1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 static unsigned int quirks; 44 module_param(quirks, uint, S_IRUGO); 45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 46 47 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 48 /* 49 * xhci_handshake - spin reading hc until handshake completes or fails 50 * @ptr: address of hc register to be read 51 * @mask: bits to look at in result of read 52 * @done: value of those bits when handshake succeeds 53 * @usec: timeout in microseconds 54 * 55 * Returns negative errno, or zero on success 56 * 57 * Success happens when the "mask" bits have the specified value (hardware 58 * handshake done). There are two failure modes: "usec" have passed (major 59 * hardware flakeout), or the register reads as all-ones (hardware removed). 60 */ 61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 62 u32 mask, u32 done, int usec) 63 { 64 u32 result; 65 66 do { 67 result = readl(ptr); 68 if (result == ~(u32)0) /* card removed */ 69 return -ENODEV; 70 result &= mask; 71 if (result == done) 72 return 0; 73 udelay(1); 74 usec--; 75 } while (usec > 0); 76 return -ETIMEDOUT; 77 } 78 79 /* 80 * Disable interrupts and begin the xHCI halting process. 81 */ 82 void xhci_quiesce(struct xhci_hcd *xhci) 83 { 84 u32 halted; 85 u32 cmd; 86 u32 mask; 87 88 mask = ~(XHCI_IRQS); 89 halted = readl(&xhci->op_regs->status) & STS_HALT; 90 if (!halted) 91 mask &= ~CMD_RUN; 92 93 cmd = readl(&xhci->op_regs->command); 94 cmd &= mask; 95 writel(cmd, &xhci->op_regs->command); 96 } 97 98 /* 99 * Force HC into halt state. 100 * 101 * Disable any IRQs and clear the run/stop bit. 102 * HC will complete any current and actively pipelined transactions, and 103 * should halt within 16 ms of the run/stop bit being cleared. 104 * Read HC Halted bit in the status register to see when the HC is finished. 105 */ 106 int xhci_halt(struct xhci_hcd *xhci) 107 { 108 int ret; 109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 110 xhci_quiesce(xhci); 111 112 ret = xhci_handshake(xhci, &xhci->op_regs->status, 113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 114 if (!ret) { 115 xhci->xhc_state |= XHCI_STATE_HALTED; 116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 117 } else 118 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 119 XHCI_MAX_HALT_USEC); 120 return ret; 121 } 122 123 /* 124 * Set the run bit and wait for the host to be running. 125 */ 126 static int xhci_start(struct xhci_hcd *xhci) 127 { 128 u32 temp; 129 int ret; 130 131 temp = readl(&xhci->op_regs->command); 132 temp |= (CMD_RUN); 133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 134 temp); 135 writel(temp, &xhci->op_regs->command); 136 137 /* 138 * Wait for the HCHalted Status bit to be 0 to indicate the host is 139 * running. 140 */ 141 ret = xhci_handshake(xhci, &xhci->op_regs->status, 142 STS_HALT, 0, XHCI_MAX_HALT_USEC); 143 if (ret == -ETIMEDOUT) 144 xhci_err(xhci, "Host took too long to start, " 145 "waited %u microseconds.\n", 146 XHCI_MAX_HALT_USEC); 147 if (!ret) 148 xhci->xhc_state &= ~XHCI_STATE_HALTED; 149 return ret; 150 } 151 152 /* 153 * Reset a halted HC. 154 * 155 * This resets pipelines, timers, counters, state machines, etc. 156 * Transactions will be terminated immediately, and operational registers 157 * will be set to their defaults. 158 */ 159 int xhci_reset(struct xhci_hcd *xhci) 160 { 161 u32 command; 162 u32 state; 163 int ret, i; 164 165 state = readl(&xhci->op_regs->status); 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 ret = xhci_handshake(xhci, &xhci->op_regs->command, 177 CMD_RESET, 0, 10 * 1000 * 1000); 178 if (ret) 179 return ret; 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 182 "Wait for controller to be ready for doorbell rings"); 183 /* 184 * xHCI cannot write to any doorbells or operational registers other 185 * than status until the "Controller Not Ready" flag is cleared. 186 */ 187 ret = xhci_handshake(xhci, &xhci->op_regs->status, 188 STS_CNR, 0, 10 * 1000 * 1000); 189 190 for (i = 0; i < 2; ++i) { 191 xhci->bus_state[i].port_c_suspend = 0; 192 xhci->bus_state[i].suspended_ports = 0; 193 xhci->bus_state[i].resuming_ports = 0; 194 } 195 196 return ret; 197 } 198 199 #ifdef CONFIG_PCI 200 static int xhci_free_msi(struct xhci_hcd *xhci) 201 { 202 int i; 203 204 if (!xhci->msix_entries) 205 return -EINVAL; 206 207 for (i = 0; i < xhci->msix_count; i++) 208 if (xhci->msix_entries[i].vector) 209 free_irq(xhci->msix_entries[i].vector, 210 xhci_to_hcd(xhci)); 211 return 0; 212 } 213 214 /* 215 * Set up MSI 216 */ 217 static int xhci_setup_msi(struct xhci_hcd *xhci) 218 { 219 int ret; 220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 221 222 ret = pci_enable_msi(pdev); 223 if (ret) { 224 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 225 "failed to allocate MSI entry"); 226 return ret; 227 } 228 229 ret = request_irq(pdev->irq, xhci_msi_irq, 230 0, "xhci_hcd", xhci_to_hcd(xhci)); 231 if (ret) { 232 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 233 "disable MSI interrupt"); 234 pci_disable_msi(pdev); 235 } 236 237 return ret; 238 } 239 240 /* 241 * Free IRQs 242 * free all IRQs request 243 */ 244 static void xhci_free_irq(struct xhci_hcd *xhci) 245 { 246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 247 int ret; 248 249 /* return if using legacy interrupt */ 250 if (xhci_to_hcd(xhci)->irq > 0) 251 return; 252 253 ret = xhci_free_msi(xhci); 254 if (!ret) 255 return; 256 if (pdev->irq > 0) 257 free_irq(pdev->irq, xhci_to_hcd(xhci)); 258 259 return; 260 } 261 262 /* 263 * Set up MSI-X 264 */ 265 static int xhci_setup_msix(struct xhci_hcd *xhci) 266 { 267 int i, ret = 0; 268 struct usb_hcd *hcd = xhci_to_hcd(xhci); 269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 270 271 /* 272 * calculate number of msi-x vectors supported. 273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 274 * with max number of interrupters based on the xhci HCSPARAMS1. 275 * - num_online_cpus: maximum msi-x vectors per CPUs core. 276 * Add additional 1 vector to ensure always available interrupt. 277 */ 278 xhci->msix_count = min(num_online_cpus() + 1, 279 HCS_MAX_INTRS(xhci->hcs_params1)); 280 281 xhci->msix_entries = 282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 283 GFP_KERNEL); 284 if (!xhci->msix_entries) { 285 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 286 return -ENOMEM; 287 } 288 289 for (i = 0; i < xhci->msix_count; i++) { 290 xhci->msix_entries[i].entry = i; 291 xhci->msix_entries[i].vector = 0; 292 } 293 294 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 295 if (ret) { 296 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 297 "Failed to enable MSI-X"); 298 goto free_entries; 299 } 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 ret = request_irq(xhci->msix_entries[i].vector, 303 xhci_msi_irq, 304 0, "xhci_hcd", xhci_to_hcd(xhci)); 305 if (ret) 306 goto disable_msix; 307 } 308 309 hcd->msix_enabled = 1; 310 return ret; 311 312 disable_msix: 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 314 xhci_free_irq(xhci); 315 pci_disable_msix(pdev); 316 free_entries: 317 kfree(xhci->msix_entries); 318 xhci->msix_entries = NULL; 319 return ret; 320 } 321 322 /* Free any IRQs and disable MSI-X */ 323 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 324 { 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 if (xhci->quirks & XHCI_PLAT) 329 return; 330 331 xhci_free_irq(xhci); 332 333 if (xhci->msix_entries) { 334 pci_disable_msix(pdev); 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 } else { 338 pci_disable_msi(pdev); 339 } 340 341 hcd->msix_enabled = 0; 342 return; 343 } 344 345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 346 { 347 int i; 348 349 if (xhci->msix_entries) { 350 for (i = 0; i < xhci->msix_count; i++) 351 synchronize_irq(xhci->msix_entries[i].vector); 352 } 353 } 354 355 static int xhci_try_enable_msi(struct usb_hcd *hcd) 356 { 357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 358 struct pci_dev *pdev; 359 int ret; 360 361 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 362 if (xhci->quirks & XHCI_PLAT) 363 return 0; 364 365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 366 /* 367 * Some Fresco Logic host controllers advertise MSI, but fail to 368 * generate interrupts. Don't even try to enable MSI. 369 */ 370 if (xhci->quirks & XHCI_BROKEN_MSI) 371 goto legacy_irq; 372 373 /* unregister the legacy interrupt */ 374 if (hcd->irq) 375 free_irq(hcd->irq, hcd); 376 hcd->irq = 0; 377 378 ret = xhci_setup_msix(xhci); 379 if (ret) 380 /* fall back to msi*/ 381 ret = xhci_setup_msi(xhci); 382 383 if (!ret) 384 /* hcd->irq is 0, we have MSI */ 385 return 0; 386 387 if (!pdev->irq) { 388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 389 return -EINVAL; 390 } 391 392 legacy_irq: 393 /* fall back to legacy interrupt*/ 394 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 395 hcd->irq_descr, hcd); 396 if (ret) { 397 xhci_err(xhci, "request interrupt %d failed\n", 398 pdev->irq); 399 return ret; 400 } 401 hcd->irq = pdev->irq; 402 return 0; 403 } 404 405 #else 406 407 static int xhci_try_enable_msi(struct usb_hcd *hcd) 408 { 409 return 0; 410 } 411 412 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 413 { 414 } 415 416 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 417 { 418 } 419 420 #endif 421 422 static void compliance_mode_recovery(unsigned long arg) 423 { 424 struct xhci_hcd *xhci; 425 struct usb_hcd *hcd; 426 u32 temp; 427 int i; 428 429 xhci = (struct xhci_hcd *)arg; 430 431 for (i = 0; i < xhci->num_usb3_ports; i++) { 432 temp = readl(xhci->usb3_ports[i]); 433 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 434 /* 435 * Compliance Mode Detected. Letting USB Core 436 * handle the Warm Reset 437 */ 438 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 439 "Compliance mode detected->port %d", 440 i + 1); 441 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 442 "Attempting compliance mode recovery"); 443 hcd = xhci->shared_hcd; 444 445 if (hcd->state == HC_STATE_SUSPENDED) 446 usb_hcd_resume_root_hub(hcd); 447 448 usb_hcd_poll_rh_status(hcd); 449 } 450 } 451 452 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 453 mod_timer(&xhci->comp_mode_recovery_timer, 454 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 455 } 456 457 /* 458 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 459 * that causes ports behind that hardware to enter compliance mode sometimes. 460 * The quirk creates a timer that polls every 2 seconds the link state of 461 * each host controller's port and recovers it by issuing a Warm reset 462 * if Compliance mode is detected, otherwise the port will become "dead" (no 463 * device connections or disconnections will be detected anymore). Becasue no 464 * status event is generated when entering compliance mode (per xhci spec), 465 * this quirk is needed on systems that have the failing hardware installed. 466 */ 467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 468 { 469 xhci->port_status_u0 = 0; 470 init_timer(&xhci->comp_mode_recovery_timer); 471 472 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 473 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 474 xhci->comp_mode_recovery_timer.expires = jiffies + 475 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 476 477 set_timer_slack(&xhci->comp_mode_recovery_timer, 478 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 479 add_timer(&xhci->comp_mode_recovery_timer); 480 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 481 "Compliance mode recovery timer initialized"); 482 } 483 484 /* 485 * This function identifies the systems that have installed the SN65LVPE502CP 486 * USB3.0 re-driver and that need the Compliance Mode Quirk. 487 * Systems: 488 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 489 */ 490 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 491 { 492 const char *dmi_product_name, *dmi_sys_vendor; 493 494 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 495 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 496 if (!dmi_product_name || !dmi_sys_vendor) 497 return false; 498 499 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 500 return false; 501 502 if (strstr(dmi_product_name, "Z420") || 503 strstr(dmi_product_name, "Z620") || 504 strstr(dmi_product_name, "Z820") || 505 strstr(dmi_product_name, "Z1 Workstation")) 506 return true; 507 508 return false; 509 } 510 511 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 512 { 513 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 514 } 515 516 517 /* 518 * Initialize memory for HCD and xHC (one-time init). 519 * 520 * Program the PAGESIZE register, initialize the device context array, create 521 * device contexts (?), set up a command ring segment (or two?), create event 522 * ring (one for now). 523 */ 524 int xhci_init(struct usb_hcd *hcd) 525 { 526 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 527 int retval = 0; 528 529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 530 spin_lock_init(&xhci->lock); 531 if (xhci->hci_version == 0x95 && link_quirk) { 532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 533 "QUIRK: Not clearing Link TRB chain bits."); 534 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 535 } else { 536 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 537 "xHCI doesn't need link TRB QUIRK"); 538 } 539 retval = xhci_mem_init(xhci, GFP_KERNEL); 540 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 541 542 /* Initializing Compliance Mode Recovery Data If Needed */ 543 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 544 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 545 compliance_mode_recovery_timer_init(xhci); 546 } 547 548 return retval; 549 } 550 551 /*-------------------------------------------------------------------------*/ 552 553 554 static int xhci_run_finished(struct xhci_hcd *xhci) 555 { 556 if (xhci_start(xhci)) { 557 xhci_halt(xhci); 558 return -ENODEV; 559 } 560 xhci->shared_hcd->state = HC_STATE_RUNNING; 561 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 562 563 if (xhci->quirks & XHCI_NEC_HOST) 564 xhci_ring_cmd_db(xhci); 565 566 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 567 "Finished xhci_run for USB3 roothub"); 568 return 0; 569 } 570 571 /* 572 * Start the HC after it was halted. 573 * 574 * This function is called by the USB core when the HC driver is added. 575 * Its opposite is xhci_stop(). 576 * 577 * xhci_init() must be called once before this function can be called. 578 * Reset the HC, enable device slot contexts, program DCBAAP, and 579 * set command ring pointer and event ring pointer. 580 * 581 * Setup MSI-X vectors and enable interrupts. 582 */ 583 int xhci_run(struct usb_hcd *hcd) 584 { 585 u32 temp; 586 u64 temp_64; 587 int ret; 588 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 589 590 /* Start the xHCI host controller running only after the USB 2.0 roothub 591 * is setup. 592 */ 593 594 hcd->uses_new_polling = 1; 595 if (!usb_hcd_is_primary_hcd(hcd)) 596 return xhci_run_finished(xhci); 597 598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 599 600 ret = xhci_try_enable_msi(hcd); 601 if (ret) 602 return ret; 603 604 xhci_dbg(xhci, "Command ring memory map follows:\n"); 605 xhci_debug_ring(xhci, xhci->cmd_ring); 606 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 607 xhci_dbg_cmd_ptrs(xhci); 608 609 xhci_dbg(xhci, "ERST memory map follows:\n"); 610 xhci_dbg_erst(xhci, &xhci->erst); 611 xhci_dbg(xhci, "Event ring:\n"); 612 xhci_debug_ring(xhci, xhci->event_ring); 613 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 614 temp_64 = readq(&xhci->ir_set->erst_dequeue); 615 temp_64 &= ~ERST_PTR_MASK; 616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 617 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 618 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 620 "// Set the interrupt modulation register"); 621 temp = readl(&xhci->ir_set->irq_control); 622 temp &= ~ER_IRQ_INTERVAL_MASK; 623 temp |= (u32) 160; 624 writel(temp, &xhci->ir_set->irq_control); 625 626 /* Set the HCD state before we enable the irqs */ 627 temp = readl(&xhci->op_regs->command); 628 temp |= (CMD_EIE); 629 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 630 "// Enable interrupts, cmd = 0x%x.", temp); 631 writel(temp, &xhci->op_regs->command); 632 633 temp = readl(&xhci->ir_set->irq_pending); 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 636 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 637 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 638 xhci_print_ir_set(xhci, 0); 639 640 if (xhci->quirks & XHCI_NEC_HOST) 641 xhci_queue_vendor_command(xhci, 0, 0, 0, 642 TRB_TYPE(TRB_NEC_GET_FW)); 643 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 645 "Finished xhci_run for USB2 roothub"); 646 return 0; 647 } 648 649 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 650 { 651 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 652 653 spin_lock_irq(&xhci->lock); 654 xhci_halt(xhci); 655 656 /* The shared_hcd is going to be deallocated shortly (the USB core only 657 * calls this function when allocation fails in usb_add_hcd(), or 658 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 659 */ 660 xhci->shared_hcd = NULL; 661 spin_unlock_irq(&xhci->lock); 662 } 663 664 /* 665 * Stop xHCI driver. 666 * 667 * This function is called by the USB core when the HC driver is removed. 668 * Its opposite is xhci_run(). 669 * 670 * Disable device contexts, disable IRQs, and quiesce the HC. 671 * Reset the HC, finish any completed transactions, and cleanup memory. 672 */ 673 void xhci_stop(struct usb_hcd *hcd) 674 { 675 u32 temp; 676 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 677 678 if (!usb_hcd_is_primary_hcd(hcd)) { 679 xhci_only_stop_hcd(xhci->shared_hcd); 680 return; 681 } 682 683 spin_lock_irq(&xhci->lock); 684 /* Make sure the xHC is halted for a USB3 roothub 685 * (xhci_stop() could be called as part of failed init). 686 */ 687 xhci_halt(xhci); 688 xhci_reset(xhci); 689 spin_unlock_irq(&xhci->lock); 690 691 xhci_cleanup_msix(xhci); 692 693 /* Deleting Compliance Mode Recovery Timer */ 694 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 695 (!(xhci_all_ports_seen_u0(xhci)))) { 696 del_timer_sync(&xhci->comp_mode_recovery_timer); 697 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 698 "%s: compliance mode recovery timer deleted", 699 __func__); 700 } 701 702 if (xhci->quirks & XHCI_AMD_PLL_FIX) 703 usb_amd_dev_put(); 704 705 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 706 "// Disabling event ring interrupts"); 707 temp = readl(&xhci->op_regs->status); 708 writel(temp & ~STS_EINT, &xhci->op_regs->status); 709 temp = readl(&xhci->ir_set->irq_pending); 710 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 711 xhci_print_ir_set(xhci, 0); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 714 xhci_mem_cleanup(xhci); 715 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 716 "xhci_stop completed - status = %x", 717 readl(&xhci->op_regs->status)); 718 } 719 720 /* 721 * Shutdown HC (not bus-specific) 722 * 723 * This is called when the machine is rebooting or halting. We assume that the 724 * machine will be powered off, and the HC's internal state will be reset. 725 * Don't bother to free memory. 726 * 727 * This will only ever be called with the main usb_hcd (the USB3 roothub). 