xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 680ef72a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 
25 #define DRIVER_AUTHOR "Sarah Sharp"
26 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
27 
28 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
29 
30 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
31 static int link_quirk;
32 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
33 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
34 
35 static unsigned int quirks;
36 module_param(quirks, uint, S_IRUGO);
37 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
38 
39 /* TODO: copied from ehci-hcd.c - can this be refactored? */
40 /*
41  * xhci_handshake - spin reading hc until handshake completes or fails
42  * @ptr: address of hc register to be read
43  * @mask: bits to look at in result of read
44  * @done: value of those bits when handshake succeeds
45  * @usec: timeout in microseconds
46  *
47  * Returns negative errno, or zero on success
48  *
49  * Success happens when the "mask" bits have the specified value (hardware
50  * handshake done).  There are two failure modes:  "usec" have passed (major
51  * hardware flakeout), or the register reads as all-ones (hardware removed).
52  */
53 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
54 {
55 	u32	result;
56 
57 	do {
58 		result = readl(ptr);
59 		if (result == ~(u32)0)		/* card removed */
60 			return -ENODEV;
61 		result &= mask;
62 		if (result == done)
63 			return 0;
64 		udelay(1);
65 		usec--;
66 	} while (usec > 0);
67 	return -ETIMEDOUT;
68 }
69 
70 /*
71  * Disable interrupts and begin the xHCI halting process.
72  */
73 void xhci_quiesce(struct xhci_hcd *xhci)
74 {
75 	u32 halted;
76 	u32 cmd;
77 	u32 mask;
78 
79 	mask = ~(XHCI_IRQS);
80 	halted = readl(&xhci->op_regs->status) & STS_HALT;
81 	if (!halted)
82 		mask &= ~CMD_RUN;
83 
84 	cmd = readl(&xhci->op_regs->command);
85 	cmd &= mask;
86 	writel(cmd, &xhci->op_regs->command);
87 }
88 
89 /*
90  * Force HC into halt state.
91  *
92  * Disable any IRQs and clear the run/stop bit.
93  * HC will complete any current and actively pipelined transactions, and
94  * should halt within 16 ms of the run/stop bit being cleared.
95  * Read HC Halted bit in the status register to see when the HC is finished.
96  */
97 int xhci_halt(struct xhci_hcd *xhci)
98 {
99 	int ret;
100 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
101 	xhci_quiesce(xhci);
102 
103 	ret = xhci_handshake(&xhci->op_regs->status,
104 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
105 	if (ret) {
106 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
107 		return ret;
108 	}
109 	xhci->xhc_state |= XHCI_STATE_HALTED;
110 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	return ret;
112 }
113 
114 /*
115  * Set the run bit and wait for the host to be running.
116  */
117 int xhci_start(struct xhci_hcd *xhci)
118 {
119 	u32 temp;
120 	int ret;
121 
122 	temp = readl(&xhci->op_regs->command);
123 	temp |= (CMD_RUN);
124 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
125 			temp);
126 	writel(temp, &xhci->op_regs->command);
127 
128 	/*
129 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
130 	 * running.
131 	 */
132 	ret = xhci_handshake(&xhci->op_regs->status,
133 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
134 	if (ret == -ETIMEDOUT)
135 		xhci_err(xhci, "Host took too long to start, "
136 				"waited %u microseconds.\n",
137 				XHCI_MAX_HALT_USEC);
138 	if (!ret)
139 		/* clear state flags. Including dying, halted or removing */
140 		xhci->xhc_state = 0;
141 
142 	return ret;
143 }
144 
145 /*
146  * Reset a halted HC.
147  *
148  * This resets pipelines, timers, counters, state machines, etc.
149  * Transactions will be terminated immediately, and operational registers
150  * will be set to their defaults.
151  */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154 	u32 command;
155 	u32 state;
156 	int ret, i;
157 
158 	state = readl(&xhci->op_regs->status);
159 
160 	if (state == ~(u32)0) {
161 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
162 		return -ENODEV;
163 	}
164 
165 	if ((state & STS_HALT) == 0) {
166 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
167 		return 0;
168 	}
169 
170 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
171 	command = readl(&xhci->op_regs->command);
172 	command |= CMD_RESET;
173 	writel(command, &xhci->op_regs->command);
174 
175 	/* Existing Intel xHCI controllers require a delay of 1 mS,
176 	 * after setting the CMD_RESET bit, and before accessing any
177 	 * HC registers. This allows the HC to complete the
178 	 * reset operation and be ready for HC register access.
179 	 * Without this delay, the subsequent HC register access,
180 	 * may result in a system hang very rarely.
181 	 */
182 	if (xhci->quirks & XHCI_INTEL_HOST)
183 		udelay(1000);
184 
185 	ret = xhci_handshake(&xhci->op_regs->command,
186 			CMD_RESET, 0, 10 * 1000 * 1000);
187 	if (ret)
188 		return ret;
189 
190 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
191 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
192 
193 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194 			 "Wait for controller to be ready for doorbell rings");
195 	/*
196 	 * xHCI cannot write to any doorbells or operational registers other
197 	 * than status until the "Controller Not Ready" flag is cleared.
198 	 */
199 	ret = xhci_handshake(&xhci->op_regs->status,
200 			STS_CNR, 0, 10 * 1000 * 1000);
201 
202 	for (i = 0; i < 2; i++) {
203 		xhci->bus_state[i].port_c_suspend = 0;
204 		xhci->bus_state[i].suspended_ports = 0;
205 		xhci->bus_state[i].resuming_ports = 0;
206 	}
207 
208 	return ret;
209 }
210 
211 
212 #ifdef CONFIG_USB_PCI
213 /*
214  * Set up MSI
215  */
216 static int xhci_setup_msi(struct xhci_hcd *xhci)
217 {
218 	int ret;
219 	/*
220 	 * TODO:Check with MSI Soc for sysdev
221 	 */
222 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223 
224 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
225 	if (ret < 0) {
226 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227 				"failed to allocate MSI entry");
228 		return ret;
229 	}
230 
231 	ret = request_irq(pdev->irq, xhci_msi_irq,
232 				0, "xhci_hcd", xhci_to_hcd(xhci));
233 	if (ret) {
234 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 				"disable MSI interrupt");
236 		pci_free_irq_vectors(pdev);
237 	}
238 
239 	return ret;
240 }
241 
242 /*
243  * Set up MSI-X
244  */
245 static int xhci_setup_msix(struct xhci_hcd *xhci)
246 {
247 	int i, ret = 0;
248 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
249 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
250 
251 	/*
252 	 * calculate number of msi-x vectors supported.
253 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
254 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
255 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
256 	 *   Add additional 1 vector to ensure always available interrupt.
257 	 */
258 	xhci->msix_count = min(num_online_cpus() + 1,
259 				HCS_MAX_INTRS(xhci->hcs_params1));
260 
261 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
262 			PCI_IRQ_MSIX);
263 	if (ret < 0) {
264 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
265 				"Failed to enable MSI-X");
266 		return ret;
267 	}
268 
269 	for (i = 0; i < xhci->msix_count; i++) {
270 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
271 				"xhci_hcd", xhci_to_hcd(xhci));
272 		if (ret)
273 			goto disable_msix;
274 	}
275 
276 	hcd->msix_enabled = 1;
277 	return ret;
278 
279 disable_msix:
280 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
281 	while (--i >= 0)
282 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
283 	pci_free_irq_vectors(pdev);
284 	return ret;
285 }
286 
287 /* Free any IRQs and disable MSI-X */
288 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
289 {
290 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
291 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
292 
293 	if (xhci->quirks & XHCI_PLAT)
294 		return;
295 
296 	/* return if using legacy interrupt */
297 	if (hcd->irq > 0)
298 		return;
299 
300 	if (hcd->msix_enabled) {
301 		int i;
302 
303 		for (i = 0; i < xhci->msix_count; i++)
304 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
305 	} else {
306 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
307 	}
308 
309 	pci_free_irq_vectors(pdev);
310 	hcd->msix_enabled = 0;
311 }
312 
313 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 
317 	if (hcd->msix_enabled) {
318 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
319 		int i;
320 
321 		for (i = 0; i < xhci->msix_count; i++)
322 			synchronize_irq(pci_irq_vector(pdev, i));
323 	}
324 }
325 
326 static int xhci_try_enable_msi(struct usb_hcd *hcd)
327 {
328 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
329 	struct pci_dev  *pdev;
330 	int ret;
331 
332 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
333 	if (xhci->quirks & XHCI_PLAT)
334 		return 0;
335 
336 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
337 	/*
338 	 * Some Fresco Logic host controllers advertise MSI, but fail to
339 	 * generate interrupts.  Don't even try to enable MSI.
340 	 */
341 	if (xhci->quirks & XHCI_BROKEN_MSI)
342 		goto legacy_irq;
343 
344 	/* unregister the legacy interrupt */
345 	if (hcd->irq)
346 		free_irq(hcd->irq, hcd);
347 	hcd->irq = 0;
348 
349 	ret = xhci_setup_msix(xhci);
350 	if (ret)
351 		/* fall back to msi*/
352 		ret = xhci_setup_msi(xhci);
353 
354 	if (!ret) {
355 		hcd->msi_enabled = 1;
356 		return 0;
357 	}
358 
359 	if (!pdev->irq) {
360 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
361 		return -EINVAL;
362 	}
363 
364  legacy_irq:
365 	if (!strlen(hcd->irq_descr))
366 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
367 			 hcd->driver->description, hcd->self.busnum);
368 
369 	/* fall back to legacy interrupt*/
370 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
371 			hcd->irq_descr, hcd);
372 	if (ret) {
373 		xhci_err(xhci, "request interrupt %d failed\n",
374 				pdev->irq);
375 		return ret;
376 	}
377 	hcd->irq = pdev->irq;
378 	return 0;
379 }
380 
381 #else
382 
383 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
384 {
385 	return 0;
386 }
387 
388 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
389 {
390 }
391 
392 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394 }
395 
396 #endif
397 
398 static void compliance_mode_recovery(struct timer_list *t)
399 {
400 	struct xhci_hcd *xhci;
401 	struct usb_hcd *hcd;
402 	u32 temp;
403 	int i;
404 
405 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
406 
407 	for (i = 0; i < xhci->num_usb3_ports; i++) {
408 		temp = readl(xhci->usb3_ports[i]);
409 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
410 			/*
411 			 * Compliance Mode Detected. Letting USB Core
412 			 * handle the Warm Reset
413 			 */
414 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
415 					"Compliance mode detected->port %d",
416 					i + 1);
417 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
418 					"Attempting compliance mode recovery");
419 			hcd = xhci->shared_hcd;
420 
421 			if (hcd->state == HC_STATE_SUSPENDED)
422 				usb_hcd_resume_root_hub(hcd);
423 
424 			usb_hcd_poll_rh_status(hcd);
425 		}
426 	}
427 
428 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
429 		mod_timer(&xhci->comp_mode_recovery_timer,
430 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
431 }
432 
433 /*
434  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
435  * that causes ports behind that hardware to enter compliance mode sometimes.
436  * The quirk creates a timer that polls every 2 seconds the link state of
437  * each host controller's port and recovers it by issuing a Warm reset
438  * if Compliance mode is detected, otherwise the port will become "dead" (no
439  * device connections or disconnections will be detected anymore). Becasue no
440  * status event is generated when entering compliance mode (per xhci spec),
441  * this quirk is needed on systems that have the failing hardware installed.
442  */
443 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
444 {
445 	xhci->port_status_u0 = 0;
446 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
447 		    0);
448 	xhci->comp_mode_recovery_timer.expires = jiffies +
449 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
450 
451 	add_timer(&xhci->comp_mode_recovery_timer);
452 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
453 			"Compliance mode recovery timer initialized");
454 }
455 
456 /*
457  * This function identifies the systems that have installed the SN65LVPE502CP
458  * USB3.0 re-driver and that need the Compliance Mode Quirk.
459  * Systems:
460  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
461  */
462 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
463 {
464 	const char *dmi_product_name, *dmi_sys_vendor;
465 
466 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
467 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
468 	if (!dmi_product_name || !dmi_sys_vendor)
469 		return false;
470 
471 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
472 		return false;
473 
474 	if (strstr(dmi_product_name, "Z420") ||
475 			strstr(dmi_product_name, "Z620") ||
476 			strstr(dmi_product_name, "Z820") ||
477 			strstr(dmi_product_name, "Z1 Workstation"))
478 		return true;
479 
480 	return false;
481 }
482 
483 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
484 {
485 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
486 }
487 
488 
489 /*
490  * Initialize memory for HCD and xHC (one-time init).
491  *
492  * Program the PAGESIZE register, initialize the device context array, create
493  * device contexts (?), set up a command ring segment (or two?), create event
494  * ring (one for now).
495  */
496 static int xhci_init(struct usb_hcd *hcd)
497 {
498 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
499 	int retval = 0;
500 
501 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
502 	spin_lock_init(&xhci->lock);
503 	if (xhci->hci_version == 0x95 && link_quirk) {
504 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 				"QUIRK: Not clearing Link TRB chain bits.");
506 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
507 	} else {
508 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
509 				"xHCI doesn't need link TRB QUIRK");
510 	}
511 	retval = xhci_mem_init(xhci, GFP_KERNEL);
512 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
513 
514 	/* Initializing Compliance Mode Recovery Data If Needed */
515 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
516 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517 		compliance_mode_recovery_timer_init(xhci);
518 	}
519 
520 	return retval;
521 }
522 
523 /*-------------------------------------------------------------------------*/
524 
525 
526 static int xhci_run_finished(struct xhci_hcd *xhci)
527 {
528 	if (xhci_start(xhci)) {
529 		xhci_halt(xhci);
530 		return -ENODEV;
531 	}
532 	xhci->shared_hcd->state = HC_STATE_RUNNING;
533 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
534 
535 	if (xhci->quirks & XHCI_NEC_HOST)
536 		xhci_ring_cmd_db(xhci);
537 
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
539 			"Finished xhci_run for USB3 roothub");
540 	return 0;
541 }
542 
543 /*
544  * Start the HC after it was halted.
545  *
546  * This function is called by the USB core when the HC driver is added.
547  * Its opposite is xhci_stop().
548  *
549  * xhci_init() must be called once before this function can be called.
550  * Reset the HC, enable device slot contexts, program DCBAAP, and
551  * set command ring pointer and event ring pointer.
552  *
553  * Setup MSI-X vectors and enable interrupts.
554  */
555 int xhci_run(struct usb_hcd *hcd)
556 {
557 	u32 temp;
558 	u64 temp_64;
559 	int ret;
560 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
561 
562 	/* Start the xHCI host controller running only after the USB 2.0 roothub
563 	 * is setup.
564 	 */
565 
566 	hcd->uses_new_polling = 1;
567 	if (!usb_hcd_is_primary_hcd(hcd))
568 		return xhci_run_finished(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
571 
572 	ret = xhci_try_enable_msi(hcd);
573 	if (ret)
574 		return ret;
575 
576 	xhci_dbg_cmd_ptrs(xhci);
577 
578 	xhci_dbg(xhci, "ERST memory map follows:\n");
579 	xhci_dbg_erst(xhci, &xhci->erst);
580 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
581 	temp_64 &= ~ERST_PTR_MASK;
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
584 
585 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
586 			"// Set the interrupt modulation register");
587 	temp = readl(&xhci->ir_set->irq_control);
588 	temp &= ~ER_IRQ_INTERVAL_MASK;
589 	/*
590 	 * the increment interval is 8 times as much as that defined
591 	 * in xHCI spec on MTK's controller
592 	 */
593 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
594 	writel(temp, &xhci->ir_set->irq_control);
595 
596 	/* Set the HCD state before we enable the irqs */
597 	temp = readl(&xhci->op_regs->command);
598 	temp |= (CMD_EIE);
599 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
600 			"// Enable interrupts, cmd = 0x%x.", temp);
601 	writel(temp, &xhci->op_regs->command);
602 
603 	temp = readl(&xhci->ir_set->irq_pending);
604 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
605 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
606 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
607 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
608 	xhci_print_ir_set(xhci, 0);
609 
610 	if (xhci->quirks & XHCI_NEC_HOST) {
611 		struct xhci_command *command;
612 
613 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
614 		if (!command)
615 			return -ENOMEM;
616 
617 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
618 				TRB_TYPE(TRB_NEC_GET_FW));
619 		if (ret)
620 			xhci_free_command(xhci, command);
621 	}
622 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 			"Finished xhci_run for USB2 roothub");
624 
625 	xhci_debugfs_init(xhci);
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(xhci_run);
630 
631 /*
632  * Stop xHCI driver.
633  *
634  * This function is called by the USB core when the HC driver is removed.
635  * Its opposite is xhci_run().
636  *
637  * Disable device contexts, disable IRQs, and quiesce the HC.
638  * Reset the HC, finish any completed transactions, and cleanup memory.
639  */
640 static void xhci_stop(struct usb_hcd *hcd)
641 {
642 	u32 temp;
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	mutex_lock(&xhci->mutex);
646 
647 	/* Only halt host and free memory after both hcds are removed */
648 	if (!usb_hcd_is_primary_hcd(hcd)) {
649 		/* usb core will free this hcd shortly, unset pointer */
650 		xhci->shared_hcd = NULL;
651 		mutex_unlock(&xhci->mutex);
652 		return;
653 	}
654 
655 	xhci_debugfs_exit(xhci);
656 
657 	spin_lock_irq(&xhci->lock);
658 	xhci->xhc_state |= XHCI_STATE_HALTED;
659 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
660 	xhci_halt(xhci);
661 	xhci_reset(xhci);
662 	spin_unlock_irq(&xhci->lock);
663 
664 	xhci_cleanup_msix(xhci);
665 
666 	/* Deleting Compliance Mode Recovery Timer */
667 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
668 			(!(xhci_all_ports_seen_u0(xhci)))) {
669 		del_timer_sync(&xhci->comp_mode_recovery_timer);
670 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
671 				"%s: compliance mode recovery timer deleted",
672 				__func__);
673 	}
674 
675 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
676 		usb_amd_dev_put();
677 
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Disabling event ring interrupts");
680 	temp = readl(&xhci->op_regs->status);
681 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
682 	temp = readl(&xhci->ir_set->irq_pending);
683 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
684 	xhci_print_ir_set(xhci, 0);
685 
686 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
687 	xhci_mem_cleanup(xhci);
688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 			"xhci_stop completed - status = %x",
690 			readl(&xhci->op_regs->status));
691 	mutex_unlock(&xhci->mutex);
692 }
693 
694 /*
695  * Shutdown HC (not bus-specific)
696  *
697  * This is called when the machine is rebooting or halting.  We assume that the
698  * machine will be powered off, and the HC's internal state will be reset.
699  * Don't bother to free memory.
700  *
701  * This will only ever be called with the main usb_hcd (the USB3 roothub).
