xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	/* Clear root port wake on bits if wakeup not allowed. */
986 	if (!do_wakeup)
987 		xhci_disable_port_wake_on_bits(xhci);
988 
989 	if (!HCD_HW_ACCESSIBLE(hcd))
990 		return 0;
991 
992 	xhci_dbc_suspend(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 20 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/*
1112 		 * Some controllers might lose power during suspend, so wait
1113 		 * for controller not ready bit to clear, just as in xHC init.
1114 		 */
1115 		retval = xhci_handshake(&xhci->op_regs->status,
1116 					STS_CNR, 0, 10 * 1000 * 1000);
1117 		if (retval) {
1118 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 				  retval);
1120 			spin_unlock_irq(&xhci->lock);
1121 			return retval;
1122 		}
1123 		/* step 1: restore register */
1124 		xhci_restore_registers(xhci);
1125 		/* step 2: initialize command ring buffer */
1126 		xhci_set_cmd_ring_deq(xhci);
1127 		/* step 3: restore state and start state*/
1128 		/* step 3: set CRS flag */
1129 		command = readl(&xhci->op_regs->command);
1130 		command |= CMD_CRS;
1131 		writel(command, &xhci->op_regs->command);
1132 		/*
1133 		 * Some controllers take up to 55+ ms to complete the controller
1134 		 * restore so setting the timeout to 100ms. Xhci specification
1135 		 * doesn't mention any timeout value.
1136 		 */
1137 		if (xhci_handshake(&xhci->op_regs->status,
1138 			      STS_RESTORE, 0, 100 * 1000)) {
1139 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 			spin_unlock_irq(&xhci->lock);
1141 			return -ETIMEDOUT;
1142 		}
1143 		temp = readl(&xhci->op_regs->status);
1144 	}
1145 
1146 	/* If restore operation fails, re-initialize the HC during resume */
1147 	if ((temp & STS_SRE) || hibernated) {
1148 
1149 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 				!(xhci_all_ports_seen_u0(xhci))) {
1151 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 				"Compliance Mode Recovery Timer deleted!");
1154 		}
1155 
1156 		/* Let the USB core know _both_ roothubs lost power. */
1157 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159 
1160 		xhci_dbg(xhci, "Stop HCD\n");
1161 		xhci_halt(xhci);
1162 		xhci_zero_64b_regs(xhci);
1163 		retval = xhci_reset(xhci);
1164 		spin_unlock_irq(&xhci->lock);
1165 		if (retval)
1166 			return retval;
1167 		xhci_cleanup_msix(xhci);
1168 
1169 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 		temp = readl(&xhci->op_regs->status);
1171 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 		temp = readl(&xhci->ir_set->irq_pending);
1173 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174 
1175 		xhci_dbg(xhci, "cleaning up memory\n");
1176 		xhci_mem_cleanup(xhci);
1177 		xhci_debugfs_exit(xhci);
1178 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179 			    readl(&xhci->op_regs->status));
1180 
1181 		/* USB core calls the PCI reinit and start functions twice:
1182 		 * first with the primary HCD, and then with the secondary HCD.
1183 		 * If we don't do the same, the host will never be started.