728 */ 729 void xhci_shutdown(struct usb_hcd *hcd) 730 { 731 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 732 733 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 734 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 735 736 spin_lock_irq(&xhci->lock); 737 xhci_halt(xhci); 738 /* Workaround for spurious wakeups at shutdown with HSW */ 739 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 740 xhci_reset(xhci); 741 spin_unlock_irq(&xhci->lock); 742 743 xhci_cleanup_msix(xhci); 744 745 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 746 "xhci_shutdown completed - status = %x", 747 readl(&xhci->op_regs->status)); 748 749 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 750 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 751 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 752 } 753 754 #ifdef CONFIG_PM 755 static void xhci_save_registers(struct xhci_hcd *xhci) 756 { 757 xhci->s3.command = readl(&xhci->op_regs->command); 758 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 759 xhci->s3.dcbaa_ptr = readq(&xhci->op_regs->dcbaa_ptr); 760 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 761 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 762 xhci->s3.erst_base = readq(&xhci->ir_set->erst_base); 763 xhci->s3.erst_dequeue = readq(&xhci->ir_set->erst_dequeue); 764 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 765 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 766 } 767 768 static void xhci_restore_registers(struct xhci_hcd *xhci) 769 { 770 writel(xhci->s3.command, &xhci->op_regs->command); 771 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 772 writeq(xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 773 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 774 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 775 writeq(xhci->s3.erst_base, &xhci->ir_set->erst_base); 776 writeq(xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 777 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 778 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 779 } 780 781 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 782 { 783 u64 val_64; 784 785 /* step 2: initialize command ring buffer */ 786 val_64 = readq(&xhci->op_regs->cmd_ring); 787 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 788 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 789 xhci->cmd_ring->dequeue) & 790 (u64) ~CMD_RING_RSVD_BITS) | 791 xhci->cmd_ring->cycle_state; 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "// Setting command ring address to 0x%llx", 794 (long unsigned long) val_64); 795 writeq(val_64, &xhci->op_regs->cmd_ring); 796 } 797 798 /* 799 * The whole command ring must be cleared to zero when we suspend the host. 800 * 801 * The host doesn't save the command ring pointer in the suspend well, so we 802 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 803 * aligned, because of the reserved bits in the command ring dequeue pointer 804 * register. Therefore, we can't just set the dequeue pointer back in the 805 * middle of the ring (TRBs are 16-byte aligned). 806 */ 807 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 808 { 809 struct xhci_ring *ring; 810 struct xhci_segment *seg; 811 812 ring = xhci->cmd_ring; 813 seg = ring->deq_seg; 814 do { 815 memset(seg->trbs, 0, 816 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 817 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 818 cpu_to_le32(~TRB_CYCLE); 819 seg = seg->next; 820 } while (seg != ring->deq_seg); 821 822 /* Reset the software enqueue and dequeue pointers */ 823 ring->deq_seg = ring->first_seg; 824 ring->dequeue = ring->first_seg->trbs; 825 ring->enq_seg = ring->deq_seg; 826 ring->enqueue = ring->dequeue; 827 828 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 829 /* 830 * Ring is now zeroed, so the HW should look for change of ownership 831 * when the cycle bit is set to 1. 832 */ 833 ring->cycle_state = 1; 834 835 /* 836 * Reset the hardware dequeue pointer. 837 * Yes, this will need to be re-written after resume, but we're paranoid 838 * and want to make sure the hardware doesn't access bogus memory 839 * because, say, the BIOS or an SMI started the host without changing 840 * the command ring pointers. 841 */ 842 xhci_set_cmd_ring_deq(xhci); 843 } 844 845 /* 846 * Stop HC (not bus-specific) 847 * 848 * This is called when the machine transition into S3/S4 mode. 849 * 850 */ 851 int xhci_suspend(struct xhci_hcd *xhci) 852 { 853 int rc = 0; 854 unsigned int delay = XHCI_MAX_HALT_USEC; 855 struct usb_hcd *hcd = xhci_to_hcd(xhci); 856 u32 command; 857 858 if (hcd->state != HC_STATE_SUSPENDED || 859 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 860 return -EINVAL; 861 862 /* Don't poll the roothubs on bus suspend. */ 863 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 864 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 865 del_timer_sync(&hcd->rh_timer); 866 867 spin_lock_irq(&xhci->lock); 868 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 869 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 870 /* step 1: stop endpoint */ 871 /* skipped assuming that port suspend has done */ 872 873 /* step 2: clear Run/Stop bit */ 874 command = readl(&xhci->op_regs->command); 875 command &= ~CMD_RUN; 876 writel(command, &xhci->op_regs->command); 877 878 /* Some chips from Fresco Logic need an extraordinary delay */ 879 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 880 881 if (xhci_handshake(xhci, &xhci->op_regs->status, 882 STS_HALT, STS_HALT, delay)) { 883 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 884 spin_unlock_irq(&xhci->lock); 885 return -ETIMEDOUT; 886 } 887 xhci_clear_command_ring(xhci); 888 889 /* step 3: save registers */ 890 xhci_save_registers(xhci); 891 892 /* step 4: set CSS flag */ 893 command = readl(&xhci->op_regs->command); 894 command |= CMD_CSS; 895 writel(command, &xhci->op_regs->command); 896 if (xhci_handshake(xhci, &xhci->op_regs->status, 897 STS_SAVE, 0, 10 * 1000)) { 898 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 899 spin_unlock_irq(&xhci->lock); 900 return -ETIMEDOUT; 901 } 902 spin_unlock_irq(&xhci->lock); 903 904 /* 905 * Deleting Compliance Mode Recovery Timer because the xHCI Host 906 * is about to be suspended. 907 */ 908 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 909 (!(xhci_all_ports_seen_u0(xhci)))) { 910 del_timer_sync(&xhci->comp_mode_recovery_timer); 911 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 912 "%s: compliance mode recovery timer deleted", 913 __func__); 914 } 915 916 /* step 5: remove core well power */ 917 /* synchronize irq when using MSI-X */ 918 xhci_msix_sync_irqs(xhci); 919 920 return rc; 921 } 922 923 /* 924 * start xHC (not bus-specific) 925 * 926 * This is called when the machine transition from S3/S4 mode. 927 * 928 */ 929 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 930 { 931 u32 command, temp = 0; 932 struct usb_hcd *hcd = xhci_to_hcd(xhci); 933 struct usb_hcd *secondary_hcd; 934 int retval = 0; 935 bool comp_timer_running = false; 936 937 /* Wait a bit if either of the roothubs need to settle from the 938 * transition into bus suspend. 939 */ 940 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 941 time_before(jiffies, 942 xhci->bus_state[1].next_statechange)) 943 msleep(100); 944 945 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 946 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 947 948 spin_lock_irq(&xhci->lock); 949 if (xhci->quirks & XHCI_RESET_ON_RESUME) 950 hibernated = true; 951 952 if (!hibernated) { 953 /* step 1: restore register */ 954 xhci_restore_registers(xhci); 955 /* step 2: initialize command ring buffer */ 956 xhci_set_cmd_ring_deq(xhci); 957 /* step 3: restore state and start state*/ 958 /* step 3: set CRS flag */ 959 command = readl(&xhci->op_regs->command); 960 command |= CMD_CRS; 961 writel(command, &xhci->op_regs->command); 962 if (xhci_handshake(xhci, &xhci->op_regs->status, 963 STS_RESTORE, 0, 10 * 1000)) { 964 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 965 spin_unlock_irq(&xhci->lock); 966 return -ETIMEDOUT; 967 } 968 temp = readl(&xhci->op_regs->status); 969 } 970 971 /* If restore operation fails, re-initialize the HC during resume */ 972 if ((temp & STS_SRE) || hibernated) { 973 974 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 975 !(xhci_all_ports_seen_u0(xhci))) { 976 del_timer_sync(&xhci->comp_mode_recovery_timer); 977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 978 "Compliance Mode Recovery Timer deleted!"); 979 } 980 981 /* Let the USB core know _both_ roothubs lost power. */ 982 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 983 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 984 985 xhci_dbg(xhci, "Stop HCD\n"); 986 xhci_halt(xhci); 987 xhci_reset(xhci); 988 spin_unlock_irq(&xhci->lock); 989 xhci_cleanup_msix(xhci); 990 991 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 992 temp = readl(&xhci->op_regs->status); 993 writel(temp & ~STS_EINT, &xhci->op_regs->status); 994 temp = readl(&xhci->ir_set->irq_pending); 995 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 996 xhci_print_ir_set(xhci, 0); 997 998 xhci_dbg(xhci, "cleaning up memory\n"); 999 xhci_mem_cleanup(xhci); 1000 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1001 readl(&xhci->op_regs->status)); 1002 1003 /* USB core calls the PCI reinit and start functions twice: 1004 * first with the primary HCD, and then with the secondary HCD. 1005 * If we don't do the same, the host will never be started. 1006 */ 1007 if (!usb_hcd_is_primary_hcd(hcd)) 1008 secondary_hcd = hcd; 1009 else 1010 secondary_hcd = xhci->shared_hcd; 1011 1012 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1013 retval = xhci_init(hcd->primary_hcd); 1014 if (retval) 1015 return retval; 1016 comp_timer_running = true; 1017 1018 xhci_dbg(xhci, "Start the primary HCD\n"); 1019 retval = xhci_run(hcd->primary_hcd); 1020 if (!retval) { 1021 xhci_dbg(xhci, "Start the secondary HCD\n"); 1022 retval = xhci_run(secondary_hcd); 1023 } 1024 hcd->state = HC_STATE_SUSPENDED; 1025 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1026 goto done; 1027 } 1028 1029 /* step 4: set Run/Stop bit */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_RUN; 1032 writel(command, &xhci->op_regs->command); 1033 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1034 0, 250 * 1000); 1035 1036 /* step 5: walk topology and initialize portsc, 1037 * portpmsc and portli 1038 */ 1039 /* this is done in bus_resume */ 1040 1041 /* step 6: restart each of the previously 1042 * Running endpoints by ringing their doorbells 1043 */ 1044 1045 spin_unlock_irq(&xhci->lock); 1046 1047 done: 1048 if (retval == 0) { 1049 usb_hcd_resume_root_hub(hcd); 1050 usb_hcd_resume_root_hub(xhci->shared_hcd); 1051 } 1052 1053 /* 1054 * If system is subject to the Quirk, Compliance Mode Timer needs to 1055 * be re-initialized Always after a system resume. Ports are subject 1056 * to suffer the Compliance Mode issue again. It doesn't matter if 1057 * ports have entered previously to U0 before system's suspension. 1058 */ 1059 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1060 compliance_mode_recovery_timer_init(xhci); 1061 1062 /* Re-enable port polling. */ 1063 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1064 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1065 usb_hcd_poll_rh_status(hcd); 1066 1067 return retval; 1068 } 1069 #endif /* CONFIG_PM */ 1070 1071 /*-------------------------------------------------------------------------*/ 1072 1073 /** 1074 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1075 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1076 * value to right shift 1 for the bitmask. 1077 * 1078 * Index = (epnum * 2) + direction - 1, 1079 * where direction = 0 for OUT, 1 for IN. 1080 * For control endpoints, the IN index is used (OUT index is unused), so 1081 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1082 */ 1083 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1084 { 1085 unsigned int index; 1086 if (usb_endpoint_xfer_control(desc)) 1087 index = (unsigned int) (usb_endpoint_num(desc)*2); 1088 else 1089 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1090 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1091 return index; 1092 } 1093 1094 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1095 * address from the XHCI endpoint index. 1096 */ 1097 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1098 { 1099 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1100 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1101 return direction | number; 1102 } 1103 1104 /* Find the flag for this endpoint (for use in the control context). Use the 1105 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1106 * bit 1, etc. 1107 */ 1108 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1109 { 1110 return 1 << (xhci_get_endpoint_index(desc) + 1); 1111 } 1112 1113 /* Find the flag for this endpoint (for use in the control context). Use the 1114 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1115 * bit 1, etc. 1116 */ 1117 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1118 { 1119 return 1 << (ep_index + 1); 1120 } 1121 1122 /* Compute the last valid endpoint context index. Basically, this is the 1123 * endpoint index plus one. For slot contexts with more than valid endpoint, 1124 * we find the most significant bit set in the added contexts flags. 1125 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1126 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1127 */ 1128 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1129 { 1130 return fls(added_ctxs) - 1; 1131 } 1132 1133 /* Returns 1 if the arguments are OK; 1134 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1135 */ 1136 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1137 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1138 const char *func) { 1139 struct xhci_hcd *xhci; 1140 struct xhci_virt_device *virt_dev; 1141 1142 if (!hcd || (check_ep && !ep) || !udev) { 1143 pr_debug("xHCI %s called with invalid args\n", func); 1144 return -EINVAL; 1145 } 1146 if (!udev->parent) { 1147 pr_debug("xHCI %s called for root hub\n", func); 1148 return 0; 1149 } 1150 1151 xhci = hcd_to_xhci(hcd); 1152 if (check_virt_dev) { 1153 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1154 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1155 func); 1156 return -EINVAL; 1157 } 1158 1159 virt_dev = xhci->devs[udev->slot_id]; 1160 if (virt_dev->udev != udev) { 1161 xhci_dbg(xhci, "xHCI %s called with udev and " 1162 "virt_dev does not match\n", func); 1163 return -EINVAL; 1164 } 1165 } 1166 1167 if (xhci->xhc_state & XHCI_STATE_HALTED) 1168 return -ENODEV; 1169 1170 return 1; 1171 } 1172 1173 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1174 struct usb_device *udev, struct xhci_command *command, 1175 bool ctx_change, bool must_succeed); 1176 1177 /* 1178 * Full speed devices may have a max packet size greater than 8 bytes, but the 1179 * USB core doesn't know that until it reads the first 8 bytes of the 1180 * descriptor. If the usb_device's max packet size changes after that point, 1181 * we need to issue an evaluate context command and wait on it. 1182 */ 1183 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1184 unsigned int ep_index, struct urb *urb) 1185 { 1186 struct xhci_container_ctx *in_ctx; 1187 struct xhci_container_ctx *out_ctx; 1188 struct xhci_input_control_ctx *ctrl_ctx; 1189 struct xhci_ep_ctx *ep_ctx; 1190 int max_packet_size; 1191 int hw_max_packet_size; 1192 int ret = 0; 1193 1194 out_ctx = xhci->devs[slot_id]->out_ctx; 1195 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1196 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1197 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1198 if (hw_max_packet_size != max_packet_size) { 1199 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1200 "Max Packet Size for ep 0 changed."); 1201 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1202 "Max packet size in usb_device = %d", 1203 max_packet_size); 1204 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1205 "Max packet size in xHCI HW = %d", 1206 hw_max_packet_size); 1207 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1208 "Issuing evaluate context command."); 1209 1210 /* Set up the input context flags for the command */ 1211 /* FIXME: This won't work if a non-default control endpoint 1212 * changes max packet sizes. 1213 */ 1214 in_ctx = xhci->devs[slot_id]->in_ctx; 1215 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1216 if (!ctrl_ctx) { 1217 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1218 __func__); 1219 return -ENOMEM; 1220 } 1221 /* Set up the modified control endpoint 0 */ 1222 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1223 xhci->devs[slot_id]->out_ctx, ep_index); 1224 1225 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1226 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1227 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1228 1229 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1230 ctrl_ctx->drop_flags = 0; 1231 1232 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1233 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1234 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1235 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1236 1237 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1238 true, false); 1239 1240 /* Clean up the input context for later use by bandwidth 1241 * functions. 1242 */ 1243 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1244 } 1245 return ret; 1246 } 1247 1248 /* 1249 * non-error returns are a promise to giveback() the urb later 1250 * we drop ownership so next owner (or urb unlink) can get it 1251 */ 1252 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1253 { 1254 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1255 struct xhci_td *buffer; 1256 unsigned long flags; 1257 int ret = 0; 1258 unsigned int slot_id, ep_index; 1259 struct urb_priv *urb_priv; 1260 int size, i; 1261 1262 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1263 true, true, __func__) <= 0) 1264 return -EINVAL; 1265 1266 slot_id = urb->dev->slot_id; 1267 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1268 1269 if (!HCD_HW_ACCESSIBLE(hcd)) { 1270 if (!in_interrupt()) 1271 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1272 ret = -ESHUTDOWN; 1273 goto exit; 1274 } 1275 1276 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1277 size = urb->number_of_packets; 1278 else 1279 size = 1; 1280 1281 urb_priv = kzalloc(sizeof(struct urb_priv) + 1282 size * sizeof(struct xhci_td *), mem_flags); 1283 if (!urb_priv) 1284 return -ENOMEM; 1285 1286 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1287 if (!buffer) { 1288 kfree(urb_priv); 1289 return -ENOMEM; 1290 } 1291 1292 for (i = 0; i < size; i++) { 1293 urb_priv->td[i] = buffer; 1294 buffer++; 1295 } 1296 1297 urb_priv->length = size; 1298 urb_priv->td_cnt = 0; 1299 urb->hcpriv = urb_priv; 1300 1301 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1302 /* Check to see if the max packet size for the default control 1303 * endpoint changed during FS device enumeration 1304 */ 1305 if (urb->dev->speed == USB_SPEED_FULL) { 1306 ret = xhci_check_maxpacket(xhci, slot_id, 1307 ep_index, urb); 1308 if (ret < 0) { 1309 xhci_urb_free_priv(xhci, urb_priv); 1310 urb->hcpriv = NULL; 1311 return ret; 1312 } 1313 } 1314 1315 /* We have a spinlock and interrupts disabled, so we must pass 1316 * atomic context to this function, which may allocate memory. 1317 */ 1318 spin_lock_irqsave(&xhci->lock, flags); 1319 if (xhci->xhc_state & XHCI_STATE_DYING) 1320 goto dying; 1321 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1322 slot_id, ep_index); 1323 if (ret) 1324 goto free_priv; 1325 spin_unlock_irqrestore(&xhci->lock, flags); 1326 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1327 spin_lock_irqsave(&xhci->lock, flags); 1328 if (xhci->xhc_state & XHCI_STATE_DYING) 1329 goto dying; 1330 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1331 EP_GETTING_STREAMS) { 1332 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1333 "is transitioning to using streams.\n"); 1334 ret = -EINVAL; 1335 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1336 EP_GETTING_NO_STREAMS) { 1337 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1338 "is transitioning to " 1339 "not having streams.