xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 77a87824)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 	if ((state & STS_HALT) == 0) {
171 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 		return 0;
173 	}
174 
175 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 	command = readl(&xhci->op_regs->command);
177 	command |= CMD_RESET;
178 	writel(command, &xhci->op_regs->command);
179 
180 	/* Existing Intel xHCI controllers require a delay of 1 mS,
181 	 * after setting the CMD_RESET bit, and before accessing any
182 	 * HC registers. This allows the HC to complete the
183 	 * reset operation and be ready for HC register access.
184 	 * Without this delay, the subsequent HC register access,
185 	 * may result in a system hang very rarely.
186 	 */
187 	if (xhci->quirks & XHCI_INTEL_HOST)
188 		udelay(1000);
189 
190 	ret = xhci_handshake(&xhci->op_regs->command,
191 			CMD_RESET, 0, 10 * 1000 * 1000);
192 	if (ret)
193 		return ret;
194 
195 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196 			 "Wait for controller to be ready for doorbell rings");
197 	/*
198 	 * xHCI cannot write to any doorbells or operational registers other
199 	 * than status until the "Controller Not Ready" flag is cleared.
200 	 */
201 	ret = xhci_handshake(&xhci->op_regs->status,
202 			STS_CNR, 0, 10 * 1000 * 1000);
203 
204 	for (i = 0; i < 2; ++i) {
205 		xhci->bus_state[i].port_c_suspend = 0;
206 		xhci->bus_state[i].suspended_ports = 0;
207 		xhci->bus_state[i].resuming_ports = 0;
208 	}
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216 	int i;
217 
218 	if (!xhci->msix_entries)
219 		return -EINVAL;
220 
221 	for (i = 0; i < xhci->msix_count; i++)
222 		if (xhci->msix_entries[i].vector)
223 			free_irq(xhci->msix_entries[i].vector,
224 					xhci_to_hcd(xhci));
225 	return 0;
226 }
227 
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233 	int ret;
234 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 
236 	ret = pci_enable_msi(pdev);
237 	if (ret) {
238 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 				"failed to allocate MSI entry");
240 		return ret;
241 	}
242 
243 	ret = request_irq(pdev->irq, xhci_msi_irq,
244 				0, "xhci_hcd", xhci_to_hcd(xhci));
245 	if (ret) {
246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247 				"disable MSI interrupt");
248 		pci_disable_msi(pdev);
249 	}
250 
251 	return ret;
252 }
253 
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261 	int ret;
262 
263 	/* return if using legacy interrupt */
264 	if (xhci_to_hcd(xhci)->irq > 0)
265 		return;
266 
267 	ret = xhci_free_msi(xhci);
268 	if (!ret)
269 		return;
270 	if (pdev->irq > 0)
271 		free_irq(pdev->irq, xhci_to_hcd(xhci));
272 
273 	return;
274 }
275 
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281 	int i, ret = 0;
282 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
283 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284 
285 	/*
286 	 * calculate number of msi-x vectors supported.
287 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
289 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 	 *   Add additional 1 vector to ensure always available interrupt.
291 	 */
292 	xhci->msix_count = min(num_online_cpus() + 1,
293 				HCS_MAX_INTRS(xhci->hcs_params1));
294 
295 	xhci->msix_entries =
296 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297 				GFP_KERNEL);
298 	if (!xhci->msix_entries) {
299 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300 		return -ENOMEM;
301 	}
302 
303 	for (i = 0; i < xhci->msix_count; i++) {
304 		xhci->msix_entries[i].entry = i;
305 		xhci->msix_entries[i].vector = 0;
306 	}
307 
308 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309 	if (ret) {
310 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311 				"Failed to enable MSI-X");
312 		goto free_entries;
313 	}
314 
315 	for (i = 0; i < xhci->msix_count; i++) {
316 		ret = request_irq(xhci->msix_entries[i].vector,
317 				xhci_msi_irq,
318 				0, "xhci_hcd", xhci_to_hcd(xhci));
319 		if (ret)
320 			goto disable_msix;
321 	}
322 
323 	hcd->msix_enabled = 1;
324 	return ret;
325 
326 disable_msix:
327 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328 	xhci_free_irq(xhci);
329 	pci_disable_msix(pdev);
330 free_entries:
331 	kfree(xhci->msix_entries);
332 	xhci->msix_entries = NULL;
333 	return ret;
334 }
335 
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
340 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341 
342 	if (xhci->quirks & XHCI_PLAT)
343 		return;
344 
345 	xhci_free_irq(xhci);
346 
347 	if (xhci->msix_entries) {
348 		pci_disable_msix(pdev);
349 		kfree(xhci->msix_entries);
350 		xhci->msix_entries = NULL;
351 	} else {
352 		pci_disable_msi(pdev);
353 	}
354 
355 	hcd->msix_enabled = 0;
356 	return;
357 }
358 
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361 	int i;
362 
363 	if (xhci->msix_entries) {
364 		for (i = 0; i < xhci->msix_count; i++)
365 			synchronize_irq(xhci->msix_entries[i].vector);
366 	}
367 }
368 
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372 	struct pci_dev  *pdev;
373 	int ret;
374 
375 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
376 	if (xhci->quirks & XHCI_PLAT)
377 		return 0;
378 
379 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380 	/*
381 	 * Some Fresco Logic host controllers advertise MSI, but fail to
382 	 * generate interrupts.  Don't even try to enable MSI.
383 	 */
384 	if (xhci->quirks & XHCI_BROKEN_MSI)
385 		goto legacy_irq;
386 
387 	/* unregister the legacy interrupt */
388 	if (hcd->irq)
389 		free_irq(hcd->irq, hcd);
390 	hcd->irq = 0;
391 
392 	ret = xhci_setup_msix(xhci);
393 	if (ret)
394 		/* fall back to msi*/
395 		ret = xhci_setup_msi(xhci);
396 
397 	if (!ret)
398 		/* hcd->irq is 0, we have MSI */
399 		return 0;
400 
401 	if (!pdev->irq) {
402 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403 		return -EINVAL;
404 	}
405 
406  legacy_irq:
407 	if (!strlen(hcd->irq_descr))
408 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409 			 hcd->driver->description, hcd->self.busnum);
410 
411 	/* fall back to legacy interrupt*/
412 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413 			hcd->irq_descr, hcd);
414 	if (ret) {
415 		xhci_err(xhci, "request interrupt %d failed\n",
416 				pdev->irq);
417 		return ret;
418 	}
419 	hcd->irq = pdev->irq;
420 	return 0;
421 }
422 
423 #else
424 
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427 	return 0;
428 }
429 
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433 
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437 
438 #endif
439 
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442 	struct xhci_hcd *xhci;
443 	struct usb_hcd *hcd;
444 	u32 temp;
445 	int i;
446 
447 	xhci = (struct xhci_hcd *)arg;
448 
449 	for (i = 0; i < xhci->num_usb3_ports; i++) {
450 		temp = readl(xhci->usb3_ports[i]);
451 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452 			/*
453 			 * Compliance Mode Detected. Letting USB Core
454 			 * handle the Warm Reset
455 			 */
456 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 					"Compliance mode detected->port %d",
458 					i + 1);
459 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460 					"Attempting compliance mode recovery");
461 			hcd = xhci->shared_hcd;
462 
463 			if (hcd->state == HC_STATE_SUSPENDED)
464 				usb_hcd_resume_root_hub(hcd);
465 
466 			usb_hcd_poll_rh_status(hcd);
467 		}
468 	}
469 
470 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471 		mod_timer(&xhci->comp_mode_recovery_timer,
472 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474 
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487 	xhci->port_status_u0 = 0;
488 	setup_timer(&xhci->comp_mode_recovery_timer,
489 		    compliance_mode_recovery, (unsigned long)xhci);
490 	xhci->comp_mode_recovery_timer.expires = jiffies +
491 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492 
493 	add_timer(&xhci->comp_mode_recovery_timer);
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 			"Compliance mode recovery timer initialized");
496 }
497 
498 /*
499  * This function identifies the systems that have installed the SN65LVPE502CP
500  * USB3.0 re-driver and that need the Compliance Mode Quirk.
501  * Systems:
502  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
503  */
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
505 {
506 	const char *dmi_product_name, *dmi_sys_vendor;
507 
508 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510 	if (!dmi_product_name || !dmi_sys_vendor)
511 		return false;
512 
513 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514 		return false;
515 
516 	if (strstr(dmi_product_name, "Z420") ||
517 			strstr(dmi_product_name, "Z620") ||
518 			strstr(dmi_product_name, "Z820") ||
519 			strstr(dmi_product_name, "Z1 Workstation"))
520 		return true;
521 
522 	return false;
523 }
524 
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
526 {
527 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
528 }
529 
530 
531 /*
532  * Initialize memory for HCD and xHC (one-time init).
533  *
534  * Program the PAGESIZE register, initialize the device context array, create
535  * device contexts (?), set up a command ring segment (or two?), create event
536  * ring (one for now).
537  */
538 int xhci_init(struct usb_hcd *hcd)
539 {
540 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541 	int retval = 0;
542 
543 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544 	spin_lock_init(&xhci->lock);
545 	if (xhci->hci_version == 0x95 && link_quirk) {
546 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547 				"QUIRK: Not clearing Link TRB chain bits.");
548 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549 	} else {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551 				"xHCI doesn't need link TRB QUIRK");
552 	}
553 	retval = xhci_mem_init(xhci, GFP_KERNEL);
554 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
555 
556 	/* Initializing Compliance Mode Recovery Data If Needed */
557 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559 		compliance_mode_recovery_timer_init(xhci);
560 	}
561 
562 	return retval;
563 }
564 
565 /*-------------------------------------------------------------------------*/
566 
567 
568 static int xhci_run_finished(struct xhci_hcd *xhci)
569 {
570 	if (xhci_start(xhci)) {
571 		xhci_halt(xhci);
572 		return -ENODEV;
573 	}
574 	xhci->shared_hcd->state = HC_STATE_RUNNING;
575 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
576 
577 	if (xhci->quirks & XHCI_NEC_HOST)
578 		xhci_ring_cmd_db(xhci);
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581 			"Finished xhci_run for USB3 roothub");
582 	return 0;
583 }
584 
585 /*
586  * Start the HC after it was halted.
587  *
588  * This function is called by the USB core when the HC driver is added.
589  * Its opposite is xhci_stop().
590  *
591  * xhci_init() must be called once before this function can be called.
592  * Reset the HC, enable device slot contexts, program DCBAAP, and
593  * set command ring pointer and event ring pointer.
594  *
595  * Setup MSI-X vectors and enable interrupts.
596  */
597 int xhci_run(struct usb_hcd *hcd)
598 {
599 	u32 temp;
600 	u64 temp_64;
601 	int ret;
602 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603 
604 	/* Start the xHCI host controller running only after the USB 2.0 roothub
605 	 * is setup.
606 	 */
607 
608 	hcd->uses_new_polling = 1;
609 	if (!usb_hcd_is_primary_hcd(hcd))
610 		return xhci_run_finished(xhci);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
613 
614 	ret = xhci_try_enable_msi(hcd);
615 	if (ret)
616 		return ret;
617 
618 	xhci_dbg(xhci, "Command ring memory map follows:\n");
619 	xhci_debug_ring(xhci, xhci->cmd_ring);
620 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621 	xhci_dbg_cmd_ptrs(xhci);
622 
623 	xhci_dbg(xhci, "ERST memory map follows:\n");
624 	xhci_dbg_erst(xhci, &xhci->erst);
625 	xhci_dbg(xhci, "Event ring:\n");
626 	xhci_debug_ring(xhci, xhci->event_ring);
627 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629 	temp_64 &= ~ERST_PTR_MASK;
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
632 
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Set the interrupt modulation register");
635 	temp = readl(&xhci->ir_set->irq_control);
636 	temp &= ~ER_IRQ_INTERVAL_MASK;
637 	/*
638 	 * the increment interval is 8 times as much as that defined
639 	 * in xHCI spec on MTK's controller
640 	 */
641 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
642 	writel(temp, &xhci->ir_set->irq_control);
643 
644 	/* Set the HCD state before we enable the irqs */
645 	temp = readl(&xhci->op_regs->command);
646 	temp |= (CMD_EIE);
647 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648 			"// Enable interrupts, cmd = 0x%x.", temp);
649 	writel(temp, &xhci->op_regs->command);
650 
651 	temp = readl(&xhci->ir_set->irq_pending);
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
654 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
655 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
656 	xhci_print_ir_set(xhci, 0);
657 
658 	if (xhci->quirks & XHCI_NEC_HOST) {
659 		struct xhci_command *command;
660 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
661 		if (!command)
662 			return -ENOMEM;
663 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
664 				TRB_TYPE(TRB_NEC_GET_FW));
665 	}
666 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
667 			"Finished xhci_run for USB2 roothub");
668 	return 0;
669 }
670 EXPORT_SYMBOL_GPL(xhci_run);
671 
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683 	u32 temp;
684 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685 
686 	mutex_lock(&xhci->mutex);
687 
688 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
689 		spin_lock_irq(&xhci->lock);
690 
691 		xhci->xhc_state |= XHCI_STATE_HALTED;
692 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
693 		xhci_halt(xhci);
694 		xhci_reset(xhci);
695 
696 		spin_unlock_irq(&xhci->lock);
697 	}
698 
699 	if (!usb_hcd_is_primary_hcd(hcd)) {
700 		mutex_unlock(&xhci->mutex);
701 		return;
702 	}
703 
704 	xhci_cleanup_msix(xhci);
705 
706 	/* Deleting Compliance Mode Recovery Timer */
707 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
708 			(!(xhci_all_ports_seen_u0(xhci)))) {
709 		del_timer_sync(&xhci->comp_mode_recovery_timer);
710 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
711 				"%s: compliance mode recovery timer deleted",
712 				__func__);
713 	}
714 
715 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
716 		usb_amd_dev_put();
717 
718 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
719 			"// Disabling event ring interrupts");
720 	temp = readl(&xhci->op_regs->status);
721 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
722 	temp = readl(&xhci->ir_set->irq_pending);
723 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
724 	xhci_print_ir_set(xhci, 0);
725 
726 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
727 	xhci_mem_cleanup(xhci);
728 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
729 			"xhci_stop completed - status = %x",
730 			readl(&xhci->op_regs->status));
731 	mutex_unlock(&xhci->mutex);
732 }
733 
734 /*
735  * Shutdown HC (not bus-specific)
736  *
737  * This is called when the machine is rebooting or halting.  We assume that the
738  * machine will be powered off, and the HC's internal state will be reset.
739  * Don't bother to free memory.
740  *
741  * This will only ever be called with the main usb_hcd (the USB3 roothub).
742  */
743 void xhci_shutdown(struct usb_hcd *hcd)
744 {
745 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
746 
747 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
748 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
749 
750 	spin_lock_irq(&xhci->lock);
751 	xhci_halt(xhci);
752 	/* Workaround for spurious wakeups at shutdown with HSW */
753 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
754 		xhci_reset(xhci);
755 	spin_unlock_irq(&xhci->lock);
756 
757 	xhci_cleanup_msix(xhci);
758 
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 			"xhci_shutdown completed - status = %x",
761 			readl(&xhci->op_regs->status));
762 
763 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
764 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
765 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
766 }
767 
768 #ifdef CONFIG_PM
769 static void xhci_save_registers(struct xhci_hcd *xhci)
770 {
771 	xhci->s3.command = readl(&xhci->op_regs->command);
772 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
773 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
774 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
775 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
776 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
777 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
778 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
779 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
780 }
781 
782 static void xhci_restore_registers(struct xhci_hcd *xhci)
783 {
784 	writel(xhci->s3.command, &xhci->op_regs->command);
785 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
786 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
787 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
788 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
789 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
790 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
791 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
792 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
793 }
794 
795 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
796 {
797 	u64	val_64;
798 
799 	/* step 2: initialize command ring buffer */
800 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
801 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
802 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
803 				      xhci->cmd_ring->dequeue) &
804 		 (u64) ~CMD_RING_RSVD_BITS) |
805 		xhci->cmd_ring->cycle_state;
806 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
807 			"// Setting command ring address to 0x%llx",
808 			(long unsigned long) val_64);
809 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
810 }
811 
812 /*
813  * The whole command ring must be cleared to zero when we suspend the host.
814  *
815  * The host doesn't save the command ring pointer in the suspend well, so we
816  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
817  * aligned, because of the reserved bits in the command ring dequeue pointer
818  * register.  Therefore, we can't just set the dequeue pointer back in the
819  * middle of the ring (TRBs are 16-byte aligned).
820  */
821 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
822 {
823 	struct xhci_ring *ring;
824 	struct xhci_segment *seg;
825 
826 	ring = xhci->cmd_ring;
827 	seg = ring->deq_seg;
828 	do {
829 		memset(seg->trbs, 0,
830 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
831 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
832 			cpu_to_le32(~TRB_CYCLE);
833 		seg = seg->next;
834 	} while (seg != ring->deq_seg);
835 
836 	/* Reset the software enqueue and dequeue pointers */
837 	ring->deq_seg = ring->first_seg;
838 	ring->dequeue = ring->first_seg->trbs;
839 	ring->enq_seg = ring->deq_seg;
840 	ring->enqueue = ring->dequeue;
841 
842 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
843 	/*
844 	 * Ring is now zeroed, so the HW should look for change of ownership
845 	 * when the cycle bit is set to 1.
846 	 */
847 	ring->cycle_state = 1;
848 
849 	/*
850 	 * Reset the hardware dequeue pointer.
851 	 * Yes, this will need to be re-written after resume, but we're paranoid
852 	 * and want to make sure the hardware doesn't access bogus memory
853 	 * because, say, the BIOS or an SMI started the host without changing
854 	 * the command ring pointers.
855 	 */
856 	xhci_set_cmd_ring_deq(xhci);
857 }
858 
859 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
860 {
861 	int port_index;
862 	__le32 __iomem **port_array;
863 	unsigned long flags;
864 	u32 t1, t2;
865 
866 	spin_lock_irqsave(&xhci->lock, flags);
867 
868 	/* disble usb3 ports Wake bits*/
869 	port_index = xhci->num_usb3_ports;
870 	port_array = xhci->usb3_ports;
871 	while (port_index--) {
872 		t1 = readl(port_array[port_index]);
873 		t1 = xhci_port_state_to_neutral(t1);
874 		t2 = t1 & ~PORT_WAKE_BITS;
875 		if (t1 != t2)
876 			writel(t2, port_array[port_index]);
877 	}
878 
879 	/* disble usb2 ports Wake bits*/
880 	port_index = xhci->num_usb2_ports;
881 	port_array = xhci->usb2_ports;
882 	while (port_index--) {
883 		t1 = readl(port_array[port_index]);
884 		t1 = xhci_port_state_to_neutral(t1);
885 		t2 = t1 & ~PORT_WAKE_BITS;
886 		if (t1 != t2)
887 			writel(t2, port_array[port_index]);
888 	}
889 
890 	spin_unlock_irqrestore(&xhci->lock, flags);
891 }
892 
893 /*
894  * Stop HC (not bus-specific)
895  *
896  * This is called when the machine transition into S3/S4 mode.
