1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 static unsigned int quirks; 44 module_param(quirks, uint, S_IRUGO); 45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 46 47 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 48 /* 49 * xhci_handshake - spin reading hc until handshake completes or fails 50 * @ptr: address of hc register to be read 51 * @mask: bits to look at in result of read 52 * @done: value of those bits when handshake succeeds 53 * @usec: timeout in microseconds 54 * 55 * Returns negative errno, or zero on success 56 * 57 * Success happens when the "mask" bits have the specified value (hardware 58 * handshake done). There are two failure modes: "usec" have passed (major 59 * hardware flakeout), or the register reads as all-ones (hardware removed). 60 */ 61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 62 u32 mask, u32 done, int usec) 63 { 64 u32 result; 65 66 do { 67 result = readl(ptr); 68 if (result == ~(u32)0) /* card removed */ 69 return -ENODEV; 70 result &= mask; 71 if (result == done) 72 return 0; 73 udelay(1); 74 usec--; 75 } while (usec > 0); 76 return -ETIMEDOUT; 77 } 78 79 /* 80 * Disable interrupts and begin the xHCI halting process. 81 */ 82 void xhci_quiesce(struct xhci_hcd *xhci) 83 { 84 u32 halted; 85 u32 cmd; 86 u32 mask; 87 88 mask = ~(XHCI_IRQS); 89 halted = readl(&xhci->op_regs->status) & STS_HALT; 90 if (!halted) 91 mask &= ~CMD_RUN; 92 93 cmd = readl(&xhci->op_regs->command); 94 cmd &= mask; 95 writel(cmd, &xhci->op_regs->command); 96 } 97 98 /* 99 * Force HC into halt state. 100 * 101 * Disable any IRQs and clear the run/stop bit. 102 * HC will complete any current and actively pipelined transactions, and 103 * should halt within 16 ms of the run/stop bit being cleared. 104 * Read HC Halted bit in the status register to see when the HC is finished. 105 */ 106 int xhci_halt(struct xhci_hcd *xhci) 107 { 108 int ret; 109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 110 xhci_quiesce(xhci); 111 112 ret = xhci_handshake(xhci, &xhci->op_regs->status, 113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 114 if (!ret) { 115 xhci->xhc_state |= XHCI_STATE_HALTED; 116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 117 } else 118 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 119 XHCI_MAX_HALT_USEC); 120 return ret; 121 } 122 123 /* 124 * Set the run bit and wait for the host to be running. 125 */ 126 static int xhci_start(struct xhci_hcd *xhci) 127 { 128 u32 temp; 129 int ret; 130 131 temp = readl(&xhci->op_regs->command); 132 temp |= (CMD_RUN); 133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 134 temp); 135 writel(temp, &xhci->op_regs->command); 136 137 /* 138 * Wait for the HCHalted Status bit to be 0 to indicate the host is 139 * running. 140 */ 141 ret = xhci_handshake(xhci, &xhci->op_regs->status, 142 STS_HALT, 0, XHCI_MAX_HALT_USEC); 143 if (ret == -ETIMEDOUT) 144 xhci_err(xhci, "Host took too long to start, " 145 "waited %u microseconds.\n", 146 XHCI_MAX_HALT_USEC); 147 if (!ret) 148 xhci->xhc_state &= ~XHCI_STATE_HALTED; 149 return ret; 150 } 151 152 /* 153 * Reset a halted HC. 154 * 155 * This resets pipelines, timers, counters, state machines, etc. 156 * Transactions will be terminated immediately, and operational registers 157 * will be set to their defaults. 158 */ 159 int xhci_reset(struct xhci_hcd *xhci) 160 { 161 u32 command; 162 u32 state; 163 int ret, i; 164 165 state = readl(&xhci->op_regs->status); 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 ret = xhci_handshake(xhci, &xhci->op_regs->command, 177 CMD_RESET, 0, 10 * 1000 * 1000); 178 if (ret) 179 return ret; 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 182 "Wait for controller to be ready for doorbell rings"); 183 /* 184 * xHCI cannot write to any doorbells or operational registers other 185 * than status until the "Controller Not Ready" flag is cleared. 186 */ 187 ret = xhci_handshake(xhci, &xhci->op_regs->status, 188 STS_CNR, 0, 10 * 1000 * 1000); 189 190 for (i = 0; i < 2; ++i) { 191 xhci->bus_state[i].port_c_suspend = 0; 192 xhci->bus_state[i].suspended_ports = 0; 193 xhci->bus_state[i].resuming_ports = 0; 194 } 195 196 return ret; 197 } 198 199 #ifdef CONFIG_PCI 200 static int xhci_free_msi(struct xhci_hcd *xhci) 201 { 202 int i; 203 204 if (!xhci->msix_entries) 205 return -EINVAL; 206 207 for (i = 0; i < xhci->msix_count; i++) 208 if (xhci->msix_entries[i].vector) 209 free_irq(xhci->msix_entries[i].vector, 210 xhci_to_hcd(xhci)); 211 return 0; 212 } 213 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 221 222 ret = pci_enable_msi(pdev); 223 if (ret) { 224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 225 "failed to allocate MSI entry"); 226 return ret; 227 } 228 229 ret = request_irq(pdev->irq, xhci_msi_irq, 230 0, "xhci_hcd", xhci_to_hcd(xhci)); 231 if (ret) { 232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 233 "disable MSI interrupt"); 234 pci_disable_msi(pdev); 235 } 236 237 return ret; 238 } 239 240 /* 241 * Free IRQs 242 * free all IRQs request 243 */ 244 static void xhci_free_irq(struct xhci_hcd *xhci) 245 { 246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 247 int ret; 248 249 /* return if using legacy interrupt */ 250 if (xhci_to_hcd(xhci)->irq > 0) 251 return; 252 253 ret = xhci_free_msi(xhci); 254 if (!ret) 255 return; 256 if (pdev->irq > 0) 257 free_irq(pdev->irq, xhci_to_hcd(xhci)); 258 259 return; 260 } 261 262 /* 263 * Set up MSI-X 264 */ 265 static int xhci_setup_msix(struct xhci_hcd *xhci) 266 { 267 int i, ret = 0; 268 struct usb_hcd *hcd = xhci_to_hcd(xhci); 269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 270 271 /* 272 * calculate number of msi-x vectors supported. 273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 274 * with max number of interrupters based on the xhci HCSPARAMS1. 275 * - num_online_cpus: maximum msi-x vectors per CPUs core. 276 * Add additional 1 vector to ensure always available interrupt. 277 */ 278 xhci->msix_count = min(num_online_cpus() + 1, 279 HCS_MAX_INTRS(xhci->hcs_params1)); 280 281 xhci->msix_entries = 282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 283 GFP_KERNEL); 284 if (!xhci->msix_entries) { 285 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 286 return -ENOMEM; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 xhci->msix_entries[i].entry = i; 291 xhci->msix_entries[i].vector = 0; 292 } 293 294 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 295 if (ret) { 296 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 297 "Failed to enable MSI-X"); 298 goto free_entries; 299 } 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 ret = request_irq(xhci->msix_entries[i].vector, 303 xhci_msi_irq, 304 0, "xhci_hcd", xhci_to_hcd(xhci)); 305 if (ret) 306 goto disable_msix; 307 } 308 309 hcd->msix_enabled = 1; 310 return ret; 311 312 disable_msix: 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 314 xhci_free_irq(xhci); 315 pci_disable_msix(pdev); 316 free_entries: 317 kfree(xhci->msix_entries); 318 xhci->msix_entries = NULL; 319 return ret; 320 } 321 322 /* Free any IRQs and disable MSI-X */ 323 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 324 { 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 if (xhci->quirks & XHCI_PLAT) 329 return; 330 331 xhci_free_irq(xhci); 332 333 if (xhci->msix_entries) { 334 pci_disable_msix(pdev); 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 } else { 338 pci_disable_msi(pdev); 339 } 340 341 hcd->msix_enabled = 0; 342 return; 343 } 344 345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 346 { 347 int i; 348 349 if (xhci->msix_entries) { 350 for (i = 0; i < xhci->msix_count; i++) 351 synchronize_irq(xhci->msix_entries[i].vector); 352 } 353 } 354 355 static int xhci_try_enable_msi(struct usb_hcd *hcd) 356 { 357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 358 struct pci_dev *pdev; 359 int ret; 360 361 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 362 if (xhci->quirks & XHCI_PLAT) 363 return 0; 364 365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 366 /* 367 * Some Fresco Logic host controllers advertise MSI, but fail to 368 * generate interrupts. Don't even try to enable MSI. 369 */ 370 if (xhci->quirks & XHCI_BROKEN_MSI) 371 goto legacy_irq; 372 373 /* unregister the legacy interrupt */ 374 if (hcd->irq) 375 free_irq(hcd->irq, hcd); 376 hcd->irq = 0; 377 378 ret = xhci_setup_msix(xhci); 379 if (ret) 380 /* fall back to msi*/ 381 ret = xhci_setup_msi(xhci); 382 383 if (!ret) 384 /* hcd->irq is 0, we have MSI */ 385 return 0; 386 387 if (!pdev->irq) { 388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 389 return -EINVAL; 390 } 391 392 legacy_irq: 393 if (!strlen(hcd->irq_descr)) 394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 395 hcd->driver->description, hcd->self.busnum); 396 397 /* fall back to legacy interrupt*/ 398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 399 hcd->irq_descr, hcd); 400 if (ret) { 401 xhci_err(xhci, "request interrupt %d failed\n", 402 pdev->irq); 403 return ret; 404 } 405 hcd->irq = pdev->irq; 406 return 0; 407 } 408 409 #else 410 411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 412 { 413 return 0; 414 } 415 416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 417 { 418 } 419 420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 421 { 422 } 423 424 #endif 425 426 static void compliance_mode_recovery(unsigned long arg) 427 { 428 struct xhci_hcd *xhci; 429 struct usb_hcd *hcd; 430 u32 temp; 431 int i; 432 433 xhci = (struct xhci_hcd *)arg; 434 435 for (i = 0; i < xhci->num_usb3_ports; i++) { 436 temp = readl(xhci->usb3_ports[i]); 437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 438 /* 439 * Compliance Mode Detected. Letting USB Core 440 * handle the Warm Reset 441 */ 442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 443 "Compliance mode detected->port %d", 444 i + 1); 445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 446 "Attempting compliance mode recovery"); 447 hcd = xhci->shared_hcd; 448 449 if (hcd->state == HC_STATE_SUSPENDED) 450 usb_hcd_resume_root_hub(hcd); 451 452 usb_hcd_poll_rh_status(hcd); 453 } 454 } 455 456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 457 mod_timer(&xhci->comp_mode_recovery_timer, 458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 } 460 461 /* 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 463 * that causes ports behind that hardware to enter compliance mode sometimes. 464 * The quirk creates a timer that polls every 2 seconds the link state of 465 * each host controller's port and recovers it by issuing a Warm reset 466 * if Compliance mode is detected, otherwise the port will become "dead" (no 467 * device connections or disconnections will be detected anymore). Becasue no 468 * status event is generated when entering compliance mode (per xhci spec), 469 * this quirk is needed on systems that have the failing hardware installed. 470 */ 471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 472 { 473 xhci->port_status_u0 = 0; 474 init_timer(&xhci->comp_mode_recovery_timer); 475 476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 478 xhci->comp_mode_recovery_timer.expires = jiffies + 479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 480 481 set_timer_slack(&xhci->comp_mode_recovery_timer, 482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 483 add_timer(&xhci->comp_mode_recovery_timer); 484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 485 "Compliance mode recovery timer initialized"); 486 } 487 488 /* 489 * This function identifies the systems that have installed the SN65LVPE502CP 490 * USB3.0 re-driver and that need the Compliance Mode Quirk. 491 * Systems: 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 493 */ 494 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 495 { 496 const char *dmi_product_name, *dmi_sys_vendor; 497 498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 500 if (!dmi_product_name || !dmi_sys_vendor) 501 return false; 502 503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 504 return false; 505 506 if (strstr(dmi_product_name, "Z420") || 507 strstr(dmi_product_name, "Z620") || 508 strstr(dmi_product_name, "Z820") || 509 strstr(dmi_product_name, "Z1 Workstation")) 510 return true; 511 512 return false; 513 } 514 515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 516 { 517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 518 } 519 520 521 /* 522 * Initialize memory for HCD and xHC (one-time init). 523 * 524 * Program the PAGESIZE register, initialize the device context array, create 525 * device contexts (?), set up a command ring segment (or two?), create event 526 * ring (one for now). 527 */ 528 int xhci_init(struct usb_hcd *hcd) 529 { 530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 531 int retval = 0; 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 534 spin_lock_init(&xhci->lock); 535 if (xhci->hci_version == 0x95 && link_quirk) { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "QUIRK: Not clearing Link TRB chain bits."); 538 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 539 } else { 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 541 "xHCI doesn't need link TRB QUIRK"); 542 } 543 retval = xhci_mem_init(xhci, GFP_KERNEL); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 545 546 /* Initializing Compliance Mode Recovery Data If Needed */ 547 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 548 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 549 compliance_mode_recovery_timer_init(xhci); 550 } 551 552 return retval; 553 } 554 555 /*-------------------------------------------------------------------------*/ 556 557 558 static int xhci_run_finished(struct xhci_hcd *xhci) 559 { 560 if (xhci_start(xhci)) { 561 xhci_halt(xhci); 562 return -ENODEV; 563 } 564 xhci->shared_hcd->state = HC_STATE_RUNNING; 565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 566 567 if (xhci->quirks & XHCI_NEC_HOST) 568 xhci_ring_cmd_db(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished xhci_run for USB3 roothub"); 572 return 0; 573 } 574 575 /* 576 * Start the HC after it was halted. 577 * 578 * This function is called by the USB core when the HC driver is added. 579 * Its opposite is xhci_stop(). 580 * 581 * xhci_init() must be called once before this function can be called. 582 * Reset the HC, enable device slot contexts, program DCBAAP, and 583 * set command ring pointer and event ring pointer. 584 * 585 * Setup MSI-X vectors and enable interrupts. 586 */ 587 int xhci_run(struct usb_hcd *hcd) 588 { 589 u32 temp; 590 u64 temp_64; 591 int ret; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 /* Start the xHCI host controller running only after the USB 2.0 roothub 595 * is setup. 596 */ 597 598 hcd->uses_new_polling = 1; 599 if (!usb_hcd_is_primary_hcd(hcd)) 600 return xhci_run_finished(xhci); 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 603 604 ret = xhci_try_enable_msi(hcd); 605 if (ret) 606 return ret; 607 608 xhci_dbg(xhci, "Command ring memory map follows:\n"); 609 xhci_debug_ring(xhci, xhci->cmd_ring); 610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 611 xhci_dbg_cmd_ptrs(xhci); 612 613 xhci_dbg(xhci, "ERST memory map follows:\n"); 614 xhci_dbg_erst(xhci, &xhci->erst); 615 xhci_dbg(xhci, "Event ring:\n"); 616 xhci_debug_ring(xhci, xhci->event_ring); 617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 619 temp_64 &= ~ERST_PTR_MASK; 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 624 "// Set the interrupt modulation register"); 625 temp = readl(&xhci->ir_set->irq_control); 626 temp &= ~ER_IRQ_INTERVAL_MASK; 627 temp |= (u32) 160; 628 writel(temp, &xhci->ir_set->irq_control); 629 630 /* Set the HCD state before we enable the irqs */ 631 temp = readl(&xhci->op_regs->command); 632 temp |= (CMD_EIE); 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Enable interrupts, cmd = 0x%x.", temp); 635 writel(temp, &xhci->op_regs->command); 636 637 temp = readl(&xhci->ir_set->irq_pending); 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 642 xhci_print_ir_set(xhci, 0); 643 644 if (xhci->quirks & XHCI_NEC_HOST) { 645 struct xhci_command *command; 646 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 647 if (!command) 648 return -ENOMEM; 649 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 650 TRB_TYPE(TRB_NEC_GET_FW)); 651 } 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 653 "Finished xhci_run for USB2 roothub"); 654 return 0; 655 } 656 657 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 658 { 659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 660 661 spin_lock_irq(&xhci->lock); 662 xhci_halt(xhci); 663 664 /* The shared_hcd is going to be deallocated shortly (the USB core only 665 * calls this function when allocation fails in usb_add_hcd(), or 666 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 667 */ 668 xhci->shared_hcd = NULL; 669 spin_unlock_irq(&xhci->lock); 670 } 671 672 /* 673 * Stop xHCI driver. 674 * 675 * This function is called by the USB core when the HC driver is removed. 676 * Its opposite is xhci_run(). 677 * 678 * Disable device contexts, disable IRQs, and quiesce the HC. 679 * Reset the HC, finish any completed transactions, and cleanup memory. 680 */ 681 void xhci_stop(struct usb_hcd *hcd) 682 { 683 u32 temp; 684 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 685 686 if (!usb_hcd_is_primary_hcd(hcd)) { 687 xhci_only_stop_hcd(xhci->shared_hcd); 688 return; 689 } 690 691 spin_lock_irq(&xhci->lock); 692 /* Make sure the xHC is halted for a USB3 roothub 693 * (xhci_stop() could be called as part of failed init). 694 */ 695 xhci_halt(xhci); 696 xhci_reset(xhci); 697 spin_unlock_irq(&xhci->lock); 698 699 xhci_cleanup_msix(xhci); 700 701 /* Deleting Compliance Mode Recovery Timer */ 702 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 703 (!(xhci_all_ports_seen_u0(xhci)))) { 704 del_timer_sync(&xhci->comp_mode_recovery_timer); 705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 706 "%s: compliance mode recovery timer deleted", 707 __func__); 708 } 709 710 if (xhci->quirks & XHCI_AMD_PLL_FIX) 711 usb_amd_dev_put(); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "// Disabling event ring interrupts"); 715 temp = readl(&xhci->op_regs->status); 716 writel(temp & ~STS_EINT, &xhci->op_regs->status); 717 temp = readl(&xhci->ir_set->irq_pending); 718 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 719 xhci_print_ir_set(xhci, 0); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 722 xhci_mem_cleanup(xhci); 723 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 724 "xhci_stop completed - status = %x", 725 readl(&xhci->op_regs->status)); 726 } 727 728 /* 729 * Shutdown HC (not bus-specific) 730 * 731 * This is called when the machine is rebooting or halting. We assume that the 732 * machine will be powered off, and the HC's internal state will be reset. 733 * Don't bother to free memory. 734 * 735 * This will only ever be called with the main usb_hcd (the USB3 roothub). 