xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 609e478b)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	if (!strlen(hcd->irq_descr))
394 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 			 hcd->driver->description, hcd->self.busnum);
396 
397 	/* fall back to legacy interrupt*/
398 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 			hcd->irq_descr, hcd);
400 	if (ret) {
401 		xhci_err(xhci, "request interrupt %d failed\n",
402 				pdev->irq);
403 		return ret;
404 	}
405 	hcd->irq = pdev->irq;
406 	return 0;
407 }
408 
409 #else
410 
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 	return 0;
414 }
415 
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419 
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423 
424 #endif
425 
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 	struct xhci_hcd *xhci;
429 	struct usb_hcd *hcd;
430 	u32 temp;
431 	int i;
432 
433 	xhci = (struct xhci_hcd *)arg;
434 
435 	for (i = 0; i < xhci->num_usb3_ports; i++) {
436 		temp = readl(xhci->usb3_ports[i]);
437 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 			/*
439 			 * Compliance Mode Detected. Letting USB Core
440 			 * handle the Warm Reset
441 			 */
442 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 					"Compliance mode detected->port %d",
444 					i + 1);
445 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 					"Attempting compliance mode recovery");
447 			hcd = xhci->shared_hcd;
448 
449 			if (hcd->state == HC_STATE_SUSPENDED)
450 				usb_hcd_resume_root_hub(hcd);
451 
452 			usb_hcd_poll_rh_status(hcd);
453 		}
454 	}
455 
456 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 		mod_timer(&xhci->comp_mode_recovery_timer,
458 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460 
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 	xhci->port_status_u0 = 0;
474 	init_timer(&xhci->comp_mode_recovery_timer);
475 
476 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 	xhci->comp_mode_recovery_timer.expires = jiffies +
479 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480 
481 	set_timer_slack(&xhci->comp_mode_recovery_timer,
482 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 	add_timer(&xhci->comp_mode_recovery_timer);
484 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 			"Compliance mode recovery timer initialized");
486 }
487 
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 	const char *dmi_product_name, *dmi_sys_vendor;
497 
498 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 	if (!dmi_product_name || !dmi_sys_vendor)
501 		return false;
502 
503 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 		return false;
505 
506 	if (strstr(dmi_product_name, "Z420") ||
507 			strstr(dmi_product_name, "Z620") ||
508 			strstr(dmi_product_name, "Z820") ||
509 			strstr(dmi_product_name, "Z1 Workstation"))
510 		return true;
511 
512 	return false;
513 }
514 
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519 
520 
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 	int retval = 0;
532 
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 	spin_lock_init(&xhci->lock);
535 	if (xhci->hci_version == 0x95 && link_quirk) {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 				"QUIRK: Not clearing Link TRB chain bits.");
538 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 	} else {
540 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 				"xHCI doesn't need link TRB QUIRK");
542 	}
543 	retval = xhci_mem_init(xhci, GFP_KERNEL);
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545 
546 	/* Initializing Compliance Mode Recovery Data If Needed */
547 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 		compliance_mode_recovery_timer_init(xhci);
550 	}
551 
552 	return retval;
553 }
554 
555 /*-------------------------------------------------------------------------*/
556 
557 
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 	if (xhci_start(xhci)) {
561 		xhci_halt(xhci);
562 		return -ENODEV;
563 	}
564 	xhci->shared_hcd->state = HC_STATE_RUNNING;
565 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566 
567 	if (xhci->quirks & XHCI_NEC_HOST)
568 		xhci_ring_cmd_db(xhci);
569 
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished xhci_run for USB3 roothub");
572 	return 0;
573 }
574 
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 	u32 temp;
590 	u64 temp_64;
591 	int ret;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	/* Start the xHCI host controller running only after the USB 2.0 roothub
595 	 * is setup.
596 	 */
597 
598 	hcd->uses_new_polling = 1;
599 	if (!usb_hcd_is_primary_hcd(hcd))
600 		return xhci_run_finished(xhci);
601 
602 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603 
604 	ret = xhci_try_enable_msi(hcd);
605 	if (ret)
606 		return ret;
607 
608 	xhci_dbg(xhci, "Command ring memory map follows:\n");
609 	xhci_debug_ring(xhci, xhci->cmd_ring);
610 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 	xhci_dbg_cmd_ptrs(xhci);
612 
613 	xhci_dbg(xhci, "ERST memory map follows:\n");
614 	xhci_dbg_erst(xhci, &xhci->erst);
615 	xhci_dbg(xhci, "Event ring:\n");
616 	xhci_debug_ring(xhci, xhci->event_ring);
617 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 	temp_64 &= ~ERST_PTR_MASK;
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622 
623 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 			"// Set the interrupt modulation register");
625 	temp = readl(&xhci->ir_set->irq_control);
626 	temp &= ~ER_IRQ_INTERVAL_MASK;
627 	temp |= (u32) 160;
628 	writel(temp, &xhci->ir_set->irq_control);
629 
630 	/* Set the HCD state before we enable the irqs */
631 	temp = readl(&xhci->op_regs->command);
632 	temp |= (CMD_EIE);
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Enable interrupts, cmd = 0x%x.", temp);
635 	writel(temp, &xhci->op_regs->command);
636 
637 	temp = readl(&xhci->ir_set->irq_pending);
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 	xhci_print_ir_set(xhci, 0);
643 
644 	if (xhci->quirks & XHCI_NEC_HOST) {
645 		struct xhci_command *command;
646 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 		if (!command)
648 			return -ENOMEM;
649 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 				TRB_TYPE(TRB_NEC_GET_FW));
651 	}
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 			"Finished xhci_run for USB2 roothub");
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(xhci_run);
657 
658 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
659 {
660 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661 
662 	spin_lock_irq(&xhci->lock);
663 	xhci_halt(xhci);
664 
665 	/* The shared_hcd is going to be deallocated shortly (the USB core only
666 	 * calls this function when allocation fails in usb_add_hcd(), or
667 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
668 	 */
669 	xhci->shared_hcd = NULL;
670 	spin_unlock_irq(&xhci->lock);
671 }
672 
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 	u32 temp;
685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687 	if (!usb_hcd_is_primary_hcd(hcd)) {
688 		xhci_only_stop_hcd(xhci->shared_hcd);
689 		return;
690 	}
691 
692 	spin_lock_irq(&xhci->lock);
693 	/* Make sure the xHC is halted for a USB3 roothub
694 	 * (xhci_stop() could be called as part of failed init).
695 	 */
696 	xhci_halt(xhci);
697 	xhci_reset(xhci);
698 	spin_unlock_irq(&xhci->lock);
699 
700 	xhci_cleanup_msix(xhci);
701 
702 	/* Deleting Compliance Mode Recovery Timer */
703 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
704 			(!(xhci_all_ports_seen_u0(xhci)))) {
705 		del_timer_sync(&xhci->comp_mode_recovery_timer);
706 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
707 				"%s: compliance mode recovery timer deleted",
708 				__func__);
709 	}
710 
711 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
712 		usb_amd_dev_put();
713 
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Disabling event ring interrupts");
716 	temp = readl(&xhci->op_regs->status);
717 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
718 	temp = readl(&xhci->ir_set->irq_pending);
719 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
720 	xhci_print_ir_set(xhci, 0);
721 
722 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
723 	xhci_mem_cleanup(xhci);
724 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
725 			"xhci_stop completed - status = %x",
726 			readl(&xhci->op_regs->status));
727 }
728 
729 /*
730  * Shutdown HC (not bus-specific)
731  *
732  * This is called when the machine is rebooting or halting.  We assume that the
733  * machine will be powered off, and the HC's internal state will be reset.
734  * Don't bother to free memory.
735  *
736  * This will only ever be called with the main usb_hcd (the USB3 roothub).
737  */
738 void xhci_shutdown(struct usb_hcd *hcd)
739 {
740 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
741 
742 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
743 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
744 
745 	spin_lock_irq(&xhci->lock);
746 	xhci_halt(xhci);
747 	/* Workaround for spurious wakeups at shutdown with HSW */
748 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
749 		xhci_reset(xhci);
750 	spin_unlock_irq(&xhci->lock);
751 
752 	xhci_cleanup_msix(xhci);
753 
754 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
755 			"xhci_shutdown completed - status = %x",
756 			readl(&xhci->op_regs->status));
757 
758 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
759 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
760 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
761 }
762 
763 #ifdef CONFIG_PM
764 static void xhci_save_registers(struct xhci_hcd *xhci)
765 {
766 	xhci->s3.command = readl(&xhci->op_regs->command);
767 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
768 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
769 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
770 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
771 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
772 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
773 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
774 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
775 }
776 
777 static void xhci_restore_registers(struct xhci_hcd *xhci)
778 {
779 	writel(xhci->s3.command, &xhci->op_regs->command);
780 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
781 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
782 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
783 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
784 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
785 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
786 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
787 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
788 }
789 
790 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
791 {
792 	u64	val_64;
793 
794 	/* step 2: initialize command ring buffer */
795 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
796 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
797 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
798 				      xhci->cmd_ring->dequeue) &
799 		 (u64) ~CMD_RING_RSVD_BITS) |
800 		xhci->cmd_ring->cycle_state;
801 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
802 			"// Setting command ring address to 0x%llx",
803 			(long unsigned long) val_64);
804 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
805 }
806 
807 /*
808  * The whole command ring must be cleared to zero when we suspend the host.
809  *
810  * The host doesn't save the command ring pointer in the suspend well, so we
811  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
812  * aligned, because of the reserved bits in the command ring dequeue pointer
813  * register.  Therefore, we can't just set the dequeue pointer back in the
814  * middle of the ring (TRBs are 16-byte aligned).
815  */
816 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
817 {
818 	struct xhci_ring *ring;
819 	struct xhci_segment *seg;
820 
821 	ring = xhci->cmd_ring;
822 	seg = ring->deq_seg;
823 	do {
824 		memset(seg->trbs, 0,
825 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
826 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
827 			cpu_to_le32(~TRB_CYCLE);
828 		seg = seg->next;
829 	} while (seg != ring->deq_seg);
830 
831 	/* Reset the software enqueue and dequeue pointers */
832 	ring->deq_seg = ring->first_seg;
833 	ring->dequeue = ring->first_seg->trbs;
834 	ring->enq_seg = ring->deq_seg;
835 	ring->enqueue = ring->dequeue;
836 
837 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
838 	/*
839 	 * Ring is now zeroed, so the HW should look for change of ownership
840 	 * when the cycle bit is set to 1.
841 	 */
842 	ring->cycle_state = 1;
843 
844 	/*
845 	 * Reset the hardware dequeue pointer.
846 	 * Yes, this will need to be re-written after resume, but we're paranoid
847 	 * and want to make sure the hardware doesn't access bogus memory
848 	 * because, say, the BIOS or an SMI started the host without changing
849 	 * the command ring pointers.
850 	 */
851 	xhci_set_cmd_ring_deq(xhci);
852 }
853 
854 /*
855  * Stop HC (not bus-specific)
856  *
857  * This is called when the machine transition into S3/S4 mode.
858  *
859  */
860 int xhci_suspend(struct xhci_hcd *xhci)
861 {
862 	int			rc = 0;
863 	unsigned int		delay = XHCI_MAX_HALT_USEC;
864 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
865 	u32			command;
866 
867 	if (hcd->state != HC_STATE_SUSPENDED ||
868 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
869 		return -EINVAL;
870 
871 	/* Don't poll the roothubs on bus suspend. */
872 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
873 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
874 	del_timer_sync(&hcd->rh_timer);
875 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
876 	del_timer_sync(&xhci->shared_hcd->rh_timer);
877 
878 	spin_lock_irq(&xhci->lock);
879 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
880 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
881 	/* step 1: stop endpoint */
882 	/* skipped assuming that port suspend has done */
883 
884 	/* step 2: clear Run/Stop bit */
885 	command = readl(&xhci->op_regs->command);
886 	command &= ~CMD_RUN;
887 	writel(command, &xhci->op_regs->command);
888 
889 	/* Some chips from Fresco Logic need an extraordinary delay */
890 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
891 
892 	if (xhci_handshake(xhci, &xhci->op_regs->status,
893 		      STS_HALT, STS_HALT, delay)) {
894 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
895 		spin_unlock_irq(&xhci->lock);
896 		return -ETIMEDOUT;
897 	}
898 	xhci_clear_command_ring(xhci);
899 
900 	/* step 3: save registers */
901 	xhci_save_registers(xhci);
902 
903 	/* step 4: set CSS flag */
904 	command = readl(&xhci->op_regs->command);
905 	command |= CMD_CSS;
906 	writel(command, &xhci->op_regs->command);
907 	if (xhci_handshake(xhci, &xhci->op_regs->status,
908 				STS_SAVE, 0, 10 * 1000)) {
909 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
910 		spin_unlock_irq(&xhci->lock);
911 		return -ETIMEDOUT;
912 	}
913 	spin_unlock_irq(&xhci->lock);
914 
915 	/*
916 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
917 	 * is about to be suspended.
918 	 */
919 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
920 			(!(xhci_all_ports_seen_u0(xhci)))) {
921 		del_timer_sync(&xhci->comp_mode_recovery_timer);
922 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
923 				"%s: compliance mode recovery timer deleted",
924 				__func__);
925 	}
926 
927 	/* step 5: remove core well power */
928 	/* synchronize irq when using MSI-X */
929 	xhci_msix_sync_irqs(xhci);
930 
931 	return rc;
932 }
933 EXPORT_SYMBOL_GPL(xhci_suspend);
934 
935 /*
936  * start xHC (not bus-specific)
937  *
938  * This is called when the machine transition from S3/S4 mode.
939  *
940  */
941 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
942 {
943 	u32			command, temp = 0, status;
944 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
945 	struct usb_hcd		*secondary_hcd;
946 	int			retval = 0;
947 	bool			comp_timer_running = false;
948 
949 	/* Wait a bit if either of the roothubs need to settle from the
950 	 * transition into bus suspend.
951 	 */
952 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
953 			time_before(jiffies,
954 				xhci->bus_state[1].next_statechange))
955 		msleep(100);
956 
957 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
958 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
959 
960 	spin_lock_irq(&xhci->lock);
961 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
962 		hibernated = true;
963 
964 	if (!hibernated) {
965 		/* step 1: restore register */
966 		xhci_restore_registers(xhci);
967 		/* step 2: initialize command ring buffer */
968 		xhci_set_cmd_ring_deq(xhci);
969 		/* step 3: restore state and start state*/
970 		/* step 3: set CRS flag */
971 		command = readl(&xhci->op_regs->command);
972 		command |= CMD_CRS;
973 		writel(command, &xhci->op_regs->command);
974 		if (xhci_handshake(xhci, &xhci->op_regs->status,
975 			      STS_RESTORE, 0, 10 * 1000)) {
976 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
977 			spin_unlock_irq(&xhci->lock);
978 			return -ETIMEDOUT;
979 		}
980 		temp = readl(&xhci->op_regs->status);
981 	}
982 
983 	/* If restore operation fails, re-initialize the HC during resume */
984 	if ((temp & STS_SRE) || hibernated) {
985 
986 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
987 				!(xhci_all_ports_seen_u0(xhci))) {
988 			del_timer_sync(&xhci->comp_mode_recovery_timer);
989 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
990 				"Compliance Mode Recovery Timer deleted!");
991 		}
992 
993 		/* Let the USB core know _both_ roothubs lost power. */
994 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
995 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
996 
997 		xhci_dbg(xhci, "Stop HCD\n");
998 		xhci_halt(xhci);
999 		xhci_reset(xhci);
1000 		spin_unlock_irq(&xhci->lock);
1001 		xhci_cleanup_msix(xhci);
1002 
1003 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1004 		temp = readl(&xhci->op_regs->status);
1005 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1006 		temp = readl(&xhci->ir_set->irq_pending);
1007 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1008 		xhci_print_ir_set(xhci, 0);
1009 
1010 		xhci_dbg(xhci, "cleaning up memory\n");
1011 		xhci_mem_cleanup(xhci);
1012 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1013 			    readl(&xhci->op_regs->status));
1014 
1015 		/* USB core calls the PCI reinit and start functions twice:
1016 		 * first with the primary HCD, and then with the secondary HCD.
1017 		 * If we don't do the same, the host will never be started.
1018 		 */
1019 		if (!usb_hcd_is_primary_hcd(hcd))
1020 			secondary_hcd = hcd;
1021 		else
1022 			secondary_hcd = xhci->shared_hcd;
1023 
1024 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1025 		retval = xhci_init(hcd->primary_hcd);
1026 		if (retval)
1027 			return retval;
1028 		comp_timer_running = true;
1029 
1030 		xhci_dbg(xhci, "Start the primary HCD\n");
1031 		retval = xhci_run(hcd->primary_hcd);
1032 		if (!retval) {
1033 			xhci_dbg(xhci, "Start the secondary HCD\n");
1034 			retval = xhci_run(secondary_hcd);
1035 		}
1036 		hcd->state = HC_STATE_SUSPENDED;
1037 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1038 		goto done;
1039 	}
1040 
1041 	/* step 4: set Run/Stop bit */
1042 	command = readl(&xhci->op_regs->command);
1043 	command |= CMD_RUN;
1044 	writel(command, &xhci->op_regs->command);
1045 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1046 		  0, 250 * 1000);
1047 
1048 	/* step 5: walk topology and initialize portsc,
1049 	 * portpmsc and portli
1050 	 */
1051 	/* this is done in bus_resume */
1052 
1053 	/* step 6: restart each of the previously
1054 	 * Running endpoints by ringing their doorbells
1055 	 */
1056 
1057 	spin_unlock_irq(&xhci->lock);
1058 
1059  done:
1060 	if (retval == 0) {
1061 		/* Resume root hubs only when have pending events. */
1062 		status = readl(&xhci->op_regs->status);
1063 		if (status & STS_EINT) {
1064 			usb_hcd_resume_root_hub(hcd);
1065 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1071 	 * be re-initialized Always after a system resume. Ports are subject
1072 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1073 	 * ports have entered previously to U0 before system's suspension.