897  *
898  */
899 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
900 {
901 	int			rc = 0;
902 	unsigned int		delay = XHCI_MAX_HALT_USEC;
903 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
904 	u32			command;
905 
906 	if (!hcd->state)
907 		return 0;
908 
909 	if (hcd->state != HC_STATE_SUSPENDED ||
910 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
911 		return -EINVAL;
912 
913 	/* Clear root port wake on bits if wakeup not allowed. */
914 	if (!do_wakeup)
915 		xhci_disable_port_wake_on_bits(xhci);
916 
917 	/* Don't poll the roothubs on bus suspend. */
918 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
919 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
920 	del_timer_sync(&hcd->rh_timer);
921 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
922 	del_timer_sync(&xhci->shared_hcd->rh_timer);
923 
924 	spin_lock_irq(&xhci->lock);
925 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
926 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
927 	/* step 1: stop endpoint */
928 	/* skipped assuming that port suspend has done */
929 
930 	/* step 2: clear Run/Stop bit */
931 	command = readl(&xhci->op_regs->command);
932 	command &= ~CMD_RUN;
933 	writel(command, &xhci->op_regs->command);
934 
935 	/* Some chips from Fresco Logic need an extraordinary delay */
936 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
937 
938 	if (xhci_handshake(&xhci->op_regs->status,
939 		      STS_HALT, STS_HALT, delay)) {
940 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
941 		spin_unlock_irq(&xhci->lock);
942 		return -ETIMEDOUT;
943 	}
944 	xhci_clear_command_ring(xhci);
945 
946 	/* step 3: save registers */
947 	xhci_save_registers(xhci);
948 
949 	/* step 4: set CSS flag */
950 	command = readl(&xhci->op_regs->command);
951 	command |= CMD_CSS;
952 	writel(command, &xhci->op_regs->command);
953 	if (xhci_handshake(&xhci->op_regs->status,
954 				STS_SAVE, 0, 10 * 1000)) {
955 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
956 		spin_unlock_irq(&xhci->lock);
957 		return -ETIMEDOUT;
958 	}
959 	spin_unlock_irq(&xhci->lock);
960 
961 	/*
962 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
963 	 * is about to be suspended.
964 	 */
965 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
966 			(!(xhci_all_ports_seen_u0(xhci)))) {
967 		del_timer_sync(&xhci->comp_mode_recovery_timer);
968 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
969 				"%s: compliance mode recovery timer deleted",
970 				__func__);
971 	}
972 
973 	/* step 5: remove core well power */
974 	/* synchronize irq when using MSI-X */
975 	xhci_msix_sync_irqs(xhci);
976 
977 	return rc;
978 }
979 EXPORT_SYMBOL_GPL(xhci_suspend);
980 
981 /*
982  * start xHC (not bus-specific)
983  *
984  * This is called when the machine transition from S3/S4 mode.
985  *
986  */
987 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
988 {
989 	u32			command, temp = 0, status;
990 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
991 	struct usb_hcd		*secondary_hcd;
992 	int			retval = 0;
993 	bool			comp_timer_running = false;
994 
995 	if (!hcd->state)
996 		return 0;
997 
998 	/* Wait a bit if either of the roothubs need to settle from the
999 	 * transition into bus suspend.
1000 	 */
1001 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1002 			time_before(jiffies,
1003 				xhci->bus_state[1].next_statechange))
1004 		msleep(100);
1005 
1006 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008 
1009 	spin_lock_irq(&xhci->lock);
1010 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1011 		hibernated = true;
1012 
1013 	if (!hibernated) {
1014 		/* step 1: restore register */
1015 		xhci_restore_registers(xhci);
1016 		/* step 2: initialize command ring buffer */
1017 		xhci_set_cmd_ring_deq(xhci);
1018 		/* step 3: restore state and start state*/
1019 		/* step 3: set CRS flag */
1020 		command = readl(&xhci->op_regs->command);
1021 		command |= CMD_CRS;
1022 		writel(command, &xhci->op_regs->command);
1023 		if (xhci_handshake(&xhci->op_regs->status,
1024 			      STS_RESTORE, 0, 10 * 1000)) {
1025 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1026 			spin_unlock_irq(&xhci->lock);
1027 			return -ETIMEDOUT;
1028 		}
1029 		temp = readl(&xhci->op_regs->status);
1030 	}
1031 
1032 	/* If restore operation fails, re-initialize the HC during resume */
1033 	if ((temp & STS_SRE) || hibernated) {
1034 
1035 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1036 				!(xhci_all_ports_seen_u0(xhci))) {
1037 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1038 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1039 				"Compliance Mode Recovery Timer deleted!");
1040 		}
1041 
1042 		/* Let the USB core know _both_ roothubs lost power. */
1043 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1044 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1045 
1046 		xhci_dbg(xhci, "Stop HCD\n");
1047 		xhci_halt(xhci);
1048 		xhci_reset(xhci);
1049 		spin_unlock_irq(&xhci->lock);
1050 		xhci_cleanup_msix(xhci);
1051 
1052 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1053 		temp = readl(&xhci->op_regs->status);
1054 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1055 		temp = readl(&xhci->ir_set->irq_pending);
1056 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1057 		xhci_print_ir_set(xhci, 0);
1058 
1059 		xhci_dbg(xhci, "cleaning up memory\n");
1060 		xhci_mem_cleanup(xhci);
1061 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1062 			    readl(&xhci->op_regs->status));
1063 
1064 		/* USB core calls the PCI reinit and start functions twice:
1065 		 * first with the primary HCD, and then with the secondary HCD.
1066 		 * If we don't do the same, the host will never be started.
1067 		 */
1068 		if (!usb_hcd_is_primary_hcd(hcd))
1069 			secondary_hcd = hcd;
1070 		else
1071 			secondary_hcd = xhci->shared_hcd;
1072 
1073 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1074 		retval = xhci_init(hcd->primary_hcd);
1075 		if (retval)
1076 			return retval;
1077 		comp_timer_running = true;
1078 
1079 		xhci_dbg(xhci, "Start the primary HCD\n");
1080 		retval = xhci_run(hcd->primary_hcd);
1081 		if (!retval) {
1082 			xhci_dbg(xhci, "Start the secondary HCD\n");
1083 			retval = xhci_run(secondary_hcd);
1084 		}
1085 		hcd->state = HC_STATE_SUSPENDED;
1086 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1087 		goto done;
1088 	}
1089 
1090 	/* step 4: set Run/Stop bit */
1091 	command = readl(&xhci->op_regs->command);
1092 	command |= CMD_RUN;
1093 	writel(command, &xhci->op_regs->command);
1094 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1095 		  0, 250 * 1000);
1096 
1097 	/* step 5: walk topology and initialize portsc,
1098 	 * portpmsc and portli
1099 	 */
1100 	/* this is done in bus_resume */
1101 
1102 	/* step 6: restart each of the previously
1103 	 * Running endpoints by ringing their doorbells
1104 	 */
1105 
1106 	spin_unlock_irq(&xhci->lock);
1107 
1108  done:
1109 	if (retval == 0) {
1110 		/* Resume root hubs only when have pending events. */
1111 		status = readl(&xhci->op_regs->status);
1112 		if (status & STS_EINT) {
1113 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1114 			usb_hcd_resume_root_hub(hcd);
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1120 	 * be re-initialized Always after a system resume. Ports are subject
1121 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1122 	 * ports have entered previously to U0 before system's suspension.
1123 	 */
1124 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1125 		compliance_mode_recovery_timer_init(xhci);
1126 
1127 	/* Re-enable port polling. */
1128 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1129 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1131 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1132 	usb_hcd_poll_rh_status(hcd);
1133 
1134 	return retval;
1135 }
1136 EXPORT_SYMBOL_GPL(xhci_resume);
1137 #endif	/* CONFIG_PM */
1138 
1139 /*-------------------------------------------------------------------------*/
1140 
1141 /**
1142  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1143  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1144  * value to right shift 1 for the bitmask.
1145  *
1146  * Index  = (epnum * 2) + direction - 1,
1147  * where direction = 0 for OUT, 1 for IN.
1148  * For control endpoints, the IN index is used (OUT index is unused), so
1149  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1150  */
1151 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1152 {
1153 	unsigned int index;
1154 	if (usb_endpoint_xfer_control(desc))
1155 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1156 	else
1157 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1158 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1159 	return index;
1160 }
1161 
1162 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1163  * address from the XHCI endpoint index.
1164  */
1165 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1166 {
1167 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1168 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1169 	return direction | number;
1170 }
1171 
1172 /* Find the flag for this endpoint (for use in the control context).  Use the
1173  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1174  * bit 1, etc.
1175  */
1176 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1177 {
1178 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1179 }
1180 
1181 /* Find the flag for this endpoint (for use in the control context).  Use the
1182  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1183  * bit 1, etc.
1184  */
1185 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1186 {
1187 	return 1 << (ep_index + 1);
1188 }
1189 
1190 /* Compute the last valid endpoint context index.  Basically, this is the
1191  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1192  * we find the most significant bit set in the added contexts flags.
1193  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1194  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1195  */
1196 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1197 {
1198 	return fls(added_ctxs) - 1;
1199 }
1200 
1201 /* Returns 1 if the arguments are OK;
1202  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1203  */
1204 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1205 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1206 		const char *func) {
1207 	struct xhci_hcd	*xhci;
1208 	struct xhci_virt_device	*virt_dev;
1209 
1210 	if (!hcd || (check_ep && !ep) || !udev) {
1211 		pr_debug("xHCI %s called with invalid args\n", func);
1212 		return -EINVAL;
1213 	}
1214 	if (!udev->parent) {
1215 		pr_debug("xHCI %s called for root hub\n", func);
1216 		return 0;
1217 	}
1218 
1219 	xhci = hcd_to_xhci(hcd);
1220 	if (check_virt_dev) {
1221 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1222 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1223 					func);
1224 			return -EINVAL;
1225 		}
1226 
1227 		virt_dev = xhci->devs[udev->slot_id];
1228 		if (virt_dev->udev != udev) {
1229 			xhci_dbg(xhci, "xHCI %s called with udev and "
1230 					  "virt_dev does not match\n", func);
1231 			return -EINVAL;
1232 		}
1233 	}
1234 
1235 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1236 		return -ENODEV;
1237 
1238 	return 1;
1239 }
1240 
1241 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1242 		struct usb_device *udev, struct xhci_command *command,
1243 		bool ctx_change, bool must_succeed);
1244 
1245 /*
1246  * Full speed devices may have a max packet size greater than 8 bytes, but the
1247  * USB core doesn't know that until it reads the first 8 bytes of the
1248  * descriptor.  If the usb_device's max packet size changes after that point,
1249  * we need to issue an evaluate context command and wait on it.
1250  */
1251 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1252 		unsigned int ep_index, struct urb *urb)
1253 {
1254 	struct xhci_container_ctx *out_ctx;
1255 	struct xhci_input_control_ctx *ctrl_ctx;
1256 	struct xhci_ep_ctx *ep_ctx;
1257 	struct xhci_command *command;
1258 	int max_packet_size;
1259 	int hw_max_packet_size;
1260 	int ret = 0;
1261 
1262 	out_ctx = xhci->devs[slot_id]->out_ctx;
1263 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1264 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1265 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1266 	if (hw_max_packet_size != max_packet_size) {
1267 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268 				"Max Packet Size for ep 0 changed.");
1269 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270 				"Max packet size in usb_device = %d",
1271 				max_packet_size);
1272 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273 				"Max packet size in xHCI HW = %d",
1274 				hw_max_packet_size);
1275 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276 				"Issuing evaluate context command.");
1277 
1278 		/* Set up the input context flags for the command */
1279 		/* FIXME: This won't work if a non-default control endpoint
1280 		 * changes max packet sizes.
1281 		 */
1282 
1283 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1284 		if (!command)
1285 			return -ENOMEM;
1286 
1287 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1288 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1289 		if (!ctrl_ctx) {
1290 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1291 					__func__);
1292 			ret = -ENOMEM;
1293 			goto command_cleanup;
1294 		}
1295 		/* Set up the modified control endpoint 0 */
1296 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1297 				xhci->devs[slot_id]->out_ctx, ep_index);
1298 
1299 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1300 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1301 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1302 
1303 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1304 		ctrl_ctx->drop_flags = 0;
1305 
1306 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1307 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1308 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1309 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1310 
1311 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1312 				true, false);
1313 
1314 		/* Clean up the input context for later use by bandwidth
1315 		 * functions.
1316 		 */
1317 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1318 command_cleanup:
1319 		kfree(command->completion);
1320 		kfree(command);
1321 	}
1322 	return ret;
1323 }
1324 
1325 /*
1326  * non-error returns are a promise to giveback() the urb later
1327  * we drop ownership so next owner (or urb unlink) can get it
1328  */
1329 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1330 {
1331 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1332 	struct xhci_td *buffer;
1333 	unsigned long flags;
1334 	int ret = 0;
1335 	unsigned int slot_id, ep_index;
1336 	struct urb_priv	*urb_priv;
1337 	int size, i;
1338 
1339 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1340 					true, true, __func__) <= 0)
1341 		return -EINVAL;
1342 
1343 	slot_id = urb->dev->slot_id;
1344 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1345 
1346 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1347 		if (!in_interrupt())
1348 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1349 		ret = -ESHUTDOWN;
1350 		goto exit;
1351 	}
1352 
1353 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1354 		size = urb->number_of_packets;
1355 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1356 	    urb->transfer_buffer_length > 0 &&
1357 	    urb->transfer_flags & URB_ZERO_PACKET &&
1358 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1359 		size = 2;
1360 	else
1361 		size = 1;
1362 
1363 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1364 				  size * sizeof(struct xhci_td *), mem_flags);
1365 	if (!urb_priv)
1366 		return -ENOMEM;
1367 
1368 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1369 	if (!buffer) {
1370 		kfree(urb_priv);
1371 		return -ENOMEM;
1372 	}
1373 
1374 	for (i = 0; i < size; i++) {
1375 		urb_priv->td[i] = buffer;
1376 		buffer++;
1377 	}
1378 
1379 	urb_priv->length = size;
1380 	urb_priv->td_cnt = 0;
1381 	urb->hcpriv = urb_priv;
1382 
1383 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1384 		/* Check to see if the max packet size for the default control
1385 		 * endpoint changed during FS device enumeration
1386 		 */
1387 		if (urb->dev->speed == USB_SPEED_FULL) {
1388 			ret = xhci_check_maxpacket(xhci, slot_id,
1389 					ep_index, urb);
1390 			if (ret < 0) {
1391 				xhci_urb_free_priv(urb_priv);
1392 				urb->hcpriv = NULL;
1393 				return ret;
1394 			}
1395 		}
1396 
1397 		/* We have a spinlock and interrupts disabled, so we must pass
1398 		 * atomic context to this function, which may allocate memory.
1399 		 */
1400 		spin_lock_irqsave(&xhci->lock, flags);
1401 		if (xhci->xhc_state & XHCI_STATE_DYING)
1402 			goto dying;
1403 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1404 				slot_id, ep_index);
1405 		if (ret)
1406 			goto free_priv;
1407 		spin_unlock_irqrestore(&xhci->lock, flags);
1408 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1409 		spin_lock_irqsave(&xhci->lock, flags);
1410 		if (xhci->xhc_state & XHCI_STATE_DYING)
1411 			goto dying;
1412 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1413 				EP_GETTING_STREAMS) {
1414 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1415 					"is transitioning to using streams.\n");
1416 			ret = -EINVAL;
1417 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1418 				EP_GETTING_NO_STREAMS) {
1419 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1420 					"is transitioning to "
1421 					"not having streams.\n");
1422 			ret = -EINVAL;
1423 		} else {
1424 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1425 					slot_id, ep_index);
1426 		}
1427 		if (ret)
1428 			goto free_priv;
1429 		spin_unlock_irqrestore(&xhci->lock, flags);
1430 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1431 		spin_lock_irqsave(&xhci->lock, flags);
1432 		if (xhci->xhc_state & XHCI_STATE_DYING)
1433 			goto dying;
1434 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1435 				slot_id, ep_index);
1436 		if (ret)
1437 			goto free_priv;
1438 		spin_unlock_irqrestore(&xhci->lock, flags);
1439 	} else {
1440 		spin_lock_irqsave(&xhci->lock, flags);
1441 		if (xhci->xhc_state & XHCI_STATE_DYING)
1442 			goto dying;
1443 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1444 				slot_id, ep_index);
1445 		if (ret)
1446 			goto free_priv;
1447 		spin_unlock_irqrestore(&xhci->lock, flags);
1448 	}
1449 exit:
1450 	return ret;
1451 dying:
1452 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1453 			"non-responsive xHCI host.\n",
1454 			urb->ep->desc.bEndpointAddress, urb);
1455 	ret = -ESHUTDOWN;
1456 free_priv:
1457 	xhci_urb_free_priv(urb_priv);
1458 	urb->hcpriv = NULL;
1459 	spin_unlock_irqrestore(&xhci->lock, flags);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1465  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1466  * should pick up where it left off in the TD, unless a Set Transfer Ring
1467  * Dequeue Pointer is issued.
1468  *
1469  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1470  * the ring.  Since the ring is a contiguous structure, they can't be physically
1471  * removed.  Instead, there are two options:
1472  *
1473  *  1) If the HC is in the middle of processing the URB to be canceled, we
1474  *     simply move the ring's dequeue pointer past those TRBs using the Set
1475  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1476  *     when drivers timeout on the last submitted URB and attempt to cancel.
1477  *
1478  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1479  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1480  *     HC will need to invalidate the any TRBs it has cached after the stop
1481  *     endpoint command, as noted in the xHCI 0.95 errata.
1482  *
1483  *  3) The TD may have completed by the time the Stop Endpoint Command
1484  *     completes, so software needs to handle that case too.
1485  *
1486  * This function should protect against the TD enqueueing code ringing the
1487  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1488  * It also needs to account for multiple cancellations on happening at the same
1489  * time for the same endpoint.
