1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 if ((state & STS_HALT) == 0) { 171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 172 return 0; 173 } 174 175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 176 command = readl(&xhci->op_regs->command); 177 command |= CMD_RESET; 178 writel(command, &xhci->op_regs->command); 179 180 /* Existing Intel xHCI controllers require a delay of 1 mS, 181 * after setting the CMD_RESET bit, and before accessing any 182 * HC registers. This allows the HC to complete the 183 * reset operation and be ready for HC register access. 184 * Without this delay, the subsequent HC register access, 185 * may result in a system hang very rarely. 186 */ 187 if (xhci->quirks & XHCI_INTEL_HOST) 188 udelay(1000); 189 190 ret = xhci_handshake(&xhci->op_regs->command, 191 CMD_RESET, 0, 10 * 1000 * 1000); 192 if (ret) 193 return ret; 194 195 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 196 "Wait for controller to be ready for doorbell rings"); 197 /* 198 * xHCI cannot write to any doorbells or operational registers other 199 * than status until the "Controller Not Ready" flag is cleared. 200 */ 201 ret = xhci_handshake(&xhci->op_regs->status, 202 STS_CNR, 0, 10 * 1000 * 1000); 203 204 for (i = 0; i < 2; ++i) { 205 xhci->bus_state[i].port_c_suspend = 0; 206 xhci->bus_state[i].suspended_ports = 0; 207 xhci->bus_state[i].resuming_ports = 0; 208 } 209 210 return ret; 211 } 212 213 #ifdef CONFIG_PCI 214 static int xhci_free_msi(struct xhci_hcd *xhci) 215 { 216 int i; 217 218 if (!xhci->msix_entries) 219 return -EINVAL; 220 221 for (i = 0; i < xhci->msix_count; i++) 222 if (xhci->msix_entries[i].vector) 223 free_irq(xhci->msix_entries[i].vector, 224 xhci_to_hcd(xhci)); 225 return 0; 226 } 227 228 /* 229 * Set up MSI 230 */ 231 static int xhci_setup_msi(struct xhci_hcd *xhci) 232 { 233 int ret; 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 236 ret = pci_enable_msi(pdev); 237 if (ret) { 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "failed to allocate MSI entry"); 240 return ret; 241 } 242 243 ret = request_irq(pdev->irq, xhci_msi_irq, 244 0, "xhci_hcd", xhci_to_hcd(xhci)); 245 if (ret) { 246 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 247 "disable MSI interrupt"); 248 pci_disable_msi(pdev); 249 } 250 251 return ret; 252 } 253 254 /* 255 * Free IRQs 256 * free all IRQs request 257 */ 258 static void xhci_free_irq(struct xhci_hcd *xhci) 259 { 260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 261 int ret; 262 263 /* return if using legacy interrupt */ 264 if (xhci_to_hcd(xhci)->irq > 0) 265 return; 266 267 ret = xhci_free_msi(xhci); 268 if (!ret) 269 return; 270 if (pdev->irq > 0) 271 free_irq(pdev->irq, xhci_to_hcd(xhci)); 272 273 return; 274 } 275 276 /* 277 * Set up MSI-X 278 */ 279 static int xhci_setup_msix(struct xhci_hcd *xhci) 280 { 281 int i, ret = 0; 282 struct usb_hcd *hcd = xhci_to_hcd(xhci); 283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 284 285 /* 286 * calculate number of msi-x vectors supported. 287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 288 * with max number of interrupters based on the xhci HCSPARAMS1. 289 * - num_online_cpus: maximum msi-x vectors per CPUs core. 290 * Add additional 1 vector to ensure always available interrupt. 291 */ 292 xhci->msix_count = min(num_online_cpus() + 1, 293 HCS_MAX_INTRS(xhci->hcs_params1)); 294 295 xhci->msix_entries = 296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 297 GFP_KERNEL); 298 if (!xhci->msix_entries) { 299 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 300 return -ENOMEM; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 xhci->msix_entries[i].entry = i; 305 xhci->msix_entries[i].vector = 0; 306 } 307 308 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 309 if (ret) { 310 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 311 "Failed to enable MSI-X"); 312 goto free_entries; 313 } 314 315 for (i = 0; i < xhci->msix_count; i++) { 316 ret = request_irq(xhci->msix_entries[i].vector, 317 xhci_msi_irq, 318 0, "xhci_hcd", xhci_to_hcd(xhci)); 319 if (ret) 320 goto disable_msix; 321 } 322 323 hcd->msix_enabled = 1; 324 return ret; 325 326 disable_msix: 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 328 xhci_free_irq(xhci); 329 pci_disable_msix(pdev); 330 free_entries: 331 kfree(xhci->msix_entries); 332 xhci->msix_entries = NULL; 333 return ret; 334 } 335 336 /* Free any IRQs and disable MSI-X */ 337 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 338 { 339 struct usb_hcd *hcd = xhci_to_hcd(xhci); 340 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 341 342 if (xhci->quirks & XHCI_PLAT) 343 return; 344 345 xhci_free_irq(xhci); 346 347 if (xhci->msix_entries) { 348 pci_disable_msix(pdev); 349 kfree(xhci->msix_entries); 350 xhci->msix_entries = NULL; 351 } else { 352 pci_disable_msi(pdev); 353 } 354 355 hcd->msix_enabled = 0; 356 return; 357 } 358 359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 360 { 361 int i; 362 363 if (xhci->msix_entries) { 364 for (i = 0; i < xhci->msix_count; i++) 365 synchronize_irq(xhci->msix_entries[i].vector); 366 } 367 } 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 372 struct pci_dev *pdev; 373 int ret; 374 375 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 376 if (xhci->quirks & XHCI_PLAT) 377 return 0; 378 379 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 380 /* 381 * Some Fresco Logic host controllers advertise MSI, but fail to 382 * generate interrupts. Don't even try to enable MSI. 383 */ 384 if (xhci->quirks & XHCI_BROKEN_MSI) 385 goto legacy_irq; 386 387 /* unregister the legacy interrupt */ 388 if (hcd->irq) 389 free_irq(hcd->irq, hcd); 390 hcd->irq = 0; 391 392 ret = xhci_setup_msix(xhci); 393 if (ret) 394 /* fall back to msi*/ 395 ret = xhci_setup_msi(xhci); 396 397 if (!ret) 398 /* hcd->irq is 0, we have MSI */ 399 return 0; 400 401 if (!pdev->irq) { 402 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 403 return -EINVAL; 404 } 405 406 legacy_irq: 407 if (!strlen(hcd->irq_descr)) 408 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 409 hcd->driver->description, hcd->self.busnum); 410 411 /* fall back to legacy interrupt*/ 412 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 413 hcd->irq_descr, hcd); 414 if (ret) { 415 xhci_err(xhci, "request interrupt %d failed\n", 416 pdev->irq); 417 return ret; 418 } 419 hcd->irq = pdev->irq; 420 return 0; 421 } 422 423 #else 424 425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 426 { 427 return 0; 428 } 429 430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 431 { 432 } 433 434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 435 { 436 } 437 438 #endif 439 440 static void compliance_mode_recovery(unsigned long arg) 441 { 442 struct xhci_hcd *xhci; 443 struct usb_hcd *hcd; 444 u32 temp; 445 int i; 446 447 xhci = (struct xhci_hcd *)arg; 448 449 for (i = 0; i < xhci->num_usb3_ports; i++) { 450 temp = readl(xhci->usb3_ports[i]); 451 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 452 /* 453 * Compliance Mode Detected. Letting USB Core 454 * handle the Warm Reset 455 */ 456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 457 "Compliance mode detected->port %d", 458 i + 1); 459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 460 "Attempting compliance mode recovery"); 461 hcd = xhci->shared_hcd; 462 463 if (hcd->state == HC_STATE_SUSPENDED) 464 usb_hcd_resume_root_hub(hcd); 465 466 usb_hcd_poll_rh_status(hcd); 467 } 468 } 469 470 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 471 mod_timer(&xhci->comp_mode_recovery_timer, 472 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 473 } 474 475 /* 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 477 * that causes ports behind that hardware to enter compliance mode sometimes. 478 * The quirk creates a timer that polls every 2 seconds the link state of 479 * each host controller's port and recovers it by issuing a Warm reset 480 * if Compliance mode is detected, otherwise the port will become "dead" (no 481 * device connections or disconnections will be detected anymore). Becasue no 482 * status event is generated when entering compliance mode (per xhci spec), 483 * this quirk is needed on systems that have the failing hardware installed. 484 */ 485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 486 { 487 xhci->port_status_u0 = 0; 488 setup_timer(&xhci->comp_mode_recovery_timer, 489 compliance_mode_recovery, (unsigned long)xhci); 490 xhci->comp_mode_recovery_timer.expires = jiffies + 491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 492 493 add_timer(&xhci->comp_mode_recovery_timer); 494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 495 "Compliance mode recovery timer initialized"); 496 } 497 498 /* 499 * This function identifies the systems that have installed the SN65LVPE502CP 500 * USB3.0 re-driver and that need the Compliance Mode Quirk. 501 * Systems: 502 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 503 */ 504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 505 { 506 const char *dmi_product_name, *dmi_sys_vendor; 507 508 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 509 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 510 if (!dmi_product_name || !dmi_sys_vendor) 511 return false; 512 513 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 514 return false; 515 516 if (strstr(dmi_product_name, "Z420") || 517 strstr(dmi_product_name, "Z620") || 518 strstr(dmi_product_name, "Z820") || 519 strstr(dmi_product_name, "Z1 Workstation")) 520 return true; 521 522 return false; 523 } 524 525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 526 { 527 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 528 } 529 530 531 /* 532 * Initialize memory for HCD and xHC (one-time init). 533 * 534 * Program the PAGESIZE register, initialize the device context array, create 535 * device contexts (?), set up a command ring segment (or two?), create event 536 * ring (one for now). 537 */ 538 int xhci_init(struct usb_hcd *hcd) 539 { 540 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 541 int retval = 0; 542 543 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 544 spin_lock_init(&xhci->lock); 545 if (xhci->hci_version == 0x95 && link_quirk) { 546 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 547 "QUIRK: Not clearing Link TRB chain bits."); 548 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 549 } else { 550 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 551 "xHCI doesn't need link TRB QUIRK"); 552 } 553 retval = xhci_mem_init(xhci, GFP_KERNEL); 554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 555 556 /* Initializing Compliance Mode Recovery Data If Needed */ 557 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 558 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 559 compliance_mode_recovery_timer_init(xhci); 560 } 561 562 return retval; 563 } 564 565 /*-------------------------------------------------------------------------*/ 566 567 568 static int xhci_run_finished(struct xhci_hcd *xhci) 569 { 570 if (xhci_start(xhci)) { 571 xhci_halt(xhci); 572 return -ENODEV; 573 } 574 xhci->shared_hcd->state = HC_STATE_RUNNING; 575 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 576 577 if (xhci->quirks & XHCI_NEC_HOST) 578 xhci_ring_cmd_db(xhci); 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 581 "Finished xhci_run for USB3 roothub"); 582 return 0; 583 } 584 585 /* 586 * Start the HC after it was halted. 587 * 588 * This function is called by the USB core when the HC driver is added. 589 * Its opposite is xhci_stop(). 590 * 591 * xhci_init() must be called once before this function can be called. 592 * Reset the HC, enable device slot contexts, program DCBAAP, and 593 * set command ring pointer and event ring pointer. 594 * 595 * Setup MSI-X vectors and enable interrupts. 596 */ 597 int xhci_run(struct usb_hcd *hcd) 598 { 599 u32 temp; 600 u64 temp_64; 601 int ret; 602 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 603 604 /* Start the xHCI host controller running only after the USB 2.0 roothub 605 * is setup. 606 */ 607 608 hcd->uses_new_polling = 1; 609 if (!usb_hcd_is_primary_hcd(hcd)) 610 return xhci_run_finished(xhci); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 613 614 ret = xhci_try_enable_msi(hcd); 615 if (ret) 616 return ret; 617 618 xhci_dbg(xhci, "Command ring memory map follows:\n"); 619 xhci_debug_ring(xhci, xhci->cmd_ring); 620 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 621 xhci_dbg_cmd_ptrs(xhci); 622 623 xhci_dbg(xhci, "ERST memory map follows:\n"); 624 xhci_dbg_erst(xhci, &xhci->erst); 625 xhci_dbg(xhci, "Event ring:\n"); 626 xhci_debug_ring(xhci, xhci->event_ring); 627 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 628 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 629 temp_64 &= ~ERST_PTR_MASK; 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 631 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 632 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Set the interrupt modulation register"); 635 temp = readl(&xhci->ir_set->irq_control); 636 temp &= ~ER_IRQ_INTERVAL_MASK; 637 /* 638 * the increment interval is 8 times as much as that defined 639 * in xHCI spec on MTK's controller 640 */ 641 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 642 writel(temp, &xhci->ir_set->irq_control); 643 644 /* Set the HCD state before we enable the irqs */ 645 temp = readl(&xhci->op_regs->command); 646 temp |= (CMD_EIE); 647 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 648 "// Enable interrupts, cmd = 0x%x.", temp); 649 writel(temp, &xhci->op_regs->command); 650 651 temp = readl(&xhci->ir_set->irq_pending); 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 653 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 654 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 655 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 656 xhci_print_ir_set(xhci, 0); 657 658 if (xhci->quirks & XHCI_NEC_HOST) { 659 struct xhci_command *command; 660 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 661 if (!command) 662 return -ENOMEM; 663 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 664 TRB_TYPE(TRB_NEC_GET_FW)); 665 } 666 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 667 "Finished xhci_run for USB2 roothub"); 668 return 0; 669 } 670 EXPORT_SYMBOL_GPL(xhci_run); 671 672 /* 673 * Stop xHCI driver. 674 * 675 * This function is called by the USB core when the HC driver is removed. 676 * Its opposite is xhci_run(). 677 * 678 * Disable device contexts, disable IRQs, and quiesce the HC. 679 * Reset the HC, finish any completed transactions, and cleanup memory. 680 */ 681 void xhci_stop(struct usb_hcd *hcd) 682 { 683 u32 temp; 684 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 685 686 mutex_lock(&xhci->mutex); 687 688 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 689 spin_lock_irq(&xhci->lock); 690 691 xhci->xhc_state |= XHCI_STATE_HALTED; 692 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 693 xhci_halt(xhci); 694 xhci_reset(xhci); 695 696 spin_unlock_irq(&xhci->lock); 697 } 698 699 if (!usb_hcd_is_primary_hcd(hcd)) { 700 mutex_unlock(&xhci->mutex); 701 return; 702 } 703 704 xhci_cleanup_msix(xhci); 705 706 /* Deleting Compliance Mode Recovery Timer */ 707 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 708 (!(xhci_all_ports_seen_u0(xhci)))) { 709 del_timer_sync(&xhci->comp_mode_recovery_timer); 710 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 711 "%s: compliance mode recovery timer deleted", 712 __func__); 713 } 714 715 if (xhci->quirks & XHCI_AMD_PLL_FIX) 716 usb_amd_dev_put(); 717 718 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 719 "// Disabling event ring interrupts"); 720 temp = readl(&xhci->op_regs->status); 721 writel(temp & ~STS_EINT, &xhci->op_regs->status); 722 temp = readl(&xhci->ir_set->irq_pending); 723 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 724 xhci_print_ir_set(xhci, 0); 725 726 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 727 xhci_mem_cleanup(xhci); 728 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 729 "xhci_stop completed - status = %x", 730 readl(&xhci->op_regs->status)); 731 mutex_unlock(&xhci->mutex); 732 } 733 734 /* 735 * Shutdown HC (not bus-specific) 736 * 737 * This is called when the machine is rebooting or halting. We assume that the 738 * machine will be powered off, and the HC's internal state will be reset. 739 * Don't bother to free memory. 740 * 741 * This will only ever be called with the main usb_hcd (the USB3 roothub). 742 */ 743 void xhci_shutdown(struct usb_hcd *hcd) 744 { 745 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 746 747 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 748 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 749 750 spin_lock_irq(&xhci->lock); 751 xhci_halt(xhci); 752 /* Workaround for spurious wakeups at shutdown with HSW */ 753 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 754 xhci_reset(xhci); 755 spin_unlock_irq(&xhci->lock); 756 757 xhci_cleanup_msix(xhci); 758 759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 760 "xhci_shutdown completed - status = %x", 761 readl(&xhci->op_regs->status)); 762 763 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 764 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 765 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 766 } 767 768 #ifdef CONFIG_PM 769 static void xhci_save_registers(struct xhci_hcd *xhci) 770 { 771 xhci->s3.command = readl(&xhci->op_regs->command); 772 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 773 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 774 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 775 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 776 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 777 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 778 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 779 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 780 } 781 782 static void xhci_restore_registers(struct xhci_hcd *xhci) 783 { 784 writel(xhci->s3.command, &xhci->op_regs->command); 785 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 786 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 787 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 788 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 789 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 790 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 791 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 792 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 793 } 794 795 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 796 { 797 u64 val_64; 798 799 /* step 2: initialize command ring buffer */ 800 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 801 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 802 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 803 xhci->cmd_ring->dequeue) & 804 (u64) ~CMD_RING_RSVD_BITS) | 805 xhci->cmd_ring->cycle_state; 806 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 807 "// Setting command ring address to 0x%llx", 808 (long unsigned long) val_64); 809 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 810 } 811 812 /* 813 * The whole command ring must be cleared to zero when we suspend the host. 814 * 815 * The host doesn't save the command ring pointer in the suspend well, so we 816 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 817 * aligned, because of the reserved bits in the command ring dequeue pointer 818 * register. Therefore, we can't just set the dequeue pointer back in the 819 * middle of the ring (TRBs are 16-byte aligned). 820 */ 821 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 822 { 823 struct xhci_ring *ring; 824 struct xhci_segment *seg; 825 826 ring = xhci->cmd_ring; 827 seg = ring->deq_seg; 828 do { 829 memset(seg->trbs, 0, 830 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 831 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 832 cpu_to_le32(~TRB_CYCLE); 833 seg = seg->next; 834 } while (seg != ring->deq_seg); 835 836 /* Reset the software enqueue and dequeue pointers */ 837 ring->deq_seg = ring->first_seg; 838 ring->dequeue = ring->first_seg->trbs; 839 ring->enq_seg = ring->deq_seg; 840 ring->enqueue = ring->dequeue; 841 842 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 843 /* 844 * Ring is now zeroed, so the HW should look for change of ownership 845 * when the cycle bit is set to 1. 