1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 static unsigned int quirks; 44 module_param(quirks, uint, S_IRUGO); 45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 46 47 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 48 /* 49 * xhci_handshake - spin reading hc until handshake completes or fails 50 * @ptr: address of hc register to be read 51 * @mask: bits to look at in result of read 52 * @done: value of those bits when handshake succeeds 53 * @usec: timeout in microseconds 54 * 55 * Returns negative errno, or zero on success 56 * 57 * Success happens when the "mask" bits have the specified value (hardware 58 * handshake done). There are two failure modes: "usec" have passed (major 59 * hardware flakeout), or the register reads as all-ones (hardware removed). 60 */ 61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 62 u32 mask, u32 done, int usec) 63 { 64 u32 result; 65 66 do { 67 result = readl(ptr); 68 if (result == ~(u32)0) /* card removed */ 69 return -ENODEV; 70 result &= mask; 71 if (result == done) 72 return 0; 73 udelay(1); 74 usec--; 75 } while (usec > 0); 76 return -ETIMEDOUT; 77 } 78 79 /* 80 * Disable interrupts and begin the xHCI halting process. 81 */ 82 void xhci_quiesce(struct xhci_hcd *xhci) 83 { 84 u32 halted; 85 u32 cmd; 86 u32 mask; 87 88 mask = ~(XHCI_IRQS); 89 halted = readl(&xhci->op_regs->status) & STS_HALT; 90 if (!halted) 91 mask &= ~CMD_RUN; 92 93 cmd = readl(&xhci->op_regs->command); 94 cmd &= mask; 95 writel(cmd, &xhci->op_regs->command); 96 } 97 98 /* 99 * Force HC into halt state. 100 * 101 * Disable any IRQs and clear the run/stop bit. 102 * HC will complete any current and actively pipelined transactions, and 103 * should halt within 16 ms of the run/stop bit being cleared. 104 * Read HC Halted bit in the status register to see when the HC is finished. 105 */ 106 int xhci_halt(struct xhci_hcd *xhci) 107 { 108 int ret; 109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 110 xhci_quiesce(xhci); 111 112 ret = xhci_handshake(xhci, &xhci->op_regs->status, 113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 114 if (!ret) { 115 xhci->xhc_state |= XHCI_STATE_HALTED; 116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 117 } else 118 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 119 XHCI_MAX_HALT_USEC); 120 return ret; 121 } 122 123 /* 124 * Set the run bit and wait for the host to be running. 125 */ 126 static int xhci_start(struct xhci_hcd *xhci) 127 { 128 u32 temp; 129 int ret; 130 131 temp = readl(&xhci->op_regs->command); 132 temp |= (CMD_RUN); 133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 134 temp); 135 writel(temp, &xhci->op_regs->command); 136 137 /* 138 * Wait for the HCHalted Status bit to be 0 to indicate the host is 139 * running. 140 */ 141 ret = xhci_handshake(xhci, &xhci->op_regs->status, 142 STS_HALT, 0, XHCI_MAX_HALT_USEC); 143 if (ret == -ETIMEDOUT) 144 xhci_err(xhci, "Host took too long to start, " 145 "waited %u microseconds.\n", 146 XHCI_MAX_HALT_USEC); 147 if (!ret) 148 xhci->xhc_state &= ~XHCI_STATE_HALTED; 149 return ret; 150 } 151 152 /* 153 * Reset a halted HC. 154 * 155 * This resets pipelines, timers, counters, state machines, etc. 156 * Transactions will be terminated immediately, and operational registers 157 * will be set to their defaults. 158 */ 159 int xhci_reset(struct xhci_hcd *xhci) 160 { 161 u32 command; 162 u32 state; 163 int ret, i; 164 165 state = readl(&xhci->op_regs->status); 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 ret = xhci_handshake(xhci, &xhci->op_regs->command, 177 CMD_RESET, 0, 10 * 1000 * 1000); 178 if (ret) 179 return ret; 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 182 "Wait for controller to be ready for doorbell rings"); 183 /* 184 * xHCI cannot write to any doorbells or operational registers other 185 * than status until the "Controller Not Ready" flag is cleared. 186 */ 187 ret = xhci_handshake(xhci, &xhci->op_regs->status, 188 STS_CNR, 0, 10 * 1000 * 1000); 189 190 for (i = 0; i < 2; ++i) { 191 xhci->bus_state[i].port_c_suspend = 0; 192 xhci->bus_state[i].suspended_ports = 0; 193 xhci->bus_state[i].resuming_ports = 0; 194 } 195 196 return ret; 197 } 198 199 #ifdef CONFIG_PCI 200 static int xhci_free_msi(struct xhci_hcd *xhci) 201 { 202 int i; 203 204 if (!xhci->msix_entries) 205 return -EINVAL; 206 207 for (i = 0; i < xhci->msix_count; i++) 208 if (xhci->msix_entries[i].vector) 209 free_irq(xhci->msix_entries[i].vector, 210 xhci_to_hcd(xhci)); 211 return 0; 212 } 213 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 221 222 ret = pci_enable_msi(pdev); 223 if (ret) { 224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 225 "failed to allocate MSI entry"); 226 return ret; 227 } 228 229 ret = request_irq(pdev->irq, xhci_msi_irq, 230 0, "xhci_hcd", xhci_to_hcd(xhci)); 231 if (ret) { 232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 233 "disable MSI interrupt"); 234 pci_disable_msi(pdev); 235 } 236 237 return ret; 238 } 239 240 /* 241 * Free IRQs 242 * free all IRQs request 243 */ 244 static void xhci_free_irq(struct xhci_hcd *xhci) 245 { 246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 247 int ret; 248 249 /* return if using legacy interrupt */ 250 if (xhci_to_hcd(xhci)->irq > 0) 251 return; 252 253 ret = xhci_free_msi(xhci); 254 if (!ret) 255 return; 256 if (pdev->irq > 0) 257 free_irq(pdev->irq, xhci_to_hcd(xhci)); 258 259 return; 260 } 261 262 /* 263 * Set up MSI-X 264 */ 265 static int xhci_setup_msix(struct xhci_hcd *xhci) 266 { 267 int i, ret = 0; 268 struct usb_hcd *hcd = xhci_to_hcd(xhci); 269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 270 271 /* 272 * calculate number of msi-x vectors supported. 273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 274 * with max number of interrupters based on the xhci HCSPARAMS1. 275 * - num_online_cpus: maximum msi-x vectors per CPUs core. 276 * Add additional 1 vector to ensure always available interrupt. 277 */ 278 xhci->msix_count = min(num_online_cpus() + 1, 279 HCS_MAX_INTRS(xhci->hcs_params1)); 280 281 xhci->msix_entries = 282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 283 GFP_KERNEL); 284 if (!xhci->msix_entries) { 285 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 286 return -ENOMEM; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 xhci->msix_entries[i].entry = i; 291 xhci->msix_entries[i].vector = 0; 292 } 293 294 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 295 if (ret) { 296 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 297 "Failed to enable MSI-X"); 298 goto free_entries; 299 } 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 ret = request_irq(xhci->msix_entries[i].vector, 303 xhci_msi_irq, 304 0, "xhci_hcd", xhci_to_hcd(xhci)); 305 if (ret) 306 goto disable_msix; 307 } 308 309 hcd->msix_enabled = 1; 310 return ret; 311 312 disable_msix: 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 314 xhci_free_irq(xhci); 315 pci_disable_msix(pdev); 316 free_entries: 317 kfree(xhci->msix_entries); 318 xhci->msix_entries = NULL; 319 return ret; 320 } 321 322 /* Free any IRQs and disable MSI-X */ 323 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 324 { 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 if (xhci->quirks & XHCI_PLAT) 329 return; 330 331 xhci_free_irq(xhci); 332 333 if (xhci->msix_entries) { 334 pci_disable_msix(pdev); 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 } else { 338 pci_disable_msi(pdev); 339 } 340 341 hcd->msix_enabled = 0; 342 return; 343 } 344 345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 346 { 347 int i; 348 349 if (xhci->msix_entries) { 350 for (i = 0; i < xhci->msix_count; i++) 351 synchronize_irq(xhci->msix_entries[i].vector); 352 } 353 } 354 355 static int xhci_try_enable_msi(struct usb_hcd *hcd) 356 { 357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 358 struct pci_dev *pdev; 359 int ret; 360 361 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 362 if (xhci->quirks & XHCI_PLAT) 363 return 0; 364 365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 366 /* 367 * Some Fresco Logic host controllers advertise MSI, but fail to 368 * generate interrupts. Don't even try to enable MSI. 369 */ 370 if (xhci->quirks & XHCI_BROKEN_MSI) 371 goto legacy_irq; 372 373 /* unregister the legacy interrupt */ 374 if (hcd->irq) 375 free_irq(hcd->irq, hcd); 376 hcd->irq = 0; 377 378 ret = xhci_setup_msix(xhci); 379 if (ret) 380 /* fall back to msi*/ 381 ret = xhci_setup_msi(xhci); 382 383 if (!ret) 384 /* hcd->irq is 0, we have MSI */ 385 return 0; 386 387 if (!pdev->irq) { 388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 389 return -EINVAL; 390 } 391 392 legacy_irq: 393 if (!strlen(hcd->irq_descr)) 394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 395 hcd->driver->description, hcd->self.busnum); 396 397 /* fall back to legacy interrupt*/ 398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 399 hcd->irq_descr, hcd); 400 if (ret) { 401 xhci_err(xhci, "request interrupt %d failed\n", 402 pdev->irq); 403 return ret; 404 } 405 hcd->irq = pdev->irq; 406 return 0; 407 } 408 409 #else 410 411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 412 { 413 return 0; 414 } 415 416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 417 { 418 } 419 420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 421 { 422 } 423 424 #endif 425 426 static void compliance_mode_recovery(unsigned long arg) 427 { 428 struct xhci_hcd *xhci; 429 struct usb_hcd *hcd; 430 u32 temp; 431 int i; 432 433 xhci = (struct xhci_hcd *)arg; 434 435 for (i = 0; i < xhci->num_usb3_ports; i++) { 436 temp = readl(xhci->usb3_ports[i]); 437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 438 /* 439 * Compliance Mode Detected. Letting USB Core 440 * handle the Warm Reset 441 */ 442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 443 "Compliance mode detected->port %d", 444 i + 1); 445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 446 "Attempting compliance mode recovery"); 447 hcd = xhci->shared_hcd; 448 449 if (hcd->state == HC_STATE_SUSPENDED) 450 usb_hcd_resume_root_hub(hcd); 451 452 usb_hcd_poll_rh_status(hcd); 453 } 454 } 455 456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 457 mod_timer(&xhci->comp_mode_recovery_timer, 458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 } 460 461 /* 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 463 * that causes ports behind that hardware to enter compliance mode sometimes. 464 * The quirk creates a timer that polls every 2 seconds the link state of 465 * each host controller's port and recovers it by issuing a Warm reset 466 * if Compliance mode is detected, otherwise the port will become "dead" (no 467 * device connections or disconnections will be detected anymore). Becasue no 468 * status event is generated when entering compliance mode (per xhci spec), 469 * this quirk is needed on systems that have the failing hardware installed. 470 */ 471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 472 { 473 xhci->port_status_u0 = 0; 474 init_timer(&xhci->comp_mode_recovery_timer); 475 476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 478 xhci->comp_mode_recovery_timer.expires = jiffies + 479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 480 481 set_timer_slack(&xhci->comp_mode_recovery_timer, 482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 483 add_timer(&xhci->comp_mode_recovery_timer); 484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 485 "Compliance mode recovery timer initialized"); 486 } 487 488 /* 489 * This function identifies the systems that have installed the SN65LVPE502CP 490 * USB3.0 re-driver and that need the Compliance Mode Quirk. 491 * Systems: 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 493 */ 494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 495 { 496 const char *dmi_product_name, *dmi_sys_vendor; 497 498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 500 if (!dmi_product_name || !dmi_sys_vendor) 501 return false; 502 503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 504 return false; 505 506 if (strstr(dmi_product_name, "Z420") || 507 strstr(dmi_product_name, "Z620") || 508 strstr(dmi_product_name, "Z820") || 509 strstr(dmi_product_name, "Z1 Workstation")) 510 return true; 511 512 return false; 513 } 514 515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 516 { 517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 518 } 519 520 521 /* 522 * Initialize memory for HCD and xHC (one-time init). 523 * 524 * Program the PAGESIZE register, initialize the device context array, create 525 * device contexts (?), set up a command ring segment (or two?), create event 526 * ring (one for now). 527 */ 528 int xhci_init(struct usb_hcd *hcd) 529 { 530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 531 int retval = 0; 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 534 spin_lock_init(&xhci->lock); 535 if (xhci->hci_version == 0x95 && link_quirk) { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 537 "QUIRK: Not clearing Link TRB chain bits."); 538 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 539 } else { 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 541 "xHCI doesn't need link TRB QUIRK"); 542 } 543 retval = xhci_mem_init(xhci, GFP_KERNEL); 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 545 546 /* Initializing Compliance Mode Recovery Data If Needed */ 547 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 548 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 549 compliance_mode_recovery_timer_init(xhci); 550 } 551 552 return retval; 553 } 554 555 /*-------------------------------------------------------------------------*/ 556 557 558 static int xhci_run_finished(struct xhci_hcd *xhci) 559 { 560 if (xhci_start(xhci)) { 561 xhci_halt(xhci); 562 return -ENODEV; 563 } 564 xhci->shared_hcd->state = HC_STATE_RUNNING; 565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 566 567 if (xhci->quirks & XHCI_NEC_HOST) 568 xhci_ring_cmd_db(xhci); 569 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished xhci_run for USB3 roothub"); 572 return 0; 573 } 574 575 /* 576 * Start the HC after it was halted. 577 * 578 * This function is called by the USB core when the HC driver is added. 579 * Its opposite is xhci_stop(). 580 * 581 * xhci_init() must be called once before this function can be called. 582 * Reset the HC, enable device slot contexts, program DCBAAP, and 583 * set command ring pointer and event ring pointer. 584 * 585 * Setup MSI-X vectors and enable interrupts. 586 */ 587 int xhci_run(struct usb_hcd *hcd) 588 { 589 u32 temp; 590 u64 temp_64; 591 int ret; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 /* Start the xHCI host controller running only after the USB 2.0 roothub 595 * is setup. 596 */ 597 598 hcd->uses_new_polling = 1; 599 if (!usb_hcd_is_primary_hcd(hcd)) 600 return xhci_run_finished(xhci); 601 602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 603 604 ret = xhci_try_enable_msi(hcd); 605 if (ret) 606 return ret; 607 608 xhci_dbg(xhci, "Command ring memory map follows:\n"); 609 xhci_debug_ring(xhci, xhci->cmd_ring); 610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 611 xhci_dbg_cmd_ptrs(xhci); 612 613 xhci_dbg(xhci, "ERST memory map follows:\n"); 614 xhci_dbg_erst(xhci, &xhci->erst); 615 xhci_dbg(xhci, "Event ring:\n"); 616 xhci_debug_ring(xhci, xhci->event_ring); 617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 619 temp_64 &= ~ERST_PTR_MASK; 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 622 623 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 624 "// Set the interrupt modulation register"); 625 temp = readl(&xhci->ir_set->irq_control); 626 temp &= ~ER_IRQ_INTERVAL_MASK; 627 temp |= (u32) 160; 628 writel(temp, &xhci->ir_set->irq_control); 629 630 /* Set the HCD state before we enable the irqs */ 631 temp = readl(&xhci->op_regs->command); 632 temp |= (CMD_EIE); 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "// Enable interrupts, cmd = 0x%x.", temp); 635 writel(temp, &xhci->op_regs->command); 636 637 temp = readl(&xhci->ir_set->irq_pending); 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 642 xhci_print_ir_set(xhci, 0); 643 644 if (xhci->quirks & XHCI_NEC_HOST) { 645 struct xhci_command *command; 646 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 647 if (!command) 648 return -ENOMEM; 649 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 650 TRB_TYPE(TRB_NEC_GET_FW)); 651 } 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 653 "Finished xhci_run for USB2 roothub"); 654 return 0; 655 } 656 EXPORT_SYMBOL_GPL(xhci_run); 657 658 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 659 { 660 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 661 662 spin_lock_irq(&xhci->lock); 663 xhci_halt(xhci); 664 665 /* The shared_hcd is going to be deallocated shortly (the USB core only 666 * calls this function when allocation fails in usb_add_hcd(), or 667 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 668 */ 669 xhci->shared_hcd = NULL; 670 spin_unlock_irq(&xhci->lock); 671 } 672 673 /* 674 * Stop xHCI driver. 675 * 676 * This function is called by the USB core when the HC driver is removed. 677 * Its opposite is xhci_run(). 678 * 679 * Disable device contexts, disable IRQs, and quiesce the HC. 680 * Reset the HC, finish any completed transactions, and cleanup memory. 681 */ 682 void xhci_stop(struct usb_hcd *hcd) 683 { 684 u32 temp; 685 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 686 687 if (!usb_hcd_is_primary_hcd(hcd)) { 688 xhci_only_stop_hcd(xhci->shared_hcd); 689 return; 690 } 691 692 spin_lock_irq(&xhci->lock); 693 /* Make sure the xHC is halted for a USB3 roothub 694 * (xhci_stop() could be called as part of failed init). 695 */ 696 xhci_halt(xhci); 697 xhci_reset(xhci); 698 spin_unlock_irq(&xhci->lock); 699 700 xhci_cleanup_msix(xhci); 701 702 /* Deleting Compliance Mode Recovery Timer */ 703 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 704 (!(xhci_all_ports_seen_u0(xhci)))) { 705 del_timer_sync(&xhci->comp_mode_recovery_timer); 706 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 707 "%s: compliance mode recovery timer deleted", 708 __func__); 709 } 710 711 if (xhci->quirks & XHCI_AMD_PLL_FIX) 712 usb_amd_dev_put(); 713 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Disabling event ring interrupts"); 716 temp = readl(&xhci->op_regs->status); 717 writel(temp & ~STS_EINT, &xhci->op_regs->status); 718 temp = readl(&xhci->ir_set->irq_pending); 719 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 720 xhci_print_ir_set(xhci, 0); 721 722 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 723 xhci_mem_cleanup(xhci); 724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 725 "xhci_stop completed - status = %x", 726 readl(&xhci->op_regs->status)); 727 } 728 729 /* 730 * Shutdown HC (not bus-specific) 731 * 732 * This is called when the machine is rebooting or halting. We assume that the 733 * machine will be powered off, and the HC's internal state will be reset. 734 * Don't bother to free memory. 735 * 736 * This will only ever be called with the main usb_hcd (the USB3 roothub). 