xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 71844fac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 
73 	do {
74 		result = readl(ptr);
75 		if (result == ~(u32)0)		/* card removed */
76 			return -ENODEV;
77 		result &= mask;
78 		if (result == done)
79 			return 0;
80 		udelay(1);
81 		usec--;
82 	} while (usec > 0);
83 	return -ETIMEDOUT;
84 }
85 
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91 	u32 halted;
92 	u32 cmd;
93 	u32 mask;
94 
95 	mask = ~(XHCI_IRQS);
96 	halted = readl(&xhci->op_regs->status) & STS_HALT;
97 	if (!halted)
98 		mask &= ~CMD_RUN;
99 
100 	cmd = readl(&xhci->op_regs->command);
101 	cmd &= mask;
102 	writel(cmd, &xhci->op_regs->command);
103 }
104 
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115 	int ret;
116 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 	xhci_quiesce(xhci);
118 
119 	ret = xhci_handshake(&xhci->op_regs->status,
120 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 	if (ret) {
122 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 		return ret;
124 	}
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret, i;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command,
202 			CMD_RESET, 0, 10 * 1000 * 1000);
203 	if (ret)
204 		return ret;
205 
206 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208 
209 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 			 "Wait for controller to be ready for doorbell rings");
211 	/*
212 	 * xHCI cannot write to any doorbells or operational registers other
213 	 * than status until the "Controller Not Ready" flag is cleared.
214 	 */
215 	ret = xhci_handshake(&xhci->op_regs->status,
216 			STS_CNR, 0, 10 * 1000 * 1000);
217 
218 	for (i = 0; i < 2; i++) {
219 		xhci->bus_state[i].port_c_suspend = 0;
220 		xhci->bus_state[i].suspended_ports = 0;
221 		xhci->bus_state[i].resuming_ports = 0;
222 	}
223 
224 	return ret;
225 }
226 
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230 	int err, i;
231 	u64 val;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
271 		struct xhci_intr_reg __iomem *ir;
272 
273 		ir = &xhci->run_regs->ir_set[i];
274 		val = xhci_read_64(xhci, &ir->erst_base);
275 		if (upper_32_bits(val))
276 			xhci_write_64(xhci, 0, &ir->erst_base);
277 		val= xhci_read_64(xhci, &ir->erst_dequeue);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
280 	}
281 
282 	/* Wait for the fault to appear. It will be cleared on reset */
283 	err = xhci_handshake(&xhci->op_regs->status,
284 			     STS_FATAL, STS_FATAL,
285 			     XHCI_MAX_HALT_USEC);
286 	if (!err)
287 		xhci_info(xhci, "Fault detected\n");
288 }
289 
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296 	int ret;
297 	/*
298 	 * TODO:Check with MSI Soc for sysdev
299 	 */
300 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301 
302 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303 	if (ret < 0) {
304 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305 				"failed to allocate MSI entry");
306 		return ret;
307 	}
308 
309 	ret = request_irq(pdev->irq, xhci_msi_irq,
310 				0, "xhci_hcd", xhci_to_hcd(xhci));
311 	if (ret) {
312 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 				"disable MSI interrupt");
314 		pci_free_irq_vectors(pdev);
315 	}
316 
317 	return ret;
318 }
319 
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325 	int i, ret = 0;
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328 
329 	/*
330 	 * calculate number of msi-x vectors supported.
331 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
333 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
334 	 *   Add additional 1 vector to ensure always available interrupt.
335 	 */
336 	xhci->msix_count = min(num_online_cpus() + 1,
337 				HCS_MAX_INTRS(xhci->hcs_params1));
338 
339 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340 			PCI_IRQ_MSIX);
341 	if (ret < 0) {
342 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343 				"Failed to enable MSI-X");
344 		return ret;
345 	}
346 
347 	for (i = 0; i < xhci->msix_count; i++) {
348 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349 				"xhci_hcd", xhci_to_hcd(xhci));
350 		if (ret)
351 			goto disable_msix;
352 	}
353 
354 	hcd->msix_enabled = 1;
355 	return ret;
356 
357 disable_msix:
358 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359 	while (--i >= 0)
360 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361 	pci_free_irq_vectors(pdev);
362 	return ret;
363 }
364 
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
369 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370 
371 	if (xhci->quirks & XHCI_PLAT)
372 		return;
373 
374 	/* return if using legacy interrupt */
375 	if (hcd->irq > 0)
376 		return;
377 
378 	if (hcd->msix_enabled) {
379 		int i;
380 
381 		for (i = 0; i < xhci->msix_count; i++)
382 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383 	} else {
384 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385 	}
386 
387 	pci_free_irq_vectors(pdev);
388 	hcd->msix_enabled = 0;
389 }
390 
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
394 
395 	if (hcd->msix_enabled) {
396 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397 		int i;
398 
399 		for (i = 0; i < xhci->msix_count; i++)
400 			synchronize_irq(pci_irq_vector(pdev, i));
401 	}
402 }
403 
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407 	struct pci_dev  *pdev;
408 	int ret;
409 
410 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
411 	if (xhci->quirks & XHCI_PLAT)
412 		return 0;
413 
414 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415 	/*
416 	 * Some Fresco Logic host controllers advertise MSI, but fail to
417 	 * generate interrupts.  Don't even try to enable MSI.
418 	 */
419 	if (xhci->quirks & XHCI_BROKEN_MSI)
420 		goto legacy_irq;
421 
422 	/* unregister the legacy interrupt */
423 	if (hcd->irq)
424 		free_irq(hcd->irq, hcd);
425 	hcd->irq = 0;
426 
427 	ret = xhci_setup_msix(xhci);
428 	if (ret)
429 		/* fall back to msi*/
430 		ret = xhci_setup_msi(xhci);
431 
432 	if (!ret) {
433 		hcd->msi_enabled = 1;
434 		return 0;
435 	}
436 
437 	if (!pdev->irq) {
438 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439 		return -EINVAL;
440 	}
441 
442  legacy_irq:
443 	if (!strlen(hcd->irq_descr))
444 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445 			 hcd->driver->description, hcd->self.busnum);
446 
447 	/* fall back to legacy interrupt*/
448 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 			hcd->irq_descr, hcd);
450 	if (ret) {
451 		xhci_err(xhci, "request interrupt %d failed\n",
452 				pdev->irq);
453 		return ret;
454 	}
455 	hcd->irq = pdev->irq;
456 	return 0;
457 }
458 
459 #else
460 
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463 	return 0;
464 }
465 
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469 
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473 
474 #endif
475 
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478 	struct xhci_hcd *xhci;
479 	struct usb_hcd *hcd;
480 	struct xhci_hub *rhub;
481 	u32 temp;
482 	int i;
483 
484 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485 	rhub = &xhci->usb3_rhub;
486 
487 	for (i = 0; i < rhub->num_ports; i++) {
488 		temp = readl(rhub->ports[i]->addr);
489 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490 			/*
491 			 * Compliance Mode Detected. Letting USB Core
492 			 * handle the Warm Reset
493 			 */
494 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 					"Compliance mode detected->port %d",
496 					i + 1);
497 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 					"Attempting compliance mode recovery");
499 			hcd = xhci->shared_hcd;
500 
501 			if (hcd->state == HC_STATE_SUSPENDED)
502 				usb_hcd_resume_root_hub(hcd);
503 
504 			usb_hcd_poll_rh_status(hcd);
505 		}
506 	}
507 
508 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509 		mod_timer(&xhci->comp_mode_recovery_timer,
510 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512 
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525 	xhci->port_status_u0 = 0;
526 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527 		    0);
528 	xhci->comp_mode_recovery_timer.expires = jiffies +
529 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530 
531 	add_timer(&xhci->comp_mode_recovery_timer);
532 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 			"Compliance mode recovery timer initialized");
534 }
535 
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544 	const char *dmi_product_name, *dmi_sys_vendor;
545 
546 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548 	if (!dmi_product_name || !dmi_sys_vendor)
549 		return false;
550 
551 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552 		return false;
553 
554 	if (strstr(dmi_product_name, "Z420") ||
555 			strstr(dmi_product_name, "Z620") ||
556 			strstr(dmi_product_name, "Z820") ||
557 			strstr(dmi_product_name, "Z1 Workstation"))
558 		return true;
559 
560 	return false;
561 }
562 
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567 
568 
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579 	int retval = 0;
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582 	spin_lock_init(&xhci->lock);
583 	if (xhci->hci_version == 0x95 && link_quirk) {
584 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585 				"QUIRK: Not clearing Link TRB chain bits.");
586 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587 	} else {
588 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589 				"xHCI doesn't need link TRB QUIRK");
590 	}
591 	retval = xhci_mem_init(xhci, GFP_KERNEL);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593 
594 	/* Initializing Compliance Mode Recovery Data If Needed */
595 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597 		compliance_mode_recovery_timer_init(xhci);
598 	}
599 
600 	return retval;
601 }
602 
603 /*-------------------------------------------------------------------------*/
604 
605 
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608 	if (xhci_start(xhci)) {
609 		xhci_halt(xhci);
610 		return -ENODEV;
611 	}
612 	xhci->shared_hcd->state = HC_STATE_RUNNING;
613 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614 
615 	if (xhci->quirks & XHCI_NEC_HOST)
616 		xhci_ring_cmd_db(xhci);
617 
618 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619 			"Finished xhci_run for USB3 roothub");
620 	return 0;
621 }
622 
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637 	u32 temp;
638 	u64 temp_64;
639 	int ret;
640 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641 
642 	/* Start the xHCI host controller running only after the USB 2.0 roothub
643 	 * is setup.
644 	 */
645 
646 	hcd->uses_new_polling = 1;
647 	if (!usb_hcd_is_primary_hcd(hcd))
648 		return xhci_run_finished(xhci);
649 
650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651 
652 	ret = xhci_try_enable_msi(hcd);
653 	if (ret)
654 		return ret;
655 
656 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657 	temp_64 &= ~ERST_PTR_MASK;
658 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660 
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"// Set the interrupt modulation register");
663 	temp = readl(&xhci->ir_set->irq_control);
664 	temp &= ~ER_IRQ_INTERVAL_MASK;
665 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666 	writel(temp, &xhci->ir_set->irq_control);
667 
668 	/* Set the HCD state before we enable the irqs */
669 	temp = readl(&xhci->op_regs->command);
670 	temp |= (CMD_EIE);
671 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672 			"// Enable interrupts, cmd = 0x%x.", temp);
673 	writel(temp, &xhci->op_regs->command);
674 
675 	temp = readl(&xhci->ir_set->irq_pending);
676 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680 
681 	if (xhci->quirks & XHCI_NEC_HOST) {
682 		struct xhci_command *command;
683 
684 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685 		if (!command)
686 			return -ENOMEM;
687 
688 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689 				TRB_TYPE(TRB_NEC_GET_FW));
690 		if (ret)
691 			xhci_free_command(xhci, command);
692 	}
693 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694 			"Finished xhci_run for USB2 roothub");
695 
696 	xhci_dbc_init(xhci);
697 
698 	xhci_debugfs_init(xhci);
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703 
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715 	u32 temp;
716 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717 
718 	mutex_lock(&xhci->mutex);
719 
720 	/* Only halt host and free memory after both hcds are removed */
721 	if (!usb_hcd_is_primary_hcd(hcd)) {
722 		mutex_unlock(&xhci->mutex);
723 		return;
724 	}
725 
726 	xhci_dbc_exit(xhci);
727 
728 	spin_lock_irq(&xhci->lock);
729 	xhci->xhc_state |= XHCI_STATE_HALTED;
730 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731 	xhci_halt(xhci);
732 	xhci_reset(xhci);
733 	spin_unlock_irq(&xhci->lock);
734 
735 	xhci_cleanup_msix(xhci);
736 
737 	/* Deleting Compliance Mode Recovery Timer */
738 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739 			(!(xhci_all_ports_seen_u0(xhci)))) {
740 		del_timer_sync(&xhci->comp_mode_recovery_timer);
741 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742 				"%s: compliance mode recovery timer deleted",
743 				__func__);
744 	}
745 
746 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
747 		usb_amd_dev_put();
748 
749 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 			"// Disabling event ring interrupts");
751 	temp = readl(&xhci->op_regs->status);
752 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753 	temp = readl(&xhci->ir_set->irq_pending);
754 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755 
756 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757 	xhci_mem_cleanup(xhci);
758 	xhci_debugfs_exit(xhci);
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 			"xhci_stop completed - status = %x",
761 			readl(&xhci->op_regs->status));
762 	mutex_unlock(&xhci->mutex);
763 }
764 
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
774 static void xhci_shutdown(struct usb_hcd *hcd)
775 {
776 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777 
778 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
779 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780 
781 	spin_lock_irq(&xhci->lock);
782 	xhci_halt(xhci);
783 	/* Workaround for spurious wakeups at shutdown with HSW */
784 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
785 		xhci_reset(xhci);
786 	spin_unlock_irq(&xhci->lock);
787 
788 	xhci_cleanup_msix(xhci);
789 
790 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
791 			"xhci_shutdown completed - status = %x",
792 			readl(&xhci->op_regs->status));
793 
794 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
795 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
796 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
797 }
798 
799 #ifdef CONFIG_PM
800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802 	xhci->s3.command = readl(&xhci->op_regs->command);
803 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812 
813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815 	writel(xhci->s3.command, &xhci->op_regs->command);
816 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825 
826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828 	u64	val_64;
829 
830 	/* step 2: initialize command ring buffer */
831 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 				      xhci->cmd_ring->dequeue) &
835 		 (u64) ~CMD_RING_RSVD_BITS) |
836 		xhci->cmd_ring->cycle_state;
837 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 			"// Setting command ring address to 0x%llx",
839 			(long unsigned long) val_64);
840 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842 
843 /*
844  * The whole command ring must be cleared to zero when we suspend the host.
845  *
846  * The host doesn't save the command ring pointer in the suspend well, so we
847  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
848  * aligned, because of the reserved bits in the command ring dequeue pointer
849  * register.  Therefore, we can't just set the dequeue pointer back in the
850  * middle of the ring (TRBs are 16-byte aligned).
851  */
852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854 	struct xhci_ring *ring;
855 	struct xhci_segment *seg;
856 
857 	ring = xhci->cmd_ring;
858 	seg = ring->deq_seg;
859 	do {
860 		memset(seg->trbs, 0,
861 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 			cpu_to_le32(~TRB_CYCLE);
864 		seg = seg->next;
865 	} while (seg != ring->deq_seg);
866 
867 	/* Reset the software enqueue and dequeue pointers */
868 	ring->deq_seg = ring->first_seg;
869 	ring->dequeue = ring->first_seg->trbs;
870 	ring->enq_seg = ring->deq_seg;
871 	ring->enqueue = ring->dequeue;
872 
873 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 	/*
875 	 * Ring is now zeroed, so the HW should look for change of ownership
876 	 * when the cycle bit is set to 1.
877 	 */
878 	ring->cycle_state = 1;
879 
880 	/*
881 	 * Reset the hardware dequeue pointer.
882 	 * Yes, this will need to be re-written after resume, but we're paranoid
883 	 * and want to make sure the hardware doesn't access bogus memory
884 	 * because, say, the BIOS or an SMI started the host without changing
885 	 * the command ring pointers.
886 	 */
887 	xhci_set_cmd_ring_deq(xhci);
888 }
889 
890 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
891 {
892 	struct xhci_port **ports;
893 	int port_index;
894 	unsigned long flags;
895 	u32 t1, t2;
896 
897 	spin_lock_irqsave(&xhci->lock, flags);
898 
899 	/* disable usb3 ports Wake bits */
900 	port_index = xhci->usb3_rhub.num_ports;
901 	ports = xhci->usb3_rhub.ports;
902 	while (port_index--) {
903 		t1 = readl(ports[port_index]->addr);
904 		t1 = xhci_port_state_to_neutral(t1);
905 		t2 = t1 & ~PORT_WAKE_BITS;
906 		if (t1 != t2)
907 			writel(t2, ports[port_index]->addr);
908 	}
909 
910 	/* disable usb2 ports Wake bits */
911 	port_index = xhci->usb2_rhub.num_ports;
912 	ports = xhci->usb2_rhub.ports;
913 	while (port_index--) {
914 		t1 = readl(ports[port_index]->addr);
915 		t1 = xhci_port_state_to_neutral(t1);
916 		t2 = t1 & ~PORT_WAKE_BITS;
917 		if (t1 != t2)
918 			writel(t2, ports[port_index]->addr);
919 	}
920 
921 	spin_unlock_irqrestore(&xhci->lock, flags);
922 }
923 
924 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
925 {
926 	struct xhci_port	**ports;
927 	int			port_index;
928 	u32			status;
929 	u32			portsc;
930 
931 	status = readl(&xhci->op_regs->status);
932 	if (status & STS_EINT)
933 		return true;
934 	/*
935 	 * Checking STS_EINT is not enough as there is a lag between a change
936 	 * bit being set and the Port Status Change Event that it generated
937 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
938 	 */
939 
940 	port_index = xhci->usb2_rhub.num_ports;
941 	ports = xhci->usb2_rhub.ports;
942 	while (port_index--) {
943 		portsc = readl(ports[port_index]->addr);
944 		if (portsc & PORT_CHANGE_MASK ||
945 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
946 			return true;
947 	}
948 	port_index = xhci->usb3_rhub.num_ports;
949 	ports = xhci->usb3_rhub.ports;
950 	while (port_index--) {
951 		portsc = readl(ports[port_index]->addr);
952 		if (portsc & PORT_CHANGE_MASK ||
953 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 			return true;
955 	}
956 	return false;
957 }
958 
959 /*
960  * Stop HC (not bus-specific)
961  *
962  * This is called when the machine transition into S3/S4 mode.
963  *
964  */
965 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
966 {
967 	int			rc = 0;
968 	unsigned int		delay = XHCI_MAX_HALT_USEC;
969 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
970 	u32			command;
971 
972 	if (!hcd->state)
973 		return 0;
974 
975 	if (hcd->state != HC_STATE_SUSPENDED ||
976 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
977 		return -EINVAL;
978 
979 	xhci_dbc_suspend(xhci);
980 
981 	/* Clear root port wake on bits if wakeup not allowed. */
982 	if (!do_wakeup)
983 		xhci_disable_port_wake_on_bits(xhci);
984 
985 	/* Don't poll the roothubs on bus suspend. */
986 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
987 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
988 	del_timer_sync(&hcd->rh_timer);
989 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
990 	del_timer_sync(&xhci->shared_hcd->rh_timer);
991 
992 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
993 		usleep_range(1000, 1500);
994 
995 	spin_lock_irq(&xhci->lock);
996 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
997 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
998 	/* step 1: stop endpoint */
999 	/* skipped assuming that port suspend has done */
1000 
1001 	/* step 2: clear Run/Stop bit */
1002 	command = readl(&xhci->op_regs->command);
1003 	command &= ~CMD_RUN;
1004 	writel(command, &xhci->op_regs->command);
1005 
1006 	/* Some chips from Fresco Logic need an extraordinary delay */
1007 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1008 
1009 	if (xhci_handshake(&xhci->op_regs->status,
1010 		      STS_HALT, STS_HALT, delay)) {
1011 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1012 		spin_unlock_irq(&xhci->lock);
1013 		return -ETIMEDOUT;
1014 	}
1015 	xhci_clear_command_ring(xhci);
1016 
1017 	/* step 3: save registers */
1018 	xhci_save_registers(xhci);
1019 
1020 	/* step 4: set CSS flag */
1021 	command = readl(&xhci->op_regs->command);
1022 	command |= CMD_CSS;
1023 	writel(command, &xhci->op_regs->command);
1024 	if (xhci_handshake(&xhci->op_regs->status,
1025 				STS_SAVE, 0, 10 * 1000)) {
1026 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
1027 		spin_unlock_irq(&xhci->lock);
1028 		return -ETIMEDOUT;
1029 	}
1030 	spin_unlock_irq(&xhci->lock);
1031 
1032 	/*
1033 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1034 	 * is about to be suspended.
