1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 73 do { 74 result = readl(ptr); 75 if (result == ~(u32)0) /* card removed */ 76 return -ENODEV; 77 result &= mask; 78 if (result == done) 79 return 0; 80 udelay(1); 81 usec--; 82 } while (usec > 0); 83 return -ETIMEDOUT; 84 } 85 86 /* 87 * Disable interrupts and begin the xHCI halting process. 88 */ 89 void xhci_quiesce(struct xhci_hcd *xhci) 90 { 91 u32 halted; 92 u32 cmd; 93 u32 mask; 94 95 mask = ~(XHCI_IRQS); 96 halted = readl(&xhci->op_regs->status) & STS_HALT; 97 if (!halted) 98 mask &= ~CMD_RUN; 99 100 cmd = readl(&xhci->op_regs->command); 101 cmd &= mask; 102 writel(cmd, &xhci->op_regs->command); 103 } 104 105 /* 106 * Force HC into halt state. 107 * 108 * Disable any IRQs and clear the run/stop bit. 109 * HC will complete any current and actively pipelined transactions, and 110 * should halt within 16 ms of the run/stop bit being cleared. 111 * Read HC Halted bit in the status register to see when the HC is finished. 112 */ 113 int xhci_halt(struct xhci_hcd *xhci) 114 { 115 int ret; 116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 117 xhci_quiesce(xhci); 118 119 ret = xhci_handshake(&xhci->op_regs->status, 120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 121 if (ret) { 122 xhci_warn(xhci, "Host halt failed, %d\n", ret); 123 return ret; 124 } 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci) 169 { 170 u32 command; 171 u32 state; 172 int ret, i; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, 202 CMD_RESET, 0, 10 * 1000 * 1000); 203 if (ret) 204 return ret; 205 206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 208 209 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 210 "Wait for controller to be ready for doorbell rings"); 211 /* 212 * xHCI cannot write to any doorbells or operational registers other 213 * than status until the "Controller Not Ready" flag is cleared. 214 */ 215 ret = xhci_handshake(&xhci->op_regs->status, 216 STS_CNR, 0, 10 * 1000 * 1000); 217 218 for (i = 0; i < 2; i++) { 219 xhci->bus_state[i].port_c_suspend = 0; 220 xhci->bus_state[i].suspended_ports = 0; 221 xhci->bus_state[i].resuming_ports = 0; 222 } 223 224 return ret; 225 } 226 227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 228 { 229 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 230 int err, i; 231 u64 val; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 271 struct xhci_intr_reg __iomem *ir; 272 273 ir = &xhci->run_regs->ir_set[i]; 274 val = xhci_read_64(xhci, &ir->erst_base); 275 if (upper_32_bits(val)) 276 xhci_write_64(xhci, 0, &ir->erst_base); 277 val= xhci_read_64(xhci, &ir->erst_dequeue); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_dequeue); 280 } 281 282 /* Wait for the fault to appear. It will be cleared on reset */ 283 err = xhci_handshake(&xhci->op_regs->status, 284 STS_FATAL, STS_FATAL, 285 XHCI_MAX_HALT_USEC); 286 if (!err) 287 xhci_info(xhci, "Fault detected\n"); 288 } 289 290 #ifdef CONFIG_USB_PCI 291 /* 292 * Set up MSI 293 */ 294 static int xhci_setup_msi(struct xhci_hcd *xhci) 295 { 296 int ret; 297 /* 298 * TODO:Check with MSI Soc for sysdev 299 */ 300 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 301 302 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 303 if (ret < 0) { 304 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 305 "failed to allocate MSI entry"); 306 return ret; 307 } 308 309 ret = request_irq(pdev->irq, xhci_msi_irq, 310 0, "xhci_hcd", xhci_to_hcd(xhci)); 311 if (ret) { 312 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 313 "disable MSI interrupt"); 314 pci_free_irq_vectors(pdev); 315 } 316 317 return ret; 318 } 319 320 /* 321 * Set up MSI-X 322 */ 323 static int xhci_setup_msix(struct xhci_hcd *xhci) 324 { 325 int i, ret = 0; 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 328 329 /* 330 * calculate number of msi-x vectors supported. 331 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 332 * with max number of interrupters based on the xhci HCSPARAMS1. 333 * - num_online_cpus: maximum msi-x vectors per CPUs core. 334 * Add additional 1 vector to ensure always available interrupt. 335 */ 336 xhci->msix_count = min(num_online_cpus() + 1, 337 HCS_MAX_INTRS(xhci->hcs_params1)); 338 339 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 340 PCI_IRQ_MSIX); 341 if (ret < 0) { 342 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 343 "Failed to enable MSI-X"); 344 return ret; 345 } 346 347 for (i = 0; i < xhci->msix_count; i++) { 348 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 349 "xhci_hcd", xhci_to_hcd(xhci)); 350 if (ret) 351 goto disable_msix; 352 } 353 354 hcd->msix_enabled = 1; 355 return ret; 356 357 disable_msix: 358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 359 while (--i >= 0) 360 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 361 pci_free_irq_vectors(pdev); 362 return ret; 363 } 364 365 /* Free any IRQs and disable MSI-X */ 366 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 367 { 368 struct usb_hcd *hcd = xhci_to_hcd(xhci); 369 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 370 371 if (xhci->quirks & XHCI_PLAT) 372 return; 373 374 /* return if using legacy interrupt */ 375 if (hcd->irq > 0) 376 return; 377 378 if (hcd->msix_enabled) { 379 int i; 380 381 for (i = 0; i < xhci->msix_count; i++) 382 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 383 } else { 384 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 385 } 386 387 pci_free_irq_vectors(pdev); 388 hcd->msix_enabled = 0; 389 } 390 391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 392 { 393 struct usb_hcd *hcd = xhci_to_hcd(xhci); 394 395 if (hcd->msix_enabled) { 396 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 397 int i; 398 399 for (i = 0; i < xhci->msix_count; i++) 400 synchronize_irq(pci_irq_vector(pdev, i)); 401 } 402 } 403 404 static int xhci_try_enable_msi(struct usb_hcd *hcd) 405 { 406 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 407 struct pci_dev *pdev; 408 int ret; 409 410 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 411 if (xhci->quirks & XHCI_PLAT) 412 return 0; 413 414 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 415 /* 416 * Some Fresco Logic host controllers advertise MSI, but fail to 417 * generate interrupts. Don't even try to enable MSI. 418 */ 419 if (xhci->quirks & XHCI_BROKEN_MSI) 420 goto legacy_irq; 421 422 /* unregister the legacy interrupt */ 423 if (hcd->irq) 424 free_irq(hcd->irq, hcd); 425 hcd->irq = 0; 426 427 ret = xhci_setup_msix(xhci); 428 if (ret) 429 /* fall back to msi*/ 430 ret = xhci_setup_msi(xhci); 431 432 if (!ret) { 433 hcd->msi_enabled = 1; 434 return 0; 435 } 436 437 if (!pdev->irq) { 438 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 439 return -EINVAL; 440 } 441 442 legacy_irq: 443 if (!strlen(hcd->irq_descr)) 444 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 445 hcd->driver->description, hcd->self.busnum); 446 447 /* fall back to legacy interrupt*/ 448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 449 hcd->irq_descr, hcd); 450 if (ret) { 451 xhci_err(xhci, "request interrupt %d failed\n", 452 pdev->irq); 453 return ret; 454 } 455 hcd->irq = pdev->irq; 456 return 0; 457 } 458 459 #else 460 461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 462 { 463 return 0; 464 } 465 466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 467 { 468 } 469 470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 471 { 472 } 473 474 #endif 475 476 static void compliance_mode_recovery(struct timer_list *t) 477 { 478 struct xhci_hcd *xhci; 479 struct usb_hcd *hcd; 480 struct xhci_hub *rhub; 481 u32 temp; 482 int i; 483 484 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 485 rhub = &xhci->usb3_rhub; 486 487 for (i = 0; i < rhub->num_ports; i++) { 488 temp = readl(rhub->ports[i]->addr); 489 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 490 /* 491 * Compliance Mode Detected. Letting USB Core 492 * handle the Warm Reset 493 */ 494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 495 "Compliance mode detected->port %d", 496 i + 1); 497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 498 "Attempting compliance mode recovery"); 499 hcd = xhci->shared_hcd; 500 501 if (hcd->state == HC_STATE_SUSPENDED) 502 usb_hcd_resume_root_hub(hcd); 503 504 usb_hcd_poll_rh_status(hcd); 505 } 506 } 507 508 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 509 mod_timer(&xhci->comp_mode_recovery_timer, 510 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 511 } 512 513 /* 514 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 515 * that causes ports behind that hardware to enter compliance mode sometimes. 516 * The quirk creates a timer that polls every 2 seconds the link state of 517 * each host controller's port and recovers it by issuing a Warm reset 518 * if Compliance mode is detected, otherwise the port will become "dead" (no 519 * device connections or disconnections will be detected anymore). Becasue no 520 * status event is generated when entering compliance mode (per xhci spec), 521 * this quirk is needed on systems that have the failing hardware installed. 522 */ 523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 524 { 525 xhci->port_status_u0 = 0; 526 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 527 0); 528 xhci->comp_mode_recovery_timer.expires = jiffies + 529 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 530 531 add_timer(&xhci->comp_mode_recovery_timer); 532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 533 "Compliance mode recovery timer initialized"); 534 } 535 536 /* 537 * This function identifies the systems that have installed the SN65LVPE502CP 538 * USB3.0 re-driver and that need the Compliance Mode Quirk. 539 * Systems: 540 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 541 */ 542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 543 { 544 const char *dmi_product_name, *dmi_sys_vendor; 545 546 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 547 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 548 if (!dmi_product_name || !dmi_sys_vendor) 549 return false; 550 551 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 552 return false; 553 554 if (strstr(dmi_product_name, "Z420") || 555 strstr(dmi_product_name, "Z620") || 556 strstr(dmi_product_name, "Z820") || 557 strstr(dmi_product_name, "Z1 Workstation")) 558 return true; 559 560 return false; 561 } 562 563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 564 { 565 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 566 } 567 568 569 /* 570 * Initialize memory for HCD and xHC (one-time init). 571 * 572 * Program the PAGESIZE register, initialize the device context array, create 573 * device contexts (?), set up a command ring segment (or two?), create event 574 * ring (one for now). 575 */ 576 static int xhci_init(struct usb_hcd *hcd) 577 { 578 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 579 int retval = 0; 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 582 spin_lock_init(&xhci->lock); 583 if (xhci->hci_version == 0x95 && link_quirk) { 584 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 585 "QUIRK: Not clearing Link TRB chain bits."); 586 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 587 } else { 588 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 589 "xHCI doesn't need link TRB QUIRK"); 590 } 591 retval = xhci_mem_init(xhci, GFP_KERNEL); 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 593 594 /* Initializing Compliance Mode Recovery Data If Needed */ 595 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 596 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 597 compliance_mode_recovery_timer_init(xhci); 598 } 599 600 return retval; 601 } 602 603 /*-------------------------------------------------------------------------*/ 604 605 606 static int xhci_run_finished(struct xhci_hcd *xhci) 607 { 608 if (xhci_start(xhci)) { 609 xhci_halt(xhci); 610 return -ENODEV; 611 } 612 xhci->shared_hcd->state = HC_STATE_RUNNING; 613 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 614 615 if (xhci->quirks & XHCI_NEC_HOST) 616 xhci_ring_cmd_db(xhci); 617 618 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 619 "Finished xhci_run for USB3 roothub"); 620 return 0; 621 } 622 623 /* 624 * Start the HC after it was halted. 625 * 626 * This function is called by the USB core when the HC driver is added. 627 * Its opposite is xhci_stop(). 628 * 629 * xhci_init() must be called once before this function can be called. 630 * Reset the HC, enable device slot contexts, program DCBAAP, and 631 * set command ring pointer and event ring pointer. 632 * 633 * Setup MSI-X vectors and enable interrupts. 634 */ 635 int xhci_run(struct usb_hcd *hcd) 636 { 637 u32 temp; 638 u64 temp_64; 639 int ret; 640 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 641 642 /* Start the xHCI host controller running only after the USB 2.0 roothub 643 * is setup. 644 */ 645 646 hcd->uses_new_polling = 1; 647 if (!usb_hcd_is_primary_hcd(hcd)) 648 return xhci_run_finished(xhci); 649 650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 651 652 ret = xhci_try_enable_msi(hcd); 653 if (ret) 654 return ret; 655 656 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 657 temp_64 &= ~ERST_PTR_MASK; 658 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 659 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 660 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "// Set the interrupt modulation register"); 663 temp = readl(&xhci->ir_set->irq_control); 664 temp &= ~ER_IRQ_INTERVAL_MASK; 665 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 666 writel(temp, &xhci->ir_set->irq_control); 667 668 /* Set the HCD state before we enable the irqs */ 669 temp = readl(&xhci->op_regs->command); 670 temp |= (CMD_EIE); 671 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 672 "// Enable interrupts, cmd = 0x%x.", temp); 673 writel(temp, &xhci->op_regs->command); 674 675 temp = readl(&xhci->ir_set->irq_pending); 676 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 677 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 678 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 679 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 680 681 if (xhci->quirks & XHCI_NEC_HOST) { 682 struct xhci_command *command; 683 684 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 685 if (!command) 686 return -ENOMEM; 687 688 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 689 TRB_TYPE(TRB_NEC_GET_FW)); 690 if (ret) 691 xhci_free_command(xhci, command); 692 } 693 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 694 "Finished xhci_run for USB2 roothub"); 695 696 xhci_dbc_init(xhci); 697 698 xhci_debugfs_init(xhci); 699 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(xhci_run); 703 704 /* 705 * Stop xHCI driver. 706 * 707 * This function is called by the USB core when the HC driver is removed. 708 * Its opposite is xhci_run(). 709 * 710 * Disable device contexts, disable IRQs, and quiesce the HC. 711 * Reset the HC, finish any completed transactions, and cleanup memory. 712 */ 713 static void xhci_stop(struct usb_hcd *hcd) 714 { 715 u32 temp; 716 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 717 718 mutex_lock(&xhci->mutex); 719 720 /* Only halt host and free memory after both hcds are removed */ 721 if (!usb_hcd_is_primary_hcd(hcd)) { 722 mutex_unlock(&xhci->mutex); 723 return; 724 } 725 726 xhci_dbc_exit(xhci); 727 728 spin_lock_irq(&xhci->lock); 729 xhci->xhc_state |= XHCI_STATE_HALTED; 730 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 731 xhci_halt(xhci); 732 xhci_reset(xhci); 733 spin_unlock_irq(&xhci->lock); 734 735 xhci_cleanup_msix(xhci); 736 737 /* Deleting Compliance Mode Recovery Timer */ 738 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 739 (!(xhci_all_ports_seen_u0(xhci)))) { 740 del_timer_sync(&xhci->comp_mode_recovery_timer); 741 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 742 "%s: compliance mode recovery timer deleted", 743 __func__); 744 } 745 746 if (xhci->quirks & XHCI_AMD_PLL_FIX) 747 usb_amd_dev_put(); 748 749 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 750 "// Disabling event ring interrupts"); 751 temp = readl(&xhci->op_regs->status); 752 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 753 temp = readl(&xhci->ir_set->irq_pending); 754 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 755 756 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 757 xhci_mem_cleanup(xhci); 758 xhci_debugfs_exit(xhci); 759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 760 "xhci_stop completed - status = %x", 761 readl(&xhci->op_regs->status)); 762 mutex_unlock(&xhci->mutex); 763 } 764 765 /* 766 * Shutdown HC (not bus-specific) 767 * 768 * This is called when the machine is rebooting or halting. We assume that the 769 * machine will be powered off, and the HC's internal state will be reset. 770 * Don't bother to free memory. 771 * 772 * This will only ever be called with the main usb_hcd (the USB3 roothub). 773 */ 774 static void xhci_shutdown(struct usb_hcd *hcd) 775 { 776 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 777 778 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 779 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 780 781 spin_lock_irq(&xhci->lock); 782 xhci_halt(xhci); 783 /* Workaround for spurious wakeups at shutdown with HSW */ 784 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 785 xhci_reset(xhci); 786 spin_unlock_irq(&xhci->lock); 787 788 xhci_cleanup_msix(xhci); 789 790 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 791 "xhci_shutdown completed - status = %x", 792 readl(&xhci->op_regs->status)); 793 794 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 795 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 796 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 797 } 798 799 #ifdef CONFIG_PM 800 static void xhci_save_registers(struct xhci_hcd *xhci) 801 { 802 xhci->s3.command = readl(&xhci->op_regs->command); 803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 811 } 812 813 static void xhci_restore_registers(struct xhci_hcd *xhci) 814 { 815 writel(xhci->s3.command, &xhci->op_regs->command); 816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 824 } 825 826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 827 { 828 u64 val_64; 829 830 /* step 2: initialize command ring buffer */ 831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 834 xhci->cmd_ring->dequeue) & 835 (u64) ~CMD_RING_RSVD_BITS) | 836 xhci->cmd_ring->cycle_state; 837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 838 "// Setting command ring address to 0x%llx", 839 (long unsigned long) val_64); 840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 841 } 842 843 /* 844 * The whole command ring must be cleared to zero when we suspend the host. 845 * 846 * The host doesn't save the command ring pointer in the suspend well, so we 847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 848 * aligned, because of the reserved bits in the command ring dequeue pointer 849 * register. Therefore, we can't just set the dequeue pointer back in the 850 * middle of the ring (TRBs are 16-byte aligned). 851 */ 852 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 853 { 854 struct xhci_ring *ring; 855 struct xhci_segment *seg; 856 857 ring = xhci->cmd_ring; 858 seg = ring->deq_seg; 859 do { 860 memset(seg->trbs, 0, 861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 863 cpu_to_le32(~TRB_CYCLE); 864 seg = seg->next; 865 } while (seg != ring->deq_seg); 866 867 /* Reset the software enqueue and dequeue pointers */ 868 ring->deq_seg = ring->first_seg; 869 ring->dequeue = ring->first_seg->trbs; 870 ring->enq_seg = ring->deq_seg; 871 ring->enqueue = ring->dequeue; 872 873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 874 /* 875 * Ring is now zeroed, so the HW should look for change of ownership 876 * when the cycle bit is set to 1. 877 */ 878 ring->cycle_state = 1; 879 880 /* 881 * Reset the hardware dequeue pointer. 882 * Yes, this will need to be re-written after resume, but we're paranoid 883 * and want to make sure the hardware doesn't access bogus memory 884 * because, say, the BIOS or an SMI started the host without changing 885 * the command ring pointers. 