xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 	u32	result;
57 
58 	do {
59 		result = readl(ptr);
60 		if (result == ~(u32)0)		/* card removed */
61 			return -ENODEV;
62 		result &= mask;
63 		if (result == done)
64 			return 0;
65 		udelay(1);
66 		usec--;
67 	} while (usec > 0);
68 	return -ETIMEDOUT;
69 }
70 
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 	u32 halted;
77 	u32 cmd;
78 	u32 mask;
79 
80 	mask = ~(XHCI_IRQS);
81 	halted = readl(&xhci->op_regs->status) & STS_HALT;
82 	if (!halted)
83 		mask &= ~CMD_RUN;
84 
85 	cmd = readl(&xhci->op_regs->command);
86 	cmd &= mask;
87 	writel(cmd, &xhci->op_regs->command);
88 }
89 
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 	int ret;
101 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 	xhci_quiesce(xhci);
103 
104 	ret = xhci_handshake(&xhci->op_regs->status,
105 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 	if (ret) {
107 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 		return ret;
109 	}
110 	xhci->xhc_state |= XHCI_STATE_HALTED;
111 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = readl(&xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 			temp);
127 	writel(temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = xhci_handshake(&xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		/* clear state flags. Including dying, halted or removing */
141 		xhci->xhc_state = 0;
142 
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = readl(&xhci->op_regs->status);
160 
161 	if (state == ~(u32)0) {
162 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 		return -ENODEV;
164 	}
165 
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	/* Existing Intel xHCI controllers require a delay of 1 mS,
177 	 * after setting the CMD_RESET bit, and before accessing any
178 	 * HC registers. This allows the HC to complete the
179 	 * reset operation and be ready for HC register access.
180 	 * Without this delay, the subsequent HC register access,
181 	 * may result in a system hang very rarely.
182 	 */
183 	if (xhci->quirks & XHCI_INTEL_HOST)
184 		udelay(1000);
185 
186 	ret = xhci_handshake(&xhci->op_regs->command,
187 			CMD_RESET, 0, 10 * 1000 * 1000);
188 	if (ret)
189 		return ret;
190 
191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; i++) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	/*
221 	 * TODO:Check with MSI Soc for sysdev
222 	 */
223 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 
225 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 	if (ret < 0) {
227 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 				"failed to allocate MSI entry");
229 		return ret;
230 	}
231 
232 	ret = request_irq(pdev->irq, xhci_msi_irq,
233 				0, "xhci_hcd", xhci_to_hcd(xhci));
234 	if (ret) {
235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 				"disable MSI interrupt");
237 		pci_free_irq_vectors(pdev);
238 	}
239 
240 	return ret;
241 }
242 
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 	int i, ret = 0;
249 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251 
252 	/*
253 	 * calculate number of msi-x vectors supported.
254 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
256 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 	 *   Add additional 1 vector to ensure always available interrupt.
258 	 */
259 	xhci->msix_count = min(num_online_cpus() + 1,
260 				HCS_MAX_INTRS(xhci->hcs_params1));
261 
262 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 			PCI_IRQ_MSIX);
264 	if (ret < 0) {
265 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 				"Failed to enable MSI-X");
267 		return ret;
268 	}
269 
270 	for (i = 0; i < xhci->msix_count; i++) {
271 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 				"xhci_hcd", xhci_to_hcd(xhci));
273 		if (ret)
274 			goto disable_msix;
275 	}
276 
277 	hcd->msix_enabled = 1;
278 	return ret;
279 
280 disable_msix:
281 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 	while (--i >= 0)
283 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 	pci_free_irq_vectors(pdev);
285 	return ret;
286 }
287 
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293 
294 	if (xhci->quirks & XHCI_PLAT)
295 		return;
296 
297 	/* return if using legacy interrupt */
298 	if (hcd->irq > 0)
299 		return;
300 
301 	if (hcd->msix_enabled) {
302 		int i;
303 
304 		for (i = 0; i < xhci->msix_count; i++)
305 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 	} else {
307 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 	}
309 
310 	pci_free_irq_vectors(pdev);
311 	hcd->msix_enabled = 0;
312 }
313 
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
317 
318 	if (hcd->msix_enabled) {
319 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 		int i;
321 
322 		for (i = 0; i < xhci->msix_count; i++)
323 			synchronize_irq(pci_irq_vector(pdev, i));
324 	}
325 }
326 
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 	struct pci_dev  *pdev;
331 	int ret;
332 
333 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
334 	if (xhci->quirks & XHCI_PLAT)
335 		return 0;
336 
337 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 	/*
339 	 * Some Fresco Logic host controllers advertise MSI, but fail to
340 	 * generate interrupts.  Don't even try to enable MSI.
341 	 */
342 	if (xhci->quirks & XHCI_BROKEN_MSI)
343 		goto legacy_irq;
344 
345 	/* unregister the legacy interrupt */
346 	if (hcd->irq)
347 		free_irq(hcd->irq, hcd);
348 	hcd->irq = 0;
349 
350 	ret = xhci_setup_msix(xhci);
351 	if (ret)
352 		/* fall back to msi*/
353 		ret = xhci_setup_msi(xhci);
354 
355 	if (!ret) {
356 		hcd->msi_enabled = 1;
357 		return 0;
358 	}
359 
360 	if (!pdev->irq) {
361 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 		return -EINVAL;
363 	}
364 
365  legacy_irq:
366 	if (!strlen(hcd->irq_descr))
367 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 			 hcd->driver->description, hcd->self.busnum);
369 
370 	/* fall back to legacy interrupt*/
371 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 			hcd->irq_descr, hcd);
373 	if (ret) {
374 		xhci_err(xhci, "request interrupt %d failed\n",
375 				pdev->irq);
376 		return ret;
377 	}
378 	hcd->irq = pdev->irq;
379 	return 0;
380 }
381 
382 #else
383 
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 	return 0;
387 }
388 
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392 
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396 
397 #endif
398 
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 	struct xhci_hcd *xhci;
402 	struct usb_hcd *hcd;
403 	struct xhci_hub *rhub;
404 	u32 temp;
405 	int i;
406 
407 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
408 	rhub = &xhci->usb3_rhub;
409 
410 	for (i = 0; i < rhub->num_ports; i++) {
411 		temp = readl(rhub->ports[i]->addr);
412 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
413 			/*
414 			 * Compliance Mode Detected. Letting USB Core
415 			 * handle the Warm Reset
416 			 */
417 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
418 					"Compliance mode detected->port %d",
419 					i + 1);
420 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
421 					"Attempting compliance mode recovery");
422 			hcd = xhci->shared_hcd;
423 
424 			if (hcd->state == HC_STATE_SUSPENDED)
425 				usb_hcd_resume_root_hub(hcd);
426 
427 			usb_hcd_poll_rh_status(hcd);
428 		}
429 	}
430 
431 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
432 		mod_timer(&xhci->comp_mode_recovery_timer,
433 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435 
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448 	xhci->port_status_u0 = 0;
449 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
450 		    0);
451 	xhci->comp_mode_recovery_timer.expires = jiffies +
452 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
453 
454 	add_timer(&xhci->comp_mode_recovery_timer);
455 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 			"Compliance mode recovery timer initialized");
457 }
458 
459 /*
460  * This function identifies the systems that have installed the SN65LVPE502CP
461  * USB3.0 re-driver and that need the Compliance Mode Quirk.
462  * Systems:
463  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
464  */
465 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
466 {
467 	const char *dmi_product_name, *dmi_sys_vendor;
468 
469 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
470 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
471 	if (!dmi_product_name || !dmi_sys_vendor)
472 		return false;
473 
474 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
475 		return false;
476 
477 	if (strstr(dmi_product_name, "Z420") ||
478 			strstr(dmi_product_name, "Z620") ||
479 			strstr(dmi_product_name, "Z820") ||
480 			strstr(dmi_product_name, "Z1 Workstation"))
481 		return true;
482 
483 	return false;
484 }
485 
486 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
487 {
488 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
489 }
490 
491 
492 /*
493  * Initialize memory for HCD and xHC (one-time init).
494  *
495  * Program the PAGESIZE register, initialize the device context array, create
496  * device contexts (?), set up a command ring segment (or two?), create event
497  * ring (one for now).
498  */
499 static int xhci_init(struct usb_hcd *hcd)
500 {
501 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502 	int retval = 0;
503 
504 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
505 	spin_lock_init(&xhci->lock);
506 	if (xhci->hci_version == 0x95 && link_quirk) {
507 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
508 				"QUIRK: Not clearing Link TRB chain bits.");
509 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
510 	} else {
511 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
512 				"xHCI doesn't need link TRB QUIRK");
513 	}
514 	retval = xhci_mem_init(xhci, GFP_KERNEL);
515 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
516 
517 	/* Initializing Compliance Mode Recovery Data If Needed */
518 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
519 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
520 		compliance_mode_recovery_timer_init(xhci);
521 	}
522 
523 	return retval;
524 }
525 
526 /*-------------------------------------------------------------------------*/
527 
528 
529 static int xhci_run_finished(struct xhci_hcd *xhci)
530 {
531 	if (xhci_start(xhci)) {
532 		xhci_halt(xhci);
533 		return -ENODEV;
534 	}
535 	xhci->shared_hcd->state = HC_STATE_RUNNING;
536 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
537 
538 	if (xhci->quirks & XHCI_NEC_HOST)
539 		xhci_ring_cmd_db(xhci);
540 
541 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
542 			"Finished xhci_run for USB3 roothub");
543 	return 0;
544 }
545 
546 /*
547  * Start the HC after it was halted.
548  *
549  * This function is called by the USB core when the HC driver is added.
550  * Its opposite is xhci_stop().
551  *
552  * xhci_init() must be called once before this function can be called.
553  * Reset the HC, enable device slot contexts, program DCBAAP, and
554  * set command ring pointer and event ring pointer.
555  *
556  * Setup MSI-X vectors and enable interrupts.
557  */
558 int xhci_run(struct usb_hcd *hcd)
559 {
560 	u32 temp;
561 	u64 temp_64;
562 	int ret;
563 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
564 
565 	/* Start the xHCI host controller running only after the USB 2.0 roothub
566 	 * is setup.
567 	 */
568 
569 	hcd->uses_new_polling = 1;
570 	if (!usb_hcd_is_primary_hcd(hcd))
571 		return xhci_run_finished(xhci);
572 
573 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
574 
575 	ret = xhci_try_enable_msi(hcd);
576 	if (ret)
577 		return ret;
578 
579 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
580 	temp_64 &= ~ERST_PTR_MASK;
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"// Set the interrupt modulation register");
586 	temp = readl(&xhci->ir_set->irq_control);
587 	temp &= ~ER_IRQ_INTERVAL_MASK;
588 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
589 	writel(temp, &xhci->ir_set->irq_control);
590 
591 	/* Set the HCD state before we enable the irqs */
592 	temp = readl(&xhci->op_regs->command);
593 	temp |= (CMD_EIE);
594 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595 			"// Enable interrupts, cmd = 0x%x.", temp);
596 	writel(temp, &xhci->op_regs->command);
597 
598 	temp = readl(&xhci->ir_set->irq_pending);
599 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
600 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
601 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
602 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
603 
604 	if (xhci->quirks & XHCI_NEC_HOST) {
605 		struct xhci_command *command;
606 
607 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
608 		if (!command)
609 			return -ENOMEM;
610 
611 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
612 				TRB_TYPE(TRB_NEC_GET_FW));
613 		if (ret)
614 			xhci_free_command(xhci, command);
615 	}
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617 			"Finished xhci_run for USB2 roothub");
618 
619 	xhci_dbc_init(xhci);
620 
621 	xhci_debugfs_init(xhci);
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(xhci_run);
626 
627 /*
628  * Stop xHCI driver.
629  *
630  * This function is called by the USB core when the HC driver is removed.
631  * Its opposite is xhci_run().
632  *
633  * Disable device contexts, disable IRQs, and quiesce the HC.
634  * Reset the HC, finish any completed transactions, and cleanup memory.
635  */
636 static void xhci_stop(struct usb_hcd *hcd)
637 {
638 	u32 temp;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	mutex_lock(&xhci->mutex);
642 
643 	/* Only halt host and free memory after both hcds are removed */
644 	if (!usb_hcd_is_primary_hcd(hcd)) {
645 		/* usb core will free this hcd shortly, unset pointer */
646 		xhci->shared_hcd = NULL;
647 		mutex_unlock(&xhci->mutex);
648 		return;
649 	}
650 
651 	xhci_dbc_exit(xhci);
652 
653 	spin_lock_irq(&xhci->lock);
654 	xhci->xhc_state |= XHCI_STATE_HALTED;
655 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
656 	xhci_halt(xhci);
657 	xhci_reset(xhci);
658 	spin_unlock_irq(&xhci->lock);
659 
660 	xhci_cleanup_msix(xhci);
661 
662 	/* Deleting Compliance Mode Recovery Timer */
663 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
664 			(!(xhci_all_ports_seen_u0(xhci)))) {
665 		del_timer_sync(&xhci->comp_mode_recovery_timer);
666 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
667 				"%s: compliance mode recovery timer deleted",
668 				__func__);
669 	}
670 
671 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
672 		usb_amd_dev_put();
673 
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"// Disabling event ring interrupts");
676 	temp = readl(&xhci->op_regs->status);
677 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
678 	temp = readl(&xhci->ir_set->irq_pending);
679 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
680 
681 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
682 	xhci_mem_cleanup(xhci);
683 	xhci_debugfs_exit(xhci);
684 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
685 			"xhci_stop completed - status = %x",
686 			readl(&xhci->op_regs->status));
687 	mutex_unlock(&xhci->mutex);
688 }
689 
690 /*
691  * Shutdown HC (not bus-specific)
692  *
693  * This is called when the machine is rebooting or halting.  We assume that the
694  * machine will be powered off, and the HC's internal state will be reset.
695  * Don't bother to free memory.
696  *
697  * This will only ever be called with the main usb_hcd (the USB3 roothub).
698  */
699 static void xhci_shutdown(struct usb_hcd *hcd)
700 {
701 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
702 
703 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
704 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
705 
706 	spin_lock_irq(&xhci->lock);
707 	xhci_halt(xhci);
708 	/* Workaround for spurious wakeups at shutdown with HSW */
709 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
710 		xhci_reset(xhci);
711 	spin_unlock_irq(&xhci->lock);
712 
713 	xhci_cleanup_msix(xhci);
714 
715 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716 			"xhci_shutdown completed - status = %x",
717 			readl(&xhci->op_regs->status));
718 
719 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
720 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
721 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
722 }
723 
724 #ifdef CONFIG_PM
725 static void xhci_save_registers(struct xhci_hcd *xhci)
726 {
727 	xhci->s3.command = readl(&xhci->op_regs->command);
728 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
729 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
730 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
731 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
732 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
733 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
734 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
735 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
736 }
737 
738 static void xhci_restore_registers(struct xhci_hcd *xhci)
739 {
740 	writel(xhci->s3.command, &xhci->op_regs->command);
741 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
742 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
743 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
744 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
745 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
746 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
747 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
748 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
749 }
750 
751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 	u64	val_64;
754 
755 	/* step 2: initialize command ring buffer */
756 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 				      xhci->cmd_ring->dequeue) &
760 		 (u64) ~CMD_RING_RSVD_BITS) |
761 		xhci->cmd_ring->cycle_state;
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"// Setting command ring address to 0x%llx",
764 			(long unsigned long) val_64);
765 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767 
768 /*
769  * The whole command ring must be cleared to zero when we suspend the host.
770  *
771  * The host doesn't save the command ring pointer in the suspend well, so we
772  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
773  * aligned, because of the reserved bits in the command ring dequeue pointer
774  * register.  Therefore, we can't just set the dequeue pointer back in the
775  * middle of the ring (TRBs are 16-byte aligned).
776  */
777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 	struct xhci_ring *ring;
780 	struct xhci_segment *seg;
781 
782 	ring = xhci->cmd_ring;
783 	seg = ring->deq_seg;
784 	do {
785 		memset(seg->trbs, 0,
786 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
787 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
788 			cpu_to_le32(~TRB_CYCLE);
789 		seg = seg->next;
790 	} while (seg != ring->deq_seg);
791 
792 	/* Reset the software enqueue and dequeue pointers */
793 	ring->deq_seg = ring->first_seg;
794 	ring->dequeue = ring->first_seg->trbs;
795 	ring->enq_seg = ring->deq_seg;
796 	ring->enqueue = ring->dequeue;
797 
798 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
799 	/*
800 	 * Ring is now zeroed, so the HW should look for change of ownership
801 	 * when the cycle bit is set to 1.
802 	 */
803 	ring->cycle_state = 1;
804 
805 	/*
806 	 * Reset the hardware dequeue pointer.
807 	 * Yes, this will need to be re-written after resume, but we're paranoid
808 	 * and want to make sure the hardware doesn't access bogus memory
809 	 * because, say, the BIOS or an SMI started the host without changing
810 	 * the command ring pointers.
811 	 */
812 	xhci_set_cmd_ring_deq(xhci);
813 }
814 
815 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
816 {
817 	struct xhci_port **ports;
818 	int port_index;
819 	unsigned long flags;
820 	u32 t1, t2;
821 
822 	spin_lock_irqsave(&xhci->lock, flags);
823 
824 	/* disable usb3 ports Wake bits */
825 	port_index = xhci->usb3_rhub.num_ports;
826 	ports = xhci->usb3_rhub.ports;
827 	while (port_index--) {
828 		t1 = readl(ports[port_index]->addr);
829 		t1 = xhci_port_state_to_neutral(t1);
830 		t2 = t1 & ~PORT_WAKE_BITS;
831 		if (t1 != t2)
832 			writel(t2, ports[port_index]->addr);
833 	}
834 
835 	/* disable usb2 ports Wake bits */
836 	port_index = xhci->usb2_rhub.num_ports;
837 	ports = xhci->usb2_rhub.ports;
838 	while (port_index--) {
839 		t1 = readl(ports[port_index]->addr);
840 		t1 = xhci_port_state_to_neutral(t1);
841 		t2 = t1 & ~PORT_WAKE_BITS;
842 		if (t1 != t2)
843 			writel(t2, ports[port_index]->addr);
844 	}
845 
846 	spin_unlock_irqrestore(&xhci->lock, flags);
847 }
848 
849 /*
850  * Stop HC (not bus-specific)
851  *
852  * This is called when the machine transition into S3/S4 mode.