736 */ 737 void xhci_shutdown(struct usb_hcd *hcd) 738 { 739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 740 741 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 742 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 743 744 spin_lock_irq(&xhci->lock); 745 xhci_halt(xhci); 746 /* Workaround for spurious wakeups at shutdown with HSW */ 747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 748 xhci_reset(xhci); 749 spin_unlock_irq(&xhci->lock); 750 751 xhci_cleanup_msix(xhci); 752 753 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 754 "xhci_shutdown completed - status = %x", 755 readl(&xhci->op_regs->status)); 756 757 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 758 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 759 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 760 } 761 762 #ifdef CONFIG_PM 763 static void xhci_save_registers(struct xhci_hcd *xhci) 764 { 765 xhci->s3.command = readl(&xhci->op_regs->command); 766 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 767 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 768 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 769 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 770 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 771 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 772 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 773 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 774 } 775 776 static void xhci_restore_registers(struct xhci_hcd *xhci) 777 { 778 writel(xhci->s3.command, &xhci->op_regs->command); 779 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 780 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 781 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 782 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 783 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 784 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 785 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 786 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 787 } 788 789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 790 { 791 u64 val_64; 792 793 /* step 2: initialize command ring buffer */ 794 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 795 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 796 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 797 xhci->cmd_ring->dequeue) & 798 (u64) ~CMD_RING_RSVD_BITS) | 799 xhci->cmd_ring->cycle_state; 800 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 801 "// Setting command ring address to 0x%llx", 802 (long unsigned long) val_64); 803 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 804 } 805 806 /* 807 * The whole command ring must be cleared to zero when we suspend the host. 808 * 809 * The host doesn't save the command ring pointer in the suspend well, so we 810 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 811 * aligned, because of the reserved bits in the command ring dequeue pointer 812 * register. Therefore, we can't just set the dequeue pointer back in the 813 * middle of the ring (TRBs are 16-byte aligned). 814 */ 815 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 816 { 817 struct xhci_ring *ring; 818 struct xhci_segment *seg; 819 820 ring = xhci->cmd_ring; 821 seg = ring->deq_seg; 822 do { 823 memset(seg->trbs, 0, 824 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 825 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 826 cpu_to_le32(~TRB_CYCLE); 827 seg = seg->next; 828 } while (seg != ring->deq_seg); 829 830 /* Reset the software enqueue and dequeue pointers */ 831 ring->deq_seg = ring->first_seg; 832 ring->dequeue = ring->first_seg->trbs; 833 ring->enq_seg = ring->deq_seg; 834 ring->enqueue = ring->dequeue; 835 836 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 837 /* 838 * Ring is now zeroed, so the HW should look for change of ownership 839 * when the cycle bit is set to 1. 840 */ 841 ring->cycle_state = 1; 842 843 /* 844 * Reset the hardware dequeue pointer. 845 * Yes, this will need to be re-written after resume, but we're paranoid 846 * and want to make sure the hardware doesn't access bogus memory 847 * because, say, the BIOS or an SMI started the host without changing 848 * the command ring pointers. 849 */ 850 xhci_set_cmd_ring_deq(xhci); 851 } 852 853 /* 854 * Stop HC (not bus-specific) 855 * 856 * This is called when the machine transition into S3/S4 mode. 857 * 858 */ 859 int xhci_suspend(struct xhci_hcd *xhci) 860 { 861 int rc = 0; 862 unsigned int delay = XHCI_MAX_HALT_USEC; 863 struct usb_hcd *hcd = xhci_to_hcd(xhci); 864 u32 command; 865 866 if (hcd->state != HC_STATE_SUSPENDED || 867 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 868 return -EINVAL; 869 870 /* Don't poll the roothubs on bus suspend. */ 871 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 872 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 873 del_timer_sync(&hcd->rh_timer); 874 875 spin_lock_irq(&xhci->lock); 876 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 877 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 878 /* step 1: stop endpoint */ 879 /* skipped assuming that port suspend has done */ 880 881 /* step 2: clear Run/Stop bit */ 882 command = readl(&xhci->op_regs->command); 883 command &= ~CMD_RUN; 884 writel(command, &xhci->op_regs->command); 885 886 /* Some chips from Fresco Logic need an extraordinary delay */ 887 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 888 889 if (xhci_handshake(xhci, &xhci->op_regs->status, 890 STS_HALT, STS_HALT, delay)) { 891 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 892 spin_unlock_irq(&xhci->lock); 893 return -ETIMEDOUT; 894 } 895 xhci_clear_command_ring(xhci); 896 897 /* step 3: save registers */ 898 xhci_save_registers(xhci); 899 900 /* step 4: set CSS flag */ 901 command = readl(&xhci->op_regs->command); 902 command |= CMD_CSS; 903 writel(command, &xhci->op_regs->command); 904 if (xhci_handshake(xhci, &xhci->op_regs->status, 905 STS_SAVE, 0, 10 * 1000)) { 906 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 907 spin_unlock_irq(&xhci->lock); 908 return -ETIMEDOUT; 909 } 910 spin_unlock_irq(&xhci->lock); 911 912 /* 913 * Deleting Compliance Mode Recovery Timer because the xHCI Host 914 * is about to be suspended. 915 */ 916 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 917 (!(xhci_all_ports_seen_u0(xhci)))) { 918 del_timer_sync(&xhci->comp_mode_recovery_timer); 919 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 920 "%s: compliance mode recovery timer deleted", 921 __func__); 922 } 923 924 /* step 5: remove core well power */ 925 /* synchronize irq when using MSI-X */ 926 xhci_msix_sync_irqs(xhci); 927 928 return rc; 929 } 930 931 /* 932 * start xHC (not bus-specific) 933 * 934 * This is called when the machine transition from S3/S4 mode. 935 * 936 */ 937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 938 { 939 u32 command, temp = 0, status; 940 struct usb_hcd *hcd = xhci_to_hcd(xhci); 941 struct usb_hcd *secondary_hcd; 942 int retval = 0; 943 bool comp_timer_running = false; 944 945 /* Wait a bit if either of the roothubs need to settle from the 946 * transition into bus suspend. 947 */ 948 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 949 time_before(jiffies, 950 xhci->bus_state[1].next_statechange)) 951 msleep(100); 952 953 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 954 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 955 956 spin_lock_irq(&xhci->lock); 957 if (xhci->quirks & XHCI_RESET_ON_RESUME) 958 hibernated = true; 959 960 if (!hibernated) { 961 /* step 1: restore register */ 962 xhci_restore_registers(xhci); 963 /* step 2: initialize command ring buffer */ 964 xhci_set_cmd_ring_deq(xhci); 965 /* step 3: restore state and start state*/ 966 /* step 3: set CRS flag */ 967 command = readl(&xhci->op_regs->command); 968 command |= CMD_CRS; 969 writel(command, &xhci->op_regs->command); 970 if (xhci_handshake(xhci, &xhci->op_regs->status, 971 STS_RESTORE, 0, 10 * 1000)) { 972 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 973 spin_unlock_irq(&xhci->lock); 974 return -ETIMEDOUT; 975 } 976 temp = readl(&xhci->op_regs->status); 977 } 978 979 /* If restore operation fails, re-initialize the HC during resume */ 980 if ((temp & STS_SRE) || hibernated) { 981 982 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 983 !(xhci_all_ports_seen_u0(xhci))) { 984 del_timer_sync(&xhci->comp_mode_recovery_timer); 985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 986 "Compliance Mode Recovery Timer deleted!"); 987 } 988 989 /* Let the USB core know _both_ roothubs lost power. */ 990 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 991 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 992 993 xhci_dbg(xhci, "Stop HCD\n"); 994 xhci_halt(xhci); 995 xhci_reset(xhci); 996 spin_unlock_irq(&xhci->lock); 997 xhci_cleanup_msix(xhci); 998 999 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1000 temp = readl(&xhci->op_regs->status); 1001 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1002 temp = readl(&xhci->ir_set->irq_pending); 1003 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1004 xhci_print_ir_set(xhci, 0); 1005 1006 xhci_dbg(xhci, "cleaning up memory\n"); 1007 xhci_mem_cleanup(xhci); 1008 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1009 readl(&xhci->op_regs->status)); 1010 1011 /* USB core calls the PCI reinit and start functions twice: 1012 * first with the primary HCD, and then with the secondary HCD. 1013 * If we don't do the same, the host will never be started. 1014 */ 1015 if (!usb_hcd_is_primary_hcd(hcd)) 1016 secondary_hcd = hcd; 1017 else 1018 secondary_hcd = xhci->shared_hcd; 1019 1020 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1021 retval = xhci_init(hcd->primary_hcd); 1022 if (retval) 1023 return retval; 1024 comp_timer_running = true; 1025 1026 xhci_dbg(xhci, "Start the primary HCD\n"); 1027 retval = xhci_run(hcd->primary_hcd); 1028 if (!retval) { 1029 xhci_dbg(xhci, "Start the secondary HCD\n"); 1030 retval = xhci_run(secondary_hcd); 1031 } 1032 hcd->state = HC_STATE_SUSPENDED; 1033 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1034 goto done; 1035 } 1036 1037 /* step 4: set Run/Stop bit */ 1038 command = readl(&xhci->op_regs->command); 1039 command |= CMD_RUN; 1040 writel(command, &xhci->op_regs->command); 1041 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1042 0, 250 * 1000); 1043 1044 /* step 5: walk topology and initialize portsc, 1045 * portpmsc and portli 1046 */ 1047 /* this is done in bus_resume */ 1048 1049 /* step 6: restart each of the previously 1050 * Running endpoints by ringing their doorbells 1051 */ 1052 1053 spin_unlock_irq(&xhci->lock); 1054 1055 done: 1056 if (retval == 0) { 1057 /* Resume root hubs only when have pending events. */ 1058 status = readl(&xhci->op_regs->status); 1059 if (status & STS_EINT) { 1060 usb_hcd_resume_root_hub(hcd); 1061 usb_hcd_resume_root_hub(xhci->shared_hcd); 1062 } 1063 } 1064 1065 /* 1066 * If system is subject to the Quirk, Compliance Mode Timer needs to 1067 * be re-initialized Always after a system resume. Ports are subject 1068 * to suffer the Compliance Mode issue again. It doesn't matter if 1069 * ports have entered previously to U0 before system's suspension. 1070 */ 1071 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1072 compliance_mode_recovery_timer_init(xhci); 1073 1074 /* Re-enable port polling. */ 1075 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1076 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1077 usb_hcd_poll_rh_status(hcd); 1078 1079 return retval; 1080 } 1081 #endif /* CONFIG_PM */ 1082 1083 /*-------------------------------------------------------------------------*/ 1084 1085 /** 1086 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1087 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1088 * value to right shift 1 for the bitmask. 1089 * 1090 * Index = (epnum * 2) + direction - 1, 1091 * where direction = 0 for OUT, 1 for IN. 1092 * For control endpoints, the IN index is used (OUT index is unused), so 1093 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1094 */ 1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1096 { 1097 unsigned int index; 1098 if (usb_endpoint_xfer_control(desc)) 1099 index = (unsigned int) (usb_endpoint_num(desc)*2); 1100 else 1101 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1102 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1103 return index; 1104 } 1105 1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1107 * address from the XHCI endpoint index. 1108 */ 1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1110 { 1111 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1112 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1113 return direction | number; 1114 } 1115 1116 /* Find the flag for this endpoint (for use in the control context). Use the 1117 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1118 * bit 1, etc. 1119 */ 1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1121 { 1122 return 1 << (xhci_get_endpoint_index(desc) + 1); 1123 } 1124 1125 /* Find the flag for this endpoint (for use in the control context). Use the 1126 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1127 * bit 1, etc. 1128 */ 1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1130 { 1131 return 1 << (ep_index + 1); 1132 } 1133 1134 /* Compute the last valid endpoint context index. Basically, this is the 1135 * endpoint index plus one. For slot contexts with more than valid endpoint, 1136 * we find the most significant bit set in the added contexts flags. 1137 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1138 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1139 */ 1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1141 { 1142 return fls(added_ctxs) - 1; 1143 } 1144 1145 /* Returns 1 if the arguments are OK; 1146 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1147 */ 1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1149 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1150 const char *func) { 1151 struct xhci_hcd *xhci; 1152 struct xhci_virt_device *virt_dev; 1153 1154 if (!hcd || (check_ep && !ep) || !udev) { 1155 pr_debug("xHCI %s called with invalid args\n", func); 1156 return -EINVAL; 1157 } 1158 if (!udev->parent) { 1159 pr_debug("xHCI %s called for root hub\n", func); 1160 return 0; 1161 } 1162 1163 xhci = hcd_to_xhci(hcd); 1164 if (check_virt_dev) { 1165 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1166 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1167 func); 1168 return -EINVAL; 1169 } 1170 1171 virt_dev = xhci->devs[udev->slot_id]; 1172 if (virt_dev->udev != udev) { 1173 xhci_dbg(xhci, "xHCI %s called with udev and " 1174 "virt_dev does not match\n", func); 1175 return -EINVAL; 1176 } 1177 } 1178 1179 if (xhci->xhc_state & XHCI_STATE_HALTED) 1180 return -ENODEV; 1181 1182 return 1; 1183 } 1184 1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1186 struct usb_device *udev, struct xhci_command *command, 1187 bool ctx_change, bool must_succeed); 1188 1189 /* 1190 * Full speed devices may have a max packet size greater than 8 bytes, but the 1191 * USB core doesn't know that until it reads the first 8 bytes of the 1192 * descriptor. If the usb_device's max packet size changes after that point, 1193 * we need to issue an evaluate context command and wait on it. 1194 */ 1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1196 unsigned int ep_index, struct urb *urb) 1197 { 1198 struct xhci_container_ctx *out_ctx; 1199 struct xhci_input_control_ctx *ctrl_ctx; 1200 struct xhci_ep_ctx *ep_ctx; 1201 struct xhci_command *command; 1202 int max_packet_size; 1203 int hw_max_packet_size; 1204 int ret = 0; 1205 1206 out_ctx = xhci->devs[slot_id]->out_ctx; 1207 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1208 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1209 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1210 if (hw_max_packet_size != max_packet_size) { 1211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1212 "Max Packet Size for ep 0 changed."); 1213 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1214 "Max packet size in usb_device = %d", 1215 max_packet_size); 1216 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1217 "Max packet size in xHCI HW = %d", 1218 hw_max_packet_size); 1219 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1220 "Issuing evaluate context command."); 1221 1222 /* Set up the input context flags for the command */ 1223 /* FIXME: This won't work if a non-default control endpoint 1224 * changes max packet sizes. 1225 */ 1226 1227 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1228 if (!command) 1229 return -ENOMEM; 1230 1231 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1232 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 1233 if (!ctrl_ctx) { 1234 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1235 __func__); 1236 ret = -ENOMEM; 1237 goto command_cleanup; 1238 } 1239 /* Set up the modified control endpoint 0 */ 1240 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1241 xhci->devs[slot_id]->out_ctx, ep_index); 1242 1243 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1244 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1245 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1246 1247 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1248 ctrl_ctx->drop_flags = 0; 1249 1250 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1251 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1252 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1253 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1254 1255 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1256 true, false); 1257 1258 /* Clean up the input context for later use by bandwidth 1259 * functions. 1260 */ 1261 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1262 command_cleanup: 1263 kfree(command->completion); 1264 kfree(command); 1265 } 1266 return ret; 1267 } 1268 1269 /* 1270 * non-error returns are a promise to giveback() the urb later 1271 * we drop ownership so next owner (or urb unlink) can get it 1272 */ 1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1274 { 1275 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1276 struct xhci_td *buffer; 1277 unsigned long flags; 1278 int ret = 0; 1279 unsigned int slot_id, ep_index; 1280 struct urb_priv *urb_priv; 1281 int size, i; 1282 1283 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1284 true, true, __func__) <= 0) 1285 return -EINVAL; 1286 1287 slot_id = urb->dev->slot_id; 1288 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1289 1290 if (!HCD_HW_ACCESSIBLE(hcd)) { 1291 if (!in_interrupt()) 1292 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1293 ret = -ESHUTDOWN; 1294 goto exit; 1295 } 1296 1297 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1298 size = urb->number_of_packets; 1299 else 1300 size = 1; 1301 1302 urb_priv = kzalloc(sizeof(struct urb_priv) + 1303 size * sizeof(struct xhci_td *), mem_flags); 1304 if (!urb_priv) 1305 return -ENOMEM; 1306 1307 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1308 if (!buffer) { 1309 kfree(urb_priv); 1310 return -ENOMEM; 1311 } 1312 1313 for (i = 0; i < size; i++) { 1314 urb_priv->td[i] = buffer; 1315 buffer++; 1316 } 1317 1318 urb_priv->length = size; 1319 urb_priv->td_cnt = 0; 1320 urb->hcpriv = urb_priv; 1321 1322 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1323 /* Check to see if the max packet size for the default control 1324 * endpoint changed during FS device enumeration 1325 */ 1326 if (urb->dev->speed == USB_SPEED_FULL) { 1327 ret = xhci_check_maxpacket(xhci, slot_id, 1328 ep_index, urb); 1329 if (ret < 0) { 1330 xhci_urb_free_priv(xhci, urb_priv); 1331 urb->hcpriv = NULL; 1332 return ret; 1333 } 1334 } 1335 1336 /* We have a spinlock and interrupts disabled, so we must pass 1337 * atomic context to this function, which may allocate memory. 1338 */ 1339 spin_lock_irqsave(&xhci->lock, flags); 1340 if (xhci->xhc_state & XHCI_STATE_DYING) 1341 goto dying; 1342 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1343 slot_id, ep_index); 1344 if (ret) 1345 goto free_priv; 1346 spin_unlock_irqrestore(&xhci->lock, flags); 1347 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1348 spin_lock_irqsave(&xhci->lock, flags); 1349 if (xhci->xhc_state & XHCI_STATE_DYING) 1350 goto dying; 1351 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1352 EP_GETTING_STREAMS) { 1353 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1354 "is transitioning to using streams.\n"); 1355 ret = -EINVAL; 1356 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1357 EP_GETTING_NO_STREAMS) { 1358 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1359 "is transitioning to " 1360 "not having streams.