1074 	 */
1075 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1076 		compliance_mode_recovery_timer_init(xhci);
1077 
1078 	/* Re-enable port polling. */
1079 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1080 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1081 	usb_hcd_poll_rh_status(hcd);
1082 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1083 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1084 
1085 	return retval;
1086 }
1087 EXPORT_SYMBOL_GPL(xhci_resume);
1088 #endif	/* CONFIG_PM */
1089 
1090 /*-------------------------------------------------------------------------*/
1091 
1092 /**
1093  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1094  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1095  * value to right shift 1 for the bitmask.
1096  *
1097  * Index  = (epnum * 2) + direction - 1,
1098  * where direction = 0 for OUT, 1 for IN.
1099  * For control endpoints, the IN index is used (OUT index is unused), so
1100  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1101  */
1102 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1103 {
1104 	unsigned int index;
1105 	if (usb_endpoint_xfer_control(desc))
1106 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1107 	else
1108 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1109 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1110 	return index;
1111 }
1112 
1113 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1114  * address from the XHCI endpoint index.
1115  */
1116 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1117 {
1118 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1119 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1120 	return direction | number;
1121 }
1122 
1123 /* Find the flag for this endpoint (for use in the control context).  Use the
1124  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1125  * bit 1, etc.
1126  */
1127 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1128 {
1129 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1130 }
1131 
1132 /* Find the flag for this endpoint (for use in the control context).  Use the
1133  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1134  * bit 1, etc.
1135  */
1136 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1137 {
1138 	return 1 << (ep_index + 1);
1139 }
1140 
1141 /* Compute the last valid endpoint context index.  Basically, this is the
1142  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1143  * we find the most significant bit set in the added contexts flags.
1144  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1145  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1146  */
1147 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1148 {
1149 	return fls(added_ctxs) - 1;
1150 }
1151 
1152 /* Returns 1 if the arguments are OK;
1153  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1154  */
1155 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1156 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1157 		const char *func) {
1158 	struct xhci_hcd	*xhci;
1159 	struct xhci_virt_device	*virt_dev;
1160 
1161 	if (!hcd || (check_ep && !ep) || !udev) {
1162 		pr_debug("xHCI %s called with invalid args\n", func);
1163 		return -EINVAL;
1164 	}
1165 	if (!udev->parent) {
1166 		pr_debug("xHCI %s called for root hub\n", func);
1167 		return 0;
1168 	}
1169 
1170 	xhci = hcd_to_xhci(hcd);
1171 	if (check_virt_dev) {
1172 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1173 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1174 					func);
1175 			return -EINVAL;
1176 		}
1177 
1178 		virt_dev = xhci->devs[udev->slot_id];
1179 		if (virt_dev->udev != udev) {
1180 			xhci_dbg(xhci, "xHCI %s called with udev and "
1181 					  "virt_dev does not match\n", func);
1182 			return -EINVAL;
1183 		}
1184 	}
1185 
1186 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1187 		return -ENODEV;
1188 
1189 	return 1;
1190 }
1191 
1192 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1193 		struct usb_device *udev, struct xhci_command *command,
1194 		bool ctx_change, bool must_succeed);
1195 
1196 /*
1197  * Full speed devices may have a max packet size greater than 8 bytes, but the
1198  * USB core doesn't know that until it reads the first 8 bytes of the
1199  * descriptor.  If the usb_device's max packet size changes after that point,
1200  * we need to issue an evaluate context command and wait on it.
1201  */
1202 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1203 		unsigned int ep_index, struct urb *urb)
1204 {
1205 	struct xhci_container_ctx *out_ctx;
1206 	struct xhci_input_control_ctx *ctrl_ctx;
1207 	struct xhci_ep_ctx *ep_ctx;
1208 	struct xhci_command *command;
1209 	int max_packet_size;
1210 	int hw_max_packet_size;
1211 	int ret = 0;
1212 
1213 	out_ctx = xhci->devs[slot_id]->out_ctx;
1214 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1215 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1216 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1217 	if (hw_max_packet_size != max_packet_size) {
1218 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1219 				"Max Packet Size for ep 0 changed.");
1220 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1221 				"Max packet size in usb_device = %d",
1222 				max_packet_size);
1223 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1224 				"Max packet size in xHCI HW = %d",
1225 				hw_max_packet_size);
1226 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1227 				"Issuing evaluate context command.");
1228 
1229 		/* Set up the input context flags for the command */
1230 		/* FIXME: This won't work if a non-default control endpoint
1231 		 * changes max packet sizes.
1232 		 */
1233 
1234 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1235 		if (!command)
1236 			return -ENOMEM;
1237 
1238 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1239 		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1240 		if (!ctrl_ctx) {
1241 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1242 					__func__);
1243 			ret = -ENOMEM;
1244 			goto command_cleanup;
1245 		}
1246 		/* Set up the modified control endpoint 0 */
1247 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1248 				xhci->devs[slot_id]->out_ctx, ep_index);
1249 
1250 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1251 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1252 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1253 
1254 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1255 		ctrl_ctx->drop_flags = 0;
1256 
1257 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1258 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1259 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1260 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1261 
1262 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1263 				true, false);
1264 
1265 		/* Clean up the input context for later use by bandwidth
1266 		 * functions.
1267 		 */
1268 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1269 command_cleanup:
1270 		kfree(command->completion);
1271 		kfree(command);
1272 	}
1273 	return ret;
1274 }
1275 
1276 /*
1277  * non-error returns are a promise to giveback() the urb later
1278  * we drop ownership so next owner (or urb unlink) can get it
1279  */
1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1281 {
1282 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1283 	struct xhci_td *buffer;
1284 	unsigned long flags;
1285 	int ret = 0;
1286 	unsigned int slot_id, ep_index;
1287 	struct urb_priv	*urb_priv;
1288 	int size, i;
1289 
1290 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1291 					true, true, __func__) <= 0)
1292 		return -EINVAL;
1293 
1294 	slot_id = urb->dev->slot_id;
1295 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1296 
1297 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1298 		if (!in_interrupt())
1299 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1300 		ret = -ESHUTDOWN;
1301 		goto exit;
1302 	}
1303 
1304 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1305 		size = urb->number_of_packets;
1306 	else
1307 		size = 1;
1308 
1309 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1310 				  size * sizeof(struct xhci_td *), mem_flags);
1311 	if (!urb_priv)
1312 		return -ENOMEM;
1313 
1314 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1315 	if (!buffer) {
1316 		kfree(urb_priv);
1317 		return -ENOMEM;
1318 	}
1319 
1320 	for (i = 0; i < size; i++) {
1321 		urb_priv->td[i] = buffer;
1322 		buffer++;
1323 	}
1324 
1325 	urb_priv->length = size;
1326 	urb_priv->td_cnt = 0;
1327 	urb->hcpriv = urb_priv;
1328 
1329 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1330 		/* Check to see if the max packet size for the default control
1331 		 * endpoint changed during FS device enumeration
1332 		 */
1333 		if (urb->dev->speed == USB_SPEED_FULL) {
1334 			ret = xhci_check_maxpacket(xhci, slot_id,
1335 					ep_index, urb);
1336 			if (ret < 0) {
1337 				xhci_urb_free_priv(xhci, urb_priv);
1338 				urb->hcpriv = NULL;
1339 				return ret;
1340 			}
1341 		}
1342 
1343 		/* We have a spinlock and interrupts disabled, so we must pass
1344 		 * atomic context to this function, which may allocate memory.
1345 		 */
1346 		spin_lock_irqsave(&xhci->lock, flags);
1347 		if (xhci->xhc_state & XHCI_STATE_DYING)
1348 			goto dying;
1349 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1350 				slot_id, ep_index);
1351 		if (ret)
1352 			goto free_priv;
1353 		spin_unlock_irqrestore(&xhci->lock, flags);
1354 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1355 		spin_lock_irqsave(&xhci->lock, flags);
1356 		if (xhci->xhc_state & XHCI_STATE_DYING)
1357 			goto dying;
1358 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1359 				EP_GETTING_STREAMS) {
1360 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1361 					"is transitioning to using streams.\n");
1362 			ret = -EINVAL;
1363 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1364 				EP_GETTING_NO_STREAMS) {
1365 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1366 					"is transitioning to "
1367 					"not having streams.\n");
1368 			ret = -EINVAL;
1369 		} else {
1370 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1371 					slot_id, ep_index);
1372 		}
1373 		if (ret)
1374 			goto free_priv;
1375 		spin_unlock_irqrestore(&xhci->lock, flags);
1376 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1377 		spin_lock_irqsave(&xhci->lock, flags);
1378 		if (xhci->xhc_state & XHCI_STATE_DYING)
1379 			goto dying;
1380 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381 				slot_id, ep_index);
1382 		if (ret)
1383 			goto free_priv;
1384 		spin_unlock_irqrestore(&xhci->lock, flags);
1385 	} else {
1386 		spin_lock_irqsave(&xhci->lock, flags);
1387 		if (xhci->xhc_state & XHCI_STATE_DYING)
1388 			goto dying;
1389 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1390 				slot_id, ep_index);
1391 		if (ret)
1392 			goto free_priv;
1393 		spin_unlock_irqrestore(&xhci->lock, flags);
1394 	}
1395 exit:
1396 	return ret;
1397 dying:
1398 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1399 			"non-responsive xHCI host.\n",
1400 			urb->ep->desc.bEndpointAddress, urb);
1401 	ret = -ESHUTDOWN;
1402 free_priv:
1403 	xhci_urb_free_priv(xhci, urb_priv);
1404 	urb->hcpriv = NULL;
1405 	spin_unlock_irqrestore(&xhci->lock, flags);
1406 	return ret;
1407 }
1408 
1409 /* Get the right ring for the given URB.
1410  * If the endpoint supports streams, boundary check the URB's stream ID.
1411  * If the endpoint doesn't support streams, return the singular endpoint ring.
1412  */
1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1414 		struct urb *urb)
1415 {
1416 	unsigned int slot_id;
1417 	unsigned int ep_index;
1418 	unsigned int stream_id;
1419 	struct xhci_virt_ep *ep;
1420 
1421 	slot_id = urb->dev->slot_id;
1422 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423 	stream_id = urb->stream_id;
1424 	ep = &xhci->devs[slot_id]->eps[ep_index];
1425 	/* Common case: no streams */
1426 	if (!(ep->ep_state & EP_HAS_STREAMS))
1427 		return ep->ring;
1428 
1429 	if (stream_id == 0) {
1430 		xhci_warn(xhci,
1431 				"WARN: Slot ID %u, ep index %u has streams, "
1432 				"but URB has no stream ID.\n",
1433 				slot_id, ep_index);
1434 		return NULL;
1435 	}
1436 
1437 	if (stream_id < ep->stream_info->num_streams)
1438 		return ep->stream_info->stream_rings[stream_id];
1439 
1440 	xhci_warn(xhci,
1441 			"WARN: Slot ID %u, ep index %u has "
1442 			"stream IDs 1 to %u allocated, "
1443 			"but stream ID %u is requested.\n",
1444 			slot_id, ep_index,
1445 			ep->stream_info->num_streams - 1,
1446 			stream_id);
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1452  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1453  * should pick up where it left off in the TD, unless a Set Transfer Ring
1454  * Dequeue Pointer is issued.
1455  *
1456  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1457  * the ring.  Since the ring is a contiguous structure, they can't be physically
1458  * removed.  Instead, there are two options:
1459  *
1460  *  1) If the HC is in the middle of processing the URB to be canceled, we
1461  *     simply move the ring's dequeue pointer past those TRBs using the Set
1462  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1463  *     when drivers timeout on the last submitted URB and attempt to cancel.
1464  *
1465  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1466  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1467  *     HC will need to invalidate the any TRBs it has cached after the stop
1468  *     endpoint command, as noted in the xHCI 0.95 errata.
1469  *
1470  *  3) The TD may have completed by the time the Stop Endpoint Command
1471  *     completes, so software needs to handle that case too.
1472  *
1473  * This function should protect against the TD enqueueing code ringing the
1474  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1475  * It also needs to account for multiple cancellations on happening at the same
1476  * time for the same endpoint.
1477  *
1478  * Note that this function can be called in any context, or so says
1479  * usb_hcd_unlink_urb()
1480  */
1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1482 {
1483 	unsigned long flags;
1484 	int ret, i;
1485 	u32 temp;
1486 	struct xhci_hcd *xhci;
1487 	struct urb_priv	*urb_priv;
1488 	struct xhci_td *td;
1489 	unsigned int ep_index;
1490 	struct xhci_ring *ep_ring;
1491 	struct xhci_virt_ep *ep;
1492 	struct xhci_command *command;
1493 
1494 	xhci = hcd_to_xhci(hcd);
1495 	spin_lock_irqsave(&xhci->lock, flags);
1496 	/* Make sure the URB hasn't completed or been unlinked already */
1497 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1498 	if (ret || !urb->hcpriv)
1499 		goto done;
1500 	temp = readl(&xhci->op_regs->status);
1501 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1502 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1503 				"HW died, freeing TD.");
1504 		urb_priv = urb->hcpriv;
1505 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1506 			td = urb_priv->td[i];
1507 			if (!list_empty(&td->td_list))
1508 				list_del_init(&td->td_list);
1509 			if (!list_empty(&td->cancelled_td_list))
1510 				list_del_init(&td->cancelled_td_list);
1511 		}
1512 
1513 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1514 		spin_unlock_irqrestore(&xhci->lock, flags);
1515 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1516 		xhci_urb_free_priv(xhci, urb_priv);
1517 		return ret;
1518 	}
1519 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1520 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1521 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1522 				"Ep 0x%x: URB %p to be canceled on "
1523 				"non-responsive xHCI host.",
1524 				urb->ep->desc.bEndpointAddress, urb);
1525 		/* Let the stop endpoint command watchdog timer (which set this
1526 		 * state) finish cleaning up the endpoint TD lists.  We must
1527 		 * have caught it in the middle of dropping a lock and giving
1528 		 * back an URB.
1529 		 */
1530 		goto done;
1531 	}
1532 
1533 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1534 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1535 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1536 	if (!ep_ring) {
1537 		ret = -EINVAL;
1538 		goto done;
1539 	}
1540 
1541 	urb_priv = urb->hcpriv;
1542 	i = urb_priv->td_cnt;
1543 	if (i < urb_priv->length)
1544 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1545 				"Cancel URB %p, dev %s, ep 0x%x, "
1546 				"starting at offset 0x%llx",
1547 				urb, urb->dev->devpath,
1548 				urb->ep->desc.bEndpointAddress,
1549 				(unsigned long long) xhci_trb_virt_to_dma(
1550 					urb_priv->td[i]->start_seg,
1551 					urb_priv->td[i]->first_trb));
1552 
1553 	for (; i < urb_priv->length; i++) {
1554 		td = urb_priv->td[i];
1555 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1556 	}
1557 
1558 	/* Queue a stop endpoint command, but only if this is
1559 	 * the first cancellation to be handled.
1560 	 */
1561 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1562 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1563 		if (!command) {
1564 			ret = -ENOMEM;
1565 			goto done;
1566 		}
1567 		ep->ep_state |= EP_HALT_PENDING;
1568 		ep->stop_cmds_pending++;
1569 		ep->stop_cmd_timer.expires = jiffies +
1570 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1571 		add_timer(&ep->stop_cmd_timer);
1572 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1573 					 ep_index, 0);
1574 		xhci_ring_cmd_db(xhci);
1575 	}
1576 done:
1577 	spin_unlock_irqrestore(&xhci->lock, flags);
1578 	return ret;
1579 }
1580 
1581 /* Drop an endpoint from a new bandwidth configuration for this device.
1582  * Only one call to this function is allowed per endpoint before
1583  * check_bandwidth() or reset_bandwidth() must be called.
1584  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1585  * add the endpoint to the schedule with possibly new parameters denoted by a
1586  * different endpoint descriptor in usb_host_endpoint.
1587  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1588  * not allowed.
1589  *
1590  * The USB core will not allow URBs to be queued to an endpoint that is being
1591  * disabled, so there's no need for mutual exclusion to protect
1592  * the xhci->devs[slot_id] structure.
1593  */
1594 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1595 		struct usb_host_endpoint *ep)
1596 {
1597 	struct xhci_hcd *xhci;
1598 	struct xhci_container_ctx *in_ctx, *out_ctx;
1599 	struct xhci_input_control_ctx *ctrl_ctx;
1600 	unsigned int ep_index;
1601 	struct xhci_ep_ctx *ep_ctx;
1602 	u32 drop_flag;
1603 	u32 new_add_flags, new_drop_flags;
1604 	int ret;
1605 
1606 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1607 	if (ret <= 0)
1608 		return ret;
1609 	xhci = hcd_to_xhci(hcd);
1610 	if (xhci->xhc_state & XHCI_STATE_DYING)
1611 		return -ENODEV;
1612 
1613 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1614 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1615 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1616 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1617 				__func__, drop_flag);
1618 		return 0;
1619 	}
1620 
1621 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1622 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1623 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1624 	if (!ctrl_ctx) {
1625 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1626 				__func__);
1627 		return 0;
1628 	}
1629 
1630 	ep_index = xhci_get_endpoint_index(&ep->desc);
1631 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1632 	/* If the HC already knows the endpoint is disabled,
1633 	 * or the HCD has noted it is disabled, ignore this request
1634 	 */
1635 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1636 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1637 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1638 	    xhci_get_endpoint_flag(&ep->desc)) {
1639 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1640 				__func__, ep);
1641 		return 0;
1642 	}
1643 
1644 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1645 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1646 
1647 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1648 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1649 
1650 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1651 
1652 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1653 			(unsigned int) ep->desc.bEndpointAddress,
1654 			udev->slot_id,
1655 			(unsigned int) new_drop_flags,
1656 			(unsigned int) new_add_flags);
1657 	return 0;
1658 }
1659 
1660 /* Add an endpoint to a new possible bandwidth configuration for this device.
