1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 25 #define DRIVER_AUTHOR "Sarah Sharp" 26 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 27 28 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 29 30 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 31 static int link_quirk; 32 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 33 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 34 35 static unsigned int quirks; 36 module_param(quirks, uint, S_IRUGO); 37 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 38 39 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 40 /* 41 * xhci_handshake - spin reading hc until handshake completes or fails 42 * @ptr: address of hc register to be read 43 * @mask: bits to look at in result of read 44 * @done: value of those bits when handshake succeeds 45 * @usec: timeout in microseconds 46 * 47 * Returns negative errno, or zero on success 48 * 49 * Success happens when the "mask" bits have the specified value (hardware 50 * handshake done). There are two failure modes: "usec" have passed (major 51 * hardware flakeout), or the register reads as all-ones (hardware removed). 52 */ 53 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 54 { 55 u32 result; 56 57 do { 58 result = readl(ptr); 59 if (result == ~(u32)0) /* card removed */ 60 return -ENODEV; 61 result &= mask; 62 if (result == done) 63 return 0; 64 udelay(1); 65 usec--; 66 } while (usec > 0); 67 return -ETIMEDOUT; 68 } 69 70 /* 71 * Disable interrupts and begin the xHCI halting process. 72 */ 73 void xhci_quiesce(struct xhci_hcd *xhci) 74 { 75 u32 halted; 76 u32 cmd; 77 u32 mask; 78 79 mask = ~(XHCI_IRQS); 80 halted = readl(&xhci->op_regs->status) & STS_HALT; 81 if (!halted) 82 mask &= ~CMD_RUN; 83 84 cmd = readl(&xhci->op_regs->command); 85 cmd &= mask; 86 writel(cmd, &xhci->op_regs->command); 87 } 88 89 /* 90 * Force HC into halt state. 91 * 92 * Disable any IRQs and clear the run/stop bit. 93 * HC will complete any current and actively pipelined transactions, and 94 * should halt within 16 ms of the run/stop bit being cleared. 95 * Read HC Halted bit in the status register to see when the HC is finished. 96 */ 97 int xhci_halt(struct xhci_hcd *xhci) 98 { 99 int ret; 100 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 101 xhci_quiesce(xhci); 102 103 ret = xhci_handshake(&xhci->op_regs->status, 104 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 105 if (ret) { 106 xhci_warn(xhci, "Host halt failed, %d\n", ret); 107 return ret; 108 } 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 111 return ret; 112 } 113 114 /* 115 * Set the run bit and wait for the host to be running. 116 */ 117 int xhci_start(struct xhci_hcd *xhci) 118 { 119 u32 temp; 120 int ret; 121 122 temp = readl(&xhci->op_regs->command); 123 temp |= (CMD_RUN); 124 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 125 temp); 126 writel(temp, &xhci->op_regs->command); 127 128 /* 129 * Wait for the HCHalted Status bit to be 0 to indicate the host is 130 * running. 131 */ 132 ret = xhci_handshake(&xhci->op_regs->status, 133 STS_HALT, 0, XHCI_MAX_HALT_USEC); 134 if (ret == -ETIMEDOUT) 135 xhci_err(xhci, "Host took too long to start, " 136 "waited %u microseconds.\n", 137 XHCI_MAX_HALT_USEC); 138 if (!ret) 139 /* clear state flags. Including dying, halted or removing */ 140 xhci->xhc_state = 0; 141 142 return ret; 143 } 144 145 /* 146 * Reset a halted HC. 147 * 148 * This resets pipelines, timers, counters, state machines, etc. 149 * Transactions will be terminated immediately, and operational registers 150 * will be set to their defaults. 151 */ 152 int xhci_reset(struct xhci_hcd *xhci) 153 { 154 u32 command; 155 u32 state; 156 int ret, i; 157 158 state = readl(&xhci->op_regs->status); 159 160 if (state == ~(u32)0) { 161 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 162 return -ENODEV; 163 } 164 165 if ((state & STS_HALT) == 0) { 166 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 167 return 0; 168 } 169 170 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 171 command = readl(&xhci->op_regs->command); 172 command |= CMD_RESET; 173 writel(command, &xhci->op_regs->command); 174 175 /* Existing Intel xHCI controllers require a delay of 1 mS, 176 * after setting the CMD_RESET bit, and before accessing any 177 * HC registers. This allows the HC to complete the 178 * reset operation and be ready for HC register access. 179 * Without this delay, the subsequent HC register access, 180 * may result in a system hang very rarely. 181 */ 182 if (xhci->quirks & XHCI_INTEL_HOST) 183 udelay(1000); 184 185 ret = xhci_handshake(&xhci->op_regs->command, 186 CMD_RESET, 0, 10 * 1000 * 1000); 187 if (ret) 188 return ret; 189 190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 191 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 192 193 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 194 "Wait for controller to be ready for doorbell rings"); 195 /* 196 * xHCI cannot write to any doorbells or operational registers other 197 * than status until the "Controller Not Ready" flag is cleared. 198 */ 199 ret = xhci_handshake(&xhci->op_regs->status, 200 STS_CNR, 0, 10 * 1000 * 1000); 201 202 for (i = 0; i < 2; i++) { 203 xhci->bus_state[i].port_c_suspend = 0; 204 xhci->bus_state[i].suspended_ports = 0; 205 xhci->bus_state[i].resuming_ports = 0; 206 } 207 208 return ret; 209 } 210 211 212 #ifdef CONFIG_USB_PCI 213 /* 214 * Set up MSI 215 */ 216 static int xhci_setup_msi(struct xhci_hcd *xhci) 217 { 218 int ret; 219 /* 220 * TODO:Check with MSI Soc for sysdev 221 */ 222 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 223 224 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 225 if (ret < 0) { 226 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 227 "failed to allocate MSI entry"); 228 return ret; 229 } 230 231 ret = request_irq(pdev->irq, xhci_msi_irq, 232 0, "xhci_hcd", xhci_to_hcd(xhci)); 233 if (ret) { 234 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 235 "disable MSI interrupt"); 236 pci_free_irq_vectors(pdev); 237 } 238 239 return ret; 240 } 241 242 /* 243 * Set up MSI-X 244 */ 245 static int xhci_setup_msix(struct xhci_hcd *xhci) 246 { 247 int i, ret = 0; 248 struct usb_hcd *hcd = xhci_to_hcd(xhci); 249 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 250 251 /* 252 * calculate number of msi-x vectors supported. 253 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 254 * with max number of interrupters based on the xhci HCSPARAMS1. 255 * - num_online_cpus: maximum msi-x vectors per CPUs core. 256 * Add additional 1 vector to ensure always available interrupt. 257 */ 258 xhci->msix_count = min(num_online_cpus() + 1, 259 HCS_MAX_INTRS(xhci->hcs_params1)); 260 261 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 262 PCI_IRQ_MSIX); 263 if (ret < 0) { 264 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 265 "Failed to enable MSI-X"); 266 return ret; 267 } 268 269 for (i = 0; i < xhci->msix_count; i++) { 270 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 271 "xhci_hcd", xhci_to_hcd(xhci)); 272 if (ret) 273 goto disable_msix; 274 } 275 276 hcd->msix_enabled = 1; 277 return ret; 278 279 disable_msix: 280 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 281 while (--i >= 0) 282 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 283 pci_free_irq_vectors(pdev); 284 return ret; 285 } 286 287 /* Free any IRQs and disable MSI-X */ 288 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 289 { 290 struct usb_hcd *hcd = xhci_to_hcd(xhci); 291 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 292 293 if (xhci->quirks & XHCI_PLAT) 294 return; 295 296 /* return if using legacy interrupt */ 297 if (hcd->irq > 0) 298 return; 299 300 if (hcd->msix_enabled) { 301 int i; 302 303 for (i = 0; i < xhci->msix_count; i++) 304 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 305 } else { 306 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 307 } 308 309 pci_free_irq_vectors(pdev); 310 hcd->msix_enabled = 0; 311 } 312 313 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 314 { 315 struct usb_hcd *hcd = xhci_to_hcd(xhci); 316 317 if (hcd->msix_enabled) { 318 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 319 int i; 320 321 for (i = 0; i < xhci->msix_count; i++) 322 synchronize_irq(pci_irq_vector(pdev, i)); 323 } 324 } 325 326 static int xhci_try_enable_msi(struct usb_hcd *hcd) 327 { 328 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 329 struct pci_dev *pdev; 330 int ret; 331 332 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 333 if (xhci->quirks & XHCI_PLAT) 334 return 0; 335 336 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 337 /* 338 * Some Fresco Logic host controllers advertise MSI, but fail to 339 * generate interrupts. Don't even try to enable MSI. 340 */ 341 if (xhci->quirks & XHCI_BROKEN_MSI) 342 goto legacy_irq; 343 344 /* unregister the legacy interrupt */ 345 if (hcd->irq) 346 free_irq(hcd->irq, hcd); 347 hcd->irq = 0; 348 349 ret = xhci_setup_msix(xhci); 350 if (ret) 351 /* fall back to msi*/ 352 ret = xhci_setup_msi(xhci); 353 354 if (!ret) { 355 hcd->msi_enabled = 1; 356 return 0; 357 } 358 359 if (!pdev->irq) { 360 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 361 return -EINVAL; 362 } 363 364 legacy_irq: 365 if (!strlen(hcd->irq_descr)) 366 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 367 hcd->driver->description, hcd->self.busnum); 368 369 /* fall back to legacy interrupt*/ 370 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 371 hcd->irq_descr, hcd); 372 if (ret) { 373 xhci_err(xhci, "request interrupt %d failed\n", 374 pdev->irq); 375 return ret; 376 } 377 hcd->irq = pdev->irq; 378 return 0; 379 } 380 381 #else 382 383 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 384 { 385 return 0; 386 } 387 388 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 389 { 390 } 391 392 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 393 { 394 } 395 396 #endif 397 398 static void compliance_mode_recovery(struct timer_list *t) 399 { 400 struct xhci_hcd *xhci; 401 struct usb_hcd *hcd; 402 u32 temp; 403 int i; 404 405 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 406 407 for (i = 0; i < xhci->num_usb3_ports; i++) { 408 temp = readl(xhci->usb3_ports[i]); 409 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 410 /* 411 * Compliance Mode Detected. Letting USB Core 412 * handle the Warm Reset 413 */ 414 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 415 "Compliance mode detected->port %d", 416 i + 1); 417 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 418 "Attempting compliance mode recovery"); 419 hcd = xhci->shared_hcd; 420 421 if (hcd->state == HC_STATE_SUSPENDED) 422 usb_hcd_resume_root_hub(hcd); 423 424 usb_hcd_poll_rh_status(hcd); 425 } 426 } 427 428 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 429 mod_timer(&xhci->comp_mode_recovery_timer, 430 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 431 } 432 433 /* 434 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 435 * that causes ports behind that hardware to enter compliance mode sometimes. 436 * The quirk creates a timer that polls every 2 seconds the link state of 437 * each host controller's port and recovers it by issuing a Warm reset 438 * if Compliance mode is detected, otherwise the port will become "dead" (no 439 * device connections or disconnections will be detected anymore). Becasue no 440 * status event is generated when entering compliance mode (per xhci spec), 441 * this quirk is needed on systems that have the failing hardware installed. 442 */ 443 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 444 { 445 xhci->port_status_u0 = 0; 446 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 447 0); 448 xhci->comp_mode_recovery_timer.expires = jiffies + 449 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 450 451 add_timer(&xhci->comp_mode_recovery_timer); 452 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 453 "Compliance mode recovery timer initialized"); 454 } 455 456 /* 457 * This function identifies the systems that have installed the SN65LVPE502CP 458 * USB3.0 re-driver and that need the Compliance Mode Quirk. 459 * Systems: 460 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 461 */ 462 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 463 { 464 const char *dmi_product_name, *dmi_sys_vendor; 465 466 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 467 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 468 if (!dmi_product_name || !dmi_sys_vendor) 469 return false; 470 471 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 472 return false; 473 474 if (strstr(dmi_product_name, "Z420") || 475 strstr(dmi_product_name, "Z620") || 476 strstr(dmi_product_name, "Z820") || 477 strstr(dmi_product_name, "Z1 Workstation")) 478 return true; 479 480 return false; 481 } 482 483 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 484 { 485 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 486 } 487 488 489 /* 490 * Initialize memory for HCD and xHC (one-time init). 491 * 492 * Program the PAGESIZE register, initialize the device context array, create 493 * device contexts (?), set up a command ring segment (or two?), create event 494 * ring (one for now). 495 */ 496 static int xhci_init(struct usb_hcd *hcd) 497 { 498 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 499 int retval = 0; 500 501 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 502 spin_lock_init(&xhci->lock); 503 if (xhci->hci_version == 0x95 && link_quirk) { 504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 505 "QUIRK: Not clearing Link TRB chain bits."); 506 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 507 } else { 508 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 509 "xHCI doesn't need link TRB QUIRK"); 510 } 511 retval = xhci_mem_init(xhci, GFP_KERNEL); 512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 513 514 /* Initializing Compliance Mode Recovery Data If Needed */ 515 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 516 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 517 compliance_mode_recovery_timer_init(xhci); 518 } 519 520 return retval; 521 } 522 523 /*-------------------------------------------------------------------------*/ 524 525 526 static int xhci_run_finished(struct xhci_hcd *xhci) 527 { 528 if (xhci_start(xhci)) { 529 xhci_halt(xhci); 530 return -ENODEV; 531 } 532 xhci->shared_hcd->state = HC_STATE_RUNNING; 533 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 534 535 if (xhci->quirks & XHCI_NEC_HOST) 536 xhci_ring_cmd_db(xhci); 537 538 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 539 "Finished xhci_run for USB3 roothub"); 540 return 0; 541 } 542 543 /* 544 * Start the HC after it was halted. 545 * 546 * This function is called by the USB core when the HC driver is added. 547 * Its opposite is xhci_stop(). 548 * 549 * xhci_init() must be called once before this function can be called. 550 * Reset the HC, enable device slot contexts, program DCBAAP, and 551 * set command ring pointer and event ring pointer. 552 * 553 * Setup MSI-X vectors and enable interrupts. 554 */ 555 int xhci_run(struct usb_hcd *hcd) 556 { 557 u32 temp; 558 u64 temp_64; 559 int ret; 560 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 561 562 /* Start the xHCI host controller running only after the USB 2.0 roothub 563 * is setup. 564 */ 565 566 hcd->uses_new_polling = 1; 567 if (!usb_hcd_is_primary_hcd(hcd)) 568 return xhci_run_finished(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 571 572 ret = xhci_try_enable_msi(hcd); 573 if (ret) 574 return ret; 575 576 xhci_dbg_cmd_ptrs(xhci); 577 578 xhci_dbg(xhci, "ERST memory map follows:\n"); 579 xhci_dbg_erst(xhci, &xhci->erst); 580 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 581 temp_64 &= ~ERST_PTR_MASK; 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 584 585 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 586 "// Set the interrupt modulation register"); 587 temp = readl(&xhci->ir_set->irq_control); 588 temp &= ~ER_IRQ_INTERVAL_MASK; 589 /* 590 * the increment interval is 8 times as much as that defined 591 * in xHCI spec on MTK's controller 592 */ 593 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 594 writel(temp, &xhci->ir_set->irq_control); 595 596 /* Set the HCD state before we enable the irqs */ 597 temp = readl(&xhci->op_regs->command); 598 temp |= (CMD_EIE); 599 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 600 "// Enable interrupts, cmd = 0x%x.", temp); 601 writel(temp, &xhci->op_regs->command); 602 603 temp = readl(&xhci->ir_set->irq_pending); 604 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 605 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 606 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 607 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 608 xhci_print_ir_set(xhci, 0); 609 610 if (xhci->quirks & XHCI_NEC_HOST) { 611 struct xhci_command *command; 612 613 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 614 if (!command) 615 return -ENOMEM; 616 617 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 618 TRB_TYPE(TRB_NEC_GET_FW)); 619 if (ret) 620 xhci_free_command(xhci, command); 621 } 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "Finished xhci_run for USB2 roothub"); 624 625 xhci_debugfs_init(xhci); 626 627 return 0; 628 } 629 EXPORT_SYMBOL_GPL(xhci_run); 630 631 /* 632 * Stop xHCI driver. 633 * 634 * This function is called by the USB core when the HC driver is removed. 635 * Its opposite is xhci_run(). 636 * 637 * Disable device contexts, disable IRQs, and quiesce the HC. 638 * Reset the HC, finish any completed transactions, and cleanup memory. 639 */ 640 static void xhci_stop(struct usb_hcd *hcd) 641 { 642 u32 temp; 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 mutex_lock(&xhci->mutex); 646 647 /* Only halt host and free memory after both hcds are removed */ 648 if (!usb_hcd_is_primary_hcd(hcd)) { 649 /* usb core will free this hcd shortly, unset pointer */ 650 xhci->shared_hcd = NULL; 651 mutex_unlock(&xhci->mutex); 652 return; 653 } 654 655 xhci_debugfs_exit(xhci); 656 657 spin_lock_irq(&xhci->lock); 658 xhci->xhc_state |= XHCI_STATE_HALTED; 659 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 660 xhci_halt(xhci); 661 xhci_reset(xhci); 662 spin_unlock_irq(&xhci->lock); 663 664 xhci_cleanup_msix(xhci); 665 666 /* Deleting Compliance Mode Recovery Timer */ 667 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 668 (!(xhci_all_ports_seen_u0(xhci)))) { 669 del_timer_sync(&xhci->comp_mode_recovery_timer); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 671 "%s: compliance mode recovery timer deleted", 672 __func__); 673 } 674 675 if (xhci->quirks & XHCI_AMD_PLL_FIX) 676 usb_amd_dev_put(); 677 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Disabling event ring interrupts"); 680 temp = readl(&xhci->op_regs->status); 681 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 682 temp = readl(&xhci->ir_set->irq_pending); 683 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 684 xhci_print_ir_set(xhci, 0); 685 686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 687 xhci_mem_cleanup(xhci); 688 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 689 "xhci_stop completed - status = %x", 690 readl(&xhci->op_regs->status)); 691 mutex_unlock(&xhci->mutex); 692 } 693 694 /* 695 * Shutdown HC (not bus-specific) 696 * 697 * This is called when the machine is rebooting or halting. We assume that the 698 * machine will be powered off, and the HC's internal state will be reset. 699 * Don't bother to free memory. 700 * 701 * This will only ever be called with the main usb_hcd (the USB3 roothub). 