flag = 1, "
2006 				"and endpoint is not disabled.\n");
2007 		ret = -EINVAL;
2008 		break;
2009 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2010 		dev_warn(&udev->dev,
2011 			 "ERROR: Incompatible device for endpoint configure command.\n");
2012 		ret = -ENODEV;
2013 		break;
2014 	case COMP_SUCCESS:
2015 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2016 				"Successful Endpoint Configure command");
2017 		ret = 0;
2018 		break;
2019 	default:
2020 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2021 				*cmd_status);
2022 		ret = -EINVAL;
2023 		break;
2024 	}
2025 	return ret;
2026 }
2027 
2028 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2029 		struct usb_device *udev, u32 *cmd_status)
2030 {
2031 	int ret;
2032 
2033 	switch (*cmd_status) {
2034 	case COMP_COMMAND_ABORTED:
2035 	case COMP_COMMAND_RING_STOPPED:
2036 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2037 		ret = -ETIME;
2038 		break;
2039 	case COMP_PARAMETER_ERROR:
2040 		dev_warn(&udev->dev,
2041 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2042 		ret = -EINVAL;
2043 		break;
2044 	case COMP_SLOT_NOT_ENABLED_ERROR:
2045 		dev_warn(&udev->dev,
2046 			"WARN: slot not enabled for evaluate context command.\n");
2047 		ret = -EINVAL;
2048 		break;
2049 	case COMP_CONTEXT_STATE_ERROR:
2050 		dev_warn(&udev->dev,
2051 			"WARN: invalid context state for evaluate context command.\n");
2052 		ret = -EINVAL;
2053 		break;
2054 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2055 		dev_warn(&udev->dev,
2056 			"ERROR: Incompatible device for evaluate context command.\n");
2057 		ret = -ENODEV;
2058 		break;
2059 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2060 		/* Max Exit Latency too large error */
2061 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2062 		ret = -EINVAL;
2063 		break;
2064 	case COMP_SUCCESS:
2065 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2066 				"Successful evaluate context command");
2067 		ret = 0;
2068 		break;
2069 	default:
2070 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2071 			*cmd_status);
2072 		ret = -EINVAL;
2073 		break;
2074 	}
2075 	return ret;
2076 }
2077 
2078 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2079 		struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081 	u32 valid_add_flags;
2082 	u32 valid_drop_flags;
2083 
2084 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2085 	 * (bit 1).  The default control endpoint is added during the Address
2086 	 * Device command and is never removed until the slot is disabled.
2087 	 */
2088 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090 
2091 	/* Use hweight32 to count the number of ones in the add flags, or
2092 	 * number of endpoints added.  Don't count endpoints that are changed
2093 	 * (both added and dropped).
2094 	 */
2095 	return hweight32(valid_add_flags) -
2096 		hweight32(valid_add_flags & valid_drop_flags);
2097 }
2098 
2099 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2100 		struct xhci_input_control_ctx *ctrl_ctx)
2101 {
2102 	u32 valid_add_flags;
2103 	u32 valid_drop_flags;
2104 
2105 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2106 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2107 
2108 	return hweight32(valid_drop_flags) -
2109 		hweight32(valid_add_flags & valid_drop_flags);
2110 }
2111 
2112 /*
2113  * We need to reserve the new number of endpoints before the configure endpoint
2114  * command completes.  We can't subtract the dropped endpoints from the number
2115  * of active endpoints until the command completes because we can oversubscribe
2116  * the host in this case:
2117  *
2118  *  - the first configure endpoint command drops more endpoints than it adds
2119  *  - a second configure endpoint command that adds more endpoints is queued
2120  *  - the first configure endpoint command fails, so the config is unchanged
2121  *  - the second command may succeed, even though there isn't enough resources
2122  *
2123  * Must be called with xhci->lock held.
2124  */
2125 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2126 		struct xhci_input_control_ctx *ctrl_ctx)
2127 {
2128 	u32 added_eps;
2129 
2130 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2131 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2132 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 				"Not enough ep ctxs: "
2134 				"%u active, need to add %u, limit is %u.",
2135 				xhci->num_active_eps, added_eps,
2136 				xhci->limit_active_eps);
2137 		return -ENOMEM;
2138 	}
2139 	xhci->num_active_eps += added_eps;
2140 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 			"Adding %u ep ctxs, %u now active.", added_eps,
2142 			xhci->num_active_eps);
2143 	return 0;
2144 }
2145 
2146 /*
2147  * The configure endpoint was failed by the xHC for some other reason, so we
2148  * need to revert the resources that failed configuration would have used.
2149  *
2150  * Must be called with xhci->lock held.
2151  */
2152 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2153 		struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155 	u32 num_failed_eps;
2156 
2157 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2158 	xhci->num_active_eps -= num_failed_eps;
2159 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2160 			"Removing %u failed ep ctxs, %u now active.",
2161 			num_failed_eps,
2162 			xhci->num_active_eps);
2163 }
2164 
2165 /*
2166  * Now that the command has completed, clean up the active endpoint count by
2167  * subtracting out the endpoints that were dropped (but not changed).
2168  *
2169  * Must be called with xhci->lock held.
2170  */
2171 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2172 		struct xhci_input_control_ctx *ctrl_ctx)
2173 {
2174 	u32 num_dropped_eps;
2175 
2176 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2177 	xhci->num_active_eps -= num_dropped_eps;
2178 	if (num_dropped_eps)
2179 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 				"Removing %u dropped ep ctxs, %u now active.",
2181 				num_dropped_eps,
2182 				xhci->num_active_eps);
2183 }
2184 
2185 static unsigned int xhci_get_block_size(struct usb_device *udev)
2186 {
2187 	switch (udev->speed) {
2188 	case USB_SPEED_LOW:
2189 	case USB_SPEED_FULL:
2190 		return FS_BLOCK;
2191 	case USB_SPEED_HIGH:
2192 		return HS_BLOCK;
2193 	case USB_SPEED_SUPER:
2194 	case USB_SPEED_SUPER_PLUS:
2195 		return SS_BLOCK;
2196 	case USB_SPEED_UNKNOWN:
2197 	default:
2198 		/* Should never happen */
2199 		return 1;
2200 	}
2201 }
2202 
2203 static unsigned int
2204 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2205 {
2206 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2207 		return LS_OVERHEAD;
2208 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2209 		return FS_OVERHEAD;
2210 	return HS_OVERHEAD;
2211 }
2212 
2213 /* If we are changing a LS/FS device under a HS hub,
2214  * make sure (if we are activating a new TT) that the HS bus has enough
2215  * bandwidth for this new TT.
2216  */
2217 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2218 		struct xhci_virt_device *virt_dev,
2219 		int old_active_eps)
2220 {
2221 	struct xhci_interval_bw_table *bw_table;
2222 	struct xhci_tt_bw_info *tt_info;
2223 
2224 	/* Find the bandwidth table for the root port this TT is attached to. */
2225 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2226 	tt_info = virt_dev->tt_info;
2227 	/* If this TT already had active endpoints, the bandwidth for this TT
2228 	 * has already been added.  Removing all periodic endpoints (and thus
2229 	 * making the TT enactive) will only decrease the bandwidth used.
2230 	 */
2231 	if (old_active_eps)
2232 		return 0;
2233 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2234 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2235 			return -ENOMEM;
2236 		return 0;
2237 	}
2238 	/* Not sure why we would have no new active endpoints...
2239 	 *
2240 	 * Maybe because of an Evaluate Context change for a hub update or a
2241 	 * control endpoint 0 max packet size change?
2242 	 * FIXME: skip the bandwidth calculation in that case.
2243 	 */
2244 	return 0;
2245 }
2246 
2247 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2248 		struct xhci_virt_device *virt_dev)
2249 {
2250 	unsigned int bw_reserved;
2251 
2252 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2253 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2254 		return -ENOMEM;
2255 
2256 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2257 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2258 		return -ENOMEM;
2259 
2260 	return 0;
2261 }
2262 
2263 /*
2264  * This algorithm is a very conservative estimate of the worst-case scheduling
2265  * scenario for any one interval.  The hardware dynamically schedules the
2266  * packets, so we can't tell which microframe could be the limiting factor in
2267  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2268  *
2269  * Obviously, we can't solve an NP complete problem to find the minimum worst
2270  * case scenario.  Instead, we come up with an estimate that is no less than
2271  * the worst case bandwidth used for any one microframe, but may be an
2272  * over-estimate.
2273  *
2274  * We walk the requirements for each endpoint by interval, starting with the
2275  * smallest interval, and place packets in the schedule where there is only one
2276  * possible way to schedule packets for that interval.  In order to simplify
2277  * this algorithm, we record the largest max packet size for each interval, and
2278  * assume all packets will be that size.
2279  *
2280  * For interval 0, we obviously must schedule all packets for each interval.
2281  * The bandwidth for interval 0 is just the amount of data to be transmitted
2282  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2283  * the number of packets).
2284  *
2285  * For interval 1, we have two possible microframes to schedule those packets
2286  * in.  For this algorithm, if we can schedule the same number of packets for
2287  * each possible scheduling opportunity (each microframe), we will do so.  The
2288  * remaining number of packets will be saved to be transmitted in the gaps in
2289  * the next interval's scheduling sequence.
2290  *
2291  * As we move those remaining packets to be scheduled with interval 2 packets,
2292  * we have to double the number of remaining packets to transmit.  This is
2293  * because the intervals are actually powers of 2, and we would be transmitting
2294  * the previous interval's packets twice in this interval.  We also have to be
2295  * sure that when we look at the largest max packet size for this interval, we
2296  * also look at the largest max packet size for the remaining packets and take
2297  * the greater of the two.
2298  *
2299  * The algorithm continues to evenly distribute packets in each scheduling
2300  * opportunity, and push the remaining packets out, until we get to the last
2301  * interval.  Then those packets and their associated overhead are just added
2302  * to the bandwidth used.
2303  */
2304 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2305 		struct xhci_virt_device *virt_dev,
2306 		int old_active_eps)
2307 {
2308 	unsigned int bw_reserved;
2309 	unsigned int max_bandwidth;
2310 	unsigned int bw_used;
2311 	unsigned int block_size;
2312 	struct xhci_interval_bw_table *bw_table;
2313 	unsigned int packet_size = 0;
2314 	unsigned int overhead = 0;
2315 	unsigned int packets_transmitted = 0;
2316 	unsigned int packets_remaining = 0;
2317 	unsigned int i;
2318 
2319 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2320 		return xhci_check_ss_bw(xhci, virt_dev);
2321 
2322 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2323 		max_bandwidth = HS_BW_LIMIT;
2324 		/* Convert percent of bus BW reserved to blocks reserved */
2325 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2326 	} else {
2327 		max_bandwidth = FS_BW_LIMIT;
2328 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2329 	}
2330 
2331 	bw_table = virt_dev->bw_table;
2332 	/* We need to translate the max packet size and max ESIT payloads into
2333 	 * the units the hardware uses.
2334 	 */
2335 	block_size = xhci_get_block_size(virt_dev->udev);
2336 
2337 	/* If we are manipulating a LS/FS device under a HS hub, double check
2338 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2339 	 */
2340 	if (virt_dev->tt_info) {
2341 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2342 				"Recalculating BW for rootport %u",
2343 				virt_dev->real_port);
2344 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2345 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2346 					"newly activated TT.\n");
2347 			return -ENOMEM;
2348 		}
2349 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2350 				"Recalculating BW for TT slot %u port %u",
2351 				virt_dev->tt_info->slot_id,
2352 				virt_dev->tt_info->ttport);
2353 	} else {
2354 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2355 				"Recalculating BW for rootport %u",
2356 				virt_dev->real_port);
2357 	}
2358 
2359 	/* Add in how much bandwidth will be used for interval zero, or the
2360 	 * rounded max ESIT payload + number of packets * largest overhead.
2361 	 */
2362 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2363 		bw_table->interval_bw[0].num_packets *
2364 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2365 
2366 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2367 		unsigned int bw_added;
2368 		unsigned int largest_mps;
2369 		unsigned int interval_overhead;
2370 
2371 		/*
2372 		 * How many packets could we transmit in this interval?
2373 		 * If packets didn't fit in the previous interval, we will need
2374 		 * to transmit that many packets twice within this interval.
2375 		 */
2376 		packets_remaining = 2 * packets_remaining +
2377 			bw_table->interval_bw[i].num_packets;
2378 
2379 		/* Find the largest max packet size of this or the previous
2380 		 * interval.
2381 		 */
2382 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2383 			largest_mps = 0;
2384 		else {
2385 			struct xhci_virt_ep *virt_ep;
2386 			struct list_head *ep_entry;
2387 
2388 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2389 			virt_ep = list_entry(ep_entry,
2390 					struct xhci_virt_ep, bw_endpoint_list);
2391 			/* Convert to blocks, rounding up */
2392 			largest_mps = DIV_ROUND_UP(
2393 					virt_ep->bw_info.max_packet_size,
2394 					block_size);
2395 		}
2396 		if (largest_mps > packet_size)
2397 			packet_size = largest_mps;
2398 
2399 		/* Use the larger overhead of this or the previous interval. */
2400 		interval_overhead = xhci_get_largest_overhead(
2401 				&bw_table->interval_bw[i]);
2402 		if (interval_overhead > overhead)
2403 			overhead = interval_overhead;
2404 
2405 		/* How many packets can we evenly distribute across
2406 		 * (1 << (i + 1)) possible scheduling opportunities?
