1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned int quirks; 37 module_param(quirks, uint, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 213 #ifdef CONFIG_USB_PCI 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 /* 221 * TODO:Check with MSI Soc for sysdev 222 */ 223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 224 225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 226 if (ret < 0) { 227 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 228 "failed to allocate MSI entry"); 229 return ret; 230 } 231 232 ret = request_irq(pdev->irq, xhci_msi_irq, 233 0, "xhci_hcd", xhci_to_hcd(xhci)); 234 if (ret) { 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "disable MSI interrupt"); 237 pci_free_irq_vectors(pdev); 238 } 239 240 return ret; 241 } 242 243 /* 244 * Set up MSI-X 245 */ 246 static int xhci_setup_msix(struct xhci_hcd *xhci) 247 { 248 int i, ret = 0; 249 struct usb_hcd *hcd = xhci_to_hcd(xhci); 250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 251 252 /* 253 * calculate number of msi-x vectors supported. 254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 255 * with max number of interrupters based on the xhci HCSPARAMS1. 256 * - num_online_cpus: maximum msi-x vectors per CPUs core. 257 * Add additional 1 vector to ensure always available interrupt. 258 */ 259 xhci->msix_count = min(num_online_cpus() + 1, 260 HCS_MAX_INTRS(xhci->hcs_params1)); 261 262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 263 PCI_IRQ_MSIX); 264 if (ret < 0) { 265 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 266 "Failed to enable MSI-X"); 267 return ret; 268 } 269 270 for (i = 0; i < xhci->msix_count; i++) { 271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 272 "xhci_hcd", xhci_to_hcd(xhci)); 273 if (ret) 274 goto disable_msix; 275 } 276 277 hcd->msix_enabled = 1; 278 return ret; 279 280 disable_msix: 281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 282 while (--i >= 0) 283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 284 pci_free_irq_vectors(pdev); 285 return ret; 286 } 287 288 /* Free any IRQs and disable MSI-X */ 289 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 290 { 291 struct usb_hcd *hcd = xhci_to_hcd(xhci); 292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 293 294 if (xhci->quirks & XHCI_PLAT) 295 return; 296 297 /* return if using legacy interrupt */ 298 if (hcd->irq > 0) 299 return; 300 301 if (hcd->msix_enabled) { 302 int i; 303 304 for (i = 0; i < xhci->msix_count; i++) 305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 306 } else { 307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 308 } 309 310 pci_free_irq_vectors(pdev); 311 hcd->msix_enabled = 0; 312 } 313 314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 315 { 316 struct usb_hcd *hcd = xhci_to_hcd(xhci); 317 318 if (hcd->msix_enabled) { 319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 320 int i; 321 322 for (i = 0; i < xhci->msix_count; i++) 323 synchronize_irq(pci_irq_vector(pdev, i)); 324 } 325 } 326 327 static int xhci_try_enable_msi(struct usb_hcd *hcd) 328 { 329 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 330 struct pci_dev *pdev; 331 int ret; 332 333 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 334 if (xhci->quirks & XHCI_PLAT) 335 return 0; 336 337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 338 /* 339 * Some Fresco Logic host controllers advertise MSI, but fail to 340 * generate interrupts. Don't even try to enable MSI. 341 */ 342 if (xhci->quirks & XHCI_BROKEN_MSI) 343 goto legacy_irq; 344 345 /* unregister the legacy interrupt */ 346 if (hcd->irq) 347 free_irq(hcd->irq, hcd); 348 hcd->irq = 0; 349 350 ret = xhci_setup_msix(xhci); 351 if (ret) 352 /* fall back to msi*/ 353 ret = xhci_setup_msi(xhci); 354 355 if (!ret) { 356 hcd->msi_enabled = 1; 357 return 0; 358 } 359 360 if (!pdev->irq) { 361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 362 return -EINVAL; 363 } 364 365 legacy_irq: 366 if (!strlen(hcd->irq_descr)) 367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 368 hcd->driver->description, hcd->self.busnum); 369 370 /* fall back to legacy interrupt*/ 371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 372 hcd->irq_descr, hcd); 373 if (ret) { 374 xhci_err(xhci, "request interrupt %d failed\n", 375 pdev->irq); 376 return ret; 377 } 378 hcd->irq = pdev->irq; 379 return 0; 380 } 381 382 #else 383 384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 385 { 386 return 0; 387 } 388 389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 390 { 391 } 392 393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 } 396 397 #endif 398 399 static void compliance_mode_recovery(struct timer_list *t) 400 { 401 struct xhci_hcd *xhci; 402 struct usb_hcd *hcd; 403 u32 temp; 404 int i; 405 406 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 407 408 for (i = 0; i < xhci->num_usb3_ports; i++) { 409 temp = readl(xhci->usb3_ports[i]); 410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 411 /* 412 * Compliance Mode Detected. Letting USB Core 413 * handle the Warm Reset 414 */ 415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 416 "Compliance mode detected->port %d", 417 i + 1); 418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 419 "Attempting compliance mode recovery"); 420 hcd = xhci->shared_hcd; 421 422 if (hcd->state == HC_STATE_SUSPENDED) 423 usb_hcd_resume_root_hub(hcd); 424 425 usb_hcd_poll_rh_status(hcd); 426 } 427 } 428 429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 430 mod_timer(&xhci->comp_mode_recovery_timer, 431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 432 } 433 434 /* 435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 436 * that causes ports behind that hardware to enter compliance mode sometimes. 437 * The quirk creates a timer that polls every 2 seconds the link state of 438 * each host controller's port and recovers it by issuing a Warm reset 439 * if Compliance mode is detected, otherwise the port will become "dead" (no 440 * device connections or disconnections will be detected anymore). Becasue no 441 * status event is generated when entering compliance mode (per xhci spec), 442 * this quirk is needed on systems that have the failing hardware installed. 443 */ 444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 445 { 446 xhci->port_status_u0 = 0; 447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 448 0); 449 xhci->comp_mode_recovery_timer.expires = jiffies + 450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 451 452 add_timer(&xhci->comp_mode_recovery_timer); 453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 454 "Compliance mode recovery timer initialized"); 455 } 456 457 /* 458 * This function identifies the systems that have installed the SN65LVPE502CP 459 * USB3.0 re-driver and that need the Compliance Mode Quirk. 460 * Systems: 461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 462 */ 463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 464 { 465 const char *dmi_product_name, *dmi_sys_vendor; 466 467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 469 if (!dmi_product_name || !dmi_sys_vendor) 470 return false; 471 472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 473 return false; 474 475 if (strstr(dmi_product_name, "Z420") || 476 strstr(dmi_product_name, "Z620") || 477 strstr(dmi_product_name, "Z820") || 478 strstr(dmi_product_name, "Z1 Workstation")) 479 return true; 480 481 return false; 482 } 483 484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 485 { 486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 487 } 488 489 490 /* 491 * Initialize memory for HCD and xHC (one-time init). 492 * 493 * Program the PAGESIZE register, initialize the device context array, create 494 * device contexts (?), set up a command ring segment (or two?), create event 495 * ring (one for now). 496 */ 497 static int xhci_init(struct usb_hcd *hcd) 498 { 499 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 500 int retval = 0; 501 502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 503 spin_lock_init(&xhci->lock); 504 if (xhci->hci_version == 0x95 && link_quirk) { 505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 506 "QUIRK: Not clearing Link TRB chain bits."); 507 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 508 } else { 509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 510 "xHCI doesn't need link TRB QUIRK"); 511 } 512 retval = xhci_mem_init(xhci, GFP_KERNEL); 513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 514 515 /* Initializing Compliance Mode Recovery Data If Needed */ 516 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 517 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 518 compliance_mode_recovery_timer_init(xhci); 519 } 520 521 return retval; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 527 static int xhci_run_finished(struct xhci_hcd *xhci) 528 { 529 if (xhci_start(xhci)) { 530 xhci_halt(xhci); 531 return -ENODEV; 532 } 533 xhci->shared_hcd->state = HC_STATE_RUNNING; 534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 535 536 if (xhci->quirks & XHCI_NEC_HOST) 537 xhci_ring_cmd_db(xhci); 538 539 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 540 "Finished xhci_run for USB3 roothub"); 541 return 0; 542 } 543 544 /* 545 * Start the HC after it was halted. 546 * 547 * This function is called by the USB core when the HC driver is added. 548 * Its opposite is xhci_stop(). 549 * 550 * xhci_init() must be called once before this function can be called. 551 * Reset the HC, enable device slot contexts, program DCBAAP, and 552 * set command ring pointer and event ring pointer. 553 * 554 * Setup MSI-X vectors and enable interrupts. 555 */ 556 int xhci_run(struct usb_hcd *hcd) 557 { 558 u32 temp; 559 u64 temp_64; 560 int ret; 561 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 562 563 /* Start the xHCI host controller running only after the USB 2.0 roothub 564 * is setup. 565 */ 566 567 hcd->uses_new_polling = 1; 568 if (!usb_hcd_is_primary_hcd(hcd)) 569 return xhci_run_finished(xhci); 570 571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 572 573 ret = xhci_try_enable_msi(hcd); 574 if (ret) 575 return ret; 576 577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 578 temp_64 &= ~ERST_PTR_MASK; 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "// Set the interrupt modulation register"); 584 temp = readl(&xhci->ir_set->irq_control); 585 temp &= ~ER_IRQ_INTERVAL_MASK; 586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 587 writel(temp, &xhci->ir_set->irq_control); 588 589 /* Set the HCD state before we enable the irqs */ 590 temp = readl(&xhci->op_regs->command); 591 temp |= (CMD_EIE); 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 593 "// Enable interrupts, cmd = 0x%x.", temp); 594 writel(temp, &xhci->op_regs->command); 595 596 temp = readl(&xhci->ir_set->irq_pending); 597 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 601 602 if (xhci->quirks & XHCI_NEC_HOST) { 603 struct xhci_command *command; 604 605 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 606 if (!command) 607 return -ENOMEM; 608 609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 610 TRB_TYPE(TRB_NEC_GET_FW)); 611 if (ret) 612 xhci_free_command(xhci, command); 613 } 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 615 "Finished xhci_run for USB2 roothub"); 616 617 xhci_dbc_init(xhci); 618 619 xhci_debugfs_init(xhci); 620 621 return 0; 622 } 623 EXPORT_SYMBOL_GPL(xhci_run); 624 625 /* 626 * Stop xHCI driver. 627 * 628 * This function is called by the USB core when the HC driver is removed. 629 * Its opposite is xhci_run(). 630 * 631 * Disable device contexts, disable IRQs, and quiesce the HC. 632 * Reset the HC, finish any completed transactions, and cleanup memory. 633 */ 634 static void xhci_stop(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 638 639 mutex_lock(&xhci->mutex); 640 641 /* Only halt host and free memory after both hcds are removed */ 642 if (!usb_hcd_is_primary_hcd(hcd)) { 643 /* usb core will free this hcd shortly, unset pointer */ 644 xhci->shared_hcd = NULL; 645 mutex_unlock(&xhci->mutex); 646 return; 647 } 648 649 xhci_debugfs_exit(xhci); 650 651 xhci_dbc_exit(xhci); 652 653 spin_lock_irq(&xhci->lock); 654 xhci->xhc_state |= XHCI_STATE_HALTED; 655 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 656 xhci_halt(xhci); 657 xhci_reset(xhci); 658 spin_unlock_irq(&xhci->lock); 659 660 xhci_cleanup_msix(xhci); 661 662 /* Deleting Compliance Mode Recovery Timer */ 663 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 664 (!(xhci_all_ports_seen_u0(xhci)))) { 665 del_timer_sync(&xhci->comp_mode_recovery_timer); 666 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 667 "%s: compliance mode recovery timer deleted", 668 __func__); 669 } 670 671 if (xhci->quirks & XHCI_AMD_PLL_FIX) 672 usb_amd_dev_put(); 673 674 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 675 "// Disabling event ring interrupts"); 676 temp = readl(&xhci->op_regs->status); 677 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 678 temp = readl(&xhci->ir_set->irq_pending); 679 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 680 681 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 682 xhci_mem_cleanup(xhci); 683 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 684 "xhci_stop completed - status = %x", 685 readl(&xhci->op_regs->status)); 686 mutex_unlock(&xhci->mutex); 687 } 688 689 /* 690 * Shutdown HC (not bus-specific) 691 * 692 * This is called when the machine is rebooting or halting. We assume that the 693 * machine will be powered off, and the HC's internal state will be reset. 694 * Don't bother to free memory. 695 * 696 * This will only ever be called with the main usb_hcd (the USB3 roothub). 697 */ 698 static void xhci_shutdown(struct usb_hcd *hcd) 699 { 700 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 701 702 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 703 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 704 705 spin_lock_irq(&xhci->lock); 706 xhci_halt(xhci); 707 /* Workaround for spurious wakeups at shutdown with HSW */ 708 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 709 xhci_reset(xhci); 710 spin_unlock_irq(&xhci->lock); 711 712 xhci_cleanup_msix(xhci); 713 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "xhci_shutdown completed - status = %x", 716 readl(&xhci->op_regs->status)); 717 718 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 719 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 720 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 721 } 722 723 #ifdef CONFIG_PM 724 static void xhci_save_registers(struct xhci_hcd *xhci) 725 { 726 xhci->s3.command = readl(&xhci->op_regs->command); 727 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 728 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 729 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 730 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 731 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 732 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 733 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 734 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 735 } 736 737 static void xhci_restore_registers(struct xhci_hcd *xhci) 738 { 739 writel(xhci->s3.command, &xhci->op_regs->command); 740 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 741 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 742 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 743 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 744 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 745 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 746 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 747 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 748 } 749 750 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 751 { 752 u64 val_64; 753 754 /* step 2: initialize command ring buffer */ 755 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 756 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 757 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 758 xhci->cmd_ring->dequeue) & 759 (u64) ~CMD_RING_RSVD_BITS) | 760 xhci->cmd_ring->cycle_state; 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "// Setting command ring address to 0x%llx", 763 (long unsigned long) val_64); 764 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 765 } 766 767 /* 768 * The whole command ring must be cleared to zero when we suspend the host. 769 * 770 * The host doesn't save the command ring pointer in the suspend well, so we 771 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 772 * aligned, because of the reserved bits in the command ring dequeue pointer 773 * register. Therefore, we can't just set the dequeue pointer back in the 774 * middle of the ring (TRBs are 16-byte aligned). 775 */ 776 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 777 { 778 struct xhci_ring *ring; 779 struct xhci_segment *seg; 780 781 ring = xhci->cmd_ring; 782 seg = ring->deq_seg; 783 do { 784 memset(seg->trbs, 0, 785 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 786 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 787 cpu_to_le32(~TRB_CYCLE); 788 seg = seg->next; 789 } while (seg != ring->deq_seg); 790 791 /* Reset the software enqueue and dequeue pointers */ 792 ring->deq_seg = ring->first_seg; 793 ring->dequeue = ring->first_seg->trbs; 794 ring->enq_seg = ring->deq_seg; 795 ring->enqueue = ring->dequeue; 796 797 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 798 /* 799 * Ring is now zeroed, so the HW should look for change of ownership 800 * when the cycle bit is set to 1. 801 */ 802 ring->cycle_state = 1; 803 804 /* 805 * Reset the hardware dequeue pointer. 806 * Yes, this will need to be re-written after resume, but we're paranoid 807 * and want to make sure the hardware doesn't access bogus memory 808 * because, say, the BIOS or an SMI started the host without changing 809 * the command ring pointers. 810 */ 811 xhci_set_cmd_ring_deq(xhci); 812 } 813 814 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 815 { 816 int port_index; 817 __le32 __iomem **port_array; 818 unsigned long flags; 819 u32 t1, t2; 820 821 spin_lock_irqsave(&xhci->lock, flags); 822 823 /* disable usb3 ports Wake bits */ 824 port_index = xhci->num_usb3_ports; 825 port_array = xhci->usb3_ports; 826 while (port_index--) { 827 t1 = readl(port_array[port_index]); 828 t1 = xhci_port_state_to_neutral(t1); 829 t2 = t1 & ~PORT_WAKE_BITS; 830 if (t1 != t2) 831 writel(t2, port_array[port_index]); 832 } 833 834 /* disable usb2 ports Wake bits */ 835 port_index = xhci->num_usb2_ports; 836 port_array = xhci->usb2_ports; 837 while (port_index--) { 838 t1 = readl(port_array[port_index]); 839 t1 = xhci_port_state_to_neutral(t1); 840 t2 = t1 & ~PORT_WAKE_BITS; 841 if (t1 != t2) 842 writel(t2, port_array[port_index]); 843 } 844 845 spin_unlock_irqrestore(&xhci->lock, flags); 846 } 847 848 /* 849 * Stop HC (not bus-specific) 850 * 851 * This is called when the machine transition into S3/S4 mode. 852 * 853 */ 854 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 855 { 856 int rc = 0; 857 unsigned int delay = XHCI_MAX_HALT_USEC; 858 struct usb_hcd *hcd = xhci_to_hcd(xhci); 859 u32 command; 860 861 if (!hcd->state) 862 return 0; 863 864 if (hcd->state != HC_STATE_SUSPENDED || 865 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 866 return -EINVAL; 867 868 xhci_dbc_suspend(xhci); 869 870 /* Clear root port wake on bits if wakeup not allowed. */ 871 if (!do_wakeup) 872 xhci_disable_port_wake_on_bits(xhci); 873 874 /* Don't poll the roothubs on bus suspend. */ 875 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 879 del_timer_sync(&xhci->shared_hcd->rh_timer); 880 881 spin_lock_irq(&xhci->lock); 882 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 883 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 884 /* step 1: stop endpoint */ 885 /* skipped assuming that port suspend has done */ 886 887 /* step 2: clear Run/Stop bit */ 888 command = readl(&xhci->op_regs->command); 889 command &= ~CMD_RUN; 890 writel(command, &xhci->op_regs->command); 891 892 /* Some chips from Fresco Logic need an extraordinary delay */ 893 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 894 895 if (xhci_handshake(&xhci->op_regs->status, 896 STS_HALT, STS_HALT, delay)) { 897 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 898 spin_unlock_irq(&xhci->lock); 899 return -ETIMEDOUT; 900 } 901 xhci_clear_command_ring(xhci); 902 903 /* step 3: save registers */ 904 xhci_save_registers(xhci); 905 906 /* step 4: set CSS flag */ 907 command = readl(&xhci->op_regs->command); 908 command |= CMD_CSS; 909 writel(command, &xhci->op_regs->command); 910 if (xhci_handshake(&xhci->op_regs->status, 911 STS_SAVE, 0, 10 * 1000)) { 912 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 913 spin_unlock_irq(&xhci->lock); 914 return -ETIMEDOUT; 915 } 916 spin_unlock_irq(&xhci->lock); 917 918 /* 919 * Deleting Compliance Mode Recovery Timer because the xHCI Host 920 * is about to be suspended. 