xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 5f32c314)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46 
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 		      u32 mask, u32 done, int usec)
63 {
64 	u32	result;
65 
66 	do {
67 		result = readl(ptr);
68 		if (result == ~(u32)0)		/* card removed */
69 			return -ENODEV;
70 		result &= mask;
71 		if (result == done)
72 			return 0;
73 		udelay(1);
74 		usec--;
75 	} while (usec > 0);
76 	return -ETIMEDOUT;
77 }
78 
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 	u32 halted;
85 	u32 cmd;
86 	u32 mask;
87 
88 	mask = ~(XHCI_IRQS);
89 	halted = readl(&xhci->op_regs->status) & STS_HALT;
90 	if (!halted)
91 		mask &= ~CMD_RUN;
92 
93 	cmd = readl(&xhci->op_regs->command);
94 	cmd &= mask;
95 	writel(cmd, &xhci->op_regs->command);
96 }
97 
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 	int ret;
109 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 	xhci_quiesce(xhci);
111 
112 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 	if (!ret) {
115 		xhci->xhc_state |= XHCI_STATE_HALTED;
116 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 	} else
118 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 				XHCI_MAX_HALT_USEC);
120 	return ret;
121 }
122 
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 	u32 temp;
129 	int ret;
130 
131 	temp = readl(&xhci->op_regs->command);
132 	temp |= (CMD_RUN);
133 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 			temp);
135 	writel(temp, &xhci->op_regs->command);
136 
137 	/*
138 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 	 * running.
140 	 */
141 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 	if (ret == -ETIMEDOUT)
144 		xhci_err(xhci, "Host took too long to start, "
145 				"waited %u microseconds.\n",
146 				XHCI_MAX_HALT_USEC);
147 	if (!ret)
148 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 	return ret;
150 }
151 
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 	u32 command;
162 	u32 state;
163 	int ret, i;
164 
165 	state = readl(&xhci->op_regs->status);
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 			CMD_RESET, 0, 10 * 1000 * 1000);
178 	if (ret)
179 		return ret;
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 			 "Wait for controller to be ready for doorbell rings");
183 	/*
184 	 * xHCI cannot write to any doorbells or operational registers other
185 	 * than status until the "Controller Not Ready" flag is cleared.
186 	 */
187 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 			STS_CNR, 0, 10 * 1000 * 1000);
189 
190 	for (i = 0; i < 2; ++i) {
191 		xhci->bus_state[i].port_c_suspend = 0;
192 		xhci->bus_state[i].suspended_ports = 0;
193 		xhci->bus_state[i].resuming_ports = 0;
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 	int i;
203 
204 	if (!xhci->msix_entries)
205 		return -EINVAL;
206 
207 	for (i = 0; i < xhci->msix_count; i++)
208 		if (xhci->msix_entries[i].vector)
209 			free_irq(xhci->msix_entries[i].vector,
210 					xhci_to_hcd(xhci));
211 	return 0;
212 }
213 
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221 
222 	ret = pci_enable_msi(pdev);
223 	if (ret) {
224 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 				"failed to allocate MSI entry");
226 		return ret;
227 	}
228 
229 	ret = request_irq(pdev->irq, xhci_msi_irq,
230 				0, "xhci_hcd", xhci_to_hcd(xhci));
231 	if (ret) {
232 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 				"disable MSI interrupt");
234 		pci_disable_msi(pdev);
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 	int ret;
248 
249 	/* return if using legacy interrupt */
250 	if (xhci_to_hcd(xhci)->irq > 0)
251 		return;
252 
253 	ret = xhci_free_msi(xhci);
254 	if (!ret)
255 		return;
256 	if (pdev->irq > 0)
257 		free_irq(pdev->irq, xhci_to_hcd(xhci));
258 
259 	return;
260 }
261 
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 	int i, ret = 0;
268 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270 
271 	/*
272 	 * calculate number of msi-x vectors supported.
273 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
275 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 	 *   Add additional 1 vector to ensure always available interrupt.
277 	 */
278 	xhci->msix_count = min(num_online_cpus() + 1,
279 				HCS_MAX_INTRS(xhci->hcs_params1));
280 
281 	xhci->msix_entries =
282 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 				GFP_KERNEL);
284 	if (!xhci->msix_entries) {
285 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 		return -ENOMEM;
287 	}
288 
289 	for (i = 0; i < xhci->msix_count; i++) {
290 		xhci->msix_entries[i].entry = i;
291 		xhci->msix_entries[i].vector = 0;
292 	}
293 
294 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295 	if (ret) {
296 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 				"Failed to enable MSI-X");
298 		goto free_entries;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		ret = request_irq(xhci->msix_entries[i].vector,
303 				xhci_msi_irq,
304 				0, "xhci_hcd", xhci_to_hcd(xhci));
305 		if (ret)
306 			goto disable_msix;
307 	}
308 
309 	hcd->msix_enabled = 1;
310 	return ret;
311 
312 disable_msix:
313 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 	xhci_free_irq(xhci);
315 	pci_disable_msix(pdev);
316 free_entries:
317 	kfree(xhci->msix_entries);
318 	xhci->msix_entries = NULL;
319 	return ret;
320 }
321 
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	if (xhci->quirks & XHCI_PLAT)
329 		return;
330 
331 	xhci_free_irq(xhci);
332 
333 	if (xhci->msix_entries) {
334 		pci_disable_msix(pdev);
335 		kfree(xhci->msix_entries);
336 		xhci->msix_entries = NULL;
337 	} else {
338 		pci_disable_msi(pdev);
339 	}
340 
341 	hcd->msix_enabled = 0;
342 	return;
343 }
344 
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 	int i;
348 
349 	if (xhci->msix_entries) {
350 		for (i = 0; i < xhci->msix_count; i++)
351 			synchronize_irq(xhci->msix_entries[i].vector);
352 	}
353 }
354 
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 	struct pci_dev  *pdev;
359 	int ret;
360 
361 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
362 	if (xhci->quirks & XHCI_PLAT)
363 		return 0;
364 
365 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 	/*
367 	 * Some Fresco Logic host controllers advertise MSI, but fail to
368 	 * generate interrupts.  Don't even try to enable MSI.
369 	 */
370 	if (xhci->quirks & XHCI_BROKEN_MSI)
371 		goto legacy_irq;
372 
373 	/* unregister the legacy interrupt */
374 	if (hcd->irq)
375 		free_irq(hcd->irq, hcd);
376 	hcd->irq = 0;
377 
378 	ret = xhci_setup_msix(xhci);
379 	if (ret)
380 		/* fall back to msi*/
381 		ret = xhci_setup_msi(xhci);
382 
383 	if (!ret)
384 		/* hcd->irq is 0, we have MSI */
385 		return 0;
386 
387 	if (!pdev->irq) {
388 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 		return -EINVAL;
390 	}
391 
392  legacy_irq:
393 	/* fall back to legacy interrupt*/
394 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
395 			hcd->irq_descr, hcd);
396 	if (ret) {
397 		xhci_err(xhci, "request interrupt %d failed\n",
398 				pdev->irq);
399 		return ret;
400 	}
401 	hcd->irq = pdev->irq;
402 	return 0;
403 }
404 
405 #else
406 
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	return 0;
410 }
411 
412 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
413 {
414 }
415 
416 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
417 {
418 }
419 
420 #endif
421 
422 static void compliance_mode_recovery(unsigned long arg)
423 {
424 	struct xhci_hcd *xhci;
425 	struct usb_hcd *hcd;
426 	u32 temp;
427 	int i;
428 
429 	xhci = (struct xhci_hcd *)arg;
430 
431 	for (i = 0; i < xhci->num_usb3_ports; i++) {
432 		temp = readl(xhci->usb3_ports[i]);
433 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
434 			/*
435 			 * Compliance Mode Detected. Letting USB Core
436 			 * handle the Warm Reset
437 			 */
438 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
439 					"Compliance mode detected->port %d",
440 					i + 1);
441 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
442 					"Attempting compliance mode recovery");
443 			hcd = xhci->shared_hcd;
444 
445 			if (hcd->state == HC_STATE_SUSPENDED)
446 				usb_hcd_resume_root_hub(hcd);
447 
448 			usb_hcd_poll_rh_status(hcd);
449 		}
450 	}
451 
452 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
453 		mod_timer(&xhci->comp_mode_recovery_timer,
454 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
455 }
456 
457 /*
458  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
459  * that causes ports behind that hardware to enter compliance mode sometimes.
460  * The quirk creates a timer that polls every 2 seconds the link state of
461  * each host controller's port and recovers it by issuing a Warm reset
462  * if Compliance mode is detected, otherwise the port will become "dead" (no
463  * device connections or disconnections will be detected anymore). Becasue no
464  * status event is generated when entering compliance mode (per xhci spec),
465  * this quirk is needed on systems that have the failing hardware installed.
466  */
467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
468 {
469 	xhci->port_status_u0 = 0;
470 	init_timer(&xhci->comp_mode_recovery_timer);
471 
472 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
473 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
474 	xhci->comp_mode_recovery_timer.expires = jiffies +
475 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
476 
477 	set_timer_slack(&xhci->comp_mode_recovery_timer,
478 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
479 	add_timer(&xhci->comp_mode_recovery_timer);
480 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
481 			"Compliance mode recovery timer initialized");
482 }
483 
484 /*
485  * This function identifies the systems that have installed the SN65LVPE502CP
486  * USB3.0 re-driver and that need the Compliance Mode Quirk.
487  * Systems:
488  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
489  */
490 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
491 {
492 	const char *dmi_product_name, *dmi_sys_vendor;
493 
494 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
495 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
496 	if (!dmi_product_name || !dmi_sys_vendor)
497 		return false;
498 
499 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
500 		return false;
501 
502 	if (strstr(dmi_product_name, "Z420") ||
503 			strstr(dmi_product_name, "Z620") ||
504 			strstr(dmi_product_name, "Z820") ||
505 			strstr(dmi_product_name, "Z1 Workstation"))
506 		return true;
507 
508 	return false;
509 }
510 
511 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
512 {
513 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
514 }
515 
516 
517 /*
518  * Initialize memory for HCD and xHC (one-time init).
519  *
520  * Program the PAGESIZE register, initialize the device context array, create
521  * device contexts (?), set up a command ring segment (or two?), create event
522  * ring (one for now).
523  */
524 int xhci_init(struct usb_hcd *hcd)
525 {
526 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
527 	int retval = 0;
528 
529 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
530 	spin_lock_init(&xhci->lock);
531 	if (xhci->hci_version == 0x95 && link_quirk) {
532 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 				"QUIRK: Not clearing Link TRB chain bits.");
534 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
535 	} else {
536 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
537 				"xHCI doesn't need link TRB QUIRK");
538 	}
539 	retval = xhci_mem_init(xhci, GFP_KERNEL);
540 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
541 
542 	/* Initializing Compliance Mode Recovery Data If Needed */
543 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
544 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
545 		compliance_mode_recovery_timer_init(xhci);
546 	}
547 
548 	return retval;
549 }
550 
551 /*-------------------------------------------------------------------------*/
552 
553 
554 static int xhci_run_finished(struct xhci_hcd *xhci)
555 {
556 	if (xhci_start(xhci)) {
557 		xhci_halt(xhci);
558 		return -ENODEV;
559 	}
560 	xhci->shared_hcd->state = HC_STATE_RUNNING;
561 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
562 
563 	if (xhci->quirks & XHCI_NEC_HOST)
564 		xhci_ring_cmd_db(xhci);
565 
566 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
567 			"Finished xhci_run for USB3 roothub");
568 	return 0;
569 }
570 
571 /*
572  * Start the HC after it was halted.
573  *
574  * This function is called by the USB core when the HC driver is added.
575  * Its opposite is xhci_stop().
576  *
577  * xhci_init() must be called once before this function can be called.
578  * Reset the HC, enable device slot contexts, program DCBAAP, and
579  * set command ring pointer and event ring pointer.
580  *
581  * Setup MSI-X vectors and enable interrupts.
582  */
583 int xhci_run(struct usb_hcd *hcd)
584 {
585 	u32 temp;
586 	u64 temp_64;
587 	int ret;
588 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
589 
590 	/* Start the xHCI host controller running only after the USB 2.0 roothub
591 	 * is setup.
592 	 */
593 
594 	hcd->uses_new_polling = 1;
595 	if (!usb_hcd_is_primary_hcd(hcd))
596 		return xhci_run_finished(xhci);
597 
598 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
599 
600 	ret = xhci_try_enable_msi(hcd);
601 	if (ret)
602 		return ret;
603 
604 	xhci_dbg(xhci, "Command ring memory map follows:\n");
605 	xhci_debug_ring(xhci, xhci->cmd_ring);
606 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
607 	xhci_dbg_cmd_ptrs(xhci);
608 
609 	xhci_dbg(xhci, "ERST memory map follows:\n");
610 	xhci_dbg_erst(xhci, &xhci->erst);
611 	xhci_dbg(xhci, "Event ring:\n");
612 	xhci_debug_ring(xhci, xhci->event_ring);
613 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
614 	temp_64 = readq(&xhci->ir_set->erst_dequeue);
615 	temp_64 &= ~ERST_PTR_MASK;
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
618 
619 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620 			"// Set the interrupt modulation register");
621 	temp = readl(&xhci->ir_set->irq_control);
622 	temp &= ~ER_IRQ_INTERVAL_MASK;
623 	temp |= (u32) 160;
624 	writel(temp, &xhci->ir_set->irq_control);
625 
626 	/* Set the HCD state before we enable the irqs */
627 	temp = readl(&xhci->op_regs->command);
628 	temp |= (CMD_EIE);
629 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630 			"// Enable interrupts, cmd = 0x%x.", temp);
631 	writel(temp, &xhci->op_regs->command);
632 
633 	temp = readl(&xhci->ir_set->irq_pending);
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
636 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
637 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
638 	xhci_print_ir_set(xhci, 0);
639 
640 	if (xhci->quirks & XHCI_NEC_HOST)
641 		xhci_queue_vendor_command(xhci, 0, 0, 0,
642 				TRB_TYPE(TRB_NEC_GET_FW));
643 
644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 			"Finished xhci_run for USB2 roothub");
646 	return 0;
647 }
648 
649 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
650 {
651 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652 
653 	spin_lock_irq(&xhci->lock);
654 	xhci_halt(xhci);
655 
656 	/* The shared_hcd is going to be deallocated shortly (the USB core only
657 	 * calls this function when allocation fails in usb_add_hcd(), or
658 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
659 	 */
660 	xhci->shared_hcd = NULL;
661 	spin_unlock_irq(&xhci->lock);
662 }
663 
664 /*
665  * Stop xHCI driver.
666  *
667  * This function is called by the USB core when the HC driver is removed.
668  * Its opposite is xhci_run().
669  *
670  * Disable device contexts, disable IRQs, and quiesce the HC.
671  * Reset the HC, finish any completed transactions, and cleanup memory.
672  */
673 void xhci_stop(struct usb_hcd *hcd)
674 {
675 	u32 temp;
676 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
677 
678 	if (!usb_hcd_is_primary_hcd(hcd)) {
679 		xhci_only_stop_hcd(xhci->shared_hcd);
680 		return;
681 	}
682 
683 	spin_lock_irq(&xhci->lock);
684 	/* Make sure the xHC is halted for a USB3 roothub
685 	 * (xhci_stop() could be called as part of failed init).
686 	 */
687 	xhci_halt(xhci);
688 	xhci_reset(xhci);
689 	spin_unlock_irq(&xhci->lock);
690 
691 	xhci_cleanup_msix(xhci);
692 
693 	/* Deleting Compliance Mode Recovery Timer */
694 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
695 			(!(xhci_all_ports_seen_u0(xhci)))) {
696 		del_timer_sync(&xhci->comp_mode_recovery_timer);
697 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
698 				"%s: compliance mode recovery timer deleted",
699 				__func__);
700 	}
701 
702 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
703 		usb_amd_dev_put();
704 
705 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706 			"// Disabling event ring interrupts");
707 	temp = readl(&xhci->op_regs->status);
708 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
709 	temp = readl(&xhci->ir_set->irq_pending);
710 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
711 	xhci_print_ir_set(xhci, 0);
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
714 	xhci_mem_cleanup(xhci);
715 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716 			"xhci_stop completed - status = %x",
717 			readl(&xhci->op_regs->status));
718 }
719 
720 /*
721  * Shutdown HC (not bus-specific)
722  *
723  * This is called when the machine is rebooting or halting.  We assume that the
724  * machine will be powered off, and the HC's internal state will be reset.
725  * Don't bother to free memory.
726  *
727  * This will only ever be called with the main usb_hcd (the USB3 roothub).
728  */
729 void xhci_shutdown(struct usb_hcd *hcd)
730 {
731 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
732 
733 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
734 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
735 
736 	spin_lock_irq(&xhci->lock);
737 	xhci_halt(xhci);
738 	/* Workaround for spurious wakeups at shutdown with HSW */
739 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
740 		xhci_reset(xhci);
741 	spin_unlock_irq(&xhci->lock);
742 
743 	xhci_cleanup_msix(xhci);
744 
745 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
746 			"xhci_shutdown completed - status = %x",
747 			readl(&xhci->op_regs->status));
748 
749 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
750 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
752 }
753 
754 #ifdef CONFIG_PM
755 static void xhci_save_registers(struct xhci_hcd *xhci)
756 {
757 	xhci->s3.command = readl(&xhci->op_regs->command);
758 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
759 	xhci->s3.dcbaa_ptr = readq(&xhci->op_regs->dcbaa_ptr);
760 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
761 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
762 	xhci->s3.erst_base = readq(&xhci->ir_set->erst_base);
763 	xhci->s3.erst_dequeue = readq(&xhci->ir_set->erst_dequeue);
764 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
765 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
766 }
767 
768 static void xhci_restore_registers(struct xhci_hcd *xhci)
769 {
770 	writel(xhci->s3.command, &xhci->op_regs->command);
771 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
772 	writeq(xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
773 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
774 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
775 	writeq(xhci->s3.erst_base, &xhci->ir_set->erst_base);
776 	writeq(xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
777 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
778 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
779 }
780 
781 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
782 {
783 	u64	val_64;
784 
785 	/* step 2: initialize command ring buffer */
786 	val_64 = readq(&xhci->op_regs->cmd_ring);
787 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
788 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
789 				      xhci->cmd_ring->dequeue) &
790 		 (u64) ~CMD_RING_RSVD_BITS) |
791 		xhci->cmd_ring->cycle_state;
792 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 			"// Setting command ring address to 0x%llx",
794 			(long unsigned long) val_64);
795 	writeq(val_64, &xhci->op_regs->cmd_ring);
796 }
797 
798 /*
799  * The whole command ring must be cleared to zero when we suspend the host.