846 */ 847 ring->cycle_state = 1; 848 849 /* 850 * Reset the hardware dequeue pointer. 851 * Yes, this will need to be re-written after resume, but we're paranoid 852 * and want to make sure the hardware doesn't access bogus memory 853 * because, say, the BIOS or an SMI started the host without changing 854 * the command ring pointers. 855 */ 856 xhci_set_cmd_ring_deq(xhci); 857 } 858 859 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 860 { 861 int port_index; 862 __le32 __iomem **port_array; 863 unsigned long flags; 864 u32 t1, t2; 865 866 spin_lock_irqsave(&xhci->lock, flags); 867 868 /* disble usb3 ports Wake bits*/ 869 port_index = xhci->num_usb3_ports; 870 port_array = xhci->usb3_ports; 871 while (port_index--) { 872 t1 = readl(port_array[port_index]); 873 t1 = xhci_port_state_to_neutral(t1); 874 t2 = t1 & ~PORT_WAKE_BITS; 875 if (t1 != t2) 876 writel(t2, port_array[port_index]); 877 } 878 879 /* disble usb2 ports Wake bits*/ 880 port_index = xhci->num_usb2_ports; 881 port_array = xhci->usb2_ports; 882 while (port_index--) { 883 t1 = readl(port_array[port_index]); 884 t1 = xhci_port_state_to_neutral(t1); 885 t2 = t1 & ~PORT_WAKE_BITS; 886 if (t1 != t2) 887 writel(t2, port_array[port_index]); 888 } 889 890 spin_unlock_irqrestore(&xhci->lock, flags); 891 } 892 893 /* 894 * Stop HC (not bus-specific) 895 * 896 * This is called when the machine transition into S3/S4 mode. 897 * 898 */ 899 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 900 { 901 int rc = 0; 902 unsigned int delay = XHCI_MAX_HALT_USEC; 903 struct usb_hcd *hcd = xhci_to_hcd(xhci); 904 u32 command; 905 906 if (!hcd->state) 907 return 0; 908 909 if (hcd->state != HC_STATE_SUSPENDED || 910 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 911 return -EINVAL; 912 913 /* Clear root port wake on bits if wakeup not allowed. */ 914 if (!do_wakeup) 915 xhci_disable_port_wake_on_bits(xhci); 916 917 /* Don't poll the roothubs on bus suspend. */ 918 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 919 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 920 del_timer_sync(&hcd->rh_timer); 921 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 922 del_timer_sync(&xhci->shared_hcd->rh_timer); 923 924 spin_lock_irq(&xhci->lock); 925 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 926 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 927 /* step 1: stop endpoint */ 928 /* skipped assuming that port suspend has done */ 929 930 /* step 2: clear Run/Stop bit */ 931 command = readl(&xhci->op_regs->command); 932 command &= ~CMD_RUN; 933 writel(command, &xhci->op_regs->command); 934 935 /* Some chips from Fresco Logic need an extraordinary delay */ 936 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 937 938 if (xhci_handshake(&xhci->op_regs->status, 939 STS_HALT, STS_HALT, delay)) { 940 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 941 spin_unlock_irq(&xhci->lock); 942 return -ETIMEDOUT; 943 } 944 xhci_clear_command_ring(xhci); 945 946 /* step 3: save registers */ 947 xhci_save_registers(xhci); 948 949 /* step 4: set CSS flag */ 950 command = readl(&xhci->op_regs->command); 951 command |= CMD_CSS; 952 writel(command, &xhci->op_regs->command); 953 if (xhci_handshake(&xhci->op_regs->status, 954 STS_SAVE, 0, 10 * 1000)) { 955 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 956 spin_unlock_irq(&xhci->lock); 957 return -ETIMEDOUT; 958 } 959 spin_unlock_irq(&xhci->lock); 960 961 /* 962 * Deleting Compliance Mode Recovery Timer because the xHCI Host 963 * is about to be suspended. 964 */ 965 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 966 (!(xhci_all_ports_seen_u0(xhci)))) { 967 del_timer_sync(&xhci->comp_mode_recovery_timer); 968 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 969 "%s: compliance mode recovery timer deleted", 970 __func__); 971 } 972 973 /* step 5: remove core well power */ 974 /* synchronize irq when using MSI-X */ 975 xhci_msix_sync_irqs(xhci); 976 977 return rc; 978 } 979 EXPORT_SYMBOL_GPL(xhci_suspend); 980 981 /* 982 * start xHC (not bus-specific) 983 * 984 * This is called when the machine transition from S3/S4 mode. 985 * 986 */ 987 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 988 { 989 u32 command, temp = 0, status; 990 struct usb_hcd *hcd = xhci_to_hcd(xhci); 991 struct usb_hcd *secondary_hcd; 992 int retval = 0; 993 bool comp_timer_running = false; 994 995 if (!hcd->state) 996 return 0; 997 998 /* Wait a bit if either of the roothubs need to settle from the 999 * transition into bus suspend. 1000 */ 1001 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1002 time_before(jiffies, 1003 xhci->bus_state[1].next_statechange)) 1004 msleep(100); 1005 1006 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1007 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1008 1009 spin_lock_irq(&xhci->lock); 1010 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1011 hibernated = true; 1012 1013 if (!hibernated) { 1014 /* step 1: restore register */ 1015 xhci_restore_registers(xhci); 1016 /* step 2: initialize command ring buffer */ 1017 xhci_set_cmd_ring_deq(xhci); 1018 /* step 3: restore state and start state*/ 1019 /* step 3: set CRS flag */ 1020 command = readl(&xhci->op_regs->command); 1021 command |= CMD_CRS; 1022 writel(command, &xhci->op_regs->command); 1023 if (xhci_handshake(&xhci->op_regs->status, 1024 STS_RESTORE, 0, 10 * 1000)) { 1025 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1026 spin_unlock_irq(&xhci->lock); 1027 return -ETIMEDOUT; 1028 } 1029 temp = readl(&xhci->op_regs->status); 1030 } 1031 1032 /* If restore operation fails, re-initialize the HC during resume */ 1033 if ((temp & STS_SRE) || hibernated) { 1034 1035 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1036 !(xhci_all_ports_seen_u0(xhci))) { 1037 del_timer_sync(&xhci->comp_mode_recovery_timer); 1038 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1039 "Compliance Mode Recovery Timer deleted!"); 1040 } 1041 1042 /* Let the USB core know _both_ roothubs lost power. */ 1043 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1044 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1045 1046 xhci_dbg(xhci, "Stop HCD\n"); 1047 xhci_halt(xhci); 1048 xhci_reset(xhci); 1049 spin_unlock_irq(&xhci->lock); 1050 xhci_cleanup_msix(xhci); 1051 1052 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1053 temp = readl(&xhci->op_regs->status); 1054 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1055 temp = readl(&xhci->ir_set->irq_pending); 1056 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1057 xhci_print_ir_set(xhci, 0); 1058 1059 xhci_dbg(xhci, "cleaning up memory\n"); 1060 xhci_mem_cleanup(xhci); 1061 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1062 readl(&xhci->op_regs->status)); 1063 1064 /* USB core calls the PCI reinit and start functions twice: 1065 * first with the primary HCD, and then with the secondary HCD. 1066 * If we don't do the same, the host will never be started. 1067 */ 1068 if (!usb_hcd_is_primary_hcd(hcd)) 1069 secondary_hcd = hcd; 1070 else 1071 secondary_hcd = xhci->shared_hcd; 1072 1073 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1074 retval = xhci_init(hcd->primary_hcd); 1075 if (retval) 1076 return retval; 1077 comp_timer_running = true; 1078 1079 xhci_dbg(xhci, "Start the primary HCD\n"); 1080 retval = xhci_run(hcd->primary_hcd); 1081 if (!retval) { 1082 xhci_dbg(xhci, "Start the secondary HCD\n"); 1083 retval = xhci_run(secondary_hcd); 1084 } 1085 hcd->state = HC_STATE_SUSPENDED; 1086 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1087 goto done; 1088 } 1089 1090 /* step 4: set Run/Stop bit */ 1091 command = readl(&xhci->op_regs->command); 1092 command |= CMD_RUN; 1093 writel(command, &xhci->op_regs->command); 1094 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1095 0, 250 * 1000); 1096 1097 /* step 5: walk topology and initialize portsc, 1098 * portpmsc and portli 1099 */ 1100 /* this is done in bus_resume */ 1101 1102 /* step 6: restart each of the previously 1103 * Running endpoints by ringing their doorbells 1104 */ 1105 1106 spin_unlock_irq(&xhci->lock); 1107 1108 done: 1109 if (retval == 0) { 1110 /* Resume root hubs only when have pending events. */ 1111 status = readl(&xhci->op_regs->status); 1112 if (status & STS_EINT) { 1113 usb_hcd_resume_root_hub(xhci->shared_hcd); 1114 usb_hcd_resume_root_hub(hcd); 1115 } 1116 } 1117 1118 /* 1119 * If system is subject to the Quirk, Compliance Mode Timer needs to 1120 * be re-initialized Always after a system resume. Ports are subject 1121 * to suffer the Compliance Mode issue again. It doesn't matter if 1122 * ports have entered previously to U0 before system's suspension. 1123 */ 1124 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1125 compliance_mode_recovery_timer_init(xhci); 1126 1127 /* Re-enable port polling. */ 1128 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1129 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1130 usb_hcd_poll_rh_status(xhci->shared_hcd); 1131 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1132 usb_hcd_poll_rh_status(hcd); 1133 1134 return retval; 1135 } 1136 EXPORT_SYMBOL_GPL(xhci_resume); 1137 #endif /* CONFIG_PM */ 1138 1139 /*-------------------------------------------------------------------------*/ 1140 1141 /** 1142 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1143 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1144 * value to right shift 1 for the bitmask. 1145 * 1146 * Index = (epnum * 2) + direction - 1, 1147 * where direction = 0 for OUT, 1 for IN. 1148 * For control endpoints, the IN index is used (OUT index is unused), so 1149 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1150 */ 1151 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1152 { 1153 unsigned int index; 1154 if (usb_endpoint_xfer_control(desc)) 1155 index = (unsigned int) (usb_endpoint_num(desc)*2); 1156 else 1157 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1158 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1159 return index; 1160 } 1161 1162 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1163 * address from the XHCI endpoint index. 1164 */ 1165 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1166 { 1167 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1168 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1169 return direction | number; 1170 } 1171 1172 /* Find the flag for this endpoint (for use in the control context). Use the 1173 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1174 * bit 1, etc. 1175 */ 1176 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1177 { 1178 return 1 << (xhci_get_endpoint_index(desc) + 1); 1179 } 1180 1181 /* Find the flag for this endpoint (for use in the control context). Use the 1182 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1183 * bit 1, etc. 1184 */ 1185 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1186 { 1187 return 1 << (ep_index + 1); 1188 } 1189 1190 /* Compute the last valid endpoint context index. Basically, this is the 1191 * endpoint index plus one. For slot contexts with more than valid endpoint, 1192 * we find the most significant bit set in the added contexts flags. 1193 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1194 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1195 */ 1196 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1197 { 1198 return fls(added_ctxs) - 1; 1199 } 1200 1201 /* Returns 1 if the arguments are OK; 1202 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1203 */ 1204 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1205 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1206 const char *func) { 1207 struct xhci_hcd *xhci; 1208 struct xhci_virt_device *virt_dev; 1209 1210 if (!hcd || (check_ep && !ep) || !udev) { 1211 pr_debug("xHCI %s called with invalid args\n", func); 1212 return -EINVAL; 1213 } 1214 if (!udev->parent) { 1215 pr_debug("xHCI %s called for root hub\n", func); 1216 return 0; 1217 } 1218 1219 xhci = hcd_to_xhci(hcd); 1220 if (check_virt_dev) { 1221 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1222 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1223 func); 1224 return -EINVAL; 1225 } 1226 1227 virt_dev = xhci->devs[udev->slot_id]; 1228 if (virt_dev->udev != udev) { 1229 xhci_dbg(xhci, "xHCI %s called with udev and " 1230 "virt_dev does not match\n", func); 1231 return -EINVAL; 1232 } 1233 } 1234 1235 if (xhci->xhc_state & XHCI_STATE_HALTED) 1236 return -ENODEV; 1237 1238 return 1; 1239 } 1240 1241 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1242 struct usb_device *udev, struct xhci_command *command, 1243 bool ctx_change, bool must_succeed); 1244 1245 /* 1246 * Full speed devices may have a max packet size greater than 8 bytes, but the 1247 * USB core doesn't know that until it reads the first 8 bytes of the 1248 * descriptor. If the usb_device's max packet size changes after that point, 1249 * we need to issue an evaluate context command and wait on it. 1250 */ 1251 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1252 unsigned int ep_index, struct urb *urb) 1253 { 1254 struct xhci_container_ctx *out_ctx; 1255 struct xhci_input_control_ctx *ctrl_ctx; 1256 struct xhci_ep_ctx *ep_ctx; 1257 struct xhci_command *command; 1258 int max_packet_size; 1259 int hw_max_packet_size; 1260 int ret = 0; 1261 1262 out_ctx = xhci->devs[slot_id]->out_ctx; 1263 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1264 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1265 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1266 if (hw_max_packet_size != max_packet_size) { 1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1268 "Max Packet Size for ep 0 changed."); 1269 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1270 "Max packet size in usb_device = %d", 1271 max_packet_size); 1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1273 "Max packet size in xHCI HW = %d", 1274 hw_max_packet_size); 1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1276 "Issuing evaluate context command."); 1277 1278 /* Set up the input context flags for the command */ 1279 /* FIXME: This won't work if a non-default control endpoint 1280 * changes max packet sizes. 1281 */ 1282 1283 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1284 if (!command) 1285 return -ENOMEM; 1286 1287 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1288 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1289 if (!ctrl_ctx) { 1290 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1291 __func__); 1292 ret = -ENOMEM; 1293 goto command_cleanup; 1294 } 1295 /* Set up the modified control endpoint 0 */ 1296 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1297 xhci->devs[slot_id]->out_ctx, ep_index); 1298 1299 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1300 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1301 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1302 1303 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1304 ctrl_ctx->drop_flags = 0; 1305 1306 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1307 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1308 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1309 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1310 1311 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1312 true, false); 1313 1314 /* Clean up the input context for later use by bandwidth 1315 * functions. 1316 */ 1317 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1318 command_cleanup: 1319 kfree(command->completion); 1320 kfree(command); 1321 } 1322 return ret; 1323 } 1324 1325 /* 1326 * non-error returns are a promise to giveback() the urb later 1327 * we drop ownership so next owner (or urb unlink) can get it 1328 */ 1329 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1330 { 1331 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1332 struct xhci_td *buffer; 1333 unsigned long flags; 1334 int ret = 0; 1335 unsigned int slot_id, ep_index; 1336 struct urb_priv *urb_priv; 1337 int size, i; 1338 1339 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1340 true, true, __func__) <= 0) 1341 return -EINVAL; 1342 1343 slot_id = urb->dev->slot_id; 1344 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1345 1346 if (!HCD_HW_ACCESSIBLE(hcd)) { 1347 if (!in_interrupt()) 1348 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1349 ret = -ESHUTDOWN; 1350 goto exit; 1351 } 1352 1353 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1354 size = urb->number_of_packets; 1355 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1356 urb->transfer_buffer_length > 0 && 1357 urb->transfer_flags & URB_ZERO_PACKET && 1358 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1359 size = 2; 1360 else 1361 size = 1; 1362 1363 urb_priv = kzalloc(sizeof(struct urb_priv) + 1364 size * sizeof(struct xhci_td *), mem_flags); 1365 if (!urb_priv) 1366 return -ENOMEM; 1367 1368 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1369 if (!buffer) { 1370 kfree(urb_priv); 1371 return -ENOMEM; 1372 } 1373 1374 for (i = 0; i < size; i++) { 1375 urb_priv->td[i] = buffer; 1376 buffer++; 1377 } 1378 1379 urb_priv->length = size; 1380 urb_priv->td_cnt = 0; 1381 urb->hcpriv = urb_priv; 1382 1383 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1384 /* Check to see if the max packet size for the default control 1385 * endpoint changed during FS device enumeration 1386 */ 1387 if (urb->dev->speed == USB_SPEED_FULL) { 1388 ret = xhci_check_maxpacket(xhci, slot_id, 1389 ep_index, urb); 1390 if (ret < 0) { 1391 xhci_urb_free_priv(urb_priv); 1392 urb->hcpriv = NULL; 1393 return ret; 1394 } 1395 } 1396 1397 /* We have a spinlock and interrupts disabled, so we must pass 1398 * atomic context to this function, which may allocate memory. 1399 */ 1400 spin_lock_irqsave(&xhci->lock, flags); 1401 if (xhci->xhc_state & XHCI_STATE_DYING) 1402 goto dying; 1403 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1404 slot_id, ep_index); 1405 if (ret) 1406 goto free_priv; 1407 spin_unlock_irqrestore(&xhci->lock, flags); 1408 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1409 spin_lock_irqsave(&xhci->lock, flags); 1410 if (xhci->xhc_state & XHCI_STATE_DYING) 1411 goto dying; 1412 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1413 EP_GETTING_STREAMS) { 1414 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1415 "is transitioning to using streams.\n"); 1416 ret = -EINVAL; 1417 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1418 EP_GETTING_NO_STREAMS) { 1419 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1420 "is transitioning to " 1421 "not having streams.\n"); 1422 ret = -EINVAL; 1423 } else { 1424 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1425 slot_id, ep_index); 1426 } 1427 if (ret) 1428 goto free_priv; 1429 spin_unlock_irqrestore(&xhci->lock, flags); 1430 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1431 spin_lock_irqsave(&xhci->lock, flags); 1432 if (xhci->xhc_state & XHCI_STATE_DYING) 1433 goto dying; 1434 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1435 slot_id, ep_index); 1436 if (ret) 1437 goto free_priv; 1438 spin_unlock_irqrestore(&xhci->lock, flags); 1439 } else { 1440 spin_lock_irqsave(&xhci->lock, flags); 1441 if (xhci->xhc_state & XHCI_STATE_DYING) 1442 goto dying; 1443 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1444 slot_id, ep_index); 1445 if (ret) 1446 goto free_priv; 1447 spin_unlock_irqrestore(&xhci->lock, flags); 1448 } 1449 exit: 1450 return ret; 1451 dying: 1452 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1453 "non-responsive xHCI host.\n", 1454 urb->ep->desc.bEndpointAddress, urb); 1455 ret = -ESHUTDOWN; 1456 free_priv: 1457 xhci_urb_free_priv(urb_priv); 1458 urb->hcpriv = NULL; 1459 spin_unlock_irqrestore(&xhci->lock, flags); 1460 return ret; 1461 } 1462 1463 /* 1464 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1465 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1466 * should pick up where it left off in the TD, unless a Set Transfer Ring 1467 * Dequeue Pointer is issued. 