921 */ 922 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 923 (!(xhci_all_ports_seen_u0(xhci)))) { 924 del_timer_sync(&xhci->comp_mode_recovery_timer); 925 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 926 "%s: compliance mode recovery timer deleted", 927 __func__); 928 } 929 930 /* step 5: remove core well power */ 931 /* synchronize irq when using MSI-X */ 932 xhci_msix_sync_irqs(xhci); 933 934 return rc; 935 } 936 EXPORT_SYMBOL_GPL(xhci_suspend); 937 938 /* 939 * start xHC (not bus-specific) 940 * 941 * This is called when the machine transition from S3/S4 mode. 942 * 943 */ 944 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 945 { 946 u32 command, temp = 0, status; 947 struct usb_hcd *hcd = xhci_to_hcd(xhci); 948 struct usb_hcd *secondary_hcd; 949 int retval = 0; 950 bool comp_timer_running = false; 951 952 if (!hcd->state) 953 return 0; 954 955 /* Wait a bit if either of the roothubs need to settle from the 956 * transition into bus suspend. 957 */ 958 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 959 time_before(jiffies, 960 xhci->bus_state[1].next_statechange)) 961 msleep(100); 962 963 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 964 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 965 966 spin_lock_irq(&xhci->lock); 967 if (xhci->quirks & XHCI_RESET_ON_RESUME) 968 hibernated = true; 969 970 if (!hibernated) { 971 /* step 1: restore register */ 972 xhci_restore_registers(xhci); 973 /* step 2: initialize command ring buffer */ 974 xhci_set_cmd_ring_deq(xhci); 975 /* step 3: restore state and start state*/ 976 /* step 3: set CRS flag */ 977 command = readl(&xhci->op_regs->command); 978 command |= CMD_CRS; 979 writel(command, &xhci->op_regs->command); 980 if (xhci_handshake(&xhci->op_regs->status, 981 STS_RESTORE, 0, 10 * 1000)) { 982 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 983 spin_unlock_irq(&xhci->lock); 984 return -ETIMEDOUT; 985 } 986 temp = readl(&xhci->op_regs->status); 987 } 988 989 /* If restore operation fails, re-initialize the HC during resume */ 990 if ((temp & STS_SRE) || hibernated) { 991 992 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 993 !(xhci_all_ports_seen_u0(xhci))) { 994 del_timer_sync(&xhci->comp_mode_recovery_timer); 995 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 996 "Compliance Mode Recovery Timer deleted!"); 997 } 998 999 /* Let the USB core know _both_ roothubs lost power. */ 1000 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1001 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1002 1003 xhci_dbg(xhci, "Stop HCD\n"); 1004 xhci_halt(xhci); 1005 xhci_reset(xhci); 1006 spin_unlock_irq(&xhci->lock); 1007 xhci_cleanup_msix(xhci); 1008 1009 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1010 temp = readl(&xhci->op_regs->status); 1011 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1012 temp = readl(&xhci->ir_set->irq_pending); 1013 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1014 1015 xhci_dbg(xhci, "cleaning up memory\n"); 1016 xhci_mem_cleanup(xhci); 1017 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1018 readl(&xhci->op_regs->status)); 1019 1020 /* USB core calls the PCI reinit and start functions twice: 1021 * first with the primary HCD, and then with the secondary HCD. 1022 * If we don't do the same, the host will never be started. 1023 */ 1024 if (!usb_hcd_is_primary_hcd(hcd)) 1025 secondary_hcd = hcd; 1026 else 1027 secondary_hcd = xhci->shared_hcd; 1028 1029 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1030 retval = xhci_init(hcd->primary_hcd); 1031 if (retval) 1032 return retval; 1033 comp_timer_running = true; 1034 1035 xhci_dbg(xhci, "Start the primary HCD\n"); 1036 retval = xhci_run(hcd->primary_hcd); 1037 if (!retval) { 1038 xhci_dbg(xhci, "Start the secondary HCD\n"); 1039 retval = xhci_run(secondary_hcd); 1040 } 1041 hcd->state = HC_STATE_SUSPENDED; 1042 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1043 goto done; 1044 } 1045 1046 /* step 4: set Run/Stop bit */ 1047 command = readl(&xhci->op_regs->command); 1048 command |= CMD_RUN; 1049 writel(command, &xhci->op_regs->command); 1050 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1051 0, 250 * 1000); 1052 1053 /* step 5: walk topology and initialize portsc, 1054 * portpmsc and portli 1055 */ 1056 /* this is done in bus_resume */ 1057 1058 /* step 6: restart each of the previously 1059 * Running endpoints by ringing their doorbells 1060 */ 1061 1062 spin_unlock_irq(&xhci->lock); 1063 1064 xhci_dbc_resume(xhci); 1065 1066 done: 1067 if (retval == 0) { 1068 /* Resume root hubs only when have pending events. */ 1069 status = readl(&xhci->op_regs->status); 1070 if (status & STS_EINT) { 1071 usb_hcd_resume_root_hub(xhci->shared_hcd); 1072 usb_hcd_resume_root_hub(hcd); 1073 } 1074 } 1075 1076 /* 1077 * If system is subject to the Quirk, Compliance Mode Timer needs to 1078 * be re-initialized Always after a system resume. Ports are subject 1079 * to suffer the Compliance Mode issue again. It doesn't matter if 1080 * ports have entered previously to U0 before system's suspension. 1081 */ 1082 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1083 compliance_mode_recovery_timer_init(xhci); 1084 1085 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1086 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1087 1088 /* Re-enable port polling. */ 1089 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1090 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1091 usb_hcd_poll_rh_status(xhci->shared_hcd); 1092 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1093 usb_hcd_poll_rh_status(hcd); 1094 1095 return retval; 1096 } 1097 EXPORT_SYMBOL_GPL(xhci_resume); 1098 #endif /* CONFIG_PM */ 1099 1100 /*-------------------------------------------------------------------------*/ 1101 1102 /** 1103 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1104 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1105 * value to right shift 1 for the bitmask. 1106 * 1107 * Index = (epnum * 2) + direction - 1, 1108 * where direction = 0 for OUT, 1 for IN. 1109 * For control endpoints, the IN index is used (OUT index is unused), so 1110 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1111 */ 1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1113 { 1114 unsigned int index; 1115 if (usb_endpoint_xfer_control(desc)) 1116 index = (unsigned int) (usb_endpoint_num(desc)*2); 1117 else 1118 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1119 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1120 return index; 1121 } 1122 1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1124 * address from the XHCI endpoint index. 1125 */ 1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1127 { 1128 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1129 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1130 return direction | number; 1131 } 1132 1133 /* Find the flag for this endpoint (for use in the control context). Use the 1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1135 * bit 1, etc. 1136 */ 1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1138 { 1139 return 1 << (xhci_get_endpoint_index(desc) + 1); 1140 } 1141 1142 /* Find the flag for this endpoint (for use in the control context). Use the 1143 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1144 * bit 1, etc. 1145 */ 1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1147 { 1148 return 1 << (ep_index + 1); 1149 } 1150 1151 /* Compute the last valid endpoint context index. Basically, this is the 1152 * endpoint index plus one. For slot contexts with more than valid endpoint, 1153 * we find the most significant bit set in the added contexts flags. 1154 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1155 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1156 */ 1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1158 { 1159 return fls(added_ctxs) - 1; 1160 } 1161 1162 /* Returns 1 if the arguments are OK; 1163 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1164 */ 1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1166 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1167 const char *func) { 1168 struct xhci_hcd *xhci; 1169 struct xhci_virt_device *virt_dev; 1170 1171 if (!hcd || (check_ep && !ep) || !udev) { 1172 pr_debug("xHCI %s called with invalid args\n", func); 1173 return -EINVAL; 1174 } 1175 if (!udev->parent) { 1176 pr_debug("xHCI %s called for root hub\n", func); 1177 return 0; 1178 } 1179 1180 xhci = hcd_to_xhci(hcd); 1181 if (check_virt_dev) { 1182 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1183 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1184 func); 1185 return -EINVAL; 1186 } 1187 1188 virt_dev = xhci->devs[udev->slot_id]; 1189 if (virt_dev->udev != udev) { 1190 xhci_dbg(xhci, "xHCI %s called with udev and " 1191 "virt_dev does not match\n", func); 1192 return -EINVAL; 1193 } 1194 } 1195 1196 if (xhci->xhc_state & XHCI_STATE_HALTED) 1197 return -ENODEV; 1198 1199 return 1; 1200 } 1201 1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1203 struct usb_device *udev, struct xhci_command *command, 1204 bool ctx_change, bool must_succeed); 1205 1206 /* 1207 * Full speed devices may have a max packet size greater than 8 bytes, but the 1208 * USB core doesn't know that until it reads the first 8 bytes of the 1209 * descriptor. If the usb_device's max packet size changes after that point, 1210 * we need to issue an evaluate context command and wait on it. 1211 */ 1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1213 unsigned int ep_index, struct urb *urb) 1214 { 1215 struct xhci_container_ctx *out_ctx; 1216 struct xhci_input_control_ctx *ctrl_ctx; 1217 struct xhci_ep_ctx *ep_ctx; 1218 struct xhci_command *command; 1219 int max_packet_size; 1220 int hw_max_packet_size; 1221 int ret = 0; 1222 1223 out_ctx = xhci->devs[slot_id]->out_ctx; 1224 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1225 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1226 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1227 if (hw_max_packet_size != max_packet_size) { 1228 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1229 "Max Packet Size for ep 0 changed."); 1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1231 "Max packet size in usb_device = %d", 1232 max_packet_size); 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1234 "Max packet size in xHCI HW = %d", 1235 hw_max_packet_size); 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Issuing evaluate context command."); 1238 1239 /* Set up the input context flags for the command */ 1240 /* FIXME: This won't work if a non-default control endpoint 1241 * changes max packet sizes. 1242 */ 1243 1244 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1245 if (!command) 1246 return -ENOMEM; 1247 1248 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1249 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1250 if (!ctrl_ctx) { 1251 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1252 __func__); 1253 ret = -ENOMEM; 1254 goto command_cleanup; 1255 } 1256 /* Set up the modified control endpoint 0 */ 1257 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1258 xhci->devs[slot_id]->out_ctx, ep_index); 1259 1260 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1261 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1262 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1263 1264 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1265 ctrl_ctx->drop_flags = 0; 1266 1267 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1268 true, false); 1269 1270 /* Clean up the input context for later use by bandwidth 1271 * functions. 1272 */ 1273 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1274 command_cleanup: 1275 kfree(command->completion); 1276 kfree(command); 1277 } 1278 return ret; 1279 } 1280 1281 /* 1282 * non-error returns are a promise to giveback() the urb later 1283 * we drop ownership so next owner (or urb unlink) can get it 1284 */ 1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1286 { 1287 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1288 unsigned long flags; 1289 int ret = 0; 1290 unsigned int slot_id, ep_index, ep_state; 1291 struct urb_priv *urb_priv; 1292 int num_tds; 1293 1294 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1295 true, true, __func__) <= 0) 1296 return -EINVAL; 1297 1298 slot_id = urb->dev->slot_id; 1299 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1300 1301 if (!HCD_HW_ACCESSIBLE(hcd)) { 1302 if (!in_interrupt()) 1303 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1304 return -ESHUTDOWN; 1305 } 1306 1307 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1308 num_tds = urb->number_of_packets; 1309 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1310 urb->transfer_buffer_length > 0 && 1311 urb->transfer_flags & URB_ZERO_PACKET && 1312 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1313 num_tds = 2; 1314 else 1315 num_tds = 1; 1316 1317 urb_priv = kzalloc(sizeof(struct urb_priv) + 1318 num_tds * sizeof(struct xhci_td), mem_flags); 1319 if (!urb_priv) 1320 return -ENOMEM; 1321 1322 urb_priv->num_tds = num_tds; 1323 urb_priv->num_tds_done = 0; 1324 urb->hcpriv = urb_priv; 1325 1326 trace_xhci_urb_enqueue(urb); 1327 1328 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1329 /* Check to see if the max packet size for the default control 1330 * endpoint changed during FS device enumeration 1331 */ 1332 if (urb->dev->speed == USB_SPEED_FULL) { 1333 ret = xhci_check_maxpacket(xhci, slot_id, 1334 ep_index, urb); 1335 if (ret < 0) { 1336 xhci_urb_free_priv(urb_priv); 1337 urb->hcpriv = NULL; 1338 return ret; 1339 } 1340 } 1341 } 1342 1343 spin_lock_irqsave(&xhci->lock, flags); 1344 1345 if (xhci->xhc_state & XHCI_STATE_DYING) { 1346 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1347 urb->ep->desc.bEndpointAddress, urb); 1348 ret = -ESHUTDOWN; 1349 goto free_priv; 1350 } 1351 1352 switch (usb_endpoint_type(&urb->ep->desc)) { 1353 1354 case USB_ENDPOINT_XFER_CONTROL: 1355 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1356 slot_id, ep_index); 1357 break; 1358 case USB_ENDPOINT_XFER_BULK: 1359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1360 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1361 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1362 ep_state); 1363 ret = -EINVAL; 1364 break; 1365 } 1366 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1367 slot_id, ep_index); 1368 break; 1369 1370 1371 case USB_ENDPOINT_XFER_INT: 1372 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1373 slot_id, ep_index); 1374 break; 1375 1376 case USB_ENDPOINT_XFER_ISOC: 1377 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1378 slot_id, ep_index); 1379 } 1380 1381 if (ret) { 1382 free_priv: 1383 xhci_urb_free_priv(urb_priv); 1384 urb->hcpriv = NULL; 1385 } 1386 spin_unlock_irqrestore(&xhci->lock, flags); 1387 return ret; 1388 } 1389 1390 /* 1391 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1392 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1393 * should pick up where it left off in the TD, unless a Set Transfer Ring 1394 * Dequeue Pointer is issued. 1395 * 1396 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1397 * the ring. Since the ring is a contiguous structure, they can't be physically 1398 * removed. Instead, there are two options: 1399 * 1400 * 1) If the HC is in the middle of processing the URB to be canceled, we 1401 * simply move the ring's dequeue pointer past those TRBs using the Set 1402 * Transfer Ring Dequeue Pointer command. This will be the common case, 1403 * when drivers timeout on the last submitted URB and attempt to cancel. 1404 * 1405 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1406 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1407 * HC will need to invalidate the any TRBs it has cached after the stop 1408 * endpoint command, as noted in the xHCI 0.95 errata. 1409 * 1410 * 3) The TD may have completed by the time the Stop Endpoint Command 1411 * completes, so software needs to handle that case too. 1412 * 1413 * This function should protect against the TD enqueueing code ringing the 1414 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1415 * It also needs to account for multiple cancellations on happening at the same 1416 * time for the same endpoint. 1417 * 1418 * Note that this function can be called in any context, or so says 1419 * usb_hcd_unlink_urb() 1420 */ 1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1422 { 1423 unsigned long flags; 1424 int ret, i; 1425 u32 temp; 1426 struct xhci_hcd *xhci; 1427 struct urb_priv *urb_priv; 1428 struct xhci_td *td; 1429 unsigned int ep_index; 1430 struct xhci_ring *ep_ring; 1431 struct xhci_virt_ep *ep; 1432 struct xhci_command *command; 1433 struct xhci_virt_device *vdev; 1434 1435 xhci = hcd_to_xhci(hcd); 1436 spin_lock_irqsave(&xhci->lock, flags); 1437 1438 trace_xhci_urb_dequeue(urb); 1439 1440 /* Make sure the URB hasn't completed or been unlinked already */ 1441 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1442 if (ret) 1443 goto done; 1444 1445 /* give back URB now if we can't queue it for cancel */ 1446 vdev = xhci->devs[urb->dev->slot_id]; 1447 urb_priv = urb->hcpriv; 1448 if (!vdev || !urb_priv) 1449 goto err_giveback; 1450 1451 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1452 ep = &vdev->eps[ep_index]; 1453 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1454 if (!ep || !ep_ring) 1455 goto err_giveback; 1456 1457 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1458 temp = readl(&xhci->op_regs->status); 1459 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1460 xhci_hc_died(xhci); 1461 goto done; 1462 } 1463 1464 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1465 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1466 "HC halted, freeing TD manually."); 1467 for (i = urb_priv->num_tds_done; 1468 i < urb_priv->num_tds; 1469 i++) { 1470 td = &urb_priv->td[i]; 1471 if (!list_empty(&td->td_list)) 1472 list_del_init(&td->td_list); 1473 if (!list_empty(&td->cancelled_td_list)) 1474 list_del_init(&td->cancelled_td_list); 1475 } 1476 goto err_giveback; 1477 } 1478 1479 i = urb_priv->num_tds_done; 1480 if (i < urb_priv->num_tds) 1481 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1482 "Cancel URB %p, dev %s, ep 0x%x, " 1483 "starting at offset 0x%llx", 1484 urb, urb->dev->devpath, 1485 urb->ep->desc.bEndpointAddress, 1486 (unsigned long long) xhci_trb_virt_to_dma( 1487 urb_priv->td[i].start_seg, 1488 urb_priv->td[i].first_trb)); 1489 1490 for (; i < urb_priv->num_tds; i++) { 1491 td = &urb_priv->td[i]; 1492 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1493 } 1494 1495 /* Queue a stop endpoint command, but only if this is 1496 * the first cancellation to be handled. 