xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 79a93295)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; ++i) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222 	int i;
223 
224 	if (!xhci->msix_entries)
225 		return -EINVAL;
226 
227 	for (i = 0; i < xhci->msix_count; i++)
228 		if (xhci->msix_entries[i].vector)
229 			free_irq(xhci->msix_entries[i].vector,
230 					xhci_to_hcd(xhci));
231 	return 0;
232 }
233 
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239 	int ret;
240 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241 
242 	ret = pci_enable_msi(pdev);
243 	if (ret) {
244 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 				"failed to allocate MSI entry");
246 		return ret;
247 	}
248 
249 	ret = request_irq(pdev->irq, xhci_msi_irq,
250 				0, "xhci_hcd", xhci_to_hcd(xhci));
251 	if (ret) {
252 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 				"disable MSI interrupt");
254 		pci_disable_msi(pdev);
255 	}
256 
257 	return ret;
258 }
259 
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 	int ret;
268 
269 	/* return if using legacy interrupt */
270 	if (xhci_to_hcd(xhci)->irq > 0)
271 		return;
272 
273 	ret = xhci_free_msi(xhci);
274 	if (!ret)
275 		return;
276 	if (pdev->irq > 0)
277 		free_irq(pdev->irq, xhci_to_hcd(xhci));
278 
279 	return;
280 }
281 
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287 	int i, ret = 0;
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	/*
292 	 * calculate number of msi-x vectors supported.
293 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
295 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 	 *   Add additional 1 vector to ensure always available interrupt.
297 	 */
298 	xhci->msix_count = min(num_online_cpus() + 1,
299 				HCS_MAX_INTRS(xhci->hcs_params1));
300 
301 	xhci->msix_entries =
302 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 				GFP_KERNEL);
304 	if (!xhci->msix_entries)
305 		return -ENOMEM;
306 
307 	for (i = 0; i < xhci->msix_count; i++) {
308 		xhci->msix_entries[i].entry = i;
309 		xhci->msix_entries[i].vector = 0;
310 	}
311 
312 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"Failed to enable MSI-X");
316 		goto free_entries;
317 	}
318 
319 	for (i = 0; i < xhci->msix_count; i++) {
320 		ret = request_irq(xhci->msix_entries[i].vector,
321 				xhci_msi_irq,
322 				0, "xhci_hcd", xhci_to_hcd(xhci));
323 		if (ret)
324 			goto disable_msix;
325 	}
326 
327 	hcd->msix_enabled = 1;
328 	return ret;
329 
330 disable_msix:
331 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 	xhci_free_irq(xhci);
333 	pci_disable_msix(pdev);
334 free_entries:
335 	kfree(xhci->msix_entries);
336 	xhci->msix_entries = NULL;
337 	return ret;
338 }
339 
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345 
346 	if (xhci->quirks & XHCI_PLAT)
347 		return;
348 
349 	xhci_free_irq(xhci);
350 
351 	if (xhci->msix_entries) {
352 		pci_disable_msix(pdev);
353 		kfree(xhci->msix_entries);
354 		xhci->msix_entries = NULL;
355 	} else {
356 		pci_disable_msi(pdev);
357 	}
358 
359 	hcd->msix_enabled = 0;
360 	return;
361 }
362 
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365 	int i;
366 
367 	if (xhci->msix_entries) {
368 		for (i = 0; i < xhci->msix_count; i++)
369 			synchronize_irq(xhci->msix_entries[i].vector);
370 	}
371 }
372 
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 	struct pci_dev  *pdev;
377 	int ret;
378 
379 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
380 	if (xhci->quirks & XHCI_PLAT)
381 		return 0;
382 
383 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 	/*
385 	 * Some Fresco Logic host controllers advertise MSI, but fail to
386 	 * generate interrupts.  Don't even try to enable MSI.
387 	 */
388 	if (xhci->quirks & XHCI_BROKEN_MSI)
389 		goto legacy_irq;
390 
391 	/* unregister the legacy interrupt */
392 	if (hcd->irq)
393 		free_irq(hcd->irq, hcd);
394 	hcd->irq = 0;
395 
396 	ret = xhci_setup_msix(xhci);
397 	if (ret)
398 		/* fall back to msi*/
399 		ret = xhci_setup_msi(xhci);
400 
401 	if (!ret)
402 		/* hcd->irq is 0, we have MSI */
403 		return 0;
404 
405 	if (!pdev->irq) {
406 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 		return -EINVAL;
408 	}
409 
410  legacy_irq:
411 	if (!strlen(hcd->irq_descr))
412 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 			 hcd->driver->description, hcd->self.busnum);
414 
415 	/* fall back to legacy interrupt*/
416 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 			hcd->irq_descr, hcd);
418 	if (ret) {
419 		xhci_err(xhci, "request interrupt %d failed\n",
420 				pdev->irq);
421 		return ret;
422 	}
423 	hcd->irq = pdev->irq;
424 	return 0;
425 }
426 
427 #else
428 
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431 	return 0;
432 }
433 
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437 
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441 
442 #endif
443 
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446 	struct xhci_hcd *xhci;
447 	struct usb_hcd *hcd;
448 	u32 temp;
449 	int i;
450 
451 	xhci = (struct xhci_hcd *)arg;
452 
453 	for (i = 0; i < xhci->num_usb3_ports; i++) {
454 		temp = readl(xhci->usb3_ports[i]);
455 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 			/*
457 			 * Compliance Mode Detected. Letting USB Core
458 			 * handle the Warm Reset
459 			 */
460 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 					"Compliance mode detected->port %d",
462 					i + 1);
463 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 					"Attempting compliance mode recovery");
465 			hcd = xhci->shared_hcd;
466 
467 			if (hcd->state == HC_STATE_SUSPENDED)
468 				usb_hcd_resume_root_hub(hcd);
469 
470 			usb_hcd_poll_rh_status(hcd);
471 		}
472 	}
473 
474 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 		mod_timer(&xhci->comp_mode_recovery_timer,
476 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478 
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491 	xhci->port_status_u0 = 0;
492 	setup_timer(&xhci->comp_mode_recovery_timer,
493 		    compliance_mode_recovery, (unsigned long)xhci);
494 	xhci->comp_mode_recovery_timer.expires = jiffies +
495 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496 
497 	add_timer(&xhci->comp_mode_recovery_timer);
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 			"Compliance mode recovery timer initialized");
500 }
501 
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510 	const char *dmi_product_name, *dmi_sys_vendor;
511 
512 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 	if (!dmi_product_name || !dmi_sys_vendor)
515 		return false;
516 
517 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 		return false;
519 
520 	if (strstr(dmi_product_name, "Z420") ||
521 			strstr(dmi_product_name, "Z620") ||
522 			strstr(dmi_product_name, "Z820") ||
523 			strstr(dmi_product_name, "Z1 Workstation"))
524 		return true;
525 
526 	return false;
527 }
528 
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533 
534 
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 	int retval = 0;
546 
547 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 	spin_lock_init(&xhci->lock);
549 	if (xhci->hci_version == 0x95 && link_quirk) {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 				"QUIRK: Not clearing Link TRB chain bits.");
552 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 	} else {
554 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 				"xHCI doesn't need link TRB QUIRK");
556 	}
557 	retval = xhci_mem_init(xhci, GFP_KERNEL);
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559 
560 	/* Initializing Compliance Mode Recovery Data If Needed */
561 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 		compliance_mode_recovery_timer_init(xhci);
564 	}
565 
566 	return retval;
567 }
568 
569 /*-------------------------------------------------------------------------*/
570 
571 
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574 	if (xhci_start(xhci)) {
575 		xhci_halt(xhci);
576 		return -ENODEV;
577 	}
578 	xhci->shared_hcd->state = HC_STATE_RUNNING;
579 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580 
581 	if (xhci->quirks & XHCI_NEC_HOST)
582 		xhci_ring_cmd_db(xhci);
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"Finished xhci_run for USB3 roothub");
586 	return 0;
587 }
588 
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603 	u32 temp;
604 	u64 temp_64;
605 	int ret;
606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 
608 	/* Start the xHCI host controller running only after the USB 2.0 roothub
609 	 * is setup.
610 	 */
611 
612 	hcd->uses_new_polling = 1;
613 	if (!usb_hcd_is_primary_hcd(hcd))
614 		return xhci_run_finished(xhci);
615 
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617 
618 	ret = xhci_try_enable_msi(hcd);
619 	if (ret)
620 		return ret;
621 
622 	xhci_dbg(xhci, "Command ring memory map follows:\n");
623 	xhci_debug_ring(xhci, xhci->cmd_ring);
624 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 	xhci_dbg_cmd_ptrs(xhci);
626 
627 	xhci_dbg(xhci, "ERST memory map follows:\n");
628 	xhci_dbg_erst(xhci, &xhci->erst);
629 	xhci_dbg(xhci, "Event ring:\n");
630 	xhci_debug_ring(xhci, xhci->event_ring);
631 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 	temp_64 &= ~ERST_PTR_MASK;
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636 
637 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 			"// Set the interrupt modulation register");
639 	temp = readl(&xhci->ir_set->irq_control);
640 	temp &= ~ER_IRQ_INTERVAL_MASK;
641 	/*
642 	 * the increment interval is 8 times as much as that defined
643 	 * in xHCI spec on MTK's controller
644 	 */
645 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 	writel(temp, &xhci->ir_set->irq_control);
647 
648 	/* Set the HCD state before we enable the irqs */
649 	temp = readl(&xhci->op_regs->command);
650 	temp |= (CMD_EIE);
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 			"// Enable interrupts, cmd = 0x%x.", temp);
653 	writel(temp, &xhci->op_regs->command);
654 
655 	temp = readl(&xhci->ir_set->irq_pending);
656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 	xhci_print_ir_set(xhci, 0);
661 
662 	if (xhci->quirks & XHCI_NEC_HOST) {
663 		struct xhci_command *command;
664 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 		if (!command)
666 			return -ENOMEM;
667 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 				TRB_TYPE(TRB_NEC_GET_FW));
669 	}
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"Finished xhci_run for USB2 roothub");
672 	return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675 
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687 	u32 temp;
688 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689 
690 	mutex_lock(&xhci->mutex);
691 
692 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 		spin_lock_irq(&xhci->lock);
694 
695 		xhci->xhc_state |= XHCI_STATE_HALTED;
696 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 		xhci_halt(xhci);
698 		xhci_reset(xhci);
699 		spin_unlock_irq(&xhci->lock);
700 	}
701 
702 	if (!usb_hcd_is_primary_hcd(hcd)) {
703 		mutex_unlock(&xhci->mutex);
704 		return;
705 	}
706 
707 	xhci_cleanup_msix(xhci);
708 
709 	/* Deleting Compliance Mode Recovery Timer */
710 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 			(!(xhci_all_ports_seen_u0(xhci)))) {
712 		del_timer_sync(&xhci->comp_mode_recovery_timer);
713 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 				"%s: compliance mode recovery timer deleted",
715 				__func__);
716 	}
717 
718 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 		usb_amd_dev_put();
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 			"// Disabling event ring interrupts");
723 	temp = readl(&xhci->op_regs->status);
724 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 	temp = readl(&xhci->ir_set->irq_pending);
726 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 	xhci_print_ir_set(xhci, 0);
728 
729 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 	xhci_mem_cleanup(xhci);
731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 			"xhci_stop completed - status = %x",
733 			readl(&xhci->op_regs->status));
734 	mutex_unlock(&xhci->mutex);
735 }
736 
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749 
750 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752 
753 	spin_lock_irq(&xhci->lock);
754 	xhci_halt(xhci);
755 	/* Workaround for spurious wakeups at shutdown with HSW */
756 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 		xhci_reset(xhci);
758 	spin_unlock_irq(&xhci->lock);
759 
760 	xhci_cleanup_msix(xhci);
761 
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_shutdown completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 
766 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
767 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770 
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774 	xhci->s3.command = readl(&xhci->op_regs->command);
775 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784 
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787 	writel(xhci->s3.command, &xhci->op_regs->command);
788 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797 
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800 	u64	val_64;
801 
802 	/* step 2: initialize command ring buffer */
803 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 				      xhci->cmd_ring->dequeue) &
807 		 (u64) ~CMD_RING_RSVD_BITS) |
808 		xhci->cmd_ring->cycle_state;
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"// Setting command ring address to 0x%llx",
811 			(long unsigned long) val_64);
812 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814 
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826 	struct xhci_ring *ring;
827 	struct xhci_segment *seg;
828 
829 	ring = xhci->cmd_ring;
830 	seg = ring->deq_seg;
831 	do {
832 		memset(seg->trbs, 0,
833 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 			cpu_to_le32(~TRB_CYCLE);
836 		seg = seg->next;
837 	} while (seg != ring->deq_seg);
838 
839 	/* Reset the software enqueue and dequeue pointers */
840 	ring->deq_seg = ring->first_seg;
841 	ring->dequeue = ring->first_seg->trbs;
842 	ring->enq_seg = ring->deq_seg;
843 	ring->enqueue = ring->dequeue;
844 
845 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 	/*
847 	 * Ring is now zeroed, so the HW should look for change of ownership
848 	 * when the cycle bit is set to 1.
849 	 */
850 	ring->cycle_state = 1;
851 
852 	/*
853 	 * Reset the hardware dequeue pointer.
854 	 * Yes, this will need to be re-written after resume, but we're paranoid
855 	 * and want to make sure the hardware doesn't access bogus memory
856 	 * because, say, the BIOS or an SMI started the host without changing
857 	 * the command ring pointers.
858 	 */
859 	xhci_set_cmd_ring_deq(xhci);
860 }
861 
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864 	int port_index;
865 	__le32 __iomem **port_array;
866 	unsigned long flags;
867 	u32 t1, t2;
868 
869 	spin_lock_irqsave(&xhci->lock, flags);
870 
871 	/* disble usb3 ports Wake bits*/
872 	port_index = xhci->num_usb3_ports;
873 	port_array = xhci->usb3_ports;
874 	while (port_index--) {
875 		t1 = readl(port_array[port_index]);
876 		t1 = xhci_port_state_to_neutral(t1);
877 		t2 = t1 & ~PORT_WAKE_BITS;
878 		if (t1 != t2)
879 			writel(t2, port_array[port_index]);
880 	}
881 
882 	/* disble usb2 ports Wake bits*/
883 	port_index = xhci->num_usb2_ports;
884 	port_array = xhci->usb2_ports;
885 	while (port_index--) {
886 		t1 = readl(port_array[port_index]);
887 		t1 = xhci_port_state_to_neutral(t1);
888 		t2 = t1 & ~PORT_WAKE_BITS;
889 		if (t1 != t2)
890 			writel(t2, port_array[port_index]);
891 	}
892 
893 	spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895 
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904 	int			rc = 0;
905 	unsigned int		delay = XHCI_MAX_HALT_USEC;
906 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
907 	u32			command;
908 
909 	if (!hcd->state)
910 		return 0;
911 
912 	if (hcd->state != HC_STATE_SUSPENDED ||
913 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 		return -EINVAL;
915 
916 	/* Clear root port wake on bits if wakeup not allowed. */
917 	if (!do_wakeup)
918 		xhci_disable_port_wake_on_bits(xhci);
919 
920 	/* Don't poll the roothubs on bus suspend. */
921 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 	del_timer_sync(&hcd->rh_timer);
924 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 	del_timer_sync(&xhci->shared_hcd->rh_timer);
926 
927 	spin_lock_irq(&xhci->lock);
928 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 	/* step 1: stop endpoint */
931 	/* skipped assuming that port suspend has done */
932 
933 	/* step 2: clear Run/Stop bit */
934 	command = readl(&xhci->op_regs->command);
935 	command &= ~CMD_RUN;
936 	writel(command, &xhci->op_regs->command);
937 
938 	/* Some chips from Fresco Logic need an extraordinary delay */
939 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940 
941 	if (xhci_handshake(&xhci->op_regs->status,
942 		      STS_HALT, STS_HALT, delay)) {
943 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 		spin_unlock_irq(&xhci->lock);
945 		return -ETIMEDOUT;
946 	}
947 	xhci_clear_command_ring(xhci);
948 
949 	/* step 3: save registers */
950 	xhci_save_registers(xhci);
951 
952 	/* step 4: set CSS flag */
953 	command = readl(&xhci->op_regs->command);
954 	command |= CMD_CSS;
955 	writel(command, &xhci->op_regs->command);
956 	if (xhci_handshake(&xhci->op_regs->status,
957 				STS_SAVE, 0, 10 * 1000)) {
958 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 		spin_unlock_irq(&xhci->lock);
960 		return -ETIMEDOUT;
961 	}
962 	spin_unlock_irq(&xhci->lock);
963 
964 	/*
965 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 	 * is about to be suspended.
967 	 */
968 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 			(!(xhci_all_ports_seen_u0(xhci)))) {
970 		del_timer_sync(&xhci->comp_mode_recovery_timer);
971 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 				"%s: compliance mode recovery timer deleted",
973 				__func__);
974 	}
975 
976 	/* step 5: remove core well power */
977 	/* synchronize irq when using MSI-X */
978 	xhci_msix_sync_irqs(xhci);
979 
980 	return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983 
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992 	u32			command, temp = 0, status;
993 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
994 	struct usb_hcd		*secondary_hcd;
995 	int			retval = 0;
996 	bool			comp_timer_running = false;
997 
998 	if (!hcd->state)
999 		return 0;
1000 
1001 	/* Wait a bit if either of the roothubs need to settle from the
1002 	 * transition into bus suspend.