\n"); 1361 ret = -EINVAL; 1362 } else { 1363 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1364 slot_id, ep_index); 1365 } 1366 if (ret) 1367 goto free_priv; 1368 spin_unlock_irqrestore(&xhci->lock, flags); 1369 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1370 spin_lock_irqsave(&xhci->lock, flags); 1371 if (xhci->xhc_state & XHCI_STATE_DYING) 1372 goto dying; 1373 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1374 slot_id, ep_index); 1375 if (ret) 1376 goto free_priv; 1377 spin_unlock_irqrestore(&xhci->lock, flags); 1378 } else { 1379 spin_lock_irqsave(&xhci->lock, flags); 1380 if (xhci->xhc_state & XHCI_STATE_DYING) 1381 goto dying; 1382 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1383 slot_id, ep_index); 1384 if (ret) 1385 goto free_priv; 1386 spin_unlock_irqrestore(&xhci->lock, flags); 1387 } 1388 exit: 1389 return ret; 1390 dying: 1391 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1392 "non-responsive xHCI host.\n", 1393 urb->ep->desc.bEndpointAddress, urb); 1394 ret = -ESHUTDOWN; 1395 free_priv: 1396 xhci_urb_free_priv(xhci, urb_priv); 1397 urb->hcpriv = NULL; 1398 spin_unlock_irqrestore(&xhci->lock, flags); 1399 return ret; 1400 } 1401 1402 /* Get the right ring for the given URB. 1403 * If the endpoint supports streams, boundary check the URB's stream ID. 1404 * If the endpoint doesn't support streams, return the singular endpoint ring. 1405 */ 1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1407 struct urb *urb) 1408 { 1409 unsigned int slot_id; 1410 unsigned int ep_index; 1411 unsigned int stream_id; 1412 struct xhci_virt_ep *ep; 1413 1414 slot_id = urb->dev->slot_id; 1415 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1416 stream_id = urb->stream_id; 1417 ep = &xhci->devs[slot_id]->eps[ep_index]; 1418 /* Common case: no streams */ 1419 if (!(ep->ep_state & EP_HAS_STREAMS)) 1420 return ep->ring; 1421 1422 if (stream_id == 0) { 1423 xhci_warn(xhci, 1424 "WARN: Slot ID %u, ep index %u has streams, " 1425 "but URB has no stream ID.\n", 1426 slot_id, ep_index); 1427 return NULL; 1428 } 1429 1430 if (stream_id < ep->stream_info->num_streams) 1431 return ep->stream_info->stream_rings[stream_id]; 1432 1433 xhci_warn(xhci, 1434 "WARN: Slot ID %u, ep index %u has " 1435 "stream IDs 1 to %u allocated, " 1436 "but stream ID %u is requested.\n", 1437 slot_id, ep_index, 1438 ep->stream_info->num_streams - 1, 1439 stream_id); 1440 return NULL; 1441 } 1442 1443 /* 1444 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1445 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1446 * should pick up where it left off in the TD, unless a Set Transfer Ring 1447 * Dequeue Pointer is issued. 1448 * 1449 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1450 * the ring. Since the ring is a contiguous structure, they can't be physically 1451 * removed. Instead, there are two options: 1452 * 1453 * 1) If the HC is in the middle of processing the URB to be canceled, we 1454 * simply move the ring's dequeue pointer past those TRBs using the Set 1455 * Transfer Ring Dequeue Pointer command. This will be the common case, 1456 * when drivers timeout on the last submitted URB and attempt to cancel. 1457 * 1458 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1459 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1460 * HC will need to invalidate the any TRBs it has cached after the stop 1461 * endpoint command, as noted in the xHCI 0.95 errata. 1462 * 1463 * 3) The TD may have completed by the time the Stop Endpoint Command 1464 * completes, so software needs to handle that case too. 1465 * 1466 * This function should protect against the TD enqueueing code ringing the 1467 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1468 * It also needs to account for multiple cancellations on happening at the same 1469 * time for the same endpoint. 1470 * 1471 * Note that this function can be called in any context, or so says 1472 * usb_hcd_unlink_urb() 1473 */ 1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1475 { 1476 unsigned long flags; 1477 int ret, i; 1478 u32 temp; 1479 struct xhci_hcd *xhci; 1480 struct urb_priv *urb_priv; 1481 struct xhci_td *td; 1482 unsigned int ep_index; 1483 struct xhci_ring *ep_ring; 1484 struct xhci_virt_ep *ep; 1485 struct xhci_command *command; 1486 1487 xhci = hcd_to_xhci(hcd); 1488 spin_lock_irqsave(&xhci->lock, flags); 1489 /* Make sure the URB hasn't completed or been unlinked already */ 1490 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1491 if (ret || !urb->hcpriv) 1492 goto done; 1493 temp = readl(&xhci->op_regs->status); 1494 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1495 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1496 "HW died, freeing TD."); 1497 urb_priv = urb->hcpriv; 1498 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1499 td = urb_priv->td[i]; 1500 if (!list_empty(&td->td_list)) 1501 list_del_init(&td->td_list); 1502 if (!list_empty(&td->cancelled_td_list)) 1503 list_del_init(&td->cancelled_td_list); 1504 } 1505 1506 usb_hcd_unlink_urb_from_ep(hcd, urb); 1507 spin_unlock_irqrestore(&xhci->lock, flags); 1508 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1509 xhci_urb_free_priv(xhci, urb_priv); 1510 return ret; 1511 } 1512 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1513 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1514 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1515 "Ep 0x%x: URB %p to be canceled on " 1516 "non-responsive xHCI host.", 1517 urb->ep->desc.bEndpointAddress, urb); 1518 /* Let the stop endpoint command watchdog timer (which set this 1519 * state) finish cleaning up the endpoint TD lists. We must 1520 * have caught it in the middle of dropping a lock and giving 1521 * back an URB. 1522 */ 1523 goto done; 1524 } 1525 1526 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1527 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1528 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1529 if (!ep_ring) { 1530 ret = -EINVAL; 1531 goto done; 1532 } 1533 1534 urb_priv = urb->hcpriv; 1535 i = urb_priv->td_cnt; 1536 if (i < urb_priv->length) 1537 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1538 "Cancel URB %p, dev %s, ep 0x%x, " 1539 "starting at offset 0x%llx", 1540 urb, urb->dev->devpath, 1541 urb->ep->desc.bEndpointAddress, 1542 (unsigned long long) xhci_trb_virt_to_dma( 1543 urb_priv->td[i]->start_seg, 1544 urb_priv->td[i]->first_trb)); 1545 1546 for (; i < urb_priv->length; i++) { 1547 td = urb_priv->td[i]; 1548 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1549 } 1550 1551 /* Queue a stop endpoint command, but only if this is 1552 * the first cancellation to be handled. 1553 */ 1554 if (!(ep->ep_state & EP_HALT_PENDING)) { 1555 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1556 if (!command) { 1557 ret = -ENOMEM; 1558 goto done; 1559 } 1560 ep->ep_state |= EP_HALT_PENDING; 1561 ep->stop_cmds_pending++; 1562 ep->stop_cmd_timer.expires = jiffies + 1563 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1564 add_timer(&ep->stop_cmd_timer); 1565 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1566 ep_index, 0); 1567 xhci_ring_cmd_db(xhci); 1568 } 1569 done: 1570 spin_unlock_irqrestore(&xhci->lock, flags); 1571 return ret; 1572 } 1573 1574 /* Drop an endpoint from a new bandwidth configuration for this device. 1575 * Only one call to this function is allowed per endpoint before 1576 * check_bandwidth() or reset_bandwidth() must be called. 1577 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1578 * add the endpoint to the schedule with possibly new parameters denoted by a 1579 * different endpoint descriptor in usb_host_endpoint. 1580 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1581 * not allowed. 1582 * 1583 * The USB core will not allow URBs to be queued to an endpoint that is being 1584 * disabled, so there's no need for mutual exclusion to protect 1585 * the xhci->devs[slot_id] structure. 1586 */ 1587 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1588 struct usb_host_endpoint *ep) 1589 { 1590 struct xhci_hcd *xhci; 1591 struct xhci_container_ctx *in_ctx, *out_ctx; 1592 struct xhci_input_control_ctx *ctrl_ctx; 1593 unsigned int ep_index; 1594 struct xhci_ep_ctx *ep_ctx; 1595 u32 drop_flag; 1596 u32 new_add_flags, new_drop_flags; 1597 int ret; 1598 1599 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1600 if (ret <= 0) 1601 return ret; 1602 xhci = hcd_to_xhci(hcd); 1603 if (xhci->xhc_state & XHCI_STATE_DYING) 1604 return -ENODEV; 1605 1606 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1607 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1608 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1609 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1610 __func__, drop_flag); 1611 return 0; 1612 } 1613 1614 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1615 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1616 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1617 if (!ctrl_ctx) { 1618 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1619 __func__); 1620 return 0; 1621 } 1622 1623 ep_index = xhci_get_endpoint_index(&ep->desc); 1624 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1625 /* If the HC already knows the endpoint is disabled, 1626 * or the HCD has noted it is disabled, ignore this request 1627 */ 1628 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1629 cpu_to_le32(EP_STATE_DISABLED)) || 1630 le32_to_cpu(ctrl_ctx->drop_flags) & 1631 xhci_get_endpoint_flag(&ep->desc)) { 1632 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1633 __func__, ep); 1634 return 0; 1635 } 1636 1637 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1638 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1639 1640 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1641 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1642 1643 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1644 1645 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1646 (unsigned int) ep->desc.bEndpointAddress, 1647 udev->slot_id, 1648 (unsigned int) new_drop_flags, 1649 (unsigned int) new_add_flags); 1650 return 0; 1651 } 1652 1653 /* Add an endpoint to a new possible bandwidth configuration for this device. 1654 * Only one call to this function is allowed per endpoint before 1655 * check_bandwidth() or reset_bandwidth() must be called. 1656 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1657 * add the endpoint to the schedule with possibly new parameters denoted by a 1658 * different endpoint descriptor in usb_host_endpoint. 1659 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1660 * not allowed. 1661 * 1662 * The USB core will not allow URBs to be queued to an endpoint until the 1663 * configuration or alt setting is installed in the device, so there's no need 1664 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1665 */ 1666 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1667 struct usb_host_endpoint *ep) 1668 { 1669 struct xhci_hcd *xhci; 1670 struct xhci_container_ctx *in_ctx, *out_ctx; 1671 unsigned int ep_index; 1672 struct xhci_input_control_ctx *ctrl_ctx; 1673 u32 added_ctxs; 1674 u32 new_add_flags, new_drop_flags; 1675 struct xhci_virt_device *virt_dev; 1676 int ret = 0; 1677 1678 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1679 if (ret <= 0) { 1680 /* So we won't queue a reset ep command for a root hub */ 1681 ep->hcpriv = NULL; 1682 return ret; 1683 } 1684 xhci = hcd_to_xhci(hcd); 1685 if (xhci->xhc_state & XHCI_STATE_DYING) 1686 return -ENODEV; 1687 1688 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1689 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1690 /* FIXME when we have to issue an evaluate endpoint command to 1691 * deal with ep0 max packet size changing once we get the 1692 * descriptors 1693 */ 1694 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1695 __func__, added_ctxs); 1696 return 0; 1697 } 1698 1699 virt_dev = xhci->devs[udev->slot_id]; 1700 in_ctx = virt_dev->in_ctx; 1701 out_ctx = virt_dev->out_ctx; 1702 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1703 if (!ctrl_ctx) { 1704 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1705 __func__); 1706 return 0; 1707 } 1708 1709 ep_index = xhci_get_endpoint_index(&ep->desc); 1710 /* If this endpoint is already in use, and the upper layers are trying 1711 * to add it again without dropping it, reject the addition. 1712 */ 1713 if (virt_dev->eps[ep_index].ring && 1714 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1715 xhci_get_endpoint_flag(&ep->desc))) { 1716 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1717 "without dropping it.\n", 1718 (unsigned int) ep->desc.bEndpointAddress); 1719 return -EINVAL; 1720 } 1721 1722 /* If the HCD has already noted the endpoint is enabled, 1723 * ignore this request. 1724 */ 1725 if (le32_to_cpu(ctrl_ctx->add_flags) & 1726 xhci_get_endpoint_flag(&ep->desc)) { 1727 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1728 __func__, ep); 1729 return 0; 1730 } 1731 1732 /* 1733 * Configuration and alternate setting changes must be done in 1734 * process context, not interrupt context (or so documenation 1735 * for usb_set_interface() and usb_set_configuration() claim). 1736 */ 1737 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1738 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1739 __func__, ep->desc.bEndpointAddress); 1740 return -ENOMEM; 1741 } 1742 1743 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1744 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1745 1746 /* If xhci_endpoint_disable() was called for this endpoint, but the 1747 * xHC hasn't been notified yet through the check_bandwidth() call, 1748 * this re-adds a new state for the endpoint from the new endpoint 1749 * descriptors. We must drop and re-add this endpoint, so we leave the 1750 * drop flags alone. 1751 */ 1752 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1753 1754 /* Store the usb_device pointer for later use */ 1755 ep->hcpriv = udev; 1756 1757 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1758 (unsigned int) ep->desc.bEndpointAddress, 1759 udev->slot_id, 1760 (unsigned int) new_drop_flags, 1761 (unsigned int) new_add_flags); 1762 return 0; 1763 } 1764 1765 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1766 { 1767 struct xhci_input_control_ctx *ctrl_ctx; 1768 struct xhci_ep_ctx *ep_ctx; 1769 struct xhci_slot_ctx *slot_ctx; 1770 int i; 1771 1772 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1773 if (!ctrl_ctx) { 1774 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1775 __func__); 1776 return; 1777 } 1778 1779 /* When a device's add flag and drop flag are zero, any subsequent 1780 * configure endpoint command will leave that endpoint's state 1781 * untouched. Make sure we don't leave any old state in the input 1782 * endpoint contexts. 1783 */ 1784 ctrl_ctx->drop_flags = 0; 1785 ctrl_ctx->add_flags = 0; 1786 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1787 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1788 /* Endpoint 0 is always valid */ 1789 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1790 for (i = 1; i < 31; ++i) { 1791 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1792 ep_ctx->ep_info = 0; 1793 ep_ctx->ep_info2 = 0; 1794 ep_ctx->deq = 0; 1795 ep_ctx->tx_info = 0; 1796 } 1797 } 1798 1799 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1800 struct usb_device *udev, u32 *cmd_status) 1801 { 1802 int ret; 1803 1804 switch (*cmd_status) { 1805 case COMP_CMD_ABORT: 1806 case COMP_CMD_STOP: 1807 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1808 ret = -ETIME; 1809 break; 1810 case COMP_ENOMEM: 1811 dev_warn(&udev->dev, 1812 "Not enough host controller resources for new device state.\n"); 1813 ret = -ENOMEM; 1814 /* FIXME: can we allocate more resources for the HC? */ 1815 break; 1816 case COMP_BW_ERR: 1817 case COMP_2ND_BW_ERR: 1818 dev_warn(&udev->dev, 1819 "Not enough bandwidth for new device state.\n"); 1820 ret = -ENOSPC; 1821 /* FIXME: can we go back to the old state? */ 1822 break; 1823 case COMP_TRB_ERR: 1824 /* the HCD set up something wrong */ 1825 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1826 "add flag = 1, " 1827 "and endpoint is not disabled.\n"); 1828 ret = -EINVAL; 1829 break; 1830 case COMP_DEV_ERR: 1831 dev_warn(&udev->dev, 1832 "ERROR: Incompatible device for endpoint configure command.\n"); 1833 ret = -ENODEV; 1834 break; 1835 case COMP_SUCCESS: 1836 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1837 "Successful Endpoint Configure command"); 1838 ret = 0; 1839 break; 1840 default: 1841 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1842 *cmd_status); 1843 ret = -EINVAL; 1844 break; 1845 } 1846 return ret; 1847 } 1848 1849 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1850 struct usb_device *udev, u32 *cmd_status) 1851 { 1852 int ret; 1853 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1854 1855 switch (*cmd_status) { 1856 case COMP_CMD_ABORT: 1857 case COMP_CMD_STOP: 1858 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1859 ret = -ETIME; 1860 break; 1861 case COMP_EINVAL: 1862 dev_warn(&udev->dev, 1863 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1864 ret = -EINVAL; 1865 break; 1866 case COMP_EBADSLT: 1867 dev_warn(&udev->dev, 1868 "WARN: slot not enabled for evaluate context command.\n"); 1869 ret = -EINVAL; 1870 break; 1871 case COMP_CTX_STATE: 1872 dev_warn(&udev->dev, 1873 "WARN: invalid context state for evaluate context command.\n"); 1874 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1875 ret = -EINVAL; 1876 break; 1877 case COMP_DEV_ERR: 1878 dev_warn(&udev->dev, 1879 "ERROR: Incompatible device for evaluate context command.\n"); 1880 ret = -ENODEV; 1881 break; 1882 case COMP_MEL_ERR: 1883 /* Max Exit Latency too large error */ 1884 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1885 ret = -EINVAL; 1886 break; 1887 case COMP_SUCCESS: 1888 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1889 "Successful evaluate context command"); 1890 ret = 0; 1891 break; 1892 default: 1893 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1894 *cmd_status); 1895 ret = -EINVAL; 1896 break; 1897 } 1898 return ret; 1899 } 1900 1901 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1902 struct xhci_input_control_ctx *ctrl_ctx) 1903 { 1904 u32 valid_add_flags; 1905 u32 valid_drop_flags; 1906 1907 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1908 * (bit 1). The default control endpoint is added during the Address 1909 * Device command and is never removed until the slot is disabled. 1910 */ 1911 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1912 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1913 1914 /* Use hweight32 to count the number of ones in the add flags, or 1915 * number of endpoints added. Don't count endpoints that are changed 1916 * (both added and dropped). 