2407 		 */
2408 		packets_transmitted = packets_remaining >> (i + 1);
2409 
2410 		/* Add in the bandwidth used for those scheduled packets */
2411 		bw_added = packets_transmitted * (overhead + packet_size);
2412 
2413 		/* How many packets do we have remaining to transmit? */
2414 		packets_remaining = packets_remaining % (1 << (i + 1));
2415 
2416 		/* What largest max packet size should those packets have? */
2417 		/* If we've transmitted all packets, don't carry over the
2418 		 * largest packet size.
2419 		 */
2420 		if (packets_remaining == 0) {
2421 			packet_size = 0;
2422 			overhead = 0;
2423 		} else if (packets_transmitted > 0) {
2424 			/* Otherwise if we do have remaining packets, and we've
2425 			 * scheduled some packets in this interval, take the
2426 			 * largest max packet size from endpoints with this
2427 			 * interval.
2428 			 */
2429 			packet_size = largest_mps;
2430 			overhead = interval_overhead;
2431 		}
2432 		/* Otherwise carry over packet_size and overhead from the last
2433 		 * time we had a remainder.
2434 		 */
2435 		bw_used += bw_added;
2436 		if (bw_used > max_bandwidth) {
2437 			xhci_warn(xhci, "Not enough bandwidth. "
2438 					"Proposed: %u, Max: %u\n",
2439 				bw_used, max_bandwidth);
2440 			return -ENOMEM;
2441 		}
2442 	}
2443 	/*
2444 	 * Ok, we know we have some packets left over after even-handedly
2445 	 * scheduling interval 15.  We don't know which microframes they will
2446 	 * fit into, so we over-schedule and say they will be scheduled every
2447 	 * microframe.
2448 	 */
2449 	if (packets_remaining > 0)
2450 		bw_used += overhead + packet_size;
2451 
2452 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2453 		unsigned int port_index = virt_dev->real_port - 1;
2454 
2455 		/* OK, we're manipulating a HS device attached to a
2456 		 * root port bandwidth domain.  Include the number of active TTs
2457 		 * in the bandwidth used.
2458 		 */
2459 		bw_used += TT_HS_OVERHEAD *
2460 			xhci->rh_bw[port_index].num_active_tts;
2461 	}
2462 
2463 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2465 		"Available: %u " "percent",
2466 		bw_used, max_bandwidth, bw_reserved,
2467 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2468 		max_bandwidth);
2469 
2470 	bw_used += bw_reserved;
2471 	if (bw_used > max_bandwidth) {
2472 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2473 				bw_used, max_bandwidth);
2474 		return -ENOMEM;
2475 	}
2476 
2477 	bw_table->bw_used = bw_used;
2478 	return 0;
2479 }
2480 
2481 static bool xhci_is_async_ep(unsigned int ep_type)
2482 {
2483 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2484 					ep_type != ISOC_IN_EP &&
2485 					ep_type != INT_IN_EP);
2486 }
2487 
2488 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2489 {
2490 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2491 }
2492 
2493 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2494 {
2495 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2496 
2497 	if (ep_bw->ep_interval == 0)
2498 		return SS_OVERHEAD_BURST +
2499 			(ep_bw->mult * ep_bw->num_packets *
2500 					(SS_OVERHEAD + mps));
2501 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2502 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2503 				1 << ep_bw->ep_interval);
2504 
2505 }
2506 
2507 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2508 		struct xhci_bw_info *ep_bw,
2509 		struct xhci_interval_bw_table *bw_table,
2510 		struct usb_device *udev,
2511 		struct xhci_virt_ep *virt_ep,
2512 		struct xhci_tt_bw_info *tt_info)
2513 {
2514 	struct xhci_interval_bw	*interval_bw;
2515 	int normalized_interval;
2516 
2517 	if (xhci_is_async_ep(ep_bw->type))
2518 		return;
2519 
2520 	if (udev->speed >= USB_SPEED_SUPER) {
2521 		if (xhci_is_sync_in_ep(ep_bw->type))
2522 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2523 				xhci_get_ss_bw_consumed(ep_bw);
2524 		else
2525 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2526 				xhci_get_ss_bw_consumed(ep_bw);
2527 		return;
2528 	}
2529 
2530 	/* SuperSpeed endpoints never get added to intervals in the table, so
2531 	 * this check is only valid for HS/FS/LS devices.
2532 	 */
2533 	if (list_empty(&virt_ep->bw_endpoint_list))
2534 		return;
2535 	/* For LS/FS devices, we need to translate the interval expressed in
2536 	 * microframes to frames.
2537 	 */
2538 	if (udev->speed == USB_SPEED_HIGH)
2539 		normalized_interval = ep_bw->ep_interval;
2540 	else
2541 		normalized_interval = ep_bw->ep_interval - 3;
2542 
2543 	if (normalized_interval == 0)
2544 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2545 	interval_bw = &bw_table->interval_bw[normalized_interval];
2546 	interval_bw->num_packets -= ep_bw->num_packets;
2547 	switch (udev->speed) {
2548 	case USB_SPEED_LOW:
2549 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2550 		break;
2551 	case USB_SPEED_FULL:
2552 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2553 		break;
2554 	case USB_SPEED_HIGH:
2555 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2556 		break;
2557 	default:
2558 		/* Should never happen because only LS/FS/HS endpoints will get
2559 		 * added to the endpoint list.
2560 		 */
2561 		return;
2562 	}
2563 	if (tt_info)
2564 		tt_info->active_eps -= 1;
2565 	list_del_init(&virt_ep->bw_endpoint_list);
2566 }
2567 
2568 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2569 		struct xhci_bw_info *ep_bw,
2570 		struct xhci_interval_bw_table *bw_table,
2571 		struct usb_device *udev,
2572 		struct xhci_virt_ep *virt_ep,
2573 		struct xhci_tt_bw_info *tt_info)
2574 {
2575 	struct xhci_interval_bw	*interval_bw;
2576 	struct xhci_virt_ep *smaller_ep;
2577 	int normalized_interval;
2578 
2579 	if (xhci_is_async_ep(ep_bw->type))
2580 		return;
2581 
2582 	if (udev->speed == USB_SPEED_SUPER) {
2583 		if (xhci_is_sync_in_ep(ep_bw->type))
2584 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2585 				xhci_get_ss_bw_consumed(ep_bw);
2586 		else
2587 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2588 				xhci_get_ss_bw_consumed(ep_bw);
2589 		return;
2590 	}
2591 
2592 	/* For LS/FS devices, we need to translate the interval expressed in
2593 	 * microframes to frames.
2594 	 */
2595 	if (udev->speed == USB_SPEED_HIGH)
2596 		normalized_interval = ep_bw->ep_interval;
2597 	else
2598 		normalized_interval = ep_bw->ep_interval - 3;
2599 
2600 	if (normalized_interval == 0)
2601 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2602 	interval_bw = &bw_table->interval_bw[normalized_interval];
2603 	interval_bw->num_packets += ep_bw->num_packets;
2604 	switch (udev->speed) {
2605 	case USB_SPEED_LOW:
2606 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2607 		break;
2608 	case USB_SPEED_FULL:
2609 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2610 		break;
2611 	case USB_SPEED_HIGH:
2612 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2613 		break;
2614 	default:
2615 		/* Should never happen because only LS/FS/HS endpoints will get
2616 		 * added to the endpoint list.
2617 		 */
2618 		return;
2619 	}
2620 
2621 	if (tt_info)
2622 		tt_info->active_eps += 1;
2623 	/* Insert the endpoint into the list, largest max packet size first. */
2624 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2625 			bw_endpoint_list) {
2626 		if (ep_bw->max_packet_size >=
2627 				smaller_ep->bw_info.max_packet_size) {
2628 			/* Add the new ep before the smaller endpoint */
2629 			list_add_tail(&virt_ep->bw_endpoint_list,
2630 					&smaller_ep->bw_endpoint_list);
2631 			return;
2632 		}
2633 	}
2634 	/* Add the new endpoint at the end of the list. */
2635 	list_add_tail(&virt_ep->bw_endpoint_list,
2636 			&interval_bw->endpoints);
2637 }
2638 
2639 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2640 		struct xhci_virt_device *virt_dev,
2641 		int old_active_eps)
2642 {
2643 	struct xhci_root_port_bw_info *rh_bw_info;
2644 	if (!virt_dev->tt_info)
2645 		return;
2646 
2647 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2648 	if (old_active_eps == 0 &&
2649 				virt_dev->tt_info->active_eps != 0) {
2650 		rh_bw_info->num_active_tts += 1;
2651 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2652 	} else if (old_active_eps != 0 &&
2653 				virt_dev->tt_info->active_eps == 0) {
2654 		rh_bw_info->num_active_tts -= 1;
2655 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2656 	}
2657 }
2658 
2659 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2660 		struct xhci_virt_device *virt_dev,
2661 		struct xhci_container_ctx *in_ctx)
2662 {
2663 	struct xhci_bw_info ep_bw_info[31];
2664 	int i;
2665 	struct xhci_input_control_ctx *ctrl_ctx;
2666 	int old_active_eps = 0;
2667 
2668 	if (virt_dev->tt_info)
2669 		old_active_eps = virt_dev->tt_info->active_eps;
2670 
2671 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2672 	if (!ctrl_ctx) {
2673 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2674 				__func__);
2675 		return -ENOMEM;
2676 	}
2677 
2678 	for (i = 0; i < 31; i++) {
2679 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2680 			continue;
2681 
2682 		/* Make a copy of the BW info in case we need to revert this */
2683 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2684 				sizeof(ep_bw_info[i]));
2685 		/* Drop the endpoint from the interval table if the endpoint is
2686 		 * being dropped or changed.
2687 		 */
2688 		if (EP_IS_DROPPED(ctrl_ctx, i))
2689 			xhci_drop_ep_from_interval_table(xhci,
2690 					&virt_dev->eps[i].bw_info,
2691 					virt_dev->bw_table,
2692 					virt_dev->udev,
2693 					&virt_dev->eps[i],
2694 					virt_dev->tt_info);
2695 	}
2696 	/* Overwrite the information stored in the endpoints' bw_info */
2697 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2698 	for (i = 0; i < 31; i++) {
2699 		/* Add any changed or added endpoints to the interval table */
2700 		if (EP_IS_ADDED(ctrl_ctx, i))
2701 			xhci_add_ep_to_interval_table(xhci,
2702 					&virt_dev->eps[i].bw_info,
2703 					virt_dev->bw_table,
2704 					virt_dev->udev,
2705 					&virt_dev->eps[i],
2706 					virt_dev->tt_info);
2707 	}
2708 
2709 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2710 		/* Ok, this fits in the bandwidth we have.
2711 		 * Update the number of active TTs.
2712 		 */
2713 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2714 		return 0;
2715 	}
2716 
2717 	/* We don't have enough bandwidth for this, revert the stored info. */
2718 	for (i = 0; i < 31; i++) {
2719 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2720 			continue;
2721 
2722 		/* Drop the new copies of any added or changed endpoints from
2723 		 * the interval table.
2724 		 */
2725 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2726 			xhci_drop_ep_from_interval_table(xhci,
2727 					&virt_dev->eps[i].bw_info,
2728 					virt_dev->bw_table,
2729 					virt_dev->udev,
2730 					&virt_dev->eps[i],
2731 					virt_dev->tt_info);
2732 		}
2733 		/* Revert the endpoint back to its old information */
2734 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2735 				sizeof(ep_bw_info[i]));
2736 		/* Add any changed or dropped endpoints back into the table */
2737 		if (EP_IS_DROPPED(ctrl_ctx, i))
2738 			xhci_add_ep_to_interval_table(xhci,
2739 					&virt_dev->eps[i].bw_info,
2740 					virt_dev->bw_table,
2741 					virt_dev->udev,
2742 					&virt_dev->eps[i],
2743 					virt_dev->tt_info);
2744 	}
2745 	return -ENOMEM;
2746 }
2747 
2748 
2749 /* Issue a configure endpoint command or evaluate context command
2750  * and wait for it to finish.
2751  */
2752 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2753 		struct usb_device *udev,
2754 		struct xhci_command *command,
2755 		bool ctx_change, bool must_succeed)
2756 {
2757 	int ret;
2758 	unsigned long flags;
2759 	struct xhci_input_control_ctx *ctrl_ctx;
2760 	struct xhci_virt_device *virt_dev;
2761 	struct xhci_slot_ctx *slot_ctx;
2762 
2763 	if (!command)
2764 		return -EINVAL;
2765 
2766 	spin_lock_irqsave(&xhci->lock, flags);
2767 
2768 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2769 		spin_unlock_irqrestore(&xhci->lock, flags);
2770 		return -ESHUTDOWN;
2771 	}
2772 
2773 	virt_dev = xhci->devs[udev->slot_id];
2774 
2775 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2776 	if (!ctrl_ctx) {
2777 		spin_unlock_irqrestore(&xhci->lock, flags);
2778 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2779 				__func__);
2780 		return -ENOMEM;
2781 	}
2782 
2783 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2784 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2785 		spin_unlock_irqrestore(&xhci->lock, flags);
2786 		xhci_warn(xhci, "Not enough host resources, "
2787 				"active endpoint contexts = %u\n",
2788 				xhci->num_active_eps);
2789 		return -ENOMEM;
2790 	}
2791 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2792 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2793 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2794 			xhci_free_host_resources(xhci, ctrl_ctx);
2795 		spin_unlock_irqrestore(&xhci->lock, flags);
2796 		xhci_warn(xhci, "Not enough bandwidth\n");
2797 		return -ENOMEM;
2798 	}
2799 
2800 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2801 
2802 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2803 	trace_xhci_configure_endpoint(slot_ctx);
2804 
2805 	if (!ctx_change)
2806 		ret = xhci_queue_configure_endpoint(xhci, command,
2807 				command->in_ctx->dma,
2808 				udev->slot_id, must_succeed);
2809 	else
2810 		ret = xhci_queue_evaluate_context(xhci, command,
2811 				command->in_ctx->dma,
2812 				udev->slot_id, must_succeed);
2813 	if (ret < 0) {
2814 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2815 			xhci_free_host_resources(xhci, ctrl_ctx);
2816 		spin_unlock_irqrestore(&xhci->lock, flags);
2817 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2818 				"FIXME allocate a new ring segment");
2819 		return -ENOMEM;
2820 	}
2821 	xhci_ring_cmd_db(xhci);
2822 	spin_unlock_irqrestore(&xhci->lock, flags);
2823 
2824 	/* Wait for the configure endpoint command to complete */
2825 	wait_for_completion(command->completion);
2826 
2827 	if (!ctx_change)
2828 		ret = xhci_configure_endpoint_result(xhci, udev,
2829 						     &command->status);
2830 	else
2831 		ret = xhci_evaluate_context_result(xhci, udev,
2832 						   &command->status);
2833 
2834 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2835 		spin_lock_irqsave(&xhci->lock, flags);
2836 		/* If the command failed, remove the reserved resources.