702  */
703 static void xhci_shutdown(struct usb_hcd *hcd)
704 {
705 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706 
707 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
708 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
709 
710 	spin_lock_irq(&xhci->lock);
711 	xhci_halt(xhci);
712 	/* Workaround for spurious wakeups at shutdown with HSW */
713 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
714 		xhci_reset(xhci);
715 	spin_unlock_irq(&xhci->lock);
716 
717 	xhci_cleanup_msix(xhci);
718 
719 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 			"xhci_shutdown completed - status = %x",
721 			readl(&xhci->op_regs->status));
722 
723 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
724 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
725 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
726 }
727 
728 #ifdef CONFIG_PM
729 static void xhci_save_registers(struct xhci_hcd *xhci)
730 {
731 	xhci->s3.command = readl(&xhci->op_regs->command);
732 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
733 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
734 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
735 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
736 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
737 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
738 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
739 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
740 }
741 
742 static void xhci_restore_registers(struct xhci_hcd *xhci)
743 {
744 	writel(xhci->s3.command, &xhci->op_regs->command);
745 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
746 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
747 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
748 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
749 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
750 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
751 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
752 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
753 }
754 
755 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
756 {
757 	u64	val_64;
758 
759 	/* step 2: initialize command ring buffer */
760 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
761 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
762 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
763 				      xhci->cmd_ring->dequeue) &
764 		 (u64) ~CMD_RING_RSVD_BITS) |
765 		xhci->cmd_ring->cycle_state;
766 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767 			"// Setting command ring address to 0x%llx",
768 			(long unsigned long) val_64);
769 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
770 }
771 
772 /*
773  * The whole command ring must be cleared to zero when we suspend the host.
774  *
775  * The host doesn't save the command ring pointer in the suspend well, so we
776  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
777  * aligned, because of the reserved bits in the command ring dequeue pointer
778  * register.  Therefore, we can't just set the dequeue pointer back in the
779  * middle of the ring (TRBs are 16-byte aligned).
780  */
781 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
782 {
783 	struct xhci_ring *ring;
784 	struct xhci_segment *seg;
785 
786 	ring = xhci->cmd_ring;
787 	seg = ring->deq_seg;
788 	do {
789 		memset(seg->trbs, 0,
790 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
791 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
792 			cpu_to_le32(~TRB_CYCLE);
793 		seg = seg->next;
794 	} while (seg != ring->deq_seg);
795 
796 	/* Reset the software enqueue and dequeue pointers */
797 	ring->deq_seg = ring->first_seg;
798 	ring->dequeue = ring->first_seg->trbs;
799 	ring->enq_seg = ring->deq_seg;
800 	ring->enqueue = ring->dequeue;
801 
802 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
803 	/*
804 	 * Ring is now zeroed, so the HW should look for change of ownership
805 	 * when the cycle bit is set to 1.
806 	 */
807 	ring->cycle_state = 1;
808 
809 	/*
810 	 * Reset the hardware dequeue pointer.
811 	 * Yes, this will need to be re-written after resume, but we're paranoid
812 	 * and want to make sure the hardware doesn't access bogus memory
813 	 * because, say, the BIOS or an SMI started the host without changing
814 	 * the command ring pointers.
815 	 */
816 	xhci_set_cmd_ring_deq(xhci);
817 }
818 
819 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
820 {
821 	int port_index;
822 	__le32 __iomem **port_array;
823 	unsigned long flags;
824 	u32 t1, t2;
825 
826 	spin_lock_irqsave(&xhci->lock, flags);
827 
828 	/* disable usb3 ports Wake bits */
829 	port_index = xhci->num_usb3_ports;
830 	port_array = xhci->usb3_ports;
831 	while (port_index--) {
832 		t1 = readl(port_array[port_index]);
833 		t1 = xhci_port_state_to_neutral(t1);
834 		t2 = t1 & ~PORT_WAKE_BITS;
835 		if (t1 != t2)
836 			writel(t2, port_array[port_index]);
837 	}
838 
839 	/* disable usb2 ports Wake bits */
840 	port_index = xhci->num_usb2_ports;
841 	port_array = xhci->usb2_ports;
842 	while (port_index--) {
843 		t1 = readl(port_array[port_index]);
844 		t1 = xhci_port_state_to_neutral(t1);
845 		t2 = t1 & ~PORT_WAKE_BITS;
846 		if (t1 != t2)
847 			writel(t2, port_array[port_index]);
848 	}
849 
850 	spin_unlock_irqrestore(&xhci->lock, flags);
851 }
852 
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
860 {
861 	int			rc = 0;
862 	unsigned int		delay = XHCI_MAX_HALT_USEC;
863 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
864 	u32			command;
865 
866 	if (!hcd->state)
867 		return 0;
868 
869 	if (hcd->state != HC_STATE_SUSPENDED ||
870 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
871 		return -EINVAL;
872 
873 	/* Clear root port wake on bits if wakeup not allowed. */
874 	if (!do_wakeup)
875 		xhci_disable_port_wake_on_bits(xhci);
876 
877 	/* Don't poll the roothubs on bus suspend. */
878 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
879 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
880 	del_timer_sync(&hcd->rh_timer);
881 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
882 	del_timer_sync(&xhci->shared_hcd->rh_timer);
883 
884 	spin_lock_irq(&xhci->lock);
885 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
886 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
887 	/* step 1: stop endpoint */
888 	/* skipped assuming that port suspend has done */
889 
890 	/* step 2: clear Run/Stop bit */
891 	command = readl(&xhci->op_regs->command);
892 	command &= ~CMD_RUN;
893 	writel(command, &xhci->op_regs->command);
894 
895 	/* Some chips from Fresco Logic need an extraordinary delay */
896 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
897 
898 	if (xhci_handshake(&xhci->op_regs->status,
899 		      STS_HALT, STS_HALT, delay)) {
900 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
901 		spin_unlock_irq(&xhci->lock);
902 		return -ETIMEDOUT;
903 	}
904 	xhci_clear_command_ring(xhci);
905 
906 	/* step 3: save registers */
907 	xhci_save_registers(xhci);
908 
909 	/* step 4: set CSS flag */
910 	command = readl(&xhci->op_regs->command);
911 	command |= CMD_CSS;
912 	writel(command, &xhci->op_regs->command);
913 	if (xhci_handshake(&xhci->op_regs->status,
914 				STS_SAVE, 0, 10 * 1000)) {
915 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
916 		spin_unlock_irq(&xhci->lock);
917 		return -ETIMEDOUT;
918 	}
919 	spin_unlock_irq(&xhci->lock);
920 
921 	/*
922 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
923 	 * is about to be suspended.
924 	 */
925 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
926 			(!(xhci_all_ports_seen_u0(xhci)))) {
927 		del_timer_sync(&xhci->comp_mode_recovery_timer);
928 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
929 				"%s: compliance mode recovery timer deleted",
930 				__func__);
931 	}
932 
933 	/* step 5: remove core well power */
934 	/* synchronize irq when using MSI-X */
935 	xhci_msix_sync_irqs(xhci);
936 
937 	return rc;
938 }
939 EXPORT_SYMBOL_GPL(xhci_suspend);
940 
941 /*
942  * start xHC (not bus-specific)
943  *
944  * This is called when the machine transition from S3/S4 mode.
945  *
946  */
947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
948 {
949 	u32			command, temp = 0, status;
950 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
951 	struct usb_hcd		*secondary_hcd;
952 	int			retval = 0;
953 	bool			comp_timer_running = false;
954 
955 	if (!hcd->state)
956 		return 0;
957 
958 	/* Wait a bit if either of the roothubs need to settle from the
959 	 * transition into bus suspend.
960 	 */
961 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
962 			time_before(jiffies,
963 				xhci->bus_state[1].next_statechange))
964 		msleep(100);
965 
966 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
967 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
968 
969 	spin_lock_irq(&xhci->lock);
970 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
971 		hibernated = true;
972 
973 	if (!hibernated) {
974 		/* step 1: restore register */
975 		xhci_restore_registers(xhci);
976 		/* step 2: initialize command ring buffer */
977 		xhci_set_cmd_ring_deq(xhci);
978 		/* step 3: restore state and start state*/
979 		/* step 3: set CRS flag */
980 		command = readl(&xhci->op_regs->command);
981 		command |= CMD_CRS;
982 		writel(command, &xhci->op_regs->command);
983 		if (xhci_handshake(&xhci->op_regs->status,
984 			      STS_RESTORE, 0, 10 * 1000)) {
985 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
986 			spin_unlock_irq(&xhci->lock);
987 			return -ETIMEDOUT;
988 		}
989 		temp = readl(&xhci->op_regs->status);
990 	}
991 
992 	/* If restore operation fails, re-initialize the HC during resume */
993 	if ((temp & STS_SRE) || hibernated) {
994 
995 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
996 				!(xhci_all_ports_seen_u0(xhci))) {
997 			del_timer_sync(&xhci->comp_mode_recovery_timer);
998 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
999 				"Compliance Mode Recovery Timer deleted!");
1000 		}
1001 
1002 		/* Let the USB core know _both_ roothubs lost power. */
1003 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1004 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1005 
1006 		xhci_dbg(xhci, "Stop HCD\n");
1007 		xhci_halt(xhci);
1008 		xhci_reset(xhci);
1009 		spin_unlock_irq(&xhci->lock);
1010 		xhci_cleanup_msix(xhci);
1011 
1012 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1013 		temp = readl(&xhci->op_regs->status);
1014 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1015 		temp = readl(&xhci->ir_set->irq_pending);
1016 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1017 		xhci_print_ir_set(xhci, 0);
1018 
1019 		xhci_dbg(xhci, "cleaning up memory\n");
1020 		xhci_mem_cleanup(xhci);
1021 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1022 			    readl(&xhci->op_regs->status));
1023 
1024 		/* USB core calls the PCI reinit and start functions twice:
1025 		 * first with the primary HCD, and then with the secondary HCD.
1026 		 * If we don't do the same, the host will never be started.
1027 		 */
1028 		if (!usb_hcd_is_primary_hcd(hcd))
1029 			secondary_hcd = hcd;
1030 		else
1031 			secondary_hcd = xhci->shared_hcd;
1032 
1033 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1034 		retval = xhci_init(hcd->primary_hcd);
1035 		if (retval)
1036 			return retval;
1037 		comp_timer_running = true;
1038 
1039 		xhci_dbg(xhci, "Start the primary HCD\n");
1040 		retval = xhci_run(hcd->primary_hcd);
1041 		if (!retval) {
1042 			xhci_dbg(xhci, "Start the secondary HCD\n");
1043 			retval = xhci_run(secondary_hcd);
1044 		}
1045 		hcd->state = HC_STATE_SUSPENDED;
1046 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1047 		goto done;
1048 	}
1049 
1050 	/* step 4: set Run/Stop bit */
1051 	command = readl(&xhci->op_regs->command);
1052 	command |= CMD_RUN;
1053 	writel(command, &xhci->op_regs->command);
1054 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1055 		  0, 250 * 1000);
1056 
1057 	/* step 5: walk topology and initialize portsc,
1058 	 * portpmsc and portli
1059 	 */
1060 	/* this is done in bus_resume */
1061 
1062 	/* step 6: restart each of the previously
1063 	 * Running endpoints by ringing their doorbells
1064 	 */
1065 
1066 	spin_unlock_irq(&xhci->lock);
1067 
1068  done:
1069 	if (retval == 0) {
1070 		/* Resume root hubs only when have pending events. */
1071 		status = readl(&xhci->op_regs->status);
1072 		if (status & STS_EINT) {
1073 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1074 			usb_hcd_resume_root_hub(hcd);
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1080 	 * be re-initialized Always after a system resume. Ports are subject
1081 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1082 	 * ports have entered previously to U0 before system's suspension.
1083 	 */
1084 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1085 		compliance_mode_recovery_timer_init(xhci);
1086 
1087 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1088 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1089 
1090 	/* Re-enable port polling. */
1091 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1092 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1093 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1094 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095 	usb_hcd_poll_rh_status(hcd);
1096 
1097 	return retval;
1098 }
1099 EXPORT_SYMBOL_GPL(xhci_resume);
1100 #endif	/* CONFIG_PM */
1101 
1102 /*-------------------------------------------------------------------------*/
1103 
1104 /**
1105  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1106  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1107  * value to right shift 1 for the bitmask.
1108  *
1109  * Index  = (epnum * 2) + direction - 1,
1110  * where direction = 0 for OUT, 1 for IN.
1111  * For control endpoints, the IN index is used (OUT index is unused), so
1112  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1113  */
1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1115 {
1116 	unsigned int index;
1117 	if (usb_endpoint_xfer_control(desc))
1118 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1119 	else
1120 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1121 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1122 	return index;
1123 }
1124 
1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1126  * address from the XHCI endpoint index.
1127  */
1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1129 {
1130 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1131 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1132 	return direction | number;
1133 }
1134 
1135 /* Find the flag for this endpoint (for use in the control context).  Use the
1136  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1137  * bit 1, etc.
1138  */
1139 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1140 {
1141 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1142 }
1143 
1144 /* Find the flag for this endpoint (for use in the control context).  Use the
1145  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1146  * bit 1, etc.
1147  */
1148 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1149 {
1150 	return 1 << (ep_index + 1);
1151 }
1152 
1153 /* Compute the last valid endpoint context index.  Basically, this is the
1154  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1155  * we find the most significant bit set in the added contexts flags.
1156  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1157  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1158  */
1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1160 {
1161 	return fls(added_ctxs) - 1;
1162 }
1163 
1164 /* Returns 1 if the arguments are OK;
1165  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1166  */
1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1168 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1169 		const char *func) {
1170 	struct xhci_hcd	*xhci;
1171 	struct xhci_virt_device	*virt_dev;
1172 
1173 	if (!hcd || (check_ep && !ep) || !udev) {
1174 		pr_debug("xHCI %s called with invalid args\n", func);
1175 		return -EINVAL;
1176 	}
1177 	if (!udev->parent) {
1178 		pr_debug("xHCI %s called for root hub\n", func);
1179 		return 0;
1180 	}
1181 
1182 	xhci = hcd_to_xhci(hcd);
1183 	if (check_virt_dev) {
1184 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1185 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1186 					func);
1187 			return -EINVAL;
1188 		}
1189 
1190 		virt_dev = xhci->devs[udev->slot_id];
1191 		if (virt_dev->udev != udev) {
1192 			xhci_dbg(xhci, "xHCI %s called with udev and "
1193 					  "virt_dev does not match\n", func);
1194 			return -EINVAL;
1195 		}
1196 	}
1197 
1198 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1199 		return -ENODEV;
1200 
1201 	return 1;
1202 }
1203 
1204 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1205 		struct usb_device *udev, struct xhci_command *command,
1206 		bool ctx_change, bool must_succeed);
1207 
1208 /*
1209  * Full speed devices may have a max packet size greater than 8 bytes, but the
1210  * USB core doesn't know that until it reads the first 8 bytes of the
1211  * descriptor.  If the usb_device's max packet size changes after that point,
1212  * we need to issue an evaluate context command and wait on it.
1213  */
1214 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1215 		unsigned int ep_index, struct urb *urb)
1216 {
1217 	struct xhci_container_ctx *out_ctx;
1218 	struct xhci_input_control_ctx *ctrl_ctx;
1219 	struct xhci_ep_ctx *ep_ctx;
1220 	struct xhci_command *command;
1221 	int max_packet_size;
1222 	int hw_max_packet_size;
1223 	int ret = 0;
1224 
1225 	out_ctx = xhci->devs[slot_id]->out_ctx;
1226 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1227 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1228 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1229 	if (hw_max_packet_size != max_packet_size) {
1230 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231 				"Max Packet Size for ep 0 changed.");
1232 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1233 				"Max packet size in usb_device = %d",
1234 				max_packet_size);
1235 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1236 				"Max packet size in xHCI HW = %d",
1237 				hw_max_packet_size);
1238 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1239 				"Issuing evaluate context command.");
1240 
1241 		/* Set up the input context flags for the command */
1242 		/* FIXME: This won't work if a non-default control endpoint
1243 		 * changes max packet sizes.
1244 		 */
1245 
1246 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1247 		if (!command)
1248 			return -ENOMEM;
1249 
1250 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1251 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1252 		if (!ctrl_ctx) {
1253 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1254 					__func__);
1255 			ret = -ENOMEM;
1256 			goto command_cleanup;
1257 		}
1258 		/* Set up the modified control endpoint 0 */
1259 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1260 				xhci->devs[slot_id]->out_ctx, ep_index);
1261 
1262 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1263 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1264 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1265 
1266 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1267 		ctrl_ctx->drop_flags = 0;
1268 
1269 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1270 				true, false);
1271 
1272 		/* Clean up the input context for later use by bandwidth
1273 		 * functions.
1274 		 */
1275 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1276 command_cleanup:
1277 		kfree(command->completion);
1278 		kfree(command);
1279 	}
1280 	return ret;
1281 }
1282 
1283 /*
1284  * non-error returns are a promise to giveback() the urb later
1285  * we drop ownership so next owner (or urb unlink) can get it
1286  */
1287 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1288 {
1289 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1290 	unsigned long flags;
1291 	int ret = 0;
1292 	unsigned int slot_id, ep_index, ep_state;
1293 	struct urb_priv	*urb_priv;
1294 	int num_tds;
1295 
1296 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1297 					true, true, __func__) <= 0)
1298 		return -EINVAL;
1299 
1300 	slot_id = urb->dev->slot_id;
1301 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1302 
1303 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1304 		if (!in_interrupt())
1305 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1306 		return -ESHUTDOWN;
1307 	}
1308 
1309 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1310 		num_tds = urb->number_of_packets;
1311 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1312 	    urb->transfer_buffer_length > 0 &&
1313 	    urb->transfer_flags & URB_ZERO_PACKET &&
1314 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1315 		num_tds = 2;
1316 	else
1317 		num_tds = 1;
1318 
1319 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1320 			   num_tds * sizeof(struct xhci_td), mem_flags);
1321 	if (!urb_priv)
1322 		return -ENOMEM;
1323 
1324 	urb_priv->num_tds = num_tds;
1325 	urb_priv->num_tds_done = 0;
1326 	urb->hcpriv = urb_priv;
1327 
1328 	trace_xhci_urb_enqueue(urb);
1329 
1330 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1331 		/* Check to see if the max packet size for the default control
1332 		 * endpoint changed during FS device enumeration
1333 		 */
1334 		if (urb->dev->speed == USB_SPEED_FULL) {
1335 			ret = xhci_check_maxpacket(xhci, slot_id,
1336 					ep_index, urb);
1337 			if (ret < 0) {
1338 				xhci_urb_free_priv(urb_priv);
1339 				urb->hcpriv = NULL;
1340 				return ret;
1341 			}
1342 		}
1343 	}
1344 
1345 	spin_lock_irqsave(&xhci->lock, flags);
1346 
1347 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1348 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1349 			 urb->ep->desc.bEndpointAddress, urb);
1350 		ret = -ESHUTDOWN;
1351 		goto free_priv;
1352 	}
1353 
1354 	switch (usb_endpoint_type(&urb->ep->desc)) {
1355 
1356 	case USB_ENDPOINT_XFER_CONTROL:
1357 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1358 					 slot_id, ep_index);
1359 		break;
1360 	case USB_ENDPOINT_XFER_BULK:
1361 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1362 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1363 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1364 				  ep_state);
1365 			ret = -EINVAL;
1366 			break;
1367 		}
1368 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1369 					 slot_id, ep_index);
1370 		break;
1371 
1372 
1373 	case USB_ENDPOINT_XFER_INT:
1374 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1375 				slot_id, ep_index);
1376 		break;
1377 
1378 	case USB_ENDPOINT_XFER_ISOC:
1379 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1380 				slot_id, ep_index);
1381 	}
1382 
1383 	if (ret) {
1384 free_priv:
1385 		xhci_urb_free_priv(urb_priv);
1386 		urb->hcpriv = NULL;
1387 	}
1388 	spin_unlock_irqrestore(&xhci->lock, flags);
1389 	return ret;
1390 }
1391 
1392 /*
1393  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1394  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1395  * should pick up where it left off in the TD, unless a Set Transfer Ring
1396  * Dequeue Pointer is issued.