1490  *
1491  * Note that this function can be called in any context, or so says
1492  * usb_hcd_unlink_urb()
1493  */
1494 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1495 {
1496 	unsigned long flags;
1497 	int ret, i;
1498 	u32 temp;
1499 	struct xhci_hcd *xhci;
1500 	struct urb_priv	*urb_priv;
1501 	struct xhci_td *td;
1502 	unsigned int ep_index;
1503 	struct xhci_ring *ep_ring;
1504 	struct xhci_virt_ep *ep;
1505 	struct xhci_command *command;
1506 
1507 	xhci = hcd_to_xhci(hcd);
1508 	spin_lock_irqsave(&xhci->lock, flags);
1509 	/* Make sure the URB hasn't completed or been unlinked already */
1510 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1511 	if (ret || !urb->hcpriv)
1512 		goto done;
1513 	temp = readl(&xhci->op_regs->status);
1514 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1515 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1516 				"HW died, freeing TD.");
1517 		urb_priv = urb->hcpriv;
1518 		for (i = urb_priv->td_cnt;
1519 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1520 		     i++) {
1521 			td = urb_priv->td[i];
1522 			if (!list_empty(&td->td_list))
1523 				list_del_init(&td->td_list);
1524 			if (!list_empty(&td->cancelled_td_list))
1525 				list_del_init(&td->cancelled_td_list);
1526 		}
1527 
1528 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1529 		spin_unlock_irqrestore(&xhci->lock, flags);
1530 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1531 		xhci_urb_free_priv(urb_priv);
1532 		return ret;
1533 	}
1534 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1535 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1536 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1537 				"Ep 0x%x: URB %p to be canceled on "
1538 				"non-responsive xHCI host.",
1539 				urb->ep->desc.bEndpointAddress, urb);
1540 		/* Let the stop endpoint command watchdog timer (which set this
1541 		 * state) finish cleaning up the endpoint TD lists.  We must
1542 		 * have caught it in the middle of dropping a lock and giving
1543 		 * back an URB.
1544 		 */
1545 		goto done;
1546 	}
1547 
1548 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1549 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1550 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1551 	if (!ep_ring) {
1552 		ret = -EINVAL;
1553 		goto done;
1554 	}
1555 
1556 	urb_priv = urb->hcpriv;
1557 	i = urb_priv->td_cnt;
1558 	if (i < urb_priv->length)
1559 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1560 				"Cancel URB %p, dev %s, ep 0x%x, "
1561 				"starting at offset 0x%llx",
1562 				urb, urb->dev->devpath,
1563 				urb->ep->desc.bEndpointAddress,
1564 				(unsigned long long) xhci_trb_virt_to_dma(
1565 					urb_priv->td[i]->start_seg,
1566 					urb_priv->td[i]->first_trb));
1567 
1568 	for (; i < urb_priv->length; i++) {
1569 		td = urb_priv->td[i];
1570 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1571 	}
1572 
1573 	/* Queue a stop endpoint command, but only if this is
1574 	 * the first cancellation to be handled.
1575 	 */
1576 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1577 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1578 		if (!command) {
1579 			ret = -ENOMEM;
1580 			goto done;
1581 		}
1582 		ep->ep_state |= EP_HALT_PENDING;
1583 		ep->stop_cmds_pending++;
1584 		ep->stop_cmd_timer.expires = jiffies +
1585 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1586 		add_timer(&ep->stop_cmd_timer);
1587 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1588 					 ep_index, 0);
1589 		xhci_ring_cmd_db(xhci);
1590 	}
1591 done:
1592 	spin_unlock_irqrestore(&xhci->lock, flags);
1593 	return ret;
1594 }
1595 
1596 /* Drop an endpoint from a new bandwidth configuration for this device.
1597  * Only one call to this function is allowed per endpoint before
1598  * check_bandwidth() or reset_bandwidth() must be called.
1599  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1600  * add the endpoint to the schedule with possibly new parameters denoted by a
1601  * different endpoint descriptor in usb_host_endpoint.
1602  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1603  * not allowed.
1604  *
1605  * The USB core will not allow URBs to be queued to an endpoint that is being
1606  * disabled, so there's no need for mutual exclusion to protect
1607  * the xhci->devs[slot_id] structure.
1608  */
1609 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1610 		struct usb_host_endpoint *ep)
1611 {
1612 	struct xhci_hcd *xhci;
1613 	struct xhci_container_ctx *in_ctx, *out_ctx;
1614 	struct xhci_input_control_ctx *ctrl_ctx;
1615 	unsigned int ep_index;
1616 	struct xhci_ep_ctx *ep_ctx;
1617 	u32 drop_flag;
1618 	u32 new_add_flags, new_drop_flags;
1619 	int ret;
1620 
1621 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1622 	if (ret <= 0)
1623 		return ret;
1624 	xhci = hcd_to_xhci(hcd);
1625 	if (xhci->xhc_state & XHCI_STATE_DYING)
1626 		return -ENODEV;
1627 
1628 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1629 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1630 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1631 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1632 				__func__, drop_flag);
1633 		return 0;
1634 	}
1635 
1636 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1637 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1638 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1639 	if (!ctrl_ctx) {
1640 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1641 				__func__);
1642 		return 0;
1643 	}
1644 
1645 	ep_index = xhci_get_endpoint_index(&ep->desc);
1646 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1647 	/* If the HC already knows the endpoint is disabled,
1648 	 * or the HCD has noted it is disabled, ignore this request
1649 	 */
1650 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1651 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1652 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1653 	    xhci_get_endpoint_flag(&ep->desc)) {
1654 		/* Do not warn when called after a usb_device_reset */
1655 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1656 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1657 				  __func__, ep);
1658 		return 0;
1659 	}
1660 
1661 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1662 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1663 
1664 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1665 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1666 
1667 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1668 
1669 	if (xhci->quirks & XHCI_MTK_HOST)
1670 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1671 
1672 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1673 			(unsigned int) ep->desc.bEndpointAddress,
1674 			udev->slot_id,
1675 			(unsigned int) new_drop_flags,
1676 			(unsigned int) new_add_flags);
1677 	return 0;
1678 }
1679 
1680 /* Add an endpoint to a new possible bandwidth configuration for this device.
1681  * Only one call to this function is allowed per endpoint before
1682  * check_bandwidth() or reset_bandwidth() must be called.
1683  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1684  * add the endpoint to the schedule with possibly new parameters denoted by a
1685  * different endpoint descriptor in usb_host_endpoint.
1686  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1687  * not allowed.
1688  *
1689  * The USB core will not allow URBs to be queued to an endpoint until the
1690  * configuration or alt setting is installed in the device, so there's no need
1691  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1692  */
1693 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1694 		struct usb_host_endpoint *ep)
1695 {
1696 	struct xhci_hcd *xhci;
1697 	struct xhci_container_ctx *in_ctx;
1698 	unsigned int ep_index;
1699 	struct xhci_input_control_ctx *ctrl_ctx;
1700 	u32 added_ctxs;
1701 	u32 new_add_flags, new_drop_flags;
1702 	struct xhci_virt_device *virt_dev;
1703 	int ret = 0;
1704 
1705 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1706 	if (ret <= 0) {
1707 		/* So we won't queue a reset ep command for a root hub */
1708 		ep->hcpriv = NULL;
1709 		return ret;
1710 	}
1711 	xhci = hcd_to_xhci(hcd);
1712 	if (xhci->xhc_state & XHCI_STATE_DYING)
1713 		return -ENODEV;
1714 
1715 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1716 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1717 		/* FIXME when we have to issue an evaluate endpoint command to
1718 		 * deal with ep0 max packet size changing once we get the
1719 		 * descriptors
1720 		 */
1721 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1722 				__func__, added_ctxs);
1723 		return 0;
1724 	}
1725 
1726 	virt_dev = xhci->devs[udev->slot_id];
1727 	in_ctx = virt_dev->in_ctx;
1728 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1729 	if (!ctrl_ctx) {
1730 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1731 				__func__);
1732 		return 0;
1733 	}
1734 
1735 	ep_index = xhci_get_endpoint_index(&ep->desc);
1736 	/* If this endpoint is already in use, and the upper layers are trying
1737 	 * to add it again without dropping it, reject the addition.
1738 	 */
1739 	if (virt_dev->eps[ep_index].ring &&
1740 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1741 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1742 				"without dropping it.\n",
1743 				(unsigned int) ep->desc.bEndpointAddress);
1744 		return -EINVAL;
1745 	}
1746 
1747 	/* If the HCD has already noted the endpoint is enabled,
1748 	 * ignore this request.
1749 	 */
1750 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1751 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1752 				__func__, ep);
1753 		return 0;
1754 	}
1755 
1756 	/*
1757 	 * Configuration and alternate setting changes must be done in
1758 	 * process context, not interrupt context (or so documenation
1759 	 * for usb_set_interface() and usb_set_configuration() claim).
1760 	 */
1761 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1762 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1763 				__func__, ep->desc.bEndpointAddress);
1764 		return -ENOMEM;
1765 	}
1766 
1767 	if (xhci->quirks & XHCI_MTK_HOST) {
1768 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1769 		if (ret < 0) {
1770 			xhci_free_or_cache_endpoint_ring(xhci,
1771 				virt_dev, ep_index);
1772 			return ret;
1773 		}
1774 	}
1775 
1776 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1777 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1778 
1779 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1780 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1781 	 * this re-adds a new state for the endpoint from the new endpoint
1782 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1783 	 * drop flags alone.
1784 	 */
1785 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1786 
1787 	/* Store the usb_device pointer for later use */
1788 	ep->hcpriv = udev;
1789 
1790 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1791 			(unsigned int) ep->desc.bEndpointAddress,
1792 			udev->slot_id,
1793 			(unsigned int) new_drop_flags,
1794 			(unsigned int) new_add_flags);
1795 	return 0;
1796 }
1797 
1798 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1799 {
1800 	struct xhci_input_control_ctx *ctrl_ctx;
1801 	struct xhci_ep_ctx *ep_ctx;
1802 	struct xhci_slot_ctx *slot_ctx;
1803 	int i;
1804 
1805 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1806 	if (!ctrl_ctx) {
1807 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1808 				__func__);
1809 		return;
1810 	}
1811 
1812 	/* When a device's add flag and drop flag are zero, any subsequent
1813 	 * configure endpoint command will leave that endpoint's state
1814 	 * untouched.  Make sure we don't leave any old state in the input
1815 	 * endpoint contexts.
1816 	 */
1817 	ctrl_ctx->drop_flags = 0;
1818 	ctrl_ctx->add_flags = 0;
1819 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1820 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1821 	/* Endpoint 0 is always valid */
1822 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1823 	for (i = 1; i < 31; ++i) {
1824 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1825 		ep_ctx->ep_info = 0;
1826 		ep_ctx->ep_info2 = 0;
1827 		ep_ctx->deq = 0;
1828 		ep_ctx->tx_info = 0;
1829 	}
1830 }
1831 
1832 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1833 		struct usb_device *udev, u32 *cmd_status)
1834 {
1835 	int ret;
1836 
1837 	switch (*cmd_status) {
1838 	case COMP_CMD_ABORT:
1839 	case COMP_CMD_STOP:
1840 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1841 		ret = -ETIME;
1842 		break;
1843 	case COMP_ENOMEM:
1844 		dev_warn(&udev->dev,
1845 			 "Not enough host controller resources for new device state.\n");
1846 		ret = -ENOMEM;
1847 		/* FIXME: can we allocate more resources for the HC? */
1848 		break;
1849 	case COMP_BW_ERR:
1850 	case COMP_2ND_BW_ERR:
1851 		dev_warn(&udev->dev,
1852 			 "Not enough bandwidth for new device state.\n");
1853 		ret = -ENOSPC;
1854 		/* FIXME: can we go back to the old state? */
1855 		break;
1856 	case COMP_TRB_ERR:
1857 		/* the HCD set up something wrong */
1858 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1859 				"add flag = 1, "
1860 				"and endpoint is not disabled.\n");
1861 		ret = -EINVAL;
1862 		break;
1863 	case COMP_DEV_ERR:
1864 		dev_warn(&udev->dev,
1865 			 "ERROR: Incompatible device for endpoint configure command.\n");
1866 		ret = -ENODEV;
1867 		break;
1868 	case COMP_SUCCESS:
1869 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1870 				"Successful Endpoint Configure command");
1871 		ret = 0;
1872 		break;
1873 	default:
1874 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1875 				*cmd_status);
1876 		ret = -EINVAL;
1877 		break;
1878 	}
1879 	return ret;
1880 }
1881 
1882 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1883 		struct usb_device *udev, u32 *cmd_status)
1884 {
1885 	int ret;
1886 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1887 
1888 	switch (*cmd_status) {
1889 	case COMP_CMD_ABORT:
1890 	case COMP_CMD_STOP:
1891 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1892 		ret = -ETIME;
1893 		break;
1894 	case COMP_EINVAL:
1895 		dev_warn(&udev->dev,
1896 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1897 		ret = -EINVAL;
1898 		break;
1899 	case COMP_EBADSLT:
1900 		dev_warn(&udev->dev,
1901 			"WARN: slot not enabled for evaluate context command.\n");
1902 		ret = -EINVAL;
1903 		break;
1904 	case COMP_CTX_STATE:
1905 		dev_warn(&udev->dev,
1906 			"WARN: invalid context state for evaluate context command.\n");
1907 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1908 		ret = -EINVAL;
1909 		break;
1910 	case COMP_DEV_ERR:
1911 		dev_warn(&udev->dev,
1912 			"ERROR: Incompatible device for evaluate context command.\n");
1913 		ret = -ENODEV;
1914 		break;
1915 	case COMP_MEL_ERR:
1916 		/* Max Exit Latency too large error */
1917 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1918 		ret = -EINVAL;
1919 		break;
1920 	case COMP_SUCCESS:
1921 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1922 				"Successful evaluate context command");
1923 		ret = 0;
1924 		break;
1925 	default:
1926 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1927 			*cmd_status);
1928 		ret = -EINVAL;
1929 		break;
1930 	}
1931 	return ret;
1932 }
1933 
1934 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1935 		struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937 	u32 valid_add_flags;
1938 	u32 valid_drop_flags;
1939 
1940 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1941 	 * (bit 1).  The default control endpoint is added during the Address
1942 	 * Device command and is never removed until the slot is disabled.
1943 	 */
1944 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1945 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1946 
1947 	/* Use hweight32 to count the number of ones in the add flags, or
1948 	 * number of endpoints added.  Don't count endpoints that are changed
1949 	 * (both added and dropped).
1950 	 */
1951 	return hweight32(valid_add_flags) -
1952 		hweight32(valid_add_flags & valid_drop_flags);
1953 }
1954 
1955 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1956 		struct xhci_input_control_ctx *ctrl_ctx)
1957 {
1958 	u32 valid_add_flags;
1959 	u32 valid_drop_flags;
1960 
1961 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1962 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1963 
1964 	return hweight32(valid_drop_flags) -
1965 		hweight32(valid_add_flags & valid_drop_flags);
1966 }
1967 
1968 /*
1969  * We need to reserve the new number of endpoints before the configure endpoint
1970  * command completes.  We can't subtract the dropped endpoints from the number
1971  * of active endpoints until the command completes because we can oversubscribe
1972  * the host in this case:
1973  *
1974  *  - the first configure endpoint command drops more endpoints than it adds
1975  *  - a second configure endpoint command that adds more endpoints is queued
1976  *  - the first configure endpoint command fails, so the config is unchanged
1977  *  - the second command may succeed, even though there isn't enough resources
1978  *
1979  * Must be called with xhci->lock held.
1980  */
1981 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1982 		struct xhci_input_control_ctx *ctrl_ctx)
1983 {
1984 	u32 added_eps;
1985 
1986 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1987 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1988 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1989 				"Not enough ep ctxs: "
1990 				"%u active, need to add %u, limit is %u.",
1991 				xhci->num_active_eps, added_eps,
1992 				xhci->limit_active_eps);
1993 		return -ENOMEM;
1994 	}
1995 	xhci->num_active_eps += added_eps;
1996 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1997 			"Adding %u ep ctxs, %u now active.", added_eps,
1998 			xhci->num_active_eps);
1999 	return 0;
2000 }
2001 
2002 /*
2003  * The configure endpoint was failed by the xHC for some other reason, so we
2004  * need to revert the resources that failed configuration would have used.
2005  *
2006  * Must be called with xhci->lock held.
2007  */
2008 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2009 		struct xhci_input_control_ctx *ctrl_ctx)
2010 {
2011 	u32 num_failed_eps;
2012 
2013 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2014 	xhci->num_active_eps -= num_failed_eps;
2015 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2016 			"Removing %u failed ep ctxs, %u now active.",
2017 			num_failed_eps,
2018 			xhci->num_active_eps);
2019 }
2020 
2021 /*
2022  * Now that the command has completed, clean up the active endpoint count by
2023  * subtracting out the endpoints that were dropped (but not changed).
2024  *
2025  * Must be called with xhci->lock held.
2026  */
2027 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2028 		struct xhci_input_control_ctx *ctrl_ctx)
2029 {
2030 	u32 num_dropped_eps;
2031 
2032 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2033 	xhci->num_active_eps -= num_dropped_eps;
2034 	if (num_dropped_eps)
2035 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 				"Removing %u dropped ep ctxs, %u now active.",
2037 				num_dropped_eps,
2038 				xhci->num_active_eps);
2039 }
2040 
2041 static unsigned int xhci_get_block_size(struct usb_device *udev)
2042 {
2043 	switch (udev->speed) {
2044 	case USB_SPEED_LOW:
2045 	case USB_SPEED_FULL:
2046 		return FS_BLOCK;
2047 	case USB_SPEED_HIGH:
2048 		return HS_BLOCK;
2049 	case USB_SPEED_SUPER:
2050 	case USB_SPEED_SUPER_PLUS:
2051 		return SS_BLOCK;
2052 	case USB_SPEED_UNKNOWN:
2053 	case USB_SPEED_WIRELESS:
2054 	default:
2055 		/* Should never happen */
2056 		return 1;
2057 	}
2058 }
2059 
2060 static unsigned int
2061 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2062 {
2063 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2064 		return LS_OVERHEAD;
2065 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2066 		return FS_OVERHEAD;
2067 	return HS_OVERHEAD;
2068 }
2069 
2070 /* If we are changing a LS/FS device under a HS hub,
2071  * make sure (if we are activating a new TT) that the HS bus has enough
2072  * bandwidth for this new TT.
2073  */
2074 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2075 		struct xhci_virt_device *virt_dev,
2076 		int old_active_eps)
2077 {
2078 	struct xhci_interval_bw_table *bw_table;
2079 	struct xhci_tt_bw_info *tt_info;
2080 
2081 	/* Find the bandwidth table for the root port this TT is attached to. */
2082 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2083 	tt_info = virt_dev->tt_info;
2084 	/* If this TT already had active endpoints, the bandwidth for this TT
2085 	 * has already been added.  Removing all periodic endpoints (and thus
2086 	 * making the TT enactive) will only decrease the bandwidth used.
2087 	 */
2088 	if (old_active_eps)
2089 		return 0;
2090 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2091 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2092 			return -ENOMEM;
2093 		return 0;
2094 	}
2095 	/* Not sure why we would have no new active endpoints...
2096 	 *
2097 	 * Maybe because of an Evaluate Context change for a hub update or a
2098 	 * control endpoint 0 max packet size change?
2099 	 * FIXME: skip the bandwidth calculation in that case.