800  *
801  * The host doesn't save the command ring pointer in the suspend well, so we
802  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
803  * aligned, because of the reserved bits in the command ring dequeue pointer
804  * register.  Therefore, we can't just set the dequeue pointer back in the
805  * middle of the ring (TRBs are 16-byte aligned).
806  */
807 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
808 {
809 	struct xhci_ring *ring;
810 	struct xhci_segment *seg;
811 
812 	ring = xhci->cmd_ring;
813 	seg = ring->deq_seg;
814 	do {
815 		memset(seg->trbs, 0,
816 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
817 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
818 			cpu_to_le32(~TRB_CYCLE);
819 		seg = seg->next;
820 	} while (seg != ring->deq_seg);
821 
822 	/* Reset the software enqueue and dequeue pointers */
823 	ring->deq_seg = ring->first_seg;
824 	ring->dequeue = ring->first_seg->trbs;
825 	ring->enq_seg = ring->deq_seg;
826 	ring->enqueue = ring->dequeue;
827 
828 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
829 	/*
830 	 * Ring is now zeroed, so the HW should look for change of ownership
831 	 * when the cycle bit is set to 1.
832 	 */
833 	ring->cycle_state = 1;
834 
835 	/*
836 	 * Reset the hardware dequeue pointer.
837 	 * Yes, this will need to be re-written after resume, but we're paranoid
838 	 * and want to make sure the hardware doesn't access bogus memory
839 	 * because, say, the BIOS or an SMI started the host without changing
840 	 * the command ring pointers.
841 	 */
842 	xhci_set_cmd_ring_deq(xhci);
843 }
844 
845 /*
846  * Stop HC (not bus-specific)
847  *
848  * This is called when the machine transition into S3/S4 mode.
849  *
850  */
851 int xhci_suspend(struct xhci_hcd *xhci)
852 {
853 	int			rc = 0;
854 	unsigned int		delay = XHCI_MAX_HALT_USEC;
855 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
856 	u32			command;
857 
858 	if (hcd->state != HC_STATE_SUSPENDED ||
859 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
860 		return -EINVAL;
861 
862 	/* Don't poll the roothubs on bus suspend. */
863 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
864 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
865 	del_timer_sync(&hcd->rh_timer);
866 
867 	spin_lock_irq(&xhci->lock);
868 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
869 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
870 	/* step 1: stop endpoint */
871 	/* skipped assuming that port suspend has done */
872 
873 	/* step 2: clear Run/Stop bit */
874 	command = readl(&xhci->op_regs->command);
875 	command &= ~CMD_RUN;
876 	writel(command, &xhci->op_regs->command);
877 
878 	/* Some chips from Fresco Logic need an extraordinary delay */
879 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
880 
881 	if (xhci_handshake(xhci, &xhci->op_regs->status,
882 		      STS_HALT, STS_HALT, delay)) {
883 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
884 		spin_unlock_irq(&xhci->lock);
885 		return -ETIMEDOUT;
886 	}
887 	xhci_clear_command_ring(xhci);
888 
889 	/* step 3: save registers */
890 	xhci_save_registers(xhci);
891 
892 	/* step 4: set CSS flag */
893 	command = readl(&xhci->op_regs->command);
894 	command |= CMD_CSS;
895 	writel(command, &xhci->op_regs->command);
896 	if (xhci_handshake(xhci, &xhci->op_regs->status,
897 				STS_SAVE, 0, 10 * 1000)) {
898 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
899 		spin_unlock_irq(&xhci->lock);
900 		return -ETIMEDOUT;
901 	}
902 	spin_unlock_irq(&xhci->lock);
903 
904 	/*
905 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
906 	 * is about to be suspended.
907 	 */
908 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
909 			(!(xhci_all_ports_seen_u0(xhci)))) {
910 		del_timer_sync(&xhci->comp_mode_recovery_timer);
911 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
912 				"%s: compliance mode recovery timer deleted",
913 				__func__);
914 	}
915 
916 	/* step 5: remove core well power */
917 	/* synchronize irq when using MSI-X */
918 	xhci_msix_sync_irqs(xhci);
919 
920 	return rc;
921 }
922 
923 /*
924  * start xHC (not bus-specific)
925  *
926  * This is called when the machine transition from S3/S4 mode.
927  *
928  */
929 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
930 {
931 	u32			command, temp = 0;
932 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
933 	struct usb_hcd		*secondary_hcd;
934 	int			retval = 0;
935 	bool			comp_timer_running = false;
936 
937 	/* Wait a bit if either of the roothubs need to settle from the
938 	 * transition into bus suspend.
939 	 */
940 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
941 			time_before(jiffies,
942 				xhci->bus_state[1].next_statechange))
943 		msleep(100);
944 
945 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
946 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
947 
948 	spin_lock_irq(&xhci->lock);
949 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
950 		hibernated = true;
951 
952 	if (!hibernated) {
953 		/* step 1: restore register */
954 		xhci_restore_registers(xhci);
955 		/* step 2: initialize command ring buffer */
956 		xhci_set_cmd_ring_deq(xhci);
957 		/* step 3: restore state and start state*/
958 		/* step 3: set CRS flag */
959 		command = readl(&xhci->op_regs->command);
960 		command |= CMD_CRS;
961 		writel(command, &xhci->op_regs->command);
962 		if (xhci_handshake(xhci, &xhci->op_regs->status,
963 			      STS_RESTORE, 0, 10 * 1000)) {
964 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
965 			spin_unlock_irq(&xhci->lock);
966 			return -ETIMEDOUT;
967 		}
968 		temp = readl(&xhci->op_regs->status);
969 	}
970 
971 	/* If restore operation fails, re-initialize the HC during resume */
972 	if ((temp & STS_SRE) || hibernated) {
973 
974 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
975 				!(xhci_all_ports_seen_u0(xhci))) {
976 			del_timer_sync(&xhci->comp_mode_recovery_timer);
977 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
978 				"Compliance Mode Recovery Timer deleted!");
979 		}
980 
981 		/* Let the USB core know _both_ roothubs lost power. */
982 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
983 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
984 
985 		xhci_dbg(xhci, "Stop HCD\n");
986 		xhci_halt(xhci);
987 		xhci_reset(xhci);
988 		spin_unlock_irq(&xhci->lock);
989 		xhci_cleanup_msix(xhci);
990 
991 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
992 		temp = readl(&xhci->op_regs->status);
993 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
994 		temp = readl(&xhci->ir_set->irq_pending);
995 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
996 		xhci_print_ir_set(xhci, 0);
997 
998 		xhci_dbg(xhci, "cleaning up memory\n");
999 		xhci_mem_cleanup(xhci);
1000 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1001 			    readl(&xhci->op_regs->status));
1002 
1003 		/* USB core calls the PCI reinit and start functions twice:
1004 		 * first with the primary HCD, and then with the secondary HCD.
1005 		 * If we don't do the same, the host will never be started.
1006 		 */
1007 		if (!usb_hcd_is_primary_hcd(hcd))
1008 			secondary_hcd = hcd;
1009 		else
1010 			secondary_hcd = xhci->shared_hcd;
1011 
1012 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1013 		retval = xhci_init(hcd->primary_hcd);
1014 		if (retval)
1015 			return retval;
1016 		comp_timer_running = true;
1017 
1018 		xhci_dbg(xhci, "Start the primary HCD\n");
1019 		retval = xhci_run(hcd->primary_hcd);
1020 		if (!retval) {
1021 			xhci_dbg(xhci, "Start the secondary HCD\n");
1022 			retval = xhci_run(secondary_hcd);
1023 		}
1024 		hcd->state = HC_STATE_SUSPENDED;
1025 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1026 		goto done;
1027 	}
1028 
1029 	/* step 4: set Run/Stop bit */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_RUN;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1034 		  0, 250 * 1000);
1035 
1036 	/* step 5: walk topology and initialize portsc,
1037 	 * portpmsc and portli
1038 	 */
1039 	/* this is done in bus_resume */
1040 
1041 	/* step 6: restart each of the previously
1042 	 * Running endpoints by ringing their doorbells
1043 	 */
1044 
1045 	spin_unlock_irq(&xhci->lock);
1046 
1047  done:
1048 	if (retval == 0) {
1049 		usb_hcd_resume_root_hub(hcd);
1050 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1051 	}
1052 
1053 	/*
1054 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1055 	 * be re-initialized Always after a system resume. Ports are subject
1056 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1057 	 * ports have entered previously to U0 before system's suspension.
1058 	 */
1059 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1060 		compliance_mode_recovery_timer_init(xhci);
1061 
1062 	/* Re-enable port polling. */
1063 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1064 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1065 	usb_hcd_poll_rh_status(hcd);
1066 
1067 	return retval;
1068 }
1069 #endif	/* CONFIG_PM */
1070 
1071 /*-------------------------------------------------------------------------*/
1072 
1073 /**
1074  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1075  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1076  * value to right shift 1 for the bitmask.
1077  *
1078  * Index  = (epnum * 2) + direction - 1,
1079  * where direction = 0 for OUT, 1 for IN.
1080  * For control endpoints, the IN index is used (OUT index is unused), so
1081  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1082  */
1083 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1084 {
1085 	unsigned int index;
1086 	if (usb_endpoint_xfer_control(desc))
1087 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1088 	else
1089 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1090 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1091 	return index;
1092 }
1093 
1094 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1095  * address from the XHCI endpoint index.
1096  */
1097 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1098 {
1099 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1100 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1101 	return direction | number;
1102 }
1103 
1104 /* Find the flag for this endpoint (for use in the control context).  Use the
1105  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1106  * bit 1, etc.
1107  */
1108 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1109 {
1110 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1111 }
1112 
1113 /* Find the flag for this endpoint (for use in the control context).  Use the
1114  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1115  * bit 1, etc.
1116  */
1117 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1118 {
1119 	return 1 << (ep_index + 1);
1120 }
1121 
1122 /* Compute the last valid endpoint context index.  Basically, this is the
1123  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1124  * we find the most significant bit set in the added contexts flags.
1125  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1126  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1127  */
1128 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1129 {
1130 	return fls(added_ctxs) - 1;
1131 }
1132 
1133 /* Returns 1 if the arguments are OK;
1134  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1135  */
1136 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1137 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1138 		const char *func) {
1139 	struct xhci_hcd	*xhci;
1140 	struct xhci_virt_device	*virt_dev;
1141 
1142 	if (!hcd || (check_ep && !ep) || !udev) {
1143 		pr_debug("xHCI %s called with invalid args\n", func);
1144 		return -EINVAL;
1145 	}
1146 	if (!udev->parent) {
1147 		pr_debug("xHCI %s called for root hub\n", func);
1148 		return 0;
1149 	}
1150 
1151 	xhci = hcd_to_xhci(hcd);
1152 	if (check_virt_dev) {
1153 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1154 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1155 					func);
1156 			return -EINVAL;
1157 		}
1158 
1159 		virt_dev = xhci->devs[udev->slot_id];
1160 		if (virt_dev->udev != udev) {
1161 			xhci_dbg(xhci, "xHCI %s called with udev and "
1162 					  "virt_dev does not match\n", func);
1163 			return -EINVAL;
1164 		}
1165 	}
1166 
1167 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1168 		return -ENODEV;
1169 
1170 	return 1;
1171 }
1172 
1173 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1174 		struct usb_device *udev, struct xhci_command *command,
1175 		bool ctx_change, bool must_succeed);
1176 
1177 /*
1178  * Full speed devices may have a max packet size greater than 8 bytes, but the
1179  * USB core doesn't know that until it reads the first 8 bytes of the
1180  * descriptor.  If the usb_device's max packet size changes after that point,
1181  * we need to issue an evaluate context command and wait on it.
1182  */
1183 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1184 		unsigned int ep_index, struct urb *urb)
1185 {
1186 	struct xhci_container_ctx *in_ctx;
1187 	struct xhci_container_ctx *out_ctx;
1188 	struct xhci_input_control_ctx *ctrl_ctx;
1189 	struct xhci_ep_ctx *ep_ctx;
1190 	int max_packet_size;
1191 	int hw_max_packet_size;
1192 	int ret = 0;
1193 
1194 	out_ctx = xhci->devs[slot_id]->out_ctx;
1195 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1196 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1197 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1198 	if (hw_max_packet_size != max_packet_size) {
1199 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1200 				"Max Packet Size for ep 0 changed.");
1201 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1202 				"Max packet size in usb_device = %d",
1203 				max_packet_size);
1204 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1205 				"Max packet size in xHCI HW = %d",
1206 				hw_max_packet_size);
1207 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1208 				"Issuing evaluate context command.");
1209 
1210 		/* Set up the input context flags for the command */
1211 		/* FIXME: This won't work if a non-default control endpoint
1212 		 * changes max packet sizes.
1213 		 */
1214 		in_ctx = xhci->devs[slot_id]->in_ctx;
1215 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1216 		if (!ctrl_ctx) {
1217 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1218 					__func__);
1219 			return -ENOMEM;
1220 		}
1221 		/* Set up the modified control endpoint 0 */
1222 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1223 				xhci->devs[slot_id]->out_ctx, ep_index);
1224 
1225 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1226 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1227 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1228 
1229 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1230 		ctrl_ctx->drop_flags = 0;
1231 
1232 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1233 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1234 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1235 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1236 
1237 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1238 				true, false);
1239 
1240 		/* Clean up the input context for later use by bandwidth
1241 		 * functions.
1242 		 */
1243 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1244 	}
1245 	return ret;
1246 }
1247 
1248 /*
1249  * non-error returns are a promise to giveback() the urb later
1250  * we drop ownership so next owner (or urb unlink) can get it
1251  */
1252 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1253 {
1254 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1255 	struct xhci_td *buffer;
1256 	unsigned long flags;
1257 	int ret = 0;
1258 	unsigned int slot_id, ep_index;
1259 	struct urb_priv	*urb_priv;
1260 	int size, i;
1261 
1262 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1263 					true, true, __func__) <= 0)
1264 		return -EINVAL;
1265 
1266 	slot_id = urb->dev->slot_id;
1267 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1268 
1269 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1270 		if (!in_interrupt())
1271 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1272 		ret = -ESHUTDOWN;
1273 		goto exit;
1274 	}
1275 
1276 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1277 		size = urb->number_of_packets;
1278 	else
1279 		size = 1;
1280 
1281 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1282 				  size * sizeof(struct xhci_td *), mem_flags);
1283 	if (!urb_priv)
1284 		return -ENOMEM;
1285 
1286 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1287 	if (!buffer) {
1288 		kfree(urb_priv);
1289 		return -ENOMEM;
1290 	}
1291 
1292 	for (i = 0; i < size; i++) {
1293 		urb_priv->td[i] = buffer;
1294 		buffer++;
1295 	}
1296 
1297 	urb_priv->length = size;
1298 	urb_priv->td_cnt = 0;
1299 	urb->hcpriv = urb_priv;
1300 
1301 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1302 		/* Check to see if the max packet size for the default control
1303 		 * endpoint changed during FS device enumeration
1304 		 */
1305 		if (urb->dev->speed == USB_SPEED_FULL) {
1306 			ret = xhci_check_maxpacket(xhci, slot_id,
1307 					ep_index, urb);
1308 			if (ret < 0) {
1309 				xhci_urb_free_priv(xhci, urb_priv);
1310 				urb->hcpriv = NULL;
1311 				return ret;
1312 			}
1313 		}
1314 
1315 		/* We have a spinlock and interrupts disabled, so we must pass
1316 		 * atomic context to this function, which may allocate memory.
1317 		 */
1318 		spin_lock_irqsave(&xhci->lock, flags);
1319 		if (xhci->xhc_state & XHCI_STATE_DYING)
1320 			goto dying;
1321 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1322 				slot_id, ep_index);
1323 		if (ret)
1324 			goto free_priv;
1325 		spin_unlock_irqrestore(&xhci->lock, flags);
1326 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1327 		spin_lock_irqsave(&xhci->lock, flags);
1328 		if (xhci->xhc_state & XHCI_STATE_DYING)
1329 			goto dying;
1330 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1331 				EP_GETTING_STREAMS) {
1332 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1333 					"is transitioning to using streams.\n");
1334 			ret = -EINVAL;
1335 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1336 				EP_GETTING_NO_STREAMS) {
1337 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1338 					"is transitioning to "
1339 					"not having streams.\n");
1340 			ret = -EINVAL;
1341 		} else {
1342 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1343 					slot_id, ep_index);
1344 		}
1345 		if (ret)
1346 			goto free_priv;
1347 		spin_unlock_irqrestore(&xhci->lock, flags);
1348 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1349 		spin_lock_irqsave(&xhci->lock, flags);
1350 		if (xhci->xhc_state & XHCI_STATE_DYING)
1351 			goto dying;
1352 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1353 				slot_id, ep_index);
1354 		if (ret)
1355 			goto free_priv;
1356 		spin_unlock_irqrestore(&xhci->lock, flags);
1357 	} else {
1358 		spin_lock_irqsave(&xhci->lock, flags);
1359 		if (xhci->xhc_state & XHCI_STATE_DYING)
1360 			goto dying;
1361 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1362 				slot_id, ep_index);
1363 		if (ret)
1364 			goto free_priv;
1365 		spin_unlock_irqrestore(&xhci->lock, flags);
1366 	}
1367 exit:
1368 	return ret;
1369 dying:
1370 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1371 			"non-responsive xHCI host.\n",
1372 			urb->ep->desc.bEndpointAddress, urb);
1373 	ret = -ESHUTDOWN;
1374 free_priv:
1375 	xhci_urb_free_priv(xhci, urb_priv);
1376 	urb->hcpriv = NULL;
1377 	spin_unlock_irqrestore(&xhci->lock, flags);
1378 	return ret;
1379 }
1380 
1381 /* Get the right ring for the given URB.
1382  * If the endpoint supports streams, boundary check the URB's stream ID.
1383  * If the endpoint doesn't support streams, return the singular endpoint ring.