1397  *
1398  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1399  * the ring.  Since the ring is a contiguous structure, they can't be physically
1400  * removed.  Instead, there are two options:
1401  *
1402  *  1) If the HC is in the middle of processing the URB to be canceled, we
1403  *     simply move the ring's dequeue pointer past those TRBs using the Set
1404  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1405  *     when drivers timeout on the last submitted URB and attempt to cancel.
1406  *
1407  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1408  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1409  *     HC will need to invalidate the any TRBs it has cached after the stop
1410  *     endpoint command, as noted in the xHCI 0.95 errata.
1411  *
1412  *  3) The TD may have completed by the time the Stop Endpoint Command
1413  *     completes, so software needs to handle that case too.
1414  *
1415  * This function should protect against the TD enqueueing code ringing the
1416  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1417  * It also needs to account for multiple cancellations on happening at the same
1418  * time for the same endpoint.
1419  *
1420  * Note that this function can be called in any context, or so says
1421  * usb_hcd_unlink_urb()
1422  */
1423 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1424 {
1425 	unsigned long flags;
1426 	int ret, i;
1427 	u32 temp;
1428 	struct xhci_hcd *xhci;
1429 	struct urb_priv	*urb_priv;
1430 	struct xhci_td *td;
1431 	unsigned int ep_index;
1432 	struct xhci_ring *ep_ring;
1433 	struct xhci_virt_ep *ep;
1434 	struct xhci_command *command;
1435 	struct xhci_virt_device *vdev;
1436 
1437 	xhci = hcd_to_xhci(hcd);
1438 	spin_lock_irqsave(&xhci->lock, flags);
1439 
1440 	trace_xhci_urb_dequeue(urb);
1441 
1442 	/* Make sure the URB hasn't completed or been unlinked already */
1443 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1444 	if (ret)
1445 		goto done;
1446 
1447 	/* give back URB now if we can't queue it for cancel */
1448 	vdev = xhci->devs[urb->dev->slot_id];
1449 	urb_priv = urb->hcpriv;
1450 	if (!vdev || !urb_priv)
1451 		goto err_giveback;
1452 
1453 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1454 	ep = &vdev->eps[ep_index];
1455 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1456 	if (!ep || !ep_ring)
1457 		goto err_giveback;
1458 
1459 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1460 	temp = readl(&xhci->op_regs->status);
1461 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1462 		xhci_hc_died(xhci);
1463 		goto done;
1464 	}
1465 
1466 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1467 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1468 				"HC halted, freeing TD manually.");
1469 		for (i = urb_priv->num_tds_done;
1470 		     i < urb_priv->num_tds;
1471 		     i++) {
1472 			td = &urb_priv->td[i];
1473 			if (!list_empty(&td->td_list))
1474 				list_del_init(&td->td_list);
1475 			if (!list_empty(&td->cancelled_td_list))
1476 				list_del_init(&td->cancelled_td_list);
1477 		}
1478 		goto err_giveback;
1479 	}
1480 
1481 	i = urb_priv->num_tds_done;
1482 	if (i < urb_priv->num_tds)
1483 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1484 				"Cancel URB %p, dev %s, ep 0x%x, "
1485 				"starting at offset 0x%llx",
1486 				urb, urb->dev->devpath,
1487 				urb->ep->desc.bEndpointAddress,
1488 				(unsigned long long) xhci_trb_virt_to_dma(
1489 					urb_priv->td[i].start_seg,
1490 					urb_priv->td[i].first_trb));
1491 
1492 	for (; i < urb_priv->num_tds; i++) {
1493 		td = &urb_priv->td[i];
1494 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1495 	}
1496 
1497 	/* Queue a stop endpoint command, but only if this is
1498 	 * the first cancellation to be handled.
1499 	 */
1500 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1501 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1502 		if (!command) {
1503 			ret = -ENOMEM;
1504 			goto done;
1505 		}
1506 		ep->ep_state |= EP_STOP_CMD_PENDING;
1507 		ep->stop_cmd_timer.expires = jiffies +
1508 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1509 		add_timer(&ep->stop_cmd_timer);
1510 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1511 					 ep_index, 0);
1512 		xhci_ring_cmd_db(xhci);
1513 	}
1514 done:
1515 	spin_unlock_irqrestore(&xhci->lock, flags);
1516 	return ret;
1517 
1518 err_giveback:
1519 	if (urb_priv)
1520 		xhci_urb_free_priv(urb_priv);
1521 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1522 	spin_unlock_irqrestore(&xhci->lock, flags);
1523 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1524 	return ret;
1525 }
1526 
1527 /* Drop an endpoint from a new bandwidth configuration for this device.
1528  * Only one call to this function is allowed per endpoint before
1529  * check_bandwidth() or reset_bandwidth() must be called.
1530  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1531  * add the endpoint to the schedule with possibly new parameters denoted by a
1532  * different endpoint descriptor in usb_host_endpoint.
1533  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1534  * not allowed.
1535  *
1536  * The USB core will not allow URBs to be queued to an endpoint that is being
1537  * disabled, so there's no need for mutual exclusion to protect
1538  * the xhci->devs[slot_id] structure.
1539  */
1540 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1541 		struct usb_host_endpoint *ep)
1542 {
1543 	struct xhci_hcd *xhci;
1544 	struct xhci_container_ctx *in_ctx, *out_ctx;
1545 	struct xhci_input_control_ctx *ctrl_ctx;
1546 	unsigned int ep_index;
1547 	struct xhci_ep_ctx *ep_ctx;
1548 	u32 drop_flag;
1549 	u32 new_add_flags, new_drop_flags;
1550 	int ret;
1551 
1552 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1553 	if (ret <= 0)
1554 		return ret;
1555 	xhci = hcd_to_xhci(hcd);
1556 	if (xhci->xhc_state & XHCI_STATE_DYING)
1557 		return -ENODEV;
1558 
1559 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1560 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1561 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1562 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1563 				__func__, drop_flag);
1564 		return 0;
1565 	}
1566 
1567 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1568 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1569 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1570 	if (!ctrl_ctx) {
1571 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1572 				__func__);
1573 		return 0;
1574 	}
1575 
1576 	ep_index = xhci_get_endpoint_index(&ep->desc);
1577 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578 	/* If the HC already knows the endpoint is disabled,
1579 	 * or the HCD has noted it is disabled, ignore this request
1580 	 */
1581 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1582 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1583 	    xhci_get_endpoint_flag(&ep->desc)) {
1584 		/* Do not warn when called after a usb_device_reset */
1585 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1586 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1587 				  __func__, ep);
1588 		return 0;
1589 	}
1590 
1591 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1592 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1593 
1594 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1595 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1596 
1597 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1598 
1599 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600 
1601 	if (xhci->quirks & XHCI_MTK_HOST)
1602 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1603 
1604 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1605 			(unsigned int) ep->desc.bEndpointAddress,
1606 			udev->slot_id,
1607 			(unsigned int) new_drop_flags,
1608 			(unsigned int) new_add_flags);
1609 	return 0;
1610 }
1611 
1612 /* Add an endpoint to a new possible bandwidth configuration for this device.
1613  * Only one call to this function is allowed per endpoint before
1614  * check_bandwidth() or reset_bandwidth() must be called.
1615  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1616  * add the endpoint to the schedule with possibly new parameters denoted by a
1617  * different endpoint descriptor in usb_host_endpoint.
1618  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1619  * not allowed.
1620  *
1621  * The USB core will not allow URBs to be queued to an endpoint until the
1622  * configuration or alt setting is installed in the device, so there's no need
1623  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1624  */
1625 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1626 		struct usb_host_endpoint *ep)
1627 {
1628 	struct xhci_hcd *xhci;
1629 	struct xhci_container_ctx *in_ctx;
1630 	unsigned int ep_index;
1631 	struct xhci_input_control_ctx *ctrl_ctx;
1632 	u32 added_ctxs;
1633 	u32 new_add_flags, new_drop_flags;
1634 	struct xhci_virt_device *virt_dev;
1635 	int ret = 0;
1636 
1637 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1638 	if (ret <= 0) {
1639 		/* So we won't queue a reset ep command for a root hub */
1640 		ep->hcpriv = NULL;
1641 		return ret;
1642 	}
1643 	xhci = hcd_to_xhci(hcd);
1644 	if (xhci->xhc_state & XHCI_STATE_DYING)
1645 		return -ENODEV;
1646 
1647 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1648 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1649 		/* FIXME when we have to issue an evaluate endpoint command to
1650 		 * deal with ep0 max packet size changing once we get the
1651 		 * descriptors
1652 		 */
1653 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1654 				__func__, added_ctxs);
1655 		return 0;
1656 	}
1657 
1658 	virt_dev = xhci->devs[udev->slot_id];
1659 	in_ctx = virt_dev->in_ctx;
1660 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1661 	if (!ctrl_ctx) {
1662 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1663 				__func__);
1664 		return 0;
1665 	}
1666 
1667 	ep_index = xhci_get_endpoint_index(&ep->desc);
1668 	/* If this endpoint is already in use, and the upper layers are trying
1669 	 * to add it again without dropping it, reject the addition.
1670 	 */
1671 	if (virt_dev->eps[ep_index].ring &&
1672 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1673 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674 				"without dropping it.\n",
1675 				(unsigned int) ep->desc.bEndpointAddress);
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* If the HCD has already noted the endpoint is enabled,
1680 	 * ignore this request.
1681 	 */
1682 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1683 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1684 				__func__, ep);
1685 		return 0;
1686 	}
1687 
1688 	/*
1689 	 * Configuration and alternate setting changes must be done in
1690 	 * process context, not interrupt context (or so documenation
1691 	 * for usb_set_interface() and usb_set_configuration() claim).
1692 	 */
1693 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1694 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1695 				__func__, ep->desc.bEndpointAddress);
1696 		return -ENOMEM;
1697 	}
1698 
1699 	if (xhci->quirks & XHCI_MTK_HOST) {
1700 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1701 		if (ret < 0) {
1702 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1703 			virt_dev->eps[ep_index].new_ring = NULL;
1704 			return ret;
1705 		}
1706 	}
1707 
1708 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1709 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1710 
1711 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1712 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1713 	 * this re-adds a new state for the endpoint from the new endpoint
1714 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1715 	 * drop flags alone.
1716 	 */
1717 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1718 
1719 	/* Store the usb_device pointer for later use */
1720 	ep->hcpriv = udev;
1721 
1722 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1723 
1724 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1725 			(unsigned int) ep->desc.bEndpointAddress,
1726 			udev->slot_id,
1727 			(unsigned int) new_drop_flags,
1728 			(unsigned int) new_add_flags);
1729 	return 0;
1730 }
1731 
1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733 {
1734 	struct xhci_input_control_ctx *ctrl_ctx;
1735 	struct xhci_ep_ctx *ep_ctx;
1736 	struct xhci_slot_ctx *slot_ctx;
1737 	int i;
1738 
1739 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1740 	if (!ctrl_ctx) {
1741 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1742 				__func__);
1743 		return;
1744 	}
1745 
1746 	/* When a device's add flag and drop flag are zero, any subsequent
1747 	 * configure endpoint command will leave that endpoint's state
1748 	 * untouched.  Make sure we don't leave any old state in the input
1749 	 * endpoint contexts.
1750 	 */
1751 	ctrl_ctx->drop_flags = 0;
1752 	ctrl_ctx->add_flags = 0;
1753 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1754 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1755 	/* Endpoint 0 is always valid */
1756 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1757 	for (i = 1; i < 31; i++) {
1758 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1759 		ep_ctx->ep_info = 0;
1760 		ep_ctx->ep_info2 = 0;
1761 		ep_ctx->deq = 0;
1762 		ep_ctx->tx_info = 0;
1763 	}
1764 }
1765 
1766 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1767 		struct usb_device *udev, u32 *cmd_status)
1768 {
1769 	int ret;
1770 
1771 	switch (*cmd_status) {
1772 	case COMP_COMMAND_ABORTED:
1773 	case COMP_COMMAND_RING_STOPPED:
1774 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1775 		ret = -ETIME;
1776 		break;
1777 	case COMP_RESOURCE_ERROR:
1778 		dev_warn(&udev->dev,
1779 			 "Not enough host controller resources for new device state.\n");
1780 		ret = -ENOMEM;
1781 		/* FIXME: can we allocate more resources for the HC? */
1782 		break;
1783 	case COMP_BANDWIDTH_ERROR:
1784 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1785 		dev_warn(&udev->dev,
1786 			 "Not enough bandwidth for new device state.\n");
1787 		ret = -ENOSPC;
1788 		/* FIXME: can we go back to the old state? */
1789 		break;
1790 	case COMP_TRB_ERROR:
1791 		/* the HCD set up something wrong */
1792 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1793 				"add flag = 1, "
1794 				"and endpoint is not disabled.\n");
1795 		ret = -EINVAL;
1796 		break;
1797 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1798 		dev_warn(&udev->dev,
1799 			 "ERROR: Incompatible device for endpoint configure command.\n");
1800 		ret = -ENODEV;
1801 		break;
1802 	case COMP_SUCCESS:
1803 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1804 				"Successful Endpoint Configure command");
1805 		ret = 0;
1806 		break;
1807 	default:
1808 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1809 				*cmd_status);
1810 		ret = -EINVAL;
1811 		break;
1812 	}
1813 	return ret;
1814 }
1815 
1816 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1817 		struct usb_device *udev, u32 *cmd_status)
1818 {
1819 	int ret;
1820 
1821 	switch (*cmd_status) {
1822 	case COMP_COMMAND_ABORTED:
1823 	case COMP_COMMAND_RING_STOPPED:
1824 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1825 		ret = -ETIME;
1826 		break;
1827 	case COMP_PARAMETER_ERROR:
1828 		dev_warn(&udev->dev,
1829 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1830 		ret = -EINVAL;
1831 		break;
1832 	case COMP_SLOT_NOT_ENABLED_ERROR:
1833 		dev_warn(&udev->dev,
1834 			"WARN: slot not enabled for evaluate context command.\n");
1835 		ret = -EINVAL;
1836 		break;
1837 	case COMP_CONTEXT_STATE_ERROR:
1838 		dev_warn(&udev->dev,
1839 			"WARN: invalid context state for evaluate context command.\n");
1840 		ret = -EINVAL;
1841 		break;
1842 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1843 		dev_warn(&udev->dev,
1844 			"ERROR: Incompatible device for evaluate context command.\n");
1845 		ret = -ENODEV;
1846 		break;
1847 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1848 		/* Max Exit Latency too large error */
1849 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1850 		ret = -EINVAL;
1851 		break;
1852 	case COMP_SUCCESS:
1853 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1854 				"Successful evaluate context command");
1855 		ret = 0;
1856 		break;
1857 	default:
1858 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1859 			*cmd_status);
1860 		ret = -EINVAL;
1861 		break;
1862 	}
1863 	return ret;
1864 }
1865 
1866 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1867 		struct xhci_input_control_ctx *ctrl_ctx)
1868 {
1869 	u32 valid_add_flags;
1870 	u32 valid_drop_flags;
1871 
1872 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1873 	 * (bit 1).  The default control endpoint is added during the Address
1874 	 * Device command and is never removed until the slot is disabled.
1875 	 */
1876 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1877 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1878 
1879 	/* Use hweight32 to count the number of ones in the add flags, or
1880 	 * number of endpoints added.  Don't count endpoints that are changed
1881 	 * (both added and dropped).
1882 	 */
1883 	return hweight32(valid_add_flags) -
1884 		hweight32(valid_add_flags & valid_drop_flags);
1885 }
1886 
1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888 		struct xhci_input_control_ctx *ctrl_ctx)
1889 {
1890 	u32 valid_add_flags;
1891 	u32 valid_drop_flags;
1892 
1893 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1894 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1895 
1896 	return hweight32(valid_drop_flags) -
1897 		hweight32(valid_add_flags & valid_drop_flags);
1898 }
1899 
1900 /*
1901  * We need to reserve the new number of endpoints before the configure endpoint
1902  * command completes.  We can't subtract the dropped endpoints from the number
1903  * of active endpoints until the command completes because we can oversubscribe
1904  * the host in this case:
1905  *
1906  *  - the first configure endpoint command drops more endpoints than it adds
1907  *  - a second configure endpoint command that adds more endpoints is queued
1908  *  - the first configure endpoint command fails, so the config is unchanged
1909  *  - the second command may succeed, even though there isn't enough resources
1910  *
1911  * Must be called with xhci->lock held.
1912  */
1913 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1914 		struct xhci_input_control_ctx *ctrl_ctx)
1915 {
1916 	u32 added_eps;
1917 
1918 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1919 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1920 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1921 				"Not enough ep ctxs: "
1922 				"%u active, need to add %u, limit is %u.",
1923 				xhci->num_active_eps, added_eps,
1924 				xhci->limit_active_eps);
1925 		return -ENOMEM;
1926 	}
1927 	xhci->num_active_eps += added_eps;
1928 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1929 			"Adding %u ep ctxs, %u now active.", added_eps,
1930 			xhci->num_active_eps);
1931 	return 0;
1932 }
1933 
1934 /*
1935  * The configure endpoint was failed by the xHC for some other reason, so we
1936  * need to revert the resources that failed configuration would have used.
1937  *
1938  * Must be called with xhci->lock held.
1939  */
1940 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941 		struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943 	u32 num_failed_eps;
1944 
1945 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946 	xhci->num_active_eps -= num_failed_eps;
1947 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 			"Removing %u failed ep ctxs, %u now active.",
1949 			num_failed_eps,
1950 			xhci->num_active_eps);
1951 }
1952 
1953 /*
1954  * Now that the command has completed, clean up the active endpoint count by
1955  * subtracting out the endpoints that were dropped (but not changed).
1956  *
1957  * Must be called with xhci->lock held.
1958  */
1959 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1960 		struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962 	u32 num_dropped_eps;
1963 
1964 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1965 	xhci->num_active_eps -= num_dropped_eps;
1966 	if (num_dropped_eps)
1967 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1968 				"Removing %u dropped ep ctxs, %u now active.",
1969 				num_dropped_eps,
1970 				xhci->num_active_eps);
1971 }
1972 
1973 static unsigned int xhci_get_block_size(struct usb_device *udev)
1974 {
1975 	switch (udev->speed) {
1976 	case USB_SPEED_LOW:
1977 	case USB_SPEED_FULL:
1978 		return FS_BLOCK;
1979 	case USB_SPEED_HIGH:
1980 		return HS_BLOCK;
1981 	case USB_SPEED_SUPER:
1982 	case USB_SPEED_SUPER_PLUS:
1983 		return SS_BLOCK;
1984 	case USB_SPEED_UNKNOWN:
1985 	case USB_SPEED_WIRELESS:
1986 	default:
1987 		/* Should never happen */
1988 		return 1;
1989 	}
1990 }
1991 
1992 static unsigned int
1993 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1994 {
1995 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1996 		return LS_OVERHEAD;
1997 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1998 		return FS_OVERHEAD;
1999 	return HS_OVERHEAD;
2000 }
2001 
2002 /* If we are changing a LS/FS device under a HS hub,
2003  * make sure (if we are activating a new TT) that the HS bus has enough
2004  * bandwidth for this new TT.