1661  * Only one call to this function is allowed per endpoint before
1662  * check_bandwidth() or reset_bandwidth() must be called.
1663  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1664  * add the endpoint to the schedule with possibly new parameters denoted by a
1665  * different endpoint descriptor in usb_host_endpoint.
1666  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1667  * not allowed.
1668  *
1669  * The USB core will not allow URBs to be queued to an endpoint until the
1670  * configuration or alt setting is installed in the device, so there's no need
1671  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1672  */
1673 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1674 		struct usb_host_endpoint *ep)
1675 {
1676 	struct xhci_hcd *xhci;
1677 	struct xhci_container_ctx *in_ctx, *out_ctx;
1678 	unsigned int ep_index;
1679 	struct xhci_input_control_ctx *ctrl_ctx;
1680 	u32 added_ctxs;
1681 	u32 new_add_flags, new_drop_flags;
1682 	struct xhci_virt_device *virt_dev;
1683 	int ret = 0;
1684 
1685 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1686 	if (ret <= 0) {
1687 		/* So we won't queue a reset ep command for a root hub */
1688 		ep->hcpriv = NULL;
1689 		return ret;
1690 	}
1691 	xhci = hcd_to_xhci(hcd);
1692 	if (xhci->xhc_state & XHCI_STATE_DYING)
1693 		return -ENODEV;
1694 
1695 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1696 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1697 		/* FIXME when we have to issue an evaluate endpoint command to
1698 		 * deal with ep0 max packet size changing once we get the
1699 		 * descriptors
1700 		 */
1701 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1702 				__func__, added_ctxs);
1703 		return 0;
1704 	}
1705 
1706 	virt_dev = xhci->devs[udev->slot_id];
1707 	in_ctx = virt_dev->in_ctx;
1708 	out_ctx = virt_dev->out_ctx;
1709 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1710 	if (!ctrl_ctx) {
1711 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1712 				__func__);
1713 		return 0;
1714 	}
1715 
1716 	ep_index = xhci_get_endpoint_index(&ep->desc);
1717 	/* If this endpoint is already in use, and the upper layers are trying
1718 	 * to add it again without dropping it, reject the addition.
1719 	 */
1720 	if (virt_dev->eps[ep_index].ring &&
1721 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1722 				xhci_get_endpoint_flag(&ep->desc))) {
1723 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1724 				"without dropping it.\n",
1725 				(unsigned int) ep->desc.bEndpointAddress);
1726 		return -EINVAL;
1727 	}
1728 
1729 	/* If the HCD has already noted the endpoint is enabled,
1730 	 * ignore this request.
1731 	 */
1732 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1733 	    xhci_get_endpoint_flag(&ep->desc)) {
1734 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1735 				__func__, ep);
1736 		return 0;
1737 	}
1738 
1739 	/*
1740 	 * Configuration and alternate setting changes must be done in
1741 	 * process context, not interrupt context (or so documenation
1742 	 * for usb_set_interface() and usb_set_configuration() claim).
1743 	 */
1744 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1745 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1746 				__func__, ep->desc.bEndpointAddress);
1747 		return -ENOMEM;
1748 	}
1749 
1750 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1751 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1752 
1753 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1754 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1755 	 * this re-adds a new state for the endpoint from the new endpoint
1756 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1757 	 * drop flags alone.
1758 	 */
1759 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1760 
1761 	/* Store the usb_device pointer for later use */
1762 	ep->hcpriv = udev;
1763 
1764 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1765 			(unsigned int) ep->desc.bEndpointAddress,
1766 			udev->slot_id,
1767 			(unsigned int) new_drop_flags,
1768 			(unsigned int) new_add_flags);
1769 	return 0;
1770 }
1771 
1772 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1773 {
1774 	struct xhci_input_control_ctx *ctrl_ctx;
1775 	struct xhci_ep_ctx *ep_ctx;
1776 	struct xhci_slot_ctx *slot_ctx;
1777 	int i;
1778 
1779 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1780 	if (!ctrl_ctx) {
1781 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1782 				__func__);
1783 		return;
1784 	}
1785 
1786 	/* When a device's add flag and drop flag are zero, any subsequent
1787 	 * configure endpoint command will leave that endpoint's state
1788 	 * untouched.  Make sure we don't leave any old state in the input
1789 	 * endpoint contexts.
1790 	 */
1791 	ctrl_ctx->drop_flags = 0;
1792 	ctrl_ctx->add_flags = 0;
1793 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1794 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1795 	/* Endpoint 0 is always valid */
1796 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1797 	for (i = 1; i < 31; ++i) {
1798 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1799 		ep_ctx->ep_info = 0;
1800 		ep_ctx->ep_info2 = 0;
1801 		ep_ctx->deq = 0;
1802 		ep_ctx->tx_info = 0;
1803 	}
1804 }
1805 
1806 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1807 		struct usb_device *udev, u32 *cmd_status)
1808 {
1809 	int ret;
1810 
1811 	switch (*cmd_status) {
1812 	case COMP_CMD_ABORT:
1813 	case COMP_CMD_STOP:
1814 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1815 		ret = -ETIME;
1816 		break;
1817 	case COMP_ENOMEM:
1818 		dev_warn(&udev->dev,
1819 			 "Not enough host controller resources for new device state.\n");
1820 		ret = -ENOMEM;
1821 		/* FIXME: can we allocate more resources for the HC? */
1822 		break;
1823 	case COMP_BW_ERR:
1824 	case COMP_2ND_BW_ERR:
1825 		dev_warn(&udev->dev,
1826 			 "Not enough bandwidth for new device state.\n");
1827 		ret = -ENOSPC;
1828 		/* FIXME: can we go back to the old state? */
1829 		break;
1830 	case COMP_TRB_ERR:
1831 		/* the HCD set up something wrong */
1832 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1833 				"add flag = 1, "
1834 				"and endpoint is not disabled.\n");
1835 		ret = -EINVAL;
1836 		break;
1837 	case COMP_DEV_ERR:
1838 		dev_warn(&udev->dev,
1839 			 "ERROR: Incompatible device for endpoint configure command.\n");
1840 		ret = -ENODEV;
1841 		break;
1842 	case COMP_SUCCESS:
1843 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1844 				"Successful Endpoint Configure command");
1845 		ret = 0;
1846 		break;
1847 	default:
1848 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1849 				*cmd_status);
1850 		ret = -EINVAL;
1851 		break;
1852 	}
1853 	return ret;
1854 }
1855 
1856 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1857 		struct usb_device *udev, u32 *cmd_status)
1858 {
1859 	int ret;
1860 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1861 
1862 	switch (*cmd_status) {
1863 	case COMP_CMD_ABORT:
1864 	case COMP_CMD_STOP:
1865 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1866 		ret = -ETIME;
1867 		break;
1868 	case COMP_EINVAL:
1869 		dev_warn(&udev->dev,
1870 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1871 		ret = -EINVAL;
1872 		break;
1873 	case COMP_EBADSLT:
1874 		dev_warn(&udev->dev,
1875 			"WARN: slot not enabled for evaluate context command.\n");
1876 		ret = -EINVAL;
1877 		break;
1878 	case COMP_CTX_STATE:
1879 		dev_warn(&udev->dev,
1880 			"WARN: invalid context state for evaluate context command.\n");
1881 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1882 		ret = -EINVAL;
1883 		break;
1884 	case COMP_DEV_ERR:
1885 		dev_warn(&udev->dev,
1886 			"ERROR: Incompatible device for evaluate context command.\n");
1887 		ret = -ENODEV;
1888 		break;
1889 	case COMP_MEL_ERR:
1890 		/* Max Exit Latency too large error */
1891 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1892 		ret = -EINVAL;
1893 		break;
1894 	case COMP_SUCCESS:
1895 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1896 				"Successful evaluate context command");
1897 		ret = 0;
1898 		break;
1899 	default:
1900 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1901 			*cmd_status);
1902 		ret = -EINVAL;
1903 		break;
1904 	}
1905 	return ret;
1906 }
1907 
1908 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1909 		struct xhci_input_control_ctx *ctrl_ctx)
1910 {
1911 	u32 valid_add_flags;
1912 	u32 valid_drop_flags;
1913 
1914 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1915 	 * (bit 1).  The default control endpoint is added during the Address
1916 	 * Device command and is never removed until the slot is disabled.
1917 	 */
1918 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1919 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1920 
1921 	/* Use hweight32 to count the number of ones in the add flags, or
1922 	 * number of endpoints added.  Don't count endpoints that are changed
1923 	 * (both added and dropped).
1924 	 */
1925 	return hweight32(valid_add_flags) -
1926 		hweight32(valid_add_flags & valid_drop_flags);
1927 }
1928 
1929 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1930 		struct xhci_input_control_ctx *ctrl_ctx)
1931 {
1932 	u32 valid_add_flags;
1933 	u32 valid_drop_flags;
1934 
1935 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1936 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1937 
1938 	return hweight32(valid_drop_flags) -
1939 		hweight32(valid_add_flags & valid_drop_flags);
1940 }
1941 
1942 /*
1943  * We need to reserve the new number of endpoints before the configure endpoint
1944  * command completes.  We can't subtract the dropped endpoints from the number
1945  * of active endpoints until the command completes because we can oversubscribe
1946  * the host in this case:
1947  *
1948  *  - the first configure endpoint command drops more endpoints than it adds
1949  *  - a second configure endpoint command that adds more endpoints is queued
1950  *  - the first configure endpoint command fails, so the config is unchanged
1951  *  - the second command may succeed, even though there isn't enough resources
1952  *
1953  * Must be called with xhci->lock held.
1954  */
1955 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1956 		struct xhci_input_control_ctx *ctrl_ctx)
1957 {
1958 	u32 added_eps;
1959 
1960 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1961 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1962 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1963 				"Not enough ep ctxs: "
1964 				"%u active, need to add %u, limit is %u.",
1965 				xhci->num_active_eps, added_eps,
1966 				xhci->limit_active_eps);
1967 		return -ENOMEM;
1968 	}
1969 	xhci->num_active_eps += added_eps;
1970 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1971 			"Adding %u ep ctxs, %u now active.", added_eps,
1972 			xhci->num_active_eps);
1973 	return 0;
1974 }
1975 
1976 /*
1977  * The configure endpoint was failed by the xHC for some other reason, so we
1978  * need to revert the resources that failed configuration would have used.
1979  *
1980  * Must be called with xhci->lock held.
1981  */
1982 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1983 		struct xhci_input_control_ctx *ctrl_ctx)
1984 {
1985 	u32 num_failed_eps;
1986 
1987 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1988 	xhci->num_active_eps -= num_failed_eps;
1989 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1990 			"Removing %u failed ep ctxs, %u now active.",
1991 			num_failed_eps,
1992 			xhci->num_active_eps);
1993 }
1994 
1995 /*
1996  * Now that the command has completed, clean up the active endpoint count by
1997  * subtracting out the endpoints that were dropped (but not changed).
1998  *
1999  * Must be called with xhci->lock held.
2000  */
2001 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2002 		struct xhci_input_control_ctx *ctrl_ctx)
2003 {
2004 	u32 num_dropped_eps;
2005 
2006 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2007 	xhci->num_active_eps -= num_dropped_eps;
2008 	if (num_dropped_eps)
2009 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2010 				"Removing %u dropped ep ctxs, %u now active.",
2011 				num_dropped_eps,
2012 				xhci->num_active_eps);
2013 }
2014 
2015 static unsigned int xhci_get_block_size(struct usb_device *udev)
2016 {
2017 	switch (udev->speed) {
2018 	case USB_SPEED_LOW:
2019 	case USB_SPEED_FULL:
2020 		return FS_BLOCK;
2021 	case USB_SPEED_HIGH:
2022 		return HS_BLOCK;
2023 	case USB_SPEED_SUPER:
2024 		return SS_BLOCK;
2025 	case USB_SPEED_UNKNOWN:
2026 	case USB_SPEED_WIRELESS:
2027 	default:
2028 		/* Should never happen */
2029 		return 1;
2030 	}
2031 }
2032 
2033 static unsigned int
2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2035 {
2036 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2037 		return LS_OVERHEAD;
2038 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2039 		return FS_OVERHEAD;
2040 	return HS_OVERHEAD;
2041 }
2042 
2043 /* If we are changing a LS/FS device under a HS hub,
2044  * make sure (if we are activating a new TT) that the HS bus has enough
2045  * bandwidth for this new TT.
2046  */
2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2048 		struct xhci_virt_device *virt_dev,
2049 		int old_active_eps)
2050 {
2051 	struct xhci_interval_bw_table *bw_table;
2052 	struct xhci_tt_bw_info *tt_info;
2053 
2054 	/* Find the bandwidth table for the root port this TT is attached to. */
2055 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2056 	tt_info = virt_dev->tt_info;
2057 	/* If this TT already had active endpoints, the bandwidth for this TT
2058 	 * has already been added.  Removing all periodic endpoints (and thus
2059 	 * making the TT enactive) will only decrease the bandwidth used.
2060 	 */
2061 	if (old_active_eps)
2062 		return 0;
2063 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2064 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2065 			return -ENOMEM;
2066 		return 0;
2067 	}
2068 	/* Not sure why we would have no new active endpoints...
2069 	 *
2070 	 * Maybe because of an Evaluate Context change for a hub update or a
2071 	 * control endpoint 0 max packet size change?
2072 	 * FIXME: skip the bandwidth calculation in that case.
2073 	 */
2074 	return 0;
2075 }
2076 
2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2078 		struct xhci_virt_device *virt_dev)
2079 {
2080 	unsigned int bw_reserved;
2081 
2082 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2083 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2084 		return -ENOMEM;
2085 
2086 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2087 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2088 		return -ENOMEM;
2089 
2090 	return 0;
2091 }
2092 
2093 /*
2094  * This algorithm is a very conservative estimate of the worst-case scheduling
2095  * scenario for any one interval.  The hardware dynamically schedules the
2096  * packets, so we can't tell which microframe could be the limiting factor in
2097  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2098  *
2099  * Obviously, we can't solve an NP complete problem to find the minimum worst
2100  * case scenario.  Instead, we come up with an estimate that is no less than
2101  * the worst case bandwidth used for any one microframe, but may be an
2102  * over-estimate.
2103  *
2104  * We walk the requirements for each endpoint by interval, starting with the
2105  * smallest interval, and place packets in the schedule where there is only one
2106  * possible way to schedule packets for that interval.  In order to simplify
2107  * this algorithm, we record the largest max packet size for each interval, and
2108  * assume all packets will be that size.
2109  *
2110  * For interval 0, we obviously must schedule all packets for each interval.
2111  * The bandwidth for interval 0 is just the amount of data to be transmitted
2112  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2113  * the number of packets).
2114  *
2115  * For interval 1, we have two possible microframes to schedule those packets
2116  * in.  For this algorithm, if we can schedule the same number of packets for
2117  * each possible scheduling opportunity (each microframe), we will do so.  The
2118  * remaining number of packets will be saved to be transmitted in the gaps in
2119  * the next interval's scheduling sequence.
2120  *
2121  * As we move those remaining packets to be scheduled with interval 2 packets,
2122  * we have to double the number of remaining packets to transmit.  This is
2123  * because the intervals are actually powers of 2, and we would be transmitting
2124  * the previous interval's packets twice in this interval.  We also have to be
2125  * sure that when we look at the largest max packet size for this interval, we
2126  * also look at the largest max packet size for the remaining packets and take
2127  * the greater of the two.
2128  *
2129  * The algorithm continues to evenly distribute packets in each scheduling
2130  * opportunity, and push the remaining packets out, until we get to the last
2131  * interval.  Then those packets and their associated overhead are just added
2132  * to the bandwidth used.
2133  */
2134 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2135 		struct xhci_virt_device *virt_dev,
2136 		int old_active_eps)
2137 {
2138 	unsigned int bw_reserved;
2139 	unsigned int max_bandwidth;
2140 	unsigned int bw_used;
2141 	unsigned int block_size;
2142 	struct xhci_interval_bw_table *bw_table;
2143 	unsigned int packet_size = 0;
2144 	unsigned int overhead = 0;
2145 	unsigned int packets_transmitted = 0;
2146 	unsigned int packets_remaining = 0;
2147 	unsigned int i;
2148 
2149 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2150 		return xhci_check_ss_bw(xhci, virt_dev);
2151 
2152 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2153 		max_bandwidth = HS_BW_LIMIT;
2154 		/* Convert percent of bus BW reserved to blocks reserved */
2155 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2156 	} else {
2157 		max_bandwidth = FS_BW_LIMIT;
2158 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2159 	}
2160 
2161 	bw_table = virt_dev->bw_table;
2162 	/* We need to translate the max packet size and max ESIT payloads into
2163 	 * the units the hardware uses.
2164 	 */
2165 	block_size = xhci_get_block_size(virt_dev->udev);
2166 
2167 	/* If we are manipulating a LS/FS device under a HS hub, double check
2168 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2169 	 */
2170 	if (virt_dev->tt_info) {
2171 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2172 				"Recalculating BW for rootport %u",
2173 				virt_dev->real_port);
2174 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2175 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2176 					"newly activated TT.\n");
2177 			return -ENOMEM;
2178 		}
2179 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 				"Recalculating BW for TT slot %u port %u",
2181 				virt_dev->tt_info->slot_id,
2182 				virt_dev->tt_info->ttport);
2183 	} else {
2184 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185 				"Recalculating BW for rootport %u",
2186 				virt_dev->real_port);
2187 	}
2188 
2189 	/* Add in how much bandwidth will be used for interval zero, or the
2190 	 * rounded max ESIT payload + number of packets * largest overhead.