1917 */ 1918 return hweight32(valid_add_flags) - 1919 hweight32(valid_add_flags & valid_drop_flags); 1920 } 1921 1922 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1923 struct xhci_input_control_ctx *ctrl_ctx) 1924 { 1925 u32 valid_add_flags; 1926 u32 valid_drop_flags; 1927 1928 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1929 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1930 1931 return hweight32(valid_drop_flags) - 1932 hweight32(valid_add_flags & valid_drop_flags); 1933 } 1934 1935 /* 1936 * We need to reserve the new number of endpoints before the configure endpoint 1937 * command completes. We can't subtract the dropped endpoints from the number 1938 * of active endpoints until the command completes because we can oversubscribe 1939 * the host in this case: 1940 * 1941 * - the first configure endpoint command drops more endpoints than it adds 1942 * - a second configure endpoint command that adds more endpoints is queued 1943 * - the first configure endpoint command fails, so the config is unchanged 1944 * - the second command may succeed, even though there isn't enough resources 1945 * 1946 * Must be called with xhci->lock held. 1947 */ 1948 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1949 struct xhci_input_control_ctx *ctrl_ctx) 1950 { 1951 u32 added_eps; 1952 1953 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1954 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1956 "Not enough ep ctxs: " 1957 "%u active, need to add %u, limit is %u.", 1958 xhci->num_active_eps, added_eps, 1959 xhci->limit_active_eps); 1960 return -ENOMEM; 1961 } 1962 xhci->num_active_eps += added_eps; 1963 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1964 "Adding %u ep ctxs, %u now active.", added_eps, 1965 xhci->num_active_eps); 1966 return 0; 1967 } 1968 1969 /* 1970 * The configure endpoint was failed by the xHC for some other reason, so we 1971 * need to revert the resources that failed configuration would have used. 1972 * 1973 * Must be called with xhci->lock held. 1974 */ 1975 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1976 struct xhci_input_control_ctx *ctrl_ctx) 1977 { 1978 u32 num_failed_eps; 1979 1980 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1981 xhci->num_active_eps -= num_failed_eps; 1982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1983 "Removing %u failed ep ctxs, %u now active.", 1984 num_failed_eps, 1985 xhci->num_active_eps); 1986 } 1987 1988 /* 1989 * Now that the command has completed, clean up the active endpoint count by 1990 * subtracting out the endpoints that were dropped (but not changed). 1991 * 1992 * Must be called with xhci->lock held. 1993 */ 1994 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1995 struct xhci_input_control_ctx *ctrl_ctx) 1996 { 1997 u32 num_dropped_eps; 1998 1999 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2000 xhci->num_active_eps -= num_dropped_eps; 2001 if (num_dropped_eps) 2002 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2003 "Removing %u dropped ep ctxs, %u now active.", 2004 num_dropped_eps, 2005 xhci->num_active_eps); 2006 } 2007 2008 static unsigned int xhci_get_block_size(struct usb_device *udev) 2009 { 2010 switch (udev->speed) { 2011 case USB_SPEED_LOW: 2012 case USB_SPEED_FULL: 2013 return FS_BLOCK; 2014 case USB_SPEED_HIGH: 2015 return HS_BLOCK; 2016 case USB_SPEED_SUPER: 2017 return SS_BLOCK; 2018 case USB_SPEED_UNKNOWN: 2019 case USB_SPEED_WIRELESS: 2020 default: 2021 /* Should never happen */ 2022 return 1; 2023 } 2024 } 2025 2026 static unsigned int 2027 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2028 { 2029 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2030 return LS_OVERHEAD; 2031 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2032 return FS_OVERHEAD; 2033 return HS_OVERHEAD; 2034 } 2035 2036 /* If we are changing a LS/FS device under a HS hub, 2037 * make sure (if we are activating a new TT) that the HS bus has enough 2038 * bandwidth for this new TT. 2039 */ 2040 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2041 struct xhci_virt_device *virt_dev, 2042 int old_active_eps) 2043 { 2044 struct xhci_interval_bw_table *bw_table; 2045 struct xhci_tt_bw_info *tt_info; 2046 2047 /* Find the bandwidth table for the root port this TT is attached to. */ 2048 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2049 tt_info = virt_dev->tt_info; 2050 /* If this TT already had active endpoints, the bandwidth for this TT 2051 * has already been added. Removing all periodic endpoints (and thus 2052 * making the TT enactive) will only decrease the bandwidth used. 2053 */ 2054 if (old_active_eps) 2055 return 0; 2056 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2057 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2058 return -ENOMEM; 2059 return 0; 2060 } 2061 /* Not sure why we would have no new active endpoints... 2062 * 2063 * Maybe because of an Evaluate Context change for a hub update or a 2064 * control endpoint 0 max packet size change? 2065 * FIXME: skip the bandwidth calculation in that case. 2066 */ 2067 return 0; 2068 } 2069 2070 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2071 struct xhci_virt_device *virt_dev) 2072 { 2073 unsigned int bw_reserved; 2074 2075 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2076 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2077 return -ENOMEM; 2078 2079 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2080 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2081 return -ENOMEM; 2082 2083 return 0; 2084 } 2085 2086 /* 2087 * This algorithm is a very conservative estimate of the worst-case scheduling 2088 * scenario for any one interval. The hardware dynamically schedules the 2089 * packets, so we can't tell which microframe could be the limiting factor in 2090 * the bandwidth scheduling. This only takes into account periodic endpoints. 2091 * 2092 * Obviously, we can't solve an NP complete problem to find the minimum worst 2093 * case scenario. Instead, we come up with an estimate that is no less than 2094 * the worst case bandwidth used for any one microframe, but may be an 2095 * over-estimate. 2096 * 2097 * We walk the requirements for each endpoint by interval, starting with the 2098 * smallest interval, and place packets in the schedule where there is only one 2099 * possible way to schedule packets for that interval. In order to simplify 2100 * this algorithm, we record the largest max packet size for each interval, and 2101 * assume all packets will be that size. 2102 * 2103 * For interval 0, we obviously must schedule all packets for each interval. 2104 * The bandwidth for interval 0 is just the amount of data to be transmitted 2105 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2106 * the number of packets). 2107 * 2108 * For interval 1, we have two possible microframes to schedule those packets 2109 * in. For this algorithm, if we can schedule the same number of packets for 2110 * each possible scheduling opportunity (each microframe), we will do so. The 2111 * remaining number of packets will be saved to be transmitted in the gaps in 2112 * the next interval's scheduling sequence. 2113 * 2114 * As we move those remaining packets to be scheduled with interval 2 packets, 2115 * we have to double the number of remaining packets to transmit. This is 2116 * because the intervals are actually powers of 2, and we would be transmitting 2117 * the previous interval's packets twice in this interval. We also have to be 2118 * sure that when we look at the largest max packet size for this interval, we 2119 * also look at the largest max packet size for the remaining packets and take 2120 * the greater of the two. 2121 * 2122 * The algorithm continues to evenly distribute packets in each scheduling 2123 * opportunity, and push the remaining packets out, until we get to the last 2124 * interval. Then those packets and their associated overhead are just added 2125 * to the bandwidth used. 2126 */ 2127 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2128 struct xhci_virt_device *virt_dev, 2129 int old_active_eps) 2130 { 2131 unsigned int bw_reserved; 2132 unsigned int max_bandwidth; 2133 unsigned int bw_used; 2134 unsigned int block_size; 2135 struct xhci_interval_bw_table *bw_table; 2136 unsigned int packet_size = 0; 2137 unsigned int overhead = 0; 2138 unsigned int packets_transmitted = 0; 2139 unsigned int packets_remaining = 0; 2140 unsigned int i; 2141 2142 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2143 return xhci_check_ss_bw(xhci, virt_dev); 2144 2145 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2146 max_bandwidth = HS_BW_LIMIT; 2147 /* Convert percent of bus BW reserved to blocks reserved */ 2148 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2149 } else { 2150 max_bandwidth = FS_BW_LIMIT; 2151 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2152 } 2153 2154 bw_table = virt_dev->bw_table; 2155 /* We need to translate the max packet size and max ESIT payloads into 2156 * the units the hardware uses. 2157 */ 2158 block_size = xhci_get_block_size(virt_dev->udev); 2159 2160 /* If we are manipulating a LS/FS device under a HS hub, double check 2161 * that the HS bus has enough bandwidth if we are activing a new TT. 2162 */ 2163 if (virt_dev->tt_info) { 2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2165 "Recalculating BW for rootport %u", 2166 virt_dev->real_port); 2167 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2168 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2169 "newly activated TT.\n"); 2170 return -ENOMEM; 2171 } 2172 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2173 "Recalculating BW for TT slot %u port %u", 2174 virt_dev->tt_info->slot_id, 2175 virt_dev->tt_info->ttport); 2176 } else { 2177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2178 "Recalculating BW for rootport %u", 2179 virt_dev->real_port); 2180 } 2181 2182 /* Add in how much bandwidth will be used for interval zero, or the 2183 * rounded max ESIT payload + number of packets * largest overhead. 2184 */ 2185 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2186 bw_table->interval_bw[0].num_packets * 2187 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2188 2189 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2190 unsigned int bw_added; 2191 unsigned int largest_mps; 2192 unsigned int interval_overhead; 2193 2194 /* 2195 * How many packets could we transmit in this interval? 2196 * If packets didn't fit in the previous interval, we will need 2197 * to transmit that many packets twice within this interval. 2198 */ 2199 packets_remaining = 2 * packets_remaining + 2200 bw_table->interval_bw[i].num_packets; 2201 2202 /* Find the largest max packet size of this or the previous 2203 * interval. 2204 */ 2205 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2206 largest_mps = 0; 2207 else { 2208 struct xhci_virt_ep *virt_ep; 2209 struct list_head *ep_entry; 2210 2211 ep_entry = bw_table->interval_bw[i].endpoints.next; 2212 virt_ep = list_entry(ep_entry, 2213 struct xhci_virt_ep, bw_endpoint_list); 2214 /* Convert to blocks, rounding up */ 2215 largest_mps = DIV_ROUND_UP( 2216 virt_ep->bw_info.max_packet_size, 2217 block_size); 2218 } 2219 if (largest_mps > packet_size) 2220 packet_size = largest_mps; 2221 2222 /* Use the larger overhead of this or the previous interval. */ 2223 interval_overhead = xhci_get_largest_overhead( 2224 &bw_table->interval_bw[i]); 2225 if (interval_overhead > overhead) 2226 overhead = interval_overhead; 2227 2228 /* How many packets can we evenly distribute across 2229 * (1 << (i + 1)) possible scheduling opportunities? 2230 */ 2231 packets_transmitted = packets_remaining >> (i + 1); 2232 2233 /* Add in the bandwidth used for those scheduled packets */ 2234 bw_added = packets_transmitted * (overhead + packet_size); 2235 2236 /* How many packets do we have remaining to transmit? */ 2237 packets_remaining = packets_remaining % (1 << (i + 1)); 2238 2239 /* What largest max packet size should those packets have? */ 2240 /* If we've transmitted all packets, don't carry over the 2241 * largest packet size. 2242 */ 2243 if (packets_remaining == 0) { 2244 packet_size = 0; 2245 overhead = 0; 2246 } else if (packets_transmitted > 0) { 2247 /* Otherwise if we do have remaining packets, and we've 2248 * scheduled some packets in this interval, take the 2249 * largest max packet size from endpoints with this 2250 * interval. 2251 */ 2252 packet_size = largest_mps; 2253 overhead = interval_overhead; 2254 } 2255 /* Otherwise carry over packet_size and overhead from the last 2256 * time we had a remainder. 2257 */ 2258 bw_used += bw_added; 2259 if (bw_used > max_bandwidth) { 2260 xhci_warn(xhci, "Not enough bandwidth. " 2261 "Proposed: %u, Max: %u\n", 2262 bw_used, max_bandwidth); 2263 return -ENOMEM; 2264 } 2265 } 2266 /* 2267 * Ok, we know we have some packets left over after even-handedly 2268 * scheduling interval 15. We don't know which microframes they will 2269 * fit into, so we over-schedule and say they will be scheduled every 2270 * microframe. 2271 */ 2272 if (packets_remaining > 0) 2273 bw_used += overhead + packet_size; 2274 2275 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2276 unsigned int port_index = virt_dev->real_port - 1; 2277 2278 /* OK, we're manipulating a HS device attached to a 2279 * root port bandwidth domain. Include the number of active TTs 2280 * in the bandwidth used. 2281 */ 2282 bw_used += TT_HS_OVERHEAD * 2283 xhci->rh_bw[port_index].num_active_tts; 2284 } 2285 2286 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2287 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2288 "Available: %u " "percent", 2289 bw_used, max_bandwidth, bw_reserved, 2290 (max_bandwidth - bw_used - bw_reserved) * 100 / 2291 max_bandwidth); 2292 2293 bw_used += bw_reserved; 2294 if (bw_used > max_bandwidth) { 2295 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2296 bw_used, max_bandwidth); 2297 return -ENOMEM; 2298 } 2299 2300 bw_table->bw_used = bw_used; 2301 return 0; 2302 } 2303 2304 static bool xhci_is_async_ep(unsigned int ep_type) 2305 { 2306 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2307 ep_type != ISOC_IN_EP && 2308 ep_type != INT_IN_EP); 2309 } 2310 2311 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2312 { 2313 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2314 } 2315 2316 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2317 { 2318 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2319 2320 if (ep_bw->ep_interval == 0) 2321 return SS_OVERHEAD_BURST + 2322 (ep_bw->mult * ep_bw->num_packets * 2323 (SS_OVERHEAD + mps)); 2324 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2325 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2326 1 << ep_bw->ep_interval); 2327 2328 } 2329 2330 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2331 struct xhci_bw_info *ep_bw, 2332 struct xhci_interval_bw_table *bw_table, 2333 struct usb_device *udev, 2334 struct xhci_virt_ep *virt_ep, 2335 struct xhci_tt_bw_info *tt_info) 2336 { 2337 struct xhci_interval_bw *interval_bw; 2338 int normalized_interval; 2339 2340 if (xhci_is_async_ep(ep_bw->type)) 2341 return; 2342 2343 if (udev->speed == USB_SPEED_SUPER) { 2344 if (xhci_is_sync_in_ep(ep_bw->type)) 2345 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2346 xhci_get_ss_bw_consumed(ep_bw); 2347 else 2348 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2349 xhci_get_ss_bw_consumed(ep_bw); 2350 return; 2351 } 2352 2353 /* SuperSpeed endpoints never get added to intervals in the table, so 2354 * this check is only valid for HS/FS/LS devices. 2355 */ 2356 if (list_empty(&virt_ep->bw_endpoint_list)) 2357 return; 2358 /* For LS/FS devices, we need to translate the interval expressed in 2359 * microframes to frames. 2360 */ 2361 if (udev->speed == USB_SPEED_HIGH) 2362 normalized_interval = ep_bw->ep_interval; 2363 else 2364 normalized_interval = ep_bw->ep_interval - 3; 2365 2366 if (normalized_interval == 0) 2367 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2368 interval_bw = &bw_table->interval_bw[normalized_interval]; 2369 interval_bw->num_packets -= ep_bw->num_packets; 2370 switch (udev->speed) { 2371 case USB_SPEED_LOW: 2372 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2373 break; 2374 case USB_SPEED_FULL: 2375 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2376 break; 2377 case USB_SPEED_HIGH: 2378 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2379 break; 2380 case USB_SPEED_SUPER: 2381 case USB_SPEED_UNKNOWN: 2382 case USB_SPEED_WIRELESS: 2383 /* Should never happen because only LS/FS/HS endpoints will get 2384 * added to the endpoint list. 2385 */ 2386 return; 2387 } 2388 if (tt_info) 2389 tt_info->active_eps -= 1; 2390 list_del_init(&virt_ep->bw_endpoint_list); 2391 } 2392 2393 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2394 struct xhci_bw_info *ep_bw, 2395 struct xhci_interval_bw_table *bw_table, 2396 struct usb_device *udev, 2397 struct xhci_virt_ep *virt_ep, 2398 struct xhci_tt_bw_info *tt_info) 2399 { 2400 struct xhci_interval_bw *interval_bw; 2401 struct xhci_virt_ep *smaller_ep; 2402 int normalized_interval; 2403 2404 if (xhci_is_async_ep(ep_bw->type)) 2405 return; 2406 2407 if (udev->speed == USB_SPEED_SUPER) { 2408 if (xhci_is_sync_in_ep(ep_bw->type)) 2409 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2410 xhci_get_ss_bw_consumed(ep_bw); 2411 else 2412 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2413 xhci_get_ss_bw_consumed(ep_bw); 2414 return; 2415 } 2416 2417 /* For LS/FS devices, we need to translate the interval expressed in 2418 * microframes to frames. 2419 */ 2420 if (udev->speed == USB_SPEED_HIGH) 2421 normalized_interval = ep_bw->ep_interval; 2422 else 2423 normalized_interval = ep_bw->ep_interval - 3; 2424 2425 if (normalized_interval == 0) 2426 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2427 interval_bw = &bw_table->interval_bw[normalized_interval]; 2428 interval_bw->num_packets += ep_bw->num_packets; 2429 switch (udev->speed) { 2430 case USB_SPEED_LOW: 2431 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2432 break; 2433 case USB_SPEED_FULL: 2434 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2435 break; 2436 case USB_SPEED_HIGH: 2437 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2438 break; 2439 case USB_SPEED_SUPER: 2440 case USB_SPEED_UNKNOWN: 2441 case USB_SPEED_WIRELESS: 2442 /* Should never happen because only LS/FS/HS endpoints will get 2443 * added to the endpoint list. 2444 */ 2445 return; 2446 } 2447 2448 if (tt_info) 2449 tt_info->active_eps += 1; 2450 /* Insert the endpoint into the list, largest max packet size first. */ 2451 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2452 bw_endpoint_list) { 2453 if (ep_bw->max_packet_size >= 2454 smaller_ep->bw_info.max_packet_size) { 2455 /* Add the new ep before the smaller endpoint */ 2456 list_add_tail(&virt_ep->bw_endpoint_list, 2457 &smaller_ep->bw_endpoint_list); 2458 return; 2459 } 2460 } 2461 /* Add the new endpoint at the end of the list. */ 2462 list_add_tail(&virt_ep->bw_endpoint_list, 2463 &interval_bw->endpoints); 2464 } 2465 2466 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2467 struct xhci_virt_device *virt_dev, 2468 int old_active_eps) 2469 { 2470 struct xhci_root_port_bw_info *rh_bw_info; 2471 if (!virt_dev->tt_info) 2472 return; 2473 2474 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2475 if (old_active_eps == 0 && 2476 virt_dev->tt_info->active_eps != 0) { 2477 rh_bw_info->num_active_tts += 1; 2478 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2479 } else if (old_active_eps != 0 && 2480 virt_dev->tt_info->active_eps == 0) { 2481 rh_bw_info->num_active_tts -= 1; 2482 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2483 } 2484 } 2485 2486 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2487 struct xhci_virt_device *virt_dev, 2488 struct xhci_container_ctx *in_ctx) 2489 { 2490 struct xhci_bw_info ep_bw_info[31]; 2491 int i; 2492 struct xhci_input_control_ctx *ctrl_ctx; 2493 int old_active_eps = 0; 2494 2495 if (virt_dev->tt_info) 2496 old_active_eps = virt_dev->tt_info->active_eps; 2497 2498 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2499 if (!ctrl_ctx) { 2500 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2501 __func__); 2502 return -ENOMEM; 2503 } 2504 2505 for (i = 0; i < 31; i++) { 2506 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2507 continue; 2508 2509 /* Make a copy of the BW info in case we need to revert this */ 2510 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2511 sizeof(ep_bw_info[i])); 2512 /* Drop the endpoint from the interval table if the endpoint is 2513 * being dropped or changed. 