1184 		 */
1185 		if (!usb_hcd_is_primary_hcd(hcd))
1186 			secondary_hcd = hcd;
1187 		else
1188 			secondary_hcd = xhci->shared_hcd;
1189 
1190 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191 		retval = xhci_init(hcd->primary_hcd);
1192 		if (retval)
1193 			return retval;
1194 		comp_timer_running = true;
1195 
1196 		xhci_dbg(xhci, "Start the primary HCD\n");
1197 		retval = xhci_run(hcd->primary_hcd);
1198 		if (!retval) {
1199 			xhci_dbg(xhci, "Start the secondary HCD\n");
1200 			retval = xhci_run(secondary_hcd);
1201 		}
1202 		hcd->state = HC_STATE_SUSPENDED;
1203 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204 		goto done;
1205 	}
1206 
1207 	/* step 4: set Run/Stop bit */
1208 	command = readl(&xhci->op_regs->command);
1209 	command |= CMD_RUN;
1210 	writel(command, &xhci->op_regs->command);
1211 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212 		  0, 250 * 1000);
1213 
1214 	/* step 5: walk topology and initialize portsc,
1215 	 * portpmsc and portli
1216 	 */
1217 	/* this is done in bus_resume */
1218 
1219 	/* step 6: restart each of the previously
1220 	 * Running endpoints by ringing their doorbells
1221 	 */
1222 
1223 	spin_unlock_irq(&xhci->lock);
1224 
1225 	xhci_dbc_resume(xhci);
1226 
1227  done:
1228 	if (retval == 0) {
1229 		/* Resume root hubs only when have pending events. */
1230 		if (xhci_pending_portevent(xhci)) {
1231 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1232 			usb_hcd_resume_root_hub(hcd);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1238 	 * be re-initialized Always after a system resume. Ports are subject
1239 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1240 	 * ports have entered previously to U0 before system's suspension.
1241 	 */
1242 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243 		compliance_mode_recovery_timer_init(xhci);
1244 
1245 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247 
1248 	/* Re-enable port polling. */
1249 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1252 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253 	usb_hcd_poll_rh_status(hcd);
1254 
1255 	return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif	/* CONFIG_PM */
1259 
1260 /*-------------------------------------------------------------------------*/
1261 
1262 /*
1263  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1264  * we'll copy the actual data into the TRB address register. This is limited to
1265  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1266  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1267  */
1268 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1269 				gfp_t mem_flags)
1270 {
1271 	if (xhci_urb_suitable_for_idt(urb))
1272 		return 0;
1273 
1274 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1275 }
1276 
1277 /*
1278  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1279  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1280  * value to right shift 1 for the bitmask.
1281  *
1282  * Index  = (epnum * 2) + direction - 1,
1283  * where direction = 0 for OUT, 1 for IN.
1284  * For control endpoints, the IN index is used (OUT index is unused), so
1285  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1286  */
1287 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1288 {
1289 	unsigned int index;
1290 	if (usb_endpoint_xfer_control(desc))
1291 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1292 	else
1293 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1294 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1295 	return index;
1296 }
1297 
1298 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1299  * address from the XHCI endpoint index.
1300  */
1301 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1302 {
1303 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1304 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1305 	return direction | number;
1306 }
1307 
1308 /* Find the flag for this endpoint (for use in the control context).  Use the
1309  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1310  * bit 1, etc.
1311  */
1312 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1313 {
1314 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1315 }
1316 
1317 /* Find the flag for this endpoint (for use in the control context).  Use the
1318  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1319  * bit 1, etc.
1320  */
1321 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1322 {
1323 	return 1 << (ep_index + 1);
1324 }
1325 
1326 /* Compute the last valid endpoint context index.  Basically, this is the
1327  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1328  * we find the most significant bit set in the added contexts flags.