\n"); 1340 ret = -EINVAL; 1341 } else { 1342 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1343 slot_id, ep_index); 1344 } 1345 if (ret) 1346 goto free_priv; 1347 spin_unlock_irqrestore(&xhci->lock, flags); 1348 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1349 spin_lock_irqsave(&xhci->lock, flags); 1350 if (xhci->xhc_state & XHCI_STATE_DYING) 1351 goto dying; 1352 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1353 slot_id, ep_index); 1354 if (ret) 1355 goto free_priv; 1356 spin_unlock_irqrestore(&xhci->lock, flags); 1357 } else { 1358 spin_lock_irqsave(&xhci->lock, flags); 1359 if (xhci->xhc_state & XHCI_STATE_DYING) 1360 goto dying; 1361 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1362 slot_id, ep_index); 1363 if (ret) 1364 goto free_priv; 1365 spin_unlock_irqrestore(&xhci->lock, flags); 1366 } 1367 exit: 1368 return ret; 1369 dying: 1370 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1371 "non-responsive xHCI host.\n", 1372 urb->ep->desc.bEndpointAddress, urb); 1373 ret = -ESHUTDOWN; 1374 free_priv: 1375 xhci_urb_free_priv(xhci, urb_priv); 1376 urb->hcpriv = NULL; 1377 spin_unlock_irqrestore(&xhci->lock, flags); 1378 return ret; 1379 } 1380 1381 /* Get the right ring for the given URB. 1382 * If the endpoint supports streams, boundary check the URB's stream ID. 1383 * If the endpoint doesn't support streams, return the singular endpoint ring. 1384 */ 1385 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1386 struct urb *urb) 1387 { 1388 unsigned int slot_id; 1389 unsigned int ep_index; 1390 unsigned int stream_id; 1391 struct xhci_virt_ep *ep; 1392 1393 slot_id = urb->dev->slot_id; 1394 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1395 stream_id = urb->stream_id; 1396 ep = &xhci->devs[slot_id]->eps[ep_index]; 1397 /* Common case: no streams */ 1398 if (!(ep->ep_state & EP_HAS_STREAMS)) 1399 return ep->ring; 1400 1401 if (stream_id == 0) { 1402 xhci_warn(xhci, 1403 "WARN: Slot ID %u, ep index %u has streams, " 1404 "but URB has no stream ID.\n", 1405 slot_id, ep_index); 1406 return NULL; 1407 } 1408 1409 if (stream_id < ep->stream_info->num_streams) 1410 return ep->stream_info->stream_rings[stream_id]; 1411 1412 xhci_warn(xhci, 1413 "WARN: Slot ID %u, ep index %u has " 1414 "stream IDs 1 to %u allocated, " 1415 "but stream ID %u is requested.\n", 1416 slot_id, ep_index, 1417 ep->stream_info->num_streams - 1, 1418 stream_id); 1419 return NULL; 1420 } 1421 1422 /* 1423 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1424 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1425 * should pick up where it left off in the TD, unless a Set Transfer Ring 1426 * Dequeue Pointer is issued. 1427 * 1428 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1429 * the ring. Since the ring is a contiguous structure, they can't be physically 1430 * removed. Instead, there are two options: 1431 * 1432 * 1) If the HC is in the middle of processing the URB to be canceled, we 1433 * simply move the ring's dequeue pointer past those TRBs using the Set 1434 * Transfer Ring Dequeue Pointer command. This will be the common case, 1435 * when drivers timeout on the last submitted URB and attempt to cancel. 1436 * 1437 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1438 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1439 * HC will need to invalidate the any TRBs it has cached after the stop 1440 * endpoint command, as noted in the xHCI 0.95 errata. 1441 * 1442 * 3) The TD may have completed by the time the Stop Endpoint Command 1443 * completes, so software needs to handle that case too. 1444 * 1445 * This function should protect against the TD enqueueing code ringing the 1446 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1447 * It also needs to account for multiple cancellations on happening at the same 1448 * time for the same endpoint. 1449 * 1450 * Note that this function can be called in any context, or so says 1451 * usb_hcd_unlink_urb() 1452 */ 1453 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1454 { 1455 unsigned long flags; 1456 int ret, i; 1457 u32 temp; 1458 struct xhci_hcd *xhci; 1459 struct urb_priv *urb_priv; 1460 struct xhci_td *td; 1461 unsigned int ep_index; 1462 struct xhci_ring *ep_ring; 1463 struct xhci_virt_ep *ep; 1464 1465 xhci = hcd_to_xhci(hcd); 1466 spin_lock_irqsave(&xhci->lock, flags); 1467 /* Make sure the URB hasn't completed or been unlinked already */ 1468 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1469 if (ret || !urb->hcpriv) 1470 goto done; 1471 temp = readl(&xhci->op_regs->status); 1472 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1473 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1474 "HW died, freeing TD."); 1475 urb_priv = urb->hcpriv; 1476 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1477 td = urb_priv->td[i]; 1478 if (!list_empty(&td->td_list)) 1479 list_del_init(&td->td_list); 1480 if (!list_empty(&td->cancelled_td_list)) 1481 list_del_init(&td->cancelled_td_list); 1482 } 1483 1484 usb_hcd_unlink_urb_from_ep(hcd, urb); 1485 spin_unlock_irqrestore(&xhci->lock, flags); 1486 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1487 xhci_urb_free_priv(xhci, urb_priv); 1488 return ret; 1489 } 1490 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1491 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1492 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1493 "Ep 0x%x: URB %p to be canceled on " 1494 "non-responsive xHCI host.", 1495 urb->ep->desc.bEndpointAddress, urb); 1496 /* Let the stop endpoint command watchdog timer (which set this 1497 * state) finish cleaning up the endpoint TD lists. We must 1498 * have caught it in the middle of dropping a lock and giving 1499 * back an URB. 1500 */ 1501 goto done; 1502 } 1503 1504 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1505 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1506 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1507 if (!ep_ring) { 1508 ret = -EINVAL; 1509 goto done; 1510 } 1511 1512 urb_priv = urb->hcpriv; 1513 i = urb_priv->td_cnt; 1514 if (i < urb_priv->length) 1515 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1516 "Cancel URB %p, dev %s, ep 0x%x, " 1517 "starting at offset 0x%llx", 1518 urb, urb->dev->devpath, 1519 urb->ep->desc.bEndpointAddress, 1520 (unsigned long long) xhci_trb_virt_to_dma( 1521 urb_priv->td[i]->start_seg, 1522 urb_priv->td[i]->first_trb)); 1523 1524 for (; i < urb_priv->length; i++) { 1525 td = urb_priv->td[i]; 1526 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1527 } 1528 1529 /* Queue a stop endpoint command, but only if this is 1530 * the first cancellation to be handled. 1531 */ 1532 if (!(ep->ep_state & EP_HALT_PENDING)) { 1533 ep->ep_state |= EP_HALT_PENDING; 1534 ep->stop_cmds_pending++; 1535 ep->stop_cmd_timer.expires = jiffies + 1536 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1537 add_timer(&ep->stop_cmd_timer); 1538 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1539 xhci_ring_cmd_db(xhci); 1540 } 1541 done: 1542 spin_unlock_irqrestore(&xhci->lock, flags); 1543 return ret; 1544 } 1545 1546 /* Drop an endpoint from a new bandwidth configuration for this device. 1547 * Only one call to this function is allowed per endpoint before 1548 * check_bandwidth() or reset_bandwidth() must be called. 1549 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1550 * add the endpoint to the schedule with possibly new parameters denoted by a 1551 * different endpoint descriptor in usb_host_endpoint. 1552 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1553 * not allowed. 1554 * 1555 * The USB core will not allow URBs to be queued to an endpoint that is being 1556 * disabled, so there's no need for mutual exclusion to protect 1557 * the xhci->devs[slot_id] structure. 1558 */ 1559 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1560 struct usb_host_endpoint *ep) 1561 { 1562 struct xhci_hcd *xhci; 1563 struct xhci_container_ctx *in_ctx, *out_ctx; 1564 struct xhci_input_control_ctx *ctrl_ctx; 1565 struct xhci_slot_ctx *slot_ctx; 1566 unsigned int last_ctx; 1567 unsigned int ep_index; 1568 struct xhci_ep_ctx *ep_ctx; 1569 u32 drop_flag; 1570 u32 new_add_flags, new_drop_flags, new_slot_info; 1571 int ret; 1572 1573 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1574 if (ret <= 0) 1575 return ret; 1576 xhci = hcd_to_xhci(hcd); 1577 if (xhci->xhc_state & XHCI_STATE_DYING) 1578 return -ENODEV; 1579 1580 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1581 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1582 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1583 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1584 __func__, drop_flag); 1585 return 0; 1586 } 1587 1588 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1589 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1590 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1591 if (!ctrl_ctx) { 1592 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1593 __func__); 1594 return 0; 1595 } 1596 1597 ep_index = xhci_get_endpoint_index(&ep->desc); 1598 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1599 /* If the HC already knows the endpoint is disabled, 1600 * or the HCD has noted it is disabled, ignore this request 1601 */ 1602 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1603 cpu_to_le32(EP_STATE_DISABLED)) || 1604 le32_to_cpu(ctrl_ctx->drop_flags) & 1605 xhci_get_endpoint_flag(&ep->desc)) { 1606 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1607 __func__, ep); 1608 return 0; 1609 } 1610 1611 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1612 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1613 1614 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1615 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1616 1617 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1618 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1619 /* Update the last valid endpoint context, if we deleted the last one */ 1620 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1621 LAST_CTX(last_ctx)) { 1622 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1623 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1624 } 1625 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1626 1627 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1628 1629 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1630 (unsigned int) ep->desc.bEndpointAddress, 1631 udev->slot_id, 1632 (unsigned int) new_drop_flags, 1633 (unsigned int) new_add_flags, 1634 (unsigned int) new_slot_info); 1635 return 0; 1636 } 1637 1638 /* Add an endpoint to a new possible bandwidth configuration for this device. 1639 * Only one call to this function is allowed per endpoint before 1640 * check_bandwidth() or reset_bandwidth() must be called. 1641 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1642 * add the endpoint to the schedule with possibly new parameters denoted by a 1643 * different endpoint descriptor in usb_host_endpoint. 1644 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1645 * not allowed. 1646 * 1647 * The USB core will not allow URBs to be queued to an endpoint until the 1648 * configuration or alt setting is installed in the device, so there's no need 1649 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1650 */ 1651 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1652 struct usb_host_endpoint *ep) 1653 { 1654 struct xhci_hcd *xhci; 1655 struct xhci_container_ctx *in_ctx, *out_ctx; 1656 unsigned int ep_index; 1657 struct xhci_slot_ctx *slot_ctx; 1658 struct xhci_input_control_ctx *ctrl_ctx; 1659 u32 added_ctxs; 1660 unsigned int last_ctx; 1661 u32 new_add_flags, new_drop_flags, new_slot_info; 1662 struct xhci_virt_device *virt_dev; 1663 int ret = 0; 1664 1665 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1666 if (ret <= 0) { 1667 /* So we won't queue a reset ep command for a root hub */ 1668 ep->hcpriv = NULL; 1669 return ret; 1670 } 1671 xhci = hcd_to_xhci(hcd); 1672 if (xhci->xhc_state & XHCI_STATE_DYING) 1673 return -ENODEV; 1674 1675 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1676 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1677 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1678 /* FIXME when we have to issue an evaluate endpoint command to 1679 * deal with ep0 max packet size changing once we get the 1680 * descriptors 1681 */ 1682 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1683 __func__, added_ctxs); 1684 return 0; 1685 } 1686 1687 virt_dev = xhci->devs[udev->slot_id]; 1688 in_ctx = virt_dev->in_ctx; 1689 out_ctx = virt_dev->out_ctx; 1690 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1691 if (!ctrl_ctx) { 1692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1693 __func__); 1694 return 0; 1695 } 1696 1697 ep_index = xhci_get_endpoint_index(&ep->desc); 1698 /* If this endpoint is already in use, and the upper layers are trying 1699 * to add it again without dropping it, reject the addition. 1700 */ 1701 if (virt_dev->eps[ep_index].ring && 1702 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1703 xhci_get_endpoint_flag(&ep->desc))) { 1704 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1705 "without dropping it.\n", 1706 (unsigned int) ep->desc.bEndpointAddress); 1707 return -EINVAL; 1708 } 1709 1710 /* If the HCD has already noted the endpoint is enabled, 1711 * ignore this request. 1712 */ 1713 if (le32_to_cpu(ctrl_ctx->add_flags) & 1714 xhci_get_endpoint_flag(&ep->desc)) { 1715 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1716 __func__, ep); 1717 return 0; 1718 } 1719 1720 /* 1721 * Configuration and alternate setting changes must be done in 1722 * process context, not interrupt context (or so documenation 1723 * for usb_set_interface() and usb_set_configuration() claim). 1724 */ 1725 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1726 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1727 __func__, ep->desc.bEndpointAddress); 1728 return -ENOMEM; 1729 } 1730 1731 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1732 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1733 1734 /* If xhci_endpoint_disable() was called for this endpoint, but the 1735 * xHC hasn't been notified yet through the check_bandwidth() call, 1736 * this re-adds a new state for the endpoint from the new endpoint 1737 * descriptors. We must drop and re-add this endpoint, so we leave the 1738 * drop flags alone. 1739 */ 1740 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1741 1742 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1743 /* Update the last valid endpoint context, if we just added one past */ 1744 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1745 LAST_CTX(last_ctx)) { 1746 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1747 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1748 } 1749 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1750 1751 /* Store the usb_device pointer for later use */ 1752 ep->hcpriv = udev; 1753 1754 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1755 (unsigned int) ep->desc.bEndpointAddress, 1756 udev->slot_id, 1757 (unsigned int) new_drop_flags, 1758 (unsigned int) new_add_flags, 1759 (unsigned int) new_slot_info); 1760 return 0; 1761 } 1762 1763 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1764 { 1765 struct xhci_input_control_ctx *ctrl_ctx; 1766 struct xhci_ep_ctx *ep_ctx; 1767 struct xhci_slot_ctx *slot_ctx; 1768 int i; 1769 1770 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1771 if (!ctrl_ctx) { 1772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1773 __func__); 1774 return; 1775 } 1776 1777 /* When a device's add flag and drop flag are zero, any subsequent 1778 * configure endpoint command will leave that endpoint's state 1779 * untouched. Make sure we don't leave any old state in the input 1780 * endpoint contexts. 1781 */ 1782 ctrl_ctx->drop_flags = 0; 1783 ctrl_ctx->add_flags = 0; 1784 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1785 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1786 /* Endpoint 0 is always valid */ 1787 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1788 for (i = 1; i < 31; ++i) { 1789 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1790 ep_ctx->ep_info = 0; 1791 ep_ctx->ep_info2 = 0; 1792 ep_ctx->deq = 0; 1793 ep_ctx->tx_info = 0; 1794 } 1795 } 1796 1797 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1798 struct usb_device *udev, u32 *cmd_status) 1799 { 1800 int ret; 1801 1802 switch (*cmd_status) { 1803 case COMP_ENOMEM: 1804 dev_warn(&udev->dev, "Not enough host controller resources " 1805 "for new device state.\n"); 1806 ret = -ENOMEM; 1807 /* FIXME: can we allocate more resources for the HC? */ 1808 break; 1809 case COMP_BW_ERR: 1810 case COMP_2ND_BW_ERR: 1811 dev_warn(&udev->dev, "Not enough bandwidth " 1812 "for new device state.\n"); 1813 ret = -ENOSPC; 1814 /* FIXME: can we go back to the old state? */ 1815 break; 1816 case COMP_TRB_ERR: 1817 /* the HCD set up something wrong */ 1818 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1819 "add flag = 1, " 1820 "and endpoint is not disabled.\n"); 1821 ret = -EINVAL; 1822 break; 1823 case COMP_DEV_ERR: 1824 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1825 "configure command.\n"); 1826 ret = -ENODEV; 1827 break; 1828 case COMP_SUCCESS: 1829 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1830 "Successful Endpoint Configure command"); 1831 ret = 0; 1832 break; 1833 default: 1834 xhci_err(xhci, "ERROR: unexpected command completion " 1835 "code 0x%x.\n", *cmd_status); 1836 ret = -EINVAL; 1837 break; 1838 } 1839 return ret; 1840 } 1841 1842 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1843 struct usb_device *udev, u32 *cmd_status) 1844 { 1845 int ret; 1846 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1847 1848 switch (*cmd_status) { 1849 case COMP_EINVAL: 1850 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1851 "context command.\n"); 1852 ret = -EINVAL; 1853 break; 1854 case COMP_EBADSLT: 1855 dev_warn(&udev->dev, "WARN: slot not enabled for" 1856 "evaluate context command.\n"); 1857 ret = -EINVAL; 1858 break; 1859 case COMP_CTX_STATE: 1860 dev_warn(&udev->dev, "WARN: invalid context state for " 1861 "evaluate context command.\n"); 1862 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1863 ret = -EINVAL; 1864 break; 1865 case COMP_DEV_ERR: 1866 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1867 "context command.\n"); 1868 ret = -ENODEV; 1869 break; 1870 case COMP_MEL_ERR: 1871 /* Max Exit Latency too large error */ 1872 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1873 ret = -EINVAL; 1874 break; 1875 case COMP_SUCCESS: 1876 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1877 "Successful evaluate context command"); 1878 ret = 0; 1879 break; 1880 default: 1881 xhci_err(xhci, "ERROR: unexpected command completion " 1882 "code 0x%x.\n", *cmd_status); 1883 ret = -EINVAL; 1884 break; 1885 } 1886 return ret; 1887 } 1888 1889 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1890 struct xhci_input_control_ctx *ctrl_ctx) 1891 { 1892 u32 valid_add_flags; 1893 u32 valid_drop_flags; 1894 1895 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1896 * (bit 1). The default control endpoint is added during the Address 1897 * Device command and is never removed until the slot is disabled. 1898 */ 1899 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1900 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1901 1902 /* Use hweight32 to count the number of ones in the add flags, or 1903 * number of endpoints added. Don't count endpoints that are changed 1904 * (both added and dropped). 