702 */ 703 static void xhci_shutdown(struct usb_hcd *hcd) 704 { 705 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 706 707 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 708 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 709 710 spin_lock_irq(&xhci->lock); 711 xhci_halt(xhci); 712 /* Workaround for spurious wakeups at shutdown with HSW */ 713 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 714 xhci_reset(xhci); 715 spin_unlock_irq(&xhci->lock); 716 717 xhci_cleanup_msix(xhci); 718 719 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 720 "xhci_shutdown completed - status = %x", 721 readl(&xhci->op_regs->status)); 722 723 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 724 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 725 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 726 } 727 728 #ifdef CONFIG_PM 729 static void xhci_save_registers(struct xhci_hcd *xhci) 730 { 731 xhci->s3.command = readl(&xhci->op_regs->command); 732 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 733 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 734 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 735 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 736 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 737 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 738 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 739 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 740 } 741 742 static void xhci_restore_registers(struct xhci_hcd *xhci) 743 { 744 writel(xhci->s3.command, &xhci->op_regs->command); 745 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 746 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 747 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 748 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 749 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 750 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 751 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 752 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 753 } 754 755 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 756 { 757 u64 val_64; 758 759 /* step 2: initialize command ring buffer */ 760 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 761 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 762 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 763 xhci->cmd_ring->dequeue) & 764 (u64) ~CMD_RING_RSVD_BITS) | 765 xhci->cmd_ring->cycle_state; 766 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 767 "// Setting command ring address to 0x%llx", 768 (long unsigned long) val_64); 769 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 770 } 771 772 /* 773 * The whole command ring must be cleared to zero when we suspend the host. 774 * 775 * The host doesn't save the command ring pointer in the suspend well, so we 776 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 777 * aligned, because of the reserved bits in the command ring dequeue pointer 778 * register. Therefore, we can't just set the dequeue pointer back in the 779 * middle of the ring (TRBs are 16-byte aligned). 780 */ 781 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 782 { 783 struct xhci_ring *ring; 784 struct xhci_segment *seg; 785 786 ring = xhci->cmd_ring; 787 seg = ring->deq_seg; 788 do { 789 memset(seg->trbs, 0, 790 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 791 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 792 cpu_to_le32(~TRB_CYCLE); 793 seg = seg->next; 794 } while (seg != ring->deq_seg); 795 796 /* Reset the software enqueue and dequeue pointers */ 797 ring->deq_seg = ring->first_seg; 798 ring->dequeue = ring->first_seg->trbs; 799 ring->enq_seg = ring->deq_seg; 800 ring->enqueue = ring->dequeue; 801 802 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 803 /* 804 * Ring is now zeroed, so the HW should look for change of ownership 805 * when the cycle bit is set to 1. 806 */ 807 ring->cycle_state = 1; 808 809 /* 810 * Reset the hardware dequeue pointer. 811 * Yes, this will need to be re-written after resume, but we're paranoid 812 * and want to make sure the hardware doesn't access bogus memory 813 * because, say, the BIOS or an SMI started the host without changing 814 * the command ring pointers. 815 */ 816 xhci_set_cmd_ring_deq(xhci); 817 } 818 819 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 820 { 821 int port_index; 822 __le32 __iomem **port_array; 823 unsigned long flags; 824 u32 t1, t2; 825 826 spin_lock_irqsave(&xhci->lock, flags); 827 828 /* disable usb3 ports Wake bits */ 829 port_index = xhci->num_usb3_ports; 830 port_array = xhci->usb3_ports; 831 while (port_index--) { 832 t1 = readl(port_array[port_index]); 833 t1 = xhci_port_state_to_neutral(t1); 834 t2 = t1 & ~PORT_WAKE_BITS; 835 if (t1 != t2) 836 writel(t2, port_array[port_index]); 837 } 838 839 /* disable usb2 ports Wake bits */ 840 port_index = xhci->num_usb2_ports; 841 port_array = xhci->usb2_ports; 842 while (port_index--) { 843 t1 = readl(port_array[port_index]); 844 t1 = xhci_port_state_to_neutral(t1); 845 t2 = t1 & ~PORT_WAKE_BITS; 846 if (t1 != t2) 847 writel(t2, port_array[port_index]); 848 } 849 850 spin_unlock_irqrestore(&xhci->lock, flags); 851 } 852 853 /* 854 * Stop HC (not bus-specific) 855 * 856 * This is called when the machine transition into S3/S4 mode. 857 * 858 */ 859 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 860 { 861 int rc = 0; 862 unsigned int delay = XHCI_MAX_HALT_USEC; 863 struct usb_hcd *hcd = xhci_to_hcd(xhci); 864 u32 command; 865 866 if (!hcd->state) 867 return 0; 868 869 if (hcd->state != HC_STATE_SUSPENDED || 870 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 871 return -EINVAL; 872 873 /* Clear root port wake on bits if wakeup not allowed. */ 874 if (!do_wakeup) 875 xhci_disable_port_wake_on_bits(xhci); 876 877 /* Don't poll the roothubs on bus suspend. */ 878 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 879 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 880 del_timer_sync(&hcd->rh_timer); 881 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 882 del_timer_sync(&xhci->shared_hcd->rh_timer); 883 884 spin_lock_irq(&xhci->lock); 885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 886 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 887 /* step 1: stop endpoint */ 888 /* skipped assuming that port suspend has done */ 889 890 /* step 2: clear Run/Stop bit */ 891 command = readl(&xhci->op_regs->command); 892 command &= ~CMD_RUN; 893 writel(command, &xhci->op_regs->command); 894 895 /* Some chips from Fresco Logic need an extraordinary delay */ 896 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 897 898 if (xhci_handshake(&xhci->op_regs->status, 899 STS_HALT, STS_HALT, delay)) { 900 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 901 spin_unlock_irq(&xhci->lock); 902 return -ETIMEDOUT; 903 } 904 xhci_clear_command_ring(xhci); 905 906 /* step 3: save registers */ 907 xhci_save_registers(xhci); 908 909 /* step 4: set CSS flag */ 910 command = readl(&xhci->op_regs->command); 911 command |= CMD_CSS; 912 writel(command, &xhci->op_regs->command); 913 if (xhci_handshake(&xhci->op_regs->status, 914 STS_SAVE, 0, 10 * 1000)) { 915 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 916 spin_unlock_irq(&xhci->lock); 917 return -ETIMEDOUT; 918 } 919 spin_unlock_irq(&xhci->lock); 920 921 /* 922 * Deleting Compliance Mode Recovery Timer because the xHCI Host 923 * is about to be suspended. 924 */ 925 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 926 (!(xhci_all_ports_seen_u0(xhci)))) { 927 del_timer_sync(&xhci->comp_mode_recovery_timer); 928 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 929 "%s: compliance mode recovery timer deleted", 930 __func__); 931 } 932 933 /* step 5: remove core well power */ 934 /* synchronize irq when using MSI-X */ 935 xhci_msix_sync_irqs(xhci); 936 937 return rc; 938 } 939 EXPORT_SYMBOL_GPL(xhci_suspend); 940 941 /* 942 * start xHC (not bus-specific) 943 * 944 * This is called when the machine transition from S3/S4 mode. 945 * 946 */ 947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 948 { 949 u32 command, temp = 0, status; 950 struct usb_hcd *hcd = xhci_to_hcd(xhci); 951 struct usb_hcd *secondary_hcd; 952 int retval = 0; 953 bool comp_timer_running = false; 954 955 if (!hcd->state) 956 return 0; 957 958 /* Wait a bit if either of the roothubs need to settle from the 959 * transition into bus suspend. 960 */ 961 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 962 time_before(jiffies, 963 xhci->bus_state[1].next_statechange)) 964 msleep(100); 965 966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 967 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 968 969 spin_lock_irq(&xhci->lock); 970 if (xhci->quirks & XHCI_RESET_ON_RESUME) 971 hibernated = true; 972 973 if (!hibernated) { 974 /* step 1: restore register */ 975 xhci_restore_registers(xhci); 976 /* step 2: initialize command ring buffer */ 977 xhci_set_cmd_ring_deq(xhci); 978 /* step 3: restore state and start state*/ 979 /* step 3: set CRS flag */ 980 command = readl(&xhci->op_regs->command); 981 command |= CMD_CRS; 982 writel(command, &xhci->op_regs->command); 983 if (xhci_handshake(&xhci->op_regs->status, 984 STS_RESTORE, 0, 10 * 1000)) { 985 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 986 spin_unlock_irq(&xhci->lock); 987 return -ETIMEDOUT; 988 } 989 temp = readl(&xhci->op_regs->status); 990 } 991 992 /* If restore operation fails, re-initialize the HC during resume */ 993 if ((temp & STS_SRE) || hibernated) { 994 995 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 996 !(xhci_all_ports_seen_u0(xhci))) { 997 del_timer_sync(&xhci->comp_mode_recovery_timer); 998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 999 "Compliance Mode Recovery Timer deleted!"); 1000 } 1001 1002 /* Let the USB core know _both_ roothubs lost power. */ 1003 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1004 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1005 1006 xhci_dbg(xhci, "Stop HCD\n"); 1007 xhci_halt(xhci); 1008 xhci_reset(xhci); 1009 spin_unlock_irq(&xhci->lock); 1010 xhci_cleanup_msix(xhci); 1011 1012 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1013 temp = readl(&xhci->op_regs->status); 1014 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1015 temp = readl(&xhci->ir_set->irq_pending); 1016 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1017 xhci_print_ir_set(xhci, 0); 1018 1019 xhci_dbg(xhci, "cleaning up memory\n"); 1020 xhci_mem_cleanup(xhci); 1021 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1022 readl(&xhci->op_regs->status)); 1023 1024 /* USB core calls the PCI reinit and start functions twice: 1025 * first with the primary HCD, and then with the secondary HCD. 1026 * If we don't do the same, the host will never be started. 1027 */ 1028 if (!usb_hcd_is_primary_hcd(hcd)) 1029 secondary_hcd = hcd; 1030 else 1031 secondary_hcd = xhci->shared_hcd; 1032 1033 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1034 retval = xhci_init(hcd->primary_hcd); 1035 if (retval) 1036 return retval; 1037 comp_timer_running = true; 1038 1039 xhci_dbg(xhci, "Start the primary HCD\n"); 1040 retval = xhci_run(hcd->primary_hcd); 1041 if (!retval) { 1042 xhci_dbg(xhci, "Start the secondary HCD\n"); 1043 retval = xhci_run(secondary_hcd); 1044 } 1045 hcd->state = HC_STATE_SUSPENDED; 1046 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1047 goto done; 1048 } 1049 1050 /* step 4: set Run/Stop bit */ 1051 command = readl(&xhci->op_regs->command); 1052 command |= CMD_RUN; 1053 writel(command, &xhci->op_regs->command); 1054 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1055 0, 250 * 1000); 1056 1057 /* step 5: walk topology and initialize portsc, 1058 * portpmsc and portli 1059 */ 1060 /* this is done in bus_resume */ 1061 1062 /* step 6: restart each of the previously 1063 * Running endpoints by ringing their doorbells 1064 */ 1065 1066 spin_unlock_irq(&xhci->lock); 1067 1068 done: 1069 if (retval == 0) { 1070 /* Resume root hubs only when have pending events. */ 1071 status = readl(&xhci->op_regs->status); 1072 if (status & STS_EINT) { 1073 usb_hcd_resume_root_hub(xhci->shared_hcd); 1074 usb_hcd_resume_root_hub(hcd); 1075 } 1076 } 1077 1078 /* 1079 * If system is subject to the Quirk, Compliance Mode Timer needs to 1080 * be re-initialized Always after a system resume. Ports are subject 1081 * to suffer the Compliance Mode issue again. It doesn't matter if 1082 * ports have entered previously to U0 before system's suspension. 1083 */ 1084 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1085 compliance_mode_recovery_timer_init(xhci); 1086 1087 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1088 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1089 1090 /* Re-enable port polling. */ 1091 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1092 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1093 usb_hcd_poll_rh_status(xhci->shared_hcd); 1094 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1095 usb_hcd_poll_rh_status(hcd); 1096 1097 return retval; 1098 } 1099 EXPORT_SYMBOL_GPL(xhci_resume); 1100 #endif /* CONFIG_PM */ 1101 1102 /*-------------------------------------------------------------------------*/ 1103 1104 /** 1105 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1106 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1107 * value to right shift 1 for the bitmask. 1108 * 1109 * Index = (epnum * 2) + direction - 1, 1110 * where direction = 0 for OUT, 1 for IN. 1111 * For control endpoints, the IN index is used (OUT index is unused), so 1112 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1113 */ 1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1115 { 1116 unsigned int index; 1117 if (usb_endpoint_xfer_control(desc)) 1118 index = (unsigned int) (usb_endpoint_num(desc)*2); 1119 else 1120 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1121 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1122 return index; 1123 } 1124 1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1126 * address from the XHCI endpoint index. 1127 */ 1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1129 { 1130 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1131 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1132 return direction | number; 1133 } 1134 1135 /* Find the flag for this endpoint (for use in the control context). Use the 1136 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1137 * bit 1, etc. 1138 */ 1139 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1140 { 1141 return 1 << (xhci_get_endpoint_index(desc) + 1); 1142 } 1143 1144 /* Find the flag for this endpoint (for use in the control context). Use the 1145 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1146 * bit 1, etc. 1147 */ 1148 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1149 { 1150 return 1 << (ep_index + 1); 1151 } 1152 1153 /* Compute the last valid endpoint context index. Basically, this is the 1154 * endpoint index plus one. For slot contexts with more than valid endpoint, 1155 * we find the most significant bit set in the added contexts flags. 1156 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1157 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1158 */ 1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1160 { 1161 return fls(added_ctxs) - 1; 1162 } 1163 1164 /* Returns 1 if the arguments are OK; 1165 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1166 */ 1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1168 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1169 const char *func) { 1170 struct xhci_hcd *xhci; 1171 struct xhci_virt_device *virt_dev; 1172 1173 if (!hcd || (check_ep && !ep) || !udev) { 1174 pr_debug("xHCI %s called with invalid args\n", func); 1175 return -EINVAL; 1176 } 1177 if (!udev->parent) { 1178 pr_debug("xHCI %s called for root hub\n", func); 1179 return 0; 1180 } 1181 1182 xhci = hcd_to_xhci(hcd); 1183 if (check_virt_dev) { 1184 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1185 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1186 func); 1187 return -EINVAL; 1188 } 1189 1190 virt_dev = xhci->devs[udev->slot_id]; 1191 if (virt_dev->udev != udev) { 1192 xhci_dbg(xhci, "xHCI %s called with udev and " 1193 "virt_dev does not match\n", func); 1194 return -EINVAL; 1195 } 1196 } 1197 1198 if (xhci->xhc_state & XHCI_STATE_HALTED) 1199 return -ENODEV; 1200 1201 return 1; 1202 } 1203 1204 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1205 struct usb_device *udev, struct xhci_command *command, 1206 bool ctx_change, bool must_succeed); 1207 1208 /* 1209 * Full speed devices may have a max packet size greater than 8 bytes, but the 1210 * USB core doesn't know that until it reads the first 8 bytes of the 1211 * descriptor. If the usb_device's max packet size changes after that point, 1212 * we need to issue an evaluate context command and wait on it. 1213 */ 1214 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1215 unsigned int ep_index, struct urb *urb) 1216 { 1217 struct xhci_container_ctx *out_ctx; 1218 struct xhci_input_control_ctx *ctrl_ctx; 1219 struct xhci_ep_ctx *ep_ctx; 1220 struct xhci_command *command; 1221 int max_packet_size; 1222 int hw_max_packet_size; 1223 int ret = 0; 1224 1225 out_ctx = xhci->devs[slot_id]->out_ctx; 1226 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1227 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1228 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1229 if (hw_max_packet_size != max_packet_size) { 1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1231 "Max Packet Size for ep 0 changed."); 1232 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1233 "Max packet size in usb_device = %d", 1234 max_packet_size); 1235 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1236 "Max packet size in xHCI HW = %d", 1237 hw_max_packet_size); 1238 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1239 "Issuing evaluate context command."); 1240 1241 /* Set up the input context flags for the command */ 1242 /* FIXME: This won't work if a non-default control endpoint 1243 * changes max packet sizes. 1244 */ 1245 1246 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1247 if (!command) 1248 return -ENOMEM; 1249 1250 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1251 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1252 if (!ctrl_ctx) { 1253 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1254 __func__); 1255 ret = -ENOMEM; 1256 goto command_cleanup; 1257 } 1258 /* Set up the modified control endpoint 0 */ 1259 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1260 xhci->devs[slot_id]->out_ctx, ep_index); 1261 1262 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1263 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1264 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1265 1266 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1267 ctrl_ctx->drop_flags = 0; 1268 1269 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1270 true, false); 1271 1272 /* Clean up the input context for later use by bandwidth 1273 * functions. 1274 */ 1275 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1276 command_cleanup: 1277 kfree(command->completion); 1278 kfree(command); 1279 } 1280 return ret; 1281 } 1282 1283 /* 1284 * non-error returns are a promise to giveback() the urb later 1285 * we drop ownership so next owner (or urb unlink) can get it 1286 */ 1287 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1288 { 1289 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1290 unsigned long flags; 1291 int ret = 0; 1292 unsigned int slot_id, ep_index, ep_state; 1293 struct urb_priv *urb_priv; 1294 int num_tds; 1295 1296 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1297 true, true, __func__) <= 0) 1298 return -EINVAL; 1299 1300 slot_id = urb->dev->slot_id; 1301 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1302 1303 if (!HCD_HW_ACCESSIBLE(hcd)) { 1304 if (!in_interrupt()) 1305 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1306 return -ESHUTDOWN; 1307 } 1308 1309 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1310 num_tds = urb->number_of_packets; 1311 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1312 urb->transfer_buffer_length > 0 && 1313 urb->transfer_flags & URB_ZERO_PACKET && 1314 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1315 num_tds = 2; 1316 else 1317 num_tds = 1; 1318 1319 urb_priv = kzalloc(sizeof(struct urb_priv) + 1320 num_tds * sizeof(struct xhci_td), mem_flags); 1321 if (!urb_priv) 1322 return -ENOMEM; 1323 1324 urb_priv->num_tds = num_tds; 1325 urb_priv->num_tds_done = 0; 1326 urb->hcpriv = urb_priv; 1327 1328 trace_xhci_urb_enqueue(urb); 1329 1330 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1331 /* Check to see if the max packet size for the default control 1332 * endpoint changed during FS device enumeration 1333 */ 1334 if (urb->dev->speed == USB_SPEED_FULL) { 1335 ret = xhci_check_maxpacket(xhci, slot_id, 1336 ep_index, urb); 1337 if (ret < 0) { 1338 xhci_urb_free_priv(urb_priv); 1339 urb->hcpriv = NULL; 1340 return ret; 1341 } 1342 } 1343 } 1344 1345 spin_lock_irqsave(&xhci->lock, flags); 1346 1347 if (xhci->xhc_state & XHCI_STATE_DYING) { 1348 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1349 urb->ep->desc.bEndpointAddress, urb); 1350 ret = -ESHUTDOWN; 1351 goto free_priv; 1352 } 1353 1354 switch (usb_endpoint_type(&urb->ep->desc)) { 1355 1356 case USB_ENDPOINT_XFER_CONTROL: 1357 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1358 slot_id, ep_index); 1359 break; 1360 case USB_ENDPOINT_XFER_BULK: 1361 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1362 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1363 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1364 ep_state); 1365 ret = -EINVAL; 1366 break; 1367 } 1368 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1369 slot_id, ep_index); 1370 break; 1371 1372 1373 case USB_ENDPOINT_XFER_INT: 1374 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1375 slot_id, ep_index); 1376 break; 1377 1378 case USB_ENDPOINT_XFER_ISOC: 1379 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1380 slot_id, ep_index); 1381 } 1382 1383 if (ret) { 1384 free_priv: 1385 xhci_urb_free_priv(urb_priv); 1386 urb->hcpriv = NULL; 1387 } 1388 spin_unlock_irqrestore(&xhci->lock, flags); 1389 return ret; 1390 } 1391 1392 /* 1393 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1394 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1395 * should pick up where it left off in the TD, unless a Set Transfer Ring 1396 * Dequeue Pointer is issued. 