1384  */
1385 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1386 		struct urb *urb)
1387 {
1388 	unsigned int slot_id;
1389 	unsigned int ep_index;
1390 	unsigned int stream_id;
1391 	struct xhci_virt_ep *ep;
1392 
1393 	slot_id = urb->dev->slot_id;
1394 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1395 	stream_id = urb->stream_id;
1396 	ep = &xhci->devs[slot_id]->eps[ep_index];
1397 	/* Common case: no streams */
1398 	if (!(ep->ep_state & EP_HAS_STREAMS))
1399 		return ep->ring;
1400 
1401 	if (stream_id == 0) {
1402 		xhci_warn(xhci,
1403 				"WARN: Slot ID %u, ep index %u has streams, "
1404 				"but URB has no stream ID.\n",
1405 				slot_id, ep_index);
1406 		return NULL;
1407 	}
1408 
1409 	if (stream_id < ep->stream_info->num_streams)
1410 		return ep->stream_info->stream_rings[stream_id];
1411 
1412 	xhci_warn(xhci,
1413 			"WARN: Slot ID %u, ep index %u has "
1414 			"stream IDs 1 to %u allocated, "
1415 			"but stream ID %u is requested.\n",
1416 			slot_id, ep_index,
1417 			ep->stream_info->num_streams - 1,
1418 			stream_id);
1419 	return NULL;
1420 }
1421 
1422 /*
1423  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1424  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1425  * should pick up where it left off in the TD, unless a Set Transfer Ring
1426  * Dequeue Pointer is issued.
1427  *
1428  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1429  * the ring.  Since the ring is a contiguous structure, they can't be physically
1430  * removed.  Instead, there are two options:
1431  *
1432  *  1) If the HC is in the middle of processing the URB to be canceled, we
1433  *     simply move the ring's dequeue pointer past those TRBs using the Set
1434  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1435  *     when drivers timeout on the last submitted URB and attempt to cancel.
1436  *
1437  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1438  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1439  *     HC will need to invalidate the any TRBs it has cached after the stop
1440  *     endpoint command, as noted in the xHCI 0.95 errata.
1441  *
1442  *  3) The TD may have completed by the time the Stop Endpoint Command
1443  *     completes, so software needs to handle that case too.
1444  *
1445  * This function should protect against the TD enqueueing code ringing the
1446  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1447  * It also needs to account for multiple cancellations on happening at the same
1448  * time for the same endpoint.
1449  *
1450  * Note that this function can be called in any context, or so says
1451  * usb_hcd_unlink_urb()
1452  */
1453 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1454 {
1455 	unsigned long flags;
1456 	int ret, i;
1457 	u32 temp;
1458 	struct xhci_hcd *xhci;
1459 	struct urb_priv	*urb_priv;
1460 	struct xhci_td *td;
1461 	unsigned int ep_index;
1462 	struct xhci_ring *ep_ring;
1463 	struct xhci_virt_ep *ep;
1464 
1465 	xhci = hcd_to_xhci(hcd);
1466 	spin_lock_irqsave(&xhci->lock, flags);
1467 	/* Make sure the URB hasn't completed or been unlinked already */
1468 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1469 	if (ret || !urb->hcpriv)
1470 		goto done;
1471 	temp = readl(&xhci->op_regs->status);
1472 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1473 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474 				"HW died, freeing TD.");
1475 		urb_priv = urb->hcpriv;
1476 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1477 			td = urb_priv->td[i];
1478 			if (!list_empty(&td->td_list))
1479 				list_del_init(&td->td_list);
1480 			if (!list_empty(&td->cancelled_td_list))
1481 				list_del_init(&td->cancelled_td_list);
1482 		}
1483 
1484 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1485 		spin_unlock_irqrestore(&xhci->lock, flags);
1486 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1487 		xhci_urb_free_priv(xhci, urb_priv);
1488 		return ret;
1489 	}
1490 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1491 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1492 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1493 				"Ep 0x%x: URB %p to be canceled on "
1494 				"non-responsive xHCI host.",
1495 				urb->ep->desc.bEndpointAddress, urb);
1496 		/* Let the stop endpoint command watchdog timer (which set this
1497 		 * state) finish cleaning up the endpoint TD lists.  We must
1498 		 * have caught it in the middle of dropping a lock and giving
1499 		 * back an URB.
1500 		 */
1501 		goto done;
1502 	}
1503 
1504 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1505 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1506 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1507 	if (!ep_ring) {
1508 		ret = -EINVAL;
1509 		goto done;
1510 	}
1511 
1512 	urb_priv = urb->hcpriv;
1513 	i = urb_priv->td_cnt;
1514 	if (i < urb_priv->length)
1515 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1516 				"Cancel URB %p, dev %s, ep 0x%x, "
1517 				"starting at offset 0x%llx",
1518 				urb, urb->dev->devpath,
1519 				urb->ep->desc.bEndpointAddress,
1520 				(unsigned long long) xhci_trb_virt_to_dma(
1521 					urb_priv->td[i]->start_seg,
1522 					urb_priv->td[i]->first_trb));
1523 
1524 	for (; i < urb_priv->length; i++) {
1525 		td = urb_priv->td[i];
1526 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1527 	}
1528 
1529 	/* Queue a stop endpoint command, but only if this is
1530 	 * the first cancellation to be handled.
1531 	 */
1532 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1533 		ep->ep_state |= EP_HALT_PENDING;
1534 		ep->stop_cmds_pending++;
1535 		ep->stop_cmd_timer.expires = jiffies +
1536 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1537 		add_timer(&ep->stop_cmd_timer);
1538 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1539 		xhci_ring_cmd_db(xhci);
1540 	}
1541 done:
1542 	spin_unlock_irqrestore(&xhci->lock, flags);
1543 	return ret;
1544 }
1545 
1546 /* Drop an endpoint from a new bandwidth configuration for this device.
1547  * Only one call to this function is allowed per endpoint before
1548  * check_bandwidth() or reset_bandwidth() must be called.
1549  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1550  * add the endpoint to the schedule with possibly new parameters denoted by a
1551  * different endpoint descriptor in usb_host_endpoint.
1552  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1553  * not allowed.
1554  *
1555  * The USB core will not allow URBs to be queued to an endpoint that is being
1556  * disabled, so there's no need for mutual exclusion to protect
1557  * the xhci->devs[slot_id] structure.
1558  */
1559 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1560 		struct usb_host_endpoint *ep)
1561 {
1562 	struct xhci_hcd *xhci;
1563 	struct xhci_container_ctx *in_ctx, *out_ctx;
1564 	struct xhci_input_control_ctx *ctrl_ctx;
1565 	struct xhci_slot_ctx *slot_ctx;
1566 	unsigned int last_ctx;
1567 	unsigned int ep_index;
1568 	struct xhci_ep_ctx *ep_ctx;
1569 	u32 drop_flag;
1570 	u32 new_add_flags, new_drop_flags, new_slot_info;
1571 	int ret;
1572 
1573 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1574 	if (ret <= 0)
1575 		return ret;
1576 	xhci = hcd_to_xhci(hcd);
1577 	if (xhci->xhc_state & XHCI_STATE_DYING)
1578 		return -ENODEV;
1579 
1580 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1581 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1582 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1583 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1584 				__func__, drop_flag);
1585 		return 0;
1586 	}
1587 
1588 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1589 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1590 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1591 	if (!ctrl_ctx) {
1592 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1593 				__func__);
1594 		return 0;
1595 	}
1596 
1597 	ep_index = xhci_get_endpoint_index(&ep->desc);
1598 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599 	/* If the HC already knows the endpoint is disabled,
1600 	 * or the HCD has noted it is disabled, ignore this request
1601 	 */
1602 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1603 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1604 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1605 	    xhci_get_endpoint_flag(&ep->desc)) {
1606 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1607 				__func__, ep);
1608 		return 0;
1609 	}
1610 
1611 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1612 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1613 
1614 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1615 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1616 
1617 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1618 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1619 	/* Update the last valid endpoint context, if we deleted the last one */
1620 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1621 	    LAST_CTX(last_ctx)) {
1622 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1623 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1624 	}
1625 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1626 
1627 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1628 
1629 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1630 			(unsigned int) ep->desc.bEndpointAddress,
1631 			udev->slot_id,
1632 			(unsigned int) new_drop_flags,
1633 			(unsigned int) new_add_flags,
1634 			(unsigned int) new_slot_info);
1635 	return 0;
1636 }
1637 
1638 /* Add an endpoint to a new possible bandwidth configuration for this device.
1639  * Only one call to this function is allowed per endpoint before
1640  * check_bandwidth() or reset_bandwidth() must be called.
1641  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1642  * add the endpoint to the schedule with possibly new parameters denoted by a
1643  * different endpoint descriptor in usb_host_endpoint.
1644  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1645  * not allowed.
1646  *
1647  * The USB core will not allow URBs to be queued to an endpoint until the
1648  * configuration or alt setting is installed in the device, so there's no need
1649  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1650  */
1651 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1652 		struct usb_host_endpoint *ep)
1653 {
1654 	struct xhci_hcd *xhci;
1655 	struct xhci_container_ctx *in_ctx, *out_ctx;
1656 	unsigned int ep_index;
1657 	struct xhci_slot_ctx *slot_ctx;
1658 	struct xhci_input_control_ctx *ctrl_ctx;
1659 	u32 added_ctxs;
1660 	unsigned int last_ctx;
1661 	u32 new_add_flags, new_drop_flags, new_slot_info;
1662 	struct xhci_virt_device *virt_dev;
1663 	int ret = 0;
1664 
1665 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1666 	if (ret <= 0) {
1667 		/* So we won't queue a reset ep command for a root hub */
1668 		ep->hcpriv = NULL;
1669 		return ret;
1670 	}
1671 	xhci = hcd_to_xhci(hcd);
1672 	if (xhci->xhc_state & XHCI_STATE_DYING)
1673 		return -ENODEV;
1674 
1675 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1676 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1677 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1678 		/* FIXME when we have to issue an evaluate endpoint command to
1679 		 * deal with ep0 max packet size changing once we get the
1680 		 * descriptors
1681 		 */
1682 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1683 				__func__, added_ctxs);
1684 		return 0;
1685 	}
1686 
1687 	virt_dev = xhci->devs[udev->slot_id];
1688 	in_ctx = virt_dev->in_ctx;
1689 	out_ctx = virt_dev->out_ctx;
1690 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1691 	if (!ctrl_ctx) {
1692 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1693 				__func__);
1694 		return 0;
1695 	}
1696 
1697 	ep_index = xhci_get_endpoint_index(&ep->desc);
1698 	/* If this endpoint is already in use, and the upper layers are trying
1699 	 * to add it again without dropping it, reject the addition.
1700 	 */
1701 	if (virt_dev->eps[ep_index].ring &&
1702 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1703 				xhci_get_endpoint_flag(&ep->desc))) {
1704 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1705 				"without dropping it.\n",
1706 				(unsigned int) ep->desc.bEndpointAddress);
1707 		return -EINVAL;
1708 	}
1709 
1710 	/* If the HCD has already noted the endpoint is enabled,
1711 	 * ignore this request.
1712 	 */
1713 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1714 	    xhci_get_endpoint_flag(&ep->desc)) {
1715 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1716 				__func__, ep);
1717 		return 0;
1718 	}
1719 
1720 	/*
1721 	 * Configuration and alternate setting changes must be done in
1722 	 * process context, not interrupt context (or so documenation
1723 	 * for usb_set_interface() and usb_set_configuration() claim).
1724 	 */
1725 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1726 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1727 				__func__, ep->desc.bEndpointAddress);
1728 		return -ENOMEM;
1729 	}
1730 
1731 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1732 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1733 
1734 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1735 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1736 	 * this re-adds a new state for the endpoint from the new endpoint
1737 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1738 	 * drop flags alone.
1739 	 */
1740 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1741 
1742 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1743 	/* Update the last valid endpoint context, if we just added one past */
1744 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1745 	    LAST_CTX(last_ctx)) {
1746 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1747 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1748 	}
1749 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1750 
1751 	/* Store the usb_device pointer for later use */
1752 	ep->hcpriv = udev;
1753 
1754 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1755 			(unsigned int) ep->desc.bEndpointAddress,
1756 			udev->slot_id,
1757 			(unsigned int) new_drop_flags,
1758 			(unsigned int) new_add_flags,
1759 			(unsigned int) new_slot_info);
1760 	return 0;
1761 }
1762 
1763 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1764 {
1765 	struct xhci_input_control_ctx *ctrl_ctx;
1766 	struct xhci_ep_ctx *ep_ctx;
1767 	struct xhci_slot_ctx *slot_ctx;
1768 	int i;
1769 
1770 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1771 	if (!ctrl_ctx) {
1772 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1773 				__func__);
1774 		return;
1775 	}
1776 
1777 	/* When a device's add flag and drop flag are zero, any subsequent
1778 	 * configure endpoint command will leave that endpoint's state
1779 	 * untouched.  Make sure we don't leave any old state in the input
1780 	 * endpoint contexts.
1781 	 */
1782 	ctrl_ctx->drop_flags = 0;
1783 	ctrl_ctx->add_flags = 0;
1784 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1785 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1786 	/* Endpoint 0 is always valid */
1787 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1788 	for (i = 1; i < 31; ++i) {
1789 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1790 		ep_ctx->ep_info = 0;
1791 		ep_ctx->ep_info2 = 0;
1792 		ep_ctx->deq = 0;
1793 		ep_ctx->tx_info = 0;
1794 	}
1795 }
1796 
1797 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1798 		struct usb_device *udev, u32 *cmd_status)
1799 {
1800 	int ret;
1801 
1802 	switch (*cmd_status) {
1803 	case COMP_ENOMEM:
1804 		dev_warn(&udev->dev, "Not enough host controller resources "
1805 				"for new device state.\n");
1806 		ret = -ENOMEM;
1807 		/* FIXME: can we allocate more resources for the HC? */
1808 		break;
1809 	case COMP_BW_ERR:
1810 	case COMP_2ND_BW_ERR:
1811 		dev_warn(&udev->dev, "Not enough bandwidth "
1812 				"for new device state.\n");
1813 		ret = -ENOSPC;
1814 		/* FIXME: can we go back to the old state? */
1815 		break;
1816 	case COMP_TRB_ERR:
1817 		/* the HCD set up something wrong */
1818 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1819 				"add flag = 1, "
1820 				"and endpoint is not disabled.\n");
1821 		ret = -EINVAL;
1822 		break;
1823 	case COMP_DEV_ERR:
1824 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1825 				"configure command.\n");
1826 		ret = -ENODEV;
1827 		break;
1828 	case COMP_SUCCESS:
1829 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1830 				"Successful Endpoint Configure command");
1831 		ret = 0;
1832 		break;
1833 	default:
1834 		xhci_err(xhci, "ERROR: unexpected command completion "
1835 				"code 0x%x.\n", *cmd_status);
1836 		ret = -EINVAL;
1837 		break;
1838 	}
1839 	return ret;
1840 }
1841 
1842 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1843 		struct usb_device *udev, u32 *cmd_status)
1844 {
1845 	int ret;
1846 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1847 
1848 	switch (*cmd_status) {
1849 	case COMP_EINVAL:
1850 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1851 				"context command.\n");
1852 		ret = -EINVAL;
1853 		break;
1854 	case COMP_EBADSLT:
1855 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1856 				"evaluate context command.\n");
1857 		ret = -EINVAL;
1858 		break;
1859 	case COMP_CTX_STATE:
1860 		dev_warn(&udev->dev, "WARN: invalid context state for "
1861 				"evaluate context command.\n");
1862 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1863 		ret = -EINVAL;
1864 		break;
1865 	case COMP_DEV_ERR:
1866 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1867 				"context command.\n");
1868 		ret = -ENODEV;
1869 		break;
1870 	case COMP_MEL_ERR:
1871 		/* Max Exit Latency too large error */
1872 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1873 		ret = -EINVAL;
1874 		break;
1875 	case COMP_SUCCESS:
1876 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1877 				"Successful evaluate context command");
1878 		ret = 0;
1879 		break;
1880 	default:
1881 		xhci_err(xhci, "ERROR: unexpected command completion "
1882 				"code 0x%x.\n", *cmd_status);
1883 		ret = -EINVAL;
1884 		break;
1885 	}
1886 	return ret;
1887 }
1888 
1889 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1890 		struct xhci_input_control_ctx *ctrl_ctx)
1891 {
1892 	u32 valid_add_flags;
1893 	u32 valid_drop_flags;
1894 
1895 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1896 	 * (bit 1).  The default control endpoint is added during the Address
1897 	 * Device command and is never removed until the slot is disabled.
1898 	 */
1899 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1900 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1901 
1902 	/* Use hweight32 to count the number of ones in the add flags, or
1903 	 * number of endpoints added.  Don't count endpoints that are changed
1904 	 * (both added and dropped).
1905 	 */
1906 	return hweight32(valid_add_flags) -
1907 		hweight32(valid_add_flags & valid_drop_flags);
1908 }
1909 
1910 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1911 		struct xhci_input_control_ctx *ctrl_ctx)
1912 {
1913 	u32 valid_add_flags;
1914 	u32 valid_drop_flags;
1915 
1916 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1917 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1918 
1919 	return hweight32(valid_drop_flags) -
1920 		hweight32(valid_add_flags & valid_drop_flags);
1921 }
1922 
1923 /*
1924  * We need to reserve the new number of endpoints before the configure endpoint
1925  * command completes.  We can't subtract the dropped endpoints from the number
1926  * of active endpoints until the command completes because we can oversubscribe
1927  * the host in this case:
1928  *
1929  *  - the first configure endpoint command drops more endpoints than it adds
1930  *  - a second configure endpoint command that adds more endpoints is queued
1931  *  - the first configure endpoint command fails, so the config is unchanged
1932  *  - the second command may succeed, even though there isn't enough resources
1933  *
1934  * Must be called with xhci->lock held.
1935  */
1936 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1937 		struct xhci_input_control_ctx *ctrl_ctx)
1938 {
1939 	u32 added_eps;
1940 
1941 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1942 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1943 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1944 				"Not enough ep ctxs: "
1945 				"%u active, need to add %u, limit is %u.",
1946 				xhci->num_active_eps, added_eps,
1947 				xhci->limit_active_eps);
1948 		return -ENOMEM;
1949 	}
1950 	xhci->num_active_eps += added_eps;
1951 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952 			"Adding %u ep ctxs, %u now active.", added_eps,
1953 			xhci->num_active_eps);
1954 	return 0;
1955 }
1956 
1957 /*
1958  * The configure endpoint was failed by the xHC for some other reason, so we
1959  * need to revert the resources that failed configuration would have used.
1960  *
1961  * Must be called with xhci->lock held.
1962  */
1963 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1964 		struct xhci_input_control_ctx *ctrl_ctx)
1965 {
1966 	u32 num_failed_eps;
1967 
1968 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1969 	xhci->num_active_eps -= num_failed_eps;
1970 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1971 			"Removing %u failed ep ctxs, %u now active.",
1972 			num_failed_eps,
1973 			xhci->num_active_eps);
1974 }
1975 
1976 /*
1977  * Now that the command has completed, clean up the active endpoint count by
1978  * subtracting out the endpoints that were dropped (but not changed).