1003 	 */
1004 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 			time_before(jiffies,
1006 				xhci->bus_state[1].next_statechange))
1007 		msleep(100);
1008 
1009 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011 
1012 	spin_lock_irq(&xhci->lock);
1013 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 		hibernated = true;
1015 
1016 	if (!hibernated) {
1017 		/* step 1: restore register */
1018 		xhci_restore_registers(xhci);
1019 		/* step 2: initialize command ring buffer */
1020 		xhci_set_cmd_ring_deq(xhci);
1021 		/* step 3: restore state and start state*/
1022 		/* step 3: set CRS flag */
1023 		command = readl(&xhci->op_regs->command);
1024 		command |= CMD_CRS;
1025 		writel(command, &xhci->op_regs->command);
1026 		if (xhci_handshake(&xhci->op_regs->status,
1027 			      STS_RESTORE, 0, 10 * 1000)) {
1028 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 			spin_unlock_irq(&xhci->lock);
1030 			return -ETIMEDOUT;
1031 		}
1032 		temp = readl(&xhci->op_regs->status);
1033 	}
1034 
1035 	/* If restore operation fails, re-initialize the HC during resume */
1036 	if ((temp & STS_SRE) || hibernated) {
1037 
1038 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 				!(xhci_all_ports_seen_u0(xhci))) {
1040 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 				"Compliance Mode Recovery Timer deleted!");
1043 		}
1044 
1045 		/* Let the USB core know _both_ roothubs lost power. */
1046 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048 
1049 		xhci_dbg(xhci, "Stop HCD\n");
1050 		xhci_halt(xhci);
1051 		xhci_reset(xhci);
1052 		spin_unlock_irq(&xhci->lock);
1053 		xhci_cleanup_msix(xhci);
1054 
1055 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 		temp = readl(&xhci->op_regs->status);
1057 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 		temp = readl(&xhci->ir_set->irq_pending);
1059 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 		xhci_print_ir_set(xhci, 0);
1061 
1062 		xhci_dbg(xhci, "cleaning up memory\n");
1063 		xhci_mem_cleanup(xhci);
1064 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 			    readl(&xhci->op_regs->status));
1066 
1067 		/* USB core calls the PCI reinit and start functions twice:
1068 		 * first with the primary HCD, and then with the secondary HCD.
1069 		 * If we don't do the same, the host will never be started.
1070 		 */
1071 		if (!usb_hcd_is_primary_hcd(hcd))
1072 			secondary_hcd = hcd;
1073 		else
1074 			secondary_hcd = xhci->shared_hcd;
1075 
1076 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 		retval = xhci_init(hcd->primary_hcd);
1078 		if (retval)
1079 			return retval;
1080 		comp_timer_running = true;
1081 
1082 		xhci_dbg(xhci, "Start the primary HCD\n");
1083 		retval = xhci_run(hcd->primary_hcd);
1084 		if (!retval) {
1085 			xhci_dbg(xhci, "Start the secondary HCD\n");
1086 			retval = xhci_run(secondary_hcd);
1087 		}
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111  done:
1112 	if (retval == 0) {
1113 		/* Resume root hubs only when have pending events. */
1114 		status = readl(&xhci->op_regs->status);
1115 		if (status & STS_EINT) {
1116 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 			usb_hcd_resume_root_hub(hcd);
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 	 * be re-initialized Always after a system resume. Ports are subject
1124 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 	 * ports have entered previously to U0 before system's suspension.
1126 	 */
1127 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 		compliance_mode_recovery_timer_init(xhci);
1129 
1130 	/* Re-enable port polling. */
1131 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 	usb_hcd_poll_rh_status(hcd);
1136 
1137 	return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif	/* CONFIG_PM */
1141 
1142 /*-------------------------------------------------------------------------*/
1143 
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156 	unsigned int index;
1157 	if (usb_endpoint_xfer_control(desc))
1158 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 	else
1160 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 	return index;
1163 }
1164 
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 	return direction | number;
1173 }
1174 
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183 
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190 	return 1 << (ep_index + 1);
1191 }
1192 
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201 	return fls(added_ctxs) - 1;
1202 }
1203 
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 		const char *func) {
1210 	struct xhci_hcd	*xhci;
1211 	struct xhci_virt_device	*virt_dev;
1212 
1213 	if (!hcd || (check_ep && !ep) || !udev) {
1214 		pr_debug("xHCI %s called with invalid args\n", func);
1215 		return -EINVAL;
1216 	}
1217 	if (!udev->parent) {
1218 		pr_debug("xHCI %s called for root hub\n", func);
1219 		return 0;
1220 	}
1221 
1222 	xhci = hcd_to_xhci(hcd);
1223 	if (check_virt_dev) {
1224 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 					func);
1227 			return -EINVAL;
1228 		}
1229 
1230 		virt_dev = xhci->devs[udev->slot_id];
1231 		if (virt_dev->udev != udev) {
1232 			xhci_dbg(xhci, "xHCI %s called with udev and "
1233 					  "virt_dev does not match\n", func);
1234 			return -EINVAL;
1235 		}
1236 	}
1237 
1238 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 		return -ENODEV;
1240 
1241 	return 1;
1242 }
1243 
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 		struct usb_device *udev, struct xhci_command *command,
1246 		bool ctx_change, bool must_succeed);
1247 
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 		unsigned int ep_index, struct urb *urb)
1256 {
1257 	struct xhci_container_ctx *out_ctx;
1258 	struct xhci_input_control_ctx *ctrl_ctx;
1259 	struct xhci_ep_ctx *ep_ctx;
1260 	struct xhci_command *command;
1261 	int max_packet_size;
1262 	int hw_max_packet_size;
1263 	int ret = 0;
1264 
1265 	out_ctx = xhci->devs[slot_id]->out_ctx;
1266 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 	if (hw_max_packet_size != max_packet_size) {
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max Packet Size for ep 0 changed.");
1272 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273 				"Max packet size in usb_device = %d",
1274 				max_packet_size);
1275 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276 				"Max packet size in xHCI HW = %d",
1277 				hw_max_packet_size);
1278 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279 				"Issuing evaluate context command.");
1280 
1281 		/* Set up the input context flags for the command */
1282 		/* FIXME: This won't work if a non-default control endpoint
1283 		 * changes max packet sizes.
1284 		 */
1285 
1286 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 		if (!command)
1288 			return -ENOMEM;
1289 
1290 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 		if (!ctrl_ctx) {
1293 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 					__func__);
1295 			ret = -ENOMEM;
1296 			goto command_cleanup;
1297 		}
1298 		/* Set up the modified control endpoint 0 */
1299 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 				xhci->devs[slot_id]->out_ctx, ep_index);
1301 
1302 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305 
1306 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 		ctrl_ctx->drop_flags = 0;
1308 
1309 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313 
1314 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 				true, false);
1316 
1317 		/* Clean up the input context for later use by bandwidth
1318 		 * functions.
1319 		 */
1320 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322 		kfree(command->completion);
1323 		kfree(command);
1324 	}
1325 	return ret;
1326 }
1327 
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 	struct xhci_td *buffer;
1336 	unsigned long flags;
1337 	int ret = 0;
1338 	unsigned int slot_id, ep_index;
1339 	struct urb_priv	*urb_priv;
1340 	int size, i;
1341 
1342 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343 					true, true, __func__) <= 0)
1344 		return -EINVAL;
1345 
1346 	slot_id = urb->dev->slot_id;
1347 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348 
1349 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1350 		if (!in_interrupt())
1351 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352 		ret = -ESHUTDOWN;
1353 		goto exit;
1354 	}
1355 
1356 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357 		size = urb->number_of_packets;
1358 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359 	    urb->transfer_buffer_length > 0 &&
1360 	    urb->transfer_flags & URB_ZERO_PACKET &&
1361 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362 		size = 2;
1363 	else
1364 		size = 1;
1365 
1366 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1367 				  size * sizeof(struct xhci_td *), mem_flags);
1368 	if (!urb_priv)
1369 		return -ENOMEM;
1370 
1371 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372 	if (!buffer) {
1373 		kfree(urb_priv);
1374 		return -ENOMEM;
1375 	}
1376 
1377 	for (i = 0; i < size; i++) {
1378 		urb_priv->td[i] = buffer;
1379 		buffer++;
1380 	}
1381 
1382 	urb_priv->length = size;
1383 	urb_priv->td_cnt = 0;
1384 	urb->hcpriv = urb_priv;
1385 
1386 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387 		/* Check to see if the max packet size for the default control
1388 		 * endpoint changed during FS device enumeration
1389 		 */
1390 		if (urb->dev->speed == USB_SPEED_FULL) {
1391 			ret = xhci_check_maxpacket(xhci, slot_id,
1392 					ep_index, urb);
1393 			if (ret < 0) {
1394 				xhci_urb_free_priv(urb_priv);
1395 				urb->hcpriv = NULL;
1396 				return ret;
1397 			}
1398 		}
1399 
1400 		/* We have a spinlock and interrupts disabled, so we must pass
1401 		 * atomic context to this function, which may allocate memory.
1402 		 */
1403 		spin_lock_irqsave(&xhci->lock, flags);
1404 		if (xhci->xhc_state & XHCI_STATE_DYING)
1405 			goto dying;
1406 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407 				slot_id, ep_index);
1408 		if (ret)
1409 			goto free_priv;
1410 		spin_unlock_irqrestore(&xhci->lock, flags);
1411 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412 		spin_lock_irqsave(&xhci->lock, flags);
1413 		if (xhci->xhc_state & XHCI_STATE_DYING)
1414 			goto dying;
1415 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 				EP_GETTING_STREAMS) {
1417 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 					"is transitioning to using streams.\n");
1419 			ret = -EINVAL;
1420 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421 				EP_GETTING_NO_STREAMS) {
1422 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423 					"is transitioning to "
1424 					"not having streams.\n");
1425 			ret = -EINVAL;
1426 		} else {
1427 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428 					slot_id, ep_index);
1429 		}
1430 		if (ret)
1431 			goto free_priv;
1432 		spin_unlock_irqrestore(&xhci->lock, flags);
1433 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434 		spin_lock_irqsave(&xhci->lock, flags);
1435 		if (xhci->xhc_state & XHCI_STATE_DYING)
1436 			goto dying;
1437 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438 				slot_id, ep_index);
1439 		if (ret)
1440 			goto free_priv;
1441 		spin_unlock_irqrestore(&xhci->lock, flags);
1442 	} else {
1443 		spin_lock_irqsave(&xhci->lock, flags);
1444 		if (xhci->xhc_state & XHCI_STATE_DYING)
1445 			goto dying;
1446 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447 				slot_id, ep_index);
1448 		if (ret)
1449 			goto free_priv;
1450 		spin_unlock_irqrestore(&xhci->lock, flags);
1451 	}
1452 exit:
1453 	return ret;
1454 dying:
1455 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456 			"non-responsive xHCI host.\n",
1457 			urb->ep->desc.bEndpointAddress, urb);
1458 	ret = -ESHUTDOWN;
1459 free_priv:
1460 	xhci_urb_free_priv(urb_priv);
1461 	urb->hcpriv = NULL;
1462 	spin_unlock_irqrestore(&xhci->lock, flags);
1463 	return ret;
1464 }
1465 
1466 /*
1467  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469  * should pick up where it left off in the TD, unless a Set Transfer Ring
1470  * Dequeue Pointer is issued.
1471  *
1472  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473  * the ring.  Since the ring is a contiguous structure, they can't be physically
1474  * removed.  Instead, there are two options:
1475  *
1476  *  1) If the HC is in the middle of processing the URB to be canceled, we
1477  *     simply move the ring's dequeue pointer past those TRBs using the Set
1478  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479  *     when drivers timeout on the last submitted URB and attempt to cancel.
1480  *
1481  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483  *     HC will need to invalidate the any TRBs it has cached after the stop
1484  *     endpoint command, as noted in the xHCI 0.95 errata.
1485  *
1486  *  3) The TD may have completed by the time the Stop Endpoint Command
1487  *     completes, so software needs to handle that case too.
1488  *
1489  * This function should protect against the TD enqueueing code ringing the
1490  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491  * It also needs to account for multiple cancellations on happening at the same
1492  * time for the same endpoint.
1493  *
1494  * Note that this function can be called in any context, or so says
1495  * usb_hcd_unlink_urb()
1496  */
1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499 	unsigned long flags;
1500 	int ret, i;
1501 	u32 temp;
1502 	struct xhci_hcd *xhci;
1503 	struct urb_priv	*urb_priv;
1504 	struct xhci_td *td;
1505 	unsigned int ep_index;
1506 	struct xhci_ring *ep_ring;
1507 	struct xhci_virt_ep *ep;
1508 	struct xhci_command *command;
1509 
1510 	xhci = hcd_to_xhci(hcd);
1511 	spin_lock_irqsave(&xhci->lock, flags);
1512 	/* Make sure the URB hasn't completed or been unlinked already */
1513 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514 	if (ret || !urb->hcpriv)
1515 		goto done;
1516 	temp = readl(&xhci->op_regs->status);
1517 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519 				"HW died, freeing TD.");
1520 		urb_priv = urb->hcpriv;
1521 		for (i = urb_priv->td_cnt;
1522 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523 		     i++) {
1524 			td = urb_priv->td[i];
1525 			if (!list_empty(&td->td_list))
1526 				list_del_init(&td->td_list);
1527 			if (!list_empty(&td->cancelled_td_list))
1528 				list_del_init(&td->cancelled_td_list);
1529 		}
1530 
1531 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1532 		spin_unlock_irqrestore(&xhci->lock, flags);
1533 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534 		xhci_urb_free_priv(urb_priv);
1535 		return ret;
1536 	}
1537 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1538 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1539 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1540 				"Ep 0x%x: URB %p to be canceled on "
1541 				"non-responsive xHCI host.",
1542 				urb->ep->desc.bEndpointAddress, urb);
1543 		/* Let the stop endpoint command watchdog timer (which set this
1544 		 * state) finish cleaning up the endpoint TD lists.  We must
1545 		 * have caught it in the middle of dropping a lock and giving
1546 		 * back an URB.
1547 		 */
1548 		goto done;
1549 	}
1550 
1551 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1552 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1553 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1554 	if (!ep_ring) {
1555 		ret = -EINVAL;
1556 		goto done;
1557 	}
1558 
1559 	urb_priv = urb->hcpriv;
1560 	i = urb_priv->td_cnt;
1561 	if (i < urb_priv->length)
1562 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1563 				"Cancel URB %p, dev %s, ep 0x%x, "
1564 				"starting at offset 0x%llx",
1565 				urb, urb->dev->devpath,
1566 				urb->ep->desc.bEndpointAddress,
1567 				(unsigned long long) xhci_trb_virt_to_dma(
1568 					urb_priv->td[i]->start_seg,
1569 					urb_priv->td[i]->first_trb));
1570 
1571 	for (; i < urb_priv->length; i++) {
1572 		td = urb_priv->td[i];
1573 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1574 	}
1575 
1576 	/* Queue a stop endpoint command, but only if this is
1577 	 * the first cancellation to be handled.
1578 	 */
1579 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1580 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1581 		if (!command) {
1582 			ret = -ENOMEM;
1583 			goto done;
1584 		}
1585 		ep->ep_state |= EP_HALT_PENDING;
1586 		ep->stop_cmds_pending++;
1587 		ep->stop_cmd_timer.expires = jiffies +
1588 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1589 		add_timer(&ep->stop_cmd_timer);
1590 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1591 					 ep_index, 0);
1592 		xhci_ring_cmd_db(xhci);
1593 	}
1594 done:
1595 	spin_unlock_irqrestore(&xhci->lock, flags);
1596 	return ret;
1597 }
1598 
1599 /* Drop an endpoint from a new bandwidth configuration for this device.
1600  * Only one call to this function is allowed per endpoint before
1601  * check_bandwidth() or reset_bandwidth() must be called.
1602  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1603  * add the endpoint to the schedule with possibly new parameters denoted by a
1604  * different endpoint descriptor in usb_host_endpoint.
1605  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1606  * not allowed.
1607  *
1608  * The USB core will not allow URBs to be queued to an endpoint that is being
1609  * disabled, so there's no need for mutual exclusion to protect
1610  * the xhci->devs[slot_id] structure.
1611  */
1612 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1613 		struct usb_host_endpoint *ep)
1614 {
1615 	struct xhci_hcd *xhci;
1616 	struct xhci_container_ctx *in_ctx, *out_ctx;
1617 	struct xhci_input_control_ctx *ctrl_ctx;
1618 	unsigned int ep_index;
1619 	struct xhci_ep_ctx *ep_ctx;
1620 	u32 drop_flag;
1621 	u32 new_add_flags, new_drop_flags;
1622 	int ret;
1623 
1624 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1625 	if (ret <= 0)
1626 		return ret;
1627 	xhci = hcd_to_xhci(hcd);
1628 	if (xhci->xhc_state & XHCI_STATE_DYING)
1629 		return -ENODEV;
1630 
1631 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1632 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1633 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1634 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1635 				__func__, drop_flag);
1636 		return 0;
1637 	}
1638 
1639 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1640 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1641 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1642 	if (!ctrl_ctx) {
1643 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1644 				__func__);
1645 		return 0;
1646 	}
1647 
1648 	ep_index = xhci_get_endpoint_index(&ep->desc);
1649 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1650 	/* If the HC already knows the endpoint is disabled,
1651 	 * or the HCD has noted it is disabled, ignore this request
1652 	 */
1653 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1654 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1655 	    xhci_get_endpoint_flag(&ep->desc)) {
1656 		/* Do not warn when called after a usb_device_reset */
1657 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1658 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1659 				  __func__, ep);
1660 		return 0;
1661 	}
1662 
1663 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1664 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1665 
1666 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1667 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1668 
1669 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1670 
1671 	if (xhci->quirks & XHCI_MTK_HOST)
1672 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1673 
1674 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1675 			(unsigned int) ep->desc.bEndpointAddress,
1676 			udev->slot_id,
1677 			(unsigned int) new_drop_flags,
1678 			(unsigned int) new_add_flags);
1679 	return 0;
1680 }
1681 
1682 /* Add an endpoint to a new possible bandwidth configuration for this device.
1683  * Only one call to this function is allowed per endpoint before
1684  * check_bandwidth() or reset_bandwidth() must be called.