1329  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1330  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1331  */
1332 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1333 {
1334 	return fls(added_ctxs) - 1;
1335 }
1336 
1337 /* Returns 1 if the arguments are OK;
1338  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1339  */
1340 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1341 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1342 		const char *func) {
1343 	struct xhci_hcd	*xhci;
1344 	struct xhci_virt_device	*virt_dev;
1345 
1346 	if (!hcd || (check_ep && !ep) || !udev) {
1347 		pr_debug("xHCI %s called with invalid args\n", func);
1348 		return -EINVAL;
1349 	}
1350 	if (!udev->parent) {
1351 		pr_debug("xHCI %s called for root hub\n", func);
1352 		return 0;
1353 	}
1354 
1355 	xhci = hcd_to_xhci(hcd);
1356 	if (check_virt_dev) {
1357 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1358 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1359 					func);
1360 			return -EINVAL;
1361 		}
1362 
1363 		virt_dev = xhci->devs[udev->slot_id];
1364 		if (virt_dev->udev != udev) {
1365 			xhci_dbg(xhci, "xHCI %s called with udev and "
1366 					  "virt_dev does not match\n", func);
1367 			return -EINVAL;
1368 		}
1369 	}
1370 
1371 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1372 		return -ENODEV;
1373 
1374 	return 1;
1375 }
1376 
1377 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1378 		struct usb_device *udev, struct xhci_command *command,
1379 		bool ctx_change, bool must_succeed);
1380 
1381 /*
1382  * Full speed devices may have a max packet size greater than 8 bytes, but the
1383  * USB core doesn't know that until it reads the first 8 bytes of the
1384  * descriptor.  If the usb_device's max packet size changes after that point,
1385  * we need to issue an evaluate context command and wait on it.
1386  */
1387 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1388 		unsigned int ep_index, struct urb *urb)
1389 {
1390 	struct xhci_container_ctx *out_ctx;
1391 	struct xhci_input_control_ctx *ctrl_ctx;
1392 	struct xhci_ep_ctx *ep_ctx;
1393 	struct xhci_command *command;
1394 	int max_packet_size;
1395 	int hw_max_packet_size;
1396 	int ret = 0;
1397 
1398 	out_ctx = xhci->devs[slot_id]->out_ctx;
1399 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1400 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1401 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1402 	if (hw_max_packet_size != max_packet_size) {
1403 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404 				"Max Packet Size for ep 0 changed.");
1405 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406 				"Max packet size in usb_device = %d",
1407 				max_packet_size);
1408 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409 				"Max packet size in xHCI HW = %d",
1410 				hw_max_packet_size);
1411 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1412 				"Issuing evaluate context command.");
1413 
1414 		/* Set up the input context flags for the command */
1415 		/* FIXME: This won't work if a non-default control endpoint
1416 		 * changes max packet sizes.
1417 		 */
1418 
1419 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1420 		if (!command)
1421 			return -ENOMEM;
1422 
1423 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1424 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1425 		if (!ctrl_ctx) {
1426 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1427 					__func__);
1428 			ret = -ENOMEM;
1429 			goto command_cleanup;
1430 		}
1431 		/* Set up the modified control endpoint 0 */
1432 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1433 				xhci->devs[slot_id]->out_ctx, ep_index);
1434 
1435 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1436 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1437 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1438 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1439 
1440 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1441 		ctrl_ctx->drop_flags = 0;
1442 
1443 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1444 				true, false);
1445 
1446 		/* Clean up the input context for later use by bandwidth
1447 		 * functions.
1448 		 */
1449 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1450 command_cleanup:
1451 		kfree(command->completion);
1452 		kfree(command);
1453 	}
1454 	return ret;
1455 }
1456 
1457 /*
1458  * non-error returns are a promise to giveback() the urb later
1459  * we drop ownership so next owner (or urb unlink) can get it
1460  */
1461 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1462 {