737 */ 738 void xhci_shutdown(struct usb_hcd *hcd) 739 { 740 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 741 742 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 743 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 744 745 spin_lock_irq(&xhci->lock); 746 xhci_halt(xhci); 747 /* Workaround for spurious wakeups at shutdown with HSW */ 748 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 749 xhci_reset(xhci); 750 spin_unlock_irq(&xhci->lock); 751 752 xhci_cleanup_msix(xhci); 753 754 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 755 "xhci_shutdown completed - status = %x", 756 readl(&xhci->op_regs->status)); 757 758 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 759 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 760 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 761 } 762 763 #ifdef CONFIG_PM 764 static void xhci_save_registers(struct xhci_hcd *xhci) 765 { 766 xhci->s3.command = readl(&xhci->op_regs->command); 767 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 768 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 769 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 770 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 771 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 772 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 773 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 774 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 775 } 776 777 static void xhci_restore_registers(struct xhci_hcd *xhci) 778 { 779 writel(xhci->s3.command, &xhci->op_regs->command); 780 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 781 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 782 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 783 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 784 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 785 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 786 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 787 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 788 } 789 790 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 791 { 792 u64 val_64; 793 794 /* step 2: initialize command ring buffer */ 795 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 796 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 797 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 798 xhci->cmd_ring->dequeue) & 799 (u64) ~CMD_RING_RSVD_BITS) | 800 xhci->cmd_ring->cycle_state; 801 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 802 "// Setting command ring address to 0x%llx", 803 (long unsigned long) val_64); 804 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 805 } 806 807 /* 808 * The whole command ring must be cleared to zero when we suspend the host. 809 * 810 * The host doesn't save the command ring pointer in the suspend well, so we 811 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 812 * aligned, because of the reserved bits in the command ring dequeue pointer 813 * register. Therefore, we can't just set the dequeue pointer back in the 814 * middle of the ring (TRBs are 16-byte aligned). 815 */ 816 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 817 { 818 struct xhci_ring *ring; 819 struct xhci_segment *seg; 820 821 ring = xhci->cmd_ring; 822 seg = ring->deq_seg; 823 do { 824 memset(seg->trbs, 0, 825 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 826 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 827 cpu_to_le32(~TRB_CYCLE); 828 seg = seg->next; 829 } while (seg != ring->deq_seg); 830 831 /* Reset the software enqueue and dequeue pointers */ 832 ring->deq_seg = ring->first_seg; 833 ring->dequeue = ring->first_seg->trbs; 834 ring->enq_seg = ring->deq_seg; 835 ring->enqueue = ring->dequeue; 836 837 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 838 /* 839 * Ring is now zeroed, so the HW should look for change of ownership 840 * when the cycle bit is set to 1. 841 */ 842 ring->cycle_state = 1; 843 844 /* 845 * Reset the hardware dequeue pointer. 846 * Yes, this will need to be re-written after resume, but we're paranoid 847 * and want to make sure the hardware doesn't access bogus memory 848 * because, say, the BIOS or an SMI started the host without changing 849 * the command ring pointers. 850 */ 851 xhci_set_cmd_ring_deq(xhci); 852 } 853 854 /* 855 * Stop HC (not bus-specific) 856 * 857 * This is called when the machine transition into S3/S4 mode. 858 * 859 */ 860 int xhci_suspend(struct xhci_hcd *xhci) 861 { 862 int rc = 0; 863 unsigned int delay = XHCI_MAX_HALT_USEC; 864 struct usb_hcd *hcd = xhci_to_hcd(xhci); 865 u32 command; 866 867 if (hcd->state != HC_STATE_SUSPENDED || 868 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 869 return -EINVAL; 870 871 /* Don't poll the roothubs on bus suspend. */ 872 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 873 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 874 del_timer_sync(&hcd->rh_timer); 875 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 876 del_timer_sync(&xhci->shared_hcd->rh_timer); 877 878 spin_lock_irq(&xhci->lock); 879 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 880 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 881 /* step 1: stop endpoint */ 882 /* skipped assuming that port suspend has done */ 883 884 /* step 2: clear Run/Stop bit */ 885 command = readl(&xhci->op_regs->command); 886 command &= ~CMD_RUN; 887 writel(command, &xhci->op_regs->command); 888 889 /* Some chips from Fresco Logic need an extraordinary delay */ 890 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 891 892 if (xhci_handshake(xhci, &xhci->op_regs->status, 893 STS_HALT, STS_HALT, delay)) { 894 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 895 spin_unlock_irq(&xhci->lock); 896 return -ETIMEDOUT; 897 } 898 xhci_clear_command_ring(xhci); 899 900 /* step 3: save registers */ 901 xhci_save_registers(xhci); 902 903 /* step 4: set CSS flag */ 904 command = readl(&xhci->op_regs->command); 905 command |= CMD_CSS; 906 writel(command, &xhci->op_regs->command); 907 if (xhci_handshake(xhci, &xhci->op_regs->status, 908 STS_SAVE, 0, 10 * 1000)) { 909 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 910 spin_unlock_irq(&xhci->lock); 911 return -ETIMEDOUT; 912 } 913 spin_unlock_irq(&xhci->lock); 914 915 /* 916 * Deleting Compliance Mode Recovery Timer because the xHCI Host 917 * is about to be suspended. 918 */ 919 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 920 (!(xhci_all_ports_seen_u0(xhci)))) { 921 del_timer_sync(&xhci->comp_mode_recovery_timer); 922 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 923 "%s: compliance mode recovery timer deleted", 924 __func__); 925 } 926 927 /* step 5: remove core well power */ 928 /* synchronize irq when using MSI-X */ 929 xhci_msix_sync_irqs(xhci); 930 931 return rc; 932 } 933 EXPORT_SYMBOL_GPL(xhci_suspend); 934 935 /* 936 * start xHC (not bus-specific) 937 * 938 * This is called when the machine transition from S3/S4 mode. 939 * 940 */ 941 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 942 { 943 u32 command, temp = 0, status; 944 struct usb_hcd *hcd = xhci_to_hcd(xhci); 945 struct usb_hcd *secondary_hcd; 946 int retval = 0; 947 bool comp_timer_running = false; 948 949 /* Wait a bit if either of the roothubs need to settle from the 950 * transition into bus suspend. 951 */ 952 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 953 time_before(jiffies, 954 xhci->bus_state[1].next_statechange)) 955 msleep(100); 956 957 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 958 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 959 960 spin_lock_irq(&xhci->lock); 961 if (xhci->quirks & XHCI_RESET_ON_RESUME) 962 hibernated = true; 963 964 if (!hibernated) { 965 /* step 1: restore register */ 966 xhci_restore_registers(xhci); 967 /* step 2: initialize command ring buffer */ 968 xhci_set_cmd_ring_deq(xhci); 969 /* step 3: restore state and start state*/ 970 /* step 3: set CRS flag */ 971 command = readl(&xhci->op_regs->command); 972 command |= CMD_CRS; 973 writel(command, &xhci->op_regs->command); 974 if (xhci_handshake(xhci, &xhci->op_regs->status, 975 STS_RESTORE, 0, 10 * 1000)) { 976 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 977 spin_unlock_irq(&xhci->lock); 978 return -ETIMEDOUT; 979 } 980 temp = readl(&xhci->op_regs->status); 981 } 982 983 /* If restore operation fails, re-initialize the HC during resume */ 984 if ((temp & STS_SRE) || hibernated) { 985 986 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 987 !(xhci_all_ports_seen_u0(xhci))) { 988 del_timer_sync(&xhci->comp_mode_recovery_timer); 989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 990 "Compliance Mode Recovery Timer deleted!"); 991 } 992 993 /* Let the USB core know _both_ roothubs lost power. */ 994 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 995 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 996 997 xhci_dbg(xhci, "Stop HCD\n"); 998 xhci_halt(xhci); 999 xhci_reset(xhci); 1000 spin_unlock_irq(&xhci->lock); 1001 xhci_cleanup_msix(xhci); 1002 1003 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1004 temp = readl(&xhci->op_regs->status); 1005 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1006 temp = readl(&xhci->ir_set->irq_pending); 1007 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1008 xhci_print_ir_set(xhci, 0); 1009 1010 xhci_dbg(xhci, "cleaning up memory\n"); 1011 xhci_mem_cleanup(xhci); 1012 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1013 readl(&xhci->op_regs->status)); 1014 1015 /* USB core calls the PCI reinit and start functions twice: 1016 * first with the primary HCD, and then with the secondary HCD. 1017 * If we don't do the same, the host will never be started. 1018 */ 1019 if (!usb_hcd_is_primary_hcd(hcd)) 1020 secondary_hcd = hcd; 1021 else 1022 secondary_hcd = xhci->shared_hcd; 1023 1024 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1025 retval = xhci_init(hcd->primary_hcd); 1026 if (retval) 1027 return retval; 1028 comp_timer_running = true; 1029 1030 xhci_dbg(xhci, "Start the primary HCD\n"); 1031 retval = xhci_run(hcd->primary_hcd); 1032 if (!retval) { 1033 xhci_dbg(xhci, "Start the secondary HCD\n"); 1034 retval = xhci_run(secondary_hcd); 1035 } 1036 hcd->state = HC_STATE_SUSPENDED; 1037 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1038 goto done; 1039 } 1040 1041 /* step 4: set Run/Stop bit */ 1042 command = readl(&xhci->op_regs->command); 1043 command |= CMD_RUN; 1044 writel(command, &xhci->op_regs->command); 1045 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1046 0, 250 * 1000); 1047 1048 /* step 5: walk topology and initialize portsc, 1049 * portpmsc and portli 1050 */ 1051 /* this is done in bus_resume */ 1052 1053 /* step 6: restart each of the previously 1054 * Running endpoints by ringing their doorbells 1055 */ 1056 1057 spin_unlock_irq(&xhci->lock); 1058 1059 done: 1060 if (retval == 0) { 1061 /* Resume root hubs only when have pending events. */ 1062 status = readl(&xhci->op_regs->status); 1063 if (status & STS_EINT) { 1064 usb_hcd_resume_root_hub(hcd); 1065 usb_hcd_resume_root_hub(xhci->shared_hcd); 1066 } 1067 } 1068 1069 /* 1070 * If system is subject to the Quirk, Compliance Mode Timer needs to 1071 * be re-initialized Always after a system resume. Ports are subject 1072 * to suffer the Compliance Mode issue again. It doesn't matter if 1073 * ports have entered previously to U0 before system's suspension. 1074 */ 1075 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1076 compliance_mode_recovery_timer_init(xhci); 1077 1078 /* Re-enable port polling. */ 1079 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1080 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1081 usb_hcd_poll_rh_status(hcd); 1082 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1083 usb_hcd_poll_rh_status(xhci->shared_hcd); 1084 1085 return retval; 1086 } 1087 EXPORT_SYMBOL_GPL(xhci_resume); 1088 #endif /* CONFIG_PM */ 1089 1090 /*-------------------------------------------------------------------------*/ 1091 1092 /** 1093 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1094 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1095 * value to right shift 1 for the bitmask. 1096 * 1097 * Index = (epnum * 2) + direction - 1, 1098 * where direction = 0 for OUT, 1 for IN. 1099 * For control endpoints, the IN index is used (OUT index is unused), so 1100 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1101 */ 1102 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1103 { 1104 unsigned int index; 1105 if (usb_endpoint_xfer_control(desc)) 1106 index = (unsigned int) (usb_endpoint_num(desc)*2); 1107 else 1108 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1109 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1110 return index; 1111 } 1112 1113 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1114 * address from the XHCI endpoint index. 1115 */ 1116 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1117 { 1118 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1119 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1120 return direction | number; 1121 } 1122 1123 /* Find the flag for this endpoint (for use in the control context). Use the 1124 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1125 * bit 1, etc. 1126 */ 1127 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1128 { 1129 return 1 << (xhci_get_endpoint_index(desc) + 1); 1130 } 1131 1132 /* Find the flag for this endpoint (for use in the control context). Use the 1133 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1134 * bit 1, etc. 1135 */ 1136 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1137 { 1138 return 1 << (ep_index + 1); 1139 } 1140 1141 /* Compute the last valid endpoint context index. Basically, this is the 1142 * endpoint index plus one. For slot contexts with more than valid endpoint, 1143 * we find the most significant bit set in the added contexts flags. 1144 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1145 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1146 */ 1147 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1148 { 1149 return fls(added_ctxs) - 1; 1150 } 1151 1152 /* Returns 1 if the arguments are OK; 1153 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1154 */ 1155 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1156 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1157 const char *func) { 1158 struct xhci_hcd *xhci; 1159 struct xhci_virt_device *virt_dev; 1160 1161 if (!hcd || (check_ep && !ep) || !udev) { 1162 pr_debug("xHCI %s called with invalid args\n", func); 1163 return -EINVAL; 1164 } 1165 if (!udev->parent) { 1166 pr_debug("xHCI %s called for root hub\n", func); 1167 return 0; 1168 } 1169 1170 xhci = hcd_to_xhci(hcd); 1171 if (check_virt_dev) { 1172 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1173 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1174 func); 1175 return -EINVAL; 1176 } 1177 1178 virt_dev = xhci->devs[udev->slot_id]; 1179 if (virt_dev->udev != udev) { 1180 xhci_dbg(xhci, "xHCI %s called with udev and " 1181 "virt_dev does not match\n", func); 1182 return -EINVAL; 1183 } 1184 } 1185 1186 if (xhci->xhc_state & XHCI_STATE_HALTED) 1187 return -ENODEV; 1188 1189 return 1; 1190 } 1191 1192 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1193 struct usb_device *udev, struct xhci_command *command, 1194 bool ctx_change, bool must_succeed); 1195 1196 /* 1197 * Full speed devices may have a max packet size greater than 8 bytes, but the 1198 * USB core doesn't know that until it reads the first 8 bytes of the 1199 * descriptor. If the usb_device's max packet size changes after that point, 1200 * we need to issue an evaluate context command and wait on it. 1201 */ 1202 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1203 unsigned int ep_index, struct urb *urb) 1204 { 1205 struct xhci_container_ctx *out_ctx; 1206 struct xhci_input_control_ctx *ctrl_ctx; 1207 struct xhci_ep_ctx *ep_ctx; 1208 struct xhci_command *command; 1209 int max_packet_size; 1210 int hw_max_packet_size; 1211 int ret = 0; 1212 1213 out_ctx = xhci->devs[slot_id]->out_ctx; 1214 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1215 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1216 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1217 if (hw_max_packet_size != max_packet_size) { 1218 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1219 "Max Packet Size for ep 0 changed."); 1220 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1221 "Max packet size in usb_device = %d", 1222 max_packet_size); 1223 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1224 "Max packet size in xHCI HW = %d", 1225 hw_max_packet_size); 1226 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1227 "Issuing evaluate context command."); 1228 1229 /* Set up the input context flags for the command */ 1230 /* FIXME: This won't work if a non-default control endpoint 1231 * changes max packet sizes. 1232 */ 1233 1234 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1235 if (!command) 1236 return -ENOMEM; 1237 1238 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1239 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 1240 if (!ctrl_ctx) { 1241 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1242 __func__); 1243 ret = -ENOMEM; 1244 goto command_cleanup; 1245 } 1246 /* Set up the modified control endpoint 0 */ 1247 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1248 xhci->devs[slot_id]->out_ctx, ep_index); 1249 1250 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1251 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1252 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1253 1254 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1255 ctrl_ctx->drop_flags = 0; 1256 1257 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1258 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1259 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1260 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1261 1262 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1263 true, false); 1264 1265 /* Clean up the input context for later use by bandwidth 1266 * functions. 1267 */ 1268 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1269 command_cleanup: 1270 kfree(command->completion); 1271 kfree(command); 1272 } 1273 return ret; 1274 } 1275 1276 /* 1277 * non-error returns are a promise to giveback() the urb later 1278 * we drop ownership so next owner (or urb unlink) can get it 1279 */ 1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1281 { 1282 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1283 struct xhci_td *buffer; 1284 unsigned long flags; 1285 int ret = 0; 1286 unsigned int slot_id, ep_index; 1287 struct urb_priv *urb_priv; 1288 int size, i; 1289 1290 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1291 true, true, __func__) <= 0) 1292 return -EINVAL; 1293 1294 slot_id = urb->dev->slot_id; 1295 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1296 1297 if (!HCD_HW_ACCESSIBLE(hcd)) { 1298 if (!in_interrupt()) 1299 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1300 ret = -ESHUTDOWN; 1301 goto exit; 1302 } 1303 1304 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1305 size = urb->number_of_packets; 1306 else 1307 size = 1; 1308 1309 urb_priv = kzalloc(sizeof(struct urb_priv) + 1310 size * sizeof(struct xhci_td *), mem_flags); 1311 if (!urb_priv) 1312 return -ENOMEM; 1313 1314 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1315 if (!buffer) { 1316 kfree(urb_priv); 1317 return -ENOMEM; 1318 } 1319 1320 for (i = 0; i < size; i++) { 1321 urb_priv->td[i] = buffer; 1322 buffer++; 1323 } 1324 1325 urb_priv->length = size; 1326 urb_priv->td_cnt = 0; 1327 urb->hcpriv = urb_priv; 1328 1329 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1330 /* Check to see if the max packet size for the default control 1331 * endpoint changed during FS device enumeration 1332 */ 1333 if (urb->dev->speed == USB_SPEED_FULL) { 1334 ret = xhci_check_maxpacket(xhci, slot_id, 1335 ep_index, urb); 1336 if (ret < 0) { 1337 xhci_urb_free_priv(xhci, urb_priv); 1338 urb->hcpriv = NULL; 1339 return ret; 1340 } 1341 } 1342 1343 /* We have a spinlock and interrupts disabled, so we must pass 1344 * atomic context to this function, which may allocate memory. 1345 */ 1346 spin_lock_irqsave(&xhci->lock, flags); 1347 if (xhci->xhc_state & XHCI_STATE_DYING) 1348 goto dying; 1349 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1350 slot_id, ep_index); 1351 if (ret) 1352 goto free_priv; 1353 spin_unlock_irqrestore(&xhci->lock, flags); 1354 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1355 spin_lock_irqsave(&xhci->lock, flags); 1356 if (xhci->xhc_state & XHCI_STATE_DYING) 1357 goto dying; 1358 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1359 EP_GETTING_STREAMS) { 1360 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1361 "is transitioning to using streams.\n"); 1362 ret = -EINVAL; 1363 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1364 EP_GETTING_NO_STREAMS) { 1365 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1366 "is transitioning to " 1367 "not having streams.