1468 * 1469 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1470 * the ring. Since the ring is a contiguous structure, they can't be physically 1471 * removed. Instead, there are two options: 1472 * 1473 * 1) If the HC is in the middle of processing the URB to be canceled, we 1474 * simply move the ring's dequeue pointer past those TRBs using the Set 1475 * Transfer Ring Dequeue Pointer command. This will be the common case, 1476 * when drivers timeout on the last submitted URB and attempt to cancel. 1477 * 1478 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1479 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1480 * HC will need to invalidate the any TRBs it has cached after the stop 1481 * endpoint command, as noted in the xHCI 0.95 errata. 1482 * 1483 * 3) The TD may have completed by the time the Stop Endpoint Command 1484 * completes, so software needs to handle that case too. 1485 * 1486 * This function should protect against the TD enqueueing code ringing the 1487 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1488 * It also needs to account for multiple cancellations on happening at the same 1489 * time for the same endpoint. 1490 * 1491 * Note that this function can be called in any context, or so says 1492 * usb_hcd_unlink_urb() 1493 */ 1494 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1495 { 1496 unsigned long flags; 1497 int ret, i; 1498 u32 temp; 1499 struct xhci_hcd *xhci; 1500 struct urb_priv *urb_priv; 1501 struct xhci_td *td; 1502 unsigned int ep_index; 1503 struct xhci_ring *ep_ring; 1504 struct xhci_virt_ep *ep; 1505 struct xhci_command *command; 1506 1507 xhci = hcd_to_xhci(hcd); 1508 spin_lock_irqsave(&xhci->lock, flags); 1509 /* Make sure the URB hasn't completed or been unlinked already */ 1510 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1511 if (ret || !urb->hcpriv) 1512 goto done; 1513 temp = readl(&xhci->op_regs->status); 1514 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1515 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1516 "HW died, freeing TD."); 1517 urb_priv = urb->hcpriv; 1518 for (i = urb_priv->td_cnt; 1519 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1520 i++) { 1521 td = urb_priv->td[i]; 1522 if (!list_empty(&td->td_list)) 1523 list_del_init(&td->td_list); 1524 if (!list_empty(&td->cancelled_td_list)) 1525 list_del_init(&td->cancelled_td_list); 1526 } 1527 1528 usb_hcd_unlink_urb_from_ep(hcd, urb); 1529 spin_unlock_irqrestore(&xhci->lock, flags); 1530 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1531 xhci_urb_free_priv(urb_priv); 1532 return ret; 1533 } 1534 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1535 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1536 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1537 "Ep 0x%x: URB %p to be canceled on " 1538 "non-responsive xHCI host.", 1539 urb->ep->desc.bEndpointAddress, urb); 1540 /* Let the stop endpoint command watchdog timer (which set this 1541 * state) finish cleaning up the endpoint TD lists. We must 1542 * have caught it in the middle of dropping a lock and giving 1543 * back an URB. 1544 */ 1545 goto done; 1546 } 1547 1548 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1549 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1550 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1551 if (!ep_ring) { 1552 ret = -EINVAL; 1553 goto done; 1554 } 1555 1556 urb_priv = urb->hcpriv; 1557 i = urb_priv->td_cnt; 1558 if (i < urb_priv->length) 1559 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1560 "Cancel URB %p, dev %s, ep 0x%x, " 1561 "starting at offset 0x%llx", 1562 urb, urb->dev->devpath, 1563 urb->ep->desc.bEndpointAddress, 1564 (unsigned long long) xhci_trb_virt_to_dma( 1565 urb_priv->td[i]->start_seg, 1566 urb_priv->td[i]->first_trb)); 1567 1568 for (; i < urb_priv->length; i++) { 1569 td = urb_priv->td[i]; 1570 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1571 } 1572 1573 /* Queue a stop endpoint command, but only if this is 1574 * the first cancellation to be handled. 1575 */ 1576 if (!(ep->ep_state & EP_HALT_PENDING)) { 1577 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1578 if (!command) { 1579 ret = -ENOMEM; 1580 goto done; 1581 } 1582 ep->ep_state |= EP_HALT_PENDING; 1583 ep->stop_cmds_pending++; 1584 ep->stop_cmd_timer.expires = jiffies + 1585 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1586 add_timer(&ep->stop_cmd_timer); 1587 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1588 ep_index, 0); 1589 xhci_ring_cmd_db(xhci); 1590 } 1591 done: 1592 spin_unlock_irqrestore(&xhci->lock, flags); 1593 return ret; 1594 } 1595 1596 /* Drop an endpoint from a new bandwidth configuration for this device. 1597 * Only one call to this function is allowed per endpoint before 1598 * check_bandwidth() or reset_bandwidth() must be called. 1599 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1600 * add the endpoint to the schedule with possibly new parameters denoted by a 1601 * different endpoint descriptor in usb_host_endpoint. 1602 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1603 * not allowed. 1604 * 1605 * The USB core will not allow URBs to be queued to an endpoint that is being 1606 * disabled, so there's no need for mutual exclusion to protect 1607 * the xhci->devs[slot_id] structure. 1608 */ 1609 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1610 struct usb_host_endpoint *ep) 1611 { 1612 struct xhci_hcd *xhci; 1613 struct xhci_container_ctx *in_ctx, *out_ctx; 1614 struct xhci_input_control_ctx *ctrl_ctx; 1615 unsigned int ep_index; 1616 struct xhci_ep_ctx *ep_ctx; 1617 u32 drop_flag; 1618 u32 new_add_flags, new_drop_flags; 1619 int ret; 1620 1621 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1622 if (ret <= 0) 1623 return ret; 1624 xhci = hcd_to_xhci(hcd); 1625 if (xhci->xhc_state & XHCI_STATE_DYING) 1626 return -ENODEV; 1627 1628 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1629 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1630 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1631 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1632 __func__, drop_flag); 1633 return 0; 1634 } 1635 1636 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1637 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1638 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1639 if (!ctrl_ctx) { 1640 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1641 __func__); 1642 return 0; 1643 } 1644 1645 ep_index = xhci_get_endpoint_index(&ep->desc); 1646 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1647 /* If the HC already knows the endpoint is disabled, 1648 * or the HCD has noted it is disabled, ignore this request 1649 */ 1650 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1651 cpu_to_le32(EP_STATE_DISABLED)) || 1652 le32_to_cpu(ctrl_ctx->drop_flags) & 1653 xhci_get_endpoint_flag(&ep->desc)) { 1654 /* Do not warn when called after a usb_device_reset */ 1655 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1656 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1657 __func__, ep); 1658 return 0; 1659 } 1660 1661 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1662 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1663 1664 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1665 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1666 1667 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1668 1669 if (xhci->quirks & XHCI_MTK_HOST) 1670 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1671 1672 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1673 (unsigned int) ep->desc.bEndpointAddress, 1674 udev->slot_id, 1675 (unsigned int) new_drop_flags, 1676 (unsigned int) new_add_flags); 1677 return 0; 1678 } 1679 1680 /* Add an endpoint to a new possible bandwidth configuration for this device. 1681 * Only one call to this function is allowed per endpoint before 1682 * check_bandwidth() or reset_bandwidth() must be called. 1683 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1684 * add the endpoint to the schedule with possibly new parameters denoted by a 1685 * different endpoint descriptor in usb_host_endpoint. 1686 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1687 * not allowed. 1688 * 1689 * The USB core will not allow URBs to be queued to an endpoint until the 1690 * configuration or alt setting is installed in the device, so there's no need 1691 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1692 */ 1693 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1694 struct usb_host_endpoint *ep) 1695 { 1696 struct xhci_hcd *xhci; 1697 struct xhci_container_ctx *in_ctx; 1698 unsigned int ep_index; 1699 struct xhci_input_control_ctx *ctrl_ctx; 1700 u32 added_ctxs; 1701 u32 new_add_flags, new_drop_flags; 1702 struct xhci_virt_device *virt_dev; 1703 int ret = 0; 1704 1705 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1706 if (ret <= 0) { 1707 /* So we won't queue a reset ep command for a root hub */ 1708 ep->hcpriv = NULL; 1709 return ret; 1710 } 1711 xhci = hcd_to_xhci(hcd); 1712 if (xhci->xhc_state & XHCI_STATE_DYING) 1713 return -ENODEV; 1714 1715 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1716 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1717 /* FIXME when we have to issue an evaluate endpoint command to 1718 * deal with ep0 max packet size changing once we get the 1719 * descriptors 1720 */ 1721 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1722 __func__, added_ctxs); 1723 return 0; 1724 } 1725 1726 virt_dev = xhci->devs[udev->slot_id]; 1727 in_ctx = virt_dev->in_ctx; 1728 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1729 if (!ctrl_ctx) { 1730 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1731 __func__); 1732 return 0; 1733 } 1734 1735 ep_index = xhci_get_endpoint_index(&ep->desc); 1736 /* If this endpoint is already in use, and the upper layers are trying 1737 * to add it again without dropping it, reject the addition. 1738 */ 1739 if (virt_dev->eps[ep_index].ring && 1740 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1741 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1742 "without dropping it.\n", 1743 (unsigned int) ep->desc.bEndpointAddress); 1744 return -EINVAL; 1745 } 1746 1747 /* If the HCD has already noted the endpoint is enabled, 1748 * ignore this request. 1749 */ 1750 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1751 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1752 __func__, ep); 1753 return 0; 1754 } 1755 1756 /* 1757 * Configuration and alternate setting changes must be done in 1758 * process context, not interrupt context (or so documenation 1759 * for usb_set_interface() and usb_set_configuration() claim). 1760 */ 1761 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1762 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1763 __func__, ep->desc.bEndpointAddress); 1764 return -ENOMEM; 1765 } 1766 1767 if (xhci->quirks & XHCI_MTK_HOST) { 1768 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1769 if (ret < 0) { 1770 xhci_free_or_cache_endpoint_ring(xhci, 1771 virt_dev, ep_index); 1772 return ret; 1773 } 1774 } 1775 1776 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1777 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1778 1779 /* If xhci_endpoint_disable() was called for this endpoint, but the 1780 * xHC hasn't been notified yet through the check_bandwidth() call, 1781 * this re-adds a new state for the endpoint from the new endpoint 1782 * descriptors. We must drop and re-add this endpoint, so we leave the 1783 * drop flags alone. 1784 */ 1785 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1786 1787 /* Store the usb_device pointer for later use */ 1788 ep->hcpriv = udev; 1789 1790 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1791 (unsigned int) ep->desc.bEndpointAddress, 1792 udev->slot_id, 1793 (unsigned int) new_drop_flags, 1794 (unsigned int) new_add_flags); 1795 return 0; 1796 } 1797 1798 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1799 { 1800 struct xhci_input_control_ctx *ctrl_ctx; 1801 struct xhci_ep_ctx *ep_ctx; 1802 struct xhci_slot_ctx *slot_ctx; 1803 int i; 1804 1805 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1806 if (!ctrl_ctx) { 1807 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1808 __func__); 1809 return; 1810 } 1811 1812 /* When a device's add flag and drop flag are zero, any subsequent 1813 * configure endpoint command will leave that endpoint's state 1814 * untouched. Make sure we don't leave any old state in the input 1815 * endpoint contexts. 1816 */ 1817 ctrl_ctx->drop_flags = 0; 1818 ctrl_ctx->add_flags = 0; 1819 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1820 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1821 /* Endpoint 0 is always valid */ 1822 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1823 for (i = 1; i < 31; ++i) { 1824 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1825 ep_ctx->ep_info = 0; 1826 ep_ctx->ep_info2 = 0; 1827 ep_ctx->deq = 0; 1828 ep_ctx->tx_info = 0; 1829 } 1830 } 1831 1832 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1833 struct usb_device *udev, u32 *cmd_status) 1834 { 1835 int ret; 1836 1837 switch (*cmd_status) { 1838 case COMP_CMD_ABORT: 1839 case COMP_CMD_STOP: 1840 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1841 ret = -ETIME; 1842 break; 1843 case COMP_ENOMEM: 1844 dev_warn(&udev->dev, 1845 "Not enough host controller resources for new device state.\n"); 1846 ret = -ENOMEM; 1847 /* FIXME: can we allocate more resources for the HC? */ 1848 break; 1849 case COMP_BW_ERR: 1850 case COMP_2ND_BW_ERR: 1851 dev_warn(&udev->dev, 1852 "Not enough bandwidth for new device state.\n"); 1853 ret = -ENOSPC; 1854 /* FIXME: can we go back to the old state? */ 1855 break; 1856 case COMP_TRB_ERR: 1857 /* the HCD set up something wrong */ 1858 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1859 "add flag = 1, " 1860 "and endpoint is not disabled.\n"); 1861 ret = -EINVAL; 1862 break; 1863 case COMP_DEV_ERR: 1864 dev_warn(&udev->dev, 1865 "ERROR: Incompatible device for endpoint configure command.\n"); 1866 ret = -ENODEV; 1867 break; 1868 case COMP_SUCCESS: 1869 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1870 "Successful Endpoint Configure command"); 1871 ret = 0; 1872 break; 1873 default: 1874 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1875 *cmd_status); 1876 ret = -EINVAL; 1877 break; 1878 } 1879 return ret; 1880 } 1881 1882 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1883 struct usb_device *udev, u32 *cmd_status) 1884 { 1885 int ret; 1886 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1887 1888 switch (*cmd_status) { 1889 case COMP_CMD_ABORT: 1890 case COMP_CMD_STOP: 1891 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1892 ret = -ETIME; 1893 break; 1894 case COMP_EINVAL: 1895 dev_warn(&udev->dev, 1896 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1897 ret = -EINVAL; 1898 break; 1899 case COMP_EBADSLT: 1900 dev_warn(&udev->dev, 1901 "WARN: slot not enabled for evaluate context command.\n"); 1902 ret = -EINVAL; 1903 break; 1904 case COMP_CTX_STATE: 1905 dev_warn(&udev->dev, 1906 "WARN: invalid context state for evaluate context command.\n"); 1907 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1908 ret = -EINVAL; 1909 break; 1910 case COMP_DEV_ERR: 1911 dev_warn(&udev->dev, 1912 "ERROR: Incompatible device for evaluate context command.\n"); 1913 ret = -ENODEV; 1914 break; 1915 case COMP_MEL_ERR: 1916 /* Max Exit Latency too large error */ 1917 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1918 ret = -EINVAL; 1919 break; 1920 case COMP_SUCCESS: 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1922 "Successful evaluate context command"); 1923 ret = 0; 1924 break; 1925 default: 1926 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1927 *cmd_status); 1928 ret = -EINVAL; 1929 break; 1930 } 1931 return ret; 1932 } 1933 1934 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1935 struct xhci_input_control_ctx *ctrl_ctx) 1936 { 1937 u32 valid_add_flags; 1938 u32 valid_drop_flags; 1939 1940 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1941 * (bit 1). The default control endpoint is added during the Address 1942 * Device command and is never removed until the slot is disabled. 1943 */ 1944 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1945 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1946 1947 /* Use hweight32 to count the number of ones in the add flags, or 1948 * number of endpoints added. Don't count endpoints that are changed 1949 * (both added and dropped). 1950 */ 1951 return hweight32(valid_add_flags) - 1952 hweight32(valid_add_flags & valid_drop_flags); 1953 } 1954 1955 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1956 struct xhci_input_control_ctx *ctrl_ctx) 1957 { 1958 u32 valid_add_flags; 1959 u32 valid_drop_flags; 1960 1961 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1962 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1963 1964 return hweight32(valid_drop_flags) - 1965 hweight32(valid_add_flags & valid_drop_flags); 1966 } 1967 1968 /* 1969 * We need to reserve the new number of endpoints before the configure endpoint 1970 * command completes. We can't subtract the dropped endpoints from the number 1971 * of active endpoints until the command completes because we can oversubscribe 1972 * the host in this case: 1973 * 1974 * - the first configure endpoint command drops more endpoints than it adds 1975 * - a second configure endpoint command that adds more endpoints is queued 1976 * - the first configure endpoint command fails, so the config is unchanged 1977 * - the second command may succeed, even though there isn't enough resources 1978 * 1979 * Must be called with xhci->lock held. 1980 */ 1981 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1982 struct xhci_input_control_ctx *ctrl_ctx) 1983 { 1984 u32 added_eps; 1985 1986 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1987 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1988 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1989 "Not enough ep ctxs: " 1990 "%u active, need to add %u, limit is %u.", 1991 xhci->num_active_eps, added_eps, 1992 xhci->limit_active_eps); 1993 return -ENOMEM; 1994 } 1995 xhci->num_active_eps += added_eps; 1996 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1997 "Adding %u ep ctxs, %u now active.", added_eps, 1998 xhci->num_active_eps); 1999 return 0; 2000 } 2001 2002 /* 2003 * The configure endpoint was failed by the xHC for some other reason, so we 2004 * need to revert the resources that failed configuration would have used. 2005 * 2006 * Must be called with xhci->lock held. 2007 */ 2008 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2009 struct xhci_input_control_ctx *ctrl_ctx) 2010 { 2011 u32 num_failed_eps; 2012 2013 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2014 xhci->num_active_eps -= num_failed_eps; 2015 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2016 "Removing %u failed ep ctxs, %u now active.", 2017 num_failed_eps, 2018 xhci->num_active_eps); 2019 } 2020 2021 /* 2022 * Now that the command has completed, clean up the active endpoint count by 2023 * subtracting out the endpoints that were dropped (but not changed). 