2514 */ 2515 if (EP_IS_DROPPED(ctrl_ctx, i)) 2516 xhci_drop_ep_from_interval_table(xhci, 2517 &virt_dev->eps[i].bw_info, 2518 virt_dev->bw_table, 2519 virt_dev->udev, 2520 &virt_dev->eps[i], 2521 virt_dev->tt_info); 2522 } 2523 /* Overwrite the information stored in the endpoints' bw_info */ 2524 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2525 for (i = 0; i < 31; i++) { 2526 /* Add any changed or added endpoints to the interval table */ 2527 if (EP_IS_ADDED(ctrl_ctx, i)) 2528 xhci_add_ep_to_interval_table(xhci, 2529 &virt_dev->eps[i].bw_info, 2530 virt_dev->bw_table, 2531 virt_dev->udev, 2532 &virt_dev->eps[i], 2533 virt_dev->tt_info); 2534 } 2535 2536 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2537 /* Ok, this fits in the bandwidth we have. 2538 * Update the number of active TTs. 2539 */ 2540 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2541 return 0; 2542 } 2543 2544 /* We don't have enough bandwidth for this, revert the stored info. */ 2545 for (i = 0; i < 31; i++) { 2546 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2547 continue; 2548 2549 /* Drop the new copies of any added or changed endpoints from 2550 * the interval table. 2551 */ 2552 if (EP_IS_ADDED(ctrl_ctx, i)) { 2553 xhci_drop_ep_from_interval_table(xhci, 2554 &virt_dev->eps[i].bw_info, 2555 virt_dev->bw_table, 2556 virt_dev->udev, 2557 &virt_dev->eps[i], 2558 virt_dev->tt_info); 2559 } 2560 /* Revert the endpoint back to its old information */ 2561 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2562 sizeof(ep_bw_info[i])); 2563 /* Add any changed or dropped endpoints back into the table */ 2564 if (EP_IS_DROPPED(ctrl_ctx, i)) 2565 xhci_add_ep_to_interval_table(xhci, 2566 &virt_dev->eps[i].bw_info, 2567 virt_dev->bw_table, 2568 virt_dev->udev, 2569 &virt_dev->eps[i], 2570 virt_dev->tt_info); 2571 } 2572 return -ENOMEM; 2573 } 2574 2575 2576 /* Issue a configure endpoint command or evaluate context command 2577 * and wait for it to finish. 2578 */ 2579 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2580 struct usb_device *udev, 2581 struct xhci_command *command, 2582 bool ctx_change, bool must_succeed) 2583 { 2584 int ret; 2585 unsigned long flags; 2586 struct xhci_input_control_ctx *ctrl_ctx; 2587 struct xhci_virt_device *virt_dev; 2588 2589 if (!command) 2590 return -EINVAL; 2591 2592 spin_lock_irqsave(&xhci->lock, flags); 2593 virt_dev = xhci->devs[udev->slot_id]; 2594 2595 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2596 if (!ctrl_ctx) { 2597 spin_unlock_irqrestore(&xhci->lock, flags); 2598 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2599 __func__); 2600 return -ENOMEM; 2601 } 2602 2603 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2604 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2605 spin_unlock_irqrestore(&xhci->lock, flags); 2606 xhci_warn(xhci, "Not enough host resources, " 2607 "active endpoint contexts = %u\n", 2608 xhci->num_active_eps); 2609 return -ENOMEM; 2610 } 2611 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2612 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2613 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2614 xhci_free_host_resources(xhci, ctrl_ctx); 2615 spin_unlock_irqrestore(&xhci->lock, flags); 2616 xhci_warn(xhci, "Not enough bandwidth\n"); 2617 return -ENOMEM; 2618 } 2619 2620 if (!ctx_change) 2621 ret = xhci_queue_configure_endpoint(xhci, command, 2622 command->in_ctx->dma, 2623 udev->slot_id, must_succeed); 2624 else 2625 ret = xhci_queue_evaluate_context(xhci, command, 2626 command->in_ctx->dma, 2627 udev->slot_id, must_succeed); 2628 if (ret < 0) { 2629 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2630 xhci_free_host_resources(xhci, ctrl_ctx); 2631 spin_unlock_irqrestore(&xhci->lock, flags); 2632 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2633 "FIXME allocate a new ring segment"); 2634 return -ENOMEM; 2635 } 2636 xhci_ring_cmd_db(xhci); 2637 spin_unlock_irqrestore(&xhci->lock, flags); 2638 2639 /* Wait for the configure endpoint command to complete */ 2640 wait_for_completion(command->completion); 2641 2642 if (!ctx_change) 2643 ret = xhci_configure_endpoint_result(xhci, udev, 2644 &command->status); 2645 else 2646 ret = xhci_evaluate_context_result(xhci, udev, 2647 &command->status); 2648 2649 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2650 spin_lock_irqsave(&xhci->lock, flags); 2651 /* If the command failed, remove the reserved resources. 2652 * Otherwise, clean up the estimate to include dropped eps. 2653 */ 2654 if (ret) 2655 xhci_free_host_resources(xhci, ctrl_ctx); 2656 else 2657 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2658 spin_unlock_irqrestore(&xhci->lock, flags); 2659 } 2660 return ret; 2661 } 2662 2663 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2664 struct xhci_virt_device *vdev, int i) 2665 { 2666 struct xhci_virt_ep *ep = &vdev->eps[i]; 2667 2668 if (ep->ep_state & EP_HAS_STREAMS) { 2669 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2670 xhci_get_endpoint_address(i)); 2671 xhci_free_stream_info(xhci, ep->stream_info); 2672 ep->stream_info = NULL; 2673 ep->ep_state &= ~EP_HAS_STREAMS; 2674 } 2675 } 2676 2677 /* Called after one or more calls to xhci_add_endpoint() or 2678 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2679 * to call xhci_reset_bandwidth(). 2680 * 2681 * Since we are in the middle of changing either configuration or 2682 * installing a new alt setting, the USB core won't allow URBs to be 2683 * enqueued for any endpoint on the old config or interface. Nothing 2684 * else should be touching the xhci->devs[slot_id] structure, so we 2685 * don't need to take the xhci->lock for manipulating that. 2686 */ 2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2688 { 2689 int i; 2690 int ret = 0; 2691 struct xhci_hcd *xhci; 2692 struct xhci_virt_device *virt_dev; 2693 struct xhci_input_control_ctx *ctrl_ctx; 2694 struct xhci_slot_ctx *slot_ctx; 2695 struct xhci_command *command; 2696 2697 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2698 if (ret <= 0) 2699 return ret; 2700 xhci = hcd_to_xhci(hcd); 2701 if (xhci->xhc_state & XHCI_STATE_DYING) 2702 return -ENODEV; 2703 2704 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2705 virt_dev = xhci->devs[udev->slot_id]; 2706 2707 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2708 if (!command) 2709 return -ENOMEM; 2710 2711 command->in_ctx = virt_dev->in_ctx; 2712 2713 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2714 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2715 if (!ctrl_ctx) { 2716 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2717 __func__); 2718 ret = -ENOMEM; 2719 goto command_cleanup; 2720 } 2721 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2722 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2723 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2724 2725 /* Don't issue the command if there's no endpoints to update. */ 2726 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2727 ctrl_ctx->drop_flags == 0) { 2728 ret = 0; 2729 goto command_cleanup; 2730 } 2731 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2732 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2733 for (i = 31; i >= 1; i--) { 2734 __le32 le32 = cpu_to_le32(BIT(i)); 2735 2736 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2737 || (ctrl_ctx->add_flags & le32) || i == 1) { 2738 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2739 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2740 break; 2741 } 2742 } 2743 xhci_dbg(xhci, "New Input Control Context:\n"); 2744 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2745 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2746 2747 ret = xhci_configure_endpoint(xhci, udev, command, 2748 false, false); 2749 if (ret) 2750 /* Callee should call reset_bandwidth() */ 2751 goto command_cleanup; 2752 2753 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2754 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2755 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2756 2757 /* Free any rings that were dropped, but not changed. */ 2758 for (i = 1; i < 31; ++i) { 2759 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2760 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2761 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2762 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2763 } 2764 } 2765 xhci_zero_in_ctx(xhci, virt_dev); 2766 /* 2767 * Install any rings for completely new endpoints or changed endpoints, 2768 * and free or cache any old rings from changed endpoints. 2769 */ 2770 for (i = 1; i < 31; ++i) { 2771 if (!virt_dev->eps[i].new_ring) 2772 continue; 2773 /* Only cache or free the old ring if it exists. 2774 * It may not if this is the first add of an endpoint. 2775 */ 2776 if (virt_dev->eps[i].ring) { 2777 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2778 } 2779 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2780 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2781 virt_dev->eps[i].new_ring = NULL; 2782 } 2783 command_cleanup: 2784 kfree(command->completion); 2785 kfree(command); 2786 2787 return ret; 2788 } 2789 2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2791 { 2792 struct xhci_hcd *xhci; 2793 struct xhci_virt_device *virt_dev; 2794 int i, ret; 2795 2796 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2797 if (ret <= 0) 2798 return; 2799 xhci = hcd_to_xhci(hcd); 2800 2801 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2802 virt_dev = xhci->devs[udev->slot_id]; 2803 /* Free any rings allocated for added endpoints */ 2804 for (i = 0; i < 31; ++i) { 2805 if (virt_dev->eps[i].new_ring) { 2806 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2807 virt_dev->eps[i].new_ring = NULL; 2808 } 2809 } 2810 xhci_zero_in_ctx(xhci, virt_dev); 2811 } 2812 2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2814 struct xhci_container_ctx *in_ctx, 2815 struct xhci_container_ctx *out_ctx, 2816 struct xhci_input_control_ctx *ctrl_ctx, 2817 u32 add_flags, u32 drop_flags) 2818 { 2819 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2820 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2821 xhci_slot_copy(xhci, in_ctx, out_ctx); 2822 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2823 2824 xhci_dbg(xhci, "Input Context:\n"); 2825 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2826 } 2827 2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2829 unsigned int slot_id, unsigned int ep_index, 2830 struct xhci_dequeue_state *deq_state) 2831 { 2832 struct xhci_input_control_ctx *ctrl_ctx; 2833 struct xhci_container_ctx *in_ctx; 2834 struct xhci_ep_ctx *ep_ctx; 2835 u32 added_ctxs; 2836 dma_addr_t addr; 2837 2838 in_ctx = xhci->devs[slot_id]->in_ctx; 2839 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2840 if (!ctrl_ctx) { 2841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2842 __func__); 2843 return; 2844 } 2845 2846 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2847 xhci->devs[slot_id]->out_ctx, ep_index); 2848 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2849 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2850 deq_state->new_deq_ptr); 2851 if (addr == 0) { 2852 xhci_warn(xhci, "WARN Cannot submit config ep after " 2853 "reset ep command\n"); 2854 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2855 deq_state->new_deq_seg, 2856 deq_state->new_deq_ptr); 2857 return; 2858 } 2859 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2860 2861 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2862 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2863 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2864 added_ctxs, added_ctxs); 2865 } 2866 2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2868 struct usb_device *udev, unsigned int ep_index) 2869 { 2870 struct xhci_dequeue_state deq_state; 2871 struct xhci_virt_ep *ep; 2872 2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2874 "Cleaning up stalled endpoint ring"); 2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2876 /* We need to move the HW's dequeue pointer past this TD, 2877 * or it will attempt to resend it on the next doorbell ring. 2878 */ 2879 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2880 ep_index, ep->stopped_stream, ep->stopped_td, 2881 &deq_state); 2882 2883 /* HW with the reset endpoint quirk will use the saved dequeue state to 2884 * issue a configure endpoint command later. 2885 */ 2886 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2887 struct xhci_command *command; 2888 /* Can't sleep if we're called from cleanup_halted_endpoint() */ 2889 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 2890 if (!command) 2891 return; 2892 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2893 "Queueing new dequeue state"); 2894 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id, 2895 ep_index, ep->stopped_stream, &deq_state); 2896 } else { 2897 /* Better hope no one uses the input context between now and the 2898 * reset endpoint completion! 2899 * XXX: No idea how this hardware will react when stream rings 2900 * are enabled. 2901 */ 2902 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2903 "Setting up input context for " 2904 "configure endpoint command"); 2905 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2906 ep_index, &deq_state); 2907 } 2908 } 2909 2910 /* Deal with stalled endpoints. The core should have sent the control message 2911 * to clear the halt condition. However, we need to make the xHCI hardware 2912 * reset its sequence number, since a device will expect a sequence number of 2913 * zero after the halt condition is cleared. 2914 * Context: in_interrupt 2915 */ 2916 void xhci_endpoint_reset(struct usb_hcd *hcd, 2917 struct usb_host_endpoint *ep) 2918 { 2919 struct xhci_hcd *xhci; 2920 struct usb_device *udev; 2921 unsigned int ep_index; 2922 unsigned long flags; 2923 int ret; 2924 struct xhci_virt_ep *virt_ep; 2925 struct xhci_command *command; 2926 2927 xhci = hcd_to_xhci(hcd); 2928 udev = (struct usb_device *) ep->hcpriv; 2929 /* Called with a root hub endpoint (or an endpoint that wasn't added 2930 * with xhci_add_endpoint() 2931 */ 2932 if (!ep->hcpriv) 2933 return; 2934 ep_index = xhci_get_endpoint_index(&ep->desc); 2935 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2936 if (!virt_ep->stopped_td) { 2937 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2938 "Endpoint 0x%x not halted, refusing to reset.", 2939 ep->desc.bEndpointAddress); 2940 return; 2941 } 2942 if (usb_endpoint_xfer_control(&ep->desc)) { 2943 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2944 "Control endpoint stall already handled."); 2945 return; 2946 } 2947 2948 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 2949 if (!command) 2950 return; 2951 2952 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2953 "Queueing reset endpoint command"); 2954 spin_lock_irqsave(&xhci->lock, flags); 2955 ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index); 2956 /* 2957 * Can't change the ring dequeue pointer until it's transitioned to the 2958 * stopped state, which is only upon a successful reset endpoint 2959 * command. Better hope that last command worked! 2960 */ 2961 if (!ret) { 2962 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2963 kfree(virt_ep->stopped_td); 2964 xhci_ring_cmd_db(xhci); 2965 } 2966 virt_ep->stopped_td = NULL; 2967 virt_ep->stopped_stream = 0; 2968 spin_unlock_irqrestore(&xhci->lock, flags); 2969 2970 if (ret) 2971 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2972 } 2973 2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2975 struct usb_device *udev, struct usb_host_endpoint *ep, 2976 unsigned int slot_id) 2977 { 2978 int ret; 2979 unsigned int ep_index; 2980 unsigned int ep_state; 2981 2982 if (!ep) 2983 return -EINVAL; 2984 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2985 if (ret <= 0) 2986 return -EINVAL; 2987 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2988 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2989 " descriptor for ep 0x%x does not support streams\n", 2990 ep->desc.bEndpointAddress); 2991 return -EINVAL; 2992 } 2993 2994 ep_index = xhci_get_endpoint_index(&ep->desc); 2995 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2996 if (ep_state & EP_HAS_STREAMS || 2997 ep_state & EP_GETTING_STREAMS) { 2998 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2999 "already has streams set up.\n", 3000 ep->desc.bEndpointAddress); 3001 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3002 "dynamic stream context array reallocation.\n"); 3003 return -EINVAL; 3004 } 3005 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3006 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3007 "endpoint 0x%x; URBs are pending.\n", 3008 ep->desc.bEndpointAddress); 3009 return -EINVAL; 3010 } 3011 return 0; 3012 } 3013 3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3015 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3016 { 3017 unsigned int max_streams; 3018 3019 /* The stream context array size must be a power of two */ 3020 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3021 /* 3022 * Find out how many primary stream array entries the host controller 3023 * supports. Later we may use secondary stream arrays (similar to 2nd 3024 * level page entries), but that's an optional feature for xHCI host 3025 * controllers. xHCs must support at least 4 stream IDs. 3026 */ 3027 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3028 if (*num_stream_ctxs > max_streams) { 3029 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3030 max_streams); 3031 *num_stream_ctxs = max_streams; 3032 *num_streams = max_streams; 3033 } 3034 } 3035 3036 /* Returns an error code if one of the endpoint already has streams. 3037 * This does not change any data structures, it only checks and gathers 3038 * information. 3039 */ 3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3041 struct usb_device *udev, 3042 struct usb_host_endpoint **eps, unsigned int num_eps, 3043 unsigned int *num_streams, u32 *changed_ep_bitmask) 3044 { 3045 unsigned int max_streams; 3046 unsigned int endpoint_flag; 3047 int i; 3048 int ret; 3049 3050 for (i = 0; i < num_eps; i++) { 3051 ret = xhci_check_streams_endpoint(xhci, udev, 3052 eps[i], udev->slot_id); 3053 if (ret < 0) 3054 return ret; 3055 3056 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3057 if (max_streams < (*num_streams - 1)) { 3058 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3059 eps[i]->desc.bEndpointAddress, 3060 max_streams); 3061 *num_streams = max_streams+1; 3062 } 3063 3064 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3065 if (*changed_ep_bitmask & endpoint_flag) 3066 return -EINVAL; 3067 *changed_ep_bitmask |= endpoint_flag; 3068 } 3069 return 0; 3070 } 3071 3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3073 struct usb_device *udev, 3074 struct usb_host_endpoint **eps, unsigned int num_eps) 3075 { 3076 u32 changed_ep_bitmask = 0; 3077 unsigned int slot_id; 3078 unsigned int ep_index; 3079 unsigned int ep_state; 3080 int i; 3081 3082 slot_id = udev->slot_id; 3083 if (!xhci->devs[slot_id]) 3084 return 0; 3085 3086 for (i = 0; i < num_eps; i++) { 3087 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3088 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3089 /* Are streams already being freed for the endpoint? */ 3090 if (ep_state & EP_GETTING_NO_STREAMS) { 3091 xhci_warn(xhci, "WARN Can't disable streams for " 3092 "endpoint 0x%x, " 3093 "streams are being disabled already\n", 3094 eps[i]->desc.bEndpointAddress); 3095 return 0; 3096 } 3097 /* Are there actually any streams to free? */ 3098 if (!(ep_state & EP_HAS_STREAMS) && 3099 !(ep_state & EP_GETTING_STREAMS)) { 3100 xhci_warn(xhci, "WARN Can't disable streams for " 3101 "endpoint 0x%x, " 3102 "streams are already disabled!\n", 3103 eps[i]->desc.bEndpointAddress); 3104 xhci_warn(xhci, "WARN xhci_free_streams() called " 3105 "with non-streams endpoint\n"); 3106 return 0; 3107 } 3108 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3109 } 3110 return changed_ep_bitmask; 3111 } 3112 3113 /* 3114 * The USB device drivers use this function (though the HCD interface in USB 3115 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3116 * coordinate mass storage command queueing across multiple endpoints (basically 3117 * a stream ID == a task ID). 3118 * 3119 * Setting up streams involves allocating the same size stream context array 3120 * for each endpoint and issuing a configure endpoint command for all endpoints. 