1397 * 1398 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1399 * the ring. Since the ring is a contiguous structure, they can't be physically 1400 * removed. Instead, there are two options: 1401 * 1402 * 1) If the HC is in the middle of processing the URB to be canceled, we 1403 * simply move the ring's dequeue pointer past those TRBs using the Set 1404 * Transfer Ring Dequeue Pointer command. This will be the common case, 1405 * when drivers timeout on the last submitted URB and attempt to cancel. 1406 * 1407 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1408 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1409 * HC will need to invalidate the any TRBs it has cached after the stop 1410 * endpoint command, as noted in the xHCI 0.95 errata. 1411 * 1412 * 3) The TD may have completed by the time the Stop Endpoint Command 1413 * completes, so software needs to handle that case too. 1414 * 1415 * This function should protect against the TD enqueueing code ringing the 1416 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1417 * It also needs to account for multiple cancellations on happening at the same 1418 * time for the same endpoint. 1419 * 1420 * Note that this function can be called in any context, or so says 1421 * usb_hcd_unlink_urb() 1422 */ 1423 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1424 { 1425 unsigned long flags; 1426 int ret, i; 1427 u32 temp; 1428 struct xhci_hcd *xhci; 1429 struct urb_priv *urb_priv; 1430 struct xhci_td *td; 1431 unsigned int ep_index; 1432 struct xhci_ring *ep_ring; 1433 struct xhci_virt_ep *ep; 1434 struct xhci_command *command; 1435 struct xhci_virt_device *vdev; 1436 1437 xhci = hcd_to_xhci(hcd); 1438 spin_lock_irqsave(&xhci->lock, flags); 1439 1440 trace_xhci_urb_dequeue(urb); 1441 1442 /* Make sure the URB hasn't completed or been unlinked already */ 1443 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1444 if (ret) 1445 goto done; 1446 1447 /* give back URB now if we can't queue it for cancel */ 1448 vdev = xhci->devs[urb->dev->slot_id]; 1449 urb_priv = urb->hcpriv; 1450 if (!vdev || !urb_priv) 1451 goto err_giveback; 1452 1453 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1454 ep = &vdev->eps[ep_index]; 1455 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1456 if (!ep || !ep_ring) 1457 goto err_giveback; 1458 1459 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1460 temp = readl(&xhci->op_regs->status); 1461 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1462 xhci_hc_died(xhci); 1463 goto done; 1464 } 1465 1466 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1467 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1468 "HC halted, freeing TD manually."); 1469 for (i = urb_priv->num_tds_done; 1470 i < urb_priv->num_tds; 1471 i++) { 1472 td = &urb_priv->td[i]; 1473 if (!list_empty(&td->td_list)) 1474 list_del_init(&td->td_list); 1475 if (!list_empty(&td->cancelled_td_list)) 1476 list_del_init(&td->cancelled_td_list); 1477 } 1478 goto err_giveback; 1479 } 1480 1481 i = urb_priv->num_tds_done; 1482 if (i < urb_priv->num_tds) 1483 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1484 "Cancel URB %p, dev %s, ep 0x%x, " 1485 "starting at offset 0x%llx", 1486 urb, urb->dev->devpath, 1487 urb->ep->desc.bEndpointAddress, 1488 (unsigned long long) xhci_trb_virt_to_dma( 1489 urb_priv->td[i].start_seg, 1490 urb_priv->td[i].first_trb)); 1491 1492 for (; i < urb_priv->num_tds; i++) { 1493 td = &urb_priv->td[i]; 1494 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1495 } 1496 1497 /* Queue a stop endpoint command, but only if this is 1498 * the first cancellation to be handled. 1499 */ 1500 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1501 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1502 if (!command) { 1503 ret = -ENOMEM; 1504 goto done; 1505 } 1506 ep->ep_state |= EP_STOP_CMD_PENDING; 1507 ep->stop_cmd_timer.expires = jiffies + 1508 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1509 add_timer(&ep->stop_cmd_timer); 1510 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1511 ep_index, 0); 1512 xhci_ring_cmd_db(xhci); 1513 } 1514 done: 1515 spin_unlock_irqrestore(&xhci->lock, flags); 1516 return ret; 1517 1518 err_giveback: 1519 if (urb_priv) 1520 xhci_urb_free_priv(urb_priv); 1521 usb_hcd_unlink_urb_from_ep(hcd, urb); 1522 spin_unlock_irqrestore(&xhci->lock, flags); 1523 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1524 return ret; 1525 } 1526 1527 /* Drop an endpoint from a new bandwidth configuration for this device. 1528 * Only one call to this function is allowed per endpoint before 1529 * check_bandwidth() or reset_bandwidth() must be called. 1530 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1531 * add the endpoint to the schedule with possibly new parameters denoted by a 1532 * different endpoint descriptor in usb_host_endpoint. 1533 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1534 * not allowed. 1535 * 1536 * The USB core will not allow URBs to be queued to an endpoint that is being 1537 * disabled, so there's no need for mutual exclusion to protect 1538 * the xhci->devs[slot_id] structure. 1539 */ 1540 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1541 struct usb_host_endpoint *ep) 1542 { 1543 struct xhci_hcd *xhci; 1544 struct xhci_container_ctx *in_ctx, *out_ctx; 1545 struct xhci_input_control_ctx *ctrl_ctx; 1546 unsigned int ep_index; 1547 struct xhci_ep_ctx *ep_ctx; 1548 u32 drop_flag; 1549 u32 new_add_flags, new_drop_flags; 1550 int ret; 1551 1552 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1553 if (ret <= 0) 1554 return ret; 1555 xhci = hcd_to_xhci(hcd); 1556 if (xhci->xhc_state & XHCI_STATE_DYING) 1557 return -ENODEV; 1558 1559 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1560 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1561 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1562 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1563 __func__, drop_flag); 1564 return 0; 1565 } 1566 1567 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1568 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1569 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1570 if (!ctrl_ctx) { 1571 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1572 __func__); 1573 return 0; 1574 } 1575 1576 ep_index = xhci_get_endpoint_index(&ep->desc); 1577 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1578 /* If the HC already knows the endpoint is disabled, 1579 * or the HCD has noted it is disabled, ignore this request 1580 */ 1581 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1582 le32_to_cpu(ctrl_ctx->drop_flags) & 1583 xhci_get_endpoint_flag(&ep->desc)) { 1584 /* Do not warn when called after a usb_device_reset */ 1585 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1586 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1587 __func__, ep); 1588 return 0; 1589 } 1590 1591 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1592 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1593 1594 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1595 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1596 1597 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1598 1599 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1600 1601 if (xhci->quirks & XHCI_MTK_HOST) 1602 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1603 1604 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1605 (unsigned int) ep->desc.bEndpointAddress, 1606 udev->slot_id, 1607 (unsigned int) new_drop_flags, 1608 (unsigned int) new_add_flags); 1609 return 0; 1610 } 1611 1612 /* Add an endpoint to a new possible bandwidth configuration for this device. 1613 * Only one call to this function is allowed per endpoint before 1614 * check_bandwidth() or reset_bandwidth() must be called. 1615 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1616 * add the endpoint to the schedule with possibly new parameters denoted by a 1617 * different endpoint descriptor in usb_host_endpoint. 1618 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1619 * not allowed. 1620 * 1621 * The USB core will not allow URBs to be queued to an endpoint until the 1622 * configuration or alt setting is installed in the device, so there's no need 1623 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1624 */ 1625 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1626 struct usb_host_endpoint *ep) 1627 { 1628 struct xhci_hcd *xhci; 1629 struct xhci_container_ctx *in_ctx; 1630 unsigned int ep_index; 1631 struct xhci_input_control_ctx *ctrl_ctx; 1632 u32 added_ctxs; 1633 u32 new_add_flags, new_drop_flags; 1634 struct xhci_virt_device *virt_dev; 1635 int ret = 0; 1636 1637 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1638 if (ret <= 0) { 1639 /* So we won't queue a reset ep command for a root hub */ 1640 ep->hcpriv = NULL; 1641 return ret; 1642 } 1643 xhci = hcd_to_xhci(hcd); 1644 if (xhci->xhc_state & XHCI_STATE_DYING) 1645 return -ENODEV; 1646 1647 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1648 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1649 /* FIXME when we have to issue an evaluate endpoint command to 1650 * deal with ep0 max packet size changing once we get the 1651 * descriptors 1652 */ 1653 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1654 __func__, added_ctxs); 1655 return 0; 1656 } 1657 1658 virt_dev = xhci->devs[udev->slot_id]; 1659 in_ctx = virt_dev->in_ctx; 1660 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1661 if (!ctrl_ctx) { 1662 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1663 __func__); 1664 return 0; 1665 } 1666 1667 ep_index = xhci_get_endpoint_index(&ep->desc); 1668 /* If this endpoint is already in use, and the upper layers are trying 1669 * to add it again without dropping it, reject the addition. 1670 */ 1671 if (virt_dev->eps[ep_index].ring && 1672 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1673 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1674 "without dropping it.\n", 1675 (unsigned int) ep->desc.bEndpointAddress); 1676 return -EINVAL; 1677 } 1678 1679 /* If the HCD has already noted the endpoint is enabled, 1680 * ignore this request. 1681 */ 1682 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1683 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1684 __func__, ep); 1685 return 0; 1686 } 1687 1688 /* 1689 * Configuration and alternate setting changes must be done in 1690 * process context, not interrupt context (or so documenation 1691 * for usb_set_interface() and usb_set_configuration() claim). 1692 */ 1693 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1694 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1695 __func__, ep->desc.bEndpointAddress); 1696 return -ENOMEM; 1697 } 1698 1699 if (xhci->quirks & XHCI_MTK_HOST) { 1700 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1701 if (ret < 0) { 1702 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1703 virt_dev->eps[ep_index].new_ring = NULL; 1704 return ret; 1705 } 1706 } 1707 1708 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1709 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1710 1711 /* If xhci_endpoint_disable() was called for this endpoint, but the 1712 * xHC hasn't been notified yet through the check_bandwidth() call, 1713 * this re-adds a new state for the endpoint from the new endpoint 1714 * descriptors. We must drop and re-add this endpoint, so we leave the 1715 * drop flags alone. 1716 */ 1717 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1718 1719 /* Store the usb_device pointer for later use */ 1720 ep->hcpriv = udev; 1721 1722 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1723 1724 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1725 (unsigned int) ep->desc.bEndpointAddress, 1726 udev->slot_id, 1727 (unsigned int) new_drop_flags, 1728 (unsigned int) new_add_flags); 1729 return 0; 1730 } 1731 1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1733 { 1734 struct xhci_input_control_ctx *ctrl_ctx; 1735 struct xhci_ep_ctx *ep_ctx; 1736 struct xhci_slot_ctx *slot_ctx; 1737 int i; 1738 1739 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1740 if (!ctrl_ctx) { 1741 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1742 __func__); 1743 return; 1744 } 1745 1746 /* When a device's add flag and drop flag are zero, any subsequent 1747 * configure endpoint command will leave that endpoint's state 1748 * untouched. Make sure we don't leave any old state in the input 1749 * endpoint contexts. 1750 */ 1751 ctrl_ctx->drop_flags = 0; 1752 ctrl_ctx->add_flags = 0; 1753 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1754 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1755 /* Endpoint 0 is always valid */ 1756 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1757 for (i = 1; i < 31; i++) { 1758 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1759 ep_ctx->ep_info = 0; 1760 ep_ctx->ep_info2 = 0; 1761 ep_ctx->deq = 0; 1762 ep_ctx->tx_info = 0; 1763 } 1764 } 1765 1766 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1767 struct usb_device *udev, u32 *cmd_status) 1768 { 1769 int ret; 1770 1771 switch (*cmd_status) { 1772 case COMP_COMMAND_ABORTED: 1773 case COMP_COMMAND_RING_STOPPED: 1774 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1775 ret = -ETIME; 1776 break; 1777 case COMP_RESOURCE_ERROR: 1778 dev_warn(&udev->dev, 1779 "Not enough host controller resources for new device state.\n"); 1780 ret = -ENOMEM; 1781 /* FIXME: can we allocate more resources for the HC? */ 1782 break; 1783 case COMP_BANDWIDTH_ERROR: 1784 case COMP_SECONDARY_BANDWIDTH_ERROR: 1785 dev_warn(&udev->dev, 1786 "Not enough bandwidth for new device state.\n"); 1787 ret = -ENOSPC; 1788 /* FIXME: can we go back to the old state? */ 1789 break; 1790 case COMP_TRB_ERROR: 1791 /* the HCD set up something wrong */ 1792 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1793 "add flag = 1, " 1794 "and endpoint is not disabled.\n"); 1795 ret = -EINVAL; 1796 break; 1797 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1798 dev_warn(&udev->dev, 1799 "ERROR: Incompatible device for endpoint configure command.\n"); 1800 ret = -ENODEV; 1801 break; 1802 case COMP_SUCCESS: 1803 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1804 "Successful Endpoint Configure command"); 1805 ret = 0; 1806 break; 1807 default: 1808 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1809 *cmd_status); 1810 ret = -EINVAL; 1811 break; 1812 } 1813 return ret; 1814 } 1815 1816 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1817 struct usb_device *udev, u32 *cmd_status) 1818 { 1819 int ret; 1820 1821 switch (*cmd_status) { 1822 case COMP_COMMAND_ABORTED: 1823 case COMP_COMMAND_RING_STOPPED: 1824 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1825 ret = -ETIME; 1826 break; 1827 case COMP_PARAMETER_ERROR: 1828 dev_warn(&udev->dev, 1829 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1830 ret = -EINVAL; 1831 break; 1832 case COMP_SLOT_NOT_ENABLED_ERROR: 1833 dev_warn(&udev->dev, 1834 "WARN: slot not enabled for evaluate context command.\n"); 1835 ret = -EINVAL; 1836 break; 1837 case COMP_CONTEXT_STATE_ERROR: 1838 dev_warn(&udev->dev, 1839 "WARN: invalid context state for evaluate context command.\n"); 1840 ret = -EINVAL; 1841 break; 1842 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1843 dev_warn(&udev->dev, 1844 "ERROR: Incompatible device for evaluate context command.\n"); 1845 ret = -ENODEV; 1846 break; 1847 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1848 /* Max Exit Latency too large error */ 1849 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1850 ret = -EINVAL; 1851 break; 1852 case COMP_SUCCESS: 1853 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1854 "Successful evaluate context command"); 1855 ret = 0; 1856 break; 1857 default: 1858 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1859 *cmd_status); 1860 ret = -EINVAL; 1861 break; 1862 } 1863 return ret; 1864 } 1865 1866 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1867 struct xhci_input_control_ctx *ctrl_ctx) 1868 { 1869 u32 valid_add_flags; 1870 u32 valid_drop_flags; 1871 1872 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1873 * (bit 1). The default control endpoint is added during the Address 1874 * Device command and is never removed until the slot is disabled. 1875 */ 1876 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1877 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1878 1879 /* Use hweight32 to count the number of ones in the add flags, or 1880 * number of endpoints added. Don't count endpoints that are changed 1881 * (both added and dropped). 1882 */ 1883 return hweight32(valid_add_flags) - 1884 hweight32(valid_add_flags & valid_drop_flags); 1885 } 1886 1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1888 struct xhci_input_control_ctx *ctrl_ctx) 1889 { 1890 u32 valid_add_flags; 1891 u32 valid_drop_flags; 1892 1893 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1894 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1895 1896 return hweight32(valid_drop_flags) - 1897 hweight32(valid_add_flags & valid_drop_flags); 1898 } 1899 1900 /* 1901 * We need to reserve the new number of endpoints before the configure endpoint 1902 * command completes. We can't subtract the dropped endpoints from the number 1903 * of active endpoints until the command completes because we can oversubscribe 1904 * the host in this case: 1905 * 1906 * - the first configure endpoint command drops more endpoints than it adds 1907 * - a second configure endpoint command that adds more endpoints is queued 1908 * - the first configure endpoint command fails, so the config is unchanged 1909 * - the second command may succeed, even though there isn't enough resources 1910 * 1911 * Must be called with xhci->lock held. 1912 */ 1913 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1914 struct xhci_input_control_ctx *ctrl_ctx) 1915 { 1916 u32 added_eps; 1917 1918 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1919 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1920 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1921 "Not enough ep ctxs: " 1922 "%u active, need to add %u, limit is %u.", 1923 xhci->num_active_eps, added_eps, 1924 xhci->limit_active_eps); 1925 return -ENOMEM; 1926 } 1927 xhci->num_active_eps += added_eps; 1928 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1929 "Adding %u ep ctxs, %u now active.", added_eps, 1930 xhci->num_active_eps); 1931 return 0; 1932 } 1933 1934 /* 1935 * The configure endpoint was failed by the xHC for some other reason, so we 1936 * need to revert the resources that failed configuration would have used. 1937 * 1938 * Must be called with xhci->lock held. 1939 */ 1940 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1941 struct xhci_input_control_ctx *ctrl_ctx) 1942 { 1943 u32 num_failed_eps; 1944 1945 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1946 xhci->num_active_eps -= num_failed_eps; 1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1948 "Removing %u failed ep ctxs, %u now active.", 1949 num_failed_eps, 1950 xhci->num_active_eps); 1951 } 1952 1953 /* 1954 * Now that the command has completed, clean up the active endpoint count by 1955 * subtracting out the endpoints that were dropped (but not changed). 