886 */ 887 xhci_set_cmd_ring_deq(xhci); 888 } 889 890 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 891 { 892 struct xhci_port **ports; 893 int port_index; 894 unsigned long flags; 895 u32 t1, t2; 896 897 spin_lock_irqsave(&xhci->lock, flags); 898 899 /* disable usb3 ports Wake bits */ 900 port_index = xhci->usb3_rhub.num_ports; 901 ports = xhci->usb3_rhub.ports; 902 while (port_index--) { 903 t1 = readl(ports[port_index]->addr); 904 t1 = xhci_port_state_to_neutral(t1); 905 t2 = t1 & ~PORT_WAKE_BITS; 906 if (t1 != t2) 907 writel(t2, ports[port_index]->addr); 908 } 909 910 /* disable usb2 ports Wake bits */ 911 port_index = xhci->usb2_rhub.num_ports; 912 ports = xhci->usb2_rhub.ports; 913 while (port_index--) { 914 t1 = readl(ports[port_index]->addr); 915 t1 = xhci_port_state_to_neutral(t1); 916 t2 = t1 & ~PORT_WAKE_BITS; 917 if (t1 != t2) 918 writel(t2, ports[port_index]->addr); 919 } 920 921 spin_unlock_irqrestore(&xhci->lock, flags); 922 } 923 924 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 925 { 926 struct xhci_port **ports; 927 int port_index; 928 u32 status; 929 u32 portsc; 930 931 status = readl(&xhci->op_regs->status); 932 if (status & STS_EINT) 933 return true; 934 /* 935 * Checking STS_EINT is not enough as there is a lag between a change 936 * bit being set and the Port Status Change Event that it generated 937 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 938 */ 939 940 port_index = xhci->usb2_rhub.num_ports; 941 ports = xhci->usb2_rhub.ports; 942 while (port_index--) { 943 portsc = readl(ports[port_index]->addr); 944 if (portsc & PORT_CHANGE_MASK || 945 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 946 return true; 947 } 948 port_index = xhci->usb3_rhub.num_ports; 949 ports = xhci->usb3_rhub.ports; 950 while (port_index--) { 951 portsc = readl(ports[port_index]->addr); 952 if (portsc & PORT_CHANGE_MASK || 953 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 954 return true; 955 } 956 return false; 957 } 958 959 /* 960 * Stop HC (not bus-specific) 961 * 962 * This is called when the machine transition into S3/S4 mode. 963 * 964 */ 965 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 966 { 967 int rc = 0; 968 unsigned int delay = XHCI_MAX_HALT_USEC; 969 struct usb_hcd *hcd = xhci_to_hcd(xhci); 970 u32 command; 971 972 if (!hcd->state) 973 return 0; 974 975 if (hcd->state != HC_STATE_SUSPENDED || 976 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 977 return -EINVAL; 978 979 xhci_dbc_suspend(xhci); 980 981 /* Clear root port wake on bits if wakeup not allowed. */ 982 if (!do_wakeup) 983 xhci_disable_port_wake_on_bits(xhci); 984 985 /* Don't poll the roothubs on bus suspend. */ 986 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 987 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 988 del_timer_sync(&hcd->rh_timer); 989 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 990 del_timer_sync(&xhci->shared_hcd->rh_timer); 991 992 if (xhci->quirks & XHCI_SUSPEND_DELAY) 993 usleep_range(1000, 1500); 994 995 spin_lock_irq(&xhci->lock); 996 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 997 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 998 /* step 1: stop endpoint */ 999 /* skipped assuming that port suspend has done */ 1000 1001 /* step 2: clear Run/Stop bit */ 1002 command = readl(&xhci->op_regs->command); 1003 command &= ~CMD_RUN; 1004 writel(command, &xhci->op_regs->command); 1005 1006 /* Some chips from Fresco Logic need an extraordinary delay */ 1007 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1008 1009 if (xhci_handshake(&xhci->op_regs->status, 1010 STS_HALT, STS_HALT, delay)) { 1011 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1012 spin_unlock_irq(&xhci->lock); 1013 return -ETIMEDOUT; 1014 } 1015 xhci_clear_command_ring(xhci); 1016 1017 /* step 3: save registers */ 1018 xhci_save_registers(xhci); 1019 1020 /* step 4: set CSS flag */ 1021 command = readl(&xhci->op_regs->command); 1022 command |= CMD_CSS; 1023 writel(command, &xhci->op_regs->command); 1024 if (xhci_handshake(&xhci->op_regs->status, 1025 STS_SAVE, 0, 10 * 1000)) { 1026 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1027 spin_unlock_irq(&xhci->lock); 1028 return -ETIMEDOUT; 1029 } 1030 spin_unlock_irq(&xhci->lock); 1031 1032 /* 1033 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1034 * is about to be suspended. 1035 */ 1036 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1037 (!(xhci_all_ports_seen_u0(xhci)))) { 1038 del_timer_sync(&xhci->comp_mode_recovery_timer); 1039 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1040 "%s: compliance mode recovery timer deleted", 1041 __func__); 1042 } 1043 1044 /* step 5: remove core well power */ 1045 /* synchronize irq when using MSI-X */ 1046 xhci_msix_sync_irqs(xhci); 1047 1048 return rc; 1049 } 1050 EXPORT_SYMBOL_GPL(xhci_suspend); 1051 1052 /* 1053 * start xHC (not bus-specific) 1054 * 1055 * This is called when the machine transition from S3/S4 mode. 1056 * 1057 */ 1058 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1059 { 1060 u32 command, temp = 0; 1061 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1062 struct usb_hcd *secondary_hcd; 1063 int retval = 0; 1064 bool comp_timer_running = false; 1065 1066 if (!hcd->state) 1067 return 0; 1068 1069 /* Wait a bit if either of the roothubs need to settle from the 1070 * transition into bus suspend. 1071 */ 1072 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1073 time_before(jiffies, 1074 xhci->bus_state[1].next_statechange)) 1075 msleep(100); 1076 1077 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1078 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1079 1080 spin_lock_irq(&xhci->lock); 1081 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1082 hibernated = true; 1083 1084 if (!hibernated) { 1085 /* step 1: restore register */ 1086 xhci_restore_registers(xhci); 1087 /* step 2: initialize command ring buffer */ 1088 xhci_set_cmd_ring_deq(xhci); 1089 /* step 3: restore state and start state*/ 1090 /* step 3: set CRS flag */ 1091 command = readl(&xhci->op_regs->command); 1092 command |= CMD_CRS; 1093 writel(command, &xhci->op_regs->command); 1094 /* 1095 * Some controllers take up to 55+ ms to complete the controller 1096 * restore so setting the timeout to 100ms. Xhci specification 1097 * doesn't mention any timeout value. 1098 */ 1099 if (xhci_handshake(&xhci->op_regs->status, 1100 STS_RESTORE, 0, 100 * 1000)) { 1101 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1102 spin_unlock_irq(&xhci->lock); 1103 return -ETIMEDOUT; 1104 } 1105 temp = readl(&xhci->op_regs->status); 1106 } 1107 1108 /* If restore operation fails, re-initialize the HC during resume */ 1109 if ((temp & STS_SRE) || hibernated) { 1110 1111 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1112 !(xhci_all_ports_seen_u0(xhci))) { 1113 del_timer_sync(&xhci->comp_mode_recovery_timer); 1114 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1115 "Compliance Mode Recovery Timer deleted!"); 1116 } 1117 1118 /* Let the USB core know _both_ roothubs lost power. */ 1119 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1120 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1121 1122 xhci_dbg(xhci, "Stop HCD\n"); 1123 xhci_halt(xhci); 1124 xhci_zero_64b_regs(xhci); 1125 xhci_reset(xhci); 1126 spin_unlock_irq(&xhci->lock); 1127 xhci_cleanup_msix(xhci); 1128 1129 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1130 temp = readl(&xhci->op_regs->status); 1131 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1132 temp = readl(&xhci->ir_set->irq_pending); 1133 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1134 1135 xhci_dbg(xhci, "cleaning up memory\n"); 1136 xhci_mem_cleanup(xhci); 1137 xhci_debugfs_exit(xhci); 1138 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1139 readl(&xhci->op_regs->status)); 1140 1141 /* USB core calls the PCI reinit and start functions twice: 1142 * first with the primary HCD, and then with the secondary HCD. 1143 * If we don't do the same, the host will never be started. 1144 */ 1145 if (!usb_hcd_is_primary_hcd(hcd)) 1146 secondary_hcd = hcd; 1147 else 1148 secondary_hcd = xhci->shared_hcd; 1149 1150 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1151 retval = xhci_init(hcd->primary_hcd); 1152 if (retval) 1153 return retval; 1154 comp_timer_running = true; 1155 1156 xhci_dbg(xhci, "Start the primary HCD\n"); 1157 retval = xhci_run(hcd->primary_hcd); 1158 if (!retval) { 1159 xhci_dbg(xhci, "Start the secondary HCD\n"); 1160 retval = xhci_run(secondary_hcd); 1161 } 1162 hcd->state = HC_STATE_SUSPENDED; 1163 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1164 goto done; 1165 } 1166 1167 /* step 4: set Run/Stop bit */ 1168 command = readl(&xhci->op_regs->command); 1169 command |= CMD_RUN; 1170 writel(command, &xhci->op_regs->command); 1171 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1172 0, 250 * 1000); 1173 1174 /* step 5: walk topology and initialize portsc, 1175 * portpmsc and portli 1176 */ 1177 /* this is done in bus_resume */ 1178 1179 /* step 6: restart each of the previously 1180 * Running endpoints by ringing their doorbells 1181 */ 1182 1183 spin_unlock_irq(&xhci->lock); 1184 1185 xhci_dbc_resume(xhci); 1186 1187 done: 1188 if (retval == 0) { 1189 /* Resume root hubs only when have pending events. */ 1190 if (xhci_pending_portevent(xhci)) { 1191 usb_hcd_resume_root_hub(xhci->shared_hcd); 1192 usb_hcd_resume_root_hub(hcd); 1193 } 1194 } 1195 1196 /* 1197 * If system is subject to the Quirk, Compliance Mode Timer needs to 1198 * be re-initialized Always after a system resume. Ports are subject 1199 * to suffer the Compliance Mode issue again. It doesn't matter if 1200 * ports have entered previously to U0 before system's suspension. 1201 */ 1202 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1203 compliance_mode_recovery_timer_init(xhci); 1204 1205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1206 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1207 1208 /* Re-enable port polling. */ 1209 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1210 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1211 usb_hcd_poll_rh_status(xhci->shared_hcd); 1212 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1213 usb_hcd_poll_rh_status(hcd); 1214 1215 return retval; 1216 } 1217 EXPORT_SYMBOL_GPL(xhci_resume); 1218 #endif /* CONFIG_PM */ 1219 1220 /*-------------------------------------------------------------------------*/ 1221 1222 /** 1223 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1224 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1225 * value to right shift 1 for the bitmask. 1226 * 1227 * Index = (epnum * 2) + direction - 1, 1228 * where direction = 0 for OUT, 1 for IN. 1229 * For control endpoints, the IN index is used (OUT index is unused), so 1230 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1231 */ 1232 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1233 { 1234 unsigned int index; 1235 if (usb_endpoint_xfer_control(desc)) 1236 index = (unsigned int) (usb_endpoint_num(desc)*2); 1237 else 1238 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1239 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1240 return index; 1241 } 1242 1243 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1244 * address from the XHCI endpoint index. 1245 */ 1246 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1247 { 1248 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1249 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1250 return direction | number; 1251 } 1252 1253 /* Find the flag for this endpoint (for use in the control context). Use the 1254 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1255 * bit 1, etc. 1256 */ 1257 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1258 { 1259 return 1 << (xhci_get_endpoint_index(desc) + 1); 1260 } 1261 1262 /* Find the flag for this endpoint (for use in the control context). Use the 1263 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1264 * bit 1, etc. 1265 */ 1266 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1267 { 1268 return 1 << (ep_index + 1); 1269 } 1270 1271 /* Compute the last valid endpoint context index. Basically, this is the 1272 * endpoint index plus one. For slot contexts with more than valid endpoint, 1273 * we find the most significant bit set in the added contexts flags. 1274 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1275 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1276 */ 1277 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1278 { 1279 return fls(added_ctxs) - 1; 1280 } 1281 1282 /* Returns 1 if the arguments are OK; 1283 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1284 */ 1285 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1286 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1287 const char *func) { 1288 struct xhci_hcd *xhci; 1289 struct xhci_virt_device *virt_dev; 1290 1291 if (!hcd || (check_ep && !ep) || !udev) { 1292 pr_debug("xHCI %s called with invalid args\n", func); 1293 return -EINVAL; 1294 } 1295 if (!udev->parent) { 1296 pr_debug("xHCI %s called for root hub\n", func); 1297 return 0; 1298 } 1299 1300 xhci = hcd_to_xhci(hcd); 1301 if (check_virt_dev) { 1302 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1303 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1304 func); 1305 return -EINVAL; 1306 } 1307 1308 virt_dev = xhci->devs[udev->slot_id]; 1309 if (virt_dev->udev != udev) { 1310 xhci_dbg(xhci, "xHCI %s called with udev and " 1311 "virt_dev does not match\n", func); 1312 return -EINVAL; 1313 } 1314 } 1315 1316 if (xhci->xhc_state & XHCI_STATE_HALTED) 1317 return -ENODEV; 1318 1319 return 1; 1320 } 1321 1322 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1323 struct usb_device *udev, struct xhci_command *command, 1324 bool ctx_change, bool must_succeed); 1325 1326 /* 1327 * Full speed devices may have a max packet size greater than 8 bytes, but the 1328 * USB core doesn't know that until it reads the first 8 bytes of the 1329 * descriptor. If the usb_device's max packet size changes after that point, 1330 * we need to issue an evaluate context command and wait on it. 1331 */ 1332 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1333 unsigned int ep_index, struct urb *urb) 1334 { 1335 struct xhci_container_ctx *out_ctx; 1336 struct xhci_input_control_ctx *ctrl_ctx; 1337 struct xhci_ep_ctx *ep_ctx; 1338 struct xhci_command *command; 1339 int max_packet_size; 1340 int hw_max_packet_size; 1341 int ret = 0; 1342 1343 out_ctx = xhci->devs[slot_id]->out_ctx; 1344 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1345 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1346 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1347 if (hw_max_packet_size != max_packet_size) { 1348 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1349 "Max Packet Size for ep 0 changed."); 1350 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1351 "Max packet size in usb_device = %d", 1352 max_packet_size); 1353 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1354 "Max packet size in xHCI HW = %d", 1355 hw_max_packet_size); 1356 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1357 "Issuing evaluate context command."); 1358 1359 /* Set up the input context flags for the command */ 1360 /* FIXME: This won't work if a non-default control endpoint 1361 * changes max packet sizes. 1362 */ 1363 1364 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1365 if (!command) 1366 return -ENOMEM; 1367 1368 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1369 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1370 if (!ctrl_ctx) { 1371 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1372 __func__); 1373 ret = -ENOMEM; 1374 goto command_cleanup; 1375 } 1376 /* Set up the modified control endpoint 0 */ 1377 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1378 xhci->devs[slot_id]->out_ctx, ep_index); 1379 1380 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1381 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1382 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1383 1384 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1385 ctrl_ctx->drop_flags = 0; 1386 1387 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1388 true, false); 1389 1390 /* Clean up the input context for later use by bandwidth 1391 * functions. 1392 */ 1393 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1394 command_cleanup: 1395 kfree(command->completion); 1396 kfree(command); 1397 } 1398 return ret; 1399 } 1400 1401 /* 1402 * non-error returns are a promise to giveback() the urb later 1403 * we drop ownership so next owner (or urb unlink) can get it 1404 */ 1405 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1406 { 1407 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1408 unsigned long flags; 1409 int ret = 0; 1410 unsigned int slot_id, ep_index; 1411 unsigned int *ep_state; 1412 struct urb_priv *urb_priv; 1413 int num_tds; 1414 1415 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1416 true, true, __func__) <= 0) 1417 return -EINVAL; 1418 1419 slot_id = urb->dev->slot_id; 1420 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1421 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1422 1423 if (!HCD_HW_ACCESSIBLE(hcd)) { 1424 if (!in_interrupt()) 1425 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1426 return -ESHUTDOWN; 1427 } 1428 1429 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1430 num_tds = urb->number_of_packets; 1431 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1432 urb->transfer_buffer_length > 0 && 1433 urb->transfer_flags & URB_ZERO_PACKET && 1434 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1435 num_tds = 2; 1436 else 1437 num_tds = 1; 1438 1439 urb_priv = kzalloc(sizeof(struct urb_priv) + 1440 num_tds * sizeof(struct xhci_td), mem_flags); 1441 if (!urb_priv) 1442 return -ENOMEM; 1443 1444 urb_priv->num_tds = num_tds; 1445 urb_priv->num_tds_done = 0; 1446 urb->hcpriv = urb_priv; 1447 1448 trace_xhci_urb_enqueue(urb); 1449 1450 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1451 /* Check to see if the max packet size for the default control 1452 * endpoint changed during FS device enumeration 1453 */ 1454 if (urb->dev->speed == USB_SPEED_FULL) { 1455 ret = xhci_check_maxpacket(xhci, slot_id, 1456 ep_index, urb); 1457 if (ret < 0) { 1458 xhci_urb_free_priv(urb_priv); 1459 urb->hcpriv = NULL; 1460 return ret; 1461 } 1462 } 1463 } 1464 1465 spin_lock_irqsave(&xhci->lock, flags); 1466 1467 if (xhci->xhc_state & XHCI_STATE_DYING) { 1468 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1469 urb->ep->desc.bEndpointAddress, urb); 1470 ret = -ESHUTDOWN; 1471 goto free_priv; 1472 } 1473 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1474 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1475 *ep_state); 1476 ret = -EINVAL; 1477 goto free_priv; 1478 } 1479 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1480 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1481 ret = -EINVAL; 1482 goto free_priv; 1483 } 1484 1485 switch (usb_endpoint_type(&urb->ep->desc)) { 1486 1487 case USB_ENDPOINT_XFER_CONTROL: 1488 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1489 slot_id, ep_index); 1490 break; 1491 case USB_ENDPOINT_XFER_BULK: 1492 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1493 slot_id, ep_index); 1494 break; 1495 case USB_ENDPOINT_XFER_INT: 1496 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1497 slot_id, ep_index); 1498 break; 1499 case USB_ENDPOINT_XFER_ISOC: 1500 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1501 slot_id, ep_index); 1502 } 1503 1504 if (ret) { 1505 free_priv: 1506 xhci_urb_free_priv(urb_priv); 1507 urb->hcpriv = NULL; 1508 } 1509 spin_unlock_irqrestore(&xhci->lock, flags); 1510 return ret; 1511 } 1512 1513 /* 1514 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1515 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1516 * should pick up where it left off in the TD, unless a Set Transfer Ring 1517 * Dequeue Pointer is issued. 1518 * 1519 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1520 * the ring. Since the ring is a contiguous structure, they can't be physically 1521 * removed. Instead, there are two options: 1522 * 1523 * 1) If the HC is in the middle of processing the URB to be canceled, we 1524 * simply move the ring's dequeue pointer past those TRBs using the Set 1525 * Transfer Ring Dequeue Pointer command. This will be the common case, 1526 * when drivers timeout on the last submitted URB and attempt to cancel. 1527 * 1528 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1529 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1530 * HC will need to invalidate the any TRBs it has cached after the stop 1531 * endpoint command, as noted in the xHCI 0.95 errata. 