3121 * 3122 * Don't allow the call to succeed if one endpoint only supports one stream 3123 * (which means it doesn't support streams at all). 3124 * 3125 * Drivers may get less stream IDs than they asked for, if the host controller 3126 * hardware or endpoints claim they can't support the number of requested 3127 * stream IDs. 3128 */ 3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3130 struct usb_host_endpoint **eps, unsigned int num_eps, 3131 unsigned int num_streams, gfp_t mem_flags) 3132 { 3133 int i, ret; 3134 struct xhci_hcd *xhci; 3135 struct xhci_virt_device *vdev; 3136 struct xhci_command *config_cmd; 3137 struct xhci_input_control_ctx *ctrl_ctx; 3138 unsigned int ep_index; 3139 unsigned int num_stream_ctxs; 3140 unsigned long flags; 3141 u32 changed_ep_bitmask = 0; 3142 3143 if (!eps) 3144 return -EINVAL; 3145 3146 /* Add one to the number of streams requested to account for 3147 * stream 0 that is reserved for xHCI usage. 3148 */ 3149 num_streams += 1; 3150 xhci = hcd_to_xhci(hcd); 3151 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3152 num_streams); 3153 3154 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3155 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3156 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3157 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3158 return -ENOSYS; 3159 } 3160 3161 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3162 if (!config_cmd) { 3163 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3164 return -ENOMEM; 3165 } 3166 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3167 if (!ctrl_ctx) { 3168 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3169 __func__); 3170 xhci_free_command(xhci, config_cmd); 3171 return -ENOMEM; 3172 } 3173 3174 /* Check to make sure all endpoints are not already configured for 3175 * streams. While we're at it, find the maximum number of streams that 3176 * all the endpoints will support and check for duplicate endpoints. 3177 */ 3178 spin_lock_irqsave(&xhci->lock, flags); 3179 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3180 num_eps, &num_streams, &changed_ep_bitmask); 3181 if (ret < 0) { 3182 xhci_free_command(xhci, config_cmd); 3183 spin_unlock_irqrestore(&xhci->lock, flags); 3184 return ret; 3185 } 3186 if (num_streams <= 1) { 3187 xhci_warn(xhci, "WARN: endpoints can't handle " 3188 "more than one stream.\n"); 3189 xhci_free_command(xhci, config_cmd); 3190 spin_unlock_irqrestore(&xhci->lock, flags); 3191 return -EINVAL; 3192 } 3193 vdev = xhci->devs[udev->slot_id]; 3194 /* Mark each endpoint as being in transition, so 3195 * xhci_urb_enqueue() will reject all URBs. 3196 */ 3197 for (i = 0; i < num_eps; i++) { 3198 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3199 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3200 } 3201 spin_unlock_irqrestore(&xhci->lock, flags); 3202 3203 /* Setup internal data structures and allocate HW data structures for 3204 * streams (but don't install the HW structures in the input context 3205 * until we're sure all memory allocation succeeded). 3206 */ 3207 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3208 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3209 num_stream_ctxs, num_streams); 3210 3211 for (i = 0; i < num_eps; i++) { 3212 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3213 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3214 num_stream_ctxs, 3215 num_streams, mem_flags); 3216 if (!vdev->eps[ep_index].stream_info) 3217 goto cleanup; 3218 /* Set maxPstreams in endpoint context and update deq ptr to 3219 * point to stream context array. FIXME 3220 */ 3221 } 3222 3223 /* Set up the input context for a configure endpoint command. */ 3224 for (i = 0; i < num_eps; i++) { 3225 struct xhci_ep_ctx *ep_ctx; 3226 3227 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3228 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3229 3230 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3231 vdev->out_ctx, ep_index); 3232 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3233 vdev->eps[ep_index].stream_info); 3234 } 3235 /* Tell the HW to drop its old copy of the endpoint context info 3236 * and add the updated copy from the input context. 3237 */ 3238 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3239 vdev->out_ctx, ctrl_ctx, 3240 changed_ep_bitmask, changed_ep_bitmask); 3241 3242 /* Issue and wait for the configure endpoint command */ 3243 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3244 false, false); 3245 3246 /* xHC rejected the configure endpoint command for some reason, so we 3247 * leave the old ring intact and free our internal streams data 3248 * structure. 3249 */ 3250 if (ret < 0) 3251 goto cleanup; 3252 3253 spin_lock_irqsave(&xhci->lock, flags); 3254 for (i = 0; i < num_eps; i++) { 3255 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3256 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3257 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3258 udev->slot_id, ep_index); 3259 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3260 } 3261 xhci_free_command(xhci, config_cmd); 3262 spin_unlock_irqrestore(&xhci->lock, flags); 3263 3264 /* Subtract 1 for stream 0, which drivers can't use */ 3265 return num_streams - 1; 3266 3267 cleanup: 3268 /* If it didn't work, free the streams! */ 3269 for (i = 0; i < num_eps; i++) { 3270 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3271 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3272 vdev->eps[ep_index].stream_info = NULL; 3273 /* FIXME Unset maxPstreams in endpoint context and 3274 * update deq ptr to point to normal string ring. 3275 */ 3276 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3277 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3278 xhci_endpoint_zero(xhci, vdev, eps[i]); 3279 } 3280 xhci_free_command(xhci, config_cmd); 3281 return -ENOMEM; 3282 } 3283 3284 /* Transition the endpoint from using streams to being a "normal" endpoint 3285 * without streams. 3286 * 3287 * Modify the endpoint context state, submit a configure endpoint command, 3288 * and free all endpoint rings for streams if that completes successfully. 3289 */ 3290 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3291 struct usb_host_endpoint **eps, unsigned int num_eps, 3292 gfp_t mem_flags) 3293 { 3294 int i, ret; 3295 struct xhci_hcd *xhci; 3296 struct xhci_virt_device *vdev; 3297 struct xhci_command *command; 3298 struct xhci_input_control_ctx *ctrl_ctx; 3299 unsigned int ep_index; 3300 unsigned long flags; 3301 u32 changed_ep_bitmask; 3302 3303 xhci = hcd_to_xhci(hcd); 3304 vdev = xhci->devs[udev->slot_id]; 3305 3306 /* Set up a configure endpoint command to remove the streams rings */ 3307 spin_lock_irqsave(&xhci->lock, flags); 3308 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3309 udev, eps, num_eps); 3310 if (changed_ep_bitmask == 0) { 3311 spin_unlock_irqrestore(&xhci->lock, flags); 3312 return -EINVAL; 3313 } 3314 3315 /* Use the xhci_command structure from the first endpoint. We may have 3316 * allocated too many, but the driver may call xhci_free_streams() for 3317 * each endpoint it grouped into one call to xhci_alloc_streams(). 3318 */ 3319 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3320 command = vdev->eps[ep_index].stream_info->free_streams_command; 3321 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3322 if (!ctrl_ctx) { 3323 spin_unlock_irqrestore(&xhci->lock, flags); 3324 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3325 __func__); 3326 return -EINVAL; 3327 } 3328 3329 for (i = 0; i < num_eps; i++) { 3330 struct xhci_ep_ctx *ep_ctx; 3331 3332 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3333 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3334 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3335 EP_GETTING_NO_STREAMS; 3336 3337 xhci_endpoint_copy(xhci, command->in_ctx, 3338 vdev->out_ctx, ep_index); 3339 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3340 &vdev->eps[ep_index]); 3341 } 3342 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3343 vdev->out_ctx, ctrl_ctx, 3344 changed_ep_bitmask, changed_ep_bitmask); 3345 spin_unlock_irqrestore(&xhci->lock, flags); 3346 3347 /* Issue and wait for the configure endpoint command, 3348 * which must succeed. 3349 */ 3350 ret = xhci_configure_endpoint(xhci, udev, command, 3351 false, true); 3352 3353 /* xHC rejected the configure endpoint command for some reason, so we 3354 * leave the streams rings intact. 3355 */ 3356 if (ret < 0) 3357 return ret; 3358 3359 spin_lock_irqsave(&xhci->lock, flags); 3360 for (i = 0; i < num_eps; i++) { 3361 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3362 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3363 vdev->eps[ep_index].stream_info = NULL; 3364 /* FIXME Unset maxPstreams in endpoint context and 3365 * update deq ptr to point to normal string ring. 3366 */ 3367 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3368 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3369 } 3370 spin_unlock_irqrestore(&xhci->lock, flags); 3371 3372 return 0; 3373 } 3374 3375 /* 3376 * Deletes endpoint resources for endpoints that were active before a Reset 3377 * Device command, or a Disable Slot command. The Reset Device command leaves 3378 * the control endpoint intact, whereas the Disable Slot command deletes it. 3379 * 3380 * Must be called with xhci->lock held. 3381 */ 3382 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3383 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3384 { 3385 int i; 3386 unsigned int num_dropped_eps = 0; 3387 unsigned int drop_flags = 0; 3388 3389 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3390 if (virt_dev->eps[i].ring) { 3391 drop_flags |= 1 << i; 3392 num_dropped_eps++; 3393 } 3394 } 3395 xhci->num_active_eps -= num_dropped_eps; 3396 if (num_dropped_eps) 3397 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3398 "Dropped %u ep ctxs, flags = 0x%x, " 3399 "%u now active.", 3400 num_dropped_eps, drop_flags, 3401 xhci->num_active_eps); 3402 } 3403 3404 /* 3405 * This submits a Reset Device Command, which will set the device state to 0, 3406 * set the device address to 0, and disable all the endpoints except the default 3407 * control endpoint. The USB core should come back and call 3408 * xhci_address_device(), and then re-set up the configuration. If this is 3409 * called because of a usb_reset_and_verify_device(), then the old alternate 3410 * settings will be re-installed through the normal bandwidth allocation 3411 * functions. 3412 * 3413 * Wait for the Reset Device command to finish. Remove all structures 3414 * associated with the endpoints that were disabled. Clear the input device 3415 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3416 * 3417 * If the virt_dev to be reset does not exist or does not match the udev, 3418 * it means the device is lost, possibly due to the xHC restore error and 3419 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3420 * re-allocate the device. 3421 */ 3422 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3423 { 3424 int ret, i; 3425 unsigned long flags; 3426 struct xhci_hcd *xhci; 3427 unsigned int slot_id; 3428 struct xhci_virt_device *virt_dev; 3429 struct xhci_command *reset_device_cmd; 3430 int last_freed_endpoint; 3431 struct xhci_slot_ctx *slot_ctx; 3432 int old_active_eps = 0; 3433 3434 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3435 if (ret <= 0) 3436 return ret; 3437 xhci = hcd_to_xhci(hcd); 3438 slot_id = udev->slot_id; 3439 virt_dev = xhci->devs[slot_id]; 3440 if (!virt_dev) { 3441 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3442 "not exist. Re-allocate the device\n", slot_id); 3443 ret = xhci_alloc_dev(hcd, udev); 3444 if (ret == 1) 3445 return 0; 3446 else 3447 return -EINVAL; 3448 } 3449 3450 if (virt_dev->udev != udev) { 3451 /* If the virt_dev and the udev does not match, this virt_dev 3452 * may belong to another udev. 3453 * Re-allocate the device. 3454 */ 3455 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3456 "not match the udev. Re-allocate the device\n", 3457 slot_id); 3458 ret = xhci_alloc_dev(hcd, udev); 3459 if (ret == 1) 3460 return 0; 3461 else 3462 return -EINVAL; 3463 } 3464 3465 /* If device is not setup, there is no point in resetting it */ 3466 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3467 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3468 SLOT_STATE_DISABLED) 3469 return 0; 3470 3471 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3472 /* Allocate the command structure that holds the struct completion. 3473 * Assume we're in process context, since the normal device reset 3474 * process has to wait for the device anyway. Storage devices are 3475 * reset as part of error handling, so use GFP_NOIO instead of 3476 * GFP_KERNEL. 3477 */ 3478 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3479 if (!reset_device_cmd) { 3480 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3481 return -ENOMEM; 3482 } 3483 3484 /* Attempt to submit the Reset Device command to the command ring */ 3485 spin_lock_irqsave(&xhci->lock, flags); 3486 3487 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3488 if (ret) { 3489 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3490 spin_unlock_irqrestore(&xhci->lock, flags); 3491 goto command_cleanup; 3492 } 3493 xhci_ring_cmd_db(xhci); 3494 spin_unlock_irqrestore(&xhci->lock, flags); 3495 3496 /* Wait for the Reset Device command to finish */ 3497 wait_for_completion(reset_device_cmd->completion); 3498 3499 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3500 * unless we tried to reset a slot ID that wasn't enabled, 3501 * or the device wasn't in the addressed or configured state. 3502 */ 3503 ret = reset_device_cmd->status; 3504 switch (ret) { 3505 case COMP_CMD_ABORT: 3506 case COMP_CMD_STOP: 3507 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3508 ret = -ETIME; 3509 goto command_cleanup; 3510 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3511 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3512 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3513 slot_id, 3514 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3515 xhci_dbg(xhci, "Not freeing device rings.\n"); 3516 /* Don't treat this as an error. May change my mind later. */ 3517 ret = 0; 3518 goto command_cleanup; 3519 case COMP_SUCCESS: 3520 xhci_dbg(xhci, "Successful reset device command.\n"); 3521 break; 3522 default: 3523 if (xhci_is_vendor_info_code(xhci, ret)) 3524 break; 3525 xhci_warn(xhci, "Unknown completion code %u for " 3526 "reset device command.\n", ret); 3527 ret = -EINVAL; 3528 goto command_cleanup; 3529 } 3530 3531 /* Free up host controller endpoint resources */ 3532 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3533 spin_lock_irqsave(&xhci->lock, flags); 3534 /* Don't delete the default control endpoint resources */ 3535 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3536 spin_unlock_irqrestore(&xhci->lock, flags); 3537 } 3538 3539 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3540 last_freed_endpoint = 1; 3541 for (i = 1; i < 31; ++i) { 3542 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3543 3544 if (ep->ep_state & EP_HAS_STREAMS) { 3545 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3546 xhci_get_endpoint_address(i)); 3547 xhci_free_stream_info(xhci, ep->stream_info); 3548 ep->stream_info = NULL; 3549 ep->ep_state &= ~EP_HAS_STREAMS; 3550 } 3551 3552 if (ep->ring) { 3553 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3554 last_freed_endpoint = i; 3555 } 3556 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3557 xhci_drop_ep_from_interval_table(xhci, 3558 &virt_dev->eps[i].bw_info, 3559 virt_dev->bw_table, 3560 udev, 3561 &virt_dev->eps[i], 3562 virt_dev->tt_info); 3563 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3564 } 3565 /* If necessary, update the number of active TTs on this root port */ 3566 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3567 3568 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3569 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3570 ret = 0; 3571 3572 command_cleanup: 3573 xhci_free_command(xhci, reset_device_cmd); 3574 return ret; 3575 } 3576 3577 /* 3578 * At this point, the struct usb_device is about to go away, the device has 3579 * disconnected, and all traffic has been stopped and the endpoints have been 3580 * disabled. Free any HC data structures associated with that device. 3581 */ 3582 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3583 { 3584 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3585 struct xhci_virt_device *virt_dev; 3586 unsigned long flags; 3587 u32 state; 3588 int i, ret; 3589 struct xhci_command *command; 3590 3591 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3592 if (!command) 3593 return; 3594 3595 #ifndef CONFIG_USB_DEFAULT_PERSIST 3596 /* 3597 * We called pm_runtime_get_noresume when the device was attached. 3598 * Decrement the counter here to allow controller to runtime suspend 3599 * if no devices remain. 3600 */ 3601 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3602 pm_runtime_put_noidle(hcd->self.controller); 3603 #endif 3604 3605 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3606 /* If the host is halted due to driver unload, we still need to free the 3607 * device. 3608 */ 3609 if (ret <= 0 && ret != -ENODEV) { 3610 kfree(command); 3611 return; 3612 } 3613 3614 virt_dev = xhci->devs[udev->slot_id]; 3615 3616 /* Stop any wayward timer functions (which may grab the lock) */ 3617 for (i = 0; i < 31; ++i) { 3618 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3619 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3620 } 3621 3622 spin_lock_irqsave(&xhci->lock, flags); 3623 /* Don't disable the slot if the host controller is dead. */ 3624 state = readl(&xhci->op_regs->status); 3625 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3626 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3627 xhci_free_virt_device(xhci, udev->slot_id); 3628 spin_unlock_irqrestore(&xhci->lock, flags); 3629 kfree(command); 3630 return; 3631 } 3632 3633 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3634 udev->slot_id)) { 3635 spin_unlock_irqrestore(&xhci->lock, flags); 3636 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3637 return; 3638 } 3639 xhci_ring_cmd_db(xhci); 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 3642 /* 3643 * Event command completion handler will free any data structures 3644 * associated with the slot. XXX Can free sleep? 3645 */ 3646 } 3647 3648 /* 3649 * Checks if we have enough host controller resources for the default control 3650 * endpoint. 3651 * 3652 * Must be called with xhci->lock held. 3653 */ 3654 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3655 { 3656 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3657 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3658 "Not enough ep ctxs: " 3659 "%u active, need to add 1, limit is %u.", 3660 xhci->num_active_eps, xhci->limit_active_eps); 3661 return -ENOMEM; 3662 } 3663 xhci->num_active_eps += 1; 3664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3665 "Adding 1 ep ctx, %u now active.", 3666 xhci->num_active_eps); 3667 return 0; 3668 } 3669 3670 3671 /* 3672 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3673 * timed out, or allocating memory failed. Returns 1 on success. 