1905 */ 1906 return hweight32(valid_add_flags) - 1907 hweight32(valid_add_flags & valid_drop_flags); 1908 } 1909 1910 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1911 struct xhci_input_control_ctx *ctrl_ctx) 1912 { 1913 u32 valid_add_flags; 1914 u32 valid_drop_flags; 1915 1916 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1917 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1918 1919 return hweight32(valid_drop_flags) - 1920 hweight32(valid_add_flags & valid_drop_flags); 1921 } 1922 1923 /* 1924 * We need to reserve the new number of endpoints before the configure endpoint 1925 * command completes. We can't subtract the dropped endpoints from the number 1926 * of active endpoints until the command completes because we can oversubscribe 1927 * the host in this case: 1928 * 1929 * - the first configure endpoint command drops more endpoints than it adds 1930 * - a second configure endpoint command that adds more endpoints is queued 1931 * - the first configure endpoint command fails, so the config is unchanged 1932 * - the second command may succeed, even though there isn't enough resources 1933 * 1934 * Must be called with xhci->lock held. 1935 */ 1936 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1937 struct xhci_input_control_ctx *ctrl_ctx) 1938 { 1939 u32 added_eps; 1940 1941 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1942 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1943 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1944 "Not enough ep ctxs: " 1945 "%u active, need to add %u, limit is %u.", 1946 xhci->num_active_eps, added_eps, 1947 xhci->limit_active_eps); 1948 return -ENOMEM; 1949 } 1950 xhci->num_active_eps += added_eps; 1951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1952 "Adding %u ep ctxs, %u now active.", added_eps, 1953 xhci->num_active_eps); 1954 return 0; 1955 } 1956 1957 /* 1958 * The configure endpoint was failed by the xHC for some other reason, so we 1959 * need to revert the resources that failed configuration would have used. 1960 * 1961 * Must be called with xhci->lock held. 1962 */ 1963 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1964 struct xhci_input_control_ctx *ctrl_ctx) 1965 { 1966 u32 num_failed_eps; 1967 1968 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1969 xhci->num_active_eps -= num_failed_eps; 1970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1971 "Removing %u failed ep ctxs, %u now active.", 1972 num_failed_eps, 1973 xhci->num_active_eps); 1974 } 1975 1976 /* 1977 * Now that the command has completed, clean up the active endpoint count by 1978 * subtracting out the endpoints that were dropped (but not changed). 1979 * 1980 * Must be called with xhci->lock held. 1981 */ 1982 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1983 struct xhci_input_control_ctx *ctrl_ctx) 1984 { 1985 u32 num_dropped_eps; 1986 1987 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1988 xhci->num_active_eps -= num_dropped_eps; 1989 if (num_dropped_eps) 1990 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1991 "Removing %u dropped ep ctxs, %u now active.", 1992 num_dropped_eps, 1993 xhci->num_active_eps); 1994 } 1995 1996 static unsigned int xhci_get_block_size(struct usb_device *udev) 1997 { 1998 switch (udev->speed) { 1999 case USB_SPEED_LOW: 2000 case USB_SPEED_FULL: 2001 return FS_BLOCK; 2002 case USB_SPEED_HIGH: 2003 return HS_BLOCK; 2004 case USB_SPEED_SUPER: 2005 return SS_BLOCK; 2006 case USB_SPEED_UNKNOWN: 2007 case USB_SPEED_WIRELESS: 2008 default: 2009 /* Should never happen */ 2010 return 1; 2011 } 2012 } 2013 2014 static unsigned int 2015 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2016 { 2017 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2018 return LS_OVERHEAD; 2019 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2020 return FS_OVERHEAD; 2021 return HS_OVERHEAD; 2022 } 2023 2024 /* If we are changing a LS/FS device under a HS hub, 2025 * make sure (if we are activating a new TT) that the HS bus has enough 2026 * bandwidth for this new TT. 2027 */ 2028 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2029 struct xhci_virt_device *virt_dev, 2030 int old_active_eps) 2031 { 2032 struct xhci_interval_bw_table *bw_table; 2033 struct xhci_tt_bw_info *tt_info; 2034 2035 /* Find the bandwidth table for the root port this TT is attached to. */ 2036 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2037 tt_info = virt_dev->tt_info; 2038 /* If this TT already had active endpoints, the bandwidth for this TT 2039 * has already been added. Removing all periodic endpoints (and thus 2040 * making the TT enactive) will only decrease the bandwidth used. 2041 */ 2042 if (old_active_eps) 2043 return 0; 2044 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2045 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2046 return -ENOMEM; 2047 return 0; 2048 } 2049 /* Not sure why we would have no new active endpoints... 2050 * 2051 * Maybe because of an Evaluate Context change for a hub update or a 2052 * control endpoint 0 max packet size change? 2053 * FIXME: skip the bandwidth calculation in that case. 2054 */ 2055 return 0; 2056 } 2057 2058 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2059 struct xhci_virt_device *virt_dev) 2060 { 2061 unsigned int bw_reserved; 2062 2063 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2064 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2065 return -ENOMEM; 2066 2067 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2068 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2069 return -ENOMEM; 2070 2071 return 0; 2072 } 2073 2074 /* 2075 * This algorithm is a very conservative estimate of the worst-case scheduling 2076 * scenario for any one interval. The hardware dynamically schedules the 2077 * packets, so we can't tell which microframe could be the limiting factor in 2078 * the bandwidth scheduling. This only takes into account periodic endpoints. 2079 * 2080 * Obviously, we can't solve an NP complete problem to find the minimum worst 2081 * case scenario. Instead, we come up with an estimate that is no less than 2082 * the worst case bandwidth used for any one microframe, but may be an 2083 * over-estimate. 2084 * 2085 * We walk the requirements for each endpoint by interval, starting with the 2086 * smallest interval, and place packets in the schedule where there is only one 2087 * possible way to schedule packets for that interval. In order to simplify 2088 * this algorithm, we record the largest max packet size for each interval, and 2089 * assume all packets will be that size. 2090 * 2091 * For interval 0, we obviously must schedule all packets for each interval. 2092 * The bandwidth for interval 0 is just the amount of data to be transmitted 2093 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2094 * the number of packets). 2095 * 2096 * For interval 1, we have two possible microframes to schedule those packets 2097 * in. For this algorithm, if we can schedule the same number of packets for 2098 * each possible scheduling opportunity (each microframe), we will do so. The 2099 * remaining number of packets will be saved to be transmitted in the gaps in 2100 * the next interval's scheduling sequence. 2101 * 2102 * As we move those remaining packets to be scheduled with interval 2 packets, 2103 * we have to double the number of remaining packets to transmit. This is 2104 * because the intervals are actually powers of 2, and we would be transmitting 2105 * the previous interval's packets twice in this interval. We also have to be 2106 * sure that when we look at the largest max packet size for this interval, we 2107 * also look at the largest max packet size for the remaining packets and take 2108 * the greater of the two. 2109 * 2110 * The algorithm continues to evenly distribute packets in each scheduling 2111 * opportunity, and push the remaining packets out, until we get to the last 2112 * interval. Then those packets and their associated overhead are just added 2113 * to the bandwidth used. 2114 */ 2115 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2116 struct xhci_virt_device *virt_dev, 2117 int old_active_eps) 2118 { 2119 unsigned int bw_reserved; 2120 unsigned int max_bandwidth; 2121 unsigned int bw_used; 2122 unsigned int block_size; 2123 struct xhci_interval_bw_table *bw_table; 2124 unsigned int packet_size = 0; 2125 unsigned int overhead = 0; 2126 unsigned int packets_transmitted = 0; 2127 unsigned int packets_remaining = 0; 2128 unsigned int i; 2129 2130 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2131 return xhci_check_ss_bw(xhci, virt_dev); 2132 2133 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2134 max_bandwidth = HS_BW_LIMIT; 2135 /* Convert percent of bus BW reserved to blocks reserved */ 2136 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2137 } else { 2138 max_bandwidth = FS_BW_LIMIT; 2139 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2140 } 2141 2142 bw_table = virt_dev->bw_table; 2143 /* We need to translate the max packet size and max ESIT payloads into 2144 * the units the hardware uses. 2145 */ 2146 block_size = xhci_get_block_size(virt_dev->udev); 2147 2148 /* If we are manipulating a LS/FS device under a HS hub, double check 2149 * that the HS bus has enough bandwidth if we are activing a new TT. 2150 */ 2151 if (virt_dev->tt_info) { 2152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2153 "Recalculating BW for rootport %u", 2154 virt_dev->real_port); 2155 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2156 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2157 "newly activated TT.\n"); 2158 return -ENOMEM; 2159 } 2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2161 "Recalculating BW for TT slot %u port %u", 2162 virt_dev->tt_info->slot_id, 2163 virt_dev->tt_info->ttport); 2164 } else { 2165 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2166 "Recalculating BW for rootport %u", 2167 virt_dev->real_port); 2168 } 2169 2170 /* Add in how much bandwidth will be used for interval zero, or the 2171 * rounded max ESIT payload + number of packets * largest overhead. 2172 */ 2173 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2174 bw_table->interval_bw[0].num_packets * 2175 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2176 2177 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2178 unsigned int bw_added; 2179 unsigned int largest_mps; 2180 unsigned int interval_overhead; 2181 2182 /* 2183 * How many packets could we transmit in this interval? 2184 * If packets didn't fit in the previous interval, we will need 2185 * to transmit that many packets twice within this interval. 2186 */ 2187 packets_remaining = 2 * packets_remaining + 2188 bw_table->interval_bw[i].num_packets; 2189 2190 /* Find the largest max packet size of this or the previous 2191 * interval. 2192 */ 2193 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2194 largest_mps = 0; 2195 else { 2196 struct xhci_virt_ep *virt_ep; 2197 struct list_head *ep_entry; 2198 2199 ep_entry = bw_table->interval_bw[i].endpoints.next; 2200 virt_ep = list_entry(ep_entry, 2201 struct xhci_virt_ep, bw_endpoint_list); 2202 /* Convert to blocks, rounding up */ 2203 largest_mps = DIV_ROUND_UP( 2204 virt_ep->bw_info.max_packet_size, 2205 block_size); 2206 } 2207 if (largest_mps > packet_size) 2208 packet_size = largest_mps; 2209 2210 /* Use the larger overhead of this or the previous interval. */ 2211 interval_overhead = xhci_get_largest_overhead( 2212 &bw_table->interval_bw[i]); 2213 if (interval_overhead > overhead) 2214 overhead = interval_overhead; 2215 2216 /* How many packets can we evenly distribute across 2217 * (1 << (i + 1)) possible scheduling opportunities? 2218 */ 2219 packets_transmitted = packets_remaining >> (i + 1); 2220 2221 /* Add in the bandwidth used for those scheduled packets */ 2222 bw_added = packets_transmitted * (overhead + packet_size); 2223 2224 /* How many packets do we have remaining to transmit? */ 2225 packets_remaining = packets_remaining % (1 << (i + 1)); 2226 2227 /* What largest max packet size should those packets have? */ 2228 /* If we've transmitted all packets, don't carry over the 2229 * largest packet size. 2230 */ 2231 if (packets_remaining == 0) { 2232 packet_size = 0; 2233 overhead = 0; 2234 } else if (packets_transmitted > 0) { 2235 /* Otherwise if we do have remaining packets, and we've 2236 * scheduled some packets in this interval, take the 2237 * largest max packet size from endpoints with this 2238 * interval. 2239 */ 2240 packet_size = largest_mps; 2241 overhead = interval_overhead; 2242 } 2243 /* Otherwise carry over packet_size and overhead from the last 2244 * time we had a remainder. 2245 */ 2246 bw_used += bw_added; 2247 if (bw_used > max_bandwidth) { 2248 xhci_warn(xhci, "Not enough bandwidth. " 2249 "Proposed: %u, Max: %u\n", 2250 bw_used, max_bandwidth); 2251 return -ENOMEM; 2252 } 2253 } 2254 /* 2255 * Ok, we know we have some packets left over after even-handedly 2256 * scheduling interval 15. We don't know which microframes they will 2257 * fit into, so we over-schedule and say they will be scheduled every 2258 * microframe. 2259 */ 2260 if (packets_remaining > 0) 2261 bw_used += overhead + packet_size; 2262 2263 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2264 unsigned int port_index = virt_dev->real_port - 1; 2265 2266 /* OK, we're manipulating a HS device attached to a 2267 * root port bandwidth domain. Include the number of active TTs 2268 * in the bandwidth used. 2269 */ 2270 bw_used += TT_HS_OVERHEAD * 2271 xhci->rh_bw[port_index].num_active_tts; 2272 } 2273 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2275 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2276 "Available: %u " "percent", 2277 bw_used, max_bandwidth, bw_reserved, 2278 (max_bandwidth - bw_used - bw_reserved) * 100 / 2279 max_bandwidth); 2280 2281 bw_used += bw_reserved; 2282 if (bw_used > max_bandwidth) { 2283 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2284 bw_used, max_bandwidth); 2285 return -ENOMEM; 2286 } 2287 2288 bw_table->bw_used = bw_used; 2289 return 0; 2290 } 2291 2292 static bool xhci_is_async_ep(unsigned int ep_type) 2293 { 2294 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2295 ep_type != ISOC_IN_EP && 2296 ep_type != INT_IN_EP); 2297 } 2298 2299 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2300 { 2301 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2302 } 2303 2304 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2305 { 2306 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2307 2308 if (ep_bw->ep_interval == 0) 2309 return SS_OVERHEAD_BURST + 2310 (ep_bw->mult * ep_bw->num_packets * 2311 (SS_OVERHEAD + mps)); 2312 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2313 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2314 1 << ep_bw->ep_interval); 2315 2316 } 2317 2318 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2319 struct xhci_bw_info *ep_bw, 2320 struct xhci_interval_bw_table *bw_table, 2321 struct usb_device *udev, 2322 struct xhci_virt_ep *virt_ep, 2323 struct xhci_tt_bw_info *tt_info) 2324 { 2325 struct xhci_interval_bw *interval_bw; 2326 int normalized_interval; 2327 2328 if (xhci_is_async_ep(ep_bw->type)) 2329 return; 2330 2331 if (udev->speed == USB_SPEED_SUPER) { 2332 if (xhci_is_sync_in_ep(ep_bw->type)) 2333 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2334 xhci_get_ss_bw_consumed(ep_bw); 2335 else 2336 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2337 xhci_get_ss_bw_consumed(ep_bw); 2338 return; 2339 } 2340 2341 /* SuperSpeed endpoints never get added to intervals in the table, so 2342 * this check is only valid for HS/FS/LS devices. 2343 */ 2344 if (list_empty(&virt_ep->bw_endpoint_list)) 2345 return; 2346 /* For LS/FS devices, we need to translate the interval expressed in 2347 * microframes to frames. 2348 */ 2349 if (udev->speed == USB_SPEED_HIGH) 2350 normalized_interval = ep_bw->ep_interval; 2351 else 2352 normalized_interval = ep_bw->ep_interval - 3; 2353 2354 if (normalized_interval == 0) 2355 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2356 interval_bw = &bw_table->interval_bw[normalized_interval]; 2357 interval_bw->num_packets -= ep_bw->num_packets; 2358 switch (udev->speed) { 2359 case USB_SPEED_LOW: 2360 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2361 break; 2362 case USB_SPEED_FULL: 2363 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2364 break; 2365 case USB_SPEED_HIGH: 2366 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2367 break; 2368 case USB_SPEED_SUPER: 2369 case USB_SPEED_UNKNOWN: 2370 case USB_SPEED_WIRELESS: 2371 /* Should never happen because only LS/FS/HS endpoints will get 2372 * added to the endpoint list. 2373 */ 2374 return; 2375 } 2376 if (tt_info) 2377 tt_info->active_eps -= 1; 2378 list_del_init(&virt_ep->bw_endpoint_list); 2379 } 2380 2381 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2382 struct xhci_bw_info *ep_bw, 2383 struct xhci_interval_bw_table *bw_table, 2384 struct usb_device *udev, 2385 struct xhci_virt_ep *virt_ep, 2386 struct xhci_tt_bw_info *tt_info) 2387 { 2388 struct xhci_interval_bw *interval_bw; 2389 struct xhci_virt_ep *smaller_ep; 2390 int normalized_interval; 2391 2392 if (xhci_is_async_ep(ep_bw->type)) 2393 return; 2394 2395 if (udev->speed == USB_SPEED_SUPER) { 2396 if (xhci_is_sync_in_ep(ep_bw->type)) 2397 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2398 xhci_get_ss_bw_consumed(ep_bw); 2399 else 2400 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2401 xhci_get_ss_bw_consumed(ep_bw); 2402 return; 2403 } 2404 2405 /* For LS/FS devices, we need to translate the interval expressed in 2406 * microframes to frames. 2407 */ 2408 if (udev->speed == USB_SPEED_HIGH) 2409 normalized_interval = ep_bw->ep_interval; 2410 else 2411 normalized_interval = ep_bw->ep_interval - 3; 2412 2413 if (normalized_interval == 0) 2414 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2415 interval_bw = &bw_table->interval_bw[normalized_interval]; 2416 interval_bw->num_packets += ep_bw->num_packets; 2417 switch (udev->speed) { 2418 case USB_SPEED_LOW: 2419 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2420 break; 2421 case USB_SPEED_FULL: 2422 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2423 break; 2424 case USB_SPEED_HIGH: 2425 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2426 break; 2427 case USB_SPEED_SUPER: 2428 case USB_SPEED_UNKNOWN: 2429 case USB_SPEED_WIRELESS: 2430 /* Should never happen because only LS/FS/HS endpoints will get 2431 * added to the endpoint list. 2432 */ 2433 return; 2434 } 2435 2436 if (tt_info) 2437 tt_info->active_eps += 1; 2438 /* Insert the endpoint into the list, largest max packet size first. */ 2439 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2440 bw_endpoint_list) { 2441 if (ep_bw->max_packet_size >= 2442 smaller_ep->bw_info.max_packet_size) { 2443 /* Add the new ep before the smaller endpoint */ 2444 list_add_tail(&virt_ep->bw_endpoint_list, 2445 &smaller_ep->bw_endpoint_list); 2446 return; 2447 } 2448 } 2449 /* Add the new endpoint at the end of the list. */ 2450 list_add_tail(&virt_ep->bw_endpoint_list, 2451 &interval_bw->endpoints); 2452 } 2453 2454 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2455 struct xhci_virt_device *virt_dev, 2456 int old_active_eps) 2457 { 2458 struct xhci_root_port_bw_info *rh_bw_info; 2459 if (!virt_dev->tt_info) 2460 return; 2461 2462 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2463 if (old_active_eps == 0 && 2464 virt_dev->tt_info->active_eps != 0) { 2465 rh_bw_info->num_active_tts += 1; 2466 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2467 } else if (old_active_eps != 0 && 2468 virt_dev->tt_info->active_eps == 0) { 2469 rh_bw_info->num_active_tts -= 1; 2470 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2471 } 2472 } 2473 2474 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2475 struct xhci_virt_device *virt_dev, 2476 struct xhci_container_ctx *in_ctx) 2477 { 2478 struct xhci_bw_info ep_bw_info[31]; 2479 int i; 2480 struct xhci_input_control_ctx *ctrl_ctx; 2481 int old_active_eps = 0; 2482 2483 if (virt_dev->tt_info) 2484 old_active_eps = virt_dev->tt_info->active_eps; 2485 2486 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2487 if (!ctrl_ctx) { 2488 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2489 __func__); 2490 return -ENOMEM; 2491 } 2492 2493 for (i = 0; i < 31; i++) { 2494 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2495 continue; 2496 2497 /* Make a copy of the BW info in case we need to revert this */ 2498 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2499 sizeof(ep_bw_info[i])); 2500 /* Drop the endpoint from the interval table if the endpoint is 2501 * being dropped or changed. 