1532 * 1533 * 3) The TD may have completed by the time the Stop Endpoint Command 1534 * completes, so software needs to handle that case too. 1535 * 1536 * This function should protect against the TD enqueueing code ringing the 1537 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1538 * It also needs to account for multiple cancellations on happening at the same 1539 * time for the same endpoint. 1540 * 1541 * Note that this function can be called in any context, or so says 1542 * usb_hcd_unlink_urb() 1543 */ 1544 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1545 { 1546 unsigned long flags; 1547 int ret, i; 1548 u32 temp; 1549 struct xhci_hcd *xhci; 1550 struct urb_priv *urb_priv; 1551 struct xhci_td *td; 1552 unsigned int ep_index; 1553 struct xhci_ring *ep_ring; 1554 struct xhci_virt_ep *ep; 1555 struct xhci_command *command; 1556 struct xhci_virt_device *vdev; 1557 1558 xhci = hcd_to_xhci(hcd); 1559 spin_lock_irqsave(&xhci->lock, flags); 1560 1561 trace_xhci_urb_dequeue(urb); 1562 1563 /* Make sure the URB hasn't completed or been unlinked already */ 1564 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1565 if (ret) 1566 goto done; 1567 1568 /* give back URB now if we can't queue it for cancel */ 1569 vdev = xhci->devs[urb->dev->slot_id]; 1570 urb_priv = urb->hcpriv; 1571 if (!vdev || !urb_priv) 1572 goto err_giveback; 1573 1574 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1575 ep = &vdev->eps[ep_index]; 1576 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1577 if (!ep || !ep_ring) 1578 goto err_giveback; 1579 1580 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1581 temp = readl(&xhci->op_regs->status); 1582 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1583 xhci_hc_died(xhci); 1584 goto done; 1585 } 1586 1587 /* 1588 * check ring is not re-allocated since URB was enqueued. If it is, then 1589 * make sure none of the ring related pointers in this URB private data 1590 * are touched, such as td_list, otherwise we overwrite freed data 1591 */ 1592 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1593 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1594 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1595 td = &urb_priv->td[i]; 1596 if (!list_empty(&td->cancelled_td_list)) 1597 list_del_init(&td->cancelled_td_list); 1598 } 1599 goto err_giveback; 1600 } 1601 1602 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1603 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1604 "HC halted, freeing TD manually."); 1605 for (i = urb_priv->num_tds_done; 1606 i < urb_priv->num_tds; 1607 i++) { 1608 td = &urb_priv->td[i]; 1609 if (!list_empty(&td->td_list)) 1610 list_del_init(&td->td_list); 1611 if (!list_empty(&td->cancelled_td_list)) 1612 list_del_init(&td->cancelled_td_list); 1613 } 1614 goto err_giveback; 1615 } 1616 1617 i = urb_priv->num_tds_done; 1618 if (i < urb_priv->num_tds) 1619 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1620 "Cancel URB %p, dev %s, ep 0x%x, " 1621 "starting at offset 0x%llx", 1622 urb, urb->dev->devpath, 1623 urb->ep->desc.bEndpointAddress, 1624 (unsigned long long) xhci_trb_virt_to_dma( 1625 urb_priv->td[i].start_seg, 1626 urb_priv->td[i].first_trb)); 1627 1628 for (; i < urb_priv->num_tds; i++) { 1629 td = &urb_priv->td[i]; 1630 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1631 } 1632 1633 /* Queue a stop endpoint command, but only if this is 1634 * the first cancellation to be handled. 1635 */ 1636 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1637 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1638 if (!command) { 1639 ret = -ENOMEM; 1640 goto done; 1641 } 1642 ep->ep_state |= EP_STOP_CMD_PENDING; 1643 ep->stop_cmd_timer.expires = jiffies + 1644 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1645 add_timer(&ep->stop_cmd_timer); 1646 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1647 ep_index, 0); 1648 xhci_ring_cmd_db(xhci); 1649 } 1650 done: 1651 spin_unlock_irqrestore(&xhci->lock, flags); 1652 return ret; 1653 1654 err_giveback: 1655 if (urb_priv) 1656 xhci_urb_free_priv(urb_priv); 1657 usb_hcd_unlink_urb_from_ep(hcd, urb); 1658 spin_unlock_irqrestore(&xhci->lock, flags); 1659 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1660 return ret; 1661 } 1662 1663 /* Drop an endpoint from a new bandwidth configuration for this device. 1664 * Only one call to this function is allowed per endpoint before 1665 * check_bandwidth() or reset_bandwidth() must be called. 1666 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1667 * add the endpoint to the schedule with possibly new parameters denoted by a 1668 * different endpoint descriptor in usb_host_endpoint. 1669 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1670 * not allowed. 1671 * 1672 * The USB core will not allow URBs to be queued to an endpoint that is being 1673 * disabled, so there's no need for mutual exclusion to protect 1674 * the xhci->devs[slot_id] structure. 1675 */ 1676 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1677 struct usb_host_endpoint *ep) 1678 { 1679 struct xhci_hcd *xhci; 1680 struct xhci_container_ctx *in_ctx, *out_ctx; 1681 struct xhci_input_control_ctx *ctrl_ctx; 1682 unsigned int ep_index; 1683 struct xhci_ep_ctx *ep_ctx; 1684 u32 drop_flag; 1685 u32 new_add_flags, new_drop_flags; 1686 int ret; 1687 1688 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1689 if (ret <= 0) 1690 return ret; 1691 xhci = hcd_to_xhci(hcd); 1692 if (xhci->xhc_state & XHCI_STATE_DYING) 1693 return -ENODEV; 1694 1695 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1696 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1697 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1698 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1699 __func__, drop_flag); 1700 return 0; 1701 } 1702 1703 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1704 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1705 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1706 if (!ctrl_ctx) { 1707 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1708 __func__); 1709 return 0; 1710 } 1711 1712 ep_index = xhci_get_endpoint_index(&ep->desc); 1713 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1714 /* If the HC already knows the endpoint is disabled, 1715 * or the HCD has noted it is disabled, ignore this request 1716 */ 1717 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1718 le32_to_cpu(ctrl_ctx->drop_flags) & 1719 xhci_get_endpoint_flag(&ep->desc)) { 1720 /* Do not warn when called after a usb_device_reset */ 1721 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1722 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1723 __func__, ep); 1724 return 0; 1725 } 1726 1727 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1728 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1729 1730 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1731 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1732 1733 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1734 1735 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1736 1737 if (xhci->quirks & XHCI_MTK_HOST) 1738 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1739 1740 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1741 (unsigned int) ep->desc.bEndpointAddress, 1742 udev->slot_id, 1743 (unsigned int) new_drop_flags, 1744 (unsigned int) new_add_flags); 1745 return 0; 1746 } 1747 1748 /* Add an endpoint to a new possible bandwidth configuration for this device. 1749 * Only one call to this function is allowed per endpoint before 1750 * check_bandwidth() or reset_bandwidth() must be called. 1751 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1752 * add the endpoint to the schedule with possibly new parameters denoted by a 1753 * different endpoint descriptor in usb_host_endpoint. 1754 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1755 * not allowed. 1756 * 1757 * The USB core will not allow URBs to be queued to an endpoint until the 1758 * configuration or alt setting is installed in the device, so there's no need 1759 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1760 */ 1761 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1762 struct usb_host_endpoint *ep) 1763 { 1764 struct xhci_hcd *xhci; 1765 struct xhci_container_ctx *in_ctx; 1766 unsigned int ep_index; 1767 struct xhci_input_control_ctx *ctrl_ctx; 1768 u32 added_ctxs; 1769 u32 new_add_flags, new_drop_flags; 1770 struct xhci_virt_device *virt_dev; 1771 int ret = 0; 1772 1773 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1774 if (ret <= 0) { 1775 /* So we won't queue a reset ep command for a root hub */ 1776 ep->hcpriv = NULL; 1777 return ret; 1778 } 1779 xhci = hcd_to_xhci(hcd); 1780 if (xhci->xhc_state & XHCI_STATE_DYING) 1781 return -ENODEV; 1782 1783 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1784 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1785 /* FIXME when we have to issue an evaluate endpoint command to 1786 * deal with ep0 max packet size changing once we get the 1787 * descriptors 1788 */ 1789 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1790 __func__, added_ctxs); 1791 return 0; 1792 } 1793 1794 virt_dev = xhci->devs[udev->slot_id]; 1795 in_ctx = virt_dev->in_ctx; 1796 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1797 if (!ctrl_ctx) { 1798 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1799 __func__); 1800 return 0; 1801 } 1802 1803 ep_index = xhci_get_endpoint_index(&ep->desc); 1804 /* If this endpoint is already in use, and the upper layers are trying 1805 * to add it again without dropping it, reject the addition. 1806 */ 1807 if (virt_dev->eps[ep_index].ring && 1808 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1809 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1810 "without dropping it.\n", 1811 (unsigned int) ep->desc.bEndpointAddress); 1812 return -EINVAL; 1813 } 1814 1815 /* If the HCD has already noted the endpoint is enabled, 1816 * ignore this request. 1817 */ 1818 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1819 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1820 __func__, ep); 1821 return 0; 1822 } 1823 1824 /* 1825 * Configuration and alternate setting changes must be done in 1826 * process context, not interrupt context (or so documenation 1827 * for usb_set_interface() and usb_set_configuration() claim). 1828 */ 1829 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1830 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1831 __func__, ep->desc.bEndpointAddress); 1832 return -ENOMEM; 1833 } 1834 1835 if (xhci->quirks & XHCI_MTK_HOST) { 1836 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1837 if (ret < 0) { 1838 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1839 virt_dev->eps[ep_index].new_ring = NULL; 1840 return ret; 1841 } 1842 } 1843 1844 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1845 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1846 1847 /* If xhci_endpoint_disable() was called for this endpoint, but the 1848 * xHC hasn't been notified yet through the check_bandwidth() call, 1849 * this re-adds a new state for the endpoint from the new endpoint 1850 * descriptors. We must drop and re-add this endpoint, so we leave the 1851 * drop flags alone. 1852 */ 1853 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1854 1855 /* Store the usb_device pointer for later use */ 1856 ep->hcpriv = udev; 1857 1858 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1859 1860 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1861 (unsigned int) ep->desc.bEndpointAddress, 1862 udev->slot_id, 1863 (unsigned int) new_drop_flags, 1864 (unsigned int) new_add_flags); 1865 return 0; 1866 } 1867 1868 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1869 { 1870 struct xhci_input_control_ctx *ctrl_ctx; 1871 struct xhci_ep_ctx *ep_ctx; 1872 struct xhci_slot_ctx *slot_ctx; 1873 int i; 1874 1875 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1876 if (!ctrl_ctx) { 1877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1878 __func__); 1879 return; 1880 } 1881 1882 /* When a device's add flag and drop flag are zero, any subsequent 1883 * configure endpoint command will leave that endpoint's state 1884 * untouched. Make sure we don't leave any old state in the input 1885 * endpoint contexts. 1886 */ 1887 ctrl_ctx->drop_flags = 0; 1888 ctrl_ctx->add_flags = 0; 1889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1890 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1891 /* Endpoint 0 is always valid */ 1892 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1893 for (i = 1; i < 31; i++) { 1894 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1895 ep_ctx->ep_info = 0; 1896 ep_ctx->ep_info2 = 0; 1897 ep_ctx->deq = 0; 1898 ep_ctx->tx_info = 0; 1899 } 1900 } 1901 1902 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1903 struct usb_device *udev, u32 *cmd_status) 1904 { 1905 int ret; 1906 1907 switch (*cmd_status) { 1908 case COMP_COMMAND_ABORTED: 1909 case COMP_COMMAND_RING_STOPPED: 1910 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1911 ret = -ETIME; 1912 break; 1913 case COMP_RESOURCE_ERROR: 1914 dev_warn(&udev->dev, 1915 "Not enough host controller resources for new device state.\n"); 1916 ret = -ENOMEM; 1917 /* FIXME: can we allocate more resources for the HC? */ 1918 break; 1919 case COMP_BANDWIDTH_ERROR: 1920 case COMP_SECONDARY_BANDWIDTH_ERROR: 1921 dev_warn(&udev->dev, 1922 "Not enough bandwidth for new device state.\n"); 1923 ret = -ENOSPC; 1924 /* FIXME: can we go back to the old state? */ 1925 break; 1926 case COMP_TRB_ERROR: 1927 /* the HCD set up something wrong */ 1928 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1929 "add flag = 1, " 1930 "and endpoint is not disabled.\n"); 1931 ret = -EINVAL; 1932 break; 1933 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1934 dev_warn(&udev->dev, 1935 "ERROR: Incompatible device for endpoint configure command.\n"); 1936 ret = -ENODEV; 1937 break; 1938 case COMP_SUCCESS: 1939 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1940 "Successful Endpoint Configure command"); 1941 ret = 0; 1942 break; 1943 default: 1944 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1945 *cmd_status); 1946 ret = -EINVAL; 1947 break; 1948 } 1949 return ret; 1950 } 1951 1952 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1953 struct usb_device *udev, u32 *cmd_status) 1954 { 1955 int ret; 1956 1957 switch (*cmd_status) { 1958 case COMP_COMMAND_ABORTED: 1959 case COMP_COMMAND_RING_STOPPED: 1960 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1961 ret = -ETIME; 1962 break; 1963 case COMP_PARAMETER_ERROR: 1964 dev_warn(&udev->dev, 1965 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1966 ret = -EINVAL; 1967 break; 1968 case COMP_SLOT_NOT_ENABLED_ERROR: 1969 dev_warn(&udev->dev, 1970 "WARN: slot not enabled for evaluate context command.\n"); 1971 ret = -EINVAL; 1972 break; 1973 case COMP_CONTEXT_STATE_ERROR: 1974 dev_warn(&udev->dev, 1975 "WARN: invalid context state for evaluate context command.\n"); 1976 ret = -EINVAL; 1977 break; 1978 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1979 dev_warn(&udev->dev, 1980 "ERROR: Incompatible device for evaluate context command.\n"); 1981 ret = -ENODEV; 1982 break; 1983 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1984 /* Max Exit Latency too large error */ 1985 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1986 ret = -EINVAL; 1987 break; 1988 case COMP_SUCCESS: 1989 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1990 "Successful evaluate context command"); 1991 ret = 0; 1992 break; 1993 default: 1994 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1995 *cmd_status); 1996 ret = -EINVAL; 1997 break; 1998 } 1999 return ret; 2000 } 2001 2002 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2003 struct xhci_input_control_ctx *ctrl_ctx) 2004 { 2005 u32 valid_add_flags; 2006 u32 valid_drop_flags; 2007 2008 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2009 * (bit 1). The default control endpoint is added during the Address 2010 * Device command and is never removed until the slot is disabled. 2011 */ 2012 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2013 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2014 2015 /* Use hweight32 to count the number of ones in the add flags, or 2016 * number of endpoints added. Don't count endpoints that are changed 2017 * (both added and dropped). 2018 */ 2019 return hweight32(valid_add_flags) - 2020 hweight32(valid_add_flags & valid_drop_flags); 2021 } 2022 2023 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2024 struct xhci_input_control_ctx *ctrl_ctx) 2025 { 2026 u32 valid_add_flags; 2027 u32 valid_drop_flags; 2028 2029 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2030 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2031 2032 return hweight32(valid_drop_flags) - 2033 hweight32(valid_add_flags & valid_drop_flags); 2034 } 2035 2036 /* 2037 * We need to reserve the new number of endpoints before the configure endpoint 2038 * command completes. We can't subtract the dropped endpoints from the number 2039 * of active endpoints until the command completes because we can oversubscribe 2040 * the host in this case: 2041 * 2042 * - the first configure endpoint command drops more endpoints than it adds 2043 * - a second configure endpoint command that adds more endpoints is queued 2044 * - the first configure endpoint command fails, so the config is unchanged 2045 * - the second command may succeed, even though there isn't enough resources 2046 * 2047 * Must be called with xhci->lock held. 2048 */ 2049 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2050 struct xhci_input_control_ctx *ctrl_ctx) 2051 { 2052 u32 added_eps; 2053 2054 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2055 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2056 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2057 "Not enough ep ctxs: " 2058 "%u active, need to add %u, limit is %u.", 2059 xhci->num_active_eps, added_eps, 2060 xhci->limit_active_eps); 2061 return -ENOMEM; 2062 } 2063 xhci->num_active_eps += added_eps; 2064 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2065 "Adding %u ep ctxs, %u now active.", added_eps, 2066 xhci->num_active_eps); 2067 return 0; 2068 } 2069 2070 /* 2071 * The configure endpoint was failed by the xHC for some other reason, so we 2072 * need to revert the resources that failed configuration would have used. 2073 * 2074 * Must be called with xhci->lock held. 2075 */ 2076 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2077 struct xhci_input_control_ctx *ctrl_ctx) 2078 { 2079 u32 num_failed_eps; 2080 2081 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2082 xhci->num_active_eps -= num_failed_eps; 2083 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2084 "Removing %u failed ep ctxs, %u now active.", 2085 num_failed_eps, 2086 xhci->num_active_eps); 2087 } 2088 2089 /* 2090 * Now that the command has completed, clean up the active endpoint count by 2091 * subtracting out the endpoints that were dropped (but not changed). 2092 * 2093 * Must be called with xhci->lock held. 2094 */ 2095 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2096 struct xhci_input_control_ctx *ctrl_ctx) 2097 { 2098 u32 num_dropped_eps; 2099 2100 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2101 xhci->num_active_eps -= num_dropped_eps; 2102 if (num_dropped_eps) 2103 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2104 "Removing %u dropped ep ctxs, %u now active.", 2105 num_dropped_eps, 2106 xhci->num_active_eps); 2107 } 2108 2109 static unsigned int xhci_get_block_size(struct usb_device *udev) 2110 { 2111 switch (udev->speed) { 2112 case USB_SPEED_LOW: 2113 case USB_SPEED_FULL: 2114 return FS_BLOCK; 2115 case USB_SPEED_HIGH: 2116 return HS_BLOCK; 2117 case USB_SPEED_SUPER: 2118 case USB_SPEED_SUPER_PLUS: 2119 return SS_BLOCK; 2120 case USB_SPEED_UNKNOWN: 2121 case USB_SPEED_WIRELESS: 2122 default: 2123 /* Should never happen */ 2124 return 1; 2125 } 2126 } 2127 2128 static unsigned int 2129 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2130 { 2131 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2132 return LS_OVERHEAD; 2133 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2134 return FS_OVERHEAD; 2135 return HS_OVERHEAD; 2136 } 2137 2138 /* If we are changing a LS/FS device under a HS hub, 2139 * make sure (if we are activating a new TT) that the HS bus has enough 2140 * bandwidth for this new TT. 2141 */ 2142 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2143 struct xhci_virt_device *virt_dev, 2144 int old_active_eps) 2145 { 2146 struct xhci_interval_bw_table *bw_table; 2147 struct xhci_tt_bw_info *tt_info; 2148 2149 /* Find the bandwidth table for the root port this TT is attached to. */ 2150 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2151 tt_info = virt_dev->tt_info; 2152 /* If this TT already had active endpoints, the bandwidth for this TT 2153 * has already been added. Removing all periodic endpoints (and thus 2154 * making the TT enactive) will only decrease the bandwidth used. 2155 */ 2156 if (old_active_eps) 2157 return 0; 2158 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2159 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2160 return -ENOMEM; 2161 return 0; 2162 } 2163 /* Not sure why we would have no new active endpoints... 