\n"); 1368 ret = -EINVAL; 1369 } else { 1370 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1371 slot_id, ep_index); 1372 } 1373 if (ret) 1374 goto free_priv; 1375 spin_unlock_irqrestore(&xhci->lock, flags); 1376 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1377 spin_lock_irqsave(&xhci->lock, flags); 1378 if (xhci->xhc_state & XHCI_STATE_DYING) 1379 goto dying; 1380 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1381 slot_id, ep_index); 1382 if (ret) 1383 goto free_priv; 1384 spin_unlock_irqrestore(&xhci->lock, flags); 1385 } else { 1386 spin_lock_irqsave(&xhci->lock, flags); 1387 if (xhci->xhc_state & XHCI_STATE_DYING) 1388 goto dying; 1389 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1390 slot_id, ep_index); 1391 if (ret) 1392 goto free_priv; 1393 spin_unlock_irqrestore(&xhci->lock, flags); 1394 } 1395 exit: 1396 return ret; 1397 dying: 1398 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1399 "non-responsive xHCI host.\n", 1400 urb->ep->desc.bEndpointAddress, urb); 1401 ret = -ESHUTDOWN; 1402 free_priv: 1403 xhci_urb_free_priv(xhci, urb_priv); 1404 urb->hcpriv = NULL; 1405 spin_unlock_irqrestore(&xhci->lock, flags); 1406 return ret; 1407 } 1408 1409 /* Get the right ring for the given URB. 1410 * If the endpoint supports streams, boundary check the URB's stream ID. 1411 * If the endpoint doesn't support streams, return the singular endpoint ring. 1412 */ 1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1414 struct urb *urb) 1415 { 1416 unsigned int slot_id; 1417 unsigned int ep_index; 1418 unsigned int stream_id; 1419 struct xhci_virt_ep *ep; 1420 1421 slot_id = urb->dev->slot_id; 1422 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1423 stream_id = urb->stream_id; 1424 ep = &xhci->devs[slot_id]->eps[ep_index]; 1425 /* Common case: no streams */ 1426 if (!(ep->ep_state & EP_HAS_STREAMS)) 1427 return ep->ring; 1428 1429 if (stream_id == 0) { 1430 xhci_warn(xhci, 1431 "WARN: Slot ID %u, ep index %u has streams, " 1432 "but URB has no stream ID.\n", 1433 slot_id, ep_index); 1434 return NULL; 1435 } 1436 1437 if (stream_id < ep->stream_info->num_streams) 1438 return ep->stream_info->stream_rings[stream_id]; 1439 1440 xhci_warn(xhci, 1441 "WARN: Slot ID %u, ep index %u has " 1442 "stream IDs 1 to %u allocated, " 1443 "but stream ID %u is requested.\n", 1444 slot_id, ep_index, 1445 ep->stream_info->num_streams - 1, 1446 stream_id); 1447 return NULL; 1448 } 1449 1450 /* 1451 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1452 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1453 * should pick up where it left off in the TD, unless a Set Transfer Ring 1454 * Dequeue Pointer is issued. 1455 * 1456 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1457 * the ring. Since the ring is a contiguous structure, they can't be physically 1458 * removed. Instead, there are two options: 1459 * 1460 * 1) If the HC is in the middle of processing the URB to be canceled, we 1461 * simply move the ring's dequeue pointer past those TRBs using the Set 1462 * Transfer Ring Dequeue Pointer command. This will be the common case, 1463 * when drivers timeout on the last submitted URB and attempt to cancel. 1464 * 1465 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1466 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1467 * HC will need to invalidate the any TRBs it has cached after the stop 1468 * endpoint command, as noted in the xHCI 0.95 errata. 1469 * 1470 * 3) The TD may have completed by the time the Stop Endpoint Command 1471 * completes, so software needs to handle that case too. 1472 * 1473 * This function should protect against the TD enqueueing code ringing the 1474 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1475 * It also needs to account for multiple cancellations on happening at the same 1476 * time for the same endpoint. 1477 * 1478 * Note that this function can be called in any context, or so says 1479 * usb_hcd_unlink_urb() 1480 */ 1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1482 { 1483 unsigned long flags; 1484 int ret, i; 1485 u32 temp; 1486 struct xhci_hcd *xhci; 1487 struct urb_priv *urb_priv; 1488 struct xhci_td *td; 1489 unsigned int ep_index; 1490 struct xhci_ring *ep_ring; 1491 struct xhci_virt_ep *ep; 1492 struct xhci_command *command; 1493 1494 xhci = hcd_to_xhci(hcd); 1495 spin_lock_irqsave(&xhci->lock, flags); 1496 /* Make sure the URB hasn't completed or been unlinked already */ 1497 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1498 if (ret || !urb->hcpriv) 1499 goto done; 1500 temp = readl(&xhci->op_regs->status); 1501 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1502 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1503 "HW died, freeing TD."); 1504 urb_priv = urb->hcpriv; 1505 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1506 td = urb_priv->td[i]; 1507 if (!list_empty(&td->td_list)) 1508 list_del_init(&td->td_list); 1509 if (!list_empty(&td->cancelled_td_list)) 1510 list_del_init(&td->cancelled_td_list); 1511 } 1512 1513 usb_hcd_unlink_urb_from_ep(hcd, urb); 1514 spin_unlock_irqrestore(&xhci->lock, flags); 1515 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1516 xhci_urb_free_priv(xhci, urb_priv); 1517 return ret; 1518 } 1519 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1520 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1521 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1522 "Ep 0x%x: URB %p to be canceled on " 1523 "non-responsive xHCI host.", 1524 urb->ep->desc.bEndpointAddress, urb); 1525 /* Let the stop endpoint command watchdog timer (which set this 1526 * state) finish cleaning up the endpoint TD lists. We must 1527 * have caught it in the middle of dropping a lock and giving 1528 * back an URB. 1529 */ 1530 goto done; 1531 } 1532 1533 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1534 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1535 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1536 if (!ep_ring) { 1537 ret = -EINVAL; 1538 goto done; 1539 } 1540 1541 urb_priv = urb->hcpriv; 1542 i = urb_priv->td_cnt; 1543 if (i < urb_priv->length) 1544 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1545 "Cancel URB %p, dev %s, ep 0x%x, " 1546 "starting at offset 0x%llx", 1547 urb, urb->dev->devpath, 1548 urb->ep->desc.bEndpointAddress, 1549 (unsigned long long) xhci_trb_virt_to_dma( 1550 urb_priv->td[i]->start_seg, 1551 urb_priv->td[i]->first_trb)); 1552 1553 for (; i < urb_priv->length; i++) { 1554 td = urb_priv->td[i]; 1555 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1556 } 1557 1558 /* Queue a stop endpoint command, but only if this is 1559 * the first cancellation to be handled. 1560 */ 1561 if (!(ep->ep_state & EP_HALT_PENDING)) { 1562 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1563 if (!command) { 1564 ret = -ENOMEM; 1565 goto done; 1566 } 1567 ep->ep_state |= EP_HALT_PENDING; 1568 ep->stop_cmds_pending++; 1569 ep->stop_cmd_timer.expires = jiffies + 1570 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1571 add_timer(&ep->stop_cmd_timer); 1572 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1573 ep_index, 0); 1574 xhci_ring_cmd_db(xhci); 1575 } 1576 done: 1577 spin_unlock_irqrestore(&xhci->lock, flags); 1578 return ret; 1579 } 1580 1581 /* Drop an endpoint from a new bandwidth configuration for this device. 1582 * Only one call to this function is allowed per endpoint before 1583 * check_bandwidth() or reset_bandwidth() must be called. 1584 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1585 * add the endpoint to the schedule with possibly new parameters denoted by a 1586 * different endpoint descriptor in usb_host_endpoint. 1587 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1588 * not allowed. 1589 * 1590 * The USB core will not allow URBs to be queued to an endpoint that is being 1591 * disabled, so there's no need for mutual exclusion to protect 1592 * the xhci->devs[slot_id] structure. 1593 */ 1594 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1595 struct usb_host_endpoint *ep) 1596 { 1597 struct xhci_hcd *xhci; 1598 struct xhci_container_ctx *in_ctx, *out_ctx; 1599 struct xhci_input_control_ctx *ctrl_ctx; 1600 unsigned int ep_index; 1601 struct xhci_ep_ctx *ep_ctx; 1602 u32 drop_flag; 1603 u32 new_add_flags, new_drop_flags; 1604 int ret; 1605 1606 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1607 if (ret <= 0) 1608 return ret; 1609 xhci = hcd_to_xhci(hcd); 1610 if (xhci->xhc_state & XHCI_STATE_DYING) 1611 return -ENODEV; 1612 1613 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1614 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1615 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1616 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1617 __func__, drop_flag); 1618 return 0; 1619 } 1620 1621 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1622 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1623 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1624 if (!ctrl_ctx) { 1625 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1626 __func__); 1627 return 0; 1628 } 1629 1630 ep_index = xhci_get_endpoint_index(&ep->desc); 1631 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1632 /* If the HC already knows the endpoint is disabled, 1633 * or the HCD has noted it is disabled, ignore this request 1634 */ 1635 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1636 cpu_to_le32(EP_STATE_DISABLED)) || 1637 le32_to_cpu(ctrl_ctx->drop_flags) & 1638 xhci_get_endpoint_flag(&ep->desc)) { 1639 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1640 __func__, ep); 1641 return 0; 1642 } 1643 1644 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1645 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1646 1647 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1648 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1649 1650 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1651 1652 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1653 (unsigned int) ep->desc.bEndpointAddress, 1654 udev->slot_id, 1655 (unsigned int) new_drop_flags, 1656 (unsigned int) new_add_flags); 1657 return 0; 1658 } 1659 1660 /* Add an endpoint to a new possible bandwidth configuration for this device. 1661 * Only one call to this function is allowed per endpoint before 1662 * check_bandwidth() or reset_bandwidth() must be called. 1663 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1664 * add the endpoint to the schedule with possibly new parameters denoted by a 1665 * different endpoint descriptor in usb_host_endpoint. 1666 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1667 * not allowed. 1668 * 1669 * The USB core will not allow URBs to be queued to an endpoint until the 1670 * configuration or alt setting is installed in the device, so there's no need 1671 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1672 */ 1673 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1674 struct usb_host_endpoint *ep) 1675 { 1676 struct xhci_hcd *xhci; 1677 struct xhci_container_ctx *in_ctx, *out_ctx; 1678 unsigned int ep_index; 1679 struct xhci_input_control_ctx *ctrl_ctx; 1680 u32 added_ctxs; 1681 u32 new_add_flags, new_drop_flags; 1682 struct xhci_virt_device *virt_dev; 1683 int ret = 0; 1684 1685 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1686 if (ret <= 0) { 1687 /* So we won't queue a reset ep command for a root hub */ 1688 ep->hcpriv = NULL; 1689 return ret; 1690 } 1691 xhci = hcd_to_xhci(hcd); 1692 if (xhci->xhc_state & XHCI_STATE_DYING) 1693 return -ENODEV; 1694 1695 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1696 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1697 /* FIXME when we have to issue an evaluate endpoint command to 1698 * deal with ep0 max packet size changing once we get the 1699 * descriptors 1700 */ 1701 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1702 __func__, added_ctxs); 1703 return 0; 1704 } 1705 1706 virt_dev = xhci->devs[udev->slot_id]; 1707 in_ctx = virt_dev->in_ctx; 1708 out_ctx = virt_dev->out_ctx; 1709 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1710 if (!ctrl_ctx) { 1711 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1712 __func__); 1713 return 0; 1714 } 1715 1716 ep_index = xhci_get_endpoint_index(&ep->desc); 1717 /* If this endpoint is already in use, and the upper layers are trying 1718 * to add it again without dropping it, reject the addition. 1719 */ 1720 if (virt_dev->eps[ep_index].ring && 1721 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1722 xhci_get_endpoint_flag(&ep->desc))) { 1723 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1724 "without dropping it.\n", 1725 (unsigned int) ep->desc.bEndpointAddress); 1726 return -EINVAL; 1727 } 1728 1729 /* If the HCD has already noted the endpoint is enabled, 1730 * ignore this request. 1731 */ 1732 if (le32_to_cpu(ctrl_ctx->add_flags) & 1733 xhci_get_endpoint_flag(&ep->desc)) { 1734 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1735 __func__, ep); 1736 return 0; 1737 } 1738 1739 /* 1740 * Configuration and alternate setting changes must be done in 1741 * process context, not interrupt context (or so documenation 1742 * for usb_set_interface() and usb_set_configuration() claim). 1743 */ 1744 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1745 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1746 __func__, ep->desc.bEndpointAddress); 1747 return -ENOMEM; 1748 } 1749 1750 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1751 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1752 1753 /* If xhci_endpoint_disable() was called for this endpoint, but the 1754 * xHC hasn't been notified yet through the check_bandwidth() call, 1755 * this re-adds a new state for the endpoint from the new endpoint 1756 * descriptors. We must drop and re-add this endpoint, so we leave the 1757 * drop flags alone. 1758 */ 1759 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1760 1761 /* Store the usb_device pointer for later use */ 1762 ep->hcpriv = udev; 1763 1764 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1765 (unsigned int) ep->desc.bEndpointAddress, 1766 udev->slot_id, 1767 (unsigned int) new_drop_flags, 1768 (unsigned int) new_add_flags); 1769 return 0; 1770 } 1771 1772 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1773 { 1774 struct xhci_input_control_ctx *ctrl_ctx; 1775 struct xhci_ep_ctx *ep_ctx; 1776 struct xhci_slot_ctx *slot_ctx; 1777 int i; 1778 1779 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1780 if (!ctrl_ctx) { 1781 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1782 __func__); 1783 return; 1784 } 1785 1786 /* When a device's add flag and drop flag are zero, any subsequent 1787 * configure endpoint command will leave that endpoint's state 1788 * untouched. Make sure we don't leave any old state in the input 1789 * endpoint contexts. 1790 */ 1791 ctrl_ctx->drop_flags = 0; 1792 ctrl_ctx->add_flags = 0; 1793 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1794 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1795 /* Endpoint 0 is always valid */ 1796 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1797 for (i = 1; i < 31; ++i) { 1798 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1799 ep_ctx->ep_info = 0; 1800 ep_ctx->ep_info2 = 0; 1801 ep_ctx->deq = 0; 1802 ep_ctx->tx_info = 0; 1803 } 1804 } 1805 1806 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1807 struct usb_device *udev, u32 *cmd_status) 1808 { 1809 int ret; 1810 1811 switch (*cmd_status) { 1812 case COMP_CMD_ABORT: 1813 case COMP_CMD_STOP: 1814 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1815 ret = -ETIME; 1816 break; 1817 case COMP_ENOMEM: 1818 dev_warn(&udev->dev, 1819 "Not enough host controller resources for new device state.\n"); 1820 ret = -ENOMEM; 1821 /* FIXME: can we allocate more resources for the HC? */ 1822 break; 1823 case COMP_BW_ERR: 1824 case COMP_2ND_BW_ERR: 1825 dev_warn(&udev->dev, 1826 "Not enough bandwidth for new device state.\n"); 1827 ret = -ENOSPC; 1828 /* FIXME: can we go back to the old state? */ 1829 break; 1830 case COMP_TRB_ERR: 1831 /* the HCD set up something wrong */ 1832 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1833 "add flag = 1, " 1834 "and endpoint is not disabled.\n"); 1835 ret = -EINVAL; 1836 break; 1837 case COMP_DEV_ERR: 1838 dev_warn(&udev->dev, 1839 "ERROR: Incompatible device for endpoint configure command.\n"); 1840 ret = -ENODEV; 1841 break; 1842 case COMP_SUCCESS: 1843 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1844 "Successful Endpoint Configure command"); 1845 ret = 0; 1846 break; 1847 default: 1848 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1849 *cmd_status); 1850 ret = -EINVAL; 1851 break; 1852 } 1853 return ret; 1854 } 1855 1856 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1857 struct usb_device *udev, u32 *cmd_status) 1858 { 1859 int ret; 1860 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1861 1862 switch (*cmd_status) { 1863 case COMP_CMD_ABORT: 1864 case COMP_CMD_STOP: 1865 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1866 ret = -ETIME; 1867 break; 1868 case COMP_EINVAL: 1869 dev_warn(&udev->dev, 1870 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1871 ret = -EINVAL; 1872 break; 1873 case COMP_EBADSLT: 1874 dev_warn(&udev->dev, 1875 "WARN: slot not enabled for evaluate context command.\n"); 1876 ret = -EINVAL; 1877 break; 1878 case COMP_CTX_STATE: 1879 dev_warn(&udev->dev, 1880 "WARN: invalid context state for evaluate context command.\n"); 1881 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1882 ret = -EINVAL; 1883 break; 1884 case COMP_DEV_ERR: 1885 dev_warn(&udev->dev, 1886 "ERROR: Incompatible device for evaluate context command.\n"); 1887 ret = -ENODEV; 1888 break; 1889 case COMP_MEL_ERR: 1890 /* Max Exit Latency too large error */ 1891 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1892 ret = -EINVAL; 1893 break; 1894 case COMP_SUCCESS: 1895 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1896 "Successful evaluate context command"); 1897 ret = 0; 1898 break; 1899 default: 1900 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1901 *cmd_status); 1902 ret = -EINVAL; 1903 break; 1904 } 1905 return ret; 1906 } 1907 1908 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1909 struct xhci_input_control_ctx *ctrl_ctx) 1910 { 1911 u32 valid_add_flags; 1912 u32 valid_drop_flags; 1913 1914 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1915 * (bit 1). The default control endpoint is added during the Address 1916 * Device command and is never removed until the slot is disabled. 1917 */ 1918 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1919 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1920 1921 /* Use hweight32 to count the number of ones in the add flags, or 1922 * number of endpoints added. Don't count endpoints that are changed 1923 * (both added and dropped). 1924 */ 1925 return hweight32(valid_add_flags) - 1926 hweight32(valid_add_flags & valid_drop_flags); 1927 } 1928 1929 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1930 struct xhci_input_control_ctx *ctrl_ctx) 1931 { 1932 u32 valid_add_flags; 1933 u32 valid_drop_flags; 1934 1935 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1936 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1937 1938 return hweight32(valid_drop_flags) - 1939 hweight32(valid_add_flags & valid_drop_flags); 1940 } 1941 1942 /* 1943 * We need to reserve the new number of endpoints before the configure endpoint 1944 * command completes. We can't subtract the dropped endpoints from the number 1945 * of active endpoints until the command completes because we can oversubscribe 1946 * the host in this case: 1947 * 1948 * - the first configure endpoint command drops more endpoints than it adds 1949 * - a second configure endpoint command that adds more endpoints is queued 1950 * - the first configure endpoint command fails, so the config is unchanged 1951 * - the second command may succeed, even though there isn't enough resources 1952 * 1953 * Must be called with xhci->lock held. 1954 */ 1955 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1956 struct xhci_input_control_ctx *ctrl_ctx) 1957 { 1958 u32 added_eps; 1959 1960 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1961 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1963 "Not enough ep ctxs: " 1964 "%u active, need to add %u, limit is %u.", 1965 xhci->num_active_eps, added_eps, 1966 xhci->limit_active_eps); 1967 return -ENOMEM; 1968 } 1969 xhci->num_active_eps += added_eps; 1970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1971 "Adding %u ep ctxs, %u now active.", added_eps, 1972 xhci->num_active_eps); 1973 return 0; 1974 } 1975 1976 /* 1977 * The configure endpoint was failed by the xHC for some other reason, so we 1978 * need to revert the resources that failed configuration would have used. 1979 * 1980 * Must be called with xhci->lock held. 1981 */ 1982 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1983 struct xhci_input_control_ctx *ctrl_ctx) 1984 { 1985 u32 num_failed_eps; 1986 1987 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1988 xhci->num_active_eps -= num_failed_eps; 1989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1990 "Removing %u failed ep ctxs, %u now active.", 1991 num_failed_eps, 1992 xhci->num_active_eps); 1993 } 1994 1995 /* 1996 * Now that the command has completed, clean up the active endpoint count by 1997 * subtracting out the endpoints that were dropped (but not changed). 