2100 	 */
2101 	return 0;
2102 }
2103 
2104 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2105 		struct xhci_virt_device *virt_dev)
2106 {
2107 	unsigned int bw_reserved;
2108 
2109 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2110 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2111 		return -ENOMEM;
2112 
2113 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2114 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2115 		return -ENOMEM;
2116 
2117 	return 0;
2118 }
2119 
2120 /*
2121  * This algorithm is a very conservative estimate of the worst-case scheduling
2122  * scenario for any one interval.  The hardware dynamically schedules the
2123  * packets, so we can't tell which microframe could be the limiting factor in
2124  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2125  *
2126  * Obviously, we can't solve an NP complete problem to find the minimum worst
2127  * case scenario.  Instead, we come up with an estimate that is no less than
2128  * the worst case bandwidth used for any one microframe, but may be an
2129  * over-estimate.
2130  *
2131  * We walk the requirements for each endpoint by interval, starting with the
2132  * smallest interval, and place packets in the schedule where there is only one
2133  * possible way to schedule packets for that interval.  In order to simplify
2134  * this algorithm, we record the largest max packet size for each interval, and
2135  * assume all packets will be that size.
2136  *
2137  * For interval 0, we obviously must schedule all packets for each interval.
2138  * The bandwidth for interval 0 is just the amount of data to be transmitted
2139  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2140  * the number of packets).
2141  *
2142  * For interval 1, we have two possible microframes to schedule those packets
2143  * in.  For this algorithm, if we can schedule the same number of packets for
2144  * each possible scheduling opportunity (each microframe), we will do so.  The
2145  * remaining number of packets will be saved to be transmitted in the gaps in
2146  * the next interval's scheduling sequence.
2147  *
2148  * As we move those remaining packets to be scheduled with interval 2 packets,
2149  * we have to double the number of remaining packets to transmit.  This is
2150  * because the intervals are actually powers of 2, and we would be transmitting
2151  * the previous interval's packets twice in this interval.  We also have to be
2152  * sure that when we look at the largest max packet size for this interval, we
2153  * also look at the largest max packet size for the remaining packets and take
2154  * the greater of the two.
2155  *
2156  * The algorithm continues to evenly distribute packets in each scheduling
2157  * opportunity, and push the remaining packets out, until we get to the last
2158  * interval.  Then those packets and their associated overhead are just added
2159  * to the bandwidth used.
2160  */
2161 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2162 		struct xhci_virt_device *virt_dev,
2163 		int old_active_eps)
2164 {
2165 	unsigned int bw_reserved;
2166 	unsigned int max_bandwidth;
2167 	unsigned int bw_used;
2168 	unsigned int block_size;
2169 	struct xhci_interval_bw_table *bw_table;
2170 	unsigned int packet_size = 0;
2171 	unsigned int overhead = 0;
2172 	unsigned int packets_transmitted = 0;
2173 	unsigned int packets_remaining = 0;
2174 	unsigned int i;
2175 
2176 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2177 		return xhci_check_ss_bw(xhci, virt_dev);
2178 
2179 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2180 		max_bandwidth = HS_BW_LIMIT;
2181 		/* Convert percent of bus BW reserved to blocks reserved */
2182 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2183 	} else {
2184 		max_bandwidth = FS_BW_LIMIT;
2185 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2186 	}
2187 
2188 	bw_table = virt_dev->bw_table;
2189 	/* We need to translate the max packet size and max ESIT payloads into
2190 	 * the units the hardware uses.
2191 	 */
2192 	block_size = xhci_get_block_size(virt_dev->udev);
2193 
2194 	/* If we are manipulating a LS/FS device under a HS hub, double check
2195 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2196 	 */
2197 	if (virt_dev->tt_info) {
2198 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2199 				"Recalculating BW for rootport %u",
2200 				virt_dev->real_port);
2201 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2202 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2203 					"newly activated TT.\n");
2204 			return -ENOMEM;
2205 		}
2206 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2207 				"Recalculating BW for TT slot %u port %u",
2208 				virt_dev->tt_info->slot_id,
2209 				virt_dev->tt_info->ttport);
2210 	} else {
2211 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2212 				"Recalculating BW for rootport %u",
2213 				virt_dev->real_port);
2214 	}
2215 
2216 	/* Add in how much bandwidth will be used for interval zero, or the
2217 	 * rounded max ESIT payload + number of packets * largest overhead.
2218 	 */
2219 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2220 		bw_table->interval_bw[0].num_packets *
2221 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2222 
2223 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2224 		unsigned int bw_added;
2225 		unsigned int largest_mps;
2226 		unsigned int interval_overhead;
2227 
2228 		/*
2229 		 * How many packets could we transmit in this interval?
2230 		 * If packets didn't fit in the previous interval, we will need
2231 		 * to transmit that many packets twice within this interval.
2232 		 */
2233 		packets_remaining = 2 * packets_remaining +
2234 			bw_table->interval_bw[i].num_packets;
2235 
2236 		/* Find the largest max packet size of this or the previous
2237 		 * interval.
2238 		 */
2239 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2240 			largest_mps = 0;
2241 		else {
2242 			struct xhci_virt_ep *virt_ep;
2243 			struct list_head *ep_entry;
2244 
2245 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2246 			virt_ep = list_entry(ep_entry,
2247 					struct xhci_virt_ep, bw_endpoint_list);
2248 			/* Convert to blocks, rounding up */
2249 			largest_mps = DIV_ROUND_UP(
2250 					virt_ep->bw_info.max_packet_size,
2251 					block_size);
2252 		}
2253 		if (largest_mps > packet_size)
2254 			packet_size = largest_mps;
2255 
2256 		/* Use the larger overhead of this or the previous interval. */
2257 		interval_overhead = xhci_get_largest_overhead(
2258 				&bw_table->interval_bw[i]);
2259 		if (interval_overhead > overhead)
2260 			overhead = interval_overhead;
2261 
2262 		/* How many packets can we evenly distribute across
2263 		 * (1 << (i + 1)) possible scheduling opportunities?
2264 		 */
2265 		packets_transmitted = packets_remaining >> (i + 1);
2266 
2267 		/* Add in the bandwidth used for those scheduled packets */
2268 		bw_added = packets_transmitted * (overhead + packet_size);
2269 
2270 		/* How many packets do we have remaining to transmit? */
2271 		packets_remaining = packets_remaining % (1 << (i + 1));
2272 
2273 		/* What largest max packet size should those packets have? */
2274 		/* If we've transmitted all packets, don't carry over the
2275 		 * largest packet size.
2276 		 */
2277 		if (packets_remaining == 0) {
2278 			packet_size = 0;
2279 			overhead = 0;
2280 		} else if (packets_transmitted > 0) {
2281 			/* Otherwise if we do have remaining packets, and we've
2282 			 * scheduled some packets in this interval, take the
2283 			 * largest max packet size from endpoints with this
2284 			 * interval.
2285 			 */
2286 			packet_size = largest_mps;
2287 			overhead = interval_overhead;
2288 		}
2289 		/* Otherwise carry over packet_size and overhead from the last
2290 		 * time we had a remainder.
2291 		 */
2292 		bw_used += bw_added;
2293 		if (bw_used > max_bandwidth) {
2294 			xhci_warn(xhci, "Not enough bandwidth. "
2295 					"Proposed: %u, Max: %u\n",
2296 				bw_used, max_bandwidth);
2297 			return -ENOMEM;
2298 		}
2299 	}
2300 	/*
2301 	 * Ok, we know we have some packets left over after even-handedly
2302 	 * scheduling interval 15.  We don't know which microframes they will
2303 	 * fit into, so we over-schedule and say they will be scheduled every
2304 	 * microframe.
2305 	 */
2306 	if (packets_remaining > 0)
2307 		bw_used += overhead + packet_size;
2308 
2309 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2310 		unsigned int port_index = virt_dev->real_port - 1;
2311 
2312 		/* OK, we're manipulating a HS device attached to a
2313 		 * root port bandwidth domain.  Include the number of active TTs
2314 		 * in the bandwidth used.
2315 		 */
2316 		bw_used += TT_HS_OVERHEAD *
2317 			xhci->rh_bw[port_index].num_active_tts;
2318 	}
2319 
2320 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2321 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2322 		"Available: %u " "percent",
2323 		bw_used, max_bandwidth, bw_reserved,
2324 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2325 		max_bandwidth);
2326 
2327 	bw_used += bw_reserved;
2328 	if (bw_used > max_bandwidth) {
2329 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2330 				bw_used, max_bandwidth);
2331 		return -ENOMEM;
2332 	}
2333 
2334 	bw_table->bw_used = bw_used;
2335 	return 0;
2336 }
2337 
2338 static bool xhci_is_async_ep(unsigned int ep_type)
2339 {
2340 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2341 					ep_type != ISOC_IN_EP &&
2342 					ep_type != INT_IN_EP);
2343 }
2344 
2345 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2346 {
2347 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2348 }
2349 
2350 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2351 {
2352 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2353 
2354 	if (ep_bw->ep_interval == 0)
2355 		return SS_OVERHEAD_BURST +
2356 			(ep_bw->mult * ep_bw->num_packets *
2357 					(SS_OVERHEAD + mps));
2358 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2359 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2360 				1 << ep_bw->ep_interval);
2361 
2362 }
2363 
2364 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2365 		struct xhci_bw_info *ep_bw,
2366 		struct xhci_interval_bw_table *bw_table,
2367 		struct usb_device *udev,
2368 		struct xhci_virt_ep *virt_ep,
2369 		struct xhci_tt_bw_info *tt_info)
2370 {
2371 	struct xhci_interval_bw	*interval_bw;
2372 	int normalized_interval;
2373 
2374 	if (xhci_is_async_ep(ep_bw->type))
2375 		return;
2376 
2377 	if (udev->speed >= USB_SPEED_SUPER) {
2378 		if (xhci_is_sync_in_ep(ep_bw->type))
2379 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2380 				xhci_get_ss_bw_consumed(ep_bw);
2381 		else
2382 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2383 				xhci_get_ss_bw_consumed(ep_bw);
2384 		return;
2385 	}
2386 
2387 	/* SuperSpeed endpoints never get added to intervals in the table, so
2388 	 * this check is only valid for HS/FS/LS devices.
2389 	 */
2390 	if (list_empty(&virt_ep->bw_endpoint_list))
2391 		return;
2392 	/* For LS/FS devices, we need to translate the interval expressed in
2393 	 * microframes to frames.
2394 	 */
2395 	if (udev->speed == USB_SPEED_HIGH)
2396 		normalized_interval = ep_bw->ep_interval;
2397 	else
2398 		normalized_interval = ep_bw->ep_interval - 3;
2399 
2400 	if (normalized_interval == 0)
2401 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2402 	interval_bw = &bw_table->interval_bw[normalized_interval];
2403 	interval_bw->num_packets -= ep_bw->num_packets;
2404 	switch (udev->speed) {
2405 	case USB_SPEED_LOW:
2406 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2407 		break;
2408 	case USB_SPEED_FULL:
2409 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2410 		break;
2411 	case USB_SPEED_HIGH:
2412 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2413 		break;
2414 	case USB_SPEED_SUPER:
2415 	case USB_SPEED_SUPER_PLUS:
2416 	case USB_SPEED_UNKNOWN:
2417 	case USB_SPEED_WIRELESS:
2418 		/* Should never happen because only LS/FS/HS endpoints will get
2419 		 * added to the endpoint list.
2420 		 */
2421 		return;
2422 	}
2423 	if (tt_info)
2424 		tt_info->active_eps -= 1;
2425 	list_del_init(&virt_ep->bw_endpoint_list);
2426 }
2427 
2428 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2429 		struct xhci_bw_info *ep_bw,
2430 		struct xhci_interval_bw_table *bw_table,
2431 		struct usb_device *udev,
2432 		struct xhci_virt_ep *virt_ep,
2433 		struct xhci_tt_bw_info *tt_info)
2434 {
2435 	struct xhci_interval_bw	*interval_bw;
2436 	struct xhci_virt_ep *smaller_ep;
2437 	int normalized_interval;
2438 
2439 	if (xhci_is_async_ep(ep_bw->type))
2440 		return;
2441 
2442 	if (udev->speed == USB_SPEED_SUPER) {
2443 		if (xhci_is_sync_in_ep(ep_bw->type))
2444 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2445 				xhci_get_ss_bw_consumed(ep_bw);
2446 		else
2447 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2448 				xhci_get_ss_bw_consumed(ep_bw);
2449 		return;
2450 	}
2451 
2452 	/* For LS/FS devices, we need to translate the interval expressed in
2453 	 * microframes to frames.
2454 	 */
2455 	if (udev->speed == USB_SPEED_HIGH)
2456 		normalized_interval = ep_bw->ep_interval;
2457 	else
2458 		normalized_interval = ep_bw->ep_interval - 3;
2459 
2460 	if (normalized_interval == 0)
2461 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2462 	interval_bw = &bw_table->interval_bw[normalized_interval];
2463 	interval_bw->num_packets += ep_bw->num_packets;
2464 	switch (udev->speed) {
2465 	case USB_SPEED_LOW:
2466 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2467 		break;
2468 	case USB_SPEED_FULL:
2469 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2470 		break;
2471 	case USB_SPEED_HIGH:
2472 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2473 		break;
2474 	case USB_SPEED_SUPER:
2475 	case USB_SPEED_SUPER_PLUS:
2476 	case USB_SPEED_UNKNOWN:
2477 	case USB_SPEED_WIRELESS:
2478 		/* Should never happen because only LS/FS/HS endpoints will get
2479 		 * added to the endpoint list.
2480 		 */
2481 		return;
2482 	}
2483 
2484 	if (tt_info)
2485 		tt_info->active_eps += 1;
2486 	/* Insert the endpoint into the list, largest max packet size first. */
2487 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2488 			bw_endpoint_list) {
2489 		if (ep_bw->max_packet_size >=
2490 				smaller_ep->bw_info.max_packet_size) {
2491 			/* Add the new ep before the smaller endpoint */
2492 			list_add_tail(&virt_ep->bw_endpoint_list,
2493 					&smaller_ep->bw_endpoint_list);
2494 			return;
2495 		}
2496 	}
2497 	/* Add the new endpoint at the end of the list. */
2498 	list_add_tail(&virt_ep->bw_endpoint_list,
2499 			&interval_bw->endpoints);
2500 }
2501 
2502 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2503 		struct xhci_virt_device *virt_dev,
2504 		int old_active_eps)
2505 {
2506 	struct xhci_root_port_bw_info *rh_bw_info;
2507 	if (!virt_dev->tt_info)
2508 		return;
2509 
2510 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2511 	if (old_active_eps == 0 &&
2512 				virt_dev->tt_info->active_eps != 0) {
2513 		rh_bw_info->num_active_tts += 1;
2514 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2515 	} else if (old_active_eps != 0 &&
2516 				virt_dev->tt_info->active_eps == 0) {
2517 		rh_bw_info->num_active_tts -= 1;
2518 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2519 	}
2520 }
2521 
2522 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2523 		struct xhci_virt_device *virt_dev,
2524 		struct xhci_container_ctx *in_ctx)
2525 {
2526 	struct xhci_bw_info ep_bw_info[31];
2527 	int i;
2528 	struct xhci_input_control_ctx *ctrl_ctx;
2529 	int old_active_eps = 0;
2530 
2531 	if (virt_dev->tt_info)
2532 		old_active_eps = virt_dev->tt_info->active_eps;
2533 
2534 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2535 	if (!ctrl_ctx) {
2536 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2537 				__func__);
2538 		return -ENOMEM;
2539 	}
2540 
2541 	for (i = 0; i < 31; i++) {
2542 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2543 			continue;
2544 
2545 		/* Make a copy of the BW info in case we need to revert this */
2546 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2547 				sizeof(ep_bw_info[i]));
2548 		/* Drop the endpoint from the interval table if the endpoint is
2549 		 * being dropped or changed.
2550 		 */
2551 		if (EP_IS_DROPPED(ctrl_ctx, i))
2552 			xhci_drop_ep_from_interval_table(xhci,
2553 					&virt_dev->eps[i].bw_info,
2554 					virt_dev->bw_table,
2555 					virt_dev->udev,
2556 					&virt_dev->eps[i],
2557 					virt_dev->tt_info);
2558 	}
2559 	/* Overwrite the information stored in the endpoints' bw_info */
2560 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2561 	for (i = 0; i < 31; i++) {
2562 		/* Add any changed or added endpoints to the interval table */
2563 		if (EP_IS_ADDED(ctrl_ctx, i))
2564 			xhci_add_ep_to_interval_table(xhci,
2565 					&virt_dev->eps[i].bw_info,
2566 					virt_dev->bw_table,
2567 					virt_dev->udev,
2568 					&virt_dev->eps[i],
2569 					virt_dev->tt_info);
2570 	}
2571 
2572 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2573 		/* Ok, this fits in the bandwidth we have.
2574 		 * Update the number of active TTs.
2575 		 */
2576 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2577 		return 0;
2578 	}
2579 
2580 	/* We don't have enough bandwidth for this, revert the stored info. */
2581 	for (i = 0; i < 31; i++) {
2582 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583 			continue;
2584 
2585 		/* Drop the new copies of any added or changed endpoints from
2586 		 * the interval table.
2587 		 */
2588 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2589 			xhci_drop_ep_from_interval_table(xhci,
2590 					&virt_dev->eps[i].bw_info,
2591 					virt_dev->bw_table,
2592 					virt_dev->udev,
2593 					&virt_dev->eps[i],
2594 					virt_dev->tt_info);
2595 		}
2596 		/* Revert the endpoint back to its old information */
2597 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2598 				sizeof(ep_bw_info[i]));
2599 		/* Add any changed or dropped endpoints back into the table */
2600 		if (EP_IS_DROPPED(ctrl_ctx, i))
2601 			xhci_add_ep_to_interval_table(xhci,
2602 					&virt_dev->eps[i].bw_info,
2603 					virt_dev->bw_table,
2604 					virt_dev->udev,
2605 					&virt_dev->eps[i],
2606 					virt_dev->tt_info);
2607 	}
2608 	return -ENOMEM;
2609 }
2610 
2611 
2612 /* Issue a configure endpoint command or evaluate context command
2613  * and wait for it to finish.