2502 */ 2503 if (EP_IS_DROPPED(ctrl_ctx, i)) 2504 xhci_drop_ep_from_interval_table(xhci, 2505 &virt_dev->eps[i].bw_info, 2506 virt_dev->bw_table, 2507 virt_dev->udev, 2508 &virt_dev->eps[i], 2509 virt_dev->tt_info); 2510 } 2511 /* Overwrite the information stored in the endpoints' bw_info */ 2512 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2513 for (i = 0; i < 31; i++) { 2514 /* Add any changed or added endpoints to the interval table */ 2515 if (EP_IS_ADDED(ctrl_ctx, i)) 2516 xhci_add_ep_to_interval_table(xhci, 2517 &virt_dev->eps[i].bw_info, 2518 virt_dev->bw_table, 2519 virt_dev->udev, 2520 &virt_dev->eps[i], 2521 virt_dev->tt_info); 2522 } 2523 2524 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2525 /* Ok, this fits in the bandwidth we have. 2526 * Update the number of active TTs. 2527 */ 2528 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2529 return 0; 2530 } 2531 2532 /* We don't have enough bandwidth for this, revert the stored info. */ 2533 for (i = 0; i < 31; i++) { 2534 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2535 continue; 2536 2537 /* Drop the new copies of any added or changed endpoints from 2538 * the interval table. 2539 */ 2540 if (EP_IS_ADDED(ctrl_ctx, i)) { 2541 xhci_drop_ep_from_interval_table(xhci, 2542 &virt_dev->eps[i].bw_info, 2543 virt_dev->bw_table, 2544 virt_dev->udev, 2545 &virt_dev->eps[i], 2546 virt_dev->tt_info); 2547 } 2548 /* Revert the endpoint back to its old information */ 2549 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2550 sizeof(ep_bw_info[i])); 2551 /* Add any changed or dropped endpoints back into the table */ 2552 if (EP_IS_DROPPED(ctrl_ctx, i)) 2553 xhci_add_ep_to_interval_table(xhci, 2554 &virt_dev->eps[i].bw_info, 2555 virt_dev->bw_table, 2556 virt_dev->udev, 2557 &virt_dev->eps[i], 2558 virt_dev->tt_info); 2559 } 2560 return -ENOMEM; 2561 } 2562 2563 2564 /* Issue a configure endpoint command or evaluate context command 2565 * and wait for it to finish. 2566 */ 2567 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2568 struct usb_device *udev, 2569 struct xhci_command *command, 2570 bool ctx_change, bool must_succeed) 2571 { 2572 int ret; 2573 int timeleft; 2574 unsigned long flags; 2575 struct xhci_container_ctx *in_ctx; 2576 struct xhci_input_control_ctx *ctrl_ctx; 2577 struct completion *cmd_completion; 2578 u32 *cmd_status; 2579 struct xhci_virt_device *virt_dev; 2580 union xhci_trb *cmd_trb; 2581 2582 spin_lock_irqsave(&xhci->lock, flags); 2583 virt_dev = xhci->devs[udev->slot_id]; 2584 2585 if (command) 2586 in_ctx = command->in_ctx; 2587 else 2588 in_ctx = virt_dev->in_ctx; 2589 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2590 if (!ctrl_ctx) { 2591 spin_unlock_irqrestore(&xhci->lock, flags); 2592 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2593 __func__); 2594 return -ENOMEM; 2595 } 2596 2597 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2598 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2599 spin_unlock_irqrestore(&xhci->lock, flags); 2600 xhci_warn(xhci, "Not enough host resources, " 2601 "active endpoint contexts = %u\n", 2602 xhci->num_active_eps); 2603 return -ENOMEM; 2604 } 2605 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2606 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2607 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2608 xhci_free_host_resources(xhci, ctrl_ctx); 2609 spin_unlock_irqrestore(&xhci->lock, flags); 2610 xhci_warn(xhci, "Not enough bandwidth\n"); 2611 return -ENOMEM; 2612 } 2613 2614 if (command) { 2615 cmd_completion = command->completion; 2616 cmd_status = &command->status; 2617 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2618 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2619 } else { 2620 cmd_completion = &virt_dev->cmd_completion; 2621 cmd_status = &virt_dev->cmd_status; 2622 } 2623 init_completion(cmd_completion); 2624 2625 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2626 if (!ctx_change) 2627 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2628 udev->slot_id, must_succeed); 2629 else 2630 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2631 udev->slot_id, must_succeed); 2632 if (ret < 0) { 2633 if (command) 2634 list_del(&command->cmd_list); 2635 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2636 xhci_free_host_resources(xhci, ctrl_ctx); 2637 spin_unlock_irqrestore(&xhci->lock, flags); 2638 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2639 "FIXME allocate a new ring segment"); 2640 return -ENOMEM; 2641 } 2642 xhci_ring_cmd_db(xhci); 2643 spin_unlock_irqrestore(&xhci->lock, flags); 2644 2645 /* Wait for the configure endpoint command to complete */ 2646 timeleft = wait_for_completion_interruptible_timeout( 2647 cmd_completion, 2648 XHCI_CMD_DEFAULT_TIMEOUT); 2649 if (timeleft <= 0) { 2650 xhci_warn(xhci, "%s while waiting for %s command\n", 2651 timeleft == 0 ? "Timeout" : "Signal", 2652 ctx_change == 0 ? 2653 "configure endpoint" : 2654 "evaluate context"); 2655 /* cancel the configure endpoint command */ 2656 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2657 if (ret < 0) 2658 return ret; 2659 return -ETIME; 2660 } 2661 2662 if (!ctx_change) 2663 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2664 else 2665 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2666 2667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2668 spin_lock_irqsave(&xhci->lock, flags); 2669 /* If the command failed, remove the reserved resources. 2670 * Otherwise, clean up the estimate to include dropped eps. 2671 */ 2672 if (ret) 2673 xhci_free_host_resources(xhci, ctrl_ctx); 2674 else 2675 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2676 spin_unlock_irqrestore(&xhci->lock, flags); 2677 } 2678 return ret; 2679 } 2680 2681 /* Called after one or more calls to xhci_add_endpoint() or 2682 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2683 * to call xhci_reset_bandwidth(). 2684 * 2685 * Since we are in the middle of changing either configuration or 2686 * installing a new alt setting, the USB core won't allow URBs to be 2687 * enqueued for any endpoint on the old config or interface. Nothing 2688 * else should be touching the xhci->devs[slot_id] structure, so we 2689 * don't need to take the xhci->lock for manipulating that. 2690 */ 2691 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2692 { 2693 int i; 2694 int ret = 0; 2695 struct xhci_hcd *xhci; 2696 struct xhci_virt_device *virt_dev; 2697 struct xhci_input_control_ctx *ctrl_ctx; 2698 struct xhci_slot_ctx *slot_ctx; 2699 2700 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2701 if (ret <= 0) 2702 return ret; 2703 xhci = hcd_to_xhci(hcd); 2704 if (xhci->xhc_state & XHCI_STATE_DYING) 2705 return -ENODEV; 2706 2707 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2708 virt_dev = xhci->devs[udev->slot_id]; 2709 2710 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2711 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2712 if (!ctrl_ctx) { 2713 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2714 __func__); 2715 return -ENOMEM; 2716 } 2717 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2718 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2719 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2720 2721 /* Don't issue the command if there's no endpoints to update. */ 2722 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2723 ctrl_ctx->drop_flags == 0) 2724 return 0; 2725 2726 xhci_dbg(xhci, "New Input Control Context:\n"); 2727 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2728 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2729 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2730 2731 ret = xhci_configure_endpoint(xhci, udev, NULL, 2732 false, false); 2733 if (ret) { 2734 /* Callee should call reset_bandwidth() */ 2735 return ret; 2736 } 2737 2738 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2739 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2740 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2741 2742 /* Free any rings that were dropped, but not changed. */ 2743 for (i = 1; i < 31; ++i) { 2744 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2745 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2746 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2747 } 2748 xhci_zero_in_ctx(xhci, virt_dev); 2749 /* 2750 * Install any rings for completely new endpoints or changed endpoints, 2751 * and free or cache any old rings from changed endpoints. 2752 */ 2753 for (i = 1; i < 31; ++i) { 2754 if (!virt_dev->eps[i].new_ring) 2755 continue; 2756 /* Only cache or free the old ring if it exists. 2757 * It may not if this is the first add of an endpoint. 2758 */ 2759 if (virt_dev->eps[i].ring) { 2760 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2761 } 2762 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2763 virt_dev->eps[i].new_ring = NULL; 2764 } 2765 2766 return ret; 2767 } 2768 2769 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2770 { 2771 struct xhci_hcd *xhci; 2772 struct xhci_virt_device *virt_dev; 2773 int i, ret; 2774 2775 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2776 if (ret <= 0) 2777 return; 2778 xhci = hcd_to_xhci(hcd); 2779 2780 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2781 virt_dev = xhci->devs[udev->slot_id]; 2782 /* Free any rings allocated for added endpoints */ 2783 for (i = 0; i < 31; ++i) { 2784 if (virt_dev->eps[i].new_ring) { 2785 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2786 virt_dev->eps[i].new_ring = NULL; 2787 } 2788 } 2789 xhci_zero_in_ctx(xhci, virt_dev); 2790 } 2791 2792 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2793 struct xhci_container_ctx *in_ctx, 2794 struct xhci_container_ctx *out_ctx, 2795 struct xhci_input_control_ctx *ctrl_ctx, 2796 u32 add_flags, u32 drop_flags) 2797 { 2798 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2799 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2800 xhci_slot_copy(xhci, in_ctx, out_ctx); 2801 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2802 2803 xhci_dbg(xhci, "Input Context:\n"); 2804 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2805 } 2806 2807 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2808 unsigned int slot_id, unsigned int ep_index, 2809 struct xhci_dequeue_state *deq_state) 2810 { 2811 struct xhci_input_control_ctx *ctrl_ctx; 2812 struct xhci_container_ctx *in_ctx; 2813 struct xhci_ep_ctx *ep_ctx; 2814 u32 added_ctxs; 2815 dma_addr_t addr; 2816 2817 in_ctx = xhci->devs[slot_id]->in_ctx; 2818 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2819 if (!ctrl_ctx) { 2820 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2821 __func__); 2822 return; 2823 } 2824 2825 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2826 xhci->devs[slot_id]->out_ctx, ep_index); 2827 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2828 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2829 deq_state->new_deq_ptr); 2830 if (addr == 0) { 2831 xhci_warn(xhci, "WARN Cannot submit config ep after " 2832 "reset ep command\n"); 2833 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2834 deq_state->new_deq_seg, 2835 deq_state->new_deq_ptr); 2836 return; 2837 } 2838 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2839 2840 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2841 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2842 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2843 added_ctxs, added_ctxs); 2844 } 2845 2846 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2847 struct usb_device *udev, unsigned int ep_index) 2848 { 2849 struct xhci_dequeue_state deq_state; 2850 struct xhci_virt_ep *ep; 2851 2852 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2853 "Cleaning up stalled endpoint ring"); 2854 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2855 /* We need to move the HW's dequeue pointer past this TD, 2856 * or it will attempt to resend it on the next doorbell ring. 2857 */ 2858 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2859 ep_index, ep->stopped_stream, ep->stopped_td, 2860 &deq_state); 2861 2862 /* HW with the reset endpoint quirk will use the saved dequeue state to 2863 * issue a configure endpoint command later. 2864 */ 2865 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2866 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2867 "Queueing new dequeue state"); 2868 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2869 ep_index, ep->stopped_stream, &deq_state); 2870 } else { 2871 /* Better hope no one uses the input context between now and the 2872 * reset endpoint completion! 2873 * XXX: No idea how this hardware will react when stream rings 2874 * are enabled. 2875 */ 2876 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2877 "Setting up input context for " 2878 "configure endpoint command"); 2879 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2880 ep_index, &deq_state); 2881 } 2882 } 2883 2884 /* Deal with stalled endpoints. The core should have sent the control message 2885 * to clear the halt condition. However, we need to make the xHCI hardware 2886 * reset its sequence number, since a device will expect a sequence number of 2887 * zero after the halt condition is cleared. 2888 * Context: in_interrupt 2889 */ 2890 void xhci_endpoint_reset(struct usb_hcd *hcd, 2891 struct usb_host_endpoint *ep) 2892 { 2893 struct xhci_hcd *xhci; 2894 struct usb_device *udev; 2895 unsigned int ep_index; 2896 unsigned long flags; 2897 int ret; 2898 struct xhci_virt_ep *virt_ep; 2899 2900 xhci = hcd_to_xhci(hcd); 2901 udev = (struct usb_device *) ep->hcpriv; 2902 /* Called with a root hub endpoint (or an endpoint that wasn't added 2903 * with xhci_add_endpoint() 2904 */ 2905 if (!ep->hcpriv) 2906 return; 2907 ep_index = xhci_get_endpoint_index(&ep->desc); 2908 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2909 if (!virt_ep->stopped_td) { 2910 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2911 "Endpoint 0x%x not halted, refusing to reset.", 2912 ep->desc.bEndpointAddress); 2913 return; 2914 } 2915 if (usb_endpoint_xfer_control(&ep->desc)) { 2916 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2917 "Control endpoint stall already handled."); 2918 return; 2919 } 2920 2921 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2922 "Queueing reset endpoint command"); 2923 spin_lock_irqsave(&xhci->lock, flags); 2924 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2925 /* 2926 * Can't change the ring dequeue pointer until it's transitioned to the 2927 * stopped state, which is only upon a successful reset endpoint 2928 * command. Better hope that last command worked! 2929 */ 2930 if (!ret) { 2931 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2932 kfree(virt_ep->stopped_td); 2933 xhci_ring_cmd_db(xhci); 2934 } 2935 virt_ep->stopped_td = NULL; 2936 virt_ep->stopped_trb = NULL; 2937 virt_ep->stopped_stream = 0; 2938 spin_unlock_irqrestore(&xhci->lock, flags); 2939 2940 if (ret) 2941 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2942 } 2943 2944 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2945 struct usb_device *udev, struct usb_host_endpoint *ep, 2946 unsigned int slot_id) 2947 { 2948 int ret; 2949 unsigned int ep_index; 2950 unsigned int ep_state; 2951 2952 if (!ep) 2953 return -EINVAL; 2954 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2955 if (ret <= 0) 2956 return -EINVAL; 2957 if (ep->ss_ep_comp.bmAttributes == 0) { 2958 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2959 " descriptor for ep 0x%x does not support streams\n", 2960 ep->desc.bEndpointAddress); 2961 return -EINVAL; 2962 } 2963 2964 ep_index = xhci_get_endpoint_index(&ep->desc); 2965 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2966 if (ep_state & EP_HAS_STREAMS || 2967 ep_state & EP_GETTING_STREAMS) { 2968 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2969 "already has streams set up.\n", 2970 ep->desc.bEndpointAddress); 2971 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2972 "dynamic stream context array reallocation.\n"); 2973 return -EINVAL; 2974 } 2975 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2976 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2977 "endpoint 0x%x; URBs are pending.\n", 2978 ep->desc.bEndpointAddress); 2979 return -EINVAL; 2980 } 2981 return 0; 2982 } 2983 2984 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2985 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2986 { 2987 unsigned int max_streams; 2988 2989 /* The stream context array size must be a power of two */ 2990 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2991 /* 2992 * Find out how many primary stream array entries the host controller 2993 * supports. Later we may use secondary stream arrays (similar to 2nd 2994 * level page entries), but that's an optional feature for xHCI host 2995 * controllers. xHCs must support at least 4 stream IDs. 2996 */ 2997 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2998 if (*num_stream_ctxs > max_streams) { 2999 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3000 max_streams); 3001 *num_stream_ctxs = max_streams; 3002 *num_streams = max_streams; 3003 } 3004 } 3005 3006 /* Returns an error code if one of the endpoint already has streams. 3007 * This does not change any data structures, it only checks and gathers 3008 * information. 3009 */ 3010 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3011 struct usb_device *udev, 3012 struct usb_host_endpoint **eps, unsigned int num_eps, 3013 unsigned int *num_streams, u32 *changed_ep_bitmask) 3014 { 3015 unsigned int max_streams; 3016 unsigned int endpoint_flag; 3017 int i; 3018 int ret; 3019 3020 for (i = 0; i < num_eps; i++) { 3021 ret = xhci_check_streams_endpoint(xhci, udev, 3022 eps[i], udev->slot_id); 3023 if (ret < 0) 3024 return ret; 3025 3026 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3027 if (max_streams < (*num_streams - 1)) { 3028 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3029 eps[i]->desc.bEndpointAddress, 3030 max_streams); 3031 *num_streams = max_streams+1; 3032 } 3033 3034 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3035 if (*changed_ep_bitmask & endpoint_flag) 3036 return -EINVAL; 3037 *changed_ep_bitmask |= endpoint_flag; 3038 } 3039 return 0; 3040 } 3041 3042 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3043 struct usb_device *udev, 3044 struct usb_host_endpoint **eps, unsigned int num_eps) 3045 { 3046 u32 changed_ep_bitmask = 0; 3047 unsigned int slot_id; 3048 unsigned int ep_index; 3049 unsigned int ep_state; 3050 int i; 3051 3052 slot_id = udev->slot_id; 3053 if (!xhci->devs[slot_id]) 3054 return 0; 3055 3056 for (i = 0; i < num_eps; i++) { 3057 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3058 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3059 /* Are streams already being freed for the endpoint? */ 3060 if (ep_state & EP_GETTING_NO_STREAMS) { 3061 xhci_warn(xhci, "WARN Can't disable streams for " 3062 "endpoint 0x%x, " 3063 "streams are being disabled already\n", 3064 eps[i]->desc.bEndpointAddress); 3065 return 0; 3066 } 3067 /* Are there actually any streams to free? */ 3068 if (!(ep_state & EP_HAS_STREAMS) && 3069 !(ep_state & EP_GETTING_STREAMS)) { 3070 xhci_warn(xhci, "WARN Can't disable streams for " 3071 "endpoint 0x%x, " 3072 "streams are already disabled!