1463 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1464 	unsigned long flags;
1465 	int ret = 0;
1466 	unsigned int slot_id, ep_index;
1467 	unsigned int *ep_state;
1468 	struct urb_priv	*urb_priv;
1469 	int num_tds;
1470 
1471 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1472 					true, true, __func__) <= 0)
1473 		return -EINVAL;
1474 
1475 	slot_id = urb->dev->slot_id;
1476 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1477 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1478 
1479 	if (!HCD_HW_ACCESSIBLE(hcd))
1480 		return -ESHUTDOWN;
1481 
1482 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1483 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1484 		return -ENODEV;
1485 	}
1486 
1487 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1488 		num_tds = urb->number_of_packets;
1489 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1490 	    urb->transfer_buffer_length > 0 &&
1491 	    urb->transfer_flags & URB_ZERO_PACKET &&
1492 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1493 		num_tds = 2;
1494 	else
1495 		num_tds = 1;
1496 
1497 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1498 	if (!urb_priv)
1499 		return -ENOMEM;
1500 
1501 	urb_priv->num_tds = num_tds;
1502 	urb_priv->num_tds_done = 0;
1503 	urb->hcpriv = urb_priv;
1504 
1505 	trace_xhci_urb_enqueue(urb);
1506 
1507 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1508 		/* Check to see if the max packet size for the default control
1509 		 * endpoint changed during FS device enumeration
1510 		 */
1511 		if (urb->dev->speed == USB_SPEED_FULL) {
1512 			ret = xhci_check_maxpacket(xhci, slot_id,
1513 					ep_index, urb);
1514 			if (ret < 0) {
1515 				xhci_urb_free_priv(urb_priv);
1516 				urb->hcpriv = NULL;
1517 				return ret;
1518 			}
1519 		}
1520 	}
1521 
1522 	spin_lock_irqsave(&xhci->lock, flags);
1523 
1524 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1525 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1526 			 urb->ep->desc.bEndpointAddress, urb);
1527 		ret = -ESHUTDOWN;
1528 		goto free_priv;
1529 	}
1530 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1531 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1532 			  *ep_state);
1533 		ret = -EINVAL;
1534 		goto free_priv;
1535 	}
1536 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1537 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1538 		ret = -EINVAL;
1539 		goto free_priv;
1540 	}
1541 
1542 	switch (usb_endpoint_type(&urb->ep->desc)) {
1543 
1544 	case USB_ENDPOINT_XFER_CONTROL:
1545 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1546 					 slot_id, ep_index);
1547 		break;
1548 	case USB_ENDPOINT_XFER_BULK:
1549 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1550 					 slot_id, ep_index);
1551 		break;
1552 	case USB_ENDPOINT_XFER_INT:
1553 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1554 				slot_id, ep_index);
1555 		break;
1556 	case USB_ENDPOINT_XFER_ISOC:
1557 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1558 				slot_id, ep_index);
1559 	}
1560 
1561 	if (ret) {
1562 free_priv:
1563 		xhci_urb_free_priv(urb_priv);
1564 		urb->hcpriv = NULL;
1565 	}
1566 	spin_unlock_irqrestore(&xhci->lock, flags);
1567 	return ret;
1568 }
1569 
1570 /*
1571  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1572  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1573  * should pick up where it left off in the TD, unless a Set Transfer Ring
1574  * Dequeue Pointer is issued.
1575  *
1576  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1577  * the ring.  Since the ring is a contiguous structure, they can't be physically
1578  * removed.  Instead, there are two options:
1579  *
1580  *  1) If the HC is in the middle of processing the URB to be canceled, we
1581  *     simply move the ring's dequeue pointer past those TRBs using the Set
1582  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1583  *     when drivers timeout on the last submitted URB and attempt to cancel.
1584  *
1585  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1586  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1587  *     HC will need to invalidate the any TRBs it has cached after the stop
1588  *     endpoint command, as noted in the xHCI 0.95 errata.
1589  *
1590  *  3) The TD may have completed by the time the Stop Endpoint Command
1591  *     completes, so software needs to handle that case too.
1592  *
1593  * This function should protect against the TD enqueueing code ringing the
1594  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1595  * It also needs to account for multiple cancellations on happening at the same
1596  * time for the same endpoint.