2005  */
2006 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2007 		struct xhci_virt_device *virt_dev,
2008 		int old_active_eps)
2009 {
2010 	struct xhci_interval_bw_table *bw_table;
2011 	struct xhci_tt_bw_info *tt_info;
2012 
2013 	/* Find the bandwidth table for the root port this TT is attached to. */
2014 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2015 	tt_info = virt_dev->tt_info;
2016 	/* If this TT already had active endpoints, the bandwidth for this TT
2017 	 * has already been added.  Removing all periodic endpoints (and thus
2018 	 * making the TT enactive) will only decrease the bandwidth used.
2019 	 */
2020 	if (old_active_eps)
2021 		return 0;
2022 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2023 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2024 			return -ENOMEM;
2025 		return 0;
2026 	}
2027 	/* Not sure why we would have no new active endpoints...
2028 	 *
2029 	 * Maybe because of an Evaluate Context change for a hub update or a
2030 	 * control endpoint 0 max packet size change?
2031 	 * FIXME: skip the bandwidth calculation in that case.
2032 	 */
2033 	return 0;
2034 }
2035 
2036 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2037 		struct xhci_virt_device *virt_dev)
2038 {
2039 	unsigned int bw_reserved;
2040 
2041 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2042 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2043 		return -ENOMEM;
2044 
2045 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2046 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2047 		return -ENOMEM;
2048 
2049 	return 0;
2050 }
2051 
2052 /*
2053  * This algorithm is a very conservative estimate of the worst-case scheduling
2054  * scenario for any one interval.  The hardware dynamically schedules the
2055  * packets, so we can't tell which microframe could be the limiting factor in
2056  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2057  *
2058  * Obviously, we can't solve an NP complete problem to find the minimum worst
2059  * case scenario.  Instead, we come up with an estimate that is no less than
2060  * the worst case bandwidth used for any one microframe, but may be an
2061  * over-estimate.
2062  *
2063  * We walk the requirements for each endpoint by interval, starting with the
2064  * smallest interval, and place packets in the schedule where there is only one
2065  * possible way to schedule packets for that interval.  In order to simplify
2066  * this algorithm, we record the largest max packet size for each interval, and
2067  * assume all packets will be that size.
2068  *
2069  * For interval 0, we obviously must schedule all packets for each interval.
2070  * The bandwidth for interval 0 is just the amount of data to be transmitted
2071  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2072  * the number of packets).
2073  *
2074  * For interval 1, we have two possible microframes to schedule those packets
2075  * in.  For this algorithm, if we can schedule the same number of packets for
2076  * each possible scheduling opportunity (each microframe), we will do so.  The
2077  * remaining number of packets will be saved to be transmitted in the gaps in
2078  * the next interval's scheduling sequence.
2079  *
2080  * As we move those remaining packets to be scheduled with interval 2 packets,
2081  * we have to double the number of remaining packets to transmit.  This is
2082  * because the intervals are actually powers of 2, and we would be transmitting
2083  * the previous interval's packets twice in this interval.  We also have to be
2084  * sure that when we look at the largest max packet size for this interval, we
2085  * also look at the largest max packet size for the remaining packets and take
2086  * the greater of the two.
2087  *
2088  * The algorithm continues to evenly distribute packets in each scheduling
2089  * opportunity, and push the remaining packets out, until we get to the last
2090  * interval.  Then those packets and their associated overhead are just added
2091  * to the bandwidth used.
2092  */
2093 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2094 		struct xhci_virt_device *virt_dev,
2095 		int old_active_eps)
2096 {
2097 	unsigned int bw_reserved;
2098 	unsigned int max_bandwidth;
2099 	unsigned int bw_used;
2100 	unsigned int block_size;
2101 	struct xhci_interval_bw_table *bw_table;
2102 	unsigned int packet_size = 0;
2103 	unsigned int overhead = 0;
2104 	unsigned int packets_transmitted = 0;
2105 	unsigned int packets_remaining = 0;
2106 	unsigned int i;
2107 
2108 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2109 		return xhci_check_ss_bw(xhci, virt_dev);
2110 
2111 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2112 		max_bandwidth = HS_BW_LIMIT;
2113 		/* Convert percent of bus BW reserved to blocks reserved */
2114 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2115 	} else {
2116 		max_bandwidth = FS_BW_LIMIT;
2117 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2118 	}
2119 
2120 	bw_table = virt_dev->bw_table;
2121 	/* We need to translate the max packet size and max ESIT payloads into
2122 	 * the units the hardware uses.
2123 	 */
2124 	block_size = xhci_get_block_size(virt_dev->udev);
2125 
2126 	/* If we are manipulating a LS/FS device under a HS hub, double check
2127 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2128 	 */
2129 	if (virt_dev->tt_info) {
2130 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2131 				"Recalculating BW for rootport %u",
2132 				virt_dev->real_port);
2133 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2134 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2135 					"newly activated TT.\n");
2136 			return -ENOMEM;
2137 		}
2138 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2139 				"Recalculating BW for TT slot %u port %u",
2140 				virt_dev->tt_info->slot_id,
2141 				virt_dev->tt_info->ttport);
2142 	} else {
2143 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 				"Recalculating BW for rootport %u",
2145 				virt_dev->real_port);
2146 	}
2147 
2148 	/* Add in how much bandwidth will be used for interval zero, or the
2149 	 * rounded max ESIT payload + number of packets * largest overhead.
2150 	 */
2151 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2152 		bw_table->interval_bw[0].num_packets *
2153 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2154 
2155 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2156 		unsigned int bw_added;
2157 		unsigned int largest_mps;
2158 		unsigned int interval_overhead;
2159 
2160 		/*
2161 		 * How many packets could we transmit in this interval?
2162 		 * If packets didn't fit in the previous interval, we will need
2163 		 * to transmit that many packets twice within this interval.
2164 		 */
2165 		packets_remaining = 2 * packets_remaining +
2166 			bw_table->interval_bw[i].num_packets;
2167 
2168 		/* Find the largest max packet size of this or the previous
2169 		 * interval.
2170 		 */
2171 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2172 			largest_mps = 0;
2173 		else {
2174 			struct xhci_virt_ep *virt_ep;
2175 			struct list_head *ep_entry;
2176 
2177 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2178 			virt_ep = list_entry(ep_entry,
2179 					struct xhci_virt_ep, bw_endpoint_list);
2180 			/* Convert to blocks, rounding up */
2181 			largest_mps = DIV_ROUND_UP(
2182 					virt_ep->bw_info.max_packet_size,
2183 					block_size);
2184 		}
2185 		if (largest_mps > packet_size)
2186 			packet_size = largest_mps;
2187 
2188 		/* Use the larger overhead of this or the previous interval. */
2189 		interval_overhead = xhci_get_largest_overhead(
2190 				&bw_table->interval_bw[i]);
2191 		if (interval_overhead > overhead)
2192 			overhead = interval_overhead;
2193 
2194 		/* How many packets can we evenly distribute across
2195 		 * (1 << (i + 1)) possible scheduling opportunities?
2196 		 */
2197 		packets_transmitted = packets_remaining >> (i + 1);
2198 
2199 		/* Add in the bandwidth used for those scheduled packets */
2200 		bw_added = packets_transmitted * (overhead + packet_size);
2201 
2202 		/* How many packets do we have remaining to transmit? */
2203 		packets_remaining = packets_remaining % (1 << (i + 1));
2204 
2205 		/* What largest max packet size should those packets have? */
2206 		/* If we've transmitted all packets, don't carry over the
2207 		 * largest packet size.
2208 		 */
2209 		if (packets_remaining == 0) {
2210 			packet_size = 0;
2211 			overhead = 0;
2212 		} else if (packets_transmitted > 0) {
2213 			/* Otherwise if we do have remaining packets, and we've
2214 			 * scheduled some packets in this interval, take the
2215 			 * largest max packet size from endpoints with this
2216 			 * interval.
2217 			 */
2218 			packet_size = largest_mps;
2219 			overhead = interval_overhead;
2220 		}
2221 		/* Otherwise carry over packet_size and overhead from the last
2222 		 * time we had a remainder.
2223 		 */
2224 		bw_used += bw_added;
2225 		if (bw_used > max_bandwidth) {
2226 			xhci_warn(xhci, "Not enough bandwidth. "
2227 					"Proposed: %u, Max: %u\n",
2228 				bw_used, max_bandwidth);
2229 			return -ENOMEM;
2230 		}
2231 	}
2232 	/*
2233 	 * Ok, we know we have some packets left over after even-handedly
2234 	 * scheduling interval 15.  We don't know which microframes they will
2235 	 * fit into, so we over-schedule and say they will be scheduled every
2236 	 * microframe.
2237 	 */
2238 	if (packets_remaining > 0)
2239 		bw_used += overhead + packet_size;
2240 
2241 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2242 		unsigned int port_index = virt_dev->real_port - 1;
2243 
2244 		/* OK, we're manipulating a HS device attached to a
2245 		 * root port bandwidth domain.  Include the number of active TTs
2246 		 * in the bandwidth used.
2247 		 */
2248 		bw_used += TT_HS_OVERHEAD *
2249 			xhci->rh_bw[port_index].num_active_tts;
2250 	}
2251 
2252 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2253 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2254 		"Available: %u " "percent",
2255 		bw_used, max_bandwidth, bw_reserved,
2256 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2257 		max_bandwidth);
2258 
2259 	bw_used += bw_reserved;
2260 	if (bw_used > max_bandwidth) {
2261 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2262 				bw_used, max_bandwidth);
2263 		return -ENOMEM;
2264 	}
2265 
2266 	bw_table->bw_used = bw_used;
2267 	return 0;
2268 }
2269 
2270 static bool xhci_is_async_ep(unsigned int ep_type)
2271 {
2272 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2273 					ep_type != ISOC_IN_EP &&
2274 					ep_type != INT_IN_EP);
2275 }
2276 
2277 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2278 {
2279 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2280 }
2281 
2282 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2283 {
2284 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2285 
2286 	if (ep_bw->ep_interval == 0)
2287 		return SS_OVERHEAD_BURST +
2288 			(ep_bw->mult * ep_bw->num_packets *
2289 					(SS_OVERHEAD + mps));
2290 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2291 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2292 				1 << ep_bw->ep_interval);
2293 
2294 }
2295 
2296 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2297 		struct xhci_bw_info *ep_bw,
2298 		struct xhci_interval_bw_table *bw_table,
2299 		struct usb_device *udev,
2300 		struct xhci_virt_ep *virt_ep,
2301 		struct xhci_tt_bw_info *tt_info)
2302 {
2303 	struct xhci_interval_bw	*interval_bw;
2304 	int normalized_interval;
2305 
2306 	if (xhci_is_async_ep(ep_bw->type))
2307 		return;
2308 
2309 	if (udev->speed >= USB_SPEED_SUPER) {
2310 		if (xhci_is_sync_in_ep(ep_bw->type))
2311 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2312 				xhci_get_ss_bw_consumed(ep_bw);
2313 		else
2314 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2315 				xhci_get_ss_bw_consumed(ep_bw);
2316 		return;
2317 	}
2318 
2319 	/* SuperSpeed endpoints never get added to intervals in the table, so
2320 	 * this check is only valid for HS/FS/LS devices.
2321 	 */
2322 	if (list_empty(&virt_ep->bw_endpoint_list))
2323 		return;
2324 	/* For LS/FS devices, we need to translate the interval expressed in
2325 	 * microframes to frames.
2326 	 */
2327 	if (udev->speed == USB_SPEED_HIGH)
2328 		normalized_interval = ep_bw->ep_interval;
2329 	else
2330 		normalized_interval = ep_bw->ep_interval - 3;
2331 
2332 	if (normalized_interval == 0)
2333 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2334 	interval_bw = &bw_table->interval_bw[normalized_interval];
2335 	interval_bw->num_packets -= ep_bw->num_packets;
2336 	switch (udev->speed) {
2337 	case USB_SPEED_LOW:
2338 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2339 		break;
2340 	case USB_SPEED_FULL:
2341 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2342 		break;
2343 	case USB_SPEED_HIGH:
2344 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2345 		break;
2346 	case USB_SPEED_SUPER:
2347 	case USB_SPEED_SUPER_PLUS:
2348 	case USB_SPEED_UNKNOWN:
2349 	case USB_SPEED_WIRELESS:
2350 		/* Should never happen because only LS/FS/HS endpoints will get
2351 		 * added to the endpoint list.
2352 		 */
2353 		return;
2354 	}
2355 	if (tt_info)
2356 		tt_info->active_eps -= 1;
2357 	list_del_init(&virt_ep->bw_endpoint_list);
2358 }
2359 
2360 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2361 		struct xhci_bw_info *ep_bw,
2362 		struct xhci_interval_bw_table *bw_table,
2363 		struct usb_device *udev,
2364 		struct xhci_virt_ep *virt_ep,
2365 		struct xhci_tt_bw_info *tt_info)
2366 {
2367 	struct xhci_interval_bw	*interval_bw;
2368 	struct xhci_virt_ep *smaller_ep;
2369 	int normalized_interval;
2370 
2371 	if (xhci_is_async_ep(ep_bw->type))
2372 		return;
2373 
2374 	if (udev->speed == USB_SPEED_SUPER) {
2375 		if (xhci_is_sync_in_ep(ep_bw->type))
2376 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2377 				xhci_get_ss_bw_consumed(ep_bw);
2378 		else
2379 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2380 				xhci_get_ss_bw_consumed(ep_bw);
2381 		return;
2382 	}
2383 
2384 	/* For LS/FS devices, we need to translate the interval expressed in
2385 	 * microframes to frames.
2386 	 */
2387 	if (udev->speed == USB_SPEED_HIGH)
2388 		normalized_interval = ep_bw->ep_interval;
2389 	else
2390 		normalized_interval = ep_bw->ep_interval - 3;
2391 
2392 	if (normalized_interval == 0)
2393 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2394 	interval_bw = &bw_table->interval_bw[normalized_interval];
2395 	interval_bw->num_packets += ep_bw->num_packets;
2396 	switch (udev->speed) {
2397 	case USB_SPEED_LOW:
2398 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2399 		break;
2400 	case USB_SPEED_FULL:
2401 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2402 		break;
2403 	case USB_SPEED_HIGH:
2404 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2405 		break;
2406 	case USB_SPEED_SUPER:
2407 	case USB_SPEED_SUPER_PLUS:
2408 	case USB_SPEED_UNKNOWN:
2409 	case USB_SPEED_WIRELESS:
2410 		/* Should never happen because only LS/FS/HS endpoints will get
2411 		 * added to the endpoint list.
2412 		 */
2413 		return;
2414 	}
2415 
2416 	if (tt_info)
2417 		tt_info->active_eps += 1;
2418 	/* Insert the endpoint into the list, largest max packet size first. */
2419 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2420 			bw_endpoint_list) {
2421 		if (ep_bw->max_packet_size >=
2422 				smaller_ep->bw_info.max_packet_size) {
2423 			/* Add the new ep before the smaller endpoint */
2424 			list_add_tail(&virt_ep->bw_endpoint_list,
2425 					&smaller_ep->bw_endpoint_list);
2426 			return;
2427 		}
2428 	}
2429 	/* Add the new endpoint at the end of the list. */
2430 	list_add_tail(&virt_ep->bw_endpoint_list,
2431 			&interval_bw->endpoints);
2432 }
2433 
2434 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2435 		struct xhci_virt_device *virt_dev,
2436 		int old_active_eps)
2437 {
2438 	struct xhci_root_port_bw_info *rh_bw_info;
2439 	if (!virt_dev->tt_info)
2440 		return;
2441 
2442 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2443 	if (old_active_eps == 0 &&
2444 				virt_dev->tt_info->active_eps != 0) {
2445 		rh_bw_info->num_active_tts += 1;
2446 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2447 	} else if (old_active_eps != 0 &&
2448 				virt_dev->tt_info->active_eps == 0) {
2449 		rh_bw_info->num_active_tts -= 1;
2450 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2451 	}
2452 }
2453 
2454 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2455 		struct xhci_virt_device *virt_dev,
2456 		struct xhci_container_ctx *in_ctx)
2457 {
2458 	struct xhci_bw_info ep_bw_info[31];
2459 	int i;
2460 	struct xhci_input_control_ctx *ctrl_ctx;
2461 	int old_active_eps = 0;
2462 
2463 	if (virt_dev->tt_info)
2464 		old_active_eps = virt_dev->tt_info->active_eps;
2465 
2466 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2467 	if (!ctrl_ctx) {
2468 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2469 				__func__);
2470 		return -ENOMEM;
2471 	}
2472 
2473 	for (i = 0; i < 31; i++) {
2474 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2475 			continue;
2476 
2477 		/* Make a copy of the BW info in case we need to revert this */
2478 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2479 				sizeof(ep_bw_info[i]));
2480 		/* Drop the endpoint from the interval table if the endpoint is
2481 		 * being dropped or changed.
2482 		 */
2483 		if (EP_IS_DROPPED(ctrl_ctx, i))
2484 			xhci_drop_ep_from_interval_table(xhci,
2485 					&virt_dev->eps[i].bw_info,
2486 					virt_dev->bw_table,
2487 					virt_dev->udev,
2488 					&virt_dev->eps[i],
2489 					virt_dev->tt_info);
2490 	}
2491 	/* Overwrite the information stored in the endpoints' bw_info */
2492 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2493 	for (i = 0; i < 31; i++) {
2494 		/* Add any changed or added endpoints to the interval table */
2495 		if (EP_IS_ADDED(ctrl_ctx, i))
2496 			xhci_add_ep_to_interval_table(xhci,
2497 					&virt_dev->eps[i].bw_info,
2498 					virt_dev->bw_table,
2499 					virt_dev->udev,
2500 					&virt_dev->eps[i],
2501 					virt_dev->tt_info);
2502 	}
2503 
2504 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2505 		/* Ok, this fits in the bandwidth we have.
2506 		 * Update the number of active TTs.
2507 		 */
2508 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2509 		return 0;
2510 	}
2511 
2512 	/* We don't have enough bandwidth for this, revert the stored info. */
2513 	for (i = 0; i < 31; i++) {
2514 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2515 			continue;
2516 
2517 		/* Drop the new copies of any added or changed endpoints from
2518 		 * the interval table.
2519 		 */
2520 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2521 			xhci_drop_ep_from_interval_table(xhci,
2522 					&virt_dev->eps[i].bw_info,
2523 					virt_dev->bw_table,
2524 					virt_dev->udev,
2525 					&virt_dev->eps[i],
2526 					virt_dev->tt_info);
2527 		}
2528 		/* Revert the endpoint back to its old information */
2529 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2530 				sizeof(ep_bw_info[i]));
2531 		/* Add any changed or dropped endpoints back into the table */
2532 		if (EP_IS_DROPPED(ctrl_ctx, i))
2533 			xhci_add_ep_to_interval_table(xhci,
2534 					&virt_dev->eps[i].bw_info,
2535 					virt_dev->bw_table,
2536 					virt_dev->udev,
2537 					&virt_dev->eps[i],
2538 					virt_dev->tt_info);
2539 	}
2540 	return -ENOMEM;
2541 }
2542 
2543 
2544 /* Issue a configure endpoint command or evaluate context command
2545  * and wait for it to finish.