\n", 3073 eps[i]->desc.bEndpointAddress); 3074 xhci_warn(xhci, "WARN xhci_free_streams() called " 3075 "with non-streams endpoint\n"); 3076 return 0; 3077 } 3078 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3079 } 3080 return changed_ep_bitmask; 3081 } 3082 3083 /* 3084 * The USB device drivers use this function (though the HCD interface in USB 3085 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3086 * coordinate mass storage command queueing across multiple endpoints (basically 3087 * a stream ID == a task ID). 3088 * 3089 * Setting up streams involves allocating the same size stream context array 3090 * for each endpoint and issuing a configure endpoint command for all endpoints. 3091 * 3092 * Don't allow the call to succeed if one endpoint only supports one stream 3093 * (which means it doesn't support streams at all). 3094 * 3095 * Drivers may get less stream IDs than they asked for, if the host controller 3096 * hardware or endpoints claim they can't support the number of requested 3097 * stream IDs. 3098 */ 3099 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3100 struct usb_host_endpoint **eps, unsigned int num_eps, 3101 unsigned int num_streams, gfp_t mem_flags) 3102 { 3103 int i, ret; 3104 struct xhci_hcd *xhci; 3105 struct xhci_virt_device *vdev; 3106 struct xhci_command *config_cmd; 3107 struct xhci_input_control_ctx *ctrl_ctx; 3108 unsigned int ep_index; 3109 unsigned int num_stream_ctxs; 3110 unsigned long flags; 3111 u32 changed_ep_bitmask = 0; 3112 3113 if (!eps) 3114 return -EINVAL; 3115 3116 /* Add one to the number of streams requested to account for 3117 * stream 0 that is reserved for xHCI usage. 3118 */ 3119 num_streams += 1; 3120 xhci = hcd_to_xhci(hcd); 3121 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3122 num_streams); 3123 3124 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3125 if (!config_cmd) { 3126 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3127 return -ENOMEM; 3128 } 3129 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3130 if (!ctrl_ctx) { 3131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3132 __func__); 3133 xhci_free_command(xhci, config_cmd); 3134 return -ENOMEM; 3135 } 3136 3137 /* Check to make sure all endpoints are not already configured for 3138 * streams. While we're at it, find the maximum number of streams that 3139 * all the endpoints will support and check for duplicate endpoints. 3140 */ 3141 spin_lock_irqsave(&xhci->lock, flags); 3142 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3143 num_eps, &num_streams, &changed_ep_bitmask); 3144 if (ret < 0) { 3145 xhci_free_command(xhci, config_cmd); 3146 spin_unlock_irqrestore(&xhci->lock, flags); 3147 return ret; 3148 } 3149 if (num_streams <= 1) { 3150 xhci_warn(xhci, "WARN: endpoints can't handle " 3151 "more than one stream.\n"); 3152 xhci_free_command(xhci, config_cmd); 3153 spin_unlock_irqrestore(&xhci->lock, flags); 3154 return -EINVAL; 3155 } 3156 vdev = xhci->devs[udev->slot_id]; 3157 /* Mark each endpoint as being in transition, so 3158 * xhci_urb_enqueue() will reject all URBs. 3159 */ 3160 for (i = 0; i < num_eps; i++) { 3161 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3162 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3163 } 3164 spin_unlock_irqrestore(&xhci->lock, flags); 3165 3166 /* Setup internal data structures and allocate HW data structures for 3167 * streams (but don't install the HW structures in the input context 3168 * until we're sure all memory allocation succeeded). 3169 */ 3170 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3171 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3172 num_stream_ctxs, num_streams); 3173 3174 for (i = 0; i < num_eps; i++) { 3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3176 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3177 num_stream_ctxs, 3178 num_streams, mem_flags); 3179 if (!vdev->eps[ep_index].stream_info) 3180 goto cleanup; 3181 /* Set maxPstreams in endpoint context and update deq ptr to 3182 * point to stream context array. FIXME 3183 */ 3184 } 3185 3186 /* Set up the input context for a configure endpoint command. */ 3187 for (i = 0; i < num_eps; i++) { 3188 struct xhci_ep_ctx *ep_ctx; 3189 3190 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3191 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3192 3193 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3194 vdev->out_ctx, ep_index); 3195 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3196 vdev->eps[ep_index].stream_info); 3197 } 3198 /* Tell the HW to drop its old copy of the endpoint context info 3199 * and add the updated copy from the input context. 3200 */ 3201 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3202 vdev->out_ctx, ctrl_ctx, 3203 changed_ep_bitmask, changed_ep_bitmask); 3204 3205 /* Issue and wait for the configure endpoint command */ 3206 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3207 false, false); 3208 3209 /* xHC rejected the configure endpoint command for some reason, so we 3210 * leave the old ring intact and free our internal streams data 3211 * structure. 3212 */ 3213 if (ret < 0) 3214 goto cleanup; 3215 3216 spin_lock_irqsave(&xhci->lock, flags); 3217 for (i = 0; i < num_eps; i++) { 3218 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3219 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3220 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3221 udev->slot_id, ep_index); 3222 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3223 } 3224 xhci_free_command(xhci, config_cmd); 3225 spin_unlock_irqrestore(&xhci->lock, flags); 3226 3227 /* Subtract 1 for stream 0, which drivers can't use */ 3228 return num_streams - 1; 3229 3230 cleanup: 3231 /* If it didn't work, free the streams! */ 3232 for (i = 0; i < num_eps; i++) { 3233 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3234 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3235 vdev->eps[ep_index].stream_info = NULL; 3236 /* FIXME Unset maxPstreams in endpoint context and 3237 * update deq ptr to point to normal string ring. 3238 */ 3239 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3240 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3241 xhci_endpoint_zero(xhci, vdev, eps[i]); 3242 } 3243 xhci_free_command(xhci, config_cmd); 3244 return -ENOMEM; 3245 } 3246 3247 /* Transition the endpoint from using streams to being a "normal" endpoint 3248 * without streams. 3249 * 3250 * Modify the endpoint context state, submit a configure endpoint command, 3251 * and free all endpoint rings for streams if that completes successfully. 3252 */ 3253 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3254 struct usb_host_endpoint **eps, unsigned int num_eps, 3255 gfp_t mem_flags) 3256 { 3257 int i, ret; 3258 struct xhci_hcd *xhci; 3259 struct xhci_virt_device *vdev; 3260 struct xhci_command *command; 3261 struct xhci_input_control_ctx *ctrl_ctx; 3262 unsigned int ep_index; 3263 unsigned long flags; 3264 u32 changed_ep_bitmask; 3265 3266 xhci = hcd_to_xhci(hcd); 3267 vdev = xhci->devs[udev->slot_id]; 3268 3269 /* Set up a configure endpoint command to remove the streams rings */ 3270 spin_lock_irqsave(&xhci->lock, flags); 3271 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3272 udev, eps, num_eps); 3273 if (changed_ep_bitmask == 0) { 3274 spin_unlock_irqrestore(&xhci->lock, flags); 3275 return -EINVAL; 3276 } 3277 3278 /* Use the xhci_command structure from the first endpoint. We may have 3279 * allocated too many, but the driver may call xhci_free_streams() for 3280 * each endpoint it grouped into one call to xhci_alloc_streams(). 3281 */ 3282 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3283 command = vdev->eps[ep_index].stream_info->free_streams_command; 3284 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3285 if (!ctrl_ctx) { 3286 spin_unlock_irqrestore(&xhci->lock, flags); 3287 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3288 __func__); 3289 return -EINVAL; 3290 } 3291 3292 for (i = 0; i < num_eps; i++) { 3293 struct xhci_ep_ctx *ep_ctx; 3294 3295 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3296 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3297 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3298 EP_GETTING_NO_STREAMS; 3299 3300 xhci_endpoint_copy(xhci, command->in_ctx, 3301 vdev->out_ctx, ep_index); 3302 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3303 &vdev->eps[ep_index]); 3304 } 3305 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3306 vdev->out_ctx, ctrl_ctx, 3307 changed_ep_bitmask, changed_ep_bitmask); 3308 spin_unlock_irqrestore(&xhci->lock, flags); 3309 3310 /* Issue and wait for the configure endpoint command, 3311 * which must succeed. 3312 */ 3313 ret = xhci_configure_endpoint(xhci, udev, command, 3314 false, true); 3315 3316 /* xHC rejected the configure endpoint command for some reason, so we 3317 * leave the streams rings intact. 3318 */ 3319 if (ret < 0) 3320 return ret; 3321 3322 spin_lock_irqsave(&xhci->lock, flags); 3323 for (i = 0; i < num_eps; i++) { 3324 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3325 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3326 vdev->eps[ep_index].stream_info = NULL; 3327 /* FIXME Unset maxPstreams in endpoint context and 3328 * update deq ptr to point to normal string ring. 3329 */ 3330 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3331 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3332 } 3333 spin_unlock_irqrestore(&xhci->lock, flags); 3334 3335 return 0; 3336 } 3337 3338 /* 3339 * Deletes endpoint resources for endpoints that were active before a Reset 3340 * Device command, or a Disable Slot command. The Reset Device command leaves 3341 * the control endpoint intact, whereas the Disable Slot command deletes it. 3342 * 3343 * Must be called with xhci->lock held. 3344 */ 3345 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3346 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3347 { 3348 int i; 3349 unsigned int num_dropped_eps = 0; 3350 unsigned int drop_flags = 0; 3351 3352 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3353 if (virt_dev->eps[i].ring) { 3354 drop_flags |= 1 << i; 3355 num_dropped_eps++; 3356 } 3357 } 3358 xhci->num_active_eps -= num_dropped_eps; 3359 if (num_dropped_eps) 3360 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3361 "Dropped %u ep ctxs, flags = 0x%x, " 3362 "%u now active.", 3363 num_dropped_eps, drop_flags, 3364 xhci->num_active_eps); 3365 } 3366 3367 /* 3368 * This submits a Reset Device Command, which will set the device state to 0, 3369 * set the device address to 0, and disable all the endpoints except the default 3370 * control endpoint. The USB core should come back and call 3371 * xhci_address_device(), and then re-set up the configuration. If this is 3372 * called because of a usb_reset_and_verify_device(), then the old alternate 3373 * settings will be re-installed through the normal bandwidth allocation 3374 * functions. 3375 * 3376 * Wait for the Reset Device command to finish. Remove all structures 3377 * associated with the endpoints that were disabled. Clear the input device 3378 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3379 * 3380 * If the virt_dev to be reset does not exist or does not match the udev, 3381 * it means the device is lost, possibly due to the xHC restore error and 3382 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3383 * re-allocate the device. 3384 */ 3385 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3386 { 3387 int ret, i; 3388 unsigned long flags; 3389 struct xhci_hcd *xhci; 3390 unsigned int slot_id; 3391 struct xhci_virt_device *virt_dev; 3392 struct xhci_command *reset_device_cmd; 3393 int timeleft; 3394 int last_freed_endpoint; 3395 struct xhci_slot_ctx *slot_ctx; 3396 int old_active_eps = 0; 3397 3398 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3399 if (ret <= 0) 3400 return ret; 3401 xhci = hcd_to_xhci(hcd); 3402 slot_id = udev->slot_id; 3403 virt_dev = xhci->devs[slot_id]; 3404 if (!virt_dev) { 3405 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3406 "not exist. Re-allocate the device\n", slot_id); 3407 ret = xhci_alloc_dev(hcd, udev); 3408 if (ret == 1) 3409 return 0; 3410 else 3411 return -EINVAL; 3412 } 3413 3414 if (virt_dev->udev != udev) { 3415 /* If the virt_dev and the udev does not match, this virt_dev 3416 * may belong to another udev. 3417 * Re-allocate the device. 3418 */ 3419 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3420 "not match the udev. Re-allocate the device\n", 3421 slot_id); 3422 ret = xhci_alloc_dev(hcd, udev); 3423 if (ret == 1) 3424 return 0; 3425 else 3426 return -EINVAL; 3427 } 3428 3429 /* If device is not setup, there is no point in resetting it */ 3430 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3431 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3432 SLOT_STATE_DISABLED) 3433 return 0; 3434 3435 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3436 /* Allocate the command structure that holds the struct completion. 3437 * Assume we're in process context, since the normal device reset 3438 * process has to wait for the device anyway. Storage devices are 3439 * reset as part of error handling, so use GFP_NOIO instead of 3440 * GFP_KERNEL. 3441 */ 3442 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3443 if (!reset_device_cmd) { 3444 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3445 return -ENOMEM; 3446 } 3447 3448 /* Attempt to submit the Reset Device command to the command ring */ 3449 spin_lock_irqsave(&xhci->lock, flags); 3450 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3451 3452 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3453 ret = xhci_queue_reset_device(xhci, slot_id); 3454 if (ret) { 3455 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3456 list_del(&reset_device_cmd->cmd_list); 3457 spin_unlock_irqrestore(&xhci->lock, flags); 3458 goto command_cleanup; 3459 } 3460 xhci_ring_cmd_db(xhci); 3461 spin_unlock_irqrestore(&xhci->lock, flags); 3462 3463 /* Wait for the Reset Device command to finish */ 3464 timeleft = wait_for_completion_interruptible_timeout( 3465 reset_device_cmd->completion, 3466 XHCI_CMD_DEFAULT_TIMEOUT); 3467 if (timeleft <= 0) { 3468 xhci_warn(xhci, "%s while waiting for reset device command\n", 3469 timeleft == 0 ? "Timeout" : "Signal"); 3470 spin_lock_irqsave(&xhci->lock, flags); 3471 /* The timeout might have raced with the event ring handler, so 3472 * only delete from the list if the item isn't poisoned. 3473 */ 3474 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3475 list_del(&reset_device_cmd->cmd_list); 3476 spin_unlock_irqrestore(&xhci->lock, flags); 3477 ret = -ETIME; 3478 goto command_cleanup; 3479 } 3480 3481 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3482 * unless we tried to reset a slot ID that wasn't enabled, 3483 * or the device wasn't in the addressed or configured state. 3484 */ 3485 ret = reset_device_cmd->status; 3486 switch (ret) { 3487 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3488 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3489 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3490 slot_id, 3491 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3492 xhci_dbg(xhci, "Not freeing device rings.\n"); 3493 /* Don't treat this as an error. May change my mind later. */ 3494 ret = 0; 3495 goto command_cleanup; 3496 case COMP_SUCCESS: 3497 xhci_dbg(xhci, "Successful reset device command.\n"); 3498 break; 3499 default: 3500 if (xhci_is_vendor_info_code(xhci, ret)) 3501 break; 3502 xhci_warn(xhci, "Unknown completion code %u for " 3503 "reset device command.\n", ret); 3504 ret = -EINVAL; 3505 goto command_cleanup; 3506 } 3507 3508 /* Free up host controller endpoint resources */ 3509 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3510 spin_lock_irqsave(&xhci->lock, flags); 3511 /* Don't delete the default control endpoint resources */ 3512 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3513 spin_unlock_irqrestore(&xhci->lock, flags); 3514 } 3515 3516 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3517 last_freed_endpoint = 1; 3518 for (i = 1; i < 31; ++i) { 3519 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3520 3521 if (ep->ep_state & EP_HAS_STREAMS) { 3522 xhci_free_stream_info(xhci, ep->stream_info); 3523 ep->stream_info = NULL; 3524 ep->ep_state &= ~EP_HAS_STREAMS; 3525 } 3526 3527 if (ep->ring) { 3528 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3529 last_freed_endpoint = i; 3530 } 3531 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3532 xhci_drop_ep_from_interval_table(xhci, 3533 &virt_dev->eps[i].bw_info, 3534 virt_dev->bw_table, 3535 udev, 3536 &virt_dev->eps[i], 3537 virt_dev->tt_info); 3538 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3539 } 3540 /* If necessary, update the number of active TTs on this root port */ 3541 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3542 3543 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3544 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3545 ret = 0; 3546 3547 command_cleanup: 3548 xhci_free_command(xhci, reset_device_cmd); 3549 return ret; 3550 } 3551 3552 /* 3553 * At this point, the struct usb_device is about to go away, the device has 3554 * disconnected, and all traffic has been stopped and the endpoints have been 3555 * disabled. Free any HC data structures associated with that device. 3556 */ 3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3558 { 3559 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3560 struct xhci_virt_device *virt_dev; 3561 unsigned long flags; 3562 u32 state; 3563 int i, ret; 3564 3565 #ifndef CONFIG_USB_DEFAULT_PERSIST 3566 /* 3567 * We called pm_runtime_get_noresume when the device was attached. 3568 * Decrement the counter here to allow controller to runtime suspend 3569 * if no devices remain. 3570 */ 3571 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3572 pm_runtime_put_noidle(hcd->self.controller); 3573 #endif 3574 3575 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3576 /* If the host is halted due to driver unload, we still need to free the 3577 * device. 3578 */ 3579 if (ret <= 0 && ret != -ENODEV) 3580 return; 3581 3582 virt_dev = xhci->devs[udev->slot_id]; 3583 3584 /* Stop any wayward timer functions (which may grab the lock) */ 3585 for (i = 0; i < 31; ++i) { 3586 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3587 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3588 } 3589 3590 spin_lock_irqsave(&xhci->lock, flags); 3591 /* Don't disable the slot if the host controller is dead. */ 3592 state = readl(&xhci->op_regs->status); 3593 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3594 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3595 xhci_free_virt_device(xhci, udev->slot_id); 3596 spin_unlock_irqrestore(&xhci->lock, flags); 3597 return; 3598 } 3599 3600 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3601 spin_unlock_irqrestore(&xhci->lock, flags); 3602 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3603 return; 3604 } 3605 xhci_ring_cmd_db(xhci); 3606 spin_unlock_irqrestore(&xhci->lock, flags); 3607 /* 3608 * Event command completion handler will free any data structures 3609 * associated with the slot. XXX Can free sleep? 3610 */ 3611 } 3612 3613 /* 3614 * Checks if we have enough host controller resources for the default control 3615 * endpoint. 3616 * 3617 * Must be called with xhci->lock held. 3618 */ 3619 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3620 { 3621 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3623 "Not enough ep ctxs: " 3624 "%u active, need to add 1, limit is %u.", 3625 xhci->num_active_eps, xhci->limit_active_eps); 3626 return -ENOMEM; 3627 } 3628 xhci->num_active_eps += 1; 3629 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3630 "Adding 1 ep ctx, %u now active.", 3631 xhci->num_active_eps); 3632 return 0; 3633 } 3634 3635 3636 /* 3637 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3638 * timed out, or allocating memory failed. Returns 1 on success. 