3674 */ 3675 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3676 { 3677 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3678 unsigned long flags; 3679 int ret; 3680 struct xhci_command *command; 3681 3682 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3683 if (!command) 3684 return 0; 3685 3686 spin_lock_irqsave(&xhci->lock, flags); 3687 command->completion = &xhci->addr_dev; 3688 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3689 if (ret) { 3690 spin_unlock_irqrestore(&xhci->lock, flags); 3691 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3692 kfree(command); 3693 return 0; 3694 } 3695 xhci_ring_cmd_db(xhci); 3696 spin_unlock_irqrestore(&xhci->lock, flags); 3697 3698 wait_for_completion(command->completion); 3699 3700 if (!xhci->slot_id || command->status != COMP_SUCCESS) { 3701 xhci_err(xhci, "Error while assigning device slot ID\n"); 3702 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3703 HCS_MAX_SLOTS( 3704 readl(&xhci->cap_regs->hcs_params1))); 3705 kfree(command); 3706 return 0; 3707 } 3708 3709 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3710 spin_lock_irqsave(&xhci->lock, flags); 3711 ret = xhci_reserve_host_control_ep_resources(xhci); 3712 if (ret) { 3713 spin_unlock_irqrestore(&xhci->lock, flags); 3714 xhci_warn(xhci, "Not enough host resources, " 3715 "active endpoint contexts = %u\n", 3716 xhci->num_active_eps); 3717 goto disable_slot; 3718 } 3719 spin_unlock_irqrestore(&xhci->lock, flags); 3720 } 3721 /* Use GFP_NOIO, since this function can be called from 3722 * xhci_discover_or_reset_device(), which may be called as part of 3723 * mass storage driver error handling. 3724 */ 3725 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3726 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3727 goto disable_slot; 3728 } 3729 udev->slot_id = xhci->slot_id; 3730 3731 #ifndef CONFIG_USB_DEFAULT_PERSIST 3732 /* 3733 * If resetting upon resume, we can't put the controller into runtime 3734 * suspend if there is a device attached. 3735 */ 3736 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3737 pm_runtime_get_noresume(hcd->self.controller); 3738 #endif 3739 3740 3741 kfree(command); 3742 /* Is this a LS or FS device under a HS hub? */ 3743 /* Hub or peripherial? */ 3744 return 1; 3745 3746 disable_slot: 3747 /* Disable slot, if we can do it without mem alloc */ 3748 spin_lock_irqsave(&xhci->lock, flags); 3749 command->completion = NULL; 3750 command->status = 0; 3751 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3752 udev->slot_id)) 3753 xhci_ring_cmd_db(xhci); 3754 spin_unlock_irqrestore(&xhci->lock, flags); 3755 return 0; 3756 } 3757 3758 /* 3759 * Issue an Address Device command and optionally send a corresponding 3760 * SetAddress request to the device. 3761 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3762 * we should only issue and wait on one address command at the same time. 3763 */ 3764 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3765 enum xhci_setup_dev setup) 3766 { 3767 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3768 unsigned long flags; 3769 struct xhci_virt_device *virt_dev; 3770 int ret = 0; 3771 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3772 struct xhci_slot_ctx *slot_ctx; 3773 struct xhci_input_control_ctx *ctrl_ctx; 3774 u64 temp_64; 3775 struct xhci_command *command; 3776 3777 if (!udev->slot_id) { 3778 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3779 "Bad Slot ID %d", udev->slot_id); 3780 return -EINVAL; 3781 } 3782 3783 virt_dev = xhci->devs[udev->slot_id]; 3784 3785 if (WARN_ON(!virt_dev)) { 3786 /* 3787 * In plug/unplug torture test with an NEC controller, 3788 * a zero-dereference was observed once due to virt_dev = 0. 3789 * Print useful debug rather than crash if it is observed again! 3790 */ 3791 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3792 udev->slot_id); 3793 return -EINVAL; 3794 } 3795 3796 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3797 if (!command) 3798 return -ENOMEM; 3799 3800 command->in_ctx = virt_dev->in_ctx; 3801 command->completion = &xhci->addr_dev; 3802 3803 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3804 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3805 if (!ctrl_ctx) { 3806 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3807 __func__); 3808 kfree(command); 3809 return -EINVAL; 3810 } 3811 /* 3812 * If this is the first Set Address since device plug-in or 3813 * virt_device realloaction after a resume with an xHCI power loss, 3814 * then set up the slot context. 3815 */ 3816 if (!slot_ctx->dev_info) 3817 xhci_setup_addressable_virt_dev(xhci, udev); 3818 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3819 else 3820 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3821 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3822 ctrl_ctx->drop_flags = 0; 3823 3824 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3825 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3826 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3827 le32_to_cpu(slot_ctx->dev_info) >> 27); 3828 3829 spin_lock_irqsave(&xhci->lock, flags); 3830 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3831 udev->slot_id, setup); 3832 if (ret) { 3833 spin_unlock_irqrestore(&xhci->lock, flags); 3834 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3835 "FIXME: allocate a command ring segment"); 3836 kfree(command); 3837 return ret; 3838 } 3839 xhci_ring_cmd_db(xhci); 3840 spin_unlock_irqrestore(&xhci->lock, flags); 3841 3842 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3843 wait_for_completion(command->completion); 3844 3845 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3846 * the SetAddress() "recovery interval" required by USB and aborting the 3847 * command on a timeout. 3848 */ 3849 switch (command->status) { 3850 case COMP_CMD_ABORT: 3851 case COMP_CMD_STOP: 3852 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3853 ret = -ETIME; 3854 break; 3855 case COMP_CTX_STATE: 3856 case COMP_EBADSLT: 3857 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3858 act, udev->slot_id); 3859 ret = -EINVAL; 3860 break; 3861 case COMP_TX_ERR: 3862 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3863 ret = -EPROTO; 3864 break; 3865 case COMP_DEV_ERR: 3866 dev_warn(&udev->dev, 3867 "ERROR: Incompatible device for setup %s command\n", act); 3868 ret = -ENODEV; 3869 break; 3870 case COMP_SUCCESS: 3871 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3872 "Successful setup %s command", act); 3873 break; 3874 default: 3875 xhci_err(xhci, 3876 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3877 act, command->status); 3878 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3879 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3880 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3881 ret = -EINVAL; 3882 break; 3883 } 3884 if (ret) { 3885 kfree(command); 3886 return ret; 3887 } 3888 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3889 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3890 "Op regs DCBAA ptr = %#016llx", temp_64); 3891 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3892 "Slot ID %d dcbaa entry @%p = %#016llx", 3893 udev->slot_id, 3894 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3895 (unsigned long long) 3896 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3897 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3898 "Output Context DMA address = %#08llx", 3899 (unsigned long long)virt_dev->out_ctx->dma); 3900 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3901 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3902 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3903 le32_to_cpu(slot_ctx->dev_info) >> 27); 3904 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3905 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3906 /* 3907 * USB core uses address 1 for the roothubs, so we add one to the 3908 * address given back to us by the HC. 3909 */ 3910 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3911 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3912 le32_to_cpu(slot_ctx->dev_info) >> 27); 3913 /* Zero the input context control for later use */ 3914 ctrl_ctx->add_flags = 0; 3915 ctrl_ctx->drop_flags = 0; 3916 3917 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3918 "Internal device address = %d", 3919 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3920 kfree(command); 3921 return 0; 3922 } 3923 3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3925 { 3926 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3927 } 3928 3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3930 { 3931 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3932 } 3933 3934 /* 3935 * Transfer the port index into real index in the HW port status 3936 * registers. Caculate offset between the port's PORTSC register 3937 * and port status base. Divide the number of per port register 3938 * to get the real index. The raw port number bases 1. 3939 */ 3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3941 { 3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3943 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3944 __le32 __iomem *addr; 3945 int raw_port; 3946 3947 if (hcd->speed != HCD_USB3) 3948 addr = xhci->usb2_ports[port1 - 1]; 3949 else 3950 addr = xhci->usb3_ports[port1 - 1]; 3951 3952 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3953 return raw_port; 3954 } 3955 3956 /* 3957 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3958 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3959 */ 3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3961 struct usb_device *udev, u16 max_exit_latency) 3962 { 3963 struct xhci_virt_device *virt_dev; 3964 struct xhci_command *command; 3965 struct xhci_input_control_ctx *ctrl_ctx; 3966 struct xhci_slot_ctx *slot_ctx; 3967 unsigned long flags; 3968 int ret; 3969 3970 spin_lock_irqsave(&xhci->lock, flags); 3971 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3972 spin_unlock_irqrestore(&xhci->lock, flags); 3973 return 0; 3974 } 3975 3976 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3977 virt_dev = xhci->devs[udev->slot_id]; 3978 command = xhci->lpm_command; 3979 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3980 if (!ctrl_ctx) { 3981 spin_unlock_irqrestore(&xhci->lock, flags); 3982 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3983 __func__); 3984 return -ENOMEM; 3985 } 3986 3987 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3988 spin_unlock_irqrestore(&xhci->lock, flags); 3989 3990 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3991 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3992 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3993 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3994 3995 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3996 "Set up evaluate context for LPM MEL change."); 3997 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3998 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3999 4000 /* Issue and wait for the evaluate context command. */ 4001 ret = xhci_configure_endpoint(xhci, udev, command, 4002 true, true); 4003 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4004 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4005 4006 if (!ret) { 4007 spin_lock_irqsave(&xhci->lock, flags); 4008 virt_dev->current_mel = max_exit_latency; 4009 spin_unlock_irqrestore(&xhci->lock, flags); 4010 } 4011 return ret; 4012 } 4013 4014 #ifdef CONFIG_PM_RUNTIME 4015 4016 /* BESL to HIRD Encoding array for USB2 LPM */ 4017 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4018 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4019 4020 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4021 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4022 struct usb_device *udev) 4023 { 4024 int u2del, besl, besl_host; 4025 int besl_device = 0; 4026 u32 field; 4027 4028 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4029 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4030 4031 if (field & USB_BESL_SUPPORT) { 4032 for (besl_host = 0; besl_host < 16; besl_host++) { 4033 if (xhci_besl_encoding[besl_host] >= u2del) 4034 break; 4035 } 4036 /* Use baseline BESL value as default */ 4037 if (field & USB_BESL_BASELINE_VALID) 4038 besl_device = USB_GET_BESL_BASELINE(field); 4039 else if (field & USB_BESL_DEEP_VALID) 4040 besl_device = USB_GET_BESL_DEEP(field); 4041 } else { 4042 if (u2del <= 50) 4043 besl_host = 0; 4044 else 4045 besl_host = (u2del - 51) / 75 + 1; 4046 } 4047 4048 besl = besl_host + besl_device; 4049 if (besl > 15) 4050 besl = 15; 4051 4052 return besl; 4053 } 4054 4055 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4056 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4057 { 4058 u32 field; 4059 int l1; 4060 int besld = 0; 4061 int hirdm = 0; 4062 4063 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4064 4065 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4066 l1 = udev->l1_params.timeout / 256; 4067 4068 /* device has preferred BESLD */ 4069 if (field & USB_BESL_DEEP_VALID) { 4070 besld = USB_GET_BESL_DEEP(field); 4071 hirdm = 1; 4072 } 4073 4074 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4075 } 4076 4077 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4078 struct usb_device *udev, int enable) 4079 { 4080 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4081 __le32 __iomem **port_array; 4082 __le32 __iomem *pm_addr, *hlpm_addr; 4083 u32 pm_val, hlpm_val, field; 4084 unsigned int port_num; 4085 unsigned long flags; 4086 int hird, exit_latency; 4087 int ret; 4088 4089 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4090 !udev->lpm_capable) 4091 return -EPERM; 4092 4093 if (!udev->parent || udev->parent->parent || 4094 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4095 return -EPERM; 4096 4097 if (udev->usb2_hw_lpm_capable != 1) 4098 return -EPERM; 4099 4100 spin_lock_irqsave(&xhci->lock, flags); 4101 4102 port_array = xhci->usb2_ports; 4103 port_num = udev->portnum - 1; 4104 pm_addr = port_array[port_num] + PORTPMSC; 4105 pm_val = readl(pm_addr); 4106 hlpm_addr = port_array[port_num] + PORTHLPMC; 4107 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4108 4109 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4110 enable ? "enable" : "disable", port_num + 1); 4111 4112 if (enable) { 4113 /* Host supports BESL timeout instead of HIRD */ 4114 if (udev->usb2_hw_lpm_besl_capable) { 4115 /* if device doesn't have a preferred BESL value use a 4116 * default one which works with mixed HIRD and BESL 4117 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4118 */ 4119 if ((field & USB_BESL_SUPPORT) && 4120 (field & USB_BESL_BASELINE_VALID)) 4121 hird = USB_GET_BESL_BASELINE(field); 4122 else 4123 hird = udev->l1_params.besl; 4124 4125 exit_latency = xhci_besl_encoding[hird]; 4126 spin_unlock_irqrestore(&xhci->lock, flags); 4127 4128 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4129 * input context for link powermanagement evaluate 4130 * context commands. It is protected by hcd->bandwidth 4131 * mutex and is shared by all devices. We need to set 4132 * the max ext latency in USB 2 BESL LPM as well, so 4133 * use the same mutex and xhci_change_max_exit_latency() 4134 */ 4135 mutex_lock(hcd->bandwidth_mutex); 4136 ret = xhci_change_max_exit_latency(xhci, udev, 4137 exit_latency); 4138 mutex_unlock(hcd->bandwidth_mutex); 4139 4140 if (ret < 0) 4141 return ret; 4142 spin_lock_irqsave(&xhci->lock, flags); 4143 4144 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4145 writel(hlpm_val, hlpm_addr); 4146 /* flush write */ 4147 readl(hlpm_addr); 4148 } else { 4149 hird = xhci_calculate_hird_besl(xhci, udev); 4150 } 4151 4152 pm_val &= ~PORT_HIRD_MASK; 4153 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4154 writel(pm_val, pm_addr); 4155 pm_val = readl(pm_addr); 4156 pm_val |= PORT_HLE; 4157 writel(pm_val, pm_addr); 4158 /* flush write */ 4159 readl(pm_addr); 4160 } else { 4161 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4162 writel(pm_val, pm_addr); 4163 /* flush write */ 4164 readl(pm_addr); 4165 if (udev->usb2_hw_lpm_besl_capable) { 4166 spin_unlock_irqrestore(&xhci->lock, flags); 4167 mutex_lock(hcd->bandwidth_mutex); 4168 xhci_change_max_exit_latency(xhci, udev, 0); 4169 mutex_unlock(hcd->bandwidth_mutex); 4170 return 0; 4171 } 4172 } 4173 4174 spin_unlock_irqrestore(&xhci->lock, flags); 4175 return 0; 4176 } 4177 4178 /* check if a usb2 port supports a given extened capability protocol 4179 * only USB2 ports extended protocol capability values are cached. 4180 * Return 1 if capability is supported 4181 */ 4182 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4183 unsigned capability) 4184 { 4185 u32 port_offset, port_count; 4186 int i; 4187 4188 for (i = 0; i < xhci->num_ext_caps; i++) { 4189 if (xhci->ext_caps[i] & capability) { 4190 /* port offsets starts at 1 */ 4191 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4192 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4193 if (port >= port_offset && 4194 port < port_offset + port_count) 4195 return 1; 4196 } 4197 } 4198 return 0; 4199 } 4200 4201 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4202 { 4203 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4204 int portnum = udev->portnum - 1; 4205 4206 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4207 !udev->lpm_capable) 4208 return 0; 4209 4210 /* we only support lpm for non-hub device connected to root hub yet */ 4211 if (!udev->parent || udev->parent->parent || 4212 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4213 return 0; 4214 4215 if (xhci->hw_lpm_support == 1 && 4216 xhci_check_usb2_port_capability( 4217 xhci, portnum, XHCI_HLC)) { 4218 udev->usb2_hw_lpm_capable = 1; 4219 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4220 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4221 if (xhci_check_usb2_port_capability(xhci, portnum, 4222 XHCI_BLC)) 4223 udev->usb2_hw_lpm_besl_capable = 1; 4224 } 4225 4226 return 0; 4227 } 4228 4229 #else 4230 4231 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4232 struct usb_device *udev, int enable) 4233 { 4234 return 0; 4235 } 4236 4237 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4238 { 4239 return 0; 4240 } 4241 4242 #endif /* CONFIG_PM_RUNTIME */ 4243 4244 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4245 4246 #ifdef CONFIG_PM 4247 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4248 static unsigned long long xhci_service_interval_to_ns( 4249 struct usb_endpoint_descriptor *desc) 4250 { 4251 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4252 } 4253 4254 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4255 enum usb3_link_state state) 4256 { 4257 unsigned long long sel; 4258 unsigned long long pel; 4259 unsigned int max_sel_pel; 4260 char *state_name; 4261 4262 switch (state) { 4263 case USB3_LPM_U1: 4264 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4265 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4266 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4267 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4268 state_name = "U1"; 4269 break; 4270 case USB3_LPM_U2: 4271 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4272 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4273 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4274 state_name = "U2"; 4275 break; 4276 default: 4277 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4278 __func__); 4279 return USB3_LPM_DISABLED; 4280 } 4281 4282 if (sel <= max_sel_pel && pel <= max_sel_pel) 4283 return USB3_LPM_DEVICE_INITIATED; 4284 4285 if (sel > max_sel_pel) 4286 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4287 "due to long SEL %llu ms\n", 4288 state_name, sel); 4289 else 4290 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4291 "due to long PEL %llu ms\n", 4292 state_name, pel); 4293 return USB3_LPM_DISABLED; 4294 } 4295 4296 /* The U1 timeout should be the maximum of the following values: 4297 * - For control endpoints, U1 system exit latency (SEL) * 3 4298 * - For bulk endpoints, U1 SEL * 5 4299 * - For interrupt endpoints: 4300 * - Notification EPs, U1 SEL * 3 4301 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4302 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4303 */ 4304 static unsigned long long xhci_calculate_intel_u1_timeout( 4305 struct usb_device *udev, 4306 struct usb_endpoint_descriptor *desc) 4307 { 4308 unsigned long long timeout_ns; 4309 int ep_type; 4310 int intr_type; 4311 4312 ep_type = usb_endpoint_type(desc); 4313 switch (ep_type) { 4314 case USB_ENDPOINT_XFER_CONTROL: 4315 timeout_ns = udev->u1_params.sel * 3; 4316 break; 4317 case USB_ENDPOINT_XFER_BULK: 4318 timeout_ns = udev->u1_params.sel * 5; 4319 break; 4320 case USB_ENDPOINT_XFER_INT: 4321 intr_type = usb_endpoint_interrupt_type(desc); 4322 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4323 timeout_ns = udev->u1_params.sel * 3; 4324 break; 4325 } 4326 /* Otherwise the calculation is the same as isoc eps */ 4327 case USB_ENDPOINT_XFER_ISOC: 4328 timeout_ns = xhci_service_interval_to_ns(desc); 4329 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4330 if (timeout_ns < udev->u1_params.sel * 2) 4331 timeout_ns = udev->u1_params.sel * 2; 4332 break; 4333 default: 4334 return 0; 4335 } 4336 4337 return timeout_ns; 4338 } 4339 4340 /* Returns the hub-encoded U1 timeout value. */ 4341 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4342 struct usb_device *udev, 4343 struct usb_endpoint_descriptor *desc) 4344 { 4345 unsigned long long timeout_ns; 4346 4347 if (xhci->quirks & XHCI_INTEL_HOST) 4348 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4349 else 4350 timeout_ns = udev->u1_params.sel; 4351 4352 /* The U1 timeout is encoded in 1us intervals. 