2837 		 * Otherwise, clean up the estimate to include dropped eps.
2838 		 */
2839 		if (ret)
2840 			xhci_free_host_resources(xhci, ctrl_ctx);
2841 		else
2842 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2843 		spin_unlock_irqrestore(&xhci->lock, flags);
2844 	}
2845 	return ret;
2846 }
2847 
2848 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2849 	struct xhci_virt_device *vdev, int i)
2850 {
2851 	struct xhci_virt_ep *ep = &vdev->eps[i];
2852 
2853 	if (ep->ep_state & EP_HAS_STREAMS) {
2854 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2855 				xhci_get_endpoint_address(i));
2856 		xhci_free_stream_info(xhci, ep->stream_info);
2857 		ep->stream_info = NULL;
2858 		ep->ep_state &= ~EP_HAS_STREAMS;
2859 	}
2860 }
2861 
2862 /* Called after one or more calls to xhci_add_endpoint() or
2863  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2864  * to call xhci_reset_bandwidth().
2865  *
2866  * Since we are in the middle of changing either configuration or
2867  * installing a new alt setting, the USB core won't allow URBs to be
2868  * enqueued for any endpoint on the old config or interface.  Nothing
2869  * else should be touching the xhci->devs[slot_id] structure, so we
2870  * don't need to take the xhci->lock for manipulating that.
2871  */
2872 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2873 {
2874 	int i;
2875 	int ret = 0;
2876 	struct xhci_hcd *xhci;
2877 	struct xhci_virt_device	*virt_dev;
2878 	struct xhci_input_control_ctx *ctrl_ctx;
2879 	struct xhci_slot_ctx *slot_ctx;
2880 	struct xhci_command *command;
2881 
2882 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2883 	if (ret <= 0)
2884 		return ret;
2885 	xhci = hcd_to_xhci(hcd);
2886 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2887 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2888 		return -ENODEV;
2889 
2890 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2891 	virt_dev = xhci->devs[udev->slot_id];
2892 
2893 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2894 	if (!command)
2895 		return -ENOMEM;
2896 
2897 	command->in_ctx = virt_dev->in_ctx;
2898 
2899 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2900 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2901 	if (!ctrl_ctx) {
2902 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2903 				__func__);
2904 		ret = -ENOMEM;
2905 		goto command_cleanup;
2906 	}
2907 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2908 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2909 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2910 
2911 	/* Don't issue the command if there's no endpoints to update. */
2912 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2913 	    ctrl_ctx->drop_flags == 0) {
2914 		ret = 0;
2915 		goto command_cleanup;
2916 	}
2917 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2918 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2919 	for (i = 31; i >= 1; i--) {
2920 		__le32 le32 = cpu_to_le32(BIT(i));
2921 
2922 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2923 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2924 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2925 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2926 			break;
2927 		}
2928 	}
2929 
2930 	ret = xhci_configure_endpoint(xhci, udev, command,
2931 			false, false);
2932 	if (ret)
2933 		/* Callee should call reset_bandwidth() */
2934 		goto command_cleanup;
2935 
2936 	/* Free any rings that were dropped, but not changed. */
2937 	for (i = 1; i < 31; i++) {
2938 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2939 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2940 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2941 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2942 		}
2943 	}
2944 	xhci_zero_in_ctx(xhci, virt_dev);
2945 	/*
2946 	 * Install any rings for completely new endpoints or changed endpoints,
2947 	 * and free any old rings from changed endpoints.
2948 	 */
2949 	for (i = 1; i < 31; i++) {
2950 		if (!virt_dev->eps[i].new_ring)
2951 			continue;
2952 		/* Only free the old ring if it exists.
2953 		 * It may not if this is the first add of an endpoint.
2954 		 */
2955 		if (virt_dev->eps[i].ring) {
2956 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2957 		}
2958 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2959 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2960 		virt_dev->eps[i].new_ring = NULL;
2961 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2962 	}
2963 command_cleanup:
2964 	kfree(command->completion);
2965 	kfree(command);
2966 
2967 	return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2970 
2971 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2972 {
2973 	struct xhci_hcd *xhci;
2974 	struct xhci_virt_device	*virt_dev;
2975 	int i, ret;
2976 
2977 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2978 	if (ret <= 0)
2979 		return;
2980 	xhci = hcd_to_xhci(hcd);
2981 
2982 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2983 	virt_dev = xhci->devs[udev->slot_id];
2984 	/* Free any rings allocated for added endpoints */
2985 	for (i = 0; i < 31; i++) {
2986 		if (virt_dev->eps[i].new_ring) {
2987 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2988 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2989 			virt_dev->eps[i].new_ring = NULL;
2990 		}
2991 	}
2992 	xhci_zero_in_ctx(xhci, virt_dev);
2993 }
2994 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
2995 
2996 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2997 		struct xhci_container_ctx *in_ctx,
2998 		struct xhci_container_ctx *out_ctx,
2999 		struct xhci_input_control_ctx *ctrl_ctx,
3000 		u32 add_flags, u32 drop_flags)
3001 {
3002 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3003 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3004 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3005 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3006 }
3007 
3008 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3009 				  struct usb_host_endpoint *host_ep)
3010 {
3011 	struct xhci_hcd		*xhci;
3012 	struct xhci_virt_device	*vdev;
3013 	struct xhci_virt_ep	*ep;
3014 	struct usb_device	*udev;
3015 	unsigned long		flags;
3016 	unsigned int		ep_index;
3017 
3018 	xhci = hcd_to_xhci(hcd);
3019 rescan:
3020 	spin_lock_irqsave(&xhci->lock, flags);
3021 
3022 	udev = (struct usb_device *)host_ep->hcpriv;
3023 	if (!udev || !udev->slot_id)
3024 		goto done;
3025 
3026 	vdev = xhci->devs[udev->slot_id];
3027 	if (!vdev)
3028 		goto done;
3029 
3030 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3031 	ep = &vdev->eps[ep_index];
3032 
3033 	/* wait for hub_tt_work to finish clearing hub TT */
3034 	if (ep->ep_state & EP_CLEARING_TT) {
3035 		spin_unlock_irqrestore(&xhci->lock, flags);
3036 		schedule_timeout_uninterruptible(1);
3037 		goto rescan;
3038 	}
3039 
3040 	if (ep->ep_state)
3041 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3042 			 ep->ep_state);
3043 done:
3044 	host_ep->hcpriv = NULL;
3045 	spin_unlock_irqrestore(&xhci->lock, flags);
3046 }
3047 
3048 /*
3049  * Called after usb core issues a clear halt control message.
3050  * The host side of the halt should already be cleared by a reset endpoint
3051  * command issued when the STALL event was received.
3052  *
3053  * The reset endpoint command may only be issued to endpoints in the halted
3054  * state. For software that wishes to reset the data toggle or sequence number
3055  * of an endpoint that isn't in the halted state this function will issue a
3056  * configure endpoint command with the Drop and Add bits set for the target
3057  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3058  */
3059 
3060 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3061 		struct usb_host_endpoint *host_ep)
3062 {
3063 	struct xhci_hcd *xhci;
3064 	struct usb_device *udev;
3065 	struct xhci_virt_device *vdev;
3066 	struct xhci_virt_ep *ep;
3067 	struct xhci_input_control_ctx *ctrl_ctx;
3068 	struct xhci_command *stop_cmd, *cfg_cmd;
3069 	unsigned int ep_index;
3070 	unsigned long flags;
3071 	u32 ep_flag;
3072 	int err;
3073 
3074 	xhci = hcd_to_xhci(hcd);
3075 	if (!host_ep->hcpriv)
3076 		return;
3077 	udev = (struct usb_device *) host_ep->hcpriv;
3078 	vdev = xhci->devs[udev->slot_id];
3079 
3080 	/*
3081 	 * vdev may be lost due to xHC restore error and re-initialization
3082 	 * during S3/S4 resume. A new vdev will be allocated later by
3083 	 * xhci_discover_or_reset_device()
3084 	 */
3085 	if (!udev->slot_id || !vdev)
3086 		return;
3087 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3088 	ep = &vdev->eps[ep_index];
3089 
3090 	/* Bail out if toggle is already being cleared by a endpoint reset */
3091 	spin_lock_irqsave(&xhci->lock, flags);
3092 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3093 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3094 		spin_unlock_irqrestore(&xhci->lock, flags);
3095 		return;
3096 	}
3097 	spin_unlock_irqrestore(&xhci->lock, flags);
3098 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3099 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3100 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3101 		return;
3102 
3103 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3104 
3105 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3106 		return;
3107 
3108 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3109 	if (!stop_cmd)
3110 		return;
3111 
3112 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3113 	if (!cfg_cmd)
3114 		goto cleanup;
3115 
3116 	spin_lock_irqsave(&xhci->lock, flags);
3117 
3118 	/* block queuing new trbs and ringing ep doorbell */
3119 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3120 
3121 	/*
3122 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3123 	 * Driver is required to synchronously cancel all transfer request.
3124 	 * Stop the endpoint to force xHC to update the output context
3125 	 */
3126 
3127 	if (!list_empty(&ep->ring->td_list)) {
3128 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3129 		spin_unlock_irqrestore(&xhci->lock, flags);
3130 		xhci_free_command(xhci, cfg_cmd);
3131 		goto cleanup;
3132 	}
3133 
3134 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3135 					ep_index, 0);
3136 	if (err < 0) {
3137 		spin_unlock_irqrestore(&xhci->lock, flags);
3138 		xhci_free_command(xhci, cfg_cmd);
3139 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3140 				__func__, err);
3141 		goto cleanup;
3142 	}
3143 
3144 	xhci_ring_cmd_db(xhci);
3145 	spin_unlock_irqrestore(&xhci->lock, flags);
3146 
3147 	wait_for_completion(stop_cmd->completion);
3148 
3149 	spin_lock_irqsave(&xhci->lock, flags);
3150 
3151 	/* config ep command clears toggle if add and drop ep flags are set */
3152 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3153 	if (!ctrl_ctx) {
3154 		spin_unlock_irqrestore(&xhci->lock, flags);
3155 		xhci_free_command(xhci, cfg_cmd);
3156 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3157 				__func__);
3158 		goto cleanup;
3159 	}
3160 
3161 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3162 					   ctrl_ctx, ep_flag, ep_flag);
3163 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3164 
3165 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3166 				      udev->slot_id, false);
3167 	if (err < 0) {
3168 		spin_unlock_irqrestore(&xhci->lock, flags);
3169 		xhci_free_command(xhci, cfg_cmd);
3170 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3171 				__func__, err);
3172 		goto cleanup;
3173 	}
3174 
3175 	xhci_ring_cmd_db(xhci);
3176 	spin_unlock_irqrestore(&xhci->lock, flags);
3177 
3178 	wait_for_completion(cfg_cmd->completion);
3179 
3180 	xhci_free_command(xhci, cfg_cmd);
3181 cleanup:
3182 	xhci_free_command(xhci, stop_cmd);
3183 	spin_lock_irqsave(&xhci->lock, flags);
3184 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3185 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3186 	spin_unlock_irqrestore(&xhci->lock, flags);
3187 }
3188 
3189 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3190 		struct usb_device *udev, struct usb_host_endpoint *ep,
3191 		unsigned int slot_id)
3192 {
3193 	int ret;
3194 	unsigned int ep_index;
3195 	unsigned int ep_state;
3196 
3197 	if (!ep)
3198 		return -EINVAL;
3199 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3200 	if (ret <= 0)
3201 		return ret ? ret : -EINVAL;
3202 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3203 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3204 				" descriptor for ep 0x%x does not support streams\n",
3205 				ep->desc.bEndpointAddress);
3206 		return -EINVAL;
3207 	}
3208 
3209 	ep_index = xhci_get_endpoint_index(&ep->desc);
3210 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3211 	if (ep_state & EP_HAS_STREAMS ||
3212 			ep_state & EP_GETTING_STREAMS) {
3213 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3214 				"already has streams set up.\n",
3215 				ep->desc.bEndpointAddress);
3216 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3217 				"dynamic stream context array reallocation.\n");
3218 		return -EINVAL;
3219 	}
3220 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3221 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3222 				"endpoint 0x%x; URBs are pending.\n",
3223 				ep->desc.bEndpointAddress);
3224 		return -EINVAL;
3225 	}
3226 	return 0;
3227 }
3228 
3229 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3230 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3231 {
3232 	unsigned int max_streams;
3233 
3234 	/* The stream context array size must be a power of two */
3235 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3236 	/*
3237 	 * Find out how many primary stream array entries the host controller
3238 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3239 	 * level page entries), but that's an optional feature for xHCI host
3240 	 * controllers. xHCs must support at least 4 stream IDs.