1956 * 1957 * Must be called with xhci->lock held. 1958 */ 1959 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1960 struct xhci_input_control_ctx *ctrl_ctx) 1961 { 1962 u32 num_dropped_eps; 1963 1964 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1965 xhci->num_active_eps -= num_dropped_eps; 1966 if (num_dropped_eps) 1967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1968 "Removing %u dropped ep ctxs, %u now active.", 1969 num_dropped_eps, 1970 xhci->num_active_eps); 1971 } 1972 1973 static unsigned int xhci_get_block_size(struct usb_device *udev) 1974 { 1975 switch (udev->speed) { 1976 case USB_SPEED_LOW: 1977 case USB_SPEED_FULL: 1978 return FS_BLOCK; 1979 case USB_SPEED_HIGH: 1980 return HS_BLOCK; 1981 case USB_SPEED_SUPER: 1982 case USB_SPEED_SUPER_PLUS: 1983 return SS_BLOCK; 1984 case USB_SPEED_UNKNOWN: 1985 case USB_SPEED_WIRELESS: 1986 default: 1987 /* Should never happen */ 1988 return 1; 1989 } 1990 } 1991 1992 static unsigned int 1993 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1994 { 1995 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1996 return LS_OVERHEAD; 1997 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1998 return FS_OVERHEAD; 1999 return HS_OVERHEAD; 2000 } 2001 2002 /* If we are changing a LS/FS device under a HS hub, 2003 * make sure (if we are activating a new TT) that the HS bus has enough 2004 * bandwidth for this new TT. 2005 */ 2006 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2007 struct xhci_virt_device *virt_dev, 2008 int old_active_eps) 2009 { 2010 struct xhci_interval_bw_table *bw_table; 2011 struct xhci_tt_bw_info *tt_info; 2012 2013 /* Find the bandwidth table for the root port this TT is attached to. */ 2014 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2015 tt_info = virt_dev->tt_info; 2016 /* If this TT already had active endpoints, the bandwidth for this TT 2017 * has already been added. Removing all periodic endpoints (and thus 2018 * making the TT enactive) will only decrease the bandwidth used. 2019 */ 2020 if (old_active_eps) 2021 return 0; 2022 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2023 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2024 return -ENOMEM; 2025 return 0; 2026 } 2027 /* Not sure why we would have no new active endpoints... 2028 * 2029 * Maybe because of an Evaluate Context change for a hub update or a 2030 * control endpoint 0 max packet size change? 2031 * FIXME: skip the bandwidth calculation in that case. 2032 */ 2033 return 0; 2034 } 2035 2036 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2037 struct xhci_virt_device *virt_dev) 2038 { 2039 unsigned int bw_reserved; 2040 2041 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2042 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2043 return -ENOMEM; 2044 2045 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2046 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2047 return -ENOMEM; 2048 2049 return 0; 2050 } 2051 2052 /* 2053 * This algorithm is a very conservative estimate of the worst-case scheduling 2054 * scenario for any one interval. The hardware dynamically schedules the 2055 * packets, so we can't tell which microframe could be the limiting factor in 2056 * the bandwidth scheduling. This only takes into account periodic endpoints. 2057 * 2058 * Obviously, we can't solve an NP complete problem to find the minimum worst 2059 * case scenario. Instead, we come up with an estimate that is no less than 2060 * the worst case bandwidth used for any one microframe, but may be an 2061 * over-estimate. 2062 * 2063 * We walk the requirements for each endpoint by interval, starting with the 2064 * smallest interval, and place packets in the schedule where there is only one 2065 * possible way to schedule packets for that interval. In order to simplify 2066 * this algorithm, we record the largest max packet size for each interval, and 2067 * assume all packets will be that size. 2068 * 2069 * For interval 0, we obviously must schedule all packets for each interval. 2070 * The bandwidth for interval 0 is just the amount of data to be transmitted 2071 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2072 * the number of packets). 2073 * 2074 * For interval 1, we have two possible microframes to schedule those packets 2075 * in. For this algorithm, if we can schedule the same number of packets for 2076 * each possible scheduling opportunity (each microframe), we will do so. The 2077 * remaining number of packets will be saved to be transmitted in the gaps in 2078 * the next interval's scheduling sequence. 2079 * 2080 * As we move those remaining packets to be scheduled with interval 2 packets, 2081 * we have to double the number of remaining packets to transmit. This is 2082 * because the intervals are actually powers of 2, and we would be transmitting 2083 * the previous interval's packets twice in this interval. We also have to be 2084 * sure that when we look at the largest max packet size for this interval, we 2085 * also look at the largest max packet size for the remaining packets and take 2086 * the greater of the two. 2087 * 2088 * The algorithm continues to evenly distribute packets in each scheduling 2089 * opportunity, and push the remaining packets out, until we get to the last 2090 * interval. Then those packets and their associated overhead are just added 2091 * to the bandwidth used. 2092 */ 2093 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2094 struct xhci_virt_device *virt_dev, 2095 int old_active_eps) 2096 { 2097 unsigned int bw_reserved; 2098 unsigned int max_bandwidth; 2099 unsigned int bw_used; 2100 unsigned int block_size; 2101 struct xhci_interval_bw_table *bw_table; 2102 unsigned int packet_size = 0; 2103 unsigned int overhead = 0; 2104 unsigned int packets_transmitted = 0; 2105 unsigned int packets_remaining = 0; 2106 unsigned int i; 2107 2108 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2109 return xhci_check_ss_bw(xhci, virt_dev); 2110 2111 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2112 max_bandwidth = HS_BW_LIMIT; 2113 /* Convert percent of bus BW reserved to blocks reserved */ 2114 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2115 } else { 2116 max_bandwidth = FS_BW_LIMIT; 2117 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2118 } 2119 2120 bw_table = virt_dev->bw_table; 2121 /* We need to translate the max packet size and max ESIT payloads into 2122 * the units the hardware uses. 2123 */ 2124 block_size = xhci_get_block_size(virt_dev->udev); 2125 2126 /* If we are manipulating a LS/FS device under a HS hub, double check 2127 * that the HS bus has enough bandwidth if we are activing a new TT. 2128 */ 2129 if (virt_dev->tt_info) { 2130 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2131 "Recalculating BW for rootport %u", 2132 virt_dev->real_port); 2133 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2134 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2135 "newly activated TT.\n"); 2136 return -ENOMEM; 2137 } 2138 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2139 "Recalculating BW for TT slot %u port %u", 2140 virt_dev->tt_info->slot_id, 2141 virt_dev->tt_info->ttport); 2142 } else { 2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2144 "Recalculating BW for rootport %u", 2145 virt_dev->real_port); 2146 } 2147 2148 /* Add in how much bandwidth will be used for interval zero, or the 2149 * rounded max ESIT payload + number of packets * largest overhead. 2150 */ 2151 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2152 bw_table->interval_bw[0].num_packets * 2153 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2154 2155 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2156 unsigned int bw_added; 2157 unsigned int largest_mps; 2158 unsigned int interval_overhead; 2159 2160 /* 2161 * How many packets could we transmit in this interval? 2162 * If packets didn't fit in the previous interval, we will need 2163 * to transmit that many packets twice within this interval. 2164 */ 2165 packets_remaining = 2 * packets_remaining + 2166 bw_table->interval_bw[i].num_packets; 2167 2168 /* Find the largest max packet size of this or the previous 2169 * interval. 2170 */ 2171 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2172 largest_mps = 0; 2173 else { 2174 struct xhci_virt_ep *virt_ep; 2175 struct list_head *ep_entry; 2176 2177 ep_entry = bw_table->interval_bw[i].endpoints.next; 2178 virt_ep = list_entry(ep_entry, 2179 struct xhci_virt_ep, bw_endpoint_list); 2180 /* Convert to blocks, rounding up */ 2181 largest_mps = DIV_ROUND_UP( 2182 virt_ep->bw_info.max_packet_size, 2183 block_size); 2184 } 2185 if (largest_mps > packet_size) 2186 packet_size = largest_mps; 2187 2188 /* Use the larger overhead of this or the previous interval. */ 2189 interval_overhead = xhci_get_largest_overhead( 2190 &bw_table->interval_bw[i]); 2191 if (interval_overhead > overhead) 2192 overhead = interval_overhead; 2193 2194 /* How many packets can we evenly distribute across 2195 * (1 << (i + 1)) possible scheduling opportunities? 2196 */ 2197 packets_transmitted = packets_remaining >> (i + 1); 2198 2199 /* Add in the bandwidth used for those scheduled packets */ 2200 bw_added = packets_transmitted * (overhead + packet_size); 2201 2202 /* How many packets do we have remaining to transmit? */ 2203 packets_remaining = packets_remaining % (1 << (i + 1)); 2204 2205 /* What largest max packet size should those packets have? */ 2206 /* If we've transmitted all packets, don't carry over the 2207 * largest packet size. 2208 */ 2209 if (packets_remaining == 0) { 2210 packet_size = 0; 2211 overhead = 0; 2212 } else if (packets_transmitted > 0) { 2213 /* Otherwise if we do have remaining packets, and we've 2214 * scheduled some packets in this interval, take the 2215 * largest max packet size from endpoints with this 2216 * interval. 2217 */ 2218 packet_size = largest_mps; 2219 overhead = interval_overhead; 2220 } 2221 /* Otherwise carry over packet_size and overhead from the last 2222 * time we had a remainder. 2223 */ 2224 bw_used += bw_added; 2225 if (bw_used > max_bandwidth) { 2226 xhci_warn(xhci, "Not enough bandwidth. " 2227 "Proposed: %u, Max: %u\n", 2228 bw_used, max_bandwidth); 2229 return -ENOMEM; 2230 } 2231 } 2232 /* 2233 * Ok, we know we have some packets left over after even-handedly 2234 * scheduling interval 15. We don't know which microframes they will 2235 * fit into, so we over-schedule and say they will be scheduled every 2236 * microframe. 2237 */ 2238 if (packets_remaining > 0) 2239 bw_used += overhead + packet_size; 2240 2241 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2242 unsigned int port_index = virt_dev->real_port - 1; 2243 2244 /* OK, we're manipulating a HS device attached to a 2245 * root port bandwidth domain. Include the number of active TTs 2246 * in the bandwidth used. 2247 */ 2248 bw_used += TT_HS_OVERHEAD * 2249 xhci->rh_bw[port_index].num_active_tts; 2250 } 2251 2252 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2253 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2254 "Available: %u " "percent", 2255 bw_used, max_bandwidth, bw_reserved, 2256 (max_bandwidth - bw_used - bw_reserved) * 100 / 2257 max_bandwidth); 2258 2259 bw_used += bw_reserved; 2260 if (bw_used > max_bandwidth) { 2261 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2262 bw_used, max_bandwidth); 2263 return -ENOMEM; 2264 } 2265 2266 bw_table->bw_used = bw_used; 2267 return 0; 2268 } 2269 2270 static bool xhci_is_async_ep(unsigned int ep_type) 2271 { 2272 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2273 ep_type != ISOC_IN_EP && 2274 ep_type != INT_IN_EP); 2275 } 2276 2277 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2278 { 2279 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2280 } 2281 2282 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2283 { 2284 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2285 2286 if (ep_bw->ep_interval == 0) 2287 return SS_OVERHEAD_BURST + 2288 (ep_bw->mult * ep_bw->num_packets * 2289 (SS_OVERHEAD + mps)); 2290 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2291 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2292 1 << ep_bw->ep_interval); 2293 2294 } 2295 2296 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2297 struct xhci_bw_info *ep_bw, 2298 struct xhci_interval_bw_table *bw_table, 2299 struct usb_device *udev, 2300 struct xhci_virt_ep *virt_ep, 2301 struct xhci_tt_bw_info *tt_info) 2302 { 2303 struct xhci_interval_bw *interval_bw; 2304 int normalized_interval; 2305 2306 if (xhci_is_async_ep(ep_bw->type)) 2307 return; 2308 2309 if (udev->speed >= USB_SPEED_SUPER) { 2310 if (xhci_is_sync_in_ep(ep_bw->type)) 2311 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2312 xhci_get_ss_bw_consumed(ep_bw); 2313 else 2314 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2315 xhci_get_ss_bw_consumed(ep_bw); 2316 return; 2317 } 2318 2319 /* SuperSpeed endpoints never get added to intervals in the table, so 2320 * this check is only valid for HS/FS/LS devices. 2321 */ 2322 if (list_empty(&virt_ep->bw_endpoint_list)) 2323 return; 2324 /* For LS/FS devices, we need to translate the interval expressed in 2325 * microframes to frames. 2326 */ 2327 if (udev->speed == USB_SPEED_HIGH) 2328 normalized_interval = ep_bw->ep_interval; 2329 else 2330 normalized_interval = ep_bw->ep_interval - 3; 2331 2332 if (normalized_interval == 0) 2333 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2334 interval_bw = &bw_table->interval_bw[normalized_interval]; 2335 interval_bw->num_packets -= ep_bw->num_packets; 2336 switch (udev->speed) { 2337 case USB_SPEED_LOW: 2338 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2339 break; 2340 case USB_SPEED_FULL: 2341 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2342 break; 2343 case USB_SPEED_HIGH: 2344 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2345 break; 2346 case USB_SPEED_SUPER: 2347 case USB_SPEED_SUPER_PLUS: 2348 case USB_SPEED_UNKNOWN: 2349 case USB_SPEED_WIRELESS: 2350 /* Should never happen because only LS/FS/HS endpoints will get 2351 * added to the endpoint list. 2352 */ 2353 return; 2354 } 2355 if (tt_info) 2356 tt_info->active_eps -= 1; 2357 list_del_init(&virt_ep->bw_endpoint_list); 2358 } 2359 2360 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2361 struct xhci_bw_info *ep_bw, 2362 struct xhci_interval_bw_table *bw_table, 2363 struct usb_device *udev, 2364 struct xhci_virt_ep *virt_ep, 2365 struct xhci_tt_bw_info *tt_info) 2366 { 2367 struct xhci_interval_bw *interval_bw; 2368 struct xhci_virt_ep *smaller_ep; 2369 int normalized_interval; 2370 2371 if (xhci_is_async_ep(ep_bw->type)) 2372 return; 2373 2374 if (udev->speed == USB_SPEED_SUPER) { 2375 if (xhci_is_sync_in_ep(ep_bw->type)) 2376 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2377 xhci_get_ss_bw_consumed(ep_bw); 2378 else 2379 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2380 xhci_get_ss_bw_consumed(ep_bw); 2381 return; 2382 } 2383 2384 /* For LS/FS devices, we need to translate the interval expressed in 2385 * microframes to frames. 2386 */ 2387 if (udev->speed == USB_SPEED_HIGH) 2388 normalized_interval = ep_bw->ep_interval; 2389 else 2390 normalized_interval = ep_bw->ep_interval - 3; 2391 2392 if (normalized_interval == 0) 2393 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2394 interval_bw = &bw_table->interval_bw[normalized_interval]; 2395 interval_bw->num_packets += ep_bw->num_packets; 2396 switch (udev->speed) { 2397 case USB_SPEED_LOW: 2398 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2399 break; 2400 case USB_SPEED_FULL: 2401 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2402 break; 2403 case USB_SPEED_HIGH: 2404 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2405 break; 2406 case USB_SPEED_SUPER: 2407 case USB_SPEED_SUPER_PLUS: 2408 case USB_SPEED_UNKNOWN: 2409 case USB_SPEED_WIRELESS: 2410 /* Should never happen because only LS/FS/HS endpoints will get 2411 * added to the endpoint list. 2412 */ 2413 return; 2414 } 2415 2416 if (tt_info) 2417 tt_info->active_eps += 1; 2418 /* Insert the endpoint into the list, largest max packet size first. */ 2419 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2420 bw_endpoint_list) { 2421 if (ep_bw->max_packet_size >= 2422 smaller_ep->bw_info.max_packet_size) { 2423 /* Add the new ep before the smaller endpoint */ 2424 list_add_tail(&virt_ep->bw_endpoint_list, 2425 &smaller_ep->bw_endpoint_list); 2426 return; 2427 } 2428 } 2429 /* Add the new endpoint at the end of the list. */ 2430 list_add_tail(&virt_ep->bw_endpoint_list, 2431 &interval_bw->endpoints); 2432 } 2433 2434 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2435 struct xhci_virt_device *virt_dev, 2436 int old_active_eps) 2437 { 2438 struct xhci_root_port_bw_info *rh_bw_info; 2439 if (!virt_dev->tt_info) 2440 return; 2441 2442 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2443 if (old_active_eps == 0 && 2444 virt_dev->tt_info->active_eps != 0) { 2445 rh_bw_info->num_active_tts += 1; 2446 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2447 } else if (old_active_eps != 0 && 2448 virt_dev->tt_info->active_eps == 0) { 2449 rh_bw_info->num_active_tts -= 1; 2450 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2451 } 2452 } 2453 2454 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2455 struct xhci_virt_device *virt_dev, 2456 struct xhci_container_ctx *in_ctx) 2457 { 2458 struct xhci_bw_info ep_bw_info[31]; 2459 int i; 2460 struct xhci_input_control_ctx *ctrl_ctx; 2461 int old_active_eps = 0; 2462 2463 if (virt_dev->tt_info) 2464 old_active_eps = virt_dev->tt_info->active_eps; 2465 2466 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2467 if (!ctrl_ctx) { 2468 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2469 __func__); 2470 return -ENOMEM; 2471 } 2472 2473 for (i = 0; i < 31; i++) { 2474 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2475 continue; 2476 2477 /* Make a copy of the BW info in case we need to revert this */ 2478 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2479 sizeof(ep_bw_info[i])); 2480 /* Drop the endpoint from the interval table if the endpoint is 2481 * being dropped or changed. 2482 */ 2483 if (EP_IS_DROPPED(ctrl_ctx, i)) 2484 xhci_drop_ep_from_interval_table(xhci, 2485 &virt_dev->eps[i].bw_info, 2486 virt_dev->bw_table, 2487 virt_dev->udev, 2488 &virt_dev->eps[i], 2489 virt_dev->tt_info); 2490 } 2491 /* Overwrite the information stored in the endpoints' bw_info */ 2492 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2493 for (i = 0; i < 31; i++) { 2494 /* Add any changed or added endpoints to the interval table */ 2495 if (EP_IS_ADDED(ctrl_ctx, i)) 2496 xhci_add_ep_to_interval_table(xhci, 2497 &virt_dev->eps[i].bw_info, 2498 virt_dev->bw_table, 2499 virt_dev->udev, 2500 &virt_dev->eps[i], 2501 virt_dev->tt_info); 2502 } 2503 2504 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2505 /* Ok, this fits in the bandwidth we have. 2506 * Update the number of active TTs. 2507 */ 2508 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2509 return 0; 2510 } 2511 2512 /* We don't have enough bandwidth for this, revert the stored info. */ 2513 for (i = 0; i < 31; i++) { 2514 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2515 continue; 2516 2517 /* Drop the new copies of any added or changed endpoints from 2518 * the interval table. 2519 */ 2520 if (EP_IS_ADDED(ctrl_ctx, i)) { 2521 xhci_drop_ep_from_interval_table(xhci, 2522 &virt_dev->eps[i].bw_info, 2523 virt_dev->bw_table, 2524 virt_dev->udev, 2525 &virt_dev->eps[i], 2526 virt_dev->tt_info); 2527 } 2528 /* Revert the endpoint back to its old information */ 2529 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2530 sizeof(ep_bw_info[i])); 2531 /* Add any changed or dropped endpoints back into the table */ 2532 if (EP_IS_DROPPED(ctrl_ctx, i)) 2533 xhci_add_ep_to_interval_table(xhci, 2534 &virt_dev->eps[i].bw_info, 2535 virt_dev->bw_table, 2536 virt_dev->udev, 2537 &virt_dev->eps[i], 2538 virt_dev->tt_info); 2539 } 2540 return -ENOMEM; 2541 } 2542 2543 2544 /* Issue a configure endpoint command or evaluate context command 2545 * and wait for it to finish. 