1597  *
1598  * Note that this function can be called in any context, or so says
1599  * usb_hcd_unlink_urb()
1600  */
1601 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1602 {
1603 	unsigned long flags;
1604 	int ret, i;
1605 	u32 temp;
1606 	struct xhci_hcd *xhci;
1607 	struct urb_priv	*urb_priv;
1608 	struct xhci_td *td;
1609 	unsigned int ep_index;
1610 	struct xhci_ring *ep_ring;
1611 	struct xhci_virt_ep *ep;
1612 	struct xhci_command *command;
1613 	struct xhci_virt_device *vdev;
1614 
1615 	xhci = hcd_to_xhci(hcd);
1616 	spin_lock_irqsave(&xhci->lock, flags);
1617 
1618 	trace_xhci_urb_dequeue(urb);
1619 
1620 	/* Make sure the URB hasn't completed or been unlinked already */
1621 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1622 	if (ret)
1623 		goto done;
1624 
1625 	/* give back URB now if we can't queue it for cancel */
1626 	vdev = xhci->devs[urb->dev->slot_id];
1627 	urb_priv = urb->hcpriv;
1628 	if (!vdev || !urb_priv)
1629 		goto err_giveback;
1630 
1631 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1632 	ep = &vdev->eps[ep_index];
1633 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1634 	if (!ep || !ep_ring)
1635 		goto err_giveback;
1636 
1637 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1638 	temp = readl(&xhci->op_regs->status);
1639 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1640 		xhci_hc_died(xhci);
1641 		goto done;
1642 	}
1643 
1644 	/*
1645 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1646 	 * make sure none of the ring related pointers in this URB private data
1647 	 * are touched, such as td_list, otherwise we overwrite freed data
1648 	 */
1649 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1650 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1651 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1652 			td = &urb_priv->td[i];
1653 			if (!list_empty(&td->cancelled_td_list))
1654 				list_del_init(&td->cancelled_td_list);
1655 		}
1656 		goto err_giveback;
1657 	}
1658 
1659 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1660 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1661 				"HC halted, freeing TD manually.");
1662 		for (i = urb_priv->num_tds_done;
1663 		     i < urb_priv->num_tds;
1664 		     i++) {
1665 			td = &urb_priv->td[i];
1666 			if (!list_empty(&td->td_list))
1667 				list_del_init(&td->td_list);
1668 			if (!list_empty(&td->cancelled_td_list))
1669 				list_del_init(&td->cancelled_td_list);
1670 		}
1671 		goto err_giveback;
1672 	}
1673 
1674 	i = urb_priv->num_tds_done;
1675 	if (i < urb_priv->num_tds)
1676 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1677 				"Cancel URB %p, dev %s, ep 0x%x, "
1678 				"starting at offset 0x%llx",
1679 				urb, urb->dev->devpath,
1680 				urb->ep->desc.bEndpointAddress,
1681 				(unsigned long long) xhci_trb_virt_to_dma(
1682 					urb_priv->td[i].start_seg,
1683 					urb_priv->td[i].first_trb));
1684 
1685 	for (; i < urb_priv->num_tds; i++) {
1686 		td = &urb_priv->td[i];
1687 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1688 	}
1689 
1690 	/* Queue a stop endpoint command, but only if this is
1691 	 * the first cancellation to be handled.
1692 	 */
1693 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1694 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1695 		if (!command) {
1696 			ret = -ENOMEM;
1697 			goto done;
1698 		}
1699 		ep->ep_state |= EP_STOP_CMD_PENDING;
1700 		ep->stop_cmd_timer.expires = jiffies +
1701 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1702 		add_timer(&ep->stop_cmd_timer);
1703 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1704 					 ep_index, 0);
1705 		xhci_ring_cmd_db(xhci);
1706 	}
1707 done:
1708 	spin_unlock_irqrestore(&xhci->lock, flags);
1709 	return ret;
1710 
1711 err_giveback:
1712 	if (urb_priv)
1713 		xhci_urb_free_priv(urb_priv);
1714 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1715 	spin_unlock_irqrestore(&xhci->lock, flags);
1716 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1717 	return ret;
1718 }
1719 
1720 /* Drop an endpoint from a new bandwidth configuration for this device.
1721  * Only one call to this function is allowed per endpoint before
1722  * check_bandwidth() or reset_bandwidth() must be called.
1723  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724  * add the endpoint to the schedule with possibly new parameters denoted by a
1725  * different endpoint descriptor in usb_host_endpoint.