2546  */
2547 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2548 		struct usb_device *udev,
2549 		struct xhci_command *command,
2550 		bool ctx_change, bool must_succeed)
2551 {
2552 	int ret;
2553 	unsigned long flags;
2554 	struct xhci_input_control_ctx *ctrl_ctx;
2555 	struct xhci_virt_device *virt_dev;
2556 	struct xhci_slot_ctx *slot_ctx;
2557 
2558 	if (!command)
2559 		return -EINVAL;
2560 
2561 	spin_lock_irqsave(&xhci->lock, flags);
2562 
2563 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2564 		spin_unlock_irqrestore(&xhci->lock, flags);
2565 		return -ESHUTDOWN;
2566 	}
2567 
2568 	virt_dev = xhci->devs[udev->slot_id];
2569 
2570 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2571 	if (!ctrl_ctx) {
2572 		spin_unlock_irqrestore(&xhci->lock, flags);
2573 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2574 				__func__);
2575 		return -ENOMEM;
2576 	}
2577 
2578 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2579 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2580 		spin_unlock_irqrestore(&xhci->lock, flags);
2581 		xhci_warn(xhci, "Not enough host resources, "
2582 				"active endpoint contexts = %u\n",
2583 				xhci->num_active_eps);
2584 		return -ENOMEM;
2585 	}
2586 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2587 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2588 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2589 			xhci_free_host_resources(xhci, ctrl_ctx);
2590 		spin_unlock_irqrestore(&xhci->lock, flags);
2591 		xhci_warn(xhci, "Not enough bandwidth\n");
2592 		return -ENOMEM;
2593 	}
2594 
2595 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2596 	trace_xhci_configure_endpoint(slot_ctx);
2597 
2598 	if (!ctx_change)
2599 		ret = xhci_queue_configure_endpoint(xhci, command,
2600 				command->in_ctx->dma,
2601 				udev->slot_id, must_succeed);
2602 	else
2603 		ret = xhci_queue_evaluate_context(xhci, command,
2604 				command->in_ctx->dma,
2605 				udev->slot_id, must_succeed);
2606 	if (ret < 0) {
2607 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2608 			xhci_free_host_resources(xhci, ctrl_ctx);
2609 		spin_unlock_irqrestore(&xhci->lock, flags);
2610 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2611 				"FIXME allocate a new ring segment");
2612 		return -ENOMEM;
2613 	}
2614 	xhci_ring_cmd_db(xhci);
2615 	spin_unlock_irqrestore(&xhci->lock, flags);
2616 
2617 	/* Wait for the configure endpoint command to complete */
2618 	wait_for_completion(command->completion);
2619 
2620 	if (!ctx_change)
2621 		ret = xhci_configure_endpoint_result(xhci, udev,
2622 						     &command->status);
2623 	else
2624 		ret = xhci_evaluate_context_result(xhci, udev,
2625 						   &command->status);
2626 
2627 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2628 		spin_lock_irqsave(&xhci->lock, flags);
2629 		/* If the command failed, remove the reserved resources.
2630 		 * Otherwise, clean up the estimate to include dropped eps.
2631 		 */
2632 		if (ret)
2633 			xhci_free_host_resources(xhci, ctrl_ctx);
2634 		else
2635 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2636 		spin_unlock_irqrestore(&xhci->lock, flags);
2637 	}
2638 	return ret;
2639 }
2640 
2641 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2642 	struct xhci_virt_device *vdev, int i)
2643 {
2644 	struct xhci_virt_ep *ep = &vdev->eps[i];
2645 
2646 	if (ep->ep_state & EP_HAS_STREAMS) {
2647 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2648 				xhci_get_endpoint_address(i));
2649 		xhci_free_stream_info(xhci, ep->stream_info);
2650 		ep->stream_info = NULL;
2651 		ep->ep_state &= ~EP_HAS_STREAMS;
2652 	}
2653 }
2654 
2655 /* Called after one or more calls to xhci_add_endpoint() or
2656  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2657  * to call xhci_reset_bandwidth().
2658  *
2659  * Since we are in the middle of changing either configuration or
2660  * installing a new alt setting, the USB core won't allow URBs to be
2661  * enqueued for any endpoint on the old config or interface.  Nothing
2662  * else should be touching the xhci->devs[slot_id] structure, so we
2663  * don't need to take the xhci->lock for manipulating that.
2664  */
2665 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2666 {
2667 	int i;
2668 	int ret = 0;
2669 	struct xhci_hcd *xhci;
2670 	struct xhci_virt_device	*virt_dev;
2671 	struct xhci_input_control_ctx *ctrl_ctx;
2672 	struct xhci_slot_ctx *slot_ctx;
2673 	struct xhci_command *command;
2674 
2675 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2676 	if (ret <= 0)
2677 		return ret;
2678 	xhci = hcd_to_xhci(hcd);
2679 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2680 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2681 		return -ENODEV;
2682 
2683 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2684 	virt_dev = xhci->devs[udev->slot_id];
2685 
2686 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2687 	if (!command)
2688 		return -ENOMEM;
2689 
2690 	command->in_ctx = virt_dev->in_ctx;
2691 
2692 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2693 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2694 	if (!ctrl_ctx) {
2695 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2696 				__func__);
2697 		ret = -ENOMEM;
2698 		goto command_cleanup;
2699 	}
2700 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2701 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2702 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2703 
2704 	/* Don't issue the command if there's no endpoints to update. */
2705 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2706 	    ctrl_ctx->drop_flags == 0) {
2707 		ret = 0;
2708 		goto command_cleanup;
2709 	}
2710 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2711 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2712 	for (i = 31; i >= 1; i--) {
2713 		__le32 le32 = cpu_to_le32(BIT(i));
2714 
2715 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2716 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2717 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2718 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2719 			break;
2720 		}
2721 	}
2722 
2723 	ret = xhci_configure_endpoint(xhci, udev, command,
2724 			false, false);
2725 	if (ret)
2726 		/* Callee should call reset_bandwidth() */
2727 		goto command_cleanup;
2728 
2729 	/* Free any rings that were dropped, but not changed. */
2730 	for (i = 1; i < 31; i++) {
2731 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2732 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2733 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2734 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2735 		}
2736 	}
2737 	xhci_zero_in_ctx(xhci, virt_dev);
2738 	/*
2739 	 * Install any rings for completely new endpoints or changed endpoints,
2740 	 * and free any old rings from changed endpoints.
2741 	 */
2742 	for (i = 1; i < 31; i++) {
2743 		if (!virt_dev->eps[i].new_ring)
2744 			continue;
2745 		/* Only free the old ring if it exists.
2746 		 * It may not if this is the first add of an endpoint.
2747 		 */
2748 		if (virt_dev->eps[i].ring) {
2749 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2750 		}
2751 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2752 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2753 		virt_dev->eps[i].new_ring = NULL;
2754 	}
2755 command_cleanup:
2756 	kfree(command->completion);
2757 	kfree(command);
2758 
2759 	return ret;
2760 }
2761 
2762 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764 	struct xhci_hcd *xhci;
2765 	struct xhci_virt_device	*virt_dev;
2766 	int i, ret;
2767 
2768 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2769 	if (ret <= 0)
2770 		return;
2771 	xhci = hcd_to_xhci(hcd);
2772 
2773 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2774 	virt_dev = xhci->devs[udev->slot_id];
2775 	/* Free any rings allocated for added endpoints */
2776 	for (i = 0; i < 31; i++) {
2777 		if (virt_dev->eps[i].new_ring) {
2778 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2779 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2780 			virt_dev->eps[i].new_ring = NULL;
2781 		}
2782 	}
2783 	xhci_zero_in_ctx(xhci, virt_dev);
2784 }
2785 
2786 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2787 		struct xhci_container_ctx *in_ctx,
2788 		struct xhci_container_ctx *out_ctx,
2789 		struct xhci_input_control_ctx *ctrl_ctx,
2790 		u32 add_flags, u32 drop_flags)
2791 {
2792 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2793 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2794 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2795 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2796 }
2797 
2798 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2799 		unsigned int slot_id, unsigned int ep_index,
2800 		struct xhci_dequeue_state *deq_state)
2801 {
2802 	struct xhci_input_control_ctx *ctrl_ctx;
2803 	struct xhci_container_ctx *in_ctx;
2804 	struct xhci_ep_ctx *ep_ctx;
2805 	u32 added_ctxs;
2806 	dma_addr_t addr;
2807 
2808 	in_ctx = xhci->devs[slot_id]->in_ctx;
2809 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2810 	if (!ctrl_ctx) {
2811 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812 				__func__);
2813 		return;
2814 	}
2815 
2816 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2817 			xhci->devs[slot_id]->out_ctx, ep_index);
2818 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2819 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2820 			deq_state->new_deq_ptr);
2821 	if (addr == 0) {
2822 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2823 				"reset ep command\n");
2824 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2825 				deq_state->new_deq_seg,
2826 				deq_state->new_deq_ptr);
2827 		return;
2828 	}
2829 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2830 
2831 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2832 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2833 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2834 			added_ctxs, added_ctxs);
2835 }
2836 
2837 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2838 			       unsigned int stream_id, struct xhci_td *td)
2839 {
2840 	struct xhci_dequeue_state deq_state;
2841 	struct xhci_virt_ep *ep;
2842 	struct usb_device *udev = td->urb->dev;
2843 
2844 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 			"Cleaning up stalled endpoint ring");
2846 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847 	/* We need to move the HW's dequeue pointer past this TD,
2848 	 * or it will attempt to resend it on the next doorbell ring.
2849 	 */
2850 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851 			ep_index, stream_id, td, &deq_state);
2852 
2853 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2854 		return;
2855 
2856 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2857 	 * issue a configure endpoint command later.
2858 	 */
2859 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2860 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2861 				"Queueing new dequeue state");
2862 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2863 				ep_index, &deq_state);
2864 	} else {
2865 		/* Better hope no one uses the input context between now and the
2866 		 * reset endpoint completion!
2867 		 * XXX: No idea how this hardware will react when stream rings
2868 		 * are enabled.
2869 		 */
2870 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2871 				"Setting up input context for "
2872 				"configure endpoint command");
2873 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2874 				ep_index, &deq_state);
2875 	}
2876 }
2877 
2878 /* Called when clearing halted device. The core should have sent the control
2879  * message to clear the device halt condition. The host side of the halt should
2880  * already be cleared with a reset endpoint command issued when the STALL tx
2881  * event was received.
2882  *
2883  * Context: in_interrupt
2884  */
2885 
2886 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2887 		struct usb_host_endpoint *ep)
2888 {
2889 	struct xhci_hcd *xhci;
2890 
2891 	xhci = hcd_to_xhci(hcd);
2892 
2893 	/*
2894 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2895 	 * The Reset Endpoint Command may only be issued to endpoints in the
2896 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2897 	 * Number of an endpoint that isn't in the Halted state, then software
2898 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2899 	 * for the target endpoint. that is in the Stopped state.
2900 	 */
2901 
2902 	/* For now just print debug to follow the situation */
2903 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2904 		 ep->desc.bEndpointAddress);
2905 }
2906 
2907 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2908 		struct usb_device *udev, struct usb_host_endpoint *ep,
2909 		unsigned int slot_id)
2910 {
2911 	int ret;
2912 	unsigned int ep_index;
2913 	unsigned int ep_state;
2914 
2915 	if (!ep)
2916 		return -EINVAL;
2917 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2918 	if (ret <= 0)
2919 		return -EINVAL;
2920 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2921 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2922 				" descriptor for ep 0x%x does not support streams\n",
2923 				ep->desc.bEndpointAddress);
2924 		return -EINVAL;
2925 	}
2926 
2927 	ep_index = xhci_get_endpoint_index(&ep->desc);
2928 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2929 	if (ep_state & EP_HAS_STREAMS ||
2930 			ep_state & EP_GETTING_STREAMS) {
2931 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2932 				"already has streams set up.\n",
2933 				ep->desc.bEndpointAddress);
2934 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2935 				"dynamic stream context array reallocation.\n");
2936 		return -EINVAL;
2937 	}
2938 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2939 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2940 				"endpoint 0x%x; URBs are pending.\n",
2941 				ep->desc.bEndpointAddress);
2942 		return -EINVAL;
2943 	}
2944 	return 0;
2945 }
2946 
2947 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2948 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2949 {
2950 	unsigned int max_streams;
2951 
2952 	/* The stream context array size must be a power of two */
2953 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2954 	/*
2955 	 * Find out how many primary stream array entries the host controller
2956 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2957 	 * level page entries), but that's an optional feature for xHCI host
2958 	 * controllers. xHCs must support at least 4 stream IDs.
2959 	 */
2960 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2961 	if (*num_stream_ctxs > max_streams) {
2962 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2963 				max_streams);
2964 		*num_stream_ctxs = max_streams;
2965 		*num_streams = max_streams;
2966 	}
2967 }
2968 
2969 /* Returns an error code if one of the endpoint already has streams.
2970  * This does not change any data structures, it only checks and gathers
2971  * information.
2972  */
2973 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2974 		struct usb_device *udev,
2975 		struct usb_host_endpoint **eps, unsigned int num_eps,
2976 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2977 {
2978 	unsigned int max_streams;
2979 	unsigned int endpoint_flag;
2980 	int i;
2981 	int ret;
2982 
2983 	for (i = 0; i < num_eps; i++) {
2984 		ret = xhci_check_streams_endpoint(xhci, udev,
2985 				eps[i], udev->slot_id);
2986 		if (ret < 0)
2987 			return ret;
2988 
2989 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2990 		if (max_streams < (*num_streams - 1)) {
2991 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2992 					eps[i]->desc.bEndpointAddress,
2993 					max_streams);
2994 			*num_streams = max_streams+1;
2995 		}
2996 
2997 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2998 		if (*changed_ep_bitmask & endpoint_flag)
2999 			return -EINVAL;
3000 		*changed_ep_bitmask |= endpoint_flag;
3001 	}
3002 	return 0;
3003 }
3004 
3005 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3006 		struct usb_device *udev,
3007 		struct usb_host_endpoint **eps, unsigned int num_eps)
3008 {
3009 	u32 changed_ep_bitmask = 0;
3010 	unsigned int slot_id;
3011 	unsigned int ep_index;
3012 	unsigned int ep_state;
3013 	int i;
3014 
3015 	slot_id = udev->slot_id;
3016 	if (!xhci->devs[slot_id])
3017 		return 0;
3018 
3019 	for (i = 0; i < num_eps; i++) {
3020 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3021 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3022 		/* Are streams already being freed for the endpoint? */
3023 		if (ep_state & EP_GETTING_NO_STREAMS) {
3024 			xhci_warn(xhci, "WARN Can't disable streams for "
3025 					"endpoint 0x%x, "
3026 					"streams are being disabled already\n",
3027 					eps[i]->desc.bEndpointAddress);
3028 			return 0;
3029 		}
3030 		/* Are there actually any streams to free? */
3031 		if (!(ep_state & EP_HAS_STREAMS) &&
3032 				!(ep_state & EP_GETTING_STREAMS)) {
3033 			xhci_warn(xhci, "WARN Can't disable streams for "
3034 					"endpoint 0x%x, "
3035 					"streams are already disabled!\n",
3036 					eps[i]->desc.bEndpointAddress);
3037 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3038 					"with non-streams endpoint\n");
3039 			return 0;
3040 		}
3041 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3042 	}
3043 	return changed_ep_bitmask;
3044 }
3045 
3046 /*
3047  * The USB device drivers use this function (through the HCD interface in USB
3048  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3049  * coordinate mass storage command queueing across multiple endpoints (basically
3050  * a stream ID == a task ID).
3051  *
3052  * Setting up streams involves allocating the same size stream context array
3053  * for each endpoint and issuing a configure endpoint command for all endpoints.
3054  *
3055  * Don't allow the call to succeed if one endpoint only supports one stream
3056  * (which means it doesn't support streams at all).
3057  *
3058  * Drivers may get less stream IDs than they asked for, if the host controller
3059  * hardware or endpoints claim they can't support the number of requested
3060  * stream IDs.
3061  */
3062 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3063 		struct usb_host_endpoint **eps, unsigned int num_eps,
3064 		unsigned int num_streams, gfp_t mem_flags)
3065 {
3066 	int i, ret;
3067 	struct xhci_hcd *xhci;
3068 	struct xhci_virt_device *vdev;
3069 	struct xhci_command *config_cmd;
3070 	struct xhci_input_control_ctx *ctrl_ctx;
3071 	unsigned int ep_index;
3072 	unsigned int num_stream_ctxs;
3073 	unsigned int max_packet;
3074 	unsigned long flags;
3075 	u32 changed_ep_bitmask = 0;
3076 
3077 	if (!eps)
3078 		return -EINVAL;
3079 
3080 	/* Add one to the number of streams requested to account for
3081 	 * stream 0 that is reserved for xHCI usage.
3082 	 */
3083 	num_streams += 1;
3084 	xhci = hcd_to_xhci(hcd);
3085 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3086 			num_streams);
3087 
3088 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3089 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3090 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3091 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3092 		return -ENOSYS;
3093 	}
3094 
3095 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3096 	if (!config_cmd)
3097 		return -ENOMEM;
3098 
3099 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3100 	if (!ctrl_ctx) {
3101 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3102 				__func__);
3103 		xhci_free_command(xhci, config_cmd);
3104 		return -ENOMEM;
3105 	}
3106 
3107 	/* Check to make sure all endpoints are not already configured for
3108 	 * streams.  While we're at it, find the maximum number of streams that
3109 	 * all the endpoints will support and check for duplicate endpoints.
3110 	 */
3111 	spin_lock_irqsave(&xhci->lock, flags);
3112 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3113 			num_eps, &num_streams, &changed_ep_bitmask);
3114 	if (ret < 0) {
3115 		xhci_free_command(xhci, config_cmd);
3116 		spin_unlock_irqrestore(&xhci->lock, flags);
3117 		return ret;
3118 	}
3119 	if (num_streams <= 1) {
3120 		xhci_warn(xhci, "WARN: endpoints can't handle "
3121 				"more than one stream.\n");
3122 		xhci_free_command(xhci, config_cmd);
3123 		spin_unlock_irqrestore(&xhci->lock, flags);
3124 		return -EINVAL;
3125 	}
3126 	vdev = xhci->devs[udev->slot_id];
3127 	/* Mark each endpoint as being in transition, so
3128 	 * xhci_urb_enqueue() will reject all URBs.
3129 	 */
3130 	for (i = 0; i < num_eps; i++) {
3131 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3132 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3133 	}
3134 	spin_unlock_irqrestore(&xhci->lock, flags);
3135 
3136 	/* Setup internal data structures and allocate HW data structures for
3137 	 * streams (but don't install the HW structures in the input context
3138 	 * until we're sure all memory allocation succeeded).