1497 */ 1498 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1499 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1500 if (!command) { 1501 ret = -ENOMEM; 1502 goto done; 1503 } 1504 ep->ep_state |= EP_STOP_CMD_PENDING; 1505 ep->stop_cmd_timer.expires = jiffies + 1506 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1507 add_timer(&ep->stop_cmd_timer); 1508 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1509 ep_index, 0); 1510 xhci_ring_cmd_db(xhci); 1511 } 1512 done: 1513 spin_unlock_irqrestore(&xhci->lock, flags); 1514 return ret; 1515 1516 err_giveback: 1517 if (urb_priv) 1518 xhci_urb_free_priv(urb_priv); 1519 usb_hcd_unlink_urb_from_ep(hcd, urb); 1520 spin_unlock_irqrestore(&xhci->lock, flags); 1521 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1522 return ret; 1523 } 1524 1525 /* Drop an endpoint from a new bandwidth configuration for this device. 1526 * Only one call to this function is allowed per endpoint before 1527 * check_bandwidth() or reset_bandwidth() must be called. 1528 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1529 * add the endpoint to the schedule with possibly new parameters denoted by a 1530 * different endpoint descriptor in usb_host_endpoint. 1531 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1532 * not allowed. 1533 * 1534 * The USB core will not allow URBs to be queued to an endpoint that is being 1535 * disabled, so there's no need for mutual exclusion to protect 1536 * the xhci->devs[slot_id] structure. 1537 */ 1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1539 struct usb_host_endpoint *ep) 1540 { 1541 struct xhci_hcd *xhci; 1542 struct xhci_container_ctx *in_ctx, *out_ctx; 1543 struct xhci_input_control_ctx *ctrl_ctx; 1544 unsigned int ep_index; 1545 struct xhci_ep_ctx *ep_ctx; 1546 u32 drop_flag; 1547 u32 new_add_flags, new_drop_flags; 1548 int ret; 1549 1550 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1551 if (ret <= 0) 1552 return ret; 1553 xhci = hcd_to_xhci(hcd); 1554 if (xhci->xhc_state & XHCI_STATE_DYING) 1555 return -ENODEV; 1556 1557 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1558 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1559 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1560 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1561 __func__, drop_flag); 1562 return 0; 1563 } 1564 1565 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1566 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1567 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1568 if (!ctrl_ctx) { 1569 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1570 __func__); 1571 return 0; 1572 } 1573 1574 ep_index = xhci_get_endpoint_index(&ep->desc); 1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1576 /* If the HC already knows the endpoint is disabled, 1577 * or the HCD has noted it is disabled, ignore this request 1578 */ 1579 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1580 le32_to_cpu(ctrl_ctx->drop_flags) & 1581 xhci_get_endpoint_flag(&ep->desc)) { 1582 /* Do not warn when called after a usb_device_reset */ 1583 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1584 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1585 __func__, ep); 1586 return 0; 1587 } 1588 1589 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1590 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1591 1592 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1593 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1594 1595 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1596 1597 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1598 1599 if (xhci->quirks & XHCI_MTK_HOST) 1600 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1601 1602 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1603 (unsigned int) ep->desc.bEndpointAddress, 1604 udev->slot_id, 1605 (unsigned int) new_drop_flags, 1606 (unsigned int) new_add_flags); 1607 return 0; 1608 } 1609 1610 /* Add an endpoint to a new possible bandwidth configuration for this device. 1611 * Only one call to this function is allowed per endpoint before 1612 * check_bandwidth() or reset_bandwidth() must be called. 1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1614 * add the endpoint to the schedule with possibly new parameters denoted by a 1615 * different endpoint descriptor in usb_host_endpoint. 1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1617 * not allowed. 1618 * 1619 * The USB core will not allow URBs to be queued to an endpoint until the 1620 * configuration or alt setting is installed in the device, so there's no need 1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1622 */ 1623 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1624 struct usb_host_endpoint *ep) 1625 { 1626 struct xhci_hcd *xhci; 1627 struct xhci_container_ctx *in_ctx; 1628 unsigned int ep_index; 1629 struct xhci_input_control_ctx *ctrl_ctx; 1630 u32 added_ctxs; 1631 u32 new_add_flags, new_drop_flags; 1632 struct xhci_virt_device *virt_dev; 1633 int ret = 0; 1634 1635 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1636 if (ret <= 0) { 1637 /* So we won't queue a reset ep command for a root hub */ 1638 ep->hcpriv = NULL; 1639 return ret; 1640 } 1641 xhci = hcd_to_xhci(hcd); 1642 if (xhci->xhc_state & XHCI_STATE_DYING) 1643 return -ENODEV; 1644 1645 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1646 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1647 /* FIXME when we have to issue an evaluate endpoint command to 1648 * deal with ep0 max packet size changing once we get the 1649 * descriptors 1650 */ 1651 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1652 __func__, added_ctxs); 1653 return 0; 1654 } 1655 1656 virt_dev = xhci->devs[udev->slot_id]; 1657 in_ctx = virt_dev->in_ctx; 1658 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1659 if (!ctrl_ctx) { 1660 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1661 __func__); 1662 return 0; 1663 } 1664 1665 ep_index = xhci_get_endpoint_index(&ep->desc); 1666 /* If this endpoint is already in use, and the upper layers are trying 1667 * to add it again without dropping it, reject the addition. 1668 */ 1669 if (virt_dev->eps[ep_index].ring && 1670 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1671 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1672 "without dropping it.\n", 1673 (unsigned int) ep->desc.bEndpointAddress); 1674 return -EINVAL; 1675 } 1676 1677 /* If the HCD has already noted the endpoint is enabled, 1678 * ignore this request. 1679 */ 1680 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1681 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1682 __func__, ep); 1683 return 0; 1684 } 1685 1686 /* 1687 * Configuration and alternate setting changes must be done in 1688 * process context, not interrupt context (or so documenation 1689 * for usb_set_interface() and usb_set_configuration() claim). 1690 */ 1691 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1692 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1693 __func__, ep->desc.bEndpointAddress); 1694 return -ENOMEM; 1695 } 1696 1697 if (xhci->quirks & XHCI_MTK_HOST) { 1698 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1699 if (ret < 0) { 1700 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1701 virt_dev->eps[ep_index].new_ring = NULL; 1702 return ret; 1703 } 1704 } 1705 1706 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1707 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1708 1709 /* If xhci_endpoint_disable() was called for this endpoint, but the 1710 * xHC hasn't been notified yet through the check_bandwidth() call, 1711 * this re-adds a new state for the endpoint from the new endpoint 1712 * descriptors. We must drop and re-add this endpoint, so we leave the 1713 * drop flags alone. 1714 */ 1715 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1716 1717 /* Store the usb_device pointer for later use */ 1718 ep->hcpriv = udev; 1719 1720 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1721 1722 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1723 (unsigned int) ep->desc.bEndpointAddress, 1724 udev->slot_id, 1725 (unsigned int) new_drop_flags, 1726 (unsigned int) new_add_flags); 1727 return 0; 1728 } 1729 1730 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1731 { 1732 struct xhci_input_control_ctx *ctrl_ctx; 1733 struct xhci_ep_ctx *ep_ctx; 1734 struct xhci_slot_ctx *slot_ctx; 1735 int i; 1736 1737 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1738 if (!ctrl_ctx) { 1739 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1740 __func__); 1741 return; 1742 } 1743 1744 /* When a device's add flag and drop flag are zero, any subsequent 1745 * configure endpoint command will leave that endpoint's state 1746 * untouched. Make sure we don't leave any old state in the input 1747 * endpoint contexts. 1748 */ 1749 ctrl_ctx->drop_flags = 0; 1750 ctrl_ctx->add_flags = 0; 1751 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1752 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1753 /* Endpoint 0 is always valid */ 1754 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1755 for (i = 1; i < 31; i++) { 1756 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1757 ep_ctx->ep_info = 0; 1758 ep_ctx->ep_info2 = 0; 1759 ep_ctx->deq = 0; 1760 ep_ctx->tx_info = 0; 1761 } 1762 } 1763 1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1765 struct usb_device *udev, u32 *cmd_status) 1766 { 1767 int ret; 1768 1769 switch (*cmd_status) { 1770 case COMP_COMMAND_ABORTED: 1771 case COMP_COMMAND_RING_STOPPED: 1772 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1773 ret = -ETIME; 1774 break; 1775 case COMP_RESOURCE_ERROR: 1776 dev_warn(&udev->dev, 1777 "Not enough host controller resources for new device state.\n"); 1778 ret = -ENOMEM; 1779 /* FIXME: can we allocate more resources for the HC? */ 1780 break; 1781 case COMP_BANDWIDTH_ERROR: 1782 case COMP_SECONDARY_BANDWIDTH_ERROR: 1783 dev_warn(&udev->dev, 1784 "Not enough bandwidth for new device state.\n"); 1785 ret = -ENOSPC; 1786 /* FIXME: can we go back to the old state? */ 1787 break; 1788 case COMP_TRB_ERROR: 1789 /* the HCD set up something wrong */ 1790 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1791 "add flag = 1, " 1792 "and endpoint is not disabled.\n"); 1793 ret = -EINVAL; 1794 break; 1795 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1796 dev_warn(&udev->dev, 1797 "ERROR: Incompatible device for endpoint configure command.\n"); 1798 ret = -ENODEV; 1799 break; 1800 case COMP_SUCCESS: 1801 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1802 "Successful Endpoint Configure command"); 1803 ret = 0; 1804 break; 1805 default: 1806 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1807 *cmd_status); 1808 ret = -EINVAL; 1809 break; 1810 } 1811 return ret; 1812 } 1813 1814 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1815 struct usb_device *udev, u32 *cmd_status) 1816 { 1817 int ret; 1818 1819 switch (*cmd_status) { 1820 case COMP_COMMAND_ABORTED: 1821 case COMP_COMMAND_RING_STOPPED: 1822 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1823 ret = -ETIME; 1824 break; 1825 case COMP_PARAMETER_ERROR: 1826 dev_warn(&udev->dev, 1827 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1828 ret = -EINVAL; 1829 break; 1830 case COMP_SLOT_NOT_ENABLED_ERROR: 1831 dev_warn(&udev->dev, 1832 "WARN: slot not enabled for evaluate context command.\n"); 1833 ret = -EINVAL; 1834 break; 1835 case COMP_CONTEXT_STATE_ERROR: 1836 dev_warn(&udev->dev, 1837 "WARN: invalid context state for evaluate context command.\n"); 1838 ret = -EINVAL; 1839 break; 1840 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1841 dev_warn(&udev->dev, 1842 "ERROR: Incompatible device for evaluate context command.\n"); 1843 ret = -ENODEV; 1844 break; 1845 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1846 /* Max Exit Latency too large error */ 1847 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1848 ret = -EINVAL; 1849 break; 1850 case COMP_SUCCESS: 1851 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1852 "Successful evaluate context command"); 1853 ret = 0; 1854 break; 1855 default: 1856 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1857 *cmd_status); 1858 ret = -EINVAL; 1859 break; 1860 } 1861 return ret; 1862 } 1863 1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1865 struct xhci_input_control_ctx *ctrl_ctx) 1866 { 1867 u32 valid_add_flags; 1868 u32 valid_drop_flags; 1869 1870 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1871 * (bit 1). The default control endpoint is added during the Address 1872 * Device command and is never removed until the slot is disabled. 1873 */ 1874 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1875 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1876 1877 /* Use hweight32 to count the number of ones in the add flags, or 1878 * number of endpoints added. Don't count endpoints that are changed 1879 * (both added and dropped). 1880 */ 1881 return hweight32(valid_add_flags) - 1882 hweight32(valid_add_flags & valid_drop_flags); 1883 } 1884 1885 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1886 struct xhci_input_control_ctx *ctrl_ctx) 1887 { 1888 u32 valid_add_flags; 1889 u32 valid_drop_flags; 1890 1891 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1892 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1893 1894 return hweight32(valid_drop_flags) - 1895 hweight32(valid_add_flags & valid_drop_flags); 1896 } 1897 1898 /* 1899 * We need to reserve the new number of endpoints before the configure endpoint 1900 * command completes. We can't subtract the dropped endpoints from the number 1901 * of active endpoints until the command completes because we can oversubscribe 1902 * the host in this case: 1903 * 1904 * - the first configure endpoint command drops more endpoints than it adds 1905 * - a second configure endpoint command that adds more endpoints is queued 1906 * - the first configure endpoint command fails, so the config is unchanged 1907 * - the second command may succeed, even though there isn't enough resources 1908 * 1909 * Must be called with xhci->lock held. 1910 */ 1911 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1912 struct xhci_input_control_ctx *ctrl_ctx) 1913 { 1914 u32 added_eps; 1915 1916 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1917 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1918 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1919 "Not enough ep ctxs: " 1920 "%u active, need to add %u, limit is %u.", 1921 xhci->num_active_eps, added_eps, 1922 xhci->limit_active_eps); 1923 return -ENOMEM; 1924 } 1925 xhci->num_active_eps += added_eps; 1926 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1927 "Adding %u ep ctxs, %u now active.", added_eps, 1928 xhci->num_active_eps); 1929 return 0; 1930 } 1931 1932 /* 1933 * The configure endpoint was failed by the xHC for some other reason, so we 1934 * need to revert the resources that failed configuration would have used. 1935 * 1936 * Must be called with xhci->lock held. 1937 */ 1938 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1939 struct xhci_input_control_ctx *ctrl_ctx) 1940 { 1941 u32 num_failed_eps; 1942 1943 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1944 xhci->num_active_eps -= num_failed_eps; 1945 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1946 "Removing %u failed ep ctxs, %u now active.", 1947 num_failed_eps, 1948 xhci->num_active_eps); 1949 } 1950 1951 /* 1952 * Now that the command has completed, clean up the active endpoint count by 1953 * subtracting out the endpoints that were dropped (but not changed). 1954 * 1955 * Must be called with xhci->lock held. 1956 */ 1957 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1958 struct xhci_input_control_ctx *ctrl_ctx) 1959 { 1960 u32 num_dropped_eps; 1961 1962 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1963 xhci->num_active_eps -= num_dropped_eps; 1964 if (num_dropped_eps) 1965 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1966 "Removing %u dropped ep ctxs, %u now active.", 1967 num_dropped_eps, 1968 xhci->num_active_eps); 1969 } 1970 1971 static unsigned int xhci_get_block_size(struct usb_device *udev) 1972 { 1973 switch (udev->speed) { 1974 case USB_SPEED_LOW: 1975 case USB_SPEED_FULL: 1976 return FS_BLOCK; 1977 case USB_SPEED_HIGH: 1978 return HS_BLOCK; 1979 case USB_SPEED_SUPER: 1980 case USB_SPEED_SUPER_PLUS: 1981 return SS_BLOCK; 1982 case USB_SPEED_UNKNOWN: 1983 case USB_SPEED_WIRELESS: 1984 default: 1985 /* Should never happen */ 1986 return 1; 1987 } 1988 } 1989 1990 static unsigned int 1991 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1992 { 1993 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1994 return LS_OVERHEAD; 1995 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1996 return FS_OVERHEAD; 1997 return HS_OVERHEAD; 1998 } 1999 2000 /* If we are changing a LS/FS device under a HS hub, 2001 * make sure (if we are activating a new TT) that the HS bus has enough 2002 * bandwidth for this new TT. 2003 */ 2004 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2005 struct xhci_virt_device *virt_dev, 2006 int old_active_eps) 2007 { 2008 struct xhci_interval_bw_table *bw_table; 2009 struct xhci_tt_bw_info *tt_info; 2010 2011 /* Find the bandwidth table for the root port this TT is attached to. */ 2012 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2013 tt_info = virt_dev->tt_info; 2014 /* If this TT already had active endpoints, the bandwidth for this TT 2015 * has already been added. Removing all periodic endpoints (and thus 2016 * making the TT enactive) will only decrease the bandwidth used. 2017 */ 2018 if (old_active_eps) 2019 return 0; 2020 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2021 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2022 return -ENOMEM; 2023 return 0; 2024 } 2025 /* Not sure why we would have no new active endpoints... 2026 * 2027 * Maybe because of an Evaluate Context change for a hub update or a 2028 * control endpoint 0 max packet size change? 2029 * FIXME: skip the bandwidth calculation in that case. 2030 */ 2031 return 0; 2032 } 2033 2034 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2035 struct xhci_virt_device *virt_dev) 2036 { 2037 unsigned int bw_reserved; 2038 2039 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2040 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2041 return -ENOMEM; 2042 2043 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2044 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2045 return -ENOMEM; 2046 2047 return 0; 2048 } 2049 2050 /* 2051 * This algorithm is a very conservative estimate of the worst-case scheduling 2052 * scenario for any one interval. The hardware dynamically schedules the 2053 * packets, so we can't tell which microframe could be the limiting factor in 2054 * the bandwidth scheduling. This only takes into account periodic endpoints. 