2024 * 2025 * Must be called with xhci->lock held. 2026 */ 2027 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2028 struct xhci_input_control_ctx *ctrl_ctx) 2029 { 2030 u32 num_dropped_eps; 2031 2032 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2033 xhci->num_active_eps -= num_dropped_eps; 2034 if (num_dropped_eps) 2035 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2036 "Removing %u dropped ep ctxs, %u now active.", 2037 num_dropped_eps, 2038 xhci->num_active_eps); 2039 } 2040 2041 static unsigned int xhci_get_block_size(struct usb_device *udev) 2042 { 2043 switch (udev->speed) { 2044 case USB_SPEED_LOW: 2045 case USB_SPEED_FULL: 2046 return FS_BLOCK; 2047 case USB_SPEED_HIGH: 2048 return HS_BLOCK; 2049 case USB_SPEED_SUPER: 2050 case USB_SPEED_SUPER_PLUS: 2051 return SS_BLOCK; 2052 case USB_SPEED_UNKNOWN: 2053 case USB_SPEED_WIRELESS: 2054 default: 2055 /* Should never happen */ 2056 return 1; 2057 } 2058 } 2059 2060 static unsigned int 2061 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2062 { 2063 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2064 return LS_OVERHEAD; 2065 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2066 return FS_OVERHEAD; 2067 return HS_OVERHEAD; 2068 } 2069 2070 /* If we are changing a LS/FS device under a HS hub, 2071 * make sure (if we are activating a new TT) that the HS bus has enough 2072 * bandwidth for this new TT. 2073 */ 2074 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2075 struct xhci_virt_device *virt_dev, 2076 int old_active_eps) 2077 { 2078 struct xhci_interval_bw_table *bw_table; 2079 struct xhci_tt_bw_info *tt_info; 2080 2081 /* Find the bandwidth table for the root port this TT is attached to. */ 2082 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2083 tt_info = virt_dev->tt_info; 2084 /* If this TT already had active endpoints, the bandwidth for this TT 2085 * has already been added. Removing all periodic endpoints (and thus 2086 * making the TT enactive) will only decrease the bandwidth used. 2087 */ 2088 if (old_active_eps) 2089 return 0; 2090 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2091 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2092 return -ENOMEM; 2093 return 0; 2094 } 2095 /* Not sure why we would have no new active endpoints... 2096 * 2097 * Maybe because of an Evaluate Context change for a hub update or a 2098 * control endpoint 0 max packet size change? 2099 * FIXME: skip the bandwidth calculation in that case. 2100 */ 2101 return 0; 2102 } 2103 2104 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2105 struct xhci_virt_device *virt_dev) 2106 { 2107 unsigned int bw_reserved; 2108 2109 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2110 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2111 return -ENOMEM; 2112 2113 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2114 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2115 return -ENOMEM; 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * This algorithm is a very conservative estimate of the worst-case scheduling 2122 * scenario for any one interval. The hardware dynamically schedules the 2123 * packets, so we can't tell which microframe could be the limiting factor in 2124 * the bandwidth scheduling. This only takes into account periodic endpoints. 2125 * 2126 * Obviously, we can't solve an NP complete problem to find the minimum worst 2127 * case scenario. Instead, we come up with an estimate that is no less than 2128 * the worst case bandwidth used for any one microframe, but may be an 2129 * over-estimate. 2130 * 2131 * We walk the requirements for each endpoint by interval, starting with the 2132 * smallest interval, and place packets in the schedule where there is only one 2133 * possible way to schedule packets for that interval. In order to simplify 2134 * this algorithm, we record the largest max packet size for each interval, and 2135 * assume all packets will be that size. 2136 * 2137 * For interval 0, we obviously must schedule all packets for each interval. 2138 * The bandwidth for interval 0 is just the amount of data to be transmitted 2139 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2140 * the number of packets). 2141 * 2142 * For interval 1, we have two possible microframes to schedule those packets 2143 * in. For this algorithm, if we can schedule the same number of packets for 2144 * each possible scheduling opportunity (each microframe), we will do so. The 2145 * remaining number of packets will be saved to be transmitted in the gaps in 2146 * the next interval's scheduling sequence. 2147 * 2148 * As we move those remaining packets to be scheduled with interval 2 packets, 2149 * we have to double the number of remaining packets to transmit. This is 2150 * because the intervals are actually powers of 2, and we would be transmitting 2151 * the previous interval's packets twice in this interval. We also have to be 2152 * sure that when we look at the largest max packet size for this interval, we 2153 * also look at the largest max packet size for the remaining packets and take 2154 * the greater of the two. 2155 * 2156 * The algorithm continues to evenly distribute packets in each scheduling 2157 * opportunity, and push the remaining packets out, until we get to the last 2158 * interval. Then those packets and their associated overhead are just added 2159 * to the bandwidth used. 2160 */ 2161 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2162 struct xhci_virt_device *virt_dev, 2163 int old_active_eps) 2164 { 2165 unsigned int bw_reserved; 2166 unsigned int max_bandwidth; 2167 unsigned int bw_used; 2168 unsigned int block_size; 2169 struct xhci_interval_bw_table *bw_table; 2170 unsigned int packet_size = 0; 2171 unsigned int overhead = 0; 2172 unsigned int packets_transmitted = 0; 2173 unsigned int packets_remaining = 0; 2174 unsigned int i; 2175 2176 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2177 return xhci_check_ss_bw(xhci, virt_dev); 2178 2179 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2180 max_bandwidth = HS_BW_LIMIT; 2181 /* Convert percent of bus BW reserved to blocks reserved */ 2182 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2183 } else { 2184 max_bandwidth = FS_BW_LIMIT; 2185 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2186 } 2187 2188 bw_table = virt_dev->bw_table; 2189 /* We need to translate the max packet size and max ESIT payloads into 2190 * the units the hardware uses. 2191 */ 2192 block_size = xhci_get_block_size(virt_dev->udev); 2193 2194 /* If we are manipulating a LS/FS device under a HS hub, double check 2195 * that the HS bus has enough bandwidth if we are activing a new TT. 2196 */ 2197 if (virt_dev->tt_info) { 2198 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2199 "Recalculating BW for rootport %u", 2200 virt_dev->real_port); 2201 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2202 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2203 "newly activated TT.\n"); 2204 return -ENOMEM; 2205 } 2206 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2207 "Recalculating BW for TT slot %u port %u", 2208 virt_dev->tt_info->slot_id, 2209 virt_dev->tt_info->ttport); 2210 } else { 2211 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2212 "Recalculating BW for rootport %u", 2213 virt_dev->real_port); 2214 } 2215 2216 /* Add in how much bandwidth will be used for interval zero, or the 2217 * rounded max ESIT payload + number of packets * largest overhead. 2218 */ 2219 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2220 bw_table->interval_bw[0].num_packets * 2221 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2222 2223 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2224 unsigned int bw_added; 2225 unsigned int largest_mps; 2226 unsigned int interval_overhead; 2227 2228 /* 2229 * How many packets could we transmit in this interval? 2230 * If packets didn't fit in the previous interval, we will need 2231 * to transmit that many packets twice within this interval. 2232 */ 2233 packets_remaining = 2 * packets_remaining + 2234 bw_table->interval_bw[i].num_packets; 2235 2236 /* Find the largest max packet size of this or the previous 2237 * interval. 2238 */ 2239 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2240 largest_mps = 0; 2241 else { 2242 struct xhci_virt_ep *virt_ep; 2243 struct list_head *ep_entry; 2244 2245 ep_entry = bw_table->interval_bw[i].endpoints.next; 2246 virt_ep = list_entry(ep_entry, 2247 struct xhci_virt_ep, bw_endpoint_list); 2248 /* Convert to blocks, rounding up */ 2249 largest_mps = DIV_ROUND_UP( 2250 virt_ep->bw_info.max_packet_size, 2251 block_size); 2252 } 2253 if (largest_mps > packet_size) 2254 packet_size = largest_mps; 2255 2256 /* Use the larger overhead of this or the previous interval. */ 2257 interval_overhead = xhci_get_largest_overhead( 2258 &bw_table->interval_bw[i]); 2259 if (interval_overhead > overhead) 2260 overhead = interval_overhead; 2261 2262 /* How many packets can we evenly distribute across 2263 * (1 << (i + 1)) possible scheduling opportunities? 2264 */ 2265 packets_transmitted = packets_remaining >> (i + 1); 2266 2267 /* Add in the bandwidth used for those scheduled packets */ 2268 bw_added = packets_transmitted * (overhead + packet_size); 2269 2270 /* How many packets do we have remaining to transmit? */ 2271 packets_remaining = packets_remaining % (1 << (i + 1)); 2272 2273 /* What largest max packet size should those packets have? */ 2274 /* If we've transmitted all packets, don't carry over the 2275 * largest packet size. 2276 */ 2277 if (packets_remaining == 0) { 2278 packet_size = 0; 2279 overhead = 0; 2280 } else if (packets_transmitted > 0) { 2281 /* Otherwise if we do have remaining packets, and we've 2282 * scheduled some packets in this interval, take the 2283 * largest max packet size from endpoints with this 2284 * interval. 2285 */ 2286 packet_size = largest_mps; 2287 overhead = interval_overhead; 2288 } 2289 /* Otherwise carry over packet_size and overhead from the last 2290 * time we had a remainder. 2291 */ 2292 bw_used += bw_added; 2293 if (bw_used > max_bandwidth) { 2294 xhci_warn(xhci, "Not enough bandwidth. " 2295 "Proposed: %u, Max: %u\n", 2296 bw_used, max_bandwidth); 2297 return -ENOMEM; 2298 } 2299 } 2300 /* 2301 * Ok, we know we have some packets left over after even-handedly 2302 * scheduling interval 15. We don't know which microframes they will 2303 * fit into, so we over-schedule and say they will be scheduled every 2304 * microframe. 2305 */ 2306 if (packets_remaining > 0) 2307 bw_used += overhead + packet_size; 2308 2309 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2310 unsigned int port_index = virt_dev->real_port - 1; 2311 2312 /* OK, we're manipulating a HS device attached to a 2313 * root port bandwidth domain. Include the number of active TTs 2314 * in the bandwidth used. 2315 */ 2316 bw_used += TT_HS_OVERHEAD * 2317 xhci->rh_bw[port_index].num_active_tts; 2318 } 2319 2320 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2321 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2322 "Available: %u " "percent", 2323 bw_used, max_bandwidth, bw_reserved, 2324 (max_bandwidth - bw_used - bw_reserved) * 100 / 2325 max_bandwidth); 2326 2327 bw_used += bw_reserved; 2328 if (bw_used > max_bandwidth) { 2329 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2330 bw_used, max_bandwidth); 2331 return -ENOMEM; 2332 } 2333 2334 bw_table->bw_used = bw_used; 2335 return 0; 2336 } 2337 2338 static bool xhci_is_async_ep(unsigned int ep_type) 2339 { 2340 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2341 ep_type != ISOC_IN_EP && 2342 ep_type != INT_IN_EP); 2343 } 2344 2345 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2346 { 2347 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2348 } 2349 2350 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2351 { 2352 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2353 2354 if (ep_bw->ep_interval == 0) 2355 return SS_OVERHEAD_BURST + 2356 (ep_bw->mult * ep_bw->num_packets * 2357 (SS_OVERHEAD + mps)); 2358 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2359 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2360 1 << ep_bw->ep_interval); 2361 2362 } 2363 2364 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2365 struct xhci_bw_info *ep_bw, 2366 struct xhci_interval_bw_table *bw_table, 2367 struct usb_device *udev, 2368 struct xhci_virt_ep *virt_ep, 2369 struct xhci_tt_bw_info *tt_info) 2370 { 2371 struct xhci_interval_bw *interval_bw; 2372 int normalized_interval; 2373 2374 if (xhci_is_async_ep(ep_bw->type)) 2375 return; 2376 2377 if (udev->speed >= USB_SPEED_SUPER) { 2378 if (xhci_is_sync_in_ep(ep_bw->type)) 2379 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2380 xhci_get_ss_bw_consumed(ep_bw); 2381 else 2382 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2383 xhci_get_ss_bw_consumed(ep_bw); 2384 return; 2385 } 2386 2387 /* SuperSpeed endpoints never get added to intervals in the table, so 2388 * this check is only valid for HS/FS/LS devices. 2389 */ 2390 if (list_empty(&virt_ep->bw_endpoint_list)) 2391 return; 2392 /* For LS/FS devices, we need to translate the interval expressed in 2393 * microframes to frames. 2394 */ 2395 if (udev->speed == USB_SPEED_HIGH) 2396 normalized_interval = ep_bw->ep_interval; 2397 else 2398 normalized_interval = ep_bw->ep_interval - 3; 2399 2400 if (normalized_interval == 0) 2401 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2402 interval_bw = &bw_table->interval_bw[normalized_interval]; 2403 interval_bw->num_packets -= ep_bw->num_packets; 2404 switch (udev->speed) { 2405 case USB_SPEED_LOW: 2406 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2407 break; 2408 case USB_SPEED_FULL: 2409 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2410 break; 2411 case USB_SPEED_HIGH: 2412 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2413 break; 2414 case USB_SPEED_SUPER: 2415 case USB_SPEED_SUPER_PLUS: 2416 case USB_SPEED_UNKNOWN: 2417 case USB_SPEED_WIRELESS: 2418 /* Should never happen because only LS/FS/HS endpoints will get 2419 * added to the endpoint list. 2420 */ 2421 return; 2422 } 2423 if (tt_info) 2424 tt_info->active_eps -= 1; 2425 list_del_init(&virt_ep->bw_endpoint_list); 2426 } 2427 2428 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2429 struct xhci_bw_info *ep_bw, 2430 struct xhci_interval_bw_table *bw_table, 2431 struct usb_device *udev, 2432 struct xhci_virt_ep *virt_ep, 2433 struct xhci_tt_bw_info *tt_info) 2434 { 2435 struct xhci_interval_bw *interval_bw; 2436 struct xhci_virt_ep *smaller_ep; 2437 int normalized_interval; 2438 2439 if (xhci_is_async_ep(ep_bw->type)) 2440 return; 2441 2442 if (udev->speed == USB_SPEED_SUPER) { 2443 if (xhci_is_sync_in_ep(ep_bw->type)) 2444 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2445 xhci_get_ss_bw_consumed(ep_bw); 2446 else 2447 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2448 xhci_get_ss_bw_consumed(ep_bw); 2449 return; 2450 } 2451 2452 /* For LS/FS devices, we need to translate the interval expressed in 2453 * microframes to frames. 2454 */ 2455 if (udev->speed == USB_SPEED_HIGH) 2456 normalized_interval = ep_bw->ep_interval; 2457 else 2458 normalized_interval = ep_bw->ep_interval - 3; 2459 2460 if (normalized_interval == 0) 2461 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2462 interval_bw = &bw_table->interval_bw[normalized_interval]; 2463 interval_bw->num_packets += ep_bw->num_packets; 2464 switch (udev->speed) { 2465 case USB_SPEED_LOW: 2466 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2467 break; 2468 case USB_SPEED_FULL: 2469 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2470 break; 2471 case USB_SPEED_HIGH: 2472 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2473 break; 2474 case USB_SPEED_SUPER: 2475 case USB_SPEED_SUPER_PLUS: 2476 case USB_SPEED_UNKNOWN: 2477 case USB_SPEED_WIRELESS: 2478 /* Should never happen because only LS/FS/HS endpoints will get 2479 * added to the endpoint list. 2480 */ 2481 return; 2482 } 2483 2484 if (tt_info) 2485 tt_info->active_eps += 1; 2486 /* Insert the endpoint into the list, largest max packet size first. */ 2487 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2488 bw_endpoint_list) { 2489 if (ep_bw->max_packet_size >= 2490 smaller_ep->bw_info.max_packet_size) { 2491 /* Add the new ep before the smaller endpoint */ 2492 list_add_tail(&virt_ep->bw_endpoint_list, 2493 &smaller_ep->bw_endpoint_list); 2494 return; 2495 } 2496 } 2497 /* Add the new endpoint at the end of the list. */ 2498 list_add_tail(&virt_ep->bw_endpoint_list, 2499 &interval_bw->endpoints); 2500 } 2501 2502 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2503 struct xhci_virt_device *virt_dev, 2504 int old_active_eps) 2505 { 2506 struct xhci_root_port_bw_info *rh_bw_info; 2507 if (!virt_dev->tt_info) 2508 return; 2509 2510 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2511 if (old_active_eps == 0 && 2512 virt_dev->tt_info->active_eps != 0) { 2513 rh_bw_info->num_active_tts += 1; 2514 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2515 } else if (old_active_eps != 0 && 2516 virt_dev->tt_info->active_eps == 0) { 2517 rh_bw_info->num_active_tts -= 1; 2518 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2519 } 2520 } 2521 2522 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2523 struct xhci_virt_device *virt_dev, 2524 struct xhci_container_ctx *in_ctx) 2525 { 2526 struct xhci_bw_info ep_bw_info[31]; 2527 int i; 2528 struct xhci_input_control_ctx *ctrl_ctx; 2529 int old_active_eps = 0; 2530 2531 if (virt_dev->tt_info) 2532 old_active_eps = virt_dev->tt_info->active_eps; 2533 2534 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2535 if (!ctrl_ctx) { 2536 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2537 __func__); 2538 return -ENOMEM; 2539 } 2540 2541 for (i = 0; i < 31; i++) { 2542 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2543 continue; 2544 2545 /* Make a copy of the BW info in case we need to revert this */ 2546 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2547 sizeof(ep_bw_info[i])); 2548 /* Drop the endpoint from the interval table if the endpoint is 2549 * being dropped or changed. 2550 */ 2551 if (EP_IS_DROPPED(ctrl_ctx, i)) 2552 xhci_drop_ep_from_interval_table(xhci, 2553 &virt_dev->eps[i].bw_info, 2554 virt_dev->bw_table, 2555 virt_dev->udev, 2556 &virt_dev->eps[i], 2557 virt_dev->tt_info); 2558 } 2559 /* Overwrite the information stored in the endpoints' bw_info */ 2560 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2561 for (i = 0; i < 31; i++) { 2562 /* Add any changed or added endpoints to the interval table */ 2563 if (EP_IS_ADDED(ctrl_ctx, i)) 2564 xhci_add_ep_to_interval_table(xhci, 2565 &virt_dev->eps[i].bw_info, 2566 virt_dev->bw_table, 2567 virt_dev->udev, 2568 &virt_dev->eps[i], 2569 virt_dev->tt_info); 2570 } 2571 2572 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2573 /* Ok, this fits in the bandwidth we have. 2574 * Update the number of active TTs. 2575 */ 2576 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2577 return 0; 2578 } 2579 2580 /* We don't have enough bandwidth for this, revert the stored info. */ 2581 for (i = 0; i < 31; i++) { 2582 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2583 continue; 2584 2585 /* Drop the new copies of any added or changed endpoints from 2586 * the interval table. 2587 */ 2588 if (EP_IS_ADDED(ctrl_ctx, i)) { 2589 xhci_drop_ep_from_interval_table(xhci, 2590 &virt_dev->eps[i].bw_info, 2591 virt_dev->bw_table, 2592 virt_dev->udev, 2593 &virt_dev->eps[i], 2594 virt_dev->tt_info); 2595 } 2596 /* Revert the endpoint back to its old information */ 2597 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2598 sizeof(ep_bw_info[i])); 2599 /* Add any changed or dropped endpoints back into the table */ 2600 if (EP_IS_DROPPED(ctrl_ctx, i)) 2601 xhci_add_ep_to_interval_table(xhci, 2602 &virt_dev->eps[i].bw_info, 2603 virt_dev->bw_table, 2604 virt_dev->udev, 2605 &virt_dev->eps[i], 2606 virt_dev->tt_info); 2607 } 2608 return -ENOMEM; 2609 } 2610 2611 2612 /* Issue a configure endpoint command or evaluate context command 2613 * and wait for it to finish. 