1685  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686  * add the endpoint to the schedule with possibly new parameters denoted by a
1687  * different endpoint descriptor in usb_host_endpoint.
1688  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689  * not allowed.
1690  *
1691  * The USB core will not allow URBs to be queued to an endpoint until the
1692  * configuration or alt setting is installed in the device, so there's no need
1693  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1694  */
1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696 		struct usb_host_endpoint *ep)
1697 {
1698 	struct xhci_hcd *xhci;
1699 	struct xhci_container_ctx *in_ctx;
1700 	unsigned int ep_index;
1701 	struct xhci_input_control_ctx *ctrl_ctx;
1702 	u32 added_ctxs;
1703 	u32 new_add_flags, new_drop_flags;
1704 	struct xhci_virt_device *virt_dev;
1705 	int ret = 0;
1706 
1707 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1708 	if (ret <= 0) {
1709 		/* So we won't queue a reset ep command for a root hub */
1710 		ep->hcpriv = NULL;
1711 		return ret;
1712 	}
1713 	xhci = hcd_to_xhci(hcd);
1714 	if (xhci->xhc_state & XHCI_STATE_DYING)
1715 		return -ENODEV;
1716 
1717 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1718 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1719 		/* FIXME when we have to issue an evaluate endpoint command to
1720 		 * deal with ep0 max packet size changing once we get the
1721 		 * descriptors
1722 		 */
1723 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1724 				__func__, added_ctxs);
1725 		return 0;
1726 	}
1727 
1728 	virt_dev = xhci->devs[udev->slot_id];
1729 	in_ctx = virt_dev->in_ctx;
1730 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1731 	if (!ctrl_ctx) {
1732 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1733 				__func__);
1734 		return 0;
1735 	}
1736 
1737 	ep_index = xhci_get_endpoint_index(&ep->desc);
1738 	/* If this endpoint is already in use, and the upper layers are trying
1739 	 * to add it again without dropping it, reject the addition.
1740 	 */
1741 	if (virt_dev->eps[ep_index].ring &&
1742 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1743 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1744 				"without dropping it.\n",
1745 				(unsigned int) ep->desc.bEndpointAddress);
1746 		return -EINVAL;
1747 	}
1748 
1749 	/* If the HCD has already noted the endpoint is enabled,
1750 	 * ignore this request.
1751 	 */
1752 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1753 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1754 				__func__, ep);
1755 		return 0;
1756 	}
1757 
1758 	/*
1759 	 * Configuration and alternate setting changes must be done in
1760 	 * process context, not interrupt context (or so documenation
1761 	 * for usb_set_interface() and usb_set_configuration() claim).
1762 	 */
1763 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1764 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1765 				__func__, ep->desc.bEndpointAddress);
1766 		return -ENOMEM;
1767 	}
1768 
1769 	if (xhci->quirks & XHCI_MTK_HOST) {
1770 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1771 		if (ret < 0) {
1772 			xhci_free_or_cache_endpoint_ring(xhci,
1773 				virt_dev, ep_index);
1774 			return ret;
1775 		}
1776 	}
1777 
1778 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1779 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1780 
1781 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1782 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1783 	 * this re-adds a new state for the endpoint from the new endpoint
1784 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1785 	 * drop flags alone.
1786 	 */
1787 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788 
1789 	/* Store the usb_device pointer for later use */
1790 	ep->hcpriv = udev;
1791 
1792 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1793 			(unsigned int) ep->desc.bEndpointAddress,
1794 			udev->slot_id,
1795 			(unsigned int) new_drop_flags,
1796 			(unsigned int) new_add_flags);
1797 	return 0;
1798 }
1799 
1800 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1801 {
1802 	struct xhci_input_control_ctx *ctrl_ctx;
1803 	struct xhci_ep_ctx *ep_ctx;
1804 	struct xhci_slot_ctx *slot_ctx;
1805 	int i;
1806 
1807 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1808 	if (!ctrl_ctx) {
1809 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1810 				__func__);
1811 		return;
1812 	}
1813 
1814 	/* When a device's add flag and drop flag are zero, any subsequent
1815 	 * configure endpoint command will leave that endpoint's state
1816 	 * untouched.  Make sure we don't leave any old state in the input
1817 	 * endpoint contexts.
1818 	 */
1819 	ctrl_ctx->drop_flags = 0;
1820 	ctrl_ctx->add_flags = 0;
1821 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1822 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1823 	/* Endpoint 0 is always valid */
1824 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1825 	for (i = 1; i < 31; ++i) {
1826 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1827 		ep_ctx->ep_info = 0;
1828 		ep_ctx->ep_info2 = 0;
1829 		ep_ctx->deq = 0;
1830 		ep_ctx->tx_info = 0;
1831 	}
1832 }
1833 
1834 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1835 		struct usb_device *udev, u32 *cmd_status)
1836 {
1837 	int ret;
1838 
1839 	switch (*cmd_status) {
1840 	case COMP_CMD_ABORT:
1841 	case COMP_CMD_STOP:
1842 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1843 		ret = -ETIME;
1844 		break;
1845 	case COMP_ENOMEM:
1846 		dev_warn(&udev->dev,
1847 			 "Not enough host controller resources for new device state.\n");
1848 		ret = -ENOMEM;
1849 		/* FIXME: can we allocate more resources for the HC? */
1850 		break;
1851 	case COMP_BW_ERR:
1852 	case COMP_2ND_BW_ERR:
1853 		dev_warn(&udev->dev,
1854 			 "Not enough bandwidth for new device state.\n");
1855 		ret = -ENOSPC;
1856 		/* FIXME: can we go back to the old state? */
1857 		break;
1858 	case COMP_TRB_ERR:
1859 		/* the HCD set up something wrong */
1860 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1861 				"add flag = 1, "
1862 				"and endpoint is not disabled.\n");
1863 		ret = -EINVAL;
1864 		break;
1865 	case COMP_DEV_ERR:
1866 		dev_warn(&udev->dev,
1867 			 "ERROR: Incompatible device for endpoint configure command.\n");
1868 		ret = -ENODEV;
1869 		break;
1870 	case COMP_SUCCESS:
1871 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1872 				"Successful Endpoint Configure command");
1873 		ret = 0;
1874 		break;
1875 	default:
1876 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1877 				*cmd_status);
1878 		ret = -EINVAL;
1879 		break;
1880 	}
1881 	return ret;
1882 }
1883 
1884 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1885 		struct usb_device *udev, u32 *cmd_status)
1886 {
1887 	int ret;
1888 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1889 
1890 	switch (*cmd_status) {
1891 	case COMP_CMD_ABORT:
1892 	case COMP_CMD_STOP:
1893 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1894 		ret = -ETIME;
1895 		break;
1896 	case COMP_EINVAL:
1897 		dev_warn(&udev->dev,
1898 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1899 		ret = -EINVAL;
1900 		break;
1901 	case COMP_EBADSLT:
1902 		dev_warn(&udev->dev,
1903 			"WARN: slot not enabled for evaluate context command.\n");
1904 		ret = -EINVAL;
1905 		break;
1906 	case COMP_CTX_STATE:
1907 		dev_warn(&udev->dev,
1908 			"WARN: invalid context state for evaluate context command.\n");
1909 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1910 		ret = -EINVAL;
1911 		break;
1912 	case COMP_DEV_ERR:
1913 		dev_warn(&udev->dev,
1914 			"ERROR: Incompatible device for evaluate context command.\n");
1915 		ret = -ENODEV;
1916 		break;
1917 	case COMP_MEL_ERR:
1918 		/* Max Exit Latency too large error */
1919 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1920 		ret = -EINVAL;
1921 		break;
1922 	case COMP_SUCCESS:
1923 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1924 				"Successful evaluate context command");
1925 		ret = 0;
1926 		break;
1927 	default:
1928 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1929 			*cmd_status);
1930 		ret = -EINVAL;
1931 		break;
1932 	}
1933 	return ret;
1934 }
1935 
1936 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1937 		struct xhci_input_control_ctx *ctrl_ctx)
1938 {
1939 	u32 valid_add_flags;
1940 	u32 valid_drop_flags;
1941 
1942 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1943 	 * (bit 1).  The default control endpoint is added during the Address
1944 	 * Device command and is never removed until the slot is disabled.
1945 	 */
1946 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1947 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1948 
1949 	/* Use hweight32 to count the number of ones in the add flags, or
1950 	 * number of endpoints added.  Don't count endpoints that are changed
1951 	 * (both added and dropped).
1952 	 */
1953 	return hweight32(valid_add_flags) -
1954 		hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956 
1957 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1958 		struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960 	u32 valid_add_flags;
1961 	u32 valid_drop_flags;
1962 
1963 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1964 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1965 
1966 	return hweight32(valid_drop_flags) -
1967 		hweight32(valid_add_flags & valid_drop_flags);
1968 }
1969 
1970 /*
1971  * We need to reserve the new number of endpoints before the configure endpoint
1972  * command completes.  We can't subtract the dropped endpoints from the number
1973  * of active endpoints until the command completes because we can oversubscribe
1974  * the host in this case:
1975  *
1976  *  - the first configure endpoint command drops more endpoints than it adds
1977  *  - a second configure endpoint command that adds more endpoints is queued
1978  *  - the first configure endpoint command fails, so the config is unchanged
1979  *  - the second command may succeed, even though there isn't enough resources
1980  *
1981  * Must be called with xhci->lock held.
1982  */
1983 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1984 		struct xhci_input_control_ctx *ctrl_ctx)
1985 {
1986 	u32 added_eps;
1987 
1988 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1989 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1990 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991 				"Not enough ep ctxs: "
1992 				"%u active, need to add %u, limit is %u.",
1993 				xhci->num_active_eps, added_eps,
1994 				xhci->limit_active_eps);
1995 		return -ENOMEM;
1996 	}
1997 	xhci->num_active_eps += added_eps;
1998 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1999 			"Adding %u ep ctxs, %u now active.", added_eps,
2000 			xhci->num_active_eps);
2001 	return 0;
2002 }
2003 
2004 /*
2005  * The configure endpoint was failed by the xHC for some other reason, so we
2006  * need to revert the resources that failed configuration would have used.
2007  *
2008  * Must be called with xhci->lock held.
2009  */
2010 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2011 		struct xhci_input_control_ctx *ctrl_ctx)
2012 {
2013 	u32 num_failed_eps;
2014 
2015 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2016 	xhci->num_active_eps -= num_failed_eps;
2017 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2018 			"Removing %u failed ep ctxs, %u now active.",
2019 			num_failed_eps,
2020 			xhci->num_active_eps);
2021 }
2022 
2023 /*
2024  * Now that the command has completed, clean up the active endpoint count by
2025  * subtracting out the endpoints that were dropped (but not changed).
2026  *
2027  * Must be called with xhci->lock held.
2028  */
2029 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2030 		struct xhci_input_control_ctx *ctrl_ctx)
2031 {
2032 	u32 num_dropped_eps;
2033 
2034 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2035 	xhci->num_active_eps -= num_dropped_eps;
2036 	if (num_dropped_eps)
2037 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2038 				"Removing %u dropped ep ctxs, %u now active.",
2039 				num_dropped_eps,
2040 				xhci->num_active_eps);
2041 }
2042 
2043 static unsigned int xhci_get_block_size(struct usb_device *udev)
2044 {
2045 	switch (udev->speed) {
2046 	case USB_SPEED_LOW:
2047 	case USB_SPEED_FULL:
2048 		return FS_BLOCK;
2049 	case USB_SPEED_HIGH:
2050 		return HS_BLOCK;
2051 	case USB_SPEED_SUPER:
2052 	case USB_SPEED_SUPER_PLUS:
2053 		return SS_BLOCK;
2054 	case USB_SPEED_UNKNOWN:
2055 	case USB_SPEED_WIRELESS:
2056 	default:
2057 		/* Should never happen */
2058 		return 1;
2059 	}
2060 }
2061 
2062 static unsigned int
2063 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2064 {
2065 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2066 		return LS_OVERHEAD;
2067 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2068 		return FS_OVERHEAD;
2069 	return HS_OVERHEAD;
2070 }
2071 
2072 /* If we are changing a LS/FS device under a HS hub,
2073  * make sure (if we are activating a new TT) that the HS bus has enough
2074  * bandwidth for this new TT.
2075  */
2076 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2077 		struct xhci_virt_device *virt_dev,
2078 		int old_active_eps)
2079 {
2080 	struct xhci_interval_bw_table *bw_table;
2081 	struct xhci_tt_bw_info *tt_info;
2082 
2083 	/* Find the bandwidth table for the root port this TT is attached to. */
2084 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2085 	tt_info = virt_dev->tt_info;
2086 	/* If this TT already had active endpoints, the bandwidth for this TT
2087 	 * has already been added.  Removing all periodic endpoints (and thus
2088 	 * making the TT enactive) will only decrease the bandwidth used.
2089 	 */
2090 	if (old_active_eps)
2091 		return 0;
2092 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2093 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2094 			return -ENOMEM;
2095 		return 0;
2096 	}
2097 	/* Not sure why we would have no new active endpoints...
2098 	 *
2099 	 * Maybe because of an Evaluate Context change for a hub update or a
2100 	 * control endpoint 0 max packet size change?
2101 	 * FIXME: skip the bandwidth calculation in that case.
2102 	 */
2103 	return 0;
2104 }
2105 
2106 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2107 		struct xhci_virt_device *virt_dev)
2108 {
2109 	unsigned int bw_reserved;
2110 
2111 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2112 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2113 		return -ENOMEM;
2114 
2115 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2116 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2117 		return -ENOMEM;
2118 
2119 	return 0;
2120 }
2121 
2122 /*
2123  * This algorithm is a very conservative estimate of the worst-case scheduling
2124  * scenario for any one interval.  The hardware dynamically schedules the
2125  * packets, so we can't tell which microframe could be the limiting factor in
2126  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2127  *
2128  * Obviously, we can't solve an NP complete problem to find the minimum worst
2129  * case scenario.  Instead, we come up with an estimate that is no less than
2130  * the worst case bandwidth used for any one microframe, but may be an
2131  * over-estimate.
2132  *
2133  * We walk the requirements for each endpoint by interval, starting with the
2134  * smallest interval, and place packets in the schedule where there is only one
2135  * possible way to schedule packets for that interval.  In order to simplify
2136  * this algorithm, we record the largest max packet size for each interval, and
2137  * assume all packets will be that size.
2138  *
2139  * For interval 0, we obviously must schedule all packets for each interval.
2140  * The bandwidth for interval 0 is just the amount of data to be transmitted
2141  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2142  * the number of packets).
2143  *
2144  * For interval 1, we have two possible microframes to schedule those packets
2145  * in.  For this algorithm, if we can schedule the same number of packets for
2146  * each possible scheduling opportunity (each microframe), we will do so.  The
2147  * remaining number of packets will be saved to be transmitted in the gaps in
2148  * the next interval's scheduling sequence.
2149  *
2150  * As we move those remaining packets to be scheduled with interval 2 packets,
2151  * we have to double the number of remaining packets to transmit.  This is
2152  * because the intervals are actually powers of 2, and we would be transmitting
2153  * the previous interval's packets twice in this interval.  We also have to be
2154  * sure that when we look at the largest max packet size for this interval, we
2155  * also look at the largest max packet size for the remaining packets and take
2156  * the greater of the two.
2157  *
2158  * The algorithm continues to evenly distribute packets in each scheduling
2159  * opportunity, and push the remaining packets out, until we get to the last
2160  * interval.  Then those packets and their associated overhead are just added
2161  * to the bandwidth used.
2162  */
2163 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2164 		struct xhci_virt_device *virt_dev,
2165 		int old_active_eps)
2166 {
2167 	unsigned int bw_reserved;
2168 	unsigned int max_bandwidth;
2169 	unsigned int bw_used;
2170 	unsigned int block_size;
2171 	struct xhci_interval_bw_table *bw_table;
2172 	unsigned int packet_size = 0;
2173 	unsigned int overhead = 0;
2174 	unsigned int packets_transmitted = 0;
2175 	unsigned int packets_remaining = 0;
2176 	unsigned int i;
2177 
2178 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2179 		return xhci_check_ss_bw(xhci, virt_dev);
2180 
2181 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2182 		max_bandwidth = HS_BW_LIMIT;
2183 		/* Convert percent of bus BW reserved to blocks reserved */
2184 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2185 	} else {
2186 		max_bandwidth = FS_BW_LIMIT;
2187 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2188 	}
2189 
2190 	bw_table = virt_dev->bw_table;
2191 	/* We need to translate the max packet size and max ESIT payloads into
2192 	 * the units the hardware uses.
2193 	 */
2194 	block_size = xhci_get_block_size(virt_dev->udev);
2195 
2196 	/* If we are manipulating a LS/FS device under a HS hub, double check
2197 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2198 	 */
2199 	if (virt_dev->tt_info) {
2200 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 				"Recalculating BW for rootport %u",
2202 				virt_dev->real_port);
2203 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2204 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2205 					"newly activated TT.\n");
2206 			return -ENOMEM;
2207 		}
2208 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2209 				"Recalculating BW for TT slot %u port %u",
2210 				virt_dev->tt_info->slot_id,
2211 				virt_dev->tt_info->ttport);
2212 	} else {
2213 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2214 				"Recalculating BW for rootport %u",
2215 				virt_dev->real_port);
2216 	}
2217 
2218 	/* Add in how much bandwidth will be used for interval zero, or the
2219 	 * rounded max ESIT payload + number of packets * largest overhead.
2220 	 */
2221 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2222 		bw_table->interval_bw[0].num_packets *
2223 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2224 
2225 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2226 		unsigned int bw_added;
2227 		unsigned int largest_mps;
2228 		unsigned int interval_overhead;
2229 
2230 		/*
2231 		 * How many packets could we transmit in this interval?
2232 		 * If packets didn't fit in the previous interval, we will need
2233 		 * to transmit that many packets twice within this interval.