2614  */
2615 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2616 		struct usb_device *udev,
2617 		struct xhci_command *command,
2618 		bool ctx_change, bool must_succeed)
2619 {
2620 	int ret;
2621 	unsigned long flags;
2622 	struct xhci_input_control_ctx *ctrl_ctx;
2623 	struct xhci_virt_device *virt_dev;
2624 
2625 	if (!command)
2626 		return -EINVAL;
2627 
2628 	spin_lock_irqsave(&xhci->lock, flags);
2629 	virt_dev = xhci->devs[udev->slot_id];
2630 
2631 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2632 	if (!ctrl_ctx) {
2633 		spin_unlock_irqrestore(&xhci->lock, flags);
2634 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2635 				__func__);
2636 		return -ENOMEM;
2637 	}
2638 
2639 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2640 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2641 		spin_unlock_irqrestore(&xhci->lock, flags);
2642 		xhci_warn(xhci, "Not enough host resources, "
2643 				"active endpoint contexts = %u\n",
2644 				xhci->num_active_eps);
2645 		return -ENOMEM;
2646 	}
2647 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2648 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2649 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2650 			xhci_free_host_resources(xhci, ctrl_ctx);
2651 		spin_unlock_irqrestore(&xhci->lock, flags);
2652 		xhci_warn(xhci, "Not enough bandwidth\n");
2653 		return -ENOMEM;
2654 	}
2655 
2656 	if (!ctx_change)
2657 		ret = xhci_queue_configure_endpoint(xhci, command,
2658 				command->in_ctx->dma,
2659 				udev->slot_id, must_succeed);
2660 	else
2661 		ret = xhci_queue_evaluate_context(xhci, command,
2662 				command->in_ctx->dma,
2663 				udev->slot_id, must_succeed);
2664 	if (ret < 0) {
2665 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2666 			xhci_free_host_resources(xhci, ctrl_ctx);
2667 		spin_unlock_irqrestore(&xhci->lock, flags);
2668 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2669 				"FIXME allocate a new ring segment");
2670 		return -ENOMEM;
2671 	}
2672 	xhci_ring_cmd_db(xhci);
2673 	spin_unlock_irqrestore(&xhci->lock, flags);
2674 
2675 	/* Wait for the configure endpoint command to complete */
2676 	wait_for_completion(command->completion);
2677 
2678 	if (!ctx_change)
2679 		ret = xhci_configure_endpoint_result(xhci, udev,
2680 						     &command->status);
2681 	else
2682 		ret = xhci_evaluate_context_result(xhci, udev,
2683 						   &command->status);
2684 
2685 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2686 		spin_lock_irqsave(&xhci->lock, flags);
2687 		/* If the command failed, remove the reserved resources.
2688 		 * Otherwise, clean up the estimate to include dropped eps.
2689 		 */
2690 		if (ret)
2691 			xhci_free_host_resources(xhci, ctrl_ctx);
2692 		else
2693 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2694 		spin_unlock_irqrestore(&xhci->lock, flags);
2695 	}
2696 	return ret;
2697 }
2698 
2699 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2700 	struct xhci_virt_device *vdev, int i)
2701 {
2702 	struct xhci_virt_ep *ep = &vdev->eps[i];
2703 
2704 	if (ep->ep_state & EP_HAS_STREAMS) {
2705 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2706 				xhci_get_endpoint_address(i));
2707 		xhci_free_stream_info(xhci, ep->stream_info);
2708 		ep->stream_info = NULL;
2709 		ep->ep_state &= ~EP_HAS_STREAMS;
2710 	}
2711 }
2712 
2713 /* Called after one or more calls to xhci_add_endpoint() or
2714  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2715  * to call xhci_reset_bandwidth().
2716  *
2717  * Since we are in the middle of changing either configuration or
2718  * installing a new alt setting, the USB core won't allow URBs to be
2719  * enqueued for any endpoint on the old config or interface.  Nothing
2720  * else should be touching the xhci->devs[slot_id] structure, so we
2721  * don't need to take the xhci->lock for manipulating that.
2722  */
2723 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2724 {
2725 	int i;
2726 	int ret = 0;
2727 	struct xhci_hcd *xhci;
2728 	struct xhci_virt_device	*virt_dev;
2729 	struct xhci_input_control_ctx *ctrl_ctx;
2730 	struct xhci_slot_ctx *slot_ctx;
2731 	struct xhci_command *command;
2732 
2733 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2734 	if (ret <= 0)
2735 		return ret;
2736 	xhci = hcd_to_xhci(hcd);
2737 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2738 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2739 		return -ENODEV;
2740 
2741 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2742 	virt_dev = xhci->devs[udev->slot_id];
2743 
2744 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2745 	if (!command)
2746 		return -ENOMEM;
2747 
2748 	command->in_ctx = virt_dev->in_ctx;
2749 
2750 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2751 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2752 	if (!ctrl_ctx) {
2753 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2754 				__func__);
2755 		ret = -ENOMEM;
2756 		goto command_cleanup;
2757 	}
2758 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2759 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2760 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2761 
2762 	/* Don't issue the command if there's no endpoints to update. */
2763 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2764 	    ctrl_ctx->drop_flags == 0) {
2765 		ret = 0;
2766 		goto command_cleanup;
2767 	}
2768 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2769 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2770 	for (i = 31; i >= 1; i--) {
2771 		__le32 le32 = cpu_to_le32(BIT(i));
2772 
2773 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2774 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2775 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2776 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2777 			break;
2778 		}
2779 	}
2780 	xhci_dbg(xhci, "New Input Control Context:\n");
2781 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2782 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2783 
2784 	ret = xhci_configure_endpoint(xhci, udev, command,
2785 			false, false);
2786 	if (ret)
2787 		/* Callee should call reset_bandwidth() */
2788 		goto command_cleanup;
2789 
2790 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2791 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2792 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2793 
2794 	/* Free any rings that were dropped, but not changed. */
2795 	for (i = 1; i < 31; ++i) {
2796 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2797 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2798 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2799 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2800 		}
2801 	}
2802 	xhci_zero_in_ctx(xhci, virt_dev);
2803 	/*
2804 	 * Install any rings for completely new endpoints or changed endpoints,
2805 	 * and free or cache any old rings from changed endpoints.
2806 	 */
2807 	for (i = 1; i < 31; ++i) {
2808 		if (!virt_dev->eps[i].new_ring)
2809 			continue;
2810 		/* Only cache or free the old ring if it exists.
2811 		 * It may not if this is the first add of an endpoint.
2812 		 */
2813 		if (virt_dev->eps[i].ring) {
2814 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815 		}
2816 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2817 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2818 		virt_dev->eps[i].new_ring = NULL;
2819 	}
2820 command_cleanup:
2821 	kfree(command->completion);
2822 	kfree(command);
2823 
2824 	return ret;
2825 }
2826 
2827 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2828 {
2829 	struct xhci_hcd *xhci;
2830 	struct xhci_virt_device	*virt_dev;
2831 	int i, ret;
2832 
2833 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2834 	if (ret <= 0)
2835 		return;
2836 	xhci = hcd_to_xhci(hcd);
2837 
2838 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2839 	virt_dev = xhci->devs[udev->slot_id];
2840 	/* Free any rings allocated for added endpoints */
2841 	for (i = 0; i < 31; ++i) {
2842 		if (virt_dev->eps[i].new_ring) {
2843 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2844 			virt_dev->eps[i].new_ring = NULL;
2845 		}
2846 	}
2847 	xhci_zero_in_ctx(xhci, virt_dev);
2848 }
2849 
2850 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2851 		struct xhci_container_ctx *in_ctx,
2852 		struct xhci_container_ctx *out_ctx,
2853 		struct xhci_input_control_ctx *ctrl_ctx,
2854 		u32 add_flags, u32 drop_flags)
2855 {
2856 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2857 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2858 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2859 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2860 
2861 	xhci_dbg(xhci, "Input Context:\n");
2862 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2863 }
2864 
2865 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2866 		unsigned int slot_id, unsigned int ep_index,
2867 		struct xhci_dequeue_state *deq_state)
2868 {
2869 	struct xhci_input_control_ctx *ctrl_ctx;
2870 	struct xhci_container_ctx *in_ctx;
2871 	struct xhci_ep_ctx *ep_ctx;
2872 	u32 added_ctxs;
2873 	dma_addr_t addr;
2874 
2875 	in_ctx = xhci->devs[slot_id]->in_ctx;
2876 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2877 	if (!ctrl_ctx) {
2878 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2879 				__func__);
2880 		return;
2881 	}
2882 
2883 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2884 			xhci->devs[slot_id]->out_ctx, ep_index);
2885 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2886 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2887 			deq_state->new_deq_ptr);
2888 	if (addr == 0) {
2889 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2890 				"reset ep command\n");
2891 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2892 				deq_state->new_deq_seg,
2893 				deq_state->new_deq_ptr);
2894 		return;
2895 	}
2896 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2897 
2898 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2899 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2900 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2901 			added_ctxs, added_ctxs);
2902 }
2903 
2904 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2905 			unsigned int ep_index, struct xhci_td *td)
2906 {
2907 	struct xhci_dequeue_state deq_state;
2908 	struct xhci_virt_ep *ep;
2909 	struct usb_device *udev = td->urb->dev;
2910 
2911 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2912 			"Cleaning up stalled endpoint ring");
2913 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2914 	/* We need to move the HW's dequeue pointer past this TD,
2915 	 * or it will attempt to resend it on the next doorbell ring.
2916 	 */
2917 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2918 			ep_index, ep->stopped_stream, td, &deq_state);
2919 
2920 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2921 		return;
2922 
2923 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2924 	 * issue a configure endpoint command later.
2925 	 */
2926 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2927 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928 				"Queueing new dequeue state");
2929 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2930 				ep_index, ep->stopped_stream, &deq_state);
2931 	} else {
2932 		/* Better hope no one uses the input context between now and the
2933 		 * reset endpoint completion!
2934 		 * XXX: No idea how this hardware will react when stream rings
2935 		 * are enabled.
2936 		 */
2937 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2938 				"Setting up input context for "
2939 				"configure endpoint command");
2940 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2941 				ep_index, &deq_state);
2942 	}
2943 }
2944 
2945 /* Called when clearing halted device. The core should have sent the control
2946  * message to clear the device halt condition. The host side of the halt should
2947  * already be cleared with a reset endpoint command issued when the STALL tx
2948  * event was received.
2949  *
2950  * Context: in_interrupt
2951  */
2952 
2953 void xhci_endpoint_reset(struct usb_hcd *hcd,
2954 		struct usb_host_endpoint *ep)
2955 {
2956 	struct xhci_hcd *xhci;
2957 
2958 	xhci = hcd_to_xhci(hcd);
2959 
2960 	/*
2961 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2962 	 * The Reset Endpoint Command may only be issued to endpoints in the
2963 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2964 	 * Number of an endpoint that isn't in the Halted state, then software
2965 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2966 	 * for the target endpoint. that is in the Stopped state.
2967 	 */
2968 
2969 	/* For now just print debug to follow the situation */
2970 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2971 		 ep->desc.bEndpointAddress);
2972 }
2973 
2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2975 		struct usb_device *udev, struct usb_host_endpoint *ep,
2976 		unsigned int slot_id)
2977 {
2978 	int ret;
2979 	unsigned int ep_index;
2980 	unsigned int ep_state;
2981 
2982 	if (!ep)
2983 		return -EINVAL;
2984 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2985 	if (ret <= 0)
2986 		return -EINVAL;
2987 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2988 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2989 				" descriptor for ep 0x%x does not support streams\n",
2990 				ep->desc.bEndpointAddress);
2991 		return -EINVAL;
2992 	}
2993 
2994 	ep_index = xhci_get_endpoint_index(&ep->desc);
2995 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2996 	if (ep_state & EP_HAS_STREAMS ||
2997 			ep_state & EP_GETTING_STREAMS) {
2998 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2999 				"already has streams set up.\n",
3000 				ep->desc.bEndpointAddress);
3001 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3002 				"dynamic stream context array reallocation.\n");
3003 		return -EINVAL;
3004 	}
3005 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3006 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3007 				"endpoint 0x%x; URBs are pending.\n",
3008 				ep->desc.bEndpointAddress);
3009 		return -EINVAL;
3010 	}
3011 	return 0;
3012 }
3013 
3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3015 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3016 {
3017 	unsigned int max_streams;
3018 
3019 	/* The stream context array size must be a power of two */
3020 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3021 	/*
3022 	 * Find out how many primary stream array entries the host controller
3023 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3024 	 * level page entries), but that's an optional feature for xHCI host
3025 	 * controllers. xHCs must support at least 4 stream IDs.
3026 	 */
3027 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3028 	if (*num_stream_ctxs > max_streams) {
3029 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3030 				max_streams);
3031 		*num_stream_ctxs = max_streams;
3032 		*num_streams = max_streams;
3033 	}
3034 }
3035 
3036 /* Returns an error code if one of the endpoint already has streams.
3037  * This does not change any data structures, it only checks and gathers
3038  * information.
3039  */
3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3041 		struct usb_device *udev,
3042 		struct usb_host_endpoint **eps, unsigned int num_eps,
3043 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3044 {
3045 	unsigned int max_streams;
3046 	unsigned int endpoint_flag;
3047 	int i;
3048 	int ret;
3049 
3050 	for (i = 0; i < num_eps; i++) {
3051 		ret = xhci_check_streams_endpoint(xhci, udev,
3052 				eps[i], udev->slot_id);
3053 		if (ret < 0)
3054 			return ret;
3055 
3056 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3057 		if (max_streams < (*num_streams - 1)) {
3058 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3059 					eps[i]->desc.bEndpointAddress,
3060 					max_streams);
3061 			*num_streams = max_streams+1;
3062 		}
3063 
3064 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3065 		if (*changed_ep_bitmask & endpoint_flag)
3066 			return -EINVAL;
3067 		*changed_ep_bitmask |= endpoint_flag;
3068 	}
3069 	return 0;
3070 }
3071 
3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3073 		struct usb_device *udev,
3074 		struct usb_host_endpoint **eps, unsigned int num_eps)
3075 {
3076 	u32 changed_ep_bitmask = 0;
3077 	unsigned int slot_id;
3078 	unsigned int ep_index;
3079 	unsigned int ep_state;
3080 	int i;
3081 
3082 	slot_id = udev->slot_id;
3083 	if (!xhci->devs[slot_id])
3084 		return 0;
3085 
3086 	for (i = 0; i < num_eps; i++) {
3087 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3089 		/* Are streams already being freed for the endpoint? */
3090 		if (ep_state & EP_GETTING_NO_STREAMS) {
3091 			xhci_warn(xhci, "WARN Can't disable streams for "
3092 					"endpoint 0x%x, "
3093 					"streams are being disabled already\n",
3094 					eps[i]->desc.bEndpointAddress);
3095 			return 0;
3096 		}
3097 		/* Are there actually any streams to free? */
3098 		if (!(ep_state & EP_HAS_STREAMS) &&
3099 				!(ep_state & EP_GETTING_STREAMS)) {
3100 			xhci_warn(xhci, "WARN Can't disable streams for "
3101 					"endpoint 0x%x, "
3102 					"streams are already disabled!\n",
3103 					eps[i]->desc.bEndpointAddress);
3104 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3105 					"with non-streams endpoint\n");
3106 			return 0;
3107 		}
3108 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3109 	}
3110 	return changed_ep_bitmask;
3111 }
3112 
3113 /*
3114  * The USB device drivers use this function (through the HCD interface in USB
3115  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3116  * coordinate mass storage command queueing across multiple endpoints (basically
3117  * a stream ID == a task ID).
3118  *
3119  * Setting up streams involves allocating the same size stream context array
3120  * for each endpoint and issuing a configure endpoint command for all endpoints.
3121  *
3122  * Don't allow the call to succeed if one endpoint only supports one stream
3123  * (which means it doesn't support streams at all).
3124  *
3125  * Drivers may get less stream IDs than they asked for, if the host controller
3126  * hardware or endpoints claim they can't support the number of requested
3127  * stream IDs.
3128  */
3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3130 		struct usb_host_endpoint **eps, unsigned int num_eps,
3131 		unsigned int num_streams, gfp_t mem_flags)
3132 {
3133 	int i, ret;
3134 	struct xhci_hcd *xhci;
3135 	struct xhci_virt_device *vdev;
3136 	struct xhci_command *config_cmd;
3137 	struct xhci_input_control_ctx *ctrl_ctx;
3138 	unsigned int ep_index;
3139 	unsigned int num_stream_ctxs;
3140 	unsigned int max_packet;
3141 	unsigned long flags;
3142 	u32 changed_ep_bitmask = 0;
3143 
3144 	if (!eps)
3145 		return -EINVAL;
3146 
3147 	/* Add one to the number of streams requested to account for
3148 	 * stream 0 that is reserved for xHCI usage.
3149 	 */
3150 	num_streams += 1;
3151 	xhci = hcd_to_xhci(hcd);
3152 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3153 			num_streams);
3154 
3155 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3156 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3157 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3158 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3159 		return -ENOSYS;
3160 	}
3161 
3162 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3163 	if (!config_cmd) {
3164 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3165 		return -ENOMEM;
3166 	}
3167 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3168 	if (!ctrl_ctx) {
3169 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3170 				__func__);
3171 		xhci_free_command(xhci, config_cmd);
3172 		return -ENOMEM;
3173 	}
3174 
3175 	/* Check to make sure all endpoints are not already configured for
3176 	 * streams.  While we're at it, find the maximum number of streams that
3177 	 * all the endpoints will support and check for duplicate endpoints.
3178 	 */
3179 	spin_lock_irqsave(&xhci->lock, flags);
3180 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3181 			num_eps, &num_streams, &changed_ep_bitmask);
3182 	if (ret < 0) {
3183 		xhci_free_command(xhci, config_cmd);
3184 		spin_unlock_irqrestore(&xhci->lock, flags);
3185 		return ret;
3186 	}
3187 	if (num_streams <= 1) {
3188 		xhci_warn(xhci, "WARN: endpoints can't handle "
3189 				"more than one stream.\n");
3190 		xhci_free_command(xhci, config_cmd);
3191 		spin_unlock_irqrestore(&xhci->lock, flags);
3192 		return -EINVAL;
3193 	}
3194 	vdev = xhci->devs[udev->slot_id];
3195 	/* Mark each endpoint as being in transition, so
3196 	 * xhci_urb_enqueue() will reject all URBs.
3197 	 */
3198 	for (i = 0; i < num_eps; i++) {
3199 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3200 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3201 	}
3202 	spin_unlock_irqrestore(&xhci->lock, flags);
3203 
3204 	/* Setup internal data structures and allocate HW data structures for
3205 	 * streams (but don't install the HW structures in the input context
3206 	 * until we're sure all memory allocation succeeded).
3207 	 */
3208 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3209 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3210 			num_stream_ctxs, num_streams);
3211 
3212 	for (i = 0; i < num_eps; i++) {
3213 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3214 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3215 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3216 				num_stream_ctxs,
3217 				num_streams,
3218 				max_packet, mem_flags);
3219 		if (!vdev->eps[ep_index].stream_info)
3220 			goto cleanup;
3221 		/* Set maxPstreams in endpoint context and update deq ptr to
3222 		 * point to stream context array. FIXME
3223 		 */
3224 	}
3225 
3226 	/* Set up the input context for a configure endpoint command. */
3227 	for (i = 0; i < num_eps; i++) {
3228 		struct xhci_ep_ctx *ep_ctx;
3229 
3230 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3231 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3232 
3233 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3234 				vdev->out_ctx, ep_index);
3235 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3236 				vdev->eps[ep_index].stream_info);
3237 	}
3238 	/* Tell the HW to drop its old copy of the endpoint context info
3239 	 * and add the updated copy from the input context.