2546 */ 2547 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2548 struct usb_device *udev, 2549 struct xhci_command *command, 2550 bool ctx_change, bool must_succeed) 2551 { 2552 int ret; 2553 unsigned long flags; 2554 struct xhci_input_control_ctx *ctrl_ctx; 2555 struct xhci_virt_device *virt_dev; 2556 struct xhci_slot_ctx *slot_ctx; 2557 2558 if (!command) 2559 return -EINVAL; 2560 2561 spin_lock_irqsave(&xhci->lock, flags); 2562 2563 if (xhci->xhc_state & XHCI_STATE_DYING) { 2564 spin_unlock_irqrestore(&xhci->lock, flags); 2565 return -ESHUTDOWN; 2566 } 2567 2568 virt_dev = xhci->devs[udev->slot_id]; 2569 2570 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2571 if (!ctrl_ctx) { 2572 spin_unlock_irqrestore(&xhci->lock, flags); 2573 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2574 __func__); 2575 return -ENOMEM; 2576 } 2577 2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2579 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2580 spin_unlock_irqrestore(&xhci->lock, flags); 2581 xhci_warn(xhci, "Not enough host resources, " 2582 "active endpoint contexts = %u\n", 2583 xhci->num_active_eps); 2584 return -ENOMEM; 2585 } 2586 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2587 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2588 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2589 xhci_free_host_resources(xhci, ctrl_ctx); 2590 spin_unlock_irqrestore(&xhci->lock, flags); 2591 xhci_warn(xhci, "Not enough bandwidth\n"); 2592 return -ENOMEM; 2593 } 2594 2595 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2596 trace_xhci_configure_endpoint(slot_ctx); 2597 2598 if (!ctx_change) 2599 ret = xhci_queue_configure_endpoint(xhci, command, 2600 command->in_ctx->dma, 2601 udev->slot_id, must_succeed); 2602 else 2603 ret = xhci_queue_evaluate_context(xhci, command, 2604 command->in_ctx->dma, 2605 udev->slot_id, must_succeed); 2606 if (ret < 0) { 2607 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2608 xhci_free_host_resources(xhci, ctrl_ctx); 2609 spin_unlock_irqrestore(&xhci->lock, flags); 2610 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2611 "FIXME allocate a new ring segment"); 2612 return -ENOMEM; 2613 } 2614 xhci_ring_cmd_db(xhci); 2615 spin_unlock_irqrestore(&xhci->lock, flags); 2616 2617 /* Wait for the configure endpoint command to complete */ 2618 wait_for_completion(command->completion); 2619 2620 if (!ctx_change) 2621 ret = xhci_configure_endpoint_result(xhci, udev, 2622 &command->status); 2623 else 2624 ret = xhci_evaluate_context_result(xhci, udev, 2625 &command->status); 2626 2627 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2628 spin_lock_irqsave(&xhci->lock, flags); 2629 /* If the command failed, remove the reserved resources. 2630 * Otherwise, clean up the estimate to include dropped eps. 2631 */ 2632 if (ret) 2633 xhci_free_host_resources(xhci, ctrl_ctx); 2634 else 2635 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2636 spin_unlock_irqrestore(&xhci->lock, flags); 2637 } 2638 return ret; 2639 } 2640 2641 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2642 struct xhci_virt_device *vdev, int i) 2643 { 2644 struct xhci_virt_ep *ep = &vdev->eps[i]; 2645 2646 if (ep->ep_state & EP_HAS_STREAMS) { 2647 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2648 xhci_get_endpoint_address(i)); 2649 xhci_free_stream_info(xhci, ep->stream_info); 2650 ep->stream_info = NULL; 2651 ep->ep_state &= ~EP_HAS_STREAMS; 2652 } 2653 } 2654 2655 /* Called after one or more calls to xhci_add_endpoint() or 2656 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2657 * to call xhci_reset_bandwidth(). 2658 * 2659 * Since we are in the middle of changing either configuration or 2660 * installing a new alt setting, the USB core won't allow URBs to be 2661 * enqueued for any endpoint on the old config or interface. Nothing 2662 * else should be touching the xhci->devs[slot_id] structure, so we 2663 * don't need to take the xhci->lock for manipulating that. 2664 */ 2665 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2666 { 2667 int i; 2668 int ret = 0; 2669 struct xhci_hcd *xhci; 2670 struct xhci_virt_device *virt_dev; 2671 struct xhci_input_control_ctx *ctrl_ctx; 2672 struct xhci_slot_ctx *slot_ctx; 2673 struct xhci_command *command; 2674 2675 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2676 if (ret <= 0) 2677 return ret; 2678 xhci = hcd_to_xhci(hcd); 2679 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2680 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2681 return -ENODEV; 2682 2683 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2684 virt_dev = xhci->devs[udev->slot_id]; 2685 2686 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2687 if (!command) 2688 return -ENOMEM; 2689 2690 command->in_ctx = virt_dev->in_ctx; 2691 2692 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2693 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2694 if (!ctrl_ctx) { 2695 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2696 __func__); 2697 ret = -ENOMEM; 2698 goto command_cleanup; 2699 } 2700 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2701 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2702 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2703 2704 /* Don't issue the command if there's no endpoints to update. */ 2705 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2706 ctrl_ctx->drop_flags == 0) { 2707 ret = 0; 2708 goto command_cleanup; 2709 } 2710 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2711 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2712 for (i = 31; i >= 1; i--) { 2713 __le32 le32 = cpu_to_le32(BIT(i)); 2714 2715 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2716 || (ctrl_ctx->add_flags & le32) || i == 1) { 2717 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2718 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2719 break; 2720 } 2721 } 2722 2723 ret = xhci_configure_endpoint(xhci, udev, command, 2724 false, false); 2725 if (ret) 2726 /* Callee should call reset_bandwidth() */ 2727 goto command_cleanup; 2728 2729 /* Free any rings that were dropped, but not changed. */ 2730 for (i = 1; i < 31; i++) { 2731 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2732 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2733 xhci_free_endpoint_ring(xhci, virt_dev, i); 2734 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2735 } 2736 } 2737 xhci_zero_in_ctx(xhci, virt_dev); 2738 /* 2739 * Install any rings for completely new endpoints or changed endpoints, 2740 * and free any old rings from changed endpoints. 2741 */ 2742 for (i = 1; i < 31; i++) { 2743 if (!virt_dev->eps[i].new_ring) 2744 continue; 2745 /* Only free the old ring if it exists. 2746 * It may not if this is the first add of an endpoint. 2747 */ 2748 if (virt_dev->eps[i].ring) { 2749 xhci_free_endpoint_ring(xhci, virt_dev, i); 2750 } 2751 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2752 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2753 virt_dev->eps[i].new_ring = NULL; 2754 } 2755 command_cleanup: 2756 kfree(command->completion); 2757 kfree(command); 2758 2759 return ret; 2760 } 2761 2762 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2763 { 2764 struct xhci_hcd *xhci; 2765 struct xhci_virt_device *virt_dev; 2766 int i, ret; 2767 2768 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2769 if (ret <= 0) 2770 return; 2771 xhci = hcd_to_xhci(hcd); 2772 2773 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2774 virt_dev = xhci->devs[udev->slot_id]; 2775 /* Free any rings allocated for added endpoints */ 2776 for (i = 0; i < 31; i++) { 2777 if (virt_dev->eps[i].new_ring) { 2778 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2779 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2780 virt_dev->eps[i].new_ring = NULL; 2781 } 2782 } 2783 xhci_zero_in_ctx(xhci, virt_dev); 2784 } 2785 2786 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2787 struct xhci_container_ctx *in_ctx, 2788 struct xhci_container_ctx *out_ctx, 2789 struct xhci_input_control_ctx *ctrl_ctx, 2790 u32 add_flags, u32 drop_flags) 2791 { 2792 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2793 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2794 xhci_slot_copy(xhci, in_ctx, out_ctx); 2795 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2796 } 2797 2798 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2799 unsigned int slot_id, unsigned int ep_index, 2800 struct xhci_dequeue_state *deq_state) 2801 { 2802 struct xhci_input_control_ctx *ctrl_ctx; 2803 struct xhci_container_ctx *in_ctx; 2804 struct xhci_ep_ctx *ep_ctx; 2805 u32 added_ctxs; 2806 dma_addr_t addr; 2807 2808 in_ctx = xhci->devs[slot_id]->in_ctx; 2809 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2810 if (!ctrl_ctx) { 2811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2812 __func__); 2813 return; 2814 } 2815 2816 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2817 xhci->devs[slot_id]->out_ctx, ep_index); 2818 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2819 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2820 deq_state->new_deq_ptr); 2821 if (addr == 0) { 2822 xhci_warn(xhci, "WARN Cannot submit config ep after " 2823 "reset ep command\n"); 2824 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2825 deq_state->new_deq_seg, 2826 deq_state->new_deq_ptr); 2827 return; 2828 } 2829 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2830 2831 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2832 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2833 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2834 added_ctxs, added_ctxs); 2835 } 2836 2837 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2838 unsigned int stream_id, struct xhci_td *td) 2839 { 2840 struct xhci_dequeue_state deq_state; 2841 struct xhci_virt_ep *ep; 2842 struct usb_device *udev = td->urb->dev; 2843 2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2845 "Cleaning up stalled endpoint ring"); 2846 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2847 /* We need to move the HW's dequeue pointer past this TD, 2848 * or it will attempt to resend it on the next doorbell ring. 2849 */ 2850 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2851 ep_index, stream_id, td, &deq_state); 2852 2853 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2854 return; 2855 2856 /* HW with the reset endpoint quirk will use the saved dequeue state to 2857 * issue a configure endpoint command later. 2858 */ 2859 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2860 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2861 "Queueing new dequeue state"); 2862 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2863 ep_index, &deq_state); 2864 } else { 2865 /* Better hope no one uses the input context between now and the 2866 * reset endpoint completion! 2867 * XXX: No idea how this hardware will react when stream rings 2868 * are enabled. 2869 */ 2870 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2871 "Setting up input context for " 2872 "configure endpoint command"); 2873 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2874 ep_index, &deq_state); 2875 } 2876 } 2877 2878 /* Called when clearing halted device. The core should have sent the control 2879 * message to clear the device halt condition. The host side of the halt should 2880 * already be cleared with a reset endpoint command issued when the STALL tx 2881 * event was received. 2882 * 2883 * Context: in_interrupt 2884 */ 2885 2886 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2887 struct usb_host_endpoint *ep) 2888 { 2889 struct xhci_hcd *xhci; 2890 2891 xhci = hcd_to_xhci(hcd); 2892 2893 /* 2894 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2895 * The Reset Endpoint Command may only be issued to endpoints in the 2896 * Halted state. If software wishes reset the Data Toggle or Sequence 2897 * Number of an endpoint that isn't in the Halted state, then software 2898 * may issue a Configure Endpoint Command with the Drop and Add bits set 2899 * for the target endpoint. that is in the Stopped state. 2900 */ 2901 2902 /* For now just print debug to follow the situation */ 2903 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2904 ep->desc.bEndpointAddress); 2905 } 2906 2907 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2908 struct usb_device *udev, struct usb_host_endpoint *ep, 2909 unsigned int slot_id) 2910 { 2911 int ret; 2912 unsigned int ep_index; 2913 unsigned int ep_state; 2914 2915 if (!ep) 2916 return -EINVAL; 2917 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2918 if (ret <= 0) 2919 return -EINVAL; 2920 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2921 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2922 " descriptor for ep 0x%x does not support streams\n", 2923 ep->desc.bEndpointAddress); 2924 return -EINVAL; 2925 } 2926 2927 ep_index = xhci_get_endpoint_index(&ep->desc); 2928 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2929 if (ep_state & EP_HAS_STREAMS || 2930 ep_state & EP_GETTING_STREAMS) { 2931 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2932 "already has streams set up.\n", 2933 ep->desc.bEndpointAddress); 2934 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2935 "dynamic stream context array reallocation.\n"); 2936 return -EINVAL; 2937 } 2938 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2939 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2940 "endpoint 0x%x; URBs are pending.\n", 2941 ep->desc.bEndpointAddress); 2942 return -EINVAL; 2943 } 2944 return 0; 2945 } 2946 2947 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2948 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2949 { 2950 unsigned int max_streams; 2951 2952 /* The stream context array size must be a power of two */ 2953 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2954 /* 2955 * Find out how many primary stream array entries the host controller 2956 * supports. Later we may use secondary stream arrays (similar to 2nd 2957 * level page entries), but that's an optional feature for xHCI host 2958 * controllers. xHCs must support at least 4 stream IDs. 2959 */ 2960 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2961 if (*num_stream_ctxs > max_streams) { 2962 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2963 max_streams); 2964 *num_stream_ctxs = max_streams; 2965 *num_streams = max_streams; 2966 } 2967 } 2968 2969 /* Returns an error code if one of the endpoint already has streams. 2970 * This does not change any data structures, it only checks and gathers 2971 * information. 2972 */ 2973 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2974 struct usb_device *udev, 2975 struct usb_host_endpoint **eps, unsigned int num_eps, 2976 unsigned int *num_streams, u32 *changed_ep_bitmask) 2977 { 2978 unsigned int max_streams; 2979 unsigned int endpoint_flag; 2980 int i; 2981 int ret; 2982 2983 for (i = 0; i < num_eps; i++) { 2984 ret = xhci_check_streams_endpoint(xhci, udev, 2985 eps[i], udev->slot_id); 2986 if (ret < 0) 2987 return ret; 2988 2989 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2990 if (max_streams < (*num_streams - 1)) { 2991 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2992 eps[i]->desc.bEndpointAddress, 2993 max_streams); 2994 *num_streams = max_streams+1; 2995 } 2996 2997 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2998 if (*changed_ep_bitmask & endpoint_flag) 2999 return -EINVAL; 3000 *changed_ep_bitmask |= endpoint_flag; 3001 } 3002 return 0; 3003 } 3004 3005 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3006 struct usb_device *udev, 3007 struct usb_host_endpoint **eps, unsigned int num_eps) 3008 { 3009 u32 changed_ep_bitmask = 0; 3010 unsigned int slot_id; 3011 unsigned int ep_index; 3012 unsigned int ep_state; 3013 int i; 3014 3015 slot_id = udev->slot_id; 3016 if (!xhci->devs[slot_id]) 3017 return 0; 3018 3019 for (i = 0; i < num_eps; i++) { 3020 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3021 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3022 /* Are streams already being freed for the endpoint? */ 3023 if (ep_state & EP_GETTING_NO_STREAMS) { 3024 xhci_warn(xhci, "WARN Can't disable streams for " 3025 "endpoint 0x%x, " 3026 "streams are being disabled already\n", 3027 eps[i]->desc.bEndpointAddress); 3028 return 0; 3029 } 3030 /* Are there actually any streams to free? */ 3031 if (!(ep_state & EP_HAS_STREAMS) && 3032 !(ep_state & EP_GETTING_STREAMS)) { 3033 xhci_warn(xhci, "WARN Can't disable streams for " 3034 "endpoint 0x%x, " 3035 "streams are already disabled!\n", 3036 eps[i]->desc.bEndpointAddress); 3037 xhci_warn(xhci, "WARN xhci_free_streams() called " 3038 "with non-streams endpoint\n"); 3039 return 0; 3040 } 3041 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3042 } 3043 return changed_ep_bitmask; 3044 } 3045 3046 /* 3047 * The USB device drivers use this function (through the HCD interface in USB 3048 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3049 * coordinate mass storage command queueing across multiple endpoints (basically 3050 * a stream ID == a task ID). 3051 * 3052 * Setting up streams involves allocating the same size stream context array 3053 * for each endpoint and issuing a configure endpoint command for all endpoints. 3054 * 3055 * Don't allow the call to succeed if one endpoint only supports one stream 3056 * (which means it doesn't support streams at all). 3057 * 3058 * Drivers may get less stream IDs than they asked for, if the host controller 3059 * hardware or endpoints claim they can't support the number of requested 3060 * stream IDs. 3061 */ 3062 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3063 struct usb_host_endpoint **eps, unsigned int num_eps, 3064 unsigned int num_streams, gfp_t mem_flags) 3065 { 3066 int i, ret; 3067 struct xhci_hcd *xhci; 3068 struct xhci_virt_device *vdev; 3069 struct xhci_command *config_cmd; 3070 struct xhci_input_control_ctx *ctrl_ctx; 3071 unsigned int ep_index; 3072 unsigned int num_stream_ctxs; 3073 unsigned int max_packet; 3074 unsigned long flags; 3075 u32 changed_ep_bitmask = 0; 3076 3077 if (!eps) 3078 return -EINVAL; 3079 3080 /* Add one to the number of streams requested to account for 3081 * stream 0 that is reserved for xHCI usage. 3082 */ 3083 num_streams += 1; 3084 xhci = hcd_to_xhci(hcd); 3085 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3086 num_streams); 3087 3088 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3089 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3090 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3091 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3092 return -ENOSYS; 3093 } 3094 3095 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3096 if (!config_cmd) 3097 return -ENOMEM; 3098 3099 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3100 if (!ctrl_ctx) { 3101 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3102 __func__); 3103 xhci_free_command(xhci, config_cmd); 3104 return -ENOMEM; 3105 } 3106 3107 /* Check to make sure all endpoints are not already configured for 3108 * streams. While we're at it, find the maximum number of streams that 3109 * all the endpoints will support and check for duplicate endpoints. 3110 */ 3111 spin_lock_irqsave(&xhci->lock, flags); 3112 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3113 num_eps, &num_streams, &changed_ep_bitmask); 3114 if (ret < 0) { 3115 xhci_free_command(xhci, config_cmd); 3116 spin_unlock_irqrestore(&xhci->lock, flags); 3117 return ret; 3118 } 3119 if (num_streams <= 1) { 3120 xhci_warn(xhci, "WARN: endpoints can't handle " 3121 "more than one stream.\n"); 3122 xhci_free_command(xhci, config_cmd); 3123 spin_unlock_irqrestore(&xhci->lock, flags); 3124 return -EINVAL; 3125 } 3126 vdev = xhci->devs[udev->slot_id]; 3127 /* Mark each endpoint as being in transition, so 3128 * xhci_urb_enqueue() will reject all URBs. 3129 */ 3130 for (i = 0; i < num_eps; i++) { 3131 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3132 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3133 } 3134 spin_unlock_irqrestore(&xhci->lock, flags); 3135 3136 /* Setup internal data structures and allocate HW data structures for 3137 * streams (but don't install the HW structures in the input context 3138 * until we're sure all memory allocation succeeded). 