2055 * 2056 * Obviously, we can't solve an NP complete problem to find the minimum worst 2057 * case scenario. Instead, we come up with an estimate that is no less than 2058 * the worst case bandwidth used for any one microframe, but may be an 2059 * over-estimate. 2060 * 2061 * We walk the requirements for each endpoint by interval, starting with the 2062 * smallest interval, and place packets in the schedule where there is only one 2063 * possible way to schedule packets for that interval. In order to simplify 2064 * this algorithm, we record the largest max packet size for each interval, and 2065 * assume all packets will be that size. 2066 * 2067 * For interval 0, we obviously must schedule all packets for each interval. 2068 * The bandwidth for interval 0 is just the amount of data to be transmitted 2069 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2070 * the number of packets). 2071 * 2072 * For interval 1, we have two possible microframes to schedule those packets 2073 * in. For this algorithm, if we can schedule the same number of packets for 2074 * each possible scheduling opportunity (each microframe), we will do so. The 2075 * remaining number of packets will be saved to be transmitted in the gaps in 2076 * the next interval's scheduling sequence. 2077 * 2078 * As we move those remaining packets to be scheduled with interval 2 packets, 2079 * we have to double the number of remaining packets to transmit. This is 2080 * because the intervals are actually powers of 2, and we would be transmitting 2081 * the previous interval's packets twice in this interval. We also have to be 2082 * sure that when we look at the largest max packet size for this interval, we 2083 * also look at the largest max packet size for the remaining packets and take 2084 * the greater of the two. 2085 * 2086 * The algorithm continues to evenly distribute packets in each scheduling 2087 * opportunity, and push the remaining packets out, until we get to the last 2088 * interval. Then those packets and their associated overhead are just added 2089 * to the bandwidth used. 2090 */ 2091 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2092 struct xhci_virt_device *virt_dev, 2093 int old_active_eps) 2094 { 2095 unsigned int bw_reserved; 2096 unsigned int max_bandwidth; 2097 unsigned int bw_used; 2098 unsigned int block_size; 2099 struct xhci_interval_bw_table *bw_table; 2100 unsigned int packet_size = 0; 2101 unsigned int overhead = 0; 2102 unsigned int packets_transmitted = 0; 2103 unsigned int packets_remaining = 0; 2104 unsigned int i; 2105 2106 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2107 return xhci_check_ss_bw(xhci, virt_dev); 2108 2109 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2110 max_bandwidth = HS_BW_LIMIT; 2111 /* Convert percent of bus BW reserved to blocks reserved */ 2112 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2113 } else { 2114 max_bandwidth = FS_BW_LIMIT; 2115 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2116 } 2117 2118 bw_table = virt_dev->bw_table; 2119 /* We need to translate the max packet size and max ESIT payloads into 2120 * the units the hardware uses. 2121 */ 2122 block_size = xhci_get_block_size(virt_dev->udev); 2123 2124 /* If we are manipulating a LS/FS device under a HS hub, double check 2125 * that the HS bus has enough bandwidth if we are activing a new TT. 2126 */ 2127 if (virt_dev->tt_info) { 2128 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2129 "Recalculating BW for rootport %u", 2130 virt_dev->real_port); 2131 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2132 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2133 "newly activated TT.\n"); 2134 return -ENOMEM; 2135 } 2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2137 "Recalculating BW for TT slot %u port %u", 2138 virt_dev->tt_info->slot_id, 2139 virt_dev->tt_info->ttport); 2140 } else { 2141 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2142 "Recalculating BW for rootport %u", 2143 virt_dev->real_port); 2144 } 2145 2146 /* Add in how much bandwidth will be used for interval zero, or the 2147 * rounded max ESIT payload + number of packets * largest overhead. 2148 */ 2149 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2150 bw_table->interval_bw[0].num_packets * 2151 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2152 2153 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2154 unsigned int bw_added; 2155 unsigned int largest_mps; 2156 unsigned int interval_overhead; 2157 2158 /* 2159 * How many packets could we transmit in this interval? 2160 * If packets didn't fit in the previous interval, we will need 2161 * to transmit that many packets twice within this interval. 2162 */ 2163 packets_remaining = 2 * packets_remaining + 2164 bw_table->interval_bw[i].num_packets; 2165 2166 /* Find the largest max packet size of this or the previous 2167 * interval. 2168 */ 2169 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2170 largest_mps = 0; 2171 else { 2172 struct xhci_virt_ep *virt_ep; 2173 struct list_head *ep_entry; 2174 2175 ep_entry = bw_table->interval_bw[i].endpoints.next; 2176 virt_ep = list_entry(ep_entry, 2177 struct xhci_virt_ep, bw_endpoint_list); 2178 /* Convert to blocks, rounding up */ 2179 largest_mps = DIV_ROUND_UP( 2180 virt_ep->bw_info.max_packet_size, 2181 block_size); 2182 } 2183 if (largest_mps > packet_size) 2184 packet_size = largest_mps; 2185 2186 /* Use the larger overhead of this or the previous interval. */ 2187 interval_overhead = xhci_get_largest_overhead( 2188 &bw_table->interval_bw[i]); 2189 if (interval_overhead > overhead) 2190 overhead = interval_overhead; 2191 2192 /* How many packets can we evenly distribute across 2193 * (1 << (i + 1)) possible scheduling opportunities? 2194 */ 2195 packets_transmitted = packets_remaining >> (i + 1); 2196 2197 /* Add in the bandwidth used for those scheduled packets */ 2198 bw_added = packets_transmitted * (overhead + packet_size); 2199 2200 /* How many packets do we have remaining to transmit? */ 2201 packets_remaining = packets_remaining % (1 << (i + 1)); 2202 2203 /* What largest max packet size should those packets have? */ 2204 /* If we've transmitted all packets, don't carry over the 2205 * largest packet size. 2206 */ 2207 if (packets_remaining == 0) { 2208 packet_size = 0; 2209 overhead = 0; 2210 } else if (packets_transmitted > 0) { 2211 /* Otherwise if we do have remaining packets, and we've 2212 * scheduled some packets in this interval, take the 2213 * largest max packet size from endpoints with this 2214 * interval. 2215 */ 2216 packet_size = largest_mps; 2217 overhead = interval_overhead; 2218 } 2219 /* Otherwise carry over packet_size and overhead from the last 2220 * time we had a remainder. 2221 */ 2222 bw_used += bw_added; 2223 if (bw_used > max_bandwidth) { 2224 xhci_warn(xhci, "Not enough bandwidth. " 2225 "Proposed: %u, Max: %u\n", 2226 bw_used, max_bandwidth); 2227 return -ENOMEM; 2228 } 2229 } 2230 /* 2231 * Ok, we know we have some packets left over after even-handedly 2232 * scheduling interval 15. We don't know which microframes they will 2233 * fit into, so we over-schedule and say they will be scheduled every 2234 * microframe. 2235 */ 2236 if (packets_remaining > 0) 2237 bw_used += overhead + packet_size; 2238 2239 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2240 unsigned int port_index = virt_dev->real_port - 1; 2241 2242 /* OK, we're manipulating a HS device attached to a 2243 * root port bandwidth domain. Include the number of active TTs 2244 * in the bandwidth used. 2245 */ 2246 bw_used += TT_HS_OVERHEAD * 2247 xhci->rh_bw[port_index].num_active_tts; 2248 } 2249 2250 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2251 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2252 "Available: %u " "percent", 2253 bw_used, max_bandwidth, bw_reserved, 2254 (max_bandwidth - bw_used - bw_reserved) * 100 / 2255 max_bandwidth); 2256 2257 bw_used += bw_reserved; 2258 if (bw_used > max_bandwidth) { 2259 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2260 bw_used, max_bandwidth); 2261 return -ENOMEM; 2262 } 2263 2264 bw_table->bw_used = bw_used; 2265 return 0; 2266 } 2267 2268 static bool xhci_is_async_ep(unsigned int ep_type) 2269 { 2270 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2271 ep_type != ISOC_IN_EP && 2272 ep_type != INT_IN_EP); 2273 } 2274 2275 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2276 { 2277 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2278 } 2279 2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2281 { 2282 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2283 2284 if (ep_bw->ep_interval == 0) 2285 return SS_OVERHEAD_BURST + 2286 (ep_bw->mult * ep_bw->num_packets * 2287 (SS_OVERHEAD + mps)); 2288 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2289 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2290 1 << ep_bw->ep_interval); 2291 2292 } 2293 2294 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2295 struct xhci_bw_info *ep_bw, 2296 struct xhci_interval_bw_table *bw_table, 2297 struct usb_device *udev, 2298 struct xhci_virt_ep *virt_ep, 2299 struct xhci_tt_bw_info *tt_info) 2300 { 2301 struct xhci_interval_bw *interval_bw; 2302 int normalized_interval; 2303 2304 if (xhci_is_async_ep(ep_bw->type)) 2305 return; 2306 2307 if (udev->speed >= USB_SPEED_SUPER) { 2308 if (xhci_is_sync_in_ep(ep_bw->type)) 2309 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2310 xhci_get_ss_bw_consumed(ep_bw); 2311 else 2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2313 xhci_get_ss_bw_consumed(ep_bw); 2314 return; 2315 } 2316 2317 /* SuperSpeed endpoints never get added to intervals in the table, so 2318 * this check is only valid for HS/FS/LS devices. 2319 */ 2320 if (list_empty(&virt_ep->bw_endpoint_list)) 2321 return; 2322 /* For LS/FS devices, we need to translate the interval expressed in 2323 * microframes to frames. 2324 */ 2325 if (udev->speed == USB_SPEED_HIGH) 2326 normalized_interval = ep_bw->ep_interval; 2327 else 2328 normalized_interval = ep_bw->ep_interval - 3; 2329 2330 if (normalized_interval == 0) 2331 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2332 interval_bw = &bw_table->interval_bw[normalized_interval]; 2333 interval_bw->num_packets -= ep_bw->num_packets; 2334 switch (udev->speed) { 2335 case USB_SPEED_LOW: 2336 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2337 break; 2338 case USB_SPEED_FULL: 2339 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2340 break; 2341 case USB_SPEED_HIGH: 2342 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2343 break; 2344 case USB_SPEED_SUPER: 2345 case USB_SPEED_SUPER_PLUS: 2346 case USB_SPEED_UNKNOWN: 2347 case USB_SPEED_WIRELESS: 2348 /* Should never happen because only LS/FS/HS endpoints will get 2349 * added to the endpoint list. 2350 */ 2351 return; 2352 } 2353 if (tt_info) 2354 tt_info->active_eps -= 1; 2355 list_del_init(&virt_ep->bw_endpoint_list); 2356 } 2357 2358 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2359 struct xhci_bw_info *ep_bw, 2360 struct xhci_interval_bw_table *bw_table, 2361 struct usb_device *udev, 2362 struct xhci_virt_ep *virt_ep, 2363 struct xhci_tt_bw_info *tt_info) 2364 { 2365 struct xhci_interval_bw *interval_bw; 2366 struct xhci_virt_ep *smaller_ep; 2367 int normalized_interval; 2368 2369 if (xhci_is_async_ep(ep_bw->type)) 2370 return; 2371 2372 if (udev->speed == USB_SPEED_SUPER) { 2373 if (xhci_is_sync_in_ep(ep_bw->type)) 2374 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2375 xhci_get_ss_bw_consumed(ep_bw); 2376 else 2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2378 xhci_get_ss_bw_consumed(ep_bw); 2379 return; 2380 } 2381 2382 /* For LS/FS devices, we need to translate the interval expressed in 2383 * microframes to frames. 2384 */ 2385 if (udev->speed == USB_SPEED_HIGH) 2386 normalized_interval = ep_bw->ep_interval; 2387 else 2388 normalized_interval = ep_bw->ep_interval - 3; 2389 2390 if (normalized_interval == 0) 2391 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2392 interval_bw = &bw_table->interval_bw[normalized_interval]; 2393 interval_bw->num_packets += ep_bw->num_packets; 2394 switch (udev->speed) { 2395 case USB_SPEED_LOW: 2396 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2397 break; 2398 case USB_SPEED_FULL: 2399 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2400 break; 2401 case USB_SPEED_HIGH: 2402 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2403 break; 2404 case USB_SPEED_SUPER: 2405 case USB_SPEED_SUPER_PLUS: 2406 case USB_SPEED_UNKNOWN: 2407 case USB_SPEED_WIRELESS: 2408 /* Should never happen because only LS/FS/HS endpoints will get 2409 * added to the endpoint list. 2410 */ 2411 return; 2412 } 2413 2414 if (tt_info) 2415 tt_info->active_eps += 1; 2416 /* Insert the endpoint into the list, largest max packet size first. */ 2417 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2418 bw_endpoint_list) { 2419 if (ep_bw->max_packet_size >= 2420 smaller_ep->bw_info.max_packet_size) { 2421 /* Add the new ep before the smaller endpoint */ 2422 list_add_tail(&virt_ep->bw_endpoint_list, 2423 &smaller_ep->bw_endpoint_list); 2424 return; 2425 } 2426 } 2427 /* Add the new endpoint at the end of the list. */ 2428 list_add_tail(&virt_ep->bw_endpoint_list, 2429 &interval_bw->endpoints); 2430 } 2431 2432 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2433 struct xhci_virt_device *virt_dev, 2434 int old_active_eps) 2435 { 2436 struct xhci_root_port_bw_info *rh_bw_info; 2437 if (!virt_dev->tt_info) 2438 return; 2439 2440 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2441 if (old_active_eps == 0 && 2442 virt_dev->tt_info->active_eps != 0) { 2443 rh_bw_info->num_active_tts += 1; 2444 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2445 } else if (old_active_eps != 0 && 2446 virt_dev->tt_info->active_eps == 0) { 2447 rh_bw_info->num_active_tts -= 1; 2448 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2449 } 2450 } 2451 2452 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2453 struct xhci_virt_device *virt_dev, 2454 struct xhci_container_ctx *in_ctx) 2455 { 2456 struct xhci_bw_info ep_bw_info[31]; 2457 int i; 2458 struct xhci_input_control_ctx *ctrl_ctx; 2459 int old_active_eps = 0; 2460 2461 if (virt_dev->tt_info) 2462 old_active_eps = virt_dev->tt_info->active_eps; 2463 2464 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2465 if (!ctrl_ctx) { 2466 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2467 __func__); 2468 return -ENOMEM; 2469 } 2470 2471 for (i = 0; i < 31; i++) { 2472 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2473 continue; 2474 2475 /* Make a copy of the BW info in case we need to revert this */ 2476 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2477 sizeof(ep_bw_info[i])); 2478 /* Drop the endpoint from the interval table if the endpoint is 2479 * being dropped or changed. 2480 */ 2481 if (EP_IS_DROPPED(ctrl_ctx, i)) 2482 xhci_drop_ep_from_interval_table(xhci, 2483 &virt_dev->eps[i].bw_info, 2484 virt_dev->bw_table, 2485 virt_dev->udev, 2486 &virt_dev->eps[i], 2487 virt_dev->tt_info); 2488 } 2489 /* Overwrite the information stored in the endpoints' bw_info */ 2490 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2491 for (i = 0; i < 31; i++) { 2492 /* Add any changed or added endpoints to the interval table */ 2493 if (EP_IS_ADDED(ctrl_ctx, i)) 2494 xhci_add_ep_to_interval_table(xhci, 2495 &virt_dev->eps[i].bw_info, 2496 virt_dev->bw_table, 2497 virt_dev->udev, 2498 &virt_dev->eps[i], 2499 virt_dev->tt_info); 2500 } 2501 2502 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2503 /* Ok, this fits in the bandwidth we have. 2504 * Update the number of active TTs. 2505 */ 2506 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2507 return 0; 2508 } 2509 2510 /* We don't have enough bandwidth for this, revert the stored info. */ 2511 for (i = 0; i < 31; i++) { 2512 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2513 continue; 2514 2515 /* Drop the new copies of any added or changed endpoints from 2516 * the interval table. 2517 */ 2518 if (EP_IS_ADDED(ctrl_ctx, i)) { 2519 xhci_drop_ep_from_interval_table(xhci, 2520 &virt_dev->eps[i].bw_info, 2521 virt_dev->bw_table, 2522 virt_dev->udev, 2523 &virt_dev->eps[i], 2524 virt_dev->tt_info); 2525 } 2526 /* Revert the endpoint back to its old information */ 2527 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2528 sizeof(ep_bw_info[i])); 2529 /* Add any changed or dropped endpoints back into the table */ 2530 if (EP_IS_DROPPED(ctrl_ctx, i)) 2531 xhci_add_ep_to_interval_table(xhci, 2532 &virt_dev->eps[i].bw_info, 2533 virt_dev->bw_table, 2534 virt_dev->udev, 2535 &virt_dev->eps[i], 2536 virt_dev->tt_info); 2537 } 2538 return -ENOMEM; 2539 } 2540 2541 2542 /* Issue a configure endpoint command or evaluate context command 2543 * and wait for it to finish. 2544 */ 2545 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2546 struct usb_device *udev, 2547 struct xhci_command *command, 2548 bool ctx_change, bool must_succeed) 2549 { 2550 int ret; 2551 unsigned long flags; 2552 struct xhci_input_control_ctx *ctrl_ctx; 2553 struct xhci_virt_device *virt_dev; 2554 struct xhci_slot_ctx *slot_ctx; 2555 2556 if (!command) 2557 return -EINVAL; 2558 2559 spin_lock_irqsave(&xhci->lock, flags); 2560 2561 if (xhci->xhc_state & XHCI_STATE_DYING) { 2562 spin_unlock_irqrestore(&xhci->lock, flags); 2563 return -ESHUTDOWN; 2564 } 2565 2566 virt_dev = xhci->devs[udev->slot_id]; 2567 2568 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2569 if (!ctrl_ctx) { 2570 spin_unlock_irqrestore(&xhci->lock, flags); 2571 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2572 __func__); 2573 return -ENOMEM; 2574 } 2575 2576 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2577 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2578 spin_unlock_irqrestore(&xhci->lock, flags); 2579 xhci_warn(xhci, "Not enough host resources, " 2580 "active endpoint contexts = %u\n", 2581 xhci->num_active_eps); 2582 return -ENOMEM; 2583 } 2584 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2585 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2586 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2587 xhci_free_host_resources(xhci, ctrl_ctx); 2588 spin_unlock_irqrestore(&xhci->lock, flags); 2589 xhci_warn(xhci, "Not enough bandwidth\n"); 2590 return -ENOMEM; 2591 } 2592 2593 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2594 trace_xhci_configure_endpoint(slot_ctx); 2595 2596 if (!ctx_change) 2597 ret = xhci_queue_configure_endpoint(xhci, command, 2598 command->in_ctx->dma, 2599 udev->slot_id, must_succeed); 2600 else 2601 ret = xhci_queue_evaluate_context(xhci, command, 2602 command->in_ctx->dma, 2603 udev->slot_id, must_succeed); 2604 if (ret < 0) { 2605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2606 xhci_free_host_resources(xhci, ctrl_ctx); 2607 spin_unlock_irqrestore(&xhci->lock, flags); 2608 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2609 "FIXME allocate a new ring segment"); 2610 return -ENOMEM; 2611 } 2612 xhci_ring_cmd_db(xhci); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 2615 /* Wait for the configure endpoint command to complete */ 2616 wait_for_completion(command->completion); 2617 2618 if (!ctx_change) 2619 ret = xhci_configure_endpoint_result(xhci, udev, 2620 &command->status); 2621 else 2622 ret = xhci_evaluate_context_result(xhci, udev, 2623 &command->status); 2624 2625 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2626 spin_lock_irqsave(&xhci->lock, flags); 2627 /* If the command failed, remove the reserved resources. 