1979  *
1980  * Must be called with xhci->lock held.
1981  */
1982 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1983 		struct xhci_input_control_ctx *ctrl_ctx)
1984 {
1985 	u32 num_dropped_eps;
1986 
1987 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1988 	xhci->num_active_eps -= num_dropped_eps;
1989 	if (num_dropped_eps)
1990 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991 				"Removing %u dropped ep ctxs, %u now active.",
1992 				num_dropped_eps,
1993 				xhci->num_active_eps);
1994 }
1995 
1996 static unsigned int xhci_get_block_size(struct usb_device *udev)
1997 {
1998 	switch (udev->speed) {
1999 	case USB_SPEED_LOW:
2000 	case USB_SPEED_FULL:
2001 		return FS_BLOCK;
2002 	case USB_SPEED_HIGH:
2003 		return HS_BLOCK;
2004 	case USB_SPEED_SUPER:
2005 		return SS_BLOCK;
2006 	case USB_SPEED_UNKNOWN:
2007 	case USB_SPEED_WIRELESS:
2008 	default:
2009 		/* Should never happen */
2010 		return 1;
2011 	}
2012 }
2013 
2014 static unsigned int
2015 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2016 {
2017 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2018 		return LS_OVERHEAD;
2019 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2020 		return FS_OVERHEAD;
2021 	return HS_OVERHEAD;
2022 }
2023 
2024 /* If we are changing a LS/FS device under a HS hub,
2025  * make sure (if we are activating a new TT) that the HS bus has enough
2026  * bandwidth for this new TT.
2027  */
2028 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2029 		struct xhci_virt_device *virt_dev,
2030 		int old_active_eps)
2031 {
2032 	struct xhci_interval_bw_table *bw_table;
2033 	struct xhci_tt_bw_info *tt_info;
2034 
2035 	/* Find the bandwidth table for the root port this TT is attached to. */
2036 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2037 	tt_info = virt_dev->tt_info;
2038 	/* If this TT already had active endpoints, the bandwidth for this TT
2039 	 * has already been added.  Removing all periodic endpoints (and thus
2040 	 * making the TT enactive) will only decrease the bandwidth used.
2041 	 */
2042 	if (old_active_eps)
2043 		return 0;
2044 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2045 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2046 			return -ENOMEM;
2047 		return 0;
2048 	}
2049 	/* Not sure why we would have no new active endpoints...
2050 	 *
2051 	 * Maybe because of an Evaluate Context change for a hub update or a
2052 	 * control endpoint 0 max packet size change?
2053 	 * FIXME: skip the bandwidth calculation in that case.
2054 	 */
2055 	return 0;
2056 }
2057 
2058 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2059 		struct xhci_virt_device *virt_dev)
2060 {
2061 	unsigned int bw_reserved;
2062 
2063 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2064 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2065 		return -ENOMEM;
2066 
2067 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2068 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2069 		return -ENOMEM;
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * This algorithm is a very conservative estimate of the worst-case scheduling
2076  * scenario for any one interval.  The hardware dynamically schedules the
2077  * packets, so we can't tell which microframe could be the limiting factor in
2078  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2079  *
2080  * Obviously, we can't solve an NP complete problem to find the minimum worst
2081  * case scenario.  Instead, we come up with an estimate that is no less than
2082  * the worst case bandwidth used for any one microframe, but may be an
2083  * over-estimate.
2084  *
2085  * We walk the requirements for each endpoint by interval, starting with the
2086  * smallest interval, and place packets in the schedule where there is only one
2087  * possible way to schedule packets for that interval.  In order to simplify
2088  * this algorithm, we record the largest max packet size for each interval, and
2089  * assume all packets will be that size.
2090  *
2091  * For interval 0, we obviously must schedule all packets for each interval.
2092  * The bandwidth for interval 0 is just the amount of data to be transmitted
2093  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2094  * the number of packets).
2095  *
2096  * For interval 1, we have two possible microframes to schedule those packets
2097  * in.  For this algorithm, if we can schedule the same number of packets for
2098  * each possible scheduling opportunity (each microframe), we will do so.  The
2099  * remaining number of packets will be saved to be transmitted in the gaps in
2100  * the next interval's scheduling sequence.
2101  *
2102  * As we move those remaining packets to be scheduled with interval 2 packets,
2103  * we have to double the number of remaining packets to transmit.  This is
2104  * because the intervals are actually powers of 2, and we would be transmitting
2105  * the previous interval's packets twice in this interval.  We also have to be
2106  * sure that when we look at the largest max packet size for this interval, we
2107  * also look at the largest max packet size for the remaining packets and take
2108  * the greater of the two.
2109  *
2110  * The algorithm continues to evenly distribute packets in each scheduling
2111  * opportunity, and push the remaining packets out, until we get to the last
2112  * interval.  Then those packets and their associated overhead are just added
2113  * to the bandwidth used.
2114  */
2115 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2116 		struct xhci_virt_device *virt_dev,
2117 		int old_active_eps)
2118 {
2119 	unsigned int bw_reserved;
2120 	unsigned int max_bandwidth;
2121 	unsigned int bw_used;
2122 	unsigned int block_size;
2123 	struct xhci_interval_bw_table *bw_table;
2124 	unsigned int packet_size = 0;
2125 	unsigned int overhead = 0;
2126 	unsigned int packets_transmitted = 0;
2127 	unsigned int packets_remaining = 0;
2128 	unsigned int i;
2129 
2130 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2131 		return xhci_check_ss_bw(xhci, virt_dev);
2132 
2133 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2134 		max_bandwidth = HS_BW_LIMIT;
2135 		/* Convert percent of bus BW reserved to blocks reserved */
2136 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2137 	} else {
2138 		max_bandwidth = FS_BW_LIMIT;
2139 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2140 	}
2141 
2142 	bw_table = virt_dev->bw_table;
2143 	/* We need to translate the max packet size and max ESIT payloads into
2144 	 * the units the hardware uses.
2145 	 */
2146 	block_size = xhci_get_block_size(virt_dev->udev);
2147 
2148 	/* If we are manipulating a LS/FS device under a HS hub, double check
2149 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2150 	 */
2151 	if (virt_dev->tt_info) {
2152 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2153 				"Recalculating BW for rootport %u",
2154 				virt_dev->real_port);
2155 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2156 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2157 					"newly activated TT.\n");
2158 			return -ENOMEM;
2159 		}
2160 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 				"Recalculating BW for TT slot %u port %u",
2162 				virt_dev->tt_info->slot_id,
2163 				virt_dev->tt_info->ttport);
2164 	} else {
2165 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166 				"Recalculating BW for rootport %u",
2167 				virt_dev->real_port);
2168 	}
2169 
2170 	/* Add in how much bandwidth will be used for interval zero, or the
2171 	 * rounded max ESIT payload + number of packets * largest overhead.
2172 	 */
2173 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2174 		bw_table->interval_bw[0].num_packets *
2175 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2176 
2177 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2178 		unsigned int bw_added;
2179 		unsigned int largest_mps;
2180 		unsigned int interval_overhead;
2181 
2182 		/*
2183 		 * How many packets could we transmit in this interval?
2184 		 * If packets didn't fit in the previous interval, we will need
2185 		 * to transmit that many packets twice within this interval.
2186 		 */
2187 		packets_remaining = 2 * packets_remaining +
2188 			bw_table->interval_bw[i].num_packets;
2189 
2190 		/* Find the largest max packet size of this or the previous
2191 		 * interval.
2192 		 */
2193 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2194 			largest_mps = 0;
2195 		else {
2196 			struct xhci_virt_ep *virt_ep;
2197 			struct list_head *ep_entry;
2198 
2199 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2200 			virt_ep = list_entry(ep_entry,
2201 					struct xhci_virt_ep, bw_endpoint_list);
2202 			/* Convert to blocks, rounding up */
2203 			largest_mps = DIV_ROUND_UP(
2204 					virt_ep->bw_info.max_packet_size,
2205 					block_size);
2206 		}
2207 		if (largest_mps > packet_size)
2208 			packet_size = largest_mps;
2209 
2210 		/* Use the larger overhead of this or the previous interval. */
2211 		interval_overhead = xhci_get_largest_overhead(
2212 				&bw_table->interval_bw[i]);
2213 		if (interval_overhead > overhead)
2214 			overhead = interval_overhead;
2215 
2216 		/* How many packets can we evenly distribute across
2217 		 * (1 << (i + 1)) possible scheduling opportunities?
2218 		 */
2219 		packets_transmitted = packets_remaining >> (i + 1);
2220 
2221 		/* Add in the bandwidth used for those scheduled packets */
2222 		bw_added = packets_transmitted * (overhead + packet_size);
2223 
2224 		/* How many packets do we have remaining to transmit? */
2225 		packets_remaining = packets_remaining % (1 << (i + 1));
2226 
2227 		/* What largest max packet size should those packets have? */
2228 		/* If we've transmitted all packets, don't carry over the
2229 		 * largest packet size.
2230 		 */
2231 		if (packets_remaining == 0) {
2232 			packet_size = 0;
2233 			overhead = 0;
2234 		} else if (packets_transmitted > 0) {
2235 			/* Otherwise if we do have remaining packets, and we've
2236 			 * scheduled some packets in this interval, take the
2237 			 * largest max packet size from endpoints with this
2238 			 * interval.
2239 			 */
2240 			packet_size = largest_mps;
2241 			overhead = interval_overhead;
2242 		}
2243 		/* Otherwise carry over packet_size and overhead from the last
2244 		 * time we had a remainder.
2245 		 */
2246 		bw_used += bw_added;
2247 		if (bw_used > max_bandwidth) {
2248 			xhci_warn(xhci, "Not enough bandwidth. "
2249 					"Proposed: %u, Max: %u\n",
2250 				bw_used, max_bandwidth);
2251 			return -ENOMEM;
2252 		}
2253 	}
2254 	/*
2255 	 * Ok, we know we have some packets left over after even-handedly
2256 	 * scheduling interval 15.  We don't know which microframes they will
2257 	 * fit into, so we over-schedule and say they will be scheduled every
2258 	 * microframe.
2259 	 */
2260 	if (packets_remaining > 0)
2261 		bw_used += overhead + packet_size;
2262 
2263 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2264 		unsigned int port_index = virt_dev->real_port - 1;
2265 
2266 		/* OK, we're manipulating a HS device attached to a
2267 		 * root port bandwidth domain.  Include the number of active TTs
2268 		 * in the bandwidth used.
2269 		 */
2270 		bw_used += TT_HS_OVERHEAD *
2271 			xhci->rh_bw[port_index].num_active_tts;
2272 	}
2273 
2274 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2276 		"Available: %u " "percent",
2277 		bw_used, max_bandwidth, bw_reserved,
2278 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2279 		max_bandwidth);
2280 
2281 	bw_used += bw_reserved;
2282 	if (bw_used > max_bandwidth) {
2283 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2284 				bw_used, max_bandwidth);
2285 		return -ENOMEM;
2286 	}
2287 
2288 	bw_table->bw_used = bw_used;
2289 	return 0;
2290 }
2291 
2292 static bool xhci_is_async_ep(unsigned int ep_type)
2293 {
2294 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2295 					ep_type != ISOC_IN_EP &&
2296 					ep_type != INT_IN_EP);
2297 }
2298 
2299 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2300 {
2301 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2302 }
2303 
2304 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2305 {
2306 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2307 
2308 	if (ep_bw->ep_interval == 0)
2309 		return SS_OVERHEAD_BURST +
2310 			(ep_bw->mult * ep_bw->num_packets *
2311 					(SS_OVERHEAD + mps));
2312 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2313 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2314 				1 << ep_bw->ep_interval);
2315 
2316 }
2317 
2318 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2319 		struct xhci_bw_info *ep_bw,
2320 		struct xhci_interval_bw_table *bw_table,
2321 		struct usb_device *udev,
2322 		struct xhci_virt_ep *virt_ep,
2323 		struct xhci_tt_bw_info *tt_info)
2324 {
2325 	struct xhci_interval_bw	*interval_bw;
2326 	int normalized_interval;
2327 
2328 	if (xhci_is_async_ep(ep_bw->type))
2329 		return;
2330 
2331 	if (udev->speed == USB_SPEED_SUPER) {
2332 		if (xhci_is_sync_in_ep(ep_bw->type))
2333 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2334 				xhci_get_ss_bw_consumed(ep_bw);
2335 		else
2336 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2337 				xhci_get_ss_bw_consumed(ep_bw);
2338 		return;
2339 	}
2340 
2341 	/* SuperSpeed endpoints never get added to intervals in the table, so
2342 	 * this check is only valid for HS/FS/LS devices.
2343 	 */
2344 	if (list_empty(&virt_ep->bw_endpoint_list))
2345 		return;
2346 	/* For LS/FS devices, we need to translate the interval expressed in
2347 	 * microframes to frames.
2348 	 */
2349 	if (udev->speed == USB_SPEED_HIGH)
2350 		normalized_interval = ep_bw->ep_interval;
2351 	else
2352 		normalized_interval = ep_bw->ep_interval - 3;
2353 
2354 	if (normalized_interval == 0)
2355 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2356 	interval_bw = &bw_table->interval_bw[normalized_interval];
2357 	interval_bw->num_packets -= ep_bw->num_packets;
2358 	switch (udev->speed) {
2359 	case USB_SPEED_LOW:
2360 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2361 		break;
2362 	case USB_SPEED_FULL:
2363 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2364 		break;
2365 	case USB_SPEED_HIGH:
2366 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2367 		break;
2368 	case USB_SPEED_SUPER:
2369 	case USB_SPEED_UNKNOWN:
2370 	case USB_SPEED_WIRELESS:
2371 		/* Should never happen because only LS/FS/HS endpoints will get
2372 		 * added to the endpoint list.
2373 		 */
2374 		return;
2375 	}
2376 	if (tt_info)
2377 		tt_info->active_eps -= 1;
2378 	list_del_init(&virt_ep->bw_endpoint_list);
2379 }
2380 
2381 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2382 		struct xhci_bw_info *ep_bw,
2383 		struct xhci_interval_bw_table *bw_table,
2384 		struct usb_device *udev,
2385 		struct xhci_virt_ep *virt_ep,
2386 		struct xhci_tt_bw_info *tt_info)
2387 {
2388 	struct xhci_interval_bw	*interval_bw;
2389 	struct xhci_virt_ep *smaller_ep;
2390 	int normalized_interval;
2391 
2392 	if (xhci_is_async_ep(ep_bw->type))
2393 		return;
2394 
2395 	if (udev->speed == USB_SPEED_SUPER) {
2396 		if (xhci_is_sync_in_ep(ep_bw->type))
2397 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2398 				xhci_get_ss_bw_consumed(ep_bw);
2399 		else
2400 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2401 				xhci_get_ss_bw_consumed(ep_bw);
2402 		return;
2403 	}
2404 
2405 	/* For LS/FS devices, we need to translate the interval expressed in
2406 	 * microframes to frames.
2407 	 */
2408 	if (udev->speed == USB_SPEED_HIGH)
2409 		normalized_interval = ep_bw->ep_interval;
2410 	else
2411 		normalized_interval = ep_bw->ep_interval - 3;
2412 
2413 	if (normalized_interval == 0)
2414 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2415 	interval_bw = &bw_table->interval_bw[normalized_interval];
2416 	interval_bw->num_packets += ep_bw->num_packets;
2417 	switch (udev->speed) {
2418 	case USB_SPEED_LOW:
2419 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2420 		break;
2421 	case USB_SPEED_FULL:
2422 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2423 		break;
2424 	case USB_SPEED_HIGH:
2425 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2426 		break;
2427 	case USB_SPEED_SUPER:
2428 	case USB_SPEED_UNKNOWN:
2429 	case USB_SPEED_WIRELESS:
2430 		/* Should never happen because only LS/FS/HS endpoints will get
2431 		 * added to the endpoint list.
2432 		 */
2433 		return;
2434 	}
2435 
2436 	if (tt_info)
2437 		tt_info->active_eps += 1;
2438 	/* Insert the endpoint into the list, largest max packet size first. */
2439 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2440 			bw_endpoint_list) {
2441 		if (ep_bw->max_packet_size >=
2442 				smaller_ep->bw_info.max_packet_size) {
2443 			/* Add the new ep before the smaller endpoint */
2444 			list_add_tail(&virt_ep->bw_endpoint_list,
2445 					&smaller_ep->bw_endpoint_list);
2446 			return;
2447 		}
2448 	}
2449 	/* Add the new endpoint at the end of the list. */
2450 	list_add_tail(&virt_ep->bw_endpoint_list,
2451 			&interval_bw->endpoints);
2452 }
2453 
2454 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2455 		struct xhci_virt_device *virt_dev,
2456 		int old_active_eps)
2457 {
2458 	struct xhci_root_port_bw_info *rh_bw_info;
2459 	if (!virt_dev->tt_info)
2460 		return;
2461 
2462 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2463 	if (old_active_eps == 0 &&
2464 				virt_dev->tt_info->active_eps != 0) {
2465 		rh_bw_info->num_active_tts += 1;
2466 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2467 	} else if (old_active_eps != 0 &&
2468 				virt_dev->tt_info->active_eps == 0) {
2469 		rh_bw_info->num_active_tts -= 1;
2470 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2471 	}
2472 }
2473 
2474 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2475 		struct xhci_virt_device *virt_dev,
2476 		struct xhci_container_ctx *in_ctx)
2477 {
2478 	struct xhci_bw_info ep_bw_info[31];
2479 	int i;
2480 	struct xhci_input_control_ctx *ctrl_ctx;
2481 	int old_active_eps = 0;
2482 
2483 	if (virt_dev->tt_info)
2484 		old_active_eps = virt_dev->tt_info->active_eps;
2485 
2486 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2487 	if (!ctrl_ctx) {
2488 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2489 				__func__);
2490 		return -ENOMEM;
2491 	}
2492 
2493 	for (i = 0; i < 31; i++) {
2494 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2495 			continue;
2496 
2497 		/* Make a copy of the BW info in case we need to revert this */
2498 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2499 				sizeof(ep_bw_info[i]));
2500 		/* Drop the endpoint from the interval table if the endpoint is
2501 		 * being dropped or changed.