1726  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727  * not allowed.
1728  *
1729  * The USB core will not allow URBs to be queued to an endpoint that is being
1730  * disabled, so there's no need for mutual exclusion to protect
1731  * the xhci->devs[slot_id] structure.
1732  */
1733 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734 		struct usb_host_endpoint *ep)
1735 {
1736 	struct xhci_hcd *xhci;
1737 	struct xhci_container_ctx *in_ctx, *out_ctx;
1738 	struct xhci_input_control_ctx *ctrl_ctx;
1739 	unsigned int ep_index;
1740 	struct xhci_ep_ctx *ep_ctx;
1741 	u32 drop_flag;
1742 	u32 new_add_flags, new_drop_flags;
1743 	int ret;
1744 
1745 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746 	if (ret <= 0)
1747 		return ret;
1748 	xhci = hcd_to_xhci(hcd);
1749 	if (xhci->xhc_state & XHCI_STATE_DYING)
1750 		return -ENODEV;
1751 
1752 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1753 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1754 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1755 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1756 				__func__, drop_flag);
1757 		return 0;
1758 	}
1759 
1760 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1761 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1762 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1763 	if (!ctrl_ctx) {
1764 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1765 				__func__);
1766 		return 0;
1767 	}
1768 
1769 	ep_index = xhci_get_endpoint_index(&ep->desc);
1770 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1771 	/* If the HC already knows the endpoint is disabled,
1772 	 * or the HCD has noted it is disabled, ignore this request
1773 	 */
1774 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1775 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1776 	    xhci_get_endpoint_flag(&ep->desc)) {
1777 		/* Do not warn when called after a usb_device_reset */
1778 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1779 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1780 				  __func__, ep);
1781 		return 0;
1782 	}
1783 
1784 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1785 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1786 
1787 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1788 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1789 
1790 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1791 
1792 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1793 
1794 	if (xhci->quirks & XHCI_MTK_HOST)
1795 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1796 
1797 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1798 			(unsigned int) ep->desc.bEndpointAddress,
1799 			udev->slot_id,
1800 			(unsigned int) new_drop_flags,
1801 			(unsigned int) new_add_flags);
1802 	return 0;
1803 }
1804 
1805 /* Add an endpoint to a new possible bandwidth configuration for this device.
1806  * Only one call to this function is allowed per endpoint before
1807  * check_bandwidth() or reset_bandwidth() must be called.
1808  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1809  * add the endpoint to the schedule with possibly new parameters denoted by a
1810  * different endpoint descriptor in usb_host_endpoint.
1811  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1812  * not allowed.
1813  *
1814  * The USB core will not allow URBs to be queued to an endpoint until the
1815  * configuration or alt setting is installed in the device, so there's no need
1816  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1817  */
1818 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1819 		struct usb_host_endpoint *ep)
1820 {
1821 	struct xhci_hcd *xhci;
1822 	struct xhci_container_ctx *in_ctx;
1823 	unsigned int ep_index;
1824 	struct xhci_input_control_ctx *ctrl_ctx;
1825 	struct xhci_ep_ctx *ep_ctx;
1826 	u32 added_ctxs;
1827 	u32 new_add_flags, new_drop_flags;
1828 	struct xhci_virt_device *virt_dev;
1829 	int ret = 0;
1830 
1831 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1832 	if (ret <= 0) {
1833 		/* So we won't queue a reset ep command for a root hub */
1834 		ep->hcpriv = NULL;
1835 		return ret;
1836 	}
1837 	xhci = hcd_to_xhci(hcd);
1838 	if (xhci->xhc_state & XHCI_STATE_DYING)
1839 		return -ENODEV;
1840 
1841 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1842 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1843 		/* FIXME when we have to issue an evaluate endpoint command to
1844 		 * deal with ep0 max packet size changing once we get the
1845 		 * descriptors
1846 		 */
1847 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1848 				__func__, added_ctxs);
1849 		return 0;
1850 	}
1851 
1852 	virt_dev = xhci->devs[udev->slot_id];
1853 	in_ctx = virt_dev->in_ctx;
1854 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1855 	if (!ctrl_ctx) {
1856 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1857 				__func__);
1858 		return 0;
1859 	}
1860 
1861 	ep_index = xhci_get_endpoint_index(&ep->desc);
1862 	/* If this endpoint is already in use, and the upper layers are trying
1863 	 * to add it again without dropping it, reject the addition.