2628 * Otherwise, clean up the estimate to include dropped eps. 2629 */ 2630 if (ret) 2631 xhci_free_host_resources(xhci, ctrl_ctx); 2632 else 2633 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2634 spin_unlock_irqrestore(&xhci->lock, flags); 2635 } 2636 return ret; 2637 } 2638 2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2640 struct xhci_virt_device *vdev, int i) 2641 { 2642 struct xhci_virt_ep *ep = &vdev->eps[i]; 2643 2644 if (ep->ep_state & EP_HAS_STREAMS) { 2645 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2646 xhci_get_endpoint_address(i)); 2647 xhci_free_stream_info(xhci, ep->stream_info); 2648 ep->stream_info = NULL; 2649 ep->ep_state &= ~EP_HAS_STREAMS; 2650 } 2651 } 2652 2653 /* Called after one or more calls to xhci_add_endpoint() or 2654 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2655 * to call xhci_reset_bandwidth(). 2656 * 2657 * Since we are in the middle of changing either configuration or 2658 * installing a new alt setting, the USB core won't allow URBs to be 2659 * enqueued for any endpoint on the old config or interface. Nothing 2660 * else should be touching the xhci->devs[slot_id] structure, so we 2661 * don't need to take the xhci->lock for manipulating that. 2662 */ 2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2664 { 2665 int i; 2666 int ret = 0; 2667 struct xhci_hcd *xhci; 2668 struct xhci_virt_device *virt_dev; 2669 struct xhci_input_control_ctx *ctrl_ctx; 2670 struct xhci_slot_ctx *slot_ctx; 2671 struct xhci_command *command; 2672 2673 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2674 if (ret <= 0) 2675 return ret; 2676 xhci = hcd_to_xhci(hcd); 2677 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2678 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2679 return -ENODEV; 2680 2681 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2682 virt_dev = xhci->devs[udev->slot_id]; 2683 2684 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2685 if (!command) 2686 return -ENOMEM; 2687 2688 command->in_ctx = virt_dev->in_ctx; 2689 2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2691 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2692 if (!ctrl_ctx) { 2693 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2694 __func__); 2695 ret = -ENOMEM; 2696 goto command_cleanup; 2697 } 2698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2699 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2700 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2701 2702 /* Don't issue the command if there's no endpoints to update. */ 2703 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2704 ctrl_ctx->drop_flags == 0) { 2705 ret = 0; 2706 goto command_cleanup; 2707 } 2708 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2709 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2710 for (i = 31; i >= 1; i--) { 2711 __le32 le32 = cpu_to_le32(BIT(i)); 2712 2713 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2714 || (ctrl_ctx->add_flags & le32) || i == 1) { 2715 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2716 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2717 break; 2718 } 2719 } 2720 2721 ret = xhci_configure_endpoint(xhci, udev, command, 2722 false, false); 2723 if (ret) 2724 /* Callee should call reset_bandwidth() */ 2725 goto command_cleanup; 2726 2727 /* Free any rings that were dropped, but not changed. */ 2728 for (i = 1; i < 31; i++) { 2729 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2730 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2731 xhci_free_endpoint_ring(xhci, virt_dev, i); 2732 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2733 } 2734 } 2735 xhci_zero_in_ctx(xhci, virt_dev); 2736 /* 2737 * Install any rings for completely new endpoints or changed endpoints, 2738 * and free any old rings from changed endpoints. 2739 */ 2740 for (i = 1; i < 31; i++) { 2741 if (!virt_dev->eps[i].new_ring) 2742 continue; 2743 /* Only free the old ring if it exists. 2744 * It may not if this is the first add of an endpoint. 2745 */ 2746 if (virt_dev->eps[i].ring) { 2747 xhci_free_endpoint_ring(xhci, virt_dev, i); 2748 } 2749 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2750 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2751 virt_dev->eps[i].new_ring = NULL; 2752 } 2753 command_cleanup: 2754 kfree(command->completion); 2755 kfree(command); 2756 2757 return ret; 2758 } 2759 2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2761 { 2762 struct xhci_hcd *xhci; 2763 struct xhci_virt_device *virt_dev; 2764 int i, ret; 2765 2766 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2767 if (ret <= 0) 2768 return; 2769 xhci = hcd_to_xhci(hcd); 2770 2771 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2772 virt_dev = xhci->devs[udev->slot_id]; 2773 /* Free any rings allocated for added endpoints */ 2774 for (i = 0; i < 31; i++) { 2775 if (virt_dev->eps[i].new_ring) { 2776 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2777 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2778 virt_dev->eps[i].new_ring = NULL; 2779 } 2780 } 2781 xhci_zero_in_ctx(xhci, virt_dev); 2782 } 2783 2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2785 struct xhci_container_ctx *in_ctx, 2786 struct xhci_container_ctx *out_ctx, 2787 struct xhci_input_control_ctx *ctrl_ctx, 2788 u32 add_flags, u32 drop_flags) 2789 { 2790 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2791 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2792 xhci_slot_copy(xhci, in_ctx, out_ctx); 2793 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2794 } 2795 2796 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2797 unsigned int slot_id, unsigned int ep_index, 2798 struct xhci_dequeue_state *deq_state) 2799 { 2800 struct xhci_input_control_ctx *ctrl_ctx; 2801 struct xhci_container_ctx *in_ctx; 2802 struct xhci_ep_ctx *ep_ctx; 2803 u32 added_ctxs; 2804 dma_addr_t addr; 2805 2806 in_ctx = xhci->devs[slot_id]->in_ctx; 2807 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2808 if (!ctrl_ctx) { 2809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2810 __func__); 2811 return; 2812 } 2813 2814 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2815 xhci->devs[slot_id]->out_ctx, ep_index); 2816 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2817 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2818 deq_state->new_deq_ptr); 2819 if (addr == 0) { 2820 xhci_warn(xhci, "WARN Cannot submit config ep after " 2821 "reset ep command\n"); 2822 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2823 deq_state->new_deq_seg, 2824 deq_state->new_deq_ptr); 2825 return; 2826 } 2827 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2828 2829 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2830 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2831 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2832 added_ctxs, added_ctxs); 2833 } 2834 2835 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2836 unsigned int stream_id, struct xhci_td *td) 2837 { 2838 struct xhci_dequeue_state deq_state; 2839 struct usb_device *udev = td->urb->dev; 2840 2841 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2842 "Cleaning up stalled endpoint ring"); 2843 /* We need to move the HW's dequeue pointer past this TD, 2844 * or it will attempt to resend it on the next doorbell ring. 2845 */ 2846 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2847 ep_index, stream_id, td, &deq_state); 2848 2849 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2850 return; 2851 2852 /* HW with the reset endpoint quirk will use the saved dequeue state to 2853 * issue a configure endpoint command later. 2854 */ 2855 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2856 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2857 "Queueing new dequeue state"); 2858 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2859 ep_index, &deq_state); 2860 } else { 2861 /* Better hope no one uses the input context between now and the 2862 * reset endpoint completion! 2863 * XXX: No idea how this hardware will react when stream rings 2864 * are enabled. 2865 */ 2866 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2867 "Setting up input context for " 2868 "configure endpoint command"); 2869 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2870 ep_index, &deq_state); 2871 } 2872 } 2873 2874 /* Called when clearing halted device. The core should have sent the control 2875 * message to clear the device halt condition. The host side of the halt should 2876 * already be cleared with a reset endpoint command issued when the STALL tx 2877 * event was received. 2878 * 2879 * Context: in_interrupt 2880 */ 2881 2882 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2883 struct usb_host_endpoint *ep) 2884 { 2885 struct xhci_hcd *xhci; 2886 2887 xhci = hcd_to_xhci(hcd); 2888 2889 /* 2890 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2891 * The Reset Endpoint Command may only be issued to endpoints in the 2892 * Halted state. If software wishes reset the Data Toggle or Sequence 2893 * Number of an endpoint that isn't in the Halted state, then software 2894 * may issue a Configure Endpoint Command with the Drop and Add bits set 2895 * for the target endpoint. that is in the Stopped state. 2896 */ 2897 2898 /* For now just print debug to follow the situation */ 2899 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2900 ep->desc.bEndpointAddress); 2901 } 2902 2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2904 struct usb_device *udev, struct usb_host_endpoint *ep, 2905 unsigned int slot_id) 2906 { 2907 int ret; 2908 unsigned int ep_index; 2909 unsigned int ep_state; 2910 2911 if (!ep) 2912 return -EINVAL; 2913 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2914 if (ret <= 0) 2915 return -EINVAL; 2916 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2917 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2918 " descriptor for ep 0x%x does not support streams\n", 2919 ep->desc.bEndpointAddress); 2920 return -EINVAL; 2921 } 2922 2923 ep_index = xhci_get_endpoint_index(&ep->desc); 2924 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2925 if (ep_state & EP_HAS_STREAMS || 2926 ep_state & EP_GETTING_STREAMS) { 2927 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2928 "already has streams set up.\n", 2929 ep->desc.bEndpointAddress); 2930 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2931 "dynamic stream context array reallocation.\n"); 2932 return -EINVAL; 2933 } 2934 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2935 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2936 "endpoint 0x%x; URBs are pending.\n", 2937 ep->desc.bEndpointAddress); 2938 return -EINVAL; 2939 } 2940 return 0; 2941 } 2942 2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2944 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2945 { 2946 unsigned int max_streams; 2947 2948 /* The stream context array size must be a power of two */ 2949 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2950 /* 2951 * Find out how many primary stream array entries the host controller 2952 * supports. Later we may use secondary stream arrays (similar to 2nd 2953 * level page entries), but that's an optional feature for xHCI host 2954 * controllers. xHCs must support at least 4 stream IDs. 2955 */ 2956 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2957 if (*num_stream_ctxs > max_streams) { 2958 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2959 max_streams); 2960 *num_stream_ctxs = max_streams; 2961 *num_streams = max_streams; 2962 } 2963 } 2964 2965 /* Returns an error code if one of the endpoint already has streams. 2966 * This does not change any data structures, it only checks and gathers 2967 * information. 2968 */ 2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2970 struct usb_device *udev, 2971 struct usb_host_endpoint **eps, unsigned int num_eps, 2972 unsigned int *num_streams, u32 *changed_ep_bitmask) 2973 { 2974 unsigned int max_streams; 2975 unsigned int endpoint_flag; 2976 int i; 2977 int ret; 2978 2979 for (i = 0; i < num_eps; i++) { 2980 ret = xhci_check_streams_endpoint(xhci, udev, 2981 eps[i], udev->slot_id); 2982 if (ret < 0) 2983 return ret; 2984 2985 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2986 if (max_streams < (*num_streams - 1)) { 2987 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2988 eps[i]->desc.bEndpointAddress, 2989 max_streams); 2990 *num_streams = max_streams+1; 2991 } 2992 2993 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2994 if (*changed_ep_bitmask & endpoint_flag) 2995 return -EINVAL; 2996 *changed_ep_bitmask |= endpoint_flag; 2997 } 2998 return 0; 2999 } 3000 3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3002 struct usb_device *udev, 3003 struct usb_host_endpoint **eps, unsigned int num_eps) 3004 { 3005 u32 changed_ep_bitmask = 0; 3006 unsigned int slot_id; 3007 unsigned int ep_index; 3008 unsigned int ep_state; 3009 int i; 3010 3011 slot_id = udev->slot_id; 3012 if (!xhci->devs[slot_id]) 3013 return 0; 3014 3015 for (i = 0; i < num_eps; i++) { 3016 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3017 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3018 /* Are streams already being freed for the endpoint? */ 3019 if (ep_state & EP_GETTING_NO_STREAMS) { 3020 xhci_warn(xhci, "WARN Can't disable streams for " 3021 "endpoint 0x%x, " 3022 "streams are being disabled already\n", 3023 eps[i]->desc.bEndpointAddress); 3024 return 0; 3025 } 3026 /* Are there actually any streams to free? */ 3027 if (!(ep_state & EP_HAS_STREAMS) && 3028 !(ep_state & EP_GETTING_STREAMS)) { 3029 xhci_warn(xhci, "WARN Can't disable streams for " 3030 "endpoint 0x%x, " 3031 "streams are already disabled!\n", 3032 eps[i]->desc.bEndpointAddress); 3033 xhci_warn(xhci, "WARN xhci_free_streams() called " 3034 "with non-streams endpoint\n"); 3035 return 0; 3036 } 3037 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3038 } 3039 return changed_ep_bitmask; 3040 } 3041 3042 /* 3043 * The USB device drivers use this function (through the HCD interface in USB 3044 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3045 * coordinate mass storage command queueing across multiple endpoints (basically 3046 * a stream ID == a task ID). 3047 * 3048 * Setting up streams involves allocating the same size stream context array 3049 * for each endpoint and issuing a configure endpoint command for all endpoints. 3050 * 3051 * Don't allow the call to succeed if one endpoint only supports one stream 3052 * (which means it doesn't support streams at all). 3053 * 3054 * Drivers may get less stream IDs than they asked for, if the host controller 3055 * hardware or endpoints claim they can't support the number of requested 3056 * stream IDs. 3057 */ 3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3059 struct usb_host_endpoint **eps, unsigned int num_eps, 3060 unsigned int num_streams, gfp_t mem_flags) 3061 { 3062 int i, ret; 3063 struct xhci_hcd *xhci; 3064 struct xhci_virt_device *vdev; 3065 struct xhci_command *config_cmd; 3066 struct xhci_input_control_ctx *ctrl_ctx; 3067 unsigned int ep_index; 3068 unsigned int num_stream_ctxs; 3069 unsigned int max_packet; 3070 unsigned long flags; 3071 u32 changed_ep_bitmask = 0; 3072 3073 if (!eps) 3074 return -EINVAL; 3075 3076 /* Add one to the number of streams requested to account for 3077 * stream 0 that is reserved for xHCI usage. 3078 */ 3079 num_streams += 1; 3080 xhci = hcd_to_xhci(hcd); 3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3082 num_streams); 3083 3084 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3085 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3086 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3087 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3088 return -ENOSYS; 3089 } 3090 3091 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3092 if (!config_cmd) 3093 return -ENOMEM; 3094 3095 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3096 if (!ctrl_ctx) { 3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3098 __func__); 3099 xhci_free_command(xhci, config_cmd); 3100 return -ENOMEM; 3101 } 3102 3103 /* Check to make sure all endpoints are not already configured for 3104 * streams. While we're at it, find the maximum number of streams that 3105 * all the endpoints will support and check for duplicate endpoints. 3106 */ 3107 spin_lock_irqsave(&xhci->lock, flags); 3108 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3109 num_eps, &num_streams, &changed_ep_bitmask); 3110 if (ret < 0) { 3111 xhci_free_command(xhci, config_cmd); 3112 spin_unlock_irqrestore(&xhci->lock, flags); 3113 return ret; 3114 } 3115 if (num_streams <= 1) { 3116 xhci_warn(xhci, "WARN: endpoints can't handle " 3117 "more than one stream.\n"); 3118 xhci_free_command(xhci, config_cmd); 3119 spin_unlock_irqrestore(&xhci->lock, flags); 3120 return -EINVAL; 3121 } 3122 vdev = xhci->devs[udev->slot_id]; 3123 /* Mark each endpoint as being in transition, so 3124 * xhci_urb_enqueue() will reject all URBs. 3125 */ 3126 for (i = 0; i < num_eps; i++) { 3127 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3128 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3129 } 3130 spin_unlock_irqrestore(&xhci->lock, flags); 3131 3132 /* Setup internal data structures and allocate HW data structures for 3133 * streams (but don't install the HW structures in the input context 3134 * until we're sure all memory allocation succeeded). 3135 */ 3136 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3137 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3138 num_stream_ctxs, num_streams); 3139 3140 for (i = 0; i < num_eps; i++) { 3141 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3142 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3143 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3144 num_stream_ctxs, 3145 num_streams, 3146 max_packet, mem_flags); 3147 if (!vdev->eps[ep_index].stream_info) 3148 goto cleanup; 3149 /* Set maxPstreams in endpoint context and update deq ptr to 3150 * point to stream context array. FIXME 3151 */ 3152 } 3153 3154 /* Set up the input context for a configure endpoint command. */ 3155 for (i = 0; i < num_eps; i++) { 3156 struct xhci_ep_ctx *ep_ctx; 3157 3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3159 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3160 3161 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3162 vdev->out_ctx, ep_index); 3163 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3164 vdev->eps[ep_index].stream_info); 3165 } 3166 /* Tell the HW to drop its old copy of the endpoint context info 3167 * and add the updated copy from the input context. 3168 */ 3169 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3170 vdev->out_ctx, ctrl_ctx, 3171 changed_ep_bitmask, changed_ep_bitmask); 3172 3173 /* Issue and wait for the configure endpoint command */ 3174 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3175 false, false); 3176 3177 /* xHC rejected the configure endpoint command for some reason, so we 3178 * leave the old ring intact and free our internal streams data 3179 * structure. 