2164 * 2165 * Maybe because of an Evaluate Context change for a hub update or a 2166 * control endpoint 0 max packet size change? 2167 * FIXME: skip the bandwidth calculation in that case. 2168 */ 2169 return 0; 2170 } 2171 2172 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2173 struct xhci_virt_device *virt_dev) 2174 { 2175 unsigned int bw_reserved; 2176 2177 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2178 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2179 return -ENOMEM; 2180 2181 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2182 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2183 return -ENOMEM; 2184 2185 return 0; 2186 } 2187 2188 /* 2189 * This algorithm is a very conservative estimate of the worst-case scheduling 2190 * scenario for any one interval. The hardware dynamically schedules the 2191 * packets, so we can't tell which microframe could be the limiting factor in 2192 * the bandwidth scheduling. This only takes into account periodic endpoints. 2193 * 2194 * Obviously, we can't solve an NP complete problem to find the minimum worst 2195 * case scenario. Instead, we come up with an estimate that is no less than 2196 * the worst case bandwidth used for any one microframe, but may be an 2197 * over-estimate. 2198 * 2199 * We walk the requirements for each endpoint by interval, starting with the 2200 * smallest interval, and place packets in the schedule where there is only one 2201 * possible way to schedule packets for that interval. In order to simplify 2202 * this algorithm, we record the largest max packet size for each interval, and 2203 * assume all packets will be that size. 2204 * 2205 * For interval 0, we obviously must schedule all packets for each interval. 2206 * The bandwidth for interval 0 is just the amount of data to be transmitted 2207 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2208 * the number of packets). 2209 * 2210 * For interval 1, we have two possible microframes to schedule those packets 2211 * in. For this algorithm, if we can schedule the same number of packets for 2212 * each possible scheduling opportunity (each microframe), we will do so. The 2213 * remaining number of packets will be saved to be transmitted in the gaps in 2214 * the next interval's scheduling sequence. 2215 * 2216 * As we move those remaining packets to be scheduled with interval 2 packets, 2217 * we have to double the number of remaining packets to transmit. This is 2218 * because the intervals are actually powers of 2, and we would be transmitting 2219 * the previous interval's packets twice in this interval. We also have to be 2220 * sure that when we look at the largest max packet size for this interval, we 2221 * also look at the largest max packet size for the remaining packets and take 2222 * the greater of the two. 2223 * 2224 * The algorithm continues to evenly distribute packets in each scheduling 2225 * opportunity, and push the remaining packets out, until we get to the last 2226 * interval. Then those packets and their associated overhead are just added 2227 * to the bandwidth used. 2228 */ 2229 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2230 struct xhci_virt_device *virt_dev, 2231 int old_active_eps) 2232 { 2233 unsigned int bw_reserved; 2234 unsigned int max_bandwidth; 2235 unsigned int bw_used; 2236 unsigned int block_size; 2237 struct xhci_interval_bw_table *bw_table; 2238 unsigned int packet_size = 0; 2239 unsigned int overhead = 0; 2240 unsigned int packets_transmitted = 0; 2241 unsigned int packets_remaining = 0; 2242 unsigned int i; 2243 2244 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2245 return xhci_check_ss_bw(xhci, virt_dev); 2246 2247 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2248 max_bandwidth = HS_BW_LIMIT; 2249 /* Convert percent of bus BW reserved to blocks reserved */ 2250 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2251 } else { 2252 max_bandwidth = FS_BW_LIMIT; 2253 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2254 } 2255 2256 bw_table = virt_dev->bw_table; 2257 /* We need to translate the max packet size and max ESIT payloads into 2258 * the units the hardware uses. 2259 */ 2260 block_size = xhci_get_block_size(virt_dev->udev); 2261 2262 /* If we are manipulating a LS/FS device under a HS hub, double check 2263 * that the HS bus has enough bandwidth if we are activing a new TT. 2264 */ 2265 if (virt_dev->tt_info) { 2266 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2267 "Recalculating BW for rootport %u", 2268 virt_dev->real_port); 2269 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2270 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2271 "newly activated TT.\n"); 2272 return -ENOMEM; 2273 } 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2275 "Recalculating BW for TT slot %u port %u", 2276 virt_dev->tt_info->slot_id, 2277 virt_dev->tt_info->ttport); 2278 } else { 2279 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2280 "Recalculating BW for rootport %u", 2281 virt_dev->real_port); 2282 } 2283 2284 /* Add in how much bandwidth will be used for interval zero, or the 2285 * rounded max ESIT payload + number of packets * largest overhead. 2286 */ 2287 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2288 bw_table->interval_bw[0].num_packets * 2289 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2290 2291 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2292 unsigned int bw_added; 2293 unsigned int largest_mps; 2294 unsigned int interval_overhead; 2295 2296 /* 2297 * How many packets could we transmit in this interval? 2298 * If packets didn't fit in the previous interval, we will need 2299 * to transmit that many packets twice within this interval. 2300 */ 2301 packets_remaining = 2 * packets_remaining + 2302 bw_table->interval_bw[i].num_packets; 2303 2304 /* Find the largest max packet size of this or the previous 2305 * interval. 2306 */ 2307 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2308 largest_mps = 0; 2309 else { 2310 struct xhci_virt_ep *virt_ep; 2311 struct list_head *ep_entry; 2312 2313 ep_entry = bw_table->interval_bw[i].endpoints.next; 2314 virt_ep = list_entry(ep_entry, 2315 struct xhci_virt_ep, bw_endpoint_list); 2316 /* Convert to blocks, rounding up */ 2317 largest_mps = DIV_ROUND_UP( 2318 virt_ep->bw_info.max_packet_size, 2319 block_size); 2320 } 2321 if (largest_mps > packet_size) 2322 packet_size = largest_mps; 2323 2324 /* Use the larger overhead of this or the previous interval. */ 2325 interval_overhead = xhci_get_largest_overhead( 2326 &bw_table->interval_bw[i]); 2327 if (interval_overhead > overhead) 2328 overhead = interval_overhead; 2329 2330 /* How many packets can we evenly distribute across 2331 * (1 << (i + 1)) possible scheduling opportunities? 2332 */ 2333 packets_transmitted = packets_remaining >> (i + 1); 2334 2335 /* Add in the bandwidth used for those scheduled packets */ 2336 bw_added = packets_transmitted * (overhead + packet_size); 2337 2338 /* How many packets do we have remaining to transmit? */ 2339 packets_remaining = packets_remaining % (1 << (i + 1)); 2340 2341 /* What largest max packet size should those packets have? */ 2342 /* If we've transmitted all packets, don't carry over the 2343 * largest packet size. 2344 */ 2345 if (packets_remaining == 0) { 2346 packet_size = 0; 2347 overhead = 0; 2348 } else if (packets_transmitted > 0) { 2349 /* Otherwise if we do have remaining packets, and we've 2350 * scheduled some packets in this interval, take the 2351 * largest max packet size from endpoints with this 2352 * interval. 2353 */ 2354 packet_size = largest_mps; 2355 overhead = interval_overhead; 2356 } 2357 /* Otherwise carry over packet_size and overhead from the last 2358 * time we had a remainder. 2359 */ 2360 bw_used += bw_added; 2361 if (bw_used > max_bandwidth) { 2362 xhci_warn(xhci, "Not enough bandwidth. " 2363 "Proposed: %u, Max: %u\n", 2364 bw_used, max_bandwidth); 2365 return -ENOMEM; 2366 } 2367 } 2368 /* 2369 * Ok, we know we have some packets left over after even-handedly 2370 * scheduling interval 15. We don't know which microframes they will 2371 * fit into, so we over-schedule and say they will be scheduled every 2372 * microframe. 2373 */ 2374 if (packets_remaining > 0) 2375 bw_used += overhead + packet_size; 2376 2377 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2378 unsigned int port_index = virt_dev->real_port - 1; 2379 2380 /* OK, we're manipulating a HS device attached to a 2381 * root port bandwidth domain. Include the number of active TTs 2382 * in the bandwidth used. 2383 */ 2384 bw_used += TT_HS_OVERHEAD * 2385 xhci->rh_bw[port_index].num_active_tts; 2386 } 2387 2388 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2389 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2390 "Available: %u " "percent", 2391 bw_used, max_bandwidth, bw_reserved, 2392 (max_bandwidth - bw_used - bw_reserved) * 100 / 2393 max_bandwidth); 2394 2395 bw_used += bw_reserved; 2396 if (bw_used > max_bandwidth) { 2397 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2398 bw_used, max_bandwidth); 2399 return -ENOMEM; 2400 } 2401 2402 bw_table->bw_used = bw_used; 2403 return 0; 2404 } 2405 2406 static bool xhci_is_async_ep(unsigned int ep_type) 2407 { 2408 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2409 ep_type != ISOC_IN_EP && 2410 ep_type != INT_IN_EP); 2411 } 2412 2413 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2414 { 2415 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2416 } 2417 2418 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2419 { 2420 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2421 2422 if (ep_bw->ep_interval == 0) 2423 return SS_OVERHEAD_BURST + 2424 (ep_bw->mult * ep_bw->num_packets * 2425 (SS_OVERHEAD + mps)); 2426 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2427 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2428 1 << ep_bw->ep_interval); 2429 2430 } 2431 2432 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2433 struct xhci_bw_info *ep_bw, 2434 struct xhci_interval_bw_table *bw_table, 2435 struct usb_device *udev, 2436 struct xhci_virt_ep *virt_ep, 2437 struct xhci_tt_bw_info *tt_info) 2438 { 2439 struct xhci_interval_bw *interval_bw; 2440 int normalized_interval; 2441 2442 if (xhci_is_async_ep(ep_bw->type)) 2443 return; 2444 2445 if (udev->speed >= USB_SPEED_SUPER) { 2446 if (xhci_is_sync_in_ep(ep_bw->type)) 2447 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2448 xhci_get_ss_bw_consumed(ep_bw); 2449 else 2450 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2451 xhci_get_ss_bw_consumed(ep_bw); 2452 return; 2453 } 2454 2455 /* SuperSpeed endpoints never get added to intervals in the table, so 2456 * this check is only valid for HS/FS/LS devices. 2457 */ 2458 if (list_empty(&virt_ep->bw_endpoint_list)) 2459 return; 2460 /* For LS/FS devices, we need to translate the interval expressed in 2461 * microframes to frames. 2462 */ 2463 if (udev->speed == USB_SPEED_HIGH) 2464 normalized_interval = ep_bw->ep_interval; 2465 else 2466 normalized_interval = ep_bw->ep_interval - 3; 2467 2468 if (normalized_interval == 0) 2469 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2470 interval_bw = &bw_table->interval_bw[normalized_interval]; 2471 interval_bw->num_packets -= ep_bw->num_packets; 2472 switch (udev->speed) { 2473 case USB_SPEED_LOW: 2474 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2475 break; 2476 case USB_SPEED_FULL: 2477 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2478 break; 2479 case USB_SPEED_HIGH: 2480 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2481 break; 2482 case USB_SPEED_SUPER: 2483 case USB_SPEED_SUPER_PLUS: 2484 case USB_SPEED_UNKNOWN: 2485 case USB_SPEED_WIRELESS: 2486 /* Should never happen because only LS/FS/HS endpoints will get 2487 * added to the endpoint list. 2488 */ 2489 return; 2490 } 2491 if (tt_info) 2492 tt_info->active_eps -= 1; 2493 list_del_init(&virt_ep->bw_endpoint_list); 2494 } 2495 2496 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2497 struct xhci_bw_info *ep_bw, 2498 struct xhci_interval_bw_table *bw_table, 2499 struct usb_device *udev, 2500 struct xhci_virt_ep *virt_ep, 2501 struct xhci_tt_bw_info *tt_info) 2502 { 2503 struct xhci_interval_bw *interval_bw; 2504 struct xhci_virt_ep *smaller_ep; 2505 int normalized_interval; 2506 2507 if (xhci_is_async_ep(ep_bw->type)) 2508 return; 2509 2510 if (udev->speed == USB_SPEED_SUPER) { 2511 if (xhci_is_sync_in_ep(ep_bw->type)) 2512 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2513 xhci_get_ss_bw_consumed(ep_bw); 2514 else 2515 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2516 xhci_get_ss_bw_consumed(ep_bw); 2517 return; 2518 } 2519 2520 /* For LS/FS devices, we need to translate the interval expressed in 2521 * microframes to frames. 2522 */ 2523 if (udev->speed == USB_SPEED_HIGH) 2524 normalized_interval = ep_bw->ep_interval; 2525 else 2526 normalized_interval = ep_bw->ep_interval - 3; 2527 2528 if (normalized_interval == 0) 2529 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2530 interval_bw = &bw_table->interval_bw[normalized_interval]; 2531 interval_bw->num_packets += ep_bw->num_packets; 2532 switch (udev->speed) { 2533 case USB_SPEED_LOW: 2534 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2535 break; 2536 case USB_SPEED_FULL: 2537 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2538 break; 2539 case USB_SPEED_HIGH: 2540 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2541 break; 2542 case USB_SPEED_SUPER: 2543 case USB_SPEED_SUPER_PLUS: 2544 case USB_SPEED_UNKNOWN: 2545 case USB_SPEED_WIRELESS: 2546 /* Should never happen because only LS/FS/HS endpoints will get 2547 * added to the endpoint list. 2548 */ 2549 return; 2550 } 2551 2552 if (tt_info) 2553 tt_info->active_eps += 1; 2554 /* Insert the endpoint into the list, largest max packet size first. */ 2555 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2556 bw_endpoint_list) { 2557 if (ep_bw->max_packet_size >= 2558 smaller_ep->bw_info.max_packet_size) { 2559 /* Add the new ep before the smaller endpoint */ 2560 list_add_tail(&virt_ep->bw_endpoint_list, 2561 &smaller_ep->bw_endpoint_list); 2562 return; 2563 } 2564 } 2565 /* Add the new endpoint at the end of the list. */ 2566 list_add_tail(&virt_ep->bw_endpoint_list, 2567 &interval_bw->endpoints); 2568 } 2569 2570 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2571 struct xhci_virt_device *virt_dev, 2572 int old_active_eps) 2573 { 2574 struct xhci_root_port_bw_info *rh_bw_info; 2575 if (!virt_dev->tt_info) 2576 return; 2577 2578 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2579 if (old_active_eps == 0 && 2580 virt_dev->tt_info->active_eps != 0) { 2581 rh_bw_info->num_active_tts += 1; 2582 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2583 } else if (old_active_eps != 0 && 2584 virt_dev->tt_info->active_eps == 0) { 2585 rh_bw_info->num_active_tts -= 1; 2586 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2587 } 2588 } 2589 2590 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2591 struct xhci_virt_device *virt_dev, 2592 struct xhci_container_ctx *in_ctx) 2593 { 2594 struct xhci_bw_info ep_bw_info[31]; 2595 int i; 2596 struct xhci_input_control_ctx *ctrl_ctx; 2597 int old_active_eps = 0; 2598 2599 if (virt_dev->tt_info) 2600 old_active_eps = virt_dev->tt_info->active_eps; 2601 2602 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2603 if (!ctrl_ctx) { 2604 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2605 __func__); 2606 return -ENOMEM; 2607 } 2608 2609 for (i = 0; i < 31; i++) { 2610 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2611 continue; 2612 2613 /* Make a copy of the BW info in case we need to revert this */ 2614 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2615 sizeof(ep_bw_info[i])); 2616 /* Drop the endpoint from the interval table if the endpoint is 2617 * being dropped or changed. 2618 */ 2619 if (EP_IS_DROPPED(ctrl_ctx, i)) 2620 xhci_drop_ep_from_interval_table(xhci, 2621 &virt_dev->eps[i].bw_info, 2622 virt_dev->bw_table, 2623 virt_dev->udev, 2624 &virt_dev->eps[i], 2625 virt_dev->tt_info); 2626 } 2627 /* Overwrite the information stored in the endpoints' bw_info */ 2628 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2629 for (i = 0; i < 31; i++) { 2630 /* Add any changed or added endpoints to the interval table */ 2631 if (EP_IS_ADDED(ctrl_ctx, i)) 2632 xhci_add_ep_to_interval_table(xhci, 2633 &virt_dev->eps[i].bw_info, 2634 virt_dev->bw_table, 2635 virt_dev->udev, 2636 &virt_dev->eps[i], 2637 virt_dev->tt_info); 2638 } 2639 2640 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2641 /* Ok, this fits in the bandwidth we have. 2642 * Update the number of active TTs. 2643 */ 2644 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2645 return 0; 2646 } 2647 2648 /* We don't have enough bandwidth for this, revert the stored info. */ 2649 for (i = 0; i < 31; i++) { 2650 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2651 continue; 2652 2653 /* Drop the new copies of any added or changed endpoints from 2654 * the interval table. 2655 */ 2656 if (EP_IS_ADDED(ctrl_ctx, i)) { 2657 xhci_drop_ep_from_interval_table(xhci, 2658 &virt_dev->eps[i].bw_info, 2659 virt_dev->bw_table, 2660 virt_dev->udev, 2661 &virt_dev->eps[i], 2662 virt_dev->tt_info); 2663 } 2664 /* Revert the endpoint back to its old information */ 2665 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2666 sizeof(ep_bw_info[i])); 2667 /* Add any changed or dropped endpoints back into the table */ 2668 if (EP_IS_DROPPED(ctrl_ctx, i)) 2669 xhci_add_ep_to_interval_table(xhci, 2670 &virt_dev->eps[i].bw_info, 2671 virt_dev->bw_table, 2672 virt_dev->udev, 2673 &virt_dev->eps[i], 2674 virt_dev->tt_info); 2675 } 2676 return -ENOMEM; 2677 } 2678 2679 2680 /* Issue a configure endpoint command or evaluate context command 2681 * and wait for it to finish. 2682 */ 2683 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2684 struct usb_device *udev, 2685 struct xhci_command *command, 2686 bool ctx_change, bool must_succeed) 2687 { 2688 int ret; 2689 unsigned long flags; 2690 struct xhci_input_control_ctx *ctrl_ctx; 2691 struct xhci_virt_device *virt_dev; 2692 struct xhci_slot_ctx *slot_ctx; 2693 2694 if (!command) 2695 return -EINVAL; 2696 2697 spin_lock_irqsave(&xhci->lock, flags); 2698 2699 if (xhci->xhc_state & XHCI_STATE_DYING) { 2700 spin_unlock_irqrestore(&xhci->lock, flags); 2701 return -ESHUTDOWN; 2702 } 2703 2704 virt_dev = xhci->devs[udev->slot_id]; 2705 2706 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2707 if (!ctrl_ctx) { 2708 spin_unlock_irqrestore(&xhci->lock, flags); 2709 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2710 __func__); 2711 return -ENOMEM; 2712 } 2713 2714 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2715 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2716 spin_unlock_irqrestore(&xhci->lock, flags); 2717 xhci_warn(xhci, "Not enough host resources, " 2718 "active endpoint contexts = %u\n", 2719 xhci->num_active_eps); 2720 return -ENOMEM; 2721 } 2722 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2723 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2724 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2725 xhci_free_host_resources(xhci, ctrl_ctx); 2726 spin_unlock_irqrestore(&xhci->lock, flags); 2727 xhci_warn(xhci, "Not enough bandwidth\n"); 2728 return -ENOMEM; 2729 } 2730 2731 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2732 trace_xhci_configure_endpoint(slot_ctx); 2733 2734 if (!ctx_change) 2735 ret = xhci_queue_configure_endpoint(xhci, command, 2736 command->in_ctx->dma, 2737 udev->slot_id, must_succeed); 2738 else 2739 ret = xhci_queue_evaluate_context(xhci, command, 2740 command->in_ctx->dma, 2741 udev->slot_id, must_succeed); 2742 if (ret < 0) { 2743 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2744 xhci_free_host_resources(xhci, ctrl_ctx); 2745 spin_unlock_irqrestore(&xhci->lock, flags); 2746 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2747 "FIXME allocate a new ring segment"); 2748 return -ENOMEM; 2749 } 2750 xhci_ring_cmd_db(xhci); 2751 spin_unlock_irqrestore(&xhci->lock, flags); 2752 2753 /* Wait for the configure endpoint command to complete */ 2754 wait_for_completion(command->completion); 2755 2756 if (!ctx_change) 2757 ret = xhci_configure_endpoint_result(xhci, udev, 2758 &command->status); 2759 else 2760 ret = xhci_evaluate_context_result(xhci, udev, 2761 &command->status); 2762 2763 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2764 spin_lock_irqsave(&xhci->lock, flags); 2765 /* If the command failed, remove the reserved resources. 