3639 */ 3640 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3641 { 3642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3643 unsigned long flags; 3644 int timeleft; 3645 int ret; 3646 union xhci_trb *cmd_trb; 3647 3648 spin_lock_irqsave(&xhci->lock, flags); 3649 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3650 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3651 if (ret) { 3652 spin_unlock_irqrestore(&xhci->lock, flags); 3653 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3654 return 0; 3655 } 3656 xhci_ring_cmd_db(xhci); 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 3659 /* XXX: how much time for xHC slot assignment? */ 3660 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3661 XHCI_CMD_DEFAULT_TIMEOUT); 3662 if (timeleft <= 0) { 3663 xhci_warn(xhci, "%s while waiting for a slot\n", 3664 timeleft == 0 ? "Timeout" : "Signal"); 3665 /* cancel the enable slot request */ 3666 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3667 } 3668 3669 if (!xhci->slot_id) { 3670 xhci_err(xhci, "Error while assigning device slot ID\n"); 3671 return 0; 3672 } 3673 3674 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3675 spin_lock_irqsave(&xhci->lock, flags); 3676 ret = xhci_reserve_host_control_ep_resources(xhci); 3677 if (ret) { 3678 spin_unlock_irqrestore(&xhci->lock, flags); 3679 xhci_warn(xhci, "Not enough host resources, " 3680 "active endpoint contexts = %u\n", 3681 xhci->num_active_eps); 3682 goto disable_slot; 3683 } 3684 spin_unlock_irqrestore(&xhci->lock, flags); 3685 } 3686 /* Use GFP_NOIO, since this function can be called from 3687 * xhci_discover_or_reset_device(), which may be called as part of 3688 * mass storage driver error handling. 3689 */ 3690 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3691 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3692 goto disable_slot; 3693 } 3694 udev->slot_id = xhci->slot_id; 3695 3696 #ifndef CONFIG_USB_DEFAULT_PERSIST 3697 /* 3698 * If resetting upon resume, we can't put the controller into runtime 3699 * suspend if there is a device attached. 3700 */ 3701 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3702 pm_runtime_get_noresume(hcd->self.controller); 3703 #endif 3704 3705 /* Is this a LS or FS device under a HS hub? */ 3706 /* Hub or peripherial? */ 3707 return 1; 3708 3709 disable_slot: 3710 /* Disable slot, if we can do it without mem alloc */ 3711 spin_lock_irqsave(&xhci->lock, flags); 3712 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3713 xhci_ring_cmd_db(xhci); 3714 spin_unlock_irqrestore(&xhci->lock, flags); 3715 return 0; 3716 } 3717 3718 /* 3719 * Issue an Address Device command and optionally send a corresponding 3720 * SetAddress request to the device. 3721 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3722 * we should only issue and wait on one address command at the same time. 3723 */ 3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3725 enum xhci_setup_dev setup) 3726 { 3727 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3728 unsigned long flags; 3729 int timeleft; 3730 struct xhci_virt_device *virt_dev; 3731 int ret = 0; 3732 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3733 struct xhci_slot_ctx *slot_ctx; 3734 struct xhci_input_control_ctx *ctrl_ctx; 3735 u64 temp_64; 3736 union xhci_trb *cmd_trb; 3737 3738 if (!udev->slot_id) { 3739 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3740 "Bad Slot ID %d", udev->slot_id); 3741 return -EINVAL; 3742 } 3743 3744 virt_dev = xhci->devs[udev->slot_id]; 3745 3746 if (WARN_ON(!virt_dev)) { 3747 /* 3748 * In plug/unplug torture test with an NEC controller, 3749 * a zero-dereference was observed once due to virt_dev = 0. 3750 * Print useful debug rather than crash if it is observed again! 3751 */ 3752 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3753 udev->slot_id); 3754 return -EINVAL; 3755 } 3756 3757 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3758 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3759 if (!ctrl_ctx) { 3760 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3761 __func__); 3762 return -EINVAL; 3763 } 3764 /* 3765 * If this is the first Set Address since device plug-in or 3766 * virt_device realloaction after a resume with an xHCI power loss, 3767 * then set up the slot context. 3768 */ 3769 if (!slot_ctx->dev_info) 3770 xhci_setup_addressable_virt_dev(xhci, udev); 3771 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3772 else 3773 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3774 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3775 ctrl_ctx->drop_flags = 0; 3776 3777 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3778 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3779 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3780 le32_to_cpu(slot_ctx->dev_info) >> 27); 3781 3782 spin_lock_irqsave(&xhci->lock, flags); 3783 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3784 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3785 udev->slot_id, setup); 3786 if (ret) { 3787 spin_unlock_irqrestore(&xhci->lock, flags); 3788 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3789 "FIXME: allocate a command ring segment"); 3790 return ret; 3791 } 3792 xhci_ring_cmd_db(xhci); 3793 spin_unlock_irqrestore(&xhci->lock, flags); 3794 3795 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3796 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3797 XHCI_CMD_DEFAULT_TIMEOUT); 3798 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3799 * the SetAddress() "recovery interval" required by USB and aborting the 3800 * command on a timeout. 3801 */ 3802 if (timeleft <= 0) { 3803 xhci_warn(xhci, "%s while waiting for setup %s command\n", 3804 timeleft == 0 ? "Timeout" : "Signal", act); 3805 /* cancel the address device command */ 3806 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3807 if (ret < 0) 3808 return ret; 3809 return -ETIME; 3810 } 3811 3812 switch (virt_dev->cmd_status) { 3813 case COMP_CTX_STATE: 3814 case COMP_EBADSLT: 3815 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3816 act, udev->slot_id); 3817 ret = -EINVAL; 3818 break; 3819 case COMP_TX_ERR: 3820 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3821 ret = -EPROTO; 3822 break; 3823 case COMP_DEV_ERR: 3824 dev_warn(&udev->dev, 3825 "ERROR: Incompatible device for setup %s command\n", act); 3826 ret = -ENODEV; 3827 break; 3828 case COMP_SUCCESS: 3829 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3830 "Successful setup %s command", act); 3831 break; 3832 default: 3833 xhci_err(xhci, 3834 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3835 act, virt_dev->cmd_status); 3836 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3837 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3838 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3839 ret = -EINVAL; 3840 break; 3841 } 3842 if (ret) { 3843 return ret; 3844 } 3845 temp_64 = readq(&xhci->op_regs->dcbaa_ptr); 3846 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3847 "Op regs DCBAA ptr = %#016llx", temp_64); 3848 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3849 "Slot ID %d dcbaa entry @%p = %#016llx", 3850 udev->slot_id, 3851 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3852 (unsigned long long) 3853 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3854 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3855 "Output Context DMA address = %#08llx", 3856 (unsigned long long)virt_dev->out_ctx->dma); 3857 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3858 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3859 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3860 le32_to_cpu(slot_ctx->dev_info) >> 27); 3861 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3862 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3863 /* 3864 * USB core uses address 1 for the roothubs, so we add one to the 3865 * address given back to us by the HC. 3866 */ 3867 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3868 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3869 le32_to_cpu(slot_ctx->dev_info) >> 27); 3870 /* Zero the input context control for later use */ 3871 ctrl_ctx->add_flags = 0; 3872 ctrl_ctx->drop_flags = 0; 3873 3874 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3875 "Internal device address = %d", 3876 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3877 3878 return 0; 3879 } 3880 3881 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3882 { 3883 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3884 } 3885 3886 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3887 { 3888 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3889 } 3890 3891 /* 3892 * Transfer the port index into real index in the HW port status 3893 * registers. Caculate offset between the port's PORTSC register 3894 * and port status base. Divide the number of per port register 3895 * to get the real index. The raw port number bases 1. 3896 */ 3897 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3898 { 3899 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3900 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3901 __le32 __iomem *addr; 3902 int raw_port; 3903 3904 if (hcd->speed != HCD_USB3) 3905 addr = xhci->usb2_ports[port1 - 1]; 3906 else 3907 addr = xhci->usb3_ports[port1 - 1]; 3908 3909 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3910 return raw_port; 3911 } 3912 3913 /* 3914 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3915 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3916 */ 3917 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3918 struct usb_device *udev, u16 max_exit_latency) 3919 { 3920 struct xhci_virt_device *virt_dev; 3921 struct xhci_command *command; 3922 struct xhci_input_control_ctx *ctrl_ctx; 3923 struct xhci_slot_ctx *slot_ctx; 3924 unsigned long flags; 3925 int ret; 3926 3927 spin_lock_irqsave(&xhci->lock, flags); 3928 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3929 spin_unlock_irqrestore(&xhci->lock, flags); 3930 return 0; 3931 } 3932 3933 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3934 virt_dev = xhci->devs[udev->slot_id]; 3935 command = xhci->lpm_command; 3936 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3937 if (!ctrl_ctx) { 3938 spin_unlock_irqrestore(&xhci->lock, flags); 3939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3940 __func__); 3941 return -ENOMEM; 3942 } 3943 3944 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3945 spin_unlock_irqrestore(&xhci->lock, flags); 3946 3947 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3948 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3949 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3950 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3951 3952 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3953 "Set up evaluate context for LPM MEL change."); 3954 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3955 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3956 3957 /* Issue and wait for the evaluate context command. */ 3958 ret = xhci_configure_endpoint(xhci, udev, command, 3959 true, true); 3960 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3961 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3962 3963 if (!ret) { 3964 spin_lock_irqsave(&xhci->lock, flags); 3965 virt_dev->current_mel = max_exit_latency; 3966 spin_unlock_irqrestore(&xhci->lock, flags); 3967 } 3968 return ret; 3969 } 3970 3971 #ifdef CONFIG_PM_RUNTIME 3972 3973 /* BESL to HIRD Encoding array for USB2 LPM */ 3974 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3975 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3976 3977 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3978 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3979 struct usb_device *udev) 3980 { 3981 int u2del, besl, besl_host; 3982 int besl_device = 0; 3983 u32 field; 3984 3985 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3986 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3987 3988 if (field & USB_BESL_SUPPORT) { 3989 for (besl_host = 0; besl_host < 16; besl_host++) { 3990 if (xhci_besl_encoding[besl_host] >= u2del) 3991 break; 3992 } 3993 /* Use baseline BESL value as default */ 3994 if (field & USB_BESL_BASELINE_VALID) 3995 besl_device = USB_GET_BESL_BASELINE(field); 3996 else if (field & USB_BESL_DEEP_VALID) 3997 besl_device = USB_GET_BESL_DEEP(field); 3998 } else { 3999 if (u2del <= 50) 4000 besl_host = 0; 4001 else 4002 besl_host = (u2del - 51) / 75 + 1; 4003 } 4004 4005 besl = besl_host + besl_device; 4006 if (besl > 15) 4007 besl = 15; 4008 4009 return besl; 4010 } 4011 4012 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4013 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4014 { 4015 u32 field; 4016 int l1; 4017 int besld = 0; 4018 int hirdm = 0; 4019 4020 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4021 4022 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4023 l1 = udev->l1_params.timeout / 256; 4024 4025 /* device has preferred BESLD */ 4026 if (field & USB_BESL_DEEP_VALID) { 4027 besld = USB_GET_BESL_DEEP(field); 4028 hirdm = 1; 4029 } 4030 4031 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4032 } 4033 4034 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4035 struct usb_device *udev, int enable) 4036 { 4037 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4038 __le32 __iomem **port_array; 4039 __le32 __iomem *pm_addr, *hlpm_addr; 4040 u32 pm_val, hlpm_val, field; 4041 unsigned int port_num; 4042 unsigned long flags; 4043 int hird, exit_latency; 4044 int ret; 4045 4046 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4047 !udev->lpm_capable) 4048 return -EPERM; 4049 4050 if (!udev->parent || udev->parent->parent || 4051 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4052 return -EPERM; 4053 4054 if (udev->usb2_hw_lpm_capable != 1) 4055 return -EPERM; 4056 4057 spin_lock_irqsave(&xhci->lock, flags); 4058 4059 port_array = xhci->usb2_ports; 4060 port_num = udev->portnum - 1; 4061 pm_addr = port_array[port_num] + PORTPMSC; 4062 pm_val = readl(pm_addr); 4063 hlpm_addr = port_array[port_num] + PORTHLPMC; 4064 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4065 4066 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4067 enable ? "enable" : "disable", port_num); 4068 4069 if (enable) { 4070 /* Host supports BESL timeout instead of HIRD */ 4071 if (udev->usb2_hw_lpm_besl_capable) { 4072 /* if device doesn't have a preferred BESL value use a 4073 * default one which works with mixed HIRD and BESL 4074 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4075 */ 4076 if ((field & USB_BESL_SUPPORT) && 4077 (field & USB_BESL_BASELINE_VALID)) 4078 hird = USB_GET_BESL_BASELINE(field); 4079 else 4080 hird = udev->l1_params.besl; 4081 4082 exit_latency = xhci_besl_encoding[hird]; 4083 spin_unlock_irqrestore(&xhci->lock, flags); 4084 4085 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4086 * input context for link powermanagement evaluate 4087 * context commands. It is protected by hcd->bandwidth 4088 * mutex and is shared by all devices. We need to set 4089 * the max ext latency in USB 2 BESL LPM as well, so 4090 * use the same mutex and xhci_change_max_exit_latency() 4091 */ 4092 mutex_lock(hcd->bandwidth_mutex); 4093 ret = xhci_change_max_exit_latency(xhci, udev, 4094 exit_latency); 4095 mutex_unlock(hcd->bandwidth_mutex); 4096 4097 if (ret < 0) 4098 return ret; 4099 spin_lock_irqsave(&xhci->lock, flags); 4100 4101 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4102 writel(hlpm_val, hlpm_addr); 4103 /* flush write */ 4104 readl(hlpm_addr); 4105 } else { 4106 hird = xhci_calculate_hird_besl(xhci, udev); 4107 } 4108 4109 pm_val &= ~PORT_HIRD_MASK; 4110 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4111 writel(pm_val, pm_addr); 4112 pm_val = readl(pm_addr); 4113 pm_val |= PORT_HLE; 4114 writel(pm_val, pm_addr); 4115 /* flush write */ 4116 readl(pm_addr); 4117 } else { 4118 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4119 writel(pm_val, pm_addr); 4120 /* flush write */ 4121 readl(pm_addr); 4122 if (udev->usb2_hw_lpm_besl_capable) { 4123 spin_unlock_irqrestore(&xhci->lock, flags); 4124 mutex_lock(hcd->bandwidth_mutex); 4125 xhci_change_max_exit_latency(xhci, udev, 0); 4126 mutex_unlock(hcd->bandwidth_mutex); 4127 return 0; 4128 } 4129 } 4130 4131 spin_unlock_irqrestore(&xhci->lock, flags); 4132 return 0; 4133 } 4134 4135 /* check if a usb2 port supports a given extened capability protocol 4136 * only USB2 ports extended protocol capability values are cached. 4137 * Return 1 if capability is supported 4138 */ 4139 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4140 unsigned capability) 4141 { 4142 u32 port_offset, port_count; 4143 int i; 4144 4145 for (i = 0; i < xhci->num_ext_caps; i++) { 4146 if (xhci->ext_caps[i] & capability) { 4147 /* port offsets starts at 1 */ 4148 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4149 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4150 if (port >= port_offset && 4151 port < port_offset + port_count) 4152 return 1; 4153 } 4154 } 4155 return 0; 4156 } 4157 4158 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4159 { 4160 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4161 int portnum = udev->portnum - 1; 4162 4163 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4164 !udev->lpm_capable) 4165 return 0; 4166 4167 /* we only support lpm for non-hub device connected to root hub yet */ 4168 if (!udev->parent || udev->parent->parent || 4169 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4170 return 0; 4171 4172 if (xhci->hw_lpm_support == 1 && 4173 xhci_check_usb2_port_capability( 4174 xhci, portnum, XHCI_HLC)) { 4175 udev->usb2_hw_lpm_capable = 1; 4176 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4177 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4178 if (xhci_check_usb2_port_capability(xhci, portnum, 4179 XHCI_BLC)) 4180 udev->usb2_hw_lpm_besl_capable = 1; 4181 } 4182 4183 return 0; 4184 } 4185 4186 #else 4187 4188 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4189 struct usb_device *udev, int enable) 4190 { 4191 return 0; 4192 } 4193 4194 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4195 { 4196 return 0; 4197 } 4198 4199 #endif /* CONFIG_PM_RUNTIME */ 4200 4201 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4202 4203 #ifdef CONFIG_PM 4204 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4205 static unsigned long long xhci_service_interval_to_ns( 4206 struct usb_endpoint_descriptor *desc) 4207 { 4208 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4209 } 4210 4211 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4212 enum usb3_link_state state) 4213 { 4214 unsigned long long sel; 4215 unsigned long long pel; 4216 unsigned int max_sel_pel; 4217 char *state_name; 4218 4219 switch (state) { 4220 case USB3_LPM_U1: 4221 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4222 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4223 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4224 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4225 state_name = "U1"; 4226 break; 4227 case USB3_LPM_U2: 4228 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4229 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4230 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4231 state_name = "U2"; 4232 break; 4233 default: 4234 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4235 __func__); 4236 return USB3_LPM_DISABLED; 4237 } 4238 4239 if (sel <= max_sel_pel && pel <= max_sel_pel) 4240 return USB3_LPM_DEVICE_INITIATED; 4241 4242 if (sel > max_sel_pel) 4243 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4244 "due to long SEL %llu ms\n", 4245 state_name, sel); 4246 else 4247 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4248 "due to long PEL %llu ms\n", 4249 state_name, pel); 4250 return USB3_LPM_DISABLED; 4251 } 4252 4253 /* Returns the hub-encoded U1 timeout value. 