3180 */ 3181 if (ret < 0) 3182 goto cleanup; 3183 3184 spin_lock_irqsave(&xhci->lock, flags); 3185 for (i = 0; i < num_eps; i++) { 3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3187 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3188 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3189 udev->slot_id, ep_index); 3190 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3191 } 3192 xhci_free_command(xhci, config_cmd); 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 3195 /* Subtract 1 for stream 0, which drivers can't use */ 3196 return num_streams - 1; 3197 3198 cleanup: 3199 /* If it didn't work, free the streams! */ 3200 for (i = 0; i < num_eps; i++) { 3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3202 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3203 vdev->eps[ep_index].stream_info = NULL; 3204 /* FIXME Unset maxPstreams in endpoint context and 3205 * update deq ptr to point to normal string ring. 3206 */ 3207 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3208 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3209 xhci_endpoint_zero(xhci, vdev, eps[i]); 3210 } 3211 xhci_free_command(xhci, config_cmd); 3212 return -ENOMEM; 3213 } 3214 3215 /* Transition the endpoint from using streams to being a "normal" endpoint 3216 * without streams. 3217 * 3218 * Modify the endpoint context state, submit a configure endpoint command, 3219 * and free all endpoint rings for streams if that completes successfully. 3220 */ 3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3222 struct usb_host_endpoint **eps, unsigned int num_eps, 3223 gfp_t mem_flags) 3224 { 3225 int i, ret; 3226 struct xhci_hcd *xhci; 3227 struct xhci_virt_device *vdev; 3228 struct xhci_command *command; 3229 struct xhci_input_control_ctx *ctrl_ctx; 3230 unsigned int ep_index; 3231 unsigned long flags; 3232 u32 changed_ep_bitmask; 3233 3234 xhci = hcd_to_xhci(hcd); 3235 vdev = xhci->devs[udev->slot_id]; 3236 3237 /* Set up a configure endpoint command to remove the streams rings */ 3238 spin_lock_irqsave(&xhci->lock, flags); 3239 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3240 udev, eps, num_eps); 3241 if (changed_ep_bitmask == 0) { 3242 spin_unlock_irqrestore(&xhci->lock, flags); 3243 return -EINVAL; 3244 } 3245 3246 /* Use the xhci_command structure from the first endpoint. We may have 3247 * allocated too many, but the driver may call xhci_free_streams() for 3248 * each endpoint it grouped into one call to xhci_alloc_streams(). 3249 */ 3250 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3251 command = vdev->eps[ep_index].stream_info->free_streams_command; 3252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3253 if (!ctrl_ctx) { 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3256 __func__); 3257 return -EINVAL; 3258 } 3259 3260 for (i = 0; i < num_eps; i++) { 3261 struct xhci_ep_ctx *ep_ctx; 3262 3263 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3264 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3265 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3266 EP_GETTING_NO_STREAMS; 3267 3268 xhci_endpoint_copy(xhci, command->in_ctx, 3269 vdev->out_ctx, ep_index); 3270 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3271 &vdev->eps[ep_index]); 3272 } 3273 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3274 vdev->out_ctx, ctrl_ctx, 3275 changed_ep_bitmask, changed_ep_bitmask); 3276 spin_unlock_irqrestore(&xhci->lock, flags); 3277 3278 /* Issue and wait for the configure endpoint command, 3279 * which must succeed. 3280 */ 3281 ret = xhci_configure_endpoint(xhci, udev, command, 3282 false, true); 3283 3284 /* xHC rejected the configure endpoint command for some reason, so we 3285 * leave the streams rings intact. 3286 */ 3287 if (ret < 0) 3288 return ret; 3289 3290 spin_lock_irqsave(&xhci->lock, flags); 3291 for (i = 0; i < num_eps; i++) { 3292 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3293 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3294 vdev->eps[ep_index].stream_info = NULL; 3295 /* FIXME Unset maxPstreams in endpoint context and 3296 * update deq ptr to point to normal string ring. 3297 */ 3298 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3299 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3300 } 3301 spin_unlock_irqrestore(&xhci->lock, flags); 3302 3303 return 0; 3304 } 3305 3306 /* 3307 * Deletes endpoint resources for endpoints that were active before a Reset 3308 * Device command, or a Disable Slot command. The Reset Device command leaves 3309 * the control endpoint intact, whereas the Disable Slot command deletes it. 3310 * 3311 * Must be called with xhci->lock held. 3312 */ 3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3314 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3315 { 3316 int i; 3317 unsigned int num_dropped_eps = 0; 3318 unsigned int drop_flags = 0; 3319 3320 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3321 if (virt_dev->eps[i].ring) { 3322 drop_flags |= 1 << i; 3323 num_dropped_eps++; 3324 } 3325 } 3326 xhci->num_active_eps -= num_dropped_eps; 3327 if (num_dropped_eps) 3328 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3329 "Dropped %u ep ctxs, flags = 0x%x, " 3330 "%u now active.", 3331 num_dropped_eps, drop_flags, 3332 xhci->num_active_eps); 3333 } 3334 3335 /* 3336 * This submits a Reset Device Command, which will set the device state to 0, 3337 * set the device address to 0, and disable all the endpoints except the default 3338 * control endpoint. The USB core should come back and call 3339 * xhci_address_device(), and then re-set up the configuration. If this is 3340 * called because of a usb_reset_and_verify_device(), then the old alternate 3341 * settings will be re-installed through the normal bandwidth allocation 3342 * functions. 3343 * 3344 * Wait for the Reset Device command to finish. Remove all structures 3345 * associated with the endpoints that were disabled. Clear the input device 3346 * structure? Reset the control endpoint 0 max packet size? 3347 * 3348 * If the virt_dev to be reset does not exist or does not match the udev, 3349 * it means the device is lost, possibly due to the xHC restore error and 3350 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3351 * re-allocate the device. 3352 */ 3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3354 struct usb_device *udev) 3355 { 3356 int ret, i; 3357 unsigned long flags; 3358 struct xhci_hcd *xhci; 3359 unsigned int slot_id; 3360 struct xhci_virt_device *virt_dev; 3361 struct xhci_command *reset_device_cmd; 3362 struct xhci_slot_ctx *slot_ctx; 3363 int old_active_eps = 0; 3364 3365 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3366 if (ret <= 0) 3367 return ret; 3368 xhci = hcd_to_xhci(hcd); 3369 slot_id = udev->slot_id; 3370 virt_dev = xhci->devs[slot_id]; 3371 if (!virt_dev) { 3372 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3373 "not exist. Re-allocate the device\n", slot_id); 3374 ret = xhci_alloc_dev(hcd, udev); 3375 if (ret == 1) 3376 return 0; 3377 else 3378 return -EINVAL; 3379 } 3380 3381 if (virt_dev->tt_info) 3382 old_active_eps = virt_dev->tt_info->active_eps; 3383 3384 if (virt_dev->udev != udev) { 3385 /* If the virt_dev and the udev does not match, this virt_dev 3386 * may belong to another udev. 3387 * Re-allocate the device. 3388 */ 3389 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3390 "not match the udev. Re-allocate the device\n", 3391 slot_id); 3392 ret = xhci_alloc_dev(hcd, udev); 3393 if (ret == 1) 3394 return 0; 3395 else 3396 return -EINVAL; 3397 } 3398 3399 /* If device is not setup, there is no point in resetting it */ 3400 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3401 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3402 SLOT_STATE_DISABLED) 3403 return 0; 3404 3405 trace_xhci_discover_or_reset_device(slot_ctx); 3406 3407 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3408 /* Allocate the command structure that holds the struct completion. 3409 * Assume we're in process context, since the normal device reset 3410 * process has to wait for the device anyway. Storage devices are 3411 * reset as part of error handling, so use GFP_NOIO instead of 3412 * GFP_KERNEL. 3413 */ 3414 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3415 if (!reset_device_cmd) { 3416 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3417 return -ENOMEM; 3418 } 3419 3420 /* Attempt to submit the Reset Device command to the command ring */ 3421 spin_lock_irqsave(&xhci->lock, flags); 3422 3423 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3424 if (ret) { 3425 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3426 spin_unlock_irqrestore(&xhci->lock, flags); 3427 goto command_cleanup; 3428 } 3429 xhci_ring_cmd_db(xhci); 3430 spin_unlock_irqrestore(&xhci->lock, flags); 3431 3432 /* Wait for the Reset Device command to finish */ 3433 wait_for_completion(reset_device_cmd->completion); 3434 3435 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3436 * unless we tried to reset a slot ID that wasn't enabled, 3437 * or the device wasn't in the addressed or configured state. 3438 */ 3439 ret = reset_device_cmd->status; 3440 switch (ret) { 3441 case COMP_COMMAND_ABORTED: 3442 case COMP_COMMAND_RING_STOPPED: 3443 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3444 ret = -ETIME; 3445 goto command_cleanup; 3446 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3447 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3448 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3449 slot_id, 3450 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3451 xhci_dbg(xhci, "Not freeing device rings.\n"); 3452 /* Don't treat this as an error. May change my mind later. */ 3453 ret = 0; 3454 goto command_cleanup; 3455 case COMP_SUCCESS: 3456 xhci_dbg(xhci, "Successful reset device command.\n"); 3457 break; 3458 default: 3459 if (xhci_is_vendor_info_code(xhci, ret)) 3460 break; 3461 xhci_warn(xhci, "Unknown completion code %u for " 3462 "reset device command.\n", ret); 3463 ret = -EINVAL; 3464 goto command_cleanup; 3465 } 3466 3467 /* Free up host controller endpoint resources */ 3468 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3469 spin_lock_irqsave(&xhci->lock, flags); 3470 /* Don't delete the default control endpoint resources */ 3471 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3472 spin_unlock_irqrestore(&xhci->lock, flags); 3473 } 3474 3475 /* Everything but endpoint 0 is disabled, so free the rings. */ 3476 for (i = 1; i < 31; i++) { 3477 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3478 3479 if (ep->ep_state & EP_HAS_STREAMS) { 3480 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3481 xhci_get_endpoint_address(i)); 3482 xhci_free_stream_info(xhci, ep->stream_info); 3483 ep->stream_info = NULL; 3484 ep->ep_state &= ~EP_HAS_STREAMS; 3485 } 3486 3487 if (ep->ring) { 3488 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3489 xhci_free_endpoint_ring(xhci, virt_dev, i); 3490 } 3491 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3492 xhci_drop_ep_from_interval_table(xhci, 3493 &virt_dev->eps[i].bw_info, 3494 virt_dev->bw_table, 3495 udev, 3496 &virt_dev->eps[i], 3497 virt_dev->tt_info); 3498 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3499 } 3500 /* If necessary, update the number of active TTs on this root port */ 3501 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3502 ret = 0; 3503 3504 command_cleanup: 3505 xhci_free_command(xhci, reset_device_cmd); 3506 return ret; 3507 } 3508 3509 /* 3510 * At this point, the struct usb_device is about to go away, the device has 3511 * disconnected, and all traffic has been stopped and the endpoints have been 3512 * disabled. Free any HC data structures associated with that device. 3513 */ 3514 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3515 { 3516 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3517 struct xhci_virt_device *virt_dev; 3518 struct xhci_slot_ctx *slot_ctx; 3519 int i, ret; 3520 3521 #ifndef CONFIG_USB_DEFAULT_PERSIST 3522 /* 3523 * We called pm_runtime_get_noresume when the device was attached. 3524 * Decrement the counter here to allow controller to runtime suspend 3525 * if no devices remain. 3526 */ 3527 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3528 pm_runtime_put_noidle(hcd->self.controller); 3529 #endif 3530 3531 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3532 /* If the host is halted due to driver unload, we still need to free the 3533 * device. 3534 */ 3535 if (ret <= 0 && ret != -ENODEV) 3536 return; 3537 3538 virt_dev = xhci->devs[udev->slot_id]; 3539 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3540 trace_xhci_free_dev(slot_ctx); 3541 3542 /* Stop any wayward timer functions (which may grab the lock) */ 3543 for (i = 0; i < 31; i++) { 3544 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3545 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3546 } 3547 3548 ret = xhci_disable_slot(xhci, udev->slot_id); 3549 if (ret) { 3550 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3551 xhci_free_virt_device(xhci, udev->slot_id); 3552 } 3553 } 3554 3555 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3556 { 3557 struct xhci_command *command; 3558 unsigned long flags; 3559 u32 state; 3560 int ret = 0; 3561 3562 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3563 if (!command) 3564 return -ENOMEM; 3565 3566 spin_lock_irqsave(&xhci->lock, flags); 3567 /* Don't disable the slot if the host controller is dead. */ 3568 state = readl(&xhci->op_regs->status); 3569 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3570 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3571 spin_unlock_irqrestore(&xhci->lock, flags); 3572 kfree(command); 3573 return -ENODEV; 3574 } 3575 3576 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3577 slot_id); 3578 if (ret) { 3579 spin_unlock_irqrestore(&xhci->lock, flags); 3580 kfree(command); 3581 return ret; 3582 } 3583 xhci_ring_cmd_db(xhci); 3584 spin_unlock_irqrestore(&xhci->lock, flags); 3585 return ret; 3586 } 3587 3588 /* 3589 * Checks if we have enough host controller resources for the default control 3590 * endpoint. 3591 * 3592 * Must be called with xhci->lock held. 3593 */ 3594 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3595 { 3596 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3597 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3598 "Not enough ep ctxs: " 3599 "%u active, need to add 1, limit is %u.", 3600 xhci->num_active_eps, xhci->limit_active_eps); 3601 return -ENOMEM; 3602 } 3603 xhci->num_active_eps += 1; 3604 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3605 "Adding 1 ep ctx, %u now active.", 3606 xhci->num_active_eps); 3607 return 0; 3608 } 3609 3610 3611 /* 3612 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3613 * timed out, or allocating memory failed. Returns 1 on success. 3614 */ 3615 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3616 { 3617 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3618 struct xhci_virt_device *vdev; 3619 struct xhci_slot_ctx *slot_ctx; 3620 unsigned long flags; 3621 int ret, slot_id; 3622 struct xhci_command *command; 3623 3624 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3625 if (!command) 3626 return 0; 3627 3628 spin_lock_irqsave(&xhci->lock, flags); 3629 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3630 if (ret) { 3631 spin_unlock_irqrestore(&xhci->lock, flags); 3632 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3633 xhci_free_command(xhci, command); 3634 return 0; 3635 } 3636 xhci_ring_cmd_db(xhci); 3637 spin_unlock_irqrestore(&xhci->lock, flags); 3638 3639 wait_for_completion(command->completion); 3640 slot_id = command->slot_id; 3641 3642 if (!slot_id || command->status != COMP_SUCCESS) { 3643 xhci_err(xhci, "Error while assigning device slot ID\n"); 3644 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3645 HCS_MAX_SLOTS( 3646 readl(&xhci->cap_regs->hcs_params1))); 3647 xhci_free_command(xhci, command); 3648 return 0; 3649 } 3650 3651 xhci_free_command(xhci, command); 3652 3653 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3654 spin_lock_irqsave(&xhci->lock, flags); 3655 ret = xhci_reserve_host_control_ep_resources(xhci); 3656 if (ret) { 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 xhci_warn(xhci, "Not enough host resources, " 3659 "active endpoint contexts = %u\n", 3660 xhci->num_active_eps); 3661 goto disable_slot; 3662 } 3663 spin_unlock_irqrestore(&xhci->lock, flags); 3664 } 3665 /* Use GFP_NOIO, since this function can be called from 3666 * xhci_discover_or_reset_device(), which may be called as part of 3667 * mass storage driver error handling. 3668 */ 3669 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3670 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3671 goto disable_slot; 3672 } 3673 vdev = xhci->devs[slot_id]; 3674 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3675 trace_xhci_alloc_dev(slot_ctx); 3676 3677 udev->slot_id = slot_id; 3678 3679 xhci_debugfs_create_slot(xhci, slot_id); 3680 3681 #ifndef CONFIG_USB_DEFAULT_PERSIST 3682 /* 3683 * If resetting upon resume, we can't put the controller into runtime 3684 * suspend if there is a device attached. 3685 */ 3686 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3687 pm_runtime_get_noresume(hcd->self.controller); 3688 #endif 3689 3690 /* Is this a LS or FS device under a HS hub? */ 3691 /* Hub or peripherial? */ 3692 return 1; 3693 3694 disable_slot: 3695 ret = xhci_disable_slot(xhci, udev->slot_id); 3696 if (ret) 3697 xhci_free_virt_device(xhci, udev->slot_id); 3698 3699 return 0; 3700 } 3701 3702 /* 3703 * Issue an Address Device command and optionally send a corresponding 3704 * SetAddress request to the device. 3705 */ 3706 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3707 enum xhci_setup_dev setup) 3708 { 3709 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3710 unsigned long flags; 3711 struct xhci_virt_device *virt_dev; 3712 int ret = 0; 3713 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3714 struct xhci_slot_ctx *slot_ctx; 3715 struct xhci_input_control_ctx *ctrl_ctx; 3716 u64 temp_64; 3717 struct xhci_command *command = NULL; 3718 3719 mutex_lock(&xhci->mutex); 3720 3721 if (xhci->xhc_state) { /* dying, removing or halted */ 3722 ret = -ESHUTDOWN; 3723 goto out; 3724 } 3725 3726 if (!udev->slot_id) { 3727 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3728 "Bad Slot ID %d", udev->slot_id); 3729 ret = -EINVAL; 3730 goto out; 3731 } 3732 3733 virt_dev = xhci->devs[udev->slot_id]; 3734 3735 if (WARN_ON(!virt_dev)) { 3736 /* 3737 * In plug/unplug torture test with an NEC controller, 3738 * a zero-dereference was observed once due to virt_dev = 0. 3739 * Print useful debug rather than crash if it is observed again! 3740 */ 3741 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3742 udev->slot_id); 3743 ret = -EINVAL; 3744 goto out; 3745 } 3746 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3747 trace_xhci_setup_device_slot(slot_ctx); 3748 3749 if (setup == SETUP_CONTEXT_ONLY) { 3750 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3751 SLOT_STATE_DEFAULT) { 3752 xhci_dbg(xhci, "Slot already in default state\n"); 3753 goto out; 3754 } 3755 } 3756 3757 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3758 if (!command) { 3759 ret = -ENOMEM; 3760 goto out; 3761 } 3762 3763 command->in_ctx = virt_dev->in_ctx; 3764 3765 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3766 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3767 if (!ctrl_ctx) { 3768 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3769 __func__); 3770 ret = -EINVAL; 3771 goto out; 3772 } 3773 /* 3774 * If this is the first Set Address since device plug-in or 3775 * virt_device realloaction after a resume with an xHCI power loss, 3776 * then set up the slot context. 