2766 * Otherwise, clean up the estimate to include dropped eps. 2767 */ 2768 if (ret) 2769 xhci_free_host_resources(xhci, ctrl_ctx); 2770 else 2771 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2772 spin_unlock_irqrestore(&xhci->lock, flags); 2773 } 2774 return ret; 2775 } 2776 2777 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2778 struct xhci_virt_device *vdev, int i) 2779 { 2780 struct xhci_virt_ep *ep = &vdev->eps[i]; 2781 2782 if (ep->ep_state & EP_HAS_STREAMS) { 2783 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2784 xhci_get_endpoint_address(i)); 2785 xhci_free_stream_info(xhci, ep->stream_info); 2786 ep->stream_info = NULL; 2787 ep->ep_state &= ~EP_HAS_STREAMS; 2788 } 2789 } 2790 2791 /* Called after one or more calls to xhci_add_endpoint() or 2792 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2793 * to call xhci_reset_bandwidth(). 2794 * 2795 * Since we are in the middle of changing either configuration or 2796 * installing a new alt setting, the USB core won't allow URBs to be 2797 * enqueued for any endpoint on the old config or interface. Nothing 2798 * else should be touching the xhci->devs[slot_id] structure, so we 2799 * don't need to take the xhci->lock for manipulating that. 2800 */ 2801 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2802 { 2803 int i; 2804 int ret = 0; 2805 struct xhci_hcd *xhci; 2806 struct xhci_virt_device *virt_dev; 2807 struct xhci_input_control_ctx *ctrl_ctx; 2808 struct xhci_slot_ctx *slot_ctx; 2809 struct xhci_command *command; 2810 2811 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2812 if (ret <= 0) 2813 return ret; 2814 xhci = hcd_to_xhci(hcd); 2815 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2816 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2817 return -ENODEV; 2818 2819 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2820 virt_dev = xhci->devs[udev->slot_id]; 2821 2822 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2823 if (!command) 2824 return -ENOMEM; 2825 2826 command->in_ctx = virt_dev->in_ctx; 2827 2828 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2829 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2830 if (!ctrl_ctx) { 2831 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2832 __func__); 2833 ret = -ENOMEM; 2834 goto command_cleanup; 2835 } 2836 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2837 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2838 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2839 2840 /* Don't issue the command if there's no endpoints to update. */ 2841 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2842 ctrl_ctx->drop_flags == 0) { 2843 ret = 0; 2844 goto command_cleanup; 2845 } 2846 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2847 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2848 for (i = 31; i >= 1; i--) { 2849 __le32 le32 = cpu_to_le32(BIT(i)); 2850 2851 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2852 || (ctrl_ctx->add_flags & le32) || i == 1) { 2853 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2854 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2855 break; 2856 } 2857 } 2858 2859 ret = xhci_configure_endpoint(xhci, udev, command, 2860 false, false); 2861 if (ret) 2862 /* Callee should call reset_bandwidth() */ 2863 goto command_cleanup; 2864 2865 /* Free any rings that were dropped, but not changed. */ 2866 for (i = 1; i < 31; i++) { 2867 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2868 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2869 xhci_free_endpoint_ring(xhci, virt_dev, i); 2870 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2871 } 2872 } 2873 xhci_zero_in_ctx(xhci, virt_dev); 2874 /* 2875 * Install any rings for completely new endpoints or changed endpoints, 2876 * and free any old rings from changed endpoints. 2877 */ 2878 for (i = 1; i < 31; i++) { 2879 if (!virt_dev->eps[i].new_ring) 2880 continue; 2881 /* Only free the old ring if it exists. 2882 * It may not if this is the first add of an endpoint. 2883 */ 2884 if (virt_dev->eps[i].ring) { 2885 xhci_free_endpoint_ring(xhci, virt_dev, i); 2886 } 2887 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2888 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2889 virt_dev->eps[i].new_ring = NULL; 2890 } 2891 command_cleanup: 2892 kfree(command->completion); 2893 kfree(command); 2894 2895 return ret; 2896 } 2897 2898 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2899 { 2900 struct xhci_hcd *xhci; 2901 struct xhci_virt_device *virt_dev; 2902 int i, ret; 2903 2904 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2905 if (ret <= 0) 2906 return; 2907 xhci = hcd_to_xhci(hcd); 2908 2909 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2910 virt_dev = xhci->devs[udev->slot_id]; 2911 /* Free any rings allocated for added endpoints */ 2912 for (i = 0; i < 31; i++) { 2913 if (virt_dev->eps[i].new_ring) { 2914 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2915 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2916 virt_dev->eps[i].new_ring = NULL; 2917 } 2918 } 2919 xhci_zero_in_ctx(xhci, virt_dev); 2920 } 2921 2922 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2923 struct xhci_container_ctx *in_ctx, 2924 struct xhci_container_ctx *out_ctx, 2925 struct xhci_input_control_ctx *ctrl_ctx, 2926 u32 add_flags, u32 drop_flags) 2927 { 2928 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2929 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2930 xhci_slot_copy(xhci, in_ctx, out_ctx); 2931 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2932 } 2933 2934 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2935 unsigned int slot_id, unsigned int ep_index, 2936 struct xhci_dequeue_state *deq_state) 2937 { 2938 struct xhci_input_control_ctx *ctrl_ctx; 2939 struct xhci_container_ctx *in_ctx; 2940 struct xhci_ep_ctx *ep_ctx; 2941 u32 added_ctxs; 2942 dma_addr_t addr; 2943 2944 in_ctx = xhci->devs[slot_id]->in_ctx; 2945 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2946 if (!ctrl_ctx) { 2947 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2948 __func__); 2949 return; 2950 } 2951 2952 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2953 xhci->devs[slot_id]->out_ctx, ep_index); 2954 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2955 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2956 deq_state->new_deq_ptr); 2957 if (addr == 0) { 2958 xhci_warn(xhci, "WARN Cannot submit config ep after " 2959 "reset ep command\n"); 2960 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2961 deq_state->new_deq_seg, 2962 deq_state->new_deq_ptr); 2963 return; 2964 } 2965 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2966 2967 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2968 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2969 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2970 added_ctxs, added_ctxs); 2971 } 2972 2973 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2974 unsigned int stream_id, struct xhci_td *td) 2975 { 2976 struct xhci_dequeue_state deq_state; 2977 struct usb_device *udev = td->urb->dev; 2978 2979 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2980 "Cleaning up stalled endpoint ring"); 2981 /* We need to move the HW's dequeue pointer past this TD, 2982 * or it will attempt to resend it on the next doorbell ring. 2983 */ 2984 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2985 ep_index, stream_id, td, &deq_state); 2986 2987 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2988 return; 2989 2990 /* HW with the reset endpoint quirk will use the saved dequeue state to 2991 * issue a configure endpoint command later. 2992 */ 2993 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2994 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2995 "Queueing new dequeue state"); 2996 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2997 ep_index, &deq_state); 2998 } else { 2999 /* Better hope no one uses the input context between now and the 3000 * reset endpoint completion! 3001 * XXX: No idea how this hardware will react when stream rings 3002 * are enabled. 3003 */ 3004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3005 "Setting up input context for " 3006 "configure endpoint command"); 3007 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3008 ep_index, &deq_state); 3009 } 3010 } 3011 3012 /* 3013 * Called after usb core issues a clear halt control message. 3014 * The host side of the halt should already be cleared by a reset endpoint 3015 * command issued when the STALL event was received. 3016 * 3017 * The reset endpoint command may only be issued to endpoints in the halted 3018 * state. For software that wishes to reset the data toggle or sequence number 3019 * of an endpoint that isn't in the halted state this function will issue a 3020 * configure endpoint command with the Drop and Add bits set for the target 3021 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3022 */ 3023 3024 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3025 struct usb_host_endpoint *host_ep) 3026 { 3027 struct xhci_hcd *xhci; 3028 struct usb_device *udev; 3029 struct xhci_virt_device *vdev; 3030 struct xhci_virt_ep *ep; 3031 struct xhci_input_control_ctx *ctrl_ctx; 3032 struct xhci_command *stop_cmd, *cfg_cmd; 3033 unsigned int ep_index; 3034 unsigned long flags; 3035 u32 ep_flag; 3036 3037 xhci = hcd_to_xhci(hcd); 3038 if (!host_ep->hcpriv) 3039 return; 3040 udev = (struct usb_device *) host_ep->hcpriv; 3041 vdev = xhci->devs[udev->slot_id]; 3042 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3043 ep = &vdev->eps[ep_index]; 3044 3045 /* Bail out if toggle is already being cleared by a endpoint reset */ 3046 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3047 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3048 return; 3049 } 3050 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3051 if (usb_endpoint_xfer_control(&host_ep->desc) || 3052 usb_endpoint_xfer_isoc(&host_ep->desc)) 3053 return; 3054 3055 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3056 3057 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3058 return; 3059 3060 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3061 if (!stop_cmd) 3062 return; 3063 3064 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3065 if (!cfg_cmd) 3066 goto cleanup; 3067 3068 spin_lock_irqsave(&xhci->lock, flags); 3069 3070 /* block queuing new trbs and ringing ep doorbell */ 3071 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3072 3073 /* 3074 * Make sure endpoint ring is empty before resetting the toggle/seq. 3075 * Driver is required to synchronously cancel all transfer request. 3076 * Stop the endpoint to force xHC to update the output context 3077 */ 3078 3079 if (!list_empty(&ep->ring->td_list)) { 3080 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3081 spin_unlock_irqrestore(&xhci->lock, flags); 3082 xhci_free_command(xhci, cfg_cmd); 3083 goto cleanup; 3084 } 3085 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3086 xhci_ring_cmd_db(xhci); 3087 spin_unlock_irqrestore(&xhci->lock, flags); 3088 3089 wait_for_completion(stop_cmd->completion); 3090 3091 spin_lock_irqsave(&xhci->lock, flags); 3092 3093 /* config ep command clears toggle if add and drop ep flags are set */ 3094 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3095 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3096 ctrl_ctx, ep_flag, ep_flag); 3097 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3098 3099 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3100 udev->slot_id, false); 3101 xhci_ring_cmd_db(xhci); 3102 spin_unlock_irqrestore(&xhci->lock, flags); 3103 3104 wait_for_completion(cfg_cmd->completion); 3105 3106 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3107 xhci_free_command(xhci, cfg_cmd); 3108 cleanup: 3109 xhci_free_command(xhci, stop_cmd); 3110 } 3111 3112 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3113 struct usb_device *udev, struct usb_host_endpoint *ep, 3114 unsigned int slot_id) 3115 { 3116 int ret; 3117 unsigned int ep_index; 3118 unsigned int ep_state; 3119 3120 if (!ep) 3121 return -EINVAL; 3122 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3123 if (ret <= 0) 3124 return -EINVAL; 3125 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3126 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3127 " descriptor for ep 0x%x does not support streams\n", 3128 ep->desc.bEndpointAddress); 3129 return -EINVAL; 3130 } 3131 3132 ep_index = xhci_get_endpoint_index(&ep->desc); 3133 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3134 if (ep_state & EP_HAS_STREAMS || 3135 ep_state & EP_GETTING_STREAMS) { 3136 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3137 "already has streams set up.\n", 3138 ep->desc.bEndpointAddress); 3139 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3140 "dynamic stream context array reallocation.\n"); 3141 return -EINVAL; 3142 } 3143 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3144 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3145 "endpoint 0x%x; URBs are pending.\n", 3146 ep->desc.bEndpointAddress); 3147 return -EINVAL; 3148 } 3149 return 0; 3150 } 3151 3152 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3153 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3154 { 3155 unsigned int max_streams; 3156 3157 /* The stream context array size must be a power of two */ 3158 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3159 /* 3160 * Find out how many primary stream array entries the host controller 3161 * supports. Later we may use secondary stream arrays (similar to 2nd 3162 * level page entries), but that's an optional feature for xHCI host 3163 * controllers. xHCs must support at least 4 stream IDs. 3164 */ 3165 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3166 if (*num_stream_ctxs > max_streams) { 3167 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3168 max_streams); 3169 *num_stream_ctxs = max_streams; 3170 *num_streams = max_streams; 3171 } 3172 } 3173 3174 /* Returns an error code if one of the endpoint already has streams. 3175 * This does not change any data structures, it only checks and gathers 3176 * information. 3177 */ 3178 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3179 struct usb_device *udev, 3180 struct usb_host_endpoint **eps, unsigned int num_eps, 3181 unsigned int *num_streams, u32 *changed_ep_bitmask) 3182 { 3183 unsigned int max_streams; 3184 unsigned int endpoint_flag; 3185 int i; 3186 int ret; 3187 3188 for (i = 0; i < num_eps; i++) { 3189 ret = xhci_check_streams_endpoint(xhci, udev, 3190 eps[i], udev->slot_id); 3191 if (ret < 0) 3192 return ret; 3193 3194 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3195 if (max_streams < (*num_streams - 1)) { 3196 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3197 eps[i]->desc.bEndpointAddress, 3198 max_streams); 3199 *num_streams = max_streams+1; 3200 } 3201 3202 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3203 if (*changed_ep_bitmask & endpoint_flag) 3204 return -EINVAL; 3205 *changed_ep_bitmask |= endpoint_flag; 3206 } 3207 return 0; 3208 } 3209 3210 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3211 struct usb_device *udev, 3212 struct usb_host_endpoint **eps, unsigned int num_eps) 3213 { 3214 u32 changed_ep_bitmask = 0; 3215 unsigned int slot_id; 3216 unsigned int ep_index; 3217 unsigned int ep_state; 3218 int i; 3219 3220 slot_id = udev->slot_id; 3221 if (!xhci->devs[slot_id]) 3222 return 0; 3223 3224 for (i = 0; i < num_eps; i++) { 3225 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3226 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3227 /* Are streams already being freed for the endpoint? */ 3228 if (ep_state & EP_GETTING_NO_STREAMS) { 3229 xhci_warn(xhci, "WARN Can't disable streams for " 3230 "endpoint 0x%x, " 3231 "streams are being disabled already\n", 3232 eps[i]->desc.bEndpointAddress); 3233 return 0; 3234 } 3235 /* Are there actually any streams to free? */ 3236 if (!(ep_state & EP_HAS_STREAMS) && 3237 !(ep_state & EP_GETTING_STREAMS)) { 3238 xhci_warn(xhci, "WARN Can't disable streams for " 3239 "endpoint 0x%x, " 3240 "streams are already disabled!\n", 3241 eps[i]->desc.bEndpointAddress); 3242 xhci_warn(xhci, "WARN xhci_free_streams() called " 3243 "with non-streams endpoint\n"); 3244 return 0; 3245 } 3246 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3247 } 3248 return changed_ep_bitmask; 3249 } 3250 3251 /* 3252 * The USB device drivers use this function (through the HCD interface in USB 3253 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3254 * coordinate mass storage command queueing across multiple endpoints (basically 3255 * a stream ID == a task ID). 3256 * 3257 * Setting up streams involves allocating the same size stream context array 3258 * for each endpoint and issuing a configure endpoint command for all endpoints. 3259 * 3260 * Don't allow the call to succeed if one endpoint only supports one stream 3261 * (which means it doesn't support streams at all). 3262 * 3263 * Drivers may get less stream IDs than they asked for, if the host controller 3264 * hardware or endpoints claim they can't support the number of requested 3265 * stream IDs. 3266 */ 3267 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3268 struct usb_host_endpoint **eps, unsigned int num_eps, 3269 unsigned int num_streams, gfp_t mem_flags) 3270 { 3271 int i, ret; 3272 struct xhci_hcd *xhci; 3273 struct xhci_virt_device *vdev; 3274 struct xhci_command *config_cmd; 3275 struct xhci_input_control_ctx *ctrl_ctx; 3276 unsigned int ep_index; 3277 unsigned int num_stream_ctxs; 3278 unsigned int max_packet; 3279 unsigned long flags; 3280 u32 changed_ep_bitmask = 0; 3281 3282 if (!eps) 3283 return -EINVAL; 3284 3285 /* Add one to the number of streams requested to account for 3286 * stream 0 that is reserved for xHCI usage. 3287 */ 3288 num_streams += 1; 3289 xhci = hcd_to_xhci(hcd); 3290 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3291 num_streams); 3292 3293 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3294 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3295 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3296 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3297 return -ENOSYS; 3298 } 3299 3300 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3301 if (!config_cmd) 3302 return -ENOMEM; 3303 3304 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3305 if (!ctrl_ctx) { 3306 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3307 __func__); 3308 xhci_free_command(xhci, config_cmd); 3309 return -ENOMEM; 3310 } 3311 3312 /* Check to make sure all endpoints are not already configured for 3313 * streams. While we're at it, find the maximum number of streams that 3314 * all the endpoints will support and check for duplicate endpoints. 3315 */ 3316 spin_lock_irqsave(&xhci->lock, flags); 3317 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3318 num_eps, &num_streams, &changed_ep_bitmask); 3319 if (ret < 0) { 3320 xhci_free_command(xhci, config_cmd); 3321 spin_unlock_irqrestore(&xhci->lock, flags); 3322 return ret; 3323 } 3324 if (num_streams <= 1) { 3325 xhci_warn(xhci, "WARN: endpoints can't handle " 3326 "more than one stream.