3241 	 */
3242 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3243 	if (*num_stream_ctxs > max_streams) {
3244 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3245 				max_streams);
3246 		*num_stream_ctxs = max_streams;
3247 		*num_streams = max_streams;
3248 	}
3249 }
3250 
3251 /* Returns an error code if one of the endpoint already has streams.
3252  * This does not change any data structures, it only checks and gathers
3253  * information.
3254  */
3255 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3256 		struct usb_device *udev,
3257 		struct usb_host_endpoint **eps, unsigned int num_eps,
3258 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3259 {
3260 	unsigned int max_streams;
3261 	unsigned int endpoint_flag;
3262 	int i;
3263 	int ret;
3264 
3265 	for (i = 0; i < num_eps; i++) {
3266 		ret = xhci_check_streams_endpoint(xhci, udev,
3267 				eps[i], udev->slot_id);
3268 		if (ret < 0)
3269 			return ret;
3270 
3271 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3272 		if (max_streams < (*num_streams - 1)) {
3273 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3274 					eps[i]->desc.bEndpointAddress,
3275 					max_streams);
3276 			*num_streams = max_streams+1;
3277 		}
3278 
3279 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3280 		if (*changed_ep_bitmask & endpoint_flag)
3281 			return -EINVAL;
3282 		*changed_ep_bitmask |= endpoint_flag;
3283 	}
3284 	return 0;
3285 }
3286 
3287 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3288 		struct usb_device *udev,
3289 		struct usb_host_endpoint **eps, unsigned int num_eps)
3290 {
3291 	u32 changed_ep_bitmask = 0;
3292 	unsigned int slot_id;
3293 	unsigned int ep_index;
3294 	unsigned int ep_state;
3295 	int i;
3296 
3297 	slot_id = udev->slot_id;
3298 	if (!xhci->devs[slot_id])
3299 		return 0;
3300 
3301 	for (i = 0; i < num_eps; i++) {
3302 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3303 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3304 		/* Are streams already being freed for the endpoint? */
3305 		if (ep_state & EP_GETTING_NO_STREAMS) {
3306 			xhci_warn(xhci, "WARN Can't disable streams for "
3307 					"endpoint 0x%x, "
3308 					"streams are being disabled already\n",
3309 					eps[i]->desc.bEndpointAddress);
3310 			return 0;
3311 		}
3312 		/* Are there actually any streams to free? */
3313 		if (!(ep_state & EP_HAS_STREAMS) &&
3314 				!(ep_state & EP_GETTING_STREAMS)) {
3315 			xhci_warn(xhci, "WARN Can't disable streams for "
3316 					"endpoint 0x%x, "
3317 					"streams are already disabled!\n",
3318 					eps[i]->desc.bEndpointAddress);
3319 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3320 					"with non-streams endpoint\n");
3321 			return 0;
3322 		}
3323 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3324 	}
3325 	return changed_ep_bitmask;
3326 }
3327 
3328 /*
3329  * The USB device drivers use this function (through the HCD interface in USB
3330  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3331  * coordinate mass storage command queueing across multiple endpoints (basically
3332  * a stream ID == a task ID).
3333  *
3334  * Setting up streams involves allocating the same size stream context array
3335  * for each endpoint and issuing a configure endpoint command for all endpoints.
3336  *
3337  * Don't allow the call to succeed if one endpoint only supports one stream
3338  * (which means it doesn't support streams at all).
3339  *
3340  * Drivers may get less stream IDs than they asked for, if the host controller
3341  * hardware or endpoints claim they can't support the number of requested
3342  * stream IDs.
3343  */
3344 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3345 		struct usb_host_endpoint **eps, unsigned int num_eps,
3346 		unsigned int num_streams, gfp_t mem_flags)
3347 {
3348 	int i, ret;
3349 	struct xhci_hcd *xhci;
3350 	struct xhci_virt_device *vdev;
3351 	struct xhci_command *config_cmd;
3352 	struct xhci_input_control_ctx *ctrl_ctx;
3353 	unsigned int ep_index;
3354 	unsigned int num_stream_ctxs;
3355 	unsigned int max_packet;
3356 	unsigned long flags;
3357 	u32 changed_ep_bitmask = 0;
3358 
3359 	if (!eps)
3360 		return -EINVAL;
3361 
3362 	/* Add one to the number of streams requested to account for
3363 	 * stream 0 that is reserved for xHCI usage.
3364 	 */
3365 	num_streams += 1;
3366 	xhci = hcd_to_xhci(hcd);
3367 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3368 			num_streams);
3369 
3370 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3371 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3372 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3373 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3374 		return -ENOSYS;
3375 	}
3376 
3377 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3378 	if (!config_cmd)
3379 		return -ENOMEM;
3380 
3381 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3382 	if (!ctrl_ctx) {
3383 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3384 				__func__);
3385 		xhci_free_command(xhci, config_cmd);
3386 		return -ENOMEM;
3387 	}
3388 
3389 	/* Check to make sure all endpoints are not already configured for
3390 	 * streams.  While we're at it, find the maximum number of streams that
3391 	 * all the endpoints will support and check for duplicate endpoints.
3392 	 */
3393 	spin_lock_irqsave(&xhci->lock, flags);
3394 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3395 			num_eps, &num_streams, &changed_ep_bitmask);
3396 	if (ret < 0) {
3397 		xhci_free_command(xhci, config_cmd);
3398 		spin_unlock_irqrestore(&xhci->lock, flags);
3399 		return ret;
3400 	}
3401 	if (num_streams <= 1) {
3402 		xhci_warn(xhci, "WARN: endpoints can't handle "
3403 				"more than one stream.\n");
3404 		xhci_free_command(xhci, config_cmd);
3405 		spin_unlock_irqrestore(&xhci->lock, flags);
3406 		return -EINVAL;
3407 	}
3408 	vdev = xhci->devs[udev->slot_id];
3409 	/* Mark each endpoint as being in transition, so
3410 	 * xhci_urb_enqueue() will reject all URBs.
3411 	 */
3412 	for (i = 0; i < num_eps; i++) {
3413 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3415 	}
3416 	spin_unlock_irqrestore(&xhci->lock, flags);
3417 
3418 	/* Setup internal data structures and allocate HW data structures for
3419 	 * streams (but don't install the HW structures in the input context
3420 	 * until we're sure all memory allocation succeeded).
3421 	 */
3422 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3423 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3424 			num_stream_ctxs, num_streams);
3425 
3426 	for (i = 0; i < num_eps; i++) {
3427 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3429 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3430 				num_stream_ctxs,
3431 				num_streams,
3432 				max_packet, mem_flags);
3433 		if (!vdev->eps[ep_index].stream_info)
3434 			goto cleanup;
3435 		/* Set maxPstreams in endpoint context and update deq ptr to
3436 		 * point to stream context array. FIXME
3437 		 */
3438 	}
3439 
3440 	/* Set up the input context for a configure endpoint command. */
3441 	for (i = 0; i < num_eps; i++) {
3442 		struct xhci_ep_ctx *ep_ctx;
3443 
3444 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3445 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3446 
3447 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3448 				vdev->out_ctx, ep_index);
3449 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3450 				vdev->eps[ep_index].stream_info);
3451 	}
3452 	/* Tell the HW to drop its old copy of the endpoint context info
3453 	 * and add the updated copy from the input context.
3454 	 */
3455 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3456 			vdev->out_ctx, ctrl_ctx,
3457 			changed_ep_bitmask, changed_ep_bitmask);
3458 
3459 	/* Issue and wait for the configure endpoint command */
3460 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3461 			false, false);
3462 
3463 	/* xHC rejected the configure endpoint command for some reason, so we
3464 	 * leave the old ring intact and free our internal streams data
3465 	 * structure.
3466 	 */
3467 	if (ret < 0)
3468 		goto cleanup;
3469 
3470 	spin_lock_irqsave(&xhci->lock, flags);
3471 	for (i = 0; i < num_eps; i++) {
3472 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3474 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3475 			 udev->slot_id, ep_index);
3476 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3477 	}
3478 	xhci_free_command(xhci, config_cmd);
3479 	spin_unlock_irqrestore(&xhci->lock, flags);
3480 
3481 	for (i = 0; i < num_eps; i++) {
3482 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3484 	}
3485 	/* Subtract 1 for stream 0, which drivers can't use */
3486 	return num_streams - 1;
3487 
3488 cleanup:
3489 	/* If it didn't work, free the streams! */
3490 	for (i = 0; i < num_eps; i++) {
3491 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3492 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3493 		vdev->eps[ep_index].stream_info = NULL;
3494 		/* FIXME Unset maxPstreams in endpoint context and
3495 		 * update deq ptr to point to normal string ring.
3496 		 */
3497 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3498 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3499 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3500 	}
3501 	xhci_free_command(xhci, config_cmd);
3502 	return -ENOMEM;
3503 }
3504 
3505 /* Transition the endpoint from using streams to being a "normal" endpoint
3506  * without streams.
3507  *
3508  * Modify the endpoint context state, submit a configure endpoint command,
3509  * and free all endpoint rings for streams if that completes successfully.
3510  */
3511 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512 		struct usb_host_endpoint **eps, unsigned int num_eps,
3513 		gfp_t mem_flags)
3514 {
3515 	int i, ret;
3516 	struct xhci_hcd *xhci;
3517 	struct xhci_virt_device *vdev;
3518 	struct xhci_command *command;
3519 	struct xhci_input_control_ctx *ctrl_ctx;
3520 	unsigned int ep_index;
3521 	unsigned long flags;
3522 	u32 changed_ep_bitmask;
3523 
3524 	xhci = hcd_to_xhci(hcd);
3525 	vdev = xhci->devs[udev->slot_id];
3526 
3527 	/* Set up a configure endpoint command to remove the streams rings */
3528 	spin_lock_irqsave(&xhci->lock, flags);
3529 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3530 			udev, eps, num_eps);
3531 	if (changed_ep_bitmask == 0) {
3532 		spin_unlock_irqrestore(&xhci->lock, flags);
3533 		return -EINVAL;
3534 	}
3535 
3536 	/* Use the xhci_command structure from the first endpoint.  We may have
3537 	 * allocated too many, but the driver may call xhci_free_streams() for
3538 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3539 	 */
3540 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3541 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3542 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3543 	if (!ctrl_ctx) {
3544 		spin_unlock_irqrestore(&xhci->lock, flags);
3545 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3546 				__func__);
3547 		return -EINVAL;
3548 	}
3549 
3550 	for (i = 0; i < num_eps; i++) {
3551 		struct xhci_ep_ctx *ep_ctx;
3552 
3553 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3555 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3556 			EP_GETTING_NO_STREAMS;
3557 
3558 		xhci_endpoint_copy(xhci, command->in_ctx,
3559 				vdev->out_ctx, ep_index);
3560 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3561 				&vdev->eps[ep_index]);
3562 	}
3563 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3564 			vdev->out_ctx, ctrl_ctx,
3565 			changed_ep_bitmask, changed_ep_bitmask);
3566 	spin_unlock_irqrestore(&xhci->lock, flags);
3567 
3568 	/* Issue and wait for the configure endpoint command,
3569 	 * which must succeed.
3570 	 */
3571 	ret = xhci_configure_endpoint(xhci, udev, command,
3572 			false, true);
3573 
3574 	/* xHC rejected the configure endpoint command for some reason, so we
3575 	 * leave the streams rings intact.
3576 	 */
3577 	if (ret < 0)
3578 		return ret;
3579 
3580 	spin_lock_irqsave(&xhci->lock, flags);
3581 	for (i = 0; i < num_eps; i++) {
3582 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3584 		vdev->eps[ep_index].stream_info = NULL;
3585 		/* FIXME Unset maxPstreams in endpoint context and
3586 		 * update deq ptr to point to normal string ring.
3587 		 */
3588 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3589 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3590 	}
3591 	spin_unlock_irqrestore(&xhci->lock, flags);
3592 
3593 	return 0;
3594 }
3595 
3596 /*
3597  * Deletes endpoint resources for endpoints that were active before a Reset
3598  * Device command, or a Disable Slot command.  The Reset Device command leaves
3599  * the control endpoint intact, whereas the Disable Slot command deletes it.
3600  *
3601  * Must be called with xhci->lock held.
3602  */
3603 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3604 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3605 {
3606 	int i;
3607 	unsigned int num_dropped_eps = 0;
3608 	unsigned int drop_flags = 0;
3609 
3610 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3611 		if (virt_dev->eps[i].ring) {
3612 			drop_flags |= 1 << i;
3613 			num_dropped_eps++;
3614 		}
3615 	}
3616 	xhci->num_active_eps -= num_dropped_eps;
3617 	if (num_dropped_eps)
3618 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619 				"Dropped %u ep ctxs, flags = 0x%x, "
3620 				"%u now active.",
3621 				num_dropped_eps, drop_flags,
3622 				xhci->num_active_eps);
3623 }
3624 
3625 /*
3626  * This submits a Reset Device Command, which will set the device state to 0,
3627  * set the device address to 0, and disable all the endpoints except the default
3628  * control endpoint.  The USB core should come back and call
3629  * xhci_address_device(), and then re-set up the configuration.  If this is
3630  * called because of a usb_reset_and_verify_device(), then the old alternate
3631  * settings will be re-installed through the normal bandwidth allocation
3632  * functions.