1998 * 1999 * Must be called with xhci->lock held. 2000 */ 2001 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2002 struct xhci_input_control_ctx *ctrl_ctx) 2003 { 2004 u32 num_dropped_eps; 2005 2006 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2007 xhci->num_active_eps -= num_dropped_eps; 2008 if (num_dropped_eps) 2009 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2010 "Removing %u dropped ep ctxs, %u now active.", 2011 num_dropped_eps, 2012 xhci->num_active_eps); 2013 } 2014 2015 static unsigned int xhci_get_block_size(struct usb_device *udev) 2016 { 2017 switch (udev->speed) { 2018 case USB_SPEED_LOW: 2019 case USB_SPEED_FULL: 2020 return FS_BLOCK; 2021 case USB_SPEED_HIGH: 2022 return HS_BLOCK; 2023 case USB_SPEED_SUPER: 2024 return SS_BLOCK; 2025 case USB_SPEED_UNKNOWN: 2026 case USB_SPEED_WIRELESS: 2027 default: 2028 /* Should never happen */ 2029 return 1; 2030 } 2031 } 2032 2033 static unsigned int 2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2035 { 2036 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2037 return LS_OVERHEAD; 2038 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2039 return FS_OVERHEAD; 2040 return HS_OVERHEAD; 2041 } 2042 2043 /* If we are changing a LS/FS device under a HS hub, 2044 * make sure (if we are activating a new TT) that the HS bus has enough 2045 * bandwidth for this new TT. 2046 */ 2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2048 struct xhci_virt_device *virt_dev, 2049 int old_active_eps) 2050 { 2051 struct xhci_interval_bw_table *bw_table; 2052 struct xhci_tt_bw_info *tt_info; 2053 2054 /* Find the bandwidth table for the root port this TT is attached to. */ 2055 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2056 tt_info = virt_dev->tt_info; 2057 /* If this TT already had active endpoints, the bandwidth for this TT 2058 * has already been added. Removing all periodic endpoints (and thus 2059 * making the TT enactive) will only decrease the bandwidth used. 2060 */ 2061 if (old_active_eps) 2062 return 0; 2063 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2064 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2065 return -ENOMEM; 2066 return 0; 2067 } 2068 /* Not sure why we would have no new active endpoints... 2069 * 2070 * Maybe because of an Evaluate Context change for a hub update or a 2071 * control endpoint 0 max packet size change? 2072 * FIXME: skip the bandwidth calculation in that case. 2073 */ 2074 return 0; 2075 } 2076 2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2078 struct xhci_virt_device *virt_dev) 2079 { 2080 unsigned int bw_reserved; 2081 2082 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2083 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2084 return -ENOMEM; 2085 2086 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2087 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2088 return -ENOMEM; 2089 2090 return 0; 2091 } 2092 2093 /* 2094 * This algorithm is a very conservative estimate of the worst-case scheduling 2095 * scenario for any one interval. The hardware dynamically schedules the 2096 * packets, so we can't tell which microframe could be the limiting factor in 2097 * the bandwidth scheduling. This only takes into account periodic endpoints. 2098 * 2099 * Obviously, we can't solve an NP complete problem to find the minimum worst 2100 * case scenario. Instead, we come up with an estimate that is no less than 2101 * the worst case bandwidth used for any one microframe, but may be an 2102 * over-estimate. 2103 * 2104 * We walk the requirements for each endpoint by interval, starting with the 2105 * smallest interval, and place packets in the schedule where there is only one 2106 * possible way to schedule packets for that interval. In order to simplify 2107 * this algorithm, we record the largest max packet size for each interval, and 2108 * assume all packets will be that size. 2109 * 2110 * For interval 0, we obviously must schedule all packets for each interval. 2111 * The bandwidth for interval 0 is just the amount of data to be transmitted 2112 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2113 * the number of packets). 2114 * 2115 * For interval 1, we have two possible microframes to schedule those packets 2116 * in. For this algorithm, if we can schedule the same number of packets for 2117 * each possible scheduling opportunity (each microframe), we will do so. The 2118 * remaining number of packets will be saved to be transmitted in the gaps in 2119 * the next interval's scheduling sequence. 2120 * 2121 * As we move those remaining packets to be scheduled with interval 2 packets, 2122 * we have to double the number of remaining packets to transmit. This is 2123 * because the intervals are actually powers of 2, and we would be transmitting 2124 * the previous interval's packets twice in this interval. We also have to be 2125 * sure that when we look at the largest max packet size for this interval, we 2126 * also look at the largest max packet size for the remaining packets and take 2127 * the greater of the two. 2128 * 2129 * The algorithm continues to evenly distribute packets in each scheduling 2130 * opportunity, and push the remaining packets out, until we get to the last 2131 * interval. Then those packets and their associated overhead are just added 2132 * to the bandwidth used. 2133 */ 2134 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2135 struct xhci_virt_device *virt_dev, 2136 int old_active_eps) 2137 { 2138 unsigned int bw_reserved; 2139 unsigned int max_bandwidth; 2140 unsigned int bw_used; 2141 unsigned int block_size; 2142 struct xhci_interval_bw_table *bw_table; 2143 unsigned int packet_size = 0; 2144 unsigned int overhead = 0; 2145 unsigned int packets_transmitted = 0; 2146 unsigned int packets_remaining = 0; 2147 unsigned int i; 2148 2149 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2150 return xhci_check_ss_bw(xhci, virt_dev); 2151 2152 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2153 max_bandwidth = HS_BW_LIMIT; 2154 /* Convert percent of bus BW reserved to blocks reserved */ 2155 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2156 } else { 2157 max_bandwidth = FS_BW_LIMIT; 2158 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2159 } 2160 2161 bw_table = virt_dev->bw_table; 2162 /* We need to translate the max packet size and max ESIT payloads into 2163 * the units the hardware uses. 2164 */ 2165 block_size = xhci_get_block_size(virt_dev->udev); 2166 2167 /* If we are manipulating a LS/FS device under a HS hub, double check 2168 * that the HS bus has enough bandwidth if we are activing a new TT. 2169 */ 2170 if (virt_dev->tt_info) { 2171 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2172 "Recalculating BW for rootport %u", 2173 virt_dev->real_port); 2174 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2175 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2176 "newly activated TT.\n"); 2177 return -ENOMEM; 2178 } 2179 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2180 "Recalculating BW for TT slot %u port %u", 2181 virt_dev->tt_info->slot_id, 2182 virt_dev->tt_info->ttport); 2183 } else { 2184 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2185 "Recalculating BW for rootport %u", 2186 virt_dev->real_port); 2187 } 2188 2189 /* Add in how much bandwidth will be used for interval zero, or the 2190 * rounded max ESIT payload + number of packets * largest overhead. 2191 */ 2192 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2193 bw_table->interval_bw[0].num_packets * 2194 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2195 2196 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2197 unsigned int bw_added; 2198 unsigned int largest_mps; 2199 unsigned int interval_overhead; 2200 2201 /* 2202 * How many packets could we transmit in this interval? 2203 * If packets didn't fit in the previous interval, we will need 2204 * to transmit that many packets twice within this interval. 2205 */ 2206 packets_remaining = 2 * packets_remaining + 2207 bw_table->interval_bw[i].num_packets; 2208 2209 /* Find the largest max packet size of this or the previous 2210 * interval. 2211 */ 2212 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2213 largest_mps = 0; 2214 else { 2215 struct xhci_virt_ep *virt_ep; 2216 struct list_head *ep_entry; 2217 2218 ep_entry = bw_table->interval_bw[i].endpoints.next; 2219 virt_ep = list_entry(ep_entry, 2220 struct xhci_virt_ep, bw_endpoint_list); 2221 /* Convert to blocks, rounding up */ 2222 largest_mps = DIV_ROUND_UP( 2223 virt_ep->bw_info.max_packet_size, 2224 block_size); 2225 } 2226 if (largest_mps > packet_size) 2227 packet_size = largest_mps; 2228 2229 /* Use the larger overhead of this or the previous interval. */ 2230 interval_overhead = xhci_get_largest_overhead( 2231 &bw_table->interval_bw[i]); 2232 if (interval_overhead > overhead) 2233 overhead = interval_overhead; 2234 2235 /* How many packets can we evenly distribute across 2236 * (1 << (i + 1)) possible scheduling opportunities? 2237 */ 2238 packets_transmitted = packets_remaining >> (i + 1); 2239 2240 /* Add in the bandwidth used for those scheduled packets */ 2241 bw_added = packets_transmitted * (overhead + packet_size); 2242 2243 /* How many packets do we have remaining to transmit? */ 2244 packets_remaining = packets_remaining % (1 << (i + 1)); 2245 2246 /* What largest max packet size should those packets have? */ 2247 /* If we've transmitted all packets, don't carry over the 2248 * largest packet size. 2249 */ 2250 if (packets_remaining == 0) { 2251 packet_size = 0; 2252 overhead = 0; 2253 } else if (packets_transmitted > 0) { 2254 /* Otherwise if we do have remaining packets, and we've 2255 * scheduled some packets in this interval, take the 2256 * largest max packet size from endpoints with this 2257 * interval. 2258 */ 2259 packet_size = largest_mps; 2260 overhead = interval_overhead; 2261 } 2262 /* Otherwise carry over packet_size and overhead from the last 2263 * time we had a remainder. 2264 */ 2265 bw_used += bw_added; 2266 if (bw_used > max_bandwidth) { 2267 xhci_warn(xhci, "Not enough bandwidth. " 2268 "Proposed: %u, Max: %u\n", 2269 bw_used, max_bandwidth); 2270 return -ENOMEM; 2271 } 2272 } 2273 /* 2274 * Ok, we know we have some packets left over after even-handedly 2275 * scheduling interval 15. We don't know which microframes they will 2276 * fit into, so we over-schedule and say they will be scheduled every 2277 * microframe. 2278 */ 2279 if (packets_remaining > 0) 2280 bw_used += overhead + packet_size; 2281 2282 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2283 unsigned int port_index = virt_dev->real_port - 1; 2284 2285 /* OK, we're manipulating a HS device attached to a 2286 * root port bandwidth domain. Include the number of active TTs 2287 * in the bandwidth used. 2288 */ 2289 bw_used += TT_HS_OVERHEAD * 2290 xhci->rh_bw[port_index].num_active_tts; 2291 } 2292 2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2294 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2295 "Available: %u " "percent", 2296 bw_used, max_bandwidth, bw_reserved, 2297 (max_bandwidth - bw_used - bw_reserved) * 100 / 2298 max_bandwidth); 2299 2300 bw_used += bw_reserved; 2301 if (bw_used > max_bandwidth) { 2302 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2303 bw_used, max_bandwidth); 2304 return -ENOMEM; 2305 } 2306 2307 bw_table->bw_used = bw_used; 2308 return 0; 2309 } 2310 2311 static bool xhci_is_async_ep(unsigned int ep_type) 2312 { 2313 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2314 ep_type != ISOC_IN_EP && 2315 ep_type != INT_IN_EP); 2316 } 2317 2318 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2319 { 2320 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2321 } 2322 2323 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2324 { 2325 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2326 2327 if (ep_bw->ep_interval == 0) 2328 return SS_OVERHEAD_BURST + 2329 (ep_bw->mult * ep_bw->num_packets * 2330 (SS_OVERHEAD + mps)); 2331 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2332 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2333 1 << ep_bw->ep_interval); 2334 2335 } 2336 2337 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2338 struct xhci_bw_info *ep_bw, 2339 struct xhci_interval_bw_table *bw_table, 2340 struct usb_device *udev, 2341 struct xhci_virt_ep *virt_ep, 2342 struct xhci_tt_bw_info *tt_info) 2343 { 2344 struct xhci_interval_bw *interval_bw; 2345 int normalized_interval; 2346 2347 if (xhci_is_async_ep(ep_bw->type)) 2348 return; 2349 2350 if (udev->speed == USB_SPEED_SUPER) { 2351 if (xhci_is_sync_in_ep(ep_bw->type)) 2352 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2353 xhci_get_ss_bw_consumed(ep_bw); 2354 else 2355 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2356 xhci_get_ss_bw_consumed(ep_bw); 2357 return; 2358 } 2359 2360 /* SuperSpeed endpoints never get added to intervals in the table, so 2361 * this check is only valid for HS/FS/LS devices. 2362 */ 2363 if (list_empty(&virt_ep->bw_endpoint_list)) 2364 return; 2365 /* For LS/FS devices, we need to translate the interval expressed in 2366 * microframes to frames. 2367 */ 2368 if (udev->speed == USB_SPEED_HIGH) 2369 normalized_interval = ep_bw->ep_interval; 2370 else 2371 normalized_interval = ep_bw->ep_interval - 3; 2372 2373 if (normalized_interval == 0) 2374 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2375 interval_bw = &bw_table->interval_bw[normalized_interval]; 2376 interval_bw->num_packets -= ep_bw->num_packets; 2377 switch (udev->speed) { 2378 case USB_SPEED_LOW: 2379 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2380 break; 2381 case USB_SPEED_FULL: 2382 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2383 break; 2384 case USB_SPEED_HIGH: 2385 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2386 break; 2387 case USB_SPEED_SUPER: 2388 case USB_SPEED_UNKNOWN: 2389 case USB_SPEED_WIRELESS: 2390 /* Should never happen because only LS/FS/HS endpoints will get 2391 * added to the endpoint list. 2392 */ 2393 return; 2394 } 2395 if (tt_info) 2396 tt_info->active_eps -= 1; 2397 list_del_init(&virt_ep->bw_endpoint_list); 2398 } 2399 2400 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2401 struct xhci_bw_info *ep_bw, 2402 struct xhci_interval_bw_table *bw_table, 2403 struct usb_device *udev, 2404 struct xhci_virt_ep *virt_ep, 2405 struct xhci_tt_bw_info *tt_info) 2406 { 2407 struct xhci_interval_bw *interval_bw; 2408 struct xhci_virt_ep *smaller_ep; 2409 int normalized_interval; 2410 2411 if (xhci_is_async_ep(ep_bw->type)) 2412 return; 2413 2414 if (udev->speed == USB_SPEED_SUPER) { 2415 if (xhci_is_sync_in_ep(ep_bw->type)) 2416 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2417 xhci_get_ss_bw_consumed(ep_bw); 2418 else 2419 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2420 xhci_get_ss_bw_consumed(ep_bw); 2421 return; 2422 } 2423 2424 /* For LS/FS devices, we need to translate the interval expressed in 2425 * microframes to frames. 2426 */ 2427 if (udev->speed == USB_SPEED_HIGH) 2428 normalized_interval = ep_bw->ep_interval; 2429 else 2430 normalized_interval = ep_bw->ep_interval - 3; 2431 2432 if (normalized_interval == 0) 2433 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2434 interval_bw = &bw_table->interval_bw[normalized_interval]; 2435 interval_bw->num_packets += ep_bw->num_packets; 2436 switch (udev->speed) { 2437 case USB_SPEED_LOW: 2438 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2439 break; 2440 case USB_SPEED_FULL: 2441 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2442 break; 2443 case USB_SPEED_HIGH: 2444 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2445 break; 2446 case USB_SPEED_SUPER: 2447 case USB_SPEED_UNKNOWN: 2448 case USB_SPEED_WIRELESS: 2449 /* Should never happen because only LS/FS/HS endpoints will get 2450 * added to the endpoint list. 2451 */ 2452 return; 2453 } 2454 2455 if (tt_info) 2456 tt_info->active_eps += 1; 2457 /* Insert the endpoint into the list, largest max packet size first. */ 2458 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2459 bw_endpoint_list) { 2460 if (ep_bw->max_packet_size >= 2461 smaller_ep->bw_info.max_packet_size) { 2462 /* Add the new ep before the smaller endpoint */ 2463 list_add_tail(&virt_ep->bw_endpoint_list, 2464 &smaller_ep->bw_endpoint_list); 2465 return; 2466 } 2467 } 2468 /* Add the new endpoint at the end of the list. */ 2469 list_add_tail(&virt_ep->bw_endpoint_list, 2470 &interval_bw->endpoints); 2471 } 2472 2473 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2474 struct xhci_virt_device *virt_dev, 2475 int old_active_eps) 2476 { 2477 struct xhci_root_port_bw_info *rh_bw_info; 2478 if (!virt_dev->tt_info) 2479 return; 2480 2481 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2482 if (old_active_eps == 0 && 2483 virt_dev->tt_info->active_eps != 0) { 2484 rh_bw_info->num_active_tts += 1; 2485 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2486 } else if (old_active_eps != 0 && 2487 virt_dev->tt_info->active_eps == 0) { 2488 rh_bw_info->num_active_tts -= 1; 2489 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2490 } 2491 } 2492 2493 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2494 struct xhci_virt_device *virt_dev, 2495 struct xhci_container_ctx *in_ctx) 2496 { 2497 struct xhci_bw_info ep_bw_info[31]; 2498 int i; 2499 struct xhci_input_control_ctx *ctrl_ctx; 2500 int old_active_eps = 0; 2501 2502 if (virt_dev->tt_info) 2503 old_active_eps = virt_dev->tt_info->active_eps; 2504 2505 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2506 if (!ctrl_ctx) { 2507 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2508 __func__); 2509 return -ENOMEM; 2510 } 2511 2512 for (i = 0; i < 31; i++) { 2513 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2514 continue; 2515 2516 /* Make a copy of the BW info in case we need to revert this */ 2517 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2518 sizeof(ep_bw_info[i])); 2519 /* Drop the endpoint from the interval table if the endpoint is 2520 * being dropped or changed. 2521 */ 2522 if (EP_IS_DROPPED(ctrl_ctx, i)) 2523 xhci_drop_ep_from_interval_table(xhci, 2524 &virt_dev->eps[i].bw_info, 2525 virt_dev->bw_table, 2526 virt_dev->udev, 2527 &virt_dev->eps[i], 2528 virt_dev->tt_info); 2529 } 2530 /* Overwrite the information stored in the endpoints' bw_info */ 2531 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2532 for (i = 0; i < 31; i++) { 2533 /* Add any changed or added endpoints to the interval table */ 2534 if (EP_IS_ADDED(ctrl_ctx, i)) 2535 xhci_add_ep_to_interval_table(xhci, 2536 &virt_dev->eps[i].bw_info, 2537 virt_dev->bw_table, 2538 virt_dev->udev, 2539 &virt_dev->eps[i], 2540 virt_dev->tt_info); 2541 } 2542 2543 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2544 /* Ok, this fits in the bandwidth we have. 2545 * Update the number of active TTs. 2546 */ 2547 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2548 return 0; 2549 } 2550 2551 /* We don't have enough bandwidth for this, revert the stored info. */ 2552 for (i = 0; i < 31; i++) { 2553 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2554 continue; 2555 2556 /* Drop the new copies of any added or changed endpoints from 2557 * the interval table. 