2191 	 */
2192 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2193 		bw_table->interval_bw[0].num_packets *
2194 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2195 
2196 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2197 		unsigned int bw_added;
2198 		unsigned int largest_mps;
2199 		unsigned int interval_overhead;
2200 
2201 		/*
2202 		 * How many packets could we transmit in this interval?
2203 		 * If packets didn't fit in the previous interval, we will need
2204 		 * to transmit that many packets twice within this interval.
2205 		 */
2206 		packets_remaining = 2 * packets_remaining +
2207 			bw_table->interval_bw[i].num_packets;
2208 
2209 		/* Find the largest max packet size of this or the previous
2210 		 * interval.
2211 		 */
2212 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2213 			largest_mps = 0;
2214 		else {
2215 			struct xhci_virt_ep *virt_ep;
2216 			struct list_head *ep_entry;
2217 
2218 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2219 			virt_ep = list_entry(ep_entry,
2220 					struct xhci_virt_ep, bw_endpoint_list);
2221 			/* Convert to blocks, rounding up */
2222 			largest_mps = DIV_ROUND_UP(
2223 					virt_ep->bw_info.max_packet_size,
2224 					block_size);
2225 		}
2226 		if (largest_mps > packet_size)
2227 			packet_size = largest_mps;
2228 
2229 		/* Use the larger overhead of this or the previous interval. */
2230 		interval_overhead = xhci_get_largest_overhead(
2231 				&bw_table->interval_bw[i]);
2232 		if (interval_overhead > overhead)
2233 			overhead = interval_overhead;
2234 
2235 		/* How many packets can we evenly distribute across
2236 		 * (1 << (i + 1)) possible scheduling opportunities?
2237 		 */
2238 		packets_transmitted = packets_remaining >> (i + 1);
2239 
2240 		/* Add in the bandwidth used for those scheduled packets */
2241 		bw_added = packets_transmitted * (overhead + packet_size);
2242 
2243 		/* How many packets do we have remaining to transmit? */
2244 		packets_remaining = packets_remaining % (1 << (i + 1));
2245 
2246 		/* What largest max packet size should those packets have? */
2247 		/* If we've transmitted all packets, don't carry over the
2248 		 * largest packet size.
2249 		 */
2250 		if (packets_remaining == 0) {
2251 			packet_size = 0;
2252 			overhead = 0;
2253 		} else if (packets_transmitted > 0) {
2254 			/* Otherwise if we do have remaining packets, and we've
2255 			 * scheduled some packets in this interval, take the
2256 			 * largest max packet size from endpoints with this
2257 			 * interval.
2258 			 */
2259 			packet_size = largest_mps;
2260 			overhead = interval_overhead;
2261 		}
2262 		/* Otherwise carry over packet_size and overhead from the last
2263 		 * time we had a remainder.
2264 		 */
2265 		bw_used += bw_added;
2266 		if (bw_used > max_bandwidth) {
2267 			xhci_warn(xhci, "Not enough bandwidth. "
2268 					"Proposed: %u, Max: %u\n",
2269 				bw_used, max_bandwidth);
2270 			return -ENOMEM;
2271 		}
2272 	}
2273 	/*
2274 	 * Ok, we know we have some packets left over after even-handedly
2275 	 * scheduling interval 15.  We don't know which microframes they will
2276 	 * fit into, so we over-schedule and say they will be scheduled every
2277 	 * microframe.
2278 	 */
2279 	if (packets_remaining > 0)
2280 		bw_used += overhead + packet_size;
2281 
2282 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2283 		unsigned int port_index = virt_dev->real_port - 1;
2284 
2285 		/* OK, we're manipulating a HS device attached to a
2286 		 * root port bandwidth domain.  Include the number of active TTs
2287 		 * in the bandwidth used.
2288 		 */
2289 		bw_used += TT_HS_OVERHEAD *
2290 			xhci->rh_bw[port_index].num_active_tts;
2291 	}
2292 
2293 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2295 		"Available: %u " "percent",
2296 		bw_used, max_bandwidth, bw_reserved,
2297 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2298 		max_bandwidth);
2299 
2300 	bw_used += bw_reserved;
2301 	if (bw_used > max_bandwidth) {
2302 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2303 				bw_used, max_bandwidth);
2304 		return -ENOMEM;
2305 	}
2306 
2307 	bw_table->bw_used = bw_used;
2308 	return 0;
2309 }
2310 
2311 static bool xhci_is_async_ep(unsigned int ep_type)
2312 {
2313 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2314 					ep_type != ISOC_IN_EP &&
2315 					ep_type != INT_IN_EP);
2316 }
2317 
2318 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2319 {
2320 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2321 }
2322 
2323 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2324 {
2325 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2326 
2327 	if (ep_bw->ep_interval == 0)
2328 		return SS_OVERHEAD_BURST +
2329 			(ep_bw->mult * ep_bw->num_packets *
2330 					(SS_OVERHEAD + mps));
2331 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2332 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2333 				1 << ep_bw->ep_interval);
2334 
2335 }
2336 
2337 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2338 		struct xhci_bw_info *ep_bw,
2339 		struct xhci_interval_bw_table *bw_table,
2340 		struct usb_device *udev,
2341 		struct xhci_virt_ep *virt_ep,
2342 		struct xhci_tt_bw_info *tt_info)
2343 {
2344 	struct xhci_interval_bw	*interval_bw;
2345 	int normalized_interval;
2346 
2347 	if (xhci_is_async_ep(ep_bw->type))
2348 		return;
2349 
2350 	if (udev->speed == USB_SPEED_SUPER) {
2351 		if (xhci_is_sync_in_ep(ep_bw->type))
2352 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2353 				xhci_get_ss_bw_consumed(ep_bw);
2354 		else
2355 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2356 				xhci_get_ss_bw_consumed(ep_bw);
2357 		return;
2358 	}
2359 
2360 	/* SuperSpeed endpoints never get added to intervals in the table, so
2361 	 * this check is only valid for HS/FS/LS devices.
2362 	 */
2363 	if (list_empty(&virt_ep->bw_endpoint_list))
2364 		return;
2365 	/* For LS/FS devices, we need to translate the interval expressed in
2366 	 * microframes to frames.
2367 	 */
2368 	if (udev->speed == USB_SPEED_HIGH)
2369 		normalized_interval = ep_bw->ep_interval;
2370 	else
2371 		normalized_interval = ep_bw->ep_interval - 3;
2372 
2373 	if (normalized_interval == 0)
2374 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2375 	interval_bw = &bw_table->interval_bw[normalized_interval];
2376 	interval_bw->num_packets -= ep_bw->num_packets;
2377 	switch (udev->speed) {
2378 	case USB_SPEED_LOW:
2379 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2380 		break;
2381 	case USB_SPEED_FULL:
2382 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2383 		break;
2384 	case USB_SPEED_HIGH:
2385 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2386 		break;
2387 	case USB_SPEED_SUPER:
2388 	case USB_SPEED_UNKNOWN:
2389 	case USB_SPEED_WIRELESS:
2390 		/* Should never happen because only LS/FS/HS endpoints will get
2391 		 * added to the endpoint list.
2392 		 */
2393 		return;
2394 	}
2395 	if (tt_info)
2396 		tt_info->active_eps -= 1;
2397 	list_del_init(&virt_ep->bw_endpoint_list);
2398 }
2399 
2400 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2401 		struct xhci_bw_info *ep_bw,
2402 		struct xhci_interval_bw_table *bw_table,
2403 		struct usb_device *udev,
2404 		struct xhci_virt_ep *virt_ep,
2405 		struct xhci_tt_bw_info *tt_info)
2406 {
2407 	struct xhci_interval_bw	*interval_bw;
2408 	struct xhci_virt_ep *smaller_ep;
2409 	int normalized_interval;
2410 
2411 	if (xhci_is_async_ep(ep_bw->type))
2412 		return;
2413 
2414 	if (udev->speed == USB_SPEED_SUPER) {
2415 		if (xhci_is_sync_in_ep(ep_bw->type))
2416 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2417 				xhci_get_ss_bw_consumed(ep_bw);
2418 		else
2419 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2420 				xhci_get_ss_bw_consumed(ep_bw);
2421 		return;
2422 	}
2423 
2424 	/* For LS/FS devices, we need to translate the interval expressed in
2425 	 * microframes to frames.
2426 	 */
2427 	if (udev->speed == USB_SPEED_HIGH)
2428 		normalized_interval = ep_bw->ep_interval;
2429 	else
2430 		normalized_interval = ep_bw->ep_interval - 3;
2431 
2432 	if (normalized_interval == 0)
2433 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2434 	interval_bw = &bw_table->interval_bw[normalized_interval];
2435 	interval_bw->num_packets += ep_bw->num_packets;
2436 	switch (udev->speed) {
2437 	case USB_SPEED_LOW:
2438 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2439 		break;
2440 	case USB_SPEED_FULL:
2441 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2442 		break;
2443 	case USB_SPEED_HIGH:
2444 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2445 		break;
2446 	case USB_SPEED_SUPER:
2447 	case USB_SPEED_UNKNOWN:
2448 	case USB_SPEED_WIRELESS:
2449 		/* Should never happen because only LS/FS/HS endpoints will get
2450 		 * added to the endpoint list.
2451 		 */
2452 		return;
2453 	}
2454 
2455 	if (tt_info)
2456 		tt_info->active_eps += 1;
2457 	/* Insert the endpoint into the list, largest max packet size first. */
2458 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2459 			bw_endpoint_list) {
2460 		if (ep_bw->max_packet_size >=
2461 				smaller_ep->bw_info.max_packet_size) {
2462 			/* Add the new ep before the smaller endpoint */
2463 			list_add_tail(&virt_ep->bw_endpoint_list,
2464 					&smaller_ep->bw_endpoint_list);
2465 			return;
2466 		}
2467 	}
2468 	/* Add the new endpoint at the end of the list. */
2469 	list_add_tail(&virt_ep->bw_endpoint_list,
2470 			&interval_bw->endpoints);
2471 }
2472 
2473 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2474 		struct xhci_virt_device *virt_dev,
2475 		int old_active_eps)
2476 {
2477 	struct xhci_root_port_bw_info *rh_bw_info;
2478 	if (!virt_dev->tt_info)
2479 		return;
2480 
2481 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2482 	if (old_active_eps == 0 &&
2483 				virt_dev->tt_info->active_eps != 0) {
2484 		rh_bw_info->num_active_tts += 1;
2485 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2486 	} else if (old_active_eps != 0 &&
2487 				virt_dev->tt_info->active_eps == 0) {
2488 		rh_bw_info->num_active_tts -= 1;
2489 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2490 	}
2491 }
2492 
2493 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2494 		struct xhci_virt_device *virt_dev,
2495 		struct xhci_container_ctx *in_ctx)
2496 {
2497 	struct xhci_bw_info ep_bw_info[31];
2498 	int i;
2499 	struct xhci_input_control_ctx *ctrl_ctx;
2500 	int old_active_eps = 0;
2501 
2502 	if (virt_dev->tt_info)
2503 		old_active_eps = virt_dev->tt_info->active_eps;
2504 
2505 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2506 	if (!ctrl_ctx) {
2507 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2508 				__func__);
2509 		return -ENOMEM;
2510 	}
2511 
2512 	for (i = 0; i < 31; i++) {
2513 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2514 			continue;
2515 
2516 		/* Make a copy of the BW info in case we need to revert this */
2517 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2518 				sizeof(ep_bw_info[i]));
2519 		/* Drop the endpoint from the interval table if the endpoint is
2520 		 * being dropped or changed.
2521 		 */
2522 		if (EP_IS_DROPPED(ctrl_ctx, i))
2523 			xhci_drop_ep_from_interval_table(xhci,
2524 					&virt_dev->eps[i].bw_info,
2525 					virt_dev->bw_table,
2526 					virt_dev->udev,
2527 					&virt_dev->eps[i],
2528 					virt_dev->tt_info);
2529 	}
2530 	/* Overwrite the information stored in the endpoints' bw_info */
2531 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2532 	for (i = 0; i < 31; i++) {
2533 		/* Add any changed or added endpoints to the interval table */
2534 		if (EP_IS_ADDED(ctrl_ctx, i))
2535 			xhci_add_ep_to_interval_table(xhci,
2536 					&virt_dev->eps[i].bw_info,
2537 					virt_dev->bw_table,
2538 					virt_dev->udev,
2539 					&virt_dev->eps[i],
2540 					virt_dev->tt_info);
2541 	}
2542 
2543 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2544 		/* Ok, this fits in the bandwidth we have.
2545 		 * Update the number of active TTs.
2546 		 */
2547 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2548 		return 0;
2549 	}
2550 
2551 	/* We don't have enough bandwidth for this, revert the stored info. */
2552 	for (i = 0; i < 31; i++) {
2553 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2554 			continue;
2555 
2556 		/* Drop the new copies of any added or changed endpoints from
2557 		 * the interval table.
2558 		 */
2559 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2560 			xhci_drop_ep_from_interval_table(xhci,
2561 					&virt_dev->eps[i].bw_info,
2562 					virt_dev->bw_table,
2563 					virt_dev->udev,
2564 					&virt_dev->eps[i],
2565 					virt_dev->tt_info);
2566 		}
2567 		/* Revert the endpoint back to its old information */
2568 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2569 				sizeof(ep_bw_info[i]));
2570 		/* Add any changed or dropped endpoints back into the table */
2571 		if (EP_IS_DROPPED(ctrl_ctx, i))
2572 			xhci_add_ep_to_interval_table(xhci,
2573 					&virt_dev->eps[i].bw_info,
2574 					virt_dev->bw_table,
2575 					virt_dev->udev,
2576 					&virt_dev->eps[i],
2577 					virt_dev->tt_info);
2578 	}
2579 	return -ENOMEM;
2580 }
2581 
2582 
2583 /* Issue a configure endpoint command or evaluate context command
2584  * and wait for it to finish.
2585  */
2586 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2587 		struct usb_device *udev,
2588 		struct xhci_command *command,
2589 		bool ctx_change, bool must_succeed)
2590 {
2591 	int ret;
2592 	unsigned long flags;
2593 	struct xhci_input_control_ctx *ctrl_ctx;
2594 	struct xhci_virt_device *virt_dev;
2595 
2596 	if (!command)
2597 		return -EINVAL;
2598 
2599 	spin_lock_irqsave(&xhci->lock, flags);
2600 	virt_dev = xhci->devs[udev->slot_id];
2601 
2602 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2603 	if (!ctrl_ctx) {
2604 		spin_unlock_irqrestore(&xhci->lock, flags);
2605 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2606 				__func__);
2607 		return -ENOMEM;
2608 	}
2609 
2610 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2611 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2612 		spin_unlock_irqrestore(&xhci->lock, flags);
2613 		xhci_warn(xhci, "Not enough host resources, "
2614 				"active endpoint contexts = %u\n",
2615 				xhci->num_active_eps);
2616 		return -ENOMEM;
2617 	}
2618 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2619 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2620 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2621 			xhci_free_host_resources(xhci, ctrl_ctx);
2622 		spin_unlock_irqrestore(&xhci->lock, flags);
2623 		xhci_warn(xhci, "Not enough bandwidth\n");
2624 		return -ENOMEM;
2625 	}
2626 
2627 	if (!ctx_change)
2628 		ret = xhci_queue_configure_endpoint(xhci, command,
2629 				command->in_ctx->dma,
2630 				udev->slot_id, must_succeed);
2631 	else
2632 		ret = xhci_queue_evaluate_context(xhci, command,
2633 				command->in_ctx->dma,
2634 				udev->slot_id, must_succeed);
2635 	if (ret < 0) {
2636 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2637 			xhci_free_host_resources(xhci, ctrl_ctx);
2638 		spin_unlock_irqrestore(&xhci->lock, flags);
2639 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2640 				"FIXME allocate a new ring segment");
2641 		return -ENOMEM;
2642 	}
2643 	xhci_ring_cmd_db(xhci);
2644 	spin_unlock_irqrestore(&xhci->lock, flags);
2645 
2646 	/* Wait for the configure endpoint command to complete */
2647 	wait_for_completion(command->completion);
2648 
2649 	if (!ctx_change)
2650 		ret = xhci_configure_endpoint_result(xhci, udev,
2651 						     &command->status);
2652 	else
2653 		ret = xhci_evaluate_context_result(xhci, udev,
2654 						   &command->status);
2655 
2656 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2657 		spin_lock_irqsave(&xhci->lock, flags);
2658 		/* If the command failed, remove the reserved resources.
2659 		 * Otherwise, clean up the estimate to include dropped eps.
2660 		 */
2661 		if (ret)
2662 			xhci_free_host_resources(xhci, ctrl_ctx);
2663 		else
2664 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2665 		spin_unlock_irqrestore(&xhci->lock, flags);
2666 	}
2667 	return ret;
2668 }
2669 
2670 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2671 	struct xhci_virt_device *vdev, int i)
2672 {
2673 	struct xhci_virt_ep *ep = &vdev->eps[i];
2674 
2675 	if (ep->ep_state & EP_HAS_STREAMS) {
2676 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2677 				xhci_get_endpoint_address(i));
2678 		xhci_free_stream_info(xhci, ep->stream_info);
2679 		ep->stream_info = NULL;
2680 		ep->ep_state &= ~EP_HAS_STREAMS;
2681 	}
2682 }
2683 
2684 /* Called after one or more calls to xhci_add_endpoint() or
2685  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2686  * to call xhci_reset_bandwidth().