3139 	 */
3140 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3141 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3142 			num_stream_ctxs, num_streams);
3143 
3144 	for (i = 0; i < num_eps; i++) {
3145 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3147 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3148 				num_stream_ctxs,
3149 				num_streams,
3150 				max_packet, mem_flags);
3151 		if (!vdev->eps[ep_index].stream_info)
3152 			goto cleanup;
3153 		/* Set maxPstreams in endpoint context and update deq ptr to
3154 		 * point to stream context array. FIXME
3155 		 */
3156 	}
3157 
3158 	/* Set up the input context for a configure endpoint command. */
3159 	for (i = 0; i < num_eps; i++) {
3160 		struct xhci_ep_ctx *ep_ctx;
3161 
3162 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3163 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3164 
3165 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3166 				vdev->out_ctx, ep_index);
3167 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3168 				vdev->eps[ep_index].stream_info);
3169 	}
3170 	/* Tell the HW to drop its old copy of the endpoint context info
3171 	 * and add the updated copy from the input context.
3172 	 */
3173 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3174 			vdev->out_ctx, ctrl_ctx,
3175 			changed_ep_bitmask, changed_ep_bitmask);
3176 
3177 	/* Issue and wait for the configure endpoint command */
3178 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3179 			false, false);
3180 
3181 	/* xHC rejected the configure endpoint command for some reason, so we
3182 	 * leave the old ring intact and free our internal streams data
3183 	 * structure.
3184 	 */
3185 	if (ret < 0)
3186 		goto cleanup;
3187 
3188 	spin_lock_irqsave(&xhci->lock, flags);
3189 	for (i = 0; i < num_eps; i++) {
3190 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3193 			 udev->slot_id, ep_index);
3194 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3195 	}
3196 	xhci_free_command(xhci, config_cmd);
3197 	spin_unlock_irqrestore(&xhci->lock, flags);
3198 
3199 	/* Subtract 1 for stream 0, which drivers can't use */
3200 	return num_streams - 1;
3201 
3202 cleanup:
3203 	/* If it didn't work, free the streams! */
3204 	for (i = 0; i < num_eps; i++) {
3205 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3207 		vdev->eps[ep_index].stream_info = NULL;
3208 		/* FIXME Unset maxPstreams in endpoint context and
3209 		 * update deq ptr to point to normal string ring.
3210 		 */
3211 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3213 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3214 	}
3215 	xhci_free_command(xhci, config_cmd);
3216 	return -ENOMEM;
3217 }
3218 
3219 /* Transition the endpoint from using streams to being a "normal" endpoint
3220  * without streams.
3221  *
3222  * Modify the endpoint context state, submit a configure endpoint command,
3223  * and free all endpoint rings for streams if that completes successfully.
3224  */
3225 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3226 		struct usb_host_endpoint **eps, unsigned int num_eps,
3227 		gfp_t mem_flags)
3228 {
3229 	int i, ret;
3230 	struct xhci_hcd *xhci;
3231 	struct xhci_virt_device *vdev;
3232 	struct xhci_command *command;
3233 	struct xhci_input_control_ctx *ctrl_ctx;
3234 	unsigned int ep_index;
3235 	unsigned long flags;
3236 	u32 changed_ep_bitmask;
3237 
3238 	xhci = hcd_to_xhci(hcd);
3239 	vdev = xhci->devs[udev->slot_id];
3240 
3241 	/* Set up a configure endpoint command to remove the streams rings */
3242 	spin_lock_irqsave(&xhci->lock, flags);
3243 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3244 			udev, eps, num_eps);
3245 	if (changed_ep_bitmask == 0) {
3246 		spin_unlock_irqrestore(&xhci->lock, flags);
3247 		return -EINVAL;
3248 	}
3249 
3250 	/* Use the xhci_command structure from the first endpoint.  We may have
3251 	 * allocated too many, but the driver may call xhci_free_streams() for
3252 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3253 	 */
3254 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3255 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3256 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3257 	if (!ctrl_ctx) {
3258 		spin_unlock_irqrestore(&xhci->lock, flags);
3259 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3260 				__func__);
3261 		return -EINVAL;
3262 	}
3263 
3264 	for (i = 0; i < num_eps; i++) {
3265 		struct xhci_ep_ctx *ep_ctx;
3266 
3267 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3269 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3270 			EP_GETTING_NO_STREAMS;
3271 
3272 		xhci_endpoint_copy(xhci, command->in_ctx,
3273 				vdev->out_ctx, ep_index);
3274 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3275 				&vdev->eps[ep_index]);
3276 	}
3277 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3278 			vdev->out_ctx, ctrl_ctx,
3279 			changed_ep_bitmask, changed_ep_bitmask);
3280 	spin_unlock_irqrestore(&xhci->lock, flags);
3281 
3282 	/* Issue and wait for the configure endpoint command,
3283 	 * which must succeed.
3284 	 */
3285 	ret = xhci_configure_endpoint(xhci, udev, command,
3286 			false, true);
3287 
3288 	/* xHC rejected the configure endpoint command for some reason, so we
3289 	 * leave the streams rings intact.
3290 	 */
3291 	if (ret < 0)
3292 		return ret;
3293 
3294 	spin_lock_irqsave(&xhci->lock, flags);
3295 	for (i = 0; i < num_eps; i++) {
3296 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3297 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3298 		vdev->eps[ep_index].stream_info = NULL;
3299 		/* FIXME Unset maxPstreams in endpoint context and
3300 		 * update deq ptr to point to normal string ring.
3301 		 */
3302 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3303 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3304 	}
3305 	spin_unlock_irqrestore(&xhci->lock, flags);
3306 
3307 	return 0;
3308 }
3309 
3310 /*
3311  * Deletes endpoint resources for endpoints that were active before a Reset
3312  * Device command, or a Disable Slot command.  The Reset Device command leaves
3313  * the control endpoint intact, whereas the Disable Slot command deletes it.
3314  *
3315  * Must be called with xhci->lock held.
3316  */
3317 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3318 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3319 {
3320 	int i;
3321 	unsigned int num_dropped_eps = 0;
3322 	unsigned int drop_flags = 0;
3323 
3324 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3325 		if (virt_dev->eps[i].ring) {
3326 			drop_flags |= 1 << i;
3327 			num_dropped_eps++;
3328 		}
3329 	}
3330 	xhci->num_active_eps -= num_dropped_eps;
3331 	if (num_dropped_eps)
3332 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3333 				"Dropped %u ep ctxs, flags = 0x%x, "
3334 				"%u now active.",
3335 				num_dropped_eps, drop_flags,
3336 				xhci->num_active_eps);
3337 }
3338 
3339 /*
3340  * This submits a Reset Device Command, which will set the device state to 0,
3341  * set the device address to 0, and disable all the endpoints except the default
3342  * control endpoint.  The USB core should come back and call
3343  * xhci_address_device(), and then re-set up the configuration.  If this is
3344  * called because of a usb_reset_and_verify_device(), then the old alternate
3345  * settings will be re-installed through the normal bandwidth allocation
3346  * functions.
3347  *
3348  * Wait for the Reset Device command to finish.  Remove all structures
3349  * associated with the endpoints that were disabled.  Clear the input device
3350  * structure? Reset the control endpoint 0 max packet size?
3351  *
3352  * If the virt_dev to be reset does not exist or does not match the udev,
3353  * it means the device is lost, possibly due to the xHC restore error and
3354  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3355  * re-allocate the device.
3356  */
3357 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3358 		struct usb_device *udev)
3359 {
3360 	int ret, i;
3361 	unsigned long flags;
3362 	struct xhci_hcd *xhci;
3363 	unsigned int slot_id;
3364 	struct xhci_virt_device *virt_dev;
3365 	struct xhci_command *reset_device_cmd;
3366 	int last_freed_endpoint;
3367 	struct xhci_slot_ctx *slot_ctx;
3368 	int old_active_eps = 0;
3369 
3370 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3371 	if (ret <= 0)
3372 		return ret;
3373 	xhci = hcd_to_xhci(hcd);
3374 	slot_id = udev->slot_id;
3375 	virt_dev = xhci->devs[slot_id];
3376 	if (!virt_dev) {
3377 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3378 				"not exist. Re-allocate the device\n", slot_id);
3379 		ret = xhci_alloc_dev(hcd, udev);
3380 		if (ret == 1)
3381 			return 0;
3382 		else
3383 			return -EINVAL;
3384 	}
3385 
3386 	if (virt_dev->tt_info)
3387 		old_active_eps = virt_dev->tt_info->active_eps;
3388 
3389 	if (virt_dev->udev != udev) {
3390 		/* If the virt_dev and the udev does not match, this virt_dev
3391 		 * may belong to another udev.
3392 		 * Re-allocate the device.
3393 		 */
3394 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3395 				"not match the udev. Re-allocate the device\n",
3396 				slot_id);
3397 		ret = xhci_alloc_dev(hcd, udev);
3398 		if (ret == 1)
3399 			return 0;
3400 		else
3401 			return -EINVAL;
3402 	}
3403 
3404 	/* If device is not setup, there is no point in resetting it */
3405 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3406 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3407 						SLOT_STATE_DISABLED)
3408 		return 0;
3409 
3410 	trace_xhci_discover_or_reset_device(slot_ctx);
3411 
3412 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3413 	/* Allocate the command structure that holds the struct completion.
3414 	 * Assume we're in process context, since the normal device reset
3415 	 * process has to wait for the device anyway.  Storage devices are
3416 	 * reset as part of error handling, so use GFP_NOIO instead of
3417 	 * GFP_KERNEL.
3418 	 */
3419 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3420 	if (!reset_device_cmd) {
3421 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3422 		return -ENOMEM;
3423 	}
3424 
3425 	/* Attempt to submit the Reset Device command to the command ring */
3426 	spin_lock_irqsave(&xhci->lock, flags);
3427 
3428 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3429 	if (ret) {
3430 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3431 		spin_unlock_irqrestore(&xhci->lock, flags);
3432 		goto command_cleanup;
3433 	}
3434 	xhci_ring_cmd_db(xhci);
3435 	spin_unlock_irqrestore(&xhci->lock, flags);
3436 
3437 	/* Wait for the Reset Device command to finish */
3438 	wait_for_completion(reset_device_cmd->completion);
3439 
3440 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3441 	 * unless we tried to reset a slot ID that wasn't enabled,
3442 	 * or the device wasn't in the addressed or configured state.
3443 	 */
3444 	ret = reset_device_cmd->status;
3445 	switch (ret) {
3446 	case COMP_COMMAND_ABORTED:
3447 	case COMP_COMMAND_RING_STOPPED:
3448 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3449 		ret = -ETIME;
3450 		goto command_cleanup;
3451 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3452 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3453 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3454 				slot_id,
3455 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3456 		xhci_dbg(xhci, "Not freeing device rings.\n");
3457 		/* Don't treat this as an error.  May change my mind later. */
3458 		ret = 0;
3459 		goto command_cleanup;
3460 	case COMP_SUCCESS:
3461 		xhci_dbg(xhci, "Successful reset device command.\n");
3462 		break;
3463 	default:
3464 		if (xhci_is_vendor_info_code(xhci, ret))
3465 			break;
3466 		xhci_warn(xhci, "Unknown completion code %u for "
3467 				"reset device command.\n", ret);
3468 		ret = -EINVAL;
3469 		goto command_cleanup;
3470 	}
3471 
3472 	/* Free up host controller endpoint resources */
3473 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3474 		spin_lock_irqsave(&xhci->lock, flags);
3475 		/* Don't delete the default control endpoint resources */
3476 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3477 		spin_unlock_irqrestore(&xhci->lock, flags);
3478 	}
3479 
3480 	/* Everything but endpoint 0 is disabled, so free the rings. */
3481 	last_freed_endpoint = 1;
3482 	for (i = 1; i < 31; i++) {
3483 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3484 
3485 		if (ep->ep_state & EP_HAS_STREAMS) {
3486 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3487 					xhci_get_endpoint_address(i));
3488 			xhci_free_stream_info(xhci, ep->stream_info);
3489 			ep->stream_info = NULL;
3490 			ep->ep_state &= ~EP_HAS_STREAMS;
3491 		}
3492 
3493 		if (ep->ring) {
3494 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3495 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3496 			last_freed_endpoint = i;
3497 		}
3498 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3499 			xhci_drop_ep_from_interval_table(xhci,
3500 					&virt_dev->eps[i].bw_info,
3501 					virt_dev->bw_table,
3502 					udev,
3503 					&virt_dev->eps[i],
3504 					virt_dev->tt_info);
3505 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3506 	}
3507 	/* If necessary, update the number of active TTs on this root port */
3508 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3509 	ret = 0;
3510 
3511 command_cleanup:
3512 	xhci_free_command(xhci, reset_device_cmd);
3513 	return ret;
3514 }
3515 
3516 /*
3517  * At this point, the struct usb_device is about to go away, the device has
3518  * disconnected, and all traffic has been stopped and the endpoints have been
3519  * disabled.  Free any HC data structures associated with that device.
3520  */
3521 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3522 {
3523 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3524 	struct xhci_virt_device *virt_dev;
3525 	struct xhci_slot_ctx *slot_ctx;
3526 	int i, ret;
3527 
3528 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3529 
3530 #ifndef CONFIG_USB_DEFAULT_PERSIST
3531 	/*
3532 	 * We called pm_runtime_get_noresume when the device was attached.
3533 	 * Decrement the counter here to allow controller to runtime suspend
3534 	 * if no devices remain.
3535 	 */
3536 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3537 		pm_runtime_put_noidle(hcd->self.controller);
3538 #endif
3539 
3540 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3541 	/* If the host is halted due to driver unload, we still need to free the
3542 	 * device.
3543 	 */
3544 	if (ret <= 0 && ret != -ENODEV)
3545 		return;
3546 
3547 	virt_dev = xhci->devs[udev->slot_id];
3548 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3549 	trace_xhci_free_dev(slot_ctx);
3550 
3551 	/* Stop any wayward timer functions (which may grab the lock) */
3552 	for (i = 0; i < 31; i++) {
3553 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3554 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3555 	}
3556 
3557 	ret = xhci_disable_slot(xhci, udev->slot_id);
3558 	if (ret)
3559 		xhci_free_virt_device(xhci, udev->slot_id);
3560 }
3561 
3562 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3563 {
3564 	struct xhci_command *command;
3565 	unsigned long flags;
3566 	u32 state;
3567 	int ret = 0;
3568 
3569 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3570 	if (!command)
3571 		return -ENOMEM;
3572 
3573 	spin_lock_irqsave(&xhci->lock, flags);
3574 	/* Don't disable the slot if the host controller is dead. */
3575 	state = readl(&xhci->op_regs->status);
3576 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3577 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3578 		spin_unlock_irqrestore(&xhci->lock, flags);
3579 		kfree(command);
3580 		return -ENODEV;
3581 	}
3582 
3583 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3584 				slot_id);
3585 	if (ret) {
3586 		spin_unlock_irqrestore(&xhci->lock, flags);
3587 		kfree(command);
3588 		return ret;
3589 	}
3590 	xhci_ring_cmd_db(xhci);
3591 	spin_unlock_irqrestore(&xhci->lock, flags);
3592 	return ret;
3593 }
3594 
3595 /*
3596  * Checks if we have enough host controller resources for the default control
3597  * endpoint.
3598  *
3599  * Must be called with xhci->lock held.
3600  */
3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3602 {
3603 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3604 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3605 				"Not enough ep ctxs: "
3606 				"%u active, need to add 1, limit is %u.",
3607 				xhci->num_active_eps, xhci->limit_active_eps);
3608 		return -ENOMEM;
3609 	}
3610 	xhci->num_active_eps += 1;
3611 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612 			"Adding 1 ep ctx, %u now active.",
3613 			xhci->num_active_eps);
3614 	return 0;
3615 }
3616 
3617 
3618 /*
3619  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3620  * timed out, or allocating memory failed.  Returns 1 on success.
3621  */
3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3623 {
3624 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3625 	struct xhci_virt_device *vdev;
3626 	struct xhci_slot_ctx *slot_ctx;
3627 	unsigned long flags;
3628 	int ret, slot_id;
3629 	struct xhci_command *command;
3630 
3631 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3632 	if (!command)
3633 		return 0;
3634 
3635 	spin_lock_irqsave(&xhci->lock, flags);
3636 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3637 	if (ret) {
3638 		spin_unlock_irqrestore(&xhci->lock, flags);
3639 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3640 		xhci_free_command(xhci, command);
3641 		return 0;
3642 	}
3643 	xhci_ring_cmd_db(xhci);
3644 	spin_unlock_irqrestore(&xhci->lock, flags);
3645 
3646 	wait_for_completion(command->completion);
3647 	slot_id = command->slot_id;
3648 
3649 	if (!slot_id || command->status != COMP_SUCCESS) {
3650 		xhci_err(xhci, "Error while assigning device slot ID\n");
3651 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3652 				HCS_MAX_SLOTS(
3653 					readl(&xhci->cap_regs->hcs_params1)));
3654 		xhci_free_command(xhci, command);
3655 		return 0;
3656 	}
3657 
3658 	xhci_free_command(xhci, command);
3659 
3660 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3661 		spin_lock_irqsave(&xhci->lock, flags);
3662 		ret = xhci_reserve_host_control_ep_resources(xhci);
3663 		if (ret) {
3664 			spin_unlock_irqrestore(&xhci->lock, flags);
3665 			xhci_warn(xhci, "Not enough host resources, "
3666 					"active endpoint contexts = %u\n",
3667 					xhci->num_active_eps);
3668 			goto disable_slot;
3669 		}
3670 		spin_unlock_irqrestore(&xhci->lock, flags);
3671 	}
3672 	/* Use GFP_NOIO, since this function can be called from
3673 	 * xhci_discover_or_reset_device(), which may be called as part of
3674 	 * mass storage driver error handling.
3675 	 */
3676 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3677 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3678 		goto disable_slot;
3679 	}
3680 	vdev = xhci->devs[slot_id];
3681 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3682 	trace_xhci_alloc_dev(slot_ctx);
3683 
3684 	udev->slot_id = slot_id;
3685 
3686 	xhci_debugfs_create_slot(xhci, slot_id);
3687 
3688 #ifndef CONFIG_USB_DEFAULT_PERSIST
3689 	/*
3690 	 * If resetting upon resume, we can't put the controller into runtime
3691 	 * suspend if there is a device attached.
3692 	 */
3693 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3694 		pm_runtime_get_noresume(hcd->self.controller);
3695 #endif
3696 
3697 	/* Is this a LS or FS device under a HS hub? */
3698 	/* Hub or peripherial? */
3699 	return 1;
3700 
3701 disable_slot:
3702 	ret = xhci_disable_slot(xhci, udev->slot_id);
3703 	if (ret)
3704 		xhci_free_virt_device(xhci, udev->slot_id);
3705 
3706 	return 0;
3707 }
3708 
3709 /*
3710  * Issue an Address Device command and optionally send a corresponding
3711  * SetAddress request to the device.
3712  */
3713 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3714 			     enum xhci_setup_dev setup)
3715 {
3716 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3717 	unsigned long flags;
3718 	struct xhci_virt_device *virt_dev;
3719 	int ret = 0;
3720 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3721 	struct xhci_slot_ctx *slot_ctx;
3722 	struct xhci_input_control_ctx *ctrl_ctx;
3723 	u64 temp_64;
3724 	struct xhci_command *command = NULL;
3725 
3726 	mutex_lock(&xhci->mutex);
3727 
3728 	if (xhci->xhc_state) {	/* dying, removing or halted */
3729 		ret = -ESHUTDOWN;
3730 		goto out;
3731 	}
3732 
3733 	if (!udev->slot_id) {
3734 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3735 				"Bad Slot ID %d", udev->slot_id);
3736 		ret = -EINVAL;
3737 		goto out;
3738 	}
3739 
3740 	virt_dev = xhci->devs[udev->slot_id];
3741 
3742 	if (WARN_ON(!virt_dev)) {
3743 		/*
3744 		 * In plug/unplug torture test with an NEC controller,
3745 		 * a zero-dereference was observed once due to virt_dev = 0.