2558 */ 2559 if (EP_IS_ADDED(ctrl_ctx, i)) { 2560 xhci_drop_ep_from_interval_table(xhci, 2561 &virt_dev->eps[i].bw_info, 2562 virt_dev->bw_table, 2563 virt_dev->udev, 2564 &virt_dev->eps[i], 2565 virt_dev->tt_info); 2566 } 2567 /* Revert the endpoint back to its old information */ 2568 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2569 sizeof(ep_bw_info[i])); 2570 /* Add any changed or dropped endpoints back into the table */ 2571 if (EP_IS_DROPPED(ctrl_ctx, i)) 2572 xhci_add_ep_to_interval_table(xhci, 2573 &virt_dev->eps[i].bw_info, 2574 virt_dev->bw_table, 2575 virt_dev->udev, 2576 &virt_dev->eps[i], 2577 virt_dev->tt_info); 2578 } 2579 return -ENOMEM; 2580 } 2581 2582 2583 /* Issue a configure endpoint command or evaluate context command 2584 * and wait for it to finish. 2585 */ 2586 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2587 struct usb_device *udev, 2588 struct xhci_command *command, 2589 bool ctx_change, bool must_succeed) 2590 { 2591 int ret; 2592 unsigned long flags; 2593 struct xhci_input_control_ctx *ctrl_ctx; 2594 struct xhci_virt_device *virt_dev; 2595 2596 if (!command) 2597 return -EINVAL; 2598 2599 spin_lock_irqsave(&xhci->lock, flags); 2600 virt_dev = xhci->devs[udev->slot_id]; 2601 2602 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2603 if (!ctrl_ctx) { 2604 spin_unlock_irqrestore(&xhci->lock, flags); 2605 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2606 __func__); 2607 return -ENOMEM; 2608 } 2609 2610 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2611 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2612 spin_unlock_irqrestore(&xhci->lock, flags); 2613 xhci_warn(xhci, "Not enough host resources, " 2614 "active endpoint contexts = %u\n", 2615 xhci->num_active_eps); 2616 return -ENOMEM; 2617 } 2618 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2619 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2620 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2621 xhci_free_host_resources(xhci, ctrl_ctx); 2622 spin_unlock_irqrestore(&xhci->lock, flags); 2623 xhci_warn(xhci, "Not enough bandwidth\n"); 2624 return -ENOMEM; 2625 } 2626 2627 if (!ctx_change) 2628 ret = xhci_queue_configure_endpoint(xhci, command, 2629 command->in_ctx->dma, 2630 udev->slot_id, must_succeed); 2631 else 2632 ret = xhci_queue_evaluate_context(xhci, command, 2633 command->in_ctx->dma, 2634 udev->slot_id, must_succeed); 2635 if (ret < 0) { 2636 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2637 xhci_free_host_resources(xhci, ctrl_ctx); 2638 spin_unlock_irqrestore(&xhci->lock, flags); 2639 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2640 "FIXME allocate a new ring segment"); 2641 return -ENOMEM; 2642 } 2643 xhci_ring_cmd_db(xhci); 2644 spin_unlock_irqrestore(&xhci->lock, flags); 2645 2646 /* Wait for the configure endpoint command to complete */ 2647 wait_for_completion(command->completion); 2648 2649 if (!ctx_change) 2650 ret = xhci_configure_endpoint_result(xhci, udev, 2651 &command->status); 2652 else 2653 ret = xhci_evaluate_context_result(xhci, udev, 2654 &command->status); 2655 2656 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2657 spin_lock_irqsave(&xhci->lock, flags); 2658 /* If the command failed, remove the reserved resources. 2659 * Otherwise, clean up the estimate to include dropped eps. 2660 */ 2661 if (ret) 2662 xhci_free_host_resources(xhci, ctrl_ctx); 2663 else 2664 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2665 spin_unlock_irqrestore(&xhci->lock, flags); 2666 } 2667 return ret; 2668 } 2669 2670 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2671 struct xhci_virt_device *vdev, int i) 2672 { 2673 struct xhci_virt_ep *ep = &vdev->eps[i]; 2674 2675 if (ep->ep_state & EP_HAS_STREAMS) { 2676 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2677 xhci_get_endpoint_address(i)); 2678 xhci_free_stream_info(xhci, ep->stream_info); 2679 ep->stream_info = NULL; 2680 ep->ep_state &= ~EP_HAS_STREAMS; 2681 } 2682 } 2683 2684 /* Called after one or more calls to xhci_add_endpoint() or 2685 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2686 * to call xhci_reset_bandwidth(). 2687 * 2688 * Since we are in the middle of changing either configuration or 2689 * installing a new alt setting, the USB core won't allow URBs to be 2690 * enqueued for any endpoint on the old config or interface. Nothing 2691 * else should be touching the xhci->devs[slot_id] structure, so we 2692 * don't need to take the xhci->lock for manipulating that. 2693 */ 2694 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2695 { 2696 int i; 2697 int ret = 0; 2698 struct xhci_hcd *xhci; 2699 struct xhci_virt_device *virt_dev; 2700 struct xhci_input_control_ctx *ctrl_ctx; 2701 struct xhci_slot_ctx *slot_ctx; 2702 struct xhci_command *command; 2703 2704 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2705 if (ret <= 0) 2706 return ret; 2707 xhci = hcd_to_xhci(hcd); 2708 if (xhci->xhc_state & XHCI_STATE_DYING) 2709 return -ENODEV; 2710 2711 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2712 virt_dev = xhci->devs[udev->slot_id]; 2713 2714 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2715 if (!command) 2716 return -ENOMEM; 2717 2718 command->in_ctx = virt_dev->in_ctx; 2719 2720 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2721 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2722 if (!ctrl_ctx) { 2723 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2724 __func__); 2725 ret = -ENOMEM; 2726 goto command_cleanup; 2727 } 2728 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2729 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2730 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2731 2732 /* Don't issue the command if there's no endpoints to update. */ 2733 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2734 ctrl_ctx->drop_flags == 0) { 2735 ret = 0; 2736 goto command_cleanup; 2737 } 2738 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2739 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2740 for (i = 31; i >= 1; i--) { 2741 __le32 le32 = cpu_to_le32(BIT(i)); 2742 2743 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2744 || (ctrl_ctx->add_flags & le32) || i == 1) { 2745 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2746 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2747 break; 2748 } 2749 } 2750 xhci_dbg(xhci, "New Input Control Context:\n"); 2751 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2752 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2753 2754 ret = xhci_configure_endpoint(xhci, udev, command, 2755 false, false); 2756 if (ret) 2757 /* Callee should call reset_bandwidth() */ 2758 goto command_cleanup; 2759 2760 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2761 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2762 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2763 2764 /* Free any rings that were dropped, but not changed. */ 2765 for (i = 1; i < 31; ++i) { 2766 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2767 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2768 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2769 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2770 } 2771 } 2772 xhci_zero_in_ctx(xhci, virt_dev); 2773 /* 2774 * Install any rings for completely new endpoints or changed endpoints, 2775 * and free or cache any old rings from changed endpoints. 2776 */ 2777 for (i = 1; i < 31; ++i) { 2778 if (!virt_dev->eps[i].new_ring) 2779 continue; 2780 /* Only cache or free the old ring if it exists. 2781 * It may not if this is the first add of an endpoint. 2782 */ 2783 if (virt_dev->eps[i].ring) { 2784 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2785 } 2786 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2787 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2788 virt_dev->eps[i].new_ring = NULL; 2789 } 2790 command_cleanup: 2791 kfree(command->completion); 2792 kfree(command); 2793 2794 return ret; 2795 } 2796 2797 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2798 { 2799 struct xhci_hcd *xhci; 2800 struct xhci_virt_device *virt_dev; 2801 int i, ret; 2802 2803 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2804 if (ret <= 0) 2805 return; 2806 xhci = hcd_to_xhci(hcd); 2807 2808 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2809 virt_dev = xhci->devs[udev->slot_id]; 2810 /* Free any rings allocated for added endpoints */ 2811 for (i = 0; i < 31; ++i) { 2812 if (virt_dev->eps[i].new_ring) { 2813 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2814 virt_dev->eps[i].new_ring = NULL; 2815 } 2816 } 2817 xhci_zero_in_ctx(xhci, virt_dev); 2818 } 2819 2820 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2821 struct xhci_container_ctx *in_ctx, 2822 struct xhci_container_ctx *out_ctx, 2823 struct xhci_input_control_ctx *ctrl_ctx, 2824 u32 add_flags, u32 drop_flags) 2825 { 2826 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2827 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2828 xhci_slot_copy(xhci, in_ctx, out_ctx); 2829 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2830 2831 xhci_dbg(xhci, "Input Context:\n"); 2832 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2833 } 2834 2835 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2836 unsigned int slot_id, unsigned int ep_index, 2837 struct xhci_dequeue_state *deq_state) 2838 { 2839 struct xhci_input_control_ctx *ctrl_ctx; 2840 struct xhci_container_ctx *in_ctx; 2841 struct xhci_ep_ctx *ep_ctx; 2842 u32 added_ctxs; 2843 dma_addr_t addr; 2844 2845 in_ctx = xhci->devs[slot_id]->in_ctx; 2846 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2847 if (!ctrl_ctx) { 2848 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2849 __func__); 2850 return; 2851 } 2852 2853 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2854 xhci->devs[slot_id]->out_ctx, ep_index); 2855 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2856 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2857 deq_state->new_deq_ptr); 2858 if (addr == 0) { 2859 xhci_warn(xhci, "WARN Cannot submit config ep after " 2860 "reset ep command\n"); 2861 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2862 deq_state->new_deq_seg, 2863 deq_state->new_deq_ptr); 2864 return; 2865 } 2866 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2867 2868 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2869 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2870 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2871 added_ctxs, added_ctxs); 2872 } 2873 2874 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2875 struct usb_device *udev, unsigned int ep_index) 2876 { 2877 struct xhci_dequeue_state deq_state; 2878 struct xhci_virt_ep *ep; 2879 2880 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2881 "Cleaning up stalled endpoint ring"); 2882 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2883 /* We need to move the HW's dequeue pointer past this TD, 2884 * or it will attempt to resend it on the next doorbell ring. 2885 */ 2886 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2887 ep_index, ep->stopped_stream, ep->stopped_td, 2888 &deq_state); 2889 2890 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2891 return; 2892 2893 /* HW with the reset endpoint quirk will use the saved dequeue state to 2894 * issue a configure endpoint command later. 2895 */ 2896 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2897 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2898 "Queueing new dequeue state"); 2899 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2900 ep_index, ep->stopped_stream, &deq_state); 2901 } else { 2902 /* Better hope no one uses the input context between now and the 2903 * reset endpoint completion! 2904 * XXX: No idea how this hardware will react when stream rings 2905 * are enabled. 2906 */ 2907 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2908 "Setting up input context for " 2909 "configure endpoint command"); 2910 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2911 ep_index, &deq_state); 2912 } 2913 } 2914 2915 /* Deal with stalled endpoints. The core should have sent the control message 2916 * to clear the halt condition. However, we need to make the xHCI hardware 2917 * reset its sequence number, since a device will expect a sequence number of 2918 * zero after the halt condition is cleared. 2919 * Context: in_interrupt 2920 */ 2921 void xhci_endpoint_reset(struct usb_hcd *hcd, 2922 struct usb_host_endpoint *ep) 2923 { 2924 struct xhci_hcd *xhci; 2925 struct usb_device *udev; 2926 unsigned int ep_index; 2927 unsigned long flags; 2928 int ret; 2929 struct xhci_virt_ep *virt_ep; 2930 struct xhci_command *command; 2931 2932 xhci = hcd_to_xhci(hcd); 2933 udev = (struct usb_device *) ep->hcpriv; 2934 /* Called with a root hub endpoint (or an endpoint that wasn't added 2935 * with xhci_add_endpoint() 2936 */ 2937 if (!ep->hcpriv) 2938 return; 2939 ep_index = xhci_get_endpoint_index(&ep->desc); 2940 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2941 if (!virt_ep->stopped_td) { 2942 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2943 "Endpoint 0x%x not halted, refusing to reset.", 2944 ep->desc.bEndpointAddress); 2945 return; 2946 } 2947 if (usb_endpoint_xfer_control(&ep->desc)) { 2948 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2949 "Control endpoint stall already handled."); 2950 return; 2951 } 2952 2953 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 2954 if (!command) 2955 return; 2956 2957 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2958 "Queueing reset endpoint command"); 2959 spin_lock_irqsave(&xhci->lock, flags); 2960 ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index); 2961 /* 2962 * Can't change the ring dequeue pointer until it's transitioned to the 2963 * stopped state, which is only upon a successful reset endpoint 2964 * command. Better hope that last command worked! 2965 */ 2966 if (!ret) { 2967 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2968 kfree(virt_ep->stopped_td); 2969 xhci_ring_cmd_db(xhci); 2970 } 2971 virt_ep->stopped_td = NULL; 2972 virt_ep->stopped_stream = 0; 2973 spin_unlock_irqrestore(&xhci->lock, flags); 2974 2975 if (ret) 2976 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2977 } 2978 2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2980 struct usb_device *udev, struct usb_host_endpoint *ep, 2981 unsigned int slot_id) 2982 { 2983 int ret; 2984 unsigned int ep_index; 2985 unsigned int ep_state; 2986 2987 if (!ep) 2988 return -EINVAL; 2989 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2990 if (ret <= 0) 2991 return -EINVAL; 2992 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2993 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2994 " descriptor for ep 0x%x does not support streams\n", 2995 ep->desc.bEndpointAddress); 2996 return -EINVAL; 2997 } 2998 2999 ep_index = xhci_get_endpoint_index(&ep->desc); 3000 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3001 if (ep_state & EP_HAS_STREAMS || 3002 ep_state & EP_GETTING_STREAMS) { 3003 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3004 "already has streams set up.\n", 3005 ep->desc.bEndpointAddress); 3006 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3007 "dynamic stream context array reallocation.\n"); 3008 return -EINVAL; 3009 } 3010 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3011 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3012 "endpoint 0x%x; URBs are pending.\n", 3013 ep->desc.bEndpointAddress); 3014 return -EINVAL; 3015 } 3016 return 0; 3017 } 3018 3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3020 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3021 { 3022 unsigned int max_streams; 3023 3024 /* The stream context array size must be a power of two */ 3025 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3026 /* 3027 * Find out how many primary stream array entries the host controller 3028 * supports. Later we may use secondary stream arrays (similar to 2nd 3029 * level page entries), but that's an optional feature for xHCI host 3030 * controllers. xHCs must support at least 4 stream IDs. 3031 */ 3032 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3033 if (*num_stream_ctxs > max_streams) { 3034 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3035 max_streams); 3036 *num_stream_ctxs = max_streams; 3037 *num_streams = max_streams; 3038 } 3039 } 3040 3041 /* Returns an error code if one of the endpoint already has streams. 3042 * This does not change any data structures, it only checks and gathers 3043 * information. 3044 */ 3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3046 struct usb_device *udev, 3047 struct usb_host_endpoint **eps, unsigned int num_eps, 3048 unsigned int *num_streams, u32 *changed_ep_bitmask) 3049 { 3050 unsigned int max_streams; 3051 unsigned int endpoint_flag; 3052 int i; 3053 int ret; 3054 3055 for (i = 0; i < num_eps; i++) { 3056 ret = xhci_check_streams_endpoint(xhci, udev, 3057 eps[i], udev->slot_id); 3058 if (ret < 0) 3059 return ret; 3060 3061 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3062 if (max_streams < (*num_streams - 1)) { 3063 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3064 eps[i]->desc.bEndpointAddress, 3065 max_streams); 3066 *num_streams = max_streams+1; 3067 } 3068 3069 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3070 if (*changed_ep_bitmask & endpoint_flag) 3071 return -EINVAL; 3072 *changed_ep_bitmask |= endpoint_flag; 3073 } 3074 return 0; 3075 } 3076 3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3078 struct usb_device *udev, 3079 struct usb_host_endpoint **eps, unsigned int num_eps) 3080 { 3081 u32 changed_ep_bitmask = 0; 3082 unsigned int slot_id; 3083 unsigned int ep_index; 3084 unsigned int ep_state; 3085 int i; 3086 3087 slot_id = udev->slot_id; 3088 if (!xhci->devs[slot_id]) 3089 return 0; 3090 3091 for (i = 0; i < num_eps; i++) { 3092 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3093 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3094 /* Are streams already being freed for the endpoint? */ 3095 if (ep_state & EP_GETTING_NO_STREAMS) { 3096 xhci_warn(xhci, "WARN Can't disable streams for " 3097 "endpoint 0x%x, " 3098 "streams are being disabled already\n", 3099 eps[i]->desc.bEndpointAddress); 3100 return 0; 3101 } 3102 /* Are there actually any streams to free? */ 3103 if (!(ep_state & EP_HAS_STREAMS) && 3104 !(ep_state & EP_GETTING_STREAMS)) { 3105 xhci_warn(xhci, "WARN Can't disable streams for " 3106 "endpoint 0x%x, " 3107 "streams are already disabled!\n", 3108 eps[i]->desc.bEndpointAddress); 3109 xhci_warn(xhci, "WARN xhci_free_streams() called " 3110 "with non-streams endpoint\n"); 3111 return 0; 3112 } 3113 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3114 } 3115 return changed_ep_bitmask; 3116 } 3117 3118 /* 3119 * The USB device drivers use this function (though the HCD interface in USB 3120 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3121 * coordinate mass storage command queueing across multiple endpoints (basically 3122 * a stream ID == a task ID). 3123 * 3124 * Setting up streams involves allocating the same size stream context array 3125 * for each endpoint and issuing a configure endpoint command for all endpoints. 3126 * 3127 * Don't allow the call to succeed if one endpoint only supports one stream 3128 * (which means it doesn't support streams at all). 3129 * 3130 * Drivers may get less stream IDs than they asked for, if the host controller 3131 * hardware or endpoints claim they can't support the number of requested 3132 * stream IDs. 3133 */ 3134 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3135 struct usb_host_endpoint **eps, unsigned int num_eps, 3136 unsigned int num_streams, gfp_t mem_flags) 3137 { 3138 int i, ret; 3139 struct xhci_hcd *xhci; 3140 struct xhci_virt_device *vdev; 3141 struct xhci_command *config_cmd; 3142 struct xhci_input_control_ctx *ctrl_ctx; 3143 unsigned int ep_index; 3144 unsigned int num_stream_ctxs; 3145 unsigned long flags; 3146 u32 changed_ep_bitmask = 0; 3147 3148 if (!eps) 3149 return -EINVAL; 3150 3151 /* Add one to the number of streams requested to account for 3152 * stream 0 that is reserved for xHCI usage. 