2687  *
2688  * Since we are in the middle of changing either configuration or
2689  * installing a new alt setting, the USB core won't allow URBs to be
2690  * enqueued for any endpoint on the old config or interface.  Nothing
2691  * else should be touching the xhci->devs[slot_id] structure, so we
2692  * don't need to take the xhci->lock for manipulating that.
2693  */
2694 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2695 {
2696 	int i;
2697 	int ret = 0;
2698 	struct xhci_hcd *xhci;
2699 	struct xhci_virt_device	*virt_dev;
2700 	struct xhci_input_control_ctx *ctrl_ctx;
2701 	struct xhci_slot_ctx *slot_ctx;
2702 	struct xhci_command *command;
2703 
2704 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2705 	if (ret <= 0)
2706 		return ret;
2707 	xhci = hcd_to_xhci(hcd);
2708 	if (xhci->xhc_state & XHCI_STATE_DYING)
2709 		return -ENODEV;
2710 
2711 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2712 	virt_dev = xhci->devs[udev->slot_id];
2713 
2714 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2715 	if (!command)
2716 		return -ENOMEM;
2717 
2718 	command->in_ctx = virt_dev->in_ctx;
2719 
2720 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2721 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2722 	if (!ctrl_ctx) {
2723 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2724 				__func__);
2725 		ret = -ENOMEM;
2726 		goto command_cleanup;
2727 	}
2728 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2729 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2730 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2731 
2732 	/* Don't issue the command if there's no endpoints to update. */
2733 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2734 	    ctrl_ctx->drop_flags == 0) {
2735 		ret = 0;
2736 		goto command_cleanup;
2737 	}
2738 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2739 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2740 	for (i = 31; i >= 1; i--) {
2741 		__le32 le32 = cpu_to_le32(BIT(i));
2742 
2743 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2744 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2745 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2746 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2747 			break;
2748 		}
2749 	}
2750 	xhci_dbg(xhci, "New Input Control Context:\n");
2751 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2752 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2753 
2754 	ret = xhci_configure_endpoint(xhci, udev, command,
2755 			false, false);
2756 	if (ret)
2757 		/* Callee should call reset_bandwidth() */
2758 		goto command_cleanup;
2759 
2760 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763 
2764 	/* Free any rings that were dropped, but not changed. */
2765 	for (i = 1; i < 31; ++i) {
2766 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2768 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2770 		}
2771 	}
2772 	xhci_zero_in_ctx(xhci, virt_dev);
2773 	/*
2774 	 * Install any rings for completely new endpoints or changed endpoints,
2775 	 * and free or cache any old rings from changed endpoints.
2776 	 */
2777 	for (i = 1; i < 31; ++i) {
2778 		if (!virt_dev->eps[i].new_ring)
2779 			continue;
2780 		/* Only cache or free the old ring if it exists.
2781 		 * It may not if this is the first add of an endpoint.
2782 		 */
2783 		if (virt_dev->eps[i].ring) {
2784 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2785 		}
2786 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2787 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2788 		virt_dev->eps[i].new_ring = NULL;
2789 	}
2790 command_cleanup:
2791 	kfree(command->completion);
2792 	kfree(command);
2793 
2794 	return ret;
2795 }
2796 
2797 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2798 {
2799 	struct xhci_hcd *xhci;
2800 	struct xhci_virt_device	*virt_dev;
2801 	int i, ret;
2802 
2803 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804 	if (ret <= 0)
2805 		return;
2806 	xhci = hcd_to_xhci(hcd);
2807 
2808 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2809 	virt_dev = xhci->devs[udev->slot_id];
2810 	/* Free any rings allocated for added endpoints */
2811 	for (i = 0; i < 31; ++i) {
2812 		if (virt_dev->eps[i].new_ring) {
2813 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2814 			virt_dev->eps[i].new_ring = NULL;
2815 		}
2816 	}
2817 	xhci_zero_in_ctx(xhci, virt_dev);
2818 }
2819 
2820 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2821 		struct xhci_container_ctx *in_ctx,
2822 		struct xhci_container_ctx *out_ctx,
2823 		struct xhci_input_control_ctx *ctrl_ctx,
2824 		u32 add_flags, u32 drop_flags)
2825 {
2826 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2827 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2828 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2829 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2830 
2831 	xhci_dbg(xhci, "Input Context:\n");
2832 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2833 }
2834 
2835 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2836 		unsigned int slot_id, unsigned int ep_index,
2837 		struct xhci_dequeue_state *deq_state)
2838 {
2839 	struct xhci_input_control_ctx *ctrl_ctx;
2840 	struct xhci_container_ctx *in_ctx;
2841 	struct xhci_ep_ctx *ep_ctx;
2842 	u32 added_ctxs;
2843 	dma_addr_t addr;
2844 
2845 	in_ctx = xhci->devs[slot_id]->in_ctx;
2846 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2847 	if (!ctrl_ctx) {
2848 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2849 				__func__);
2850 		return;
2851 	}
2852 
2853 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2854 			xhci->devs[slot_id]->out_ctx, ep_index);
2855 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2856 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2857 			deq_state->new_deq_ptr);
2858 	if (addr == 0) {
2859 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2860 				"reset ep command\n");
2861 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2862 				deq_state->new_deq_seg,
2863 				deq_state->new_deq_ptr);
2864 		return;
2865 	}
2866 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2867 
2868 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2869 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2870 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2871 			added_ctxs, added_ctxs);
2872 }
2873 
2874 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2875 		struct usb_device *udev, unsigned int ep_index)
2876 {
2877 	struct xhci_dequeue_state deq_state;
2878 	struct xhci_virt_ep *ep;
2879 
2880 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881 			"Cleaning up stalled endpoint ring");
2882 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883 	/* We need to move the HW's dequeue pointer past this TD,
2884 	 * or it will attempt to resend it on the next doorbell ring.
2885 	 */
2886 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887 			ep_index, ep->stopped_stream, ep->stopped_td,
2888 			&deq_state);
2889 
2890 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2891 		return;
2892 
2893 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2894 	 * issue a configure endpoint command later.
2895 	 */
2896 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2897 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2898 				"Queueing new dequeue state");
2899 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2900 				ep_index, ep->stopped_stream, &deq_state);
2901 	} else {
2902 		/* Better hope no one uses the input context between now and the
2903 		 * reset endpoint completion!
2904 		 * XXX: No idea how this hardware will react when stream rings
2905 		 * are enabled.
2906 		 */
2907 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2908 				"Setting up input context for "
2909 				"configure endpoint command");
2910 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2911 				ep_index, &deq_state);
2912 	}
2913 }
2914 
2915 /* Deal with stalled endpoints.  The core should have sent the control message
2916  * to clear the halt condition.  However, we need to make the xHCI hardware
2917  * reset its sequence number, since a device will expect a sequence number of
2918  * zero after the halt condition is cleared.
2919  * Context: in_interrupt
2920  */
2921 void xhci_endpoint_reset(struct usb_hcd *hcd,
2922 		struct usb_host_endpoint *ep)
2923 {
2924 	struct xhci_hcd *xhci;
2925 	struct usb_device *udev;
2926 	unsigned int ep_index;
2927 	unsigned long flags;
2928 	int ret;
2929 	struct xhci_virt_ep *virt_ep;
2930 	struct xhci_command *command;
2931 
2932 	xhci = hcd_to_xhci(hcd);
2933 	udev = (struct usb_device *) ep->hcpriv;
2934 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2935 	 * with xhci_add_endpoint()
2936 	 */
2937 	if (!ep->hcpriv)
2938 		return;
2939 	ep_index = xhci_get_endpoint_index(&ep->desc);
2940 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2941 	if (!virt_ep->stopped_td) {
2942 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943 			"Endpoint 0x%x not halted, refusing to reset.",
2944 			ep->desc.bEndpointAddress);
2945 		return;
2946 	}
2947 	if (usb_endpoint_xfer_control(&ep->desc)) {
2948 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2949 				"Control endpoint stall already handled.");
2950 		return;
2951 	}
2952 
2953 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2954 	if (!command)
2955 		return;
2956 
2957 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2958 			"Queueing reset endpoint command");
2959 	spin_lock_irqsave(&xhci->lock, flags);
2960 	ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2961 	/*
2962 	 * Can't change the ring dequeue pointer until it's transitioned to the
2963 	 * stopped state, which is only upon a successful reset endpoint
2964 	 * command.  Better hope that last command worked!
2965 	 */
2966 	if (!ret) {
2967 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2968 		kfree(virt_ep->stopped_td);
2969 		xhci_ring_cmd_db(xhci);
2970 	}
2971 	virt_ep->stopped_td = NULL;
2972 	virt_ep->stopped_stream = 0;
2973 	spin_unlock_irqrestore(&xhci->lock, flags);
2974 
2975 	if (ret)
2976 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2977 }
2978 
2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980 		struct usb_device *udev, struct usb_host_endpoint *ep,
2981 		unsigned int slot_id)
2982 {
2983 	int ret;
2984 	unsigned int ep_index;
2985 	unsigned int ep_state;
2986 
2987 	if (!ep)
2988 		return -EINVAL;
2989 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990 	if (ret <= 0)
2991 		return -EINVAL;
2992 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994 				" descriptor for ep 0x%x does not support streams\n",
2995 				ep->desc.bEndpointAddress);
2996 		return -EINVAL;
2997 	}
2998 
2999 	ep_index = xhci_get_endpoint_index(&ep->desc);
3000 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001 	if (ep_state & EP_HAS_STREAMS ||
3002 			ep_state & EP_GETTING_STREAMS) {
3003 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004 				"already has streams set up.\n",
3005 				ep->desc.bEndpointAddress);
3006 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007 				"dynamic stream context array reallocation.\n");
3008 		return -EINVAL;
3009 	}
3010 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012 				"endpoint 0x%x; URBs are pending.\n",
3013 				ep->desc.bEndpointAddress);
3014 		return -EINVAL;
3015 	}
3016 	return 0;
3017 }
3018 
3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021 {
3022 	unsigned int max_streams;
3023 
3024 	/* The stream context array size must be a power of two */
3025 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026 	/*
3027 	 * Find out how many primary stream array entries the host controller
3028 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3029 	 * level page entries), but that's an optional feature for xHCI host
3030 	 * controllers. xHCs must support at least 4 stream IDs.
3031 	 */
3032 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033 	if (*num_stream_ctxs > max_streams) {
3034 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035 				max_streams);
3036 		*num_stream_ctxs = max_streams;
3037 		*num_streams = max_streams;
3038 	}
3039 }
3040 
3041 /* Returns an error code if one of the endpoint already has streams.
3042  * This does not change any data structures, it only checks and gathers
3043  * information.
3044  */
3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046 		struct usb_device *udev,
3047 		struct usb_host_endpoint **eps, unsigned int num_eps,
3048 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3049 {
3050 	unsigned int max_streams;
3051 	unsigned int endpoint_flag;
3052 	int i;
3053 	int ret;
3054 
3055 	for (i = 0; i < num_eps; i++) {
3056 		ret = xhci_check_streams_endpoint(xhci, udev,
3057 				eps[i], udev->slot_id);
3058 		if (ret < 0)
3059 			return ret;
3060 
3061 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062 		if (max_streams < (*num_streams - 1)) {
3063 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064 					eps[i]->desc.bEndpointAddress,
3065 					max_streams);
3066 			*num_streams = max_streams+1;
3067 		}
3068 
3069 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070 		if (*changed_ep_bitmask & endpoint_flag)
3071 			return -EINVAL;
3072 		*changed_ep_bitmask |= endpoint_flag;
3073 	}
3074 	return 0;
3075 }
3076 
3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078 		struct usb_device *udev,
3079 		struct usb_host_endpoint **eps, unsigned int num_eps)
3080 {
3081 	u32 changed_ep_bitmask = 0;
3082 	unsigned int slot_id;
3083 	unsigned int ep_index;
3084 	unsigned int ep_state;
3085 	int i;
3086 
3087 	slot_id = udev->slot_id;
3088 	if (!xhci->devs[slot_id])
3089 		return 0;
3090 
3091 	for (i = 0; i < num_eps; i++) {
3092 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094 		/* Are streams already being freed for the endpoint? */
3095 		if (ep_state & EP_GETTING_NO_STREAMS) {
3096 			xhci_warn(xhci, "WARN Can't disable streams for "
3097 					"endpoint 0x%x, "
3098 					"streams are being disabled already\n",
3099 					eps[i]->desc.bEndpointAddress);
3100 			return 0;
3101 		}
3102 		/* Are there actually any streams to free? */
3103 		if (!(ep_state & EP_HAS_STREAMS) &&
3104 				!(ep_state & EP_GETTING_STREAMS)) {
3105 			xhci_warn(xhci, "WARN Can't disable streams for "
3106 					"endpoint 0x%x, "
3107 					"streams are already disabled!\n",
3108 					eps[i]->desc.bEndpointAddress);
3109 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3110 					"with non-streams endpoint\n");
3111 			return 0;
3112 		}
3113 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114 	}
3115 	return changed_ep_bitmask;
3116 }
3117 
3118 /*
3119  * The USB device drivers use this function (though the HCD interface in USB
3120  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121  * coordinate mass storage command queueing across multiple endpoints (basically
3122  * a stream ID == a task ID).
3123  *
3124  * Setting up streams involves allocating the same size stream context array
3125  * for each endpoint and issuing a configure endpoint command for all endpoints.
3126  *
3127  * Don't allow the call to succeed if one endpoint only supports one stream
3128  * (which means it doesn't support streams at all).
3129  *
3130  * Drivers may get less stream IDs than they asked for, if the host controller
3131  * hardware or endpoints claim they can't support the number of requested
3132  * stream IDs.
3133  */
3134 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135 		struct usb_host_endpoint **eps, unsigned int num_eps,
3136 		unsigned int num_streams, gfp_t mem_flags)
3137 {
3138 	int i, ret;
3139 	struct xhci_hcd *xhci;
3140 	struct xhci_virt_device *vdev;
3141 	struct xhci_command *config_cmd;
3142 	struct xhci_input_control_ctx *ctrl_ctx;
3143 	unsigned int ep_index;
3144 	unsigned int num_stream_ctxs;
3145 	unsigned long flags;
3146 	u32 changed_ep_bitmask = 0;
3147 
3148 	if (!eps)
3149 		return -EINVAL;
3150 
3151 	/* Add one to the number of streams requested to account for
3152 	 * stream 0 that is reserved for xHCI usage.
3153 	 */
3154 	num_streams += 1;
3155 	xhci = hcd_to_xhci(hcd);
3156 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3157 			num_streams);
3158 
3159 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3160 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3161 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3162 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3163 		return -ENOSYS;
3164 	}
3165 
3166 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3167 	if (!config_cmd) {
3168 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3169 		return -ENOMEM;
3170 	}
3171 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3172 	if (!ctrl_ctx) {
3173 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174 				__func__);
3175 		xhci_free_command(xhci, config_cmd);
3176 		return -ENOMEM;
3177 	}
3178 
3179 	/* Check to make sure all endpoints are not already configured for
3180 	 * streams.  While we're at it, find the maximum number of streams that
3181 	 * all the endpoints will support and check for duplicate endpoints.
3182 	 */
3183 	spin_lock_irqsave(&xhci->lock, flags);
3184 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185 			num_eps, &num_streams, &changed_ep_bitmask);
3186 	if (ret < 0) {
3187 		xhci_free_command(xhci, config_cmd);
3188 		spin_unlock_irqrestore(&xhci->lock, flags);
3189 		return ret;
3190 	}
3191 	if (num_streams <= 1) {
3192 		xhci_warn(xhci, "WARN: endpoints can't handle "
3193 				"more than one stream.\n");
3194 		xhci_free_command(xhci, config_cmd);
3195 		spin_unlock_irqrestore(&xhci->lock, flags);
3196 		return -EINVAL;
3197 	}
3198 	vdev = xhci->devs[udev->slot_id];
3199 	/* Mark each endpoint as being in transition, so
3200 	 * xhci_urb_enqueue() will reject all URBs.
3201 	 */
3202 	for (i = 0; i < num_eps; i++) {
3203 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205 	}
3206 	spin_unlock_irqrestore(&xhci->lock, flags);
3207 
3208 	/* Setup internal data structures and allocate HW data structures for
3209 	 * streams (but don't install the HW structures in the input context
3210 	 * until we're sure all memory allocation succeeded).
3211 	 */
3212 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214 			num_stream_ctxs, num_streams);
3215 
3216 	for (i = 0; i < num_eps; i++) {
3217 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3219 				num_stream_ctxs,
3220 				num_streams, mem_flags);
3221 		if (!vdev->eps[ep_index].stream_info)
3222 			goto cleanup;
3223 		/* Set maxPstreams in endpoint context and update deq ptr to
3224 		 * point to stream context array. FIXME
3225 		 */
3226 	}
3227 
3228 	/* Set up the input context for a configure endpoint command. */
3229 	for (i = 0; i < num_eps; i++) {
3230 		struct xhci_ep_ctx *ep_ctx;
3231 
3232 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3234 
3235 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3236 				vdev->out_ctx, ep_index);
3237 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3238 				vdev->eps[ep_index].stream_info);
3239 	}
3240 	/* Tell the HW to drop its old copy of the endpoint context info
3241 	 * and add the updated copy from the input context.
3242 	 */
3243 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3244 			vdev->out_ctx, ctrl_ctx,
3245 			changed_ep_bitmask, changed_ep_bitmask);
3246 
3247 	/* Issue and wait for the configure endpoint command */
3248 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3249 			false, false);
3250 
3251 	/* xHC rejected the configure endpoint command for some reason, so we
3252 	 * leave the old ring intact and free our internal streams data
3253 	 * structure.