2614 */ 2615 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2616 struct usb_device *udev, 2617 struct xhci_command *command, 2618 bool ctx_change, bool must_succeed) 2619 { 2620 int ret; 2621 unsigned long flags; 2622 struct xhci_input_control_ctx *ctrl_ctx; 2623 struct xhci_virt_device *virt_dev; 2624 2625 if (!command) 2626 return -EINVAL; 2627 2628 spin_lock_irqsave(&xhci->lock, flags); 2629 virt_dev = xhci->devs[udev->slot_id]; 2630 2631 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2632 if (!ctrl_ctx) { 2633 spin_unlock_irqrestore(&xhci->lock, flags); 2634 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2635 __func__); 2636 return -ENOMEM; 2637 } 2638 2639 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2640 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2641 spin_unlock_irqrestore(&xhci->lock, flags); 2642 xhci_warn(xhci, "Not enough host resources, " 2643 "active endpoint contexts = %u\n", 2644 xhci->num_active_eps); 2645 return -ENOMEM; 2646 } 2647 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2648 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2649 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2650 xhci_free_host_resources(xhci, ctrl_ctx); 2651 spin_unlock_irqrestore(&xhci->lock, flags); 2652 xhci_warn(xhci, "Not enough bandwidth\n"); 2653 return -ENOMEM; 2654 } 2655 2656 if (!ctx_change) 2657 ret = xhci_queue_configure_endpoint(xhci, command, 2658 command->in_ctx->dma, 2659 udev->slot_id, must_succeed); 2660 else 2661 ret = xhci_queue_evaluate_context(xhci, command, 2662 command->in_ctx->dma, 2663 udev->slot_id, must_succeed); 2664 if (ret < 0) { 2665 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2666 xhci_free_host_resources(xhci, ctrl_ctx); 2667 spin_unlock_irqrestore(&xhci->lock, flags); 2668 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2669 "FIXME allocate a new ring segment"); 2670 return -ENOMEM; 2671 } 2672 xhci_ring_cmd_db(xhci); 2673 spin_unlock_irqrestore(&xhci->lock, flags); 2674 2675 /* Wait for the configure endpoint command to complete */ 2676 wait_for_completion(command->completion); 2677 2678 if (!ctx_change) 2679 ret = xhci_configure_endpoint_result(xhci, udev, 2680 &command->status); 2681 else 2682 ret = xhci_evaluate_context_result(xhci, udev, 2683 &command->status); 2684 2685 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2686 spin_lock_irqsave(&xhci->lock, flags); 2687 /* If the command failed, remove the reserved resources. 2688 * Otherwise, clean up the estimate to include dropped eps. 2689 */ 2690 if (ret) 2691 xhci_free_host_resources(xhci, ctrl_ctx); 2692 else 2693 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2694 spin_unlock_irqrestore(&xhci->lock, flags); 2695 } 2696 return ret; 2697 } 2698 2699 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2700 struct xhci_virt_device *vdev, int i) 2701 { 2702 struct xhci_virt_ep *ep = &vdev->eps[i]; 2703 2704 if (ep->ep_state & EP_HAS_STREAMS) { 2705 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2706 xhci_get_endpoint_address(i)); 2707 xhci_free_stream_info(xhci, ep->stream_info); 2708 ep->stream_info = NULL; 2709 ep->ep_state &= ~EP_HAS_STREAMS; 2710 } 2711 } 2712 2713 /* Called after one or more calls to xhci_add_endpoint() or 2714 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2715 * to call xhci_reset_bandwidth(). 2716 * 2717 * Since we are in the middle of changing either configuration or 2718 * installing a new alt setting, the USB core won't allow URBs to be 2719 * enqueued for any endpoint on the old config or interface. Nothing 2720 * else should be touching the xhci->devs[slot_id] structure, so we 2721 * don't need to take the xhci->lock for manipulating that. 2722 */ 2723 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2724 { 2725 int i; 2726 int ret = 0; 2727 struct xhci_hcd *xhci; 2728 struct xhci_virt_device *virt_dev; 2729 struct xhci_input_control_ctx *ctrl_ctx; 2730 struct xhci_slot_ctx *slot_ctx; 2731 struct xhci_command *command; 2732 2733 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2734 if (ret <= 0) 2735 return ret; 2736 xhci = hcd_to_xhci(hcd); 2737 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2738 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2739 return -ENODEV; 2740 2741 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2742 virt_dev = xhci->devs[udev->slot_id]; 2743 2744 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2745 if (!command) 2746 return -ENOMEM; 2747 2748 command->in_ctx = virt_dev->in_ctx; 2749 2750 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2751 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2752 if (!ctrl_ctx) { 2753 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2754 __func__); 2755 ret = -ENOMEM; 2756 goto command_cleanup; 2757 } 2758 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2759 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2760 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2761 2762 /* Don't issue the command if there's no endpoints to update. */ 2763 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2764 ctrl_ctx->drop_flags == 0) { 2765 ret = 0; 2766 goto command_cleanup; 2767 } 2768 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2769 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2770 for (i = 31; i >= 1; i--) { 2771 __le32 le32 = cpu_to_le32(BIT(i)); 2772 2773 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2774 || (ctrl_ctx->add_flags & le32) || i == 1) { 2775 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2776 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2777 break; 2778 } 2779 } 2780 xhci_dbg(xhci, "New Input Control Context:\n"); 2781 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2782 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2783 2784 ret = xhci_configure_endpoint(xhci, udev, command, 2785 false, false); 2786 if (ret) 2787 /* Callee should call reset_bandwidth() */ 2788 goto command_cleanup; 2789 2790 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2791 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2792 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2793 2794 /* Free any rings that were dropped, but not changed. */ 2795 for (i = 1; i < 31; ++i) { 2796 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2797 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2798 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2799 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2800 } 2801 } 2802 xhci_zero_in_ctx(xhci, virt_dev); 2803 /* 2804 * Install any rings for completely new endpoints or changed endpoints, 2805 * and free or cache any old rings from changed endpoints. 2806 */ 2807 for (i = 1; i < 31; ++i) { 2808 if (!virt_dev->eps[i].new_ring) 2809 continue; 2810 /* Only cache or free the old ring if it exists. 2811 * It may not if this is the first add of an endpoint. 2812 */ 2813 if (virt_dev->eps[i].ring) { 2814 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2815 } 2816 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2817 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2818 virt_dev->eps[i].new_ring = NULL; 2819 } 2820 command_cleanup: 2821 kfree(command->completion); 2822 kfree(command); 2823 2824 return ret; 2825 } 2826 2827 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2828 { 2829 struct xhci_hcd *xhci; 2830 struct xhci_virt_device *virt_dev; 2831 int i, ret; 2832 2833 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2834 if (ret <= 0) 2835 return; 2836 xhci = hcd_to_xhci(hcd); 2837 2838 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2839 virt_dev = xhci->devs[udev->slot_id]; 2840 /* Free any rings allocated for added endpoints */ 2841 for (i = 0; i < 31; ++i) { 2842 if (virt_dev->eps[i].new_ring) { 2843 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2844 virt_dev->eps[i].new_ring = NULL; 2845 } 2846 } 2847 xhci_zero_in_ctx(xhci, virt_dev); 2848 } 2849 2850 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2851 struct xhci_container_ctx *in_ctx, 2852 struct xhci_container_ctx *out_ctx, 2853 struct xhci_input_control_ctx *ctrl_ctx, 2854 u32 add_flags, u32 drop_flags) 2855 { 2856 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2857 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2858 xhci_slot_copy(xhci, in_ctx, out_ctx); 2859 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2860 2861 xhci_dbg(xhci, "Input Context:\n"); 2862 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2863 } 2864 2865 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2866 unsigned int slot_id, unsigned int ep_index, 2867 struct xhci_dequeue_state *deq_state) 2868 { 2869 struct xhci_input_control_ctx *ctrl_ctx; 2870 struct xhci_container_ctx *in_ctx; 2871 struct xhci_ep_ctx *ep_ctx; 2872 u32 added_ctxs; 2873 dma_addr_t addr; 2874 2875 in_ctx = xhci->devs[slot_id]->in_ctx; 2876 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2877 if (!ctrl_ctx) { 2878 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2879 __func__); 2880 return; 2881 } 2882 2883 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2884 xhci->devs[slot_id]->out_ctx, ep_index); 2885 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2886 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2887 deq_state->new_deq_ptr); 2888 if (addr == 0) { 2889 xhci_warn(xhci, "WARN Cannot submit config ep after " 2890 "reset ep command\n"); 2891 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2892 deq_state->new_deq_seg, 2893 deq_state->new_deq_ptr); 2894 return; 2895 } 2896 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2897 2898 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2899 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2900 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2901 added_ctxs, added_ctxs); 2902 } 2903 2904 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2905 unsigned int ep_index, struct xhci_td *td) 2906 { 2907 struct xhci_dequeue_state deq_state; 2908 struct xhci_virt_ep *ep; 2909 struct usb_device *udev = td->urb->dev; 2910 2911 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2912 "Cleaning up stalled endpoint ring"); 2913 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2914 /* We need to move the HW's dequeue pointer past this TD, 2915 * or it will attempt to resend it on the next doorbell ring. 2916 */ 2917 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2918 ep_index, ep->stopped_stream, td, &deq_state); 2919 2920 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2921 return; 2922 2923 /* HW with the reset endpoint quirk will use the saved dequeue state to 2924 * issue a configure endpoint command later. 2925 */ 2926 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2927 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2928 "Queueing new dequeue state"); 2929 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2930 ep_index, ep->stopped_stream, &deq_state); 2931 } else { 2932 /* Better hope no one uses the input context between now and the 2933 * reset endpoint completion! 2934 * XXX: No idea how this hardware will react when stream rings 2935 * are enabled. 2936 */ 2937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2938 "Setting up input context for " 2939 "configure endpoint command"); 2940 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2941 ep_index, &deq_state); 2942 } 2943 } 2944 2945 /* Called when clearing halted device. The core should have sent the control 2946 * message to clear the device halt condition. The host side of the halt should 2947 * already be cleared with a reset endpoint command issued when the STALL tx 2948 * event was received. 2949 * 2950 * Context: in_interrupt 2951 */ 2952 2953 void xhci_endpoint_reset(struct usb_hcd *hcd, 2954 struct usb_host_endpoint *ep) 2955 { 2956 struct xhci_hcd *xhci; 2957 2958 xhci = hcd_to_xhci(hcd); 2959 2960 /* 2961 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2962 * The Reset Endpoint Command may only be issued to endpoints in the 2963 * Halted state. If software wishes reset the Data Toggle or Sequence 2964 * Number of an endpoint that isn't in the Halted state, then software 2965 * may issue a Configure Endpoint Command with the Drop and Add bits set 2966 * for the target endpoint. that is in the Stopped state. 2967 */ 2968 2969 /* For now just print debug to follow the situation */ 2970 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2971 ep->desc.bEndpointAddress); 2972 } 2973 2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2975 struct usb_device *udev, struct usb_host_endpoint *ep, 2976 unsigned int slot_id) 2977 { 2978 int ret; 2979 unsigned int ep_index; 2980 unsigned int ep_state; 2981 2982 if (!ep) 2983 return -EINVAL; 2984 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2985 if (ret <= 0) 2986 return -EINVAL; 2987 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2988 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2989 " descriptor for ep 0x%x does not support streams\n", 2990 ep->desc.bEndpointAddress); 2991 return -EINVAL; 2992 } 2993 2994 ep_index = xhci_get_endpoint_index(&ep->desc); 2995 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2996 if (ep_state & EP_HAS_STREAMS || 2997 ep_state & EP_GETTING_STREAMS) { 2998 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2999 "already has streams set up.\n", 3000 ep->desc.bEndpointAddress); 3001 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3002 "dynamic stream context array reallocation.\n"); 3003 return -EINVAL; 3004 } 3005 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3006 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3007 "endpoint 0x%x; URBs are pending.\n", 3008 ep->desc.bEndpointAddress); 3009 return -EINVAL; 3010 } 3011 return 0; 3012 } 3013 3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3015 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3016 { 3017 unsigned int max_streams; 3018 3019 /* The stream context array size must be a power of two */ 3020 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3021 /* 3022 * Find out how many primary stream array entries the host controller 3023 * supports. Later we may use secondary stream arrays (similar to 2nd 3024 * level page entries), but that's an optional feature for xHCI host 3025 * controllers. xHCs must support at least 4 stream IDs. 3026 */ 3027 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3028 if (*num_stream_ctxs > max_streams) { 3029 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3030 max_streams); 3031 *num_stream_ctxs = max_streams; 3032 *num_streams = max_streams; 3033 } 3034 } 3035 3036 /* Returns an error code if one of the endpoint already has streams. 3037 * This does not change any data structures, it only checks and gathers 3038 * information. 3039 */ 3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3041 struct usb_device *udev, 3042 struct usb_host_endpoint **eps, unsigned int num_eps, 3043 unsigned int *num_streams, u32 *changed_ep_bitmask) 3044 { 3045 unsigned int max_streams; 3046 unsigned int endpoint_flag; 3047 int i; 3048 int ret; 3049 3050 for (i = 0; i < num_eps; i++) { 3051 ret = xhci_check_streams_endpoint(xhci, udev, 3052 eps[i], udev->slot_id); 3053 if (ret < 0) 3054 return ret; 3055 3056 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3057 if (max_streams < (*num_streams - 1)) { 3058 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3059 eps[i]->desc.bEndpointAddress, 3060 max_streams); 3061 *num_streams = max_streams+1; 3062 } 3063 3064 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3065 if (*changed_ep_bitmask & endpoint_flag) 3066 return -EINVAL; 3067 *changed_ep_bitmask |= endpoint_flag; 3068 } 3069 return 0; 3070 } 3071 3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3073 struct usb_device *udev, 3074 struct usb_host_endpoint **eps, unsigned int num_eps) 3075 { 3076 u32 changed_ep_bitmask = 0; 3077 unsigned int slot_id; 3078 unsigned int ep_index; 3079 unsigned int ep_state; 3080 int i; 3081 3082 slot_id = udev->slot_id; 3083 if (!xhci->devs[slot_id]) 3084 return 0; 3085 3086 for (i = 0; i < num_eps; i++) { 3087 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3088 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3089 /* Are streams already being freed for the endpoint? */ 3090 if (ep_state & EP_GETTING_NO_STREAMS) { 3091 xhci_warn(xhci, "WARN Can't disable streams for " 3092 "endpoint 0x%x, " 3093 "streams are being disabled already\n", 3094 eps[i]->desc.bEndpointAddress); 3095 return 0; 3096 } 3097 /* Are there actually any streams to free? */ 3098 if (!(ep_state & EP_HAS_STREAMS) && 3099 !(ep_state & EP_GETTING_STREAMS)) { 3100 xhci_warn(xhci, "WARN Can't disable streams for " 3101 "endpoint 0x%x, " 3102 "streams are already disabled!\n", 3103 eps[i]->desc.bEndpointAddress); 3104 xhci_warn(xhci, "WARN xhci_free_streams() called " 3105 "with non-streams endpoint\n"); 3106 return 0; 3107 } 3108 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3109 } 3110 return changed_ep_bitmask; 3111 } 3112 3113 /* 3114 * The USB device drivers use this function (through the HCD interface in USB 3115 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3116 * coordinate mass storage command queueing across multiple endpoints (basically 3117 * a stream ID == a task ID). 3118 * 3119 * Setting up streams involves allocating the same size stream context array 3120 * for each endpoint and issuing a configure endpoint command for all endpoints. 3121 * 3122 * Don't allow the call to succeed if one endpoint only supports one stream 3123 * (which means it doesn't support streams at all). 3124 * 3125 * Drivers may get less stream IDs than they asked for, if the host controller 3126 * hardware or endpoints claim they can't support the number of requested 3127 * stream IDs. 3128 */ 3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3130 struct usb_host_endpoint **eps, unsigned int num_eps, 3131 unsigned int num_streams, gfp_t mem_flags) 3132 { 3133 int i, ret; 3134 struct xhci_hcd *xhci; 3135 struct xhci_virt_device *vdev; 3136 struct xhci_command *config_cmd; 3137 struct xhci_input_control_ctx *ctrl_ctx; 3138 unsigned int ep_index; 3139 unsigned int num_stream_ctxs; 3140 unsigned int max_packet; 3141 unsigned long flags; 3142 u32 changed_ep_bitmask = 0; 3143 3144 if (!eps) 3145 return -EINVAL; 3146 3147 /* Add one to the number of streams requested to account for 3148 * stream 0 that is reserved for xHCI usage. 3149 */ 3150 num_streams += 1; 3151 xhci = hcd_to_xhci(hcd); 3152 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3153 num_streams); 3154 3155 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3156 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3157 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3158 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3159 return -ENOSYS; 3160 } 3161 3162 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3163 if (!config_cmd) { 3164 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3165 return -ENOMEM; 3166 } 3167 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3168 if (!ctrl_ctx) { 3169 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3170 __func__); 3171 xhci_free_command(xhci, config_cmd); 3172 return -ENOMEM; 3173 } 3174 3175 /* Check to make sure all endpoints are not already configured for 3176 * streams. While we're at it, find the maximum number of streams that 3177 * all the endpoints will support and check for duplicate endpoints. 3178 */ 3179 spin_lock_irqsave(&xhci->lock, flags); 3180 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3181 num_eps, &num_streams, &changed_ep_bitmask); 3182 if (ret < 0) { 3183 xhci_free_command(xhci, config_cmd); 3184 spin_unlock_irqrestore(&xhci->lock, flags); 3185 return ret; 3186 } 3187 if (num_streams <= 1) { 3188 xhci_warn(xhci, "WARN: endpoints can't handle " 3189 "more than one stream.\n"); 3190 xhci_free_command(xhci, config_cmd); 3191 spin_unlock_irqrestore(&xhci->lock, flags); 3192 return -EINVAL; 3193 } 3194 vdev = xhci->devs[udev->slot_id]; 3195 /* Mark each endpoint as being in transition, so 3196 * xhci_urb_enqueue() will reject all URBs. 3197 */ 3198 for (i = 0; i < num_eps; i++) { 3199 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3200 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3201 } 3202 spin_unlock_irqrestore(&xhci->lock, flags); 3203 3204 /* Setup internal data structures and allocate HW data structures for 3205 * streams (but don't install the HW structures in the input context 3206 * until we're sure all memory allocation succeeded). 