1035 	 */
1036 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1037 			(!(xhci_all_ports_seen_u0(xhci)))) {
1038 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1039 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1040 				"%s: compliance mode recovery timer deleted",
1041 				__func__);
1042 	}
1043 
1044 	/* step 5: remove core well power */
1045 	/* synchronize irq when using MSI-X */
1046 	xhci_msix_sync_irqs(xhci);
1047 
1048 	return rc;
1049 }
1050 EXPORT_SYMBOL_GPL(xhci_suspend);
1051 
1052 /*
1053  * start xHC (not bus-specific)
1054  *
1055  * This is called when the machine transition from S3/S4 mode.
1056  *
1057  */
1058 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1059 {
1060 	u32			command, temp = 0;
1061 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1062 	struct usb_hcd		*secondary_hcd;
1063 	int			retval = 0;
1064 	bool			comp_timer_running = false;
1065 
1066 	if (!hcd->state)
1067 		return 0;
1068 
1069 	/* Wait a bit if either of the roothubs need to settle from the
1070 	 * transition into bus suspend.
1071 	 */
1072 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1073 			time_before(jiffies,
1074 				xhci->bus_state[1].next_statechange))
1075 		msleep(100);
1076 
1077 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1078 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1079 
1080 	spin_lock_irq(&xhci->lock);
1081 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1082 		hibernated = true;
1083 
1084 	if (!hibernated) {
1085 		/* step 1: restore register */
1086 		xhci_restore_registers(xhci);
1087 		/* step 2: initialize command ring buffer */
1088 		xhci_set_cmd_ring_deq(xhci);
1089 		/* step 3: restore state and start state*/
1090 		/* step 3: set CRS flag */
1091 		command = readl(&xhci->op_regs->command);
1092 		command |= CMD_CRS;
1093 		writel(command, &xhci->op_regs->command);
1094 		/*
1095 		 * Some controllers take up to 55+ ms to complete the controller
1096 		 * restore so setting the timeout to 100ms. Xhci specification
1097 		 * doesn't mention any timeout value.
1098 		 */
1099 		if (xhci_handshake(&xhci->op_regs->status,
1100 			      STS_RESTORE, 0, 100 * 1000)) {
1101 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1102 			spin_unlock_irq(&xhci->lock);
1103 			return -ETIMEDOUT;
1104 		}
1105 		temp = readl(&xhci->op_regs->status);
1106 	}
1107 
1108 	/* If restore operation fails, re-initialize the HC during resume */
1109 	if ((temp & STS_SRE) || hibernated) {
1110 
1111 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1112 				!(xhci_all_ports_seen_u0(xhci))) {
1113 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1114 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1115 				"Compliance Mode Recovery Timer deleted!");
1116 		}
1117 
1118 		/* Let the USB core know _both_ roothubs lost power. */
1119 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1120 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1121 
1122 		xhci_dbg(xhci, "Stop HCD\n");
1123 		xhci_halt(xhci);
1124 		xhci_zero_64b_regs(xhci);
1125 		xhci_reset(xhci);
1126 		spin_unlock_irq(&xhci->lock);
1127 		xhci_cleanup_msix(xhci);
1128 
1129 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1130 		temp = readl(&xhci->op_regs->status);
1131 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1132 		temp = readl(&xhci->ir_set->irq_pending);
1133 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1134 
1135 		xhci_dbg(xhci, "cleaning up memory\n");
1136 		xhci_mem_cleanup(xhci);
1137 		xhci_debugfs_exit(xhci);
1138 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1139 			    readl(&xhci->op_regs->status));
1140 
1141 		/* USB core calls the PCI reinit and start functions twice:
1142 		 * first with the primary HCD, and then with the secondary HCD.
1143 		 * If we don't do the same, the host will never be started.
1144 		 */
1145 		if (!usb_hcd_is_primary_hcd(hcd))
1146 			secondary_hcd = hcd;
1147 		else
1148 			secondary_hcd = xhci->shared_hcd;
1149 
1150 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1151 		retval = xhci_init(hcd->primary_hcd);
1152 		if (retval)
1153 			return retval;
1154 		comp_timer_running = true;
1155 
1156 		xhci_dbg(xhci, "Start the primary HCD\n");
1157 		retval = xhci_run(hcd->primary_hcd);
1158 		if (!retval) {
1159 			xhci_dbg(xhci, "Start the secondary HCD\n");
1160 			retval = xhci_run(secondary_hcd);
1161 		}
1162 		hcd->state = HC_STATE_SUSPENDED;
1163 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1164 		goto done;
1165 	}
1166 
1167 	/* step 4: set Run/Stop bit */
1168 	command = readl(&xhci->op_regs->command);
1169 	command |= CMD_RUN;
1170 	writel(command, &xhci->op_regs->command);
1171 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1172 		  0, 250 * 1000);
1173 
1174 	/* step 5: walk topology and initialize portsc,
1175 	 * portpmsc and portli
1176 	 */
1177 	/* this is done in bus_resume */
1178 
1179 	/* step 6: restart each of the previously
1180 	 * Running endpoints by ringing their doorbells
1181 	 */
1182 
1183 	spin_unlock_irq(&xhci->lock);
1184 
1185 	xhci_dbc_resume(xhci);
1186 
1187  done:
1188 	if (retval == 0) {
1189 		/* Resume root hubs only when have pending events. */
1190 		if (xhci_pending_portevent(xhci)) {
1191 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1192 			usb_hcd_resume_root_hub(hcd);
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1198 	 * be re-initialized Always after a system resume. Ports are subject
1199 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1200 	 * ports have entered previously to U0 before system's suspension.
1201 	 */
1202 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1203 		compliance_mode_recovery_timer_init(xhci);
1204 
1205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1206 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1207 
1208 	/* Re-enable port polling. */
1209 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1210 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1211 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1212 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1213 	usb_hcd_poll_rh_status(hcd);
1214 
1215 	return retval;
1216 }
1217 EXPORT_SYMBOL_GPL(xhci_resume);
1218 #endif	/* CONFIG_PM */
1219 
1220 /*-------------------------------------------------------------------------*/
1221 
1222 /**
1223  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1224  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1225  * value to right shift 1 for the bitmask.
1226  *
1227  * Index  = (epnum * 2) + direction - 1,
1228  * where direction = 0 for OUT, 1 for IN.
1229  * For control endpoints, the IN index is used (OUT index is unused), so
1230  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1231  */
1232 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1233 {
1234 	unsigned int index;
1235 	if (usb_endpoint_xfer_control(desc))
1236 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1237 	else
1238 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1239 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1240 	return index;
1241 }
1242 
1243 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1244  * address from the XHCI endpoint index.
1245  */
1246 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1247 {
1248 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1249 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1250 	return direction | number;
1251 }
1252 
1253 /* Find the flag for this endpoint (for use in the control context).  Use the
1254  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1255  * bit 1, etc.
1256  */
1257 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1258 {
1259 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1260 }
1261 
1262 /* Find the flag for this endpoint (for use in the control context).  Use the
1263  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1264  * bit 1, etc.
1265  */
1266 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1267 {
1268 	return 1 << (ep_index + 1);
1269 }
1270 
1271 /* Compute the last valid endpoint context index.  Basically, this is the
1272  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1273  * we find the most significant bit set in the added contexts flags.
1274  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1275  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1276  */
1277 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1278 {
1279 	return fls(added_ctxs) - 1;
1280 }
1281 
1282 /* Returns 1 if the arguments are OK;
1283  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1284  */
1285 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1286 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1287 		const char *func) {
1288 	struct xhci_hcd	*xhci;
1289 	struct xhci_virt_device	*virt_dev;
1290 
1291 	if (!hcd || (check_ep && !ep) || !udev) {
1292 		pr_debug("xHCI %s called with invalid args\n", func);
1293 		return -EINVAL;
1294 	}
1295 	if (!udev->parent) {
1296 		pr_debug("xHCI %s called for root hub\n", func);
1297 		return 0;
1298 	}
1299 
1300 	xhci = hcd_to_xhci(hcd);
1301 	if (check_virt_dev) {
1302 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1303 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1304 					func);
1305 			return -EINVAL;
1306 		}
1307 
1308 		virt_dev = xhci->devs[udev->slot_id];
1309 		if (virt_dev->udev != udev) {
1310 			xhci_dbg(xhci, "xHCI %s called with udev and "
1311 					  "virt_dev does not match\n", func);
1312 			return -EINVAL;
1313 		}
1314 	}
1315 
1316 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1317 		return -ENODEV;
1318 
1319 	return 1;
1320 }
1321 
1322 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1323 		struct usb_device *udev, struct xhci_command *command,
1324 		bool ctx_change, bool must_succeed);
1325 
1326 /*
1327  * Full speed devices may have a max packet size greater than 8 bytes, but the
1328  * USB core doesn't know that until it reads the first 8 bytes of the
1329  * descriptor.  If the usb_device's max packet size changes after that point,
1330  * we need to issue an evaluate context command and wait on it.
1331  */
1332 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1333 		unsigned int ep_index, struct urb *urb)
1334 {
1335 	struct xhci_container_ctx *out_ctx;
1336 	struct xhci_input_control_ctx *ctrl_ctx;
1337 	struct xhci_ep_ctx *ep_ctx;
1338 	struct xhci_command *command;
1339 	int max_packet_size;
1340 	int hw_max_packet_size;
1341 	int ret = 0;
1342 
1343 	out_ctx = xhci->devs[slot_id]->out_ctx;
1344 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1345 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1346 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1347 	if (hw_max_packet_size != max_packet_size) {
1348 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1349 				"Max Packet Size for ep 0 changed.");
1350 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1351 				"Max packet size in usb_device = %d",
1352 				max_packet_size);
1353 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1354 				"Max packet size in xHCI HW = %d",
1355 				hw_max_packet_size);
1356 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1357 				"Issuing evaluate context command.");
1358 
1359 		/* Set up the input context flags for the command */
1360 		/* FIXME: This won't work if a non-default control endpoint
1361 		 * changes max packet sizes.
1362 		 */
1363 
1364 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1365 		if (!command)
1366 			return -ENOMEM;
1367 
1368 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1369 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1370 		if (!ctrl_ctx) {
1371 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1372 					__func__);
1373 			ret = -ENOMEM;
1374 			goto command_cleanup;
1375 		}
1376 		/* Set up the modified control endpoint 0 */
1377 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1378 				xhci->devs[slot_id]->out_ctx, ep_index);
1379 
1380 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1381 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1382 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1383 
1384 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1385 		ctrl_ctx->drop_flags = 0;
1386 
1387 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1388 				true, false);
1389 
1390 		/* Clean up the input context for later use by bandwidth
1391 		 * functions.
1392 		 */
1393 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1394 command_cleanup:
1395 		kfree(command->completion);
1396 		kfree(command);
1397 	}
1398 	return ret;
1399 }
1400 
1401 /*
1402  * non-error returns are a promise to giveback() the urb later
1403  * we drop ownership so next owner (or urb unlink) can get it
1404  */
1405 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1406 {
1407 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1408 	unsigned long flags;
1409 	int ret = 0;
1410 	unsigned int slot_id, ep_index;
1411 	unsigned int *ep_state;
1412 	struct urb_priv	*urb_priv;
1413 	int num_tds;
1414 
1415 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1416 					true, true, __func__) <= 0)
1417 		return -EINVAL;
1418 
1419 	slot_id = urb->dev->slot_id;
1420 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1421 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1422 
1423 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1424 		if (!in_interrupt())
1425 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1426 		return -ESHUTDOWN;
1427 	}
1428 
1429 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1430 		num_tds = urb->number_of_packets;
1431 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1432 	    urb->transfer_buffer_length > 0 &&
1433 	    urb->transfer_flags & URB_ZERO_PACKET &&
1434 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1435 		num_tds = 2;
1436 	else
1437 		num_tds = 1;
1438 
1439 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1440 			   num_tds * sizeof(struct xhci_td), mem_flags);
1441 	if (!urb_priv)
1442 		return -ENOMEM;
1443 
1444 	urb_priv->num_tds = num_tds;
1445 	urb_priv->num_tds_done = 0;
1446 	urb->hcpriv = urb_priv;
1447 
1448 	trace_xhci_urb_enqueue(urb);
1449 
1450 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1451 		/* Check to see if the max packet size for the default control
1452 		 * endpoint changed during FS device enumeration
1453 		 */
1454 		if (urb->dev->speed == USB_SPEED_FULL) {
1455 			ret = xhci_check_maxpacket(xhci, slot_id,
1456 					ep_index, urb);
1457 			if (ret < 0) {
1458 				xhci_urb_free_priv(urb_priv);
1459 				urb->hcpriv = NULL;
1460 				return ret;
1461 			}
1462 		}
1463 	}
1464 
1465 	spin_lock_irqsave(&xhci->lock, flags);
1466 
1467 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1468 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1469 			 urb->ep->desc.bEndpointAddress, urb);
1470 		ret = -ESHUTDOWN;
1471 		goto free_priv;
1472 	}
1473 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1474 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1475 			  *ep_state);
1476 		ret = -EINVAL;
1477 		goto free_priv;
1478 	}
1479 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1480 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1481 		ret = -EINVAL;
1482 		goto free_priv;
1483 	}
1484 
1485 	switch (usb_endpoint_type(&urb->ep->desc)) {
1486 
1487 	case USB_ENDPOINT_XFER_CONTROL:
1488 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1489 					 slot_id, ep_index);
1490 		break;
1491 	case USB_ENDPOINT_XFER_BULK:
1492 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1493 					 slot_id, ep_index);
1494 		break;
1495 	case USB_ENDPOINT_XFER_INT:
1496 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1497 				slot_id, ep_index);
1498 		break;
1499 	case USB_ENDPOINT_XFER_ISOC:
1500 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1501 				slot_id, ep_index);
1502 	}
1503 
1504 	if (ret) {
1505 free_priv:
1506 		xhci_urb_free_priv(urb_priv);
1507 		urb->hcpriv = NULL;
1508 	}
1509 	spin_unlock_irqrestore(&xhci->lock, flags);
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1515  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1516  * should pick up where it left off in the TD, unless a Set Transfer Ring
1517  * Dequeue Pointer is issued.
1518  *
1519  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1520  * the ring.  Since the ring is a contiguous structure, they can't be physically
1521  * removed.  Instead, there are two options:
1522  *
1523  *  1) If the HC is in the middle of processing the URB to be canceled, we
1524  *     simply move the ring's dequeue pointer past those TRBs using the Set
1525  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1526  *     when drivers timeout on the last submitted URB and attempt to cancel.
1527  *
1528  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1529  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1530  *     HC will need to invalidate the any TRBs it has cached after the stop
1531  *     endpoint command, as noted in the xHCI 0.95 errata.
1532  *
1533  *  3) The TD may have completed by the time the Stop Endpoint Command
1534  *     completes, so software needs to handle that case too.
1535  *
1536  * This function should protect against the TD enqueueing code ringing the
1537  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1538  * It also needs to account for multiple cancellations on happening at the same
1539  * time for the same endpoint.
1540  *
1541  * Note that this function can be called in any context, or so says
1542  * usb_hcd_unlink_urb()
1543  */
1544 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1545 {
1546 	unsigned long flags;
1547 	int ret, i;
1548 	u32 temp;
1549 	struct xhci_hcd *xhci;
1550 	struct urb_priv	*urb_priv;
1551 	struct xhci_td *td;
1552 	unsigned int ep_index;
1553 	struct xhci_ring *ep_ring;
1554 	struct xhci_virt_ep *ep;
1555 	struct xhci_command *command;
1556 	struct xhci_virt_device *vdev;
1557 
1558 	xhci = hcd_to_xhci(hcd);
1559 	spin_lock_irqsave(&xhci->lock, flags);
1560 
1561 	trace_xhci_urb_dequeue(urb);
1562 
1563 	/* Make sure the URB hasn't completed or been unlinked already */
1564 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1565 	if (ret)
1566 		goto done;
1567 
1568 	/* give back URB now if we can't queue it for cancel */
1569 	vdev = xhci->devs[urb->dev->slot_id];
1570 	urb_priv = urb->hcpriv;
1571 	if (!vdev || !urb_priv)
1572 		goto err_giveback;
1573 
1574 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1575 	ep = &vdev->eps[ep_index];
1576 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1577 	if (!ep || !ep_ring)
1578 		goto err_giveback;
1579 
1580 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1581 	temp = readl(&xhci->op_regs->status);
1582 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1583 		xhci_hc_died(xhci);
1584 		goto done;
1585 	}
1586 
1587 	/*
1588 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1589 	 * make sure none of the ring related pointers in this URB private data
1590 	 * are touched, such as td_list, otherwise we overwrite freed data
1591 	 */
1592 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1593 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1594 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1595 			td = &urb_priv->td[i];
1596 			if (!list_empty(&td->cancelled_td_list))
1597 				list_del_init(&td->cancelled_td_list);
1598 		}
1599 		goto err_giveback;
1600 	}
1601 
1602 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1603 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1604 				"HC halted, freeing TD manually.");
1605 		for (i = urb_priv->num_tds_done;
1606 		     i < urb_priv->num_tds;
1607 		     i++) {
1608 			td = &urb_priv->td[i];
1609 			if (!list_empty(&td->td_list))
1610 				list_del_init(&td->td_list);
1611 			if (!list_empty(&td->cancelled_td_list))
1612 				list_del_init(&td->cancelled_td_list);
1613 		}
1614 		goto err_giveback;
1615 	}
1616 
1617 	i = urb_priv->num_tds_done;
1618 	if (i < urb_priv->num_tds)
1619 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1620 				"Cancel URB %p, dev %s, ep 0x%x, "
1621 				"starting at offset 0x%llx",
1622 				urb, urb->dev->devpath,
1623 				urb->ep->desc.bEndpointAddress,
1624 				(unsigned long long) xhci_trb_virt_to_dma(
1625 					urb_priv->td[i].start_seg,
1626 					urb_priv->td[i].first_trb));
1627 
1628 	for (; i < urb_priv->num_tds; i++) {
1629 		td = &urb_priv->td[i];
1630 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1631 	}
1632 
1633 	/* Queue a stop endpoint command, but only if this is
1634 	 * the first cancellation to be handled.