3633  *
3634  * Wait for the Reset Device command to finish.  Remove all structures
3635  * associated with the endpoints that were disabled.  Clear the input device
3636  * structure? Reset the control endpoint 0 max packet size?
3637  *
3638  * If the virt_dev to be reset does not exist or does not match the udev,
3639  * it means the device is lost, possibly due to the xHC restore error and
3640  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3641  * re-allocate the device.
3642  */
3643 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3644 		struct usb_device *udev)
3645 {
3646 	int ret, i;
3647 	unsigned long flags;
3648 	struct xhci_hcd *xhci;
3649 	unsigned int slot_id;
3650 	struct xhci_virt_device *virt_dev;
3651 	struct xhci_command *reset_device_cmd;
3652 	struct xhci_slot_ctx *slot_ctx;
3653 	int old_active_eps = 0;
3654 
3655 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3656 	if (ret <= 0)
3657 		return ret;
3658 	xhci = hcd_to_xhci(hcd);
3659 	slot_id = udev->slot_id;
3660 	virt_dev = xhci->devs[slot_id];
3661 	if (!virt_dev) {
3662 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3663 				"not exist. Re-allocate the device\n", slot_id);
3664 		ret = xhci_alloc_dev(hcd, udev);
3665 		if (ret == 1)
3666 			return 0;
3667 		else
3668 			return -EINVAL;
3669 	}
3670 
3671 	if (virt_dev->tt_info)
3672 		old_active_eps = virt_dev->tt_info->active_eps;
3673 
3674 	if (virt_dev->udev != udev) {
3675 		/* If the virt_dev and the udev does not match, this virt_dev
3676 		 * may belong to another udev.
3677 		 * Re-allocate the device.
3678 		 */
3679 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3680 				"not match the udev. Re-allocate the device\n",
3681 				slot_id);
3682 		ret = xhci_alloc_dev(hcd, udev);
3683 		if (ret == 1)
3684 			return 0;
3685 		else
3686 			return -EINVAL;
3687 	}
3688 
3689 	/* If device is not setup, there is no point in resetting it */
3690 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3691 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3692 						SLOT_STATE_DISABLED)
3693 		return 0;
3694 
3695 	trace_xhci_discover_or_reset_device(slot_ctx);
3696 
3697 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3698 	/* Allocate the command structure that holds the struct completion.
3699 	 * Assume we're in process context, since the normal device reset
3700 	 * process has to wait for the device anyway.  Storage devices are
3701 	 * reset as part of error handling, so use GFP_NOIO instead of
3702 	 * GFP_KERNEL.
3703 	 */
3704 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3705 	if (!reset_device_cmd) {
3706 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3707 		return -ENOMEM;
3708 	}
3709 
3710 	/* Attempt to submit the Reset Device command to the command ring */
3711 	spin_lock_irqsave(&xhci->lock, flags);
3712 
3713 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3714 	if (ret) {
3715 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3716 		spin_unlock_irqrestore(&xhci->lock, flags);
3717 		goto command_cleanup;
3718 	}
3719 	xhci_ring_cmd_db(xhci);
3720 	spin_unlock_irqrestore(&xhci->lock, flags);
3721 
3722 	/* Wait for the Reset Device command to finish */
3723 	wait_for_completion(reset_device_cmd->completion);
3724 
3725 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3726 	 * unless we tried to reset a slot ID that wasn't enabled,
3727 	 * or the device wasn't in the addressed or configured state.
3728 	 */
3729 	ret = reset_device_cmd->status;
3730 	switch (ret) {
3731 	case COMP_COMMAND_ABORTED:
3732 	case COMP_COMMAND_RING_STOPPED:
3733 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3734 		ret = -ETIME;
3735 		goto command_cleanup;
3736 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3737 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3738 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3739 				slot_id,
3740 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3741 		xhci_dbg(xhci, "Not freeing device rings.\n");
3742 		/* Don't treat this as an error.  May change my mind later. */
3743 		ret = 0;
3744 		goto command_cleanup;
3745 	case COMP_SUCCESS:
3746 		xhci_dbg(xhci, "Successful reset device command.\n");
3747 		break;
3748 	default:
3749 		if (xhci_is_vendor_info_code(xhci, ret))
3750 			break;
3751 		xhci_warn(xhci, "Unknown completion code %u for "
3752 				"reset device command.\n", ret);
3753 		ret = -EINVAL;
3754 		goto command_cleanup;
3755 	}
3756 
3757 	/* Free up host controller endpoint resources */
3758 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3759 		spin_lock_irqsave(&xhci->lock, flags);
3760 		/* Don't delete the default control endpoint resources */
3761 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3762 		spin_unlock_irqrestore(&xhci->lock, flags);
3763 	}
3764 
3765 	/* Everything but endpoint 0 is disabled, so free the rings. */
3766 	for (i = 1; i < 31; i++) {
3767 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3768 
3769 		if (ep->ep_state & EP_HAS_STREAMS) {
3770 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3771 					xhci_get_endpoint_address(i));
3772 			xhci_free_stream_info(xhci, ep->stream_info);
3773 			ep->stream_info = NULL;
3774 			ep->ep_state &= ~EP_HAS_STREAMS;
3775 		}
3776 
3777 		if (ep->ring) {
3778 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3779 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3780 		}
3781 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3782 			xhci_drop_ep_from_interval_table(xhci,
3783 					&virt_dev->eps[i].bw_info,
3784 					virt_dev->bw_table,
3785 					udev,
3786 					&virt_dev->eps[i],
3787 					virt_dev->tt_info);
3788 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3789 	}
3790 	/* If necessary, update the number of active TTs on this root port */
3791 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3792 	virt_dev->flags = 0;
3793 	ret = 0;
3794 
3795 command_cleanup:
3796 	xhci_free_command(xhci, reset_device_cmd);
3797 	return ret;
3798 }
3799 
3800 /*
3801  * At this point, the struct usb_device is about to go away, the device has
3802  * disconnected, and all traffic has been stopped and the endpoints have been
3803  * disabled.  Free any HC data structures associated with that device.
3804  */
3805 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3806 {
3807 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3808 	struct xhci_virt_device *virt_dev;
3809 	struct xhci_slot_ctx *slot_ctx;
3810 	unsigned long flags;
3811 	int i, ret;
3812 
3813 	/*
3814 	 * We called pm_runtime_get_noresume when the device was attached.
3815 	 * Decrement the counter here to allow controller to runtime suspend
3816 	 * if no devices remain.
3817 	 */
3818 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3819 		pm_runtime_put_noidle(hcd->self.controller);
3820 
3821 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3822 	/* If the host is halted due to driver unload, we still need to free the
3823 	 * device.
3824 	 */
3825 	if (ret <= 0 && ret != -ENODEV)
3826 		return;
3827 
3828 	virt_dev = xhci->devs[udev->slot_id];
3829 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3830 	trace_xhci_free_dev(slot_ctx);
3831 
3832 	/* Stop any wayward timer functions (which may grab the lock) */
3833 	for (i = 0; i < 31; i++)
3834 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3835 	virt_dev->udev = NULL;
3836 	xhci_disable_slot(xhci, udev->slot_id);
3837 
3838 	spin_lock_irqsave(&xhci->lock, flags);
3839 	xhci_free_virt_device(xhci, udev->slot_id);
3840 	spin_unlock_irqrestore(&xhci->lock, flags);
3841 
3842 }
3843 
3844 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3845 {
3846 	struct xhci_command *command;
3847 	unsigned long flags;
3848 	u32 state;
3849 	int ret;
3850 
3851 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3852 	if (!command)
3853 		return -ENOMEM;
3854 
3855 	xhci_debugfs_remove_slot(xhci, slot_id);
3856 
3857 	spin_lock_irqsave(&xhci->lock, flags);
3858 	/* Don't disable the slot if the host controller is dead. */
3859 	state = readl(&xhci->op_regs->status);
3860 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3861 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3862 		spin_unlock_irqrestore(&xhci->lock, flags);
3863 		kfree(command);
3864 		return -ENODEV;
3865 	}
3866 
3867 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3868 				slot_id);
3869 	if (ret) {
3870 		spin_unlock_irqrestore(&xhci->lock, flags);
3871 		kfree(command);
3872 		return ret;
3873 	}
3874 	xhci_ring_cmd_db(xhci);
3875 	spin_unlock_irqrestore(&xhci->lock, flags);
3876 
3877 	wait_for_completion(command->completion);
3878 
3879 	if (command->status != COMP_SUCCESS)
3880 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3881 			  slot_id, command->status);
3882 
3883 	xhci_free_command(xhci, command);
3884 
3885 	return 0;
3886 }
3887 
3888 /*
3889  * Checks if we have enough host controller resources for the default control
3890  * endpoint.
3891  *
3892  * Must be called with xhci->lock held.
3893  */
3894 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3895 {
3896 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3897 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3898 				"Not enough ep ctxs: "
3899 				"%u active, need to add 1, limit is %u.",
3900 				xhci->num_active_eps, xhci->limit_active_eps);
3901 		return -ENOMEM;
3902 	}
3903 	xhci->num_active_eps += 1;
3904 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3905 			"Adding 1 ep ctx, %u now active.",
3906 			xhci->num_active_eps);
3907 	return 0;
3908 }
3909 
3910 
3911 /*
3912  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3913  * timed out, or allocating memory failed.  Returns 1 on success.
3914  */
3915 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3916 {
3917 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3918 	struct xhci_virt_device *vdev;
3919 	struct xhci_slot_ctx *slot_ctx;
3920 	unsigned long flags;
3921 	int ret, slot_id;
3922 	struct xhci_command *command;
3923 
3924 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3925 	if (!command)
3926 		return 0;
3927 
3928 	spin_lock_irqsave(&xhci->lock, flags);
3929 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3930 	if (ret) {
3931 		spin_unlock_irqrestore(&xhci->lock, flags);
3932 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3933 		xhci_free_command(xhci, command);
3934 		return 0;
3935 	}
3936 	xhci_ring_cmd_db(xhci);
3937 	spin_unlock_irqrestore(&xhci->lock, flags);
3938 
3939 	wait_for_completion(command->completion);
3940 	slot_id = command->slot_id;
3941 
3942 	if (!slot_id || command->status != COMP_SUCCESS) {
3943 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3944 			 xhci_trb_comp_code_string(command->status));
3945 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3946 				HCS_MAX_SLOTS(
3947 					readl(&xhci->cap_regs->hcs_params1)));
3948 		xhci_free_command(xhci, command);
3949 		return 0;
3950 	}
3951 
3952 	xhci_free_command(xhci, command);
3953 
3954 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3955 		spin_lock_irqsave(&xhci->lock, flags);
3956 		ret = xhci_reserve_host_control_ep_resources(xhci);
3957 		if (ret) {
3958 			spin_unlock_irqrestore(&xhci->lock, flags);
3959 			xhci_warn(xhci, "Not enough host resources, "
3960 					"active endpoint contexts = %u\n",
3961 					xhci->num_active_eps);
3962 			goto disable_slot;
3963 		}
3964 		spin_unlock_irqrestore(&xhci->lock, flags);
3965 	}
3966 	/* Use GFP_NOIO, since this function can be called from
3967 	 * xhci_discover_or_reset_device(), which may be called as part of
3968 	 * mass storage driver error handling.
3969 	 */
3970 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3971 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3972 		goto disable_slot;
3973 	}
3974 	vdev = xhci->devs[slot_id];
3975 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3976 	trace_xhci_alloc_dev(slot_ctx);
3977 
3978 	udev->slot_id = slot_id;
3979 
3980 	xhci_debugfs_create_slot(xhci, slot_id);
3981 
3982 	/*
3983 	 * If resetting upon resume, we can't put the controller into runtime
3984 	 * suspend if there is a device attached.
3985 	 */
3986 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3987 		pm_runtime_get_noresume(hcd->self.controller);
3988 
3989 	/* Is this a LS or FS device under a HS hub? */
3990 	/* Hub or peripherial? */
3991 	return 1;
3992 
3993 disable_slot:
3994 	xhci_disable_slot(xhci, udev->slot_id);
3995 	xhci_free_virt_device(xhci, udev->slot_id);
3996 
3997 	return 0;
3998 }
3999 
4000 /*
4001  * Issue an Address Device command and optionally send a corresponding
4002  * SetAddress request to the device.
4003  */
4004 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4005 			     enum xhci_setup_dev setup)
4006 {
4007 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4008 	unsigned long flags;
4009 	struct xhci_virt_device *virt_dev;
4010 	int ret = 0;
4011 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4012 	struct xhci_slot_ctx *slot_ctx;
4013 	struct xhci_input_control_ctx *ctrl_ctx;
4014 	u64 temp_64;
4015 	struct xhci_command *command = NULL;
4016 
4017 	mutex_lock(&xhci->mutex);
4018 
4019 	if (xhci->xhc_state) {	/* dying, removing or halted */
4020 		ret = -ESHUTDOWN;
4021 		goto out;
4022 	}
4023 
4024 	if (!udev->slot_id) {
4025 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4026 				"Bad Slot ID %d", udev->slot_id);
4027 		ret = -EINVAL;
4028 		goto out;
4029 	}
4030 
4031 	virt_dev = xhci->devs[udev->slot_id];
4032 
4033 	if (WARN_ON(!virt_dev)) {
4034 		/*
4035 		 * In plug/unplug torture test with an NEC controller,
4036 		 * a zero-dereference was observed once due to virt_dev = 0.
4037 		 * Print useful debug rather than crash if it is observed again!