\n"); 3327 xhci_free_command(xhci, config_cmd); 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 return -EINVAL; 3330 } 3331 vdev = xhci->devs[udev->slot_id]; 3332 /* Mark each endpoint as being in transition, so 3333 * xhci_urb_enqueue() will reject all URBs. 3334 */ 3335 for (i = 0; i < num_eps; i++) { 3336 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3337 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3338 } 3339 spin_unlock_irqrestore(&xhci->lock, flags); 3340 3341 /* Setup internal data structures and allocate HW data structures for 3342 * streams (but don't install the HW structures in the input context 3343 * until we're sure all memory allocation succeeded). 3344 */ 3345 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3346 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3347 num_stream_ctxs, num_streams); 3348 3349 for (i = 0; i < num_eps; i++) { 3350 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3351 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3352 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3353 num_stream_ctxs, 3354 num_streams, 3355 max_packet, mem_flags); 3356 if (!vdev->eps[ep_index].stream_info) 3357 goto cleanup; 3358 /* Set maxPstreams in endpoint context and update deq ptr to 3359 * point to stream context array. FIXME 3360 */ 3361 } 3362 3363 /* Set up the input context for a configure endpoint command. */ 3364 for (i = 0; i < num_eps; i++) { 3365 struct xhci_ep_ctx *ep_ctx; 3366 3367 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3368 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3369 3370 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3371 vdev->out_ctx, ep_index); 3372 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3373 vdev->eps[ep_index].stream_info); 3374 } 3375 /* Tell the HW to drop its old copy of the endpoint context info 3376 * and add the updated copy from the input context. 3377 */ 3378 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3379 vdev->out_ctx, ctrl_ctx, 3380 changed_ep_bitmask, changed_ep_bitmask); 3381 3382 /* Issue and wait for the configure endpoint command */ 3383 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3384 false, false); 3385 3386 /* xHC rejected the configure endpoint command for some reason, so we 3387 * leave the old ring intact and free our internal streams data 3388 * structure. 3389 */ 3390 if (ret < 0) 3391 goto cleanup; 3392 3393 spin_lock_irqsave(&xhci->lock, flags); 3394 for (i = 0; i < num_eps; i++) { 3395 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3396 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3397 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3398 udev->slot_id, ep_index); 3399 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3400 } 3401 xhci_free_command(xhci, config_cmd); 3402 spin_unlock_irqrestore(&xhci->lock, flags); 3403 3404 /* Subtract 1 for stream 0, which drivers can't use */ 3405 return num_streams - 1; 3406 3407 cleanup: 3408 /* If it didn't work, free the streams! */ 3409 for (i = 0; i < num_eps; i++) { 3410 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3411 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3412 vdev->eps[ep_index].stream_info = NULL; 3413 /* FIXME Unset maxPstreams in endpoint context and 3414 * update deq ptr to point to normal string ring. 3415 */ 3416 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3417 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3418 xhci_endpoint_zero(xhci, vdev, eps[i]); 3419 } 3420 xhci_free_command(xhci, config_cmd); 3421 return -ENOMEM; 3422 } 3423 3424 /* Transition the endpoint from using streams to being a "normal" endpoint 3425 * without streams. 3426 * 3427 * Modify the endpoint context state, submit a configure endpoint command, 3428 * and free all endpoint rings for streams if that completes successfully. 3429 */ 3430 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3431 struct usb_host_endpoint **eps, unsigned int num_eps, 3432 gfp_t mem_flags) 3433 { 3434 int i, ret; 3435 struct xhci_hcd *xhci; 3436 struct xhci_virt_device *vdev; 3437 struct xhci_command *command; 3438 struct xhci_input_control_ctx *ctrl_ctx; 3439 unsigned int ep_index; 3440 unsigned long flags; 3441 u32 changed_ep_bitmask; 3442 3443 xhci = hcd_to_xhci(hcd); 3444 vdev = xhci->devs[udev->slot_id]; 3445 3446 /* Set up a configure endpoint command to remove the streams rings */ 3447 spin_lock_irqsave(&xhci->lock, flags); 3448 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3449 udev, eps, num_eps); 3450 if (changed_ep_bitmask == 0) { 3451 spin_unlock_irqrestore(&xhci->lock, flags); 3452 return -EINVAL; 3453 } 3454 3455 /* Use the xhci_command structure from the first endpoint. We may have 3456 * allocated too many, but the driver may call xhci_free_streams() for 3457 * each endpoint it grouped into one call to xhci_alloc_streams(). 3458 */ 3459 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3460 command = vdev->eps[ep_index].stream_info->free_streams_command; 3461 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3462 if (!ctrl_ctx) { 3463 spin_unlock_irqrestore(&xhci->lock, flags); 3464 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3465 __func__); 3466 return -EINVAL; 3467 } 3468 3469 for (i = 0; i < num_eps; i++) { 3470 struct xhci_ep_ctx *ep_ctx; 3471 3472 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3473 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3474 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3475 EP_GETTING_NO_STREAMS; 3476 3477 xhci_endpoint_copy(xhci, command->in_ctx, 3478 vdev->out_ctx, ep_index); 3479 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3480 &vdev->eps[ep_index]); 3481 } 3482 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3483 vdev->out_ctx, ctrl_ctx, 3484 changed_ep_bitmask, changed_ep_bitmask); 3485 spin_unlock_irqrestore(&xhci->lock, flags); 3486 3487 /* Issue and wait for the configure endpoint command, 3488 * which must succeed. 3489 */ 3490 ret = xhci_configure_endpoint(xhci, udev, command, 3491 false, true); 3492 3493 /* xHC rejected the configure endpoint command for some reason, so we 3494 * leave the streams rings intact. 3495 */ 3496 if (ret < 0) 3497 return ret; 3498 3499 spin_lock_irqsave(&xhci->lock, flags); 3500 for (i = 0; i < num_eps; i++) { 3501 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3502 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3503 vdev->eps[ep_index].stream_info = NULL; 3504 /* FIXME Unset maxPstreams in endpoint context and 3505 * update deq ptr to point to normal string ring. 3506 */ 3507 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3508 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3509 } 3510 spin_unlock_irqrestore(&xhci->lock, flags); 3511 3512 return 0; 3513 } 3514 3515 /* 3516 * Deletes endpoint resources for endpoints that were active before a Reset 3517 * Device command, or a Disable Slot command. The Reset Device command leaves 3518 * the control endpoint intact, whereas the Disable Slot command deletes it. 3519 * 3520 * Must be called with xhci->lock held. 3521 */ 3522 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3523 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3524 { 3525 int i; 3526 unsigned int num_dropped_eps = 0; 3527 unsigned int drop_flags = 0; 3528 3529 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3530 if (virt_dev->eps[i].ring) { 3531 drop_flags |= 1 << i; 3532 num_dropped_eps++; 3533 } 3534 } 3535 xhci->num_active_eps -= num_dropped_eps; 3536 if (num_dropped_eps) 3537 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3538 "Dropped %u ep ctxs, flags = 0x%x, " 3539 "%u now active.", 3540 num_dropped_eps, drop_flags, 3541 xhci->num_active_eps); 3542 } 3543 3544 /* 3545 * This submits a Reset Device Command, which will set the device state to 0, 3546 * set the device address to 0, and disable all the endpoints except the default 3547 * control endpoint. The USB core should come back and call 3548 * xhci_address_device(), and then re-set up the configuration. If this is 3549 * called because of a usb_reset_and_verify_device(), then the old alternate 3550 * settings will be re-installed through the normal bandwidth allocation 3551 * functions. 3552 * 3553 * Wait for the Reset Device command to finish. Remove all structures 3554 * associated with the endpoints that were disabled. Clear the input device 3555 * structure? Reset the control endpoint 0 max packet size? 3556 * 3557 * If the virt_dev to be reset does not exist or does not match the udev, 3558 * it means the device is lost, possibly due to the xHC restore error and 3559 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3560 * re-allocate the device. 3561 */ 3562 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3563 struct usb_device *udev) 3564 { 3565 int ret, i; 3566 unsigned long flags; 3567 struct xhci_hcd *xhci; 3568 unsigned int slot_id; 3569 struct xhci_virt_device *virt_dev; 3570 struct xhci_command *reset_device_cmd; 3571 struct xhci_slot_ctx *slot_ctx; 3572 int old_active_eps = 0; 3573 3574 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3575 if (ret <= 0) 3576 return ret; 3577 xhci = hcd_to_xhci(hcd); 3578 slot_id = udev->slot_id; 3579 virt_dev = xhci->devs[slot_id]; 3580 if (!virt_dev) { 3581 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3582 "not exist. Re-allocate the device\n", slot_id); 3583 ret = xhci_alloc_dev(hcd, udev); 3584 if (ret == 1) 3585 return 0; 3586 else 3587 return -EINVAL; 3588 } 3589 3590 if (virt_dev->tt_info) 3591 old_active_eps = virt_dev->tt_info->active_eps; 3592 3593 if (virt_dev->udev != udev) { 3594 /* If the virt_dev and the udev does not match, this virt_dev 3595 * may belong to another udev. 3596 * Re-allocate the device. 3597 */ 3598 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3599 "not match the udev. Re-allocate the device\n", 3600 slot_id); 3601 ret = xhci_alloc_dev(hcd, udev); 3602 if (ret == 1) 3603 return 0; 3604 else 3605 return -EINVAL; 3606 } 3607 3608 /* If device is not setup, there is no point in resetting it */ 3609 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3610 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3611 SLOT_STATE_DISABLED) 3612 return 0; 3613 3614 trace_xhci_discover_or_reset_device(slot_ctx); 3615 3616 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3617 /* Allocate the command structure that holds the struct completion. 3618 * Assume we're in process context, since the normal device reset 3619 * process has to wait for the device anyway. Storage devices are 3620 * reset as part of error handling, so use GFP_NOIO instead of 3621 * GFP_KERNEL. 3622 */ 3623 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3624 if (!reset_device_cmd) { 3625 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3626 return -ENOMEM; 3627 } 3628 3629 /* Attempt to submit the Reset Device command to the command ring */ 3630 spin_lock_irqsave(&xhci->lock, flags); 3631 3632 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3633 if (ret) { 3634 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3635 spin_unlock_irqrestore(&xhci->lock, flags); 3636 goto command_cleanup; 3637 } 3638 xhci_ring_cmd_db(xhci); 3639 spin_unlock_irqrestore(&xhci->lock, flags); 3640 3641 /* Wait for the Reset Device command to finish */ 3642 wait_for_completion(reset_device_cmd->completion); 3643 3644 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3645 * unless we tried to reset a slot ID that wasn't enabled, 3646 * or the device wasn't in the addressed or configured state. 3647 */ 3648 ret = reset_device_cmd->status; 3649 switch (ret) { 3650 case COMP_COMMAND_ABORTED: 3651 case COMP_COMMAND_RING_STOPPED: 3652 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3653 ret = -ETIME; 3654 goto command_cleanup; 3655 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3656 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3657 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3658 slot_id, 3659 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3660 xhci_dbg(xhci, "Not freeing device rings.\n"); 3661 /* Don't treat this as an error. May change my mind later. */ 3662 ret = 0; 3663 goto command_cleanup; 3664 case COMP_SUCCESS: 3665 xhci_dbg(xhci, "Successful reset device command.\n"); 3666 break; 3667 default: 3668 if (xhci_is_vendor_info_code(xhci, ret)) 3669 break; 3670 xhci_warn(xhci, "Unknown completion code %u for " 3671 "reset device command.\n", ret); 3672 ret = -EINVAL; 3673 goto command_cleanup; 3674 } 3675 3676 /* Free up host controller endpoint resources */ 3677 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3678 spin_lock_irqsave(&xhci->lock, flags); 3679 /* Don't delete the default control endpoint resources */ 3680 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3681 spin_unlock_irqrestore(&xhci->lock, flags); 3682 } 3683 3684 /* Everything but endpoint 0 is disabled, so free the rings. */ 3685 for (i = 1; i < 31; i++) { 3686 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3687 3688 if (ep->ep_state & EP_HAS_STREAMS) { 3689 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3690 xhci_get_endpoint_address(i)); 3691 xhci_free_stream_info(xhci, ep->stream_info); 3692 ep->stream_info = NULL; 3693 ep->ep_state &= ~EP_HAS_STREAMS; 3694 } 3695 3696 if (ep->ring) { 3697 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3698 xhci_free_endpoint_ring(xhci, virt_dev, i); 3699 } 3700 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3701 xhci_drop_ep_from_interval_table(xhci, 3702 &virt_dev->eps[i].bw_info, 3703 virt_dev->bw_table, 3704 udev, 3705 &virt_dev->eps[i], 3706 virt_dev->tt_info); 3707 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3708 } 3709 /* If necessary, update the number of active TTs on this root port */ 3710 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3711 ret = 0; 3712 3713 command_cleanup: 3714 xhci_free_command(xhci, reset_device_cmd); 3715 return ret; 3716 } 3717 3718 /* 3719 * At this point, the struct usb_device is about to go away, the device has 3720 * disconnected, and all traffic has been stopped and the endpoints have been 3721 * disabled. Free any HC data structures associated with that device. 3722 */ 3723 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3724 { 3725 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3726 struct xhci_virt_device *virt_dev; 3727 struct xhci_slot_ctx *slot_ctx; 3728 int i, ret; 3729 3730 #ifndef CONFIG_USB_DEFAULT_PERSIST 3731 /* 3732 * We called pm_runtime_get_noresume when the device was attached. 3733 * Decrement the counter here to allow controller to runtime suspend 3734 * if no devices remain. 3735 */ 3736 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3737 pm_runtime_put_noidle(hcd->self.controller); 3738 #endif 3739 3740 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3741 /* If the host is halted due to driver unload, we still need to free the 3742 * device. 3743 */ 3744 if (ret <= 0 && ret != -ENODEV) 3745 return; 3746 3747 virt_dev = xhci->devs[udev->slot_id]; 3748 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3749 trace_xhci_free_dev(slot_ctx); 3750 3751 /* Stop any wayward timer functions (which may grab the lock) */ 3752 for (i = 0; i < 31; i++) { 3753 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3754 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3755 } 3756 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3757 virt_dev->udev = NULL; 3758 ret = xhci_disable_slot(xhci, udev->slot_id); 3759 if (ret) 3760 xhci_free_virt_device(xhci, udev->slot_id); 3761 } 3762 3763 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3764 { 3765 struct xhci_command *command; 3766 unsigned long flags; 3767 u32 state; 3768 int ret = 0; 3769 3770 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3771 if (!command) 3772 return -ENOMEM; 3773 3774 spin_lock_irqsave(&xhci->lock, flags); 3775 /* Don't disable the slot if the host controller is dead. */ 3776 state = readl(&xhci->op_regs->status); 3777 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3778 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3779 spin_unlock_irqrestore(&xhci->lock, flags); 3780 kfree(command); 3781 return -ENODEV; 3782 } 3783 3784 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3785 slot_id); 3786 if (ret) { 3787 spin_unlock_irqrestore(&xhci->lock, flags); 3788 kfree(command); 3789 return ret; 3790 } 3791 xhci_ring_cmd_db(xhci); 3792 spin_unlock_irqrestore(&xhci->lock, flags); 3793 return ret; 3794 } 3795 3796 /* 3797 * Checks if we have enough host controller resources for the default control 3798 * endpoint. 3799 * 3800 * Must be called with xhci->lock held. 3801 */ 3802 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3803 { 3804 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3805 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3806 "Not enough ep ctxs: " 3807 "%u active, need to add 1, limit is %u.", 3808 xhci->num_active_eps, xhci->limit_active_eps); 3809 return -ENOMEM; 3810 } 3811 xhci->num_active_eps += 1; 3812 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3813 "Adding 1 ep ctx, %u now active.", 3814 xhci->num_active_eps); 3815 return 0; 3816 } 3817 3818 3819 /* 3820 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3821 * timed out, or allocating memory failed. Returns 1 on success. 3822 */ 3823 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3824 { 3825 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3826 struct xhci_virt_device *vdev; 3827 struct xhci_slot_ctx *slot_ctx; 3828 unsigned long flags; 3829 int ret, slot_id; 3830 struct xhci_command *command; 3831 3832 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3833 if (!command) 3834 return 0; 3835 3836 spin_lock_irqsave(&xhci->lock, flags); 3837 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3838 if (ret) { 3839 spin_unlock_irqrestore(&xhci->lock, flags); 3840 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3841 xhci_free_command(xhci, command); 3842 return 0; 3843 } 3844 xhci_ring_cmd_db(xhci); 3845 spin_unlock_irqrestore(&xhci->lock, flags); 3846 3847 wait_for_completion(command->completion); 3848 slot_id = command->slot_id; 3849 3850 if (!slot_id || command->status != COMP_SUCCESS) { 3851 xhci_err(xhci, "Error while assigning device slot ID\n"); 3852 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3853 HCS_MAX_SLOTS( 3854 readl(&xhci->cap_regs->hcs_params1))); 3855 xhci_free_command(xhci, command); 3856 return 0; 3857 } 3858 3859 xhci_free_command(xhci, command); 3860 3861 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3862 spin_lock_irqsave(&xhci->lock, flags); 3863 ret = xhci_reserve_host_control_ep_resources(xhci); 3864 if (ret) { 3865 spin_unlock_irqrestore(&xhci->lock, flags); 3866 xhci_warn(xhci, "Not enough host resources, " 3867 "active endpoint contexts = %u\n", 3868 xhci->num_active_eps); 3869 goto disable_slot; 3870 } 3871 spin_unlock_irqrestore(&xhci->lock, flags); 3872 } 3873 /* Use GFP_NOIO, since this function can be called from 3874 * xhci_discover_or_reset_device(), which may be called as part of 3875 * mass storage driver error handling. 3876 */ 3877 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3878 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3879 goto disable_slot; 3880 } 3881 vdev = xhci->devs[slot_id]; 3882 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3883 trace_xhci_alloc_dev(slot_ctx); 3884 3885 udev->slot_id = slot_id; 3886 3887 xhci_debugfs_create_slot(xhci, slot_id); 3888 3889 #ifndef CONFIG_USB_DEFAULT_PERSIST 3890 /* 3891 * If resetting upon resume, we can't put the controller into runtime 3892 * suspend if there is a device attached. 3893 */ 3894 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3895 pm_runtime_get_noresume(hcd->self.controller); 3896 #endif 3897 3898 /* Is this a LS or FS device under a HS hub? */ 3899 /* Hub or peripherial? */ 3900 return 1; 3901 3902 disable_slot: 3903 ret = xhci_disable_slot(xhci, udev->slot_id); 3904 if (ret) 3905 xhci_free_virt_device(xhci, udev->slot_id); 3906 3907 return 0; 3908 } 3909 3910 /* 3911 * Issue an Address Device command and optionally send a corresponding 3912 * SetAddress request to the device. 