2234 		 */
2235 		packets_remaining = 2 * packets_remaining +
2236 			bw_table->interval_bw[i].num_packets;
2237 
2238 		/* Find the largest max packet size of this or the previous
2239 		 * interval.
2240 		 */
2241 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2242 			largest_mps = 0;
2243 		else {
2244 			struct xhci_virt_ep *virt_ep;
2245 			struct list_head *ep_entry;
2246 
2247 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2248 			virt_ep = list_entry(ep_entry,
2249 					struct xhci_virt_ep, bw_endpoint_list);
2250 			/* Convert to blocks, rounding up */
2251 			largest_mps = DIV_ROUND_UP(
2252 					virt_ep->bw_info.max_packet_size,
2253 					block_size);
2254 		}
2255 		if (largest_mps > packet_size)
2256 			packet_size = largest_mps;
2257 
2258 		/* Use the larger overhead of this or the previous interval. */
2259 		interval_overhead = xhci_get_largest_overhead(
2260 				&bw_table->interval_bw[i]);
2261 		if (interval_overhead > overhead)
2262 			overhead = interval_overhead;
2263 
2264 		/* How many packets can we evenly distribute across
2265 		 * (1 << (i + 1)) possible scheduling opportunities?
2266 		 */
2267 		packets_transmitted = packets_remaining >> (i + 1);
2268 
2269 		/* Add in the bandwidth used for those scheduled packets */
2270 		bw_added = packets_transmitted * (overhead + packet_size);
2271 
2272 		/* How many packets do we have remaining to transmit? */
2273 		packets_remaining = packets_remaining % (1 << (i + 1));
2274 
2275 		/* What largest max packet size should those packets have? */
2276 		/* If we've transmitted all packets, don't carry over the
2277 		 * largest packet size.
2278 		 */
2279 		if (packets_remaining == 0) {
2280 			packet_size = 0;
2281 			overhead = 0;
2282 		} else if (packets_transmitted > 0) {
2283 			/* Otherwise if we do have remaining packets, and we've
2284 			 * scheduled some packets in this interval, take the
2285 			 * largest max packet size from endpoints with this
2286 			 * interval.
2287 			 */
2288 			packet_size = largest_mps;
2289 			overhead = interval_overhead;
2290 		}
2291 		/* Otherwise carry over packet_size and overhead from the last
2292 		 * time we had a remainder.
2293 		 */
2294 		bw_used += bw_added;
2295 		if (bw_used > max_bandwidth) {
2296 			xhci_warn(xhci, "Not enough bandwidth. "
2297 					"Proposed: %u, Max: %u\n",
2298 				bw_used, max_bandwidth);
2299 			return -ENOMEM;
2300 		}
2301 	}
2302 	/*
2303 	 * Ok, we know we have some packets left over after even-handedly
2304 	 * scheduling interval 15.  We don't know which microframes they will
2305 	 * fit into, so we over-schedule and say they will be scheduled every
2306 	 * microframe.
2307 	 */
2308 	if (packets_remaining > 0)
2309 		bw_used += overhead + packet_size;
2310 
2311 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2312 		unsigned int port_index = virt_dev->real_port - 1;
2313 
2314 		/* OK, we're manipulating a HS device attached to a
2315 		 * root port bandwidth domain.  Include the number of active TTs
2316 		 * in the bandwidth used.
2317 		 */
2318 		bw_used += TT_HS_OVERHEAD *
2319 			xhci->rh_bw[port_index].num_active_tts;
2320 	}
2321 
2322 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2323 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2324 		"Available: %u " "percent",
2325 		bw_used, max_bandwidth, bw_reserved,
2326 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2327 		max_bandwidth);
2328 
2329 	bw_used += bw_reserved;
2330 	if (bw_used > max_bandwidth) {
2331 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2332 				bw_used, max_bandwidth);
2333 		return -ENOMEM;
2334 	}
2335 
2336 	bw_table->bw_used = bw_used;
2337 	return 0;
2338 }
2339 
2340 static bool xhci_is_async_ep(unsigned int ep_type)
2341 {
2342 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2343 					ep_type != ISOC_IN_EP &&
2344 					ep_type != INT_IN_EP);
2345 }
2346 
2347 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2348 {
2349 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2350 }
2351 
2352 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2353 {
2354 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2355 
2356 	if (ep_bw->ep_interval == 0)
2357 		return SS_OVERHEAD_BURST +
2358 			(ep_bw->mult * ep_bw->num_packets *
2359 					(SS_OVERHEAD + mps));
2360 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2361 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2362 				1 << ep_bw->ep_interval);
2363 
2364 }
2365 
2366 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2367 		struct xhci_bw_info *ep_bw,
2368 		struct xhci_interval_bw_table *bw_table,
2369 		struct usb_device *udev,
2370 		struct xhci_virt_ep *virt_ep,
2371 		struct xhci_tt_bw_info *tt_info)
2372 {
2373 	struct xhci_interval_bw	*interval_bw;
2374 	int normalized_interval;
2375 
2376 	if (xhci_is_async_ep(ep_bw->type))
2377 		return;
2378 
2379 	if (udev->speed >= USB_SPEED_SUPER) {
2380 		if (xhci_is_sync_in_ep(ep_bw->type))
2381 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2382 				xhci_get_ss_bw_consumed(ep_bw);
2383 		else
2384 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2385 				xhci_get_ss_bw_consumed(ep_bw);
2386 		return;
2387 	}
2388 
2389 	/* SuperSpeed endpoints never get added to intervals in the table, so
2390 	 * this check is only valid for HS/FS/LS devices.
2391 	 */
2392 	if (list_empty(&virt_ep->bw_endpoint_list))
2393 		return;
2394 	/* For LS/FS devices, we need to translate the interval expressed in
2395 	 * microframes to frames.
2396 	 */
2397 	if (udev->speed == USB_SPEED_HIGH)
2398 		normalized_interval = ep_bw->ep_interval;
2399 	else
2400 		normalized_interval = ep_bw->ep_interval - 3;
2401 
2402 	if (normalized_interval == 0)
2403 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2404 	interval_bw = &bw_table->interval_bw[normalized_interval];
2405 	interval_bw->num_packets -= ep_bw->num_packets;
2406 	switch (udev->speed) {
2407 	case USB_SPEED_LOW:
2408 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2409 		break;
2410 	case USB_SPEED_FULL:
2411 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2412 		break;
2413 	case USB_SPEED_HIGH:
2414 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2415 		break;
2416 	case USB_SPEED_SUPER:
2417 	case USB_SPEED_SUPER_PLUS:
2418 	case USB_SPEED_UNKNOWN:
2419 	case USB_SPEED_WIRELESS:
2420 		/* Should never happen because only LS/FS/HS endpoints will get
2421 		 * added to the endpoint list.
2422 		 */
2423 		return;
2424 	}
2425 	if (tt_info)
2426 		tt_info->active_eps -= 1;
2427 	list_del_init(&virt_ep->bw_endpoint_list);
2428 }
2429 
2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2431 		struct xhci_bw_info *ep_bw,
2432 		struct xhci_interval_bw_table *bw_table,
2433 		struct usb_device *udev,
2434 		struct xhci_virt_ep *virt_ep,
2435 		struct xhci_tt_bw_info *tt_info)
2436 {
2437 	struct xhci_interval_bw	*interval_bw;
2438 	struct xhci_virt_ep *smaller_ep;
2439 	int normalized_interval;
2440 
2441 	if (xhci_is_async_ep(ep_bw->type))
2442 		return;
2443 
2444 	if (udev->speed == USB_SPEED_SUPER) {
2445 		if (xhci_is_sync_in_ep(ep_bw->type))
2446 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2447 				xhci_get_ss_bw_consumed(ep_bw);
2448 		else
2449 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2450 				xhci_get_ss_bw_consumed(ep_bw);
2451 		return;
2452 	}
2453 
2454 	/* For LS/FS devices, we need to translate the interval expressed in
2455 	 * microframes to frames.
2456 	 */
2457 	if (udev->speed == USB_SPEED_HIGH)
2458 		normalized_interval = ep_bw->ep_interval;
2459 	else
2460 		normalized_interval = ep_bw->ep_interval - 3;
2461 
2462 	if (normalized_interval == 0)
2463 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2464 	interval_bw = &bw_table->interval_bw[normalized_interval];
2465 	interval_bw->num_packets += ep_bw->num_packets;
2466 	switch (udev->speed) {
2467 	case USB_SPEED_LOW:
2468 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2469 		break;
2470 	case USB_SPEED_FULL:
2471 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2472 		break;
2473 	case USB_SPEED_HIGH:
2474 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2475 		break;
2476 	case USB_SPEED_SUPER:
2477 	case USB_SPEED_SUPER_PLUS:
2478 	case USB_SPEED_UNKNOWN:
2479 	case USB_SPEED_WIRELESS:
2480 		/* Should never happen because only LS/FS/HS endpoints will get
2481 		 * added to the endpoint list.
2482 		 */
2483 		return;
2484 	}
2485 
2486 	if (tt_info)
2487 		tt_info->active_eps += 1;
2488 	/* Insert the endpoint into the list, largest max packet size first. */
2489 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2490 			bw_endpoint_list) {
2491 		if (ep_bw->max_packet_size >=
2492 				smaller_ep->bw_info.max_packet_size) {
2493 			/* Add the new ep before the smaller endpoint */
2494 			list_add_tail(&virt_ep->bw_endpoint_list,
2495 					&smaller_ep->bw_endpoint_list);
2496 			return;
2497 		}
2498 	}
2499 	/* Add the new endpoint at the end of the list. */
2500 	list_add_tail(&virt_ep->bw_endpoint_list,
2501 			&interval_bw->endpoints);
2502 }
2503 
2504 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2505 		struct xhci_virt_device *virt_dev,
2506 		int old_active_eps)
2507 {
2508 	struct xhci_root_port_bw_info *rh_bw_info;
2509 	if (!virt_dev->tt_info)
2510 		return;
2511 
2512 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2513 	if (old_active_eps == 0 &&
2514 				virt_dev->tt_info->active_eps != 0) {
2515 		rh_bw_info->num_active_tts += 1;
2516 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2517 	} else if (old_active_eps != 0 &&
2518 				virt_dev->tt_info->active_eps == 0) {
2519 		rh_bw_info->num_active_tts -= 1;
2520 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2521 	}
2522 }
2523 
2524 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2525 		struct xhci_virt_device *virt_dev,
2526 		struct xhci_container_ctx *in_ctx)
2527 {
2528 	struct xhci_bw_info ep_bw_info[31];
2529 	int i;
2530 	struct xhci_input_control_ctx *ctrl_ctx;
2531 	int old_active_eps = 0;
2532 
2533 	if (virt_dev->tt_info)
2534 		old_active_eps = virt_dev->tt_info->active_eps;
2535 
2536 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2537 	if (!ctrl_ctx) {
2538 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2539 				__func__);
2540 		return -ENOMEM;
2541 	}
2542 
2543 	for (i = 0; i < 31; i++) {
2544 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2545 			continue;
2546 
2547 		/* Make a copy of the BW info in case we need to revert this */
2548 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2549 				sizeof(ep_bw_info[i]));
2550 		/* Drop the endpoint from the interval table if the endpoint is
2551 		 * being dropped or changed.
2552 		 */
2553 		if (EP_IS_DROPPED(ctrl_ctx, i))
2554 			xhci_drop_ep_from_interval_table(xhci,
2555 					&virt_dev->eps[i].bw_info,
2556 					virt_dev->bw_table,
2557 					virt_dev->udev,
2558 					&virt_dev->eps[i],
2559 					virt_dev->tt_info);
2560 	}
2561 	/* Overwrite the information stored in the endpoints' bw_info */
2562 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2563 	for (i = 0; i < 31; i++) {
2564 		/* Add any changed or added endpoints to the interval table */
2565 		if (EP_IS_ADDED(ctrl_ctx, i))
2566 			xhci_add_ep_to_interval_table(xhci,
2567 					&virt_dev->eps[i].bw_info,
2568 					virt_dev->bw_table,
2569 					virt_dev->udev,
2570 					&virt_dev->eps[i],
2571 					virt_dev->tt_info);
2572 	}
2573 
2574 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2575 		/* Ok, this fits in the bandwidth we have.
2576 		 * Update the number of active TTs.
2577 		 */
2578 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2579 		return 0;
2580 	}
2581 
2582 	/* We don't have enough bandwidth for this, revert the stored info. */
2583 	for (i = 0; i < 31; i++) {
2584 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2585 			continue;
2586 
2587 		/* Drop the new copies of any added or changed endpoints from
2588 		 * the interval table.
2589 		 */
2590 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2591 			xhci_drop_ep_from_interval_table(xhci,
2592 					&virt_dev->eps[i].bw_info,
2593 					virt_dev->bw_table,
2594 					virt_dev->udev,
2595 					&virt_dev->eps[i],
2596 					virt_dev->tt_info);
2597 		}
2598 		/* Revert the endpoint back to its old information */
2599 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2600 				sizeof(ep_bw_info[i]));
2601 		/* Add any changed or dropped endpoints back into the table */
2602 		if (EP_IS_DROPPED(ctrl_ctx, i))
2603 			xhci_add_ep_to_interval_table(xhci,
2604 					&virt_dev->eps[i].bw_info,
2605 					virt_dev->bw_table,
2606 					virt_dev->udev,
2607 					&virt_dev->eps[i],
2608 					virt_dev->tt_info);
2609 	}
2610 	return -ENOMEM;
2611 }
2612 
2613 
2614 /* Issue a configure endpoint command or evaluate context command
2615  * and wait for it to finish.
2616  */
2617 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2618 		struct usb_device *udev,
2619 		struct xhci_command *command,
2620 		bool ctx_change, bool must_succeed)
2621 {
2622 	int ret;
2623 	unsigned long flags;
2624 	struct xhci_input_control_ctx *ctrl_ctx;
2625 	struct xhci_virt_device *virt_dev;
2626 
2627 	if (!command)
2628 		return -EINVAL;
2629 
2630 	spin_lock_irqsave(&xhci->lock, flags);
2631 	virt_dev = xhci->devs[udev->slot_id];
2632 
2633 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2634 	if (!ctrl_ctx) {
2635 		spin_unlock_irqrestore(&xhci->lock, flags);
2636 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2637 				__func__);
2638 		return -ENOMEM;
2639 	}
2640 
2641 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2642 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2643 		spin_unlock_irqrestore(&xhci->lock, flags);
2644 		xhci_warn(xhci, "Not enough host resources, "
2645 				"active endpoint contexts = %u\n",
2646 				xhci->num_active_eps);
2647 		return -ENOMEM;
2648 	}
2649 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2650 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2651 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652 			xhci_free_host_resources(xhci, ctrl_ctx);
2653 		spin_unlock_irqrestore(&xhci->lock, flags);
2654 		xhci_warn(xhci, "Not enough bandwidth\n");
2655 		return -ENOMEM;
2656 	}
2657 
2658 	if (!ctx_change)
2659 		ret = xhci_queue_configure_endpoint(xhci, command,
2660 				command->in_ctx->dma,
2661 				udev->slot_id, must_succeed);
2662 	else
2663 		ret = xhci_queue_evaluate_context(xhci, command,
2664 				command->in_ctx->dma,
2665 				udev->slot_id, must_succeed);
2666 	if (ret < 0) {
2667 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2668 			xhci_free_host_resources(xhci, ctrl_ctx);
2669 		spin_unlock_irqrestore(&xhci->lock, flags);
2670 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2671 				"FIXME allocate a new ring segment");
2672 		return -ENOMEM;
2673 	}
2674 	xhci_ring_cmd_db(xhci);
2675 	spin_unlock_irqrestore(&xhci->lock, flags);
2676 
2677 	/* Wait for the configure endpoint command to complete */
2678 	wait_for_completion(command->completion);
2679 
2680 	if (!ctx_change)
2681 		ret = xhci_configure_endpoint_result(xhci, udev,
2682 						     &command->status);
2683 	else
2684 		ret = xhci_evaluate_context_result(xhci, udev,
2685 						   &command->status);
2686 
2687 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2688 		spin_lock_irqsave(&xhci->lock, flags);
2689 		/* If the command failed, remove the reserved resources.
2690 		 * Otherwise, clean up the estimate to include dropped eps.
2691 		 */
2692 		if (ret)
2693 			xhci_free_host_resources(xhci, ctrl_ctx);
2694 		else
2695 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2696 		spin_unlock_irqrestore(&xhci->lock, flags);
2697 	}
2698 	return ret;
2699 }
2700 
2701 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2702 	struct xhci_virt_device *vdev, int i)
2703 {
2704 	struct xhci_virt_ep *ep = &vdev->eps[i];
2705 
2706 	if (ep->ep_state & EP_HAS_STREAMS) {
2707 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2708 				xhci_get_endpoint_address(i));
2709 		xhci_free_stream_info(xhci, ep->stream_info);
2710 		ep->stream_info = NULL;
2711 		ep->ep_state &= ~EP_HAS_STREAMS;
2712 	}
2713 }
2714 
2715 /* Called after one or more calls to xhci_add_endpoint() or
2716  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2717  * to call xhci_reset_bandwidth().
2718  *
2719  * Since we are in the middle of changing either configuration or
2720  * installing a new alt setting, the USB core won't allow URBs to be
2721  * enqueued for any endpoint on the old config or interface.  Nothing
2722  * else should be touching the xhci->devs[slot_id] structure, so we
2723  * don't need to take the xhci->lock for manipulating that.