3153 */ 3154 num_streams += 1; 3155 xhci = hcd_to_xhci(hcd); 3156 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3157 num_streams); 3158 3159 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3160 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3161 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3162 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3163 return -ENOSYS; 3164 } 3165 3166 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3167 if (!config_cmd) { 3168 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3169 return -ENOMEM; 3170 } 3171 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3172 if (!ctrl_ctx) { 3173 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3174 __func__); 3175 xhci_free_command(xhci, config_cmd); 3176 return -ENOMEM; 3177 } 3178 3179 /* Check to make sure all endpoints are not already configured for 3180 * streams. While we're at it, find the maximum number of streams that 3181 * all the endpoints will support and check for duplicate endpoints. 3182 */ 3183 spin_lock_irqsave(&xhci->lock, flags); 3184 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3185 num_eps, &num_streams, &changed_ep_bitmask); 3186 if (ret < 0) { 3187 xhci_free_command(xhci, config_cmd); 3188 spin_unlock_irqrestore(&xhci->lock, flags); 3189 return ret; 3190 } 3191 if (num_streams <= 1) { 3192 xhci_warn(xhci, "WARN: endpoints can't handle " 3193 "more than one stream.\n"); 3194 xhci_free_command(xhci, config_cmd); 3195 spin_unlock_irqrestore(&xhci->lock, flags); 3196 return -EINVAL; 3197 } 3198 vdev = xhci->devs[udev->slot_id]; 3199 /* Mark each endpoint as being in transition, so 3200 * xhci_urb_enqueue() will reject all URBs. 3201 */ 3202 for (i = 0; i < num_eps; i++) { 3203 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3204 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3205 } 3206 spin_unlock_irqrestore(&xhci->lock, flags); 3207 3208 /* Setup internal data structures and allocate HW data structures for 3209 * streams (but don't install the HW structures in the input context 3210 * until we're sure all memory allocation succeeded). 3211 */ 3212 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3213 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3214 num_stream_ctxs, num_streams); 3215 3216 for (i = 0; i < num_eps; i++) { 3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3218 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3219 num_stream_ctxs, 3220 num_streams, mem_flags); 3221 if (!vdev->eps[ep_index].stream_info) 3222 goto cleanup; 3223 /* Set maxPstreams in endpoint context and update deq ptr to 3224 * point to stream context array. FIXME 3225 */ 3226 } 3227 3228 /* Set up the input context for a configure endpoint command. */ 3229 for (i = 0; i < num_eps; i++) { 3230 struct xhci_ep_ctx *ep_ctx; 3231 3232 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3233 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3234 3235 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3236 vdev->out_ctx, ep_index); 3237 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3238 vdev->eps[ep_index].stream_info); 3239 } 3240 /* Tell the HW to drop its old copy of the endpoint context info 3241 * and add the updated copy from the input context. 3242 */ 3243 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3244 vdev->out_ctx, ctrl_ctx, 3245 changed_ep_bitmask, changed_ep_bitmask); 3246 3247 /* Issue and wait for the configure endpoint command */ 3248 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3249 false, false); 3250 3251 /* xHC rejected the configure endpoint command for some reason, so we 3252 * leave the old ring intact and free our internal streams data 3253 * structure. 3254 */ 3255 if (ret < 0) 3256 goto cleanup; 3257 3258 spin_lock_irqsave(&xhci->lock, flags); 3259 for (i = 0; i < num_eps; i++) { 3260 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3261 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3262 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3263 udev->slot_id, ep_index); 3264 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3265 } 3266 xhci_free_command(xhci, config_cmd); 3267 spin_unlock_irqrestore(&xhci->lock, flags); 3268 3269 /* Subtract 1 for stream 0, which drivers can't use */ 3270 return num_streams - 1; 3271 3272 cleanup: 3273 /* If it didn't work, free the streams! */ 3274 for (i = 0; i < num_eps; i++) { 3275 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3276 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3277 vdev->eps[ep_index].stream_info = NULL; 3278 /* FIXME Unset maxPstreams in endpoint context and 3279 * update deq ptr to point to normal string ring. 3280 */ 3281 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3282 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3283 xhci_endpoint_zero(xhci, vdev, eps[i]); 3284 } 3285 xhci_free_command(xhci, config_cmd); 3286 return -ENOMEM; 3287 } 3288 3289 /* Transition the endpoint from using streams to being a "normal" endpoint 3290 * without streams. 3291 * 3292 * Modify the endpoint context state, submit a configure endpoint command, 3293 * and free all endpoint rings for streams if that completes successfully. 3294 */ 3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3296 struct usb_host_endpoint **eps, unsigned int num_eps, 3297 gfp_t mem_flags) 3298 { 3299 int i, ret; 3300 struct xhci_hcd *xhci; 3301 struct xhci_virt_device *vdev; 3302 struct xhci_command *command; 3303 struct xhci_input_control_ctx *ctrl_ctx; 3304 unsigned int ep_index; 3305 unsigned long flags; 3306 u32 changed_ep_bitmask; 3307 3308 xhci = hcd_to_xhci(hcd); 3309 vdev = xhci->devs[udev->slot_id]; 3310 3311 /* Set up a configure endpoint command to remove the streams rings */ 3312 spin_lock_irqsave(&xhci->lock, flags); 3313 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3314 udev, eps, num_eps); 3315 if (changed_ep_bitmask == 0) { 3316 spin_unlock_irqrestore(&xhci->lock, flags); 3317 return -EINVAL; 3318 } 3319 3320 /* Use the xhci_command structure from the first endpoint. We may have 3321 * allocated too many, but the driver may call xhci_free_streams() for 3322 * each endpoint it grouped into one call to xhci_alloc_streams(). 3323 */ 3324 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3325 command = vdev->eps[ep_index].stream_info->free_streams_command; 3326 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3327 if (!ctrl_ctx) { 3328 spin_unlock_irqrestore(&xhci->lock, flags); 3329 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3330 __func__); 3331 return -EINVAL; 3332 } 3333 3334 for (i = 0; i < num_eps; i++) { 3335 struct xhci_ep_ctx *ep_ctx; 3336 3337 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3338 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3339 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3340 EP_GETTING_NO_STREAMS; 3341 3342 xhci_endpoint_copy(xhci, command->in_ctx, 3343 vdev->out_ctx, ep_index); 3344 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3345 &vdev->eps[ep_index]); 3346 } 3347 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3348 vdev->out_ctx, ctrl_ctx, 3349 changed_ep_bitmask, changed_ep_bitmask); 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 3352 /* Issue and wait for the configure endpoint command, 3353 * which must succeed. 3354 */ 3355 ret = xhci_configure_endpoint(xhci, udev, command, 3356 false, true); 3357 3358 /* xHC rejected the configure endpoint command for some reason, so we 3359 * leave the streams rings intact. 3360 */ 3361 if (ret < 0) 3362 return ret; 3363 3364 spin_lock_irqsave(&xhci->lock, flags); 3365 for (i = 0; i < num_eps; i++) { 3366 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3367 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3368 vdev->eps[ep_index].stream_info = NULL; 3369 /* FIXME Unset maxPstreams in endpoint context and 3370 * update deq ptr to point to normal string ring. 3371 */ 3372 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3373 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3374 } 3375 spin_unlock_irqrestore(&xhci->lock, flags); 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * Deletes endpoint resources for endpoints that were active before a Reset 3382 * Device command, or a Disable Slot command. The Reset Device command leaves 3383 * the control endpoint intact, whereas the Disable Slot command deletes it. 3384 * 3385 * Must be called with xhci->lock held. 3386 */ 3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3388 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3389 { 3390 int i; 3391 unsigned int num_dropped_eps = 0; 3392 unsigned int drop_flags = 0; 3393 3394 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3395 if (virt_dev->eps[i].ring) { 3396 drop_flags |= 1 << i; 3397 num_dropped_eps++; 3398 } 3399 } 3400 xhci->num_active_eps -= num_dropped_eps; 3401 if (num_dropped_eps) 3402 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3403 "Dropped %u ep ctxs, flags = 0x%x, " 3404 "%u now active.", 3405 num_dropped_eps, drop_flags, 3406 xhci->num_active_eps); 3407 } 3408 3409 /* 3410 * This submits a Reset Device Command, which will set the device state to 0, 3411 * set the device address to 0, and disable all the endpoints except the default 3412 * control endpoint. The USB core should come back and call 3413 * xhci_address_device(), and then re-set up the configuration. If this is 3414 * called because of a usb_reset_and_verify_device(), then the old alternate 3415 * settings will be re-installed through the normal bandwidth allocation 3416 * functions. 3417 * 3418 * Wait for the Reset Device command to finish. Remove all structures 3419 * associated with the endpoints that were disabled. Clear the input device 3420 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3421 * 3422 * If the virt_dev to be reset does not exist or does not match the udev, 3423 * it means the device is lost, possibly due to the xHC restore error and 3424 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3425 * re-allocate the device. 3426 */ 3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3428 { 3429 int ret, i; 3430 unsigned long flags; 3431 struct xhci_hcd *xhci; 3432 unsigned int slot_id; 3433 struct xhci_virt_device *virt_dev; 3434 struct xhci_command *reset_device_cmd; 3435 int last_freed_endpoint; 3436 struct xhci_slot_ctx *slot_ctx; 3437 int old_active_eps = 0; 3438 3439 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3440 if (ret <= 0) 3441 return ret; 3442 xhci = hcd_to_xhci(hcd); 3443 slot_id = udev->slot_id; 3444 virt_dev = xhci->devs[slot_id]; 3445 if (!virt_dev) { 3446 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3447 "not exist. Re-allocate the device\n", slot_id); 3448 ret = xhci_alloc_dev(hcd, udev); 3449 if (ret == 1) 3450 return 0; 3451 else 3452 return -EINVAL; 3453 } 3454 3455 if (virt_dev->udev != udev) { 3456 /* If the virt_dev and the udev does not match, this virt_dev 3457 * may belong to another udev. 3458 * Re-allocate the device. 3459 */ 3460 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3461 "not match the udev. Re-allocate the device\n", 3462 slot_id); 3463 ret = xhci_alloc_dev(hcd, udev); 3464 if (ret == 1) 3465 return 0; 3466 else 3467 return -EINVAL; 3468 } 3469 3470 /* If device is not setup, there is no point in resetting it */ 3471 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3472 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3473 SLOT_STATE_DISABLED) 3474 return 0; 3475 3476 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3477 /* Allocate the command structure that holds the struct completion. 3478 * Assume we're in process context, since the normal device reset 3479 * process has to wait for the device anyway. Storage devices are 3480 * reset as part of error handling, so use GFP_NOIO instead of 3481 * GFP_KERNEL. 3482 */ 3483 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3484 if (!reset_device_cmd) { 3485 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3486 return -ENOMEM; 3487 } 3488 3489 /* Attempt to submit the Reset Device command to the command ring */ 3490 spin_lock_irqsave(&xhci->lock, flags); 3491 3492 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3493 if (ret) { 3494 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3495 spin_unlock_irqrestore(&xhci->lock, flags); 3496 goto command_cleanup; 3497 } 3498 xhci_ring_cmd_db(xhci); 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 3501 /* Wait for the Reset Device command to finish */ 3502 wait_for_completion(reset_device_cmd->completion); 3503 3504 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3505 * unless we tried to reset a slot ID that wasn't enabled, 3506 * or the device wasn't in the addressed or configured state. 3507 */ 3508 ret = reset_device_cmd->status; 3509 switch (ret) { 3510 case COMP_CMD_ABORT: 3511 case COMP_CMD_STOP: 3512 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3513 ret = -ETIME; 3514 goto command_cleanup; 3515 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3516 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3517 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3518 slot_id, 3519 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3520 xhci_dbg(xhci, "Not freeing device rings.\n"); 3521 /* Don't treat this as an error. May change my mind later. */ 3522 ret = 0; 3523 goto command_cleanup; 3524 case COMP_SUCCESS: 3525 xhci_dbg(xhci, "Successful reset device command.\n"); 3526 break; 3527 default: 3528 if (xhci_is_vendor_info_code(xhci, ret)) 3529 break; 3530 xhci_warn(xhci, "Unknown completion code %u for " 3531 "reset device command.\n", ret); 3532 ret = -EINVAL; 3533 goto command_cleanup; 3534 } 3535 3536 /* Free up host controller endpoint resources */ 3537 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3538 spin_lock_irqsave(&xhci->lock, flags); 3539 /* Don't delete the default control endpoint resources */ 3540 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3541 spin_unlock_irqrestore(&xhci->lock, flags); 3542 } 3543 3544 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3545 last_freed_endpoint = 1; 3546 for (i = 1; i < 31; ++i) { 3547 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3548 3549 if (ep->ep_state & EP_HAS_STREAMS) { 3550 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3551 xhci_get_endpoint_address(i)); 3552 xhci_free_stream_info(xhci, ep->stream_info); 3553 ep->stream_info = NULL; 3554 ep->ep_state &= ~EP_HAS_STREAMS; 3555 } 3556 3557 if (ep->ring) { 3558 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3559 last_freed_endpoint = i; 3560 } 3561 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3562 xhci_drop_ep_from_interval_table(xhci, 3563 &virt_dev->eps[i].bw_info, 3564 virt_dev->bw_table, 3565 udev, 3566 &virt_dev->eps[i], 3567 virt_dev->tt_info); 3568 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3569 } 3570 /* If necessary, update the number of active TTs on this root port */ 3571 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3572 3573 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3574 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3575 ret = 0; 3576 3577 command_cleanup: 3578 xhci_free_command(xhci, reset_device_cmd); 3579 return ret; 3580 } 3581 3582 /* 3583 * At this point, the struct usb_device is about to go away, the device has 3584 * disconnected, and all traffic has been stopped and the endpoints have been 3585 * disabled. Free any HC data structures associated with that device. 3586 */ 3587 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3588 { 3589 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3590 struct xhci_virt_device *virt_dev; 3591 unsigned long flags; 3592 u32 state; 3593 int i, ret; 3594 struct xhci_command *command; 3595 3596 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3597 if (!command) 3598 return; 3599 3600 #ifndef CONFIG_USB_DEFAULT_PERSIST 3601 /* 3602 * We called pm_runtime_get_noresume when the device was attached. 3603 * Decrement the counter here to allow controller to runtime suspend 3604 * if no devices remain. 3605 */ 3606 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3607 pm_runtime_put_noidle(hcd->self.controller); 3608 #endif 3609 3610 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3611 /* If the host is halted due to driver unload, we still need to free the 3612 * device. 3613 */ 3614 if (ret <= 0 && ret != -ENODEV) { 3615 kfree(command); 3616 return; 3617 } 3618 3619 virt_dev = xhci->devs[udev->slot_id]; 3620 3621 /* Stop any wayward timer functions (which may grab the lock) */ 3622 for (i = 0; i < 31; ++i) { 3623 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3624 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3625 } 3626 3627 spin_lock_irqsave(&xhci->lock, flags); 3628 /* Don't disable the slot if the host controller is dead. */ 3629 state = readl(&xhci->op_regs->status); 3630 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3631 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3632 xhci_free_virt_device(xhci, udev->slot_id); 3633 spin_unlock_irqrestore(&xhci->lock, flags); 3634 kfree(command); 3635 return; 3636 } 3637 3638 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3639 udev->slot_id)) { 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3642 return; 3643 } 3644 xhci_ring_cmd_db(xhci); 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 3647 /* 3648 * Event command completion handler will free any data structures 3649 * associated with the slot. XXX Can free sleep? 3650 */ 3651 } 3652 3653 /* 3654 * Checks if we have enough host controller resources for the default control 3655 * endpoint. 3656 * 3657 * Must be called with xhci->lock held. 3658 */ 3659 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3660 { 3661 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3662 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3663 "Not enough ep ctxs: " 3664 "%u active, need to add 1, limit is %u.", 3665 xhci->num_active_eps, xhci->limit_active_eps); 3666 return -ENOMEM; 3667 } 3668 xhci->num_active_eps += 1; 3669 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3670 "Adding 1 ep ctx, %u now active.", 3671 xhci->num_active_eps); 3672 return 0; 3673 } 3674 3675 3676 /* 3677 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3678 * timed out, or allocating memory failed. Returns 1 on success. 3679 */ 3680 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3681 { 3682 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3683 unsigned long flags; 3684 int ret; 3685 struct xhci_command *command; 3686 3687 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3688 if (!command) 3689 return 0; 3690 3691 spin_lock_irqsave(&xhci->lock, flags); 3692 command->completion = &xhci->addr_dev; 3693 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3694 if (ret) { 3695 spin_unlock_irqrestore(&xhci->lock, flags); 3696 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3697 kfree(command); 3698 return 0; 3699 } 3700 xhci_ring_cmd_db(xhci); 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 3703 wait_for_completion(command->completion); 3704 3705 if (!xhci->slot_id || command->status != COMP_SUCCESS) { 3706 xhci_err(xhci, "Error while assigning device slot ID\n"); 3707 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3708 HCS_MAX_SLOTS( 3709 readl(&xhci->cap_regs->hcs_params1))); 3710 kfree(command); 3711 return 0; 3712 } 3713 3714 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3715 spin_lock_irqsave(&xhci->lock, flags); 3716 ret = xhci_reserve_host_control_ep_resources(xhci); 3717 if (ret) { 3718 spin_unlock_irqrestore(&xhci->lock, flags); 3719 xhci_warn(xhci, "Not enough host resources, " 3720 "active endpoint contexts = %u\n", 3721 xhci->num_active_eps); 3722 goto disable_slot; 3723 } 3724 spin_unlock_irqrestore(&xhci->lock, flags); 3725 } 3726 /* Use GFP_NOIO, since this function can be called from 3727 * xhci_discover_or_reset_device(), which may be called as part of 3728 * mass storage driver error handling. 3729 */ 3730 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3731 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3732 goto disable_slot; 3733 } 3734 udev->slot_id = xhci->slot_id; 3735 3736 #ifndef CONFIG_USB_DEFAULT_PERSIST 3737 /* 3738 * If resetting upon resume, we can't put the controller into runtime 3739 * suspend if there is a device attached. 