2502 		 */
2503 		if (EP_IS_DROPPED(ctrl_ctx, i))
2504 			xhci_drop_ep_from_interval_table(xhci,
2505 					&virt_dev->eps[i].bw_info,
2506 					virt_dev->bw_table,
2507 					virt_dev->udev,
2508 					&virt_dev->eps[i],
2509 					virt_dev->tt_info);
2510 	}
2511 	/* Overwrite the information stored in the endpoints' bw_info */
2512 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2513 	for (i = 0; i < 31; i++) {
2514 		/* Add any changed or added endpoints to the interval table */
2515 		if (EP_IS_ADDED(ctrl_ctx, i))
2516 			xhci_add_ep_to_interval_table(xhci,
2517 					&virt_dev->eps[i].bw_info,
2518 					virt_dev->bw_table,
2519 					virt_dev->udev,
2520 					&virt_dev->eps[i],
2521 					virt_dev->tt_info);
2522 	}
2523 
2524 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2525 		/* Ok, this fits in the bandwidth we have.
2526 		 * Update the number of active TTs.
2527 		 */
2528 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2529 		return 0;
2530 	}
2531 
2532 	/* We don't have enough bandwidth for this, revert the stored info. */
2533 	for (i = 0; i < 31; i++) {
2534 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2535 			continue;
2536 
2537 		/* Drop the new copies of any added or changed endpoints from
2538 		 * the interval table.
2539 		 */
2540 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2541 			xhci_drop_ep_from_interval_table(xhci,
2542 					&virt_dev->eps[i].bw_info,
2543 					virt_dev->bw_table,
2544 					virt_dev->udev,
2545 					&virt_dev->eps[i],
2546 					virt_dev->tt_info);
2547 		}
2548 		/* Revert the endpoint back to its old information */
2549 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2550 				sizeof(ep_bw_info[i]));
2551 		/* Add any changed or dropped endpoints back into the table */
2552 		if (EP_IS_DROPPED(ctrl_ctx, i))
2553 			xhci_add_ep_to_interval_table(xhci,
2554 					&virt_dev->eps[i].bw_info,
2555 					virt_dev->bw_table,
2556 					virt_dev->udev,
2557 					&virt_dev->eps[i],
2558 					virt_dev->tt_info);
2559 	}
2560 	return -ENOMEM;
2561 }
2562 
2563 
2564 /* Issue a configure endpoint command or evaluate context command
2565  * and wait for it to finish.
2566  */
2567 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2568 		struct usb_device *udev,
2569 		struct xhci_command *command,
2570 		bool ctx_change, bool must_succeed)
2571 {
2572 	int ret;
2573 	int timeleft;
2574 	unsigned long flags;
2575 	struct xhci_container_ctx *in_ctx;
2576 	struct xhci_input_control_ctx *ctrl_ctx;
2577 	struct completion *cmd_completion;
2578 	u32 *cmd_status;
2579 	struct xhci_virt_device *virt_dev;
2580 	union xhci_trb *cmd_trb;
2581 
2582 	spin_lock_irqsave(&xhci->lock, flags);
2583 	virt_dev = xhci->devs[udev->slot_id];
2584 
2585 	if (command)
2586 		in_ctx = command->in_ctx;
2587 	else
2588 		in_ctx = virt_dev->in_ctx;
2589 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2590 	if (!ctrl_ctx) {
2591 		spin_unlock_irqrestore(&xhci->lock, flags);
2592 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2593 				__func__);
2594 		return -ENOMEM;
2595 	}
2596 
2597 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2598 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2599 		spin_unlock_irqrestore(&xhci->lock, flags);
2600 		xhci_warn(xhci, "Not enough host resources, "
2601 				"active endpoint contexts = %u\n",
2602 				xhci->num_active_eps);
2603 		return -ENOMEM;
2604 	}
2605 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2606 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2607 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2608 			xhci_free_host_resources(xhci, ctrl_ctx);
2609 		spin_unlock_irqrestore(&xhci->lock, flags);
2610 		xhci_warn(xhci, "Not enough bandwidth\n");
2611 		return -ENOMEM;
2612 	}
2613 
2614 	if (command) {
2615 		cmd_completion = command->completion;
2616 		cmd_status = &command->status;
2617 		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2618 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2619 	} else {
2620 		cmd_completion = &virt_dev->cmd_completion;
2621 		cmd_status = &virt_dev->cmd_status;
2622 	}
2623 	init_completion(cmd_completion);
2624 
2625 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2626 	if (!ctx_change)
2627 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2628 				udev->slot_id, must_succeed);
2629 	else
2630 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2631 				udev->slot_id, must_succeed);
2632 	if (ret < 0) {
2633 		if (command)
2634 			list_del(&command->cmd_list);
2635 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2636 			xhci_free_host_resources(xhci, ctrl_ctx);
2637 		spin_unlock_irqrestore(&xhci->lock, flags);
2638 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2639 				"FIXME allocate a new ring segment");
2640 		return -ENOMEM;
2641 	}
2642 	xhci_ring_cmd_db(xhci);
2643 	spin_unlock_irqrestore(&xhci->lock, flags);
2644 
2645 	/* Wait for the configure endpoint command to complete */
2646 	timeleft = wait_for_completion_interruptible_timeout(
2647 			cmd_completion,
2648 			XHCI_CMD_DEFAULT_TIMEOUT);
2649 	if (timeleft <= 0) {
2650 		xhci_warn(xhci, "%s while waiting for %s command\n",
2651 				timeleft == 0 ? "Timeout" : "Signal",
2652 				ctx_change == 0 ?
2653 					"configure endpoint" :
2654 					"evaluate context");
2655 		/* cancel the configure endpoint command */
2656 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2657 		if (ret < 0)
2658 			return ret;
2659 		return -ETIME;
2660 	}
2661 
2662 	if (!ctx_change)
2663 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2664 	else
2665 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2666 
2667 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2668 		spin_lock_irqsave(&xhci->lock, flags);
2669 		/* If the command failed, remove the reserved resources.
2670 		 * Otherwise, clean up the estimate to include dropped eps.
2671 		 */
2672 		if (ret)
2673 			xhci_free_host_resources(xhci, ctrl_ctx);
2674 		else
2675 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2676 		spin_unlock_irqrestore(&xhci->lock, flags);
2677 	}
2678 	return ret;
2679 }
2680 
2681 /* Called after one or more calls to xhci_add_endpoint() or
2682  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2683  * to call xhci_reset_bandwidth().
2684  *
2685  * Since we are in the middle of changing either configuration or
2686  * installing a new alt setting, the USB core won't allow URBs to be
2687  * enqueued for any endpoint on the old config or interface.  Nothing
2688  * else should be touching the xhci->devs[slot_id] structure, so we
2689  * don't need to take the xhci->lock for manipulating that.
2690  */
2691 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2692 {
2693 	int i;
2694 	int ret = 0;
2695 	struct xhci_hcd *xhci;
2696 	struct xhci_virt_device	*virt_dev;
2697 	struct xhci_input_control_ctx *ctrl_ctx;
2698 	struct xhci_slot_ctx *slot_ctx;
2699 
2700 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2701 	if (ret <= 0)
2702 		return ret;
2703 	xhci = hcd_to_xhci(hcd);
2704 	if (xhci->xhc_state & XHCI_STATE_DYING)
2705 		return -ENODEV;
2706 
2707 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2708 	virt_dev = xhci->devs[udev->slot_id];
2709 
2710 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2711 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2712 	if (!ctrl_ctx) {
2713 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2714 				__func__);
2715 		return -ENOMEM;
2716 	}
2717 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2718 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2719 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2720 
2721 	/* Don't issue the command if there's no endpoints to update. */
2722 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2723 			ctrl_ctx->drop_flags == 0)
2724 		return 0;
2725 
2726 	xhci_dbg(xhci, "New Input Control Context:\n");
2727 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2728 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2729 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2730 
2731 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2732 			false, false);
2733 	if (ret) {
2734 		/* Callee should call reset_bandwidth() */
2735 		return ret;
2736 	}
2737 
2738 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2739 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2740 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2741 
2742 	/* Free any rings that were dropped, but not changed. */
2743 	for (i = 1; i < 31; ++i) {
2744 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2745 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2746 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2747 	}
2748 	xhci_zero_in_ctx(xhci, virt_dev);
2749 	/*
2750 	 * Install any rings for completely new endpoints or changed endpoints,
2751 	 * and free or cache any old rings from changed endpoints.
2752 	 */
2753 	for (i = 1; i < 31; ++i) {
2754 		if (!virt_dev->eps[i].new_ring)
2755 			continue;
2756 		/* Only cache or free the old ring if it exists.
2757 		 * It may not if this is the first add of an endpoint.
2758 		 */
2759 		if (virt_dev->eps[i].ring) {
2760 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2761 		}
2762 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2763 		virt_dev->eps[i].new_ring = NULL;
2764 	}
2765 
2766 	return ret;
2767 }
2768 
2769 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2770 {
2771 	struct xhci_hcd *xhci;
2772 	struct xhci_virt_device	*virt_dev;
2773 	int i, ret;
2774 
2775 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2776 	if (ret <= 0)
2777 		return;
2778 	xhci = hcd_to_xhci(hcd);
2779 
2780 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2781 	virt_dev = xhci->devs[udev->slot_id];
2782 	/* Free any rings allocated for added endpoints */
2783 	for (i = 0; i < 31; ++i) {
2784 		if (virt_dev->eps[i].new_ring) {
2785 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2786 			virt_dev->eps[i].new_ring = NULL;
2787 		}
2788 	}
2789 	xhci_zero_in_ctx(xhci, virt_dev);
2790 }
2791 
2792 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2793 		struct xhci_container_ctx *in_ctx,
2794 		struct xhci_container_ctx *out_ctx,
2795 		struct xhci_input_control_ctx *ctrl_ctx,
2796 		u32 add_flags, u32 drop_flags)
2797 {
2798 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2799 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2800 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2801 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2802 
2803 	xhci_dbg(xhci, "Input Context:\n");
2804 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2805 }
2806 
2807 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2808 		unsigned int slot_id, unsigned int ep_index,
2809 		struct xhci_dequeue_state *deq_state)
2810 {
2811 	struct xhci_input_control_ctx *ctrl_ctx;
2812 	struct xhci_container_ctx *in_ctx;
2813 	struct xhci_ep_ctx *ep_ctx;
2814 	u32 added_ctxs;
2815 	dma_addr_t addr;
2816 
2817 	in_ctx = xhci->devs[slot_id]->in_ctx;
2818 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2819 	if (!ctrl_ctx) {
2820 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2821 				__func__);
2822 		return;
2823 	}
2824 
2825 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2826 			xhci->devs[slot_id]->out_ctx, ep_index);
2827 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2828 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2829 			deq_state->new_deq_ptr);
2830 	if (addr == 0) {
2831 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2832 				"reset ep command\n");
2833 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2834 				deq_state->new_deq_seg,
2835 				deq_state->new_deq_ptr);
2836 		return;
2837 	}
2838 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2839 
2840 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2841 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2842 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2843 			added_ctxs, added_ctxs);
2844 }
2845 
2846 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2847 		struct usb_device *udev, unsigned int ep_index)
2848 {
2849 	struct xhci_dequeue_state deq_state;
2850 	struct xhci_virt_ep *ep;
2851 
2852 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2853 			"Cleaning up stalled endpoint ring");
2854 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2855 	/* We need to move the HW's dequeue pointer past this TD,
2856 	 * or it will attempt to resend it on the next doorbell ring.
2857 	 */
2858 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2859 			ep_index, ep->stopped_stream, ep->stopped_td,
2860 			&deq_state);
2861 
2862 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2863 	 * issue a configure endpoint command later.
2864 	 */
2865 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2866 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2867 				"Queueing new dequeue state");
2868 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2869 				ep_index, ep->stopped_stream, &deq_state);
2870 	} else {
2871 		/* Better hope no one uses the input context between now and the
2872 		 * reset endpoint completion!
2873 		 * XXX: No idea how this hardware will react when stream rings
2874 		 * are enabled.
2875 		 */
2876 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2877 				"Setting up input context for "
2878 				"configure endpoint command");
2879 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2880 				ep_index, &deq_state);
2881 	}
2882 }
2883 
2884 /* Deal with stalled endpoints.  The core should have sent the control message
2885  * to clear the halt condition.  However, we need to make the xHCI hardware
2886  * reset its sequence number, since a device will expect a sequence number of
2887  * zero after the halt condition is cleared.
2888  * Context: in_interrupt
2889  */
2890 void xhci_endpoint_reset(struct usb_hcd *hcd,
2891 		struct usb_host_endpoint *ep)
2892 {
2893 	struct xhci_hcd *xhci;
2894 	struct usb_device *udev;
2895 	unsigned int ep_index;
2896 	unsigned long flags;
2897 	int ret;
2898 	struct xhci_virt_ep *virt_ep;
2899 
2900 	xhci = hcd_to_xhci(hcd);
2901 	udev = (struct usb_device *) ep->hcpriv;
2902 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2903 	 * with xhci_add_endpoint()
2904 	 */
2905 	if (!ep->hcpriv)
2906 		return;
2907 	ep_index = xhci_get_endpoint_index(&ep->desc);
2908 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2909 	if (!virt_ep->stopped_td) {
2910 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2911 			"Endpoint 0x%x not halted, refusing to reset.",
2912 			ep->desc.bEndpointAddress);
2913 		return;
2914 	}
2915 	if (usb_endpoint_xfer_control(&ep->desc)) {
2916 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917 				"Control endpoint stall already handled.");
2918 		return;
2919 	}
2920 
2921 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2922 			"Queueing reset endpoint command");
2923 	spin_lock_irqsave(&xhci->lock, flags);
2924 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2925 	/*
2926 	 * Can't change the ring dequeue pointer until it's transitioned to the
2927 	 * stopped state, which is only upon a successful reset endpoint
2928 	 * command.  Better hope that last command worked!
2929 	 */
2930 	if (!ret) {
2931 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2932 		kfree(virt_ep->stopped_td);
2933 		xhci_ring_cmd_db(xhci);
2934 	}
2935 	virt_ep->stopped_td = NULL;
2936 	virt_ep->stopped_trb = NULL;
2937 	virt_ep->stopped_stream = 0;
2938 	spin_unlock_irqrestore(&xhci->lock, flags);
2939 
2940 	if (ret)
2941 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2942 }
2943 
2944 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2945 		struct usb_device *udev, struct usb_host_endpoint *ep,
2946 		unsigned int slot_id)
2947 {
2948 	int ret;
2949 	unsigned int ep_index;
2950 	unsigned int ep_state;
2951 
2952 	if (!ep)
2953 		return -EINVAL;
2954 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2955 	if (ret <= 0)
2956 		return -EINVAL;
2957 	if (ep->ss_ep_comp.bmAttributes == 0) {
2958 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2959 				" descriptor for ep 0x%x does not support streams\n",
2960 				ep->desc.bEndpointAddress);
2961 		return -EINVAL;
2962 	}
2963 
2964 	ep_index = xhci_get_endpoint_index(&ep->desc);
2965 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2966 	if (ep_state & EP_HAS_STREAMS ||
2967 			ep_state & EP_GETTING_STREAMS) {
2968 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2969 				"already has streams set up.\n",
2970 				ep->desc.bEndpointAddress);
2971 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2972 				"dynamic stream context array reallocation.\n");
2973 		return -EINVAL;
2974 	}
2975 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2976 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2977 				"endpoint 0x%x; URBs are pending.\n",
2978 				ep->desc.bEndpointAddress);
2979 		return -EINVAL;
2980 	}
2981 	return 0;
2982 }
2983 
2984 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2985 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2986 {
2987 	unsigned int max_streams;
2988 
2989 	/* The stream context array size must be a power of two */
2990 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2991 	/*
2992 	 * Find out how many primary stream array entries the host controller
2993 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2994 	 * level page entries), but that's an optional feature for xHCI host
2995 	 * controllers. xHCs must support at least 4 stream IDs.
2996 	 */
2997 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2998 	if (*num_stream_ctxs > max_streams) {
2999 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3000 				max_streams);
3001 		*num_stream_ctxs = max_streams;
3002 		*num_streams = max_streams;
3003 	}
3004 }
3005 
3006 /* Returns an error code if one of the endpoint already has streams.
3007  * This does not change any data structures, it only checks and gathers
3008  * information.
3009  */
3010 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3011 		struct usb_device *udev,
3012 		struct usb_host_endpoint **eps, unsigned int num_eps,
3013 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3014 {
3015 	unsigned int max_streams;
3016 	unsigned int endpoint_flag;
3017 	int i;
3018 	int ret;
3019 
3020 	for (i = 0; i < num_eps; i++) {
3021 		ret = xhci_check_streams_endpoint(xhci, udev,
3022 				eps[i], udev->slot_id);
3023 		if (ret < 0)
3024 			return ret;
3025 
3026 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3027 		if (max_streams < (*num_streams - 1)) {
3028 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3029 					eps[i]->desc.bEndpointAddress,
3030 					max_streams);
3031 			*num_streams = max_streams+1;
3032 		}
3033 
3034 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3035 		if (*changed_ep_bitmask & endpoint_flag)
3036 			return -EINVAL;
3037 		*changed_ep_bitmask |= endpoint_flag;
3038 	}
3039 	return 0;
3040 }
3041 
3042 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3043 		struct usb_device *udev,
3044 		struct usb_host_endpoint **eps, unsigned int num_eps)
3045 {
3046 	u32 changed_ep_bitmask = 0;
3047 	unsigned int slot_id;
3048 	unsigned int ep_index;
3049 	unsigned int ep_state;
3050 	int i;
3051 
3052 	slot_id = udev->slot_id;
3053 	if (!xhci->devs[slot_id])
3054 		return 0;
3055 
3056 	for (i = 0; i < num_eps; i++) {
3057 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3058 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3059 		/* Are streams already being freed for the endpoint? */
3060 		if (ep_state & EP_GETTING_NO_STREAMS) {
3061 			xhci_warn(xhci, "WARN Can't disable streams for "
3062 					"endpoint 0x%x, "
3063 					"streams are being disabled already\n",
3064 					eps[i]->desc.bEndpointAddress);
3065 			return 0;
3066 		}
3067 		/* Are there actually any streams to free? */
3068 		if (!(ep_state & EP_HAS_STREAMS) &&
3069 				!(ep_state & EP_GETTING_STREAMS)) {
3070 			xhci_warn(xhci, "WARN Can't disable streams for "
3071 					"endpoint 0x%x, "
3072 					"streams are already disabled!\n",
3073 					eps[i]->desc.bEndpointAddress);
3074 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3075 					"with non-streams endpoint\n");
3076 			return 0;
3077 		}
3078 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3079 	}
3080 	return changed_ep_bitmask;
3081 }
3082 
3083 /*
3084  * The USB device drivers use this function (though the HCD interface in USB
3085  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3086  * coordinate mass storage command queueing across multiple endpoints (basically
3087  * a stream ID == a task ID).