3139 */ 3140 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3141 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3142 num_stream_ctxs, num_streams); 3143 3144 for (i = 0; i < num_eps; i++) { 3145 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3146 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3147 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3148 num_stream_ctxs, 3149 num_streams, 3150 max_packet, mem_flags); 3151 if (!vdev->eps[ep_index].stream_info) 3152 goto cleanup; 3153 /* Set maxPstreams in endpoint context and update deq ptr to 3154 * point to stream context array. FIXME 3155 */ 3156 } 3157 3158 /* Set up the input context for a configure endpoint command. */ 3159 for (i = 0; i < num_eps; i++) { 3160 struct xhci_ep_ctx *ep_ctx; 3161 3162 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3163 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3164 3165 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3166 vdev->out_ctx, ep_index); 3167 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3168 vdev->eps[ep_index].stream_info); 3169 } 3170 /* Tell the HW to drop its old copy of the endpoint context info 3171 * and add the updated copy from the input context. 3172 */ 3173 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3174 vdev->out_ctx, ctrl_ctx, 3175 changed_ep_bitmask, changed_ep_bitmask); 3176 3177 /* Issue and wait for the configure endpoint command */ 3178 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3179 false, false); 3180 3181 /* xHC rejected the configure endpoint command for some reason, so we 3182 * leave the old ring intact and free our internal streams data 3183 * structure. 3184 */ 3185 if (ret < 0) 3186 goto cleanup; 3187 3188 spin_lock_irqsave(&xhci->lock, flags); 3189 for (i = 0; i < num_eps; i++) { 3190 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3191 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3192 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3193 udev->slot_id, ep_index); 3194 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3195 } 3196 xhci_free_command(xhci, config_cmd); 3197 spin_unlock_irqrestore(&xhci->lock, flags); 3198 3199 /* Subtract 1 for stream 0, which drivers can't use */ 3200 return num_streams - 1; 3201 3202 cleanup: 3203 /* If it didn't work, free the streams! */ 3204 for (i = 0; i < num_eps; i++) { 3205 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3206 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3207 vdev->eps[ep_index].stream_info = NULL; 3208 /* FIXME Unset maxPstreams in endpoint context and 3209 * update deq ptr to point to normal string ring. 3210 */ 3211 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3212 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3213 xhci_endpoint_zero(xhci, vdev, eps[i]); 3214 } 3215 xhci_free_command(xhci, config_cmd); 3216 return -ENOMEM; 3217 } 3218 3219 /* Transition the endpoint from using streams to being a "normal" endpoint 3220 * without streams. 3221 * 3222 * Modify the endpoint context state, submit a configure endpoint command, 3223 * and free all endpoint rings for streams if that completes successfully. 3224 */ 3225 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3226 struct usb_host_endpoint **eps, unsigned int num_eps, 3227 gfp_t mem_flags) 3228 { 3229 int i, ret; 3230 struct xhci_hcd *xhci; 3231 struct xhci_virt_device *vdev; 3232 struct xhci_command *command; 3233 struct xhci_input_control_ctx *ctrl_ctx; 3234 unsigned int ep_index; 3235 unsigned long flags; 3236 u32 changed_ep_bitmask; 3237 3238 xhci = hcd_to_xhci(hcd); 3239 vdev = xhci->devs[udev->slot_id]; 3240 3241 /* Set up a configure endpoint command to remove the streams rings */ 3242 spin_lock_irqsave(&xhci->lock, flags); 3243 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3244 udev, eps, num_eps); 3245 if (changed_ep_bitmask == 0) { 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 return -EINVAL; 3248 } 3249 3250 /* Use the xhci_command structure from the first endpoint. We may have 3251 * allocated too many, but the driver may call xhci_free_streams() for 3252 * each endpoint it grouped into one call to xhci_alloc_streams(). 3253 */ 3254 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3255 command = vdev->eps[ep_index].stream_info->free_streams_command; 3256 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3257 if (!ctrl_ctx) { 3258 spin_unlock_irqrestore(&xhci->lock, flags); 3259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3260 __func__); 3261 return -EINVAL; 3262 } 3263 3264 for (i = 0; i < num_eps; i++) { 3265 struct xhci_ep_ctx *ep_ctx; 3266 3267 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3269 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3270 EP_GETTING_NO_STREAMS; 3271 3272 xhci_endpoint_copy(xhci, command->in_ctx, 3273 vdev->out_ctx, ep_index); 3274 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3275 &vdev->eps[ep_index]); 3276 } 3277 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3278 vdev->out_ctx, ctrl_ctx, 3279 changed_ep_bitmask, changed_ep_bitmask); 3280 spin_unlock_irqrestore(&xhci->lock, flags); 3281 3282 /* Issue and wait for the configure endpoint command, 3283 * which must succeed. 3284 */ 3285 ret = xhci_configure_endpoint(xhci, udev, command, 3286 false, true); 3287 3288 /* xHC rejected the configure endpoint command for some reason, so we 3289 * leave the streams rings intact. 3290 */ 3291 if (ret < 0) 3292 return ret; 3293 3294 spin_lock_irqsave(&xhci->lock, flags); 3295 for (i = 0; i < num_eps; i++) { 3296 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3297 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3298 vdev->eps[ep_index].stream_info = NULL; 3299 /* FIXME Unset maxPstreams in endpoint context and 3300 * update deq ptr to point to normal string ring. 3301 */ 3302 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3303 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3304 } 3305 spin_unlock_irqrestore(&xhci->lock, flags); 3306 3307 return 0; 3308 } 3309 3310 /* 3311 * Deletes endpoint resources for endpoints that were active before a Reset 3312 * Device command, or a Disable Slot command. The Reset Device command leaves 3313 * the control endpoint intact, whereas the Disable Slot command deletes it. 3314 * 3315 * Must be called with xhci->lock held. 3316 */ 3317 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3318 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3319 { 3320 int i; 3321 unsigned int num_dropped_eps = 0; 3322 unsigned int drop_flags = 0; 3323 3324 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3325 if (virt_dev->eps[i].ring) { 3326 drop_flags |= 1 << i; 3327 num_dropped_eps++; 3328 } 3329 } 3330 xhci->num_active_eps -= num_dropped_eps; 3331 if (num_dropped_eps) 3332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3333 "Dropped %u ep ctxs, flags = 0x%x, " 3334 "%u now active.", 3335 num_dropped_eps, drop_flags, 3336 xhci->num_active_eps); 3337 } 3338 3339 /* 3340 * This submits a Reset Device Command, which will set the device state to 0, 3341 * set the device address to 0, and disable all the endpoints except the default 3342 * control endpoint. The USB core should come back and call 3343 * xhci_address_device(), and then re-set up the configuration. If this is 3344 * called because of a usb_reset_and_verify_device(), then the old alternate 3345 * settings will be re-installed through the normal bandwidth allocation 3346 * functions. 3347 * 3348 * Wait for the Reset Device command to finish. Remove all structures 3349 * associated with the endpoints that were disabled. Clear the input device 3350 * structure? Reset the control endpoint 0 max packet size? 3351 * 3352 * If the virt_dev to be reset does not exist or does not match the udev, 3353 * it means the device is lost, possibly due to the xHC restore error and 3354 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3355 * re-allocate the device. 3356 */ 3357 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3358 struct usb_device *udev) 3359 { 3360 int ret, i; 3361 unsigned long flags; 3362 struct xhci_hcd *xhci; 3363 unsigned int slot_id; 3364 struct xhci_virt_device *virt_dev; 3365 struct xhci_command *reset_device_cmd; 3366 int last_freed_endpoint; 3367 struct xhci_slot_ctx *slot_ctx; 3368 int old_active_eps = 0; 3369 3370 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3371 if (ret <= 0) 3372 return ret; 3373 xhci = hcd_to_xhci(hcd); 3374 slot_id = udev->slot_id; 3375 virt_dev = xhci->devs[slot_id]; 3376 if (!virt_dev) { 3377 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3378 "not exist. Re-allocate the device\n", slot_id); 3379 ret = xhci_alloc_dev(hcd, udev); 3380 if (ret == 1) 3381 return 0; 3382 else 3383 return -EINVAL; 3384 } 3385 3386 if (virt_dev->tt_info) 3387 old_active_eps = virt_dev->tt_info->active_eps; 3388 3389 if (virt_dev->udev != udev) { 3390 /* If the virt_dev and the udev does not match, this virt_dev 3391 * may belong to another udev. 3392 * Re-allocate the device. 3393 */ 3394 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3395 "not match the udev. Re-allocate the device\n", 3396 slot_id); 3397 ret = xhci_alloc_dev(hcd, udev); 3398 if (ret == 1) 3399 return 0; 3400 else 3401 return -EINVAL; 3402 } 3403 3404 /* If device is not setup, there is no point in resetting it */ 3405 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3406 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3407 SLOT_STATE_DISABLED) 3408 return 0; 3409 3410 trace_xhci_discover_or_reset_device(slot_ctx); 3411 3412 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3413 /* Allocate the command structure that holds the struct completion. 3414 * Assume we're in process context, since the normal device reset 3415 * process has to wait for the device anyway. Storage devices are 3416 * reset as part of error handling, so use GFP_NOIO instead of 3417 * GFP_KERNEL. 3418 */ 3419 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3420 if (!reset_device_cmd) { 3421 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3422 return -ENOMEM; 3423 } 3424 3425 /* Attempt to submit the Reset Device command to the command ring */ 3426 spin_lock_irqsave(&xhci->lock, flags); 3427 3428 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3429 if (ret) { 3430 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3431 spin_unlock_irqrestore(&xhci->lock, flags); 3432 goto command_cleanup; 3433 } 3434 xhci_ring_cmd_db(xhci); 3435 spin_unlock_irqrestore(&xhci->lock, flags); 3436 3437 /* Wait for the Reset Device command to finish */ 3438 wait_for_completion(reset_device_cmd->completion); 3439 3440 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3441 * unless we tried to reset a slot ID that wasn't enabled, 3442 * or the device wasn't in the addressed or configured state. 3443 */ 3444 ret = reset_device_cmd->status; 3445 switch (ret) { 3446 case COMP_COMMAND_ABORTED: 3447 case COMP_COMMAND_RING_STOPPED: 3448 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3449 ret = -ETIME; 3450 goto command_cleanup; 3451 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3452 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3453 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3454 slot_id, 3455 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3456 xhci_dbg(xhci, "Not freeing device rings.\n"); 3457 /* Don't treat this as an error. May change my mind later. */ 3458 ret = 0; 3459 goto command_cleanup; 3460 case COMP_SUCCESS: 3461 xhci_dbg(xhci, "Successful reset device command.\n"); 3462 break; 3463 default: 3464 if (xhci_is_vendor_info_code(xhci, ret)) 3465 break; 3466 xhci_warn(xhci, "Unknown completion code %u for " 3467 "reset device command.\n", ret); 3468 ret = -EINVAL; 3469 goto command_cleanup; 3470 } 3471 3472 /* Free up host controller endpoint resources */ 3473 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3474 spin_lock_irqsave(&xhci->lock, flags); 3475 /* Don't delete the default control endpoint resources */ 3476 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3477 spin_unlock_irqrestore(&xhci->lock, flags); 3478 } 3479 3480 /* Everything but endpoint 0 is disabled, so free the rings. */ 3481 last_freed_endpoint = 1; 3482 for (i = 1; i < 31; i++) { 3483 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3484 3485 if (ep->ep_state & EP_HAS_STREAMS) { 3486 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3487 xhci_get_endpoint_address(i)); 3488 xhci_free_stream_info(xhci, ep->stream_info); 3489 ep->stream_info = NULL; 3490 ep->ep_state &= ~EP_HAS_STREAMS; 3491 } 3492 3493 if (ep->ring) { 3494 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3495 xhci_free_endpoint_ring(xhci, virt_dev, i); 3496 last_freed_endpoint = i; 3497 } 3498 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3499 xhci_drop_ep_from_interval_table(xhci, 3500 &virt_dev->eps[i].bw_info, 3501 virt_dev->bw_table, 3502 udev, 3503 &virt_dev->eps[i], 3504 virt_dev->tt_info); 3505 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3506 } 3507 /* If necessary, update the number of active TTs on this root port */ 3508 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3509 ret = 0; 3510 3511 command_cleanup: 3512 xhci_free_command(xhci, reset_device_cmd); 3513 return ret; 3514 } 3515 3516 /* 3517 * At this point, the struct usb_device is about to go away, the device has 3518 * disconnected, and all traffic has been stopped and the endpoints have been 3519 * disabled. Free any HC data structures associated with that device. 3520 */ 3521 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3522 { 3523 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3524 struct xhci_virt_device *virt_dev; 3525 struct xhci_slot_ctx *slot_ctx; 3526 int i, ret; 3527 3528 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3529 3530 #ifndef CONFIG_USB_DEFAULT_PERSIST 3531 /* 3532 * We called pm_runtime_get_noresume when the device was attached. 3533 * Decrement the counter here to allow controller to runtime suspend 3534 * if no devices remain. 3535 */ 3536 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3537 pm_runtime_put_noidle(hcd->self.controller); 3538 #endif 3539 3540 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3541 /* If the host is halted due to driver unload, we still need to free the 3542 * device. 3543 */ 3544 if (ret <= 0 && ret != -ENODEV) 3545 return; 3546 3547 virt_dev = xhci->devs[udev->slot_id]; 3548 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3549 trace_xhci_free_dev(slot_ctx); 3550 3551 /* Stop any wayward timer functions (which may grab the lock) */ 3552 for (i = 0; i < 31; i++) { 3553 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3554 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3555 } 3556 3557 ret = xhci_disable_slot(xhci, udev->slot_id); 3558 if (ret) 3559 xhci_free_virt_device(xhci, udev->slot_id); 3560 } 3561 3562 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3563 { 3564 struct xhci_command *command; 3565 unsigned long flags; 3566 u32 state; 3567 int ret = 0; 3568 3569 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3570 if (!command) 3571 return -ENOMEM; 3572 3573 spin_lock_irqsave(&xhci->lock, flags); 3574 /* Don't disable the slot if the host controller is dead. */ 3575 state = readl(&xhci->op_regs->status); 3576 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3577 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3578 spin_unlock_irqrestore(&xhci->lock, flags); 3579 kfree(command); 3580 return -ENODEV; 3581 } 3582 3583 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3584 slot_id); 3585 if (ret) { 3586 spin_unlock_irqrestore(&xhci->lock, flags); 3587 kfree(command); 3588 return ret; 3589 } 3590 xhci_ring_cmd_db(xhci); 3591 spin_unlock_irqrestore(&xhci->lock, flags); 3592 return ret; 3593 } 3594 3595 /* 3596 * Checks if we have enough host controller resources for the default control 3597 * endpoint. 3598 * 3599 * Must be called with xhci->lock held. 3600 */ 3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3602 { 3603 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3604 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3605 "Not enough ep ctxs: " 3606 "%u active, need to add 1, limit is %u.", 3607 xhci->num_active_eps, xhci->limit_active_eps); 3608 return -ENOMEM; 3609 } 3610 xhci->num_active_eps += 1; 3611 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3612 "Adding 1 ep ctx, %u now active.", 3613 xhci->num_active_eps); 3614 return 0; 3615 } 3616 3617 3618 /* 3619 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3620 * timed out, or allocating memory failed. Returns 1 on success. 3621 */ 3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3623 { 3624 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3625 struct xhci_virt_device *vdev; 3626 struct xhci_slot_ctx *slot_ctx; 3627 unsigned long flags; 3628 int ret, slot_id; 3629 struct xhci_command *command; 3630 3631 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3632 if (!command) 3633 return 0; 3634 3635 spin_lock_irqsave(&xhci->lock, flags); 3636 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3637 if (ret) { 3638 spin_unlock_irqrestore(&xhci->lock, flags); 3639 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3640 xhci_free_command(xhci, command); 3641 return 0; 3642 } 3643 xhci_ring_cmd_db(xhci); 3644 spin_unlock_irqrestore(&xhci->lock, flags); 3645 3646 wait_for_completion(command->completion); 3647 slot_id = command->slot_id; 3648 3649 if (!slot_id || command->status != COMP_SUCCESS) { 3650 xhci_err(xhci, "Error while assigning device slot ID\n"); 3651 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3652 HCS_MAX_SLOTS( 3653 readl(&xhci->cap_regs->hcs_params1))); 3654 xhci_free_command(xhci, command); 3655 return 0; 3656 } 3657 3658 xhci_free_command(xhci, command); 3659 3660 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3661 spin_lock_irqsave(&xhci->lock, flags); 3662 ret = xhci_reserve_host_control_ep_resources(xhci); 3663 if (ret) { 3664 spin_unlock_irqrestore(&xhci->lock, flags); 3665 xhci_warn(xhci, "Not enough host resources, " 3666 "active endpoint contexts = %u\n", 3667 xhci->num_active_eps); 3668 goto disable_slot; 3669 } 3670 spin_unlock_irqrestore(&xhci->lock, flags); 3671 } 3672 /* Use GFP_NOIO, since this function can be called from 3673 * xhci_discover_or_reset_device(), which may be called as part of 3674 * mass storage driver error handling. 3675 */ 3676 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3677 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3678 goto disable_slot; 3679 } 3680 vdev = xhci->devs[slot_id]; 3681 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3682 trace_xhci_alloc_dev(slot_ctx); 3683 3684 udev->slot_id = slot_id; 3685 3686 xhci_debugfs_create_slot(xhci, slot_id); 3687 3688 #ifndef CONFIG_USB_DEFAULT_PERSIST 3689 /* 3690 * If resetting upon resume, we can't put the controller into runtime 3691 * suspend if there is a device attached. 3692 */ 3693 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3694 pm_runtime_get_noresume(hcd->self.controller); 3695 #endif 3696 3697 /* Is this a LS or FS device under a HS hub? */ 3698 /* Hub or peripherial? */ 3699 return 1; 3700 3701 disable_slot: 3702 ret = xhci_disable_slot(xhci, udev->slot_id); 3703 if (ret) 3704 xhci_free_virt_device(xhci, udev->slot_id); 3705 3706 return 0; 3707 } 3708 3709 /* 3710 * Issue an Address Device command and optionally send a corresponding 3711 * SetAddress request to the device. 3712 */ 3713 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3714 enum xhci_setup_dev setup) 3715 { 3716 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3717 unsigned long flags; 3718 struct xhci_virt_device *virt_dev; 3719 int ret = 0; 3720 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3721 struct xhci_slot_ctx *slot_ctx; 3722 struct xhci_input_control_ctx *ctrl_ctx; 3723 u64 temp_64; 3724 struct xhci_command *command = NULL; 3725 3726 mutex_lock(&xhci->mutex); 3727 3728 if (xhci->xhc_state) { /* dying, removing or halted */ 3729 ret = -ESHUTDOWN; 3730 goto out; 3731 } 3732 3733 if (!udev->slot_id) { 3734 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3735 "Bad Slot ID %d", udev->slot_id); 3736 ret = -EINVAL; 3737 goto out; 3738 } 3739 3740 virt_dev = xhci->devs[udev->slot_id]; 3741 3742 if (WARN_ON(!virt_dev)) { 3743 /* 3744 * In plug/unplug torture test with an NEC controller, 3745 * a zero-dereference was observed once due to virt_dev = 0. 