853  *
854  */
855 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
856 {
857 	int			rc = 0;
858 	unsigned int		delay = XHCI_MAX_HALT_USEC;
859 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
860 	u32			command;
861 
862 	if (!hcd->state)
863 		return 0;
864 
865 	if (hcd->state != HC_STATE_SUSPENDED ||
866 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
867 		return -EINVAL;
868 
869 	xhci_dbc_suspend(xhci);
870 
871 	/* Clear root port wake on bits if wakeup not allowed. */
872 	if (!do_wakeup)
873 		xhci_disable_port_wake_on_bits(xhci);
874 
875 	/* Don't poll the roothubs on bus suspend. */
876 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
877 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
878 	del_timer_sync(&hcd->rh_timer);
879 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 	del_timer_sync(&xhci->shared_hcd->rh_timer);
881 
882 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
883 		usleep_range(1000, 1500);
884 
885 	spin_lock_irq(&xhci->lock);
886 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
888 	/* step 1: stop endpoint */
889 	/* skipped assuming that port suspend has done */
890 
891 	/* step 2: clear Run/Stop bit */
892 	command = readl(&xhci->op_regs->command);
893 	command &= ~CMD_RUN;
894 	writel(command, &xhci->op_regs->command);
895 
896 	/* Some chips from Fresco Logic need an extraordinary delay */
897 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
898 
899 	if (xhci_handshake(&xhci->op_regs->status,
900 		      STS_HALT, STS_HALT, delay)) {
901 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
902 		spin_unlock_irq(&xhci->lock);
903 		return -ETIMEDOUT;
904 	}
905 	xhci_clear_command_ring(xhci);
906 
907 	/* step 3: save registers */
908 	xhci_save_registers(xhci);
909 
910 	/* step 4: set CSS flag */
911 	command = readl(&xhci->op_regs->command);
912 	command |= CMD_CSS;
913 	writel(command, &xhci->op_regs->command);
914 	if (xhci_handshake(&xhci->op_regs->status,
915 				STS_SAVE, 0, 10 * 1000)) {
916 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
917 		spin_unlock_irq(&xhci->lock);
918 		return -ETIMEDOUT;
919 	}
920 	spin_unlock_irq(&xhci->lock);
921 
922 	/*
923 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
924 	 * is about to be suspended.
925 	 */
926 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
927 			(!(xhci_all_ports_seen_u0(xhci)))) {
928 		del_timer_sync(&xhci->comp_mode_recovery_timer);
929 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
930 				"%s: compliance mode recovery timer deleted",
931 				__func__);
932 	}
933 
934 	/* step 5: remove core well power */
935 	/* synchronize irq when using MSI-X */
936 	xhci_msix_sync_irqs(xhci);
937 
938 	return rc;
939 }
940 EXPORT_SYMBOL_GPL(xhci_suspend);
941 
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950 	u32			command, temp = 0, status;
951 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
952 	struct usb_hcd		*secondary_hcd;
953 	int			retval = 0;
954 	bool			comp_timer_running = false;
955 
956 	if (!hcd->state)
957 		return 0;
958 
959 	/* Wait a bit if either of the roothubs need to settle from the
960 	 * transition into bus suspend.
961 	 */
962 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
963 			time_before(jiffies,
964 				xhci->bus_state[1].next_statechange))
965 		msleep(100);
966 
967 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969 
970 	spin_lock_irq(&xhci->lock);
971 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
972 		hibernated = true;
973 
974 	if (!hibernated) {
975 		/* step 1: restore register */
976 		xhci_restore_registers(xhci);
977 		/* step 2: initialize command ring buffer */
978 		xhci_set_cmd_ring_deq(xhci);
979 		/* step 3: restore state and start state*/
980 		/* step 3: set CRS flag */
981 		command = readl(&xhci->op_regs->command);
982 		command |= CMD_CRS;
983 		writel(command, &xhci->op_regs->command);
984 		if (xhci_handshake(&xhci->op_regs->status,
985 			      STS_RESTORE, 0, 10 * 1000)) {
986 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
987 			spin_unlock_irq(&xhci->lock);
988 			return -ETIMEDOUT;
989 		}
990 		temp = readl(&xhci->op_regs->status);
991 	}
992 
993 	/* If restore operation fails, re-initialize the HC during resume */
994 	if ((temp & STS_SRE) || hibernated) {
995 
996 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997 				!(xhci_all_ports_seen_u0(xhci))) {
998 			del_timer_sync(&xhci->comp_mode_recovery_timer);
999 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000 				"Compliance Mode Recovery Timer deleted!");
1001 		}
1002 
1003 		/* Let the USB core know _both_ roothubs lost power. */
1004 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1005 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1006 
1007 		xhci_dbg(xhci, "Stop HCD\n");
1008 		xhci_halt(xhci);
1009 		xhci_reset(xhci);
1010 		spin_unlock_irq(&xhci->lock);
1011 		xhci_cleanup_msix(xhci);
1012 
1013 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1014 		temp = readl(&xhci->op_regs->status);
1015 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1016 		temp = readl(&xhci->ir_set->irq_pending);
1017 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1018 
1019 		xhci_dbg(xhci, "cleaning up memory\n");
1020 		xhci_mem_cleanup(xhci);
1021 		xhci_debugfs_exit(xhci);
1022 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023 			    readl(&xhci->op_regs->status));
1024 
1025 		/* USB core calls the PCI reinit and start functions twice:
1026 		 * first with the primary HCD, and then with the secondary HCD.
1027 		 * If we don't do the same, the host will never be started.
1028 		 */
1029 		if (!usb_hcd_is_primary_hcd(hcd))
1030 			secondary_hcd = hcd;
1031 		else
1032 			secondary_hcd = xhci->shared_hcd;
1033 
1034 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035 		retval = xhci_init(hcd->primary_hcd);
1036 		if (retval)
1037 			return retval;
1038 		comp_timer_running = true;
1039 
1040 		xhci_dbg(xhci, "Start the primary HCD\n");
1041 		retval = xhci_run(hcd->primary_hcd);
1042 		if (!retval) {
1043 			xhci_dbg(xhci, "Start the secondary HCD\n");
1044 			retval = xhci_run(secondary_hcd);
1045 		}
1046 		hcd->state = HC_STATE_SUSPENDED;
1047 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1048 		goto done;
1049 	}
1050 
1051 	/* step 4: set Run/Stop bit */
1052 	command = readl(&xhci->op_regs->command);
1053 	command |= CMD_RUN;
1054 	writel(command, &xhci->op_regs->command);
1055 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056 		  0, 250 * 1000);
1057 
1058 	/* step 5: walk topology and initialize portsc,
1059 	 * portpmsc and portli
1060 	 */
1061 	/* this is done in bus_resume */
1062 
1063 	/* step 6: restart each of the previously
1064 	 * Running endpoints by ringing their doorbells
1065 	 */
1066 
1067 	spin_unlock_irq(&xhci->lock);
1068 
1069 	xhci_dbc_resume(xhci);
1070 
1071  done:
1072 	if (retval == 0) {
1073 		/* Resume root hubs only when have pending events. */
1074 		status = readl(&xhci->op_regs->status);
1075 		if (status & STS_EINT) {
1076 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1077 			usb_hcd_resume_root_hub(hcd);
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1083 	 * be re-initialized Always after a system resume. Ports are subject
1084 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1085 	 * ports have entered previously to U0 before system's suspension.
1086 	 */
1087 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1088 		compliance_mode_recovery_timer_init(xhci);
1089 
1090 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1091 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1092 
1093 	/* Re-enable port polling. */
1094 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1095 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1096 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1097 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1098 	usb_hcd_poll_rh_status(hcd);
1099 
1100 	return retval;
1101 }
1102 EXPORT_SYMBOL_GPL(xhci_resume);
1103 #endif	/* CONFIG_PM */
1104 
1105 /*-------------------------------------------------------------------------*/
1106 
1107 /**
1108  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1109  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1110  * value to right shift 1 for the bitmask.
1111  *
1112  * Index  = (epnum * 2) + direction - 1,
1113  * where direction = 0 for OUT, 1 for IN.
1114  * For control endpoints, the IN index is used (OUT index is unused), so
1115  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1116  */
1117 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1118 {
1119 	unsigned int index;
1120 	if (usb_endpoint_xfer_control(desc))
1121 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1122 	else
1123 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1124 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1125 	return index;
1126 }
1127 
1128 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1129  * address from the XHCI endpoint index.
1130  */
1131 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1132 {
1133 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1134 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1135 	return direction | number;
1136 }
1137 
1138 /* Find the flag for this endpoint (for use in the control context).  Use the
1139  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1140  * bit 1, etc.
1141  */
1142 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1143 {
1144 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1145 }
1146 
1147 /* Find the flag for this endpoint (for use in the control context).  Use the
1148  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1149  * bit 1, etc.
1150  */
1151 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1152 {
1153 	return 1 << (ep_index + 1);
1154 }
1155 
1156 /* Compute the last valid endpoint context index.  Basically, this is the
1157  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1158  * we find the most significant bit set in the added contexts flags.
1159  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1160  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1161  */
1162 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1163 {
1164 	return fls(added_ctxs) - 1;
1165 }
1166 
1167 /* Returns 1 if the arguments are OK;
1168  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1169  */
1170 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1171 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1172 		const char *func) {
1173 	struct xhci_hcd	*xhci;
1174 	struct xhci_virt_device	*virt_dev;
1175 
1176 	if (!hcd || (check_ep && !ep) || !udev) {
1177 		pr_debug("xHCI %s called with invalid args\n", func);
1178 		return -EINVAL;
1179 	}
1180 	if (!udev->parent) {
1181 		pr_debug("xHCI %s called for root hub\n", func);
1182 		return 0;
1183 	}
1184 
1185 	xhci = hcd_to_xhci(hcd);
1186 	if (check_virt_dev) {
1187 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1188 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1189 					func);
1190 			return -EINVAL;
1191 		}
1192 
1193 		virt_dev = xhci->devs[udev->slot_id];
1194 		if (virt_dev->udev != udev) {
1195 			xhci_dbg(xhci, "xHCI %s called with udev and "
1196 					  "virt_dev does not match\n", func);
1197 			return -EINVAL;
1198 		}
1199 	}
1200 
1201 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1202 		return -ENODEV;
1203 
1204 	return 1;
1205 }
1206 
1207 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1208 		struct usb_device *udev, struct xhci_command *command,
1209 		bool ctx_change, bool must_succeed);
1210 
1211 /*
1212  * Full speed devices may have a max packet size greater than 8 bytes, but the
1213  * USB core doesn't know that until it reads the first 8 bytes of the
1214  * descriptor.  If the usb_device's max packet size changes after that point,
1215  * we need to issue an evaluate context command and wait on it.
1216  */
1217 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1218 		unsigned int ep_index, struct urb *urb)
1219 {
1220 	struct xhci_container_ctx *out_ctx;
1221 	struct xhci_input_control_ctx *ctrl_ctx;
1222 	struct xhci_ep_ctx *ep_ctx;
1223 	struct xhci_command *command;
1224 	int max_packet_size;
1225 	int hw_max_packet_size;
1226 	int ret = 0;
1227 
1228 	out_ctx = xhci->devs[slot_id]->out_ctx;
1229 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1230 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1231 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1232 	if (hw_max_packet_size != max_packet_size) {
1233 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234 				"Max Packet Size for ep 0 changed.");
1235 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1236 				"Max packet size in usb_device = %d",
1237 				max_packet_size);
1238 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1239 				"Max packet size in xHCI HW = %d",
1240 				hw_max_packet_size);
1241 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1242 				"Issuing evaluate context command.");
1243 
1244 		/* Set up the input context flags for the command */
1245 		/* FIXME: This won't work if a non-default control endpoint
1246 		 * changes max packet sizes.
1247 		 */
1248 
1249 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1250 		if (!command)
1251 			return -ENOMEM;
1252 
1253 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1254 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1255 		if (!ctrl_ctx) {
1256 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1257 					__func__);
1258 			ret = -ENOMEM;
1259 			goto command_cleanup;
1260 		}
1261 		/* Set up the modified control endpoint 0 */
1262 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1263 				xhci->devs[slot_id]->out_ctx, ep_index);
1264 
1265 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1266 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1267 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1268 
1269 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1270 		ctrl_ctx->drop_flags = 0;
1271 
1272 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1273 				true, false);
1274 
1275 		/* Clean up the input context for later use by bandwidth
1276 		 * functions.
1277 		 */
1278 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1279 command_cleanup:
1280 		kfree(command->completion);
1281 		kfree(command);
1282 	}
1283 	return ret;
1284 }
1285 
1286 /*
1287  * non-error returns are a promise to giveback() the urb later
1288  * we drop ownership so next owner (or urb unlink) can get it
1289  */
1290 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1291 {
1292 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1293 	unsigned long flags;
1294 	int ret = 0;
1295 	unsigned int slot_id, ep_index;
1296 	unsigned int *ep_state;
1297 	struct urb_priv	*urb_priv;
1298 	int num_tds;
1299 
1300 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1301 					true, true, __func__) <= 0)
1302 		return -EINVAL;
1303 
1304 	slot_id = urb->dev->slot_id;
1305 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1306 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1307 
1308 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1309 		if (!in_interrupt())
1310 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1311 		return -ESHUTDOWN;
1312 	}
1313 
1314 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1315 		num_tds = urb->number_of_packets;
1316 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1317 	    urb->transfer_buffer_length > 0 &&
1318 	    urb->transfer_flags & URB_ZERO_PACKET &&
1319 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1320 		num_tds = 2;
1321 	else
1322 		num_tds = 1;
1323 
1324 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1325 			   num_tds * sizeof(struct xhci_td), mem_flags);
1326 	if (!urb_priv)
1327 		return -ENOMEM;
1328 
1329 	urb_priv->num_tds = num_tds;
1330 	urb_priv->num_tds_done = 0;
1331 	urb->hcpriv = urb_priv;
1332 
1333 	trace_xhci_urb_enqueue(urb);
1334 
1335 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1336 		/* Check to see if the max packet size for the default control
1337 		 * endpoint changed during FS device enumeration
1338 		 */
1339 		if (urb->dev->speed == USB_SPEED_FULL) {
1340 			ret = xhci_check_maxpacket(xhci, slot_id,
1341 					ep_index, urb);
1342 			if (ret < 0) {
1343 				xhci_urb_free_priv(urb_priv);
1344 				urb->hcpriv = NULL;
1345 				return ret;
1346 			}
1347 		}
1348 	}
1349 
1350 	spin_lock_irqsave(&xhci->lock, flags);
1351 
1352 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1353 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1354 			 urb->ep->desc.bEndpointAddress, urb);
1355 		ret = -ESHUTDOWN;
1356 		goto free_priv;
1357 	}
1358 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1359 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1360 			  *ep_state);
1361 		ret = -EINVAL;
1362 		goto free_priv;
1363 	}
1364 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1365 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1366 		ret = -EINVAL;
1367 		goto free_priv;
1368 	}
1369 
1370 	switch (usb_endpoint_type(&urb->ep->desc)) {
1371 
1372 	case USB_ENDPOINT_XFER_CONTROL:
1373 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1374 					 slot_id, ep_index);
1375 		break;
1376 	case USB_ENDPOINT_XFER_BULK:
1377 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1378 					 slot_id, ep_index);
1379 		break;
1380 	case USB_ENDPOINT_XFER_INT:
1381 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1382 				slot_id, ep_index);
1383 		break;
1384 	case USB_ENDPOINT_XFER_ISOC:
1385 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1386 				slot_id, ep_index);
1387 	}
1388 
1389 	if (ret) {
1390 free_priv:
1391 		xhci_urb_free_priv(urb_priv);
1392 		urb->hcpriv = NULL;
1393 	}
1394 	spin_unlock_irqrestore(&xhci->lock, flags);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1400  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1401  * should pick up where it left off in the TD, unless a Set Transfer Ring
1402  * Dequeue Pointer is issued.
1403  *
1404  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1405  * the ring.  Since the ring is a contiguous structure, they can't be physically
1406  * removed.  Instead, there are two options:
1407  *
1408  *  1) If the HC is in the middle of processing the URB to be canceled, we
1409  *     simply move the ring's dequeue pointer past those TRBs using the Set
1410  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1411  *     when drivers timeout on the last submitted URB and attempt to cancel.
1412  *
1413  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1414  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1415  *     HC will need to invalidate the any TRBs it has cached after the stop
1416  *     endpoint command, as noted in the xHCI 0.95 errata.
1417  *
1418  *  3) The TD may have completed by the time the Stop Endpoint Command
1419  *     completes, so software needs to handle that case too.
1420  *
1421  * This function should protect against the TD enqueueing code ringing the
1422  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1423  * It also needs to account for multiple cancellations on happening at the same
1424  * time for the same endpoint.
1425  *
1426  * Note that this function can be called in any context, or so says
1427  * usb_hcd_unlink_urb()
1428  */
1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 	unsigned long flags;
1432 	int ret, i;
1433 	u32 temp;
1434 	struct xhci_hcd *xhci;
1435 	struct urb_priv	*urb_priv;
1436 	struct xhci_td *td;
1437 	unsigned int ep_index;
1438 	struct xhci_ring *ep_ring;
1439 	struct xhci_virt_ep *ep;
1440 	struct xhci_command *command;
1441 	struct xhci_virt_device *vdev;
1442 
1443 	xhci = hcd_to_xhci(hcd);
1444 	spin_lock_irqsave(&xhci->lock, flags);
1445 
1446 	trace_xhci_urb_dequeue(urb);
1447 
1448 	/* Make sure the URB hasn't completed or been unlinked already */
1449 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 	if (ret)
1451 		goto done;
1452 
1453 	/* give back URB now if we can't queue it for cancel */
1454 	vdev = xhci->devs[urb->dev->slot_id];
1455 	urb_priv = urb->hcpriv;
1456 	if (!vdev || !urb_priv)
1457 		goto err_giveback;
1458 
1459 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460 	ep = &vdev->eps[ep_index];
1461 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1462 	if (!ep || !ep_ring)
1463 		goto err_giveback;
1464 
1465 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1466 	temp = readl(&xhci->op_regs->status);
1467 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1468 		xhci_hc_died(xhci);
1469 		goto done;
1470 	}
1471 
1472 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1473 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474 				"HC halted, freeing TD manually.");
1475 		for (i = urb_priv->num_tds_done;
1476 		     i < urb_priv->num_tds;
1477 		     i++) {
1478 			td = &urb_priv->td[i];
1479 			if (!list_empty(&td->td_list))
1480 				list_del_init(&td->td_list);
1481 			if (!list_empty(&td->cancelled_td_list))
1482 				list_del_init(&td->cancelled_td_list);
1483 		}
1484 		goto err_giveback;
1485 	}
1486 
1487 	i = urb_priv->num_tds_done;
1488 	if (i < urb_priv->num_tds)
1489 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1490 				"Cancel URB %p, dev %s, ep 0x%x, "
1491 				"starting at offset 0x%llx",
1492 				urb, urb->dev->devpath,
1493 				urb->ep->desc.bEndpointAddress,
1494 				(unsigned long long) xhci_trb_virt_to_dma(
1495 					urb_priv->td[i].start_seg,
1496 					urb_priv->td[i].first_trb));
1497 
1498 	for (; i < urb_priv->num_tds; i++) {
1499 		td = &urb_priv->td[i];
1500 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 	}
1502 
1503 	/* Queue a stop endpoint command, but only if this is
1504 	 * the first cancellation to be handled.