4038 		 */
4039 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4040 			udev->slot_id);
4041 		ret = -EINVAL;
4042 		goto out;
4043 	}
4044 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4045 	trace_xhci_setup_device_slot(slot_ctx);
4046 
4047 	if (setup == SETUP_CONTEXT_ONLY) {
4048 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4049 		    SLOT_STATE_DEFAULT) {
4050 			xhci_dbg(xhci, "Slot already in default state\n");
4051 			goto out;
4052 		}
4053 	}
4054 
4055 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4056 	if (!command) {
4057 		ret = -ENOMEM;
4058 		goto out;
4059 	}
4060 
4061 	command->in_ctx = virt_dev->in_ctx;
4062 
4063 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4064 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4065 	if (!ctrl_ctx) {
4066 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4067 				__func__);
4068 		ret = -EINVAL;
4069 		goto out;
4070 	}
4071 	/*
4072 	 * If this is the first Set Address since device plug-in or
4073 	 * virt_device realloaction after a resume with an xHCI power loss,
4074 	 * then set up the slot context.
4075 	 */
4076 	if (!slot_ctx->dev_info)
4077 		xhci_setup_addressable_virt_dev(xhci, udev);
4078 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4079 	else
4080 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4081 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4082 	ctrl_ctx->drop_flags = 0;
4083 
4084 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4085 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4086 
4087 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4088 	spin_lock_irqsave(&xhci->lock, flags);
4089 	trace_xhci_setup_device(virt_dev);
4090 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4091 					udev->slot_id, setup);
4092 	if (ret) {
4093 		spin_unlock_irqrestore(&xhci->lock, flags);
4094 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4095 				"FIXME: allocate a command ring segment");
4096 		goto out;
4097 	}
4098 	xhci_ring_cmd_db(xhci);
4099 	spin_unlock_irqrestore(&xhci->lock, flags);
4100 
4101 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4102 	wait_for_completion(command->completion);
4103 
4104 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4105 	 * the SetAddress() "recovery interval" required by USB and aborting the
4106 	 * command on a timeout.
4107 	 */
4108 	switch (command->status) {
4109 	case COMP_COMMAND_ABORTED:
4110 	case COMP_COMMAND_RING_STOPPED:
4111 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4112 		ret = -ETIME;
4113 		break;
4114 	case COMP_CONTEXT_STATE_ERROR:
4115 	case COMP_SLOT_NOT_ENABLED_ERROR:
4116 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4117 			 act, udev->slot_id);
4118 		ret = -EINVAL;
4119 		break;
4120 	case COMP_USB_TRANSACTION_ERROR:
4121 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4122 
4123 		mutex_unlock(&xhci->mutex);
4124 		ret = xhci_disable_slot(xhci, udev->slot_id);
4125 		xhci_free_virt_device(xhci, udev->slot_id);
4126 		if (!ret)
4127 			xhci_alloc_dev(hcd, udev);
4128 		kfree(command->completion);
4129 		kfree(command);
4130 		return -EPROTO;
4131 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4132 		dev_warn(&udev->dev,
4133 			 "ERROR: Incompatible device for setup %s command\n", act);
4134 		ret = -ENODEV;
4135 		break;
4136 	case COMP_SUCCESS:
4137 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4138 			       "Successful setup %s command", act);
4139 		break;
4140 	default:
4141 		xhci_err(xhci,
4142 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4143 			 act, command->status);
4144 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4145 		ret = -EINVAL;
4146 		break;
4147 	}
4148 	if (ret)
4149 		goto out;
4150 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4151 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4152 			"Op regs DCBAA ptr = %#016llx", temp_64);
4153 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4154 		"Slot ID %d dcbaa entry @%p = %#016llx",
4155 		udev->slot_id,
4156 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4157 		(unsigned long long)
4158 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4159 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 			"Output Context DMA address = %#08llx",
4161 			(unsigned long long)virt_dev->out_ctx->dma);
4162 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4163 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4164 	/*
4165 	 * USB core uses address 1 for the roothubs, so we add one to the
4166 	 * address given back to us by the HC.
4167 	 */
4168 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4169 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4170 	/* Zero the input context control for later use */
4171 	ctrl_ctx->add_flags = 0;
4172 	ctrl_ctx->drop_flags = 0;
4173 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4174 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4175 
4176 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4177 		       "Internal device address = %d",
4178 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4179 out:
4180 	mutex_unlock(&xhci->mutex);
4181 	if (command) {
4182 		kfree(command->completion);
4183 		kfree(command);
4184 	}
4185 	return ret;
4186 }
4187 
4188 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4189 {
4190 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4191 }
4192 
4193 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4194 {
4195 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4196 }
4197 
4198 /*
4199  * Transfer the port index into real index in the HW port status
4200  * registers. Caculate offset between the port's PORTSC register
4201  * and port status base. Divide the number of per port register
4202  * to get the real index. The raw port number bases 1.
4203  */
4204 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4205 {
4206 	struct xhci_hub *rhub;
4207 
4208 	rhub = xhci_get_rhub(hcd);
4209 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4210 }
4211 
4212 /*
4213  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4214  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4215  */
4216 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4217 			struct usb_device *udev, u16 max_exit_latency)
4218 {
4219 	struct xhci_virt_device *virt_dev;
4220 	struct xhci_command *command;
4221 	struct xhci_input_control_ctx *ctrl_ctx;
4222 	struct xhci_slot_ctx *slot_ctx;
4223 	unsigned long flags;
4224 	int ret;
4225 
4226 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4227 	if (!command)
4228 		return -ENOMEM;
4229 
4230 	spin_lock_irqsave(&xhci->lock, flags);
4231 
4232 	virt_dev = xhci->devs[udev->slot_id];
4233 
4234 	/*
4235 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4236 	 * xHC was re-initialized. Exit latency will be set later after
4237 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4238 	 */
4239 
4240 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4241 		spin_unlock_irqrestore(&xhci->lock, flags);
4242 		xhci_free_command(xhci, command);
4243 		return 0;
4244 	}
4245 
4246 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4247 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4248 	if (!ctrl_ctx) {
4249 		spin_unlock_irqrestore(&xhci->lock, flags);
4250 		xhci_free_command(xhci, command);
4251 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4252 				__func__);
4253 		return -ENOMEM;
4254 	}
4255 
4256 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4257 	spin_unlock_irqrestore(&xhci->lock, flags);
4258 
4259 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4260 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4261 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4262 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4263 	slot_ctx->dev_state = 0;
4264 
4265 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4266 			"Set up evaluate context for LPM MEL change.");
4267 
4268 	/* Issue and wait for the evaluate context command. */
4269 	ret = xhci_configure_endpoint(xhci, udev, command,
4270 			true, true);
4271 
4272 	if (!ret) {
4273 		spin_lock_irqsave(&xhci->lock, flags);
4274 		virt_dev->current_mel = max_exit_latency;
4275 		spin_unlock_irqrestore(&xhci->lock, flags);
4276 	}
4277 
4278 	xhci_free_command(xhci, command);
4279 
4280 	return ret;
4281 }
4282 
4283 #ifdef CONFIG_PM
4284 
4285 /* BESL to HIRD Encoding array for USB2 LPM */
4286 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4287 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4288 
4289 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4290 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4291 					struct usb_device *udev)
4292 {
4293 	int u2del, besl, besl_host;
4294 	int besl_device = 0;
4295 	u32 field;
4296 
4297 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4298 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4299 
4300 	if (field & USB_BESL_SUPPORT) {
4301 		for (besl_host = 0; besl_host < 16; besl_host++) {
4302 			if (xhci_besl_encoding[besl_host] >= u2del)
4303 				break;
4304 		}
4305 		/* Use baseline BESL value as default */
4306 		if (field & USB_BESL_BASELINE_VALID)
4307 			besl_device = USB_GET_BESL_BASELINE(field);
4308 		else if (field & USB_BESL_DEEP_VALID)
4309 			besl_device = USB_GET_BESL_DEEP(field);
4310 	} else {
4311 		if (u2del <= 50)
4312 			besl_host = 0;
4313 		else
4314 			besl_host = (u2del - 51) / 75 + 1;
4315 	}
4316 
4317 	besl = besl_host + besl_device;
4318 	if (besl > 15)
4319 		besl = 15;
4320 
4321 	return besl;
4322 }
4323 
4324 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4325 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4326 {
4327 	u32 field;
4328 	int l1;
4329 	int besld = 0;
4330 	int hirdm = 0;
4331 
4332 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4333 
4334 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4335 	l1 = udev->l1_params.timeout / 256;
4336 
4337 	/* device has preferred BESLD */
4338 	if (field & USB_BESL_DEEP_VALID) {
4339 		besld = USB_GET_BESL_DEEP(field);
4340 		hirdm = 1;
4341 	}
4342 
4343 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4344 }
4345 
4346 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4347 			struct usb_device *udev, int enable)
4348 {
4349 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4350 	struct xhci_port **ports;
4351 	__le32 __iomem	*pm_addr, *hlpm_addr;
4352 	u32		pm_val, hlpm_val, field;
4353 	unsigned int	port_num;
4354 	unsigned long	flags;
4355 	int		hird, exit_latency;
4356 	int		ret;
4357 
4358 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4359 		return -EPERM;
4360 
4361 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4362 			!udev->lpm_capable)
4363 		return -EPERM;
4364 
4365 	if (!udev->parent || udev->parent->parent ||
4366 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4367 		return -EPERM;
4368 
4369 	if (udev->usb2_hw_lpm_capable != 1)
4370 		return -EPERM;
4371 
4372 	spin_lock_irqsave(&xhci->lock, flags);
4373 
4374 	ports = xhci->usb2_rhub.ports;
4375 	port_num = udev->portnum - 1;
4376 	pm_addr = ports[port_num]->addr + PORTPMSC;
4377 	pm_val = readl(pm_addr);
4378 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4379 
4380 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4381 			enable ? "enable" : "disable", port_num + 1);
4382 
4383 	if (enable) {
4384 		/* Host supports BESL timeout instead of HIRD */
4385 		if (udev->usb2_hw_lpm_besl_capable) {
4386 			/* if device doesn't have a preferred BESL value use a
4387 			 * default one which works with mixed HIRD and BESL
4388 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4389 			 */
4390 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4391 			if ((field & USB_BESL_SUPPORT) &&
4392 			    (field & USB_BESL_BASELINE_VALID))
4393 				hird = USB_GET_BESL_BASELINE(field);
4394 			else
4395 				hird = udev->l1_params.besl;
4396 
4397 			exit_latency = xhci_besl_encoding[hird];
4398 			spin_unlock_irqrestore(&xhci->lock, flags);
4399 
4400 			ret = xhci_change_max_exit_latency(xhci, udev,
4401 							   exit_latency);
4402 			if (ret < 0)
4403 				return ret;
4404 			spin_lock_irqsave(&xhci->lock, flags);
4405 
4406 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4407 			writel(hlpm_val, hlpm_addr);
4408 			/* flush write */
4409 			readl(hlpm_addr);
4410 		} else {
4411 			hird = xhci_calculate_hird_besl(xhci, udev);
4412 		}
4413 
4414 		pm_val &= ~PORT_HIRD_MASK;
4415 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4416 		writel(pm_val, pm_addr);
4417 		pm_val = readl(pm_addr);
4418 		pm_val |= PORT_HLE;
4419 		writel(pm_val, pm_addr);
4420 		/* flush write */
4421 		readl(pm_addr);
4422 	} else {
4423 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4424 		writel(pm_val, pm_addr);
4425 		/* flush write */
4426 		readl(pm_addr);
4427 		if (udev->usb2_hw_lpm_besl_capable) {
4428 			spin_unlock_irqrestore(&xhci->lock, flags);
4429 			xhci_change_max_exit_latency(xhci, udev, 0);
4430 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4431 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4432 					   100, 10000);
4433 			return 0;
4434 		}
4435 	}
4436 
4437 	spin_unlock_irqrestore(&xhci->lock, flags);
4438 	return 0;
4439 }
4440 
4441 /* check if a usb2 port supports a given extened capability protocol
4442  * only USB2 ports extended protocol capability values are cached.