3207 */ 3208 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3209 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3210 num_stream_ctxs, num_streams); 3211 3212 for (i = 0; i < num_eps; i++) { 3213 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3214 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc)); 3215 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3216 num_stream_ctxs, 3217 num_streams, 3218 max_packet, mem_flags); 3219 if (!vdev->eps[ep_index].stream_info) 3220 goto cleanup; 3221 /* Set maxPstreams in endpoint context and update deq ptr to 3222 * point to stream context array. FIXME 3223 */ 3224 } 3225 3226 /* Set up the input context for a configure endpoint command. */ 3227 for (i = 0; i < num_eps; i++) { 3228 struct xhci_ep_ctx *ep_ctx; 3229 3230 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3231 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3232 3233 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3234 vdev->out_ctx, ep_index); 3235 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3236 vdev->eps[ep_index].stream_info); 3237 } 3238 /* Tell the HW to drop its old copy of the endpoint context info 3239 * and add the updated copy from the input context. 3240 */ 3241 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3242 vdev->out_ctx, ctrl_ctx, 3243 changed_ep_bitmask, changed_ep_bitmask); 3244 3245 /* Issue and wait for the configure endpoint command */ 3246 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3247 false, false); 3248 3249 /* xHC rejected the configure endpoint command for some reason, so we 3250 * leave the old ring intact and free our internal streams data 3251 * structure. 3252 */ 3253 if (ret < 0) 3254 goto cleanup; 3255 3256 spin_lock_irqsave(&xhci->lock, flags); 3257 for (i = 0; i < num_eps; i++) { 3258 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3259 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3260 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3261 udev->slot_id, ep_index); 3262 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3263 } 3264 xhci_free_command(xhci, config_cmd); 3265 spin_unlock_irqrestore(&xhci->lock, flags); 3266 3267 /* Subtract 1 for stream 0, which drivers can't use */ 3268 return num_streams - 1; 3269 3270 cleanup: 3271 /* If it didn't work, free the streams! */ 3272 for (i = 0; i < num_eps; i++) { 3273 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3274 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3275 vdev->eps[ep_index].stream_info = NULL; 3276 /* FIXME Unset maxPstreams in endpoint context and 3277 * update deq ptr to point to normal string ring. 3278 */ 3279 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3280 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3281 xhci_endpoint_zero(xhci, vdev, eps[i]); 3282 } 3283 xhci_free_command(xhci, config_cmd); 3284 return -ENOMEM; 3285 } 3286 3287 /* Transition the endpoint from using streams to being a "normal" endpoint 3288 * without streams. 3289 * 3290 * Modify the endpoint context state, submit a configure endpoint command, 3291 * and free all endpoint rings for streams if that completes successfully. 3292 */ 3293 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3294 struct usb_host_endpoint **eps, unsigned int num_eps, 3295 gfp_t mem_flags) 3296 { 3297 int i, ret; 3298 struct xhci_hcd *xhci; 3299 struct xhci_virt_device *vdev; 3300 struct xhci_command *command; 3301 struct xhci_input_control_ctx *ctrl_ctx; 3302 unsigned int ep_index; 3303 unsigned long flags; 3304 u32 changed_ep_bitmask; 3305 3306 xhci = hcd_to_xhci(hcd); 3307 vdev = xhci->devs[udev->slot_id]; 3308 3309 /* Set up a configure endpoint command to remove the streams rings */ 3310 spin_lock_irqsave(&xhci->lock, flags); 3311 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3312 udev, eps, num_eps); 3313 if (changed_ep_bitmask == 0) { 3314 spin_unlock_irqrestore(&xhci->lock, flags); 3315 return -EINVAL; 3316 } 3317 3318 /* Use the xhci_command structure from the first endpoint. We may have 3319 * allocated too many, but the driver may call xhci_free_streams() for 3320 * each endpoint it grouped into one call to xhci_alloc_streams(). 3321 */ 3322 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3323 command = vdev->eps[ep_index].stream_info->free_streams_command; 3324 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3325 if (!ctrl_ctx) { 3326 spin_unlock_irqrestore(&xhci->lock, flags); 3327 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3328 __func__); 3329 return -EINVAL; 3330 } 3331 3332 for (i = 0; i < num_eps; i++) { 3333 struct xhci_ep_ctx *ep_ctx; 3334 3335 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3336 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3337 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3338 EP_GETTING_NO_STREAMS; 3339 3340 xhci_endpoint_copy(xhci, command->in_ctx, 3341 vdev->out_ctx, ep_index); 3342 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3343 &vdev->eps[ep_index]); 3344 } 3345 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3346 vdev->out_ctx, ctrl_ctx, 3347 changed_ep_bitmask, changed_ep_bitmask); 3348 spin_unlock_irqrestore(&xhci->lock, flags); 3349 3350 /* Issue and wait for the configure endpoint command, 3351 * which must succeed. 3352 */ 3353 ret = xhci_configure_endpoint(xhci, udev, command, 3354 false, true); 3355 3356 /* xHC rejected the configure endpoint command for some reason, so we 3357 * leave the streams rings intact. 3358 */ 3359 if (ret < 0) 3360 return ret; 3361 3362 spin_lock_irqsave(&xhci->lock, flags); 3363 for (i = 0; i < num_eps; i++) { 3364 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3365 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3366 vdev->eps[ep_index].stream_info = NULL; 3367 /* FIXME Unset maxPstreams in endpoint context and 3368 * update deq ptr to point to normal string ring. 3369 */ 3370 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3371 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3372 } 3373 spin_unlock_irqrestore(&xhci->lock, flags); 3374 3375 return 0; 3376 } 3377 3378 /* 3379 * Deletes endpoint resources for endpoints that were active before a Reset 3380 * Device command, or a Disable Slot command. The Reset Device command leaves 3381 * the control endpoint intact, whereas the Disable Slot command deletes it. 3382 * 3383 * Must be called with xhci->lock held. 3384 */ 3385 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3386 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3387 { 3388 int i; 3389 unsigned int num_dropped_eps = 0; 3390 unsigned int drop_flags = 0; 3391 3392 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3393 if (virt_dev->eps[i].ring) { 3394 drop_flags |= 1 << i; 3395 num_dropped_eps++; 3396 } 3397 } 3398 xhci->num_active_eps -= num_dropped_eps; 3399 if (num_dropped_eps) 3400 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3401 "Dropped %u ep ctxs, flags = 0x%x, " 3402 "%u now active.", 3403 num_dropped_eps, drop_flags, 3404 xhci->num_active_eps); 3405 } 3406 3407 /* 3408 * This submits a Reset Device Command, which will set the device state to 0, 3409 * set the device address to 0, and disable all the endpoints except the default 3410 * control endpoint. The USB core should come back and call 3411 * xhci_address_device(), and then re-set up the configuration. If this is 3412 * called because of a usb_reset_and_verify_device(), then the old alternate 3413 * settings will be re-installed through the normal bandwidth allocation 3414 * functions. 3415 * 3416 * Wait for the Reset Device command to finish. Remove all structures 3417 * associated with the endpoints that were disabled. Clear the input device 3418 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3419 * 3420 * If the virt_dev to be reset does not exist or does not match the udev, 3421 * it means the device is lost, possibly due to the xHC restore error and 3422 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3423 * re-allocate the device. 3424 */ 3425 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3426 { 3427 int ret, i; 3428 unsigned long flags; 3429 struct xhci_hcd *xhci; 3430 unsigned int slot_id; 3431 struct xhci_virt_device *virt_dev; 3432 struct xhci_command *reset_device_cmd; 3433 int last_freed_endpoint; 3434 struct xhci_slot_ctx *slot_ctx; 3435 int old_active_eps = 0; 3436 3437 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3438 if (ret <= 0) 3439 return ret; 3440 xhci = hcd_to_xhci(hcd); 3441 slot_id = udev->slot_id; 3442 virt_dev = xhci->devs[slot_id]; 3443 if (!virt_dev) { 3444 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3445 "not exist. Re-allocate the device\n", slot_id); 3446 ret = xhci_alloc_dev(hcd, udev); 3447 if (ret == 1) 3448 return 0; 3449 else 3450 return -EINVAL; 3451 } 3452 3453 if (virt_dev->tt_info) 3454 old_active_eps = virt_dev->tt_info->active_eps; 3455 3456 if (virt_dev->udev != udev) { 3457 /* If the virt_dev and the udev does not match, this virt_dev 3458 * may belong to another udev. 3459 * Re-allocate the device. 3460 */ 3461 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3462 "not match the udev. Re-allocate the device\n", 3463 slot_id); 3464 ret = xhci_alloc_dev(hcd, udev); 3465 if (ret == 1) 3466 return 0; 3467 else 3468 return -EINVAL; 3469 } 3470 3471 /* If device is not setup, there is no point in resetting it */ 3472 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3473 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3474 SLOT_STATE_DISABLED) 3475 return 0; 3476 3477 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3478 /* Allocate the command structure that holds the struct completion. 3479 * Assume we're in process context, since the normal device reset 3480 * process has to wait for the device anyway. Storage devices are 3481 * reset as part of error handling, so use GFP_NOIO instead of 3482 * GFP_KERNEL. 3483 */ 3484 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3485 if (!reset_device_cmd) { 3486 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3487 return -ENOMEM; 3488 } 3489 3490 /* Attempt to submit the Reset Device command to the command ring */ 3491 spin_lock_irqsave(&xhci->lock, flags); 3492 3493 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3494 if (ret) { 3495 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3496 spin_unlock_irqrestore(&xhci->lock, flags); 3497 goto command_cleanup; 3498 } 3499 xhci_ring_cmd_db(xhci); 3500 spin_unlock_irqrestore(&xhci->lock, flags); 3501 3502 /* Wait for the Reset Device command to finish */ 3503 wait_for_completion(reset_device_cmd->completion); 3504 3505 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3506 * unless we tried to reset a slot ID that wasn't enabled, 3507 * or the device wasn't in the addressed or configured state. 3508 */ 3509 ret = reset_device_cmd->status; 3510 switch (ret) { 3511 case COMP_CMD_ABORT: 3512 case COMP_CMD_STOP: 3513 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3514 ret = -ETIME; 3515 goto command_cleanup; 3516 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3517 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3518 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3519 slot_id, 3520 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3521 xhci_dbg(xhci, "Not freeing device rings.\n"); 3522 /* Don't treat this as an error. May change my mind later. */ 3523 ret = 0; 3524 goto command_cleanup; 3525 case COMP_SUCCESS: 3526 xhci_dbg(xhci, "Successful reset device command.\n"); 3527 break; 3528 default: 3529 if (xhci_is_vendor_info_code(xhci, ret)) 3530 break; 3531 xhci_warn(xhci, "Unknown completion code %u for " 3532 "reset device command.\n", ret); 3533 ret = -EINVAL; 3534 goto command_cleanup; 3535 } 3536 3537 /* Free up host controller endpoint resources */ 3538 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3539 spin_lock_irqsave(&xhci->lock, flags); 3540 /* Don't delete the default control endpoint resources */ 3541 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3542 spin_unlock_irqrestore(&xhci->lock, flags); 3543 } 3544 3545 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3546 last_freed_endpoint = 1; 3547 for (i = 1; i < 31; ++i) { 3548 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3549 3550 if (ep->ep_state & EP_HAS_STREAMS) { 3551 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3552 xhci_get_endpoint_address(i)); 3553 xhci_free_stream_info(xhci, ep->stream_info); 3554 ep->stream_info = NULL; 3555 ep->ep_state &= ~EP_HAS_STREAMS; 3556 } 3557 3558 if (ep->ring) { 3559 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3560 last_freed_endpoint = i; 3561 } 3562 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3563 xhci_drop_ep_from_interval_table(xhci, 3564 &virt_dev->eps[i].bw_info, 3565 virt_dev->bw_table, 3566 udev, 3567 &virt_dev->eps[i], 3568 virt_dev->tt_info); 3569 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3570 } 3571 /* If necessary, update the number of active TTs on this root port */ 3572 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3573 3574 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3575 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3576 ret = 0; 3577 3578 command_cleanup: 3579 xhci_free_command(xhci, reset_device_cmd); 3580 return ret; 3581 } 3582 3583 /* 3584 * At this point, the struct usb_device is about to go away, the device has 3585 * disconnected, and all traffic has been stopped and the endpoints have been 3586 * disabled. Free any HC data structures associated with that device. 3587 */ 3588 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3589 { 3590 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3591 struct xhci_virt_device *virt_dev; 3592 unsigned long flags; 3593 u32 state; 3594 int i, ret; 3595 struct xhci_command *command; 3596 3597 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3598 if (!command) 3599 return; 3600 3601 #ifndef CONFIG_USB_DEFAULT_PERSIST 3602 /* 3603 * We called pm_runtime_get_noresume when the device was attached. 3604 * Decrement the counter here to allow controller to runtime suspend 3605 * if no devices remain. 3606 */ 3607 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3608 pm_runtime_put_noidle(hcd->self.controller); 3609 #endif 3610 3611 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3612 /* If the host is halted due to driver unload, we still need to free the 3613 * device. 3614 */ 3615 if (ret <= 0 && ret != -ENODEV) { 3616 kfree(command); 3617 return; 3618 } 3619 3620 virt_dev = xhci->devs[udev->slot_id]; 3621 3622 /* Stop any wayward timer functions (which may grab the lock) */ 3623 for (i = 0; i < 31; ++i) { 3624 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3625 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3626 } 3627 3628 spin_lock_irqsave(&xhci->lock, flags); 3629 /* Don't disable the slot if the host controller is dead. */ 3630 state = readl(&xhci->op_regs->status); 3631 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3632 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3633 xhci_free_virt_device(xhci, udev->slot_id); 3634 spin_unlock_irqrestore(&xhci->lock, flags); 3635 kfree(command); 3636 return; 3637 } 3638 3639 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3640 udev->slot_id)) { 3641 spin_unlock_irqrestore(&xhci->lock, flags); 3642 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3643 return; 3644 } 3645 xhci_ring_cmd_db(xhci); 3646 spin_unlock_irqrestore(&xhci->lock, flags); 3647 3648 /* 3649 * Event command completion handler will free any data structures 3650 * associated with the slot. XXX Can free sleep? 3651 */ 3652 } 3653 3654 /* 3655 * Checks if we have enough host controller resources for the default control 3656 * endpoint. 3657 * 3658 * Must be called with xhci->lock held. 3659 */ 3660 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3661 { 3662 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3663 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3664 "Not enough ep ctxs: " 3665 "%u active, need to add 1, limit is %u.", 3666 xhci->num_active_eps, xhci->limit_active_eps); 3667 return -ENOMEM; 3668 } 3669 xhci->num_active_eps += 1; 3670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3671 "Adding 1 ep ctx, %u now active.", 3672 xhci->num_active_eps); 3673 return 0; 3674 } 3675 3676 3677 /* 3678 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3679 * timed out, or allocating memory failed. Returns 1 on success. 3680 */ 3681 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3682 { 3683 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3684 unsigned long flags; 3685 int ret, slot_id; 3686 struct xhci_command *command; 3687 3688 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3689 if (!command) 3690 return 0; 3691 3692 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3693 mutex_lock(&xhci->mutex); 3694 spin_lock_irqsave(&xhci->lock, flags); 3695 command->completion = &xhci->addr_dev; 3696 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3697 if (ret) { 3698 spin_unlock_irqrestore(&xhci->lock, flags); 3699 mutex_unlock(&xhci->mutex); 3700 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3701 kfree(command); 3702 return 0; 3703 } 3704 xhci_ring_cmd_db(xhci); 3705 spin_unlock_irqrestore(&xhci->lock, flags); 3706 3707 wait_for_completion(command->completion); 3708 slot_id = xhci->slot_id; 3709 mutex_unlock(&xhci->mutex); 3710 3711 if (!slot_id || command->status != COMP_SUCCESS) { 3712 xhci_err(xhci, "Error while assigning device slot ID\n"); 3713 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3714 HCS_MAX_SLOTS( 3715 readl(&xhci->cap_regs->hcs_params1))); 3716 kfree(command); 3717 return 0; 3718 } 3719 3720 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3721 spin_lock_irqsave(&xhci->lock, flags); 3722 ret = xhci_reserve_host_control_ep_resources(xhci); 3723 if (ret) { 3724 spin_unlock_irqrestore(&xhci->lock, flags); 3725 xhci_warn(xhci, "Not enough host resources, " 3726 "active endpoint contexts = %u\n", 3727 xhci->num_active_eps); 3728 goto disable_slot; 3729 } 3730 spin_unlock_irqrestore(&xhci->lock, flags); 3731 } 3732 /* Use GFP_NOIO, since this function can be called from 3733 * xhci_discover_or_reset_device(), which may be called as part of 3734 * mass storage driver error handling. 3735 */ 3736 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3737 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3738 goto disable_slot; 3739 } 3740 udev->slot_id = slot_id; 3741 3742 #ifndef CONFIG_USB_DEFAULT_PERSIST 3743 /* 3744 * If resetting upon resume, we can't put the controller into runtime 3745 * suspend if there is a device attached. 3746 */ 3747 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3748 pm_runtime_get_noresume(hcd->self.controller); 3749 #endif 3750 3751 3752 kfree(command); 3753 /* Is this a LS or FS device under a HS hub? */ 3754 /* Hub or peripherial? */ 3755 return 1; 3756 3757 disable_slot: 3758 /* Disable slot, if we can do it without mem alloc */ 3759 spin_lock_irqsave(&xhci->lock, flags); 3760 command->completion = NULL; 3761 command->status = 0; 3762 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3763 udev->slot_id)) 3764 xhci_ring_cmd_db(xhci); 3765 spin_unlock_irqrestore(&xhci->lock, flags); 3766 return 0; 3767 } 3768 3769 /* 3770 * Issue an Address Device command and optionally send a corresponding 3771 * SetAddress request to the device. 3772 */ 3773 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3774 enum xhci_setup_dev setup) 3775 { 3776 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3777 unsigned long flags; 3778 struct xhci_virt_device *virt_dev; 3779 int ret = 0; 3780 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3781 struct xhci_slot_ctx *slot_ctx; 3782 struct xhci_input_control_ctx *ctrl_ctx; 3783 u64 temp_64; 3784 struct xhci_command *command = NULL; 3785 3786 mutex_lock(&xhci->mutex); 3787 3788 if (xhci->xhc_state) /* dying, removing or halted */ 3789 goto out; 3790 3791 if (!udev->slot_id) { 3792 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3793 "Bad Slot ID %d", udev->slot_id); 3794 ret = -EINVAL; 3795 goto out; 3796 } 3797 3798 virt_dev = xhci->devs[udev->slot_id]; 3799 3800 if (WARN_ON(!virt_dev)) { 3801 /* 3802 * In plug/unplug torture test with an NEC controller, 3803 * a zero-dereference was observed once due to virt_dev = 0. 3804 * Print useful debug rather than crash if it is observed again! 