1505 	 */
1506 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1507 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1508 		if (!command) {
1509 			ret = -ENOMEM;
1510 			goto done;
1511 		}
1512 		ep->ep_state |= EP_STOP_CMD_PENDING;
1513 		ep->stop_cmd_timer.expires = jiffies +
1514 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 		add_timer(&ep->stop_cmd_timer);
1516 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1517 					 ep_index, 0);
1518 		xhci_ring_cmd_db(xhci);
1519 	}
1520 done:
1521 	spin_unlock_irqrestore(&xhci->lock, flags);
1522 	return ret;
1523 
1524 err_giveback:
1525 	if (urb_priv)
1526 		xhci_urb_free_priv(urb_priv);
1527 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1528 	spin_unlock_irqrestore(&xhci->lock, flags);
1529 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530 	return ret;
1531 }
1532 
1533 /* Drop an endpoint from a new bandwidth configuration for this device.
1534  * Only one call to this function is allowed per endpoint before
1535  * check_bandwidth() or reset_bandwidth() must be called.
1536  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1537  * add the endpoint to the schedule with possibly new parameters denoted by a
1538  * different endpoint descriptor in usb_host_endpoint.
1539  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1540  * not allowed.
1541  *
1542  * The USB core will not allow URBs to be queued to an endpoint that is being
1543  * disabled, so there's no need for mutual exclusion to protect
1544  * the xhci->devs[slot_id] structure.
1545  */
1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1547 		struct usb_host_endpoint *ep)
1548 {
1549 	struct xhci_hcd *xhci;
1550 	struct xhci_container_ctx *in_ctx, *out_ctx;
1551 	struct xhci_input_control_ctx *ctrl_ctx;
1552 	unsigned int ep_index;
1553 	struct xhci_ep_ctx *ep_ctx;
1554 	u32 drop_flag;
1555 	u32 new_add_flags, new_drop_flags;
1556 	int ret;
1557 
1558 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1559 	if (ret <= 0)
1560 		return ret;
1561 	xhci = hcd_to_xhci(hcd);
1562 	if (xhci->xhc_state & XHCI_STATE_DYING)
1563 		return -ENODEV;
1564 
1565 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1566 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1567 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1568 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1569 				__func__, drop_flag);
1570 		return 0;
1571 	}
1572 
1573 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1574 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1575 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1576 	if (!ctrl_ctx) {
1577 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1578 				__func__);
1579 		return 0;
1580 	}
1581 
1582 	ep_index = xhci_get_endpoint_index(&ep->desc);
1583 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 	/* If the HC already knows the endpoint is disabled,
1585 	 * or the HCD has noted it is disabled, ignore this request
1586 	 */
1587 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1588 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1589 	    xhci_get_endpoint_flag(&ep->desc)) {
1590 		/* Do not warn when called after a usb_device_reset */
1591 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1592 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1593 				  __func__, ep);
1594 		return 0;
1595 	}
1596 
1597 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1598 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1599 
1600 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1601 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1602 
1603 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1604 
1605 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1606 
1607 	if (xhci->quirks & XHCI_MTK_HOST)
1608 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1609 
1610 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1611 			(unsigned int) ep->desc.bEndpointAddress,
1612 			udev->slot_id,
1613 			(unsigned int) new_drop_flags,
1614 			(unsigned int) new_add_flags);
1615 	return 0;
1616 }
1617 
1618 /* Add an endpoint to a new possible bandwidth configuration for this device.
1619  * Only one call to this function is allowed per endpoint before
1620  * check_bandwidth() or reset_bandwidth() must be called.
1621  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1622  * add the endpoint to the schedule with possibly new parameters denoted by a
1623  * different endpoint descriptor in usb_host_endpoint.
1624  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1625  * not allowed.
1626  *
1627  * The USB core will not allow URBs to be queued to an endpoint until the
1628  * configuration or alt setting is installed in the device, so there's no need
1629  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1630  */
1631 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1632 		struct usb_host_endpoint *ep)
1633 {
1634 	struct xhci_hcd *xhci;
1635 	struct xhci_container_ctx *in_ctx;
1636 	unsigned int ep_index;
1637 	struct xhci_input_control_ctx *ctrl_ctx;
1638 	u32 added_ctxs;
1639 	u32 new_add_flags, new_drop_flags;
1640 	struct xhci_virt_device *virt_dev;
1641 	int ret = 0;
1642 
1643 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1644 	if (ret <= 0) {
1645 		/* So we won't queue a reset ep command for a root hub */
1646 		ep->hcpriv = NULL;
1647 		return ret;
1648 	}
1649 	xhci = hcd_to_xhci(hcd);
1650 	if (xhci->xhc_state & XHCI_STATE_DYING)
1651 		return -ENODEV;
1652 
1653 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1654 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1655 		/* FIXME when we have to issue an evaluate endpoint command to
1656 		 * deal with ep0 max packet size changing once we get the
1657 		 * descriptors
1658 		 */
1659 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1660 				__func__, added_ctxs);
1661 		return 0;
1662 	}
1663 
1664 	virt_dev = xhci->devs[udev->slot_id];
1665 	in_ctx = virt_dev->in_ctx;
1666 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1667 	if (!ctrl_ctx) {
1668 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1669 				__func__);
1670 		return 0;
1671 	}
1672 
1673 	ep_index = xhci_get_endpoint_index(&ep->desc);
1674 	/* If this endpoint is already in use, and the upper layers are trying
1675 	 * to add it again without dropping it, reject the addition.
1676 	 */
1677 	if (virt_dev->eps[ep_index].ring &&
1678 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1679 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1680 				"without dropping it.\n",
1681 				(unsigned int) ep->desc.bEndpointAddress);
1682 		return -EINVAL;
1683 	}
1684 
1685 	/* If the HCD has already noted the endpoint is enabled,
1686 	 * ignore this request.
1687 	 */
1688 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1689 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1690 				__func__, ep);
1691 		return 0;
1692 	}
1693 
1694 	/*
1695 	 * Configuration and alternate setting changes must be done in
1696 	 * process context, not interrupt context (or so documenation
1697 	 * for usb_set_interface() and usb_set_configuration() claim).
1698 	 */
1699 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1700 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1701 				__func__, ep->desc.bEndpointAddress);
1702 		return -ENOMEM;
1703 	}
1704 
1705 	if (xhci->quirks & XHCI_MTK_HOST) {
1706 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1707 		if (ret < 0) {
1708 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1709 			virt_dev->eps[ep_index].new_ring = NULL;
1710 			return ret;
1711 		}
1712 	}
1713 
1714 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1715 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1716 
1717 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1718 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1719 	 * this re-adds a new state for the endpoint from the new endpoint
1720 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1721 	 * drop flags alone.
1722 	 */
1723 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1724 
1725 	/* Store the usb_device pointer for later use */
1726 	ep->hcpriv = udev;
1727 
1728 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1729 
1730 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1731 			(unsigned int) ep->desc.bEndpointAddress,
1732 			udev->slot_id,
1733 			(unsigned int) new_drop_flags,
1734 			(unsigned int) new_add_flags);
1735 	return 0;
1736 }
1737 
1738 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1739 {
1740 	struct xhci_input_control_ctx *ctrl_ctx;
1741 	struct xhci_ep_ctx *ep_ctx;
1742 	struct xhci_slot_ctx *slot_ctx;
1743 	int i;
1744 
1745 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1746 	if (!ctrl_ctx) {
1747 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1748 				__func__);
1749 		return;
1750 	}
1751 
1752 	/* When a device's add flag and drop flag are zero, any subsequent
1753 	 * configure endpoint command will leave that endpoint's state
1754 	 * untouched.  Make sure we don't leave any old state in the input
1755 	 * endpoint contexts.
1756 	 */
1757 	ctrl_ctx->drop_flags = 0;
1758 	ctrl_ctx->add_flags = 0;
1759 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1760 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1761 	/* Endpoint 0 is always valid */
1762 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1763 	for (i = 1; i < 31; i++) {
1764 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1765 		ep_ctx->ep_info = 0;
1766 		ep_ctx->ep_info2 = 0;
1767 		ep_ctx->deq = 0;
1768 		ep_ctx->tx_info = 0;
1769 	}
1770 }
1771 
1772 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1773 		struct usb_device *udev, u32 *cmd_status)
1774 {
1775 	int ret;
1776 
1777 	switch (*cmd_status) {
1778 	case COMP_COMMAND_ABORTED:
1779 	case COMP_COMMAND_RING_STOPPED:
1780 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1781 		ret = -ETIME;
1782 		break;
1783 	case COMP_RESOURCE_ERROR:
1784 		dev_warn(&udev->dev,
1785 			 "Not enough host controller resources for new device state.\n");
1786 		ret = -ENOMEM;
1787 		/* FIXME: can we allocate more resources for the HC? */
1788 		break;
1789 	case COMP_BANDWIDTH_ERROR:
1790 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1791 		dev_warn(&udev->dev,
1792 			 "Not enough bandwidth for new device state.\n");
1793 		ret = -ENOSPC;
1794 		/* FIXME: can we go back to the old state? */
1795 		break;
1796 	case COMP_TRB_ERROR:
1797 		/* the HCD set up something wrong */
1798 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1799 				"add flag = 1, "
1800 				"and endpoint is not disabled.\n");
1801 		ret = -EINVAL;
1802 		break;
1803 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1804 		dev_warn(&udev->dev,
1805 			 "ERROR: Incompatible device for endpoint configure command.\n");
1806 		ret = -ENODEV;
1807 		break;
1808 	case COMP_SUCCESS:
1809 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1810 				"Successful Endpoint Configure command");
1811 		ret = 0;
1812 		break;
1813 	default:
1814 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1815 				*cmd_status);
1816 		ret = -EINVAL;
1817 		break;
1818 	}
1819 	return ret;
1820 }
1821 
1822 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1823 		struct usb_device *udev, u32 *cmd_status)
1824 {
1825 	int ret;
1826 
1827 	switch (*cmd_status) {
1828 	case COMP_COMMAND_ABORTED:
1829 	case COMP_COMMAND_RING_STOPPED:
1830 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1831 		ret = -ETIME;
1832 		break;
1833 	case COMP_PARAMETER_ERROR:
1834 		dev_warn(&udev->dev,
1835 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1836 		ret = -EINVAL;
1837 		break;
1838 	case COMP_SLOT_NOT_ENABLED_ERROR:
1839 		dev_warn(&udev->dev,
1840 			"WARN: slot not enabled for evaluate context command.\n");
1841 		ret = -EINVAL;
1842 		break;
1843 	case COMP_CONTEXT_STATE_ERROR:
1844 		dev_warn(&udev->dev,
1845 			"WARN: invalid context state for evaluate context command.\n");
1846 		ret = -EINVAL;
1847 		break;
1848 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1849 		dev_warn(&udev->dev,
1850 			"ERROR: Incompatible device for evaluate context command.\n");
1851 		ret = -ENODEV;
1852 		break;
1853 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1854 		/* Max Exit Latency too large error */
1855 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1856 		ret = -EINVAL;
1857 		break;
1858 	case COMP_SUCCESS:
1859 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1860 				"Successful evaluate context command");
1861 		ret = 0;
1862 		break;
1863 	default:
1864 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1865 			*cmd_status);
1866 		ret = -EINVAL;
1867 		break;
1868 	}
1869 	return ret;
1870 }
1871 
1872 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1873 		struct xhci_input_control_ctx *ctrl_ctx)
1874 {
1875 	u32 valid_add_flags;
1876 	u32 valid_drop_flags;
1877 
1878 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1879 	 * (bit 1).  The default control endpoint is added during the Address
1880 	 * Device command and is never removed until the slot is disabled.
1881 	 */
1882 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1883 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1884 
1885 	/* Use hweight32 to count the number of ones in the add flags, or
1886 	 * number of endpoints added.  Don't count endpoints that are changed
1887 	 * (both added and dropped).
1888 	 */
1889 	return hweight32(valid_add_flags) -
1890 		hweight32(valid_add_flags & valid_drop_flags);
1891 }
1892 
1893 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1894 		struct xhci_input_control_ctx *ctrl_ctx)
1895 {
1896 	u32 valid_add_flags;
1897 	u32 valid_drop_flags;
1898 
1899 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1900 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1901 
1902 	return hweight32(valid_drop_flags) -
1903 		hweight32(valid_add_flags & valid_drop_flags);
1904 }
1905 
1906 /*
1907  * We need to reserve the new number of endpoints before the configure endpoint
1908  * command completes.  We can't subtract the dropped endpoints from the number
1909  * of active endpoints until the command completes because we can oversubscribe
1910  * the host in this case:
1911  *
1912  *  - the first configure endpoint command drops more endpoints than it adds
1913  *  - a second configure endpoint command that adds more endpoints is queued
1914  *  - the first configure endpoint command fails, so the config is unchanged
1915  *  - the second command may succeed, even though there isn't enough resources
1916  *
1917  * Must be called with xhci->lock held.
1918  */
1919 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1920 		struct xhci_input_control_ctx *ctrl_ctx)
1921 {
1922 	u32 added_eps;
1923 
1924 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1925 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1926 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1927 				"Not enough ep ctxs: "
1928 				"%u active, need to add %u, limit is %u.",
1929 				xhci->num_active_eps, added_eps,
1930 				xhci->limit_active_eps);
1931 		return -ENOMEM;
1932 	}
1933 	xhci->num_active_eps += added_eps;
1934 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1935 			"Adding %u ep ctxs, %u now active.", added_eps,
1936 			xhci->num_active_eps);
1937 	return 0;
1938 }
1939 
1940 /*
1941  * The configure endpoint was failed by the xHC for some other reason, so we
1942  * need to revert the resources that failed configuration would have used.
1943  *
1944  * Must be called with xhci->lock held.
1945  */
1946 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1947 		struct xhci_input_control_ctx *ctrl_ctx)
1948 {
1949 	u32 num_failed_eps;
1950 
1951 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1952 	xhci->num_active_eps -= num_failed_eps;
1953 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1954 			"Removing %u failed ep ctxs, %u now active.",
1955 			num_failed_eps,
1956 			xhci->num_active_eps);
1957 }
1958 
1959 /*
1960  * Now that the command has completed, clean up the active endpoint count by
1961  * subtracting out the endpoints that were dropped (but not changed).
1962  *
1963  * Must be called with xhci->lock held.
1964  */
1965 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1966 		struct xhci_input_control_ctx *ctrl_ctx)
1967 {
1968 	u32 num_dropped_eps;
1969 
1970 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1971 	xhci->num_active_eps -= num_dropped_eps;
1972 	if (num_dropped_eps)
1973 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1974 				"Removing %u dropped ep ctxs, %u now active.",
1975 				num_dropped_eps,
1976 				xhci->num_active_eps);
1977 }
1978 
1979 static unsigned int xhci_get_block_size(struct usb_device *udev)
1980 {
1981 	switch (udev->speed) {
1982 	case USB_SPEED_LOW:
1983 	case USB_SPEED_FULL:
1984 		return FS_BLOCK;
1985 	case USB_SPEED_HIGH:
1986 		return HS_BLOCK;
1987 	case USB_SPEED_SUPER:
1988 	case USB_SPEED_SUPER_PLUS:
1989 		return SS_BLOCK;
1990 	case USB_SPEED_UNKNOWN:
1991 	case USB_SPEED_WIRELESS:
1992 	default:
1993 		/* Should never happen */
1994 		return 1;
1995 	}
1996 }
1997 
1998 static unsigned int
1999 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2000 {
2001 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2002 		return LS_OVERHEAD;
2003 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2004 		return FS_OVERHEAD;
2005 	return HS_OVERHEAD;
2006 }
2007 
2008 /* If we are changing a LS/FS device under a HS hub,
2009  * make sure (if we are activating a new TT) that the HS bus has enough
2010  * bandwidth for this new TT.
2011  */
2012 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2013 		struct xhci_virt_device *virt_dev,
2014 		int old_active_eps)
2015 {
2016 	struct xhci_interval_bw_table *bw_table;
2017 	struct xhci_tt_bw_info *tt_info;
2018 
2019 	/* Find the bandwidth table for the root port this TT is attached to. */
2020 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2021 	tt_info = virt_dev->tt_info;
2022 	/* If this TT already had active endpoints, the bandwidth for this TT
2023 	 * has already been added.  Removing all periodic endpoints (and thus
2024 	 * making the TT enactive) will only decrease the bandwidth used.
2025 	 */
2026 	if (old_active_eps)
2027 		return 0;
2028 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2029 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2030 			return -ENOMEM;
2031 		return 0;
2032 	}
2033 	/* Not sure why we would have no new active endpoints...
2034 	 *
2035 	 * Maybe because of an Evaluate Context change for a hub update or a
2036 	 * control endpoint 0 max packet size change?
2037 	 * FIXME: skip the bandwidth calculation in that case.
2038 	 */
2039 	return 0;
2040 }
2041 
2042 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2043 		struct xhci_virt_device *virt_dev)
2044 {
2045 	unsigned int bw_reserved;
2046 
2047 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2048 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2049 		return -ENOMEM;
2050 
2051 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2052 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2053 		return -ENOMEM;
2054 
2055 	return 0;
2056 }
2057 
2058 /*
2059  * This algorithm is a very conservative estimate of the worst-case scheduling
2060  * scenario for any one interval.  The hardware dynamically schedules the
2061  * packets, so we can't tell which microframe could be the limiting factor in
2062  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2063  *
2064  * Obviously, we can't solve an NP complete problem to find the minimum worst
2065  * case scenario.  Instead, we come up with an estimate that is no less than
2066  * the worst case bandwidth used for any one microframe, but may be an
2067  * over-estimate.
2068  *
2069  * We walk the requirements for each endpoint by interval, starting with the
2070  * smallest interval, and place packets in the schedule where there is only one
2071  * possible way to schedule packets for that interval.  In order to simplify
2072  * this algorithm, we record the largest max packet size for each interval, and
2073  * assume all packets will be that size.
2074  *
2075  * For interval 0, we obviously must schedule all packets for each interval.
2076  * The bandwidth for interval 0 is just the amount of data to be transmitted
2077  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2078  * the number of packets).
2079  *
2080  * For interval 1, we have two possible microframes to schedule those packets
2081  * in.  For this algorithm, if we can schedule the same number of packets for
2082  * each possible scheduling opportunity (each microframe), we will do so.  The
2083  * remaining number of packets will be saved to be transmitted in the gaps in
2084  * the next interval's scheduling sequence.
2085  *
2086  * As we move those remaining packets to be scheduled with interval 2 packets,
2087  * we have to double the number of remaining packets to transmit.  This is
2088  * because the intervals are actually powers of 2, and we would be transmitting
2089  * the previous interval's packets twice in this interval.  We also have to be
2090  * sure that when we look at the largest max packet size for this interval, we
2091  * also look at the largest max packet size for the remaining packets and take
2092  * the greater of the two.
2093  *
2094  * The algorithm continues to evenly distribute packets in each scheduling
2095  * opportunity, and push the remaining packets out, until we get to the last
2096  * interval.  Then those packets and their associated overhead are just added
2097  * to the bandwidth used.