3913 */ 3914 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3915 enum xhci_setup_dev setup) 3916 { 3917 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3918 unsigned long flags; 3919 struct xhci_virt_device *virt_dev; 3920 int ret = 0; 3921 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3922 struct xhci_slot_ctx *slot_ctx; 3923 struct xhci_input_control_ctx *ctrl_ctx; 3924 u64 temp_64; 3925 struct xhci_command *command = NULL; 3926 3927 mutex_lock(&xhci->mutex); 3928 3929 if (xhci->xhc_state) { /* dying, removing or halted */ 3930 ret = -ESHUTDOWN; 3931 goto out; 3932 } 3933 3934 if (!udev->slot_id) { 3935 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3936 "Bad Slot ID %d", udev->slot_id); 3937 ret = -EINVAL; 3938 goto out; 3939 } 3940 3941 virt_dev = xhci->devs[udev->slot_id]; 3942 3943 if (WARN_ON(!virt_dev)) { 3944 /* 3945 * In plug/unplug torture test with an NEC controller, 3946 * a zero-dereference was observed once due to virt_dev = 0. 3947 * Print useful debug rather than crash if it is observed again! 3948 */ 3949 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3950 udev->slot_id); 3951 ret = -EINVAL; 3952 goto out; 3953 } 3954 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3955 trace_xhci_setup_device_slot(slot_ctx); 3956 3957 if (setup == SETUP_CONTEXT_ONLY) { 3958 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3959 SLOT_STATE_DEFAULT) { 3960 xhci_dbg(xhci, "Slot already in default state\n"); 3961 goto out; 3962 } 3963 } 3964 3965 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3966 if (!command) { 3967 ret = -ENOMEM; 3968 goto out; 3969 } 3970 3971 command->in_ctx = virt_dev->in_ctx; 3972 3973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3974 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3975 if (!ctrl_ctx) { 3976 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3977 __func__); 3978 ret = -EINVAL; 3979 goto out; 3980 } 3981 /* 3982 * If this is the first Set Address since device plug-in or 3983 * virt_device realloaction after a resume with an xHCI power loss, 3984 * then set up the slot context. 3985 */ 3986 if (!slot_ctx->dev_info) 3987 xhci_setup_addressable_virt_dev(xhci, udev); 3988 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3989 else 3990 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3991 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3992 ctrl_ctx->drop_flags = 0; 3993 3994 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3995 le32_to_cpu(slot_ctx->dev_info) >> 27); 3996 3997 spin_lock_irqsave(&xhci->lock, flags); 3998 trace_xhci_setup_device(virt_dev); 3999 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4000 udev->slot_id, setup); 4001 if (ret) { 4002 spin_unlock_irqrestore(&xhci->lock, flags); 4003 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4004 "FIXME: allocate a command ring segment"); 4005 goto out; 4006 } 4007 xhci_ring_cmd_db(xhci); 4008 spin_unlock_irqrestore(&xhci->lock, flags); 4009 4010 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4011 wait_for_completion(command->completion); 4012 4013 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4014 * the SetAddress() "recovery interval" required by USB and aborting the 4015 * command on a timeout. 4016 */ 4017 switch (command->status) { 4018 case COMP_COMMAND_ABORTED: 4019 case COMP_COMMAND_RING_STOPPED: 4020 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4021 ret = -ETIME; 4022 break; 4023 case COMP_CONTEXT_STATE_ERROR: 4024 case COMP_SLOT_NOT_ENABLED_ERROR: 4025 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4026 act, udev->slot_id); 4027 ret = -EINVAL; 4028 break; 4029 case COMP_USB_TRANSACTION_ERROR: 4030 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4031 4032 mutex_unlock(&xhci->mutex); 4033 ret = xhci_disable_slot(xhci, udev->slot_id); 4034 if (!ret) 4035 xhci_alloc_dev(hcd, udev); 4036 kfree(command->completion); 4037 kfree(command); 4038 return -EPROTO; 4039 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4040 dev_warn(&udev->dev, 4041 "ERROR: Incompatible device for setup %s command\n", act); 4042 ret = -ENODEV; 4043 break; 4044 case COMP_SUCCESS: 4045 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4046 "Successful setup %s command", act); 4047 break; 4048 default: 4049 xhci_err(xhci, 4050 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4051 act, command->status); 4052 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4053 ret = -EINVAL; 4054 break; 4055 } 4056 if (ret) 4057 goto out; 4058 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4059 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4060 "Op regs DCBAA ptr = %#016llx", temp_64); 4061 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4062 "Slot ID %d dcbaa entry @%p = %#016llx", 4063 udev->slot_id, 4064 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4065 (unsigned long long) 4066 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4067 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4068 "Output Context DMA address = %#08llx", 4069 (unsigned long long)virt_dev->out_ctx->dma); 4070 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4071 le32_to_cpu(slot_ctx->dev_info) >> 27); 4072 /* 4073 * USB core uses address 1 for the roothubs, so we add one to the 4074 * address given back to us by the HC. 4075 */ 4076 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4077 le32_to_cpu(slot_ctx->dev_info) >> 27); 4078 /* Zero the input context control for later use */ 4079 ctrl_ctx->add_flags = 0; 4080 ctrl_ctx->drop_flags = 0; 4081 4082 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4083 "Internal device address = %d", 4084 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4085 out: 4086 mutex_unlock(&xhci->mutex); 4087 if (command) { 4088 kfree(command->completion); 4089 kfree(command); 4090 } 4091 return ret; 4092 } 4093 4094 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4095 { 4096 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4097 } 4098 4099 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4100 { 4101 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4102 } 4103 4104 /* 4105 * Transfer the port index into real index in the HW port status 4106 * registers. Caculate offset between the port's PORTSC register 4107 * and port status base. Divide the number of per port register 4108 * to get the real index. The raw port number bases 1. 4109 */ 4110 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4111 { 4112 struct xhci_hub *rhub; 4113 4114 rhub = xhci_get_rhub(hcd); 4115 return rhub->ports[port1 - 1]->hw_portnum + 1; 4116 } 4117 4118 /* 4119 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4120 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4121 */ 4122 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4123 struct usb_device *udev, u16 max_exit_latency) 4124 { 4125 struct xhci_virt_device *virt_dev; 4126 struct xhci_command *command; 4127 struct xhci_input_control_ctx *ctrl_ctx; 4128 struct xhci_slot_ctx *slot_ctx; 4129 unsigned long flags; 4130 int ret; 4131 4132 spin_lock_irqsave(&xhci->lock, flags); 4133 4134 virt_dev = xhci->devs[udev->slot_id]; 4135 4136 /* 4137 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4138 * xHC was re-initialized. Exit latency will be set later after 4139 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4140 */ 4141 4142 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4143 spin_unlock_irqrestore(&xhci->lock, flags); 4144 return 0; 4145 } 4146 4147 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4148 command = xhci->lpm_command; 4149 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4150 if (!ctrl_ctx) { 4151 spin_unlock_irqrestore(&xhci->lock, flags); 4152 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4153 __func__); 4154 return -ENOMEM; 4155 } 4156 4157 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4158 spin_unlock_irqrestore(&xhci->lock, flags); 4159 4160 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4161 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4162 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4163 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4164 slot_ctx->dev_state = 0; 4165 4166 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4167 "Set up evaluate context for LPM MEL change."); 4168 4169 /* Issue and wait for the evaluate context command. */ 4170 ret = xhci_configure_endpoint(xhci, udev, command, 4171 true, true); 4172 4173 if (!ret) { 4174 spin_lock_irqsave(&xhci->lock, flags); 4175 virt_dev->current_mel = max_exit_latency; 4176 spin_unlock_irqrestore(&xhci->lock, flags); 4177 } 4178 return ret; 4179 } 4180 4181 #ifdef CONFIG_PM 4182 4183 /* BESL to HIRD Encoding array for USB2 LPM */ 4184 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4185 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4186 4187 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4188 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4189 struct usb_device *udev) 4190 { 4191 int u2del, besl, besl_host; 4192 int besl_device = 0; 4193 u32 field; 4194 4195 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4196 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4197 4198 if (field & USB_BESL_SUPPORT) { 4199 for (besl_host = 0; besl_host < 16; besl_host++) { 4200 if (xhci_besl_encoding[besl_host] >= u2del) 4201 break; 4202 } 4203 /* Use baseline BESL value as default */ 4204 if (field & USB_BESL_BASELINE_VALID) 4205 besl_device = USB_GET_BESL_BASELINE(field); 4206 else if (field & USB_BESL_DEEP_VALID) 4207 besl_device = USB_GET_BESL_DEEP(field); 4208 } else { 4209 if (u2del <= 50) 4210 besl_host = 0; 4211 else 4212 besl_host = (u2del - 51) / 75 + 1; 4213 } 4214 4215 besl = besl_host + besl_device; 4216 if (besl > 15) 4217 besl = 15; 4218 4219 return besl; 4220 } 4221 4222 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4223 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4224 { 4225 u32 field; 4226 int l1; 4227 int besld = 0; 4228 int hirdm = 0; 4229 4230 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4231 4232 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4233 l1 = udev->l1_params.timeout / 256; 4234 4235 /* device has preferred BESLD */ 4236 if (field & USB_BESL_DEEP_VALID) { 4237 besld = USB_GET_BESL_DEEP(field); 4238 hirdm = 1; 4239 } 4240 4241 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4242 } 4243 4244 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4245 struct usb_device *udev, int enable) 4246 { 4247 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4248 struct xhci_port **ports; 4249 __le32 __iomem *pm_addr, *hlpm_addr; 4250 u32 pm_val, hlpm_val, field; 4251 unsigned int port_num; 4252 unsigned long flags; 4253 int hird, exit_latency; 4254 int ret; 4255 4256 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4257 !udev->lpm_capable) 4258 return -EPERM; 4259 4260 if (!udev->parent || udev->parent->parent || 4261 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4262 return -EPERM; 4263 4264 if (udev->usb2_hw_lpm_capable != 1) 4265 return -EPERM; 4266 4267 spin_lock_irqsave(&xhci->lock, flags); 4268 4269 ports = xhci->usb2_rhub.ports; 4270 port_num = udev->portnum - 1; 4271 pm_addr = ports[port_num]->addr + PORTPMSC; 4272 pm_val = readl(pm_addr); 4273 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4274 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4275 4276 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4277 enable ? "enable" : "disable", port_num + 1); 4278 4279 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4280 /* Host supports BESL timeout instead of HIRD */ 4281 if (udev->usb2_hw_lpm_besl_capable) { 4282 /* if device doesn't have a preferred BESL value use a 4283 * default one which works with mixed HIRD and BESL 4284 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4285 */ 4286 if ((field & USB_BESL_SUPPORT) && 4287 (field & USB_BESL_BASELINE_VALID)) 4288 hird = USB_GET_BESL_BASELINE(field); 4289 else 4290 hird = udev->l1_params.besl; 4291 4292 exit_latency = xhci_besl_encoding[hird]; 4293 spin_unlock_irqrestore(&xhci->lock, flags); 4294 4295 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4296 * input context for link powermanagement evaluate 4297 * context commands. It is protected by hcd->bandwidth 4298 * mutex and is shared by all devices. We need to set 4299 * the max ext latency in USB 2 BESL LPM as well, so 4300 * use the same mutex and xhci_change_max_exit_latency() 4301 */ 4302 mutex_lock(hcd->bandwidth_mutex); 4303 ret = xhci_change_max_exit_latency(xhci, udev, 4304 exit_latency); 4305 mutex_unlock(hcd->bandwidth_mutex); 4306 4307 if (ret < 0) 4308 return ret; 4309 spin_lock_irqsave(&xhci->lock, flags); 4310 4311 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4312 writel(hlpm_val, hlpm_addr); 4313 /* flush write */ 4314 readl(hlpm_addr); 4315 } else { 4316 hird = xhci_calculate_hird_besl(xhci, udev); 4317 } 4318 4319 pm_val &= ~PORT_HIRD_MASK; 4320 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4321 writel(pm_val, pm_addr); 4322 pm_val = readl(pm_addr); 4323 pm_val |= PORT_HLE; 4324 writel(pm_val, pm_addr); 4325 /* flush write */ 4326 readl(pm_addr); 4327 } else { 4328 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4329 writel(pm_val, pm_addr); 4330 /* flush write */ 4331 readl(pm_addr); 4332 if (udev->usb2_hw_lpm_besl_capable) { 4333 spin_unlock_irqrestore(&xhci->lock, flags); 4334 mutex_lock(hcd->bandwidth_mutex); 4335 xhci_change_max_exit_latency(xhci, udev, 0); 4336 mutex_unlock(hcd->bandwidth_mutex); 4337 return 0; 4338 } 4339 } 4340 4341 spin_unlock_irqrestore(&xhci->lock, flags); 4342 return 0; 4343 } 4344 4345 /* check if a usb2 port supports a given extened capability protocol 4346 * only USB2 ports extended protocol capability values are cached. 4347 * Return 1 if capability is supported 4348 */ 4349 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4350 unsigned capability) 4351 { 4352 u32 port_offset, port_count; 4353 int i; 4354 4355 for (i = 0; i < xhci->num_ext_caps; i++) { 4356 if (xhci->ext_caps[i] & capability) { 4357 /* port offsets starts at 1 */ 4358 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4359 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4360 if (port >= port_offset && 4361 port < port_offset + port_count) 4362 return 1; 4363 } 4364 } 4365 return 0; 4366 } 4367 4368 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4369 { 4370 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4371 int portnum = udev->portnum - 1; 4372 4373 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4374 !udev->lpm_capable) 4375 return 0; 4376 4377 /* we only support lpm for non-hub device connected to root hub yet */ 4378 if (!udev->parent || udev->parent->parent || 4379 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4380 return 0; 4381 4382 if (xhci->hw_lpm_support == 1 && 4383 xhci_check_usb2_port_capability( 4384 xhci, portnum, XHCI_HLC)) { 4385 udev->usb2_hw_lpm_capable = 1; 4386 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4387 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4388 if (xhci_check_usb2_port_capability(xhci, portnum, 4389 XHCI_BLC)) 4390 udev->usb2_hw_lpm_besl_capable = 1; 4391 } 4392 4393 return 0; 4394 } 4395 4396 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4397 4398 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4399 static unsigned long long xhci_service_interval_to_ns( 4400 struct usb_endpoint_descriptor *desc) 4401 { 4402 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4403 } 4404 4405 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4406 enum usb3_link_state state) 4407 { 4408 unsigned long long sel; 4409 unsigned long long pel; 4410 unsigned int max_sel_pel; 4411 char *state_name; 4412 4413 switch (state) { 4414 case USB3_LPM_U1: 4415 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4416 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4417 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4418 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4419 state_name = "U1"; 4420 break; 4421 case USB3_LPM_U2: 4422 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4423 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4424 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4425 state_name = "U2"; 4426 break; 4427 default: 4428 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4429 __func__); 4430 return USB3_LPM_DISABLED; 4431 } 4432 4433 if (sel <= max_sel_pel && pel <= max_sel_pel) 4434 return USB3_LPM_DEVICE_INITIATED; 4435 4436 if (sel > max_sel_pel) 4437 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4438 "due to long SEL %llu ms\n", 4439 state_name, sel); 4440 else 4441 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4442 "due to long PEL %llu ms\n", 4443 state_name, pel); 4444 return USB3_LPM_DISABLED; 4445 } 4446 4447 /* The U1 timeout should be the maximum of the following values: 4448 * - For control endpoints, U1 system exit latency (SEL) * 3 4449 * - For bulk endpoints, U1 SEL * 5 4450 * - For interrupt endpoints: 4451 * - Notification EPs, U1 SEL * 3 4452 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4453 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4454 */ 4455 static unsigned long long xhci_calculate_intel_u1_timeout( 4456 struct usb_device *udev, 4457 struct usb_endpoint_descriptor *desc) 4458 { 4459 unsigned long long timeout_ns; 4460 int ep_type; 4461 int intr_type; 4462 4463 ep_type = usb_endpoint_type(desc); 4464 switch (ep_type) { 4465 case USB_ENDPOINT_XFER_CONTROL: 4466 timeout_ns = udev->u1_params.sel * 3; 4467 break; 4468 case USB_ENDPOINT_XFER_BULK: 4469 timeout_ns = udev->u1_params.sel * 5; 4470 break; 4471 case USB_ENDPOINT_XFER_INT: 4472 intr_type = usb_endpoint_interrupt_type(desc); 4473 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4474 timeout_ns = udev->u1_params.sel * 3; 4475 break; 4476 } 4477 /* Otherwise the calculation is the same as isoc eps */ 4478 /* fall through */ 4479 case USB_ENDPOINT_XFER_ISOC: 4480 timeout_ns = xhci_service_interval_to_ns(desc); 4481 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4482 if (timeout_ns < udev->u1_params.sel * 2) 4483 timeout_ns = udev->u1_params.sel * 2; 4484 break; 4485 default: 4486 return 0; 4487 } 4488 4489 return timeout_ns; 4490 } 4491 4492 /* Returns the hub-encoded U1 timeout value. */ 4493 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4494 struct usb_device *udev, 4495 struct usb_endpoint_descriptor *desc) 4496 { 4497 unsigned long long timeout_ns; 4498 4499 if (xhci->quirks & XHCI_INTEL_HOST) 4500 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4501 else 4502 timeout_ns = udev->u1_params.sel; 4503 4504 /* The U1 timeout is encoded in 1us intervals. 4505 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4506 */ 4507 if (timeout_ns == USB3_LPM_DISABLED) 4508 timeout_ns = 1; 4509 else 4510 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4511 4512 /* If the necessary timeout value is bigger than what we can set in the 4513 * USB 3.0 hub, we have to disable hub-initiated U1. 4514 */ 4515 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4516 return timeout_ns; 4517 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4518 "due to long timeout %llu ms\n", timeout_ns); 4519 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4520 } 4521 4522 /* The U2 timeout should be the maximum of: 4523 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4524 * - largest bInterval of any active periodic endpoint (to avoid going 4525 * into lower power link states between intervals). 4526 * - the U2 Exit Latency of the device 4527 */ 4528 static unsigned long long xhci_calculate_intel_u2_timeout( 4529 struct usb_device *udev, 4530 struct usb_endpoint_descriptor *desc) 4531 { 4532 unsigned long long timeout_ns; 4533 unsigned long long u2_del_ns; 4534 4535 timeout_ns = 10 * 1000 * 1000; 4536 4537 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4538 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4539 timeout_ns = xhci_service_interval_to_ns(desc); 4540 4541 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4542 if (u2_del_ns > timeout_ns) 4543 timeout_ns = u2_del_ns; 4544 4545 return timeout_ns; 4546 } 4547 4548 /* Returns the hub-encoded U2 timeout value. */ 4549 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4550 struct usb_device *udev, 4551 struct usb_endpoint_descriptor *desc) 4552 { 4553 unsigned long long timeout_ns; 4554 4555 if (xhci->quirks & XHCI_INTEL_HOST) 4556 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4557 else 4558 timeout_ns = udev->u2_params.sel; 4559 4560 /* The U2 timeout is encoded in 256us intervals */ 4561 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4562 /* If the necessary timeout value is bigger than what we can set in the 4563 * USB 3.0 hub, we have to disable hub-initiated U2. 