3805 */ 3806 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3807 udev->slot_id); 3808 ret = -EINVAL; 3809 goto out; 3810 } 3811 3812 if (setup == SETUP_CONTEXT_ONLY) { 3813 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3814 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3815 SLOT_STATE_DEFAULT) { 3816 xhci_dbg(xhci, "Slot already in default state\n"); 3817 goto out; 3818 } 3819 } 3820 3821 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3822 if (!command) { 3823 ret = -ENOMEM; 3824 goto out; 3825 } 3826 3827 command->in_ctx = virt_dev->in_ctx; 3828 command->completion = &xhci->addr_dev; 3829 3830 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3831 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3832 if (!ctrl_ctx) { 3833 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3834 __func__); 3835 ret = -EINVAL; 3836 goto out; 3837 } 3838 /* 3839 * If this is the first Set Address since device plug-in or 3840 * virt_device realloaction after a resume with an xHCI power loss, 3841 * then set up the slot context. 3842 */ 3843 if (!slot_ctx->dev_info) 3844 xhci_setup_addressable_virt_dev(xhci, udev); 3845 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3846 else 3847 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3848 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3849 ctrl_ctx->drop_flags = 0; 3850 3851 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3852 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3853 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3854 le32_to_cpu(slot_ctx->dev_info) >> 27); 3855 3856 spin_lock_irqsave(&xhci->lock, flags); 3857 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3858 udev->slot_id, setup); 3859 if (ret) { 3860 spin_unlock_irqrestore(&xhci->lock, flags); 3861 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3862 "FIXME: allocate a command ring segment"); 3863 goto out; 3864 } 3865 xhci_ring_cmd_db(xhci); 3866 spin_unlock_irqrestore(&xhci->lock, flags); 3867 3868 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3869 wait_for_completion(command->completion); 3870 3871 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3872 * the SetAddress() "recovery interval" required by USB and aborting the 3873 * command on a timeout. 3874 */ 3875 switch (command->status) { 3876 case COMP_CMD_ABORT: 3877 case COMP_CMD_STOP: 3878 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3879 ret = -ETIME; 3880 break; 3881 case COMP_CTX_STATE: 3882 case COMP_EBADSLT: 3883 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3884 act, udev->slot_id); 3885 ret = -EINVAL; 3886 break; 3887 case COMP_TX_ERR: 3888 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3889 ret = -EPROTO; 3890 break; 3891 case COMP_DEV_ERR: 3892 dev_warn(&udev->dev, 3893 "ERROR: Incompatible device for setup %s command\n", act); 3894 ret = -ENODEV; 3895 break; 3896 case COMP_SUCCESS: 3897 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3898 "Successful setup %s command", act); 3899 break; 3900 default: 3901 xhci_err(xhci, 3902 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3903 act, command->status); 3904 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3905 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3906 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3907 ret = -EINVAL; 3908 break; 3909 } 3910 if (ret) 3911 goto out; 3912 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3913 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3914 "Op regs DCBAA ptr = %#016llx", temp_64); 3915 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3916 "Slot ID %d dcbaa entry @%p = %#016llx", 3917 udev->slot_id, 3918 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3919 (unsigned long long) 3920 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3921 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3922 "Output Context DMA address = %#08llx", 3923 (unsigned long long)virt_dev->out_ctx->dma); 3924 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3925 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3926 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3927 le32_to_cpu(slot_ctx->dev_info) >> 27); 3928 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3929 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3930 /* 3931 * USB core uses address 1 for the roothubs, so we add one to the 3932 * address given back to us by the HC. 3933 */ 3934 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3935 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3936 le32_to_cpu(slot_ctx->dev_info) >> 27); 3937 /* Zero the input context control for later use */ 3938 ctrl_ctx->add_flags = 0; 3939 ctrl_ctx->drop_flags = 0; 3940 3941 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3942 "Internal device address = %d", 3943 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3944 out: 3945 mutex_unlock(&xhci->mutex); 3946 kfree(command); 3947 return ret; 3948 } 3949 3950 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3951 { 3952 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3953 } 3954 3955 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3956 { 3957 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3958 } 3959 3960 /* 3961 * Transfer the port index into real index in the HW port status 3962 * registers. Caculate offset between the port's PORTSC register 3963 * and port status base. Divide the number of per port register 3964 * to get the real index. The raw port number bases 1. 3965 */ 3966 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3967 { 3968 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3969 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3970 __le32 __iomem *addr; 3971 int raw_port; 3972 3973 if (hcd->speed < HCD_USB3) 3974 addr = xhci->usb2_ports[port1 - 1]; 3975 else 3976 addr = xhci->usb3_ports[port1 - 1]; 3977 3978 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3979 return raw_port; 3980 } 3981 3982 /* 3983 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3984 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3985 */ 3986 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3987 struct usb_device *udev, u16 max_exit_latency) 3988 { 3989 struct xhci_virt_device *virt_dev; 3990 struct xhci_command *command; 3991 struct xhci_input_control_ctx *ctrl_ctx; 3992 struct xhci_slot_ctx *slot_ctx; 3993 unsigned long flags; 3994 int ret; 3995 3996 spin_lock_irqsave(&xhci->lock, flags); 3997 3998 virt_dev = xhci->devs[udev->slot_id]; 3999 4000 /* 4001 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4002 * xHC was re-initialized. Exit latency will be set later after 4003 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4004 */ 4005 4006 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4007 spin_unlock_irqrestore(&xhci->lock, flags); 4008 return 0; 4009 } 4010 4011 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4012 command = xhci->lpm_command; 4013 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4014 if (!ctrl_ctx) { 4015 spin_unlock_irqrestore(&xhci->lock, flags); 4016 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4017 __func__); 4018 return -ENOMEM; 4019 } 4020 4021 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4022 spin_unlock_irqrestore(&xhci->lock, flags); 4023 4024 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4025 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4026 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4027 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4028 slot_ctx->dev_state = 0; 4029 4030 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4031 "Set up evaluate context for LPM MEL change."); 4032 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4033 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4034 4035 /* Issue and wait for the evaluate context command. */ 4036 ret = xhci_configure_endpoint(xhci, udev, command, 4037 true, true); 4038 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4039 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4040 4041 if (!ret) { 4042 spin_lock_irqsave(&xhci->lock, flags); 4043 virt_dev->current_mel = max_exit_latency; 4044 spin_unlock_irqrestore(&xhci->lock, flags); 4045 } 4046 return ret; 4047 } 4048 4049 #ifdef CONFIG_PM 4050 4051 /* BESL to HIRD Encoding array for USB2 LPM */ 4052 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4053 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4054 4055 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4056 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4057 struct usb_device *udev) 4058 { 4059 int u2del, besl, besl_host; 4060 int besl_device = 0; 4061 u32 field; 4062 4063 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4064 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4065 4066 if (field & USB_BESL_SUPPORT) { 4067 for (besl_host = 0; besl_host < 16; besl_host++) { 4068 if (xhci_besl_encoding[besl_host] >= u2del) 4069 break; 4070 } 4071 /* Use baseline BESL value as default */ 4072 if (field & USB_BESL_BASELINE_VALID) 4073 besl_device = USB_GET_BESL_BASELINE(field); 4074 else if (field & USB_BESL_DEEP_VALID) 4075 besl_device = USB_GET_BESL_DEEP(field); 4076 } else { 4077 if (u2del <= 50) 4078 besl_host = 0; 4079 else 4080 besl_host = (u2del - 51) / 75 + 1; 4081 } 4082 4083 besl = besl_host + besl_device; 4084 if (besl > 15) 4085 besl = 15; 4086 4087 return besl; 4088 } 4089 4090 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4091 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4092 { 4093 u32 field; 4094 int l1; 4095 int besld = 0; 4096 int hirdm = 0; 4097 4098 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4099 4100 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4101 l1 = udev->l1_params.timeout / 256; 4102 4103 /* device has preferred BESLD */ 4104 if (field & USB_BESL_DEEP_VALID) { 4105 besld = USB_GET_BESL_DEEP(field); 4106 hirdm = 1; 4107 } 4108 4109 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4110 } 4111 4112 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4113 struct usb_device *udev, int enable) 4114 { 4115 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4116 __le32 __iomem **port_array; 4117 __le32 __iomem *pm_addr, *hlpm_addr; 4118 u32 pm_val, hlpm_val, field; 4119 unsigned int port_num; 4120 unsigned long flags; 4121 int hird, exit_latency; 4122 int ret; 4123 4124 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4125 !udev->lpm_capable) 4126 return -EPERM; 4127 4128 if (!udev->parent || udev->parent->parent || 4129 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4130 return -EPERM; 4131 4132 if (udev->usb2_hw_lpm_capable != 1) 4133 return -EPERM; 4134 4135 spin_lock_irqsave(&xhci->lock, flags); 4136 4137 port_array = xhci->usb2_ports; 4138 port_num = udev->portnum - 1; 4139 pm_addr = port_array[port_num] + PORTPMSC; 4140 pm_val = readl(pm_addr); 4141 hlpm_addr = port_array[port_num] + PORTHLPMC; 4142 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4143 4144 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4145 enable ? "enable" : "disable", port_num + 1); 4146 4147 if (enable) { 4148 /* Host supports BESL timeout instead of HIRD */ 4149 if (udev->usb2_hw_lpm_besl_capable) { 4150 /* if device doesn't have a preferred BESL value use a 4151 * default one which works with mixed HIRD and BESL 4152 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4153 */ 4154 if ((field & USB_BESL_SUPPORT) && 4155 (field & USB_BESL_BASELINE_VALID)) 4156 hird = USB_GET_BESL_BASELINE(field); 4157 else 4158 hird = udev->l1_params.besl; 4159 4160 exit_latency = xhci_besl_encoding[hird]; 4161 spin_unlock_irqrestore(&xhci->lock, flags); 4162 4163 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4164 * input context for link powermanagement evaluate 4165 * context commands. It is protected by hcd->bandwidth 4166 * mutex and is shared by all devices. We need to set 4167 * the max ext latency in USB 2 BESL LPM as well, so 4168 * use the same mutex and xhci_change_max_exit_latency() 4169 */ 4170 mutex_lock(hcd->bandwidth_mutex); 4171 ret = xhci_change_max_exit_latency(xhci, udev, 4172 exit_latency); 4173 mutex_unlock(hcd->bandwidth_mutex); 4174 4175 if (ret < 0) 4176 return ret; 4177 spin_lock_irqsave(&xhci->lock, flags); 4178 4179 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4180 writel(hlpm_val, hlpm_addr); 4181 /* flush write */ 4182 readl(hlpm_addr); 4183 } else { 4184 hird = xhci_calculate_hird_besl(xhci, udev); 4185 } 4186 4187 pm_val &= ~PORT_HIRD_MASK; 4188 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4189 writel(pm_val, pm_addr); 4190 pm_val = readl(pm_addr); 4191 pm_val |= PORT_HLE; 4192 writel(pm_val, pm_addr); 4193 /* flush write */ 4194 readl(pm_addr); 4195 } else { 4196 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4197 writel(pm_val, pm_addr); 4198 /* flush write */ 4199 readl(pm_addr); 4200 if (udev->usb2_hw_lpm_besl_capable) { 4201 spin_unlock_irqrestore(&xhci->lock, flags); 4202 mutex_lock(hcd->bandwidth_mutex); 4203 xhci_change_max_exit_latency(xhci, udev, 0); 4204 mutex_unlock(hcd->bandwidth_mutex); 4205 return 0; 4206 } 4207 } 4208 4209 spin_unlock_irqrestore(&xhci->lock, flags); 4210 return 0; 4211 } 4212 4213 /* check if a usb2 port supports a given extened capability protocol 4214 * only USB2 ports extended protocol capability values are cached. 4215 * Return 1 if capability is supported 4216 */ 4217 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4218 unsigned capability) 4219 { 4220 u32 port_offset, port_count; 4221 int i; 4222 4223 for (i = 0; i < xhci->num_ext_caps; i++) { 4224 if (xhci->ext_caps[i] & capability) { 4225 /* port offsets starts at 1 */ 4226 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4227 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4228 if (port >= port_offset && 4229 port < port_offset + port_count) 4230 return 1; 4231 } 4232 } 4233 return 0; 4234 } 4235 4236 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4237 { 4238 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4239 int portnum = udev->portnum - 1; 4240 4241 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4242 !udev->lpm_capable) 4243 return 0; 4244 4245 /* we only support lpm for non-hub device connected to root hub yet */ 4246 if (!udev->parent || udev->parent->parent || 4247 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4248 return 0; 4249 4250 if (xhci->hw_lpm_support == 1 && 4251 xhci_check_usb2_port_capability( 4252 xhci, portnum, XHCI_HLC)) { 4253 udev->usb2_hw_lpm_capable = 1; 4254 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4255 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4256 if (xhci_check_usb2_port_capability(xhci, portnum, 4257 XHCI_BLC)) 4258 udev->usb2_hw_lpm_besl_capable = 1; 4259 } 4260 4261 return 0; 4262 } 4263 4264 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4265 4266 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4267 static unsigned long long xhci_service_interval_to_ns( 4268 struct usb_endpoint_descriptor *desc) 4269 { 4270 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4271 } 4272 4273 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4274 enum usb3_link_state state) 4275 { 4276 unsigned long long sel; 4277 unsigned long long pel; 4278 unsigned int max_sel_pel; 4279 char *state_name; 4280 4281 switch (state) { 4282 case USB3_LPM_U1: 4283 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4284 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4285 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4286 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4287 state_name = "U1"; 4288 break; 4289 case USB3_LPM_U2: 4290 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4291 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4292 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4293 state_name = "U2"; 4294 break; 4295 default: 4296 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4297 __func__); 4298 return USB3_LPM_DISABLED; 4299 } 4300 4301 if (sel <= max_sel_pel && pel <= max_sel_pel) 4302 return USB3_LPM_DEVICE_INITIATED; 4303 4304 if (sel > max_sel_pel) 4305 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4306 "due to long SEL %llu ms\n", 4307 state_name, sel); 4308 else 4309 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4310 "due to long PEL %llu ms\n", 4311 state_name, pel); 4312 return USB3_LPM_DISABLED; 4313 } 4314 4315 /* The U1 timeout should be the maximum of the following values: 4316 * - For control endpoints, U1 system exit latency (SEL) * 3 4317 * - For bulk endpoints, U1 SEL * 5 4318 * - For interrupt endpoints: 4319 * - Notification EPs, U1 SEL * 3 4320 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4321 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4322 */ 4323 static unsigned long long xhci_calculate_intel_u1_timeout( 4324 struct usb_device *udev, 4325 struct usb_endpoint_descriptor *desc) 4326 { 4327 unsigned long long timeout_ns; 4328 int ep_type; 4329 int intr_type; 4330 4331 ep_type = usb_endpoint_type(desc); 4332 switch (ep_type) { 4333 case USB_ENDPOINT_XFER_CONTROL: 4334 timeout_ns = udev->u1_params.sel * 3; 4335 break; 4336 case USB_ENDPOINT_XFER_BULK: 4337 timeout_ns = udev->u1_params.sel * 5; 4338 break; 4339 case USB_ENDPOINT_XFER_INT: 4340 intr_type = usb_endpoint_interrupt_type(desc); 4341 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4342 timeout_ns = udev->u1_params.sel * 3; 4343 break; 4344 } 4345 /* Otherwise the calculation is the same as isoc eps */ 4346 case USB_ENDPOINT_XFER_ISOC: 4347 timeout_ns = xhci_service_interval_to_ns(desc); 4348 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4349 if (timeout_ns < udev->u1_params.sel * 2) 4350 timeout_ns = udev->u1_params.sel * 2; 4351 break; 4352 default: 4353 return 0; 4354 } 4355 4356 return timeout_ns; 4357 } 4358 4359 /* Returns the hub-encoded U1 timeout value. */ 4360 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4361 struct usb_device *udev, 4362 struct usb_endpoint_descriptor *desc) 4363 { 4364 unsigned long long timeout_ns; 4365 4366 if (xhci->quirks & XHCI_INTEL_HOST) 4367 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4368 else 4369 timeout_ns = udev->u1_params.sel; 4370 4371 /* The U1 timeout is encoded in 1us intervals. 4372 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4373 */ 4374 if (timeout_ns == USB3_LPM_DISABLED) 4375 timeout_ns = 1; 4376 else 4377 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4378 4379 /* If the necessary timeout value is bigger than what we can set in the 4380 * USB 3.0 hub, we have to disable hub-initiated U1. 4381 */ 4382 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4383 return timeout_ns; 4384 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4385 "due to long timeout %llu ms\n", timeout_ns); 4386 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4387 } 4388 4389 /* The U2 timeout should be the maximum of: 4390 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4391 * - largest bInterval of any active periodic endpoint (to avoid going 4392 * into lower power link states between intervals). 4393 * - the U2 Exit Latency of the device 4394 */ 4395 static unsigned long long xhci_calculate_intel_u2_timeout( 4396 struct usb_device *udev, 4397 struct usb_endpoint_descriptor *desc) 4398 { 4399 unsigned long long timeout_ns; 4400 unsigned long long u2_del_ns; 4401 4402 timeout_ns = 10 * 1000 * 1000; 4403 4404 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4405 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4406 timeout_ns = xhci_service_interval_to_ns(desc); 4407 4408 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4409 if (u2_del_ns > timeout_ns) 4410 timeout_ns = u2_del_ns; 4411 4412 return timeout_ns; 4413 } 4414 4415 /* Returns the hub-encoded U2 timeout value. */ 4416 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4417 struct usb_device *udev, 4418 struct usb_endpoint_descriptor *desc) 4419 { 4420 unsigned long long timeout_ns; 4421 4422 if (xhci->quirks & XHCI_INTEL_HOST) 4423 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4424 else 4425 timeout_ns = udev->u2_params.sel; 4426 4427 /* The U2 timeout is encoded in 256us intervals */ 4428 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4429 /* If the necessary timeout value is bigger than what we can set in the 4430 * USB 3.0 hub, we have to disable hub-initiated U2. 