2098  */
2099 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2100 		struct xhci_virt_device *virt_dev,
2101 		int old_active_eps)
2102 {
2103 	unsigned int bw_reserved;
2104 	unsigned int max_bandwidth;
2105 	unsigned int bw_used;
2106 	unsigned int block_size;
2107 	struct xhci_interval_bw_table *bw_table;
2108 	unsigned int packet_size = 0;
2109 	unsigned int overhead = 0;
2110 	unsigned int packets_transmitted = 0;
2111 	unsigned int packets_remaining = 0;
2112 	unsigned int i;
2113 
2114 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2115 		return xhci_check_ss_bw(xhci, virt_dev);
2116 
2117 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2118 		max_bandwidth = HS_BW_LIMIT;
2119 		/* Convert percent of bus BW reserved to blocks reserved */
2120 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2121 	} else {
2122 		max_bandwidth = FS_BW_LIMIT;
2123 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2124 	}
2125 
2126 	bw_table = virt_dev->bw_table;
2127 	/* We need to translate the max packet size and max ESIT payloads into
2128 	 * the units the hardware uses.
2129 	 */
2130 	block_size = xhci_get_block_size(virt_dev->udev);
2131 
2132 	/* If we are manipulating a LS/FS device under a HS hub, double check
2133 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2134 	 */
2135 	if (virt_dev->tt_info) {
2136 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 				"Recalculating BW for rootport %u",
2138 				virt_dev->real_port);
2139 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2140 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2141 					"newly activated TT.\n");
2142 			return -ENOMEM;
2143 		}
2144 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 				"Recalculating BW for TT slot %u port %u",
2146 				virt_dev->tt_info->slot_id,
2147 				virt_dev->tt_info->ttport);
2148 	} else {
2149 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150 				"Recalculating BW for rootport %u",
2151 				virt_dev->real_port);
2152 	}
2153 
2154 	/* Add in how much bandwidth will be used for interval zero, or the
2155 	 * rounded max ESIT payload + number of packets * largest overhead.
2156 	 */
2157 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2158 		bw_table->interval_bw[0].num_packets *
2159 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2160 
2161 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2162 		unsigned int bw_added;
2163 		unsigned int largest_mps;
2164 		unsigned int interval_overhead;
2165 
2166 		/*
2167 		 * How many packets could we transmit in this interval?
2168 		 * If packets didn't fit in the previous interval, we will need
2169 		 * to transmit that many packets twice within this interval.
2170 		 */
2171 		packets_remaining = 2 * packets_remaining +
2172 			bw_table->interval_bw[i].num_packets;
2173 
2174 		/* Find the largest max packet size of this or the previous
2175 		 * interval.
2176 		 */
2177 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2178 			largest_mps = 0;
2179 		else {
2180 			struct xhci_virt_ep *virt_ep;
2181 			struct list_head *ep_entry;
2182 
2183 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2184 			virt_ep = list_entry(ep_entry,
2185 					struct xhci_virt_ep, bw_endpoint_list);
2186 			/* Convert to blocks, rounding up */
2187 			largest_mps = DIV_ROUND_UP(
2188 					virt_ep->bw_info.max_packet_size,
2189 					block_size);
2190 		}
2191 		if (largest_mps > packet_size)
2192 			packet_size = largest_mps;
2193 
2194 		/* Use the larger overhead of this or the previous interval. */
2195 		interval_overhead = xhci_get_largest_overhead(
2196 				&bw_table->interval_bw[i]);
2197 		if (interval_overhead > overhead)
2198 			overhead = interval_overhead;
2199 
2200 		/* How many packets can we evenly distribute across
2201 		 * (1 << (i + 1)) possible scheduling opportunities?
2202 		 */
2203 		packets_transmitted = packets_remaining >> (i + 1);
2204 
2205 		/* Add in the bandwidth used for those scheduled packets */
2206 		bw_added = packets_transmitted * (overhead + packet_size);
2207 
2208 		/* How many packets do we have remaining to transmit? */
2209 		packets_remaining = packets_remaining % (1 << (i + 1));
2210 
2211 		/* What largest max packet size should those packets have? */
2212 		/* If we've transmitted all packets, don't carry over the
2213 		 * largest packet size.
2214 		 */
2215 		if (packets_remaining == 0) {
2216 			packet_size = 0;
2217 			overhead = 0;
2218 		} else if (packets_transmitted > 0) {
2219 			/* Otherwise if we do have remaining packets, and we've
2220 			 * scheduled some packets in this interval, take the
2221 			 * largest max packet size from endpoints with this
2222 			 * interval.
2223 			 */
2224 			packet_size = largest_mps;
2225 			overhead = interval_overhead;
2226 		}
2227 		/* Otherwise carry over packet_size and overhead from the last
2228 		 * time we had a remainder.
2229 		 */
2230 		bw_used += bw_added;
2231 		if (bw_used > max_bandwidth) {
2232 			xhci_warn(xhci, "Not enough bandwidth. "
2233 					"Proposed: %u, Max: %u\n",
2234 				bw_used, max_bandwidth);
2235 			return -ENOMEM;
2236 		}
2237 	}
2238 	/*
2239 	 * Ok, we know we have some packets left over after even-handedly
2240 	 * scheduling interval 15.  We don't know which microframes they will
2241 	 * fit into, so we over-schedule and say they will be scheduled every
2242 	 * microframe.
2243 	 */
2244 	if (packets_remaining > 0)
2245 		bw_used += overhead + packet_size;
2246 
2247 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2248 		unsigned int port_index = virt_dev->real_port - 1;
2249 
2250 		/* OK, we're manipulating a HS device attached to a
2251 		 * root port bandwidth domain.  Include the number of active TTs
2252 		 * in the bandwidth used.
2253 		 */
2254 		bw_used += TT_HS_OVERHEAD *
2255 			xhci->rh_bw[port_index].num_active_tts;
2256 	}
2257 
2258 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2259 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2260 		"Available: %u " "percent",
2261 		bw_used, max_bandwidth, bw_reserved,
2262 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2263 		max_bandwidth);
2264 
2265 	bw_used += bw_reserved;
2266 	if (bw_used > max_bandwidth) {
2267 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2268 				bw_used, max_bandwidth);
2269 		return -ENOMEM;
2270 	}
2271 
2272 	bw_table->bw_used = bw_used;
2273 	return 0;
2274 }
2275 
2276 static bool xhci_is_async_ep(unsigned int ep_type)
2277 {
2278 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2279 					ep_type != ISOC_IN_EP &&
2280 					ep_type != INT_IN_EP);
2281 }
2282 
2283 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2284 {
2285 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2286 }
2287 
2288 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2289 {
2290 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2291 
2292 	if (ep_bw->ep_interval == 0)
2293 		return SS_OVERHEAD_BURST +
2294 			(ep_bw->mult * ep_bw->num_packets *
2295 					(SS_OVERHEAD + mps));
2296 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2297 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2298 				1 << ep_bw->ep_interval);
2299 
2300 }
2301 
2302 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2303 		struct xhci_bw_info *ep_bw,
2304 		struct xhci_interval_bw_table *bw_table,
2305 		struct usb_device *udev,
2306 		struct xhci_virt_ep *virt_ep,
2307 		struct xhci_tt_bw_info *tt_info)
2308 {
2309 	struct xhci_interval_bw	*interval_bw;
2310 	int normalized_interval;
2311 
2312 	if (xhci_is_async_ep(ep_bw->type))
2313 		return;
2314 
2315 	if (udev->speed >= USB_SPEED_SUPER) {
2316 		if (xhci_is_sync_in_ep(ep_bw->type))
2317 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2318 				xhci_get_ss_bw_consumed(ep_bw);
2319 		else
2320 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2321 				xhci_get_ss_bw_consumed(ep_bw);
2322 		return;
2323 	}
2324 
2325 	/* SuperSpeed endpoints never get added to intervals in the table, so
2326 	 * this check is only valid for HS/FS/LS devices.
2327 	 */
2328 	if (list_empty(&virt_ep->bw_endpoint_list))
2329 		return;
2330 	/* For LS/FS devices, we need to translate the interval expressed in
2331 	 * microframes to frames.
2332 	 */
2333 	if (udev->speed == USB_SPEED_HIGH)
2334 		normalized_interval = ep_bw->ep_interval;
2335 	else
2336 		normalized_interval = ep_bw->ep_interval - 3;
2337 
2338 	if (normalized_interval == 0)
2339 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2340 	interval_bw = &bw_table->interval_bw[normalized_interval];
2341 	interval_bw->num_packets -= ep_bw->num_packets;
2342 	switch (udev->speed) {
2343 	case USB_SPEED_LOW:
2344 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2345 		break;
2346 	case USB_SPEED_FULL:
2347 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2348 		break;
2349 	case USB_SPEED_HIGH:
2350 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2351 		break;
2352 	case USB_SPEED_SUPER:
2353 	case USB_SPEED_SUPER_PLUS:
2354 	case USB_SPEED_UNKNOWN:
2355 	case USB_SPEED_WIRELESS:
2356 		/* Should never happen because only LS/FS/HS endpoints will get
2357 		 * added to the endpoint list.
2358 		 */
2359 		return;
2360 	}
2361 	if (tt_info)
2362 		tt_info->active_eps -= 1;
2363 	list_del_init(&virt_ep->bw_endpoint_list);
2364 }
2365 
2366 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2367 		struct xhci_bw_info *ep_bw,
2368 		struct xhci_interval_bw_table *bw_table,
2369 		struct usb_device *udev,
2370 		struct xhci_virt_ep *virt_ep,
2371 		struct xhci_tt_bw_info *tt_info)
2372 {
2373 	struct xhci_interval_bw	*interval_bw;
2374 	struct xhci_virt_ep *smaller_ep;
2375 	int normalized_interval;
2376 
2377 	if (xhci_is_async_ep(ep_bw->type))
2378 		return;
2379 
2380 	if (udev->speed == USB_SPEED_SUPER) {
2381 		if (xhci_is_sync_in_ep(ep_bw->type))
2382 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2383 				xhci_get_ss_bw_consumed(ep_bw);
2384 		else
2385 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2386 				xhci_get_ss_bw_consumed(ep_bw);
2387 		return;
2388 	}
2389 
2390 	/* For LS/FS devices, we need to translate the interval expressed in
2391 	 * microframes to frames.
2392 	 */
2393 	if (udev->speed == USB_SPEED_HIGH)
2394 		normalized_interval = ep_bw->ep_interval;
2395 	else
2396 		normalized_interval = ep_bw->ep_interval - 3;
2397 
2398 	if (normalized_interval == 0)
2399 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2400 	interval_bw = &bw_table->interval_bw[normalized_interval];
2401 	interval_bw->num_packets += ep_bw->num_packets;
2402 	switch (udev->speed) {
2403 	case USB_SPEED_LOW:
2404 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2405 		break;
2406 	case USB_SPEED_FULL:
2407 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2408 		break;
2409 	case USB_SPEED_HIGH:
2410 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2411 		break;
2412 	case USB_SPEED_SUPER:
2413 	case USB_SPEED_SUPER_PLUS:
2414 	case USB_SPEED_UNKNOWN:
2415 	case USB_SPEED_WIRELESS:
2416 		/* Should never happen because only LS/FS/HS endpoints will get
2417 		 * added to the endpoint list.
2418 		 */
2419 		return;
2420 	}
2421 
2422 	if (tt_info)
2423 		tt_info->active_eps += 1;
2424 	/* Insert the endpoint into the list, largest max packet size first. */
2425 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2426 			bw_endpoint_list) {
2427 		if (ep_bw->max_packet_size >=
2428 				smaller_ep->bw_info.max_packet_size) {
2429 			/* Add the new ep before the smaller endpoint */
2430 			list_add_tail(&virt_ep->bw_endpoint_list,
2431 					&smaller_ep->bw_endpoint_list);
2432 			return;
2433 		}
2434 	}
2435 	/* Add the new endpoint at the end of the list. */
2436 	list_add_tail(&virt_ep->bw_endpoint_list,
2437 			&interval_bw->endpoints);
2438 }
2439 
2440 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2441 		struct xhci_virt_device *virt_dev,
2442 		int old_active_eps)
2443 {
2444 	struct xhci_root_port_bw_info *rh_bw_info;
2445 	if (!virt_dev->tt_info)
2446 		return;
2447 
2448 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2449 	if (old_active_eps == 0 &&
2450 				virt_dev->tt_info->active_eps != 0) {
2451 		rh_bw_info->num_active_tts += 1;
2452 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2453 	} else if (old_active_eps != 0 &&
2454 				virt_dev->tt_info->active_eps == 0) {
2455 		rh_bw_info->num_active_tts -= 1;
2456 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2457 	}
2458 }
2459 
2460 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2461 		struct xhci_virt_device *virt_dev,
2462 		struct xhci_container_ctx *in_ctx)
2463 {
2464 	struct xhci_bw_info ep_bw_info[31];
2465 	int i;
2466 	struct xhci_input_control_ctx *ctrl_ctx;
2467 	int old_active_eps = 0;
2468 
2469 	if (virt_dev->tt_info)
2470 		old_active_eps = virt_dev->tt_info->active_eps;
2471 
2472 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2473 	if (!ctrl_ctx) {
2474 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2475 				__func__);
2476 		return -ENOMEM;
2477 	}
2478 
2479 	for (i = 0; i < 31; i++) {
2480 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2481 			continue;
2482 
2483 		/* Make a copy of the BW info in case we need to revert this */
2484 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2485 				sizeof(ep_bw_info[i]));
2486 		/* Drop the endpoint from the interval table if the endpoint is
2487 		 * being dropped or changed.
2488 		 */
2489 		if (EP_IS_DROPPED(ctrl_ctx, i))
2490 			xhci_drop_ep_from_interval_table(xhci,
2491 					&virt_dev->eps[i].bw_info,
2492 					virt_dev->bw_table,
2493 					virt_dev->udev,
2494 					&virt_dev->eps[i],
2495 					virt_dev->tt_info);
2496 	}
2497 	/* Overwrite the information stored in the endpoints' bw_info */
2498 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2499 	for (i = 0; i < 31; i++) {
2500 		/* Add any changed or added endpoints to the interval table */
2501 		if (EP_IS_ADDED(ctrl_ctx, i))
2502 			xhci_add_ep_to_interval_table(xhci,
2503 					&virt_dev->eps[i].bw_info,
2504 					virt_dev->bw_table,
2505 					virt_dev->udev,
2506 					&virt_dev->eps[i],
2507 					virt_dev->tt_info);
2508 	}
2509 
2510 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2511 		/* Ok, this fits in the bandwidth we have.
2512 		 * Update the number of active TTs.
2513 		 */
2514 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2515 		return 0;
2516 	}
2517 
2518 	/* We don't have enough bandwidth for this, revert the stored info. */
2519 	for (i = 0; i < 31; i++) {
2520 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2521 			continue;
2522 
2523 		/* Drop the new copies of any added or changed endpoints from
2524 		 * the interval table.
2525 		 */
2526 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2527 			xhci_drop_ep_from_interval_table(xhci,
2528 					&virt_dev->eps[i].bw_info,
2529 					virt_dev->bw_table,
2530 					virt_dev->udev,
2531 					&virt_dev->eps[i],
2532 					virt_dev->tt_info);
2533 		}
2534 		/* Revert the endpoint back to its old information */
2535 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2536 				sizeof(ep_bw_info[i]));
2537 		/* Add any changed or dropped endpoints back into the table */
2538 		if (EP_IS_DROPPED(ctrl_ctx, i))
2539 			xhci_add_ep_to_interval_table(xhci,
2540 					&virt_dev->eps[i].bw_info,
2541 					virt_dev->bw_table,
2542 					virt_dev->udev,
2543 					&virt_dev->eps[i],
2544 					virt_dev->tt_info);
2545 	}
2546 	return -ENOMEM;
2547 }
2548 
2549 
2550 /* Issue a configure endpoint command or evaluate context command
2551  * and wait for it to finish.
2552  */
2553 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2554 		struct usb_device *udev,
2555 		struct xhci_command *command,
2556 		bool ctx_change, bool must_succeed)
2557 {
2558 	int ret;
2559 	unsigned long flags;
2560 	struct xhci_input_control_ctx *ctrl_ctx;
2561 	struct xhci_virt_device *virt_dev;
2562 	struct xhci_slot_ctx *slot_ctx;
2563 
2564 	if (!command)
2565 		return -EINVAL;
2566 
2567 	spin_lock_irqsave(&xhci->lock, flags);
2568 
2569 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2570 		spin_unlock_irqrestore(&xhci->lock, flags);
2571 		return -ESHUTDOWN;
2572 	}
2573 
2574 	virt_dev = xhci->devs[udev->slot_id];
2575 
2576 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2577 	if (!ctrl_ctx) {
2578 		spin_unlock_irqrestore(&xhci->lock, flags);
2579 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2580 				__func__);
2581 		return -ENOMEM;
2582 	}
2583 
2584 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2585 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2586 		spin_unlock_irqrestore(&xhci->lock, flags);
2587 		xhci_warn(xhci, "Not enough host resources, "
2588 				"active endpoint contexts = %u\n",
2589 				xhci->num_active_eps);
2590 		return -ENOMEM;
2591 	}
2592 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2593 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2594 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2595 			xhci_free_host_resources(xhci, ctrl_ctx);
2596 		spin_unlock_irqrestore(&xhci->lock, flags);
2597 		xhci_warn(xhci, "Not enough bandwidth\n");
2598 		return -ENOMEM;
2599 	}
2600 
2601 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2602 	trace_xhci_configure_endpoint(slot_ctx);
2603 
2604 	if (!ctx_change)
2605 		ret = xhci_queue_configure_endpoint(xhci, command,
2606 				command->in_ctx->dma,
2607 				udev->slot_id, must_succeed);
2608 	else
2609 		ret = xhci_queue_evaluate_context(xhci, command,
2610 				command->in_ctx->dma,
2611 				udev->slot_id, must_succeed);
2612 	if (ret < 0) {
2613 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2614 			xhci_free_host_resources(xhci, ctrl_ctx);
2615 		spin_unlock_irqrestore(&xhci->lock, flags);
2616 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2617 				"FIXME allocate a new ring segment");
2618 		return -ENOMEM;
2619 	}
2620 	xhci_ring_cmd_db(xhci);
2621 	spin_unlock_irqrestore(&xhci->lock, flags);
2622 
2623 	/* Wait for the configure endpoint command to complete */
2624 	wait_for_completion(command->completion);
2625 
2626 	if (!ctx_change)
2627 		ret = xhci_configure_endpoint_result(xhci, udev,
2628 						     &command->status);
2629 	else
2630 		ret = xhci_evaluate_context_result(xhci, udev,
2631 						   &command->status);
2632 
2633 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2634 		spin_lock_irqsave(&xhci->lock, flags);
2635 		/* If the command failed, remove the reserved resources.
2636 		 * Otherwise, clean up the estimate to include dropped eps.