1635 	 */
1636 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1637 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1638 		if (!command) {
1639 			ret = -ENOMEM;
1640 			goto done;
1641 		}
1642 		ep->ep_state |= EP_STOP_CMD_PENDING;
1643 		ep->stop_cmd_timer.expires = jiffies +
1644 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1645 		add_timer(&ep->stop_cmd_timer);
1646 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1647 					 ep_index, 0);
1648 		xhci_ring_cmd_db(xhci);
1649 	}
1650 done:
1651 	spin_unlock_irqrestore(&xhci->lock, flags);
1652 	return ret;
1653 
1654 err_giveback:
1655 	if (urb_priv)
1656 		xhci_urb_free_priv(urb_priv);
1657 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1658 	spin_unlock_irqrestore(&xhci->lock, flags);
1659 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1660 	return ret;
1661 }
1662 
1663 /* Drop an endpoint from a new bandwidth configuration for this device.
1664  * Only one call to this function is allowed per endpoint before
1665  * check_bandwidth() or reset_bandwidth() must be called.
1666  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1667  * add the endpoint to the schedule with possibly new parameters denoted by a
1668  * different endpoint descriptor in usb_host_endpoint.
1669  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1670  * not allowed.
1671  *
1672  * The USB core will not allow URBs to be queued to an endpoint that is being
1673  * disabled, so there's no need for mutual exclusion to protect
1674  * the xhci->devs[slot_id] structure.
1675  */
1676 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1677 		struct usb_host_endpoint *ep)
1678 {
1679 	struct xhci_hcd *xhci;
1680 	struct xhci_container_ctx *in_ctx, *out_ctx;
1681 	struct xhci_input_control_ctx *ctrl_ctx;
1682 	unsigned int ep_index;
1683 	struct xhci_ep_ctx *ep_ctx;
1684 	u32 drop_flag;
1685 	u32 new_add_flags, new_drop_flags;
1686 	int ret;
1687 
1688 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1689 	if (ret <= 0)
1690 		return ret;
1691 	xhci = hcd_to_xhci(hcd);
1692 	if (xhci->xhc_state & XHCI_STATE_DYING)
1693 		return -ENODEV;
1694 
1695 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1696 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1697 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1698 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1699 				__func__, drop_flag);
1700 		return 0;
1701 	}
1702 
1703 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1704 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1705 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1706 	if (!ctrl_ctx) {
1707 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1708 				__func__);
1709 		return 0;
1710 	}
1711 
1712 	ep_index = xhci_get_endpoint_index(&ep->desc);
1713 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1714 	/* If the HC already knows the endpoint is disabled,
1715 	 * or the HCD has noted it is disabled, ignore this request
1716 	 */
1717 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1718 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1719 	    xhci_get_endpoint_flag(&ep->desc)) {
1720 		/* Do not warn when called after a usb_device_reset */
1721 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1722 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1723 				  __func__, ep);
1724 		return 0;
1725 	}
1726 
1727 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1728 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1729 
1730 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1731 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1732 
1733 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1734 
1735 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1736 
1737 	if (xhci->quirks & XHCI_MTK_HOST)
1738 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1739 
1740 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1741 			(unsigned int) ep->desc.bEndpointAddress,
1742 			udev->slot_id,
1743 			(unsigned int) new_drop_flags,
1744 			(unsigned int) new_add_flags);
1745 	return 0;
1746 }
1747 
1748 /* Add an endpoint to a new possible bandwidth configuration for this device.
1749  * Only one call to this function is allowed per endpoint before
1750  * check_bandwidth() or reset_bandwidth() must be called.
1751  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1752  * add the endpoint to the schedule with possibly new parameters denoted by a
1753  * different endpoint descriptor in usb_host_endpoint.
1754  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1755  * not allowed.
1756  *
1757  * The USB core will not allow URBs to be queued to an endpoint until the
1758  * configuration or alt setting is installed in the device, so there's no need
1759  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1760  */
1761 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1762 		struct usb_host_endpoint *ep)
1763 {
1764 	struct xhci_hcd *xhci;
1765 	struct xhci_container_ctx *in_ctx;
1766 	unsigned int ep_index;
1767 	struct xhci_input_control_ctx *ctrl_ctx;
1768 	u32 added_ctxs;
1769 	u32 new_add_flags, new_drop_flags;
1770 	struct xhci_virt_device *virt_dev;
1771 	int ret = 0;
1772 
1773 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1774 	if (ret <= 0) {
1775 		/* So we won't queue a reset ep command for a root hub */
1776 		ep->hcpriv = NULL;
1777 		return ret;
1778 	}
1779 	xhci = hcd_to_xhci(hcd);
1780 	if (xhci->xhc_state & XHCI_STATE_DYING)
1781 		return -ENODEV;
1782 
1783 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1784 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1785 		/* FIXME when we have to issue an evaluate endpoint command to
1786 		 * deal with ep0 max packet size changing once we get the
1787 		 * descriptors
1788 		 */
1789 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1790 				__func__, added_ctxs);
1791 		return 0;
1792 	}
1793 
1794 	virt_dev = xhci->devs[udev->slot_id];
1795 	in_ctx = virt_dev->in_ctx;
1796 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1797 	if (!ctrl_ctx) {
1798 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1799 				__func__);
1800 		return 0;
1801 	}
1802 
1803 	ep_index = xhci_get_endpoint_index(&ep->desc);
1804 	/* If this endpoint is already in use, and the upper layers are trying
1805 	 * to add it again without dropping it, reject the addition.
1806 	 */
1807 	if (virt_dev->eps[ep_index].ring &&
1808 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1809 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1810 				"without dropping it.\n",
1811 				(unsigned int) ep->desc.bEndpointAddress);
1812 		return -EINVAL;
1813 	}
1814 
1815 	/* If the HCD has already noted the endpoint is enabled,
1816 	 * ignore this request.
1817 	 */
1818 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1819 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1820 				__func__, ep);
1821 		return 0;
1822 	}
1823 
1824 	/*
1825 	 * Configuration and alternate setting changes must be done in
1826 	 * process context, not interrupt context (or so documenation
1827 	 * for usb_set_interface() and usb_set_configuration() claim).
1828 	 */
1829 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1830 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1831 				__func__, ep->desc.bEndpointAddress);
1832 		return -ENOMEM;
1833 	}
1834 
1835 	if (xhci->quirks & XHCI_MTK_HOST) {
1836 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1837 		if (ret < 0) {
1838 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1839 			virt_dev->eps[ep_index].new_ring = NULL;
1840 			return ret;
1841 		}
1842 	}
1843 
1844 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1845 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1846 
1847 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1848 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1849 	 * this re-adds a new state for the endpoint from the new endpoint
1850 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1851 	 * drop flags alone.
1852 	 */
1853 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854 
1855 	/* Store the usb_device pointer for later use */
1856 	ep->hcpriv = udev;
1857 
1858 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1859 
1860 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1861 			(unsigned int) ep->desc.bEndpointAddress,
1862 			udev->slot_id,
1863 			(unsigned int) new_drop_flags,
1864 			(unsigned int) new_add_flags);
1865 	return 0;
1866 }
1867 
1868 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1869 {
1870 	struct xhci_input_control_ctx *ctrl_ctx;
1871 	struct xhci_ep_ctx *ep_ctx;
1872 	struct xhci_slot_ctx *slot_ctx;
1873 	int i;
1874 
1875 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1876 	if (!ctrl_ctx) {
1877 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1878 				__func__);
1879 		return;
1880 	}
1881 
1882 	/* When a device's add flag and drop flag are zero, any subsequent
1883 	 * configure endpoint command will leave that endpoint's state
1884 	 * untouched.  Make sure we don't leave any old state in the input
1885 	 * endpoint contexts.
1886 	 */
1887 	ctrl_ctx->drop_flags = 0;
1888 	ctrl_ctx->add_flags = 0;
1889 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1890 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1891 	/* Endpoint 0 is always valid */
1892 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1893 	for (i = 1; i < 31; i++) {
1894 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1895 		ep_ctx->ep_info = 0;
1896 		ep_ctx->ep_info2 = 0;
1897 		ep_ctx->deq = 0;
1898 		ep_ctx->tx_info = 0;
1899 	}
1900 }
1901 
1902 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1903 		struct usb_device *udev, u32 *cmd_status)
1904 {
1905 	int ret;
1906 
1907 	switch (*cmd_status) {
1908 	case COMP_COMMAND_ABORTED:
1909 	case COMP_COMMAND_RING_STOPPED:
1910 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1911 		ret = -ETIME;
1912 		break;
1913 	case COMP_RESOURCE_ERROR:
1914 		dev_warn(&udev->dev,
1915 			 "Not enough host controller resources for new device state.\n");
1916 		ret = -ENOMEM;
1917 		/* FIXME: can we allocate more resources for the HC? */
1918 		break;
1919 	case COMP_BANDWIDTH_ERROR:
1920 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1921 		dev_warn(&udev->dev,
1922 			 "Not enough bandwidth for new device state.\n");
1923 		ret = -ENOSPC;
1924 		/* FIXME: can we go back to the old state? */
1925 		break;
1926 	case COMP_TRB_ERROR:
1927 		/* the HCD set up something wrong */
1928 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1929 				"add flag = 1, "
1930 				"and endpoint is not disabled.\n");
1931 		ret = -EINVAL;
1932 		break;
1933 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1934 		dev_warn(&udev->dev,
1935 			 "ERROR: Incompatible device for endpoint configure command.\n");
1936 		ret = -ENODEV;
1937 		break;
1938 	case COMP_SUCCESS:
1939 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1940 				"Successful Endpoint Configure command");
1941 		ret = 0;
1942 		break;
1943 	default:
1944 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1945 				*cmd_status);
1946 		ret = -EINVAL;
1947 		break;
1948 	}
1949 	return ret;
1950 }
1951 
1952 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1953 		struct usb_device *udev, u32 *cmd_status)
1954 {
1955 	int ret;
1956 
1957 	switch (*cmd_status) {
1958 	case COMP_COMMAND_ABORTED:
1959 	case COMP_COMMAND_RING_STOPPED:
1960 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1961 		ret = -ETIME;
1962 		break;
1963 	case COMP_PARAMETER_ERROR:
1964 		dev_warn(&udev->dev,
1965 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1966 		ret = -EINVAL;
1967 		break;
1968 	case COMP_SLOT_NOT_ENABLED_ERROR:
1969 		dev_warn(&udev->dev,
1970 			"WARN: slot not enabled for evaluate context command.\n");
1971 		ret = -EINVAL;
1972 		break;
1973 	case COMP_CONTEXT_STATE_ERROR:
1974 		dev_warn(&udev->dev,
1975 			"WARN: invalid context state for evaluate context command.\n");
1976 		ret = -EINVAL;
1977 		break;
1978 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1979 		dev_warn(&udev->dev,
1980 			"ERROR: Incompatible device for evaluate context command.\n");
1981 		ret = -ENODEV;
1982 		break;
1983 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1984 		/* Max Exit Latency too large error */
1985 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1986 		ret = -EINVAL;
1987 		break;
1988 	case COMP_SUCCESS:
1989 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1990 				"Successful evaluate context command");
1991 		ret = 0;
1992 		break;
1993 	default:
1994 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1995 			*cmd_status);
1996 		ret = -EINVAL;
1997 		break;
1998 	}
1999 	return ret;
2000 }
2001 
2002 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2003 		struct xhci_input_control_ctx *ctrl_ctx)
2004 {
2005 	u32 valid_add_flags;
2006 	u32 valid_drop_flags;
2007 
2008 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2009 	 * (bit 1).  The default control endpoint is added during the Address
2010 	 * Device command and is never removed until the slot is disabled.
2011 	 */
2012 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2013 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2014 
2015 	/* Use hweight32 to count the number of ones in the add flags, or
2016 	 * number of endpoints added.  Don't count endpoints that are changed
2017 	 * (both added and dropped).
2018 	 */
2019 	return hweight32(valid_add_flags) -
2020 		hweight32(valid_add_flags & valid_drop_flags);
2021 }
2022 
2023 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2024 		struct xhci_input_control_ctx *ctrl_ctx)
2025 {
2026 	u32 valid_add_flags;
2027 	u32 valid_drop_flags;
2028 
2029 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2030 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2031 
2032 	return hweight32(valid_drop_flags) -
2033 		hweight32(valid_add_flags & valid_drop_flags);
2034 }
2035 
2036 /*
2037  * We need to reserve the new number of endpoints before the configure endpoint
2038  * command completes.  We can't subtract the dropped endpoints from the number
2039  * of active endpoints until the command completes because we can oversubscribe
2040  * the host in this case:
2041  *
2042  *  - the first configure endpoint command drops more endpoints than it adds
2043  *  - a second configure endpoint command that adds more endpoints is queued
2044  *  - the first configure endpoint command fails, so the config is unchanged
2045  *  - the second command may succeed, even though there isn't enough resources
2046  *
2047  * Must be called with xhci->lock held.
2048  */
2049 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2050 		struct xhci_input_control_ctx *ctrl_ctx)
2051 {
2052 	u32 added_eps;
2053 
2054 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2055 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2056 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2057 				"Not enough ep ctxs: "
2058 				"%u active, need to add %u, limit is %u.",
2059 				xhci->num_active_eps, added_eps,
2060 				xhci->limit_active_eps);
2061 		return -ENOMEM;
2062 	}
2063 	xhci->num_active_eps += added_eps;
2064 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2065 			"Adding %u ep ctxs, %u now active.", added_eps,
2066 			xhci->num_active_eps);
2067 	return 0;
2068 }
2069 
2070 /*
2071  * The configure endpoint was failed by the xHC for some other reason, so we
2072  * need to revert the resources that failed configuration would have used.
2073  *
2074  * Must be called with xhci->lock held.
2075  */
2076 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2077 		struct xhci_input_control_ctx *ctrl_ctx)
2078 {
2079 	u32 num_failed_eps;
2080 
2081 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2082 	xhci->num_active_eps -= num_failed_eps;
2083 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2084 			"Removing %u failed ep ctxs, %u now active.",
2085 			num_failed_eps,
2086 			xhci->num_active_eps);
2087 }
2088 
2089 /*
2090  * Now that the command has completed, clean up the active endpoint count by
2091  * subtracting out the endpoints that were dropped (but not changed).
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2096 		struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098 	u32 num_dropped_eps;
2099 
2100 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2101 	xhci->num_active_eps -= num_dropped_eps;
2102 	if (num_dropped_eps)
2103 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2104 				"Removing %u dropped ep ctxs, %u now active.",
2105 				num_dropped_eps,
2106 				xhci->num_active_eps);
2107 }
2108 
2109 static unsigned int xhci_get_block_size(struct usb_device *udev)
2110 {
2111 	switch (udev->speed) {
2112 	case USB_SPEED_LOW:
2113 	case USB_SPEED_FULL:
2114 		return FS_BLOCK;
2115 	case USB_SPEED_HIGH:
2116 		return HS_BLOCK;
2117 	case USB_SPEED_SUPER:
2118 	case USB_SPEED_SUPER_PLUS:
2119 		return SS_BLOCK;
2120 	case USB_SPEED_UNKNOWN:
2121 	case USB_SPEED_WIRELESS:
2122 	default:
2123 		/* Should never happen */
2124 		return 1;
2125 	}
2126 }
2127 
2128 static unsigned int
2129 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2130 {
2131 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2132 		return LS_OVERHEAD;
2133 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2134 		return FS_OVERHEAD;
2135 	return HS_OVERHEAD;
2136 }
2137 
2138 /* If we are changing a LS/FS device under a HS hub,
2139  * make sure (if we are activating a new TT) that the HS bus has enough
2140  * bandwidth for this new TT.
2141  */
2142 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2143 		struct xhci_virt_device *virt_dev,
2144 		int old_active_eps)
2145 {
2146 	struct xhci_interval_bw_table *bw_table;
2147 	struct xhci_tt_bw_info *tt_info;
2148 
2149 	/* Find the bandwidth table for the root port this TT is attached to. */
2150 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2151 	tt_info = virt_dev->tt_info;
2152 	/* If this TT already had active endpoints, the bandwidth for this TT
2153 	 * has already been added.  Removing all periodic endpoints (and thus
2154 	 * making the TT enactive) will only decrease the bandwidth used.
2155 	 */
2156 	if (old_active_eps)
2157 		return 0;
2158 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2159 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2160 			return -ENOMEM;
2161 		return 0;
2162 	}
2163 	/* Not sure why we would have no new active endpoints...
2164 	 *
2165 	 * Maybe because of an Evaluate Context change for a hub update or a
2166 	 * control endpoint 0 max packet size change?
2167 	 * FIXME: skip the bandwidth calculation in that case.
2168 	 */
2169 	return 0;
2170 }
2171 
2172 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2173 		struct xhci_virt_device *virt_dev)
2174 {
2175 	unsigned int bw_reserved;
2176 
2177 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2178 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2179 		return -ENOMEM;
2180 
2181 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2182 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2183 		return -ENOMEM;
2184 
2185 	return 0;
2186 }
2187 
2188 /*
2189  * This algorithm is a very conservative estimate of the worst-case scheduling
2190  * scenario for any one interval.  The hardware dynamically schedules the
2191  * packets, so we can't tell which microframe could be the limiting factor in
2192  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2193  *
2194  * Obviously, we can't solve an NP complete problem to find the minimum worst
2195  * case scenario.  Instead, we come up with an estimate that is no less than
2196  * the worst case bandwidth used for any one microframe, but may be an
2197  * over-estimate.
2198  *
2199  * We walk the requirements for each endpoint by interval, starting with the
2200  * smallest interval, and place packets in the schedule where there is only one
2201  * possible way to schedule packets for that interval.  In order to simplify
2202  * this algorithm, we record the largest max packet size for each interval, and
2203  * assume all packets will be that size.
2204  *
2205  * For interval 0, we obviously must schedule all packets for each interval.
2206  * The bandwidth for interval 0 is just the amount of data to be transmitted
2207  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2208  * the number of packets).
2209  *
2210  * For interval 1, we have two possible microframes to schedule those packets
2211  * in.  For this algorithm, if we can schedule the same number of packets for
2212  * each possible scheduling opportunity (each microframe), we will do so.  The
2213  * remaining number of packets will be saved to be transmitted in the gaps in
2214  * the next interval's scheduling sequence.
2215  *
2216  * As we move those remaining packets to be scheduled with interval 2 packets,
2217  * we have to double the number of remaining packets to transmit.  This is
2218  * because the intervals are actually powers of 2, and we would be transmitting
2219  * the previous interval's packets twice in this interval.  We also have to be
2220  * sure that when we look at the largest max packet size for this interval, we
2221  * also look at the largest max packet size for the remaining packets and take
2222  * the greater of the two.
2223  *
2224  * The algorithm continues to evenly distribute packets in each scheduling
2225  * opportunity, and push the remaining packets out, until we get to the last
2226  * interval.  Then those packets and their associated overhead are just added
2227  * to the bandwidth used.