3240 	 */
3241 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3242 			vdev->out_ctx, ctrl_ctx,
3243 			changed_ep_bitmask, changed_ep_bitmask);
3244 
3245 	/* Issue and wait for the configure endpoint command */
3246 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3247 			false, false);
3248 
3249 	/* xHC rejected the configure endpoint command for some reason, so we
3250 	 * leave the old ring intact and free our internal streams data
3251 	 * structure.
3252 	 */
3253 	if (ret < 0)
3254 		goto cleanup;
3255 
3256 	spin_lock_irqsave(&xhci->lock, flags);
3257 	for (i = 0; i < num_eps; i++) {
3258 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3259 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3260 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3261 			 udev->slot_id, ep_index);
3262 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3263 	}
3264 	xhci_free_command(xhci, config_cmd);
3265 	spin_unlock_irqrestore(&xhci->lock, flags);
3266 
3267 	/* Subtract 1 for stream 0, which drivers can't use */
3268 	return num_streams - 1;
3269 
3270 cleanup:
3271 	/* If it didn't work, free the streams! */
3272 	for (i = 0; i < num_eps; i++) {
3273 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3275 		vdev->eps[ep_index].stream_info = NULL;
3276 		/* FIXME Unset maxPstreams in endpoint context and
3277 		 * update deq ptr to point to normal string ring.
3278 		 */
3279 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3280 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3281 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3282 	}
3283 	xhci_free_command(xhci, config_cmd);
3284 	return -ENOMEM;
3285 }
3286 
3287 /* Transition the endpoint from using streams to being a "normal" endpoint
3288  * without streams.
3289  *
3290  * Modify the endpoint context state, submit a configure endpoint command,
3291  * and free all endpoint rings for streams if that completes successfully.
3292  */
3293 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3294 		struct usb_host_endpoint **eps, unsigned int num_eps,
3295 		gfp_t mem_flags)
3296 {
3297 	int i, ret;
3298 	struct xhci_hcd *xhci;
3299 	struct xhci_virt_device *vdev;
3300 	struct xhci_command *command;
3301 	struct xhci_input_control_ctx *ctrl_ctx;
3302 	unsigned int ep_index;
3303 	unsigned long flags;
3304 	u32 changed_ep_bitmask;
3305 
3306 	xhci = hcd_to_xhci(hcd);
3307 	vdev = xhci->devs[udev->slot_id];
3308 
3309 	/* Set up a configure endpoint command to remove the streams rings */
3310 	spin_lock_irqsave(&xhci->lock, flags);
3311 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3312 			udev, eps, num_eps);
3313 	if (changed_ep_bitmask == 0) {
3314 		spin_unlock_irqrestore(&xhci->lock, flags);
3315 		return -EINVAL;
3316 	}
3317 
3318 	/* Use the xhci_command structure from the first endpoint.  We may have
3319 	 * allocated too many, but the driver may call xhci_free_streams() for
3320 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3321 	 */
3322 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3323 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3324 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3325 	if (!ctrl_ctx) {
3326 		spin_unlock_irqrestore(&xhci->lock, flags);
3327 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3328 				__func__);
3329 		return -EINVAL;
3330 	}
3331 
3332 	for (i = 0; i < num_eps; i++) {
3333 		struct xhci_ep_ctx *ep_ctx;
3334 
3335 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3337 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3338 			EP_GETTING_NO_STREAMS;
3339 
3340 		xhci_endpoint_copy(xhci, command->in_ctx,
3341 				vdev->out_ctx, ep_index);
3342 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3343 				&vdev->eps[ep_index]);
3344 	}
3345 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3346 			vdev->out_ctx, ctrl_ctx,
3347 			changed_ep_bitmask, changed_ep_bitmask);
3348 	spin_unlock_irqrestore(&xhci->lock, flags);
3349 
3350 	/* Issue and wait for the configure endpoint command,
3351 	 * which must succeed.
3352 	 */
3353 	ret = xhci_configure_endpoint(xhci, udev, command,
3354 			false, true);
3355 
3356 	/* xHC rejected the configure endpoint command for some reason, so we
3357 	 * leave the streams rings intact.
3358 	 */
3359 	if (ret < 0)
3360 		return ret;
3361 
3362 	spin_lock_irqsave(&xhci->lock, flags);
3363 	for (i = 0; i < num_eps; i++) {
3364 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3365 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3366 		vdev->eps[ep_index].stream_info = NULL;
3367 		/* FIXME Unset maxPstreams in endpoint context and
3368 		 * update deq ptr to point to normal string ring.
3369 		 */
3370 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3371 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3372 	}
3373 	spin_unlock_irqrestore(&xhci->lock, flags);
3374 
3375 	return 0;
3376 }
3377 
3378 /*
3379  * Deletes endpoint resources for endpoints that were active before a Reset
3380  * Device command, or a Disable Slot command.  The Reset Device command leaves
3381  * the control endpoint intact, whereas the Disable Slot command deletes it.
3382  *
3383  * Must be called with xhci->lock held.
3384  */
3385 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3386 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3387 {
3388 	int i;
3389 	unsigned int num_dropped_eps = 0;
3390 	unsigned int drop_flags = 0;
3391 
3392 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3393 		if (virt_dev->eps[i].ring) {
3394 			drop_flags |= 1 << i;
3395 			num_dropped_eps++;
3396 		}
3397 	}
3398 	xhci->num_active_eps -= num_dropped_eps;
3399 	if (num_dropped_eps)
3400 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3401 				"Dropped %u ep ctxs, flags = 0x%x, "
3402 				"%u now active.",
3403 				num_dropped_eps, drop_flags,
3404 				xhci->num_active_eps);
3405 }
3406 
3407 /*
3408  * This submits a Reset Device Command, which will set the device state to 0,
3409  * set the device address to 0, and disable all the endpoints except the default
3410  * control endpoint.  The USB core should come back and call
3411  * xhci_address_device(), and then re-set up the configuration.  If this is
3412  * called because of a usb_reset_and_verify_device(), then the old alternate
3413  * settings will be re-installed through the normal bandwidth allocation
3414  * functions.
3415  *
3416  * Wait for the Reset Device command to finish.  Remove all structures
3417  * associated with the endpoints that were disabled.  Clear the input device
3418  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3419  *
3420  * If the virt_dev to be reset does not exist or does not match the udev,
3421  * it means the device is lost, possibly due to the xHC restore error and
3422  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3423  * re-allocate the device.
3424  */
3425 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3426 {
3427 	int ret, i;
3428 	unsigned long flags;
3429 	struct xhci_hcd *xhci;
3430 	unsigned int slot_id;
3431 	struct xhci_virt_device *virt_dev;
3432 	struct xhci_command *reset_device_cmd;
3433 	int last_freed_endpoint;
3434 	struct xhci_slot_ctx *slot_ctx;
3435 	int old_active_eps = 0;
3436 
3437 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3438 	if (ret <= 0)
3439 		return ret;
3440 	xhci = hcd_to_xhci(hcd);
3441 	slot_id = udev->slot_id;
3442 	virt_dev = xhci->devs[slot_id];
3443 	if (!virt_dev) {
3444 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3445 				"not exist. Re-allocate the device\n", slot_id);
3446 		ret = xhci_alloc_dev(hcd, udev);
3447 		if (ret == 1)
3448 			return 0;
3449 		else
3450 			return -EINVAL;
3451 	}
3452 
3453 	if (virt_dev->tt_info)
3454 		old_active_eps = virt_dev->tt_info->active_eps;
3455 
3456 	if (virt_dev->udev != udev) {
3457 		/* If the virt_dev and the udev does not match, this virt_dev
3458 		 * may belong to another udev.
3459 		 * Re-allocate the device.
3460 		 */
3461 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3462 				"not match the udev. Re-allocate the device\n",
3463 				slot_id);
3464 		ret = xhci_alloc_dev(hcd, udev);
3465 		if (ret == 1)
3466 			return 0;
3467 		else
3468 			return -EINVAL;
3469 	}
3470 
3471 	/* If device is not setup, there is no point in resetting it */
3472 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3473 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3474 						SLOT_STATE_DISABLED)
3475 		return 0;
3476 
3477 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3478 	/* Allocate the command structure that holds the struct completion.
3479 	 * Assume we're in process context, since the normal device reset
3480 	 * process has to wait for the device anyway.  Storage devices are
3481 	 * reset as part of error handling, so use GFP_NOIO instead of
3482 	 * GFP_KERNEL.
3483 	 */
3484 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3485 	if (!reset_device_cmd) {
3486 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3487 		return -ENOMEM;
3488 	}
3489 
3490 	/* Attempt to submit the Reset Device command to the command ring */
3491 	spin_lock_irqsave(&xhci->lock, flags);
3492 
3493 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3494 	if (ret) {
3495 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3496 		spin_unlock_irqrestore(&xhci->lock, flags);
3497 		goto command_cleanup;
3498 	}
3499 	xhci_ring_cmd_db(xhci);
3500 	spin_unlock_irqrestore(&xhci->lock, flags);
3501 
3502 	/* Wait for the Reset Device command to finish */
3503 	wait_for_completion(reset_device_cmd->completion);
3504 
3505 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3506 	 * unless we tried to reset a slot ID that wasn't enabled,
3507 	 * or the device wasn't in the addressed or configured state.
3508 	 */
3509 	ret = reset_device_cmd->status;
3510 	switch (ret) {
3511 	case COMP_CMD_ABORT:
3512 	case COMP_CMD_STOP:
3513 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3514 		ret = -ETIME;
3515 		goto command_cleanup;
3516 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3517 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3518 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3519 				slot_id,
3520 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3521 		xhci_dbg(xhci, "Not freeing device rings.\n");
3522 		/* Don't treat this as an error.  May change my mind later. */
3523 		ret = 0;
3524 		goto command_cleanup;
3525 	case COMP_SUCCESS:
3526 		xhci_dbg(xhci, "Successful reset device command.\n");
3527 		break;
3528 	default:
3529 		if (xhci_is_vendor_info_code(xhci, ret))
3530 			break;
3531 		xhci_warn(xhci, "Unknown completion code %u for "
3532 				"reset device command.\n", ret);
3533 		ret = -EINVAL;
3534 		goto command_cleanup;
3535 	}
3536 
3537 	/* Free up host controller endpoint resources */
3538 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3539 		spin_lock_irqsave(&xhci->lock, flags);
3540 		/* Don't delete the default control endpoint resources */
3541 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3542 		spin_unlock_irqrestore(&xhci->lock, flags);
3543 	}
3544 
3545 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3546 	last_freed_endpoint = 1;
3547 	for (i = 1; i < 31; ++i) {
3548 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3549 
3550 		if (ep->ep_state & EP_HAS_STREAMS) {
3551 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3552 					xhci_get_endpoint_address(i));
3553 			xhci_free_stream_info(xhci, ep->stream_info);
3554 			ep->stream_info = NULL;
3555 			ep->ep_state &= ~EP_HAS_STREAMS;
3556 		}
3557 
3558 		if (ep->ring) {
3559 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3560 			last_freed_endpoint = i;
3561 		}
3562 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3563 			xhci_drop_ep_from_interval_table(xhci,
3564 					&virt_dev->eps[i].bw_info,
3565 					virt_dev->bw_table,
3566 					udev,
3567 					&virt_dev->eps[i],
3568 					virt_dev->tt_info);
3569 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3570 	}
3571 	/* If necessary, update the number of active TTs on this root port */
3572 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3573 
3574 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3575 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3576 	ret = 0;
3577 
3578 command_cleanup:
3579 	xhci_free_command(xhci, reset_device_cmd);
3580 	return ret;
3581 }
3582 
3583 /*
3584  * At this point, the struct usb_device is about to go away, the device has
3585  * disconnected, and all traffic has been stopped and the endpoints have been
3586  * disabled.  Free any HC data structures associated with that device.
3587  */
3588 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3589 {
3590 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3591 	struct xhci_virt_device *virt_dev;
3592 	unsigned long flags;
3593 	u32 state;
3594 	int i, ret;
3595 	struct xhci_command *command;
3596 
3597 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3598 	if (!command)
3599 		return;
3600 
3601 #ifndef CONFIG_USB_DEFAULT_PERSIST
3602 	/*
3603 	 * We called pm_runtime_get_noresume when the device was attached.
3604 	 * Decrement the counter here to allow controller to runtime suspend
3605 	 * if no devices remain.
3606 	 */
3607 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3608 		pm_runtime_put_noidle(hcd->self.controller);
3609 #endif
3610 
3611 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3612 	/* If the host is halted due to driver unload, we still need to free the
3613 	 * device.
3614 	 */
3615 	if (ret <= 0 && ret != -ENODEV) {
3616 		kfree(command);
3617 		return;
3618 	}
3619 
3620 	virt_dev = xhci->devs[udev->slot_id];
3621 
3622 	/* Stop any wayward timer functions (which may grab the lock) */
3623 	for (i = 0; i < 31; ++i) {
3624 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3625 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3626 	}
3627 
3628 	spin_lock_irqsave(&xhci->lock, flags);
3629 	/* Don't disable the slot if the host controller is dead. */
3630 	state = readl(&xhci->op_regs->status);
3631 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3632 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3633 		xhci_free_virt_device(xhci, udev->slot_id);
3634 		spin_unlock_irqrestore(&xhci->lock, flags);
3635 		kfree(command);
3636 		return;
3637 	}
3638 
3639 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3640 				    udev->slot_id)) {
3641 		spin_unlock_irqrestore(&xhci->lock, flags);
3642 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643 		return;
3644 	}
3645 	xhci_ring_cmd_db(xhci);
3646 	spin_unlock_irqrestore(&xhci->lock, flags);
3647 
3648 	/*
3649 	 * Event command completion handler will free any data structures
3650 	 * associated with the slot.  XXX Can free sleep?
3651 	 */
3652 }
3653 
3654 /*
3655  * Checks if we have enough host controller resources for the default control
3656  * endpoint.
3657  *
3658  * Must be called with xhci->lock held.
3659  */
3660 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3661 {
3662 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3663 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3664 				"Not enough ep ctxs: "
3665 				"%u active, need to add 1, limit is %u.",
3666 				xhci->num_active_eps, xhci->limit_active_eps);
3667 		return -ENOMEM;
3668 	}
3669 	xhci->num_active_eps += 1;
3670 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671 			"Adding 1 ep ctx, %u now active.",
3672 			xhci->num_active_eps);
3673 	return 0;
3674 }
3675 
3676 
3677 /*
3678  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3679  * timed out, or allocating memory failed.  Returns 1 on success.
3680  */
3681 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3682 {
3683 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3684 	unsigned long flags;
3685 	int ret, slot_id;
3686 	struct xhci_command *command;
3687 
3688 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3689 	if (!command)
3690 		return 0;
3691 
3692 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3693 	mutex_lock(&xhci->mutex);
3694 	spin_lock_irqsave(&xhci->lock, flags);
3695 	command->completion = &xhci->addr_dev;
3696 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3697 	if (ret) {
3698 		spin_unlock_irqrestore(&xhci->lock, flags);
3699 		mutex_unlock(&xhci->mutex);
3700 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3701 		kfree(command);
3702 		return 0;
3703 	}
3704 	xhci_ring_cmd_db(xhci);
3705 	spin_unlock_irqrestore(&xhci->lock, flags);
3706 
3707 	wait_for_completion(command->completion);
3708 	slot_id = xhci->slot_id;
3709 	mutex_unlock(&xhci->mutex);
3710 
3711 	if (!slot_id || command->status != COMP_SUCCESS) {
3712 		xhci_err(xhci, "Error while assigning device slot ID\n");
3713 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3714 				HCS_MAX_SLOTS(
3715 					readl(&xhci->cap_regs->hcs_params1)));
3716 		kfree(command);
3717 		return 0;
3718 	}
3719 
3720 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3721 		spin_lock_irqsave(&xhci->lock, flags);
3722 		ret = xhci_reserve_host_control_ep_resources(xhci);
3723 		if (ret) {
3724 			spin_unlock_irqrestore(&xhci->lock, flags);
3725 			xhci_warn(xhci, "Not enough host resources, "
3726 					"active endpoint contexts = %u\n",
3727 					xhci->num_active_eps);
3728 			goto disable_slot;
3729 		}
3730 		spin_unlock_irqrestore(&xhci->lock, flags);
3731 	}
3732 	/* Use GFP_NOIO, since this function can be called from
3733 	 * xhci_discover_or_reset_device(), which may be called as part of
3734 	 * mass storage driver error handling.
3735 	 */
3736 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3737 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3738 		goto disable_slot;
3739 	}
3740 	udev->slot_id = slot_id;
3741 
3742 #ifndef CONFIG_USB_DEFAULT_PERSIST
3743 	/*
3744 	 * If resetting upon resume, we can't put the controller into runtime
3745 	 * suspend if there is a device attached.
3746 	 */
3747 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3748 		pm_runtime_get_noresume(hcd->self.controller);
3749 #endif
3750 
3751 
3752 	kfree(command);
3753 	/* Is this a LS or FS device under a HS hub? */
3754 	/* Hub or peripherial? */
3755 	return 1;
3756 
3757 disable_slot:
3758 	/* Disable slot, if we can do it without mem alloc */
3759 	spin_lock_irqsave(&xhci->lock, flags);
3760 	command->completion = NULL;
3761 	command->status = 0;
3762 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3763 				     udev->slot_id))
3764 		xhci_ring_cmd_db(xhci);
3765 	spin_unlock_irqrestore(&xhci->lock, flags);
3766 	return 0;
3767 }
3768 
3769 /*
3770  * Issue an Address Device command and optionally send a corresponding
3771  * SetAddress request to the device.
3772  */
3773 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3774 			     enum xhci_setup_dev setup)
3775 {
3776 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3777 	unsigned long flags;
3778 	struct xhci_virt_device *virt_dev;
3779 	int ret = 0;
3780 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3781 	struct xhci_slot_ctx *slot_ctx;
3782 	struct xhci_input_control_ctx *ctrl_ctx;
3783 	u64 temp_64;
3784 	struct xhci_command *command = NULL;
3785 
3786 	mutex_lock(&xhci->mutex);
3787 
3788 	if (xhci->xhc_state)	/* dying, removing or halted */
3789 		goto out;
3790 
3791 	if (!udev->slot_id) {
3792 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3793 				"Bad Slot ID %d", udev->slot_id);
3794 		ret = -EINVAL;
3795 		goto out;
3796 	}
3797 
3798 	virt_dev = xhci->devs[udev->slot_id];
3799 
3800 	if (WARN_ON(!virt_dev)) {
3801 		/*
3802 		 * In plug/unplug torture test with an NEC controller,
3803 		 * a zero-dereference was observed once due to virt_dev = 0.