4443  * Return 1 if capability is supported
4444  */
4445 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4446 					   unsigned capability)
4447 {
4448 	u32 port_offset, port_count;
4449 	int i;
4450 
4451 	for (i = 0; i < xhci->num_ext_caps; i++) {
4452 		if (xhci->ext_caps[i] & capability) {
4453 			/* port offsets starts at 1 */
4454 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4455 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4456 			if (port >= port_offset &&
4457 			    port < port_offset + port_count)
4458 				return 1;
4459 		}
4460 	}
4461 	return 0;
4462 }
4463 
4464 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4465 {
4466 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4467 	int		portnum = udev->portnum - 1;
4468 
4469 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4470 		return 0;
4471 
4472 	/* we only support lpm for non-hub device connected to root hub yet */
4473 	if (!udev->parent || udev->parent->parent ||
4474 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4475 		return 0;
4476 
4477 	if (xhci->hw_lpm_support == 1 &&
4478 			xhci_check_usb2_port_capability(
4479 				xhci, portnum, XHCI_HLC)) {
4480 		udev->usb2_hw_lpm_capable = 1;
4481 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4482 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4483 		if (xhci_check_usb2_port_capability(xhci, portnum,
4484 					XHCI_BLC))
4485 			udev->usb2_hw_lpm_besl_capable = 1;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4492 
4493 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4494 static unsigned long long xhci_service_interval_to_ns(
4495 		struct usb_endpoint_descriptor *desc)
4496 {
4497 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4498 }
4499 
4500 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4501 		enum usb3_link_state state)
4502 {
4503 	unsigned long long sel;
4504 	unsigned long long pel;
4505 	unsigned int max_sel_pel;
4506 	char *state_name;
4507 
4508 	switch (state) {
4509 	case USB3_LPM_U1:
4510 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4511 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4512 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4513 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4514 		state_name = "U1";
4515 		break;
4516 	case USB3_LPM_U2:
4517 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4518 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4519 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4520 		state_name = "U2";
4521 		break;
4522 	default:
4523 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4524 				__func__);
4525 		return USB3_LPM_DISABLED;
4526 	}
4527 
4528 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4529 		return USB3_LPM_DEVICE_INITIATED;
4530 
4531 	if (sel > max_sel_pel)
4532 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4533 				"due to long SEL %llu ms\n",
4534 				state_name, sel);
4535 	else
4536 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4537 				"due to long PEL %llu ms\n",
4538 				state_name, pel);
4539 	return USB3_LPM_DISABLED;
4540 }
4541 
4542 /* The U1 timeout should be the maximum of the following values:
4543  *  - For control endpoints, U1 system exit latency (SEL) * 3
4544  *  - For bulk endpoints, U1 SEL * 5
4545  *  - For interrupt endpoints:
4546  *    - Notification EPs, U1 SEL * 3
4547  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4548  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4549  */
4550 static unsigned long long xhci_calculate_intel_u1_timeout(
4551 		struct usb_device *udev,
4552 		struct usb_endpoint_descriptor *desc)
4553 {
4554 	unsigned long long timeout_ns;
4555 	int ep_type;
4556 	int intr_type;
4557 
4558 	ep_type = usb_endpoint_type(desc);
4559 	switch (ep_type) {
4560 	case USB_ENDPOINT_XFER_CONTROL:
4561 		timeout_ns = udev->u1_params.sel * 3;
4562 		break;
4563 	case USB_ENDPOINT_XFER_BULK:
4564 		timeout_ns = udev->u1_params.sel * 5;
4565 		break;
4566 	case USB_ENDPOINT_XFER_INT:
4567 		intr_type = usb_endpoint_interrupt_type(desc);
4568 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4569 			timeout_ns = udev->u1_params.sel * 3;
4570 			break;
4571 		}
4572 		/* Otherwise the calculation is the same as isoc eps */
4573 		fallthrough;
4574 	case USB_ENDPOINT_XFER_ISOC:
4575 		timeout_ns = xhci_service_interval_to_ns(desc);
4576 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4577 		if (timeout_ns < udev->u1_params.sel * 2)
4578 			timeout_ns = udev->u1_params.sel * 2;
4579 		break;
4580 	default:
4581 		return 0;
4582 	}
4583 
4584 	return timeout_ns;
4585 }
4586 
4587 /* Returns the hub-encoded U1 timeout value. */
4588 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4589 		struct usb_device *udev,
4590 		struct usb_endpoint_descriptor *desc)
4591 {
4592 	unsigned long long timeout_ns;
4593 
4594 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4595 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4596 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4597 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4598 			return USB3_LPM_DISABLED;
4599 		}
4600 	}
4601 
4602 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4603 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4604 	else
4605 		timeout_ns = udev->u1_params.sel;
4606 
4607 	/* The U1 timeout is encoded in 1us intervals.
4608 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4609 	 */
4610 	if (timeout_ns == USB3_LPM_DISABLED)
4611 		timeout_ns = 1;
4612 	else
4613 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4614 
4615 	/* If the necessary timeout value is bigger than what we can set in the
4616 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4617 	 */
4618 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4619 		return timeout_ns;
4620 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4621 			"due to long timeout %llu ms\n", timeout_ns);
4622 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4623 }
4624 
4625 /* The U2 timeout should be the maximum of:
4626  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4627  *  - largest bInterval of any active periodic endpoint (to avoid going
4628  *    into lower power link states between intervals).
4629  *  - the U2 Exit Latency of the device
4630  */
4631 static unsigned long long xhci_calculate_intel_u2_timeout(
4632 		struct usb_device *udev,
4633 		struct usb_endpoint_descriptor *desc)
4634 {
4635 	unsigned long long timeout_ns;
4636 	unsigned long long u2_del_ns;
4637 
4638 	timeout_ns = 10 * 1000 * 1000;
4639 
4640 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4641 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4642 		timeout_ns = xhci_service_interval_to_ns(desc);
4643 
4644 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4645 	if (u2_del_ns > timeout_ns)
4646 		timeout_ns = u2_del_ns;
4647 
4648 	return timeout_ns;
4649 }
4650 
4651 /* Returns the hub-encoded U2 timeout value. */
4652 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4653 		struct usb_device *udev,
4654 		struct usb_endpoint_descriptor *desc)
4655 {
4656 	unsigned long long timeout_ns;
4657 
4658 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4659 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4660 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4661 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4662 			return USB3_LPM_DISABLED;
4663 		}
4664 	}
4665 
4666 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4667 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4668 	else
4669 		timeout_ns = udev->u2_params.sel;
4670 
4671 	/* The U2 timeout is encoded in 256us intervals */
4672 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4673 	/* If the necessary timeout value is bigger than what we can set in the
4674 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4675 	 */
4676 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4677 		return timeout_ns;
4678 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4679 			"due to long timeout %llu ms\n", timeout_ns);
4680 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4681 }
4682 
4683 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4684 		struct usb_device *udev,
4685 		struct usb_endpoint_descriptor *desc,
4686 		enum usb3_link_state state,
4687 		u16 *timeout)
4688 {
4689 	if (state == USB3_LPM_U1)
4690 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4691 	else if (state == USB3_LPM_U2)
4692 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4693 
4694 	return USB3_LPM_DISABLED;
4695 }
4696 
4697 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4698 		struct usb_device *udev,
4699 		struct usb_endpoint_descriptor *desc,
4700 		enum usb3_link_state state,
4701 		u16 *timeout)
4702 {
4703 	u16 alt_timeout;
4704 
4705 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4706 		desc, state, timeout);
4707 
4708 	/* If we found we can't enable hub-initiated LPM, and
4709 	 * the U1 or U2 exit latency was too high to allow
4710 	 * device-initiated LPM as well, then we will disable LPM
4711 	 * for this device, so stop searching any further.
4712 	 */
4713 	if (alt_timeout == USB3_LPM_DISABLED) {
4714 		*timeout = alt_timeout;
4715 		return -E2BIG;
4716 	}
4717 	if (alt_timeout > *timeout)
4718 		*timeout = alt_timeout;
4719 	return 0;
4720 }
4721 
4722 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4723 		struct usb_device *udev,
4724 		struct usb_host_interface *alt,
4725 		enum usb3_link_state state,
4726 		u16 *timeout)
4727 {
4728 	int j;
4729 
4730 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4731 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4732 					&alt->endpoint[j].desc, state, timeout))
4733 			return -E2BIG;
4734 	}
4735 	return 0;
4736 }
4737 
4738 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4739 		struct usb_device *udev,
4740 		enum usb3_link_state state)
4741 {
4742 	struct usb_device *parent = udev->parent;
4743 	int tier = 1; /* roothub is tier1 */
4744 
4745 	while (parent) {
4746 		parent = parent->parent;
4747 		tier++;
4748 	}
4749 
4750 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4751 		goto fail;
4752 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4753 		goto fail;
4754 
4755 	return 0;
4756 fail:
4757 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4758 			tier);
4759 	return -E2BIG;
4760 }
4761 
4762 /* Returns the U1 or U2 timeout that should be enabled.
4763  * If the tier check or timeout setting functions return with a non-zero exit
4764  * code, that means the timeout value has been finalized and we shouldn't look
4765  * at any more endpoints.
4766  */
4767 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4768 			struct usb_device *udev, enum usb3_link_state state)
4769 {
4770 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4771 	struct usb_host_config *config;
4772 	char *state_name;
4773 	int i;
4774 	u16 timeout = USB3_LPM_DISABLED;
4775 
4776 	if (state == USB3_LPM_U1)
4777 		state_name = "U1";
4778 	else if (state == USB3_LPM_U2)
4779 		state_name = "U2";
4780 	else {
4781 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4782 				state);
4783 		return timeout;
4784 	}
4785 
4786 	/* Gather some information about the currently installed configuration
4787 	 * and alternate interface settings.
4788 	 */
4789 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4790 			state, &timeout))
4791 		return timeout;
4792 
4793 	config = udev->actconfig;
4794 	if (!config)
4795 		return timeout;
4796 
4797 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4798 		struct usb_driver *driver;
4799 		struct usb_interface *intf = config->interface[i];
4800 
4801 		if (!intf)
4802 			continue;
4803 
4804 		/* Check if any currently bound drivers want hub-initiated LPM
4805 		 * disabled.
4806 		 */
4807 		if (intf->dev.driver) {
4808 			driver = to_usb_driver(intf->dev.driver);
4809 			if (driver && driver->disable_hub_initiated_lpm) {
4810 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4811 					state_name, driver->name);
4812 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4813 								      state);
4814 				if (timeout == USB3_LPM_DISABLED)
4815 					return timeout;
4816 			}
4817 		}
4818 
4819 		/* Not sure how this could happen... */
4820 		if (!intf->cur_altsetting)
4821 			continue;
4822 
4823 		if (xhci_update_timeout_for_interface(xhci, udev,
4824 					intf->cur_altsetting,
4825 					state, &timeout))
4826 			return timeout;
4827 	}
4828 	return timeout;
4829 }
4830 
4831 static int calculate_max_exit_latency(struct usb_device *udev,
4832 		enum usb3_link_state state_changed,
4833 		u16 hub_encoded_timeout)
4834 {
4835 	unsigned long long u1_mel_us = 0;
4836 	unsigned long long u2_mel_us = 0;
4837 	unsigned long long mel_us = 0;
4838 	bool disabling_u1;
4839 	bool disabling_u2;
4840 	bool enabling_u1;
4841 	bool enabling_u2;
4842 
4843 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4844 			hub_encoded_timeout == USB3_LPM_DISABLED);
4845 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4846 			hub_encoded_timeout == USB3_LPM_DISABLED);
4847 
4848 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4849 			hub_encoded_timeout != USB3_LPM_DISABLED);
4850 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4851 			hub_encoded_timeout != USB3_LPM_DISABLED);
4852 
4853 	/* If U1 was already enabled and we're not disabling it,
4854 	 * or we're going to enable U1, account for the U1 max exit latency.
4855 	 */
4856 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4857 			enabling_u1)
4858 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4859 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4860 			enabling_u2)
4861 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4862 
4863 	mel_us = max(u1_mel_us, u2_mel_us);
4864 
4865 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4866 	if (mel_us > MAX_EXIT) {
4867 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4868 				"is too big.\n", mel_us);
4869 		return -E2BIG;
4870 	}
4871 	return mel_us;
4872 }
4873 
4874 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4875 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4876 			struct usb_device *udev, enum usb3_link_state state)
4877 {
4878 	struct xhci_hcd	*xhci;
4879 	struct xhci_port *port;
4880 	u16 hub_encoded_timeout;
4881 	int mel;
4882 	int ret;
4883 
4884 	xhci = hcd_to_xhci(hcd);
4885 	/* The LPM timeout values are pretty host-controller specific, so don't
4886 	 * enable hub-initiated timeouts unless the vendor has provided
4887 	 * information about their timeout algorithm.
4888 	 */
4889 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4890 			!xhci->devs[udev->slot_id])
4891 		return USB3_LPM_DISABLED;
4892 
4893 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4894 		return USB3_LPM_DISABLED;
4895 
4896 	/* If connected to root port then check port can handle lpm */
4897 	if (udev->parent && !udev->parent->parent) {
4898 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4899 		if (port->lpm_incapable)
4900 			return USB3_LPM_DISABLED;
4901 	}
4902 
4903 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4904 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4905 	if (mel < 0) {
4906 		/* Max Exit Latency is too big, disable LPM. */
4907 		hub_encoded_timeout = USB3_LPM_DISABLED;
4908 		mel = 0;
4909 	}
4910 
4911 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4912 	if (ret)
4913 		return ret;
4914 	return hub_encoded_timeout;
4915 }
4916 
4917 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4918 			struct usb_device *udev, enum usb3_link_state state)
4919 {
4920 	struct xhci_hcd	*xhci;
4921 	u16 mel;
4922 
4923 	xhci = hcd_to_xhci(hcd);
4924 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4925 			!xhci->devs[udev->slot_id])
4926 		return 0;
4927 
4928 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4929 	return xhci_change_max_exit_latency(xhci, udev, mel);
4930 }
4931 #else /* CONFIG_PM */
4932 
4933 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4934 				struct usb_device *udev, int enable)
4935 {
4936 	return 0;
4937 }
4938 
4939 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4940 {
4941 	return 0;
4942 }
4943 
4944 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945 			struct usb_device *udev, enum usb3_link_state state)
4946 {
4947 	return USB3_LPM_DISABLED;
4948 }
4949 
4950 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4951 			struct usb_device *udev, enum usb3_link_state state)
4952 {
4953 	return 0;
4954 }
4955 #endif	/* CONFIG_PM */
4956 
4957 /*-------------------------------------------------------------------------*/
4958 
4959 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4960  * internal data structures for the device.