2228  */
2229 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2230 		struct xhci_virt_device *virt_dev,
2231 		int old_active_eps)
2232 {
2233 	unsigned int bw_reserved;
2234 	unsigned int max_bandwidth;
2235 	unsigned int bw_used;
2236 	unsigned int block_size;
2237 	struct xhci_interval_bw_table *bw_table;
2238 	unsigned int packet_size = 0;
2239 	unsigned int overhead = 0;
2240 	unsigned int packets_transmitted = 0;
2241 	unsigned int packets_remaining = 0;
2242 	unsigned int i;
2243 
2244 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2245 		return xhci_check_ss_bw(xhci, virt_dev);
2246 
2247 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2248 		max_bandwidth = HS_BW_LIMIT;
2249 		/* Convert percent of bus BW reserved to blocks reserved */
2250 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2251 	} else {
2252 		max_bandwidth = FS_BW_LIMIT;
2253 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2254 	}
2255 
2256 	bw_table = virt_dev->bw_table;
2257 	/* We need to translate the max packet size and max ESIT payloads into
2258 	 * the units the hardware uses.
2259 	 */
2260 	block_size = xhci_get_block_size(virt_dev->udev);
2261 
2262 	/* If we are manipulating a LS/FS device under a HS hub, double check
2263 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2264 	 */
2265 	if (virt_dev->tt_info) {
2266 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2267 				"Recalculating BW for rootport %u",
2268 				virt_dev->real_port);
2269 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2270 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2271 					"newly activated TT.\n");
2272 			return -ENOMEM;
2273 		}
2274 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275 				"Recalculating BW for TT slot %u port %u",
2276 				virt_dev->tt_info->slot_id,
2277 				virt_dev->tt_info->ttport);
2278 	} else {
2279 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2280 				"Recalculating BW for rootport %u",
2281 				virt_dev->real_port);
2282 	}
2283 
2284 	/* Add in how much bandwidth will be used for interval zero, or the
2285 	 * rounded max ESIT payload + number of packets * largest overhead.
2286 	 */
2287 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2288 		bw_table->interval_bw[0].num_packets *
2289 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2290 
2291 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2292 		unsigned int bw_added;
2293 		unsigned int largest_mps;
2294 		unsigned int interval_overhead;
2295 
2296 		/*
2297 		 * How many packets could we transmit in this interval?
2298 		 * If packets didn't fit in the previous interval, we will need
2299 		 * to transmit that many packets twice within this interval.
2300 		 */
2301 		packets_remaining = 2 * packets_remaining +
2302 			bw_table->interval_bw[i].num_packets;
2303 
2304 		/* Find the largest max packet size of this or the previous
2305 		 * interval.
2306 		 */
2307 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2308 			largest_mps = 0;
2309 		else {
2310 			struct xhci_virt_ep *virt_ep;
2311 			struct list_head *ep_entry;
2312 
2313 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2314 			virt_ep = list_entry(ep_entry,
2315 					struct xhci_virt_ep, bw_endpoint_list);
2316 			/* Convert to blocks, rounding up */
2317 			largest_mps = DIV_ROUND_UP(
2318 					virt_ep->bw_info.max_packet_size,
2319 					block_size);
2320 		}
2321 		if (largest_mps > packet_size)
2322 			packet_size = largest_mps;
2323 
2324 		/* Use the larger overhead of this or the previous interval. */
2325 		interval_overhead = xhci_get_largest_overhead(
2326 				&bw_table->interval_bw[i]);
2327 		if (interval_overhead > overhead)
2328 			overhead = interval_overhead;
2329 
2330 		/* How many packets can we evenly distribute across
2331 		 * (1 << (i + 1)) possible scheduling opportunities?
2332 		 */
2333 		packets_transmitted = packets_remaining >> (i + 1);
2334 
2335 		/* Add in the bandwidth used for those scheduled packets */
2336 		bw_added = packets_transmitted * (overhead + packet_size);
2337 
2338 		/* How many packets do we have remaining to transmit? */
2339 		packets_remaining = packets_remaining % (1 << (i + 1));
2340 
2341 		/* What largest max packet size should those packets have? */
2342 		/* If we've transmitted all packets, don't carry over the
2343 		 * largest packet size.
2344 		 */
2345 		if (packets_remaining == 0) {
2346 			packet_size = 0;
2347 			overhead = 0;
2348 		} else if (packets_transmitted > 0) {
2349 			/* Otherwise if we do have remaining packets, and we've
2350 			 * scheduled some packets in this interval, take the
2351 			 * largest max packet size from endpoints with this
2352 			 * interval.
2353 			 */
2354 			packet_size = largest_mps;
2355 			overhead = interval_overhead;
2356 		}
2357 		/* Otherwise carry over packet_size and overhead from the last
2358 		 * time we had a remainder.
2359 		 */
2360 		bw_used += bw_added;
2361 		if (bw_used > max_bandwidth) {
2362 			xhci_warn(xhci, "Not enough bandwidth. "
2363 					"Proposed: %u, Max: %u\n",
2364 				bw_used, max_bandwidth);
2365 			return -ENOMEM;
2366 		}
2367 	}
2368 	/*
2369 	 * Ok, we know we have some packets left over after even-handedly
2370 	 * scheduling interval 15.  We don't know which microframes they will
2371 	 * fit into, so we over-schedule and say they will be scheduled every
2372 	 * microframe.
2373 	 */
2374 	if (packets_remaining > 0)
2375 		bw_used += overhead + packet_size;
2376 
2377 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2378 		unsigned int port_index = virt_dev->real_port - 1;
2379 
2380 		/* OK, we're manipulating a HS device attached to a
2381 		 * root port bandwidth domain.  Include the number of active TTs
2382 		 * in the bandwidth used.
2383 		 */
2384 		bw_used += TT_HS_OVERHEAD *
2385 			xhci->rh_bw[port_index].num_active_tts;
2386 	}
2387 
2388 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2389 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2390 		"Available: %u " "percent",
2391 		bw_used, max_bandwidth, bw_reserved,
2392 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2393 		max_bandwidth);
2394 
2395 	bw_used += bw_reserved;
2396 	if (bw_used > max_bandwidth) {
2397 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2398 				bw_used, max_bandwidth);
2399 		return -ENOMEM;
2400 	}
2401 
2402 	bw_table->bw_used = bw_used;
2403 	return 0;
2404 }
2405 
2406 static bool xhci_is_async_ep(unsigned int ep_type)
2407 {
2408 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2409 					ep_type != ISOC_IN_EP &&
2410 					ep_type != INT_IN_EP);
2411 }
2412 
2413 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2414 {
2415 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2416 }
2417 
2418 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2419 {
2420 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2421 
2422 	if (ep_bw->ep_interval == 0)
2423 		return SS_OVERHEAD_BURST +
2424 			(ep_bw->mult * ep_bw->num_packets *
2425 					(SS_OVERHEAD + mps));
2426 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2427 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2428 				1 << ep_bw->ep_interval);
2429 
2430 }
2431 
2432 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2433 		struct xhci_bw_info *ep_bw,
2434 		struct xhci_interval_bw_table *bw_table,
2435 		struct usb_device *udev,
2436 		struct xhci_virt_ep *virt_ep,
2437 		struct xhci_tt_bw_info *tt_info)
2438 {
2439 	struct xhci_interval_bw	*interval_bw;
2440 	int normalized_interval;
2441 
2442 	if (xhci_is_async_ep(ep_bw->type))
2443 		return;
2444 
2445 	if (udev->speed >= USB_SPEED_SUPER) {
2446 		if (xhci_is_sync_in_ep(ep_bw->type))
2447 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2448 				xhci_get_ss_bw_consumed(ep_bw);
2449 		else
2450 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2451 				xhci_get_ss_bw_consumed(ep_bw);
2452 		return;
2453 	}
2454 
2455 	/* SuperSpeed endpoints never get added to intervals in the table, so
2456 	 * this check is only valid for HS/FS/LS devices.
2457 	 */
2458 	if (list_empty(&virt_ep->bw_endpoint_list))
2459 		return;
2460 	/* For LS/FS devices, we need to translate the interval expressed in
2461 	 * microframes to frames.
2462 	 */
2463 	if (udev->speed == USB_SPEED_HIGH)
2464 		normalized_interval = ep_bw->ep_interval;
2465 	else
2466 		normalized_interval = ep_bw->ep_interval - 3;
2467 
2468 	if (normalized_interval == 0)
2469 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2470 	interval_bw = &bw_table->interval_bw[normalized_interval];
2471 	interval_bw->num_packets -= ep_bw->num_packets;
2472 	switch (udev->speed) {
2473 	case USB_SPEED_LOW:
2474 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2475 		break;
2476 	case USB_SPEED_FULL:
2477 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2478 		break;
2479 	case USB_SPEED_HIGH:
2480 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2481 		break;
2482 	case USB_SPEED_SUPER:
2483 	case USB_SPEED_SUPER_PLUS:
2484 	case USB_SPEED_UNKNOWN:
2485 	case USB_SPEED_WIRELESS:
2486 		/* Should never happen because only LS/FS/HS endpoints will get
2487 		 * added to the endpoint list.
2488 		 */
2489 		return;
2490 	}
2491 	if (tt_info)
2492 		tt_info->active_eps -= 1;
2493 	list_del_init(&virt_ep->bw_endpoint_list);
2494 }
2495 
2496 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2497 		struct xhci_bw_info *ep_bw,
2498 		struct xhci_interval_bw_table *bw_table,
2499 		struct usb_device *udev,
2500 		struct xhci_virt_ep *virt_ep,
2501 		struct xhci_tt_bw_info *tt_info)
2502 {
2503 	struct xhci_interval_bw	*interval_bw;
2504 	struct xhci_virt_ep *smaller_ep;
2505 	int normalized_interval;
2506 
2507 	if (xhci_is_async_ep(ep_bw->type))
2508 		return;
2509 
2510 	if (udev->speed == USB_SPEED_SUPER) {
2511 		if (xhci_is_sync_in_ep(ep_bw->type))
2512 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2513 				xhci_get_ss_bw_consumed(ep_bw);
2514 		else
2515 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2516 				xhci_get_ss_bw_consumed(ep_bw);
2517 		return;
2518 	}
2519 
2520 	/* For LS/FS devices, we need to translate the interval expressed in
2521 	 * microframes to frames.
2522 	 */
2523 	if (udev->speed == USB_SPEED_HIGH)
2524 		normalized_interval = ep_bw->ep_interval;
2525 	else
2526 		normalized_interval = ep_bw->ep_interval - 3;
2527 
2528 	if (normalized_interval == 0)
2529 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2530 	interval_bw = &bw_table->interval_bw[normalized_interval];
2531 	interval_bw->num_packets += ep_bw->num_packets;
2532 	switch (udev->speed) {
2533 	case USB_SPEED_LOW:
2534 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2535 		break;
2536 	case USB_SPEED_FULL:
2537 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2538 		break;
2539 	case USB_SPEED_HIGH:
2540 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2541 		break;
2542 	case USB_SPEED_SUPER:
2543 	case USB_SPEED_SUPER_PLUS:
2544 	case USB_SPEED_UNKNOWN:
2545 	case USB_SPEED_WIRELESS:
2546 		/* Should never happen because only LS/FS/HS endpoints will get
2547 		 * added to the endpoint list.
2548 		 */
2549 		return;
2550 	}
2551 
2552 	if (tt_info)
2553 		tt_info->active_eps += 1;
2554 	/* Insert the endpoint into the list, largest max packet size first. */
2555 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2556 			bw_endpoint_list) {
2557 		if (ep_bw->max_packet_size >=
2558 				smaller_ep->bw_info.max_packet_size) {
2559 			/* Add the new ep before the smaller endpoint */
2560 			list_add_tail(&virt_ep->bw_endpoint_list,
2561 					&smaller_ep->bw_endpoint_list);
2562 			return;
2563 		}
2564 	}
2565 	/* Add the new endpoint at the end of the list. */
2566 	list_add_tail(&virt_ep->bw_endpoint_list,
2567 			&interval_bw->endpoints);
2568 }
2569 
2570 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2571 		struct xhci_virt_device *virt_dev,
2572 		int old_active_eps)
2573 {
2574 	struct xhci_root_port_bw_info *rh_bw_info;
2575 	if (!virt_dev->tt_info)
2576 		return;
2577 
2578 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2579 	if (old_active_eps == 0 &&
2580 				virt_dev->tt_info->active_eps != 0) {
2581 		rh_bw_info->num_active_tts += 1;
2582 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2583 	} else if (old_active_eps != 0 &&
2584 				virt_dev->tt_info->active_eps == 0) {
2585 		rh_bw_info->num_active_tts -= 1;
2586 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2587 	}
2588 }
2589 
2590 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2591 		struct xhci_virt_device *virt_dev,
2592 		struct xhci_container_ctx *in_ctx)
2593 {
2594 	struct xhci_bw_info ep_bw_info[31];
2595 	int i;
2596 	struct xhci_input_control_ctx *ctrl_ctx;
2597 	int old_active_eps = 0;
2598 
2599 	if (virt_dev->tt_info)
2600 		old_active_eps = virt_dev->tt_info->active_eps;
2601 
2602 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2603 	if (!ctrl_ctx) {
2604 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2605 				__func__);
2606 		return -ENOMEM;
2607 	}
2608 
2609 	for (i = 0; i < 31; i++) {
2610 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2611 			continue;
2612 
2613 		/* Make a copy of the BW info in case we need to revert this */
2614 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2615 				sizeof(ep_bw_info[i]));
2616 		/* Drop the endpoint from the interval table if the endpoint is
2617 		 * being dropped or changed.
2618 		 */
2619 		if (EP_IS_DROPPED(ctrl_ctx, i))
2620 			xhci_drop_ep_from_interval_table(xhci,
2621 					&virt_dev->eps[i].bw_info,
2622 					virt_dev->bw_table,
2623 					virt_dev->udev,
2624 					&virt_dev->eps[i],
2625 					virt_dev->tt_info);
2626 	}
2627 	/* Overwrite the information stored in the endpoints' bw_info */
2628 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2629 	for (i = 0; i < 31; i++) {
2630 		/* Add any changed or added endpoints to the interval table */
2631 		if (EP_IS_ADDED(ctrl_ctx, i))
2632 			xhci_add_ep_to_interval_table(xhci,
2633 					&virt_dev->eps[i].bw_info,
2634 					virt_dev->bw_table,
2635 					virt_dev->udev,
2636 					&virt_dev->eps[i],
2637 					virt_dev->tt_info);
2638 	}
2639 
2640 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2641 		/* Ok, this fits in the bandwidth we have.
2642 		 * Update the number of active TTs.
2643 		 */
2644 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2645 		return 0;
2646 	}
2647 
2648 	/* We don't have enough bandwidth for this, revert the stored info. */
2649 	for (i = 0; i < 31; i++) {
2650 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2651 			continue;
2652 
2653 		/* Drop the new copies of any added or changed endpoints from
2654 		 * the interval table.
2655 		 */
2656 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2657 			xhci_drop_ep_from_interval_table(xhci,
2658 					&virt_dev->eps[i].bw_info,
2659 					virt_dev->bw_table,
2660 					virt_dev->udev,
2661 					&virt_dev->eps[i],
2662 					virt_dev->tt_info);
2663 		}
2664 		/* Revert the endpoint back to its old information */
2665 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2666 				sizeof(ep_bw_info[i]));
2667 		/* Add any changed or dropped endpoints back into the table */
2668 		if (EP_IS_DROPPED(ctrl_ctx, i))
2669 			xhci_add_ep_to_interval_table(xhci,
2670 					&virt_dev->eps[i].bw_info,
2671 					virt_dev->bw_table,
2672 					virt_dev->udev,
2673 					&virt_dev->eps[i],
2674 					virt_dev->tt_info);
2675 	}
2676 	return -ENOMEM;
2677 }
2678 
2679 
2680 /* Issue a configure endpoint command or evaluate context command
2681  * and wait for it to finish.
2682  */
2683 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2684 		struct usb_device *udev,
2685 		struct xhci_command *command,
2686 		bool ctx_change, bool must_succeed)
2687 {
2688 	int ret;
2689 	unsigned long flags;
2690 	struct xhci_input_control_ctx *ctrl_ctx;
2691 	struct xhci_virt_device *virt_dev;
2692 	struct xhci_slot_ctx *slot_ctx;
2693 
2694 	if (!command)
2695 		return -EINVAL;
2696 
2697 	spin_lock_irqsave(&xhci->lock, flags);
2698 
2699 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2700 		spin_unlock_irqrestore(&xhci->lock, flags);
2701 		return -ESHUTDOWN;
2702 	}
2703 
2704 	virt_dev = xhci->devs[udev->slot_id];
2705 
2706 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2707 	if (!ctrl_ctx) {
2708 		spin_unlock_irqrestore(&xhci->lock, flags);
2709 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2710 				__func__);
2711 		return -ENOMEM;
2712 	}
2713 
2714 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2715 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2716 		spin_unlock_irqrestore(&xhci->lock, flags);
2717 		xhci_warn(xhci, "Not enough host resources, "
2718 				"active endpoint contexts = %u\n",
2719 				xhci->num_active_eps);
2720 		return -ENOMEM;
2721 	}
2722 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2723 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2724 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2725 			xhci_free_host_resources(xhci, ctrl_ctx);
2726 		spin_unlock_irqrestore(&xhci->lock, flags);
2727 		xhci_warn(xhci, "Not enough bandwidth\n");
2728 		return -ENOMEM;
2729 	}
2730 
2731 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2732 	trace_xhci_configure_endpoint(slot_ctx);
2733 
2734 	if (!ctx_change)
2735 		ret = xhci_queue_configure_endpoint(xhci, command,
2736 				command->in_ctx->dma,
2737 				udev->slot_id, must_succeed);
2738 	else
2739 		ret = xhci_queue_evaluate_context(xhci, command,
2740 				command->in_ctx->dma,
2741 				udev->slot_id, must_succeed);
2742 	if (ret < 0) {
2743 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2744 			xhci_free_host_resources(xhci, ctrl_ctx);
2745 		spin_unlock_irqrestore(&xhci->lock, flags);
2746 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2747 				"FIXME allocate a new ring segment");
2748 		return -ENOMEM;
2749 	}
2750 	xhci_ring_cmd_db(xhci);
2751 	spin_unlock_irqrestore(&xhci->lock, flags);
2752 
2753 	/* Wait for the configure endpoint command to complete */
2754 	wait_for_completion(command->completion);
2755 
2756 	if (!ctx_change)
2757 		ret = xhci_configure_endpoint_result(xhci, udev,
2758 						     &command->status);
2759 	else
2760 		ret = xhci_evaluate_context_result(xhci, udev,
2761 						   &command->status);
2762 
2763 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2764 		spin_lock_irqsave(&xhci->lock, flags);
2765 		/* If the command failed, remove the reserved resources.
2766 		 * Otherwise, clean up the estimate to include dropped eps.