3746 		 * Print useful debug rather than crash if it is observed again!
3747 		 */
3748 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3749 			udev->slot_id);
3750 		ret = -EINVAL;
3751 		goto out;
3752 	}
3753 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3754 	trace_xhci_setup_device_slot(slot_ctx);
3755 
3756 	if (setup == SETUP_CONTEXT_ONLY) {
3757 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3758 		    SLOT_STATE_DEFAULT) {
3759 			xhci_dbg(xhci, "Slot already in default state\n");
3760 			goto out;
3761 		}
3762 	}
3763 
3764 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3765 	if (!command) {
3766 		ret = -ENOMEM;
3767 		goto out;
3768 	}
3769 
3770 	command->in_ctx = virt_dev->in_ctx;
3771 
3772 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3773 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3774 	if (!ctrl_ctx) {
3775 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3776 				__func__);
3777 		ret = -EINVAL;
3778 		goto out;
3779 	}
3780 	/*
3781 	 * If this is the first Set Address since device plug-in or
3782 	 * virt_device realloaction after a resume with an xHCI power loss,
3783 	 * then set up the slot context.
3784 	 */
3785 	if (!slot_ctx->dev_info)
3786 		xhci_setup_addressable_virt_dev(xhci, udev);
3787 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3788 	else
3789 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3790 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3791 	ctrl_ctx->drop_flags = 0;
3792 
3793 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3794 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3795 
3796 	spin_lock_irqsave(&xhci->lock, flags);
3797 	trace_xhci_setup_device(virt_dev);
3798 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3799 					udev->slot_id, setup);
3800 	if (ret) {
3801 		spin_unlock_irqrestore(&xhci->lock, flags);
3802 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803 				"FIXME: allocate a command ring segment");
3804 		goto out;
3805 	}
3806 	xhci_ring_cmd_db(xhci);
3807 	spin_unlock_irqrestore(&xhci->lock, flags);
3808 
3809 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3810 	wait_for_completion(command->completion);
3811 
3812 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3813 	 * the SetAddress() "recovery interval" required by USB and aborting the
3814 	 * command on a timeout.
3815 	 */
3816 	switch (command->status) {
3817 	case COMP_COMMAND_ABORTED:
3818 	case COMP_COMMAND_RING_STOPPED:
3819 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3820 		ret = -ETIME;
3821 		break;
3822 	case COMP_CONTEXT_STATE_ERROR:
3823 	case COMP_SLOT_NOT_ENABLED_ERROR:
3824 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3825 			 act, udev->slot_id);
3826 		ret = -EINVAL;
3827 		break;
3828 	case COMP_USB_TRANSACTION_ERROR:
3829 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3830 
3831 		mutex_unlock(&xhci->mutex);
3832 		ret = xhci_disable_slot(xhci, udev->slot_id);
3833 		if (!ret)
3834 			xhci_alloc_dev(hcd, udev);
3835 		kfree(command->completion);
3836 		kfree(command);
3837 		return -EPROTO;
3838 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3839 		dev_warn(&udev->dev,
3840 			 "ERROR: Incompatible device for setup %s command\n", act);
3841 		ret = -ENODEV;
3842 		break;
3843 	case COMP_SUCCESS:
3844 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845 			       "Successful setup %s command", act);
3846 		break;
3847 	default:
3848 		xhci_err(xhci,
3849 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3850 			 act, command->status);
3851 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3852 		ret = -EINVAL;
3853 		break;
3854 	}
3855 	if (ret)
3856 		goto out;
3857 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3858 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 			"Op regs DCBAA ptr = %#016llx", temp_64);
3860 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3861 		"Slot ID %d dcbaa entry @%p = %#016llx",
3862 		udev->slot_id,
3863 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3864 		(unsigned long long)
3865 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3866 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3867 			"Output Context DMA address = %#08llx",
3868 			(unsigned long long)virt_dev->out_ctx->dma);
3869 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3870 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3871 	/*
3872 	 * USB core uses address 1 for the roothubs, so we add one to the
3873 	 * address given back to us by the HC.
3874 	 */
3875 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3876 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3877 	/* Zero the input context control for later use */
3878 	ctrl_ctx->add_flags = 0;
3879 	ctrl_ctx->drop_flags = 0;
3880 
3881 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882 		       "Internal device address = %d",
3883 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3884 out:
3885 	mutex_unlock(&xhci->mutex);
3886 	if (command) {
3887 		kfree(command->completion);
3888 		kfree(command);
3889 	}
3890 	return ret;
3891 }
3892 
3893 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3894 {
3895 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3896 }
3897 
3898 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3899 {
3900 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3901 }
3902 
3903 /*
3904  * Transfer the port index into real index in the HW port status
3905  * registers. Caculate offset between the port's PORTSC register
3906  * and port status base. Divide the number of per port register
3907  * to get the real index. The raw port number bases 1.
3908  */
3909 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3910 {
3911 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3912 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3913 	__le32 __iomem *addr;
3914 	int raw_port;
3915 
3916 	if (hcd->speed < HCD_USB3)
3917 		addr = xhci->usb2_ports[port1 - 1];
3918 	else
3919 		addr = xhci->usb3_ports[port1 - 1];
3920 
3921 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3922 	return raw_port;
3923 }
3924 
3925 /*
3926  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3927  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3928  */
3929 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3930 			struct usb_device *udev, u16 max_exit_latency)
3931 {
3932 	struct xhci_virt_device *virt_dev;
3933 	struct xhci_command *command;
3934 	struct xhci_input_control_ctx *ctrl_ctx;
3935 	struct xhci_slot_ctx *slot_ctx;
3936 	unsigned long flags;
3937 	int ret;
3938 
3939 	spin_lock_irqsave(&xhci->lock, flags);
3940 
3941 	virt_dev = xhci->devs[udev->slot_id];
3942 
3943 	/*
3944 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3945 	 * xHC was re-initialized. Exit latency will be set later after
3946 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3947 	 */
3948 
3949 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3950 		spin_unlock_irqrestore(&xhci->lock, flags);
3951 		return 0;
3952 	}
3953 
3954 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3955 	command = xhci->lpm_command;
3956 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3957 	if (!ctrl_ctx) {
3958 		spin_unlock_irqrestore(&xhci->lock, flags);
3959 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3960 				__func__);
3961 		return -ENOMEM;
3962 	}
3963 
3964 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3965 	spin_unlock_irqrestore(&xhci->lock, flags);
3966 
3967 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3968 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3969 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3970 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3971 	slot_ctx->dev_state = 0;
3972 
3973 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3974 			"Set up evaluate context for LPM MEL change.");
3975 
3976 	/* Issue and wait for the evaluate context command. */
3977 	ret = xhci_configure_endpoint(xhci, udev, command,
3978 			true, true);
3979 
3980 	if (!ret) {
3981 		spin_lock_irqsave(&xhci->lock, flags);
3982 		virt_dev->current_mel = max_exit_latency;
3983 		spin_unlock_irqrestore(&xhci->lock, flags);
3984 	}
3985 	return ret;
3986 }
3987 
3988 #ifdef CONFIG_PM
3989 
3990 /* BESL to HIRD Encoding array for USB2 LPM */
3991 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3992 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3993 
3994 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3995 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3996 					struct usb_device *udev)
3997 {
3998 	int u2del, besl, besl_host;
3999 	int besl_device = 0;
4000 	u32 field;
4001 
4002 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4003 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004 
4005 	if (field & USB_BESL_SUPPORT) {
4006 		for (besl_host = 0; besl_host < 16; besl_host++) {
4007 			if (xhci_besl_encoding[besl_host] >= u2del)
4008 				break;
4009 		}
4010 		/* Use baseline BESL value as default */
4011 		if (field & USB_BESL_BASELINE_VALID)
4012 			besl_device = USB_GET_BESL_BASELINE(field);
4013 		else if (field & USB_BESL_DEEP_VALID)
4014 			besl_device = USB_GET_BESL_DEEP(field);
4015 	} else {
4016 		if (u2del <= 50)
4017 			besl_host = 0;
4018 		else
4019 			besl_host = (u2del - 51) / 75 + 1;
4020 	}
4021 
4022 	besl = besl_host + besl_device;
4023 	if (besl > 15)
4024 		besl = 15;
4025 
4026 	return besl;
4027 }
4028 
4029 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4030 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4031 {
4032 	u32 field;
4033 	int l1;
4034 	int besld = 0;
4035 	int hirdm = 0;
4036 
4037 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4038 
4039 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4040 	l1 = udev->l1_params.timeout / 256;
4041 
4042 	/* device has preferred BESLD */
4043 	if (field & USB_BESL_DEEP_VALID) {
4044 		besld = USB_GET_BESL_DEEP(field);
4045 		hirdm = 1;
4046 	}
4047 
4048 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4049 }
4050 
4051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4052 			struct usb_device *udev, int enable)
4053 {
4054 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4055 	__le32 __iomem	**port_array;
4056 	__le32 __iomem	*pm_addr, *hlpm_addr;
4057 	u32		pm_val, hlpm_val, field;
4058 	unsigned int	port_num;
4059 	unsigned long	flags;
4060 	int		hird, exit_latency;
4061 	int		ret;
4062 
4063 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4064 			!udev->lpm_capable)
4065 		return -EPERM;
4066 
4067 	if (!udev->parent || udev->parent->parent ||
4068 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4069 		return -EPERM;
4070 
4071 	if (udev->usb2_hw_lpm_capable != 1)
4072 		return -EPERM;
4073 
4074 	spin_lock_irqsave(&xhci->lock, flags);
4075 
4076 	port_array = xhci->usb2_ports;
4077 	port_num = udev->portnum - 1;
4078 	pm_addr = port_array[port_num] + PORTPMSC;
4079 	pm_val = readl(pm_addr);
4080 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4081 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082 
4083 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4084 			enable ? "enable" : "disable", port_num + 1);
4085 
4086 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4087 		/* Host supports BESL timeout instead of HIRD */
4088 		if (udev->usb2_hw_lpm_besl_capable) {
4089 			/* if device doesn't have a preferred BESL value use a
4090 			 * default one which works with mixed HIRD and BESL
4091 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4092 			 */
4093 			if ((field & USB_BESL_SUPPORT) &&
4094 			    (field & USB_BESL_BASELINE_VALID))
4095 				hird = USB_GET_BESL_BASELINE(field);
4096 			else
4097 				hird = udev->l1_params.besl;
4098 
4099 			exit_latency = xhci_besl_encoding[hird];
4100 			spin_unlock_irqrestore(&xhci->lock, flags);
4101 
4102 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4103 			 * input context for link powermanagement evaluate
4104 			 * context commands. It is protected by hcd->bandwidth
4105 			 * mutex and is shared by all devices. We need to set
4106 			 * the max ext latency in USB 2 BESL LPM as well, so
4107 			 * use the same mutex and xhci_change_max_exit_latency()
4108 			 */
4109 			mutex_lock(hcd->bandwidth_mutex);
4110 			ret = xhci_change_max_exit_latency(xhci, udev,
4111 							   exit_latency);
4112 			mutex_unlock(hcd->bandwidth_mutex);
4113 
4114 			if (ret < 0)
4115 				return ret;
4116 			spin_lock_irqsave(&xhci->lock, flags);
4117 
4118 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4119 			writel(hlpm_val, hlpm_addr);
4120 			/* flush write */
4121 			readl(hlpm_addr);
4122 		} else {
4123 			hird = xhci_calculate_hird_besl(xhci, udev);
4124 		}
4125 
4126 		pm_val &= ~PORT_HIRD_MASK;
4127 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4128 		writel(pm_val, pm_addr);
4129 		pm_val = readl(pm_addr);
4130 		pm_val |= PORT_HLE;
4131 		writel(pm_val, pm_addr);
4132 		/* flush write */
4133 		readl(pm_addr);
4134 	} else {
4135 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4136 		writel(pm_val, pm_addr);
4137 		/* flush write */
4138 		readl(pm_addr);
4139 		if (udev->usb2_hw_lpm_besl_capable) {
4140 			spin_unlock_irqrestore(&xhci->lock, flags);
4141 			mutex_lock(hcd->bandwidth_mutex);
4142 			xhci_change_max_exit_latency(xhci, udev, 0);
4143 			mutex_unlock(hcd->bandwidth_mutex);
4144 			return 0;
4145 		}
4146 	}
4147 
4148 	spin_unlock_irqrestore(&xhci->lock, flags);
4149 	return 0;
4150 }
4151 
4152 /* check if a usb2 port supports a given extened capability protocol
4153  * only USB2 ports extended protocol capability values are cached.
4154  * Return 1 if capability is supported
4155  */
4156 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4157 					   unsigned capability)
4158 {
4159 	u32 port_offset, port_count;
4160 	int i;
4161 
4162 	for (i = 0; i < xhci->num_ext_caps; i++) {
4163 		if (xhci->ext_caps[i] & capability) {
4164 			/* port offsets starts at 1 */
4165 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4166 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4167 			if (port >= port_offset &&
4168 			    port < port_offset + port_count)
4169 				return 1;
4170 		}
4171 	}
4172 	return 0;
4173 }
4174 
4175 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4176 {
4177 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4178 	int		portnum = udev->portnum - 1;
4179 
4180 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4181 			!udev->lpm_capable)
4182 		return 0;
4183 
4184 	/* we only support lpm for non-hub device connected to root hub yet */
4185 	if (!udev->parent || udev->parent->parent ||
4186 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4187 		return 0;
4188 
4189 	if (xhci->hw_lpm_support == 1 &&
4190 			xhci_check_usb2_port_capability(
4191 				xhci, portnum, XHCI_HLC)) {
4192 		udev->usb2_hw_lpm_capable = 1;
4193 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4194 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4195 		if (xhci_check_usb2_port_capability(xhci, portnum,
4196 					XHCI_BLC))
4197 			udev->usb2_hw_lpm_besl_capable = 1;
4198 	}
4199 
4200 	return 0;
4201 }
4202 
4203 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4204 
4205 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4206 static unsigned long long xhci_service_interval_to_ns(
4207 		struct usb_endpoint_descriptor *desc)
4208 {
4209 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4210 }
4211 
4212 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4213 		enum usb3_link_state state)
4214 {
4215 	unsigned long long sel;
4216 	unsigned long long pel;
4217 	unsigned int max_sel_pel;
4218 	char *state_name;
4219 
4220 	switch (state) {
4221 	case USB3_LPM_U1:
4222 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4223 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4224 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4225 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4226 		state_name = "U1";
4227 		break;
4228 	case USB3_LPM_U2:
4229 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4230 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4231 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4232 		state_name = "U2";
4233 		break;
4234 	default:
4235 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4236 				__func__);
4237 		return USB3_LPM_DISABLED;
4238 	}
4239 
4240 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4241 		return USB3_LPM_DEVICE_INITIATED;
4242 
4243 	if (sel > max_sel_pel)
4244 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4245 				"due to long SEL %llu ms\n",
4246 				state_name, sel);
4247 	else
4248 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4249 				"due to long PEL %llu ms\n",
4250 				state_name, pel);
4251 	return USB3_LPM_DISABLED;
4252 }
4253 
4254 /* The U1 timeout should be the maximum of the following values:
4255  *  - For control endpoints, U1 system exit latency (SEL) * 3
4256  *  - For bulk endpoints, U1 SEL * 5
4257  *  - For interrupt endpoints:
4258  *    - Notification EPs, U1 SEL * 3
4259  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4260  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4261  */
4262 static unsigned long long xhci_calculate_intel_u1_timeout(
4263 		struct usb_device *udev,
4264 		struct usb_endpoint_descriptor *desc)
4265 {
4266 	unsigned long long timeout_ns;
4267 	int ep_type;
4268 	int intr_type;
4269 
4270 	ep_type = usb_endpoint_type(desc);
4271 	switch (ep_type) {
4272 	case USB_ENDPOINT_XFER_CONTROL:
4273 		timeout_ns = udev->u1_params.sel * 3;
4274 		break;
4275 	case USB_ENDPOINT_XFER_BULK:
4276 		timeout_ns = udev->u1_params.sel * 5;
4277 		break;
4278 	case USB_ENDPOINT_XFER_INT:
4279 		intr_type = usb_endpoint_interrupt_type(desc);
4280 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4281 			timeout_ns = udev->u1_params.sel * 3;
4282 			break;
4283 		}
4284 		/* Otherwise the calculation is the same as isoc eps */
4285 		/* fall through */
4286 	case USB_ENDPOINT_XFER_ISOC:
4287 		timeout_ns = xhci_service_interval_to_ns(desc);
4288 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4289 		if (timeout_ns < udev->u1_params.sel * 2)
4290 			timeout_ns = udev->u1_params.sel * 2;
4291 		break;
4292 	default:
4293 		return 0;
4294 	}
4295 
4296 	return timeout_ns;
4297 }
4298 
4299 /* Returns the hub-encoded U1 timeout value. */
4300 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4301 		struct usb_device *udev,
4302 		struct usb_endpoint_descriptor *desc)
4303 {
4304 	unsigned long long timeout_ns;
4305 
4306 	if (xhci->quirks & XHCI_INTEL_HOST)
4307 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4308 	else
4309 		timeout_ns = udev->u1_params.sel;
4310 
4311 	/* The U1 timeout is encoded in 1us intervals.
4312 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4313 	 */
4314 	if (timeout_ns == USB3_LPM_DISABLED)
4315 		timeout_ns = 1;
4316 	else
4317 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4318 
4319 	/* If the necessary timeout value is bigger than what we can set in the
4320 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4321 	 */
4322 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4323 		return timeout_ns;
4324 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4325 			"due to long timeout %llu ms\n", timeout_ns);
4326 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4327 }
4328 
4329 /* The U2 timeout should be the maximum of:
4330  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4331  *  - largest bInterval of any active periodic endpoint (to avoid going
4332  *    into lower power link states between intervals).