3804 		 * Print useful debug rather than crash if it is observed again!
3805 		 */
3806 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3807 			udev->slot_id);
3808 		ret = -EINVAL;
3809 		goto out;
3810 	}
3811 
3812 	if (setup == SETUP_CONTEXT_ONLY) {
3813 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3814 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3815 		    SLOT_STATE_DEFAULT) {
3816 			xhci_dbg(xhci, "Slot already in default state\n");
3817 			goto out;
3818 		}
3819 	}
3820 
3821 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3822 	if (!command) {
3823 		ret = -ENOMEM;
3824 		goto out;
3825 	}
3826 
3827 	command->in_ctx = virt_dev->in_ctx;
3828 	command->completion = &xhci->addr_dev;
3829 
3830 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3831 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3832 	if (!ctrl_ctx) {
3833 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3834 				__func__);
3835 		ret = -EINVAL;
3836 		goto out;
3837 	}
3838 	/*
3839 	 * If this is the first Set Address since device plug-in or
3840 	 * virt_device realloaction after a resume with an xHCI power loss,
3841 	 * then set up the slot context.
3842 	 */
3843 	if (!slot_ctx->dev_info)
3844 		xhci_setup_addressable_virt_dev(xhci, udev);
3845 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3846 	else
3847 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3848 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3849 	ctrl_ctx->drop_flags = 0;
3850 
3851 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3852 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3853 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3854 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3855 
3856 	spin_lock_irqsave(&xhci->lock, flags);
3857 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3858 					udev->slot_id, setup);
3859 	if (ret) {
3860 		spin_unlock_irqrestore(&xhci->lock, flags);
3861 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3862 				"FIXME: allocate a command ring segment");
3863 		goto out;
3864 	}
3865 	xhci_ring_cmd_db(xhci);
3866 	spin_unlock_irqrestore(&xhci->lock, flags);
3867 
3868 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3869 	wait_for_completion(command->completion);
3870 
3871 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3872 	 * the SetAddress() "recovery interval" required by USB and aborting the
3873 	 * command on a timeout.
3874 	 */
3875 	switch (command->status) {
3876 	case COMP_CMD_ABORT:
3877 	case COMP_CMD_STOP:
3878 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3879 		ret = -ETIME;
3880 		break;
3881 	case COMP_CTX_STATE:
3882 	case COMP_EBADSLT:
3883 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3884 			 act, udev->slot_id);
3885 		ret = -EINVAL;
3886 		break;
3887 	case COMP_TX_ERR:
3888 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3889 		ret = -EPROTO;
3890 		break;
3891 	case COMP_DEV_ERR:
3892 		dev_warn(&udev->dev,
3893 			 "ERROR: Incompatible device for setup %s command\n", act);
3894 		ret = -ENODEV;
3895 		break;
3896 	case COMP_SUCCESS:
3897 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898 			       "Successful setup %s command", act);
3899 		break;
3900 	default:
3901 		xhci_err(xhci,
3902 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3903 			 act, command->status);
3904 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3905 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3906 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3907 		ret = -EINVAL;
3908 		break;
3909 	}
3910 	if (ret)
3911 		goto out;
3912 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3913 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3914 			"Op regs DCBAA ptr = %#016llx", temp_64);
3915 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3916 		"Slot ID %d dcbaa entry @%p = %#016llx",
3917 		udev->slot_id,
3918 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3919 		(unsigned long long)
3920 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3921 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3922 			"Output Context DMA address = %#08llx",
3923 			(unsigned long long)virt_dev->out_ctx->dma);
3924 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3925 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3926 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3927 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3928 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3929 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3930 	/*
3931 	 * USB core uses address 1 for the roothubs, so we add one to the
3932 	 * address given back to us by the HC.
3933 	 */
3934 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3935 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3936 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3937 	/* Zero the input context control for later use */
3938 	ctrl_ctx->add_flags = 0;
3939 	ctrl_ctx->drop_flags = 0;
3940 
3941 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3942 		       "Internal device address = %d",
3943 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3944 out:
3945 	mutex_unlock(&xhci->mutex);
3946 	kfree(command);
3947 	return ret;
3948 }
3949 
3950 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3951 {
3952 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3953 }
3954 
3955 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3956 {
3957 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3958 }
3959 
3960 /*
3961  * Transfer the port index into real index in the HW port status
3962  * registers. Caculate offset between the port's PORTSC register
3963  * and port status base. Divide the number of per port register
3964  * to get the real index. The raw port number bases 1.
3965  */
3966 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3967 {
3968 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3970 	__le32 __iomem *addr;
3971 	int raw_port;
3972 
3973 	if (hcd->speed < HCD_USB3)
3974 		addr = xhci->usb2_ports[port1 - 1];
3975 	else
3976 		addr = xhci->usb3_ports[port1 - 1];
3977 
3978 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3979 	return raw_port;
3980 }
3981 
3982 /*
3983  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3984  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3985  */
3986 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3987 			struct usb_device *udev, u16 max_exit_latency)
3988 {
3989 	struct xhci_virt_device *virt_dev;
3990 	struct xhci_command *command;
3991 	struct xhci_input_control_ctx *ctrl_ctx;
3992 	struct xhci_slot_ctx *slot_ctx;
3993 	unsigned long flags;
3994 	int ret;
3995 
3996 	spin_lock_irqsave(&xhci->lock, flags);
3997 
3998 	virt_dev = xhci->devs[udev->slot_id];
3999 
4000 	/*
4001 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4002 	 * xHC was re-initialized. Exit latency will be set later after
4003 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4004 	 */
4005 
4006 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4007 		spin_unlock_irqrestore(&xhci->lock, flags);
4008 		return 0;
4009 	}
4010 
4011 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4012 	command = xhci->lpm_command;
4013 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4014 	if (!ctrl_ctx) {
4015 		spin_unlock_irqrestore(&xhci->lock, flags);
4016 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4017 				__func__);
4018 		return -ENOMEM;
4019 	}
4020 
4021 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4022 	spin_unlock_irqrestore(&xhci->lock, flags);
4023 
4024 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4025 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4026 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4027 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4028 	slot_ctx->dev_state = 0;
4029 
4030 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4031 			"Set up evaluate context for LPM MEL change.");
4032 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4033 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4034 
4035 	/* Issue and wait for the evaluate context command. */
4036 	ret = xhci_configure_endpoint(xhci, udev, command,
4037 			true, true);
4038 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4039 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4040 
4041 	if (!ret) {
4042 		spin_lock_irqsave(&xhci->lock, flags);
4043 		virt_dev->current_mel = max_exit_latency;
4044 		spin_unlock_irqrestore(&xhci->lock, flags);
4045 	}
4046 	return ret;
4047 }
4048 
4049 #ifdef CONFIG_PM
4050 
4051 /* BESL to HIRD Encoding array for USB2 LPM */
4052 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4053 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4054 
4055 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4056 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4057 					struct usb_device *udev)
4058 {
4059 	int u2del, besl, besl_host;
4060 	int besl_device = 0;
4061 	u32 field;
4062 
4063 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4064 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4065 
4066 	if (field & USB_BESL_SUPPORT) {
4067 		for (besl_host = 0; besl_host < 16; besl_host++) {
4068 			if (xhci_besl_encoding[besl_host] >= u2del)
4069 				break;
4070 		}
4071 		/* Use baseline BESL value as default */
4072 		if (field & USB_BESL_BASELINE_VALID)
4073 			besl_device = USB_GET_BESL_BASELINE(field);
4074 		else if (field & USB_BESL_DEEP_VALID)
4075 			besl_device = USB_GET_BESL_DEEP(field);
4076 	} else {
4077 		if (u2del <= 50)
4078 			besl_host = 0;
4079 		else
4080 			besl_host = (u2del - 51) / 75 + 1;
4081 	}
4082 
4083 	besl = besl_host + besl_device;
4084 	if (besl > 15)
4085 		besl = 15;
4086 
4087 	return besl;
4088 }
4089 
4090 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4091 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4092 {
4093 	u32 field;
4094 	int l1;
4095 	int besld = 0;
4096 	int hirdm = 0;
4097 
4098 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099 
4100 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4101 	l1 = udev->l1_params.timeout / 256;
4102 
4103 	/* device has preferred BESLD */
4104 	if (field & USB_BESL_DEEP_VALID) {
4105 		besld = USB_GET_BESL_DEEP(field);
4106 		hirdm = 1;
4107 	}
4108 
4109 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4110 }
4111 
4112 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4113 			struct usb_device *udev, int enable)
4114 {
4115 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4116 	__le32 __iomem	**port_array;
4117 	__le32 __iomem	*pm_addr, *hlpm_addr;
4118 	u32		pm_val, hlpm_val, field;
4119 	unsigned int	port_num;
4120 	unsigned long	flags;
4121 	int		hird, exit_latency;
4122 	int		ret;
4123 
4124 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4125 			!udev->lpm_capable)
4126 		return -EPERM;
4127 
4128 	if (!udev->parent || udev->parent->parent ||
4129 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4130 		return -EPERM;
4131 
4132 	if (udev->usb2_hw_lpm_capable != 1)
4133 		return -EPERM;
4134 
4135 	spin_lock_irqsave(&xhci->lock, flags);
4136 
4137 	port_array = xhci->usb2_ports;
4138 	port_num = udev->portnum - 1;
4139 	pm_addr = port_array[port_num] + PORTPMSC;
4140 	pm_val = readl(pm_addr);
4141 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4142 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4143 
4144 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4145 			enable ? "enable" : "disable", port_num + 1);
4146 
4147 	if (enable) {
4148 		/* Host supports BESL timeout instead of HIRD */
4149 		if (udev->usb2_hw_lpm_besl_capable) {
4150 			/* if device doesn't have a preferred BESL value use a
4151 			 * default one which works with mixed HIRD and BESL
4152 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4153 			 */
4154 			if ((field & USB_BESL_SUPPORT) &&
4155 			    (field & USB_BESL_BASELINE_VALID))
4156 				hird = USB_GET_BESL_BASELINE(field);
4157 			else
4158 				hird = udev->l1_params.besl;
4159 
4160 			exit_latency = xhci_besl_encoding[hird];
4161 			spin_unlock_irqrestore(&xhci->lock, flags);
4162 
4163 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4164 			 * input context for link powermanagement evaluate
4165 			 * context commands. It is protected by hcd->bandwidth
4166 			 * mutex and is shared by all devices. We need to set
4167 			 * the max ext latency in USB 2 BESL LPM as well, so
4168 			 * use the same mutex and xhci_change_max_exit_latency()
4169 			 */
4170 			mutex_lock(hcd->bandwidth_mutex);
4171 			ret = xhci_change_max_exit_latency(xhci, udev,
4172 							   exit_latency);
4173 			mutex_unlock(hcd->bandwidth_mutex);
4174 
4175 			if (ret < 0)
4176 				return ret;
4177 			spin_lock_irqsave(&xhci->lock, flags);
4178 
4179 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4180 			writel(hlpm_val, hlpm_addr);
4181 			/* flush write */
4182 			readl(hlpm_addr);
4183 		} else {
4184 			hird = xhci_calculate_hird_besl(xhci, udev);
4185 		}
4186 
4187 		pm_val &= ~PORT_HIRD_MASK;
4188 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4189 		writel(pm_val, pm_addr);
4190 		pm_val = readl(pm_addr);
4191 		pm_val |= PORT_HLE;
4192 		writel(pm_val, pm_addr);
4193 		/* flush write */
4194 		readl(pm_addr);
4195 	} else {
4196 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4197 		writel(pm_val, pm_addr);
4198 		/* flush write */
4199 		readl(pm_addr);
4200 		if (udev->usb2_hw_lpm_besl_capable) {
4201 			spin_unlock_irqrestore(&xhci->lock, flags);
4202 			mutex_lock(hcd->bandwidth_mutex);
4203 			xhci_change_max_exit_latency(xhci, udev, 0);
4204 			mutex_unlock(hcd->bandwidth_mutex);
4205 			return 0;
4206 		}
4207 	}
4208 
4209 	spin_unlock_irqrestore(&xhci->lock, flags);
4210 	return 0;
4211 }
4212 
4213 /* check if a usb2 port supports a given extened capability protocol
4214  * only USB2 ports extended protocol capability values are cached.
4215  * Return 1 if capability is supported
4216  */
4217 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4218 					   unsigned capability)
4219 {
4220 	u32 port_offset, port_count;
4221 	int i;
4222 
4223 	for (i = 0; i < xhci->num_ext_caps; i++) {
4224 		if (xhci->ext_caps[i] & capability) {
4225 			/* port offsets starts at 1 */
4226 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4227 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4228 			if (port >= port_offset &&
4229 			    port < port_offset + port_count)
4230 				return 1;
4231 		}
4232 	}
4233 	return 0;
4234 }
4235 
4236 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4239 	int		portnum = udev->portnum - 1;
4240 
4241 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4242 			!udev->lpm_capable)
4243 		return 0;
4244 
4245 	/* we only support lpm for non-hub device connected to root hub yet */
4246 	if (!udev->parent || udev->parent->parent ||
4247 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4248 		return 0;
4249 
4250 	if (xhci->hw_lpm_support == 1 &&
4251 			xhci_check_usb2_port_capability(
4252 				xhci, portnum, XHCI_HLC)) {
4253 		udev->usb2_hw_lpm_capable = 1;
4254 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4255 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4256 		if (xhci_check_usb2_port_capability(xhci, portnum,
4257 					XHCI_BLC))
4258 			udev->usb2_hw_lpm_besl_capable = 1;
4259 	}
4260 
4261 	return 0;
4262 }
4263 
4264 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4265 
4266 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4267 static unsigned long long xhci_service_interval_to_ns(
4268 		struct usb_endpoint_descriptor *desc)
4269 {
4270 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4271 }
4272 
4273 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4274 		enum usb3_link_state state)
4275 {
4276 	unsigned long long sel;
4277 	unsigned long long pel;
4278 	unsigned int max_sel_pel;
4279 	char *state_name;
4280 
4281 	switch (state) {
4282 	case USB3_LPM_U1:
4283 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4284 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4285 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4286 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4287 		state_name = "U1";
4288 		break;
4289 	case USB3_LPM_U2:
4290 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4291 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4292 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4293 		state_name = "U2";
4294 		break;
4295 	default:
4296 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4297 				__func__);
4298 		return USB3_LPM_DISABLED;
4299 	}
4300 
4301 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4302 		return USB3_LPM_DEVICE_INITIATED;
4303 
4304 	if (sel > max_sel_pel)
4305 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4306 				"due to long SEL %llu ms\n",
4307 				state_name, sel);
4308 	else
4309 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4310 				"due to long PEL %llu ms\n",
4311 				state_name, pel);
4312 	return USB3_LPM_DISABLED;
4313 }
4314 
4315 /* The U1 timeout should be the maximum of the following values:
4316  *  - For control endpoints, U1 system exit latency (SEL) * 3
4317  *  - For bulk endpoints, U1 SEL * 5
4318  *  - For interrupt endpoints:
4319  *    - Notification EPs, U1 SEL * 3
4320  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4321  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4322  */
4323 static unsigned long long xhci_calculate_intel_u1_timeout(
4324 		struct usb_device *udev,
4325 		struct usb_endpoint_descriptor *desc)
4326 {
4327 	unsigned long long timeout_ns;
4328 	int ep_type;
4329 	int intr_type;
4330 
4331 	ep_type = usb_endpoint_type(desc);
4332 	switch (ep_type) {
4333 	case USB_ENDPOINT_XFER_CONTROL:
4334 		timeout_ns = udev->u1_params.sel * 3;
4335 		break;
4336 	case USB_ENDPOINT_XFER_BULK:
4337 		timeout_ns = udev->u1_params.sel * 5;
4338 		break;
4339 	case USB_ENDPOINT_XFER_INT:
4340 		intr_type = usb_endpoint_interrupt_type(desc);
4341 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4342 			timeout_ns = udev->u1_params.sel * 3;
4343 			break;
4344 		}
4345 		/* Otherwise the calculation is the same as isoc eps */
4346 	case USB_ENDPOINT_XFER_ISOC:
4347 		timeout_ns = xhci_service_interval_to_ns(desc);
4348 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4349 		if (timeout_ns < udev->u1_params.sel * 2)
4350 			timeout_ns = udev->u1_params.sel * 2;
4351 		break;
4352 	default:
4353 		return 0;
4354 	}
4355 
4356 	return timeout_ns;
4357 }
4358 
4359 /* Returns the hub-encoded U1 timeout value. */
4360 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4361 		struct usb_device *udev,
4362 		struct usb_endpoint_descriptor *desc)
4363 {
4364 	unsigned long long timeout_ns;
4365 
4366 	if (xhci->quirks & XHCI_INTEL_HOST)
4367 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4368 	else
4369 		timeout_ns = udev->u1_params.sel;
4370 
4371 	/* The U1 timeout is encoded in 1us intervals.
4372 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4373 	 */
4374 	if (timeout_ns == USB3_LPM_DISABLED)
4375 		timeout_ns = 1;
4376 	else
4377 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4378 
4379 	/* If the necessary timeout value is bigger than what we can set in the
4380 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4381 	 */
4382 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4383 		return timeout_ns;
4384 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4385 			"due to long timeout %llu ms\n", timeout_ns);
4386 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4387 }
4388 
4389 /* The U2 timeout should be the maximum of:
4390  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4391  *  - largest bInterval of any active periodic endpoint (to avoid going
4392  *    into lower power link states between intervals).
4393  *  - the U2 Exit Latency of the device
4394  */
4395 static unsigned long long xhci_calculate_intel_u2_timeout(
4396 		struct usb_device *udev,
4397 		struct usb_endpoint_descriptor *desc)
4398 {
4399 	unsigned long long timeout_ns;
4400 	unsigned long long u2_del_ns;
4401 
4402 	timeout_ns = 10 * 1000 * 1000;
4403 
4404 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4405 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4406 		timeout_ns = xhci_service_interval_to_ns(desc);
4407 
4408 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4409 	if (u2_del_ns > timeout_ns)
4410 		timeout_ns = u2_del_ns;
4411 
4412 	return timeout_ns;
4413 }
4414 
4415 /* Returns the hub-encoded U2 timeout value. */
4416 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4417 		struct usb_device *udev,
4418 		struct usb_endpoint_descriptor *desc)
4419 {
4420 	unsigned long long timeout_ns;
4421 
4422 	if (xhci->quirks & XHCI_INTEL_HOST)
4423 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4424 	else
4425 		timeout_ns = udev->u2_params.sel;
4426 
4427 	/* The U2 timeout is encoded in 256us intervals */
4428 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4429 	/* If the necessary timeout value is bigger than what we can set in the
4430 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4431 	 */
4432 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4433 		return timeout_ns;
4434 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4435 			"due to long timeout %llu ms\n", timeout_ns);
4436 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4437 }
4438 
4439 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4440 		struct usb_device *udev,
4441 		struct usb_endpoint_descriptor *desc,
4442 		enum usb3_link_state state,
4443 		u16 *timeout)
4444 {
4445 	if (state == USB3_LPM_U1)
4446 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4447 	else if (state == USB3_LPM_U2)
4448 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4449 
4450 	return USB3_LPM_DISABLED;
4451 }
4452 
4453 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4454 		struct usb_device *udev,
4455 		struct usb_endpoint_descriptor *desc,
4456 		enum usb3_link_state state,
4457 		u16 *timeout)
4458 {
4459 	u16 alt_timeout;
4460 
4461 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4462 		desc, state, timeout);
4463 
4464 	/* If we found we can't enable hub-initiated LPM, or
4465 	 * the U1 or U2 exit latency was too high to allow
4466 	 * device-initiated LPM as well, just stop searching.