3088  *
3089  * Setting up streams involves allocating the same size stream context array
3090  * for each endpoint and issuing a configure endpoint command for all endpoints.
3091  *
3092  * Don't allow the call to succeed if one endpoint only supports one stream
3093  * (which means it doesn't support streams at all).
3094  *
3095  * Drivers may get less stream IDs than they asked for, if the host controller
3096  * hardware or endpoints claim they can't support the number of requested
3097  * stream IDs.
3098  */
3099 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3100 		struct usb_host_endpoint **eps, unsigned int num_eps,
3101 		unsigned int num_streams, gfp_t mem_flags)
3102 {
3103 	int i, ret;
3104 	struct xhci_hcd *xhci;
3105 	struct xhci_virt_device *vdev;
3106 	struct xhci_command *config_cmd;
3107 	struct xhci_input_control_ctx *ctrl_ctx;
3108 	unsigned int ep_index;
3109 	unsigned int num_stream_ctxs;
3110 	unsigned long flags;
3111 	u32 changed_ep_bitmask = 0;
3112 
3113 	if (!eps)
3114 		return -EINVAL;
3115 
3116 	/* Add one to the number of streams requested to account for
3117 	 * stream 0 that is reserved for xHCI usage.
3118 	 */
3119 	num_streams += 1;
3120 	xhci = hcd_to_xhci(hcd);
3121 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3122 			num_streams);
3123 
3124 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3125 	if (!config_cmd) {
3126 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3127 		return -ENOMEM;
3128 	}
3129 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3130 	if (!ctrl_ctx) {
3131 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3132 				__func__);
3133 		xhci_free_command(xhci, config_cmd);
3134 		return -ENOMEM;
3135 	}
3136 
3137 	/* Check to make sure all endpoints are not already configured for
3138 	 * streams.  While we're at it, find the maximum number of streams that
3139 	 * all the endpoints will support and check for duplicate endpoints.
3140 	 */
3141 	spin_lock_irqsave(&xhci->lock, flags);
3142 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3143 			num_eps, &num_streams, &changed_ep_bitmask);
3144 	if (ret < 0) {
3145 		xhci_free_command(xhci, config_cmd);
3146 		spin_unlock_irqrestore(&xhci->lock, flags);
3147 		return ret;
3148 	}
3149 	if (num_streams <= 1) {
3150 		xhci_warn(xhci, "WARN: endpoints can't handle "
3151 				"more than one stream.\n");
3152 		xhci_free_command(xhci, config_cmd);
3153 		spin_unlock_irqrestore(&xhci->lock, flags);
3154 		return -EINVAL;
3155 	}
3156 	vdev = xhci->devs[udev->slot_id];
3157 	/* Mark each endpoint as being in transition, so
3158 	 * xhci_urb_enqueue() will reject all URBs.
3159 	 */
3160 	for (i = 0; i < num_eps; i++) {
3161 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3163 	}
3164 	spin_unlock_irqrestore(&xhci->lock, flags);
3165 
3166 	/* Setup internal data structures and allocate HW data structures for
3167 	 * streams (but don't install the HW structures in the input context
3168 	 * until we're sure all memory allocation succeeded).
3169 	 */
3170 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3171 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3172 			num_stream_ctxs, num_streams);
3173 
3174 	for (i = 0; i < num_eps; i++) {
3175 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3177 				num_stream_ctxs,
3178 				num_streams, mem_flags);
3179 		if (!vdev->eps[ep_index].stream_info)
3180 			goto cleanup;
3181 		/* Set maxPstreams in endpoint context and update deq ptr to
3182 		 * point to stream context array. FIXME
3183 		 */
3184 	}
3185 
3186 	/* Set up the input context for a configure endpoint command. */
3187 	for (i = 0; i < num_eps; i++) {
3188 		struct xhci_ep_ctx *ep_ctx;
3189 
3190 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3192 
3193 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3194 				vdev->out_ctx, ep_index);
3195 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3196 				vdev->eps[ep_index].stream_info);
3197 	}
3198 	/* Tell the HW to drop its old copy of the endpoint context info
3199 	 * and add the updated copy from the input context.
3200 	 */
3201 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3202 			vdev->out_ctx, ctrl_ctx,
3203 			changed_ep_bitmask, changed_ep_bitmask);
3204 
3205 	/* Issue and wait for the configure endpoint command */
3206 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3207 			false, false);
3208 
3209 	/* xHC rejected the configure endpoint command for some reason, so we
3210 	 * leave the old ring intact and free our internal streams data
3211 	 * structure.
3212 	 */
3213 	if (ret < 0)
3214 		goto cleanup;
3215 
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 	for (i = 0; i < num_eps; i++) {
3218 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3220 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3221 			 udev->slot_id, ep_index);
3222 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3223 	}
3224 	xhci_free_command(xhci, config_cmd);
3225 	spin_unlock_irqrestore(&xhci->lock, flags);
3226 
3227 	/* Subtract 1 for stream 0, which drivers can't use */
3228 	return num_streams - 1;
3229 
3230 cleanup:
3231 	/* If it didn't work, free the streams! */
3232 	for (i = 0; i < num_eps; i++) {
3233 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3235 		vdev->eps[ep_index].stream_info = NULL;
3236 		/* FIXME Unset maxPstreams in endpoint context and
3237 		 * update deq ptr to point to normal string ring.
3238 		 */
3239 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3240 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3241 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3242 	}
3243 	xhci_free_command(xhci, config_cmd);
3244 	return -ENOMEM;
3245 }
3246 
3247 /* Transition the endpoint from using streams to being a "normal" endpoint
3248  * without streams.
3249  *
3250  * Modify the endpoint context state, submit a configure endpoint command,
3251  * and free all endpoint rings for streams if that completes successfully.
3252  */
3253 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3254 		struct usb_host_endpoint **eps, unsigned int num_eps,
3255 		gfp_t mem_flags)
3256 {
3257 	int i, ret;
3258 	struct xhci_hcd *xhci;
3259 	struct xhci_virt_device *vdev;
3260 	struct xhci_command *command;
3261 	struct xhci_input_control_ctx *ctrl_ctx;
3262 	unsigned int ep_index;
3263 	unsigned long flags;
3264 	u32 changed_ep_bitmask;
3265 
3266 	xhci = hcd_to_xhci(hcd);
3267 	vdev = xhci->devs[udev->slot_id];
3268 
3269 	/* Set up a configure endpoint command to remove the streams rings */
3270 	spin_lock_irqsave(&xhci->lock, flags);
3271 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3272 			udev, eps, num_eps);
3273 	if (changed_ep_bitmask == 0) {
3274 		spin_unlock_irqrestore(&xhci->lock, flags);
3275 		return -EINVAL;
3276 	}
3277 
3278 	/* Use the xhci_command structure from the first endpoint.  We may have
3279 	 * allocated too many, but the driver may call xhci_free_streams() for
3280 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3281 	 */
3282 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3283 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3284 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3285 	if (!ctrl_ctx) {
3286 		spin_unlock_irqrestore(&xhci->lock, flags);
3287 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3288 				__func__);
3289 		return -EINVAL;
3290 	}
3291 
3292 	for (i = 0; i < num_eps; i++) {
3293 		struct xhci_ep_ctx *ep_ctx;
3294 
3295 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3297 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3298 			EP_GETTING_NO_STREAMS;
3299 
3300 		xhci_endpoint_copy(xhci, command->in_ctx,
3301 				vdev->out_ctx, ep_index);
3302 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3303 				&vdev->eps[ep_index]);
3304 	}
3305 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3306 			vdev->out_ctx, ctrl_ctx,
3307 			changed_ep_bitmask, changed_ep_bitmask);
3308 	spin_unlock_irqrestore(&xhci->lock, flags);
3309 
3310 	/* Issue and wait for the configure endpoint command,
3311 	 * which must succeed.
3312 	 */
3313 	ret = xhci_configure_endpoint(xhci, udev, command,
3314 			false, true);
3315 
3316 	/* xHC rejected the configure endpoint command for some reason, so we
3317 	 * leave the streams rings intact.
3318 	 */
3319 	if (ret < 0)
3320 		return ret;
3321 
3322 	spin_lock_irqsave(&xhci->lock, flags);
3323 	for (i = 0; i < num_eps; i++) {
3324 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3326 		vdev->eps[ep_index].stream_info = NULL;
3327 		/* FIXME Unset maxPstreams in endpoint context and
3328 		 * update deq ptr to point to normal string ring.
3329 		 */
3330 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3331 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3332 	}
3333 	spin_unlock_irqrestore(&xhci->lock, flags);
3334 
3335 	return 0;
3336 }
3337 
3338 /*
3339  * Deletes endpoint resources for endpoints that were active before a Reset
3340  * Device command, or a Disable Slot command.  The Reset Device command leaves
3341  * the control endpoint intact, whereas the Disable Slot command deletes it.
3342  *
3343  * Must be called with xhci->lock held.
3344  */
3345 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3346 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3347 {
3348 	int i;
3349 	unsigned int num_dropped_eps = 0;
3350 	unsigned int drop_flags = 0;
3351 
3352 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3353 		if (virt_dev->eps[i].ring) {
3354 			drop_flags |= 1 << i;
3355 			num_dropped_eps++;
3356 		}
3357 	}
3358 	xhci->num_active_eps -= num_dropped_eps;
3359 	if (num_dropped_eps)
3360 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3361 				"Dropped %u ep ctxs, flags = 0x%x, "
3362 				"%u now active.",
3363 				num_dropped_eps, drop_flags,
3364 				xhci->num_active_eps);
3365 }
3366 
3367 /*
3368  * This submits a Reset Device Command, which will set the device state to 0,
3369  * set the device address to 0, and disable all the endpoints except the default
3370  * control endpoint.  The USB core should come back and call
3371  * xhci_address_device(), and then re-set up the configuration.  If this is
3372  * called because of a usb_reset_and_verify_device(), then the old alternate
3373  * settings will be re-installed through the normal bandwidth allocation
3374  * functions.
3375  *
3376  * Wait for the Reset Device command to finish.  Remove all structures
3377  * associated with the endpoints that were disabled.  Clear the input device
3378  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3379  *
3380  * If the virt_dev to be reset does not exist or does not match the udev,
3381  * it means the device is lost, possibly due to the xHC restore error and
3382  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3383  * re-allocate the device.
3384  */
3385 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3386 {
3387 	int ret, i;
3388 	unsigned long flags;
3389 	struct xhci_hcd *xhci;
3390 	unsigned int slot_id;
3391 	struct xhci_virt_device *virt_dev;
3392 	struct xhci_command *reset_device_cmd;
3393 	int timeleft;
3394 	int last_freed_endpoint;
3395 	struct xhci_slot_ctx *slot_ctx;
3396 	int old_active_eps = 0;
3397 
3398 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3399 	if (ret <= 0)
3400 		return ret;
3401 	xhci = hcd_to_xhci(hcd);
3402 	slot_id = udev->slot_id;
3403 	virt_dev = xhci->devs[slot_id];
3404 	if (!virt_dev) {
3405 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3406 				"not exist. Re-allocate the device\n", slot_id);
3407 		ret = xhci_alloc_dev(hcd, udev);
3408 		if (ret == 1)
3409 			return 0;
3410 		else
3411 			return -EINVAL;
3412 	}
3413 
3414 	if (virt_dev->udev != udev) {
3415 		/* If the virt_dev and the udev does not match, this virt_dev
3416 		 * may belong to another udev.
3417 		 * Re-allocate the device.
3418 		 */
3419 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3420 				"not match the udev. Re-allocate the device\n",
3421 				slot_id);
3422 		ret = xhci_alloc_dev(hcd, udev);
3423 		if (ret == 1)
3424 			return 0;
3425 		else
3426 			return -EINVAL;
3427 	}
3428 
3429 	/* If device is not setup, there is no point in resetting it */
3430 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3431 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3432 						SLOT_STATE_DISABLED)
3433 		return 0;
3434 
3435 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3436 	/* Allocate the command structure that holds the struct completion.
3437 	 * Assume we're in process context, since the normal device reset
3438 	 * process has to wait for the device anyway.  Storage devices are
3439 	 * reset as part of error handling, so use GFP_NOIO instead of
3440 	 * GFP_KERNEL.
3441 	 */
3442 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3443 	if (!reset_device_cmd) {
3444 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3445 		return -ENOMEM;
3446 	}
3447 
3448 	/* Attempt to submit the Reset Device command to the command ring */
3449 	spin_lock_irqsave(&xhci->lock, flags);
3450 	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3451 
3452 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3453 	ret = xhci_queue_reset_device(xhci, slot_id);
3454 	if (ret) {
3455 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3456 		list_del(&reset_device_cmd->cmd_list);
3457 		spin_unlock_irqrestore(&xhci->lock, flags);
3458 		goto command_cleanup;
3459 	}
3460 	xhci_ring_cmd_db(xhci);
3461 	spin_unlock_irqrestore(&xhci->lock, flags);
3462 
3463 	/* Wait for the Reset Device command to finish */
3464 	timeleft = wait_for_completion_interruptible_timeout(
3465 			reset_device_cmd->completion,
3466 			XHCI_CMD_DEFAULT_TIMEOUT);
3467 	if (timeleft <= 0) {
3468 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3469 				timeleft == 0 ? "Timeout" : "Signal");
3470 		spin_lock_irqsave(&xhci->lock, flags);
3471 		/* The timeout might have raced with the event ring handler, so
3472 		 * only delete from the list if the item isn't poisoned.
3473 		 */
3474 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3475 			list_del(&reset_device_cmd->cmd_list);
3476 		spin_unlock_irqrestore(&xhci->lock, flags);
3477 		ret = -ETIME;
3478 		goto command_cleanup;
3479 	}
3480 
3481 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3482 	 * unless we tried to reset a slot ID that wasn't enabled,
3483 	 * or the device wasn't in the addressed or configured state.
3484 	 */
3485 	ret = reset_device_cmd->status;
3486 	switch (ret) {
3487 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3488 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3489 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3490 				slot_id,
3491 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3492 		xhci_dbg(xhci, "Not freeing device rings.\n");
3493 		/* Don't treat this as an error.  May change my mind later. */
3494 		ret = 0;
3495 		goto command_cleanup;
3496 	case COMP_SUCCESS:
3497 		xhci_dbg(xhci, "Successful reset device command.\n");
3498 		break;
3499 	default:
3500 		if (xhci_is_vendor_info_code(xhci, ret))
3501 			break;
3502 		xhci_warn(xhci, "Unknown completion code %u for "
3503 				"reset device command.\n", ret);
3504 		ret = -EINVAL;
3505 		goto command_cleanup;
3506 	}
3507 
3508 	/* Free up host controller endpoint resources */
3509 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3510 		spin_lock_irqsave(&xhci->lock, flags);
3511 		/* Don't delete the default control endpoint resources */
3512 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3513 		spin_unlock_irqrestore(&xhci->lock, flags);
3514 	}
3515 
3516 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3517 	last_freed_endpoint = 1;
3518 	for (i = 1; i < 31; ++i) {
3519 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3520 
3521 		if (ep->ep_state & EP_HAS_STREAMS) {
3522 			xhci_free_stream_info(xhci, ep->stream_info);
3523 			ep->stream_info = NULL;
3524 			ep->ep_state &= ~EP_HAS_STREAMS;
3525 		}
3526 
3527 		if (ep->ring) {
3528 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3529 			last_freed_endpoint = i;
3530 		}
3531 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3532 			xhci_drop_ep_from_interval_table(xhci,
3533 					&virt_dev->eps[i].bw_info,
3534 					virt_dev->bw_table,
3535 					udev,
3536 					&virt_dev->eps[i],
3537 					virt_dev->tt_info);
3538 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539 	}
3540 	/* If necessary, update the number of active TTs on this root port */
3541 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542 
3543 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3544 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3545 	ret = 0;
3546 
3547 command_cleanup:
3548 	xhci_free_command(xhci, reset_device_cmd);
3549 	return ret;
3550 }
3551 
3552 /*
3553  * At this point, the struct usb_device is about to go away, the device has
3554  * disconnected, and all traffic has been stopped and the endpoints have been
3555  * disabled.  Free any HC data structures associated with that device.
3556  */
3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 {
3559 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3560 	struct xhci_virt_device *virt_dev;
3561 	unsigned long flags;
3562 	u32 state;
3563 	int i, ret;
3564 
3565 #ifndef CONFIG_USB_DEFAULT_PERSIST
3566 	/*
3567 	 * We called pm_runtime_get_noresume when the device was attached.
3568 	 * Decrement the counter here to allow controller to runtime suspend
3569 	 * if no devices remain.
3570 	 */
3571 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3572 		pm_runtime_put_noidle(hcd->self.controller);
3573 #endif
3574 
3575 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3576 	/* If the host is halted due to driver unload, we still need to free the
3577 	 * device.
3578 	 */
3579 	if (ret <= 0 && ret != -ENODEV)
3580 		return;
3581 
3582 	virt_dev = xhci->devs[udev->slot_id];
3583 
3584 	/* Stop any wayward timer functions (which may grab the lock) */
3585 	for (i = 0; i < 31; ++i) {
3586 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3587 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3588 	}
3589 
3590 	spin_lock_irqsave(&xhci->lock, flags);
3591 	/* Don't disable the slot if the host controller is dead. */
3592 	state = readl(&xhci->op_regs->status);
3593 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3594 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3595 		xhci_free_virt_device(xhci, udev->slot_id);
3596 		spin_unlock_irqrestore(&xhci->lock, flags);
3597 		return;
3598 	}
3599 
3600 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3601 		spin_unlock_irqrestore(&xhci->lock, flags);
3602 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3603 		return;
3604 	}
3605 	xhci_ring_cmd_db(xhci);
3606 	spin_unlock_irqrestore(&xhci->lock, flags);
3607 	/*
3608 	 * Event command completion handler will free any data structures
3609 	 * associated with the slot.  XXX Can free sleep?
3610 	 */
3611 }
3612 
3613 /*
3614  * Checks if we have enough host controller resources for the default control
3615  * endpoint.
3616  *
3617  * Must be called with xhci->lock held.
3618  */
3619 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3620 {
3621 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3622 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3623 				"Not enough ep ctxs: "
3624 				"%u active, need to add 1, limit is %u.",
3625 				xhci->num_active_eps, xhci->limit_active_eps);
3626 		return -ENOMEM;
3627 	}
3628 	xhci->num_active_eps += 1;
3629 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3630 			"Adding 1 ep ctx, %u now active.",
3631 			xhci->num_active_eps);
3632 	return 0;
3633 }
3634 
3635 
3636 /*
3637  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3638  * timed out, or allocating memory failed.  Returns 1 on success.