4961  */
4962 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4963 			struct usb_tt *tt, gfp_t mem_flags)
4964 {
4965 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4966 	struct xhci_virt_device *vdev;
4967 	struct xhci_command *config_cmd;
4968 	struct xhci_input_control_ctx *ctrl_ctx;
4969 	struct xhci_slot_ctx *slot_ctx;
4970 	unsigned long flags;
4971 	unsigned think_time;
4972 	int ret;
4973 
4974 	/* Ignore root hubs */
4975 	if (!hdev->parent)
4976 		return 0;
4977 
4978 	vdev = xhci->devs[hdev->slot_id];
4979 	if (!vdev) {
4980 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4981 		return -EINVAL;
4982 	}
4983 
4984 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4985 	if (!config_cmd)
4986 		return -ENOMEM;
4987 
4988 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4989 	if (!ctrl_ctx) {
4990 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4991 				__func__);
4992 		xhci_free_command(xhci, config_cmd);
4993 		return -ENOMEM;
4994 	}
4995 
4996 	spin_lock_irqsave(&xhci->lock, flags);
4997 	if (hdev->speed == USB_SPEED_HIGH &&
4998 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4999 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5000 		xhci_free_command(xhci, config_cmd);
5001 		spin_unlock_irqrestore(&xhci->lock, flags);
5002 		return -ENOMEM;
5003 	}
5004 
5005 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5006 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5007 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5008 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5009 	/*
5010 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5011 	 * but it may be already set to 1 when setup an xHCI virtual
5012 	 * device, so clear it anyway.
5013 	 */
5014 	if (tt->multi)
5015 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5016 	else if (hdev->speed == USB_SPEED_FULL)
5017 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5018 
5019 	if (xhci->hci_version > 0x95) {
5020 		xhci_dbg(xhci, "xHCI version %x needs hub "
5021 				"TT think time and number of ports\n",
5022 				(unsigned int) xhci->hci_version);
5023 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5024 		/* Set TT think time - convert from ns to FS bit times.
5025 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5026 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5027 		 *
5028 		 * xHCI 1.0: this field shall be 0 if the device is not a
5029 		 * High-spped hub.
5030 		 */
5031 		think_time = tt->think_time;
5032 		if (think_time != 0)
5033 			think_time = (think_time / 666) - 1;
5034 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5035 			slot_ctx->tt_info |=
5036 				cpu_to_le32(TT_THINK_TIME(think_time));
5037 	} else {
5038 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5039 				"TT think time or number of ports\n",
5040 				(unsigned int) xhci->hci_version);
5041 	}
5042 	slot_ctx->dev_state = 0;
5043 	spin_unlock_irqrestore(&xhci->lock, flags);
5044 
5045 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5046 			(xhci->hci_version > 0x95) ?
5047 			"configure endpoint" : "evaluate context");
5048 
5049 	/* Issue and wait for the configure endpoint or
5050 	 * evaluate context command.
5051 	 */
5052 	if (xhci->hci_version > 0x95)
5053 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5054 				false, false);
5055 	else
5056 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5057 				true, false);
5058 
5059 	xhci_free_command(xhci, config_cmd);
5060 	return ret;
5061 }
5062 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5063 
5064 static int xhci_get_frame(struct usb_hcd *hcd)
5065 {
5066 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5067 	/* EHCI mods by the periodic size.  Why? */
5068 	return readl(&xhci->run_regs->microframe_index) >> 3;
5069 }
5070 
5071 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5072 {
5073 	xhci->usb2_rhub.hcd = hcd;
5074 	hcd->speed = HCD_USB2;
5075 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5076 	/*
5077 	 * USB 2.0 roothub under xHCI has an integrated TT,
5078 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5079 	 * companion controller.
5080 	 */
5081 	hcd->has_tt = 1;
5082 }
5083 
5084 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5085 {
5086 	unsigned int minor_rev;
5087 
5088 	/*
5089 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5090 	 * should return 0x31 for sbrn, or that the minor revision
5091 	 * is a two digit BCD containig minor and sub-minor numbers.
5092 	 * This was later clarified in xHCI 1.2.
5093 	 *
5094 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5095 	 * minor revision set to 0x1 instead of 0x10.
5096 	 */
5097 	if (xhci->usb3_rhub.min_rev == 0x1)
5098 		minor_rev = 1;
5099 	else
5100 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5101 
5102 	switch (minor_rev) {
5103 	case 2:
5104 		hcd->speed = HCD_USB32;
5105 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5106 		hcd->self.root_hub->rx_lanes = 2;
5107 		hcd->self.root_hub->tx_lanes = 2;
5108 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5109 		break;
5110 	case 1:
5111 		hcd->speed = HCD_USB31;
5112 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5113 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5114 		break;
5115 	}
5116 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5117 		  minor_rev, minor_rev ? "Enhanced " : "");
5118 
5119 	xhci->usb3_rhub.hcd = hcd;
5120 }
5121 
5122 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5123 {
5124 	struct xhci_hcd		*xhci;
5125 	/*
5126 	 * TODO: Check with DWC3 clients for sysdev according to
5127 	 * quirks
5128 	 */
5129 	struct device		*dev = hcd->self.sysdev;
5130 	int			retval;
5131 
5132 	/* Accept arbitrarily long scatter-gather lists */
5133 	hcd->self.sg_tablesize = ~0;
5134 
5135 	/* support to build packet from discontinuous buffers */
5136 	hcd->self.no_sg_constraint = 1;
5137 
5138 	/* XHCI controllers don't stop the ep queue on short packets :| */
5139 	hcd->self.no_stop_on_short = 1;
5140 
5141 	xhci = hcd_to_xhci(hcd);
5142 
5143 	if (!usb_hcd_is_primary_hcd(hcd)) {
5144 		xhci_hcd_init_usb3_data(xhci, hcd);
5145 		return 0;
5146 	}
5147 
5148 	mutex_init(&xhci->mutex);
5149 	xhci->main_hcd = hcd;
5150 	xhci->cap_regs = hcd->regs;
5151 	xhci->op_regs = hcd->regs +
5152 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5153 	xhci->run_regs = hcd->regs +
5154 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5155 	/* Cache read-only capability registers */
5156 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5157 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5158 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5159 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5160 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5161 	if (xhci->hci_version > 0x100)
5162 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5163 
5164 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5165 	if ((!xhci->max_interrupters) ||
5166 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5167 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5168 
5169 	xhci->quirks |= quirks;
5170 
5171 	if (get_quirks)
5172 		get_quirks(dev, xhci);
5173 
5174 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5175 	 * success event after a short transfer. This quirk will ignore such
5176 	 * spurious event.
5177 	 */
5178 	if (xhci->hci_version > 0x96)
5179 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5180 
5181 	/* Make sure the HC is halted. */
5182 	retval = xhci_halt(xhci);
5183 	if (retval)
5184 		return retval;
5185 
5186 	xhci_zero_64b_regs(xhci);
5187 
5188 	xhci_dbg(xhci, "Resetting HCD\n");
5189 	/* Reset the internal HC memory state and registers. */
5190 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5191 	if (retval)
5192 		return retval;
5193 	xhci_dbg(xhci, "Reset complete\n");
5194 
5195 	/*
5196 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5197 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5198 	 * address memory pointers actually. So, this driver clears the AC64
5199 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5200 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5201 	 */
5202 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5203 		xhci->hcc_params &= ~BIT(0);
5204 
5205 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5206 	 * if xHC supports 64-bit addressing */
5207 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5208 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5209 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5210 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5211 	} else {
5212 		/*
5213 		 * This is to avoid error in cases where a 32-bit USB
5214 		 * controller is used on a 64-bit capable system.
5215 		 */
5216 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5217 		if (retval)
5218 			return retval;
5219 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5220 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5221 	}
5222 
5223 	xhci_dbg(xhci, "Calling HCD init\n");
5224 	/* Initialize HCD and host controller data structures. */
5225 	retval = xhci_init(hcd);
5226 	if (retval)
5227 		return retval;
5228 	xhci_dbg(xhci, "Called HCD init\n");
5229 
5230 	if (xhci_hcd_is_usb3(hcd))
5231 		xhci_hcd_init_usb3_data(xhci, hcd);
5232 	else
5233 		xhci_hcd_init_usb2_data(xhci, hcd);
5234 
5235 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5236 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5237 
5238 	return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5241 
5242 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5243 		struct usb_host_endpoint *ep)
5244 {
5245 	struct xhci_hcd *xhci;
5246 	struct usb_device *udev;
5247 	unsigned int slot_id;
5248 	unsigned int ep_index;
5249 	unsigned long flags;
5250 
5251 	xhci = hcd_to_xhci(hcd);
5252 
5253 	spin_lock_irqsave(&xhci->lock, flags);
5254 	udev = (struct usb_device *)ep->hcpriv;
5255 	slot_id = udev->slot_id;
5256 	ep_index = xhci_get_endpoint_index(&ep->desc);
5257 
5258 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5259 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5260 	spin_unlock_irqrestore(&xhci->lock, flags);
5261 }
5262 
5263 static const struct hc_driver xhci_hc_driver = {
5264 	.description =		"xhci-hcd",
5265 	.product_desc =		"xHCI Host Controller",
5266 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5267 
5268 	/*
5269 	 * generic hardware linkage
5270 	 */
5271 	.irq =			xhci_irq,
5272 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5273 				HCD_BH,
5274 
5275 	/*
5276 	 * basic lifecycle operations
5277 	 */
5278 	.reset =		NULL, /* set in xhci_init_driver() */
5279 	.start =		xhci_run,
5280 	.stop =			xhci_stop,
5281 	.shutdown =		xhci_shutdown,
5282 
5283 	/*
5284 	 * managing i/o requests and associated device resources
5285 	 */
5286 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5287 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5288 	.urb_enqueue =		xhci_urb_enqueue,
5289 	.urb_dequeue =		xhci_urb_dequeue,
5290 	.alloc_dev =		xhci_alloc_dev,
5291 	.free_dev =		xhci_free_dev,
5292 	.alloc_streams =	xhci_alloc_streams,
5293 	.free_streams =		xhci_free_streams,
5294 	.add_endpoint =		xhci_add_endpoint,
5295 	.drop_endpoint =	xhci_drop_endpoint,
5296 	.endpoint_disable =	xhci_endpoint_disable,
5297 	.endpoint_reset =	xhci_endpoint_reset,
5298 	.check_bandwidth =	xhci_check_bandwidth,
5299 	.reset_bandwidth =	xhci_reset_bandwidth,
5300 	.address_device =	xhci_address_device,
5301 	.enable_device =	xhci_enable_device,
5302 	.update_hub_device =	xhci_update_hub_device,
5303 	.reset_device =		xhci_discover_or_reset_device,
5304 
5305 	/*
5306 	 * scheduling support
5307 	 */
5308 	.get_frame_number =	xhci_get_frame,
5309 
5310 	/*
5311 	 * root hub support
5312 	 */
5313 	.hub_control =		xhci_hub_control,
5314 	.hub_status_data =	xhci_hub_status_data,
5315 	.bus_suspend =		xhci_bus_suspend,
5316 	.bus_resume =		xhci_bus_resume,
5317 	.get_resuming_ports =	xhci_get_resuming_ports,
5318 
5319 	/*
5320 	 * call back when device connected and addressed
5321 	 */
5322 	.update_device =        xhci_update_device,
5323 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5324 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5325 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5326 	.find_raw_port_number =	xhci_find_raw_port_number,
5327 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5328 };
5329 
5330 void xhci_init_driver(struct hc_driver *drv,
5331 		      const struct xhci_driver_overrides *over)
5332 {
5333 	BUG_ON(!over);
5334 
5335 	/* Copy the generic table to drv then apply the overrides */
5336 	*drv = xhci_hc_driver;
5337 
5338 	if (over) {
5339 		drv->hcd_priv_size += over->extra_priv_size;
5340 		if (over->reset)
5341 			drv->reset = over->reset;
5342 		if (over->start)
5343 			drv->start = over->start;
5344 		if (over->add_endpoint)
5345 			drv->add_endpoint = over->add_endpoint;
5346 		if (over->drop_endpoint)
5347 			drv->drop_endpoint = over->drop_endpoint;
5348 		if (over->check_bandwidth)
5349 			drv->check_bandwidth = over->check_bandwidth;
5350 		if (over->reset_bandwidth)
5351 			drv->reset_bandwidth = over->reset_bandwidth;
5352 		if (over->update_hub_device)
5353 			drv->update_hub_device = over->update_hub_device;
5354 		if (over->hub_control)
5355 			drv->hub_control = over->hub_control;
5356 	}
5357 }
5358 EXPORT_SYMBOL_GPL(xhci_init_driver);
5359 
5360 MODULE_DESCRIPTION(DRIVER_DESC);
5361 MODULE_AUTHOR(DRIVER_AUTHOR);
5362 MODULE_LICENSE("GPL");
5363 
5364 static int __init xhci_hcd_init(void)
5365 {
5366 	/*
5367 	 * Check the compiler generated sizes of structures that must be laid
5368 	 * out in specific ways for hardware access.
5369 	 */
5370 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5371 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5372 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5373 	/* xhci_device_control has eight fields, and also
5374 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5375 	 */
5376 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5377 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5378 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5379 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5380 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5381 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5382 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5383 
5384 	if (usb_disabled())
5385 		return -ENODEV;
5386 
5387 	xhci_debugfs_create_root();
5388 	xhci_dbc_init();
5389 
5390 	return 0;
5391 }
5392 
5393 /*
5394  * If an init function is provided, an exit function must also be provided
5395  * to allow module unload.
5396  */
5397 static void __exit xhci_hcd_fini(void)
5398 {
5399 	xhci_debugfs_remove_root();
5400 	xhci_dbc_exit();
5401 }
5402 
5403 module_init(xhci_hcd_init);
5404 module_exit(xhci_hcd_fini);
5405