2724  */
2725 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2726 {
2727 	int i;
2728 	int ret = 0;
2729 	struct xhci_hcd *xhci;
2730 	struct xhci_virt_device	*virt_dev;
2731 	struct xhci_input_control_ctx *ctrl_ctx;
2732 	struct xhci_slot_ctx *slot_ctx;
2733 	struct xhci_command *command;
2734 
2735 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736 	if (ret <= 0)
2737 		return ret;
2738 	xhci = hcd_to_xhci(hcd);
2739 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2740 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2741 		return -ENODEV;
2742 
2743 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2744 	virt_dev = xhci->devs[udev->slot_id];
2745 
2746 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2747 	if (!command)
2748 		return -ENOMEM;
2749 
2750 	command->in_ctx = virt_dev->in_ctx;
2751 
2752 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2753 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2754 	if (!ctrl_ctx) {
2755 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2756 				__func__);
2757 		ret = -ENOMEM;
2758 		goto command_cleanup;
2759 	}
2760 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2761 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2762 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2763 
2764 	/* Don't issue the command if there's no endpoints to update. */
2765 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2766 	    ctrl_ctx->drop_flags == 0) {
2767 		ret = 0;
2768 		goto command_cleanup;
2769 	}
2770 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2771 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2772 	for (i = 31; i >= 1; i--) {
2773 		__le32 le32 = cpu_to_le32(BIT(i));
2774 
2775 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2776 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2777 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2778 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2779 			break;
2780 		}
2781 	}
2782 	xhci_dbg(xhci, "New Input Control Context:\n");
2783 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2784 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2785 
2786 	ret = xhci_configure_endpoint(xhci, udev, command,
2787 			false, false);
2788 	if (ret)
2789 		/* Callee should call reset_bandwidth() */
2790 		goto command_cleanup;
2791 
2792 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2793 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2794 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2795 
2796 	/* Free any rings that were dropped, but not changed. */
2797 	for (i = 1; i < 31; ++i) {
2798 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2799 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2800 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2801 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2802 		}
2803 	}
2804 	xhci_zero_in_ctx(xhci, virt_dev);
2805 	/*
2806 	 * Install any rings for completely new endpoints or changed endpoints,
2807 	 * and free or cache any old rings from changed endpoints.
2808 	 */
2809 	for (i = 1; i < 31; ++i) {
2810 		if (!virt_dev->eps[i].new_ring)
2811 			continue;
2812 		/* Only cache or free the old ring if it exists.
2813 		 * It may not if this is the first add of an endpoint.
2814 		 */
2815 		if (virt_dev->eps[i].ring) {
2816 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2817 		}
2818 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2819 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2820 		virt_dev->eps[i].new_ring = NULL;
2821 	}
2822 command_cleanup:
2823 	kfree(command->completion);
2824 	kfree(command);
2825 
2826 	return ret;
2827 }
2828 
2829 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2830 {
2831 	struct xhci_hcd *xhci;
2832 	struct xhci_virt_device	*virt_dev;
2833 	int i, ret;
2834 
2835 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2836 	if (ret <= 0)
2837 		return;
2838 	xhci = hcd_to_xhci(hcd);
2839 
2840 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2841 	virt_dev = xhci->devs[udev->slot_id];
2842 	/* Free any rings allocated for added endpoints */
2843 	for (i = 0; i < 31; ++i) {
2844 		if (virt_dev->eps[i].new_ring) {
2845 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2846 			virt_dev->eps[i].new_ring = NULL;
2847 		}
2848 	}
2849 	xhci_zero_in_ctx(xhci, virt_dev);
2850 }
2851 
2852 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2853 		struct xhci_container_ctx *in_ctx,
2854 		struct xhci_container_ctx *out_ctx,
2855 		struct xhci_input_control_ctx *ctrl_ctx,
2856 		u32 add_flags, u32 drop_flags)
2857 {
2858 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2859 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2860 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2861 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2862 
2863 	xhci_dbg(xhci, "Input Context:\n");
2864 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2865 }
2866 
2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2868 		unsigned int slot_id, unsigned int ep_index,
2869 		struct xhci_dequeue_state *deq_state)
2870 {
2871 	struct xhci_input_control_ctx *ctrl_ctx;
2872 	struct xhci_container_ctx *in_ctx;
2873 	struct xhci_ep_ctx *ep_ctx;
2874 	u32 added_ctxs;
2875 	dma_addr_t addr;
2876 
2877 	in_ctx = xhci->devs[slot_id]->in_ctx;
2878 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2879 	if (!ctrl_ctx) {
2880 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2881 				__func__);
2882 		return;
2883 	}
2884 
2885 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2886 			xhci->devs[slot_id]->out_ctx, ep_index);
2887 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2888 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2889 			deq_state->new_deq_ptr);
2890 	if (addr == 0) {
2891 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2892 				"reset ep command\n");
2893 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2894 				deq_state->new_deq_seg,
2895 				deq_state->new_deq_ptr);
2896 		return;
2897 	}
2898 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2899 
2900 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2901 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2902 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2903 			added_ctxs, added_ctxs);
2904 }
2905 
2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2907 			unsigned int ep_index, struct xhci_td *td)
2908 {
2909 	struct xhci_dequeue_state deq_state;
2910 	struct xhci_virt_ep *ep;
2911 	struct usb_device *udev = td->urb->dev;
2912 
2913 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914 			"Cleaning up stalled endpoint ring");
2915 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2916 	/* We need to move the HW's dequeue pointer past this TD,
2917 	 * or it will attempt to resend it on the next doorbell ring.
2918 	 */
2919 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2920 			ep_index, ep->stopped_stream, td, &deq_state);
2921 
2922 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2923 		return;
2924 
2925 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2926 	 * issue a configure endpoint command later.
2927 	 */
2928 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2929 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2930 				"Queueing new dequeue state");
2931 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2932 				ep_index, ep->stopped_stream, &deq_state);
2933 	} else {
2934 		/* Better hope no one uses the input context between now and the
2935 		 * reset endpoint completion!
2936 		 * XXX: No idea how this hardware will react when stream rings
2937 		 * are enabled.
2938 		 */
2939 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2940 				"Setting up input context for "
2941 				"configure endpoint command");
2942 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2943 				ep_index, &deq_state);
2944 	}
2945 }
2946 
2947 /* Called when clearing halted device. The core should have sent the control
2948  * message to clear the device halt condition. The host side of the halt should
2949  * already be cleared with a reset endpoint command issued when the STALL tx
2950  * event was received.
2951  *
2952  * Context: in_interrupt
2953  */
2954 
2955 void xhci_endpoint_reset(struct usb_hcd *hcd,
2956 		struct usb_host_endpoint *ep)
2957 {
2958 	struct xhci_hcd *xhci;
2959 
2960 	xhci = hcd_to_xhci(hcd);
2961 
2962 	/*
2963 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2964 	 * The Reset Endpoint Command may only be issued to endpoints in the
2965 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2966 	 * Number of an endpoint that isn't in the Halted state, then software
2967 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2968 	 * for the target endpoint. that is in the Stopped state.
2969 	 */
2970 
2971 	/* For now just print debug to follow the situation */
2972 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2973 		 ep->desc.bEndpointAddress);
2974 }
2975 
2976 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2977 		struct usb_device *udev, struct usb_host_endpoint *ep,
2978 		unsigned int slot_id)
2979 {
2980 	int ret;
2981 	unsigned int ep_index;
2982 	unsigned int ep_state;
2983 
2984 	if (!ep)
2985 		return -EINVAL;
2986 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2987 	if (ret <= 0)
2988 		return -EINVAL;
2989 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2990 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2991 				" descriptor for ep 0x%x does not support streams\n",
2992 				ep->desc.bEndpointAddress);
2993 		return -EINVAL;
2994 	}
2995 
2996 	ep_index = xhci_get_endpoint_index(&ep->desc);
2997 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2998 	if (ep_state & EP_HAS_STREAMS ||
2999 			ep_state & EP_GETTING_STREAMS) {
3000 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3001 				"already has streams set up.\n",
3002 				ep->desc.bEndpointAddress);
3003 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3004 				"dynamic stream context array reallocation.\n");
3005 		return -EINVAL;
3006 	}
3007 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3008 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3009 				"endpoint 0x%x; URBs are pending.\n",
3010 				ep->desc.bEndpointAddress);
3011 		return -EINVAL;
3012 	}
3013 	return 0;
3014 }
3015 
3016 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3017 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3018 {
3019 	unsigned int max_streams;
3020 
3021 	/* The stream context array size must be a power of two */
3022 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3023 	/*
3024 	 * Find out how many primary stream array entries the host controller
3025 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3026 	 * level page entries), but that's an optional feature for xHCI host
3027 	 * controllers. xHCs must support at least 4 stream IDs.
3028 	 */
3029 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3030 	if (*num_stream_ctxs > max_streams) {
3031 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3032 				max_streams);
3033 		*num_stream_ctxs = max_streams;
3034 		*num_streams = max_streams;
3035 	}
3036 }
3037 
3038 /* Returns an error code if one of the endpoint already has streams.
3039  * This does not change any data structures, it only checks and gathers
3040  * information.
3041  */
3042 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3043 		struct usb_device *udev,
3044 		struct usb_host_endpoint **eps, unsigned int num_eps,
3045 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3046 {
3047 	unsigned int max_streams;
3048 	unsigned int endpoint_flag;
3049 	int i;
3050 	int ret;
3051 
3052 	for (i = 0; i < num_eps; i++) {
3053 		ret = xhci_check_streams_endpoint(xhci, udev,
3054 				eps[i], udev->slot_id);
3055 		if (ret < 0)
3056 			return ret;
3057 
3058 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3059 		if (max_streams < (*num_streams - 1)) {
3060 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3061 					eps[i]->desc.bEndpointAddress,
3062 					max_streams);
3063 			*num_streams = max_streams+1;
3064 		}
3065 
3066 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3067 		if (*changed_ep_bitmask & endpoint_flag)
3068 			return -EINVAL;
3069 		*changed_ep_bitmask |= endpoint_flag;
3070 	}
3071 	return 0;
3072 }
3073 
3074 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3075 		struct usb_device *udev,
3076 		struct usb_host_endpoint **eps, unsigned int num_eps)
3077 {
3078 	u32 changed_ep_bitmask = 0;
3079 	unsigned int slot_id;
3080 	unsigned int ep_index;
3081 	unsigned int ep_state;
3082 	int i;
3083 
3084 	slot_id = udev->slot_id;
3085 	if (!xhci->devs[slot_id])
3086 		return 0;
3087 
3088 	for (i = 0; i < num_eps; i++) {
3089 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3090 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3091 		/* Are streams already being freed for the endpoint? */
3092 		if (ep_state & EP_GETTING_NO_STREAMS) {
3093 			xhci_warn(xhci, "WARN Can't disable streams for "
3094 					"endpoint 0x%x, "
3095 					"streams are being disabled already\n",
3096 					eps[i]->desc.bEndpointAddress);
3097 			return 0;
3098 		}
3099 		/* Are there actually any streams to free? */
3100 		if (!(ep_state & EP_HAS_STREAMS) &&
3101 				!(ep_state & EP_GETTING_STREAMS)) {
3102 			xhci_warn(xhci, "WARN Can't disable streams for "
3103 					"endpoint 0x%x, "
3104 					"streams are already disabled!\n",
3105 					eps[i]->desc.bEndpointAddress);
3106 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3107 					"with non-streams endpoint\n");
3108 			return 0;
3109 		}
3110 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3111 	}
3112 	return changed_ep_bitmask;
3113 }
3114 
3115 /*
3116  * The USB device drivers use this function (through the HCD interface in USB
3117  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3118  * coordinate mass storage command queueing across multiple endpoints (basically
3119  * a stream ID == a task ID).
3120  *
3121  * Setting up streams involves allocating the same size stream context array
3122  * for each endpoint and issuing a configure endpoint command for all endpoints.
3123  *
3124  * Don't allow the call to succeed if one endpoint only supports one stream
3125  * (which means it doesn't support streams at all).
3126  *
3127  * Drivers may get less stream IDs than they asked for, if the host controller
3128  * hardware or endpoints claim they can't support the number of requested
3129  * stream IDs.
3130  */
3131 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3132 		struct usb_host_endpoint **eps, unsigned int num_eps,
3133 		unsigned int num_streams, gfp_t mem_flags)
3134 {
3135 	int i, ret;
3136 	struct xhci_hcd *xhci;
3137 	struct xhci_virt_device *vdev;
3138 	struct xhci_command *config_cmd;
3139 	struct xhci_input_control_ctx *ctrl_ctx;
3140 	unsigned int ep_index;
3141 	unsigned int num_stream_ctxs;
3142 	unsigned int max_packet;
3143 	unsigned long flags;
3144 	u32 changed_ep_bitmask = 0;
3145 
3146 	if (!eps)
3147 		return -EINVAL;
3148 
3149 	/* Add one to the number of streams requested to account for
3150 	 * stream 0 that is reserved for xHCI usage.
3151 	 */
3152 	num_streams += 1;
3153 	xhci = hcd_to_xhci(hcd);
3154 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3155 			num_streams);
3156 
3157 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3158 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3159 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3160 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3161 		return -ENOSYS;
3162 	}
3163 
3164 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3165 	if (!config_cmd) {
3166 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3167 		return -ENOMEM;
3168 	}
3169 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3170 	if (!ctrl_ctx) {
3171 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3172 				__func__);
3173 		xhci_free_command(xhci, config_cmd);
3174 		return -ENOMEM;
3175 	}
3176 
3177 	/* Check to make sure all endpoints are not already configured for
3178 	 * streams.  While we're at it, find the maximum number of streams that
3179 	 * all the endpoints will support and check for duplicate endpoints.
3180 	 */
3181 	spin_lock_irqsave(&xhci->lock, flags);
3182 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3183 			num_eps, &num_streams, &changed_ep_bitmask);
3184 	if (ret < 0) {
3185 		xhci_free_command(xhci, config_cmd);
3186 		spin_unlock_irqrestore(&xhci->lock, flags);
3187 		return ret;
3188 	}
3189 	if (num_streams <= 1) {
3190 		xhci_warn(xhci, "WARN: endpoints can't handle "
3191 				"more than one stream.\n");
3192 		xhci_free_command(xhci, config_cmd);
3193 		spin_unlock_irqrestore(&xhci->lock, flags);
3194 		return -EINVAL;
3195 	}
3196 	vdev = xhci->devs[udev->slot_id];
3197 	/* Mark each endpoint as being in transition, so
3198 	 * xhci_urb_enqueue() will reject all URBs.
3199 	 */
3200 	for (i = 0; i < num_eps; i++) {
3201 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3203 	}
3204 	spin_unlock_irqrestore(&xhci->lock, flags);
3205 
3206 	/* Setup internal data structures and allocate HW data structures for
3207 	 * streams (but don't install the HW structures in the input context
3208 	 * until we're sure all memory allocation succeeded).
3209 	 */
3210 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3211 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3212 			num_stream_ctxs, num_streams);
3213 
3214 	for (i = 0; i < num_eps; i++) {
3215 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3216 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3217 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3218 				num_stream_ctxs,
3219 				num_streams,
3220 				max_packet, mem_flags);
3221 		if (!vdev->eps[ep_index].stream_info)
3222 			goto cleanup;
3223 		/* Set maxPstreams in endpoint context and update deq ptr to
3224 		 * point to stream context array. FIXME
3225 		 */
3226 	}
3227 
3228 	/* Set up the input context for a configure endpoint command. */
3229 	for (i = 0; i < num_eps; i++) {
3230 		struct xhci_ep_ctx *ep_ctx;
3231 
3232 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3234 
3235 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3236 				vdev->out_ctx, ep_index);
3237 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3238 				vdev->eps[ep_index].stream_info);
3239 	}
3240 	/* Tell the HW to drop its old copy of the endpoint context info
3241 	 * and add the updated copy from the input context.
3242 	 */
3243 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3244 			vdev->out_ctx, ctrl_ctx,
3245 			changed_ep_bitmask, changed_ep_bitmask);
3246 
3247 	/* Issue and wait for the configure endpoint command */
3248 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3249 			false, false);
3250 
3251 	/* xHC rejected the configure endpoint command for some reason, so we
3252 	 * leave the old ring intact and free our internal streams data
3253 	 * structure.
3254 	 */
3255 	if (ret < 0)
3256 		goto cleanup;
3257 
3258 	spin_lock_irqsave(&xhci->lock, flags);
3259 	for (i = 0; i < num_eps; i++) {
3260 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3262 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3263 			 udev->slot_id, ep_index);
3264 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3265 	}
3266 	xhci_free_command(xhci, config_cmd);
3267 	spin_unlock_irqrestore(&xhci->lock, flags);
3268 
3269 	/* Subtract 1 for stream 0, which drivers can't use */
3270 	return num_streams - 1;
3271 
3272 cleanup:
3273 	/* If it didn't work, free the streams! */
3274 	for (i = 0; i < num_eps; i++) {
3275 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3277 		vdev->eps[ep_index].stream_info = NULL;
3278 		/* FIXME Unset maxPstreams in endpoint context and
3279 		 * update deq ptr to point to normal string ring.
3280 		 */
3281 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3282 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3283 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3284 	}
3285 	xhci_free_command(xhci, config_cmd);
3286 	return -ENOMEM;
3287 }
3288 
3289 /* Transition the endpoint from using streams to being a "normal" endpoint
3290  * without streams.
3291  *
3292  * Modify the endpoint context state, submit a configure endpoint command,
3293  * and free all endpoint rings for streams if that completes successfully.