4254 * The U1 timeout should be the maximum of the following values: 4255 * - For control endpoints, U1 system exit latency (SEL) * 3 4256 * - For bulk endpoints, U1 SEL * 5 4257 * - For interrupt endpoints: 4258 * - Notification EPs, U1 SEL * 3 4259 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4260 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4261 */ 4262 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4263 struct usb_endpoint_descriptor *desc) 4264 { 4265 unsigned long long timeout_ns; 4266 int ep_type; 4267 int intr_type; 4268 4269 ep_type = usb_endpoint_type(desc); 4270 switch (ep_type) { 4271 case USB_ENDPOINT_XFER_CONTROL: 4272 timeout_ns = udev->u1_params.sel * 3; 4273 break; 4274 case USB_ENDPOINT_XFER_BULK: 4275 timeout_ns = udev->u1_params.sel * 5; 4276 break; 4277 case USB_ENDPOINT_XFER_INT: 4278 intr_type = usb_endpoint_interrupt_type(desc); 4279 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4280 timeout_ns = udev->u1_params.sel * 3; 4281 break; 4282 } 4283 /* Otherwise the calculation is the same as isoc eps */ 4284 case USB_ENDPOINT_XFER_ISOC: 4285 timeout_ns = xhci_service_interval_to_ns(desc); 4286 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4287 if (timeout_ns < udev->u1_params.sel * 2) 4288 timeout_ns = udev->u1_params.sel * 2; 4289 break; 4290 default: 4291 return 0; 4292 } 4293 4294 /* The U1 timeout is encoded in 1us intervals. */ 4295 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4296 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4297 if (timeout_ns == USB3_LPM_DISABLED) 4298 timeout_ns++; 4299 4300 /* If the necessary timeout value is bigger than what we can set in the 4301 * USB 3.0 hub, we have to disable hub-initiated U1. 4302 */ 4303 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4304 return timeout_ns; 4305 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4306 "due to long timeout %llu ms\n", timeout_ns); 4307 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4308 } 4309 4310 /* Returns the hub-encoded U2 timeout value. 4311 * The U2 timeout should be the maximum of: 4312 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4313 * - largest bInterval of any active periodic endpoint (to avoid going 4314 * into lower power link states between intervals). 4315 * - the U2 Exit Latency of the device 4316 */ 4317 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4318 struct usb_endpoint_descriptor *desc) 4319 { 4320 unsigned long long timeout_ns; 4321 unsigned long long u2_del_ns; 4322 4323 timeout_ns = 10 * 1000 * 1000; 4324 4325 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4326 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4327 timeout_ns = xhci_service_interval_to_ns(desc); 4328 4329 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4330 if (u2_del_ns > timeout_ns) 4331 timeout_ns = u2_del_ns; 4332 4333 /* The U2 timeout is encoded in 256us intervals */ 4334 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4335 /* If the necessary timeout value is bigger than what we can set in the 4336 * USB 3.0 hub, we have to disable hub-initiated U2. 4337 */ 4338 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4339 return timeout_ns; 4340 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4341 "due to long timeout %llu ms\n", timeout_ns); 4342 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4343 } 4344 4345 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4346 struct usb_device *udev, 4347 struct usb_endpoint_descriptor *desc, 4348 enum usb3_link_state state, 4349 u16 *timeout) 4350 { 4351 if (state == USB3_LPM_U1) { 4352 if (xhci->quirks & XHCI_INTEL_HOST) 4353 return xhci_calculate_intel_u1_timeout(udev, desc); 4354 } else { 4355 if (xhci->quirks & XHCI_INTEL_HOST) 4356 return xhci_calculate_intel_u2_timeout(udev, desc); 4357 } 4358 4359 return USB3_LPM_DISABLED; 4360 } 4361 4362 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4363 struct usb_device *udev, 4364 struct usb_endpoint_descriptor *desc, 4365 enum usb3_link_state state, 4366 u16 *timeout) 4367 { 4368 u16 alt_timeout; 4369 4370 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4371 desc, state, timeout); 4372 4373 /* If we found we can't enable hub-initiated LPM, or 4374 * the U1 or U2 exit latency was too high to allow 4375 * device-initiated LPM as well, just stop searching. 4376 */ 4377 if (alt_timeout == USB3_LPM_DISABLED || 4378 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4379 *timeout = alt_timeout; 4380 return -E2BIG; 4381 } 4382 if (alt_timeout > *timeout) 4383 *timeout = alt_timeout; 4384 return 0; 4385 } 4386 4387 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4388 struct usb_device *udev, 4389 struct usb_host_interface *alt, 4390 enum usb3_link_state state, 4391 u16 *timeout) 4392 { 4393 int j; 4394 4395 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4396 if (xhci_update_timeout_for_endpoint(xhci, udev, 4397 &alt->endpoint[j].desc, state, timeout)) 4398 return -E2BIG; 4399 continue; 4400 } 4401 return 0; 4402 } 4403 4404 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4405 enum usb3_link_state state) 4406 { 4407 struct usb_device *parent; 4408 unsigned int num_hubs; 4409 4410 if (state == USB3_LPM_U2) 4411 return 0; 4412 4413 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4414 for (parent = udev->parent, num_hubs = 0; parent->parent; 4415 parent = parent->parent) 4416 num_hubs++; 4417 4418 if (num_hubs < 2) 4419 return 0; 4420 4421 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4422 " below second-tier hub.\n"); 4423 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4424 "to decrease power consumption.\n"); 4425 return -E2BIG; 4426 } 4427 4428 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4429 struct usb_device *udev, 4430 enum usb3_link_state state) 4431 { 4432 if (xhci->quirks & XHCI_INTEL_HOST) 4433 return xhci_check_intel_tier_policy(udev, state); 4434 return -EINVAL; 4435 } 4436 4437 /* Returns the U1 or U2 timeout that should be enabled. 4438 * If the tier check or timeout setting functions return with a non-zero exit 4439 * code, that means the timeout value has been finalized and we shouldn't look 4440 * at any more endpoints. 4441 */ 4442 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4443 struct usb_device *udev, enum usb3_link_state state) 4444 { 4445 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4446 struct usb_host_config *config; 4447 char *state_name; 4448 int i; 4449 u16 timeout = USB3_LPM_DISABLED; 4450 4451 if (state == USB3_LPM_U1) 4452 state_name = "U1"; 4453 else if (state == USB3_LPM_U2) 4454 state_name = "U2"; 4455 else { 4456 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4457 state); 4458 return timeout; 4459 } 4460 4461 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4462 return timeout; 4463 4464 /* Gather some information about the currently installed configuration 4465 * and alternate interface settings. 4466 */ 4467 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4468 state, &timeout)) 4469 return timeout; 4470 4471 config = udev->actconfig; 4472 if (!config) 4473 return timeout; 4474 4475 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4476 struct usb_driver *driver; 4477 struct usb_interface *intf = config->interface[i]; 4478 4479 if (!intf) 4480 continue; 4481 4482 /* Check if any currently bound drivers want hub-initiated LPM 4483 * disabled. 4484 */ 4485 if (intf->dev.driver) { 4486 driver = to_usb_driver(intf->dev.driver); 4487 if (driver && driver->disable_hub_initiated_lpm) { 4488 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4489 "at request of driver %s\n", 4490 state_name, driver->name); 4491 return xhci_get_timeout_no_hub_lpm(udev, state); 4492 } 4493 } 4494 4495 /* Not sure how this could happen... */ 4496 if (!intf->cur_altsetting) 4497 continue; 4498 4499 if (xhci_update_timeout_for_interface(xhci, udev, 4500 intf->cur_altsetting, 4501 state, &timeout)) 4502 return timeout; 4503 } 4504 return timeout; 4505 } 4506 4507 static int calculate_max_exit_latency(struct usb_device *udev, 4508 enum usb3_link_state state_changed, 4509 u16 hub_encoded_timeout) 4510 { 4511 unsigned long long u1_mel_us = 0; 4512 unsigned long long u2_mel_us = 0; 4513 unsigned long long mel_us = 0; 4514 bool disabling_u1; 4515 bool disabling_u2; 4516 bool enabling_u1; 4517 bool enabling_u2; 4518 4519 disabling_u1 = (state_changed == USB3_LPM_U1 && 4520 hub_encoded_timeout == USB3_LPM_DISABLED); 4521 disabling_u2 = (state_changed == USB3_LPM_U2 && 4522 hub_encoded_timeout == USB3_LPM_DISABLED); 4523 4524 enabling_u1 = (state_changed == USB3_LPM_U1 && 4525 hub_encoded_timeout != USB3_LPM_DISABLED); 4526 enabling_u2 = (state_changed == USB3_LPM_U2 && 4527 hub_encoded_timeout != USB3_LPM_DISABLED); 4528 4529 /* If U1 was already enabled and we're not disabling it, 4530 * or we're going to enable U1, account for the U1 max exit latency. 4531 */ 4532 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4533 enabling_u1) 4534 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4535 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4536 enabling_u2) 4537 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4538 4539 if (u1_mel_us > u2_mel_us) 4540 mel_us = u1_mel_us; 4541 else 4542 mel_us = u2_mel_us; 4543 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4544 if (mel_us > MAX_EXIT) { 4545 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4546 "is too big.\n", mel_us); 4547 return -E2BIG; 4548 } 4549 return mel_us; 4550 } 4551 4552 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4553 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4554 struct usb_device *udev, enum usb3_link_state state) 4555 { 4556 struct xhci_hcd *xhci; 4557 u16 hub_encoded_timeout; 4558 int mel; 4559 int ret; 4560 4561 xhci = hcd_to_xhci(hcd); 4562 /* The LPM timeout values are pretty host-controller specific, so don't 4563 * enable hub-initiated timeouts unless the vendor has provided 4564 * information about their timeout algorithm. 4565 */ 4566 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4567 !xhci->devs[udev->slot_id]) 4568 return USB3_LPM_DISABLED; 4569 4570 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4571 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4572 if (mel < 0) { 4573 /* Max Exit Latency is too big, disable LPM. */ 4574 hub_encoded_timeout = USB3_LPM_DISABLED; 4575 mel = 0; 4576 } 4577 4578 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4579 if (ret) 4580 return ret; 4581 return hub_encoded_timeout; 4582 } 4583 4584 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4585 struct usb_device *udev, enum usb3_link_state state) 4586 { 4587 struct xhci_hcd *xhci; 4588 u16 mel; 4589 int ret; 4590 4591 xhci = hcd_to_xhci(hcd); 4592 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4593 !xhci->devs[udev->slot_id]) 4594 return 0; 4595 4596 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4597 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4598 if (ret) 4599 return ret; 4600 return 0; 4601 } 4602 #else /* CONFIG_PM */ 4603 4604 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4605 struct usb_device *udev, enum usb3_link_state state) 4606 { 4607 return USB3_LPM_DISABLED; 4608 } 4609 4610 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4611 struct usb_device *udev, enum usb3_link_state state) 4612 { 4613 return 0; 4614 } 4615 #endif /* CONFIG_PM */ 4616 4617 /*-------------------------------------------------------------------------*/ 4618 4619 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4620 * internal data structures for the device. 4621 */ 4622 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4623 struct usb_tt *tt, gfp_t mem_flags) 4624 { 4625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4626 struct xhci_virt_device *vdev; 4627 struct xhci_command *config_cmd; 4628 struct xhci_input_control_ctx *ctrl_ctx; 4629 struct xhci_slot_ctx *slot_ctx; 4630 unsigned long flags; 4631 unsigned think_time; 4632 int ret; 4633 4634 /* Ignore root hubs */ 4635 if (!hdev->parent) 4636 return 0; 4637 4638 vdev = xhci->devs[hdev->slot_id]; 4639 if (!vdev) { 4640 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4641 return -EINVAL; 4642 } 4643 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4644 if (!config_cmd) { 4645 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4646 return -ENOMEM; 4647 } 4648 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4649 if (!ctrl_ctx) { 4650 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4651 __func__); 4652 xhci_free_command(xhci, config_cmd); 4653 return -ENOMEM; 4654 } 4655 4656 spin_lock_irqsave(&xhci->lock, flags); 4657 if (hdev->speed == USB_SPEED_HIGH && 4658 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4659 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4660 xhci_free_command(xhci, config_cmd); 4661 spin_unlock_irqrestore(&xhci->lock, flags); 4662 return -ENOMEM; 4663 } 4664 4665 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4666 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4667 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4668 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4669 if (tt->multi) 4670 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4671 if (xhci->hci_version > 0x95) { 4672 xhci_dbg(xhci, "xHCI version %x needs hub " 4673 "TT think time and number of ports\n", 4674 (unsigned int) xhci->hci_version); 4675 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4676 /* Set TT think time - convert from ns to FS bit times. 4677 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4678 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4679 * 4680 * xHCI 1.0: this field shall be 0 if the device is not a 4681 * High-spped hub. 4682 */ 4683 think_time = tt->think_time; 4684 if (think_time != 0) 4685 think_time = (think_time / 666) - 1; 4686 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4687 slot_ctx->tt_info |= 4688 cpu_to_le32(TT_THINK_TIME(think_time)); 4689 } else { 4690 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4691 "TT think time or number of ports\n", 4692 (unsigned int) xhci->hci_version); 4693 } 4694 slot_ctx->dev_state = 0; 4695 spin_unlock_irqrestore(&xhci->lock, flags); 4696 4697 xhci_dbg(xhci, "Set up %s for hub device.\n", 4698 (xhci->hci_version > 0x95) ? 4699 "configure endpoint" : "evaluate context"); 4700 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4701 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4702 4703 /* Issue and wait for the configure endpoint or 4704 * evaluate context command. 4705 */ 4706 if (xhci->hci_version > 0x95) 4707 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4708 false, false); 4709 else 4710 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4711 true, false); 4712 4713 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4714 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4715 4716 xhci_free_command(xhci, config_cmd); 4717 return ret; 4718 } 4719 4720 int xhci_get_frame(struct usb_hcd *hcd) 4721 { 4722 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4723 /* EHCI mods by the periodic size. Why? */ 4724 return readl(&xhci->run_regs->microframe_index) >> 3; 4725 } 4726 4727 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4728 { 4729 struct xhci_hcd *xhci; 4730 struct device *dev = hcd->self.controller; 4731 int retval; 4732 4733 /* Limit the block layer scatter-gather lists to half a segment. */ 4734 hcd->self.sg_tablesize = TRBS_PER_SEGMENT / 2; 4735 4736 /* support to build packet from discontinuous buffers */ 4737 hcd->self.no_sg_constraint = 1; 4738 4739 /* XHCI controllers don't stop the ep queue on short packets :| */ 4740 hcd->self.no_stop_on_short = 1; 4741 4742 if (usb_hcd_is_primary_hcd(hcd)) { 4743 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4744 if (!xhci) 4745 return -ENOMEM; 4746 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4747 xhci->main_hcd = hcd; 4748 /* Mark the first roothub as being USB 2.0. 4749 * The xHCI driver will register the USB 3.0 roothub. 4750 */ 4751 hcd->speed = HCD_USB2; 4752 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4753 /* 4754 * USB 2.0 roothub under xHCI has an integrated TT, 4755 * (rate matching hub) as opposed to having an OHCI/UHCI 4756 * companion controller. 4757 */ 4758 hcd->has_tt = 1; 4759 } else { 4760 /* xHCI private pointer was set in xhci_pci_probe for the second 4761 * registered roothub. 4762 */ 4763 return 0; 4764 } 4765 4766 xhci->cap_regs = hcd->regs; 4767 xhci->op_regs = hcd->regs + 4768 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4769 xhci->run_regs = hcd->regs + 4770 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4771 /* Cache read-only capability registers */ 4772 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4773 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4774 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4775 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4776 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4777 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4778 xhci_print_registers(xhci); 4779 4780 xhci->quirks = quirks; 4781 4782 get_quirks(dev, xhci); 4783 4784 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4785 * success event after a short transfer. This quirk will ignore such 4786 * spurious event. 4787 */ 4788 if (xhci->hci_version > 0x96) 4789 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4790 4791 /* Make sure the HC is halted. */ 4792 retval = xhci_halt(xhci); 4793 if (retval) 4794 goto error; 4795 4796 xhci_dbg(xhci, "Resetting HCD\n"); 4797 /* Reset the internal HC memory state and registers. */ 4798 retval = xhci_reset(xhci); 4799 if (retval) 4800 goto error; 4801 xhci_dbg(xhci, "Reset complete\n"); 4802 4803 /* Set dma_mask and coherent_dma_mask to 64-bits, 4804 * if xHC supports 64-bit addressing */ 4805 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4806 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4807 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4808 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4809 } 4810 4811 xhci_dbg(xhci, "Calling HCD init\n"); 4812 /* Initialize HCD and host controller data structures. */ 4813 retval = xhci_init(hcd); 4814 if (retval) 4815 goto error; 4816 xhci_dbg(xhci, "Called HCD init\n"); 4817 return 0; 4818 error: 4819 kfree(xhci); 4820 return retval; 4821 } 4822 4823 MODULE_DESCRIPTION(DRIVER_DESC); 4824 MODULE_AUTHOR(DRIVER_AUTHOR); 4825 MODULE_LICENSE("GPL"); 4826 4827 static int __init xhci_hcd_init(void) 4828 { 4829 int retval; 4830 4831 retval = xhci_register_pci(); 4832 if (retval < 0) { 4833 pr_debug("Problem registering PCI driver.\n"); 4834 return retval; 4835 } 4836 retval = xhci_register_plat(); 4837 if (retval < 0) { 4838 pr_debug("Problem registering platform driver.\n"); 4839 goto unreg_pci; 4840 } 4841 /* 4842 * Check the compiler generated sizes of structures that must be laid 4843 * out in specific ways for hardware access. 4844 */ 4845 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4846 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4847 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4848 /* xhci_device_control has eight fields, and also 4849 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4850 */ 4851 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4852 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4853 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4854 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4855 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4856 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4857 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4858 return 0; 4859 unreg_pci: 4860 xhci_unregister_pci(); 4861 return retval; 4862 } 4863 module_init(xhci_hcd_init); 4864 4865 static void __exit xhci_hcd_cleanup(void) 4866 { 4867 xhci_unregister_pci(); 4868 xhci_unregister_plat(); 4869 } 4870 module_exit(xhci_hcd_cleanup); 4871