3746 * Print useful debug rather than crash if it is observed again! 3747 */ 3748 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3749 udev->slot_id); 3750 ret = -EINVAL; 3751 goto out; 3752 } 3753 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3754 trace_xhci_setup_device_slot(slot_ctx); 3755 3756 if (setup == SETUP_CONTEXT_ONLY) { 3757 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3758 SLOT_STATE_DEFAULT) { 3759 xhci_dbg(xhci, "Slot already in default state\n"); 3760 goto out; 3761 } 3762 } 3763 3764 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3765 if (!command) { 3766 ret = -ENOMEM; 3767 goto out; 3768 } 3769 3770 command->in_ctx = virt_dev->in_ctx; 3771 3772 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3773 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3774 if (!ctrl_ctx) { 3775 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3776 __func__); 3777 ret = -EINVAL; 3778 goto out; 3779 } 3780 /* 3781 * If this is the first Set Address since device plug-in or 3782 * virt_device realloaction after a resume with an xHCI power loss, 3783 * then set up the slot context. 3784 */ 3785 if (!slot_ctx->dev_info) 3786 xhci_setup_addressable_virt_dev(xhci, udev); 3787 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3788 else 3789 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3790 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3791 ctrl_ctx->drop_flags = 0; 3792 3793 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3794 le32_to_cpu(slot_ctx->dev_info) >> 27); 3795 3796 spin_lock_irqsave(&xhci->lock, flags); 3797 trace_xhci_setup_device(virt_dev); 3798 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3799 udev->slot_id, setup); 3800 if (ret) { 3801 spin_unlock_irqrestore(&xhci->lock, flags); 3802 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3803 "FIXME: allocate a command ring segment"); 3804 goto out; 3805 } 3806 xhci_ring_cmd_db(xhci); 3807 spin_unlock_irqrestore(&xhci->lock, flags); 3808 3809 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3810 wait_for_completion(command->completion); 3811 3812 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3813 * the SetAddress() "recovery interval" required by USB and aborting the 3814 * command on a timeout. 3815 */ 3816 switch (command->status) { 3817 case COMP_COMMAND_ABORTED: 3818 case COMP_COMMAND_RING_STOPPED: 3819 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3820 ret = -ETIME; 3821 break; 3822 case COMP_CONTEXT_STATE_ERROR: 3823 case COMP_SLOT_NOT_ENABLED_ERROR: 3824 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3825 act, udev->slot_id); 3826 ret = -EINVAL; 3827 break; 3828 case COMP_USB_TRANSACTION_ERROR: 3829 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3830 3831 mutex_unlock(&xhci->mutex); 3832 ret = xhci_disable_slot(xhci, udev->slot_id); 3833 if (!ret) 3834 xhci_alloc_dev(hcd, udev); 3835 kfree(command->completion); 3836 kfree(command); 3837 return -EPROTO; 3838 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3839 dev_warn(&udev->dev, 3840 "ERROR: Incompatible device for setup %s command\n", act); 3841 ret = -ENODEV; 3842 break; 3843 case COMP_SUCCESS: 3844 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3845 "Successful setup %s command", act); 3846 break; 3847 default: 3848 xhci_err(xhci, 3849 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3850 act, command->status); 3851 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3852 ret = -EINVAL; 3853 break; 3854 } 3855 if (ret) 3856 goto out; 3857 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3858 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3859 "Op regs DCBAA ptr = %#016llx", temp_64); 3860 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3861 "Slot ID %d dcbaa entry @%p = %#016llx", 3862 udev->slot_id, 3863 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3864 (unsigned long long) 3865 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3866 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3867 "Output Context DMA address = %#08llx", 3868 (unsigned long long)virt_dev->out_ctx->dma); 3869 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3870 le32_to_cpu(slot_ctx->dev_info) >> 27); 3871 /* 3872 * USB core uses address 1 for the roothubs, so we add one to the 3873 * address given back to us by the HC. 3874 */ 3875 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3876 le32_to_cpu(slot_ctx->dev_info) >> 27); 3877 /* Zero the input context control for later use */ 3878 ctrl_ctx->add_flags = 0; 3879 ctrl_ctx->drop_flags = 0; 3880 3881 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3882 "Internal device address = %d", 3883 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3884 out: 3885 mutex_unlock(&xhci->mutex); 3886 if (command) { 3887 kfree(command->completion); 3888 kfree(command); 3889 } 3890 return ret; 3891 } 3892 3893 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3894 { 3895 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3896 } 3897 3898 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3899 { 3900 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3901 } 3902 3903 /* 3904 * Transfer the port index into real index in the HW port status 3905 * registers. Caculate offset between the port's PORTSC register 3906 * and port status base. Divide the number of per port register 3907 * to get the real index. The raw port number bases 1. 3908 */ 3909 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3910 { 3911 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3912 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3913 __le32 __iomem *addr; 3914 int raw_port; 3915 3916 if (hcd->speed < HCD_USB3) 3917 addr = xhci->usb2_ports[port1 - 1]; 3918 else 3919 addr = xhci->usb3_ports[port1 - 1]; 3920 3921 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3922 return raw_port; 3923 } 3924 3925 /* 3926 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3927 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3928 */ 3929 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3930 struct usb_device *udev, u16 max_exit_latency) 3931 { 3932 struct xhci_virt_device *virt_dev; 3933 struct xhci_command *command; 3934 struct xhci_input_control_ctx *ctrl_ctx; 3935 struct xhci_slot_ctx *slot_ctx; 3936 unsigned long flags; 3937 int ret; 3938 3939 spin_lock_irqsave(&xhci->lock, flags); 3940 3941 virt_dev = xhci->devs[udev->slot_id]; 3942 3943 /* 3944 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3945 * xHC was re-initialized. Exit latency will be set later after 3946 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3947 */ 3948 3949 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3950 spin_unlock_irqrestore(&xhci->lock, flags); 3951 return 0; 3952 } 3953 3954 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3955 command = xhci->lpm_command; 3956 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3957 if (!ctrl_ctx) { 3958 spin_unlock_irqrestore(&xhci->lock, flags); 3959 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3960 __func__); 3961 return -ENOMEM; 3962 } 3963 3964 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3965 spin_unlock_irqrestore(&xhci->lock, flags); 3966 3967 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3968 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3969 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3970 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3971 slot_ctx->dev_state = 0; 3972 3973 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3974 "Set up evaluate context for LPM MEL change."); 3975 3976 /* Issue and wait for the evaluate context command. */ 3977 ret = xhci_configure_endpoint(xhci, udev, command, 3978 true, true); 3979 3980 if (!ret) { 3981 spin_lock_irqsave(&xhci->lock, flags); 3982 virt_dev->current_mel = max_exit_latency; 3983 spin_unlock_irqrestore(&xhci->lock, flags); 3984 } 3985 return ret; 3986 } 3987 3988 #ifdef CONFIG_PM 3989 3990 /* BESL to HIRD Encoding array for USB2 LPM */ 3991 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3992 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3993 3994 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3995 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3996 struct usb_device *udev) 3997 { 3998 int u2del, besl, besl_host; 3999 int besl_device = 0; 4000 u32 field; 4001 4002 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4003 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4004 4005 if (field & USB_BESL_SUPPORT) { 4006 for (besl_host = 0; besl_host < 16; besl_host++) { 4007 if (xhci_besl_encoding[besl_host] >= u2del) 4008 break; 4009 } 4010 /* Use baseline BESL value as default */ 4011 if (field & USB_BESL_BASELINE_VALID) 4012 besl_device = USB_GET_BESL_BASELINE(field); 4013 else if (field & USB_BESL_DEEP_VALID) 4014 besl_device = USB_GET_BESL_DEEP(field); 4015 } else { 4016 if (u2del <= 50) 4017 besl_host = 0; 4018 else 4019 besl_host = (u2del - 51) / 75 + 1; 4020 } 4021 4022 besl = besl_host + besl_device; 4023 if (besl > 15) 4024 besl = 15; 4025 4026 return besl; 4027 } 4028 4029 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4030 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4031 { 4032 u32 field; 4033 int l1; 4034 int besld = 0; 4035 int hirdm = 0; 4036 4037 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4038 4039 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4040 l1 = udev->l1_params.timeout / 256; 4041 4042 /* device has preferred BESLD */ 4043 if (field & USB_BESL_DEEP_VALID) { 4044 besld = USB_GET_BESL_DEEP(field); 4045 hirdm = 1; 4046 } 4047 4048 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4049 } 4050 4051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4052 struct usb_device *udev, int enable) 4053 { 4054 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4055 __le32 __iomem **port_array; 4056 __le32 __iomem *pm_addr, *hlpm_addr; 4057 u32 pm_val, hlpm_val, field; 4058 unsigned int port_num; 4059 unsigned long flags; 4060 int hird, exit_latency; 4061 int ret; 4062 4063 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4064 !udev->lpm_capable) 4065 return -EPERM; 4066 4067 if (!udev->parent || udev->parent->parent || 4068 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4069 return -EPERM; 4070 4071 if (udev->usb2_hw_lpm_capable != 1) 4072 return -EPERM; 4073 4074 spin_lock_irqsave(&xhci->lock, flags); 4075 4076 port_array = xhci->usb2_ports; 4077 port_num = udev->portnum - 1; 4078 pm_addr = port_array[port_num] + PORTPMSC; 4079 pm_val = readl(pm_addr); 4080 hlpm_addr = port_array[port_num] + PORTHLPMC; 4081 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4082 4083 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4084 enable ? "enable" : "disable", port_num + 1); 4085 4086 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4087 /* Host supports BESL timeout instead of HIRD */ 4088 if (udev->usb2_hw_lpm_besl_capable) { 4089 /* if device doesn't have a preferred BESL value use a 4090 * default one which works with mixed HIRD and BESL 4091 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4092 */ 4093 if ((field & USB_BESL_SUPPORT) && 4094 (field & USB_BESL_BASELINE_VALID)) 4095 hird = USB_GET_BESL_BASELINE(field); 4096 else 4097 hird = udev->l1_params.besl; 4098 4099 exit_latency = xhci_besl_encoding[hird]; 4100 spin_unlock_irqrestore(&xhci->lock, flags); 4101 4102 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4103 * input context for link powermanagement evaluate 4104 * context commands. It is protected by hcd->bandwidth 4105 * mutex and is shared by all devices. We need to set 4106 * the max ext latency in USB 2 BESL LPM as well, so 4107 * use the same mutex and xhci_change_max_exit_latency() 4108 */ 4109 mutex_lock(hcd->bandwidth_mutex); 4110 ret = xhci_change_max_exit_latency(xhci, udev, 4111 exit_latency); 4112 mutex_unlock(hcd->bandwidth_mutex); 4113 4114 if (ret < 0) 4115 return ret; 4116 spin_lock_irqsave(&xhci->lock, flags); 4117 4118 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4119 writel(hlpm_val, hlpm_addr); 4120 /* flush write */ 4121 readl(hlpm_addr); 4122 } else { 4123 hird = xhci_calculate_hird_besl(xhci, udev); 4124 } 4125 4126 pm_val &= ~PORT_HIRD_MASK; 4127 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4128 writel(pm_val, pm_addr); 4129 pm_val = readl(pm_addr); 4130 pm_val |= PORT_HLE; 4131 writel(pm_val, pm_addr); 4132 /* flush write */ 4133 readl(pm_addr); 4134 } else { 4135 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4136 writel(pm_val, pm_addr); 4137 /* flush write */ 4138 readl(pm_addr); 4139 if (udev->usb2_hw_lpm_besl_capable) { 4140 spin_unlock_irqrestore(&xhci->lock, flags); 4141 mutex_lock(hcd->bandwidth_mutex); 4142 xhci_change_max_exit_latency(xhci, udev, 0); 4143 mutex_unlock(hcd->bandwidth_mutex); 4144 return 0; 4145 } 4146 } 4147 4148 spin_unlock_irqrestore(&xhci->lock, flags); 4149 return 0; 4150 } 4151 4152 /* check if a usb2 port supports a given extened capability protocol 4153 * only USB2 ports extended protocol capability values are cached. 4154 * Return 1 if capability is supported 4155 */ 4156 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4157 unsigned capability) 4158 { 4159 u32 port_offset, port_count; 4160 int i; 4161 4162 for (i = 0; i < xhci->num_ext_caps; i++) { 4163 if (xhci->ext_caps[i] & capability) { 4164 /* port offsets starts at 1 */ 4165 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4166 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4167 if (port >= port_offset && 4168 port < port_offset + port_count) 4169 return 1; 4170 } 4171 } 4172 return 0; 4173 } 4174 4175 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4176 { 4177 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4178 int portnum = udev->portnum - 1; 4179 4180 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4181 !udev->lpm_capable) 4182 return 0; 4183 4184 /* we only support lpm for non-hub device connected to root hub yet */ 4185 if (!udev->parent || udev->parent->parent || 4186 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4187 return 0; 4188 4189 if (xhci->hw_lpm_support == 1 && 4190 xhci_check_usb2_port_capability( 4191 xhci, portnum, XHCI_HLC)) { 4192 udev->usb2_hw_lpm_capable = 1; 4193 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4194 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4195 if (xhci_check_usb2_port_capability(xhci, portnum, 4196 XHCI_BLC)) 4197 udev->usb2_hw_lpm_besl_capable = 1; 4198 } 4199 4200 return 0; 4201 } 4202 4203 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4204 4205 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4206 static unsigned long long xhci_service_interval_to_ns( 4207 struct usb_endpoint_descriptor *desc) 4208 { 4209 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4210 } 4211 4212 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4213 enum usb3_link_state state) 4214 { 4215 unsigned long long sel; 4216 unsigned long long pel; 4217 unsigned int max_sel_pel; 4218 char *state_name; 4219 4220 switch (state) { 4221 case USB3_LPM_U1: 4222 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4223 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4224 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4225 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4226 state_name = "U1"; 4227 break; 4228 case USB3_LPM_U2: 4229 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4230 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4231 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4232 state_name = "U2"; 4233 break; 4234 default: 4235 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4236 __func__); 4237 return USB3_LPM_DISABLED; 4238 } 4239 4240 if (sel <= max_sel_pel && pel <= max_sel_pel) 4241 return USB3_LPM_DEVICE_INITIATED; 4242 4243 if (sel > max_sel_pel) 4244 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4245 "due to long SEL %llu ms\n", 4246 state_name, sel); 4247 else 4248 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4249 "due to long PEL %llu ms\n", 4250 state_name, pel); 4251 return USB3_LPM_DISABLED; 4252 } 4253 4254 /* The U1 timeout should be the maximum of the following values: 4255 * - For control endpoints, U1 system exit latency (SEL) * 3 4256 * - For bulk endpoints, U1 SEL * 5 4257 * - For interrupt endpoints: 4258 * - Notification EPs, U1 SEL * 3 4259 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4260 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4261 */ 4262 static unsigned long long xhci_calculate_intel_u1_timeout( 4263 struct usb_device *udev, 4264 struct usb_endpoint_descriptor *desc) 4265 { 4266 unsigned long long timeout_ns; 4267 int ep_type; 4268 int intr_type; 4269 4270 ep_type = usb_endpoint_type(desc); 4271 switch (ep_type) { 4272 case USB_ENDPOINT_XFER_CONTROL: 4273 timeout_ns = udev->u1_params.sel * 3; 4274 break; 4275 case USB_ENDPOINT_XFER_BULK: 4276 timeout_ns = udev->u1_params.sel * 5; 4277 break; 4278 case USB_ENDPOINT_XFER_INT: 4279 intr_type = usb_endpoint_interrupt_type(desc); 4280 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4281 timeout_ns = udev->u1_params.sel * 3; 4282 break; 4283 } 4284 /* Otherwise the calculation is the same as isoc eps */ 4285 /* fall through */ 4286 case USB_ENDPOINT_XFER_ISOC: 4287 timeout_ns = xhci_service_interval_to_ns(desc); 4288 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4289 if (timeout_ns < udev->u1_params.sel * 2) 4290 timeout_ns = udev->u1_params.sel * 2; 4291 break; 4292 default: 4293 return 0; 4294 } 4295 4296 return timeout_ns; 4297 } 4298 4299 /* Returns the hub-encoded U1 timeout value. */ 4300 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4301 struct usb_device *udev, 4302 struct usb_endpoint_descriptor *desc) 4303 { 4304 unsigned long long timeout_ns; 4305 4306 if (xhci->quirks & XHCI_INTEL_HOST) 4307 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4308 else 4309 timeout_ns = udev->u1_params.sel; 4310 4311 /* The U1 timeout is encoded in 1us intervals. 4312 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4313 */ 4314 if (timeout_ns == USB3_LPM_DISABLED) 4315 timeout_ns = 1; 4316 else 4317 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4318 4319 /* If the necessary timeout value is bigger than what we can set in the 4320 * USB 3.0 hub, we have to disable hub-initiated U1. 4321 */ 4322 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4323 return timeout_ns; 4324 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4325 "due to long timeout %llu ms\n", timeout_ns); 4326 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4327 } 4328 4329 /* The U2 timeout should be the maximum of: 4330 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4331 * - largest bInterval of any active periodic endpoint (to avoid going 4332 * into lower power link states between intervals). 4333 * - the U2 Exit Latency of the device 4334 */ 4335 static unsigned long long xhci_calculate_intel_u2_timeout( 4336 struct usb_device *udev, 4337 struct usb_endpoint_descriptor *desc) 4338 { 4339 unsigned long long timeout_ns; 4340 unsigned long long u2_del_ns; 4341 4342 timeout_ns = 10 * 1000 * 1000; 4343 4344 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4345 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4346 timeout_ns = xhci_service_interval_to_ns(desc); 4347 4348 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4349 if (u2_del_ns > timeout_ns) 4350 timeout_ns = u2_del_ns; 4351 4352 return timeout_ns; 4353 } 4354 4355 /* Returns the hub-encoded U2 timeout value. */ 4356 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4357 struct usb_device *udev, 4358 struct usb_endpoint_descriptor *desc) 4359 { 4360 unsigned long long timeout_ns; 4361 4362 if (xhci->quirks & XHCI_INTEL_HOST) 4363 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4364 else 4365 timeout_ns = udev->u2_params.sel; 4366 4367 /* The U2 timeout is encoded in 256us intervals */ 4368 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4369 /* If the necessary timeout value is bigger than what we can set in the 4370 * USB 3.0 hub, we have to disable hub-initiated U2. 