2767 		 */
2768 		if (ret)
2769 			xhci_free_host_resources(xhci, ctrl_ctx);
2770 		else
2771 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2772 		spin_unlock_irqrestore(&xhci->lock, flags);
2773 	}
2774 	return ret;
2775 }
2776 
2777 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2778 	struct xhci_virt_device *vdev, int i)
2779 {
2780 	struct xhci_virt_ep *ep = &vdev->eps[i];
2781 
2782 	if (ep->ep_state & EP_HAS_STREAMS) {
2783 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2784 				xhci_get_endpoint_address(i));
2785 		xhci_free_stream_info(xhci, ep->stream_info);
2786 		ep->stream_info = NULL;
2787 		ep->ep_state &= ~EP_HAS_STREAMS;
2788 	}
2789 }
2790 
2791 /* Called after one or more calls to xhci_add_endpoint() or
2792  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2793  * to call xhci_reset_bandwidth().
2794  *
2795  * Since we are in the middle of changing either configuration or
2796  * installing a new alt setting, the USB core won't allow URBs to be
2797  * enqueued for any endpoint on the old config or interface.  Nothing
2798  * else should be touching the xhci->devs[slot_id] structure, so we
2799  * don't need to take the xhci->lock for manipulating that.
2800  */
2801 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2802 {
2803 	int i;
2804 	int ret = 0;
2805 	struct xhci_hcd *xhci;
2806 	struct xhci_virt_device	*virt_dev;
2807 	struct xhci_input_control_ctx *ctrl_ctx;
2808 	struct xhci_slot_ctx *slot_ctx;
2809 	struct xhci_command *command;
2810 
2811 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2812 	if (ret <= 0)
2813 		return ret;
2814 	xhci = hcd_to_xhci(hcd);
2815 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2816 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2817 		return -ENODEV;
2818 
2819 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2820 	virt_dev = xhci->devs[udev->slot_id];
2821 
2822 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2823 	if (!command)
2824 		return -ENOMEM;
2825 
2826 	command->in_ctx = virt_dev->in_ctx;
2827 
2828 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2829 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2830 	if (!ctrl_ctx) {
2831 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2832 				__func__);
2833 		ret = -ENOMEM;
2834 		goto command_cleanup;
2835 	}
2836 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2837 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2838 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2839 
2840 	/* Don't issue the command if there's no endpoints to update. */
2841 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2842 	    ctrl_ctx->drop_flags == 0) {
2843 		ret = 0;
2844 		goto command_cleanup;
2845 	}
2846 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2847 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2848 	for (i = 31; i >= 1; i--) {
2849 		__le32 le32 = cpu_to_le32(BIT(i));
2850 
2851 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2852 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2853 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2854 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2855 			break;
2856 		}
2857 	}
2858 
2859 	ret = xhci_configure_endpoint(xhci, udev, command,
2860 			false, false);
2861 	if (ret)
2862 		/* Callee should call reset_bandwidth() */
2863 		goto command_cleanup;
2864 
2865 	/* Free any rings that were dropped, but not changed. */
2866 	for (i = 1; i < 31; i++) {
2867 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2868 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2869 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2870 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2871 		}
2872 	}
2873 	xhci_zero_in_ctx(xhci, virt_dev);
2874 	/*
2875 	 * Install any rings for completely new endpoints or changed endpoints,
2876 	 * and free any old rings from changed endpoints.
2877 	 */
2878 	for (i = 1; i < 31; i++) {
2879 		if (!virt_dev->eps[i].new_ring)
2880 			continue;
2881 		/* Only free the old ring if it exists.
2882 		 * It may not if this is the first add of an endpoint.
2883 		 */
2884 		if (virt_dev->eps[i].ring) {
2885 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2886 		}
2887 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2888 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2889 		virt_dev->eps[i].new_ring = NULL;
2890 	}
2891 command_cleanup:
2892 	kfree(command->completion);
2893 	kfree(command);
2894 
2895 	return ret;
2896 }
2897 
2898 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2899 {
2900 	struct xhci_hcd *xhci;
2901 	struct xhci_virt_device	*virt_dev;
2902 	int i, ret;
2903 
2904 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2905 	if (ret <= 0)
2906 		return;
2907 	xhci = hcd_to_xhci(hcd);
2908 
2909 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2910 	virt_dev = xhci->devs[udev->slot_id];
2911 	/* Free any rings allocated for added endpoints */
2912 	for (i = 0; i < 31; i++) {
2913 		if (virt_dev->eps[i].new_ring) {
2914 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2915 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2916 			virt_dev->eps[i].new_ring = NULL;
2917 		}
2918 	}
2919 	xhci_zero_in_ctx(xhci, virt_dev);
2920 }
2921 
2922 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2923 		struct xhci_container_ctx *in_ctx,
2924 		struct xhci_container_ctx *out_ctx,
2925 		struct xhci_input_control_ctx *ctrl_ctx,
2926 		u32 add_flags, u32 drop_flags)
2927 {
2928 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2929 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2930 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2931 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2932 }
2933 
2934 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2935 		unsigned int slot_id, unsigned int ep_index,
2936 		struct xhci_dequeue_state *deq_state)
2937 {
2938 	struct xhci_input_control_ctx *ctrl_ctx;
2939 	struct xhci_container_ctx *in_ctx;
2940 	struct xhci_ep_ctx *ep_ctx;
2941 	u32 added_ctxs;
2942 	dma_addr_t addr;
2943 
2944 	in_ctx = xhci->devs[slot_id]->in_ctx;
2945 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2946 	if (!ctrl_ctx) {
2947 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2948 				__func__);
2949 		return;
2950 	}
2951 
2952 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2953 			xhci->devs[slot_id]->out_ctx, ep_index);
2954 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2955 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2956 			deq_state->new_deq_ptr);
2957 	if (addr == 0) {
2958 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2959 				"reset ep command\n");
2960 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2961 				deq_state->new_deq_seg,
2962 				deq_state->new_deq_ptr);
2963 		return;
2964 	}
2965 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2966 
2967 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2968 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2969 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2970 			added_ctxs, added_ctxs);
2971 }
2972 
2973 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2974 			       unsigned int stream_id, struct xhci_td *td)
2975 {
2976 	struct xhci_dequeue_state deq_state;
2977 	struct usb_device *udev = td->urb->dev;
2978 
2979 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2980 			"Cleaning up stalled endpoint ring");
2981 	/* We need to move the HW's dequeue pointer past this TD,
2982 	 * or it will attempt to resend it on the next doorbell ring.
2983 	 */
2984 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2985 			ep_index, stream_id, td, &deq_state);
2986 
2987 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2988 		return;
2989 
2990 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2991 	 * issue a configure endpoint command later.
2992 	 */
2993 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2994 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2995 				"Queueing new dequeue state");
2996 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2997 				ep_index, &deq_state);
2998 	} else {
2999 		/* Better hope no one uses the input context between now and the
3000 		 * reset endpoint completion!
3001 		 * XXX: No idea how this hardware will react when stream rings
3002 		 * are enabled.
3003 		 */
3004 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3005 				"Setting up input context for "
3006 				"configure endpoint command");
3007 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3008 				ep_index, &deq_state);
3009 	}
3010 }
3011 
3012 /*
3013  * Called after usb core issues a clear halt control message.
3014  * The host side of the halt should already be cleared by a reset endpoint
3015  * command issued when the STALL event was received.
3016  *
3017  * The reset endpoint command may only be issued to endpoints in the halted
3018  * state. For software that wishes to reset the data toggle or sequence number
3019  * of an endpoint that isn't in the halted state this function will issue a
3020  * configure endpoint command with the Drop and Add bits set for the target
3021  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3022  */
3023 
3024 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3025 		struct usb_host_endpoint *host_ep)
3026 {
3027 	struct xhci_hcd *xhci;
3028 	struct usb_device *udev;
3029 	struct xhci_virt_device *vdev;
3030 	struct xhci_virt_ep *ep;
3031 	struct xhci_input_control_ctx *ctrl_ctx;
3032 	struct xhci_command *stop_cmd, *cfg_cmd;
3033 	unsigned int ep_index;
3034 	unsigned long flags;
3035 	u32 ep_flag;
3036 
3037 	xhci = hcd_to_xhci(hcd);
3038 	if (!host_ep->hcpriv)
3039 		return;
3040 	udev = (struct usb_device *) host_ep->hcpriv;
3041 	vdev = xhci->devs[udev->slot_id];
3042 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3043 	ep = &vdev->eps[ep_index];
3044 
3045 	/* Bail out if toggle is already being cleared by a endpoint reset */
3046 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3047 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3048 		return;
3049 	}
3050 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3051 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3052 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3053 		return;
3054 
3055 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3056 
3057 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3058 		return;
3059 
3060 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3061 	if (!stop_cmd)
3062 		return;
3063 
3064 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3065 	if (!cfg_cmd)
3066 		goto cleanup;
3067 
3068 	spin_lock_irqsave(&xhci->lock, flags);
3069 
3070 	/* block queuing new trbs and ringing ep doorbell */
3071 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3072 
3073 	/*
3074 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3075 	 * Driver is required to synchronously cancel all transfer request.
3076 	 * Stop the endpoint to force xHC to update the output context
3077 	 */
3078 
3079 	if (!list_empty(&ep->ring->td_list)) {
3080 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3081 		spin_unlock_irqrestore(&xhci->lock, flags);
3082 		xhci_free_command(xhci, cfg_cmd);
3083 		goto cleanup;
3084 	}
3085 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3086 	xhci_ring_cmd_db(xhci);
3087 	spin_unlock_irqrestore(&xhci->lock, flags);
3088 
3089 	wait_for_completion(stop_cmd->completion);
3090 
3091 	spin_lock_irqsave(&xhci->lock, flags);
3092 
3093 	/* config ep command clears toggle if add and drop ep flags are set */
3094 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3095 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3096 					   ctrl_ctx, ep_flag, ep_flag);
3097 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3098 
3099 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3100 				      udev->slot_id, false);
3101 	xhci_ring_cmd_db(xhci);
3102 	spin_unlock_irqrestore(&xhci->lock, flags);
3103 
3104 	wait_for_completion(cfg_cmd->completion);
3105 
3106 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3107 	xhci_free_command(xhci, cfg_cmd);
3108 cleanup:
3109 	xhci_free_command(xhci, stop_cmd);
3110 }
3111 
3112 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3113 		struct usb_device *udev, struct usb_host_endpoint *ep,
3114 		unsigned int slot_id)
3115 {
3116 	int ret;
3117 	unsigned int ep_index;
3118 	unsigned int ep_state;
3119 
3120 	if (!ep)
3121 		return -EINVAL;
3122 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3123 	if (ret <= 0)
3124 		return -EINVAL;
3125 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3126 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3127 				" descriptor for ep 0x%x does not support streams\n",
3128 				ep->desc.bEndpointAddress);
3129 		return -EINVAL;
3130 	}
3131 
3132 	ep_index = xhci_get_endpoint_index(&ep->desc);
3133 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3134 	if (ep_state & EP_HAS_STREAMS ||
3135 			ep_state & EP_GETTING_STREAMS) {
3136 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3137 				"already has streams set up.\n",
3138 				ep->desc.bEndpointAddress);
3139 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3140 				"dynamic stream context array reallocation.\n");
3141 		return -EINVAL;
3142 	}
3143 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3144 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3145 				"endpoint 0x%x; URBs are pending.\n",
3146 				ep->desc.bEndpointAddress);
3147 		return -EINVAL;
3148 	}
3149 	return 0;
3150 }
3151 
3152 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3153 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3154 {
3155 	unsigned int max_streams;
3156 
3157 	/* The stream context array size must be a power of two */
3158 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3159 	/*
3160 	 * Find out how many primary stream array entries the host controller
3161 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3162 	 * level page entries), but that's an optional feature for xHCI host
3163 	 * controllers. xHCs must support at least 4 stream IDs.
3164 	 */
3165 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3166 	if (*num_stream_ctxs > max_streams) {
3167 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3168 				max_streams);
3169 		*num_stream_ctxs = max_streams;
3170 		*num_streams = max_streams;
3171 	}
3172 }
3173 
3174 /* Returns an error code if one of the endpoint already has streams.
3175  * This does not change any data structures, it only checks and gathers
3176  * information.
3177  */
3178 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3179 		struct usb_device *udev,
3180 		struct usb_host_endpoint **eps, unsigned int num_eps,
3181 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3182 {
3183 	unsigned int max_streams;
3184 	unsigned int endpoint_flag;
3185 	int i;
3186 	int ret;
3187 
3188 	for (i = 0; i < num_eps; i++) {
3189 		ret = xhci_check_streams_endpoint(xhci, udev,
3190 				eps[i], udev->slot_id);
3191 		if (ret < 0)
3192 			return ret;
3193 
3194 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3195 		if (max_streams < (*num_streams - 1)) {
3196 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3197 					eps[i]->desc.bEndpointAddress,
3198 					max_streams);
3199 			*num_streams = max_streams+1;
3200 		}
3201 
3202 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3203 		if (*changed_ep_bitmask & endpoint_flag)
3204 			return -EINVAL;
3205 		*changed_ep_bitmask |= endpoint_flag;
3206 	}
3207 	return 0;
3208 }
3209 
3210 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3211 		struct usb_device *udev,
3212 		struct usb_host_endpoint **eps, unsigned int num_eps)
3213 {
3214 	u32 changed_ep_bitmask = 0;
3215 	unsigned int slot_id;
3216 	unsigned int ep_index;
3217 	unsigned int ep_state;
3218 	int i;
3219 
3220 	slot_id = udev->slot_id;
3221 	if (!xhci->devs[slot_id])
3222 		return 0;
3223 
3224 	for (i = 0; i < num_eps; i++) {
3225 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3227 		/* Are streams already being freed for the endpoint? */
3228 		if (ep_state & EP_GETTING_NO_STREAMS) {
3229 			xhci_warn(xhci, "WARN Can't disable streams for "
3230 					"endpoint 0x%x, "
3231 					"streams are being disabled already\n",
3232 					eps[i]->desc.bEndpointAddress);
3233 			return 0;
3234 		}
3235 		/* Are there actually any streams to free? */
3236 		if (!(ep_state & EP_HAS_STREAMS) &&
3237 				!(ep_state & EP_GETTING_STREAMS)) {
3238 			xhci_warn(xhci, "WARN Can't disable streams for "
3239 					"endpoint 0x%x, "
3240 					"streams are already disabled!\n",
3241 					eps[i]->desc.bEndpointAddress);
3242 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3243 					"with non-streams endpoint\n");
3244 			return 0;
3245 		}
3246 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3247 	}
3248 	return changed_ep_bitmask;
3249 }
3250 
3251 /*
3252  * The USB device drivers use this function (through the HCD interface in USB
3253  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3254  * coordinate mass storage command queueing across multiple endpoints (basically
3255  * a stream ID == a task ID).
3256  *
3257  * Setting up streams involves allocating the same size stream context array
3258  * for each endpoint and issuing a configure endpoint command for all endpoints.
3259  *
3260  * Don't allow the call to succeed if one endpoint only supports one stream
3261  * (which means it doesn't support streams at all).
3262  *
3263  * Drivers may get less stream IDs than they asked for, if the host controller
3264  * hardware or endpoints claim they can't support the number of requested
3265  * stream IDs.
3266  */
3267 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3268 		struct usb_host_endpoint **eps, unsigned int num_eps,
3269 		unsigned int num_streams, gfp_t mem_flags)
3270 {
3271 	int i, ret;
3272 	struct xhci_hcd *xhci;
3273 	struct xhci_virt_device *vdev;
3274 	struct xhci_command *config_cmd;
3275 	struct xhci_input_control_ctx *ctrl_ctx;
3276 	unsigned int ep_index;
3277 	unsigned int num_stream_ctxs;
3278 	unsigned int max_packet;
3279 	unsigned long flags;
3280 	u32 changed_ep_bitmask = 0;
3281 
3282 	if (!eps)
3283 		return -EINVAL;
3284 
3285 	/* Add one to the number of streams requested to account for
3286 	 * stream 0 that is reserved for xHCI usage.
3287 	 */
3288 	num_streams += 1;
3289 	xhci = hcd_to_xhci(hcd);
3290 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3291 			num_streams);
3292 
3293 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3294 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3295 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3296 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3297 		return -ENOSYS;
3298 	}
3299 
3300 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3301 	if (!config_cmd)
3302 		return -ENOMEM;
3303 
3304 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3305 	if (!ctrl_ctx) {
3306 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3307 				__func__);
3308 		xhci_free_command(xhci, config_cmd);
3309 		return -ENOMEM;
3310 	}
3311 
3312 	/* Check to make sure all endpoints are not already configured for
3313 	 * streams.  While we're at it, find the maximum number of streams that
3314 	 * all the endpoints will support and check for duplicate endpoints.
3315 	 */
3316 	spin_lock_irqsave(&xhci->lock, flags);
3317 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3318 			num_eps, &num_streams, &changed_ep_bitmask);
3319 	if (ret < 0) {
3320 		xhci_free_command(xhci, config_cmd);
3321 		spin_unlock_irqrestore(&xhci->lock, flags);
3322 		return ret;
3323 	}
3324 	if (num_streams <= 1) {
3325 		xhci_warn(xhci, "WARN: endpoints can't handle "
3326 				"more than one stream.\n");
3327 		xhci_free_command(xhci, config_cmd);
3328 		spin_unlock_irqrestore(&xhci->lock, flags);
3329 		return -EINVAL;
3330 	}
3331 	vdev = xhci->devs[udev->slot_id];
3332 	/* Mark each endpoint as being in transition, so
3333 	 * xhci_urb_enqueue() will reject all URBs.
3334 	 */
3335 	for (i = 0; i < num_eps; i++) {
3336 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3337 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3338 	}
3339 	spin_unlock_irqrestore(&xhci->lock, flags);
3340 
3341 	/* Setup internal data structures and allocate HW data structures for
3342 	 * streams (but don't install the HW structures in the input context
3343 	 * until we're sure all memory allocation succeeded).
3344 	 */
3345 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3346 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3347 			num_stream_ctxs, num_streams);
3348 
3349 	for (i = 0; i < num_eps; i++) {
3350 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3352 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3353 				num_stream_ctxs,
3354 				num_streams,
3355 				max_packet, mem_flags);
3356 		if (!vdev->eps[ep_index].stream_info)
3357 			goto cleanup;
3358 		/* Set maxPstreams in endpoint context and update deq ptr to
3359 		 * point to stream context array. FIXME
3360 		 */
3361 	}
3362 
3363 	/* Set up the input context for a configure endpoint command. */
3364 	for (i = 0; i < num_eps; i++) {
3365 		struct xhci_ep_ctx *ep_ctx;
3366 
3367 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3369 
3370 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3371 				vdev->out_ctx, ep_index);
3372 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3373 				vdev->eps[ep_index].stream_info);
3374 	}
3375 	/* Tell the HW to drop its old copy of the endpoint context info
3376 	 * and add the updated copy from the input context.
3377 	 */
3378 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3379 			vdev->out_ctx, ctrl_ctx,
3380 			changed_ep_bitmask, changed_ep_bitmask);
3381 
3382 	/* Issue and wait for the configure endpoint command */
3383 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3384 			false, false);
3385 
3386 	/* xHC rejected the configure endpoint command for some reason, so we
3387 	 * leave the old ring intact and free our internal streams data
3388 	 * structure.