3740 */ 3741 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3742 pm_runtime_get_noresume(hcd->self.controller); 3743 #endif 3744 3745 3746 kfree(command); 3747 /* Is this a LS or FS device under a HS hub? */ 3748 /* Hub or peripherial? */ 3749 return 1; 3750 3751 disable_slot: 3752 /* Disable slot, if we can do it without mem alloc */ 3753 spin_lock_irqsave(&xhci->lock, flags); 3754 command->completion = NULL; 3755 command->status = 0; 3756 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3757 udev->slot_id)) 3758 xhci_ring_cmd_db(xhci); 3759 spin_unlock_irqrestore(&xhci->lock, flags); 3760 return 0; 3761 } 3762 3763 /* 3764 * Issue an Address Device command and optionally send a corresponding 3765 * SetAddress request to the device. 3766 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init, 3767 * so we should only issue and wait on one address command at the same time. 3768 */ 3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3770 enum xhci_setup_dev setup) 3771 { 3772 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3773 unsigned long flags; 3774 struct xhci_virt_device *virt_dev; 3775 int ret = 0; 3776 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3777 struct xhci_slot_ctx *slot_ctx; 3778 struct xhci_input_control_ctx *ctrl_ctx; 3779 u64 temp_64; 3780 struct xhci_command *command; 3781 3782 if (!udev->slot_id) { 3783 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3784 "Bad Slot ID %d", udev->slot_id); 3785 return -EINVAL; 3786 } 3787 3788 virt_dev = xhci->devs[udev->slot_id]; 3789 3790 if (WARN_ON(!virt_dev)) { 3791 /* 3792 * In plug/unplug torture test with an NEC controller, 3793 * a zero-dereference was observed once due to virt_dev = 0. 3794 * Print useful debug rather than crash if it is observed again! 3795 */ 3796 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3797 udev->slot_id); 3798 return -EINVAL; 3799 } 3800 3801 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3802 if (!command) 3803 return -ENOMEM; 3804 3805 command->in_ctx = virt_dev->in_ctx; 3806 command->completion = &xhci->addr_dev; 3807 3808 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3809 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3810 if (!ctrl_ctx) { 3811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3812 __func__); 3813 kfree(command); 3814 return -EINVAL; 3815 } 3816 /* 3817 * If this is the first Set Address since device plug-in or 3818 * virt_device realloaction after a resume with an xHCI power loss, 3819 * then set up the slot context. 3820 */ 3821 if (!slot_ctx->dev_info) 3822 xhci_setup_addressable_virt_dev(xhci, udev); 3823 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3824 else 3825 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3826 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3827 ctrl_ctx->drop_flags = 0; 3828 3829 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3830 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3831 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3832 le32_to_cpu(slot_ctx->dev_info) >> 27); 3833 3834 spin_lock_irqsave(&xhci->lock, flags); 3835 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3836 udev->slot_id, setup); 3837 if (ret) { 3838 spin_unlock_irqrestore(&xhci->lock, flags); 3839 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3840 "FIXME: allocate a command ring segment"); 3841 kfree(command); 3842 return ret; 3843 } 3844 xhci_ring_cmd_db(xhci); 3845 spin_unlock_irqrestore(&xhci->lock, flags); 3846 3847 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3848 wait_for_completion(command->completion); 3849 3850 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3851 * the SetAddress() "recovery interval" required by USB and aborting the 3852 * command on a timeout. 3853 */ 3854 switch (command->status) { 3855 case COMP_CMD_ABORT: 3856 case COMP_CMD_STOP: 3857 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3858 ret = -ETIME; 3859 break; 3860 case COMP_CTX_STATE: 3861 case COMP_EBADSLT: 3862 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3863 act, udev->slot_id); 3864 ret = -EINVAL; 3865 break; 3866 case COMP_TX_ERR: 3867 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3868 ret = -EPROTO; 3869 break; 3870 case COMP_DEV_ERR: 3871 dev_warn(&udev->dev, 3872 "ERROR: Incompatible device for setup %s command\n", act); 3873 ret = -ENODEV; 3874 break; 3875 case COMP_SUCCESS: 3876 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3877 "Successful setup %s command", act); 3878 break; 3879 default: 3880 xhci_err(xhci, 3881 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3882 act, command->status); 3883 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3884 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3885 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3886 ret = -EINVAL; 3887 break; 3888 } 3889 if (ret) { 3890 kfree(command); 3891 return ret; 3892 } 3893 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3894 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3895 "Op regs DCBAA ptr = %#016llx", temp_64); 3896 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3897 "Slot ID %d dcbaa entry @%p = %#016llx", 3898 udev->slot_id, 3899 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3900 (unsigned long long) 3901 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3902 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3903 "Output Context DMA address = %#08llx", 3904 (unsigned long long)virt_dev->out_ctx->dma); 3905 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3906 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3907 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3908 le32_to_cpu(slot_ctx->dev_info) >> 27); 3909 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3910 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3911 /* 3912 * USB core uses address 1 for the roothubs, so we add one to the 3913 * address given back to us by the HC. 3914 */ 3915 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3916 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3917 le32_to_cpu(slot_ctx->dev_info) >> 27); 3918 /* Zero the input context control for later use */ 3919 ctrl_ctx->add_flags = 0; 3920 ctrl_ctx->drop_flags = 0; 3921 3922 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3923 "Internal device address = %d", 3924 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3925 kfree(command); 3926 return 0; 3927 } 3928 3929 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3930 { 3931 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3932 } 3933 3934 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3935 { 3936 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3937 } 3938 3939 /* 3940 * Transfer the port index into real index in the HW port status 3941 * registers. Caculate offset between the port's PORTSC register 3942 * and port status base. Divide the number of per port register 3943 * to get the real index. The raw port number bases 1. 3944 */ 3945 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3946 { 3947 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3948 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3949 __le32 __iomem *addr; 3950 int raw_port; 3951 3952 if (hcd->speed != HCD_USB3) 3953 addr = xhci->usb2_ports[port1 - 1]; 3954 else 3955 addr = xhci->usb3_ports[port1 - 1]; 3956 3957 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3958 return raw_port; 3959 } 3960 3961 /* 3962 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3963 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3964 */ 3965 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3966 struct usb_device *udev, u16 max_exit_latency) 3967 { 3968 struct xhci_virt_device *virt_dev; 3969 struct xhci_command *command; 3970 struct xhci_input_control_ctx *ctrl_ctx; 3971 struct xhci_slot_ctx *slot_ctx; 3972 unsigned long flags; 3973 int ret; 3974 3975 spin_lock_irqsave(&xhci->lock, flags); 3976 3977 virt_dev = xhci->devs[udev->slot_id]; 3978 3979 /* 3980 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3981 * xHC was re-initialized. Exit latency will be set later after 3982 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3983 */ 3984 3985 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3986 spin_unlock_irqrestore(&xhci->lock, flags); 3987 return 0; 3988 } 3989 3990 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3991 command = xhci->lpm_command; 3992 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3993 if (!ctrl_ctx) { 3994 spin_unlock_irqrestore(&xhci->lock, flags); 3995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3996 __func__); 3997 return -ENOMEM; 3998 } 3999 4000 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4001 spin_unlock_irqrestore(&xhci->lock, flags); 4002 4003 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4004 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4005 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4006 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4007 4008 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4009 "Set up evaluate context for LPM MEL change."); 4010 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4011 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4012 4013 /* Issue and wait for the evaluate context command. */ 4014 ret = xhci_configure_endpoint(xhci, udev, command, 4015 true, true); 4016 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4017 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4018 4019 if (!ret) { 4020 spin_lock_irqsave(&xhci->lock, flags); 4021 virt_dev->current_mel = max_exit_latency; 4022 spin_unlock_irqrestore(&xhci->lock, flags); 4023 } 4024 return ret; 4025 } 4026 4027 #ifdef CONFIG_PM_RUNTIME 4028 4029 /* BESL to HIRD Encoding array for USB2 LPM */ 4030 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4031 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4032 4033 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4034 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4035 struct usb_device *udev) 4036 { 4037 int u2del, besl, besl_host; 4038 int besl_device = 0; 4039 u32 field; 4040 4041 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4042 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4043 4044 if (field & USB_BESL_SUPPORT) { 4045 for (besl_host = 0; besl_host < 16; besl_host++) { 4046 if (xhci_besl_encoding[besl_host] >= u2del) 4047 break; 4048 } 4049 /* Use baseline BESL value as default */ 4050 if (field & USB_BESL_BASELINE_VALID) 4051 besl_device = USB_GET_BESL_BASELINE(field); 4052 else if (field & USB_BESL_DEEP_VALID) 4053 besl_device = USB_GET_BESL_DEEP(field); 4054 } else { 4055 if (u2del <= 50) 4056 besl_host = 0; 4057 else 4058 besl_host = (u2del - 51) / 75 + 1; 4059 } 4060 4061 besl = besl_host + besl_device; 4062 if (besl > 15) 4063 besl = 15; 4064 4065 return besl; 4066 } 4067 4068 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4069 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4070 { 4071 u32 field; 4072 int l1; 4073 int besld = 0; 4074 int hirdm = 0; 4075 4076 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4077 4078 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4079 l1 = udev->l1_params.timeout / 256; 4080 4081 /* device has preferred BESLD */ 4082 if (field & USB_BESL_DEEP_VALID) { 4083 besld = USB_GET_BESL_DEEP(field); 4084 hirdm = 1; 4085 } 4086 4087 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4088 } 4089 4090 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4091 struct usb_device *udev, int enable) 4092 { 4093 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4094 __le32 __iomem **port_array; 4095 __le32 __iomem *pm_addr, *hlpm_addr; 4096 u32 pm_val, hlpm_val, field; 4097 unsigned int port_num; 4098 unsigned long flags; 4099 int hird, exit_latency; 4100 int ret; 4101 4102 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4103 !udev->lpm_capable) 4104 return -EPERM; 4105 4106 if (!udev->parent || udev->parent->parent || 4107 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4108 return -EPERM; 4109 4110 if (udev->usb2_hw_lpm_capable != 1) 4111 return -EPERM; 4112 4113 spin_lock_irqsave(&xhci->lock, flags); 4114 4115 port_array = xhci->usb2_ports; 4116 port_num = udev->portnum - 1; 4117 pm_addr = port_array[port_num] + PORTPMSC; 4118 pm_val = readl(pm_addr); 4119 hlpm_addr = port_array[port_num] + PORTHLPMC; 4120 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4121 4122 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4123 enable ? "enable" : "disable", port_num + 1); 4124 4125 if (enable) { 4126 /* Host supports BESL timeout instead of HIRD */ 4127 if (udev->usb2_hw_lpm_besl_capable) { 4128 /* if device doesn't have a preferred BESL value use a 4129 * default one which works with mixed HIRD and BESL 4130 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4131 */ 4132 if ((field & USB_BESL_SUPPORT) && 4133 (field & USB_BESL_BASELINE_VALID)) 4134 hird = USB_GET_BESL_BASELINE(field); 4135 else 4136 hird = udev->l1_params.besl; 4137 4138 exit_latency = xhci_besl_encoding[hird]; 4139 spin_unlock_irqrestore(&xhci->lock, flags); 4140 4141 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4142 * input context for link powermanagement evaluate 4143 * context commands. It is protected by hcd->bandwidth 4144 * mutex and is shared by all devices. We need to set 4145 * the max ext latency in USB 2 BESL LPM as well, so 4146 * use the same mutex and xhci_change_max_exit_latency() 4147 */ 4148 mutex_lock(hcd->bandwidth_mutex); 4149 ret = xhci_change_max_exit_latency(xhci, udev, 4150 exit_latency); 4151 mutex_unlock(hcd->bandwidth_mutex); 4152 4153 if (ret < 0) 4154 return ret; 4155 spin_lock_irqsave(&xhci->lock, flags); 4156 4157 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4158 writel(hlpm_val, hlpm_addr); 4159 /* flush write */ 4160 readl(hlpm_addr); 4161 } else { 4162 hird = xhci_calculate_hird_besl(xhci, udev); 4163 } 4164 4165 pm_val &= ~PORT_HIRD_MASK; 4166 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4167 writel(pm_val, pm_addr); 4168 pm_val = readl(pm_addr); 4169 pm_val |= PORT_HLE; 4170 writel(pm_val, pm_addr); 4171 /* flush write */ 4172 readl(pm_addr); 4173 } else { 4174 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4175 writel(pm_val, pm_addr); 4176 /* flush write */ 4177 readl(pm_addr); 4178 if (udev->usb2_hw_lpm_besl_capable) { 4179 spin_unlock_irqrestore(&xhci->lock, flags); 4180 mutex_lock(hcd->bandwidth_mutex); 4181 xhci_change_max_exit_latency(xhci, udev, 0); 4182 mutex_unlock(hcd->bandwidth_mutex); 4183 return 0; 4184 } 4185 } 4186 4187 spin_unlock_irqrestore(&xhci->lock, flags); 4188 return 0; 4189 } 4190 4191 /* check if a usb2 port supports a given extened capability protocol 4192 * only USB2 ports extended protocol capability values are cached. 4193 * Return 1 if capability is supported 4194 */ 4195 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4196 unsigned capability) 4197 { 4198 u32 port_offset, port_count; 4199 int i; 4200 4201 for (i = 0; i < xhci->num_ext_caps; i++) { 4202 if (xhci->ext_caps[i] & capability) { 4203 /* port offsets starts at 1 */ 4204 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4205 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4206 if (port >= port_offset && 4207 port < port_offset + port_count) 4208 return 1; 4209 } 4210 } 4211 return 0; 4212 } 4213 4214 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4215 { 4216 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4217 int portnum = udev->portnum - 1; 4218 4219 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4220 !udev->lpm_capable) 4221 return 0; 4222 4223 /* we only support lpm for non-hub device connected to root hub yet */ 4224 if (!udev->parent || udev->parent->parent || 4225 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4226 return 0; 4227 4228 if (xhci->hw_lpm_support == 1 && 4229 xhci_check_usb2_port_capability( 4230 xhci, portnum, XHCI_HLC)) { 4231 udev->usb2_hw_lpm_capable = 1; 4232 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4233 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4234 if (xhci_check_usb2_port_capability(xhci, portnum, 4235 XHCI_BLC)) 4236 udev->usb2_hw_lpm_besl_capable = 1; 4237 } 4238 4239 return 0; 4240 } 4241 4242 #else 4243 4244 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4245 struct usb_device *udev, int enable) 4246 { 4247 return 0; 4248 } 4249 4250 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4251 { 4252 return 0; 4253 } 4254 4255 #endif /* CONFIG_PM_RUNTIME */ 4256 4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4258 4259 #ifdef CONFIG_PM 4260 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4261 static unsigned long long xhci_service_interval_to_ns( 4262 struct usb_endpoint_descriptor *desc) 4263 { 4264 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4265 } 4266 4267 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4268 enum usb3_link_state state) 4269 { 4270 unsigned long long sel; 4271 unsigned long long pel; 4272 unsigned int max_sel_pel; 4273 char *state_name; 4274 4275 switch (state) { 4276 case USB3_LPM_U1: 4277 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4278 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4279 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4280 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4281 state_name = "U1"; 4282 break; 4283 case USB3_LPM_U2: 4284 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4285 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4286 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4287 state_name = "U2"; 4288 break; 4289 default: 4290 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4291 __func__); 4292 return USB3_LPM_DISABLED; 4293 } 4294 4295 if (sel <= max_sel_pel && pel <= max_sel_pel) 4296 return USB3_LPM_DEVICE_INITIATED; 4297 4298 if (sel > max_sel_pel) 4299 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4300 "due to long SEL %llu ms\n", 4301 state_name, sel); 4302 else 4303 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4304 "due to long PEL %llu ms\n", 4305 state_name, pel); 4306 return USB3_LPM_DISABLED; 4307 } 4308 4309 /* The U1 timeout should be the maximum of the following values: 4310 * - For control endpoints, U1 system exit latency (SEL) * 3 4311 * - For bulk endpoints, U1 SEL * 5 4312 * - For interrupt endpoints: 4313 * - Notification EPs, U1 SEL * 3 4314 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4315 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4316 */ 4317 static unsigned long long xhci_calculate_intel_u1_timeout( 4318 struct usb_device *udev, 4319 struct usb_endpoint_descriptor *desc) 4320 { 4321 unsigned long long timeout_ns; 4322 int ep_type; 4323 int intr_type; 4324 4325 ep_type = usb_endpoint_type(desc); 4326 switch (ep_type) { 4327 case USB_ENDPOINT_XFER_CONTROL: 4328 timeout_ns = udev->u1_params.sel * 3; 4329 break; 4330 case USB_ENDPOINT_XFER_BULK: 4331 timeout_ns = udev->u1_params.sel * 5; 4332 break; 4333 case USB_ENDPOINT_XFER_INT: 4334 intr_type = usb_endpoint_interrupt_type(desc); 4335 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4336 timeout_ns = udev->u1_params.sel * 3; 4337 break; 4338 } 4339 /* Otherwise the calculation is the same as isoc eps */ 4340 case USB_ENDPOINT_XFER_ISOC: 4341 timeout_ns = xhci_service_interval_to_ns(desc); 4342 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4343 if (timeout_ns < udev->u1_params.sel * 2) 4344 timeout_ns = udev->u1_params.sel * 2; 4345 break; 4346 default: 4347 return 0; 4348 } 4349 4350 return timeout_ns; 4351 } 4352 4353 /* Returns the hub-encoded U1 timeout value. */ 4354 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4355 struct usb_device *udev, 4356 struct usb_endpoint_descriptor *desc) 4357 { 4358 unsigned long long timeout_ns; 4359 4360 if (xhci->quirks & XHCI_INTEL_HOST) 4361 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4362 else 4363 timeout_ns = udev->u1_params.sel; 4364 4365 /* The U1 timeout is encoded in 1us intervals. 4366 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4367 */ 4368 if (timeout_ns == USB3_LPM_DISABLED) 4369 timeout_ns = 1; 4370 else 4371 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4372 4373 /* If the necessary timeout value is bigger than what we can set in the 4374 * USB 3.0 hub, we have to disable hub-initiated U1. 