3254 	 */
3255 	if (ret < 0)
3256 		goto cleanup;
3257 
3258 	spin_lock_irqsave(&xhci->lock, flags);
3259 	for (i = 0; i < num_eps; i++) {
3260 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3262 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3263 			 udev->slot_id, ep_index);
3264 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3265 	}
3266 	xhci_free_command(xhci, config_cmd);
3267 	spin_unlock_irqrestore(&xhci->lock, flags);
3268 
3269 	/* Subtract 1 for stream 0, which drivers can't use */
3270 	return num_streams - 1;
3271 
3272 cleanup:
3273 	/* If it didn't work, free the streams! */
3274 	for (i = 0; i < num_eps; i++) {
3275 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3277 		vdev->eps[ep_index].stream_info = NULL;
3278 		/* FIXME Unset maxPstreams in endpoint context and
3279 		 * update deq ptr to point to normal string ring.
3280 		 */
3281 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3282 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3283 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3284 	}
3285 	xhci_free_command(xhci, config_cmd);
3286 	return -ENOMEM;
3287 }
3288 
3289 /* Transition the endpoint from using streams to being a "normal" endpoint
3290  * without streams.
3291  *
3292  * Modify the endpoint context state, submit a configure endpoint command,
3293  * and free all endpoint rings for streams if that completes successfully.
3294  */
3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3296 		struct usb_host_endpoint **eps, unsigned int num_eps,
3297 		gfp_t mem_flags)
3298 {
3299 	int i, ret;
3300 	struct xhci_hcd *xhci;
3301 	struct xhci_virt_device *vdev;
3302 	struct xhci_command *command;
3303 	struct xhci_input_control_ctx *ctrl_ctx;
3304 	unsigned int ep_index;
3305 	unsigned long flags;
3306 	u32 changed_ep_bitmask;
3307 
3308 	xhci = hcd_to_xhci(hcd);
3309 	vdev = xhci->devs[udev->slot_id];
3310 
3311 	/* Set up a configure endpoint command to remove the streams rings */
3312 	spin_lock_irqsave(&xhci->lock, flags);
3313 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3314 			udev, eps, num_eps);
3315 	if (changed_ep_bitmask == 0) {
3316 		spin_unlock_irqrestore(&xhci->lock, flags);
3317 		return -EINVAL;
3318 	}
3319 
3320 	/* Use the xhci_command structure from the first endpoint.  We may have
3321 	 * allocated too many, but the driver may call xhci_free_streams() for
3322 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3323 	 */
3324 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3325 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3326 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3327 	if (!ctrl_ctx) {
3328 		spin_unlock_irqrestore(&xhci->lock, flags);
3329 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3330 				__func__);
3331 		return -EINVAL;
3332 	}
3333 
3334 	for (i = 0; i < num_eps; i++) {
3335 		struct xhci_ep_ctx *ep_ctx;
3336 
3337 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3338 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3339 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3340 			EP_GETTING_NO_STREAMS;
3341 
3342 		xhci_endpoint_copy(xhci, command->in_ctx,
3343 				vdev->out_ctx, ep_index);
3344 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3345 				&vdev->eps[ep_index]);
3346 	}
3347 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3348 			vdev->out_ctx, ctrl_ctx,
3349 			changed_ep_bitmask, changed_ep_bitmask);
3350 	spin_unlock_irqrestore(&xhci->lock, flags);
3351 
3352 	/* Issue and wait for the configure endpoint command,
3353 	 * which must succeed.
3354 	 */
3355 	ret = xhci_configure_endpoint(xhci, udev, command,
3356 			false, true);
3357 
3358 	/* xHC rejected the configure endpoint command for some reason, so we
3359 	 * leave the streams rings intact.
3360 	 */
3361 	if (ret < 0)
3362 		return ret;
3363 
3364 	spin_lock_irqsave(&xhci->lock, flags);
3365 	for (i = 0; i < num_eps; i++) {
3366 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3367 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3368 		vdev->eps[ep_index].stream_info = NULL;
3369 		/* FIXME Unset maxPstreams in endpoint context and
3370 		 * update deq ptr to point to normal string ring.
3371 		 */
3372 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3373 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3374 	}
3375 	spin_unlock_irqrestore(&xhci->lock, flags);
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Deletes endpoint resources for endpoints that were active before a Reset
3382  * Device command, or a Disable Slot command.  The Reset Device command leaves
3383  * the control endpoint intact, whereas the Disable Slot command deletes it.
3384  *
3385  * Must be called with xhci->lock held.
3386  */
3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3388 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3389 {
3390 	int i;
3391 	unsigned int num_dropped_eps = 0;
3392 	unsigned int drop_flags = 0;
3393 
3394 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3395 		if (virt_dev->eps[i].ring) {
3396 			drop_flags |= 1 << i;
3397 			num_dropped_eps++;
3398 		}
3399 	}
3400 	xhci->num_active_eps -= num_dropped_eps;
3401 	if (num_dropped_eps)
3402 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3403 				"Dropped %u ep ctxs, flags = 0x%x, "
3404 				"%u now active.",
3405 				num_dropped_eps, drop_flags,
3406 				xhci->num_active_eps);
3407 }
3408 
3409 /*
3410  * This submits a Reset Device Command, which will set the device state to 0,
3411  * set the device address to 0, and disable all the endpoints except the default
3412  * control endpoint.  The USB core should come back and call
3413  * xhci_address_device(), and then re-set up the configuration.  If this is
3414  * called because of a usb_reset_and_verify_device(), then the old alternate
3415  * settings will be re-installed through the normal bandwidth allocation
3416  * functions.
3417  *
3418  * Wait for the Reset Device command to finish.  Remove all structures
3419  * associated with the endpoints that were disabled.  Clear the input device
3420  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3421  *
3422  * If the virt_dev to be reset does not exist or does not match the udev,
3423  * it means the device is lost, possibly due to the xHC restore error and
3424  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3425  * re-allocate the device.
3426  */
3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3428 {
3429 	int ret, i;
3430 	unsigned long flags;
3431 	struct xhci_hcd *xhci;
3432 	unsigned int slot_id;
3433 	struct xhci_virt_device *virt_dev;
3434 	struct xhci_command *reset_device_cmd;
3435 	int last_freed_endpoint;
3436 	struct xhci_slot_ctx *slot_ctx;
3437 	int old_active_eps = 0;
3438 
3439 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3440 	if (ret <= 0)
3441 		return ret;
3442 	xhci = hcd_to_xhci(hcd);
3443 	slot_id = udev->slot_id;
3444 	virt_dev = xhci->devs[slot_id];
3445 	if (!virt_dev) {
3446 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447 				"not exist. Re-allocate the device\n", slot_id);
3448 		ret = xhci_alloc_dev(hcd, udev);
3449 		if (ret == 1)
3450 			return 0;
3451 		else
3452 			return -EINVAL;
3453 	}
3454 
3455 	if (virt_dev->udev != udev) {
3456 		/* If the virt_dev and the udev does not match, this virt_dev
3457 		 * may belong to another udev.
3458 		 * Re-allocate the device.
3459 		 */
3460 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3461 				"not match the udev. Re-allocate the device\n",
3462 				slot_id);
3463 		ret = xhci_alloc_dev(hcd, udev);
3464 		if (ret == 1)
3465 			return 0;
3466 		else
3467 			return -EINVAL;
3468 	}
3469 
3470 	/* If device is not setup, there is no point in resetting it */
3471 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3472 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3473 						SLOT_STATE_DISABLED)
3474 		return 0;
3475 
3476 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3477 	/* Allocate the command structure that holds the struct completion.
3478 	 * Assume we're in process context, since the normal device reset
3479 	 * process has to wait for the device anyway.  Storage devices are
3480 	 * reset as part of error handling, so use GFP_NOIO instead of
3481 	 * GFP_KERNEL.
3482 	 */
3483 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3484 	if (!reset_device_cmd) {
3485 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3486 		return -ENOMEM;
3487 	}
3488 
3489 	/* Attempt to submit the Reset Device command to the command ring */
3490 	spin_lock_irqsave(&xhci->lock, flags);
3491 
3492 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3493 	if (ret) {
3494 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3495 		spin_unlock_irqrestore(&xhci->lock, flags);
3496 		goto command_cleanup;
3497 	}
3498 	xhci_ring_cmd_db(xhci);
3499 	spin_unlock_irqrestore(&xhci->lock, flags);
3500 
3501 	/* Wait for the Reset Device command to finish */
3502 	wait_for_completion(reset_device_cmd->completion);
3503 
3504 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505 	 * unless we tried to reset a slot ID that wasn't enabled,
3506 	 * or the device wasn't in the addressed or configured state.
3507 	 */
3508 	ret = reset_device_cmd->status;
3509 	switch (ret) {
3510 	case COMP_CMD_ABORT:
3511 	case COMP_CMD_STOP:
3512 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3513 		ret = -ETIME;
3514 		goto command_cleanup;
3515 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3516 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3517 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3518 				slot_id,
3519 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3520 		xhci_dbg(xhci, "Not freeing device rings.\n");
3521 		/* Don't treat this as an error.  May change my mind later. */
3522 		ret = 0;
3523 		goto command_cleanup;
3524 	case COMP_SUCCESS:
3525 		xhci_dbg(xhci, "Successful reset device command.\n");
3526 		break;
3527 	default:
3528 		if (xhci_is_vendor_info_code(xhci, ret))
3529 			break;
3530 		xhci_warn(xhci, "Unknown completion code %u for "
3531 				"reset device command.\n", ret);
3532 		ret = -EINVAL;
3533 		goto command_cleanup;
3534 	}
3535 
3536 	/* Free up host controller endpoint resources */
3537 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3538 		spin_lock_irqsave(&xhci->lock, flags);
3539 		/* Don't delete the default control endpoint resources */
3540 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3541 		spin_unlock_irqrestore(&xhci->lock, flags);
3542 	}
3543 
3544 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3545 	last_freed_endpoint = 1;
3546 	for (i = 1; i < 31; ++i) {
3547 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3548 
3549 		if (ep->ep_state & EP_HAS_STREAMS) {
3550 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3551 					xhci_get_endpoint_address(i));
3552 			xhci_free_stream_info(xhci, ep->stream_info);
3553 			ep->stream_info = NULL;
3554 			ep->ep_state &= ~EP_HAS_STREAMS;
3555 		}
3556 
3557 		if (ep->ring) {
3558 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3559 			last_freed_endpoint = i;
3560 		}
3561 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3562 			xhci_drop_ep_from_interval_table(xhci,
3563 					&virt_dev->eps[i].bw_info,
3564 					virt_dev->bw_table,
3565 					udev,
3566 					&virt_dev->eps[i],
3567 					virt_dev->tt_info);
3568 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3569 	}
3570 	/* If necessary, update the number of active TTs on this root port */
3571 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3572 
3573 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3574 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3575 	ret = 0;
3576 
3577 command_cleanup:
3578 	xhci_free_command(xhci, reset_device_cmd);
3579 	return ret;
3580 }
3581 
3582 /*
3583  * At this point, the struct usb_device is about to go away, the device has
3584  * disconnected, and all traffic has been stopped and the endpoints have been
3585  * disabled.  Free any HC data structures associated with that device.
3586  */
3587 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3588 {
3589 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3590 	struct xhci_virt_device *virt_dev;
3591 	unsigned long flags;
3592 	u32 state;
3593 	int i, ret;
3594 	struct xhci_command *command;
3595 
3596 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3597 	if (!command)
3598 		return;
3599 
3600 #ifndef CONFIG_USB_DEFAULT_PERSIST
3601 	/*
3602 	 * We called pm_runtime_get_noresume when the device was attached.
3603 	 * Decrement the counter here to allow controller to runtime suspend
3604 	 * if no devices remain.
3605 	 */
3606 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3607 		pm_runtime_put_noidle(hcd->self.controller);
3608 #endif
3609 
3610 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3611 	/* If the host is halted due to driver unload, we still need to free the
3612 	 * device.
3613 	 */
3614 	if (ret <= 0 && ret != -ENODEV) {
3615 		kfree(command);
3616 		return;
3617 	}
3618 
3619 	virt_dev = xhci->devs[udev->slot_id];
3620 
3621 	/* Stop any wayward timer functions (which may grab the lock) */
3622 	for (i = 0; i < 31; ++i) {
3623 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3624 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3625 	}
3626 
3627 	spin_lock_irqsave(&xhci->lock, flags);
3628 	/* Don't disable the slot if the host controller is dead. */
3629 	state = readl(&xhci->op_regs->status);
3630 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3631 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3632 		xhci_free_virt_device(xhci, udev->slot_id);
3633 		spin_unlock_irqrestore(&xhci->lock, flags);
3634 		kfree(command);
3635 		return;
3636 	}
3637 
3638 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3639 				    udev->slot_id)) {
3640 		spin_unlock_irqrestore(&xhci->lock, flags);
3641 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3642 		return;
3643 	}
3644 	xhci_ring_cmd_db(xhci);
3645 	spin_unlock_irqrestore(&xhci->lock, flags);
3646 
3647 	/*
3648 	 * Event command completion handler will free any data structures
3649 	 * associated with the slot.  XXX Can free sleep?
3650 	 */
3651 }
3652 
3653 /*
3654  * Checks if we have enough host controller resources for the default control
3655  * endpoint.
3656  *
3657  * Must be called with xhci->lock held.
3658  */
3659 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3660 {
3661 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3662 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3663 				"Not enough ep ctxs: "
3664 				"%u active, need to add 1, limit is %u.",
3665 				xhci->num_active_eps, xhci->limit_active_eps);
3666 		return -ENOMEM;
3667 	}
3668 	xhci->num_active_eps += 1;
3669 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670 			"Adding 1 ep ctx, %u now active.",
3671 			xhci->num_active_eps);
3672 	return 0;
3673 }
3674 
3675 
3676 /*
3677  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3678  * timed out, or allocating memory failed.  Returns 1 on success.
3679  */
3680 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3681 {
3682 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3683 	unsigned long flags;
3684 	int ret;
3685 	struct xhci_command *command;
3686 
3687 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3688 	if (!command)
3689 		return 0;
3690 
3691 	spin_lock_irqsave(&xhci->lock, flags);
3692 	command->completion = &xhci->addr_dev;
3693 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3694 	if (ret) {
3695 		spin_unlock_irqrestore(&xhci->lock, flags);
3696 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697 		kfree(command);
3698 		return 0;
3699 	}
3700 	xhci_ring_cmd_db(xhci);
3701 	spin_unlock_irqrestore(&xhci->lock, flags);
3702 
3703 	wait_for_completion(command->completion);
3704 
3705 	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3706 		xhci_err(xhci, "Error while assigning device slot ID\n");
3707 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3708 				HCS_MAX_SLOTS(
3709 					readl(&xhci->cap_regs->hcs_params1)));
3710 		kfree(command);
3711 		return 0;
3712 	}
3713 
3714 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3715 		spin_lock_irqsave(&xhci->lock, flags);
3716 		ret = xhci_reserve_host_control_ep_resources(xhci);
3717 		if (ret) {
3718 			spin_unlock_irqrestore(&xhci->lock, flags);
3719 			xhci_warn(xhci, "Not enough host resources, "
3720 					"active endpoint contexts = %u\n",
3721 					xhci->num_active_eps);
3722 			goto disable_slot;
3723 		}
3724 		spin_unlock_irqrestore(&xhci->lock, flags);
3725 	}
3726 	/* Use GFP_NOIO, since this function can be called from
3727 	 * xhci_discover_or_reset_device(), which may be called as part of
3728 	 * mass storage driver error handling.
3729 	 */
3730 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3731 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3732 		goto disable_slot;
3733 	}
3734 	udev->slot_id = xhci->slot_id;
3735 
3736 #ifndef CONFIG_USB_DEFAULT_PERSIST
3737 	/*
3738 	 * If resetting upon resume, we can't put the controller into runtime
3739 	 * suspend if there is a device attached.
3740 	 */
3741 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3742 		pm_runtime_get_noresume(hcd->self.controller);
3743 #endif
3744 
3745 
3746 	kfree(command);
3747 	/* Is this a LS or FS device under a HS hub? */
3748 	/* Hub or peripherial? */
3749 	return 1;
3750 
3751 disable_slot:
3752 	/* Disable slot, if we can do it without mem alloc */
3753 	spin_lock_irqsave(&xhci->lock, flags);
3754 	command->completion = NULL;
3755 	command->status = 0;
3756 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3757 				     udev->slot_id))
3758 		xhci_ring_cmd_db(xhci);
3759 	spin_unlock_irqrestore(&xhci->lock, flags);
3760 	return 0;
3761 }
3762 
3763 /*
3764  * Issue an Address Device command and optionally send a corresponding
3765  * SetAddress request to the device.
3766  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3767  * so we should only issue and wait on one address command at the same time.
3768  */
3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3770 			     enum xhci_setup_dev setup)
3771 {
3772 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3773 	unsigned long flags;
3774 	struct xhci_virt_device *virt_dev;
3775 	int ret = 0;
3776 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3777 	struct xhci_slot_ctx *slot_ctx;
3778 	struct xhci_input_control_ctx *ctrl_ctx;
3779 	u64 temp_64;
3780 	struct xhci_command *command;
3781 
3782 	if (!udev->slot_id) {
3783 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784 				"Bad Slot ID %d", udev->slot_id);
3785 		return -EINVAL;
3786 	}
3787 
3788 	virt_dev = xhci->devs[udev->slot_id];
3789 
3790 	if (WARN_ON(!virt_dev)) {
3791 		/*
3792 		 * In plug/unplug torture test with an NEC controller,
3793 		 * a zero-dereference was observed once due to virt_dev = 0.
3794 		 * Print useful debug rather than crash if it is observed again!