1864 	 */
1865 	if (virt_dev->eps[ep_index].ring &&
1866 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1867 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1868 				"without dropping it.\n",
1869 				(unsigned int) ep->desc.bEndpointAddress);
1870 		return -EINVAL;
1871 	}
1872 
1873 	/* If the HCD has already noted the endpoint is enabled,
1874 	 * ignore this request.
1875 	 */
1876 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1877 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1878 				__func__, ep);
1879 		return 0;
1880 	}
1881 
1882 	/*
1883 	 * Configuration and alternate setting changes must be done in
1884 	 * process context, not interrupt context (or so documenation
1885 	 * for usb_set_interface() and usb_set_configuration() claim).
1886 	 */
1887 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1888 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1889 				__func__, ep->desc.bEndpointAddress);
1890 		return -ENOMEM;
1891 	}
1892 
1893 	if (xhci->quirks & XHCI_MTK_HOST) {
1894 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1895 		if (ret < 0) {
1896 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1897 			virt_dev->eps[ep_index].new_ring = NULL;
1898 			return ret;
1899 		}
1900 	}
1901 
1902 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1903 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1904 
1905 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1906 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1907 	 * this re-adds a new state for the endpoint from the new endpoint
1908 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1909 	 * drop flags alone.
1910 	 */
1911 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1912 
1913 	/* Store the usb_device pointer for later use */
1914 	ep->hcpriv = udev;
1915 
1916 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1917 	trace_xhci_add_endpoint(ep_ctx);
1918 
1919 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1920 			(unsigned int) ep->desc.bEndpointAddress,
1921 			udev->slot_id,
1922 			(unsigned int) new_drop_flags,
1923 			(unsigned int) new_add_flags);
1924 	return 0;
1925 }
1926 
1927 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1928 {
1929 	struct xhci_input_control_ctx *ctrl_ctx;
1930 	struct xhci_ep_ctx *ep_ctx;
1931 	struct xhci_slot_ctx *slot_ctx;
1932 	int i;
1933 
1934 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1935 	if (!ctrl_ctx) {
1936 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1937 				__func__);
1938 		return;
1939 	}
1940 
1941 	/* When a device's add flag and drop flag are zero, any subsequent
1942 	 * configure endpoint command will leave that endpoint's state
1943 	 * untouched.  Make sure we don't leave any old state in the input
1944 	 * endpoint contexts.