3389 	 */
3390 	if (ret < 0)
3391 		goto cleanup;
3392 
3393 	spin_lock_irqsave(&xhci->lock, flags);
3394 	for (i = 0; i < num_eps; i++) {
3395 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3396 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3397 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3398 			 udev->slot_id, ep_index);
3399 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3400 	}
3401 	xhci_free_command(xhci, config_cmd);
3402 	spin_unlock_irqrestore(&xhci->lock, flags);
3403 
3404 	/* Subtract 1 for stream 0, which drivers can't use */
3405 	return num_streams - 1;
3406 
3407 cleanup:
3408 	/* If it didn't work, free the streams! */
3409 	for (i = 0; i < num_eps; i++) {
3410 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3411 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3412 		vdev->eps[ep_index].stream_info = NULL;
3413 		/* FIXME Unset maxPstreams in endpoint context and
3414 		 * update deq ptr to point to normal string ring.
3415 		 */
3416 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3417 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3418 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3419 	}
3420 	xhci_free_command(xhci, config_cmd);
3421 	return -ENOMEM;
3422 }
3423 
3424 /* Transition the endpoint from using streams to being a "normal" endpoint
3425  * without streams.
3426  *
3427  * Modify the endpoint context state, submit a configure endpoint command,
3428  * and free all endpoint rings for streams if that completes successfully.
3429  */
3430 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3431 		struct usb_host_endpoint **eps, unsigned int num_eps,
3432 		gfp_t mem_flags)
3433 {
3434 	int i, ret;
3435 	struct xhci_hcd *xhci;
3436 	struct xhci_virt_device *vdev;
3437 	struct xhci_command *command;
3438 	struct xhci_input_control_ctx *ctrl_ctx;
3439 	unsigned int ep_index;
3440 	unsigned long flags;
3441 	u32 changed_ep_bitmask;
3442 
3443 	xhci = hcd_to_xhci(hcd);
3444 	vdev = xhci->devs[udev->slot_id];
3445 
3446 	/* Set up a configure endpoint command to remove the streams rings */
3447 	spin_lock_irqsave(&xhci->lock, flags);
3448 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3449 			udev, eps, num_eps);
3450 	if (changed_ep_bitmask == 0) {
3451 		spin_unlock_irqrestore(&xhci->lock, flags);
3452 		return -EINVAL;
3453 	}
3454 
3455 	/* Use the xhci_command structure from the first endpoint.  We may have
3456 	 * allocated too many, but the driver may call xhci_free_streams() for
3457 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3458 	 */
3459 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3460 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3461 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3462 	if (!ctrl_ctx) {
3463 		spin_unlock_irqrestore(&xhci->lock, flags);
3464 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3465 				__func__);
3466 		return -EINVAL;
3467 	}
3468 
3469 	for (i = 0; i < num_eps; i++) {
3470 		struct xhci_ep_ctx *ep_ctx;
3471 
3472 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3474 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3475 			EP_GETTING_NO_STREAMS;
3476 
3477 		xhci_endpoint_copy(xhci, command->in_ctx,
3478 				vdev->out_ctx, ep_index);
3479 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3480 				&vdev->eps[ep_index]);
3481 	}
3482 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3483 			vdev->out_ctx, ctrl_ctx,
3484 			changed_ep_bitmask, changed_ep_bitmask);
3485 	spin_unlock_irqrestore(&xhci->lock, flags);
3486 
3487 	/* Issue and wait for the configure endpoint command,
3488 	 * which must succeed.
3489 	 */
3490 	ret = xhci_configure_endpoint(xhci, udev, command,
3491 			false, true);
3492 
3493 	/* xHC rejected the configure endpoint command for some reason, so we
3494 	 * leave the streams rings intact.
3495 	 */
3496 	if (ret < 0)
3497 		return ret;
3498 
3499 	spin_lock_irqsave(&xhci->lock, flags);
3500 	for (i = 0; i < num_eps; i++) {
3501 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3502 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3503 		vdev->eps[ep_index].stream_info = NULL;
3504 		/* FIXME Unset maxPstreams in endpoint context and
3505 		 * update deq ptr to point to normal string ring.
3506 		 */
3507 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3508 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3509 	}
3510 	spin_unlock_irqrestore(&xhci->lock, flags);
3511 
3512 	return 0;
3513 }
3514 
3515 /*
3516  * Deletes endpoint resources for endpoints that were active before a Reset
3517  * Device command, or a Disable Slot command.  The Reset Device command leaves
3518  * the control endpoint intact, whereas the Disable Slot command deletes it.
3519  *
3520  * Must be called with xhci->lock held.
3521  */
3522 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3523 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3524 {
3525 	int i;
3526 	unsigned int num_dropped_eps = 0;
3527 	unsigned int drop_flags = 0;
3528 
3529 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3530 		if (virt_dev->eps[i].ring) {
3531 			drop_flags |= 1 << i;
3532 			num_dropped_eps++;
3533 		}
3534 	}
3535 	xhci->num_active_eps -= num_dropped_eps;
3536 	if (num_dropped_eps)
3537 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3538 				"Dropped %u ep ctxs, flags = 0x%x, "
3539 				"%u now active.",
3540 				num_dropped_eps, drop_flags,
3541 				xhci->num_active_eps);
3542 }
3543 
3544 /*
3545  * This submits a Reset Device Command, which will set the device state to 0,
3546  * set the device address to 0, and disable all the endpoints except the default
3547  * control endpoint.  The USB core should come back and call
3548  * xhci_address_device(), and then re-set up the configuration.  If this is
3549  * called because of a usb_reset_and_verify_device(), then the old alternate
3550  * settings will be re-installed through the normal bandwidth allocation
3551  * functions.
3552  *
3553  * Wait for the Reset Device command to finish.  Remove all structures
3554  * associated with the endpoints that were disabled.  Clear the input device
3555  * structure? Reset the control endpoint 0 max packet size?
3556  *
3557  * If the virt_dev to be reset does not exist or does not match the udev,
3558  * it means the device is lost, possibly due to the xHC restore error and
3559  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3560  * re-allocate the device.
3561  */
3562 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3563 		struct usb_device *udev)
3564 {
3565 	int ret, i;
3566 	unsigned long flags;
3567 	struct xhci_hcd *xhci;
3568 	unsigned int slot_id;
3569 	struct xhci_virt_device *virt_dev;
3570 	struct xhci_command *reset_device_cmd;
3571 	struct xhci_slot_ctx *slot_ctx;
3572 	int old_active_eps = 0;
3573 
3574 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3575 	if (ret <= 0)
3576 		return ret;
3577 	xhci = hcd_to_xhci(hcd);
3578 	slot_id = udev->slot_id;
3579 	virt_dev = xhci->devs[slot_id];
3580 	if (!virt_dev) {
3581 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3582 				"not exist. Re-allocate the device\n", slot_id);
3583 		ret = xhci_alloc_dev(hcd, udev);
3584 		if (ret == 1)
3585 			return 0;
3586 		else
3587 			return -EINVAL;
3588 	}
3589 
3590 	if (virt_dev->tt_info)
3591 		old_active_eps = virt_dev->tt_info->active_eps;
3592 
3593 	if (virt_dev->udev != udev) {
3594 		/* If the virt_dev and the udev does not match, this virt_dev
3595 		 * may belong to another udev.
3596 		 * Re-allocate the device.
3597 		 */
3598 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3599 				"not match the udev. Re-allocate the device\n",
3600 				slot_id);
3601 		ret = xhci_alloc_dev(hcd, udev);
3602 		if (ret == 1)
3603 			return 0;
3604 		else
3605 			return -EINVAL;
3606 	}
3607 
3608 	/* If device is not setup, there is no point in resetting it */
3609 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3610 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3611 						SLOT_STATE_DISABLED)
3612 		return 0;
3613 
3614 	trace_xhci_discover_or_reset_device(slot_ctx);
3615 
3616 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3617 	/* Allocate the command structure that holds the struct completion.
3618 	 * Assume we're in process context, since the normal device reset
3619 	 * process has to wait for the device anyway.  Storage devices are
3620 	 * reset as part of error handling, so use GFP_NOIO instead of
3621 	 * GFP_KERNEL.
3622 	 */
3623 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3624 	if (!reset_device_cmd) {
3625 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3626 		return -ENOMEM;
3627 	}
3628 
3629 	/* Attempt to submit the Reset Device command to the command ring */
3630 	spin_lock_irqsave(&xhci->lock, flags);
3631 
3632 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3633 	if (ret) {
3634 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3635 		spin_unlock_irqrestore(&xhci->lock, flags);
3636 		goto command_cleanup;
3637 	}
3638 	xhci_ring_cmd_db(xhci);
3639 	spin_unlock_irqrestore(&xhci->lock, flags);
3640 
3641 	/* Wait for the Reset Device command to finish */
3642 	wait_for_completion(reset_device_cmd->completion);
3643 
3644 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3645 	 * unless we tried to reset a slot ID that wasn't enabled,
3646 	 * or the device wasn't in the addressed or configured state.
3647 	 */
3648 	ret = reset_device_cmd->status;
3649 	switch (ret) {
3650 	case COMP_COMMAND_ABORTED:
3651 	case COMP_COMMAND_RING_STOPPED:
3652 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3653 		ret = -ETIME;
3654 		goto command_cleanup;
3655 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3656 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3657 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3658 				slot_id,
3659 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3660 		xhci_dbg(xhci, "Not freeing device rings.\n");
3661 		/* Don't treat this as an error.  May change my mind later. */
3662 		ret = 0;
3663 		goto command_cleanup;
3664 	case COMP_SUCCESS:
3665 		xhci_dbg(xhci, "Successful reset device command.\n");
3666 		break;
3667 	default:
3668 		if (xhci_is_vendor_info_code(xhci, ret))
3669 			break;
3670 		xhci_warn(xhci, "Unknown completion code %u for "
3671 				"reset device command.\n", ret);
3672 		ret = -EINVAL;
3673 		goto command_cleanup;
3674 	}
3675 
3676 	/* Free up host controller endpoint resources */
3677 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3678 		spin_lock_irqsave(&xhci->lock, flags);
3679 		/* Don't delete the default control endpoint resources */
3680 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3681 		spin_unlock_irqrestore(&xhci->lock, flags);
3682 	}
3683 
3684 	/* Everything but endpoint 0 is disabled, so free the rings. */
3685 	for (i = 1; i < 31; i++) {
3686 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3687 
3688 		if (ep->ep_state & EP_HAS_STREAMS) {
3689 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3690 					xhci_get_endpoint_address(i));
3691 			xhci_free_stream_info(xhci, ep->stream_info);
3692 			ep->stream_info = NULL;
3693 			ep->ep_state &= ~EP_HAS_STREAMS;
3694 		}
3695 
3696 		if (ep->ring) {
3697 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3698 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3699 		}
3700 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3701 			xhci_drop_ep_from_interval_table(xhci,
3702 					&virt_dev->eps[i].bw_info,
3703 					virt_dev->bw_table,
3704 					udev,
3705 					&virt_dev->eps[i],
3706 					virt_dev->tt_info);
3707 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3708 	}
3709 	/* If necessary, update the number of active TTs on this root port */
3710 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3711 	ret = 0;
3712 
3713 command_cleanup:
3714 	xhci_free_command(xhci, reset_device_cmd);
3715 	return ret;
3716 }
3717 
3718 /*
3719  * At this point, the struct usb_device is about to go away, the device has
3720  * disconnected, and all traffic has been stopped and the endpoints have been
3721  * disabled.  Free any HC data structures associated with that device.
3722  */
3723 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3724 {
3725 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3726 	struct xhci_virt_device *virt_dev;
3727 	struct xhci_slot_ctx *slot_ctx;
3728 	int i, ret;
3729 
3730 #ifndef CONFIG_USB_DEFAULT_PERSIST
3731 	/*
3732 	 * We called pm_runtime_get_noresume when the device was attached.
3733 	 * Decrement the counter here to allow controller to runtime suspend
3734 	 * if no devices remain.
3735 	 */
3736 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3737 		pm_runtime_put_noidle(hcd->self.controller);
3738 #endif
3739 
3740 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3741 	/* If the host is halted due to driver unload, we still need to free the
3742 	 * device.
3743 	 */
3744 	if (ret <= 0 && ret != -ENODEV)
3745 		return;
3746 
3747 	virt_dev = xhci->devs[udev->slot_id];
3748 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749 	trace_xhci_free_dev(slot_ctx);
3750 
3751 	/* Stop any wayward timer functions (which may grab the lock) */
3752 	for (i = 0; i < 31; i++) {
3753 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3754 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3755 	}
3756 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3757 	virt_dev->udev = NULL;
3758 	ret = xhci_disable_slot(xhci, udev->slot_id);
3759 	if (ret)
3760 		xhci_free_virt_device(xhci, udev->slot_id);
3761 }
3762 
3763 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3764 {
3765 	struct xhci_command *command;
3766 	unsigned long flags;
3767 	u32 state;
3768 	int ret = 0;
3769 
3770 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3771 	if (!command)
3772 		return -ENOMEM;
3773 
3774 	spin_lock_irqsave(&xhci->lock, flags);
3775 	/* Don't disable the slot if the host controller is dead. */
3776 	state = readl(&xhci->op_regs->status);
3777 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3778 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3779 		spin_unlock_irqrestore(&xhci->lock, flags);
3780 		kfree(command);
3781 		return -ENODEV;
3782 	}
3783 
3784 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3785 				slot_id);
3786 	if (ret) {
3787 		spin_unlock_irqrestore(&xhci->lock, flags);
3788 		kfree(command);
3789 		return ret;
3790 	}
3791 	xhci_ring_cmd_db(xhci);
3792 	spin_unlock_irqrestore(&xhci->lock, flags);
3793 	return ret;
3794 }
3795 
3796 /*
3797  * Checks if we have enough host controller resources for the default control
3798  * endpoint.
3799  *
3800  * Must be called with xhci->lock held.
3801  */
3802 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3803 {
3804 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3805 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3806 				"Not enough ep ctxs: "
3807 				"%u active, need to add 1, limit is %u.",
3808 				xhci->num_active_eps, xhci->limit_active_eps);
3809 		return -ENOMEM;
3810 	}
3811 	xhci->num_active_eps += 1;
3812 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3813 			"Adding 1 ep ctx, %u now active.",
3814 			xhci->num_active_eps);
3815 	return 0;
3816 }
3817 
3818 
3819 /*
3820  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3821  * timed out, or allocating memory failed.  Returns 1 on success.
3822  */
3823 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3824 {
3825 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826 	struct xhci_virt_device *vdev;
3827 	struct xhci_slot_ctx *slot_ctx;
3828 	unsigned long flags;
3829 	int ret, slot_id;
3830 	struct xhci_command *command;
3831 
3832 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833 	if (!command)
3834 		return 0;
3835 
3836 	spin_lock_irqsave(&xhci->lock, flags);
3837 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3838 	if (ret) {
3839 		spin_unlock_irqrestore(&xhci->lock, flags);
3840 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3841 		xhci_free_command(xhci, command);
3842 		return 0;
3843 	}
3844 	xhci_ring_cmd_db(xhci);
3845 	spin_unlock_irqrestore(&xhci->lock, flags);
3846 
3847 	wait_for_completion(command->completion);
3848 	slot_id = command->slot_id;
3849 
3850 	if (!slot_id || command->status != COMP_SUCCESS) {
3851 		xhci_err(xhci, "Error while assigning device slot ID\n");
3852 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3853 				HCS_MAX_SLOTS(
3854 					readl(&xhci->cap_regs->hcs_params1)));
3855 		xhci_free_command(xhci, command);
3856 		return 0;
3857 	}
3858 
3859 	xhci_free_command(xhci, command);
3860 
3861 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3862 		spin_lock_irqsave(&xhci->lock, flags);
3863 		ret = xhci_reserve_host_control_ep_resources(xhci);
3864 		if (ret) {
3865 			spin_unlock_irqrestore(&xhci->lock, flags);
3866 			xhci_warn(xhci, "Not enough host resources, "
3867 					"active endpoint contexts = %u\n",
3868 					xhci->num_active_eps);
3869 			goto disable_slot;
3870 		}
3871 		spin_unlock_irqrestore(&xhci->lock, flags);
3872 	}
3873 	/* Use GFP_NOIO, since this function can be called from
3874 	 * xhci_discover_or_reset_device(), which may be called as part of
3875 	 * mass storage driver error handling.
3876 	 */
3877 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3878 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3879 		goto disable_slot;
3880 	}
3881 	vdev = xhci->devs[slot_id];
3882 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3883 	trace_xhci_alloc_dev(slot_ctx);
3884 
3885 	udev->slot_id = slot_id;
3886 
3887 	xhci_debugfs_create_slot(xhci, slot_id);
3888 
3889 #ifndef CONFIG_USB_DEFAULT_PERSIST
3890 	/*
3891 	 * If resetting upon resume, we can't put the controller into runtime
3892 	 * suspend if there is a device attached.
3893 	 */
3894 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3895 		pm_runtime_get_noresume(hcd->self.controller);
3896 #endif
3897 
3898 	/* Is this a LS or FS device under a HS hub? */
3899 	/* Hub or peripherial? */
3900 	return 1;
3901 
3902 disable_slot:
3903 	ret = xhci_disable_slot(xhci, udev->slot_id);
3904 	if (ret)
3905 		xhci_free_virt_device(xhci, udev->slot_id);
3906 
3907 	return 0;
3908 }
3909 
3910 /*
3911  * Issue an Address Device command and optionally send a corresponding
3912  * SetAddress request to the device.
3913  */
3914 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3915 			     enum xhci_setup_dev setup)
3916 {
3917 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3918 	unsigned long flags;
3919 	struct xhci_virt_device *virt_dev;
3920 	int ret = 0;
3921 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3922 	struct xhci_slot_ctx *slot_ctx;
3923 	struct xhci_input_control_ctx *ctrl_ctx;
3924 	u64 temp_64;
3925 	struct xhci_command *command = NULL;
3926 
3927 	mutex_lock(&xhci->mutex);
3928 
3929 	if (xhci->xhc_state) {	/* dying, removing or halted */
3930 		ret = -ESHUTDOWN;
3931 		goto out;
3932 	}
3933 
3934 	if (!udev->slot_id) {
3935 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3936 				"Bad Slot ID %d", udev->slot_id);
3937 		ret = -EINVAL;
3938 		goto out;
3939 	}
3940 
3941 	virt_dev = xhci->devs[udev->slot_id];
3942 
3943 	if (WARN_ON(!virt_dev)) {
3944 		/*
3945 		 * In plug/unplug torture test with an NEC controller,
3946 		 * a zero-dereference was observed once due to virt_dev = 0.
3947 		 * Print useful debug rather than crash if it is observed again!