3294  */
3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3296 		struct usb_host_endpoint **eps, unsigned int num_eps,
3297 		gfp_t mem_flags)
3298 {
3299 	int i, ret;
3300 	struct xhci_hcd *xhci;
3301 	struct xhci_virt_device *vdev;
3302 	struct xhci_command *command;
3303 	struct xhci_input_control_ctx *ctrl_ctx;
3304 	unsigned int ep_index;
3305 	unsigned long flags;
3306 	u32 changed_ep_bitmask;
3307 
3308 	xhci = hcd_to_xhci(hcd);
3309 	vdev = xhci->devs[udev->slot_id];
3310 
3311 	/* Set up a configure endpoint command to remove the streams rings */
3312 	spin_lock_irqsave(&xhci->lock, flags);
3313 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3314 			udev, eps, num_eps);
3315 	if (changed_ep_bitmask == 0) {
3316 		spin_unlock_irqrestore(&xhci->lock, flags);
3317 		return -EINVAL;
3318 	}
3319 
3320 	/* Use the xhci_command structure from the first endpoint.  We may have
3321 	 * allocated too many, but the driver may call xhci_free_streams() for
3322 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3323 	 */
3324 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3325 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3326 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3327 	if (!ctrl_ctx) {
3328 		spin_unlock_irqrestore(&xhci->lock, flags);
3329 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3330 				__func__);
3331 		return -EINVAL;
3332 	}
3333 
3334 	for (i = 0; i < num_eps; i++) {
3335 		struct xhci_ep_ctx *ep_ctx;
3336 
3337 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3338 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3339 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3340 			EP_GETTING_NO_STREAMS;
3341 
3342 		xhci_endpoint_copy(xhci, command->in_ctx,
3343 				vdev->out_ctx, ep_index);
3344 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3345 				&vdev->eps[ep_index]);
3346 	}
3347 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3348 			vdev->out_ctx, ctrl_ctx,
3349 			changed_ep_bitmask, changed_ep_bitmask);
3350 	spin_unlock_irqrestore(&xhci->lock, flags);
3351 
3352 	/* Issue and wait for the configure endpoint command,
3353 	 * which must succeed.
3354 	 */
3355 	ret = xhci_configure_endpoint(xhci, udev, command,
3356 			false, true);
3357 
3358 	/* xHC rejected the configure endpoint command for some reason, so we
3359 	 * leave the streams rings intact.
3360 	 */
3361 	if (ret < 0)
3362 		return ret;
3363 
3364 	spin_lock_irqsave(&xhci->lock, flags);
3365 	for (i = 0; i < num_eps; i++) {
3366 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3367 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3368 		vdev->eps[ep_index].stream_info = NULL;
3369 		/* FIXME Unset maxPstreams in endpoint context and
3370 		 * update deq ptr to point to normal string ring.
3371 		 */
3372 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3373 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3374 	}
3375 	spin_unlock_irqrestore(&xhci->lock, flags);
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Deletes endpoint resources for endpoints that were active before a Reset
3382  * Device command, or a Disable Slot command.  The Reset Device command leaves
3383  * the control endpoint intact, whereas the Disable Slot command deletes it.
3384  *
3385  * Must be called with xhci->lock held.
3386  */
3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3388 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3389 {
3390 	int i;
3391 	unsigned int num_dropped_eps = 0;
3392 	unsigned int drop_flags = 0;
3393 
3394 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3395 		if (virt_dev->eps[i].ring) {
3396 			drop_flags |= 1 << i;
3397 			num_dropped_eps++;
3398 		}
3399 	}
3400 	xhci->num_active_eps -= num_dropped_eps;
3401 	if (num_dropped_eps)
3402 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3403 				"Dropped %u ep ctxs, flags = 0x%x, "
3404 				"%u now active.",
3405 				num_dropped_eps, drop_flags,
3406 				xhci->num_active_eps);
3407 }
3408 
3409 /*
3410  * This submits a Reset Device Command, which will set the device state to 0,
3411  * set the device address to 0, and disable all the endpoints except the default
3412  * control endpoint.  The USB core should come back and call
3413  * xhci_address_device(), and then re-set up the configuration.  If this is
3414  * called because of a usb_reset_and_verify_device(), then the old alternate
3415  * settings will be re-installed through the normal bandwidth allocation
3416  * functions.
3417  *
3418  * Wait for the Reset Device command to finish.  Remove all structures
3419  * associated with the endpoints that were disabled.  Clear the input device
3420  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3421  *
3422  * If the virt_dev to be reset does not exist or does not match the udev,
3423  * it means the device is lost, possibly due to the xHC restore error and
3424  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3425  * re-allocate the device.
3426  */
3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3428 {
3429 	int ret, i;
3430 	unsigned long flags;
3431 	struct xhci_hcd *xhci;
3432 	unsigned int slot_id;
3433 	struct xhci_virt_device *virt_dev;
3434 	struct xhci_command *reset_device_cmd;
3435 	int last_freed_endpoint;
3436 	struct xhci_slot_ctx *slot_ctx;
3437 	int old_active_eps = 0;
3438 
3439 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3440 	if (ret <= 0)
3441 		return ret;
3442 	xhci = hcd_to_xhci(hcd);
3443 	slot_id = udev->slot_id;
3444 	virt_dev = xhci->devs[slot_id];
3445 	if (!virt_dev) {
3446 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447 				"not exist. Re-allocate the device\n", slot_id);
3448 		ret = xhci_alloc_dev(hcd, udev);
3449 		if (ret == 1)
3450 			return 0;
3451 		else
3452 			return -EINVAL;
3453 	}
3454 
3455 	if (virt_dev->tt_info)
3456 		old_active_eps = virt_dev->tt_info->active_eps;
3457 
3458 	if (virt_dev->udev != udev) {
3459 		/* If the virt_dev and the udev does not match, this virt_dev
3460 		 * may belong to another udev.
3461 		 * Re-allocate the device.
3462 		 */
3463 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3464 				"not match the udev. Re-allocate the device\n",
3465 				slot_id);
3466 		ret = xhci_alloc_dev(hcd, udev);
3467 		if (ret == 1)
3468 			return 0;
3469 		else
3470 			return -EINVAL;
3471 	}
3472 
3473 	/* If device is not setup, there is no point in resetting it */
3474 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3475 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3476 						SLOT_STATE_DISABLED)
3477 		return 0;
3478 
3479 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3480 	/* Allocate the command structure that holds the struct completion.
3481 	 * Assume we're in process context, since the normal device reset
3482 	 * process has to wait for the device anyway.  Storage devices are
3483 	 * reset as part of error handling, so use GFP_NOIO instead of
3484 	 * GFP_KERNEL.
3485 	 */
3486 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3487 	if (!reset_device_cmd) {
3488 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3489 		return -ENOMEM;
3490 	}
3491 
3492 	/* Attempt to submit the Reset Device command to the command ring */
3493 	spin_lock_irqsave(&xhci->lock, flags);
3494 
3495 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3496 	if (ret) {
3497 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3498 		spin_unlock_irqrestore(&xhci->lock, flags);
3499 		goto command_cleanup;
3500 	}
3501 	xhci_ring_cmd_db(xhci);
3502 	spin_unlock_irqrestore(&xhci->lock, flags);
3503 
3504 	/* Wait for the Reset Device command to finish */
3505 	wait_for_completion(reset_device_cmd->completion);
3506 
3507 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508 	 * unless we tried to reset a slot ID that wasn't enabled,
3509 	 * or the device wasn't in the addressed or configured state.
3510 	 */
3511 	ret = reset_device_cmd->status;
3512 	switch (ret) {
3513 	case COMP_CMD_ABORT:
3514 	case COMP_CMD_STOP:
3515 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3516 		ret = -ETIME;
3517 		goto command_cleanup;
3518 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3519 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3520 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3521 				slot_id,
3522 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3523 		xhci_dbg(xhci, "Not freeing device rings.\n");
3524 		/* Don't treat this as an error.  May change my mind later. */
3525 		ret = 0;
3526 		goto command_cleanup;
3527 	case COMP_SUCCESS:
3528 		xhci_dbg(xhci, "Successful reset device command.\n");
3529 		break;
3530 	default:
3531 		if (xhci_is_vendor_info_code(xhci, ret))
3532 			break;
3533 		xhci_warn(xhci, "Unknown completion code %u for "
3534 				"reset device command.\n", ret);
3535 		ret = -EINVAL;
3536 		goto command_cleanup;
3537 	}
3538 
3539 	/* Free up host controller endpoint resources */
3540 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3541 		spin_lock_irqsave(&xhci->lock, flags);
3542 		/* Don't delete the default control endpoint resources */
3543 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3544 		spin_unlock_irqrestore(&xhci->lock, flags);
3545 	}
3546 
3547 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3548 	last_freed_endpoint = 1;
3549 	for (i = 1; i < 31; ++i) {
3550 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3551 
3552 		if (ep->ep_state & EP_HAS_STREAMS) {
3553 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3554 					xhci_get_endpoint_address(i));
3555 			xhci_free_stream_info(xhci, ep->stream_info);
3556 			ep->stream_info = NULL;
3557 			ep->ep_state &= ~EP_HAS_STREAMS;
3558 		}
3559 
3560 		if (ep->ring) {
3561 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3562 			last_freed_endpoint = i;
3563 		}
3564 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3565 			xhci_drop_ep_from_interval_table(xhci,
3566 					&virt_dev->eps[i].bw_info,
3567 					virt_dev->bw_table,
3568 					udev,
3569 					&virt_dev->eps[i],
3570 					virt_dev->tt_info);
3571 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3572 	}
3573 	/* If necessary, update the number of active TTs on this root port */
3574 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3575 
3576 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3577 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3578 	ret = 0;
3579 
3580 command_cleanup:
3581 	xhci_free_command(xhci, reset_device_cmd);
3582 	return ret;
3583 }
3584 
3585 /*
3586  * At this point, the struct usb_device is about to go away, the device has
3587  * disconnected, and all traffic has been stopped and the endpoints have been
3588  * disabled.  Free any HC data structures associated with that device.
3589  */
3590 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591 {
3592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593 	struct xhci_virt_device *virt_dev;
3594 	unsigned long flags;
3595 	u32 state;
3596 	int i, ret;
3597 	struct xhci_command *command;
3598 
3599 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3600 	if (!command)
3601 		return;
3602 
3603 #ifndef CONFIG_USB_DEFAULT_PERSIST
3604 	/*
3605 	 * We called pm_runtime_get_noresume when the device was attached.
3606 	 * Decrement the counter here to allow controller to runtime suspend
3607 	 * if no devices remain.
3608 	 */
3609 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3610 		pm_runtime_put_noidle(hcd->self.controller);
3611 #endif
3612 
3613 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3614 	/* If the host is halted due to driver unload, we still need to free the
3615 	 * device.
3616 	 */
3617 	if (ret <= 0 && ret != -ENODEV) {
3618 		kfree(command);
3619 		return;
3620 	}
3621 
3622 	virt_dev = xhci->devs[udev->slot_id];
3623 
3624 	/* Stop any wayward timer functions (which may grab the lock) */
3625 	for (i = 0; i < 31; ++i) {
3626 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3627 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3628 	}
3629 
3630 	spin_lock_irqsave(&xhci->lock, flags);
3631 	/* Don't disable the slot if the host controller is dead. */
3632 	state = readl(&xhci->op_regs->status);
3633 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3634 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3635 		xhci_free_virt_device(xhci, udev->slot_id);
3636 		spin_unlock_irqrestore(&xhci->lock, flags);
3637 		kfree(command);
3638 		return;
3639 	}
3640 
3641 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3642 				    udev->slot_id)) {
3643 		spin_unlock_irqrestore(&xhci->lock, flags);
3644 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3645 		return;
3646 	}
3647 	xhci_ring_cmd_db(xhci);
3648 	spin_unlock_irqrestore(&xhci->lock, flags);
3649 
3650 	/*
3651 	 * Event command completion handler will free any data structures
3652 	 * associated with the slot.  XXX Can free sleep?
3653 	 */
3654 }
3655 
3656 /*
3657  * Checks if we have enough host controller resources for the default control
3658  * endpoint.
3659  *
3660  * Must be called with xhci->lock held.
3661  */
3662 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3663 {
3664 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3665 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3666 				"Not enough ep ctxs: "
3667 				"%u active, need to add 1, limit is %u.",
3668 				xhci->num_active_eps, xhci->limit_active_eps);
3669 		return -ENOMEM;
3670 	}
3671 	xhci->num_active_eps += 1;
3672 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673 			"Adding 1 ep ctx, %u now active.",
3674 			xhci->num_active_eps);
3675 	return 0;
3676 }
3677 
3678 
3679 /*
3680  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3681  * timed out, or allocating memory failed.  Returns 1 on success.
3682  */
3683 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3684 {
3685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686 	unsigned long flags;
3687 	int ret, slot_id;
3688 	struct xhci_command *command;
3689 
3690 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3691 	if (!command)
3692 		return 0;
3693 
3694 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3695 	mutex_lock(&xhci->mutex);
3696 	spin_lock_irqsave(&xhci->lock, flags);
3697 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3698 	if (ret) {
3699 		spin_unlock_irqrestore(&xhci->lock, flags);
3700 		mutex_unlock(&xhci->mutex);
3701 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3702 		xhci_free_command(xhci, command);
3703 		return 0;
3704 	}
3705 	xhci_ring_cmd_db(xhci);
3706 	spin_unlock_irqrestore(&xhci->lock, flags);
3707 
3708 	wait_for_completion(command->completion);
3709 	slot_id = command->slot_id;
3710 	mutex_unlock(&xhci->mutex);
3711 
3712 	if (!slot_id || command->status != COMP_SUCCESS) {
3713 		xhci_err(xhci, "Error while assigning device slot ID\n");
3714 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3715 				HCS_MAX_SLOTS(
3716 					readl(&xhci->cap_regs->hcs_params1)));
3717 		xhci_free_command(xhci, command);
3718 		return 0;
3719 	}
3720 
3721 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3722 		spin_lock_irqsave(&xhci->lock, flags);
3723 		ret = xhci_reserve_host_control_ep_resources(xhci);
3724 		if (ret) {
3725 			spin_unlock_irqrestore(&xhci->lock, flags);
3726 			xhci_warn(xhci, "Not enough host resources, "
3727 					"active endpoint contexts = %u\n",
3728 					xhci->num_active_eps);
3729 			goto disable_slot;
3730 		}
3731 		spin_unlock_irqrestore(&xhci->lock, flags);
3732 	}
3733 	/* Use GFP_NOIO, since this function can be called from
3734 	 * xhci_discover_or_reset_device(), which may be called as part of
3735 	 * mass storage driver error handling.
3736 	 */
3737 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3738 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3739 		goto disable_slot;
3740 	}
3741 	udev->slot_id = slot_id;
3742 
3743 #ifndef CONFIG_USB_DEFAULT_PERSIST
3744 	/*
3745 	 * If resetting upon resume, we can't put the controller into runtime
3746 	 * suspend if there is a device attached.
3747 	 */
3748 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3749 		pm_runtime_get_noresume(hcd->self.controller);
3750 #endif
3751 
3752 
3753 	xhci_free_command(xhci, command);
3754 	/* Is this a LS or FS device under a HS hub? */
3755 	/* Hub or peripherial? */
3756 	return 1;
3757 
3758 disable_slot:
3759 	/* Disable slot, if we can do it without mem alloc */
3760 	spin_lock_irqsave(&xhci->lock, flags);
3761 	kfree(command->completion);
3762 	command->completion = NULL;
3763 	command->status = 0;
3764 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3765 				     udev->slot_id))
3766 		xhci_ring_cmd_db(xhci);
3767 	spin_unlock_irqrestore(&xhci->lock, flags);
3768 	return 0;
3769 }
3770 
3771 /*
3772  * Issue an Address Device command and optionally send a corresponding
3773  * SetAddress request to the device.
3774  */
3775 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3776 			     enum xhci_setup_dev setup)
3777 {
3778 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3779 	unsigned long flags;
3780 	struct xhci_virt_device *virt_dev;
3781 	int ret = 0;
3782 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3783 	struct xhci_slot_ctx *slot_ctx;
3784 	struct xhci_input_control_ctx *ctrl_ctx;
3785 	u64 temp_64;
3786 	struct xhci_command *command = NULL;
3787 
3788 	mutex_lock(&xhci->mutex);
3789 
3790 	if (xhci->xhc_state)	/* dying, removing or halted */
3791 		goto out;
3792 
3793 	if (!udev->slot_id) {
3794 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3795 				"Bad Slot ID %d", udev->slot_id);
3796 		ret = -EINVAL;
3797 		goto out;
3798 	}
3799 
3800 	virt_dev = xhci->devs[udev->slot_id];
3801 
3802 	if (WARN_ON(!virt_dev)) {
3803 		/*
3804 		 * In plug/unplug torture test with an NEC controller,
3805 		 * a zero-dereference was observed once due to virt_dev = 0.
3806 		 * Print useful debug rather than crash if it is observed again!
3807 		 */
3808 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3809 			udev->slot_id);
3810 		ret = -EINVAL;
3811 		goto out;
3812 	}
3813 
3814 	if (setup == SETUP_CONTEXT_ONLY) {
3815 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3816 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3817 		    SLOT_STATE_DEFAULT) {
3818 			xhci_dbg(xhci, "Slot already in default state\n");
3819 			goto out;
3820 		}
3821 	}
3822 
3823 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3824 	if (!command) {
3825 		ret = -ENOMEM;
3826 		goto out;
3827 	}
3828 
3829 	command->in_ctx = virt_dev->in_ctx;
3830 
3831 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3832 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3833 	if (!ctrl_ctx) {
3834 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3835 				__func__);
3836 		ret = -EINVAL;
3837 		goto out;
3838 	}
3839 	/*
3840 	 * If this is the first Set Address since device plug-in or
3841 	 * virt_device realloaction after a resume with an xHCI power loss,
3842 	 * then set up the slot context.
3843 	 */
3844 	if (!slot_ctx->dev_info)
3845 		xhci_setup_addressable_virt_dev(xhci, udev);
3846 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3847 	else
3848 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3849 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3850 	ctrl_ctx->drop_flags = 0;
3851 
3852 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3853 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3854 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3855 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3856 
3857 	spin_lock_irqsave(&xhci->lock, flags);
3858 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3859 					udev->slot_id, setup);
3860 	if (ret) {
3861 		spin_unlock_irqrestore(&xhci->lock, flags);
3862 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3863 				"FIXME: allocate a command ring segment");
3864 		goto out;
3865 	}
3866 	xhci_ring_cmd_db(xhci);
3867 	spin_unlock_irqrestore(&xhci->lock, flags);
3868 
3869 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3870 	wait_for_completion(command->completion);
3871 
3872 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3873 	 * the SetAddress() "recovery interval" required by USB and aborting the
3874 	 * command on a timeout.