4431 */ 4432 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4433 return timeout_ns; 4434 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4435 "due to long timeout %llu ms\n", timeout_ns); 4436 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4437 } 4438 4439 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4440 struct usb_device *udev, 4441 struct usb_endpoint_descriptor *desc, 4442 enum usb3_link_state state, 4443 u16 *timeout) 4444 { 4445 if (state == USB3_LPM_U1) 4446 return xhci_calculate_u1_timeout(xhci, udev, desc); 4447 else if (state == USB3_LPM_U2) 4448 return xhci_calculate_u2_timeout(xhci, udev, desc); 4449 4450 return USB3_LPM_DISABLED; 4451 } 4452 4453 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4454 struct usb_device *udev, 4455 struct usb_endpoint_descriptor *desc, 4456 enum usb3_link_state state, 4457 u16 *timeout) 4458 { 4459 u16 alt_timeout; 4460 4461 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4462 desc, state, timeout); 4463 4464 /* If we found we can't enable hub-initiated LPM, or 4465 * the U1 or U2 exit latency was too high to allow 4466 * device-initiated LPM as well, just stop searching. 4467 */ 4468 if (alt_timeout == USB3_LPM_DISABLED || 4469 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4470 *timeout = alt_timeout; 4471 return -E2BIG; 4472 } 4473 if (alt_timeout > *timeout) 4474 *timeout = alt_timeout; 4475 return 0; 4476 } 4477 4478 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4479 struct usb_device *udev, 4480 struct usb_host_interface *alt, 4481 enum usb3_link_state state, 4482 u16 *timeout) 4483 { 4484 int j; 4485 4486 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4487 if (xhci_update_timeout_for_endpoint(xhci, udev, 4488 &alt->endpoint[j].desc, state, timeout)) 4489 return -E2BIG; 4490 continue; 4491 } 4492 return 0; 4493 } 4494 4495 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4496 enum usb3_link_state state) 4497 { 4498 struct usb_device *parent; 4499 unsigned int num_hubs; 4500 4501 if (state == USB3_LPM_U2) 4502 return 0; 4503 4504 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4505 for (parent = udev->parent, num_hubs = 0; parent->parent; 4506 parent = parent->parent) 4507 num_hubs++; 4508 4509 if (num_hubs < 2) 4510 return 0; 4511 4512 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4513 " below second-tier hub.\n"); 4514 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4515 "to decrease power consumption.\n"); 4516 return -E2BIG; 4517 } 4518 4519 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4520 struct usb_device *udev, 4521 enum usb3_link_state state) 4522 { 4523 if (xhci->quirks & XHCI_INTEL_HOST) 4524 return xhci_check_intel_tier_policy(udev, state); 4525 else 4526 return 0; 4527 } 4528 4529 /* Returns the U1 or U2 timeout that should be enabled. 4530 * If the tier check or timeout setting functions return with a non-zero exit 4531 * code, that means the timeout value has been finalized and we shouldn't look 4532 * at any more endpoints. 4533 */ 4534 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4535 struct usb_device *udev, enum usb3_link_state state) 4536 { 4537 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4538 struct usb_host_config *config; 4539 char *state_name; 4540 int i; 4541 u16 timeout = USB3_LPM_DISABLED; 4542 4543 if (state == USB3_LPM_U1) 4544 state_name = "U1"; 4545 else if (state == USB3_LPM_U2) 4546 state_name = "U2"; 4547 else { 4548 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4549 state); 4550 return timeout; 4551 } 4552 4553 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4554 return timeout; 4555 4556 /* Gather some information about the currently installed configuration 4557 * and alternate interface settings. 4558 */ 4559 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4560 state, &timeout)) 4561 return timeout; 4562 4563 config = udev->actconfig; 4564 if (!config) 4565 return timeout; 4566 4567 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4568 struct usb_driver *driver; 4569 struct usb_interface *intf = config->interface[i]; 4570 4571 if (!intf) 4572 continue; 4573 4574 /* Check if any currently bound drivers want hub-initiated LPM 4575 * disabled. 4576 */ 4577 if (intf->dev.driver) { 4578 driver = to_usb_driver(intf->dev.driver); 4579 if (driver && driver->disable_hub_initiated_lpm) { 4580 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4581 "at request of driver %s\n", 4582 state_name, driver->name); 4583 return xhci_get_timeout_no_hub_lpm(udev, state); 4584 } 4585 } 4586 4587 /* Not sure how this could happen... */ 4588 if (!intf->cur_altsetting) 4589 continue; 4590 4591 if (xhci_update_timeout_for_interface(xhci, udev, 4592 intf->cur_altsetting, 4593 state, &timeout)) 4594 return timeout; 4595 } 4596 return timeout; 4597 } 4598 4599 static int calculate_max_exit_latency(struct usb_device *udev, 4600 enum usb3_link_state state_changed, 4601 u16 hub_encoded_timeout) 4602 { 4603 unsigned long long u1_mel_us = 0; 4604 unsigned long long u2_mel_us = 0; 4605 unsigned long long mel_us = 0; 4606 bool disabling_u1; 4607 bool disabling_u2; 4608 bool enabling_u1; 4609 bool enabling_u2; 4610 4611 disabling_u1 = (state_changed == USB3_LPM_U1 && 4612 hub_encoded_timeout == USB3_LPM_DISABLED); 4613 disabling_u2 = (state_changed == USB3_LPM_U2 && 4614 hub_encoded_timeout == USB3_LPM_DISABLED); 4615 4616 enabling_u1 = (state_changed == USB3_LPM_U1 && 4617 hub_encoded_timeout != USB3_LPM_DISABLED); 4618 enabling_u2 = (state_changed == USB3_LPM_U2 && 4619 hub_encoded_timeout != USB3_LPM_DISABLED); 4620 4621 /* If U1 was already enabled and we're not disabling it, 4622 * or we're going to enable U1, account for the U1 max exit latency. 4623 */ 4624 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4625 enabling_u1) 4626 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4627 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4628 enabling_u2) 4629 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4630 4631 if (u1_mel_us > u2_mel_us) 4632 mel_us = u1_mel_us; 4633 else 4634 mel_us = u2_mel_us; 4635 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4636 if (mel_us > MAX_EXIT) { 4637 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4638 "is too big.\n", mel_us); 4639 return -E2BIG; 4640 } 4641 return mel_us; 4642 } 4643 4644 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4645 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4646 struct usb_device *udev, enum usb3_link_state state) 4647 { 4648 struct xhci_hcd *xhci; 4649 u16 hub_encoded_timeout; 4650 int mel; 4651 int ret; 4652 4653 xhci = hcd_to_xhci(hcd); 4654 /* The LPM timeout values are pretty host-controller specific, so don't 4655 * enable hub-initiated timeouts unless the vendor has provided 4656 * information about their timeout algorithm. 4657 */ 4658 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4659 !xhci->devs[udev->slot_id]) 4660 return USB3_LPM_DISABLED; 4661 4662 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4663 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4664 if (mel < 0) { 4665 /* Max Exit Latency is too big, disable LPM. */ 4666 hub_encoded_timeout = USB3_LPM_DISABLED; 4667 mel = 0; 4668 } 4669 4670 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4671 if (ret) 4672 return ret; 4673 return hub_encoded_timeout; 4674 } 4675 4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4677 struct usb_device *udev, enum usb3_link_state state) 4678 { 4679 struct xhci_hcd *xhci; 4680 u16 mel; 4681 4682 xhci = hcd_to_xhci(hcd); 4683 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4684 !xhci->devs[udev->slot_id]) 4685 return 0; 4686 4687 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4688 return xhci_change_max_exit_latency(xhci, udev, mel); 4689 } 4690 #else /* CONFIG_PM */ 4691 4692 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4693 struct usb_device *udev, int enable) 4694 { 4695 return 0; 4696 } 4697 4698 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4699 { 4700 return 0; 4701 } 4702 4703 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4704 struct usb_device *udev, enum usb3_link_state state) 4705 { 4706 return USB3_LPM_DISABLED; 4707 } 4708 4709 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4710 struct usb_device *udev, enum usb3_link_state state) 4711 { 4712 return 0; 4713 } 4714 #endif /* CONFIG_PM */ 4715 4716 /*-------------------------------------------------------------------------*/ 4717 4718 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4719 * internal data structures for the device. 4720 */ 4721 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4722 struct usb_tt *tt, gfp_t mem_flags) 4723 { 4724 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4725 struct xhci_virt_device *vdev; 4726 struct xhci_command *config_cmd; 4727 struct xhci_input_control_ctx *ctrl_ctx; 4728 struct xhci_slot_ctx *slot_ctx; 4729 unsigned long flags; 4730 unsigned think_time; 4731 int ret; 4732 4733 /* Ignore root hubs */ 4734 if (!hdev->parent) 4735 return 0; 4736 4737 vdev = xhci->devs[hdev->slot_id]; 4738 if (!vdev) { 4739 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4740 return -EINVAL; 4741 } 4742 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4743 if (!config_cmd) { 4744 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4745 return -ENOMEM; 4746 } 4747 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4748 if (!ctrl_ctx) { 4749 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4750 __func__); 4751 xhci_free_command(xhci, config_cmd); 4752 return -ENOMEM; 4753 } 4754 4755 spin_lock_irqsave(&xhci->lock, flags); 4756 if (hdev->speed == USB_SPEED_HIGH && 4757 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4758 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4759 xhci_free_command(xhci, config_cmd); 4760 spin_unlock_irqrestore(&xhci->lock, flags); 4761 return -ENOMEM; 4762 } 4763 4764 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4765 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4766 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4767 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4768 /* 4769 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4770 * but it may be already set to 1 when setup an xHCI virtual 4771 * device, so clear it anyway. 4772 */ 4773 if (tt->multi) 4774 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4775 else if (hdev->speed == USB_SPEED_FULL) 4776 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4777 4778 if (xhci->hci_version > 0x95) { 4779 xhci_dbg(xhci, "xHCI version %x needs hub " 4780 "TT think time and number of ports\n", 4781 (unsigned int) xhci->hci_version); 4782 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4783 /* Set TT think time - convert from ns to FS bit times. 4784 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4785 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4786 * 4787 * xHCI 1.0: this field shall be 0 if the device is not a 4788 * High-spped hub. 4789 */ 4790 think_time = tt->think_time; 4791 if (think_time != 0) 4792 think_time = (think_time / 666) - 1; 4793 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4794 slot_ctx->tt_info |= 4795 cpu_to_le32(TT_THINK_TIME(think_time)); 4796 } else { 4797 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4798 "TT think time or number of ports\n", 4799 (unsigned int) xhci->hci_version); 4800 } 4801 slot_ctx->dev_state = 0; 4802 spin_unlock_irqrestore(&xhci->lock, flags); 4803 4804 xhci_dbg(xhci, "Set up %s for hub device.\n", 4805 (xhci->hci_version > 0x95) ? 4806 "configure endpoint" : "evaluate context"); 4807 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4808 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4809 4810 /* Issue and wait for the configure endpoint or 4811 * evaluate context command. 4812 */ 4813 if (xhci->hci_version > 0x95) 4814 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4815 false, false); 4816 else 4817 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4818 true, false); 4819 4820 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4821 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4822 4823 xhci_free_command(xhci, config_cmd); 4824 return ret; 4825 } 4826 4827 int xhci_get_frame(struct usb_hcd *hcd) 4828 { 4829 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4830 /* EHCI mods by the periodic size. Why? */ 4831 return readl(&xhci->run_regs->microframe_index) >> 3; 4832 } 4833 4834 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4835 { 4836 struct xhci_hcd *xhci; 4837 struct device *dev = hcd->self.controller; 4838 int retval; 4839 4840 /* Accept arbitrarily long scatter-gather lists */ 4841 hcd->self.sg_tablesize = ~0; 4842 4843 /* support to build packet from discontinuous buffers */ 4844 hcd->self.no_sg_constraint = 1; 4845 4846 /* XHCI controllers don't stop the ep queue on short packets :| */ 4847 hcd->self.no_stop_on_short = 1; 4848 4849 xhci = hcd_to_xhci(hcd); 4850 4851 if (usb_hcd_is_primary_hcd(hcd)) { 4852 xhci->main_hcd = hcd; 4853 /* Mark the first roothub as being USB 2.0. 4854 * The xHCI driver will register the USB 3.0 roothub. 4855 */ 4856 hcd->speed = HCD_USB2; 4857 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4858 /* 4859 * USB 2.0 roothub under xHCI has an integrated TT, 4860 * (rate matching hub) as opposed to having an OHCI/UHCI 4861 * companion controller. 4862 */ 4863 hcd->has_tt = 1; 4864 } else { 4865 if (xhci->sbrn == 0x31) { 4866 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4867 hcd->speed = HCD_USB31; 4868 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4869 } 4870 /* xHCI private pointer was set in xhci_pci_probe for the second 4871 * registered roothub. 4872 */ 4873 return 0; 4874 } 4875 4876 mutex_init(&xhci->mutex); 4877 xhci->cap_regs = hcd->regs; 4878 xhci->op_regs = hcd->regs + 4879 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4880 xhci->run_regs = hcd->regs + 4881 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4882 /* Cache read-only capability registers */ 4883 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4884 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4885 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4886 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4887 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4888 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4889 if (xhci->hci_version > 0x100) 4890 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4891 xhci_print_registers(xhci); 4892 4893 xhci->quirks |= quirks; 4894 4895 get_quirks(dev, xhci); 4896 4897 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4898 * success event after a short transfer. This quirk will ignore such 4899 * spurious event. 4900 */ 4901 if (xhci->hci_version > 0x96) 4902 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4903 4904 /* Make sure the HC is halted. */ 4905 retval = xhci_halt(xhci); 4906 if (retval) 4907 return retval; 4908 4909 xhci_dbg(xhci, "Resetting HCD\n"); 4910 /* Reset the internal HC memory state and registers. */ 4911 retval = xhci_reset(xhci); 4912 if (retval) 4913 return retval; 4914 xhci_dbg(xhci, "Reset complete\n"); 4915 4916 /* 4917 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4918 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4919 * address memory pointers actually. So, this driver clears the AC64 4920 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4921 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4922 */ 4923 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4924 xhci->hcc_params &= ~BIT(0); 4925 4926 /* Set dma_mask and coherent_dma_mask to 64-bits, 4927 * if xHC supports 64-bit addressing */ 4928 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4929 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4930 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4931 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4932 } else { 4933 /* 4934 * This is to avoid error in cases where a 32-bit USB 4935 * controller is used on a 64-bit capable system. 4936 */ 4937 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4938 if (retval) 4939 return retval; 4940 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4941 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4942 } 4943 4944 xhci_dbg(xhci, "Calling HCD init\n"); 4945 /* Initialize HCD and host controller data structures. */ 4946 retval = xhci_init(hcd); 4947 if (retval) 4948 return retval; 4949 xhci_dbg(xhci, "Called HCD init\n"); 4950 4951 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4952 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4953 4954 return 0; 4955 } 4956 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4957 4958 static const struct hc_driver xhci_hc_driver = { 4959 .description = "xhci-hcd", 4960 .product_desc = "xHCI Host Controller", 4961 .hcd_priv_size = sizeof(struct xhci_hcd), 4962 4963 /* 4964 * generic hardware linkage 4965 */ 4966 .irq = xhci_irq, 4967 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4968 4969 /* 4970 * basic lifecycle operations 4971 */ 4972 .reset = NULL, /* set in xhci_init_driver() */ 4973 .start = xhci_run, 4974 .stop = xhci_stop, 4975 .shutdown = xhci_shutdown, 4976 4977 /* 4978 * managing i/o requests and associated device resources 4979 */ 4980 .urb_enqueue = xhci_urb_enqueue, 4981 .urb_dequeue = xhci_urb_dequeue, 4982 .alloc_dev = xhci_alloc_dev, 4983 .free_dev = xhci_free_dev, 4984 .alloc_streams = xhci_alloc_streams, 4985 .free_streams = xhci_free_streams, 4986 .add_endpoint = xhci_add_endpoint, 4987 .drop_endpoint = xhci_drop_endpoint, 4988 .endpoint_reset = xhci_endpoint_reset, 4989 .check_bandwidth = xhci_check_bandwidth, 4990 .reset_bandwidth = xhci_reset_bandwidth, 4991 .address_device = xhci_address_device, 4992 .enable_device = xhci_enable_device, 4993 .update_hub_device = xhci_update_hub_device, 4994 .reset_device = xhci_discover_or_reset_device, 4995 4996 /* 4997 * scheduling support 4998 */ 4999 .get_frame_number = xhci_get_frame, 5000 5001 /* 5002 * root hub support 5003 */ 5004 .hub_control = xhci_hub_control, 5005 .hub_status_data = xhci_hub_status_data, 5006 .bus_suspend = xhci_bus_suspend, 5007 .bus_resume = xhci_bus_resume, 5008 5009 /* 5010 * call back when device connected and addressed 5011 */ 5012 .update_device = xhci_update_device, 5013 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5014 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5015 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5016 .find_raw_port_number = xhci_find_raw_port_number, 5017 }; 5018 5019 void xhci_init_driver(struct hc_driver *drv, 5020 const struct xhci_driver_overrides *over) 5021 { 5022 BUG_ON(!over); 5023 5024 /* Copy the generic table to drv then apply the overrides */ 5025 *drv = xhci_hc_driver; 5026 5027 if (over) { 5028 drv->hcd_priv_size += over->extra_priv_size; 5029 if (over->reset) 5030 drv->reset = over->reset; 5031 if (over->start) 5032 drv->start = over->start; 5033 } 5034 } 5035 EXPORT_SYMBOL_GPL(xhci_init_driver); 5036 5037 MODULE_DESCRIPTION(DRIVER_DESC); 5038 MODULE_AUTHOR(DRIVER_AUTHOR); 5039 MODULE_LICENSE("GPL"); 5040 5041 static int __init xhci_hcd_init(void) 5042 { 5043 /* 5044 * Check the compiler generated sizes of structures that must be laid 5045 * out in specific ways for hardware access. 5046 */ 5047 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5048 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5049 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5050 /* xhci_device_control has eight fields, and also 5051 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5052 */ 5053 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5054 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5055 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5056 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5057 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5058 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5059 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5060 5061 if (usb_disabled()) 5062 return -ENODEV; 5063 5064 return 0; 5065 } 5066 5067 /* 5068 * If an init function is provided, an exit function must also be provided 5069 * to allow module unload. 5070 */ 5071 static void __exit xhci_hcd_fini(void) { } 5072 5073 module_init(xhci_hcd_init); 5074 module_exit(xhci_hcd_fini); 5075