3777 */ 3778 if (!slot_ctx->dev_info) 3779 xhci_setup_addressable_virt_dev(xhci, udev); 3780 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3781 else 3782 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3783 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3784 ctrl_ctx->drop_flags = 0; 3785 3786 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3787 le32_to_cpu(slot_ctx->dev_info) >> 27); 3788 3789 spin_lock_irqsave(&xhci->lock, flags); 3790 trace_xhci_setup_device(virt_dev); 3791 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3792 udev->slot_id, setup); 3793 if (ret) { 3794 spin_unlock_irqrestore(&xhci->lock, flags); 3795 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3796 "FIXME: allocate a command ring segment"); 3797 goto out; 3798 } 3799 xhci_ring_cmd_db(xhci); 3800 spin_unlock_irqrestore(&xhci->lock, flags); 3801 3802 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3803 wait_for_completion(command->completion); 3804 3805 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3806 * the SetAddress() "recovery interval" required by USB and aborting the 3807 * command on a timeout. 3808 */ 3809 switch (command->status) { 3810 case COMP_COMMAND_ABORTED: 3811 case COMP_COMMAND_RING_STOPPED: 3812 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3813 ret = -ETIME; 3814 break; 3815 case COMP_CONTEXT_STATE_ERROR: 3816 case COMP_SLOT_NOT_ENABLED_ERROR: 3817 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3818 act, udev->slot_id); 3819 ret = -EINVAL; 3820 break; 3821 case COMP_USB_TRANSACTION_ERROR: 3822 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3823 3824 mutex_unlock(&xhci->mutex); 3825 ret = xhci_disable_slot(xhci, udev->slot_id); 3826 if (!ret) 3827 xhci_alloc_dev(hcd, udev); 3828 kfree(command->completion); 3829 kfree(command); 3830 return -EPROTO; 3831 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3832 dev_warn(&udev->dev, 3833 "ERROR: Incompatible device for setup %s command\n", act); 3834 ret = -ENODEV; 3835 break; 3836 case COMP_SUCCESS: 3837 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3838 "Successful setup %s command", act); 3839 break; 3840 default: 3841 xhci_err(xhci, 3842 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3843 act, command->status); 3844 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3845 ret = -EINVAL; 3846 break; 3847 } 3848 if (ret) 3849 goto out; 3850 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3851 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3852 "Op regs DCBAA ptr = %#016llx", temp_64); 3853 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3854 "Slot ID %d dcbaa entry @%p = %#016llx", 3855 udev->slot_id, 3856 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3857 (unsigned long long) 3858 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3859 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3860 "Output Context DMA address = %#08llx", 3861 (unsigned long long)virt_dev->out_ctx->dma); 3862 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3863 le32_to_cpu(slot_ctx->dev_info) >> 27); 3864 /* 3865 * USB core uses address 1 for the roothubs, so we add one to the 3866 * address given back to us by the HC. 3867 */ 3868 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3869 le32_to_cpu(slot_ctx->dev_info) >> 27); 3870 /* Zero the input context control for later use */ 3871 ctrl_ctx->add_flags = 0; 3872 ctrl_ctx->drop_flags = 0; 3873 3874 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3875 "Internal device address = %d", 3876 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3877 out: 3878 mutex_unlock(&xhci->mutex); 3879 if (command) { 3880 kfree(command->completion); 3881 kfree(command); 3882 } 3883 return ret; 3884 } 3885 3886 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3887 { 3888 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3889 } 3890 3891 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3892 { 3893 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3894 } 3895 3896 /* 3897 * Transfer the port index into real index in the HW port status 3898 * registers. Caculate offset between the port's PORTSC register 3899 * and port status base. Divide the number of per port register 3900 * to get the real index. The raw port number bases 1. 3901 */ 3902 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3903 { 3904 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3905 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3906 __le32 __iomem *addr; 3907 int raw_port; 3908 3909 if (hcd->speed < HCD_USB3) 3910 addr = xhci->usb2_ports[port1 - 1]; 3911 else 3912 addr = xhci->usb3_ports[port1 - 1]; 3913 3914 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3915 return raw_port; 3916 } 3917 3918 /* 3919 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3920 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3921 */ 3922 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3923 struct usb_device *udev, u16 max_exit_latency) 3924 { 3925 struct xhci_virt_device *virt_dev; 3926 struct xhci_command *command; 3927 struct xhci_input_control_ctx *ctrl_ctx; 3928 struct xhci_slot_ctx *slot_ctx; 3929 unsigned long flags; 3930 int ret; 3931 3932 spin_lock_irqsave(&xhci->lock, flags); 3933 3934 virt_dev = xhci->devs[udev->slot_id]; 3935 3936 /* 3937 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3938 * xHC was re-initialized. Exit latency will be set later after 3939 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3940 */ 3941 3942 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3943 spin_unlock_irqrestore(&xhci->lock, flags); 3944 return 0; 3945 } 3946 3947 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3948 command = xhci->lpm_command; 3949 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3950 if (!ctrl_ctx) { 3951 spin_unlock_irqrestore(&xhci->lock, flags); 3952 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3953 __func__); 3954 return -ENOMEM; 3955 } 3956 3957 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3958 spin_unlock_irqrestore(&xhci->lock, flags); 3959 3960 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3961 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3962 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3963 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3964 slot_ctx->dev_state = 0; 3965 3966 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3967 "Set up evaluate context for LPM MEL change."); 3968 3969 /* Issue and wait for the evaluate context command. */ 3970 ret = xhci_configure_endpoint(xhci, udev, command, 3971 true, true); 3972 3973 if (!ret) { 3974 spin_lock_irqsave(&xhci->lock, flags); 3975 virt_dev->current_mel = max_exit_latency; 3976 spin_unlock_irqrestore(&xhci->lock, flags); 3977 } 3978 return ret; 3979 } 3980 3981 #ifdef CONFIG_PM 3982 3983 /* BESL to HIRD Encoding array for USB2 LPM */ 3984 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3985 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3986 3987 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3988 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3989 struct usb_device *udev) 3990 { 3991 int u2del, besl, besl_host; 3992 int besl_device = 0; 3993 u32 field; 3994 3995 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3996 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3997 3998 if (field & USB_BESL_SUPPORT) { 3999 for (besl_host = 0; besl_host < 16; besl_host++) { 4000 if (xhci_besl_encoding[besl_host] >= u2del) 4001 break; 4002 } 4003 /* Use baseline BESL value as default */ 4004 if (field & USB_BESL_BASELINE_VALID) 4005 besl_device = USB_GET_BESL_BASELINE(field); 4006 else if (field & USB_BESL_DEEP_VALID) 4007 besl_device = USB_GET_BESL_DEEP(field); 4008 } else { 4009 if (u2del <= 50) 4010 besl_host = 0; 4011 else 4012 besl_host = (u2del - 51) / 75 + 1; 4013 } 4014 4015 besl = besl_host + besl_device; 4016 if (besl > 15) 4017 besl = 15; 4018 4019 return besl; 4020 } 4021 4022 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4023 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4024 { 4025 u32 field; 4026 int l1; 4027 int besld = 0; 4028 int hirdm = 0; 4029 4030 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4031 4032 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4033 l1 = udev->l1_params.timeout / 256; 4034 4035 /* device has preferred BESLD */ 4036 if (field & USB_BESL_DEEP_VALID) { 4037 besld = USB_GET_BESL_DEEP(field); 4038 hirdm = 1; 4039 } 4040 4041 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4042 } 4043 4044 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4045 struct usb_device *udev, int enable) 4046 { 4047 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4048 __le32 __iomem **port_array; 4049 __le32 __iomem *pm_addr, *hlpm_addr; 4050 u32 pm_val, hlpm_val, field; 4051 unsigned int port_num; 4052 unsigned long flags; 4053 int hird, exit_latency; 4054 int ret; 4055 4056 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4057 !udev->lpm_capable) 4058 return -EPERM; 4059 4060 if (!udev->parent || udev->parent->parent || 4061 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4062 return -EPERM; 4063 4064 if (udev->usb2_hw_lpm_capable != 1) 4065 return -EPERM; 4066 4067 spin_lock_irqsave(&xhci->lock, flags); 4068 4069 port_array = xhci->usb2_ports; 4070 port_num = udev->portnum - 1; 4071 pm_addr = port_array[port_num] + PORTPMSC; 4072 pm_val = readl(pm_addr); 4073 hlpm_addr = port_array[port_num] + PORTHLPMC; 4074 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4075 4076 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4077 enable ? "enable" : "disable", port_num + 1); 4078 4079 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4080 /* Host supports BESL timeout instead of HIRD */ 4081 if (udev->usb2_hw_lpm_besl_capable) { 4082 /* if device doesn't have a preferred BESL value use a 4083 * default one which works with mixed HIRD and BESL 4084 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4085 */ 4086 if ((field & USB_BESL_SUPPORT) && 4087 (field & USB_BESL_BASELINE_VALID)) 4088 hird = USB_GET_BESL_BASELINE(field); 4089 else 4090 hird = udev->l1_params.besl; 4091 4092 exit_latency = xhci_besl_encoding[hird]; 4093 spin_unlock_irqrestore(&xhci->lock, flags); 4094 4095 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4096 * input context for link powermanagement evaluate 4097 * context commands. It is protected by hcd->bandwidth 4098 * mutex and is shared by all devices. We need to set 4099 * the max ext latency in USB 2 BESL LPM as well, so 4100 * use the same mutex and xhci_change_max_exit_latency() 4101 */ 4102 mutex_lock(hcd->bandwidth_mutex); 4103 ret = xhci_change_max_exit_latency(xhci, udev, 4104 exit_latency); 4105 mutex_unlock(hcd->bandwidth_mutex); 4106 4107 if (ret < 0) 4108 return ret; 4109 spin_lock_irqsave(&xhci->lock, flags); 4110 4111 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4112 writel(hlpm_val, hlpm_addr); 4113 /* flush write */ 4114 readl(hlpm_addr); 4115 } else { 4116 hird = xhci_calculate_hird_besl(xhci, udev); 4117 } 4118 4119 pm_val &= ~PORT_HIRD_MASK; 4120 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4121 writel(pm_val, pm_addr); 4122 pm_val = readl(pm_addr); 4123 pm_val |= PORT_HLE; 4124 writel(pm_val, pm_addr); 4125 /* flush write */ 4126 readl(pm_addr); 4127 } else { 4128 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4129 writel(pm_val, pm_addr); 4130 /* flush write */ 4131 readl(pm_addr); 4132 if (udev->usb2_hw_lpm_besl_capable) { 4133 spin_unlock_irqrestore(&xhci->lock, flags); 4134 mutex_lock(hcd->bandwidth_mutex); 4135 xhci_change_max_exit_latency(xhci, udev, 0); 4136 mutex_unlock(hcd->bandwidth_mutex); 4137 return 0; 4138 } 4139 } 4140 4141 spin_unlock_irqrestore(&xhci->lock, flags); 4142 return 0; 4143 } 4144 4145 /* check if a usb2 port supports a given extened capability protocol 4146 * only USB2 ports extended protocol capability values are cached. 4147 * Return 1 if capability is supported 4148 */ 4149 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4150 unsigned capability) 4151 { 4152 u32 port_offset, port_count; 4153 int i; 4154 4155 for (i = 0; i < xhci->num_ext_caps; i++) { 4156 if (xhci->ext_caps[i] & capability) { 4157 /* port offsets starts at 1 */ 4158 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4159 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4160 if (port >= port_offset && 4161 port < port_offset + port_count) 4162 return 1; 4163 } 4164 } 4165 return 0; 4166 } 4167 4168 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4169 { 4170 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4171 int portnum = udev->portnum - 1; 4172 4173 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4174 !udev->lpm_capable) 4175 return 0; 4176 4177 /* we only support lpm for non-hub device connected to root hub yet */ 4178 if (!udev->parent || udev->parent->parent || 4179 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4180 return 0; 4181 4182 if (xhci->hw_lpm_support == 1 && 4183 xhci_check_usb2_port_capability( 4184 xhci, portnum, XHCI_HLC)) { 4185 udev->usb2_hw_lpm_capable = 1; 4186 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4187 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4188 if (xhci_check_usb2_port_capability(xhci, portnum, 4189 XHCI_BLC)) 4190 udev->usb2_hw_lpm_besl_capable = 1; 4191 } 4192 4193 return 0; 4194 } 4195 4196 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4197 4198 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4199 static unsigned long long xhci_service_interval_to_ns( 4200 struct usb_endpoint_descriptor *desc) 4201 { 4202 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4203 } 4204 4205 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4206 enum usb3_link_state state) 4207 { 4208 unsigned long long sel; 4209 unsigned long long pel; 4210 unsigned int max_sel_pel; 4211 char *state_name; 4212 4213 switch (state) { 4214 case USB3_LPM_U1: 4215 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4216 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4217 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4218 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4219 state_name = "U1"; 4220 break; 4221 case USB3_LPM_U2: 4222 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4223 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4224 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4225 state_name = "U2"; 4226 break; 4227 default: 4228 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4229 __func__); 4230 return USB3_LPM_DISABLED; 4231 } 4232 4233 if (sel <= max_sel_pel && pel <= max_sel_pel) 4234 return USB3_LPM_DEVICE_INITIATED; 4235 4236 if (sel > max_sel_pel) 4237 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4238 "due to long SEL %llu ms\n", 4239 state_name, sel); 4240 else 4241 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4242 "due to long PEL %llu ms\n", 4243 state_name, pel); 4244 return USB3_LPM_DISABLED; 4245 } 4246 4247 /* The U1 timeout should be the maximum of the following values: 4248 * - For control endpoints, U1 system exit latency (SEL) * 3 4249 * - For bulk endpoints, U1 SEL * 5 4250 * - For interrupt endpoints: 4251 * - Notification EPs, U1 SEL * 3 4252 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4253 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4254 */ 4255 static unsigned long long xhci_calculate_intel_u1_timeout( 4256 struct usb_device *udev, 4257 struct usb_endpoint_descriptor *desc) 4258 { 4259 unsigned long long timeout_ns; 4260 int ep_type; 4261 int intr_type; 4262 4263 ep_type = usb_endpoint_type(desc); 4264 switch (ep_type) { 4265 case USB_ENDPOINT_XFER_CONTROL: 4266 timeout_ns = udev->u1_params.sel * 3; 4267 break; 4268 case USB_ENDPOINT_XFER_BULK: 4269 timeout_ns = udev->u1_params.sel * 5; 4270 break; 4271 case USB_ENDPOINT_XFER_INT: 4272 intr_type = usb_endpoint_interrupt_type(desc); 4273 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4274 timeout_ns = udev->u1_params.sel * 3; 4275 break; 4276 } 4277 /* Otherwise the calculation is the same as isoc eps */ 4278 /* fall through */ 4279 case USB_ENDPOINT_XFER_ISOC: 4280 timeout_ns = xhci_service_interval_to_ns(desc); 4281 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4282 if (timeout_ns < udev->u1_params.sel * 2) 4283 timeout_ns = udev->u1_params.sel * 2; 4284 break; 4285 default: 4286 return 0; 4287 } 4288 4289 return timeout_ns; 4290 } 4291 4292 /* Returns the hub-encoded U1 timeout value. */ 4293 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4294 struct usb_device *udev, 4295 struct usb_endpoint_descriptor *desc) 4296 { 4297 unsigned long long timeout_ns; 4298 4299 if (xhci->quirks & XHCI_INTEL_HOST) 4300 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4301 else 4302 timeout_ns = udev->u1_params.sel; 4303 4304 /* The U1 timeout is encoded in 1us intervals. 4305 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4306 */ 4307 if (timeout_ns == USB3_LPM_DISABLED) 4308 timeout_ns = 1; 4309 else 4310 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4311 4312 /* If the necessary timeout value is bigger than what we can set in the 4313 * USB 3.0 hub, we have to disable hub-initiated U1. 4314 */ 4315 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4316 return timeout_ns; 4317 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4318 "due to long timeout %llu ms\n", timeout_ns); 4319 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4320 } 4321 4322 /* The U2 timeout should be the maximum of: 4323 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4324 * - largest bInterval of any active periodic endpoint (to avoid going 4325 * into lower power link states between intervals). 4326 * - the U2 Exit Latency of the device 4327 */ 4328 static unsigned long long xhci_calculate_intel_u2_timeout( 4329 struct usb_device *udev, 4330 struct usb_endpoint_descriptor *desc) 4331 { 4332 unsigned long long timeout_ns; 4333 unsigned long long u2_del_ns; 4334 4335 timeout_ns = 10 * 1000 * 1000; 4336 4337 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4338 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4339 timeout_ns = xhci_service_interval_to_ns(desc); 4340 4341 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4342 if (u2_del_ns > timeout_ns) 4343 timeout_ns = u2_del_ns; 4344 4345 return timeout_ns; 4346 } 4347 4348 /* Returns the hub-encoded U2 timeout value. */ 4349 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4350 struct usb_device *udev, 4351 struct usb_endpoint_descriptor *desc) 4352 { 4353 unsigned long long timeout_ns; 4354 4355 if (xhci->quirks & XHCI_INTEL_HOST) 4356 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4357 else 4358 timeout_ns = udev->u2_params.sel; 4359 4360 /* The U2 timeout is encoded in 256us intervals */ 4361 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4362 /* If the necessary timeout value is bigger than what we can set in the 4363 * USB 3.0 hub, we have to disable hub-initiated U2. 4364 */ 4365 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4366 return timeout_ns; 4367 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4368 "due to long timeout %llu ms\n", timeout_ns); 4369 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4370 } 4371 4372 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4373 struct usb_device *udev, 4374 struct usb_endpoint_descriptor *desc, 4375 enum usb3_link_state state, 4376 u16 *timeout) 4377 { 4378 if (state == USB3_LPM_U1) 4379 return xhci_calculate_u1_timeout(xhci, udev, desc); 4380 else if (state == USB3_LPM_U2) 4381 return xhci_calculate_u2_timeout(xhci, udev, desc); 4382 4383 return USB3_LPM_DISABLED; 4384 } 4385 4386 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4387 struct usb_device *udev, 4388 struct usb_endpoint_descriptor *desc, 4389 enum usb3_link_state state, 4390 u16 *timeout) 4391 { 4392 u16 alt_timeout; 4393 4394 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4395 desc, state, timeout); 4396 4397 /* If we found we can't enable hub-initiated LPM, or 4398 * the U1 or U2 exit latency was too high to allow 4399 * device-initiated LPM as well, just stop searching. 