4467 	 */
4468 	if (alt_timeout == USB3_LPM_DISABLED ||
4469 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4470 		*timeout = alt_timeout;
4471 		return -E2BIG;
4472 	}
4473 	if (alt_timeout > *timeout)
4474 		*timeout = alt_timeout;
4475 	return 0;
4476 }
4477 
4478 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4479 		struct usb_device *udev,
4480 		struct usb_host_interface *alt,
4481 		enum usb3_link_state state,
4482 		u16 *timeout)
4483 {
4484 	int j;
4485 
4486 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4487 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4488 					&alt->endpoint[j].desc, state, timeout))
4489 			return -E2BIG;
4490 		continue;
4491 	}
4492 	return 0;
4493 }
4494 
4495 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4496 		enum usb3_link_state state)
4497 {
4498 	struct usb_device *parent;
4499 	unsigned int num_hubs;
4500 
4501 	if (state == USB3_LPM_U2)
4502 		return 0;
4503 
4504 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4505 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4506 			parent = parent->parent)
4507 		num_hubs++;
4508 
4509 	if (num_hubs < 2)
4510 		return 0;
4511 
4512 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4513 			" below second-tier hub.\n");
4514 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4515 			"to decrease power consumption.\n");
4516 	return -E2BIG;
4517 }
4518 
4519 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4520 		struct usb_device *udev,
4521 		enum usb3_link_state state)
4522 {
4523 	if (xhci->quirks & XHCI_INTEL_HOST)
4524 		return xhci_check_intel_tier_policy(udev, state);
4525 	else
4526 		return 0;
4527 }
4528 
4529 /* Returns the U1 or U2 timeout that should be enabled.
4530  * If the tier check or timeout setting functions return with a non-zero exit
4531  * code, that means the timeout value has been finalized and we shouldn't look
4532  * at any more endpoints.
4533  */
4534 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4535 			struct usb_device *udev, enum usb3_link_state state)
4536 {
4537 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4538 	struct usb_host_config *config;
4539 	char *state_name;
4540 	int i;
4541 	u16 timeout = USB3_LPM_DISABLED;
4542 
4543 	if (state == USB3_LPM_U1)
4544 		state_name = "U1";
4545 	else if (state == USB3_LPM_U2)
4546 		state_name = "U2";
4547 	else {
4548 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4549 				state);
4550 		return timeout;
4551 	}
4552 
4553 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4554 		return timeout;
4555 
4556 	/* Gather some information about the currently installed configuration
4557 	 * and alternate interface settings.
4558 	 */
4559 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4560 			state, &timeout))
4561 		return timeout;
4562 
4563 	config = udev->actconfig;
4564 	if (!config)
4565 		return timeout;
4566 
4567 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4568 		struct usb_driver *driver;
4569 		struct usb_interface *intf = config->interface[i];
4570 
4571 		if (!intf)
4572 			continue;
4573 
4574 		/* Check if any currently bound drivers want hub-initiated LPM
4575 		 * disabled.
4576 		 */
4577 		if (intf->dev.driver) {
4578 			driver = to_usb_driver(intf->dev.driver);
4579 			if (driver && driver->disable_hub_initiated_lpm) {
4580 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4581 						"at request of driver %s\n",
4582 						state_name, driver->name);
4583 				return xhci_get_timeout_no_hub_lpm(udev, state);
4584 			}
4585 		}
4586 
4587 		/* Not sure how this could happen... */
4588 		if (!intf->cur_altsetting)
4589 			continue;
4590 
4591 		if (xhci_update_timeout_for_interface(xhci, udev,
4592 					intf->cur_altsetting,
4593 					state, &timeout))
4594 			return timeout;
4595 	}
4596 	return timeout;
4597 }
4598 
4599 static int calculate_max_exit_latency(struct usb_device *udev,
4600 		enum usb3_link_state state_changed,
4601 		u16 hub_encoded_timeout)
4602 {
4603 	unsigned long long u1_mel_us = 0;
4604 	unsigned long long u2_mel_us = 0;
4605 	unsigned long long mel_us = 0;
4606 	bool disabling_u1;
4607 	bool disabling_u2;
4608 	bool enabling_u1;
4609 	bool enabling_u2;
4610 
4611 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4612 			hub_encoded_timeout == USB3_LPM_DISABLED);
4613 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4614 			hub_encoded_timeout == USB3_LPM_DISABLED);
4615 
4616 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4617 			hub_encoded_timeout != USB3_LPM_DISABLED);
4618 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4619 			hub_encoded_timeout != USB3_LPM_DISABLED);
4620 
4621 	/* If U1 was already enabled and we're not disabling it,
4622 	 * or we're going to enable U1, account for the U1 max exit latency.
4623 	 */
4624 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4625 			enabling_u1)
4626 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4627 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4628 			enabling_u2)
4629 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4630 
4631 	if (u1_mel_us > u2_mel_us)
4632 		mel_us = u1_mel_us;
4633 	else
4634 		mel_us = u2_mel_us;
4635 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4636 	if (mel_us > MAX_EXIT) {
4637 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4638 				"is too big.\n", mel_us);
4639 		return -E2BIG;
4640 	}
4641 	return mel_us;
4642 }
4643 
4644 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4645 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646 			struct usb_device *udev, enum usb3_link_state state)
4647 {
4648 	struct xhci_hcd	*xhci;
4649 	u16 hub_encoded_timeout;
4650 	int mel;
4651 	int ret;
4652 
4653 	xhci = hcd_to_xhci(hcd);
4654 	/* The LPM timeout values are pretty host-controller specific, so don't
4655 	 * enable hub-initiated timeouts unless the vendor has provided
4656 	 * information about their timeout algorithm.
4657 	 */
4658 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4659 			!xhci->devs[udev->slot_id])
4660 		return USB3_LPM_DISABLED;
4661 
4662 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4663 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4664 	if (mel < 0) {
4665 		/* Max Exit Latency is too big, disable LPM. */
4666 		hub_encoded_timeout = USB3_LPM_DISABLED;
4667 		mel = 0;
4668 	}
4669 
4670 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4671 	if (ret)
4672 		return ret;
4673 	return hub_encoded_timeout;
4674 }
4675 
4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4677 			struct usb_device *udev, enum usb3_link_state state)
4678 {
4679 	struct xhci_hcd	*xhci;
4680 	u16 mel;
4681 
4682 	xhci = hcd_to_xhci(hcd);
4683 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4684 			!xhci->devs[udev->slot_id])
4685 		return 0;
4686 
4687 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4688 	return xhci_change_max_exit_latency(xhci, udev, mel);
4689 }
4690 #else /* CONFIG_PM */
4691 
4692 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4693 				struct usb_device *udev, int enable)
4694 {
4695 	return 0;
4696 }
4697 
4698 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4699 {
4700 	return 0;
4701 }
4702 
4703 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4704 			struct usb_device *udev, enum usb3_link_state state)
4705 {
4706 	return USB3_LPM_DISABLED;
4707 }
4708 
4709 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4710 			struct usb_device *udev, enum usb3_link_state state)
4711 {
4712 	return 0;
4713 }
4714 #endif	/* CONFIG_PM */
4715 
4716 /*-------------------------------------------------------------------------*/
4717 
4718 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4719  * internal data structures for the device.
4720  */
4721 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4722 			struct usb_tt *tt, gfp_t mem_flags)
4723 {
4724 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4725 	struct xhci_virt_device *vdev;
4726 	struct xhci_command *config_cmd;
4727 	struct xhci_input_control_ctx *ctrl_ctx;
4728 	struct xhci_slot_ctx *slot_ctx;
4729 	unsigned long flags;
4730 	unsigned think_time;
4731 	int ret;
4732 
4733 	/* Ignore root hubs */
4734 	if (!hdev->parent)
4735 		return 0;
4736 
4737 	vdev = xhci->devs[hdev->slot_id];
4738 	if (!vdev) {
4739 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4740 		return -EINVAL;
4741 	}
4742 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4743 	if (!config_cmd) {
4744 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4745 		return -ENOMEM;
4746 	}
4747 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4748 	if (!ctrl_ctx) {
4749 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4750 				__func__);
4751 		xhci_free_command(xhci, config_cmd);
4752 		return -ENOMEM;
4753 	}
4754 
4755 	spin_lock_irqsave(&xhci->lock, flags);
4756 	if (hdev->speed == USB_SPEED_HIGH &&
4757 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4758 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4759 		xhci_free_command(xhci, config_cmd);
4760 		spin_unlock_irqrestore(&xhci->lock, flags);
4761 		return -ENOMEM;
4762 	}
4763 
4764 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4765 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4766 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4767 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4768 	/*
4769 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4770 	 * but it may be already set to 1 when setup an xHCI virtual
4771 	 * device, so clear it anyway.
4772 	 */
4773 	if (tt->multi)
4774 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4775 	else if (hdev->speed == USB_SPEED_FULL)
4776 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4777 
4778 	if (xhci->hci_version > 0x95) {
4779 		xhci_dbg(xhci, "xHCI version %x needs hub "
4780 				"TT think time and number of ports\n",
4781 				(unsigned int) xhci->hci_version);
4782 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4783 		/* Set TT think time - convert from ns to FS bit times.
4784 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4785 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4786 		 *
4787 		 * xHCI 1.0: this field shall be 0 if the device is not a
4788 		 * High-spped hub.
4789 		 */
4790 		think_time = tt->think_time;
4791 		if (think_time != 0)
4792 			think_time = (think_time / 666) - 1;
4793 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4794 			slot_ctx->tt_info |=
4795 				cpu_to_le32(TT_THINK_TIME(think_time));
4796 	} else {
4797 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4798 				"TT think time or number of ports\n",
4799 				(unsigned int) xhci->hci_version);
4800 	}
4801 	slot_ctx->dev_state = 0;
4802 	spin_unlock_irqrestore(&xhci->lock, flags);
4803 
4804 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4805 			(xhci->hci_version > 0x95) ?
4806 			"configure endpoint" : "evaluate context");
4807 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4808 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4809 
4810 	/* Issue and wait for the configure endpoint or
4811 	 * evaluate context command.
4812 	 */
4813 	if (xhci->hci_version > 0x95)
4814 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4815 				false, false);
4816 	else
4817 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4818 				true, false);
4819 
4820 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4821 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4822 
4823 	xhci_free_command(xhci, config_cmd);
4824 	return ret;
4825 }
4826 
4827 int xhci_get_frame(struct usb_hcd *hcd)
4828 {
4829 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830 	/* EHCI mods by the periodic size.  Why? */
4831 	return readl(&xhci->run_regs->microframe_index) >> 3;
4832 }
4833 
4834 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4835 {
4836 	struct xhci_hcd		*xhci;
4837 	struct device		*dev = hcd->self.controller;
4838 	int			retval;
4839 
4840 	/* Accept arbitrarily long scatter-gather lists */
4841 	hcd->self.sg_tablesize = ~0;
4842 
4843 	/* support to build packet from discontinuous buffers */
4844 	hcd->self.no_sg_constraint = 1;
4845 
4846 	/* XHCI controllers don't stop the ep queue on short packets :| */
4847 	hcd->self.no_stop_on_short = 1;
4848 
4849 	xhci = hcd_to_xhci(hcd);
4850 
4851 	if (usb_hcd_is_primary_hcd(hcd)) {
4852 		xhci->main_hcd = hcd;
4853 		/* Mark the first roothub as being USB 2.0.
4854 		 * The xHCI driver will register the USB 3.0 roothub.
4855 		 */
4856 		hcd->speed = HCD_USB2;
4857 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4858 		/*
4859 		 * USB 2.0 roothub under xHCI has an integrated TT,
4860 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4861 		 * companion controller.
4862 		 */
4863 		hcd->has_tt = 1;
4864 	} else {
4865 		if (xhci->sbrn == 0x31) {
4866 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4867 			hcd->speed = HCD_USB31;
4868 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4869 		}
4870 		/* xHCI private pointer was set in xhci_pci_probe for the second
4871 		 * registered roothub.
4872 		 */
4873 		return 0;
4874 	}
4875 
4876 	mutex_init(&xhci->mutex);
4877 	xhci->cap_regs = hcd->regs;
4878 	xhci->op_regs = hcd->regs +
4879 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4880 	xhci->run_regs = hcd->regs +
4881 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4882 	/* Cache read-only capability registers */
4883 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4884 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4885 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4886 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4887 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4888 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4889 	if (xhci->hci_version > 0x100)
4890 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4891 	xhci_print_registers(xhci);
4892 
4893 	xhci->quirks |= quirks;
4894 
4895 	get_quirks(dev, xhci);
4896 
4897 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4898 	 * success event after a short transfer. This quirk will ignore such
4899 	 * spurious event.
4900 	 */
4901 	if (xhci->hci_version > 0x96)
4902 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4903 
4904 	/* Make sure the HC is halted. */
4905 	retval = xhci_halt(xhci);
4906 	if (retval)
4907 		return retval;
4908 
4909 	xhci_dbg(xhci, "Resetting HCD\n");
4910 	/* Reset the internal HC memory state and registers. */
4911 	retval = xhci_reset(xhci);
4912 	if (retval)
4913 		return retval;
4914 	xhci_dbg(xhci, "Reset complete\n");
4915 
4916 	/*
4917 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4918 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4919 	 * address memory pointers actually. So, this driver clears the AC64
4920 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4921 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4922 	 */
4923 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4924 		xhci->hcc_params &= ~BIT(0);
4925 
4926 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4927 	 * if xHC supports 64-bit addressing */
4928 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4929 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4930 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4931 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4932 	} else {
4933 		/*
4934 		 * This is to avoid error in cases where a 32-bit USB
4935 		 * controller is used on a 64-bit capable system.
4936 		 */
4937 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4938 		if (retval)
4939 			return retval;
4940 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4941 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4942 	}
4943 
4944 	xhci_dbg(xhci, "Calling HCD init\n");
4945 	/* Initialize HCD and host controller data structures. */
4946 	retval = xhci_init(hcd);
4947 	if (retval)
4948 		return retval;
4949 	xhci_dbg(xhci, "Called HCD init\n");
4950 
4951 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4952 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4953 
4954 	return 0;
4955 }
4956 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4957 
4958 static const struct hc_driver xhci_hc_driver = {
4959 	.description =		"xhci-hcd",
4960 	.product_desc =		"xHCI Host Controller",
4961 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4962 
4963 	/*
4964 	 * generic hardware linkage
4965 	 */
4966 	.irq =			xhci_irq,
4967 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4968 
4969 	/*
4970 	 * basic lifecycle operations
4971 	 */
4972 	.reset =		NULL, /* set in xhci_init_driver() */
4973 	.start =		xhci_run,
4974 	.stop =			xhci_stop,
4975 	.shutdown =		xhci_shutdown,
4976 
4977 	/*
4978 	 * managing i/o requests and associated device resources
4979 	 */
4980 	.urb_enqueue =		xhci_urb_enqueue,
4981 	.urb_dequeue =		xhci_urb_dequeue,
4982 	.alloc_dev =		xhci_alloc_dev,
4983 	.free_dev =		xhci_free_dev,
4984 	.alloc_streams =	xhci_alloc_streams,
4985 	.free_streams =		xhci_free_streams,
4986 	.add_endpoint =		xhci_add_endpoint,
4987 	.drop_endpoint =	xhci_drop_endpoint,
4988 	.endpoint_reset =	xhci_endpoint_reset,
4989 	.check_bandwidth =	xhci_check_bandwidth,
4990 	.reset_bandwidth =	xhci_reset_bandwidth,
4991 	.address_device =	xhci_address_device,
4992 	.enable_device =	xhci_enable_device,
4993 	.update_hub_device =	xhci_update_hub_device,
4994 	.reset_device =		xhci_discover_or_reset_device,
4995 
4996 	/*
4997 	 * scheduling support
4998 	 */
4999 	.get_frame_number =	xhci_get_frame,
5000 
5001 	/*
5002 	 * root hub support
5003 	 */
5004 	.hub_control =		xhci_hub_control,
5005 	.hub_status_data =	xhci_hub_status_data,
5006 	.bus_suspend =		xhci_bus_suspend,
5007 	.bus_resume =		xhci_bus_resume,
5008 
5009 	/*
5010 	 * call back when device connected and addressed
5011 	 */
5012 	.update_device =        xhci_update_device,
5013 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5014 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5015 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5016 	.find_raw_port_number =	xhci_find_raw_port_number,
5017 };
5018 
5019 void xhci_init_driver(struct hc_driver *drv,
5020 		      const struct xhci_driver_overrides *over)
5021 {
5022 	BUG_ON(!over);
5023 
5024 	/* Copy the generic table to drv then apply the overrides */
5025 	*drv = xhci_hc_driver;
5026 
5027 	if (over) {
5028 		drv->hcd_priv_size += over->extra_priv_size;
5029 		if (over->reset)
5030 			drv->reset = over->reset;
5031 		if (over->start)
5032 			drv->start = over->start;
5033 	}
5034 }
5035 EXPORT_SYMBOL_GPL(xhci_init_driver);
5036 
5037 MODULE_DESCRIPTION(DRIVER_DESC);
5038 MODULE_AUTHOR(DRIVER_AUTHOR);
5039 MODULE_LICENSE("GPL");
5040 
5041 static int __init xhci_hcd_init(void)
5042 {
5043 	/*
5044 	 * Check the compiler generated sizes of structures that must be laid
5045 	 * out in specific ways for hardware access.
5046 	 */
5047 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5048 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5049 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5050 	/* xhci_device_control has eight fields, and also
5051 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5052 	 */
5053 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5054 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5055 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5056 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5057 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5058 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5059 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5060 
5061 	if (usb_disabled())
5062 		return -ENODEV;
5063 
5064 	return 0;
5065 }
5066 
5067 /*
5068  * If an init function is provided, an exit function must also be provided
5069  * to allow module unload.
5070  */
5071 static void __exit xhci_hcd_fini(void) { }
5072 
5073 module_init(xhci_hcd_init);
5074 module_exit(xhci_hcd_fini);
5075