2637 		 */
2638 		if (ret)
2639 			xhci_free_host_resources(xhci, ctrl_ctx);
2640 		else
2641 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2642 		spin_unlock_irqrestore(&xhci->lock, flags);
2643 	}
2644 	return ret;
2645 }
2646 
2647 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2648 	struct xhci_virt_device *vdev, int i)
2649 {
2650 	struct xhci_virt_ep *ep = &vdev->eps[i];
2651 
2652 	if (ep->ep_state & EP_HAS_STREAMS) {
2653 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2654 				xhci_get_endpoint_address(i));
2655 		xhci_free_stream_info(xhci, ep->stream_info);
2656 		ep->stream_info = NULL;
2657 		ep->ep_state &= ~EP_HAS_STREAMS;
2658 	}
2659 }
2660 
2661 /* Called after one or more calls to xhci_add_endpoint() or
2662  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2663  * to call xhci_reset_bandwidth().
2664  *
2665  * Since we are in the middle of changing either configuration or
2666  * installing a new alt setting, the USB core won't allow URBs to be
2667  * enqueued for any endpoint on the old config or interface.  Nothing
2668  * else should be touching the xhci->devs[slot_id] structure, so we
2669  * don't need to take the xhci->lock for manipulating that.
2670  */
2671 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2672 {
2673 	int i;
2674 	int ret = 0;
2675 	struct xhci_hcd *xhci;
2676 	struct xhci_virt_device	*virt_dev;
2677 	struct xhci_input_control_ctx *ctrl_ctx;
2678 	struct xhci_slot_ctx *slot_ctx;
2679 	struct xhci_command *command;
2680 
2681 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2682 	if (ret <= 0)
2683 		return ret;
2684 	xhci = hcd_to_xhci(hcd);
2685 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2686 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2687 		return -ENODEV;
2688 
2689 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2690 	virt_dev = xhci->devs[udev->slot_id];
2691 
2692 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2693 	if (!command)
2694 		return -ENOMEM;
2695 
2696 	command->in_ctx = virt_dev->in_ctx;
2697 
2698 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2699 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2700 	if (!ctrl_ctx) {
2701 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2702 				__func__);
2703 		ret = -ENOMEM;
2704 		goto command_cleanup;
2705 	}
2706 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2707 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2708 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2709 
2710 	/* Don't issue the command if there's no endpoints to update. */
2711 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2712 	    ctrl_ctx->drop_flags == 0) {
2713 		ret = 0;
2714 		goto command_cleanup;
2715 	}
2716 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2717 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2718 	for (i = 31; i >= 1; i--) {
2719 		__le32 le32 = cpu_to_le32(BIT(i));
2720 
2721 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2722 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2723 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2724 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2725 			break;
2726 		}
2727 	}
2728 
2729 	ret = xhci_configure_endpoint(xhci, udev, command,
2730 			false, false);
2731 	if (ret)
2732 		/* Callee should call reset_bandwidth() */
2733 		goto command_cleanup;
2734 
2735 	/* Free any rings that were dropped, but not changed. */
2736 	for (i = 1; i < 31; i++) {
2737 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2738 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2739 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2740 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2741 		}
2742 	}
2743 	xhci_zero_in_ctx(xhci, virt_dev);
2744 	/*
2745 	 * Install any rings for completely new endpoints or changed endpoints,
2746 	 * and free any old rings from changed endpoints.
2747 	 */
2748 	for (i = 1; i < 31; i++) {
2749 		if (!virt_dev->eps[i].new_ring)
2750 			continue;
2751 		/* Only free the old ring if it exists.
2752 		 * It may not if this is the first add of an endpoint.
2753 		 */
2754 		if (virt_dev->eps[i].ring) {
2755 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2756 		}
2757 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2758 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2759 		virt_dev->eps[i].new_ring = NULL;
2760 	}
2761 command_cleanup:
2762 	kfree(command->completion);
2763 	kfree(command);
2764 
2765 	return ret;
2766 }
2767 
2768 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2769 {
2770 	struct xhci_hcd *xhci;
2771 	struct xhci_virt_device	*virt_dev;
2772 	int i, ret;
2773 
2774 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2775 	if (ret <= 0)
2776 		return;
2777 	xhci = hcd_to_xhci(hcd);
2778 
2779 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2780 	virt_dev = xhci->devs[udev->slot_id];
2781 	/* Free any rings allocated for added endpoints */
2782 	for (i = 0; i < 31; i++) {
2783 		if (virt_dev->eps[i].new_ring) {
2784 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2785 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2786 			virt_dev->eps[i].new_ring = NULL;
2787 		}
2788 	}
2789 	xhci_zero_in_ctx(xhci, virt_dev);
2790 }
2791 
2792 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2793 		struct xhci_container_ctx *in_ctx,
2794 		struct xhci_container_ctx *out_ctx,
2795 		struct xhci_input_control_ctx *ctrl_ctx,
2796 		u32 add_flags, u32 drop_flags)
2797 {
2798 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2799 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2800 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2801 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2802 }
2803 
2804 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2805 		unsigned int slot_id, unsigned int ep_index,
2806 		struct xhci_dequeue_state *deq_state)
2807 {
2808 	struct xhci_input_control_ctx *ctrl_ctx;
2809 	struct xhci_container_ctx *in_ctx;
2810 	struct xhci_ep_ctx *ep_ctx;
2811 	u32 added_ctxs;
2812 	dma_addr_t addr;
2813 
2814 	in_ctx = xhci->devs[slot_id]->in_ctx;
2815 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2816 	if (!ctrl_ctx) {
2817 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818 				__func__);
2819 		return;
2820 	}
2821 
2822 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2823 			xhci->devs[slot_id]->out_ctx, ep_index);
2824 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2825 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2826 			deq_state->new_deq_ptr);
2827 	if (addr == 0) {
2828 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2829 				"reset ep command\n");
2830 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2831 				deq_state->new_deq_seg,
2832 				deq_state->new_deq_ptr);
2833 		return;
2834 	}
2835 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2836 
2837 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2838 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2839 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2840 			added_ctxs, added_ctxs);
2841 }
2842 
2843 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2844 			       unsigned int stream_id, struct xhci_td *td)
2845 {
2846 	struct xhci_dequeue_state deq_state;
2847 	struct usb_device *udev = td->urb->dev;
2848 
2849 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2850 			"Cleaning up stalled endpoint ring");
2851 	/* We need to move the HW's dequeue pointer past this TD,
2852 	 * or it will attempt to resend it on the next doorbell ring.
2853 	 */
2854 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2855 			ep_index, stream_id, td, &deq_state);
2856 
2857 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2858 		return;
2859 
2860 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2861 	 * issue a configure endpoint command later.
2862 	 */
2863 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2864 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2865 				"Queueing new dequeue state");
2866 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2867 				ep_index, &deq_state);
2868 	} else {
2869 		/* Better hope no one uses the input context between now and the
2870 		 * reset endpoint completion!
2871 		 * XXX: No idea how this hardware will react when stream rings
2872 		 * are enabled.
2873 		 */
2874 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2875 				"Setting up input context for "
2876 				"configure endpoint command");
2877 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2878 				ep_index, &deq_state);
2879 	}
2880 }
2881 
2882 /*
2883  * Called after usb core issues a clear halt control message.
2884  * The host side of the halt should already be cleared by a reset endpoint
2885  * command issued when the STALL event was received.
2886  *
2887  * The reset endpoint command may only be issued to endpoints in the halted
2888  * state. For software that wishes to reset the data toggle or sequence number
2889  * of an endpoint that isn't in the halted state this function will issue a
2890  * configure endpoint command with the Drop and Add bits set for the target
2891  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2892  */
2893 
2894 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2895 		struct usb_host_endpoint *host_ep)
2896 {
2897 	struct xhci_hcd *xhci;
2898 	struct usb_device *udev;
2899 	struct xhci_virt_device *vdev;
2900 	struct xhci_virt_ep *ep;
2901 	struct xhci_input_control_ctx *ctrl_ctx;
2902 	struct xhci_command *stop_cmd, *cfg_cmd;
2903 	unsigned int ep_index;
2904 	unsigned long flags;
2905 	u32 ep_flag;
2906 
2907 	xhci = hcd_to_xhci(hcd);
2908 	if (!host_ep->hcpriv)
2909 		return;
2910 	udev = (struct usb_device *) host_ep->hcpriv;
2911 	vdev = xhci->devs[udev->slot_id];
2912 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
2913 	ep = &vdev->eps[ep_index];
2914 
2915 	/* Bail out if toggle is already being cleared by a endpoint reset */
2916 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2917 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2918 		return;
2919 	}
2920 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2921 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
2922 	    usb_endpoint_xfer_isoc(&host_ep->desc))
2923 		return;
2924 
2925 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2926 
2927 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2928 		return;
2929 
2930 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2931 	if (!stop_cmd)
2932 		return;
2933 
2934 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2935 	if (!cfg_cmd)
2936 		goto cleanup;
2937 
2938 	spin_lock_irqsave(&xhci->lock, flags);
2939 
2940 	/* block queuing new trbs and ringing ep doorbell */
2941 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2942 
2943 	/*
2944 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
2945 	 * Driver is required to synchronously cancel all transfer request.
2946 	 * Stop the endpoint to force xHC to update the output context
2947 	 */
2948 
2949 	if (!list_empty(&ep->ring->td_list)) {
2950 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
2951 		spin_unlock_irqrestore(&xhci->lock, flags);
2952 		goto cleanup;
2953 	}
2954 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2955 	xhci_ring_cmd_db(xhci);
2956 	spin_unlock_irqrestore(&xhci->lock, flags);
2957 
2958 	wait_for_completion(stop_cmd->completion);
2959 
2960 	spin_lock_irqsave(&xhci->lock, flags);
2961 
2962 	/* config ep command clears toggle if add and drop ep flags are set */
2963 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2964 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2965 					   ctrl_ctx, ep_flag, ep_flag);
2966 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2967 
2968 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2969 				      udev->slot_id, false);
2970 	xhci_ring_cmd_db(xhci);
2971 	spin_unlock_irqrestore(&xhci->lock, flags);
2972 
2973 	wait_for_completion(cfg_cmd->completion);
2974 
2975 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2976 	xhci_free_command(xhci, cfg_cmd);
2977 cleanup:
2978 	xhci_free_command(xhci, stop_cmd);
2979 }
2980 
2981 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2982 		struct usb_device *udev, struct usb_host_endpoint *ep,
2983 		unsigned int slot_id)
2984 {
2985 	int ret;
2986 	unsigned int ep_index;
2987 	unsigned int ep_state;
2988 
2989 	if (!ep)
2990 		return -EINVAL;
2991 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2992 	if (ret <= 0)
2993 		return -EINVAL;
2994 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2995 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2996 				" descriptor for ep 0x%x does not support streams\n",
2997 				ep->desc.bEndpointAddress);
2998 		return -EINVAL;
2999 	}
3000 
3001 	ep_index = xhci_get_endpoint_index(&ep->desc);
3002 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3003 	if (ep_state & EP_HAS_STREAMS ||
3004 			ep_state & EP_GETTING_STREAMS) {
3005 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3006 				"already has streams set up.\n",
3007 				ep->desc.bEndpointAddress);
3008 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3009 				"dynamic stream context array reallocation.\n");
3010 		return -EINVAL;
3011 	}
3012 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3013 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3014 				"endpoint 0x%x; URBs are pending.\n",
3015 				ep->desc.bEndpointAddress);
3016 		return -EINVAL;
3017 	}
3018 	return 0;
3019 }
3020 
3021 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3022 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3023 {
3024 	unsigned int max_streams;
3025 
3026 	/* The stream context array size must be a power of two */
3027 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3028 	/*
3029 	 * Find out how many primary stream array entries the host controller
3030 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3031 	 * level page entries), but that's an optional feature for xHCI host
3032 	 * controllers. xHCs must support at least 4 stream IDs.
3033 	 */
3034 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3035 	if (*num_stream_ctxs > max_streams) {
3036 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3037 				max_streams);
3038 		*num_stream_ctxs = max_streams;
3039 		*num_streams = max_streams;
3040 	}
3041 }
3042 
3043 /* Returns an error code if one of the endpoint already has streams.
3044  * This does not change any data structures, it only checks and gathers
3045  * information.
3046  */
3047 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3048 		struct usb_device *udev,
3049 		struct usb_host_endpoint **eps, unsigned int num_eps,
3050 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3051 {
3052 	unsigned int max_streams;
3053 	unsigned int endpoint_flag;
3054 	int i;
3055 	int ret;
3056 
3057 	for (i = 0; i < num_eps; i++) {
3058 		ret = xhci_check_streams_endpoint(xhci, udev,
3059 				eps[i], udev->slot_id);
3060 		if (ret < 0)
3061 			return ret;
3062 
3063 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3064 		if (max_streams < (*num_streams - 1)) {
3065 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3066 					eps[i]->desc.bEndpointAddress,
3067 					max_streams);
3068 			*num_streams = max_streams+1;
3069 		}
3070 
3071 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3072 		if (*changed_ep_bitmask & endpoint_flag)
3073 			return -EINVAL;
3074 		*changed_ep_bitmask |= endpoint_flag;
3075 	}
3076 	return 0;
3077 }
3078 
3079 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3080 		struct usb_device *udev,
3081 		struct usb_host_endpoint **eps, unsigned int num_eps)
3082 {
3083 	u32 changed_ep_bitmask = 0;
3084 	unsigned int slot_id;
3085 	unsigned int ep_index;
3086 	unsigned int ep_state;
3087 	int i;
3088 
3089 	slot_id = udev->slot_id;
3090 	if (!xhci->devs[slot_id])
3091 		return 0;
3092 
3093 	for (i = 0; i < num_eps; i++) {
3094 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3095 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3096 		/* Are streams already being freed for the endpoint? */
3097 		if (ep_state & EP_GETTING_NO_STREAMS) {
3098 			xhci_warn(xhci, "WARN Can't disable streams for "
3099 					"endpoint 0x%x, "
3100 					"streams are being disabled already\n",
3101 					eps[i]->desc.bEndpointAddress);
3102 			return 0;
3103 		}
3104 		/* Are there actually any streams to free? */
3105 		if (!(ep_state & EP_HAS_STREAMS) &&
3106 				!(ep_state & EP_GETTING_STREAMS)) {
3107 			xhci_warn(xhci, "WARN Can't disable streams for "
3108 					"endpoint 0x%x, "
3109 					"streams are already disabled!\n",
3110 					eps[i]->desc.bEndpointAddress);
3111 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3112 					"with non-streams endpoint\n");
3113 			return 0;
3114 		}
3115 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3116 	}
3117 	return changed_ep_bitmask;
3118 }
3119 
3120 /*
3121  * The USB device drivers use this function (through the HCD interface in USB
3122  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3123  * coordinate mass storage command queueing across multiple endpoints (basically
3124  * a stream ID == a task ID).
3125  *
3126  * Setting up streams involves allocating the same size stream context array
3127  * for each endpoint and issuing a configure endpoint command for all endpoints.
3128  *
3129  * Don't allow the call to succeed if one endpoint only supports one stream
3130  * (which means it doesn't support streams at all).
3131  *
3132  * Drivers may get less stream IDs than they asked for, if the host controller
3133  * hardware or endpoints claim they can't support the number of requested
3134  * stream IDs.
3135  */
3136 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3137 		struct usb_host_endpoint **eps, unsigned int num_eps,
3138 		unsigned int num_streams, gfp_t mem_flags)
3139 {
3140 	int i, ret;
3141 	struct xhci_hcd *xhci;
3142 	struct xhci_virt_device *vdev;
3143 	struct xhci_command *config_cmd;
3144 	struct xhci_input_control_ctx *ctrl_ctx;
3145 	unsigned int ep_index;
3146 	unsigned int num_stream_ctxs;
3147 	unsigned int max_packet;
3148 	unsigned long flags;
3149 	u32 changed_ep_bitmask = 0;
3150 
3151 	if (!eps)
3152 		return -EINVAL;
3153 
3154 	/* Add one to the number of streams requested to account for
3155 	 * stream 0 that is reserved for xHCI usage.
3156 	 */
3157 	num_streams += 1;
3158 	xhci = hcd_to_xhci(hcd);
3159 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3160 			num_streams);
3161 
3162 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3163 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3164 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3165 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3166 		return -ENOSYS;
3167 	}
3168 
3169 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3170 	if (!config_cmd)
3171 		return -ENOMEM;
3172 
3173 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3174 	if (!ctrl_ctx) {
3175 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3176 				__func__);
3177 		xhci_free_command(xhci, config_cmd);
3178 		return -ENOMEM;
3179 	}
3180 
3181 	/* Check to make sure all endpoints are not already configured for
3182 	 * streams.  While we're at it, find the maximum number of streams that
3183 	 * all the endpoints will support and check for duplicate endpoints.
3184 	 */
3185 	spin_lock_irqsave(&xhci->lock, flags);
3186 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3187 			num_eps, &num_streams, &changed_ep_bitmask);
3188 	if (ret < 0) {
3189 		xhci_free_command(xhci, config_cmd);
3190 		spin_unlock_irqrestore(&xhci->lock, flags);
3191 		return ret;
3192 	}
3193 	if (num_streams <= 1) {
3194 		xhci_warn(xhci, "WARN: endpoints can't handle "
3195 				"more than one stream.\n");
3196 		xhci_free_command(xhci, config_cmd);
3197 		spin_unlock_irqrestore(&xhci->lock, flags);
3198 		return -EINVAL;
3199 	}
3200 	vdev = xhci->devs[udev->slot_id];
3201 	/* Mark each endpoint as being in transition, so
3202 	 * xhci_urb_enqueue() will reject all URBs.
3203 	 */
3204 	for (i = 0; i < num_eps; i++) {
3205 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3207 	}
3208 	spin_unlock_irqrestore(&xhci->lock, flags);
3209 
3210 	/* Setup internal data structures and allocate HW data structures for
3211 	 * streams (but don't install the HW structures in the input context
3212 	 * until we're sure all memory allocation succeeded).
3213 	 */
3214 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3215 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3216 			num_stream_ctxs, num_streams);
3217 
3218 	for (i = 0; i < num_eps; i++) {
3219 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3221 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3222 				num_stream_ctxs,
3223 				num_streams,
3224 				max_packet, mem_flags);
3225 		if (!vdev->eps[ep_index].stream_info)
3226 			goto cleanup;
3227 		/* Set maxPstreams in endpoint context and update deq ptr to
3228 		 * point to stream context array. FIXME
3229 		 */
3230 	}
3231 
3232 	/* Set up the input context for a configure endpoint command. */
3233 	for (i = 0; i < num_eps; i++) {
3234 		struct xhci_ep_ctx *ep_ctx;
3235 
3236 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3238 
3239 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3240 				vdev->out_ctx, ep_index);
3241 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3242 				vdev->eps[ep_index].stream_info);
3243 	}
3244 	/* Tell the HW to drop its old copy of the endpoint context info
3245 	 * and add the updated copy from the input context.
3246 	 */
3247 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3248 			vdev->out_ctx, ctrl_ctx,
3249 			changed_ep_bitmask, changed_ep_bitmask);
3250 
3251 	/* Issue and wait for the configure endpoint command */
3252 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3253 			false, false);
3254 
3255 	/* xHC rejected the configure endpoint command for some reason, so we
3256 	 * leave the old ring intact and free our internal streams data
3257 	 * structure.