4353 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4354 */ 4355 if (timeout_ns == USB3_LPM_DISABLED) 4356 timeout_ns = 1; 4357 else 4358 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4359 4360 /* If the necessary timeout value is bigger than what we can set in the 4361 * USB 3.0 hub, we have to disable hub-initiated U1. 4362 */ 4363 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4364 return timeout_ns; 4365 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4366 "due to long timeout %llu ms\n", timeout_ns); 4367 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4368 } 4369 4370 /* The U2 timeout should be the maximum of: 4371 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4372 * - largest bInterval of any active periodic endpoint (to avoid going 4373 * into lower power link states between intervals). 4374 * - the U2 Exit Latency of the device 4375 */ 4376 static unsigned long long xhci_calculate_intel_u2_timeout( 4377 struct usb_device *udev, 4378 struct usb_endpoint_descriptor *desc) 4379 { 4380 unsigned long long timeout_ns; 4381 unsigned long long u2_del_ns; 4382 4383 timeout_ns = 10 * 1000 * 1000; 4384 4385 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4386 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4387 timeout_ns = xhci_service_interval_to_ns(desc); 4388 4389 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4390 if (u2_del_ns > timeout_ns) 4391 timeout_ns = u2_del_ns; 4392 4393 return timeout_ns; 4394 } 4395 4396 /* Returns the hub-encoded U2 timeout value. */ 4397 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4398 struct usb_device *udev, 4399 struct usb_endpoint_descriptor *desc) 4400 { 4401 unsigned long long timeout_ns; 4402 4403 if (xhci->quirks & XHCI_INTEL_HOST) 4404 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4405 else 4406 timeout_ns = udev->u2_params.sel; 4407 4408 /* The U2 timeout is encoded in 256us intervals */ 4409 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4410 /* If the necessary timeout value is bigger than what we can set in the 4411 * USB 3.0 hub, we have to disable hub-initiated U2. 4412 */ 4413 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4414 return timeout_ns; 4415 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4416 "due to long timeout %llu ms\n", timeout_ns); 4417 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4418 } 4419 4420 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4421 struct usb_device *udev, 4422 struct usb_endpoint_descriptor *desc, 4423 enum usb3_link_state state, 4424 u16 *timeout) 4425 { 4426 if (state == USB3_LPM_U1) 4427 return xhci_calculate_u1_timeout(xhci, udev, desc); 4428 else if (state == USB3_LPM_U2) 4429 return xhci_calculate_u2_timeout(xhci, udev, desc); 4430 4431 return USB3_LPM_DISABLED; 4432 } 4433 4434 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4435 struct usb_device *udev, 4436 struct usb_endpoint_descriptor *desc, 4437 enum usb3_link_state state, 4438 u16 *timeout) 4439 { 4440 u16 alt_timeout; 4441 4442 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4443 desc, state, timeout); 4444 4445 /* If we found we can't enable hub-initiated LPM, or 4446 * the U1 or U2 exit latency was too high to allow 4447 * device-initiated LPM as well, just stop searching. 4448 */ 4449 if (alt_timeout == USB3_LPM_DISABLED || 4450 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4451 *timeout = alt_timeout; 4452 return -E2BIG; 4453 } 4454 if (alt_timeout > *timeout) 4455 *timeout = alt_timeout; 4456 return 0; 4457 } 4458 4459 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4460 struct usb_device *udev, 4461 struct usb_host_interface *alt, 4462 enum usb3_link_state state, 4463 u16 *timeout) 4464 { 4465 int j; 4466 4467 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4468 if (xhci_update_timeout_for_endpoint(xhci, udev, 4469 &alt->endpoint[j].desc, state, timeout)) 4470 return -E2BIG; 4471 continue; 4472 } 4473 return 0; 4474 } 4475 4476 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4477 enum usb3_link_state state) 4478 { 4479 struct usb_device *parent; 4480 unsigned int num_hubs; 4481 4482 if (state == USB3_LPM_U2) 4483 return 0; 4484 4485 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4486 for (parent = udev->parent, num_hubs = 0; parent->parent; 4487 parent = parent->parent) 4488 num_hubs++; 4489 4490 if (num_hubs < 2) 4491 return 0; 4492 4493 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4494 " below second-tier hub.\n"); 4495 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4496 "to decrease power consumption.\n"); 4497 return -E2BIG; 4498 } 4499 4500 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4501 struct usb_device *udev, 4502 enum usb3_link_state state) 4503 { 4504 if (xhci->quirks & XHCI_INTEL_HOST) 4505 return xhci_check_intel_tier_policy(udev, state); 4506 else 4507 return 0; 4508 } 4509 4510 /* Returns the U1 or U2 timeout that should be enabled. 4511 * If the tier check or timeout setting functions return with a non-zero exit 4512 * code, that means the timeout value has been finalized and we shouldn't look 4513 * at any more endpoints. 4514 */ 4515 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4516 struct usb_device *udev, enum usb3_link_state state) 4517 { 4518 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4519 struct usb_host_config *config; 4520 char *state_name; 4521 int i; 4522 u16 timeout = USB3_LPM_DISABLED; 4523 4524 if (state == USB3_LPM_U1) 4525 state_name = "U1"; 4526 else if (state == USB3_LPM_U2) 4527 state_name = "U2"; 4528 else { 4529 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4530 state); 4531 return timeout; 4532 } 4533 4534 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4535 return timeout; 4536 4537 /* Gather some information about the currently installed configuration 4538 * and alternate interface settings. 4539 */ 4540 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4541 state, &timeout)) 4542 return timeout; 4543 4544 config = udev->actconfig; 4545 if (!config) 4546 return timeout; 4547 4548 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4549 struct usb_driver *driver; 4550 struct usb_interface *intf = config->interface[i]; 4551 4552 if (!intf) 4553 continue; 4554 4555 /* Check if any currently bound drivers want hub-initiated LPM 4556 * disabled. 4557 */ 4558 if (intf->dev.driver) { 4559 driver = to_usb_driver(intf->dev.driver); 4560 if (driver && driver->disable_hub_initiated_lpm) { 4561 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4562 "at request of driver %s\n", 4563 state_name, driver->name); 4564 return xhci_get_timeout_no_hub_lpm(udev, state); 4565 } 4566 } 4567 4568 /* Not sure how this could happen... */ 4569 if (!intf->cur_altsetting) 4570 continue; 4571 4572 if (xhci_update_timeout_for_interface(xhci, udev, 4573 intf->cur_altsetting, 4574 state, &timeout)) 4575 return timeout; 4576 } 4577 return timeout; 4578 } 4579 4580 static int calculate_max_exit_latency(struct usb_device *udev, 4581 enum usb3_link_state state_changed, 4582 u16 hub_encoded_timeout) 4583 { 4584 unsigned long long u1_mel_us = 0; 4585 unsigned long long u2_mel_us = 0; 4586 unsigned long long mel_us = 0; 4587 bool disabling_u1; 4588 bool disabling_u2; 4589 bool enabling_u1; 4590 bool enabling_u2; 4591 4592 disabling_u1 = (state_changed == USB3_LPM_U1 && 4593 hub_encoded_timeout == USB3_LPM_DISABLED); 4594 disabling_u2 = (state_changed == USB3_LPM_U2 && 4595 hub_encoded_timeout == USB3_LPM_DISABLED); 4596 4597 enabling_u1 = (state_changed == USB3_LPM_U1 && 4598 hub_encoded_timeout != USB3_LPM_DISABLED); 4599 enabling_u2 = (state_changed == USB3_LPM_U2 && 4600 hub_encoded_timeout != USB3_LPM_DISABLED); 4601 4602 /* If U1 was already enabled and we're not disabling it, 4603 * or we're going to enable U1, account for the U1 max exit latency. 4604 */ 4605 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4606 enabling_u1) 4607 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4608 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4609 enabling_u2) 4610 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4611 4612 if (u1_mel_us > u2_mel_us) 4613 mel_us = u1_mel_us; 4614 else 4615 mel_us = u2_mel_us; 4616 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4617 if (mel_us > MAX_EXIT) { 4618 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4619 "is too big.\n", mel_us); 4620 return -E2BIG; 4621 } 4622 return mel_us; 4623 } 4624 4625 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4626 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4627 struct usb_device *udev, enum usb3_link_state state) 4628 { 4629 struct xhci_hcd *xhci; 4630 u16 hub_encoded_timeout; 4631 int mel; 4632 int ret; 4633 4634 xhci = hcd_to_xhci(hcd); 4635 /* The LPM timeout values are pretty host-controller specific, so don't 4636 * enable hub-initiated timeouts unless the vendor has provided 4637 * information about their timeout algorithm. 4638 */ 4639 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4640 !xhci->devs[udev->slot_id]) 4641 return USB3_LPM_DISABLED; 4642 4643 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4644 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4645 if (mel < 0) { 4646 /* Max Exit Latency is too big, disable LPM. */ 4647 hub_encoded_timeout = USB3_LPM_DISABLED; 4648 mel = 0; 4649 } 4650 4651 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4652 if (ret) 4653 return ret; 4654 return hub_encoded_timeout; 4655 } 4656 4657 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4658 struct usb_device *udev, enum usb3_link_state state) 4659 { 4660 struct xhci_hcd *xhci; 4661 u16 mel; 4662 int ret; 4663 4664 xhci = hcd_to_xhci(hcd); 4665 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4666 !xhci->devs[udev->slot_id]) 4667 return 0; 4668 4669 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4670 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4671 if (ret) 4672 return ret; 4673 return 0; 4674 } 4675 #else /* CONFIG_PM */ 4676 4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4678 struct usb_device *udev, enum usb3_link_state state) 4679 { 4680 return USB3_LPM_DISABLED; 4681 } 4682 4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4684 struct usb_device *udev, enum usb3_link_state state) 4685 { 4686 return 0; 4687 } 4688 #endif /* CONFIG_PM */ 4689 4690 /*-------------------------------------------------------------------------*/ 4691 4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4693 * internal data structures for the device. 4694 */ 4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4696 struct usb_tt *tt, gfp_t mem_flags) 4697 { 4698 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4699 struct xhci_virt_device *vdev; 4700 struct xhci_command *config_cmd; 4701 struct xhci_input_control_ctx *ctrl_ctx; 4702 struct xhci_slot_ctx *slot_ctx; 4703 unsigned long flags; 4704 unsigned think_time; 4705 int ret; 4706 4707 /* Ignore root hubs */ 4708 if (!hdev->parent) 4709 return 0; 4710 4711 vdev = xhci->devs[hdev->slot_id]; 4712 if (!vdev) { 4713 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4714 return -EINVAL; 4715 } 4716 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4717 if (!config_cmd) { 4718 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4719 return -ENOMEM; 4720 } 4721 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4722 if (!ctrl_ctx) { 4723 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4724 __func__); 4725 xhci_free_command(xhci, config_cmd); 4726 return -ENOMEM; 4727 } 4728 4729 spin_lock_irqsave(&xhci->lock, flags); 4730 if (hdev->speed == USB_SPEED_HIGH && 4731 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4732 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4733 xhci_free_command(xhci, config_cmd); 4734 spin_unlock_irqrestore(&xhci->lock, flags); 4735 return -ENOMEM; 4736 } 4737 4738 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4739 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4740 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4741 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4742 if (tt->multi) 4743 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4744 if (xhci->hci_version > 0x95) { 4745 xhci_dbg(xhci, "xHCI version %x needs hub " 4746 "TT think time and number of ports\n", 4747 (unsigned int) xhci->hci_version); 4748 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4749 /* Set TT think time - convert from ns to FS bit times. 4750 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4751 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4752 * 4753 * xHCI 1.0: this field shall be 0 if the device is not a 4754 * High-spped hub. 4755 */ 4756 think_time = tt->think_time; 4757 if (think_time != 0) 4758 think_time = (think_time / 666) - 1; 4759 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4760 slot_ctx->tt_info |= 4761 cpu_to_le32(TT_THINK_TIME(think_time)); 4762 } else { 4763 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4764 "TT think time or number of ports\n", 4765 (unsigned int) xhci->hci_version); 4766 } 4767 slot_ctx->dev_state = 0; 4768 spin_unlock_irqrestore(&xhci->lock, flags); 4769 4770 xhci_dbg(xhci, "Set up %s for hub device.\n", 4771 (xhci->hci_version > 0x95) ? 4772 "configure endpoint" : "evaluate context"); 4773 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4774 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4775 4776 /* Issue and wait for the configure endpoint or 4777 * evaluate context command. 4778 */ 4779 if (xhci->hci_version > 0x95) 4780 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4781 false, false); 4782 else 4783 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4784 true, false); 4785 4786 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4787 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4788 4789 xhci_free_command(xhci, config_cmd); 4790 return ret; 4791 } 4792 4793 int xhci_get_frame(struct usb_hcd *hcd) 4794 { 4795 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4796 /* EHCI mods by the periodic size. Why? */ 4797 return readl(&xhci->run_regs->microframe_index) >> 3; 4798 } 4799 4800 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4801 { 4802 struct xhci_hcd *xhci; 4803 struct device *dev = hcd->self.controller; 4804 int retval; 4805 4806 /* Accept arbitrarily long scatter-gather lists */ 4807 hcd->self.sg_tablesize = ~0; 4808 4809 /* support to build packet from discontinuous buffers */ 4810 hcd->self.no_sg_constraint = 1; 4811 4812 /* XHCI controllers don't stop the ep queue on short packets :| */ 4813 hcd->self.no_stop_on_short = 1; 4814 4815 if (usb_hcd_is_primary_hcd(hcd)) { 4816 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4817 if (!xhci) 4818 return -ENOMEM; 4819 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4820 xhci->main_hcd = hcd; 4821 /* Mark the first roothub as being USB 2.0. 4822 * The xHCI driver will register the USB 3.0 roothub. 4823 */ 4824 hcd->speed = HCD_USB2; 4825 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4826 /* 4827 * USB 2.0 roothub under xHCI has an integrated TT, 4828 * (rate matching hub) as opposed to having an OHCI/UHCI 4829 * companion controller. 4830 */ 4831 hcd->has_tt = 1; 4832 } else { 4833 /* xHCI private pointer was set in xhci_pci_probe for the second 4834 * registered roothub. 4835 */ 4836 return 0; 4837 } 4838 4839 xhci->cap_regs = hcd->regs; 4840 xhci->op_regs = hcd->regs + 4841 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4842 xhci->run_regs = hcd->regs + 4843 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4844 /* Cache read-only capability registers */ 4845 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4846 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4847 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4848 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4849 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4850 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4851 xhci_print_registers(xhci); 4852 4853 xhci->quirks = quirks; 4854 4855 get_quirks(dev, xhci); 4856 4857 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4858 * success event after a short transfer. This quirk will ignore such 4859 * spurious event. 4860 */ 4861 if (xhci->hci_version > 0x96) 4862 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4863 4864 /* Make sure the HC is halted. */ 4865 retval = xhci_halt(xhci); 4866 if (retval) 4867 goto error; 4868 4869 xhci_dbg(xhci, "Resetting HCD\n"); 4870 /* Reset the internal HC memory state and registers. */ 4871 retval = xhci_reset(xhci); 4872 if (retval) 4873 goto error; 4874 xhci_dbg(xhci, "Reset complete\n"); 4875 4876 /* Set dma_mask and coherent_dma_mask to 64-bits, 4877 * if xHC supports 64-bit addressing */ 4878 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4879 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4880 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4881 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4882 } 4883 4884 xhci_dbg(xhci, "Calling HCD init\n"); 4885 /* Initialize HCD and host controller data structures. */ 4886 retval = xhci_init(hcd); 4887 if (retval) 4888 goto error; 4889 xhci_dbg(xhci, "Called HCD init\n"); 4890 return 0; 4891 error: 4892 kfree(xhci); 4893 return retval; 4894 } 4895 4896 MODULE_DESCRIPTION(DRIVER_DESC); 4897 MODULE_AUTHOR(DRIVER_AUTHOR); 4898 MODULE_LICENSE("GPL"); 4899 4900 static int __init xhci_hcd_init(void) 4901 { 4902 int retval; 4903 4904 retval = xhci_register_pci(); 4905 if (retval < 0) { 4906 pr_debug("Problem registering PCI driver.\n"); 4907 return retval; 4908 } 4909 retval = xhci_register_plat(); 4910 if (retval < 0) { 4911 pr_debug("Problem registering platform driver.\n"); 4912 goto unreg_pci; 4913 } 4914 /* 4915 * Check the compiler generated sizes of structures that must be laid 4916 * out in specific ways for hardware access. 4917 */ 4918 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4919 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4920 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4921 /* xhci_device_control has eight fields, and also 4922 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4923 */ 4924 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4925 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4926 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4927 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4928 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4929 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4930 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4931 return 0; 4932 unreg_pci: 4933 xhci_unregister_pci(); 4934 return retval; 4935 } 4936 module_init(xhci_hcd_init); 4937 4938 static void __exit xhci_hcd_cleanup(void) 4939 { 4940 xhci_unregister_pci(); 4941 xhci_unregister_plat(); 4942 } 4943 module_exit(xhci_hcd_cleanup); 4944