4564 */ 4565 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4566 return timeout_ns; 4567 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4568 "due to long timeout %llu ms\n", timeout_ns); 4569 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4570 } 4571 4572 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4573 struct usb_device *udev, 4574 struct usb_endpoint_descriptor *desc, 4575 enum usb3_link_state state, 4576 u16 *timeout) 4577 { 4578 if (state == USB3_LPM_U1) 4579 return xhci_calculate_u1_timeout(xhci, udev, desc); 4580 else if (state == USB3_LPM_U2) 4581 return xhci_calculate_u2_timeout(xhci, udev, desc); 4582 4583 return USB3_LPM_DISABLED; 4584 } 4585 4586 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4587 struct usb_device *udev, 4588 struct usb_endpoint_descriptor *desc, 4589 enum usb3_link_state state, 4590 u16 *timeout) 4591 { 4592 u16 alt_timeout; 4593 4594 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4595 desc, state, timeout); 4596 4597 /* If we found we can't enable hub-initiated LPM, or 4598 * the U1 or U2 exit latency was too high to allow 4599 * device-initiated LPM as well, just stop searching. 4600 */ 4601 if (alt_timeout == USB3_LPM_DISABLED || 4602 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4603 *timeout = alt_timeout; 4604 return -E2BIG; 4605 } 4606 if (alt_timeout > *timeout) 4607 *timeout = alt_timeout; 4608 return 0; 4609 } 4610 4611 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4612 struct usb_device *udev, 4613 struct usb_host_interface *alt, 4614 enum usb3_link_state state, 4615 u16 *timeout) 4616 { 4617 int j; 4618 4619 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4620 if (xhci_update_timeout_for_endpoint(xhci, udev, 4621 &alt->endpoint[j].desc, state, timeout)) 4622 return -E2BIG; 4623 continue; 4624 } 4625 return 0; 4626 } 4627 4628 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4629 enum usb3_link_state state) 4630 { 4631 struct usb_device *parent; 4632 unsigned int num_hubs; 4633 4634 if (state == USB3_LPM_U2) 4635 return 0; 4636 4637 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4638 for (parent = udev->parent, num_hubs = 0; parent->parent; 4639 parent = parent->parent) 4640 num_hubs++; 4641 4642 if (num_hubs < 2) 4643 return 0; 4644 4645 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4646 " below second-tier hub.\n"); 4647 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4648 "to decrease power consumption.\n"); 4649 return -E2BIG; 4650 } 4651 4652 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4653 struct usb_device *udev, 4654 enum usb3_link_state state) 4655 { 4656 if (xhci->quirks & XHCI_INTEL_HOST) 4657 return xhci_check_intel_tier_policy(udev, state); 4658 else 4659 return 0; 4660 } 4661 4662 /* Returns the U1 or U2 timeout that should be enabled. 4663 * If the tier check or timeout setting functions return with a non-zero exit 4664 * code, that means the timeout value has been finalized and we shouldn't look 4665 * at any more endpoints. 4666 */ 4667 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4668 struct usb_device *udev, enum usb3_link_state state) 4669 { 4670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4671 struct usb_host_config *config; 4672 char *state_name; 4673 int i; 4674 u16 timeout = USB3_LPM_DISABLED; 4675 4676 if (state == USB3_LPM_U1) 4677 state_name = "U1"; 4678 else if (state == USB3_LPM_U2) 4679 state_name = "U2"; 4680 else { 4681 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4682 state); 4683 return timeout; 4684 } 4685 4686 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4687 return timeout; 4688 4689 /* Gather some information about the currently installed configuration 4690 * and alternate interface settings. 4691 */ 4692 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4693 state, &timeout)) 4694 return timeout; 4695 4696 config = udev->actconfig; 4697 if (!config) 4698 return timeout; 4699 4700 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4701 struct usb_driver *driver; 4702 struct usb_interface *intf = config->interface[i]; 4703 4704 if (!intf) 4705 continue; 4706 4707 /* Check if any currently bound drivers want hub-initiated LPM 4708 * disabled. 4709 */ 4710 if (intf->dev.driver) { 4711 driver = to_usb_driver(intf->dev.driver); 4712 if (driver && driver->disable_hub_initiated_lpm) { 4713 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4714 "at request of driver %s\n", 4715 state_name, driver->name); 4716 return xhci_get_timeout_no_hub_lpm(udev, state); 4717 } 4718 } 4719 4720 /* Not sure how this could happen... */ 4721 if (!intf->cur_altsetting) 4722 continue; 4723 4724 if (xhci_update_timeout_for_interface(xhci, udev, 4725 intf->cur_altsetting, 4726 state, &timeout)) 4727 return timeout; 4728 } 4729 return timeout; 4730 } 4731 4732 static int calculate_max_exit_latency(struct usb_device *udev, 4733 enum usb3_link_state state_changed, 4734 u16 hub_encoded_timeout) 4735 { 4736 unsigned long long u1_mel_us = 0; 4737 unsigned long long u2_mel_us = 0; 4738 unsigned long long mel_us = 0; 4739 bool disabling_u1; 4740 bool disabling_u2; 4741 bool enabling_u1; 4742 bool enabling_u2; 4743 4744 disabling_u1 = (state_changed == USB3_LPM_U1 && 4745 hub_encoded_timeout == USB3_LPM_DISABLED); 4746 disabling_u2 = (state_changed == USB3_LPM_U2 && 4747 hub_encoded_timeout == USB3_LPM_DISABLED); 4748 4749 enabling_u1 = (state_changed == USB3_LPM_U1 && 4750 hub_encoded_timeout != USB3_LPM_DISABLED); 4751 enabling_u2 = (state_changed == USB3_LPM_U2 && 4752 hub_encoded_timeout != USB3_LPM_DISABLED); 4753 4754 /* If U1 was already enabled and we're not disabling it, 4755 * or we're going to enable U1, account for the U1 max exit latency. 4756 */ 4757 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4758 enabling_u1) 4759 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4760 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4761 enabling_u2) 4762 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4763 4764 if (u1_mel_us > u2_mel_us) 4765 mel_us = u1_mel_us; 4766 else 4767 mel_us = u2_mel_us; 4768 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4769 if (mel_us > MAX_EXIT) { 4770 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4771 "is too big.\n", mel_us); 4772 return -E2BIG; 4773 } 4774 return mel_us; 4775 } 4776 4777 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4778 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4779 struct usb_device *udev, enum usb3_link_state state) 4780 { 4781 struct xhci_hcd *xhci; 4782 u16 hub_encoded_timeout; 4783 int mel; 4784 int ret; 4785 4786 xhci = hcd_to_xhci(hcd); 4787 /* The LPM timeout values are pretty host-controller specific, so don't 4788 * enable hub-initiated timeouts unless the vendor has provided 4789 * information about their timeout algorithm. 4790 */ 4791 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4792 !xhci->devs[udev->slot_id]) 4793 return USB3_LPM_DISABLED; 4794 4795 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4796 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4797 if (mel < 0) { 4798 /* Max Exit Latency is too big, disable LPM. */ 4799 hub_encoded_timeout = USB3_LPM_DISABLED; 4800 mel = 0; 4801 } 4802 4803 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4804 if (ret) 4805 return ret; 4806 return hub_encoded_timeout; 4807 } 4808 4809 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4810 struct usb_device *udev, enum usb3_link_state state) 4811 { 4812 struct xhci_hcd *xhci; 4813 u16 mel; 4814 4815 xhci = hcd_to_xhci(hcd); 4816 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4817 !xhci->devs[udev->slot_id]) 4818 return 0; 4819 4820 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4821 return xhci_change_max_exit_latency(xhci, udev, mel); 4822 } 4823 #else /* CONFIG_PM */ 4824 4825 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4826 struct usb_device *udev, int enable) 4827 { 4828 return 0; 4829 } 4830 4831 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4832 { 4833 return 0; 4834 } 4835 4836 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4837 struct usb_device *udev, enum usb3_link_state state) 4838 { 4839 return USB3_LPM_DISABLED; 4840 } 4841 4842 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4843 struct usb_device *udev, enum usb3_link_state state) 4844 { 4845 return 0; 4846 } 4847 #endif /* CONFIG_PM */ 4848 4849 /*-------------------------------------------------------------------------*/ 4850 4851 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4852 * internal data structures for the device. 4853 */ 4854 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4855 struct usb_tt *tt, gfp_t mem_flags) 4856 { 4857 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4858 struct xhci_virt_device *vdev; 4859 struct xhci_command *config_cmd; 4860 struct xhci_input_control_ctx *ctrl_ctx; 4861 struct xhci_slot_ctx *slot_ctx; 4862 unsigned long flags; 4863 unsigned think_time; 4864 int ret; 4865 4866 /* Ignore root hubs */ 4867 if (!hdev->parent) 4868 return 0; 4869 4870 vdev = xhci->devs[hdev->slot_id]; 4871 if (!vdev) { 4872 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4873 return -EINVAL; 4874 } 4875 4876 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4877 if (!config_cmd) 4878 return -ENOMEM; 4879 4880 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4881 if (!ctrl_ctx) { 4882 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4883 __func__); 4884 xhci_free_command(xhci, config_cmd); 4885 return -ENOMEM; 4886 } 4887 4888 spin_lock_irqsave(&xhci->lock, flags); 4889 if (hdev->speed == USB_SPEED_HIGH && 4890 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4891 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4892 xhci_free_command(xhci, config_cmd); 4893 spin_unlock_irqrestore(&xhci->lock, flags); 4894 return -ENOMEM; 4895 } 4896 4897 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4898 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4899 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4900 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4901 /* 4902 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4903 * but it may be already set to 1 when setup an xHCI virtual 4904 * device, so clear it anyway. 4905 */ 4906 if (tt->multi) 4907 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4908 else if (hdev->speed == USB_SPEED_FULL) 4909 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4910 4911 if (xhci->hci_version > 0x95) { 4912 xhci_dbg(xhci, "xHCI version %x needs hub " 4913 "TT think time and number of ports\n", 4914 (unsigned int) xhci->hci_version); 4915 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4916 /* Set TT think time - convert from ns to FS bit times. 4917 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4918 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4919 * 4920 * xHCI 1.0: this field shall be 0 if the device is not a 4921 * High-spped hub. 4922 */ 4923 think_time = tt->think_time; 4924 if (think_time != 0) 4925 think_time = (think_time / 666) - 1; 4926 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4927 slot_ctx->tt_info |= 4928 cpu_to_le32(TT_THINK_TIME(think_time)); 4929 } else { 4930 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4931 "TT think time or number of ports\n", 4932 (unsigned int) xhci->hci_version); 4933 } 4934 slot_ctx->dev_state = 0; 4935 spin_unlock_irqrestore(&xhci->lock, flags); 4936 4937 xhci_dbg(xhci, "Set up %s for hub device.\n", 4938 (xhci->hci_version > 0x95) ? 4939 "configure endpoint" : "evaluate context"); 4940 4941 /* Issue and wait for the configure endpoint or 4942 * evaluate context command. 4943 */ 4944 if (xhci->hci_version > 0x95) 4945 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4946 false, false); 4947 else 4948 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4949 true, false); 4950 4951 xhci_free_command(xhci, config_cmd); 4952 return ret; 4953 } 4954 4955 static int xhci_get_frame(struct usb_hcd *hcd) 4956 { 4957 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4958 /* EHCI mods by the periodic size. Why? */ 4959 return readl(&xhci->run_regs->microframe_index) >> 3; 4960 } 4961 4962 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4963 { 4964 struct xhci_hcd *xhci; 4965 /* 4966 * TODO: Check with DWC3 clients for sysdev according to 4967 * quirks 4968 */ 4969 struct device *dev = hcd->self.sysdev; 4970 unsigned int minor_rev; 4971 int retval; 4972 4973 /* Accept arbitrarily long scatter-gather lists */ 4974 hcd->self.sg_tablesize = ~0; 4975 4976 /* support to build packet from discontinuous buffers */ 4977 hcd->self.no_sg_constraint = 1; 4978 4979 /* XHCI controllers don't stop the ep queue on short packets :| */ 4980 hcd->self.no_stop_on_short = 1; 4981 4982 xhci = hcd_to_xhci(hcd); 4983 4984 if (usb_hcd_is_primary_hcd(hcd)) { 4985 xhci->main_hcd = hcd; 4986 xhci->usb2_rhub.hcd = hcd; 4987 /* Mark the first roothub as being USB 2.0. 4988 * The xHCI driver will register the USB 3.0 roothub. 4989 */ 4990 hcd->speed = HCD_USB2; 4991 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4992 /* 4993 * USB 2.0 roothub under xHCI has an integrated TT, 4994 * (rate matching hub) as opposed to having an OHCI/UHCI 4995 * companion controller. 4996 */ 4997 hcd->has_tt = 1; 4998 } else { 4999 /* 5000 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5001 * minor revision instead of sbrn 5002 */ 5003 minor_rev = xhci->usb3_rhub.min_rev; 5004 if (minor_rev) { 5005 hcd->speed = HCD_USB31; 5006 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5007 } 5008 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 5009 minor_rev, 5010 minor_rev ? "Enhanced" : ""); 5011 5012 xhci->usb3_rhub.hcd = hcd; 5013 /* xHCI private pointer was set in xhci_pci_probe for the second 5014 * registered roothub. 5015 */ 5016 return 0; 5017 } 5018 5019 mutex_init(&xhci->mutex); 5020 xhci->cap_regs = hcd->regs; 5021 xhci->op_regs = hcd->regs + 5022 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5023 xhci->run_regs = hcd->regs + 5024 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5025 /* Cache read-only capability registers */ 5026 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5027 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5028 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5029 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5030 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5031 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5032 if (xhci->hci_version > 0x100) 5033 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5034 5035 xhci->quirks |= quirks; 5036 5037 get_quirks(dev, xhci); 5038 5039 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5040 * success event after a short transfer. This quirk will ignore such 5041 * spurious event. 5042 */ 5043 if (xhci->hci_version > 0x96) 5044 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5045 5046 /* Make sure the HC is halted. */ 5047 retval = xhci_halt(xhci); 5048 if (retval) 5049 return retval; 5050 5051 xhci_zero_64b_regs(xhci); 5052 5053 xhci_dbg(xhci, "Resetting HCD\n"); 5054 /* Reset the internal HC memory state and registers. */ 5055 retval = xhci_reset(xhci); 5056 if (retval) 5057 return retval; 5058 xhci_dbg(xhci, "Reset complete\n"); 5059 5060 /* 5061 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5062 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5063 * address memory pointers actually. So, this driver clears the AC64 5064 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5065 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5066 */ 5067 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5068 xhci->hcc_params &= ~BIT(0); 5069 5070 /* Set dma_mask and coherent_dma_mask to 64-bits, 5071 * if xHC supports 64-bit addressing */ 5072 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5073 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5074 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5075 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5076 } else { 5077 /* 5078 * This is to avoid error in cases where a 32-bit USB 5079 * controller is used on a 64-bit capable system. 5080 */ 5081 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5082 if (retval) 5083 return retval; 5084 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5085 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5086 } 5087 5088 xhci_dbg(xhci, "Calling HCD init\n"); 5089 /* Initialize HCD and host controller data structures. */ 5090 retval = xhci_init(hcd); 5091 if (retval) 5092 return retval; 5093 xhci_dbg(xhci, "Called HCD init\n"); 5094 5095 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5096 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5097 5098 return 0; 5099 } 5100 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5101 5102 static const struct hc_driver xhci_hc_driver = { 5103 .description = "xhci-hcd", 5104 .product_desc = "xHCI Host Controller", 5105 .hcd_priv_size = sizeof(struct xhci_hcd), 5106 5107 /* 5108 * generic hardware linkage 5109 */ 5110 .irq = xhci_irq, 5111 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5112 5113 /* 5114 * basic lifecycle operations 5115 */ 5116 .reset = NULL, /* set in xhci_init_driver() */ 5117 .start = xhci_run, 5118 .stop = xhci_stop, 5119 .shutdown = xhci_shutdown, 5120 5121 /* 5122 * managing i/o requests and associated device resources 5123 */ 5124 .urb_enqueue = xhci_urb_enqueue, 5125 .urb_dequeue = xhci_urb_dequeue, 5126 .alloc_dev = xhci_alloc_dev, 5127 .free_dev = xhci_free_dev, 5128 .alloc_streams = xhci_alloc_streams, 5129 .free_streams = xhci_free_streams, 5130 .add_endpoint = xhci_add_endpoint, 5131 .drop_endpoint = xhci_drop_endpoint, 5132 .endpoint_reset = xhci_endpoint_reset, 5133 .check_bandwidth = xhci_check_bandwidth, 5134 .reset_bandwidth = xhci_reset_bandwidth, 5135 .address_device = xhci_address_device, 5136 .enable_device = xhci_enable_device, 5137 .update_hub_device = xhci_update_hub_device, 5138 .reset_device = xhci_discover_or_reset_device, 5139 5140 /* 5141 * scheduling support 5142 */ 5143 .get_frame_number = xhci_get_frame, 5144 5145 /* 5146 * root hub support 5147 */ 5148 .hub_control = xhci_hub_control, 5149 .hub_status_data = xhci_hub_status_data, 5150 .bus_suspend = xhci_bus_suspend, 5151 .bus_resume = xhci_bus_resume, 5152 .get_resuming_ports = xhci_get_resuming_ports, 5153 5154 /* 5155 * call back when device connected and addressed 5156 */ 5157 .update_device = xhci_update_device, 5158 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5159 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5160 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5161 .find_raw_port_number = xhci_find_raw_port_number, 5162 }; 5163 5164 void xhci_init_driver(struct hc_driver *drv, 5165 const struct xhci_driver_overrides *over) 5166 { 5167 BUG_ON(!over); 5168 5169 /* Copy the generic table to drv then apply the overrides */ 5170 *drv = xhci_hc_driver; 5171 5172 if (over) { 5173 drv->hcd_priv_size += over->extra_priv_size; 5174 if (over->reset) 5175 drv->reset = over->reset; 5176 if (over->start) 5177 drv->start = over->start; 5178 } 5179 } 5180 EXPORT_SYMBOL_GPL(xhci_init_driver); 5181 5182 MODULE_DESCRIPTION(DRIVER_DESC); 5183 MODULE_AUTHOR(DRIVER_AUTHOR); 5184 MODULE_LICENSE("GPL"); 5185 5186 static int __init xhci_hcd_init(void) 5187 { 5188 /* 5189 * Check the compiler generated sizes of structures that must be laid 5190 * out in specific ways for hardware access. 5191 */ 5192 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5193 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5194 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5195 /* xhci_device_control has eight fields, and also 5196 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5197 */ 5198 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5199 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5200 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5201 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5202 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5203 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5204 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5205 5206 if (usb_disabled()) 5207 return -ENODEV; 5208 5209 xhci_debugfs_create_root(); 5210 5211 return 0; 5212 } 5213 5214 /* 5215 * If an init function is provided, an exit function must also be provided 5216 * to allow module unload. 5217 */ 5218 static void __exit xhci_hcd_fini(void) 5219 { 5220 xhci_debugfs_remove_root(); 5221 } 5222 5223 module_init(xhci_hcd_init); 5224 module_exit(xhci_hcd_fini); 5225