3258 	 */
3259 	if (ret < 0)
3260 		goto cleanup;
3261 
3262 	spin_lock_irqsave(&xhci->lock, flags);
3263 	for (i = 0; i < num_eps; i++) {
3264 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3266 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3267 			 udev->slot_id, ep_index);
3268 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3269 	}
3270 	xhci_free_command(xhci, config_cmd);
3271 	spin_unlock_irqrestore(&xhci->lock, flags);
3272 
3273 	/* Subtract 1 for stream 0, which drivers can't use */
3274 	return num_streams - 1;
3275 
3276 cleanup:
3277 	/* If it didn't work, free the streams! */
3278 	for (i = 0; i < num_eps; i++) {
3279 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3280 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3281 		vdev->eps[ep_index].stream_info = NULL;
3282 		/* FIXME Unset maxPstreams in endpoint context and
3283 		 * update deq ptr to point to normal string ring.
3284 		 */
3285 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3286 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3287 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3288 	}
3289 	xhci_free_command(xhci, config_cmd);
3290 	return -ENOMEM;
3291 }
3292 
3293 /* Transition the endpoint from using streams to being a "normal" endpoint
3294  * without streams.
3295  *
3296  * Modify the endpoint context state, submit a configure endpoint command,
3297  * and free all endpoint rings for streams if that completes successfully.
3298  */
3299 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3300 		struct usb_host_endpoint **eps, unsigned int num_eps,
3301 		gfp_t mem_flags)
3302 {
3303 	int i, ret;
3304 	struct xhci_hcd *xhci;
3305 	struct xhci_virt_device *vdev;
3306 	struct xhci_command *command;
3307 	struct xhci_input_control_ctx *ctrl_ctx;
3308 	unsigned int ep_index;
3309 	unsigned long flags;
3310 	u32 changed_ep_bitmask;
3311 
3312 	xhci = hcd_to_xhci(hcd);
3313 	vdev = xhci->devs[udev->slot_id];
3314 
3315 	/* Set up a configure endpoint command to remove the streams rings */
3316 	spin_lock_irqsave(&xhci->lock, flags);
3317 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3318 			udev, eps, num_eps);
3319 	if (changed_ep_bitmask == 0) {
3320 		spin_unlock_irqrestore(&xhci->lock, flags);
3321 		return -EINVAL;
3322 	}
3323 
3324 	/* Use the xhci_command structure from the first endpoint.  We may have
3325 	 * allocated too many, but the driver may call xhci_free_streams() for
3326 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3327 	 */
3328 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3329 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3330 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3331 	if (!ctrl_ctx) {
3332 		spin_unlock_irqrestore(&xhci->lock, flags);
3333 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3334 				__func__);
3335 		return -EINVAL;
3336 	}
3337 
3338 	for (i = 0; i < num_eps; i++) {
3339 		struct xhci_ep_ctx *ep_ctx;
3340 
3341 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3342 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3343 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3344 			EP_GETTING_NO_STREAMS;
3345 
3346 		xhci_endpoint_copy(xhci, command->in_ctx,
3347 				vdev->out_ctx, ep_index);
3348 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3349 				&vdev->eps[ep_index]);
3350 	}
3351 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3352 			vdev->out_ctx, ctrl_ctx,
3353 			changed_ep_bitmask, changed_ep_bitmask);
3354 	spin_unlock_irqrestore(&xhci->lock, flags);
3355 
3356 	/* Issue and wait for the configure endpoint command,
3357 	 * which must succeed.
3358 	 */
3359 	ret = xhci_configure_endpoint(xhci, udev, command,
3360 			false, true);
3361 
3362 	/* xHC rejected the configure endpoint command for some reason, so we
3363 	 * leave the streams rings intact.
3364 	 */
3365 	if (ret < 0)
3366 		return ret;
3367 
3368 	spin_lock_irqsave(&xhci->lock, flags);
3369 	for (i = 0; i < num_eps; i++) {
3370 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3371 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3372 		vdev->eps[ep_index].stream_info = NULL;
3373 		/* FIXME Unset maxPstreams in endpoint context and
3374 		 * update deq ptr to point to normal string ring.
3375 		 */
3376 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3377 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3378 	}
3379 	spin_unlock_irqrestore(&xhci->lock, flags);
3380 
3381 	return 0;
3382 }
3383 
3384 /*
3385  * Deletes endpoint resources for endpoints that were active before a Reset
3386  * Device command, or a Disable Slot command.  The Reset Device command leaves
3387  * the control endpoint intact, whereas the Disable Slot command deletes it.
3388  *
3389  * Must be called with xhci->lock held.
3390  */
3391 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3392 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3393 {
3394 	int i;
3395 	unsigned int num_dropped_eps = 0;
3396 	unsigned int drop_flags = 0;
3397 
3398 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3399 		if (virt_dev->eps[i].ring) {
3400 			drop_flags |= 1 << i;
3401 			num_dropped_eps++;
3402 		}
3403 	}
3404 	xhci->num_active_eps -= num_dropped_eps;
3405 	if (num_dropped_eps)
3406 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3407 				"Dropped %u ep ctxs, flags = 0x%x, "
3408 				"%u now active.",
3409 				num_dropped_eps, drop_flags,
3410 				xhci->num_active_eps);
3411 }
3412 
3413 /*
3414  * This submits a Reset Device Command, which will set the device state to 0,
3415  * set the device address to 0, and disable all the endpoints except the default
3416  * control endpoint.  The USB core should come back and call
3417  * xhci_address_device(), and then re-set up the configuration.  If this is
3418  * called because of a usb_reset_and_verify_device(), then the old alternate
3419  * settings will be re-installed through the normal bandwidth allocation
3420  * functions.
3421  *
3422  * Wait for the Reset Device command to finish.  Remove all structures
3423  * associated with the endpoints that were disabled.  Clear the input device
3424  * structure? Reset the control endpoint 0 max packet size?
3425  *
3426  * If the virt_dev to be reset does not exist or does not match the udev,
3427  * it means the device is lost, possibly due to the xHC restore error and
3428  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3429  * re-allocate the device.
3430  */
3431 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3432 		struct usb_device *udev)
3433 {
3434 	int ret, i;
3435 	unsigned long flags;
3436 	struct xhci_hcd *xhci;
3437 	unsigned int slot_id;
3438 	struct xhci_virt_device *virt_dev;
3439 	struct xhci_command *reset_device_cmd;
3440 	struct xhci_slot_ctx *slot_ctx;
3441 	int old_active_eps = 0;
3442 
3443 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3444 	if (ret <= 0)
3445 		return ret;
3446 	xhci = hcd_to_xhci(hcd);
3447 	slot_id = udev->slot_id;
3448 	virt_dev = xhci->devs[slot_id];
3449 	if (!virt_dev) {
3450 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3451 				"not exist. Re-allocate the device\n", slot_id);
3452 		ret = xhci_alloc_dev(hcd, udev);
3453 		if (ret == 1)
3454 			return 0;
3455 		else
3456 			return -EINVAL;
3457 	}
3458 
3459 	if (virt_dev->tt_info)
3460 		old_active_eps = virt_dev->tt_info->active_eps;
3461 
3462 	if (virt_dev->udev != udev) {
3463 		/* If the virt_dev and the udev does not match, this virt_dev
3464 		 * may belong to another udev.
3465 		 * Re-allocate the device.
3466 		 */
3467 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3468 				"not match the udev. Re-allocate the device\n",
3469 				slot_id);
3470 		ret = xhci_alloc_dev(hcd, udev);
3471 		if (ret == 1)
3472 			return 0;
3473 		else
3474 			return -EINVAL;
3475 	}
3476 
3477 	/* If device is not setup, there is no point in resetting it */
3478 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3479 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3480 						SLOT_STATE_DISABLED)
3481 		return 0;
3482 
3483 	trace_xhci_discover_or_reset_device(slot_ctx);
3484 
3485 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3486 	/* Allocate the command structure that holds the struct completion.
3487 	 * Assume we're in process context, since the normal device reset
3488 	 * process has to wait for the device anyway.  Storage devices are
3489 	 * reset as part of error handling, so use GFP_NOIO instead of
3490 	 * GFP_KERNEL.
3491 	 */
3492 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3493 	if (!reset_device_cmd) {
3494 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3495 		return -ENOMEM;
3496 	}
3497 
3498 	/* Attempt to submit the Reset Device command to the command ring */
3499 	spin_lock_irqsave(&xhci->lock, flags);
3500 
3501 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3502 	if (ret) {
3503 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3504 		spin_unlock_irqrestore(&xhci->lock, flags);
3505 		goto command_cleanup;
3506 	}
3507 	xhci_ring_cmd_db(xhci);
3508 	spin_unlock_irqrestore(&xhci->lock, flags);
3509 
3510 	/* Wait for the Reset Device command to finish */
3511 	wait_for_completion(reset_device_cmd->completion);
3512 
3513 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3514 	 * unless we tried to reset a slot ID that wasn't enabled,
3515 	 * or the device wasn't in the addressed or configured state.
3516 	 */
3517 	ret = reset_device_cmd->status;
3518 	switch (ret) {
3519 	case COMP_COMMAND_ABORTED:
3520 	case COMP_COMMAND_RING_STOPPED:
3521 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3522 		ret = -ETIME;
3523 		goto command_cleanup;
3524 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3525 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3526 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3527 				slot_id,
3528 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3529 		xhci_dbg(xhci, "Not freeing device rings.\n");
3530 		/* Don't treat this as an error.  May change my mind later. */
3531 		ret = 0;
3532 		goto command_cleanup;
3533 	case COMP_SUCCESS:
3534 		xhci_dbg(xhci, "Successful reset device command.\n");
3535 		break;
3536 	default:
3537 		if (xhci_is_vendor_info_code(xhci, ret))
3538 			break;
3539 		xhci_warn(xhci, "Unknown completion code %u for "
3540 				"reset device command.\n", ret);
3541 		ret = -EINVAL;
3542 		goto command_cleanup;
3543 	}
3544 
3545 	/* Free up host controller endpoint resources */
3546 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3547 		spin_lock_irqsave(&xhci->lock, flags);
3548 		/* Don't delete the default control endpoint resources */
3549 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3550 		spin_unlock_irqrestore(&xhci->lock, flags);
3551 	}
3552 
3553 	/* Everything but endpoint 0 is disabled, so free the rings. */
3554 	for (i = 1; i < 31; i++) {
3555 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3556 
3557 		if (ep->ep_state & EP_HAS_STREAMS) {
3558 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3559 					xhci_get_endpoint_address(i));
3560 			xhci_free_stream_info(xhci, ep->stream_info);
3561 			ep->stream_info = NULL;
3562 			ep->ep_state &= ~EP_HAS_STREAMS;
3563 		}
3564 
3565 		if (ep->ring) {
3566 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3567 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3568 		}
3569 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3570 			xhci_drop_ep_from_interval_table(xhci,
3571 					&virt_dev->eps[i].bw_info,
3572 					virt_dev->bw_table,
3573 					udev,
3574 					&virt_dev->eps[i],
3575 					virt_dev->tt_info);
3576 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3577 	}
3578 	/* If necessary, update the number of active TTs on this root port */
3579 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3580 	ret = 0;
3581 
3582 command_cleanup:
3583 	xhci_free_command(xhci, reset_device_cmd);
3584 	return ret;
3585 }
3586 
3587 /*
3588  * At this point, the struct usb_device is about to go away, the device has
3589  * disconnected, and all traffic has been stopped and the endpoints have been
3590  * disabled.  Free any HC data structures associated with that device.
3591  */
3592 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3593 {
3594 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3595 	struct xhci_virt_device *virt_dev;
3596 	struct xhci_slot_ctx *slot_ctx;
3597 	int i, ret;
3598 
3599 #ifndef CONFIG_USB_DEFAULT_PERSIST
3600 	/*
3601 	 * We called pm_runtime_get_noresume when the device was attached.
3602 	 * Decrement the counter here to allow controller to runtime suspend
3603 	 * if no devices remain.
3604 	 */
3605 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3606 		pm_runtime_put_noidle(hcd->self.controller);
3607 #endif
3608 
3609 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3610 	/* If the host is halted due to driver unload, we still need to free the
3611 	 * device.
3612 	 */
3613 	if (ret <= 0 && ret != -ENODEV)
3614 		return;
3615 
3616 	virt_dev = xhci->devs[udev->slot_id];
3617 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3618 	trace_xhci_free_dev(slot_ctx);
3619 
3620 	/* Stop any wayward timer functions (which may grab the lock) */
3621 	for (i = 0; i < 31; i++) {
3622 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3623 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3624 	}
3625 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3626 	virt_dev->udev = NULL;
3627 	ret = xhci_disable_slot(xhci, udev->slot_id);
3628 	if (ret)
3629 		xhci_free_virt_device(xhci, udev->slot_id);
3630 }
3631 
3632 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3633 {
3634 	struct xhci_command *command;
3635 	unsigned long flags;
3636 	u32 state;
3637 	int ret = 0;
3638 
3639 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3640 	if (!command)
3641 		return -ENOMEM;
3642 
3643 	spin_lock_irqsave(&xhci->lock, flags);
3644 	/* Don't disable the slot if the host controller is dead. */
3645 	state = readl(&xhci->op_regs->status);
3646 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3647 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3648 		spin_unlock_irqrestore(&xhci->lock, flags);
3649 		kfree(command);
3650 		return -ENODEV;
3651 	}
3652 
3653 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3654 				slot_id);
3655 	if (ret) {
3656 		spin_unlock_irqrestore(&xhci->lock, flags);
3657 		kfree(command);
3658 		return ret;
3659 	}
3660 	xhci_ring_cmd_db(xhci);
3661 	spin_unlock_irqrestore(&xhci->lock, flags);
3662 	return ret;
3663 }
3664 
3665 /*
3666  * Checks if we have enough host controller resources for the default control
3667  * endpoint.
3668  *
3669  * Must be called with xhci->lock held.
3670  */
3671 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3672 {
3673 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3674 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 				"Not enough ep ctxs: "
3676 				"%u active, need to add 1, limit is %u.",
3677 				xhci->num_active_eps, xhci->limit_active_eps);
3678 		return -ENOMEM;
3679 	}
3680 	xhci->num_active_eps += 1;
3681 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3682 			"Adding 1 ep ctx, %u now active.",
3683 			xhci->num_active_eps);
3684 	return 0;
3685 }
3686 
3687 
3688 /*
3689  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3690  * timed out, or allocating memory failed.  Returns 1 on success.
3691  */
3692 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3693 {
3694 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3695 	struct xhci_virt_device *vdev;
3696 	struct xhci_slot_ctx *slot_ctx;
3697 	unsigned long flags;
3698 	int ret, slot_id;
3699 	struct xhci_command *command;
3700 
3701 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3702 	if (!command)
3703 		return 0;
3704 
3705 	spin_lock_irqsave(&xhci->lock, flags);
3706 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3707 	if (ret) {
3708 		spin_unlock_irqrestore(&xhci->lock, flags);
3709 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3710 		xhci_free_command(xhci, command);
3711 		return 0;
3712 	}
3713 	xhci_ring_cmd_db(xhci);
3714 	spin_unlock_irqrestore(&xhci->lock, flags);
3715 
3716 	wait_for_completion(command->completion);
3717 	slot_id = command->slot_id;
3718 
3719 	if (!slot_id || command->status != COMP_SUCCESS) {
3720 		xhci_err(xhci, "Error while assigning device slot ID\n");
3721 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3722 				HCS_MAX_SLOTS(
3723 					readl(&xhci->cap_regs->hcs_params1)));
3724 		xhci_free_command(xhci, command);
3725 		return 0;
3726 	}
3727 
3728 	xhci_free_command(xhci, command);
3729 
3730 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3731 		spin_lock_irqsave(&xhci->lock, flags);
3732 		ret = xhci_reserve_host_control_ep_resources(xhci);
3733 		if (ret) {
3734 			spin_unlock_irqrestore(&xhci->lock, flags);
3735 			xhci_warn(xhci, "Not enough host resources, "
3736 					"active endpoint contexts = %u\n",
3737 					xhci->num_active_eps);
3738 			goto disable_slot;
3739 		}
3740 		spin_unlock_irqrestore(&xhci->lock, flags);
3741 	}
3742 	/* Use GFP_NOIO, since this function can be called from
3743 	 * xhci_discover_or_reset_device(), which may be called as part of
3744 	 * mass storage driver error handling.
3745 	 */
3746 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3747 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3748 		goto disable_slot;
3749 	}
3750 	vdev = xhci->devs[slot_id];
3751 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3752 	trace_xhci_alloc_dev(slot_ctx);
3753 
3754 	udev->slot_id = slot_id;
3755 
3756 	xhci_debugfs_create_slot(xhci, slot_id);
3757 
3758 #ifndef CONFIG_USB_DEFAULT_PERSIST
3759 	/*
3760 	 * If resetting upon resume, we can't put the controller into runtime
3761 	 * suspend if there is a device attached.
3762 	 */
3763 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3764 		pm_runtime_get_noresume(hcd->self.controller);
3765 #endif
3766 
3767 	/* Is this a LS or FS device under a HS hub? */
3768 	/* Hub or peripherial? */
3769 	return 1;
3770 
3771 disable_slot:
3772 	ret = xhci_disable_slot(xhci, udev->slot_id);
3773 	if (ret)
3774 		xhci_free_virt_device(xhci, udev->slot_id);
3775 
3776 	return 0;
3777 }
3778 
3779 /*
3780  * Issue an Address Device command and optionally send a corresponding
3781  * SetAddress request to the device.
3782  */
3783 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3784 			     enum xhci_setup_dev setup)
3785 {
3786 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3787 	unsigned long flags;
3788 	struct xhci_virt_device *virt_dev;
3789 	int ret = 0;
3790 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3791 	struct xhci_slot_ctx *slot_ctx;
3792 	struct xhci_input_control_ctx *ctrl_ctx;
3793 	u64 temp_64;
3794 	struct xhci_command *command = NULL;
3795 
3796 	mutex_lock(&xhci->mutex);
3797 
3798 	if (xhci->xhc_state) {	/* dying, removing or halted */
3799 		ret = -ESHUTDOWN;
3800 		goto out;
3801 	}
3802 
3803 	if (!udev->slot_id) {
3804 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3805 				"Bad Slot ID %d", udev->slot_id);
3806 		ret = -EINVAL;
3807 		goto out;
3808 	}
3809 
3810 	virt_dev = xhci->devs[udev->slot_id];
3811 
3812 	if (WARN_ON(!virt_dev)) {
3813 		/*
3814 		 * In plug/unplug torture test with an NEC controller,
3815 		 * a zero-dereference was observed once due to virt_dev = 0.
3816 		 * Print useful debug rather than crash if it is observed again!