3639  */
3640 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3641 {
3642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3643 	unsigned long flags;
3644 	int timeleft;
3645 	int ret;
3646 	union xhci_trb *cmd_trb;
3647 
3648 	spin_lock_irqsave(&xhci->lock, flags);
3649 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3650 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3651 	if (ret) {
3652 		spin_unlock_irqrestore(&xhci->lock, flags);
3653 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3654 		return 0;
3655 	}
3656 	xhci_ring_cmd_db(xhci);
3657 	spin_unlock_irqrestore(&xhci->lock, flags);
3658 
3659 	/* XXX: how much time for xHC slot assignment? */
3660 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3661 			XHCI_CMD_DEFAULT_TIMEOUT);
3662 	if (timeleft <= 0) {
3663 		xhci_warn(xhci, "%s while waiting for a slot\n",
3664 				timeleft == 0 ? "Timeout" : "Signal");
3665 		/* cancel the enable slot request */
3666 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3667 	}
3668 
3669 	if (!xhci->slot_id) {
3670 		xhci_err(xhci, "Error while assigning device slot ID\n");
3671 		return 0;
3672 	}
3673 
3674 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3675 		spin_lock_irqsave(&xhci->lock, flags);
3676 		ret = xhci_reserve_host_control_ep_resources(xhci);
3677 		if (ret) {
3678 			spin_unlock_irqrestore(&xhci->lock, flags);
3679 			xhci_warn(xhci, "Not enough host resources, "
3680 					"active endpoint contexts = %u\n",
3681 					xhci->num_active_eps);
3682 			goto disable_slot;
3683 		}
3684 		spin_unlock_irqrestore(&xhci->lock, flags);
3685 	}
3686 	/* Use GFP_NOIO, since this function can be called from
3687 	 * xhci_discover_or_reset_device(), which may be called as part of
3688 	 * mass storage driver error handling.
3689 	 */
3690 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3691 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3692 		goto disable_slot;
3693 	}
3694 	udev->slot_id = xhci->slot_id;
3695 
3696 #ifndef CONFIG_USB_DEFAULT_PERSIST
3697 	/*
3698 	 * If resetting upon resume, we can't put the controller into runtime
3699 	 * suspend if there is a device attached.
3700 	 */
3701 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3702 		pm_runtime_get_noresume(hcd->self.controller);
3703 #endif
3704 
3705 	/* Is this a LS or FS device under a HS hub? */
3706 	/* Hub or peripherial? */
3707 	return 1;
3708 
3709 disable_slot:
3710 	/* Disable slot, if we can do it without mem alloc */
3711 	spin_lock_irqsave(&xhci->lock, flags);
3712 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3713 		xhci_ring_cmd_db(xhci);
3714 	spin_unlock_irqrestore(&xhci->lock, flags);
3715 	return 0;
3716 }
3717 
3718 /*
3719  * Issue an Address Device command and optionally send a corresponding
3720  * SetAddress request to the device.
3721  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3722  * we should only issue and wait on one address command at the same time.
3723  */
3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3725 			     enum xhci_setup_dev setup)
3726 {
3727 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3728 	unsigned long flags;
3729 	int timeleft;
3730 	struct xhci_virt_device *virt_dev;
3731 	int ret = 0;
3732 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3733 	struct xhci_slot_ctx *slot_ctx;
3734 	struct xhci_input_control_ctx *ctrl_ctx;
3735 	u64 temp_64;
3736 	union xhci_trb *cmd_trb;
3737 
3738 	if (!udev->slot_id) {
3739 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3740 				"Bad Slot ID %d", udev->slot_id);
3741 		return -EINVAL;
3742 	}
3743 
3744 	virt_dev = xhci->devs[udev->slot_id];
3745 
3746 	if (WARN_ON(!virt_dev)) {
3747 		/*
3748 		 * In plug/unplug torture test with an NEC controller,
3749 		 * a zero-dereference was observed once due to virt_dev = 0.
3750 		 * Print useful debug rather than crash if it is observed again!
3751 		 */
3752 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3753 			udev->slot_id);
3754 		return -EINVAL;
3755 	}
3756 
3757 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3758 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3759 	if (!ctrl_ctx) {
3760 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3761 				__func__);
3762 		return -EINVAL;
3763 	}
3764 	/*
3765 	 * If this is the first Set Address since device plug-in or
3766 	 * virt_device realloaction after a resume with an xHCI power loss,
3767 	 * then set up the slot context.
3768 	 */
3769 	if (!slot_ctx->dev_info)
3770 		xhci_setup_addressable_virt_dev(xhci, udev);
3771 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3772 	else
3773 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3774 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3775 	ctrl_ctx->drop_flags = 0;
3776 
3777 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3778 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3779 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3780 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3781 
3782 	spin_lock_irqsave(&xhci->lock, flags);
3783 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3784 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3785 					udev->slot_id, setup);
3786 	if (ret) {
3787 		spin_unlock_irqrestore(&xhci->lock, flags);
3788 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789 				"FIXME: allocate a command ring segment");
3790 		return ret;
3791 	}
3792 	xhci_ring_cmd_db(xhci);
3793 	spin_unlock_irqrestore(&xhci->lock, flags);
3794 
3795 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3796 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3797 			XHCI_CMD_DEFAULT_TIMEOUT);
3798 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3799 	 * the SetAddress() "recovery interval" required by USB and aborting the
3800 	 * command on a timeout.
3801 	 */
3802 	if (timeleft <= 0) {
3803 		xhci_warn(xhci, "%s while waiting for setup %s command\n",
3804 			  timeleft == 0 ? "Timeout" : "Signal", act);
3805 		/* cancel the address device command */
3806 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3807 		if (ret < 0)
3808 			return ret;
3809 		return -ETIME;
3810 	}
3811 
3812 	switch (virt_dev->cmd_status) {
3813 	case COMP_CTX_STATE:
3814 	case COMP_EBADSLT:
3815 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3816 			 act, udev->slot_id);
3817 		ret = -EINVAL;
3818 		break;
3819 	case COMP_TX_ERR:
3820 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3821 		ret = -EPROTO;
3822 		break;
3823 	case COMP_DEV_ERR:
3824 		dev_warn(&udev->dev,
3825 			 "ERROR: Incompatible device for setup %s command\n", act);
3826 		ret = -ENODEV;
3827 		break;
3828 	case COMP_SUCCESS:
3829 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830 			       "Successful setup %s command", act);
3831 		break;
3832 	default:
3833 		xhci_err(xhci,
3834 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3835 			 act, virt_dev->cmd_status);
3836 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3837 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3838 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3839 		ret = -EINVAL;
3840 		break;
3841 	}
3842 	if (ret) {
3843 		return ret;
3844 	}
3845 	temp_64 = readq(&xhci->op_regs->dcbaa_ptr);
3846 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3847 			"Op regs DCBAA ptr = %#016llx", temp_64);
3848 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3849 		"Slot ID %d dcbaa entry @%p = %#016llx",
3850 		udev->slot_id,
3851 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3852 		(unsigned long long)
3853 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3854 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855 			"Output Context DMA address = %#08llx",
3856 			(unsigned long long)virt_dev->out_ctx->dma);
3857 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3858 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3859 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3860 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3861 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3862 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3863 	/*
3864 	 * USB core uses address 1 for the roothubs, so we add one to the
3865 	 * address given back to us by the HC.
3866 	 */
3867 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3868 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3869 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3870 	/* Zero the input context control for later use */
3871 	ctrl_ctx->add_flags = 0;
3872 	ctrl_ctx->drop_flags = 0;
3873 
3874 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875 		       "Internal device address = %d",
3876 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3877 
3878 	return 0;
3879 }
3880 
3881 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3882 {
3883 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3884 }
3885 
3886 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3887 {
3888 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3889 }
3890 
3891 /*
3892  * Transfer the port index into real index in the HW port status
3893  * registers. Caculate offset between the port's PORTSC register
3894  * and port status base. Divide the number of per port register
3895  * to get the real index. The raw port number bases 1.
3896  */
3897 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3898 {
3899 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3900 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3901 	__le32 __iomem *addr;
3902 	int raw_port;
3903 
3904 	if (hcd->speed != HCD_USB3)
3905 		addr = xhci->usb2_ports[port1 - 1];
3906 	else
3907 		addr = xhci->usb3_ports[port1 - 1];
3908 
3909 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3910 	return raw_port;
3911 }
3912 
3913 /*
3914  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3915  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3916  */
3917 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3918 			struct usb_device *udev, u16 max_exit_latency)
3919 {
3920 	struct xhci_virt_device *virt_dev;
3921 	struct xhci_command *command;
3922 	struct xhci_input_control_ctx *ctrl_ctx;
3923 	struct xhci_slot_ctx *slot_ctx;
3924 	unsigned long flags;
3925 	int ret;
3926 
3927 	spin_lock_irqsave(&xhci->lock, flags);
3928 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3929 		spin_unlock_irqrestore(&xhci->lock, flags);
3930 		return 0;
3931 	}
3932 
3933 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3934 	virt_dev = xhci->devs[udev->slot_id];
3935 	command = xhci->lpm_command;
3936 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3937 	if (!ctrl_ctx) {
3938 		spin_unlock_irqrestore(&xhci->lock, flags);
3939 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3940 				__func__);
3941 		return -ENOMEM;
3942 	}
3943 
3944 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3945 	spin_unlock_irqrestore(&xhci->lock, flags);
3946 
3947 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3948 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3949 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3950 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3951 
3952 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3953 			"Set up evaluate context for LPM MEL change.");
3954 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3955 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3956 
3957 	/* Issue and wait for the evaluate context command. */
3958 	ret = xhci_configure_endpoint(xhci, udev, command,
3959 			true, true);
3960 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3961 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3962 
3963 	if (!ret) {
3964 		spin_lock_irqsave(&xhci->lock, flags);
3965 		virt_dev->current_mel = max_exit_latency;
3966 		spin_unlock_irqrestore(&xhci->lock, flags);
3967 	}
3968 	return ret;
3969 }
3970 
3971 #ifdef CONFIG_PM_RUNTIME
3972 
3973 /* BESL to HIRD Encoding array for USB2 LPM */
3974 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3975 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3976 
3977 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3978 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3979 					struct usb_device *udev)
3980 {
3981 	int u2del, besl, besl_host;
3982 	int besl_device = 0;
3983 	u32 field;
3984 
3985 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3986 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3987 
3988 	if (field & USB_BESL_SUPPORT) {
3989 		for (besl_host = 0; besl_host < 16; besl_host++) {
3990 			if (xhci_besl_encoding[besl_host] >= u2del)
3991 				break;
3992 		}
3993 		/* Use baseline BESL value as default */
3994 		if (field & USB_BESL_BASELINE_VALID)
3995 			besl_device = USB_GET_BESL_BASELINE(field);
3996 		else if (field & USB_BESL_DEEP_VALID)
3997 			besl_device = USB_GET_BESL_DEEP(field);
3998 	} else {
3999 		if (u2del <= 50)
4000 			besl_host = 0;
4001 		else
4002 			besl_host = (u2del - 51) / 75 + 1;
4003 	}
4004 
4005 	besl = besl_host + besl_device;
4006 	if (besl > 15)
4007 		besl = 15;
4008 
4009 	return besl;
4010 }
4011 
4012 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4013 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4014 {
4015 	u32 field;
4016 	int l1;
4017 	int besld = 0;
4018 	int hirdm = 0;
4019 
4020 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4021 
4022 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4023 	l1 = udev->l1_params.timeout / 256;
4024 
4025 	/* device has preferred BESLD */
4026 	if (field & USB_BESL_DEEP_VALID) {
4027 		besld = USB_GET_BESL_DEEP(field);
4028 		hirdm = 1;
4029 	}
4030 
4031 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4032 }
4033 
4034 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4035 			struct usb_device *udev, int enable)
4036 {
4037 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4038 	__le32 __iomem	**port_array;
4039 	__le32 __iomem	*pm_addr, *hlpm_addr;
4040 	u32		pm_val, hlpm_val, field;
4041 	unsigned int	port_num;
4042 	unsigned long	flags;
4043 	int		hird, exit_latency;
4044 	int		ret;
4045 
4046 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4047 			!udev->lpm_capable)
4048 		return -EPERM;
4049 
4050 	if (!udev->parent || udev->parent->parent ||
4051 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4052 		return -EPERM;
4053 
4054 	if (udev->usb2_hw_lpm_capable != 1)
4055 		return -EPERM;
4056 
4057 	spin_lock_irqsave(&xhci->lock, flags);
4058 
4059 	port_array = xhci->usb2_ports;
4060 	port_num = udev->portnum - 1;
4061 	pm_addr = port_array[port_num] + PORTPMSC;
4062 	pm_val = readl(pm_addr);
4063 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4064 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4065 
4066 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4067 			enable ? "enable" : "disable", port_num);
4068 
4069 	if (enable) {
4070 		/* Host supports BESL timeout instead of HIRD */
4071 		if (udev->usb2_hw_lpm_besl_capable) {
4072 			/* if device doesn't have a preferred BESL value use a
4073 			 * default one which works with mixed HIRD and BESL
4074 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4075 			 */
4076 			if ((field & USB_BESL_SUPPORT) &&
4077 			    (field & USB_BESL_BASELINE_VALID))
4078 				hird = USB_GET_BESL_BASELINE(field);
4079 			else
4080 				hird = udev->l1_params.besl;
4081 
4082 			exit_latency = xhci_besl_encoding[hird];
4083 			spin_unlock_irqrestore(&xhci->lock, flags);
4084 
4085 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4086 			 * input context for link powermanagement evaluate
4087 			 * context commands. It is protected by hcd->bandwidth
4088 			 * mutex and is shared by all devices. We need to set
4089 			 * the max ext latency in USB 2 BESL LPM as well, so
4090 			 * use the same mutex and xhci_change_max_exit_latency()
4091 			 */
4092 			mutex_lock(hcd->bandwidth_mutex);
4093 			ret = xhci_change_max_exit_latency(xhci, udev,
4094 							   exit_latency);
4095 			mutex_unlock(hcd->bandwidth_mutex);
4096 
4097 			if (ret < 0)
4098 				return ret;
4099 			spin_lock_irqsave(&xhci->lock, flags);
4100 
4101 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4102 			writel(hlpm_val, hlpm_addr);
4103 			/* flush write */
4104 			readl(hlpm_addr);
4105 		} else {
4106 			hird = xhci_calculate_hird_besl(xhci, udev);
4107 		}
4108 
4109 		pm_val &= ~PORT_HIRD_MASK;
4110 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4111 		writel(pm_val, pm_addr);
4112 		pm_val = readl(pm_addr);
4113 		pm_val |= PORT_HLE;
4114 		writel(pm_val, pm_addr);
4115 		/* flush write */
4116 		readl(pm_addr);
4117 	} else {
4118 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4119 		writel(pm_val, pm_addr);
4120 		/* flush write */
4121 		readl(pm_addr);
4122 		if (udev->usb2_hw_lpm_besl_capable) {
4123 			spin_unlock_irqrestore(&xhci->lock, flags);
4124 			mutex_lock(hcd->bandwidth_mutex);
4125 			xhci_change_max_exit_latency(xhci, udev, 0);
4126 			mutex_unlock(hcd->bandwidth_mutex);
4127 			return 0;
4128 		}
4129 	}
4130 
4131 	spin_unlock_irqrestore(&xhci->lock, flags);
4132 	return 0;
4133 }
4134 
4135 /* check if a usb2 port supports a given extened capability protocol
4136  * only USB2 ports extended protocol capability values are cached.
4137  * Return 1 if capability is supported
4138  */
4139 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4140 					   unsigned capability)
4141 {
4142 	u32 port_offset, port_count;
4143 	int i;
4144 
4145 	for (i = 0; i < xhci->num_ext_caps; i++) {
4146 		if (xhci->ext_caps[i] & capability) {
4147 			/* port offsets starts at 1 */
4148 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4149 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4150 			if (port >= port_offset &&
4151 			    port < port_offset + port_count)
4152 				return 1;
4153 		}
4154 	}
4155 	return 0;
4156 }
4157 
4158 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4159 {
4160 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4161 	int		portnum = udev->portnum - 1;
4162 
4163 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4164 			!udev->lpm_capable)
4165 		return 0;
4166 
4167 	/* we only support lpm for non-hub device connected to root hub yet */
4168 	if (!udev->parent || udev->parent->parent ||
4169 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4170 		return 0;
4171 
4172 	if (xhci->hw_lpm_support == 1 &&
4173 			xhci_check_usb2_port_capability(
4174 				xhci, portnum, XHCI_HLC)) {
4175 		udev->usb2_hw_lpm_capable = 1;
4176 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4177 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4178 		if (xhci_check_usb2_port_capability(xhci, portnum,
4179 					XHCI_BLC))
4180 			udev->usb2_hw_lpm_besl_capable = 1;
4181 	}
4182 
4183 	return 0;
4184 }
4185 
4186 #else
4187 
4188 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4189 				struct usb_device *udev, int enable)
4190 {
4191 	return 0;
4192 }
4193 
4194 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4195 {
4196 	return 0;
4197 }
4198 
4199 #endif /* CONFIG_PM_RUNTIME */
4200 
4201 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4202 
4203 #ifdef CONFIG_PM
4204 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4205 static unsigned long long xhci_service_interval_to_ns(
4206 		struct usb_endpoint_descriptor *desc)
4207 {
4208 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4209 }
4210 
4211 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4212 		enum usb3_link_state state)
4213 {
4214 	unsigned long long sel;
4215 	unsigned long long pel;
4216 	unsigned int max_sel_pel;
4217 	char *state_name;
4218 
4219 	switch (state) {
4220 	case USB3_LPM_U1:
4221 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4222 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4223 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4224 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4225 		state_name = "U1";
4226 		break;
4227 	case USB3_LPM_U2:
4228 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4229 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4230 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4231 		state_name = "U2";
4232 		break;
4233 	default:
4234 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4235 				__func__);
4236 		return USB3_LPM_DISABLED;
4237 	}
4238 
4239 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4240 		return USB3_LPM_DEVICE_INITIATED;
4241 
4242 	if (sel > max_sel_pel)
4243 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4244 				"due to long SEL %llu ms\n",
4245 				state_name, sel);
4246 	else
4247 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4248 				"due to long PEL %llu ms\n",
4249 				state_name, pel);
4250 	return USB3_LPM_DISABLED;
4251 }
4252 
4253 /* Returns the hub-encoded U1 timeout value.