4400 */ 4401 if (alt_timeout == USB3_LPM_DISABLED || 4402 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4403 *timeout = alt_timeout; 4404 return -E2BIG; 4405 } 4406 if (alt_timeout > *timeout) 4407 *timeout = alt_timeout; 4408 return 0; 4409 } 4410 4411 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4412 struct usb_device *udev, 4413 struct usb_host_interface *alt, 4414 enum usb3_link_state state, 4415 u16 *timeout) 4416 { 4417 int j; 4418 4419 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4420 if (xhci_update_timeout_for_endpoint(xhci, udev, 4421 &alt->endpoint[j].desc, state, timeout)) 4422 return -E2BIG; 4423 continue; 4424 } 4425 return 0; 4426 } 4427 4428 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4429 enum usb3_link_state state) 4430 { 4431 struct usb_device *parent; 4432 unsigned int num_hubs; 4433 4434 if (state == USB3_LPM_U2) 4435 return 0; 4436 4437 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4438 for (parent = udev->parent, num_hubs = 0; parent->parent; 4439 parent = parent->parent) 4440 num_hubs++; 4441 4442 if (num_hubs < 2) 4443 return 0; 4444 4445 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4446 " below second-tier hub.\n"); 4447 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4448 "to decrease power consumption.\n"); 4449 return -E2BIG; 4450 } 4451 4452 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4453 struct usb_device *udev, 4454 enum usb3_link_state state) 4455 { 4456 if (xhci->quirks & XHCI_INTEL_HOST) 4457 return xhci_check_intel_tier_policy(udev, state); 4458 else 4459 return 0; 4460 } 4461 4462 /* Returns the U1 or U2 timeout that should be enabled. 4463 * If the tier check or timeout setting functions return with a non-zero exit 4464 * code, that means the timeout value has been finalized and we shouldn't look 4465 * at any more endpoints. 4466 */ 4467 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4468 struct usb_device *udev, enum usb3_link_state state) 4469 { 4470 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4471 struct usb_host_config *config; 4472 char *state_name; 4473 int i; 4474 u16 timeout = USB3_LPM_DISABLED; 4475 4476 if (state == USB3_LPM_U1) 4477 state_name = "U1"; 4478 else if (state == USB3_LPM_U2) 4479 state_name = "U2"; 4480 else { 4481 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4482 state); 4483 return timeout; 4484 } 4485 4486 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4487 return timeout; 4488 4489 /* Gather some information about the currently installed configuration 4490 * and alternate interface settings. 4491 */ 4492 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4493 state, &timeout)) 4494 return timeout; 4495 4496 config = udev->actconfig; 4497 if (!config) 4498 return timeout; 4499 4500 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4501 struct usb_driver *driver; 4502 struct usb_interface *intf = config->interface[i]; 4503 4504 if (!intf) 4505 continue; 4506 4507 /* Check if any currently bound drivers want hub-initiated LPM 4508 * disabled. 4509 */ 4510 if (intf->dev.driver) { 4511 driver = to_usb_driver(intf->dev.driver); 4512 if (driver && driver->disable_hub_initiated_lpm) { 4513 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4514 "at request of driver %s\n", 4515 state_name, driver->name); 4516 return xhci_get_timeout_no_hub_lpm(udev, state); 4517 } 4518 } 4519 4520 /* Not sure how this could happen... */ 4521 if (!intf->cur_altsetting) 4522 continue; 4523 4524 if (xhci_update_timeout_for_interface(xhci, udev, 4525 intf->cur_altsetting, 4526 state, &timeout)) 4527 return timeout; 4528 } 4529 return timeout; 4530 } 4531 4532 static int calculate_max_exit_latency(struct usb_device *udev, 4533 enum usb3_link_state state_changed, 4534 u16 hub_encoded_timeout) 4535 { 4536 unsigned long long u1_mel_us = 0; 4537 unsigned long long u2_mel_us = 0; 4538 unsigned long long mel_us = 0; 4539 bool disabling_u1; 4540 bool disabling_u2; 4541 bool enabling_u1; 4542 bool enabling_u2; 4543 4544 disabling_u1 = (state_changed == USB3_LPM_U1 && 4545 hub_encoded_timeout == USB3_LPM_DISABLED); 4546 disabling_u2 = (state_changed == USB3_LPM_U2 && 4547 hub_encoded_timeout == USB3_LPM_DISABLED); 4548 4549 enabling_u1 = (state_changed == USB3_LPM_U1 && 4550 hub_encoded_timeout != USB3_LPM_DISABLED); 4551 enabling_u2 = (state_changed == USB3_LPM_U2 && 4552 hub_encoded_timeout != USB3_LPM_DISABLED); 4553 4554 /* If U1 was already enabled and we're not disabling it, 4555 * or we're going to enable U1, account for the U1 max exit latency. 4556 */ 4557 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4558 enabling_u1) 4559 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4560 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4561 enabling_u2) 4562 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4563 4564 if (u1_mel_us > u2_mel_us) 4565 mel_us = u1_mel_us; 4566 else 4567 mel_us = u2_mel_us; 4568 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4569 if (mel_us > MAX_EXIT) { 4570 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4571 "is too big.\n", mel_us); 4572 return -E2BIG; 4573 } 4574 return mel_us; 4575 } 4576 4577 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4578 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4579 struct usb_device *udev, enum usb3_link_state state) 4580 { 4581 struct xhci_hcd *xhci; 4582 u16 hub_encoded_timeout; 4583 int mel; 4584 int ret; 4585 4586 xhci = hcd_to_xhci(hcd); 4587 /* The LPM timeout values are pretty host-controller specific, so don't 4588 * enable hub-initiated timeouts unless the vendor has provided 4589 * information about their timeout algorithm. 4590 */ 4591 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4592 !xhci->devs[udev->slot_id]) 4593 return USB3_LPM_DISABLED; 4594 4595 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4596 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4597 if (mel < 0) { 4598 /* Max Exit Latency is too big, disable LPM. */ 4599 hub_encoded_timeout = USB3_LPM_DISABLED; 4600 mel = 0; 4601 } 4602 4603 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4604 if (ret) 4605 return ret; 4606 return hub_encoded_timeout; 4607 } 4608 4609 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4610 struct usb_device *udev, enum usb3_link_state state) 4611 { 4612 struct xhci_hcd *xhci; 4613 u16 mel; 4614 4615 xhci = hcd_to_xhci(hcd); 4616 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4617 !xhci->devs[udev->slot_id]) 4618 return 0; 4619 4620 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4621 return xhci_change_max_exit_latency(xhci, udev, mel); 4622 } 4623 #else /* CONFIG_PM */ 4624 4625 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4626 struct usb_device *udev, int enable) 4627 { 4628 return 0; 4629 } 4630 4631 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4632 { 4633 return 0; 4634 } 4635 4636 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4637 struct usb_device *udev, enum usb3_link_state state) 4638 { 4639 return USB3_LPM_DISABLED; 4640 } 4641 4642 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4643 struct usb_device *udev, enum usb3_link_state state) 4644 { 4645 return 0; 4646 } 4647 #endif /* CONFIG_PM */ 4648 4649 /*-------------------------------------------------------------------------*/ 4650 4651 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4652 * internal data structures for the device. 4653 */ 4654 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4655 struct usb_tt *tt, gfp_t mem_flags) 4656 { 4657 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4658 struct xhci_virt_device *vdev; 4659 struct xhci_command *config_cmd; 4660 struct xhci_input_control_ctx *ctrl_ctx; 4661 struct xhci_slot_ctx *slot_ctx; 4662 unsigned long flags; 4663 unsigned think_time; 4664 int ret; 4665 4666 /* Ignore root hubs */ 4667 if (!hdev->parent) 4668 return 0; 4669 4670 vdev = xhci->devs[hdev->slot_id]; 4671 if (!vdev) { 4672 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4673 return -EINVAL; 4674 } 4675 4676 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4677 if (!config_cmd) 4678 return -ENOMEM; 4679 4680 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4681 if (!ctrl_ctx) { 4682 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4683 __func__); 4684 xhci_free_command(xhci, config_cmd); 4685 return -ENOMEM; 4686 } 4687 4688 spin_lock_irqsave(&xhci->lock, flags); 4689 if (hdev->speed == USB_SPEED_HIGH && 4690 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4691 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4692 xhci_free_command(xhci, config_cmd); 4693 spin_unlock_irqrestore(&xhci->lock, flags); 4694 return -ENOMEM; 4695 } 4696 4697 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4699 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4700 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4701 /* 4702 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4703 * but it may be already set to 1 when setup an xHCI virtual 4704 * device, so clear it anyway. 4705 */ 4706 if (tt->multi) 4707 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4708 else if (hdev->speed == USB_SPEED_FULL) 4709 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4710 4711 if (xhci->hci_version > 0x95) { 4712 xhci_dbg(xhci, "xHCI version %x needs hub " 4713 "TT think time and number of ports\n", 4714 (unsigned int) xhci->hci_version); 4715 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4716 /* Set TT think time - convert from ns to FS bit times. 4717 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4718 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4719 * 4720 * xHCI 1.0: this field shall be 0 if the device is not a 4721 * High-spped hub. 4722 */ 4723 think_time = tt->think_time; 4724 if (think_time != 0) 4725 think_time = (think_time / 666) - 1; 4726 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4727 slot_ctx->tt_info |= 4728 cpu_to_le32(TT_THINK_TIME(think_time)); 4729 } else { 4730 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4731 "TT think time or number of ports\n", 4732 (unsigned int) xhci->hci_version); 4733 } 4734 slot_ctx->dev_state = 0; 4735 spin_unlock_irqrestore(&xhci->lock, flags); 4736 4737 xhci_dbg(xhci, "Set up %s for hub device.\n", 4738 (xhci->hci_version > 0x95) ? 4739 "configure endpoint" : "evaluate context"); 4740 4741 /* Issue and wait for the configure endpoint or 4742 * evaluate context command. 4743 */ 4744 if (xhci->hci_version > 0x95) 4745 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4746 false, false); 4747 else 4748 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4749 true, false); 4750 4751 xhci_free_command(xhci, config_cmd); 4752 return ret; 4753 } 4754 4755 static int xhci_get_frame(struct usb_hcd *hcd) 4756 { 4757 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4758 /* EHCI mods by the periodic size. Why? */ 4759 return readl(&xhci->run_regs->microframe_index) >> 3; 4760 } 4761 4762 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4763 { 4764 struct xhci_hcd *xhci; 4765 /* 4766 * TODO: Check with DWC3 clients for sysdev according to 4767 * quirks 4768 */ 4769 struct device *dev = hcd->self.sysdev; 4770 int retval; 4771 4772 /* Accept arbitrarily long scatter-gather lists */ 4773 hcd->self.sg_tablesize = ~0; 4774 4775 /* support to build packet from discontinuous buffers */ 4776 hcd->self.no_sg_constraint = 1; 4777 4778 /* XHCI controllers don't stop the ep queue on short packets :| */ 4779 hcd->self.no_stop_on_short = 1; 4780 4781 xhci = hcd_to_xhci(hcd); 4782 4783 if (usb_hcd_is_primary_hcd(hcd)) { 4784 xhci->main_hcd = hcd; 4785 /* Mark the first roothub as being USB 2.0. 4786 * The xHCI driver will register the USB 3.0 roothub. 4787 */ 4788 hcd->speed = HCD_USB2; 4789 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4790 /* 4791 * USB 2.0 roothub under xHCI has an integrated TT, 4792 * (rate matching hub) as opposed to having an OHCI/UHCI 4793 * companion controller. 4794 */ 4795 hcd->has_tt = 1; 4796 } else { 4797 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */ 4798 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) { 4799 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4800 hcd->speed = HCD_USB31; 4801 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4802 } 4803 /* xHCI private pointer was set in xhci_pci_probe for the second 4804 * registered roothub. 4805 */ 4806 return 0; 4807 } 4808 4809 mutex_init(&xhci->mutex); 4810 xhci->cap_regs = hcd->regs; 4811 xhci->op_regs = hcd->regs + 4812 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4813 xhci->run_regs = hcd->regs + 4814 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4815 /* Cache read-only capability registers */ 4816 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4817 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4818 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4819 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4820 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4821 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4822 if (xhci->hci_version > 0x100) 4823 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4824 4825 xhci->quirks |= quirks; 4826 4827 get_quirks(dev, xhci); 4828 4829 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4830 * success event after a short transfer. This quirk will ignore such 4831 * spurious event. 4832 */ 4833 if (xhci->hci_version > 0x96) 4834 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4835 4836 /* Make sure the HC is halted. */ 4837 retval = xhci_halt(xhci); 4838 if (retval) 4839 return retval; 4840 4841 xhci_dbg(xhci, "Resetting HCD\n"); 4842 /* Reset the internal HC memory state and registers. */ 4843 retval = xhci_reset(xhci); 4844 if (retval) 4845 return retval; 4846 xhci_dbg(xhci, "Reset complete\n"); 4847 4848 /* 4849 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4850 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4851 * address memory pointers actually. So, this driver clears the AC64 4852 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4853 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4854 */ 4855 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4856 xhci->hcc_params &= ~BIT(0); 4857 4858 /* Set dma_mask and coherent_dma_mask to 64-bits, 4859 * if xHC supports 64-bit addressing */ 4860 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4861 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4862 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4863 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4864 } else { 4865 /* 4866 * This is to avoid error in cases where a 32-bit USB 4867 * controller is used on a 64-bit capable system. 4868 */ 4869 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4870 if (retval) 4871 return retval; 4872 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4873 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4874 } 4875 4876 xhci_dbg(xhci, "Calling HCD init\n"); 4877 /* Initialize HCD and host controller data structures. */ 4878 retval = xhci_init(hcd); 4879 if (retval) 4880 return retval; 4881 xhci_dbg(xhci, "Called HCD init\n"); 4882 4883 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4884 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4885 4886 return 0; 4887 } 4888 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4889 4890 static const struct hc_driver xhci_hc_driver = { 4891 .description = "xhci-hcd", 4892 .product_desc = "xHCI Host Controller", 4893 .hcd_priv_size = sizeof(struct xhci_hcd), 4894 4895 /* 4896 * generic hardware linkage 4897 */ 4898 .irq = xhci_irq, 4899 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4900 4901 /* 4902 * basic lifecycle operations 4903 */ 4904 .reset = NULL, /* set in xhci_init_driver() */ 4905 .start = xhci_run, 4906 .stop = xhci_stop, 4907 .shutdown = xhci_shutdown, 4908 4909 /* 4910 * managing i/o requests and associated device resources 4911 */ 4912 .urb_enqueue = xhci_urb_enqueue, 4913 .urb_dequeue = xhci_urb_dequeue, 4914 .alloc_dev = xhci_alloc_dev, 4915 .free_dev = xhci_free_dev, 4916 .alloc_streams = xhci_alloc_streams, 4917 .free_streams = xhci_free_streams, 4918 .add_endpoint = xhci_add_endpoint, 4919 .drop_endpoint = xhci_drop_endpoint, 4920 .endpoint_reset = xhci_endpoint_reset, 4921 .check_bandwidth = xhci_check_bandwidth, 4922 .reset_bandwidth = xhci_reset_bandwidth, 4923 .address_device = xhci_address_device, 4924 .enable_device = xhci_enable_device, 4925 .update_hub_device = xhci_update_hub_device, 4926 .reset_device = xhci_discover_or_reset_device, 4927 4928 /* 4929 * scheduling support 4930 */ 4931 .get_frame_number = xhci_get_frame, 4932 4933 /* 4934 * root hub support 4935 */ 4936 .hub_control = xhci_hub_control, 4937 .hub_status_data = xhci_hub_status_data, 4938 .bus_suspend = xhci_bus_suspend, 4939 .bus_resume = xhci_bus_resume, 4940 4941 /* 4942 * call back when device connected and addressed 4943 */ 4944 .update_device = xhci_update_device, 4945 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4946 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4947 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4948 .find_raw_port_number = xhci_find_raw_port_number, 4949 }; 4950 4951 void xhci_init_driver(struct hc_driver *drv, 4952 const struct xhci_driver_overrides *over) 4953 { 4954 BUG_ON(!over); 4955 4956 /* Copy the generic table to drv then apply the overrides */ 4957 *drv = xhci_hc_driver; 4958 4959 if (over) { 4960 drv->hcd_priv_size += over->extra_priv_size; 4961 if (over->reset) 4962 drv->reset = over->reset; 4963 if (over->start) 4964 drv->start = over->start; 4965 } 4966 } 4967 EXPORT_SYMBOL_GPL(xhci_init_driver); 4968 4969 MODULE_DESCRIPTION(DRIVER_DESC); 4970 MODULE_AUTHOR(DRIVER_AUTHOR); 4971 MODULE_LICENSE("GPL"); 4972 4973 static int __init xhci_hcd_init(void) 4974 { 4975 /* 4976 * Check the compiler generated sizes of structures that must be laid 4977 * out in specific ways for hardware access. 4978 */ 4979 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4980 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4981 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4982 /* xhci_device_control has eight fields, and also 4983 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4984 */ 4985 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4986 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4987 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4988 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4989 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4990 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4991 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4992 4993 if (usb_disabled()) 4994 return -ENODEV; 4995 4996 xhci_debugfs_create_root(); 4997 4998 return 0; 4999 } 5000 5001 /* 5002 * If an init function is provided, an exit function must also be provided 5003 * to allow module unload. 5004 */ 5005 static void __exit xhci_hcd_fini(void) 5006 { 5007 xhci_debugfs_remove_root(); 5008 } 5009 5010 module_init(xhci_hcd_init); 5011 module_exit(xhci_hcd_fini); 5012