4333  *  - the U2 Exit Latency of the device
4334  */
4335 static unsigned long long xhci_calculate_intel_u2_timeout(
4336 		struct usb_device *udev,
4337 		struct usb_endpoint_descriptor *desc)
4338 {
4339 	unsigned long long timeout_ns;
4340 	unsigned long long u2_del_ns;
4341 
4342 	timeout_ns = 10 * 1000 * 1000;
4343 
4344 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4345 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4346 		timeout_ns = xhci_service_interval_to_ns(desc);
4347 
4348 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4349 	if (u2_del_ns > timeout_ns)
4350 		timeout_ns = u2_del_ns;
4351 
4352 	return timeout_ns;
4353 }
4354 
4355 /* Returns the hub-encoded U2 timeout value. */
4356 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4357 		struct usb_device *udev,
4358 		struct usb_endpoint_descriptor *desc)
4359 {
4360 	unsigned long long timeout_ns;
4361 
4362 	if (xhci->quirks & XHCI_INTEL_HOST)
4363 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4364 	else
4365 		timeout_ns = udev->u2_params.sel;
4366 
4367 	/* The U2 timeout is encoded in 256us intervals */
4368 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4369 	/* If the necessary timeout value is bigger than what we can set in the
4370 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4371 	 */
4372 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4373 		return timeout_ns;
4374 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4375 			"due to long timeout %llu ms\n", timeout_ns);
4376 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4377 }
4378 
4379 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4380 		struct usb_device *udev,
4381 		struct usb_endpoint_descriptor *desc,
4382 		enum usb3_link_state state,
4383 		u16 *timeout)
4384 {
4385 	if (state == USB3_LPM_U1)
4386 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4387 	else if (state == USB3_LPM_U2)
4388 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4389 
4390 	return USB3_LPM_DISABLED;
4391 }
4392 
4393 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4394 		struct usb_device *udev,
4395 		struct usb_endpoint_descriptor *desc,
4396 		enum usb3_link_state state,
4397 		u16 *timeout)
4398 {
4399 	u16 alt_timeout;
4400 
4401 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4402 		desc, state, timeout);
4403 
4404 	/* If we found we can't enable hub-initiated LPM, or
4405 	 * the U1 or U2 exit latency was too high to allow
4406 	 * device-initiated LPM as well, just stop searching.
4407 	 */
4408 	if (alt_timeout == USB3_LPM_DISABLED ||
4409 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4410 		*timeout = alt_timeout;
4411 		return -E2BIG;
4412 	}
4413 	if (alt_timeout > *timeout)
4414 		*timeout = alt_timeout;
4415 	return 0;
4416 }
4417 
4418 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4419 		struct usb_device *udev,
4420 		struct usb_host_interface *alt,
4421 		enum usb3_link_state state,
4422 		u16 *timeout)
4423 {
4424 	int j;
4425 
4426 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4427 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4428 					&alt->endpoint[j].desc, state, timeout))
4429 			return -E2BIG;
4430 		continue;
4431 	}
4432 	return 0;
4433 }
4434 
4435 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4436 		enum usb3_link_state state)
4437 {
4438 	struct usb_device *parent;
4439 	unsigned int num_hubs;
4440 
4441 	if (state == USB3_LPM_U2)
4442 		return 0;
4443 
4444 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4445 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4446 			parent = parent->parent)
4447 		num_hubs++;
4448 
4449 	if (num_hubs < 2)
4450 		return 0;
4451 
4452 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4453 			" below second-tier hub.\n");
4454 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4455 			"to decrease power consumption.\n");
4456 	return -E2BIG;
4457 }
4458 
4459 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4460 		struct usb_device *udev,
4461 		enum usb3_link_state state)
4462 {
4463 	if (xhci->quirks & XHCI_INTEL_HOST)
4464 		return xhci_check_intel_tier_policy(udev, state);
4465 	else
4466 		return 0;
4467 }
4468 
4469 /* Returns the U1 or U2 timeout that should be enabled.
4470  * If the tier check or timeout setting functions return with a non-zero exit
4471  * code, that means the timeout value has been finalized and we shouldn't look
4472  * at any more endpoints.
4473  */
4474 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4475 			struct usb_device *udev, enum usb3_link_state state)
4476 {
4477 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4478 	struct usb_host_config *config;
4479 	char *state_name;
4480 	int i;
4481 	u16 timeout = USB3_LPM_DISABLED;
4482 
4483 	if (state == USB3_LPM_U1)
4484 		state_name = "U1";
4485 	else if (state == USB3_LPM_U2)
4486 		state_name = "U2";
4487 	else {
4488 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4489 				state);
4490 		return timeout;
4491 	}
4492 
4493 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4494 		return timeout;
4495 
4496 	/* Gather some information about the currently installed configuration
4497 	 * and alternate interface settings.
4498 	 */
4499 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4500 			state, &timeout))
4501 		return timeout;
4502 
4503 	config = udev->actconfig;
4504 	if (!config)
4505 		return timeout;
4506 
4507 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4508 		struct usb_driver *driver;
4509 		struct usb_interface *intf = config->interface[i];
4510 
4511 		if (!intf)
4512 			continue;
4513 
4514 		/* Check if any currently bound drivers want hub-initiated LPM
4515 		 * disabled.
4516 		 */
4517 		if (intf->dev.driver) {
4518 			driver = to_usb_driver(intf->dev.driver);
4519 			if (driver && driver->disable_hub_initiated_lpm) {
4520 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4521 						"at request of driver %s\n",
4522 						state_name, driver->name);
4523 				return xhci_get_timeout_no_hub_lpm(udev, state);
4524 			}
4525 		}
4526 
4527 		/* Not sure how this could happen... */
4528 		if (!intf->cur_altsetting)
4529 			continue;
4530 
4531 		if (xhci_update_timeout_for_interface(xhci, udev,
4532 					intf->cur_altsetting,
4533 					state, &timeout))
4534 			return timeout;
4535 	}
4536 	return timeout;
4537 }
4538 
4539 static int calculate_max_exit_latency(struct usb_device *udev,
4540 		enum usb3_link_state state_changed,
4541 		u16 hub_encoded_timeout)
4542 {
4543 	unsigned long long u1_mel_us = 0;
4544 	unsigned long long u2_mel_us = 0;
4545 	unsigned long long mel_us = 0;
4546 	bool disabling_u1;
4547 	bool disabling_u2;
4548 	bool enabling_u1;
4549 	bool enabling_u2;
4550 
4551 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4552 			hub_encoded_timeout == USB3_LPM_DISABLED);
4553 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4554 			hub_encoded_timeout == USB3_LPM_DISABLED);
4555 
4556 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4557 			hub_encoded_timeout != USB3_LPM_DISABLED);
4558 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4559 			hub_encoded_timeout != USB3_LPM_DISABLED);
4560 
4561 	/* If U1 was already enabled and we're not disabling it,
4562 	 * or we're going to enable U1, account for the U1 max exit latency.
4563 	 */
4564 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4565 			enabling_u1)
4566 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4567 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4568 			enabling_u2)
4569 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4570 
4571 	if (u1_mel_us > u2_mel_us)
4572 		mel_us = u1_mel_us;
4573 	else
4574 		mel_us = u2_mel_us;
4575 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4576 	if (mel_us > MAX_EXIT) {
4577 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4578 				"is too big.\n", mel_us);
4579 		return -E2BIG;
4580 	}
4581 	return mel_us;
4582 }
4583 
4584 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4585 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4586 			struct usb_device *udev, enum usb3_link_state state)
4587 {
4588 	struct xhci_hcd	*xhci;
4589 	u16 hub_encoded_timeout;
4590 	int mel;
4591 	int ret;
4592 
4593 	xhci = hcd_to_xhci(hcd);
4594 	/* The LPM timeout values are pretty host-controller specific, so don't
4595 	 * enable hub-initiated timeouts unless the vendor has provided
4596 	 * information about their timeout algorithm.
4597 	 */
4598 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4599 			!xhci->devs[udev->slot_id])
4600 		return USB3_LPM_DISABLED;
4601 
4602 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4603 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4604 	if (mel < 0) {
4605 		/* Max Exit Latency is too big, disable LPM. */
4606 		hub_encoded_timeout = USB3_LPM_DISABLED;
4607 		mel = 0;
4608 	}
4609 
4610 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4611 	if (ret)
4612 		return ret;
4613 	return hub_encoded_timeout;
4614 }
4615 
4616 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4617 			struct usb_device *udev, enum usb3_link_state state)
4618 {
4619 	struct xhci_hcd	*xhci;
4620 	u16 mel;
4621 
4622 	xhci = hcd_to_xhci(hcd);
4623 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4624 			!xhci->devs[udev->slot_id])
4625 		return 0;
4626 
4627 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4628 	return xhci_change_max_exit_latency(xhci, udev, mel);
4629 }
4630 #else /* CONFIG_PM */
4631 
4632 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4633 				struct usb_device *udev, int enable)
4634 {
4635 	return 0;
4636 }
4637 
4638 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4639 {
4640 	return 0;
4641 }
4642 
4643 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644 			struct usb_device *udev, enum usb3_link_state state)
4645 {
4646 	return USB3_LPM_DISABLED;
4647 }
4648 
4649 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4650 			struct usb_device *udev, enum usb3_link_state state)
4651 {
4652 	return 0;
4653 }
4654 #endif	/* CONFIG_PM */
4655 
4656 /*-------------------------------------------------------------------------*/
4657 
4658 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4659  * internal data structures for the device.
4660  */
4661 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4662 			struct usb_tt *tt, gfp_t mem_flags)
4663 {
4664 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4665 	struct xhci_virt_device *vdev;
4666 	struct xhci_command *config_cmd;
4667 	struct xhci_input_control_ctx *ctrl_ctx;
4668 	struct xhci_slot_ctx *slot_ctx;
4669 	unsigned long flags;
4670 	unsigned think_time;
4671 	int ret;
4672 
4673 	/* Ignore root hubs */
4674 	if (!hdev->parent)
4675 		return 0;
4676 
4677 	vdev = xhci->devs[hdev->slot_id];
4678 	if (!vdev) {
4679 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4680 		return -EINVAL;
4681 	}
4682 
4683 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4684 	if (!config_cmd)
4685 		return -ENOMEM;
4686 
4687 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4688 	if (!ctrl_ctx) {
4689 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4690 				__func__);
4691 		xhci_free_command(xhci, config_cmd);
4692 		return -ENOMEM;
4693 	}
4694 
4695 	spin_lock_irqsave(&xhci->lock, flags);
4696 	if (hdev->speed == USB_SPEED_HIGH &&
4697 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4698 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4699 		xhci_free_command(xhci, config_cmd);
4700 		spin_unlock_irqrestore(&xhci->lock, flags);
4701 		return -ENOMEM;
4702 	}
4703 
4704 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4705 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4706 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4707 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4708 	/*
4709 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4710 	 * but it may be already set to 1 when setup an xHCI virtual
4711 	 * device, so clear it anyway.
4712 	 */
4713 	if (tt->multi)
4714 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4715 	else if (hdev->speed == USB_SPEED_FULL)
4716 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4717 
4718 	if (xhci->hci_version > 0x95) {
4719 		xhci_dbg(xhci, "xHCI version %x needs hub "
4720 				"TT think time and number of ports\n",
4721 				(unsigned int) xhci->hci_version);
4722 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4723 		/* Set TT think time - convert from ns to FS bit times.
4724 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4725 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4726 		 *
4727 		 * xHCI 1.0: this field shall be 0 if the device is not a
4728 		 * High-spped hub.
4729 		 */
4730 		think_time = tt->think_time;
4731 		if (think_time != 0)
4732 			think_time = (think_time / 666) - 1;
4733 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4734 			slot_ctx->tt_info |=
4735 				cpu_to_le32(TT_THINK_TIME(think_time));
4736 	} else {
4737 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4738 				"TT think time or number of ports\n",
4739 				(unsigned int) xhci->hci_version);
4740 	}
4741 	slot_ctx->dev_state = 0;
4742 	spin_unlock_irqrestore(&xhci->lock, flags);
4743 
4744 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4745 			(xhci->hci_version > 0x95) ?
4746 			"configure endpoint" : "evaluate context");
4747 
4748 	/* Issue and wait for the configure endpoint or
4749 	 * evaluate context command.
4750 	 */
4751 	if (xhci->hci_version > 0x95)
4752 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4753 				false, false);
4754 	else
4755 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4756 				true, false);
4757 
4758 	xhci_free_command(xhci, config_cmd);
4759 	return ret;
4760 }
4761 
4762 static int xhci_get_frame(struct usb_hcd *hcd)
4763 {
4764 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4765 	/* EHCI mods by the periodic size.  Why? */
4766 	return readl(&xhci->run_regs->microframe_index) >> 3;
4767 }
4768 
4769 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4770 {
4771 	struct xhci_hcd		*xhci;
4772 	/*
4773 	 * TODO: Check with DWC3 clients for sysdev according to
4774 	 * quirks
4775 	 */
4776 	struct device		*dev = hcd->self.sysdev;
4777 	int			retval;
4778 
4779 	/* Accept arbitrarily long scatter-gather lists */
4780 	hcd->self.sg_tablesize = ~0;
4781 
4782 	/* support to build packet from discontinuous buffers */
4783 	hcd->self.no_sg_constraint = 1;
4784 
4785 	/* XHCI controllers don't stop the ep queue on short packets :| */
4786 	hcd->self.no_stop_on_short = 1;
4787 
4788 	xhci = hcd_to_xhci(hcd);
4789 
4790 	if (usb_hcd_is_primary_hcd(hcd)) {
4791 		xhci->main_hcd = hcd;
4792 		/* Mark the first roothub as being USB 2.0.
4793 		 * The xHCI driver will register the USB 3.0 roothub.
4794 		 */
4795 		hcd->speed = HCD_USB2;
4796 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4797 		/*
4798 		 * USB 2.0 roothub under xHCI has an integrated TT,
4799 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4800 		 * companion controller.
4801 		 */
4802 		hcd->has_tt = 1;
4803 	} else {
4804 		/* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4805 		if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4806 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4807 			hcd->speed = HCD_USB31;
4808 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4809 		}
4810 		/* xHCI private pointer was set in xhci_pci_probe for the second
4811 		 * registered roothub.
4812 		 */
4813 		return 0;
4814 	}
4815 
4816 	mutex_init(&xhci->mutex);
4817 	xhci->cap_regs = hcd->regs;
4818 	xhci->op_regs = hcd->regs +
4819 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4820 	xhci->run_regs = hcd->regs +
4821 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4822 	/* Cache read-only capability registers */
4823 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4824 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4825 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4826 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4827 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4828 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4829 	if (xhci->hci_version > 0x100)
4830 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4831 	xhci_print_registers(xhci);
4832 
4833 	xhci->quirks |= quirks;
4834 
4835 	get_quirks(dev, xhci);
4836 
4837 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4838 	 * success event after a short transfer. This quirk will ignore such
4839 	 * spurious event.
4840 	 */
4841 	if (xhci->hci_version > 0x96)
4842 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4843 
4844 	/* Make sure the HC is halted. */
4845 	retval = xhci_halt(xhci);
4846 	if (retval)
4847 		return retval;
4848 
4849 	xhci_dbg(xhci, "Resetting HCD\n");
4850 	/* Reset the internal HC memory state and registers. */
4851 	retval = xhci_reset(xhci);
4852 	if (retval)
4853 		return retval;
4854 	xhci_dbg(xhci, "Reset complete\n");
4855 
4856 	/*
4857 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4858 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4859 	 * address memory pointers actually. So, this driver clears the AC64
4860 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4861 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4862 	 */
4863 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4864 		xhci->hcc_params &= ~BIT(0);
4865 
4866 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4867 	 * if xHC supports 64-bit addressing */
4868 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4869 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4870 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4871 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4872 	} else {
4873 		/*
4874 		 * This is to avoid error in cases where a 32-bit USB
4875 		 * controller is used on a 64-bit capable system.
4876 		 */
4877 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4878 		if (retval)
4879 			return retval;
4880 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4881 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4882 	}
4883 
4884 	xhci_dbg(xhci, "Calling HCD init\n");
4885 	/* Initialize HCD and host controller data structures. */
4886 	retval = xhci_init(hcd);
4887 	if (retval)
4888 		return retval;
4889 	xhci_dbg(xhci, "Called HCD init\n");
4890 
4891 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4892 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4893 
4894 	return 0;
4895 }
4896 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4897 
4898 static const struct hc_driver xhci_hc_driver = {
4899 	.description =		"xhci-hcd",
4900 	.product_desc =		"xHCI Host Controller",
4901 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4902 
4903 	/*
4904 	 * generic hardware linkage
4905 	 */
4906 	.irq =			xhci_irq,
4907 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4908 
4909 	/*
4910 	 * basic lifecycle operations
4911 	 */
4912 	.reset =		NULL, /* set in xhci_init_driver() */
4913 	.start =		xhci_run,
4914 	.stop =			xhci_stop,
4915 	.shutdown =		xhci_shutdown,
4916 
4917 	/*
4918 	 * managing i/o requests and associated device resources
4919 	 */
4920 	.urb_enqueue =		xhci_urb_enqueue,
4921 	.urb_dequeue =		xhci_urb_dequeue,
4922 	.alloc_dev =		xhci_alloc_dev,
4923 	.free_dev =		xhci_free_dev,
4924 	.alloc_streams =	xhci_alloc_streams,
4925 	.free_streams =		xhci_free_streams,
4926 	.add_endpoint =		xhci_add_endpoint,
4927 	.drop_endpoint =	xhci_drop_endpoint,
4928 	.endpoint_reset =	xhci_endpoint_reset,
4929 	.check_bandwidth =	xhci_check_bandwidth,
4930 	.reset_bandwidth =	xhci_reset_bandwidth,
4931 	.address_device =	xhci_address_device,
4932 	.enable_device =	xhci_enable_device,
4933 	.update_hub_device =	xhci_update_hub_device,
4934 	.reset_device =		xhci_discover_or_reset_device,
4935 
4936 	/*
4937 	 * scheduling support
4938 	 */
4939 	.get_frame_number =	xhci_get_frame,
4940 
4941 	/*
4942 	 * root hub support
4943 	 */
4944 	.hub_control =		xhci_hub_control,
4945 	.hub_status_data =	xhci_hub_status_data,
4946 	.bus_suspend =		xhci_bus_suspend,
4947 	.bus_resume =		xhci_bus_resume,
4948 
4949 	/*
4950 	 * call back when device connected and addressed
4951 	 */
4952 	.update_device =        xhci_update_device,
4953 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4954 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4955 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4956 	.find_raw_port_number =	xhci_find_raw_port_number,
4957 };
4958 
4959 void xhci_init_driver(struct hc_driver *drv,
4960 		      const struct xhci_driver_overrides *over)
4961 {
4962 	BUG_ON(!over);
4963 
4964 	/* Copy the generic table to drv then apply the overrides */
4965 	*drv = xhci_hc_driver;
4966 
4967 	if (over) {
4968 		drv->hcd_priv_size += over->extra_priv_size;
4969 		if (over->reset)
4970 			drv->reset = over->reset;
4971 		if (over->start)
4972 			drv->start = over->start;
4973 	}
4974 }
4975 EXPORT_SYMBOL_GPL(xhci_init_driver);
4976 
4977 MODULE_DESCRIPTION(DRIVER_DESC);
4978 MODULE_AUTHOR(DRIVER_AUTHOR);
4979 MODULE_LICENSE("GPL");
4980 
4981 static int __init xhci_hcd_init(void)
4982 {
4983 	/*
4984 	 * Check the compiler generated sizes of structures that must be laid
4985 	 * out in specific ways for hardware access.
4986 	 */
4987 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4988 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4989 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4990 	/* xhci_device_control has eight fields, and also
4991 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4992 	 */
4993 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4994 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4995 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4996 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4997 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4998 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4999 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5000 
5001 	if (usb_disabled())
5002 		return -ENODEV;
5003 
5004 	xhci_debugfs_create_root();
5005 
5006 	return 0;
5007 }
5008 
5009 /*
5010  * If an init function is provided, an exit function must also be provided
5011  * to allow module unload.
5012  */
5013 static void __exit xhci_hcd_fini(void)
5014 {
5015 	xhci_debugfs_remove_root();
5016 }
5017 
5018 module_init(xhci_hcd_init);
5019 module_exit(xhci_hcd_fini);
5020