4254  * The U1 timeout should be the maximum of the following values:
4255  *  - For control endpoints, U1 system exit latency (SEL) * 3
4256  *  - For bulk endpoints, U1 SEL * 5
4257  *  - For interrupt endpoints:
4258  *    - Notification EPs, U1 SEL * 3
4259  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4260  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4261  */
4262 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4263 		struct usb_endpoint_descriptor *desc)
4264 {
4265 	unsigned long long timeout_ns;
4266 	int ep_type;
4267 	int intr_type;
4268 
4269 	ep_type = usb_endpoint_type(desc);
4270 	switch (ep_type) {
4271 	case USB_ENDPOINT_XFER_CONTROL:
4272 		timeout_ns = udev->u1_params.sel * 3;
4273 		break;
4274 	case USB_ENDPOINT_XFER_BULK:
4275 		timeout_ns = udev->u1_params.sel * 5;
4276 		break;
4277 	case USB_ENDPOINT_XFER_INT:
4278 		intr_type = usb_endpoint_interrupt_type(desc);
4279 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4280 			timeout_ns = udev->u1_params.sel * 3;
4281 			break;
4282 		}
4283 		/* Otherwise the calculation is the same as isoc eps */
4284 	case USB_ENDPOINT_XFER_ISOC:
4285 		timeout_ns = xhci_service_interval_to_ns(desc);
4286 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4287 		if (timeout_ns < udev->u1_params.sel * 2)
4288 			timeout_ns = udev->u1_params.sel * 2;
4289 		break;
4290 	default:
4291 		return 0;
4292 	}
4293 
4294 	/* The U1 timeout is encoded in 1us intervals. */
4295 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4296 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4297 	if (timeout_ns == USB3_LPM_DISABLED)
4298 		timeout_ns++;
4299 
4300 	/* If the necessary timeout value is bigger than what we can set in the
4301 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4302 	 */
4303 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4304 		return timeout_ns;
4305 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4306 			"due to long timeout %llu ms\n", timeout_ns);
4307 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4308 }
4309 
4310 /* Returns the hub-encoded U2 timeout value.
4311  * The U2 timeout should be the maximum of:
4312  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4313  *  - largest bInterval of any active periodic endpoint (to avoid going
4314  *    into lower power link states between intervals).
4315  *  - the U2 Exit Latency of the device
4316  */
4317 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4318 		struct usb_endpoint_descriptor *desc)
4319 {
4320 	unsigned long long timeout_ns;
4321 	unsigned long long u2_del_ns;
4322 
4323 	timeout_ns = 10 * 1000 * 1000;
4324 
4325 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4326 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4327 		timeout_ns = xhci_service_interval_to_ns(desc);
4328 
4329 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4330 	if (u2_del_ns > timeout_ns)
4331 		timeout_ns = u2_del_ns;
4332 
4333 	/* The U2 timeout is encoded in 256us intervals */
4334 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4335 	/* If the necessary timeout value is bigger than what we can set in the
4336 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4337 	 */
4338 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4339 		return timeout_ns;
4340 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4341 			"due to long timeout %llu ms\n", timeout_ns);
4342 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4343 }
4344 
4345 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4346 		struct usb_device *udev,
4347 		struct usb_endpoint_descriptor *desc,
4348 		enum usb3_link_state state,
4349 		u16 *timeout)
4350 {
4351 	if (state == USB3_LPM_U1) {
4352 		if (xhci->quirks & XHCI_INTEL_HOST)
4353 			return xhci_calculate_intel_u1_timeout(udev, desc);
4354 	} else {
4355 		if (xhci->quirks & XHCI_INTEL_HOST)
4356 			return xhci_calculate_intel_u2_timeout(udev, desc);
4357 	}
4358 
4359 	return USB3_LPM_DISABLED;
4360 }
4361 
4362 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4363 		struct usb_device *udev,
4364 		struct usb_endpoint_descriptor *desc,
4365 		enum usb3_link_state state,
4366 		u16 *timeout)
4367 {
4368 	u16 alt_timeout;
4369 
4370 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4371 		desc, state, timeout);
4372 
4373 	/* If we found we can't enable hub-initiated LPM, or
4374 	 * the U1 or U2 exit latency was too high to allow
4375 	 * device-initiated LPM as well, just stop searching.
4376 	 */
4377 	if (alt_timeout == USB3_LPM_DISABLED ||
4378 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4379 		*timeout = alt_timeout;
4380 		return -E2BIG;
4381 	}
4382 	if (alt_timeout > *timeout)
4383 		*timeout = alt_timeout;
4384 	return 0;
4385 }
4386 
4387 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4388 		struct usb_device *udev,
4389 		struct usb_host_interface *alt,
4390 		enum usb3_link_state state,
4391 		u16 *timeout)
4392 {
4393 	int j;
4394 
4395 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4396 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4397 					&alt->endpoint[j].desc, state, timeout))
4398 			return -E2BIG;
4399 		continue;
4400 	}
4401 	return 0;
4402 }
4403 
4404 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4405 		enum usb3_link_state state)
4406 {
4407 	struct usb_device *parent;
4408 	unsigned int num_hubs;
4409 
4410 	if (state == USB3_LPM_U2)
4411 		return 0;
4412 
4413 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4414 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4415 			parent = parent->parent)
4416 		num_hubs++;
4417 
4418 	if (num_hubs < 2)
4419 		return 0;
4420 
4421 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4422 			" below second-tier hub.\n");
4423 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4424 			"to decrease power consumption.\n");
4425 	return -E2BIG;
4426 }
4427 
4428 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4429 		struct usb_device *udev,
4430 		enum usb3_link_state state)
4431 {
4432 	if (xhci->quirks & XHCI_INTEL_HOST)
4433 		return xhci_check_intel_tier_policy(udev, state);
4434 	return -EINVAL;
4435 }
4436 
4437 /* Returns the U1 or U2 timeout that should be enabled.
4438  * If the tier check or timeout setting functions return with a non-zero exit
4439  * code, that means the timeout value has been finalized and we shouldn't look
4440  * at any more endpoints.
4441  */
4442 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4443 			struct usb_device *udev, enum usb3_link_state state)
4444 {
4445 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4446 	struct usb_host_config *config;
4447 	char *state_name;
4448 	int i;
4449 	u16 timeout = USB3_LPM_DISABLED;
4450 
4451 	if (state == USB3_LPM_U1)
4452 		state_name = "U1";
4453 	else if (state == USB3_LPM_U2)
4454 		state_name = "U2";
4455 	else {
4456 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4457 				state);
4458 		return timeout;
4459 	}
4460 
4461 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4462 		return timeout;
4463 
4464 	/* Gather some information about the currently installed configuration
4465 	 * and alternate interface settings.
4466 	 */
4467 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4468 			state, &timeout))
4469 		return timeout;
4470 
4471 	config = udev->actconfig;
4472 	if (!config)
4473 		return timeout;
4474 
4475 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4476 		struct usb_driver *driver;
4477 		struct usb_interface *intf = config->interface[i];
4478 
4479 		if (!intf)
4480 			continue;
4481 
4482 		/* Check if any currently bound drivers want hub-initiated LPM
4483 		 * disabled.
4484 		 */
4485 		if (intf->dev.driver) {
4486 			driver = to_usb_driver(intf->dev.driver);
4487 			if (driver && driver->disable_hub_initiated_lpm) {
4488 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4489 						"at request of driver %s\n",
4490 						state_name, driver->name);
4491 				return xhci_get_timeout_no_hub_lpm(udev, state);
4492 			}
4493 		}
4494 
4495 		/* Not sure how this could happen... */
4496 		if (!intf->cur_altsetting)
4497 			continue;
4498 
4499 		if (xhci_update_timeout_for_interface(xhci, udev,
4500 					intf->cur_altsetting,
4501 					state, &timeout))
4502 			return timeout;
4503 	}
4504 	return timeout;
4505 }
4506 
4507 static int calculate_max_exit_latency(struct usb_device *udev,
4508 		enum usb3_link_state state_changed,
4509 		u16 hub_encoded_timeout)
4510 {
4511 	unsigned long long u1_mel_us = 0;
4512 	unsigned long long u2_mel_us = 0;
4513 	unsigned long long mel_us = 0;
4514 	bool disabling_u1;
4515 	bool disabling_u2;
4516 	bool enabling_u1;
4517 	bool enabling_u2;
4518 
4519 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4520 			hub_encoded_timeout == USB3_LPM_DISABLED);
4521 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4522 			hub_encoded_timeout == USB3_LPM_DISABLED);
4523 
4524 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4525 			hub_encoded_timeout != USB3_LPM_DISABLED);
4526 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4527 			hub_encoded_timeout != USB3_LPM_DISABLED);
4528 
4529 	/* If U1 was already enabled and we're not disabling it,
4530 	 * or we're going to enable U1, account for the U1 max exit latency.
4531 	 */
4532 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4533 			enabling_u1)
4534 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4535 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4536 			enabling_u2)
4537 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4538 
4539 	if (u1_mel_us > u2_mel_us)
4540 		mel_us = u1_mel_us;
4541 	else
4542 		mel_us = u2_mel_us;
4543 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4544 	if (mel_us > MAX_EXIT) {
4545 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4546 				"is too big.\n", mel_us);
4547 		return -E2BIG;
4548 	}
4549 	return mel_us;
4550 }
4551 
4552 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4553 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4554 			struct usb_device *udev, enum usb3_link_state state)
4555 {
4556 	struct xhci_hcd	*xhci;
4557 	u16 hub_encoded_timeout;
4558 	int mel;
4559 	int ret;
4560 
4561 	xhci = hcd_to_xhci(hcd);
4562 	/* The LPM timeout values are pretty host-controller specific, so don't
4563 	 * enable hub-initiated timeouts unless the vendor has provided
4564 	 * information about their timeout algorithm.
4565 	 */
4566 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4567 			!xhci->devs[udev->slot_id])
4568 		return USB3_LPM_DISABLED;
4569 
4570 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4571 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4572 	if (mel < 0) {
4573 		/* Max Exit Latency is too big, disable LPM. */
4574 		hub_encoded_timeout = USB3_LPM_DISABLED;
4575 		mel = 0;
4576 	}
4577 
4578 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4579 	if (ret)
4580 		return ret;
4581 	return hub_encoded_timeout;
4582 }
4583 
4584 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4585 			struct usb_device *udev, enum usb3_link_state state)
4586 {
4587 	struct xhci_hcd	*xhci;
4588 	u16 mel;
4589 	int ret;
4590 
4591 	xhci = hcd_to_xhci(hcd);
4592 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4593 			!xhci->devs[udev->slot_id])
4594 		return 0;
4595 
4596 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4597 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4598 	if (ret)
4599 		return ret;
4600 	return 0;
4601 }
4602 #else /* CONFIG_PM */
4603 
4604 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4605 			struct usb_device *udev, enum usb3_link_state state)
4606 {
4607 	return USB3_LPM_DISABLED;
4608 }
4609 
4610 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4611 			struct usb_device *udev, enum usb3_link_state state)
4612 {
4613 	return 0;
4614 }
4615 #endif	/* CONFIG_PM */
4616 
4617 /*-------------------------------------------------------------------------*/
4618 
4619 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4620  * internal data structures for the device.
4621  */
4622 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4623 			struct usb_tt *tt, gfp_t mem_flags)
4624 {
4625 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4626 	struct xhci_virt_device *vdev;
4627 	struct xhci_command *config_cmd;
4628 	struct xhci_input_control_ctx *ctrl_ctx;
4629 	struct xhci_slot_ctx *slot_ctx;
4630 	unsigned long flags;
4631 	unsigned think_time;
4632 	int ret;
4633 
4634 	/* Ignore root hubs */
4635 	if (!hdev->parent)
4636 		return 0;
4637 
4638 	vdev = xhci->devs[hdev->slot_id];
4639 	if (!vdev) {
4640 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4641 		return -EINVAL;
4642 	}
4643 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4644 	if (!config_cmd) {
4645 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4646 		return -ENOMEM;
4647 	}
4648 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4649 	if (!ctrl_ctx) {
4650 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4651 				__func__);
4652 		xhci_free_command(xhci, config_cmd);
4653 		return -ENOMEM;
4654 	}
4655 
4656 	spin_lock_irqsave(&xhci->lock, flags);
4657 	if (hdev->speed == USB_SPEED_HIGH &&
4658 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4659 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4660 		xhci_free_command(xhci, config_cmd);
4661 		spin_unlock_irqrestore(&xhci->lock, flags);
4662 		return -ENOMEM;
4663 	}
4664 
4665 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4666 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4667 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4668 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4669 	if (tt->multi)
4670 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4671 	if (xhci->hci_version > 0x95) {
4672 		xhci_dbg(xhci, "xHCI version %x needs hub "
4673 				"TT think time and number of ports\n",
4674 				(unsigned int) xhci->hci_version);
4675 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4676 		/* Set TT think time - convert from ns to FS bit times.
4677 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4678 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4679 		 *
4680 		 * xHCI 1.0: this field shall be 0 if the device is not a
4681 		 * High-spped hub.
4682 		 */
4683 		think_time = tt->think_time;
4684 		if (think_time != 0)
4685 			think_time = (think_time / 666) - 1;
4686 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4687 			slot_ctx->tt_info |=
4688 				cpu_to_le32(TT_THINK_TIME(think_time));
4689 	} else {
4690 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4691 				"TT think time or number of ports\n",
4692 				(unsigned int) xhci->hci_version);
4693 	}
4694 	slot_ctx->dev_state = 0;
4695 	spin_unlock_irqrestore(&xhci->lock, flags);
4696 
4697 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4698 			(xhci->hci_version > 0x95) ?
4699 			"configure endpoint" : "evaluate context");
4700 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4701 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4702 
4703 	/* Issue and wait for the configure endpoint or
4704 	 * evaluate context command.
4705 	 */
4706 	if (xhci->hci_version > 0x95)
4707 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4708 				false, false);
4709 	else
4710 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4711 				true, false);
4712 
4713 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4714 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4715 
4716 	xhci_free_command(xhci, config_cmd);
4717 	return ret;
4718 }
4719 
4720 int xhci_get_frame(struct usb_hcd *hcd)
4721 {
4722 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723 	/* EHCI mods by the periodic size.  Why? */
4724 	return readl(&xhci->run_regs->microframe_index) >> 3;
4725 }
4726 
4727 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4728 {
4729 	struct xhci_hcd		*xhci;
4730 	struct device		*dev = hcd->self.controller;
4731 	int			retval;
4732 
4733 	/* Limit the block layer scatter-gather lists to half a segment. */
4734 	hcd->self.sg_tablesize = TRBS_PER_SEGMENT / 2;
4735 
4736 	/* support to build packet from discontinuous buffers */
4737 	hcd->self.no_sg_constraint = 1;
4738 
4739 	/* XHCI controllers don't stop the ep queue on short packets :| */
4740 	hcd->self.no_stop_on_short = 1;
4741 
4742 	if (usb_hcd_is_primary_hcd(hcd)) {
4743 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4744 		if (!xhci)
4745 			return -ENOMEM;
4746 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4747 		xhci->main_hcd = hcd;
4748 		/* Mark the first roothub as being USB 2.0.
4749 		 * The xHCI driver will register the USB 3.0 roothub.
4750 		 */
4751 		hcd->speed = HCD_USB2;
4752 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4753 		/*
4754 		 * USB 2.0 roothub under xHCI has an integrated TT,
4755 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4756 		 * companion controller.
4757 		 */
4758 		hcd->has_tt = 1;
4759 	} else {
4760 		/* xHCI private pointer was set in xhci_pci_probe for the second
4761 		 * registered roothub.
4762 		 */
4763 		return 0;
4764 	}
4765 
4766 	xhci->cap_regs = hcd->regs;
4767 	xhci->op_regs = hcd->regs +
4768 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4769 	xhci->run_regs = hcd->regs +
4770 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4771 	/* Cache read-only capability registers */
4772 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4773 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4774 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4775 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4776 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4777 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4778 	xhci_print_registers(xhci);
4779 
4780 	xhci->quirks = quirks;
4781 
4782 	get_quirks(dev, xhci);
4783 
4784 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4785 	 * success event after a short transfer. This quirk will ignore such
4786 	 * spurious event.
4787 	 */
4788 	if (xhci->hci_version > 0x96)
4789 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4790 
4791 	/* Make sure the HC is halted. */
4792 	retval = xhci_halt(xhci);
4793 	if (retval)
4794 		goto error;
4795 
4796 	xhci_dbg(xhci, "Resetting HCD\n");
4797 	/* Reset the internal HC memory state and registers. */
4798 	retval = xhci_reset(xhci);
4799 	if (retval)
4800 		goto error;
4801 	xhci_dbg(xhci, "Reset complete\n");
4802 
4803 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4804 	 * if xHC supports 64-bit addressing */
4805 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4806 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4807 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4808 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4809 	}
4810 
4811 	xhci_dbg(xhci, "Calling HCD init\n");
4812 	/* Initialize HCD and host controller data structures. */
4813 	retval = xhci_init(hcd);
4814 	if (retval)
4815 		goto error;
4816 	xhci_dbg(xhci, "Called HCD init\n");
4817 	return 0;
4818 error:
4819 	kfree(xhci);
4820 	return retval;
4821 }
4822 
4823 MODULE_DESCRIPTION(DRIVER_DESC);
4824 MODULE_AUTHOR(DRIVER_AUTHOR);
4825 MODULE_LICENSE("GPL");
4826 
4827 static int __init xhci_hcd_init(void)
4828 {
4829 	int retval;
4830 
4831 	retval = xhci_register_pci();
4832 	if (retval < 0) {
4833 		pr_debug("Problem registering PCI driver.\n");
4834 		return retval;
4835 	}
4836 	retval = xhci_register_plat();
4837 	if (retval < 0) {
4838 		pr_debug("Problem registering platform driver.\n");
4839 		goto unreg_pci;
4840 	}
4841 	/*
4842 	 * Check the compiler generated sizes of structures that must be laid
4843 	 * out in specific ways for hardware access.
4844 	 */
4845 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4846 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4847 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4848 	/* xhci_device_control has eight fields, and also
4849 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4850 	 */
4851 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4852 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4853 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4854 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4855 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4856 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4857 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4858 	return 0;
4859 unreg_pci:
4860 	xhci_unregister_pci();
4861 	return retval;
4862 }
4863 module_init(xhci_hcd_init);
4864 
4865 static void __exit xhci_hcd_cleanup(void)
4866 {
4867 	xhci_unregister_pci();
4868 	xhci_unregister_plat();
4869 }
4870 module_exit(xhci_hcd_cleanup);
4871