3948 		 */
3949 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3950 			udev->slot_id);
3951 		ret = -EINVAL;
3952 		goto out;
3953 	}
3954 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955 	trace_xhci_setup_device_slot(slot_ctx);
3956 
3957 	if (setup == SETUP_CONTEXT_ONLY) {
3958 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3959 		    SLOT_STATE_DEFAULT) {
3960 			xhci_dbg(xhci, "Slot already in default state\n");
3961 			goto out;
3962 		}
3963 	}
3964 
3965 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3966 	if (!command) {
3967 		ret = -ENOMEM;
3968 		goto out;
3969 	}
3970 
3971 	command->in_ctx = virt_dev->in_ctx;
3972 
3973 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3974 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3975 	if (!ctrl_ctx) {
3976 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3977 				__func__);
3978 		ret = -EINVAL;
3979 		goto out;
3980 	}
3981 	/*
3982 	 * If this is the first Set Address since device plug-in or
3983 	 * virt_device realloaction after a resume with an xHCI power loss,
3984 	 * then set up the slot context.
3985 	 */
3986 	if (!slot_ctx->dev_info)
3987 		xhci_setup_addressable_virt_dev(xhci, udev);
3988 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3989 	else
3990 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3991 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3992 	ctrl_ctx->drop_flags = 0;
3993 
3994 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3995 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3996 
3997 	spin_lock_irqsave(&xhci->lock, flags);
3998 	trace_xhci_setup_device(virt_dev);
3999 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4000 					udev->slot_id, setup);
4001 	if (ret) {
4002 		spin_unlock_irqrestore(&xhci->lock, flags);
4003 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4004 				"FIXME: allocate a command ring segment");
4005 		goto out;
4006 	}
4007 	xhci_ring_cmd_db(xhci);
4008 	spin_unlock_irqrestore(&xhci->lock, flags);
4009 
4010 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4011 	wait_for_completion(command->completion);
4012 
4013 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4014 	 * the SetAddress() "recovery interval" required by USB and aborting the
4015 	 * command on a timeout.
4016 	 */
4017 	switch (command->status) {
4018 	case COMP_COMMAND_ABORTED:
4019 	case COMP_COMMAND_RING_STOPPED:
4020 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4021 		ret = -ETIME;
4022 		break;
4023 	case COMP_CONTEXT_STATE_ERROR:
4024 	case COMP_SLOT_NOT_ENABLED_ERROR:
4025 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4026 			 act, udev->slot_id);
4027 		ret = -EINVAL;
4028 		break;
4029 	case COMP_USB_TRANSACTION_ERROR:
4030 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4031 
4032 		mutex_unlock(&xhci->mutex);
4033 		ret = xhci_disable_slot(xhci, udev->slot_id);
4034 		if (!ret)
4035 			xhci_alloc_dev(hcd, udev);
4036 		kfree(command->completion);
4037 		kfree(command);
4038 		return -EPROTO;
4039 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4040 		dev_warn(&udev->dev,
4041 			 "ERROR: Incompatible device for setup %s command\n", act);
4042 		ret = -ENODEV;
4043 		break;
4044 	case COMP_SUCCESS:
4045 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4046 			       "Successful setup %s command", act);
4047 		break;
4048 	default:
4049 		xhci_err(xhci,
4050 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4051 			 act, command->status);
4052 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4053 		ret = -EINVAL;
4054 		break;
4055 	}
4056 	if (ret)
4057 		goto out;
4058 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4059 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4060 			"Op regs DCBAA ptr = %#016llx", temp_64);
4061 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4062 		"Slot ID %d dcbaa entry @%p = %#016llx",
4063 		udev->slot_id,
4064 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4065 		(unsigned long long)
4066 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4067 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4068 			"Output Context DMA address = %#08llx",
4069 			(unsigned long long)virt_dev->out_ctx->dma);
4070 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4071 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4072 	/*
4073 	 * USB core uses address 1 for the roothubs, so we add one to the
4074 	 * address given back to us by the HC.
4075 	 */
4076 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4077 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4078 	/* Zero the input context control for later use */
4079 	ctrl_ctx->add_flags = 0;
4080 	ctrl_ctx->drop_flags = 0;
4081 
4082 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4083 		       "Internal device address = %d",
4084 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4085 out:
4086 	mutex_unlock(&xhci->mutex);
4087 	if (command) {
4088 		kfree(command->completion);
4089 		kfree(command);
4090 	}
4091 	return ret;
4092 }
4093 
4094 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4095 {
4096 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4097 }
4098 
4099 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4100 {
4101 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4102 }
4103 
4104 /*
4105  * Transfer the port index into real index in the HW port status
4106  * registers. Caculate offset between the port's PORTSC register
4107  * and port status base. Divide the number of per port register
4108  * to get the real index. The raw port number bases 1.
4109  */
4110 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4111 {
4112 	struct xhci_hub *rhub;
4113 
4114 	rhub = xhci_get_rhub(hcd);
4115 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4116 }
4117 
4118 /*
4119  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4120  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4121  */
4122 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4123 			struct usb_device *udev, u16 max_exit_latency)
4124 {
4125 	struct xhci_virt_device *virt_dev;
4126 	struct xhci_command *command;
4127 	struct xhci_input_control_ctx *ctrl_ctx;
4128 	struct xhci_slot_ctx *slot_ctx;
4129 	unsigned long flags;
4130 	int ret;
4131 
4132 	spin_lock_irqsave(&xhci->lock, flags);
4133 
4134 	virt_dev = xhci->devs[udev->slot_id];
4135 
4136 	/*
4137 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4138 	 * xHC was re-initialized. Exit latency will be set later after
4139 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4140 	 */
4141 
4142 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4143 		spin_unlock_irqrestore(&xhci->lock, flags);
4144 		return 0;
4145 	}
4146 
4147 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4148 	command = xhci->lpm_command;
4149 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4150 	if (!ctrl_ctx) {
4151 		spin_unlock_irqrestore(&xhci->lock, flags);
4152 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4153 				__func__);
4154 		return -ENOMEM;
4155 	}
4156 
4157 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4158 	spin_unlock_irqrestore(&xhci->lock, flags);
4159 
4160 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4161 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4162 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4163 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4164 	slot_ctx->dev_state = 0;
4165 
4166 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4167 			"Set up evaluate context for LPM MEL change.");
4168 
4169 	/* Issue and wait for the evaluate context command. */
4170 	ret = xhci_configure_endpoint(xhci, udev, command,
4171 			true, true);
4172 
4173 	if (!ret) {
4174 		spin_lock_irqsave(&xhci->lock, flags);
4175 		virt_dev->current_mel = max_exit_latency;
4176 		spin_unlock_irqrestore(&xhci->lock, flags);
4177 	}
4178 	return ret;
4179 }
4180 
4181 #ifdef CONFIG_PM
4182 
4183 /* BESL to HIRD Encoding array for USB2 LPM */
4184 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4185 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4186 
4187 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4188 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4189 					struct usb_device *udev)
4190 {
4191 	int u2del, besl, besl_host;
4192 	int besl_device = 0;
4193 	u32 field;
4194 
4195 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4196 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4197 
4198 	if (field & USB_BESL_SUPPORT) {
4199 		for (besl_host = 0; besl_host < 16; besl_host++) {
4200 			if (xhci_besl_encoding[besl_host] >= u2del)
4201 				break;
4202 		}
4203 		/* Use baseline BESL value as default */
4204 		if (field & USB_BESL_BASELINE_VALID)
4205 			besl_device = USB_GET_BESL_BASELINE(field);
4206 		else if (field & USB_BESL_DEEP_VALID)
4207 			besl_device = USB_GET_BESL_DEEP(field);
4208 	} else {
4209 		if (u2del <= 50)
4210 			besl_host = 0;
4211 		else
4212 			besl_host = (u2del - 51) / 75 + 1;
4213 	}
4214 
4215 	besl = besl_host + besl_device;
4216 	if (besl > 15)
4217 		besl = 15;
4218 
4219 	return besl;
4220 }
4221 
4222 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4223 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4224 {
4225 	u32 field;
4226 	int l1;
4227 	int besld = 0;
4228 	int hirdm = 0;
4229 
4230 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4231 
4232 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4233 	l1 = udev->l1_params.timeout / 256;
4234 
4235 	/* device has preferred BESLD */
4236 	if (field & USB_BESL_DEEP_VALID) {
4237 		besld = USB_GET_BESL_DEEP(field);
4238 		hirdm = 1;
4239 	}
4240 
4241 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4242 }
4243 
4244 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4245 			struct usb_device *udev, int enable)
4246 {
4247 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4248 	struct xhci_port **ports;
4249 	__le32 __iomem	*pm_addr, *hlpm_addr;
4250 	u32		pm_val, hlpm_val, field;
4251 	unsigned int	port_num;
4252 	unsigned long	flags;
4253 	int		hird, exit_latency;
4254 	int		ret;
4255 
4256 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4257 			!udev->lpm_capable)
4258 		return -EPERM;
4259 
4260 	if (!udev->parent || udev->parent->parent ||
4261 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4262 		return -EPERM;
4263 
4264 	if (udev->usb2_hw_lpm_capable != 1)
4265 		return -EPERM;
4266 
4267 	spin_lock_irqsave(&xhci->lock, flags);
4268 
4269 	ports = xhci->usb2_rhub.ports;
4270 	port_num = udev->portnum - 1;
4271 	pm_addr = ports[port_num]->addr + PORTPMSC;
4272 	pm_val = readl(pm_addr);
4273 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4274 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4275 
4276 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4277 			enable ? "enable" : "disable", port_num + 1);
4278 
4279 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4280 		/* Host supports BESL timeout instead of HIRD */
4281 		if (udev->usb2_hw_lpm_besl_capable) {
4282 			/* if device doesn't have a preferred BESL value use a
4283 			 * default one which works with mixed HIRD and BESL
4284 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4285 			 */
4286 			if ((field & USB_BESL_SUPPORT) &&
4287 			    (field & USB_BESL_BASELINE_VALID))
4288 				hird = USB_GET_BESL_BASELINE(field);
4289 			else
4290 				hird = udev->l1_params.besl;
4291 
4292 			exit_latency = xhci_besl_encoding[hird];
4293 			spin_unlock_irqrestore(&xhci->lock, flags);
4294 
4295 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4296 			 * input context for link powermanagement evaluate
4297 			 * context commands. It is protected by hcd->bandwidth
4298 			 * mutex and is shared by all devices. We need to set
4299 			 * the max ext latency in USB 2 BESL LPM as well, so
4300 			 * use the same mutex and xhci_change_max_exit_latency()
4301 			 */
4302 			mutex_lock(hcd->bandwidth_mutex);
4303 			ret = xhci_change_max_exit_latency(xhci, udev,
4304 							   exit_latency);
4305 			mutex_unlock(hcd->bandwidth_mutex);
4306 
4307 			if (ret < 0)
4308 				return ret;
4309 			spin_lock_irqsave(&xhci->lock, flags);
4310 
4311 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4312 			writel(hlpm_val, hlpm_addr);
4313 			/* flush write */
4314 			readl(hlpm_addr);
4315 		} else {
4316 			hird = xhci_calculate_hird_besl(xhci, udev);
4317 		}
4318 
4319 		pm_val &= ~PORT_HIRD_MASK;
4320 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4321 		writel(pm_val, pm_addr);
4322 		pm_val = readl(pm_addr);
4323 		pm_val |= PORT_HLE;
4324 		writel(pm_val, pm_addr);
4325 		/* flush write */
4326 		readl(pm_addr);
4327 	} else {
4328 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4329 		writel(pm_val, pm_addr);
4330 		/* flush write */
4331 		readl(pm_addr);
4332 		if (udev->usb2_hw_lpm_besl_capable) {
4333 			spin_unlock_irqrestore(&xhci->lock, flags);
4334 			mutex_lock(hcd->bandwidth_mutex);
4335 			xhci_change_max_exit_latency(xhci, udev, 0);
4336 			mutex_unlock(hcd->bandwidth_mutex);
4337 			return 0;
4338 		}
4339 	}
4340 
4341 	spin_unlock_irqrestore(&xhci->lock, flags);
4342 	return 0;
4343 }
4344 
4345 /* check if a usb2 port supports a given extened capability protocol
4346  * only USB2 ports extended protocol capability values are cached.
4347  * Return 1 if capability is supported
4348  */
4349 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4350 					   unsigned capability)
4351 {
4352 	u32 port_offset, port_count;
4353 	int i;
4354 
4355 	for (i = 0; i < xhci->num_ext_caps; i++) {
4356 		if (xhci->ext_caps[i] & capability) {
4357 			/* port offsets starts at 1 */
4358 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4359 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4360 			if (port >= port_offset &&
4361 			    port < port_offset + port_count)
4362 				return 1;
4363 		}
4364 	}
4365 	return 0;
4366 }
4367 
4368 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4369 {
4370 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4371 	int		portnum = udev->portnum - 1;
4372 
4373 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4374 			!udev->lpm_capable)
4375 		return 0;
4376 
4377 	/* we only support lpm for non-hub device connected to root hub yet */
4378 	if (!udev->parent || udev->parent->parent ||
4379 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4380 		return 0;
4381 
4382 	if (xhci->hw_lpm_support == 1 &&
4383 			xhci_check_usb2_port_capability(
4384 				xhci, portnum, XHCI_HLC)) {
4385 		udev->usb2_hw_lpm_capable = 1;
4386 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4387 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4388 		if (xhci_check_usb2_port_capability(xhci, portnum,
4389 					XHCI_BLC))
4390 			udev->usb2_hw_lpm_besl_capable = 1;
4391 	}
4392 
4393 	return 0;
4394 }
4395 
4396 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4397 
4398 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4399 static unsigned long long xhci_service_interval_to_ns(
4400 		struct usb_endpoint_descriptor *desc)
4401 {
4402 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4403 }
4404 
4405 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4406 		enum usb3_link_state state)
4407 {
4408 	unsigned long long sel;
4409 	unsigned long long pel;
4410 	unsigned int max_sel_pel;
4411 	char *state_name;
4412 
4413 	switch (state) {
4414 	case USB3_LPM_U1:
4415 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4416 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4417 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4418 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4419 		state_name = "U1";
4420 		break;
4421 	case USB3_LPM_U2:
4422 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4423 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4424 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4425 		state_name = "U2";
4426 		break;
4427 	default:
4428 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4429 				__func__);
4430 		return USB3_LPM_DISABLED;
4431 	}
4432 
4433 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4434 		return USB3_LPM_DEVICE_INITIATED;
4435 
4436 	if (sel > max_sel_pel)
4437 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4438 				"due to long SEL %llu ms\n",
4439 				state_name, sel);
4440 	else
4441 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4442 				"due to long PEL %llu ms\n",
4443 				state_name, pel);
4444 	return USB3_LPM_DISABLED;
4445 }
4446 
4447 /* The U1 timeout should be the maximum of the following values:
4448  *  - For control endpoints, U1 system exit latency (SEL) * 3
4449  *  - For bulk endpoints, U1 SEL * 5
4450  *  - For interrupt endpoints:
4451  *    - Notification EPs, U1 SEL * 3
4452  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4453  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4454  */
4455 static unsigned long long xhci_calculate_intel_u1_timeout(
4456 		struct usb_device *udev,
4457 		struct usb_endpoint_descriptor *desc)
4458 {
4459 	unsigned long long timeout_ns;
4460 	int ep_type;
4461 	int intr_type;
4462 
4463 	ep_type = usb_endpoint_type(desc);
4464 	switch (ep_type) {
4465 	case USB_ENDPOINT_XFER_CONTROL:
4466 		timeout_ns = udev->u1_params.sel * 3;
4467 		break;
4468 	case USB_ENDPOINT_XFER_BULK:
4469 		timeout_ns = udev->u1_params.sel * 5;
4470 		break;
4471 	case USB_ENDPOINT_XFER_INT:
4472 		intr_type = usb_endpoint_interrupt_type(desc);
4473 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4474 			timeout_ns = udev->u1_params.sel * 3;
4475 			break;
4476 		}
4477 		/* Otherwise the calculation is the same as isoc eps */
4478 		/* fall through */
4479 	case USB_ENDPOINT_XFER_ISOC:
4480 		timeout_ns = xhci_service_interval_to_ns(desc);
4481 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4482 		if (timeout_ns < udev->u1_params.sel * 2)
4483 			timeout_ns = udev->u1_params.sel * 2;
4484 		break;
4485 	default:
4486 		return 0;
4487 	}
4488 
4489 	return timeout_ns;
4490 }
4491 
4492 /* Returns the hub-encoded U1 timeout value. */
4493 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4494 		struct usb_device *udev,
4495 		struct usb_endpoint_descriptor *desc)
4496 {
4497 	unsigned long long timeout_ns;
4498 
4499 	if (xhci->quirks & XHCI_INTEL_HOST)
4500 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4501 	else
4502 		timeout_ns = udev->u1_params.sel;
4503 
4504 	/* The U1 timeout is encoded in 1us intervals.
4505 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4506 	 */
4507 	if (timeout_ns == USB3_LPM_DISABLED)
4508 		timeout_ns = 1;
4509 	else
4510 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4511 
4512 	/* If the necessary timeout value is bigger than what we can set in the
4513 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4514 	 */
4515 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4516 		return timeout_ns;
4517 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4518 			"due to long timeout %llu ms\n", timeout_ns);
4519 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4520 }
4521 
4522 /* The U2 timeout should be the maximum of:
4523  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4524  *  - largest bInterval of any active periodic endpoint (to avoid going
4525  *    into lower power link states between intervals).
4526  *  - the U2 Exit Latency of the device
4527  */
4528 static unsigned long long xhci_calculate_intel_u2_timeout(
4529 		struct usb_device *udev,
4530 		struct usb_endpoint_descriptor *desc)
4531 {
4532 	unsigned long long timeout_ns;
4533 	unsigned long long u2_del_ns;
4534 
4535 	timeout_ns = 10 * 1000 * 1000;
4536 
4537 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4538 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4539 		timeout_ns = xhci_service_interval_to_ns(desc);
4540 
4541 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4542 	if (u2_del_ns > timeout_ns)
4543 		timeout_ns = u2_del_ns;
4544 
4545 	return timeout_ns;
4546 }
4547 
4548 /* Returns the hub-encoded U2 timeout value. */
4549 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4550 		struct usb_device *udev,
4551 		struct usb_endpoint_descriptor *desc)
4552 {
4553 	unsigned long long timeout_ns;
4554 
4555 	if (xhci->quirks & XHCI_INTEL_HOST)
4556 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4557 	else
4558 		timeout_ns = udev->u2_params.sel;
4559 
4560 	/* The U2 timeout is encoded in 256us intervals */
4561 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4562 	/* If the necessary timeout value is bigger than what we can set in the
4563 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4564 	 */
4565 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4566 		return timeout_ns;
4567 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4568 			"due to long timeout %llu ms\n", timeout_ns);
4569 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4570 }
4571 
4572 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4573 		struct usb_device *udev,
4574 		struct usb_endpoint_descriptor *desc,
4575 		enum usb3_link_state state,
4576 		u16 *timeout)
4577 {
4578 	if (state == USB3_LPM_U1)
4579 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4580 	else if (state == USB3_LPM_U2)
4581 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4582 
4583 	return USB3_LPM_DISABLED;
4584 }
4585 
4586 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4587 		struct usb_device *udev,
4588 		struct usb_endpoint_descriptor *desc,
4589 		enum usb3_link_state state,
4590 		u16 *timeout)
4591 {
4592 	u16 alt_timeout;
4593 
4594 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4595 		desc, state, timeout);
4596 
4597 	/* If we found we can't enable hub-initiated LPM, or
4598 	 * the U1 or U2 exit latency was too high to allow
4599 	 * device-initiated LPM as well, just stop searching.