3875 	 */
3876 	switch (command->status) {
3877 	case COMP_CMD_ABORT:
3878 	case COMP_CMD_STOP:
3879 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3880 		ret = -ETIME;
3881 		break;
3882 	case COMP_CTX_STATE:
3883 	case COMP_EBADSLT:
3884 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3885 			 act, udev->slot_id);
3886 		ret = -EINVAL;
3887 		break;
3888 	case COMP_TX_ERR:
3889 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3890 		ret = -EPROTO;
3891 		break;
3892 	case COMP_DEV_ERR:
3893 		dev_warn(&udev->dev,
3894 			 "ERROR: Incompatible device for setup %s command\n", act);
3895 		ret = -ENODEV;
3896 		break;
3897 	case COMP_SUCCESS:
3898 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899 			       "Successful setup %s command", act);
3900 		break;
3901 	default:
3902 		xhci_err(xhci,
3903 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3904 			 act, command->status);
3905 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3906 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3907 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3908 		ret = -EINVAL;
3909 		break;
3910 	}
3911 	if (ret)
3912 		goto out;
3913 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3914 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915 			"Op regs DCBAA ptr = %#016llx", temp_64);
3916 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3917 		"Slot ID %d dcbaa entry @%p = %#016llx",
3918 		udev->slot_id,
3919 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3920 		(unsigned long long)
3921 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3922 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3923 			"Output Context DMA address = %#08llx",
3924 			(unsigned long long)virt_dev->out_ctx->dma);
3925 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3926 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3927 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3928 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3929 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3930 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3931 	/*
3932 	 * USB core uses address 1 for the roothubs, so we add one to the
3933 	 * address given back to us by the HC.
3934 	 */
3935 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3936 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3937 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3938 	/* Zero the input context control for later use */
3939 	ctrl_ctx->add_flags = 0;
3940 	ctrl_ctx->drop_flags = 0;
3941 
3942 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3943 		       "Internal device address = %d",
3944 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3945 out:
3946 	mutex_unlock(&xhci->mutex);
3947 	if (command) {
3948 		kfree(command->completion);
3949 		kfree(command);
3950 	}
3951 	return ret;
3952 }
3953 
3954 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3955 {
3956 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3957 }
3958 
3959 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3960 {
3961 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3962 }
3963 
3964 /*
3965  * Transfer the port index into real index in the HW port status
3966  * registers. Caculate offset between the port's PORTSC register
3967  * and port status base. Divide the number of per port register
3968  * to get the real index. The raw port number bases 1.
3969  */
3970 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3971 {
3972 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3973 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3974 	__le32 __iomem *addr;
3975 	int raw_port;
3976 
3977 	if (hcd->speed < HCD_USB3)
3978 		addr = xhci->usb2_ports[port1 - 1];
3979 	else
3980 		addr = xhci->usb3_ports[port1 - 1];
3981 
3982 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3983 	return raw_port;
3984 }
3985 
3986 /*
3987  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3988  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3989  */
3990 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3991 			struct usb_device *udev, u16 max_exit_latency)
3992 {
3993 	struct xhci_virt_device *virt_dev;
3994 	struct xhci_command *command;
3995 	struct xhci_input_control_ctx *ctrl_ctx;
3996 	struct xhci_slot_ctx *slot_ctx;
3997 	unsigned long flags;
3998 	int ret;
3999 
4000 	spin_lock_irqsave(&xhci->lock, flags);
4001 
4002 	virt_dev = xhci->devs[udev->slot_id];
4003 
4004 	/*
4005 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4006 	 * xHC was re-initialized. Exit latency will be set later after
4007 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4008 	 */
4009 
4010 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4011 		spin_unlock_irqrestore(&xhci->lock, flags);
4012 		return 0;
4013 	}
4014 
4015 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4016 	command = xhci->lpm_command;
4017 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4018 	if (!ctrl_ctx) {
4019 		spin_unlock_irqrestore(&xhci->lock, flags);
4020 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4021 				__func__);
4022 		return -ENOMEM;
4023 	}
4024 
4025 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4026 	spin_unlock_irqrestore(&xhci->lock, flags);
4027 
4028 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4029 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4030 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4031 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4032 	slot_ctx->dev_state = 0;
4033 
4034 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4035 			"Set up evaluate context for LPM MEL change.");
4036 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4037 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4038 
4039 	/* Issue and wait for the evaluate context command. */
4040 	ret = xhci_configure_endpoint(xhci, udev, command,
4041 			true, true);
4042 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4043 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4044 
4045 	if (!ret) {
4046 		spin_lock_irqsave(&xhci->lock, flags);
4047 		virt_dev->current_mel = max_exit_latency;
4048 		spin_unlock_irqrestore(&xhci->lock, flags);
4049 	}
4050 	return ret;
4051 }
4052 
4053 #ifdef CONFIG_PM
4054 
4055 /* BESL to HIRD Encoding array for USB2 LPM */
4056 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4057 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4058 
4059 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4060 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4061 					struct usb_device *udev)
4062 {
4063 	int u2del, besl, besl_host;
4064 	int besl_device = 0;
4065 	u32 field;
4066 
4067 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4068 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4069 
4070 	if (field & USB_BESL_SUPPORT) {
4071 		for (besl_host = 0; besl_host < 16; besl_host++) {
4072 			if (xhci_besl_encoding[besl_host] >= u2del)
4073 				break;
4074 		}
4075 		/* Use baseline BESL value as default */
4076 		if (field & USB_BESL_BASELINE_VALID)
4077 			besl_device = USB_GET_BESL_BASELINE(field);
4078 		else if (field & USB_BESL_DEEP_VALID)
4079 			besl_device = USB_GET_BESL_DEEP(field);
4080 	} else {
4081 		if (u2del <= 50)
4082 			besl_host = 0;
4083 		else
4084 			besl_host = (u2del - 51) / 75 + 1;
4085 	}
4086 
4087 	besl = besl_host + besl_device;
4088 	if (besl > 15)
4089 		besl = 15;
4090 
4091 	return besl;
4092 }
4093 
4094 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4095 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4096 {
4097 	u32 field;
4098 	int l1;
4099 	int besld = 0;
4100 	int hirdm = 0;
4101 
4102 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4103 
4104 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4105 	l1 = udev->l1_params.timeout / 256;
4106 
4107 	/* device has preferred BESLD */
4108 	if (field & USB_BESL_DEEP_VALID) {
4109 		besld = USB_GET_BESL_DEEP(field);
4110 		hirdm = 1;
4111 	}
4112 
4113 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4114 }
4115 
4116 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4117 			struct usb_device *udev, int enable)
4118 {
4119 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4120 	__le32 __iomem	**port_array;
4121 	__le32 __iomem	*pm_addr, *hlpm_addr;
4122 	u32		pm_val, hlpm_val, field;
4123 	unsigned int	port_num;
4124 	unsigned long	flags;
4125 	int		hird, exit_latency;
4126 	int		ret;
4127 
4128 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4129 			!udev->lpm_capable)
4130 		return -EPERM;
4131 
4132 	if (!udev->parent || udev->parent->parent ||
4133 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4134 		return -EPERM;
4135 
4136 	if (udev->usb2_hw_lpm_capable != 1)
4137 		return -EPERM;
4138 
4139 	spin_lock_irqsave(&xhci->lock, flags);
4140 
4141 	port_array = xhci->usb2_ports;
4142 	port_num = udev->portnum - 1;
4143 	pm_addr = port_array[port_num] + PORTPMSC;
4144 	pm_val = readl(pm_addr);
4145 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4146 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4147 
4148 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4149 			enable ? "enable" : "disable", port_num + 1);
4150 
4151 	if (enable) {
4152 		/* Host supports BESL timeout instead of HIRD */
4153 		if (udev->usb2_hw_lpm_besl_capable) {
4154 			/* if device doesn't have a preferred BESL value use a
4155 			 * default one which works with mixed HIRD and BESL
4156 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4157 			 */
4158 			if ((field & USB_BESL_SUPPORT) &&
4159 			    (field & USB_BESL_BASELINE_VALID))
4160 				hird = USB_GET_BESL_BASELINE(field);
4161 			else
4162 				hird = udev->l1_params.besl;
4163 
4164 			exit_latency = xhci_besl_encoding[hird];
4165 			spin_unlock_irqrestore(&xhci->lock, flags);
4166 
4167 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4168 			 * input context for link powermanagement evaluate
4169 			 * context commands. It is protected by hcd->bandwidth
4170 			 * mutex and is shared by all devices. We need to set
4171 			 * the max ext latency in USB 2 BESL LPM as well, so
4172 			 * use the same mutex and xhci_change_max_exit_latency()
4173 			 */
4174 			mutex_lock(hcd->bandwidth_mutex);
4175 			ret = xhci_change_max_exit_latency(xhci, udev,
4176 							   exit_latency);
4177 			mutex_unlock(hcd->bandwidth_mutex);
4178 
4179 			if (ret < 0)
4180 				return ret;
4181 			spin_lock_irqsave(&xhci->lock, flags);
4182 
4183 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4184 			writel(hlpm_val, hlpm_addr);
4185 			/* flush write */
4186 			readl(hlpm_addr);
4187 		} else {
4188 			hird = xhci_calculate_hird_besl(xhci, udev);
4189 		}
4190 
4191 		pm_val &= ~PORT_HIRD_MASK;
4192 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4193 		writel(pm_val, pm_addr);
4194 		pm_val = readl(pm_addr);
4195 		pm_val |= PORT_HLE;
4196 		writel(pm_val, pm_addr);
4197 		/* flush write */
4198 		readl(pm_addr);
4199 	} else {
4200 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4201 		writel(pm_val, pm_addr);
4202 		/* flush write */
4203 		readl(pm_addr);
4204 		if (udev->usb2_hw_lpm_besl_capable) {
4205 			spin_unlock_irqrestore(&xhci->lock, flags);
4206 			mutex_lock(hcd->bandwidth_mutex);
4207 			xhci_change_max_exit_latency(xhci, udev, 0);
4208 			mutex_unlock(hcd->bandwidth_mutex);
4209 			return 0;
4210 		}
4211 	}
4212 
4213 	spin_unlock_irqrestore(&xhci->lock, flags);
4214 	return 0;
4215 }
4216 
4217 /* check if a usb2 port supports a given extened capability protocol
4218  * only USB2 ports extended protocol capability values are cached.
4219  * Return 1 if capability is supported
4220  */
4221 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4222 					   unsigned capability)
4223 {
4224 	u32 port_offset, port_count;
4225 	int i;
4226 
4227 	for (i = 0; i < xhci->num_ext_caps; i++) {
4228 		if (xhci->ext_caps[i] & capability) {
4229 			/* port offsets starts at 1 */
4230 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4231 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4232 			if (port >= port_offset &&
4233 			    port < port_offset + port_count)
4234 				return 1;
4235 		}
4236 	}
4237 	return 0;
4238 }
4239 
4240 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4241 {
4242 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4243 	int		portnum = udev->portnum - 1;
4244 
4245 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4246 			!udev->lpm_capable)
4247 		return 0;
4248 
4249 	/* we only support lpm for non-hub device connected to root hub yet */
4250 	if (!udev->parent || udev->parent->parent ||
4251 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4252 		return 0;
4253 
4254 	if (xhci->hw_lpm_support == 1 &&
4255 			xhci_check_usb2_port_capability(
4256 				xhci, portnum, XHCI_HLC)) {
4257 		udev->usb2_hw_lpm_capable = 1;
4258 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4259 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4260 		if (xhci_check_usb2_port_capability(xhci, portnum,
4261 					XHCI_BLC))
4262 			udev->usb2_hw_lpm_besl_capable = 1;
4263 	}
4264 
4265 	return 0;
4266 }
4267 
4268 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4269 
4270 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4271 static unsigned long long xhci_service_interval_to_ns(
4272 		struct usb_endpoint_descriptor *desc)
4273 {
4274 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4275 }
4276 
4277 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4278 		enum usb3_link_state state)
4279 {
4280 	unsigned long long sel;
4281 	unsigned long long pel;
4282 	unsigned int max_sel_pel;
4283 	char *state_name;
4284 
4285 	switch (state) {
4286 	case USB3_LPM_U1:
4287 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4288 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4289 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4290 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4291 		state_name = "U1";
4292 		break;
4293 	case USB3_LPM_U2:
4294 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4295 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4296 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4297 		state_name = "U2";
4298 		break;
4299 	default:
4300 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4301 				__func__);
4302 		return USB3_LPM_DISABLED;
4303 	}
4304 
4305 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4306 		return USB3_LPM_DEVICE_INITIATED;
4307 
4308 	if (sel > max_sel_pel)
4309 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4310 				"due to long SEL %llu ms\n",
4311 				state_name, sel);
4312 	else
4313 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4314 				"due to long PEL %llu ms\n",
4315 				state_name, pel);
4316 	return USB3_LPM_DISABLED;
4317 }
4318 
4319 /* The U1 timeout should be the maximum of the following values:
4320  *  - For control endpoints, U1 system exit latency (SEL) * 3
4321  *  - For bulk endpoints, U1 SEL * 5
4322  *  - For interrupt endpoints:
4323  *    - Notification EPs, U1 SEL * 3
4324  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4325  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4326  */
4327 static unsigned long long xhci_calculate_intel_u1_timeout(
4328 		struct usb_device *udev,
4329 		struct usb_endpoint_descriptor *desc)
4330 {
4331 	unsigned long long timeout_ns;
4332 	int ep_type;
4333 	int intr_type;
4334 
4335 	ep_type = usb_endpoint_type(desc);
4336 	switch (ep_type) {
4337 	case USB_ENDPOINT_XFER_CONTROL:
4338 		timeout_ns = udev->u1_params.sel * 3;
4339 		break;
4340 	case USB_ENDPOINT_XFER_BULK:
4341 		timeout_ns = udev->u1_params.sel * 5;
4342 		break;
4343 	case USB_ENDPOINT_XFER_INT:
4344 		intr_type = usb_endpoint_interrupt_type(desc);
4345 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4346 			timeout_ns = udev->u1_params.sel * 3;
4347 			break;
4348 		}
4349 		/* Otherwise the calculation is the same as isoc eps */
4350 	case USB_ENDPOINT_XFER_ISOC:
4351 		timeout_ns = xhci_service_interval_to_ns(desc);
4352 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4353 		if (timeout_ns < udev->u1_params.sel * 2)
4354 			timeout_ns = udev->u1_params.sel * 2;
4355 		break;
4356 	default:
4357 		return 0;
4358 	}
4359 
4360 	return timeout_ns;
4361 }
4362 
4363 /* Returns the hub-encoded U1 timeout value. */
4364 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4365 		struct usb_device *udev,
4366 		struct usb_endpoint_descriptor *desc)
4367 {
4368 	unsigned long long timeout_ns;
4369 
4370 	if (xhci->quirks & XHCI_INTEL_HOST)
4371 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4372 	else
4373 		timeout_ns = udev->u1_params.sel;
4374 
4375 	/* The U1 timeout is encoded in 1us intervals.
4376 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4377 	 */
4378 	if (timeout_ns == USB3_LPM_DISABLED)
4379 		timeout_ns = 1;
4380 	else
4381 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4382 
4383 	/* If the necessary timeout value is bigger than what we can set in the
4384 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4385 	 */
4386 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4387 		return timeout_ns;
4388 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4389 			"due to long timeout %llu ms\n", timeout_ns);
4390 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4391 }
4392 
4393 /* The U2 timeout should be the maximum of:
4394  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4395  *  - largest bInterval of any active periodic endpoint (to avoid going
4396  *    into lower power link states between intervals).
4397  *  - the U2 Exit Latency of the device
4398  */
4399 static unsigned long long xhci_calculate_intel_u2_timeout(
4400 		struct usb_device *udev,
4401 		struct usb_endpoint_descriptor *desc)
4402 {
4403 	unsigned long long timeout_ns;
4404 	unsigned long long u2_del_ns;
4405 
4406 	timeout_ns = 10 * 1000 * 1000;
4407 
4408 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4409 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4410 		timeout_ns = xhci_service_interval_to_ns(desc);
4411 
4412 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4413 	if (u2_del_ns > timeout_ns)
4414 		timeout_ns = u2_del_ns;
4415 
4416 	return timeout_ns;
4417 }
4418 
4419 /* Returns the hub-encoded U2 timeout value. */
4420 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4421 		struct usb_device *udev,
4422 		struct usb_endpoint_descriptor *desc)
4423 {
4424 	unsigned long long timeout_ns;
4425 
4426 	if (xhci->quirks & XHCI_INTEL_HOST)
4427 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4428 	else
4429 		timeout_ns = udev->u2_params.sel;
4430 
4431 	/* The U2 timeout is encoded in 256us intervals */
4432 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4433 	/* If the necessary timeout value is bigger than what we can set in the
4434 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4435 	 */
4436 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4437 		return timeout_ns;
4438 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4439 			"due to long timeout %llu ms\n", timeout_ns);
4440 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4441 }
4442 
4443 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4444 		struct usb_device *udev,
4445 		struct usb_endpoint_descriptor *desc,
4446 		enum usb3_link_state state,
4447 		u16 *timeout)
4448 {
4449 	if (state == USB3_LPM_U1)
4450 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4451 	else if (state == USB3_LPM_U2)
4452 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4453 
4454 	return USB3_LPM_DISABLED;
4455 }
4456 
4457 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4458 		struct usb_device *udev,
4459 		struct usb_endpoint_descriptor *desc,
4460 		enum usb3_link_state state,
4461 		u16 *timeout)
4462 {
4463 	u16 alt_timeout;
4464 
4465 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4466 		desc, state, timeout);
4467 
4468 	/* If we found we can't enable hub-initiated LPM, or
4469 	 * the U1 or U2 exit latency was too high to allow
4470 	 * device-initiated LPM as well, just stop searching.