3795 		 */
3796 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3797 			udev->slot_id);
3798 		return -EINVAL;
3799 	}
3800 
3801 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3802 	if (!command)
3803 		return -ENOMEM;
3804 
3805 	command->in_ctx = virt_dev->in_ctx;
3806 	command->completion = &xhci->addr_dev;
3807 
3808 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3809 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3810 	if (!ctrl_ctx) {
3811 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3812 				__func__);
3813 		kfree(command);
3814 		return -EINVAL;
3815 	}
3816 	/*
3817 	 * If this is the first Set Address since device plug-in or
3818 	 * virt_device realloaction after a resume with an xHCI power loss,
3819 	 * then set up the slot context.
3820 	 */
3821 	if (!slot_ctx->dev_info)
3822 		xhci_setup_addressable_virt_dev(xhci, udev);
3823 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3824 	else
3825 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3826 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3827 	ctrl_ctx->drop_flags = 0;
3828 
3829 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3830 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3831 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3832 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3833 
3834 	spin_lock_irqsave(&xhci->lock, flags);
3835 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3836 					udev->slot_id, setup);
3837 	if (ret) {
3838 		spin_unlock_irqrestore(&xhci->lock, flags);
3839 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3840 				"FIXME: allocate a command ring segment");
3841 		kfree(command);
3842 		return ret;
3843 	}
3844 	xhci_ring_cmd_db(xhci);
3845 	spin_unlock_irqrestore(&xhci->lock, flags);
3846 
3847 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3848 	wait_for_completion(command->completion);
3849 
3850 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3851 	 * the SetAddress() "recovery interval" required by USB and aborting the
3852 	 * command on a timeout.
3853 	 */
3854 	switch (command->status) {
3855 	case COMP_CMD_ABORT:
3856 	case COMP_CMD_STOP:
3857 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3858 		ret = -ETIME;
3859 		break;
3860 	case COMP_CTX_STATE:
3861 	case COMP_EBADSLT:
3862 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3863 			 act, udev->slot_id);
3864 		ret = -EINVAL;
3865 		break;
3866 	case COMP_TX_ERR:
3867 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3868 		ret = -EPROTO;
3869 		break;
3870 	case COMP_DEV_ERR:
3871 		dev_warn(&udev->dev,
3872 			 "ERROR: Incompatible device for setup %s command\n", act);
3873 		ret = -ENODEV;
3874 		break;
3875 	case COMP_SUCCESS:
3876 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877 			       "Successful setup %s command", act);
3878 		break;
3879 	default:
3880 		xhci_err(xhci,
3881 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3882 			 act, command->status);
3883 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3884 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3885 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3886 		ret = -EINVAL;
3887 		break;
3888 	}
3889 	if (ret) {
3890 		kfree(command);
3891 		return ret;
3892 	}
3893 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3894 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3895 			"Op regs DCBAA ptr = %#016llx", temp_64);
3896 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897 		"Slot ID %d dcbaa entry @%p = %#016llx",
3898 		udev->slot_id,
3899 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3900 		(unsigned long long)
3901 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3902 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903 			"Output Context DMA address = %#08llx",
3904 			(unsigned long long)virt_dev->out_ctx->dma);
3905 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3906 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3907 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3908 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3909 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3910 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3911 	/*
3912 	 * USB core uses address 1 for the roothubs, so we add one to the
3913 	 * address given back to us by the HC.
3914 	 */
3915 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3916 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3917 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3918 	/* Zero the input context control for later use */
3919 	ctrl_ctx->add_flags = 0;
3920 	ctrl_ctx->drop_flags = 0;
3921 
3922 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3923 		       "Internal device address = %d",
3924 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3925 	kfree(command);
3926 	return 0;
3927 }
3928 
3929 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3932 }
3933 
3934 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3935 {
3936 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3937 }
3938 
3939 /*
3940  * Transfer the port index into real index in the HW port status
3941  * registers. Caculate offset between the port's PORTSC register
3942  * and port status base. Divide the number of per port register
3943  * to get the real index. The raw port number bases 1.
3944  */
3945 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3946 {
3947 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3948 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3949 	__le32 __iomem *addr;
3950 	int raw_port;
3951 
3952 	if (hcd->speed != HCD_USB3)
3953 		addr = xhci->usb2_ports[port1 - 1];
3954 	else
3955 		addr = xhci->usb3_ports[port1 - 1];
3956 
3957 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3958 	return raw_port;
3959 }
3960 
3961 /*
3962  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3963  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3964  */
3965 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3966 			struct usb_device *udev, u16 max_exit_latency)
3967 {
3968 	struct xhci_virt_device *virt_dev;
3969 	struct xhci_command *command;
3970 	struct xhci_input_control_ctx *ctrl_ctx;
3971 	struct xhci_slot_ctx *slot_ctx;
3972 	unsigned long flags;
3973 	int ret;
3974 
3975 	spin_lock_irqsave(&xhci->lock, flags);
3976 
3977 	virt_dev = xhci->devs[udev->slot_id];
3978 
3979 	/*
3980 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3981 	 * xHC was re-initialized. Exit latency will be set later after
3982 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3983 	 */
3984 
3985 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3986 		spin_unlock_irqrestore(&xhci->lock, flags);
3987 		return 0;
3988 	}
3989 
3990 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3991 	command = xhci->lpm_command;
3992 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3993 	if (!ctrl_ctx) {
3994 		spin_unlock_irqrestore(&xhci->lock, flags);
3995 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3996 				__func__);
3997 		return -ENOMEM;
3998 	}
3999 
4000 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4001 	spin_unlock_irqrestore(&xhci->lock, flags);
4002 
4003 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4004 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4005 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4006 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4007 
4008 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4009 			"Set up evaluate context for LPM MEL change.");
4010 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4011 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4012 
4013 	/* Issue and wait for the evaluate context command. */
4014 	ret = xhci_configure_endpoint(xhci, udev, command,
4015 			true, true);
4016 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4017 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4018 
4019 	if (!ret) {
4020 		spin_lock_irqsave(&xhci->lock, flags);
4021 		virt_dev->current_mel = max_exit_latency;
4022 		spin_unlock_irqrestore(&xhci->lock, flags);
4023 	}
4024 	return ret;
4025 }
4026 
4027 #ifdef CONFIG_PM_RUNTIME
4028 
4029 /* BESL to HIRD Encoding array for USB2 LPM */
4030 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4031 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4032 
4033 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4034 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4035 					struct usb_device *udev)
4036 {
4037 	int u2del, besl, besl_host;
4038 	int besl_device = 0;
4039 	u32 field;
4040 
4041 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4042 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4043 
4044 	if (field & USB_BESL_SUPPORT) {
4045 		for (besl_host = 0; besl_host < 16; besl_host++) {
4046 			if (xhci_besl_encoding[besl_host] >= u2del)
4047 				break;
4048 		}
4049 		/* Use baseline BESL value as default */
4050 		if (field & USB_BESL_BASELINE_VALID)
4051 			besl_device = USB_GET_BESL_BASELINE(field);
4052 		else if (field & USB_BESL_DEEP_VALID)
4053 			besl_device = USB_GET_BESL_DEEP(field);
4054 	} else {
4055 		if (u2del <= 50)
4056 			besl_host = 0;
4057 		else
4058 			besl_host = (u2del - 51) / 75 + 1;
4059 	}
4060 
4061 	besl = besl_host + besl_device;
4062 	if (besl > 15)
4063 		besl = 15;
4064 
4065 	return besl;
4066 }
4067 
4068 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4069 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4070 {
4071 	u32 field;
4072 	int l1;
4073 	int besld = 0;
4074 	int hirdm = 0;
4075 
4076 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4077 
4078 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4079 	l1 = udev->l1_params.timeout / 256;
4080 
4081 	/* device has preferred BESLD */
4082 	if (field & USB_BESL_DEEP_VALID) {
4083 		besld = USB_GET_BESL_DEEP(field);
4084 		hirdm = 1;
4085 	}
4086 
4087 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4088 }
4089 
4090 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4091 			struct usb_device *udev, int enable)
4092 {
4093 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4094 	__le32 __iomem	**port_array;
4095 	__le32 __iomem	*pm_addr, *hlpm_addr;
4096 	u32		pm_val, hlpm_val, field;
4097 	unsigned int	port_num;
4098 	unsigned long	flags;
4099 	int		hird, exit_latency;
4100 	int		ret;
4101 
4102 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4103 			!udev->lpm_capable)
4104 		return -EPERM;
4105 
4106 	if (!udev->parent || udev->parent->parent ||
4107 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4108 		return -EPERM;
4109 
4110 	if (udev->usb2_hw_lpm_capable != 1)
4111 		return -EPERM;
4112 
4113 	spin_lock_irqsave(&xhci->lock, flags);
4114 
4115 	port_array = xhci->usb2_ports;
4116 	port_num = udev->portnum - 1;
4117 	pm_addr = port_array[port_num] + PORTPMSC;
4118 	pm_val = readl(pm_addr);
4119 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4120 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4121 
4122 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4123 			enable ? "enable" : "disable", port_num + 1);
4124 
4125 	if (enable) {
4126 		/* Host supports BESL timeout instead of HIRD */
4127 		if (udev->usb2_hw_lpm_besl_capable) {
4128 			/* if device doesn't have a preferred BESL value use a
4129 			 * default one which works with mixed HIRD and BESL
4130 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4131 			 */
4132 			if ((field & USB_BESL_SUPPORT) &&
4133 			    (field & USB_BESL_BASELINE_VALID))
4134 				hird = USB_GET_BESL_BASELINE(field);
4135 			else
4136 				hird = udev->l1_params.besl;
4137 
4138 			exit_latency = xhci_besl_encoding[hird];
4139 			spin_unlock_irqrestore(&xhci->lock, flags);
4140 
4141 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4142 			 * input context for link powermanagement evaluate
4143 			 * context commands. It is protected by hcd->bandwidth
4144 			 * mutex and is shared by all devices. We need to set
4145 			 * the max ext latency in USB 2 BESL LPM as well, so
4146 			 * use the same mutex and xhci_change_max_exit_latency()
4147 			 */
4148 			mutex_lock(hcd->bandwidth_mutex);
4149 			ret = xhci_change_max_exit_latency(xhci, udev,
4150 							   exit_latency);
4151 			mutex_unlock(hcd->bandwidth_mutex);
4152 
4153 			if (ret < 0)
4154 				return ret;
4155 			spin_lock_irqsave(&xhci->lock, flags);
4156 
4157 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4158 			writel(hlpm_val, hlpm_addr);
4159 			/* flush write */
4160 			readl(hlpm_addr);
4161 		} else {
4162 			hird = xhci_calculate_hird_besl(xhci, udev);
4163 		}
4164 
4165 		pm_val &= ~PORT_HIRD_MASK;
4166 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4167 		writel(pm_val, pm_addr);
4168 		pm_val = readl(pm_addr);
4169 		pm_val |= PORT_HLE;
4170 		writel(pm_val, pm_addr);
4171 		/* flush write */
4172 		readl(pm_addr);
4173 	} else {
4174 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4175 		writel(pm_val, pm_addr);
4176 		/* flush write */
4177 		readl(pm_addr);
4178 		if (udev->usb2_hw_lpm_besl_capable) {
4179 			spin_unlock_irqrestore(&xhci->lock, flags);
4180 			mutex_lock(hcd->bandwidth_mutex);
4181 			xhci_change_max_exit_latency(xhci, udev, 0);
4182 			mutex_unlock(hcd->bandwidth_mutex);
4183 			return 0;
4184 		}
4185 	}
4186 
4187 	spin_unlock_irqrestore(&xhci->lock, flags);
4188 	return 0;
4189 }
4190 
4191 /* check if a usb2 port supports a given extened capability protocol
4192  * only USB2 ports extended protocol capability values are cached.
4193  * Return 1 if capability is supported
4194  */
4195 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4196 					   unsigned capability)
4197 {
4198 	u32 port_offset, port_count;
4199 	int i;
4200 
4201 	for (i = 0; i < xhci->num_ext_caps; i++) {
4202 		if (xhci->ext_caps[i] & capability) {
4203 			/* port offsets starts at 1 */
4204 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4205 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4206 			if (port >= port_offset &&
4207 			    port < port_offset + port_count)
4208 				return 1;
4209 		}
4210 	}
4211 	return 0;
4212 }
4213 
4214 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4215 {
4216 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4217 	int		portnum = udev->portnum - 1;
4218 
4219 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4220 			!udev->lpm_capable)
4221 		return 0;
4222 
4223 	/* we only support lpm for non-hub device connected to root hub yet */
4224 	if (!udev->parent || udev->parent->parent ||
4225 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4226 		return 0;
4227 
4228 	if (xhci->hw_lpm_support == 1 &&
4229 			xhci_check_usb2_port_capability(
4230 				xhci, portnum, XHCI_HLC)) {
4231 		udev->usb2_hw_lpm_capable = 1;
4232 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4233 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4234 		if (xhci_check_usb2_port_capability(xhci, portnum,
4235 					XHCI_BLC))
4236 			udev->usb2_hw_lpm_besl_capable = 1;
4237 	}
4238 
4239 	return 0;
4240 }
4241 
4242 #else
4243 
4244 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4245 				struct usb_device *udev, int enable)
4246 {
4247 	return 0;
4248 }
4249 
4250 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4251 {
4252 	return 0;
4253 }
4254 
4255 #endif /* CONFIG_PM_RUNTIME */
4256 
4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4258 
4259 #ifdef CONFIG_PM
4260 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4261 static unsigned long long xhci_service_interval_to_ns(
4262 		struct usb_endpoint_descriptor *desc)
4263 {
4264 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4265 }
4266 
4267 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4268 		enum usb3_link_state state)
4269 {
4270 	unsigned long long sel;
4271 	unsigned long long pel;
4272 	unsigned int max_sel_pel;
4273 	char *state_name;
4274 
4275 	switch (state) {
4276 	case USB3_LPM_U1:
4277 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4278 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4279 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4280 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4281 		state_name = "U1";
4282 		break;
4283 	case USB3_LPM_U2:
4284 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4285 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4286 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4287 		state_name = "U2";
4288 		break;
4289 	default:
4290 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4291 				__func__);
4292 		return USB3_LPM_DISABLED;
4293 	}
4294 
4295 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4296 		return USB3_LPM_DEVICE_INITIATED;
4297 
4298 	if (sel > max_sel_pel)
4299 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4300 				"due to long SEL %llu ms\n",
4301 				state_name, sel);
4302 	else
4303 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4304 				"due to long PEL %llu ms\n",
4305 				state_name, pel);
4306 	return USB3_LPM_DISABLED;
4307 }
4308 
4309 /* The U1 timeout should be the maximum of the following values:
4310  *  - For control endpoints, U1 system exit latency (SEL) * 3
4311  *  - For bulk endpoints, U1 SEL * 5
4312  *  - For interrupt endpoints:
4313  *    - Notification EPs, U1 SEL * 3
4314  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4315  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4316  */
4317 static unsigned long long xhci_calculate_intel_u1_timeout(
4318 		struct usb_device *udev,
4319 		struct usb_endpoint_descriptor *desc)
4320 {
4321 	unsigned long long timeout_ns;
4322 	int ep_type;
4323 	int intr_type;
4324 
4325 	ep_type = usb_endpoint_type(desc);
4326 	switch (ep_type) {
4327 	case USB_ENDPOINT_XFER_CONTROL:
4328 		timeout_ns = udev->u1_params.sel * 3;
4329 		break;
4330 	case USB_ENDPOINT_XFER_BULK:
4331 		timeout_ns = udev->u1_params.sel * 5;
4332 		break;
4333 	case USB_ENDPOINT_XFER_INT:
4334 		intr_type = usb_endpoint_interrupt_type(desc);
4335 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4336 			timeout_ns = udev->u1_params.sel * 3;
4337 			break;
4338 		}
4339 		/* Otherwise the calculation is the same as isoc eps */
4340 	case USB_ENDPOINT_XFER_ISOC:
4341 		timeout_ns = xhci_service_interval_to_ns(desc);
4342 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4343 		if (timeout_ns < udev->u1_params.sel * 2)
4344 			timeout_ns = udev->u1_params.sel * 2;
4345 		break;
4346 	default:
4347 		return 0;
4348 	}
4349 
4350 	return timeout_ns;
4351 }
4352 
4353 /* Returns the hub-encoded U1 timeout value. */
4354 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4355 		struct usb_device *udev,
4356 		struct usb_endpoint_descriptor *desc)
4357 {
4358 	unsigned long long timeout_ns;
4359 
4360 	if (xhci->quirks & XHCI_INTEL_HOST)
4361 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4362 	else
4363 		timeout_ns = udev->u1_params.sel;
4364 
4365 	/* The U1 timeout is encoded in 1us intervals.
4366 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4367 	 */
4368 	if (timeout_ns == USB3_LPM_DISABLED)
4369 		timeout_ns = 1;
4370 	else
4371 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4372 
4373 	/* If the necessary timeout value is bigger than what we can set in the
4374 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4375 	 */
4376 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4377 		return timeout_ns;
4378 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4379 			"due to long timeout %llu ms\n", timeout_ns);
4380 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4381 }
4382 
4383 /* The U2 timeout should be the maximum of:
4384  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4385  *  - largest bInterval of any active periodic endpoint (to avoid going
4386  *    into lower power link states between intervals).