4371 */ 4372 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4373 return timeout_ns; 4374 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4375 "due to long timeout %llu ms\n", timeout_ns); 4376 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4377 } 4378 4379 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4380 struct usb_device *udev, 4381 struct usb_endpoint_descriptor *desc, 4382 enum usb3_link_state state, 4383 u16 *timeout) 4384 { 4385 if (state == USB3_LPM_U1) 4386 return xhci_calculate_u1_timeout(xhci, udev, desc); 4387 else if (state == USB3_LPM_U2) 4388 return xhci_calculate_u2_timeout(xhci, udev, desc); 4389 4390 return USB3_LPM_DISABLED; 4391 } 4392 4393 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4394 struct usb_device *udev, 4395 struct usb_endpoint_descriptor *desc, 4396 enum usb3_link_state state, 4397 u16 *timeout) 4398 { 4399 u16 alt_timeout; 4400 4401 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4402 desc, state, timeout); 4403 4404 /* If we found we can't enable hub-initiated LPM, or 4405 * the U1 or U2 exit latency was too high to allow 4406 * device-initiated LPM as well, just stop searching. 4407 */ 4408 if (alt_timeout == USB3_LPM_DISABLED || 4409 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4410 *timeout = alt_timeout; 4411 return -E2BIG; 4412 } 4413 if (alt_timeout > *timeout) 4414 *timeout = alt_timeout; 4415 return 0; 4416 } 4417 4418 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4419 struct usb_device *udev, 4420 struct usb_host_interface *alt, 4421 enum usb3_link_state state, 4422 u16 *timeout) 4423 { 4424 int j; 4425 4426 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4427 if (xhci_update_timeout_for_endpoint(xhci, udev, 4428 &alt->endpoint[j].desc, state, timeout)) 4429 return -E2BIG; 4430 continue; 4431 } 4432 return 0; 4433 } 4434 4435 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4436 enum usb3_link_state state) 4437 { 4438 struct usb_device *parent; 4439 unsigned int num_hubs; 4440 4441 if (state == USB3_LPM_U2) 4442 return 0; 4443 4444 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4445 for (parent = udev->parent, num_hubs = 0; parent->parent; 4446 parent = parent->parent) 4447 num_hubs++; 4448 4449 if (num_hubs < 2) 4450 return 0; 4451 4452 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4453 " below second-tier hub.\n"); 4454 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4455 "to decrease power consumption.\n"); 4456 return -E2BIG; 4457 } 4458 4459 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4460 struct usb_device *udev, 4461 enum usb3_link_state state) 4462 { 4463 if (xhci->quirks & XHCI_INTEL_HOST) 4464 return xhci_check_intel_tier_policy(udev, state); 4465 else 4466 return 0; 4467 } 4468 4469 /* Returns the U1 or U2 timeout that should be enabled. 4470 * If the tier check or timeout setting functions return with a non-zero exit 4471 * code, that means the timeout value has been finalized and we shouldn't look 4472 * at any more endpoints. 4473 */ 4474 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4475 struct usb_device *udev, enum usb3_link_state state) 4476 { 4477 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4478 struct usb_host_config *config; 4479 char *state_name; 4480 int i; 4481 u16 timeout = USB3_LPM_DISABLED; 4482 4483 if (state == USB3_LPM_U1) 4484 state_name = "U1"; 4485 else if (state == USB3_LPM_U2) 4486 state_name = "U2"; 4487 else { 4488 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4489 state); 4490 return timeout; 4491 } 4492 4493 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4494 return timeout; 4495 4496 /* Gather some information about the currently installed configuration 4497 * and alternate interface settings. 4498 */ 4499 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4500 state, &timeout)) 4501 return timeout; 4502 4503 config = udev->actconfig; 4504 if (!config) 4505 return timeout; 4506 4507 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4508 struct usb_driver *driver; 4509 struct usb_interface *intf = config->interface[i]; 4510 4511 if (!intf) 4512 continue; 4513 4514 /* Check if any currently bound drivers want hub-initiated LPM 4515 * disabled. 4516 */ 4517 if (intf->dev.driver) { 4518 driver = to_usb_driver(intf->dev.driver); 4519 if (driver && driver->disable_hub_initiated_lpm) { 4520 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4521 "at request of driver %s\n", 4522 state_name, driver->name); 4523 return xhci_get_timeout_no_hub_lpm(udev, state); 4524 } 4525 } 4526 4527 /* Not sure how this could happen... */ 4528 if (!intf->cur_altsetting) 4529 continue; 4530 4531 if (xhci_update_timeout_for_interface(xhci, udev, 4532 intf->cur_altsetting, 4533 state, &timeout)) 4534 return timeout; 4535 } 4536 return timeout; 4537 } 4538 4539 static int calculate_max_exit_latency(struct usb_device *udev, 4540 enum usb3_link_state state_changed, 4541 u16 hub_encoded_timeout) 4542 { 4543 unsigned long long u1_mel_us = 0; 4544 unsigned long long u2_mel_us = 0; 4545 unsigned long long mel_us = 0; 4546 bool disabling_u1; 4547 bool disabling_u2; 4548 bool enabling_u1; 4549 bool enabling_u2; 4550 4551 disabling_u1 = (state_changed == USB3_LPM_U1 && 4552 hub_encoded_timeout == USB3_LPM_DISABLED); 4553 disabling_u2 = (state_changed == USB3_LPM_U2 && 4554 hub_encoded_timeout == USB3_LPM_DISABLED); 4555 4556 enabling_u1 = (state_changed == USB3_LPM_U1 && 4557 hub_encoded_timeout != USB3_LPM_DISABLED); 4558 enabling_u2 = (state_changed == USB3_LPM_U2 && 4559 hub_encoded_timeout != USB3_LPM_DISABLED); 4560 4561 /* If U1 was already enabled and we're not disabling it, 4562 * or we're going to enable U1, account for the U1 max exit latency. 4563 */ 4564 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4565 enabling_u1) 4566 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4567 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4568 enabling_u2) 4569 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4570 4571 if (u1_mel_us > u2_mel_us) 4572 mel_us = u1_mel_us; 4573 else 4574 mel_us = u2_mel_us; 4575 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4576 if (mel_us > MAX_EXIT) { 4577 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4578 "is too big.\n", mel_us); 4579 return -E2BIG; 4580 } 4581 return mel_us; 4582 } 4583 4584 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4585 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4586 struct usb_device *udev, enum usb3_link_state state) 4587 { 4588 struct xhci_hcd *xhci; 4589 u16 hub_encoded_timeout; 4590 int mel; 4591 int ret; 4592 4593 xhci = hcd_to_xhci(hcd); 4594 /* The LPM timeout values are pretty host-controller specific, so don't 4595 * enable hub-initiated timeouts unless the vendor has provided 4596 * information about their timeout algorithm. 4597 */ 4598 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4599 !xhci->devs[udev->slot_id]) 4600 return USB3_LPM_DISABLED; 4601 4602 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4603 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4604 if (mel < 0) { 4605 /* Max Exit Latency is too big, disable LPM. */ 4606 hub_encoded_timeout = USB3_LPM_DISABLED; 4607 mel = 0; 4608 } 4609 4610 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4611 if (ret) 4612 return ret; 4613 return hub_encoded_timeout; 4614 } 4615 4616 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4617 struct usb_device *udev, enum usb3_link_state state) 4618 { 4619 struct xhci_hcd *xhci; 4620 u16 mel; 4621 4622 xhci = hcd_to_xhci(hcd); 4623 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4624 !xhci->devs[udev->slot_id]) 4625 return 0; 4626 4627 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4628 return xhci_change_max_exit_latency(xhci, udev, mel); 4629 } 4630 #else /* CONFIG_PM */ 4631 4632 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4633 struct usb_device *udev, int enable) 4634 { 4635 return 0; 4636 } 4637 4638 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4639 { 4640 return 0; 4641 } 4642 4643 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4644 struct usb_device *udev, enum usb3_link_state state) 4645 { 4646 return USB3_LPM_DISABLED; 4647 } 4648 4649 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4650 struct usb_device *udev, enum usb3_link_state state) 4651 { 4652 return 0; 4653 } 4654 #endif /* CONFIG_PM */ 4655 4656 /*-------------------------------------------------------------------------*/ 4657 4658 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4659 * internal data structures for the device. 4660 */ 4661 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4662 struct usb_tt *tt, gfp_t mem_flags) 4663 { 4664 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4665 struct xhci_virt_device *vdev; 4666 struct xhci_command *config_cmd; 4667 struct xhci_input_control_ctx *ctrl_ctx; 4668 struct xhci_slot_ctx *slot_ctx; 4669 unsigned long flags; 4670 unsigned think_time; 4671 int ret; 4672 4673 /* Ignore root hubs */ 4674 if (!hdev->parent) 4675 return 0; 4676 4677 vdev = xhci->devs[hdev->slot_id]; 4678 if (!vdev) { 4679 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4680 return -EINVAL; 4681 } 4682 4683 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4684 if (!config_cmd) 4685 return -ENOMEM; 4686 4687 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4688 if (!ctrl_ctx) { 4689 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4690 __func__); 4691 xhci_free_command(xhci, config_cmd); 4692 return -ENOMEM; 4693 } 4694 4695 spin_lock_irqsave(&xhci->lock, flags); 4696 if (hdev->speed == USB_SPEED_HIGH && 4697 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4698 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4699 xhci_free_command(xhci, config_cmd); 4700 spin_unlock_irqrestore(&xhci->lock, flags); 4701 return -ENOMEM; 4702 } 4703 4704 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4705 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4706 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4707 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4708 /* 4709 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4710 * but it may be already set to 1 when setup an xHCI virtual 4711 * device, so clear it anyway. 4712 */ 4713 if (tt->multi) 4714 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4715 else if (hdev->speed == USB_SPEED_FULL) 4716 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4717 4718 if (xhci->hci_version > 0x95) { 4719 xhci_dbg(xhci, "xHCI version %x needs hub " 4720 "TT think time and number of ports\n", 4721 (unsigned int) xhci->hci_version); 4722 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4723 /* Set TT think time - convert from ns to FS bit times. 4724 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4725 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4726 * 4727 * xHCI 1.0: this field shall be 0 if the device is not a 4728 * High-spped hub. 4729 */ 4730 think_time = tt->think_time; 4731 if (think_time != 0) 4732 think_time = (think_time / 666) - 1; 4733 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4734 slot_ctx->tt_info |= 4735 cpu_to_le32(TT_THINK_TIME(think_time)); 4736 } else { 4737 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4738 "TT think time or number of ports\n", 4739 (unsigned int) xhci->hci_version); 4740 } 4741 slot_ctx->dev_state = 0; 4742 spin_unlock_irqrestore(&xhci->lock, flags); 4743 4744 xhci_dbg(xhci, "Set up %s for hub device.\n", 4745 (xhci->hci_version > 0x95) ? 4746 "configure endpoint" : "evaluate context"); 4747 4748 /* Issue and wait for the configure endpoint or 4749 * evaluate context command. 4750 */ 4751 if (xhci->hci_version > 0x95) 4752 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4753 false, false); 4754 else 4755 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4756 true, false); 4757 4758 xhci_free_command(xhci, config_cmd); 4759 return ret; 4760 } 4761 4762 static int xhci_get_frame(struct usb_hcd *hcd) 4763 { 4764 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4765 /* EHCI mods by the periodic size. Why? */ 4766 return readl(&xhci->run_regs->microframe_index) >> 3; 4767 } 4768 4769 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4770 { 4771 struct xhci_hcd *xhci; 4772 /* 4773 * TODO: Check with DWC3 clients for sysdev according to 4774 * quirks 4775 */ 4776 struct device *dev = hcd->self.sysdev; 4777 int retval; 4778 4779 /* Accept arbitrarily long scatter-gather lists */ 4780 hcd->self.sg_tablesize = ~0; 4781 4782 /* support to build packet from discontinuous buffers */ 4783 hcd->self.no_sg_constraint = 1; 4784 4785 /* XHCI controllers don't stop the ep queue on short packets :| */ 4786 hcd->self.no_stop_on_short = 1; 4787 4788 xhci = hcd_to_xhci(hcd); 4789 4790 if (usb_hcd_is_primary_hcd(hcd)) { 4791 xhci->main_hcd = hcd; 4792 /* Mark the first roothub as being USB 2.0. 4793 * The xHCI driver will register the USB 3.0 roothub. 4794 */ 4795 hcd->speed = HCD_USB2; 4796 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4797 /* 4798 * USB 2.0 roothub under xHCI has an integrated TT, 4799 * (rate matching hub) as opposed to having an OHCI/UHCI 4800 * companion controller. 4801 */ 4802 hcd->has_tt = 1; 4803 } else { 4804 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */ 4805 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) { 4806 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4807 hcd->speed = HCD_USB31; 4808 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4809 } 4810 /* xHCI private pointer was set in xhci_pci_probe for the second 4811 * registered roothub. 4812 */ 4813 return 0; 4814 } 4815 4816 mutex_init(&xhci->mutex); 4817 xhci->cap_regs = hcd->regs; 4818 xhci->op_regs = hcd->regs + 4819 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4820 xhci->run_regs = hcd->regs + 4821 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4822 /* Cache read-only capability registers */ 4823 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4824 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4825 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4826 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4827 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4828 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4829 if (xhci->hci_version > 0x100) 4830 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4831 xhci_print_registers(xhci); 4832 4833 xhci->quirks |= quirks; 4834 4835 get_quirks(dev, xhci); 4836 4837 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4838 * success event after a short transfer. This quirk will ignore such 4839 * spurious event. 4840 */ 4841 if (xhci->hci_version > 0x96) 4842 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4843 4844 /* Make sure the HC is halted. */ 4845 retval = xhci_halt(xhci); 4846 if (retval) 4847 return retval; 4848 4849 xhci_dbg(xhci, "Resetting HCD\n"); 4850 /* Reset the internal HC memory state and registers. */ 4851 retval = xhci_reset(xhci); 4852 if (retval) 4853 return retval; 4854 xhci_dbg(xhci, "Reset complete\n"); 4855 4856 /* 4857 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4858 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4859 * address memory pointers actually. So, this driver clears the AC64 4860 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4861 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4862 */ 4863 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4864 xhci->hcc_params &= ~BIT(0); 4865 4866 /* Set dma_mask and coherent_dma_mask to 64-bits, 4867 * if xHC supports 64-bit addressing */ 4868 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4869 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4870 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4871 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4872 } else { 4873 /* 4874 * This is to avoid error in cases where a 32-bit USB 4875 * controller is used on a 64-bit capable system. 4876 */ 4877 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4878 if (retval) 4879 return retval; 4880 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4881 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4882 } 4883 4884 xhci_dbg(xhci, "Calling HCD init\n"); 4885 /* Initialize HCD and host controller data structures. */ 4886 retval = xhci_init(hcd); 4887 if (retval) 4888 return retval; 4889 xhci_dbg(xhci, "Called HCD init\n"); 4890 4891 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4892 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4893 4894 return 0; 4895 } 4896 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4897 4898 static const struct hc_driver xhci_hc_driver = { 4899 .description = "xhci-hcd", 4900 .product_desc = "xHCI Host Controller", 4901 .hcd_priv_size = sizeof(struct xhci_hcd), 4902 4903 /* 4904 * generic hardware linkage 4905 */ 4906 .irq = xhci_irq, 4907 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4908 4909 /* 4910 * basic lifecycle operations 4911 */ 4912 .reset = NULL, /* set in xhci_init_driver() */ 4913 .start = xhci_run, 4914 .stop = xhci_stop, 4915 .shutdown = xhci_shutdown, 4916 4917 /* 4918 * managing i/o requests and associated device resources 4919 */ 4920 .urb_enqueue = xhci_urb_enqueue, 4921 .urb_dequeue = xhci_urb_dequeue, 4922 .alloc_dev = xhci_alloc_dev, 4923 .free_dev = xhci_free_dev, 4924 .alloc_streams = xhci_alloc_streams, 4925 .free_streams = xhci_free_streams, 4926 .add_endpoint = xhci_add_endpoint, 4927 .drop_endpoint = xhci_drop_endpoint, 4928 .endpoint_reset = xhci_endpoint_reset, 4929 .check_bandwidth = xhci_check_bandwidth, 4930 .reset_bandwidth = xhci_reset_bandwidth, 4931 .address_device = xhci_address_device, 4932 .enable_device = xhci_enable_device, 4933 .update_hub_device = xhci_update_hub_device, 4934 .reset_device = xhci_discover_or_reset_device, 4935 4936 /* 4937 * scheduling support 4938 */ 4939 .get_frame_number = xhci_get_frame, 4940 4941 /* 4942 * root hub support 4943 */ 4944 .hub_control = xhci_hub_control, 4945 .hub_status_data = xhci_hub_status_data, 4946 .bus_suspend = xhci_bus_suspend, 4947 .bus_resume = xhci_bus_resume, 4948 4949 /* 4950 * call back when device connected and addressed 4951 */ 4952 .update_device = xhci_update_device, 4953 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4954 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4955 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4956 .find_raw_port_number = xhci_find_raw_port_number, 4957 }; 4958 4959 void xhci_init_driver(struct hc_driver *drv, 4960 const struct xhci_driver_overrides *over) 4961 { 4962 BUG_ON(!over); 4963 4964 /* Copy the generic table to drv then apply the overrides */ 4965 *drv = xhci_hc_driver; 4966 4967 if (over) { 4968 drv->hcd_priv_size += over->extra_priv_size; 4969 if (over->reset) 4970 drv->reset = over->reset; 4971 if (over->start) 4972 drv->start = over->start; 4973 } 4974 } 4975 EXPORT_SYMBOL_GPL(xhci_init_driver); 4976 4977 MODULE_DESCRIPTION(DRIVER_DESC); 4978 MODULE_AUTHOR(DRIVER_AUTHOR); 4979 MODULE_LICENSE("GPL"); 4980 4981 static int __init xhci_hcd_init(void) 4982 { 4983 /* 4984 * Check the compiler generated sizes of structures that must be laid 4985 * out in specific ways for hardware access. 4986 */ 4987 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4988 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4989 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4990 /* xhci_device_control has eight fields, and also 4991 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4992 */ 4993 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4994 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4995 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4996 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4997 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4998 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4999 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5000 5001 if (usb_disabled()) 5002 return -ENODEV; 5003 5004 xhci_debugfs_create_root(); 5005 5006 return 0; 5007 } 5008 5009 /* 5010 * If an init function is provided, an exit function must also be provided 5011 * to allow module unload. 5012 */ 5013 static void __exit xhci_hcd_fini(void) 5014 { 5015 xhci_debugfs_remove_root(); 5016 } 5017 5018 module_init(xhci_hcd_init); 5019 module_exit(xhci_hcd_fini); 5020