4600 	 */
4601 	if (alt_timeout == USB3_LPM_DISABLED ||
4602 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4603 		*timeout = alt_timeout;
4604 		return -E2BIG;
4605 	}
4606 	if (alt_timeout > *timeout)
4607 		*timeout = alt_timeout;
4608 	return 0;
4609 }
4610 
4611 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4612 		struct usb_device *udev,
4613 		struct usb_host_interface *alt,
4614 		enum usb3_link_state state,
4615 		u16 *timeout)
4616 {
4617 	int j;
4618 
4619 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4620 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4621 					&alt->endpoint[j].desc, state, timeout))
4622 			return -E2BIG;
4623 		continue;
4624 	}
4625 	return 0;
4626 }
4627 
4628 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4629 		enum usb3_link_state state)
4630 {
4631 	struct usb_device *parent;
4632 	unsigned int num_hubs;
4633 
4634 	if (state == USB3_LPM_U2)
4635 		return 0;
4636 
4637 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4638 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4639 			parent = parent->parent)
4640 		num_hubs++;
4641 
4642 	if (num_hubs < 2)
4643 		return 0;
4644 
4645 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4646 			" below second-tier hub.\n");
4647 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4648 			"to decrease power consumption.\n");
4649 	return -E2BIG;
4650 }
4651 
4652 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4653 		struct usb_device *udev,
4654 		enum usb3_link_state state)
4655 {
4656 	if (xhci->quirks & XHCI_INTEL_HOST)
4657 		return xhci_check_intel_tier_policy(udev, state);
4658 	else
4659 		return 0;
4660 }
4661 
4662 /* Returns the U1 or U2 timeout that should be enabled.
4663  * If the tier check or timeout setting functions return with a non-zero exit
4664  * code, that means the timeout value has been finalized and we shouldn't look
4665  * at any more endpoints.
4666  */
4667 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4668 			struct usb_device *udev, enum usb3_link_state state)
4669 {
4670 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4671 	struct usb_host_config *config;
4672 	char *state_name;
4673 	int i;
4674 	u16 timeout = USB3_LPM_DISABLED;
4675 
4676 	if (state == USB3_LPM_U1)
4677 		state_name = "U1";
4678 	else if (state == USB3_LPM_U2)
4679 		state_name = "U2";
4680 	else {
4681 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4682 				state);
4683 		return timeout;
4684 	}
4685 
4686 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4687 		return timeout;
4688 
4689 	/* Gather some information about the currently installed configuration
4690 	 * and alternate interface settings.
4691 	 */
4692 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4693 			state, &timeout))
4694 		return timeout;
4695 
4696 	config = udev->actconfig;
4697 	if (!config)
4698 		return timeout;
4699 
4700 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4701 		struct usb_driver *driver;
4702 		struct usb_interface *intf = config->interface[i];
4703 
4704 		if (!intf)
4705 			continue;
4706 
4707 		/* Check if any currently bound drivers want hub-initiated LPM
4708 		 * disabled.
4709 		 */
4710 		if (intf->dev.driver) {
4711 			driver = to_usb_driver(intf->dev.driver);
4712 			if (driver && driver->disable_hub_initiated_lpm) {
4713 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4714 						"at request of driver %s\n",
4715 						state_name, driver->name);
4716 				return xhci_get_timeout_no_hub_lpm(udev, state);
4717 			}
4718 		}
4719 
4720 		/* Not sure how this could happen... */
4721 		if (!intf->cur_altsetting)
4722 			continue;
4723 
4724 		if (xhci_update_timeout_for_interface(xhci, udev,
4725 					intf->cur_altsetting,
4726 					state, &timeout))
4727 			return timeout;
4728 	}
4729 	return timeout;
4730 }
4731 
4732 static int calculate_max_exit_latency(struct usb_device *udev,
4733 		enum usb3_link_state state_changed,
4734 		u16 hub_encoded_timeout)
4735 {
4736 	unsigned long long u1_mel_us = 0;
4737 	unsigned long long u2_mel_us = 0;
4738 	unsigned long long mel_us = 0;
4739 	bool disabling_u1;
4740 	bool disabling_u2;
4741 	bool enabling_u1;
4742 	bool enabling_u2;
4743 
4744 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4745 			hub_encoded_timeout == USB3_LPM_DISABLED);
4746 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4747 			hub_encoded_timeout == USB3_LPM_DISABLED);
4748 
4749 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4750 			hub_encoded_timeout != USB3_LPM_DISABLED);
4751 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4752 			hub_encoded_timeout != USB3_LPM_DISABLED);
4753 
4754 	/* If U1 was already enabled and we're not disabling it,
4755 	 * or we're going to enable U1, account for the U1 max exit latency.
4756 	 */
4757 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4758 			enabling_u1)
4759 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4760 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4761 			enabling_u2)
4762 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4763 
4764 	if (u1_mel_us > u2_mel_us)
4765 		mel_us = u1_mel_us;
4766 	else
4767 		mel_us = u2_mel_us;
4768 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4769 	if (mel_us > MAX_EXIT) {
4770 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4771 				"is too big.\n", mel_us);
4772 		return -E2BIG;
4773 	}
4774 	return mel_us;
4775 }
4776 
4777 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4778 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4779 			struct usb_device *udev, enum usb3_link_state state)
4780 {
4781 	struct xhci_hcd	*xhci;
4782 	u16 hub_encoded_timeout;
4783 	int mel;
4784 	int ret;
4785 
4786 	xhci = hcd_to_xhci(hcd);
4787 	/* The LPM timeout values are pretty host-controller specific, so don't
4788 	 * enable hub-initiated timeouts unless the vendor has provided
4789 	 * information about their timeout algorithm.
4790 	 */
4791 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4792 			!xhci->devs[udev->slot_id])
4793 		return USB3_LPM_DISABLED;
4794 
4795 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4796 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4797 	if (mel < 0) {
4798 		/* Max Exit Latency is too big, disable LPM. */
4799 		hub_encoded_timeout = USB3_LPM_DISABLED;
4800 		mel = 0;
4801 	}
4802 
4803 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4804 	if (ret)
4805 		return ret;
4806 	return hub_encoded_timeout;
4807 }
4808 
4809 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4810 			struct usb_device *udev, enum usb3_link_state state)
4811 {
4812 	struct xhci_hcd	*xhci;
4813 	u16 mel;
4814 
4815 	xhci = hcd_to_xhci(hcd);
4816 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4817 			!xhci->devs[udev->slot_id])
4818 		return 0;
4819 
4820 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4821 	return xhci_change_max_exit_latency(xhci, udev, mel);
4822 }
4823 #else /* CONFIG_PM */
4824 
4825 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4826 				struct usb_device *udev, int enable)
4827 {
4828 	return 0;
4829 }
4830 
4831 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4832 {
4833 	return 0;
4834 }
4835 
4836 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4837 			struct usb_device *udev, enum usb3_link_state state)
4838 {
4839 	return USB3_LPM_DISABLED;
4840 }
4841 
4842 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843 			struct usb_device *udev, enum usb3_link_state state)
4844 {
4845 	return 0;
4846 }
4847 #endif	/* CONFIG_PM */
4848 
4849 /*-------------------------------------------------------------------------*/
4850 
4851 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4852  * internal data structures for the device.
4853  */
4854 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4855 			struct usb_tt *tt, gfp_t mem_flags)
4856 {
4857 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4858 	struct xhci_virt_device *vdev;
4859 	struct xhci_command *config_cmd;
4860 	struct xhci_input_control_ctx *ctrl_ctx;
4861 	struct xhci_slot_ctx *slot_ctx;
4862 	unsigned long flags;
4863 	unsigned think_time;
4864 	int ret;
4865 
4866 	/* Ignore root hubs */
4867 	if (!hdev->parent)
4868 		return 0;
4869 
4870 	vdev = xhci->devs[hdev->slot_id];
4871 	if (!vdev) {
4872 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4873 		return -EINVAL;
4874 	}
4875 
4876 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4877 	if (!config_cmd)
4878 		return -ENOMEM;
4879 
4880 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4881 	if (!ctrl_ctx) {
4882 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4883 				__func__);
4884 		xhci_free_command(xhci, config_cmd);
4885 		return -ENOMEM;
4886 	}
4887 
4888 	spin_lock_irqsave(&xhci->lock, flags);
4889 	if (hdev->speed == USB_SPEED_HIGH &&
4890 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4891 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4892 		xhci_free_command(xhci, config_cmd);
4893 		spin_unlock_irqrestore(&xhci->lock, flags);
4894 		return -ENOMEM;
4895 	}
4896 
4897 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4898 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4899 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4900 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4901 	/*
4902 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4903 	 * but it may be already set to 1 when setup an xHCI virtual
4904 	 * device, so clear it anyway.
4905 	 */
4906 	if (tt->multi)
4907 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4908 	else if (hdev->speed == USB_SPEED_FULL)
4909 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4910 
4911 	if (xhci->hci_version > 0x95) {
4912 		xhci_dbg(xhci, "xHCI version %x needs hub "
4913 				"TT think time and number of ports\n",
4914 				(unsigned int) xhci->hci_version);
4915 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4916 		/* Set TT think time - convert from ns to FS bit times.
4917 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4918 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4919 		 *
4920 		 * xHCI 1.0: this field shall be 0 if the device is not a
4921 		 * High-spped hub.
4922 		 */
4923 		think_time = tt->think_time;
4924 		if (think_time != 0)
4925 			think_time = (think_time / 666) - 1;
4926 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4927 			slot_ctx->tt_info |=
4928 				cpu_to_le32(TT_THINK_TIME(think_time));
4929 	} else {
4930 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4931 				"TT think time or number of ports\n",
4932 				(unsigned int) xhci->hci_version);
4933 	}
4934 	slot_ctx->dev_state = 0;
4935 	spin_unlock_irqrestore(&xhci->lock, flags);
4936 
4937 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4938 			(xhci->hci_version > 0x95) ?
4939 			"configure endpoint" : "evaluate context");
4940 
4941 	/* Issue and wait for the configure endpoint or
4942 	 * evaluate context command.
4943 	 */
4944 	if (xhci->hci_version > 0x95)
4945 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4946 				false, false);
4947 	else
4948 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4949 				true, false);
4950 
4951 	xhci_free_command(xhci, config_cmd);
4952 	return ret;
4953 }
4954 
4955 static int xhci_get_frame(struct usb_hcd *hcd)
4956 {
4957 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4958 	/* EHCI mods by the periodic size.  Why? */
4959 	return readl(&xhci->run_regs->microframe_index) >> 3;
4960 }
4961 
4962 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4963 {
4964 	struct xhci_hcd		*xhci;
4965 	/*
4966 	 * TODO: Check with DWC3 clients for sysdev according to
4967 	 * quirks
4968 	 */
4969 	struct device		*dev = hcd->self.sysdev;
4970 	unsigned int		minor_rev;
4971 	int			retval;
4972 
4973 	/* Accept arbitrarily long scatter-gather lists */
4974 	hcd->self.sg_tablesize = ~0;
4975 
4976 	/* support to build packet from discontinuous buffers */
4977 	hcd->self.no_sg_constraint = 1;
4978 
4979 	/* XHCI controllers don't stop the ep queue on short packets :| */
4980 	hcd->self.no_stop_on_short = 1;
4981 
4982 	xhci = hcd_to_xhci(hcd);
4983 
4984 	if (usb_hcd_is_primary_hcd(hcd)) {
4985 		xhci->main_hcd = hcd;
4986 		xhci->usb2_rhub.hcd = hcd;
4987 		/* Mark the first roothub as being USB 2.0.
4988 		 * The xHCI driver will register the USB 3.0 roothub.
4989 		 */
4990 		hcd->speed = HCD_USB2;
4991 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4992 		/*
4993 		 * USB 2.0 roothub under xHCI has an integrated TT,
4994 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4995 		 * companion controller.
4996 		 */
4997 		hcd->has_tt = 1;
4998 	} else {
4999 		/*
5000 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5001 		 * minor revision instead of sbrn
5002 		 */
5003 		minor_rev = xhci->usb3_rhub.min_rev;
5004 		if (minor_rev) {
5005 			hcd->speed = HCD_USB31;
5006 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5007 		}
5008 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5009 			  minor_rev,
5010 			  minor_rev ? "Enhanced" : "");
5011 
5012 		xhci->usb3_rhub.hcd = hcd;
5013 		/* xHCI private pointer was set in xhci_pci_probe for the second
5014 		 * registered roothub.
5015 		 */
5016 		return 0;
5017 	}
5018 
5019 	mutex_init(&xhci->mutex);
5020 	xhci->cap_regs = hcd->regs;
5021 	xhci->op_regs = hcd->regs +
5022 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5023 	xhci->run_regs = hcd->regs +
5024 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5025 	/* Cache read-only capability registers */
5026 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5027 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5028 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5029 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5030 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5031 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5032 	if (xhci->hci_version > 0x100)
5033 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5034 
5035 	xhci->quirks |= quirks;
5036 
5037 	get_quirks(dev, xhci);
5038 
5039 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5040 	 * success event after a short transfer. This quirk will ignore such
5041 	 * spurious event.
5042 	 */
5043 	if (xhci->hci_version > 0x96)
5044 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5045 
5046 	/* Make sure the HC is halted. */
5047 	retval = xhci_halt(xhci);
5048 	if (retval)
5049 		return retval;
5050 
5051 	xhci_zero_64b_regs(xhci);
5052 
5053 	xhci_dbg(xhci, "Resetting HCD\n");
5054 	/* Reset the internal HC memory state and registers. */
5055 	retval = xhci_reset(xhci);
5056 	if (retval)
5057 		return retval;
5058 	xhci_dbg(xhci, "Reset complete\n");
5059 
5060 	/*
5061 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5062 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5063 	 * address memory pointers actually. So, this driver clears the AC64
5064 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5065 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5066 	 */
5067 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5068 		xhci->hcc_params &= ~BIT(0);
5069 
5070 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5071 	 * if xHC supports 64-bit addressing */
5072 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5073 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5074 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5075 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5076 	} else {
5077 		/*
5078 		 * This is to avoid error in cases where a 32-bit USB
5079 		 * controller is used on a 64-bit capable system.
5080 		 */
5081 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5082 		if (retval)
5083 			return retval;
5084 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5085 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5086 	}
5087 
5088 	xhci_dbg(xhci, "Calling HCD init\n");
5089 	/* Initialize HCD and host controller data structures. */
5090 	retval = xhci_init(hcd);
5091 	if (retval)
5092 		return retval;
5093 	xhci_dbg(xhci, "Called HCD init\n");
5094 
5095 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5096 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5097 
5098 	return 0;
5099 }
5100 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5101 
5102 static const struct hc_driver xhci_hc_driver = {
5103 	.description =		"xhci-hcd",
5104 	.product_desc =		"xHCI Host Controller",
5105 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5106 
5107 	/*
5108 	 * generic hardware linkage
5109 	 */
5110 	.irq =			xhci_irq,
5111 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5112 
5113 	/*
5114 	 * basic lifecycle operations
5115 	 */
5116 	.reset =		NULL, /* set in xhci_init_driver() */
5117 	.start =		xhci_run,
5118 	.stop =			xhci_stop,
5119 	.shutdown =		xhci_shutdown,
5120 
5121 	/*
5122 	 * managing i/o requests and associated device resources
5123 	 */
5124 	.urb_enqueue =		xhci_urb_enqueue,
5125 	.urb_dequeue =		xhci_urb_dequeue,
5126 	.alloc_dev =		xhci_alloc_dev,
5127 	.free_dev =		xhci_free_dev,
5128 	.alloc_streams =	xhci_alloc_streams,
5129 	.free_streams =		xhci_free_streams,
5130 	.add_endpoint =		xhci_add_endpoint,
5131 	.drop_endpoint =	xhci_drop_endpoint,
5132 	.endpoint_reset =	xhci_endpoint_reset,
5133 	.check_bandwidth =	xhci_check_bandwidth,
5134 	.reset_bandwidth =	xhci_reset_bandwidth,
5135 	.address_device =	xhci_address_device,
5136 	.enable_device =	xhci_enable_device,
5137 	.update_hub_device =	xhci_update_hub_device,
5138 	.reset_device =		xhci_discover_or_reset_device,
5139 
5140 	/*
5141 	 * scheduling support
5142 	 */
5143 	.get_frame_number =	xhci_get_frame,
5144 
5145 	/*
5146 	 * root hub support
5147 	 */
5148 	.hub_control =		xhci_hub_control,
5149 	.hub_status_data =	xhci_hub_status_data,
5150 	.bus_suspend =		xhci_bus_suspend,
5151 	.bus_resume =		xhci_bus_resume,
5152 	.get_resuming_ports =	xhci_get_resuming_ports,
5153 
5154 	/*
5155 	 * call back when device connected and addressed
5156 	 */
5157 	.update_device =        xhci_update_device,
5158 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5159 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5160 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5161 	.find_raw_port_number =	xhci_find_raw_port_number,
5162 };
5163 
5164 void xhci_init_driver(struct hc_driver *drv,
5165 		      const struct xhci_driver_overrides *over)
5166 {
5167 	BUG_ON(!over);
5168 
5169 	/* Copy the generic table to drv then apply the overrides */
5170 	*drv = xhci_hc_driver;
5171 
5172 	if (over) {
5173 		drv->hcd_priv_size += over->extra_priv_size;
5174 		if (over->reset)
5175 			drv->reset = over->reset;
5176 		if (over->start)
5177 			drv->start = over->start;
5178 	}
5179 }
5180 EXPORT_SYMBOL_GPL(xhci_init_driver);
5181 
5182 MODULE_DESCRIPTION(DRIVER_DESC);
5183 MODULE_AUTHOR(DRIVER_AUTHOR);
5184 MODULE_LICENSE("GPL");
5185 
5186 static int __init xhci_hcd_init(void)
5187 {
5188 	/*
5189 	 * Check the compiler generated sizes of structures that must be laid
5190 	 * out in specific ways for hardware access.
5191 	 */
5192 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5193 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5194 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5195 	/* xhci_device_control has eight fields, and also
5196 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5197 	 */
5198 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5199 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5200 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5201 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5202 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5203 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5204 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5205 
5206 	if (usb_disabled())
5207 		return -ENODEV;
5208 
5209 	xhci_debugfs_create_root();
5210 
5211 	return 0;
5212 }
5213 
5214 /*
5215  * If an init function is provided, an exit function must also be provided
5216  * to allow module unload.
5217  */
5218 static void __exit xhci_hcd_fini(void)
5219 {
5220 	xhci_debugfs_remove_root();
5221 }
5222 
5223 module_init(xhci_hcd_init);
5224 module_exit(xhci_hcd_fini);
5225