4387  *  - the U2 Exit Latency of the device
4388  */
4389 static unsigned long long xhci_calculate_intel_u2_timeout(
4390 		struct usb_device *udev,
4391 		struct usb_endpoint_descriptor *desc)
4392 {
4393 	unsigned long long timeout_ns;
4394 	unsigned long long u2_del_ns;
4395 
4396 	timeout_ns = 10 * 1000 * 1000;
4397 
4398 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4399 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4400 		timeout_ns = xhci_service_interval_to_ns(desc);
4401 
4402 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4403 	if (u2_del_ns > timeout_ns)
4404 		timeout_ns = u2_del_ns;
4405 
4406 	return timeout_ns;
4407 }
4408 
4409 /* Returns the hub-encoded U2 timeout value. */
4410 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4411 		struct usb_device *udev,
4412 		struct usb_endpoint_descriptor *desc)
4413 {
4414 	unsigned long long timeout_ns;
4415 
4416 	if (xhci->quirks & XHCI_INTEL_HOST)
4417 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4418 	else
4419 		timeout_ns = udev->u2_params.sel;
4420 
4421 	/* The U2 timeout is encoded in 256us intervals */
4422 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4423 	/* If the necessary timeout value is bigger than what we can set in the
4424 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4425 	 */
4426 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4427 		return timeout_ns;
4428 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4429 			"due to long timeout %llu ms\n", timeout_ns);
4430 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4431 }
4432 
4433 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4434 		struct usb_device *udev,
4435 		struct usb_endpoint_descriptor *desc,
4436 		enum usb3_link_state state,
4437 		u16 *timeout)
4438 {
4439 	if (state == USB3_LPM_U1)
4440 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4441 	else if (state == USB3_LPM_U2)
4442 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4443 
4444 	return USB3_LPM_DISABLED;
4445 }
4446 
4447 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448 		struct usb_device *udev,
4449 		struct usb_endpoint_descriptor *desc,
4450 		enum usb3_link_state state,
4451 		u16 *timeout)
4452 {
4453 	u16 alt_timeout;
4454 
4455 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4456 		desc, state, timeout);
4457 
4458 	/* If we found we can't enable hub-initiated LPM, or
4459 	 * the U1 or U2 exit latency was too high to allow
4460 	 * device-initiated LPM as well, just stop searching.
4461 	 */
4462 	if (alt_timeout == USB3_LPM_DISABLED ||
4463 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4464 		*timeout = alt_timeout;
4465 		return -E2BIG;
4466 	}
4467 	if (alt_timeout > *timeout)
4468 		*timeout = alt_timeout;
4469 	return 0;
4470 }
4471 
4472 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4473 		struct usb_device *udev,
4474 		struct usb_host_interface *alt,
4475 		enum usb3_link_state state,
4476 		u16 *timeout)
4477 {
4478 	int j;
4479 
4480 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4481 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4482 					&alt->endpoint[j].desc, state, timeout))
4483 			return -E2BIG;
4484 		continue;
4485 	}
4486 	return 0;
4487 }
4488 
4489 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4490 		enum usb3_link_state state)
4491 {
4492 	struct usb_device *parent;
4493 	unsigned int num_hubs;
4494 
4495 	if (state == USB3_LPM_U2)
4496 		return 0;
4497 
4498 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4499 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4500 			parent = parent->parent)
4501 		num_hubs++;
4502 
4503 	if (num_hubs < 2)
4504 		return 0;
4505 
4506 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4507 			" below second-tier hub.\n");
4508 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4509 			"to decrease power consumption.\n");
4510 	return -E2BIG;
4511 }
4512 
4513 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4514 		struct usb_device *udev,
4515 		enum usb3_link_state state)
4516 {
4517 	if (xhci->quirks & XHCI_INTEL_HOST)
4518 		return xhci_check_intel_tier_policy(udev, state);
4519 	else
4520 		return 0;
4521 }
4522 
4523 /* Returns the U1 or U2 timeout that should be enabled.
4524  * If the tier check or timeout setting functions return with a non-zero exit
4525  * code, that means the timeout value has been finalized and we shouldn't look
4526  * at any more endpoints.
4527  */
4528 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4529 			struct usb_device *udev, enum usb3_link_state state)
4530 {
4531 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4532 	struct usb_host_config *config;
4533 	char *state_name;
4534 	int i;
4535 	u16 timeout = USB3_LPM_DISABLED;
4536 
4537 	if (state == USB3_LPM_U1)
4538 		state_name = "U1";
4539 	else if (state == USB3_LPM_U2)
4540 		state_name = "U2";
4541 	else {
4542 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4543 				state);
4544 		return timeout;
4545 	}
4546 
4547 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4548 		return timeout;
4549 
4550 	/* Gather some information about the currently installed configuration
4551 	 * and alternate interface settings.
4552 	 */
4553 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4554 			state, &timeout))
4555 		return timeout;
4556 
4557 	config = udev->actconfig;
4558 	if (!config)
4559 		return timeout;
4560 
4561 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4562 		struct usb_driver *driver;
4563 		struct usb_interface *intf = config->interface[i];
4564 
4565 		if (!intf)
4566 			continue;
4567 
4568 		/* Check if any currently bound drivers want hub-initiated LPM
4569 		 * disabled.
4570 		 */
4571 		if (intf->dev.driver) {
4572 			driver = to_usb_driver(intf->dev.driver);
4573 			if (driver && driver->disable_hub_initiated_lpm) {
4574 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4575 						"at request of driver %s\n",
4576 						state_name, driver->name);
4577 				return xhci_get_timeout_no_hub_lpm(udev, state);
4578 			}
4579 		}
4580 
4581 		/* Not sure how this could happen... */
4582 		if (!intf->cur_altsetting)
4583 			continue;
4584 
4585 		if (xhci_update_timeout_for_interface(xhci, udev,
4586 					intf->cur_altsetting,
4587 					state, &timeout))
4588 			return timeout;
4589 	}
4590 	return timeout;
4591 }
4592 
4593 static int calculate_max_exit_latency(struct usb_device *udev,
4594 		enum usb3_link_state state_changed,
4595 		u16 hub_encoded_timeout)
4596 {
4597 	unsigned long long u1_mel_us = 0;
4598 	unsigned long long u2_mel_us = 0;
4599 	unsigned long long mel_us = 0;
4600 	bool disabling_u1;
4601 	bool disabling_u2;
4602 	bool enabling_u1;
4603 	bool enabling_u2;
4604 
4605 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4606 			hub_encoded_timeout == USB3_LPM_DISABLED);
4607 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4608 			hub_encoded_timeout == USB3_LPM_DISABLED);
4609 
4610 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4611 			hub_encoded_timeout != USB3_LPM_DISABLED);
4612 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4613 			hub_encoded_timeout != USB3_LPM_DISABLED);
4614 
4615 	/* If U1 was already enabled and we're not disabling it,
4616 	 * or we're going to enable U1, account for the U1 max exit latency.
4617 	 */
4618 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4619 			enabling_u1)
4620 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4621 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4622 			enabling_u2)
4623 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4624 
4625 	if (u1_mel_us > u2_mel_us)
4626 		mel_us = u1_mel_us;
4627 	else
4628 		mel_us = u2_mel_us;
4629 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4630 	if (mel_us > MAX_EXIT) {
4631 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4632 				"is too big.\n", mel_us);
4633 		return -E2BIG;
4634 	}
4635 	return mel_us;
4636 }
4637 
4638 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4639 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 			struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 	struct xhci_hcd	*xhci;
4643 	u16 hub_encoded_timeout;
4644 	int mel;
4645 	int ret;
4646 
4647 	xhci = hcd_to_xhci(hcd);
4648 	/* The LPM timeout values are pretty host-controller specific, so don't
4649 	 * enable hub-initiated timeouts unless the vendor has provided
4650 	 * information about their timeout algorithm.
4651 	 */
4652 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4653 			!xhci->devs[udev->slot_id])
4654 		return USB3_LPM_DISABLED;
4655 
4656 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4657 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4658 	if (mel < 0) {
4659 		/* Max Exit Latency is too big, disable LPM. */
4660 		hub_encoded_timeout = USB3_LPM_DISABLED;
4661 		mel = 0;
4662 	}
4663 
4664 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4665 	if (ret)
4666 		return ret;
4667 	return hub_encoded_timeout;
4668 }
4669 
4670 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4671 			struct usb_device *udev, enum usb3_link_state state)
4672 {
4673 	struct xhci_hcd	*xhci;
4674 	u16 mel;
4675 	int ret;
4676 
4677 	xhci = hcd_to_xhci(hcd);
4678 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4679 			!xhci->devs[udev->slot_id])
4680 		return 0;
4681 
4682 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4683 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4684 	if (ret)
4685 		return ret;
4686 	return 0;
4687 }
4688 #else /* CONFIG_PM */
4689 
4690 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4691 			struct usb_device *udev, enum usb3_link_state state)
4692 {
4693 	return USB3_LPM_DISABLED;
4694 }
4695 
4696 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697 			struct usb_device *udev, enum usb3_link_state state)
4698 {
4699 	return 0;
4700 }
4701 #endif	/* CONFIG_PM */
4702 
4703 /*-------------------------------------------------------------------------*/
4704 
4705 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4706  * internal data structures for the device.
4707  */
4708 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4709 			struct usb_tt *tt, gfp_t mem_flags)
4710 {
4711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4712 	struct xhci_virt_device *vdev;
4713 	struct xhci_command *config_cmd;
4714 	struct xhci_input_control_ctx *ctrl_ctx;
4715 	struct xhci_slot_ctx *slot_ctx;
4716 	unsigned long flags;
4717 	unsigned think_time;
4718 	int ret;
4719 
4720 	/* Ignore root hubs */
4721 	if (!hdev->parent)
4722 		return 0;
4723 
4724 	vdev = xhci->devs[hdev->slot_id];
4725 	if (!vdev) {
4726 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4727 		return -EINVAL;
4728 	}
4729 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4730 	if (!config_cmd) {
4731 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4732 		return -ENOMEM;
4733 	}
4734 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4735 	if (!ctrl_ctx) {
4736 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4737 				__func__);
4738 		xhci_free_command(xhci, config_cmd);
4739 		return -ENOMEM;
4740 	}
4741 
4742 	spin_lock_irqsave(&xhci->lock, flags);
4743 	if (hdev->speed == USB_SPEED_HIGH &&
4744 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4745 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4746 		xhci_free_command(xhci, config_cmd);
4747 		spin_unlock_irqrestore(&xhci->lock, flags);
4748 		return -ENOMEM;
4749 	}
4750 
4751 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4752 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4753 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4754 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4755 	if (tt->multi)
4756 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4757 	if (xhci->hci_version > 0x95) {
4758 		xhci_dbg(xhci, "xHCI version %x needs hub "
4759 				"TT think time and number of ports\n",
4760 				(unsigned int) xhci->hci_version);
4761 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4762 		/* Set TT think time - convert from ns to FS bit times.
4763 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4764 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4765 		 *
4766 		 * xHCI 1.0: this field shall be 0 if the device is not a
4767 		 * High-spped hub.
4768 		 */
4769 		think_time = tt->think_time;
4770 		if (think_time != 0)
4771 			think_time = (think_time / 666) - 1;
4772 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4773 			slot_ctx->tt_info |=
4774 				cpu_to_le32(TT_THINK_TIME(think_time));
4775 	} else {
4776 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4777 				"TT think time or number of ports\n",
4778 				(unsigned int) xhci->hci_version);
4779 	}
4780 	slot_ctx->dev_state = 0;
4781 	spin_unlock_irqrestore(&xhci->lock, flags);
4782 
4783 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4784 			(xhci->hci_version > 0x95) ?
4785 			"configure endpoint" : "evaluate context");
4786 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4787 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4788 
4789 	/* Issue and wait for the configure endpoint or
4790 	 * evaluate context command.
4791 	 */
4792 	if (xhci->hci_version > 0x95)
4793 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4794 				false, false);
4795 	else
4796 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4797 				true, false);
4798 
4799 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4800 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4801 
4802 	xhci_free_command(xhci, config_cmd);
4803 	return ret;
4804 }
4805 
4806 int xhci_get_frame(struct usb_hcd *hcd)
4807 {
4808 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4809 	/* EHCI mods by the periodic size.  Why? */
4810 	return readl(&xhci->run_regs->microframe_index) >> 3;
4811 }
4812 
4813 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4814 {
4815 	struct xhci_hcd		*xhci;
4816 	struct device		*dev = hcd->self.controller;
4817 	int			retval;
4818 
4819 	/* Accept arbitrarily long scatter-gather lists */
4820 	hcd->self.sg_tablesize = ~0;
4821 
4822 	/* support to build packet from discontinuous buffers */
4823 	hcd->self.no_sg_constraint = 1;
4824 
4825 	/* XHCI controllers don't stop the ep queue on short packets :| */
4826 	hcd->self.no_stop_on_short = 1;
4827 
4828 	if (usb_hcd_is_primary_hcd(hcd)) {
4829 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4830 		if (!xhci)
4831 			return -ENOMEM;
4832 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4833 		xhci->main_hcd = hcd;
4834 		/* Mark the first roothub as being USB 2.0.
4835 		 * The xHCI driver will register the USB 3.0 roothub.
4836 		 */
4837 		hcd->speed = HCD_USB2;
4838 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4839 		/*
4840 		 * USB 2.0 roothub under xHCI has an integrated TT,
4841 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4842 		 * companion controller.
4843 		 */
4844 		hcd->has_tt = 1;
4845 	} else {
4846 		/* xHCI private pointer was set in xhci_pci_probe for the second
4847 		 * registered roothub.
4848 		 */
4849 		return 0;
4850 	}
4851 
4852 	xhci->cap_regs = hcd->regs;
4853 	xhci->op_regs = hcd->regs +
4854 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4855 	xhci->run_regs = hcd->regs +
4856 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4857 	/* Cache read-only capability registers */
4858 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4859 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4860 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4861 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4862 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4863 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4864 	xhci_print_registers(xhci);
4865 
4866 	xhci->quirks = quirks;
4867 
4868 	get_quirks(dev, xhci);
4869 
4870 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4871 	 * success event after a short transfer. This quirk will ignore such
4872 	 * spurious event.
4873 	 */
4874 	if (xhci->hci_version > 0x96)
4875 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4876 
4877 	/* Make sure the HC is halted. */
4878 	retval = xhci_halt(xhci);
4879 	if (retval)
4880 		goto error;
4881 
4882 	xhci_dbg(xhci, "Resetting HCD\n");
4883 	/* Reset the internal HC memory state and registers. */
4884 	retval = xhci_reset(xhci);
4885 	if (retval)
4886 		goto error;
4887 	xhci_dbg(xhci, "Reset complete\n");
4888 
4889 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4890 	 * if xHC supports 64-bit addressing */
4891 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4892 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4893 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4894 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4895 	}
4896 
4897 	xhci_dbg(xhci, "Calling HCD init\n");
4898 	/* Initialize HCD and host controller data structures. */
4899 	retval = xhci_init(hcd);
4900 	if (retval)
4901 		goto error;
4902 	xhci_dbg(xhci, "Called HCD init\n");
4903 	return 0;
4904 error:
4905 	kfree(xhci);
4906 	return retval;
4907 }
4908 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4909 
4910 static const struct hc_driver xhci_hc_driver = {
4911 	.description =		"xhci-hcd",
4912 	.product_desc =		"xHCI Host Controller",
4913 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4914 
4915 	/*
4916 	 * generic hardware linkage
4917 	 */
4918 	.irq =			xhci_irq,
4919 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4920 
4921 	/*
4922 	 * basic lifecycle operations
4923 	 */
4924 	.reset =		NULL, /* set in xhci_init_driver() */
4925 	.start =		xhci_run,
4926 	.stop =			xhci_stop,
4927 	.shutdown =		xhci_shutdown,
4928 
4929 	/*
4930 	 * managing i/o requests and associated device resources
4931 	 */
4932 	.urb_enqueue =		xhci_urb_enqueue,
4933 	.urb_dequeue =		xhci_urb_dequeue,
4934 	.alloc_dev =		xhci_alloc_dev,
4935 	.free_dev =		xhci_free_dev,
4936 	.alloc_streams =	xhci_alloc_streams,
4937 	.free_streams =		xhci_free_streams,
4938 	.add_endpoint =		xhci_add_endpoint,
4939 	.drop_endpoint =	xhci_drop_endpoint,
4940 	.endpoint_reset =	xhci_endpoint_reset,
4941 	.check_bandwidth =	xhci_check_bandwidth,
4942 	.reset_bandwidth =	xhci_reset_bandwidth,
4943 	.address_device =	xhci_address_device,
4944 	.enable_device =	xhci_enable_device,
4945 	.update_hub_device =	xhci_update_hub_device,
4946 	.reset_device =		xhci_discover_or_reset_device,
4947 
4948 	/*
4949 	 * scheduling support
4950 	 */
4951 	.get_frame_number =	xhci_get_frame,
4952 
4953 	/*
4954 	 * root hub support
4955 	 */
4956 	.hub_control =		xhci_hub_control,
4957 	.hub_status_data =	xhci_hub_status_data,
4958 	.bus_suspend =		xhci_bus_suspend,
4959 	.bus_resume =		xhci_bus_resume,
4960 
4961 	/*
4962 	 * call back when device connected and addressed
4963 	 */
4964 	.update_device =        xhci_update_device,
4965 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4966 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4967 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4968 	.find_raw_port_number =	xhci_find_raw_port_number,
4969 };
4970 
4971 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
4972 {
4973 	BUG_ON(!setup_fn);
4974 	*drv = xhci_hc_driver;
4975 	drv->reset = setup_fn;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_init_driver);
4978 
4979 MODULE_DESCRIPTION(DRIVER_DESC);
4980 MODULE_AUTHOR(DRIVER_AUTHOR);
4981 MODULE_LICENSE("GPL");
4982 
4983 static int __init xhci_hcd_init(void)
4984 {
4985 	/*
4986 	 * Check the compiler generated sizes of structures that must be laid
4987 	 * out in specific ways for hardware access.
4988 	 */
4989 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4990 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4991 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4992 	/* xhci_device_control has eight fields, and also
4993 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4994 	 */
4995 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4996 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4997 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4998 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4999 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5000 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5001 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5002 	return 0;
5003 }
5004 module_init(xhci_hcd_init);
5005