3817 		 */
3818 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3819 			udev->slot_id);
3820 		ret = -EINVAL;
3821 		goto out;
3822 	}
3823 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3824 	trace_xhci_setup_device_slot(slot_ctx);
3825 
3826 	if (setup == SETUP_CONTEXT_ONLY) {
3827 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3828 		    SLOT_STATE_DEFAULT) {
3829 			xhci_dbg(xhci, "Slot already in default state\n");
3830 			goto out;
3831 		}
3832 	}
3833 
3834 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3835 	if (!command) {
3836 		ret = -ENOMEM;
3837 		goto out;
3838 	}
3839 
3840 	command->in_ctx = virt_dev->in_ctx;
3841 
3842 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3843 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3844 	if (!ctrl_ctx) {
3845 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3846 				__func__);
3847 		ret = -EINVAL;
3848 		goto out;
3849 	}
3850 	/*
3851 	 * If this is the first Set Address since device plug-in or
3852 	 * virt_device realloaction after a resume with an xHCI power loss,
3853 	 * then set up the slot context.
3854 	 */
3855 	if (!slot_ctx->dev_info)
3856 		xhci_setup_addressable_virt_dev(xhci, udev);
3857 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3858 	else
3859 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3860 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3861 	ctrl_ctx->drop_flags = 0;
3862 
3863 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3865 
3866 	spin_lock_irqsave(&xhci->lock, flags);
3867 	trace_xhci_setup_device(virt_dev);
3868 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3869 					udev->slot_id, setup);
3870 	if (ret) {
3871 		spin_unlock_irqrestore(&xhci->lock, flags);
3872 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3873 				"FIXME: allocate a command ring segment");
3874 		goto out;
3875 	}
3876 	xhci_ring_cmd_db(xhci);
3877 	spin_unlock_irqrestore(&xhci->lock, flags);
3878 
3879 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3880 	wait_for_completion(command->completion);
3881 
3882 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3883 	 * the SetAddress() "recovery interval" required by USB and aborting the
3884 	 * command on a timeout.
3885 	 */
3886 	switch (command->status) {
3887 	case COMP_COMMAND_ABORTED:
3888 	case COMP_COMMAND_RING_STOPPED:
3889 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3890 		ret = -ETIME;
3891 		break;
3892 	case COMP_CONTEXT_STATE_ERROR:
3893 	case COMP_SLOT_NOT_ENABLED_ERROR:
3894 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3895 			 act, udev->slot_id);
3896 		ret = -EINVAL;
3897 		break;
3898 	case COMP_USB_TRANSACTION_ERROR:
3899 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3900 
3901 		mutex_unlock(&xhci->mutex);
3902 		ret = xhci_disable_slot(xhci, udev->slot_id);
3903 		if (!ret)
3904 			xhci_alloc_dev(hcd, udev);
3905 		kfree(command->completion);
3906 		kfree(command);
3907 		return -EPROTO;
3908 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3909 		dev_warn(&udev->dev,
3910 			 "ERROR: Incompatible device for setup %s command\n", act);
3911 		ret = -ENODEV;
3912 		break;
3913 	case COMP_SUCCESS:
3914 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915 			       "Successful setup %s command", act);
3916 		break;
3917 	default:
3918 		xhci_err(xhci,
3919 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3920 			 act, command->status);
3921 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3922 		ret = -EINVAL;
3923 		break;
3924 	}
3925 	if (ret)
3926 		goto out;
3927 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3928 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929 			"Op regs DCBAA ptr = %#016llx", temp_64);
3930 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931 		"Slot ID %d dcbaa entry @%p = %#016llx",
3932 		udev->slot_id,
3933 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3934 		(unsigned long long)
3935 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3936 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3937 			"Output Context DMA address = %#08llx",
3938 			(unsigned long long)virt_dev->out_ctx->dma);
3939 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3940 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3941 	/*
3942 	 * USB core uses address 1 for the roothubs, so we add one to the
3943 	 * address given back to us by the HC.
3944 	 */
3945 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3946 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3947 	/* Zero the input context control for later use */
3948 	ctrl_ctx->add_flags = 0;
3949 	ctrl_ctx->drop_flags = 0;
3950 
3951 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3952 		       "Internal device address = %d",
3953 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3954 out:
3955 	mutex_unlock(&xhci->mutex);
3956 	if (command) {
3957 		kfree(command->completion);
3958 		kfree(command);
3959 	}
3960 	return ret;
3961 }
3962 
3963 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3964 {
3965 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3966 }
3967 
3968 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3969 {
3970 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3971 }
3972 
3973 /*
3974  * Transfer the port index into real index in the HW port status
3975  * registers. Caculate offset between the port's PORTSC register
3976  * and port status base. Divide the number of per port register
3977  * to get the real index. The raw port number bases 1.
3978  */
3979 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3980 {
3981 	struct xhci_hub *rhub;
3982 
3983 	rhub = xhci_get_rhub(hcd);
3984 	return rhub->ports[port1 - 1]->hw_portnum + 1;
3985 }
3986 
3987 /*
3988  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3989  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3990  */
3991 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3992 			struct usb_device *udev, u16 max_exit_latency)
3993 {
3994 	struct xhci_virt_device *virt_dev;
3995 	struct xhci_command *command;
3996 	struct xhci_input_control_ctx *ctrl_ctx;
3997 	struct xhci_slot_ctx *slot_ctx;
3998 	unsigned long flags;
3999 	int ret;
4000 
4001 	spin_lock_irqsave(&xhci->lock, flags);
4002 
4003 	virt_dev = xhci->devs[udev->slot_id];
4004 
4005 	/*
4006 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4007 	 * xHC was re-initialized. Exit latency will be set later after
4008 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4009 	 */
4010 
4011 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4012 		spin_unlock_irqrestore(&xhci->lock, flags);
4013 		return 0;
4014 	}
4015 
4016 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4017 	command = xhci->lpm_command;
4018 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4019 	if (!ctrl_ctx) {
4020 		spin_unlock_irqrestore(&xhci->lock, flags);
4021 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4022 				__func__);
4023 		return -ENOMEM;
4024 	}
4025 
4026 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4027 	spin_unlock_irqrestore(&xhci->lock, flags);
4028 
4029 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4030 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4031 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4032 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4033 	slot_ctx->dev_state = 0;
4034 
4035 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4036 			"Set up evaluate context for LPM MEL change.");
4037 
4038 	/* Issue and wait for the evaluate context command. */
4039 	ret = xhci_configure_endpoint(xhci, udev, command,
4040 			true, true);
4041 
4042 	if (!ret) {
4043 		spin_lock_irqsave(&xhci->lock, flags);
4044 		virt_dev->current_mel = max_exit_latency;
4045 		spin_unlock_irqrestore(&xhci->lock, flags);
4046 	}
4047 	return ret;
4048 }
4049 
4050 #ifdef CONFIG_PM
4051 
4052 /* BESL to HIRD Encoding array for USB2 LPM */
4053 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4054 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4055 
4056 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4057 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4058 					struct usb_device *udev)
4059 {
4060 	int u2del, besl, besl_host;
4061 	int besl_device = 0;
4062 	u32 field;
4063 
4064 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4065 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4066 
4067 	if (field & USB_BESL_SUPPORT) {
4068 		for (besl_host = 0; besl_host < 16; besl_host++) {
4069 			if (xhci_besl_encoding[besl_host] >= u2del)
4070 				break;
4071 		}
4072 		/* Use baseline BESL value as default */
4073 		if (field & USB_BESL_BASELINE_VALID)
4074 			besl_device = USB_GET_BESL_BASELINE(field);
4075 		else if (field & USB_BESL_DEEP_VALID)
4076 			besl_device = USB_GET_BESL_DEEP(field);
4077 	} else {
4078 		if (u2del <= 50)
4079 			besl_host = 0;
4080 		else
4081 			besl_host = (u2del - 51) / 75 + 1;
4082 	}
4083 
4084 	besl = besl_host + besl_device;
4085 	if (besl > 15)
4086 		besl = 15;
4087 
4088 	return besl;
4089 }
4090 
4091 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4092 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4093 {
4094 	u32 field;
4095 	int l1;
4096 	int besld = 0;
4097 	int hirdm = 0;
4098 
4099 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4100 
4101 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4102 	l1 = udev->l1_params.timeout / 256;
4103 
4104 	/* device has preferred BESLD */
4105 	if (field & USB_BESL_DEEP_VALID) {
4106 		besld = USB_GET_BESL_DEEP(field);
4107 		hirdm = 1;
4108 	}
4109 
4110 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4111 }
4112 
4113 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4114 			struct usb_device *udev, int enable)
4115 {
4116 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4117 	struct xhci_port **ports;
4118 	__le32 __iomem	*pm_addr, *hlpm_addr;
4119 	u32		pm_val, hlpm_val, field;
4120 	unsigned int	port_num;
4121 	unsigned long	flags;
4122 	int		hird, exit_latency;
4123 	int		ret;
4124 
4125 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4126 			!udev->lpm_capable)
4127 		return -EPERM;
4128 
4129 	if (!udev->parent || udev->parent->parent ||
4130 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4131 		return -EPERM;
4132 
4133 	if (udev->usb2_hw_lpm_capable != 1)
4134 		return -EPERM;
4135 
4136 	spin_lock_irqsave(&xhci->lock, flags);
4137 
4138 	ports = xhci->usb2_rhub.ports;
4139 	port_num = udev->portnum - 1;
4140 	pm_addr = ports[port_num]->addr + PORTPMSC;
4141 	pm_val = readl(pm_addr);
4142 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4143 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4144 
4145 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4146 			enable ? "enable" : "disable", port_num + 1);
4147 
4148 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4149 		/* Host supports BESL timeout instead of HIRD */
4150 		if (udev->usb2_hw_lpm_besl_capable) {
4151 			/* if device doesn't have a preferred BESL value use a
4152 			 * default one which works with mixed HIRD and BESL
4153 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4154 			 */
4155 			if ((field & USB_BESL_SUPPORT) &&
4156 			    (field & USB_BESL_BASELINE_VALID))
4157 				hird = USB_GET_BESL_BASELINE(field);
4158 			else
4159 				hird = udev->l1_params.besl;
4160 
4161 			exit_latency = xhci_besl_encoding[hird];
4162 			spin_unlock_irqrestore(&xhci->lock, flags);
4163 
4164 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4165 			 * input context for link powermanagement evaluate
4166 			 * context commands. It is protected by hcd->bandwidth
4167 			 * mutex and is shared by all devices. We need to set
4168 			 * the max ext latency in USB 2 BESL LPM as well, so
4169 			 * use the same mutex and xhci_change_max_exit_latency()
4170 			 */
4171 			mutex_lock(hcd->bandwidth_mutex);
4172 			ret = xhci_change_max_exit_latency(xhci, udev,
4173 							   exit_latency);
4174 			mutex_unlock(hcd->bandwidth_mutex);
4175 
4176 			if (ret < 0)
4177 				return ret;
4178 			spin_lock_irqsave(&xhci->lock, flags);
4179 
4180 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4181 			writel(hlpm_val, hlpm_addr);
4182 			/* flush write */
4183 			readl(hlpm_addr);
4184 		} else {
4185 			hird = xhci_calculate_hird_besl(xhci, udev);
4186 		}
4187 
4188 		pm_val &= ~PORT_HIRD_MASK;
4189 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4190 		writel(pm_val, pm_addr);
4191 		pm_val = readl(pm_addr);
4192 		pm_val |= PORT_HLE;
4193 		writel(pm_val, pm_addr);
4194 		/* flush write */
4195 		readl(pm_addr);
4196 	} else {
4197 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4198 		writel(pm_val, pm_addr);
4199 		/* flush write */
4200 		readl(pm_addr);
4201 		if (udev->usb2_hw_lpm_besl_capable) {
4202 			spin_unlock_irqrestore(&xhci->lock, flags);
4203 			mutex_lock(hcd->bandwidth_mutex);
4204 			xhci_change_max_exit_latency(xhci, udev, 0);
4205 			mutex_unlock(hcd->bandwidth_mutex);
4206 			return 0;
4207 		}
4208 	}
4209 
4210 	spin_unlock_irqrestore(&xhci->lock, flags);
4211 	return 0;
4212 }
4213 
4214 /* check if a usb2 port supports a given extened capability protocol
4215  * only USB2 ports extended protocol capability values are cached.
4216  * Return 1 if capability is supported
4217  */
4218 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4219 					   unsigned capability)
4220 {
4221 	u32 port_offset, port_count;
4222 	int i;
4223 
4224 	for (i = 0; i < xhci->num_ext_caps; i++) {
4225 		if (xhci->ext_caps[i] & capability) {
4226 			/* port offsets starts at 1 */
4227 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4228 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4229 			if (port >= port_offset &&
4230 			    port < port_offset + port_count)
4231 				return 1;
4232 		}
4233 	}
4234 	return 0;
4235 }
4236 
4237 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4238 {
4239 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4240 	int		portnum = udev->portnum - 1;
4241 
4242 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4243 			!udev->lpm_capable)
4244 		return 0;
4245 
4246 	/* we only support lpm for non-hub device connected to root hub yet */
4247 	if (!udev->parent || udev->parent->parent ||
4248 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4249 		return 0;
4250 
4251 	if (xhci->hw_lpm_support == 1 &&
4252 			xhci_check_usb2_port_capability(
4253 				xhci, portnum, XHCI_HLC)) {
4254 		udev->usb2_hw_lpm_capable = 1;
4255 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4256 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4257 		if (xhci_check_usb2_port_capability(xhci, portnum,
4258 					XHCI_BLC))
4259 			udev->usb2_hw_lpm_besl_capable = 1;
4260 	}
4261 
4262 	return 0;
4263 }
4264 
4265 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4266 
4267 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4268 static unsigned long long xhci_service_interval_to_ns(
4269 		struct usb_endpoint_descriptor *desc)
4270 {
4271 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4272 }
4273 
4274 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4275 		enum usb3_link_state state)
4276 {
4277 	unsigned long long sel;
4278 	unsigned long long pel;
4279 	unsigned int max_sel_pel;
4280 	char *state_name;
4281 
4282 	switch (state) {
4283 	case USB3_LPM_U1:
4284 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4285 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4286 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4287 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4288 		state_name = "U1";
4289 		break;
4290 	case USB3_LPM_U2:
4291 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4292 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4293 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4294 		state_name = "U2";
4295 		break;
4296 	default:
4297 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4298 				__func__);
4299 		return USB3_LPM_DISABLED;
4300 	}
4301 
4302 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4303 		return USB3_LPM_DEVICE_INITIATED;
4304 
4305 	if (sel > max_sel_pel)
4306 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4307 				"due to long SEL %llu ms\n",
4308 				state_name, sel);
4309 	else
4310 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4311 				"due to long PEL %llu ms\n",
4312 				state_name, pel);
4313 	return USB3_LPM_DISABLED;
4314 }
4315 
4316 /* The U1 timeout should be the maximum of the following values:
4317  *  - For control endpoints, U1 system exit latency (SEL) * 3
4318  *  - For bulk endpoints, U1 SEL * 5
4319  *  - For interrupt endpoints:
4320  *    - Notification EPs, U1 SEL * 3
4321  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4322  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4323  */
4324 static unsigned long long xhci_calculate_intel_u1_timeout(
4325 		struct usb_device *udev,
4326 		struct usb_endpoint_descriptor *desc)
4327 {
4328 	unsigned long long timeout_ns;
4329 	int ep_type;
4330 	int intr_type;
4331 
4332 	ep_type = usb_endpoint_type(desc);
4333 	switch (ep_type) {
4334 	case USB_ENDPOINT_XFER_CONTROL:
4335 		timeout_ns = udev->u1_params.sel * 3;
4336 		break;
4337 	case USB_ENDPOINT_XFER_BULK:
4338 		timeout_ns = udev->u1_params.sel * 5;
4339 		break;
4340 	case USB_ENDPOINT_XFER_INT:
4341 		intr_type = usb_endpoint_interrupt_type(desc);
4342 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4343 			timeout_ns = udev->u1_params.sel * 3;
4344 			break;
4345 		}
4346 		/* Otherwise the calculation is the same as isoc eps */
4347 		/* fall through */
4348 	case USB_ENDPOINT_XFER_ISOC:
4349 		timeout_ns = xhci_service_interval_to_ns(desc);
4350 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4351 		if (timeout_ns < udev->u1_params.sel * 2)
4352 			timeout_ns = udev->u1_params.sel * 2;
4353 		break;
4354 	default:
4355 		return 0;
4356 	}
4357 
4358 	return timeout_ns;
4359 }
4360 
4361 /* Returns the hub-encoded U1 timeout value. */
4362 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4363 		struct usb_device *udev,
4364 		struct usb_endpoint_descriptor *desc)
4365 {
4366 	unsigned long long timeout_ns;
4367 
4368 	if (xhci->quirks & XHCI_INTEL_HOST)
4369 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4370 	else
4371 		timeout_ns = udev->u1_params.sel;
4372 
4373 	/* The U1 timeout is encoded in 1us intervals.
4374 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4375 	 */
4376 	if (timeout_ns == USB3_LPM_DISABLED)
4377 		timeout_ns = 1;
4378 	else
4379 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4380 
4381 	/* If the necessary timeout value is bigger than what we can set in the
4382 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4383 	 */
4384 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4385 		return timeout_ns;
4386 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4387 			"due to long timeout %llu ms\n", timeout_ns);
4388 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4389 }
4390 
4391 /* The U2 timeout should be the maximum of:
4392  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4393  *  - largest bInterval of any active periodic endpoint (to avoid going
4394  *    into lower power link states between intervals).
4395  *  - the U2 Exit Latency of the device
4396  */
4397 static unsigned long long xhci_calculate_intel_u2_timeout(
4398 		struct usb_device *udev,
4399 		struct usb_endpoint_descriptor *desc)
4400 {
4401 	unsigned long long timeout_ns;
4402 	unsigned long long u2_del_ns;
4403 
4404 	timeout_ns = 10 * 1000 * 1000;
4405 
4406 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4407 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4408 		timeout_ns = xhci_service_interval_to_ns(desc);
4409 
4410 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4411 	if (u2_del_ns > timeout_ns)
4412 		timeout_ns = u2_del_ns;
4413 
4414 	return timeout_ns;
4415 }
4416 
4417 /* Returns the hub-encoded U2 timeout value. */
4418 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4419 		struct usb_device *udev,
4420 		struct usb_endpoint_descriptor *desc)
4421 {
4422 	unsigned long long timeout_ns;
4423 
4424 	if (xhci->quirks & XHCI_INTEL_HOST)
4425 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4426 	else
4427 		timeout_ns = udev->u2_params.sel;
4428 
4429 	/* The U2 timeout is encoded in 256us intervals */
4430 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4431 	/* If the necessary timeout value is bigger than what we can set in the
4432 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4433 	 */
4434 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4435 		return timeout_ns;
4436 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4437 			"due to long timeout %llu ms\n", timeout_ns);
4438 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4439 }
4440 
4441 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4442 		struct usb_device *udev,
4443 		struct usb_endpoint_descriptor *desc,
4444 		enum usb3_link_state state,
4445 		u16 *timeout)
4446 {
4447 	if (state == USB3_LPM_U1)
4448 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4449 	else if (state == USB3_LPM_U2)
4450 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4451 
4452 	return USB3_LPM_DISABLED;
4453 }
4454 
4455 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4456 		struct usb_device *udev,
4457 		struct usb_endpoint_descriptor *desc,
4458 		enum usb3_link_state state,
4459 		u16 *timeout)
4460 {
4461 	u16 alt_timeout;
4462 
4463 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4464 		desc, state, timeout);
4465 
4466 	/* If we found we can't enable hub-initiated LPM, or
4467 	 * the U1 or U2 exit latency was too high to allow
4468 	 * device-initiated LPM as well, just stop searching.