4471 	 */
4472 	if (alt_timeout == USB3_LPM_DISABLED ||
4473 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4474 		*timeout = alt_timeout;
4475 		return -E2BIG;
4476 	}
4477 	if (alt_timeout > *timeout)
4478 		*timeout = alt_timeout;
4479 	return 0;
4480 }
4481 
4482 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4483 		struct usb_device *udev,
4484 		struct usb_host_interface *alt,
4485 		enum usb3_link_state state,
4486 		u16 *timeout)
4487 {
4488 	int j;
4489 
4490 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4491 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4492 					&alt->endpoint[j].desc, state, timeout))
4493 			return -E2BIG;
4494 		continue;
4495 	}
4496 	return 0;
4497 }
4498 
4499 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4500 		enum usb3_link_state state)
4501 {
4502 	struct usb_device *parent;
4503 	unsigned int num_hubs;
4504 
4505 	if (state == USB3_LPM_U2)
4506 		return 0;
4507 
4508 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4509 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4510 			parent = parent->parent)
4511 		num_hubs++;
4512 
4513 	if (num_hubs < 2)
4514 		return 0;
4515 
4516 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4517 			" below second-tier hub.\n");
4518 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4519 			"to decrease power consumption.\n");
4520 	return -E2BIG;
4521 }
4522 
4523 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4524 		struct usb_device *udev,
4525 		enum usb3_link_state state)
4526 {
4527 	if (xhci->quirks & XHCI_INTEL_HOST)
4528 		return xhci_check_intel_tier_policy(udev, state);
4529 	else
4530 		return 0;
4531 }
4532 
4533 /* Returns the U1 or U2 timeout that should be enabled.
4534  * If the tier check or timeout setting functions return with a non-zero exit
4535  * code, that means the timeout value has been finalized and we shouldn't look
4536  * at any more endpoints.
4537  */
4538 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4539 			struct usb_device *udev, enum usb3_link_state state)
4540 {
4541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4542 	struct usb_host_config *config;
4543 	char *state_name;
4544 	int i;
4545 	u16 timeout = USB3_LPM_DISABLED;
4546 
4547 	if (state == USB3_LPM_U1)
4548 		state_name = "U1";
4549 	else if (state == USB3_LPM_U2)
4550 		state_name = "U2";
4551 	else {
4552 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4553 				state);
4554 		return timeout;
4555 	}
4556 
4557 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4558 		return timeout;
4559 
4560 	/* Gather some information about the currently installed configuration
4561 	 * and alternate interface settings.
4562 	 */
4563 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4564 			state, &timeout))
4565 		return timeout;
4566 
4567 	config = udev->actconfig;
4568 	if (!config)
4569 		return timeout;
4570 
4571 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4572 		struct usb_driver *driver;
4573 		struct usb_interface *intf = config->interface[i];
4574 
4575 		if (!intf)
4576 			continue;
4577 
4578 		/* Check if any currently bound drivers want hub-initiated LPM
4579 		 * disabled.
4580 		 */
4581 		if (intf->dev.driver) {
4582 			driver = to_usb_driver(intf->dev.driver);
4583 			if (driver && driver->disable_hub_initiated_lpm) {
4584 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4585 						"at request of driver %s\n",
4586 						state_name, driver->name);
4587 				return xhci_get_timeout_no_hub_lpm(udev, state);
4588 			}
4589 		}
4590 
4591 		/* Not sure how this could happen... */
4592 		if (!intf->cur_altsetting)
4593 			continue;
4594 
4595 		if (xhci_update_timeout_for_interface(xhci, udev,
4596 					intf->cur_altsetting,
4597 					state, &timeout))
4598 			return timeout;
4599 	}
4600 	return timeout;
4601 }
4602 
4603 static int calculate_max_exit_latency(struct usb_device *udev,
4604 		enum usb3_link_state state_changed,
4605 		u16 hub_encoded_timeout)
4606 {
4607 	unsigned long long u1_mel_us = 0;
4608 	unsigned long long u2_mel_us = 0;
4609 	unsigned long long mel_us = 0;
4610 	bool disabling_u1;
4611 	bool disabling_u2;
4612 	bool enabling_u1;
4613 	bool enabling_u2;
4614 
4615 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4616 			hub_encoded_timeout == USB3_LPM_DISABLED);
4617 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4618 			hub_encoded_timeout == USB3_LPM_DISABLED);
4619 
4620 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4621 			hub_encoded_timeout != USB3_LPM_DISABLED);
4622 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4623 			hub_encoded_timeout != USB3_LPM_DISABLED);
4624 
4625 	/* If U1 was already enabled and we're not disabling it,
4626 	 * or we're going to enable U1, account for the U1 max exit latency.
4627 	 */
4628 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4629 			enabling_u1)
4630 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4631 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4632 			enabling_u2)
4633 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4634 
4635 	if (u1_mel_us > u2_mel_us)
4636 		mel_us = u1_mel_us;
4637 	else
4638 		mel_us = u2_mel_us;
4639 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4640 	if (mel_us > MAX_EXIT) {
4641 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4642 				"is too big.\n", mel_us);
4643 		return -E2BIG;
4644 	}
4645 	return mel_us;
4646 }
4647 
4648 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4649 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4650 			struct usb_device *udev, enum usb3_link_state state)
4651 {
4652 	struct xhci_hcd	*xhci;
4653 	u16 hub_encoded_timeout;
4654 	int mel;
4655 	int ret;
4656 
4657 	xhci = hcd_to_xhci(hcd);
4658 	/* The LPM timeout values are pretty host-controller specific, so don't
4659 	 * enable hub-initiated timeouts unless the vendor has provided
4660 	 * information about their timeout algorithm.
4661 	 */
4662 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4663 			!xhci->devs[udev->slot_id])
4664 		return USB3_LPM_DISABLED;
4665 
4666 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4667 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4668 	if (mel < 0) {
4669 		/* Max Exit Latency is too big, disable LPM. */
4670 		hub_encoded_timeout = USB3_LPM_DISABLED;
4671 		mel = 0;
4672 	}
4673 
4674 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4675 	if (ret)
4676 		return ret;
4677 	return hub_encoded_timeout;
4678 }
4679 
4680 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681 			struct usb_device *udev, enum usb3_link_state state)
4682 {
4683 	struct xhci_hcd	*xhci;
4684 	u16 mel;
4685 
4686 	xhci = hcd_to_xhci(hcd);
4687 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4688 			!xhci->devs[udev->slot_id])
4689 		return 0;
4690 
4691 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4692 	return xhci_change_max_exit_latency(xhci, udev, mel);
4693 }
4694 #else /* CONFIG_PM */
4695 
4696 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4697 				struct usb_device *udev, int enable)
4698 {
4699 	return 0;
4700 }
4701 
4702 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4703 {
4704 	return 0;
4705 }
4706 
4707 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4708 			struct usb_device *udev, enum usb3_link_state state)
4709 {
4710 	return USB3_LPM_DISABLED;
4711 }
4712 
4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714 			struct usb_device *udev, enum usb3_link_state state)
4715 {
4716 	return 0;
4717 }
4718 #endif	/* CONFIG_PM */
4719 
4720 /*-------------------------------------------------------------------------*/
4721 
4722 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4723  * internal data structures for the device.
4724  */
4725 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4726 			struct usb_tt *tt, gfp_t mem_flags)
4727 {
4728 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4729 	struct xhci_virt_device *vdev;
4730 	struct xhci_command *config_cmd;
4731 	struct xhci_input_control_ctx *ctrl_ctx;
4732 	struct xhci_slot_ctx *slot_ctx;
4733 	unsigned long flags;
4734 	unsigned think_time;
4735 	int ret;
4736 
4737 	/* Ignore root hubs */
4738 	if (!hdev->parent)
4739 		return 0;
4740 
4741 	vdev = xhci->devs[hdev->slot_id];
4742 	if (!vdev) {
4743 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4744 		return -EINVAL;
4745 	}
4746 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4747 	if (!config_cmd) {
4748 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4749 		return -ENOMEM;
4750 	}
4751 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4752 	if (!ctrl_ctx) {
4753 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4754 				__func__);
4755 		xhci_free_command(xhci, config_cmd);
4756 		return -ENOMEM;
4757 	}
4758 
4759 	spin_lock_irqsave(&xhci->lock, flags);
4760 	if (hdev->speed == USB_SPEED_HIGH &&
4761 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4762 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4763 		xhci_free_command(xhci, config_cmd);
4764 		spin_unlock_irqrestore(&xhci->lock, flags);
4765 		return -ENOMEM;
4766 	}
4767 
4768 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4769 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4770 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4771 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4772 	/*
4773 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4774 	 * but it may be already set to 1 when setup an xHCI virtual
4775 	 * device, so clear it anyway.
4776 	 */
4777 	if (tt->multi)
4778 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4779 	else if (hdev->speed == USB_SPEED_FULL)
4780 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4781 
4782 	if (xhci->hci_version > 0x95) {
4783 		xhci_dbg(xhci, "xHCI version %x needs hub "
4784 				"TT think time and number of ports\n",
4785 				(unsigned int) xhci->hci_version);
4786 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4787 		/* Set TT think time - convert from ns to FS bit times.
4788 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4789 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4790 		 *
4791 		 * xHCI 1.0: this field shall be 0 if the device is not a
4792 		 * High-spped hub.
4793 		 */
4794 		think_time = tt->think_time;
4795 		if (think_time != 0)
4796 			think_time = (think_time / 666) - 1;
4797 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4798 			slot_ctx->tt_info |=
4799 				cpu_to_le32(TT_THINK_TIME(think_time));
4800 	} else {
4801 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4802 				"TT think time or number of ports\n",
4803 				(unsigned int) xhci->hci_version);
4804 	}
4805 	slot_ctx->dev_state = 0;
4806 	spin_unlock_irqrestore(&xhci->lock, flags);
4807 
4808 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4809 			(xhci->hci_version > 0x95) ?
4810 			"configure endpoint" : "evaluate context");
4811 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4812 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4813 
4814 	/* Issue and wait for the configure endpoint or
4815 	 * evaluate context command.
4816 	 */
4817 	if (xhci->hci_version > 0x95)
4818 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4819 				false, false);
4820 	else
4821 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4822 				true, false);
4823 
4824 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4825 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4826 
4827 	xhci_free_command(xhci, config_cmd);
4828 	return ret;
4829 }
4830 
4831 int xhci_get_frame(struct usb_hcd *hcd)
4832 {
4833 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834 	/* EHCI mods by the periodic size.  Why? */
4835 	return readl(&xhci->run_regs->microframe_index) >> 3;
4836 }
4837 
4838 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4839 {
4840 	struct xhci_hcd		*xhci;
4841 	struct device		*dev = hcd->self.controller;
4842 	int			retval;
4843 
4844 	/* Accept arbitrarily long scatter-gather lists */
4845 	hcd->self.sg_tablesize = ~0;
4846 
4847 	/* support to build packet from discontinuous buffers */
4848 	hcd->self.no_sg_constraint = 1;
4849 
4850 	/* XHCI controllers don't stop the ep queue on short packets :| */
4851 	hcd->self.no_stop_on_short = 1;
4852 
4853 	xhci = hcd_to_xhci(hcd);
4854 
4855 	if (usb_hcd_is_primary_hcd(hcd)) {
4856 		xhci->main_hcd = hcd;
4857 		/* Mark the first roothub as being USB 2.0.
4858 		 * The xHCI driver will register the USB 3.0 roothub.
4859 		 */
4860 		hcd->speed = HCD_USB2;
4861 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4862 		/*
4863 		 * USB 2.0 roothub under xHCI has an integrated TT,
4864 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4865 		 * companion controller.
4866 		 */
4867 		hcd->has_tt = 1;
4868 	} else {
4869 		if (xhci->sbrn == 0x31) {
4870 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4871 			hcd->speed = HCD_USB31;
4872 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4873 		}
4874 		/* xHCI private pointer was set in xhci_pci_probe for the second
4875 		 * registered roothub.
4876 		 */
4877 		return 0;
4878 	}
4879 
4880 	mutex_init(&xhci->mutex);
4881 	xhci->cap_regs = hcd->regs;
4882 	xhci->op_regs = hcd->regs +
4883 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4884 	xhci->run_regs = hcd->regs +
4885 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4886 	/* Cache read-only capability registers */
4887 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4888 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4889 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4890 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4891 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4892 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4893 	if (xhci->hci_version > 0x100)
4894 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4895 	xhci_print_registers(xhci);
4896 
4897 	xhci->quirks |= quirks;
4898 
4899 	get_quirks(dev, xhci);
4900 
4901 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4902 	 * success event after a short transfer. This quirk will ignore such
4903 	 * spurious event.
4904 	 */
4905 	if (xhci->hci_version > 0x96)
4906 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4907 
4908 	/* Make sure the HC is halted. */
4909 	retval = xhci_halt(xhci);
4910 	if (retval)
4911 		return retval;
4912 
4913 	xhci_dbg(xhci, "Resetting HCD\n");
4914 	/* Reset the internal HC memory state and registers. */
4915 	retval = xhci_reset(xhci);
4916 	if (retval)
4917 		return retval;
4918 	xhci_dbg(xhci, "Reset complete\n");
4919 
4920 	/*
4921 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4922 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4923 	 * address memory pointers actually. So, this driver clears the AC64
4924 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4925 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4926 	 */
4927 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4928 		xhci->hcc_params &= ~BIT(0);
4929 
4930 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4931 	 * if xHC supports 64-bit addressing */
4932 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4933 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4934 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4935 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4936 	} else {
4937 		/*
4938 		 * This is to avoid error in cases where a 32-bit USB
4939 		 * controller is used on a 64-bit capable system.
4940 		 */
4941 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4942 		if (retval)
4943 			return retval;
4944 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4945 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4946 	}
4947 
4948 	xhci_dbg(xhci, "Calling HCD init\n");
4949 	/* Initialize HCD and host controller data structures. */
4950 	retval = xhci_init(hcd);
4951 	if (retval)
4952 		return retval;
4953 	xhci_dbg(xhci, "Called HCD init\n");
4954 
4955 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4956 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4957 
4958 	return 0;
4959 }
4960 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4961 
4962 static const struct hc_driver xhci_hc_driver = {
4963 	.description =		"xhci-hcd",
4964 	.product_desc =		"xHCI Host Controller",
4965 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4966 
4967 	/*
4968 	 * generic hardware linkage
4969 	 */
4970 	.irq =			xhci_irq,
4971 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4972 
4973 	/*
4974 	 * basic lifecycle operations
4975 	 */
4976 	.reset =		NULL, /* set in xhci_init_driver() */
4977 	.start =		xhci_run,
4978 	.stop =			xhci_stop,
4979 	.shutdown =		xhci_shutdown,
4980 
4981 	/*
4982 	 * managing i/o requests and associated device resources
4983 	 */
4984 	.urb_enqueue =		xhci_urb_enqueue,
4985 	.urb_dequeue =		xhci_urb_dequeue,
4986 	.alloc_dev =		xhci_alloc_dev,
4987 	.free_dev =		xhci_free_dev,
4988 	.alloc_streams =	xhci_alloc_streams,
4989 	.free_streams =		xhci_free_streams,
4990 	.add_endpoint =		xhci_add_endpoint,
4991 	.drop_endpoint =	xhci_drop_endpoint,
4992 	.endpoint_reset =	xhci_endpoint_reset,
4993 	.check_bandwidth =	xhci_check_bandwidth,
4994 	.reset_bandwidth =	xhci_reset_bandwidth,
4995 	.address_device =	xhci_address_device,
4996 	.enable_device =	xhci_enable_device,
4997 	.update_hub_device =	xhci_update_hub_device,
4998 	.reset_device =		xhci_discover_or_reset_device,
4999 
5000 	/*
5001 	 * scheduling support
5002 	 */
5003 	.get_frame_number =	xhci_get_frame,
5004 
5005 	/*
5006 	 * root hub support
5007 	 */
5008 	.hub_control =		xhci_hub_control,
5009 	.hub_status_data =	xhci_hub_status_data,
5010 	.bus_suspend =		xhci_bus_suspend,
5011 	.bus_resume =		xhci_bus_resume,
5012 
5013 	/*
5014 	 * call back when device connected and addressed
5015 	 */
5016 	.update_device =        xhci_update_device,
5017 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5018 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5019 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5020 	.find_raw_port_number =	xhci_find_raw_port_number,
5021 };
5022 
5023 void xhci_init_driver(struct hc_driver *drv,
5024 		      const struct xhci_driver_overrides *over)
5025 {
5026 	BUG_ON(!over);
5027 
5028 	/* Copy the generic table to drv then apply the overrides */
5029 	*drv = xhci_hc_driver;
5030 
5031 	if (over) {
5032 		drv->hcd_priv_size += over->extra_priv_size;
5033 		if (over->reset)
5034 			drv->reset = over->reset;
5035 		if (over->start)
5036 			drv->start = over->start;
5037 	}
5038 }
5039 EXPORT_SYMBOL_GPL(xhci_init_driver);
5040 
5041 MODULE_DESCRIPTION(DRIVER_DESC);
5042 MODULE_AUTHOR(DRIVER_AUTHOR);
5043 MODULE_LICENSE("GPL");
5044 
5045 static int __init xhci_hcd_init(void)
5046 {
5047 	/*
5048 	 * Check the compiler generated sizes of structures that must be laid
5049 	 * out in specific ways for hardware access.
5050 	 */
5051 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5052 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5053 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5054 	/* xhci_device_control has eight fields, and also
5055 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5056 	 */
5057 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5058 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5059 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5060 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5061 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5062 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5063 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5064 
5065 	if (usb_disabled())
5066 		return -ENODEV;
5067 
5068 	return 0;
5069 }
5070 
5071 /*
5072  * If an init function is provided, an exit function must also be provided
5073  * to allow module unload.
5074  */
5075 static void __exit xhci_hcd_fini(void) { }
5076 
5077 module_init(xhci_hcd_init);
5078 module_exit(xhci_hcd_fini);
5079