4375 */ 4376 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4377 return timeout_ns; 4378 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4379 "due to long timeout %llu ms\n", timeout_ns); 4380 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4381 } 4382 4383 /* The U2 timeout should be the maximum of: 4384 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4385 * - largest bInterval of any active periodic endpoint (to avoid going 4386 * into lower power link states between intervals). 4387 * - the U2 Exit Latency of the device 4388 */ 4389 static unsigned long long xhci_calculate_intel_u2_timeout( 4390 struct usb_device *udev, 4391 struct usb_endpoint_descriptor *desc) 4392 { 4393 unsigned long long timeout_ns; 4394 unsigned long long u2_del_ns; 4395 4396 timeout_ns = 10 * 1000 * 1000; 4397 4398 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4399 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4400 timeout_ns = xhci_service_interval_to_ns(desc); 4401 4402 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4403 if (u2_del_ns > timeout_ns) 4404 timeout_ns = u2_del_ns; 4405 4406 return timeout_ns; 4407 } 4408 4409 /* Returns the hub-encoded U2 timeout value. */ 4410 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4411 struct usb_device *udev, 4412 struct usb_endpoint_descriptor *desc) 4413 { 4414 unsigned long long timeout_ns; 4415 4416 if (xhci->quirks & XHCI_INTEL_HOST) 4417 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4418 else 4419 timeout_ns = udev->u2_params.sel; 4420 4421 /* The U2 timeout is encoded in 256us intervals */ 4422 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4423 /* If the necessary timeout value is bigger than what we can set in the 4424 * USB 3.0 hub, we have to disable hub-initiated U2. 4425 */ 4426 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4427 return timeout_ns; 4428 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4429 "due to long timeout %llu ms\n", timeout_ns); 4430 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4431 } 4432 4433 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4434 struct usb_device *udev, 4435 struct usb_endpoint_descriptor *desc, 4436 enum usb3_link_state state, 4437 u16 *timeout) 4438 { 4439 if (state == USB3_LPM_U1) 4440 return xhci_calculate_u1_timeout(xhci, udev, desc); 4441 else if (state == USB3_LPM_U2) 4442 return xhci_calculate_u2_timeout(xhci, udev, desc); 4443 4444 return USB3_LPM_DISABLED; 4445 } 4446 4447 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4448 struct usb_device *udev, 4449 struct usb_endpoint_descriptor *desc, 4450 enum usb3_link_state state, 4451 u16 *timeout) 4452 { 4453 u16 alt_timeout; 4454 4455 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4456 desc, state, timeout); 4457 4458 /* If we found we can't enable hub-initiated LPM, or 4459 * the U1 or U2 exit latency was too high to allow 4460 * device-initiated LPM as well, just stop searching. 4461 */ 4462 if (alt_timeout == USB3_LPM_DISABLED || 4463 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4464 *timeout = alt_timeout; 4465 return -E2BIG; 4466 } 4467 if (alt_timeout > *timeout) 4468 *timeout = alt_timeout; 4469 return 0; 4470 } 4471 4472 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4473 struct usb_device *udev, 4474 struct usb_host_interface *alt, 4475 enum usb3_link_state state, 4476 u16 *timeout) 4477 { 4478 int j; 4479 4480 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4481 if (xhci_update_timeout_for_endpoint(xhci, udev, 4482 &alt->endpoint[j].desc, state, timeout)) 4483 return -E2BIG; 4484 continue; 4485 } 4486 return 0; 4487 } 4488 4489 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4490 enum usb3_link_state state) 4491 { 4492 struct usb_device *parent; 4493 unsigned int num_hubs; 4494 4495 if (state == USB3_LPM_U2) 4496 return 0; 4497 4498 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4499 for (parent = udev->parent, num_hubs = 0; parent->parent; 4500 parent = parent->parent) 4501 num_hubs++; 4502 4503 if (num_hubs < 2) 4504 return 0; 4505 4506 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4507 " below second-tier hub.\n"); 4508 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4509 "to decrease power consumption.\n"); 4510 return -E2BIG; 4511 } 4512 4513 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4514 struct usb_device *udev, 4515 enum usb3_link_state state) 4516 { 4517 if (xhci->quirks & XHCI_INTEL_HOST) 4518 return xhci_check_intel_tier_policy(udev, state); 4519 else 4520 return 0; 4521 } 4522 4523 /* Returns the U1 or U2 timeout that should be enabled. 4524 * If the tier check or timeout setting functions return with a non-zero exit 4525 * code, that means the timeout value has been finalized and we shouldn't look 4526 * at any more endpoints. 4527 */ 4528 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4529 struct usb_device *udev, enum usb3_link_state state) 4530 { 4531 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4532 struct usb_host_config *config; 4533 char *state_name; 4534 int i; 4535 u16 timeout = USB3_LPM_DISABLED; 4536 4537 if (state == USB3_LPM_U1) 4538 state_name = "U1"; 4539 else if (state == USB3_LPM_U2) 4540 state_name = "U2"; 4541 else { 4542 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4543 state); 4544 return timeout; 4545 } 4546 4547 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4548 return timeout; 4549 4550 /* Gather some information about the currently installed configuration 4551 * and alternate interface settings. 4552 */ 4553 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4554 state, &timeout)) 4555 return timeout; 4556 4557 config = udev->actconfig; 4558 if (!config) 4559 return timeout; 4560 4561 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4562 struct usb_driver *driver; 4563 struct usb_interface *intf = config->interface[i]; 4564 4565 if (!intf) 4566 continue; 4567 4568 /* Check if any currently bound drivers want hub-initiated LPM 4569 * disabled. 4570 */ 4571 if (intf->dev.driver) { 4572 driver = to_usb_driver(intf->dev.driver); 4573 if (driver && driver->disable_hub_initiated_lpm) { 4574 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4575 "at request of driver %s\n", 4576 state_name, driver->name); 4577 return xhci_get_timeout_no_hub_lpm(udev, state); 4578 } 4579 } 4580 4581 /* Not sure how this could happen... */ 4582 if (!intf->cur_altsetting) 4583 continue; 4584 4585 if (xhci_update_timeout_for_interface(xhci, udev, 4586 intf->cur_altsetting, 4587 state, &timeout)) 4588 return timeout; 4589 } 4590 return timeout; 4591 } 4592 4593 static int calculate_max_exit_latency(struct usb_device *udev, 4594 enum usb3_link_state state_changed, 4595 u16 hub_encoded_timeout) 4596 { 4597 unsigned long long u1_mel_us = 0; 4598 unsigned long long u2_mel_us = 0; 4599 unsigned long long mel_us = 0; 4600 bool disabling_u1; 4601 bool disabling_u2; 4602 bool enabling_u1; 4603 bool enabling_u2; 4604 4605 disabling_u1 = (state_changed == USB3_LPM_U1 && 4606 hub_encoded_timeout == USB3_LPM_DISABLED); 4607 disabling_u2 = (state_changed == USB3_LPM_U2 && 4608 hub_encoded_timeout == USB3_LPM_DISABLED); 4609 4610 enabling_u1 = (state_changed == USB3_LPM_U1 && 4611 hub_encoded_timeout != USB3_LPM_DISABLED); 4612 enabling_u2 = (state_changed == USB3_LPM_U2 && 4613 hub_encoded_timeout != USB3_LPM_DISABLED); 4614 4615 /* If U1 was already enabled and we're not disabling it, 4616 * or we're going to enable U1, account for the U1 max exit latency. 4617 */ 4618 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4619 enabling_u1) 4620 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4621 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4622 enabling_u2) 4623 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4624 4625 if (u1_mel_us > u2_mel_us) 4626 mel_us = u1_mel_us; 4627 else 4628 mel_us = u2_mel_us; 4629 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4630 if (mel_us > MAX_EXIT) { 4631 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4632 "is too big.\n", mel_us); 4633 return -E2BIG; 4634 } 4635 return mel_us; 4636 } 4637 4638 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4639 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4640 struct usb_device *udev, enum usb3_link_state state) 4641 { 4642 struct xhci_hcd *xhci; 4643 u16 hub_encoded_timeout; 4644 int mel; 4645 int ret; 4646 4647 xhci = hcd_to_xhci(hcd); 4648 /* The LPM timeout values are pretty host-controller specific, so don't 4649 * enable hub-initiated timeouts unless the vendor has provided 4650 * information about their timeout algorithm. 4651 */ 4652 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4653 !xhci->devs[udev->slot_id]) 4654 return USB3_LPM_DISABLED; 4655 4656 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4657 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4658 if (mel < 0) { 4659 /* Max Exit Latency is too big, disable LPM. */ 4660 hub_encoded_timeout = USB3_LPM_DISABLED; 4661 mel = 0; 4662 } 4663 4664 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4665 if (ret) 4666 return ret; 4667 return hub_encoded_timeout; 4668 } 4669 4670 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4671 struct usb_device *udev, enum usb3_link_state state) 4672 { 4673 struct xhci_hcd *xhci; 4674 u16 mel; 4675 int ret; 4676 4677 xhci = hcd_to_xhci(hcd); 4678 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4679 !xhci->devs[udev->slot_id]) 4680 return 0; 4681 4682 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4683 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4684 if (ret) 4685 return ret; 4686 return 0; 4687 } 4688 #else /* CONFIG_PM */ 4689 4690 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4691 struct usb_device *udev, enum usb3_link_state state) 4692 { 4693 return USB3_LPM_DISABLED; 4694 } 4695 4696 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4697 struct usb_device *udev, enum usb3_link_state state) 4698 { 4699 return 0; 4700 } 4701 #endif /* CONFIG_PM */ 4702 4703 /*-------------------------------------------------------------------------*/ 4704 4705 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4706 * internal data structures for the device. 4707 */ 4708 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4709 struct usb_tt *tt, gfp_t mem_flags) 4710 { 4711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4712 struct xhci_virt_device *vdev; 4713 struct xhci_command *config_cmd; 4714 struct xhci_input_control_ctx *ctrl_ctx; 4715 struct xhci_slot_ctx *slot_ctx; 4716 unsigned long flags; 4717 unsigned think_time; 4718 int ret; 4719 4720 /* Ignore root hubs */ 4721 if (!hdev->parent) 4722 return 0; 4723 4724 vdev = xhci->devs[hdev->slot_id]; 4725 if (!vdev) { 4726 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4727 return -EINVAL; 4728 } 4729 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4730 if (!config_cmd) { 4731 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4732 return -ENOMEM; 4733 } 4734 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4735 if (!ctrl_ctx) { 4736 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4737 __func__); 4738 xhci_free_command(xhci, config_cmd); 4739 return -ENOMEM; 4740 } 4741 4742 spin_lock_irqsave(&xhci->lock, flags); 4743 if (hdev->speed == USB_SPEED_HIGH && 4744 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4745 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4746 xhci_free_command(xhci, config_cmd); 4747 spin_unlock_irqrestore(&xhci->lock, flags); 4748 return -ENOMEM; 4749 } 4750 4751 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4752 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4753 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4754 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4755 if (tt->multi) 4756 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4757 if (xhci->hci_version > 0x95) { 4758 xhci_dbg(xhci, "xHCI version %x needs hub " 4759 "TT think time and number of ports\n", 4760 (unsigned int) xhci->hci_version); 4761 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4762 /* Set TT think time - convert from ns to FS bit times. 4763 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4764 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4765 * 4766 * xHCI 1.0: this field shall be 0 if the device is not a 4767 * High-spped hub. 4768 */ 4769 think_time = tt->think_time; 4770 if (think_time != 0) 4771 think_time = (think_time / 666) - 1; 4772 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4773 slot_ctx->tt_info |= 4774 cpu_to_le32(TT_THINK_TIME(think_time)); 4775 } else { 4776 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4777 "TT think time or number of ports\n", 4778 (unsigned int) xhci->hci_version); 4779 } 4780 slot_ctx->dev_state = 0; 4781 spin_unlock_irqrestore(&xhci->lock, flags); 4782 4783 xhci_dbg(xhci, "Set up %s for hub device.\n", 4784 (xhci->hci_version > 0x95) ? 4785 "configure endpoint" : "evaluate context"); 4786 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4787 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4788 4789 /* Issue and wait for the configure endpoint or 4790 * evaluate context command. 4791 */ 4792 if (xhci->hci_version > 0x95) 4793 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4794 false, false); 4795 else 4796 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4797 true, false); 4798 4799 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4800 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4801 4802 xhci_free_command(xhci, config_cmd); 4803 return ret; 4804 } 4805 4806 int xhci_get_frame(struct usb_hcd *hcd) 4807 { 4808 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4809 /* EHCI mods by the periodic size. Why? */ 4810 return readl(&xhci->run_regs->microframe_index) >> 3; 4811 } 4812 4813 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4814 { 4815 struct xhci_hcd *xhci; 4816 struct device *dev = hcd->self.controller; 4817 int retval; 4818 4819 /* Accept arbitrarily long scatter-gather lists */ 4820 hcd->self.sg_tablesize = ~0; 4821 4822 /* support to build packet from discontinuous buffers */ 4823 hcd->self.no_sg_constraint = 1; 4824 4825 /* XHCI controllers don't stop the ep queue on short packets :| */ 4826 hcd->self.no_stop_on_short = 1; 4827 4828 if (usb_hcd_is_primary_hcd(hcd)) { 4829 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4830 if (!xhci) 4831 return -ENOMEM; 4832 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4833 xhci->main_hcd = hcd; 4834 /* Mark the first roothub as being USB 2.0. 4835 * The xHCI driver will register the USB 3.0 roothub. 4836 */ 4837 hcd->speed = HCD_USB2; 4838 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4839 /* 4840 * USB 2.0 roothub under xHCI has an integrated TT, 4841 * (rate matching hub) as opposed to having an OHCI/UHCI 4842 * companion controller. 4843 */ 4844 hcd->has_tt = 1; 4845 } else { 4846 /* xHCI private pointer was set in xhci_pci_probe for the second 4847 * registered roothub. 4848 */ 4849 return 0; 4850 } 4851 4852 xhci->cap_regs = hcd->regs; 4853 xhci->op_regs = hcd->regs + 4854 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4855 xhci->run_regs = hcd->regs + 4856 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4857 /* Cache read-only capability registers */ 4858 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4859 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4860 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4861 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4862 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4863 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4864 xhci_print_registers(xhci); 4865 4866 xhci->quirks = quirks; 4867 4868 get_quirks(dev, xhci); 4869 4870 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4871 * success event after a short transfer. This quirk will ignore such 4872 * spurious event. 4873 */ 4874 if (xhci->hci_version > 0x96) 4875 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4876 4877 /* Make sure the HC is halted. */ 4878 retval = xhci_halt(xhci); 4879 if (retval) 4880 goto error; 4881 4882 xhci_dbg(xhci, "Resetting HCD\n"); 4883 /* Reset the internal HC memory state and registers. */ 4884 retval = xhci_reset(xhci); 4885 if (retval) 4886 goto error; 4887 xhci_dbg(xhci, "Reset complete\n"); 4888 4889 /* Set dma_mask and coherent_dma_mask to 64-bits, 4890 * if xHC supports 64-bit addressing */ 4891 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4892 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4893 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4894 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4895 } 4896 4897 xhci_dbg(xhci, "Calling HCD init\n"); 4898 /* Initialize HCD and host controller data structures. */ 4899 retval = xhci_init(hcd); 4900 if (retval) 4901 goto error; 4902 xhci_dbg(xhci, "Called HCD init\n"); 4903 return 0; 4904 error: 4905 kfree(xhci); 4906 return retval; 4907 } 4908 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4909 4910 static const struct hc_driver xhci_hc_driver = { 4911 .description = "xhci-hcd", 4912 .product_desc = "xHCI Host Controller", 4913 .hcd_priv_size = sizeof(struct xhci_hcd *), 4914 4915 /* 4916 * generic hardware linkage 4917 */ 4918 .irq = xhci_irq, 4919 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4920 4921 /* 4922 * basic lifecycle operations 4923 */ 4924 .reset = NULL, /* set in xhci_init_driver() */ 4925 .start = xhci_run, 4926 .stop = xhci_stop, 4927 .shutdown = xhci_shutdown, 4928 4929 /* 4930 * managing i/o requests and associated device resources 4931 */ 4932 .urb_enqueue = xhci_urb_enqueue, 4933 .urb_dequeue = xhci_urb_dequeue, 4934 .alloc_dev = xhci_alloc_dev, 4935 .free_dev = xhci_free_dev, 4936 .alloc_streams = xhci_alloc_streams, 4937 .free_streams = xhci_free_streams, 4938 .add_endpoint = xhci_add_endpoint, 4939 .drop_endpoint = xhci_drop_endpoint, 4940 .endpoint_reset = xhci_endpoint_reset, 4941 .check_bandwidth = xhci_check_bandwidth, 4942 .reset_bandwidth = xhci_reset_bandwidth, 4943 .address_device = xhci_address_device, 4944 .enable_device = xhci_enable_device, 4945 .update_hub_device = xhci_update_hub_device, 4946 .reset_device = xhci_discover_or_reset_device, 4947 4948 /* 4949 * scheduling support 4950 */ 4951 .get_frame_number = xhci_get_frame, 4952 4953 /* 4954 * root hub support 4955 */ 4956 .hub_control = xhci_hub_control, 4957 .hub_status_data = xhci_hub_status_data, 4958 .bus_suspend = xhci_bus_suspend, 4959 .bus_resume = xhci_bus_resume, 4960 4961 /* 4962 * call back when device connected and addressed 4963 */ 4964 .update_device = xhci_update_device, 4965 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4966 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4967 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4968 .find_raw_port_number = xhci_find_raw_port_number, 4969 }; 4970 4971 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *)) 4972 { 4973 BUG_ON(!setup_fn); 4974 *drv = xhci_hc_driver; 4975 drv->reset = setup_fn; 4976 } 4977 EXPORT_SYMBOL_GPL(xhci_init_driver); 4978 4979 MODULE_DESCRIPTION(DRIVER_DESC); 4980 MODULE_AUTHOR(DRIVER_AUTHOR); 4981 MODULE_LICENSE("GPL"); 4982 4983 static int __init xhci_hcd_init(void) 4984 { 4985 /* 4986 * Check the compiler generated sizes of structures that must be laid 4987 * out in specific ways for hardware access. 4988 */ 4989 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4990 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4991 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4992 /* xhci_device_control has eight fields, and also 4993 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4994 */ 4995 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4996 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4997 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4998 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4999 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5000 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5001 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5002 return 0; 5003 } 5004 module_init(xhci_hcd_init); 5005