4469 	 */
4470 	if (alt_timeout == USB3_LPM_DISABLED ||
4471 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4472 		*timeout = alt_timeout;
4473 		return -E2BIG;
4474 	}
4475 	if (alt_timeout > *timeout)
4476 		*timeout = alt_timeout;
4477 	return 0;
4478 }
4479 
4480 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4481 		struct usb_device *udev,
4482 		struct usb_host_interface *alt,
4483 		enum usb3_link_state state,
4484 		u16 *timeout)
4485 {
4486 	int j;
4487 
4488 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4489 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4490 					&alt->endpoint[j].desc, state, timeout))
4491 			return -E2BIG;
4492 		continue;
4493 	}
4494 	return 0;
4495 }
4496 
4497 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4498 		enum usb3_link_state state)
4499 {
4500 	struct usb_device *parent;
4501 	unsigned int num_hubs;
4502 
4503 	if (state == USB3_LPM_U2)
4504 		return 0;
4505 
4506 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4507 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4508 			parent = parent->parent)
4509 		num_hubs++;
4510 
4511 	if (num_hubs < 2)
4512 		return 0;
4513 
4514 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4515 			" below second-tier hub.\n");
4516 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4517 			"to decrease power consumption.\n");
4518 	return -E2BIG;
4519 }
4520 
4521 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4522 		struct usb_device *udev,
4523 		enum usb3_link_state state)
4524 {
4525 	if (xhci->quirks & XHCI_INTEL_HOST)
4526 		return xhci_check_intel_tier_policy(udev, state);
4527 	else
4528 		return 0;
4529 }
4530 
4531 /* Returns the U1 or U2 timeout that should be enabled.
4532  * If the tier check or timeout setting functions return with a non-zero exit
4533  * code, that means the timeout value has been finalized and we shouldn't look
4534  * at any more endpoints.
4535  */
4536 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4537 			struct usb_device *udev, enum usb3_link_state state)
4538 {
4539 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4540 	struct usb_host_config *config;
4541 	char *state_name;
4542 	int i;
4543 	u16 timeout = USB3_LPM_DISABLED;
4544 
4545 	if (state == USB3_LPM_U1)
4546 		state_name = "U1";
4547 	else if (state == USB3_LPM_U2)
4548 		state_name = "U2";
4549 	else {
4550 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4551 				state);
4552 		return timeout;
4553 	}
4554 
4555 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4556 		return timeout;
4557 
4558 	/* Gather some information about the currently installed configuration
4559 	 * and alternate interface settings.
4560 	 */
4561 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4562 			state, &timeout))
4563 		return timeout;
4564 
4565 	config = udev->actconfig;
4566 	if (!config)
4567 		return timeout;
4568 
4569 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4570 		struct usb_driver *driver;
4571 		struct usb_interface *intf = config->interface[i];
4572 
4573 		if (!intf)
4574 			continue;
4575 
4576 		/* Check if any currently bound drivers want hub-initiated LPM
4577 		 * disabled.
4578 		 */
4579 		if (intf->dev.driver) {
4580 			driver = to_usb_driver(intf->dev.driver);
4581 			if (driver && driver->disable_hub_initiated_lpm) {
4582 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4583 						"at request of driver %s\n",
4584 						state_name, driver->name);
4585 				return xhci_get_timeout_no_hub_lpm(udev, state);
4586 			}
4587 		}
4588 
4589 		/* Not sure how this could happen... */
4590 		if (!intf->cur_altsetting)
4591 			continue;
4592 
4593 		if (xhci_update_timeout_for_interface(xhci, udev,
4594 					intf->cur_altsetting,
4595 					state, &timeout))
4596 			return timeout;
4597 	}
4598 	return timeout;
4599 }
4600 
4601 static int calculate_max_exit_latency(struct usb_device *udev,
4602 		enum usb3_link_state state_changed,
4603 		u16 hub_encoded_timeout)
4604 {
4605 	unsigned long long u1_mel_us = 0;
4606 	unsigned long long u2_mel_us = 0;
4607 	unsigned long long mel_us = 0;
4608 	bool disabling_u1;
4609 	bool disabling_u2;
4610 	bool enabling_u1;
4611 	bool enabling_u2;
4612 
4613 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4614 			hub_encoded_timeout == USB3_LPM_DISABLED);
4615 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4616 			hub_encoded_timeout == USB3_LPM_DISABLED);
4617 
4618 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4619 			hub_encoded_timeout != USB3_LPM_DISABLED);
4620 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4621 			hub_encoded_timeout != USB3_LPM_DISABLED);
4622 
4623 	/* If U1 was already enabled and we're not disabling it,
4624 	 * or we're going to enable U1, account for the U1 max exit latency.
4625 	 */
4626 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4627 			enabling_u1)
4628 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4629 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4630 			enabling_u2)
4631 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4632 
4633 	if (u1_mel_us > u2_mel_us)
4634 		mel_us = u1_mel_us;
4635 	else
4636 		mel_us = u2_mel_us;
4637 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4638 	if (mel_us > MAX_EXIT) {
4639 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4640 				"is too big.\n", mel_us);
4641 		return -E2BIG;
4642 	}
4643 	return mel_us;
4644 }
4645 
4646 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4647 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4648 			struct usb_device *udev, enum usb3_link_state state)
4649 {
4650 	struct xhci_hcd	*xhci;
4651 	u16 hub_encoded_timeout;
4652 	int mel;
4653 	int ret;
4654 
4655 	xhci = hcd_to_xhci(hcd);
4656 	/* The LPM timeout values are pretty host-controller specific, so don't
4657 	 * enable hub-initiated timeouts unless the vendor has provided
4658 	 * information about their timeout algorithm.
4659 	 */
4660 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4661 			!xhci->devs[udev->slot_id])
4662 		return USB3_LPM_DISABLED;
4663 
4664 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4665 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4666 	if (mel < 0) {
4667 		/* Max Exit Latency is too big, disable LPM. */
4668 		hub_encoded_timeout = USB3_LPM_DISABLED;
4669 		mel = 0;
4670 	}
4671 
4672 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4673 	if (ret)
4674 		return ret;
4675 	return hub_encoded_timeout;
4676 }
4677 
4678 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4679 			struct usb_device *udev, enum usb3_link_state state)
4680 {
4681 	struct xhci_hcd	*xhci;
4682 	u16 mel;
4683 
4684 	xhci = hcd_to_xhci(hcd);
4685 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4686 			!xhci->devs[udev->slot_id])
4687 		return 0;
4688 
4689 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4690 	return xhci_change_max_exit_latency(xhci, udev, mel);
4691 }
4692 #else /* CONFIG_PM */
4693 
4694 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4695 				struct usb_device *udev, int enable)
4696 {
4697 	return 0;
4698 }
4699 
4700 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4701 {
4702 	return 0;
4703 }
4704 
4705 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706 			struct usb_device *udev, enum usb3_link_state state)
4707 {
4708 	return USB3_LPM_DISABLED;
4709 }
4710 
4711 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712 			struct usb_device *udev, enum usb3_link_state state)
4713 {
4714 	return 0;
4715 }
4716 #endif	/* CONFIG_PM */
4717 
4718 /*-------------------------------------------------------------------------*/
4719 
4720 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4721  * internal data structures for the device.
4722  */
4723 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4724 			struct usb_tt *tt, gfp_t mem_flags)
4725 {
4726 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4727 	struct xhci_virt_device *vdev;
4728 	struct xhci_command *config_cmd;
4729 	struct xhci_input_control_ctx *ctrl_ctx;
4730 	struct xhci_slot_ctx *slot_ctx;
4731 	unsigned long flags;
4732 	unsigned think_time;
4733 	int ret;
4734 
4735 	/* Ignore root hubs */
4736 	if (!hdev->parent)
4737 		return 0;
4738 
4739 	vdev = xhci->devs[hdev->slot_id];
4740 	if (!vdev) {
4741 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4742 		return -EINVAL;
4743 	}
4744 
4745 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4746 	if (!config_cmd)
4747 		return -ENOMEM;
4748 
4749 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4750 	if (!ctrl_ctx) {
4751 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4752 				__func__);
4753 		xhci_free_command(xhci, config_cmd);
4754 		return -ENOMEM;
4755 	}
4756 
4757 	spin_lock_irqsave(&xhci->lock, flags);
4758 	if (hdev->speed == USB_SPEED_HIGH &&
4759 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4760 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4761 		xhci_free_command(xhci, config_cmd);
4762 		spin_unlock_irqrestore(&xhci->lock, flags);
4763 		return -ENOMEM;
4764 	}
4765 
4766 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4767 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4768 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4769 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4770 	/*
4771 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4772 	 * but it may be already set to 1 when setup an xHCI virtual
4773 	 * device, so clear it anyway.
4774 	 */
4775 	if (tt->multi)
4776 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4777 	else if (hdev->speed == USB_SPEED_FULL)
4778 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4779 
4780 	if (xhci->hci_version > 0x95) {
4781 		xhci_dbg(xhci, "xHCI version %x needs hub "
4782 				"TT think time and number of ports\n",
4783 				(unsigned int) xhci->hci_version);
4784 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4785 		/* Set TT think time - convert from ns to FS bit times.
4786 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4787 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4788 		 *
4789 		 * xHCI 1.0: this field shall be 0 if the device is not a
4790 		 * High-spped hub.
4791 		 */
4792 		think_time = tt->think_time;
4793 		if (think_time != 0)
4794 			think_time = (think_time / 666) - 1;
4795 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4796 			slot_ctx->tt_info |=
4797 				cpu_to_le32(TT_THINK_TIME(think_time));
4798 	} else {
4799 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4800 				"TT think time or number of ports\n",
4801 				(unsigned int) xhci->hci_version);
4802 	}
4803 	slot_ctx->dev_state = 0;
4804 	spin_unlock_irqrestore(&xhci->lock, flags);
4805 
4806 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4807 			(xhci->hci_version > 0x95) ?
4808 			"configure endpoint" : "evaluate context");
4809 
4810 	/* Issue and wait for the configure endpoint or
4811 	 * evaluate context command.
4812 	 */
4813 	if (xhci->hci_version > 0x95)
4814 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4815 				false, false);
4816 	else
4817 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4818 				true, false);
4819 
4820 	xhci_free_command(xhci, config_cmd);
4821 	return ret;
4822 }
4823 
4824 static int xhci_get_frame(struct usb_hcd *hcd)
4825 {
4826 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4827 	/* EHCI mods by the periodic size.  Why? */
4828 	return readl(&xhci->run_regs->microframe_index) >> 3;
4829 }
4830 
4831 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4832 {
4833 	struct xhci_hcd		*xhci;
4834 	/*
4835 	 * TODO: Check with DWC3 clients for sysdev according to
4836 	 * quirks
4837 	 */
4838 	struct device		*dev = hcd->self.sysdev;
4839 	unsigned int		minor_rev;
4840 	int			retval;
4841 
4842 	/* Accept arbitrarily long scatter-gather lists */
4843 	hcd->self.sg_tablesize = ~0;
4844 
4845 	/* support to build packet from discontinuous buffers */
4846 	hcd->self.no_sg_constraint = 1;
4847 
4848 	/* XHCI controllers don't stop the ep queue on short packets :| */
4849 	hcd->self.no_stop_on_short = 1;
4850 
4851 	xhci = hcd_to_xhci(hcd);
4852 
4853 	if (usb_hcd_is_primary_hcd(hcd)) {
4854 		xhci->main_hcd = hcd;
4855 		xhci->usb2_rhub.hcd = hcd;
4856 		/* Mark the first roothub as being USB 2.0.
4857 		 * The xHCI driver will register the USB 3.0 roothub.
4858 		 */
4859 		hcd->speed = HCD_USB2;
4860 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4861 		/*
4862 		 * USB 2.0 roothub under xHCI has an integrated TT,
4863 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4864 		 * companion controller.
4865 		 */
4866 		hcd->has_tt = 1;
4867 	} else {
4868 		/*
4869 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4870 		 * minor revision instead of sbrn
4871 		 */
4872 		minor_rev = xhci->usb3_rhub.min_rev;
4873 		if (minor_rev) {
4874 			hcd->speed = HCD_USB31;
4875 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4876 		}
4877 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4878 			  minor_rev,
4879 			  minor_rev ? "Enhanced" : "");
4880 
4881 		xhci->usb3_rhub.hcd = hcd;
4882 		/* xHCI private pointer was set in xhci_pci_probe for the second
4883 		 * registered roothub.
4884 		 */
4885 		return 0;
4886 	}
4887 
4888 	mutex_init(&xhci->mutex);
4889 	xhci->cap_regs = hcd->regs;
4890 	xhci->op_regs = hcd->regs +
4891 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4892 	xhci->run_regs = hcd->regs +
4893 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4894 	/* Cache read-only capability registers */
4895 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4896 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4897 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4898 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4899 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4900 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4901 	if (xhci->hci_version > 0x100)
4902 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4903 
4904 	xhci->quirks |= quirks;
4905 
4906 	get_quirks(dev, xhci);
4907 
4908 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4909 	 * success event after a short transfer. This quirk will ignore such
4910 	 * spurious event.
4911 	 */
4912 	if (xhci->hci_version > 0x96)
4913 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4914 
4915 	/* Make sure the HC is halted. */
4916 	retval = xhci_halt(xhci);
4917 	if (retval)
4918 		return retval;
4919 
4920 	xhci_dbg(xhci, "Resetting HCD\n");
4921 	/* Reset the internal HC memory state and registers. */
4922 	retval = xhci_reset(xhci);
4923 	if (retval)
4924 		return retval;
4925 	xhci_dbg(xhci, "Reset complete\n");
4926 
4927 	/*
4928 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4929 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4930 	 * address memory pointers actually. So, this driver clears the AC64
4931 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4932 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4933 	 */
4934 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4935 		xhci->hcc_params &= ~BIT(0);
4936 
4937 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4938 	 * if xHC supports 64-bit addressing */
4939 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4940 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4941 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4942 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4943 	} else {
4944 		/*
4945 		 * This is to avoid error in cases where a 32-bit USB
4946 		 * controller is used on a 64-bit capable system.
4947 		 */
4948 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4949 		if (retval)
4950 			return retval;
4951 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4952 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4953 	}
4954 
4955 	xhci_dbg(xhci, "Calling HCD init\n");
4956 	/* Initialize HCD and host controller data structures. */
4957 	retval = xhci_init(hcd);
4958 	if (retval)
4959 		return retval;
4960 	xhci_dbg(xhci, "Called HCD init\n");
4961 
4962 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4963 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4964 
4965 	return 0;
4966 }
4967 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4968 
4969 static const struct hc_driver xhci_hc_driver = {
4970 	.description =		"xhci-hcd",
4971 	.product_desc =		"xHCI Host Controller",
4972 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4973 
4974 	/*
4975 	 * generic hardware linkage
4976 	 */
4977 	.irq =			xhci_irq,
4978 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4979 
4980 	/*
4981 	 * basic lifecycle operations
4982 	 */
4983 	.reset =		NULL, /* set in xhci_init_driver() */
4984 	.start =		xhci_run,
4985 	.stop =			xhci_stop,
4986 	.shutdown =		xhci_shutdown,
4987 
4988 	/*
4989 	 * managing i/o requests and associated device resources
4990 	 */
4991 	.urb_enqueue =		xhci_urb_enqueue,
4992 	.urb_dequeue =		xhci_urb_dequeue,
4993 	.alloc_dev =		xhci_alloc_dev,
4994 	.free_dev =		xhci_free_dev,
4995 	.alloc_streams =	xhci_alloc_streams,
4996 	.free_streams =		xhci_free_streams,
4997 	.add_endpoint =		xhci_add_endpoint,
4998 	.drop_endpoint =	xhci_drop_endpoint,
4999 	.endpoint_reset =	xhci_endpoint_reset,
5000 	.check_bandwidth =	xhci_check_bandwidth,
5001 	.reset_bandwidth =	xhci_reset_bandwidth,
5002 	.address_device =	xhci_address_device,
5003 	.enable_device =	xhci_enable_device,
5004 	.update_hub_device =	xhci_update_hub_device,
5005 	.reset_device =		xhci_discover_or_reset_device,
5006 
5007 	/*
5008 	 * scheduling support
5009 	 */
5010 	.get_frame_number =	xhci_get_frame,
5011 
5012 	/*
5013 	 * root hub support
5014 	 */
5015 	.hub_control =		xhci_hub_control,
5016 	.hub_status_data =	xhci_hub_status_data,
5017 	.bus_suspend =		xhci_bus_suspend,
5018 	.bus_resume =		xhci_bus_resume,
5019 
5020 	/*
5021 	 * call back when device connected and addressed
5022 	 */
5023 	.update_device =        xhci_update_device,
5024 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5025 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5026 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5027 	.find_raw_port_number =	xhci_find_raw_port_number,
5028 };
5029 
5030 void xhci_init_driver(struct hc_driver *drv,
5031 		      const struct xhci_driver_overrides *over)
5032 {
5033 	BUG_ON(!over);
5034 
5035 	/* Copy the generic table to drv then apply the overrides */
5036 	*drv = xhci_hc_driver;
5037 
5038 	if (over) {
5039 		drv->hcd_priv_size += over->extra_priv_size;
5040 		if (over->reset)
5041 			drv->reset = over->reset;
5042 		if (over->start)
5043 			drv->start = over->start;
5044 	}
5045 }
5046 EXPORT_SYMBOL_GPL(xhci_init_driver);
5047 
5048 MODULE_DESCRIPTION(DRIVER_DESC);
5049 MODULE_AUTHOR(DRIVER_AUTHOR);
5050 MODULE_LICENSE("GPL");
5051 
5052 static int __init xhci_hcd_init(void)
5053 {
5054 	/*
5055 	 * Check the compiler generated sizes of structures that must be laid
5056 	 * out in specific ways for hardware access.
5057 	 */
5058 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5059 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5060 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5061 	/* xhci_device_control has eight fields, and also
5062 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5063 	 */
5064 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5065 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5066 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5067 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5068 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5069 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5070 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5071 
5072 	if (usb_disabled())
5073 		return -ENODEV;
5074 
5075 	xhci_debugfs_create_root();
5076 
5077 	return 0;
5078 }
5079 
5080 /*
5081  * If an init function is provided, an exit function must also be provided
5082  * to allow module unload.
5083  */
5084 static void __exit xhci_hcd_fini(void)
5085 {
5086 	xhci_debugfs_remove_root();
5087 }
5088 
5089 module_init(xhci_hcd_init);
5090 module_exit(xhci_hcd_fini);
5091