1945 	 */
1946 	ctrl_ctx->drop_flags = 0;
1947 	ctrl_ctx->add_flags = 0;
1948 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1949 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1950 	/* Endpoint 0 is always valid */
1951 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1952 	for (i = 1; i < 31; i++) {
1953 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1954 		ep_ctx->ep_info = 0;
1955 		ep_ctx->ep_info2 = 0;
1956 		ep_ctx->deq = 0;
1957 		ep_ctx->tx_info = 0;
1958 	}
1959 }
1960 
1961 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1962 		struct usb_device *udev, u32 *cmd_status)
1963 {
1964 	int ret;
1965 
1966 	switch (*cmd_status) {
1967 	case COMP_COMMAND_ABORTED:
1968 	case COMP_COMMAND_RING_STOPPED:
1969 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1970 		ret = -ETIME;
1971 		break;
1972 	case COMP_RESOURCE_ERROR:
1973 		dev_warn(&udev->dev,
1974 			 "Not enough host controller resources for new device state.\n");
1975 		ret = -ENOMEM;
1976 		/* FIXME: can we allocate more resources for the HC? */
1977 		break;
1978 	case COMP_BANDWIDTH_ERROR:
1979 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1980 		dev_warn(&udev->dev,
1981 			 "Not enough bandwidth for new device state.\n");
1982 		ret = -ENOSPC;
1983 		/* FIXME: can we go back to the old state? */
1984 		break;
1985 	case COMP_TRB_ERROR:
1986 		/* the HCD set up something wrong */
1987 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1988 				"add flag = 1, "
1989 				"and endpoint is not disabled.\n");
1990 		ret = -EINVAL;
1991 		break;
1992 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1993 		dev_warn(&udev->dev,
1994 			 "ERROR: Incompatible device for endpoint configure command.\n");
1995 		ret = -ENODEV;
1996 		break;
1997 	case COMP_SUCCESS:
1998 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1999 				"Successful Endpoint Configure command");
2000 		ret = 0;
2001 		break;
2002 	default:
2003 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2004 				*cmd_status);
2005 		ret = -EINVAL;
2006 		break;
2007 	}
2008 	return ret;
2009 }
2010 
2011 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2012 		struct usb_device *udev, u32 *cmd_status)
2013 {
2014 	int ret;
2015 
2016 	switch (*cmd_status) {
2017 	case COMP_COMMAND_ABORTED:
2018 	case COMP_COMMAND_RING_STOPPED:
2019 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2020 		ret = -ETIME;
2021 		break;
2022 	case COMP_PARAMETER_ERROR:
2023 		dev_warn(&udev->dev,
2024 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2025 		ret = -EINVAL;
2026 		break;
2027 	case COMP_SLOT_NOT_ENABLED_ERROR:
2028 		dev_warn(&udev->dev,
2029 			"WARN: slot not enabled for evaluate context command.\n");
2030 		ret = -EINVAL;
2031 		break;
2032 	case COMP_CONTEXT_STATE_ERROR:
2033 		dev_warn(&udev->dev,
2034 			"WARN: invalid context state for evaluate context command.\n");
2035 		ret = -EINVAL;
2036 		break;
2037 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2038 		dev_warn(&udev->dev,
2039 			"ERROR: Incompatible device for evaluate context command.\n");
2040 		ret = -ENODEV;
2041 		break;
2042 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2043 		/* Max Exit Latency too large error */
2044 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2045 		ret = -EINVAL;
2046 		break;
2047 	case COMP_SUCCESS:
2048 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049 				"Successful evaluate context command");
2050 		ret = 0;
2051 		break;
2052 	default:
2053 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054 			*cmd_status);
2055 		ret = -EINVAL;
2056 		break;
2057 	}
2058 	return ret;
2059 }
2060 
2061 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2062 		struct xhci_input_control_ctx *ctrl_ctx)
2063 {
2064 	u32 valid_add_flags;
2065 	u32 valid_drop_flags;
2066 
2067 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2068 	 * (bit 1).  The default control endpoint is added during the Address
2069 	 * Device command and is never removed until the slot is disabled.
2070 	 */
2071 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2072 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2073 
2074 	/* Use hweight32 to count the number of ones in the add flags, or
2075 	 * number of endpoints added.  Don't count endpoints that are changed
2076 	 * (both added and dropped).
2077 	 */
2078 	return hweight32(valid_add_flags) -
2079 		hweight32(valid_add_flags & valid_drop_flags);
2080 }
2081 
2082 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2083 		struct xhci_input_control_ctx *ctrl_ctx)
2084 {
2085 	u32 valid_add_flags;
2086 	u32 valid_drop_flags;
2087 
2088 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090 
2091 	return hweight32(valid_drop_flags) -
2092 		hweight32(valid_add_flags & valid_drop_flags);
2093 }
2094 
2095 /*
2096  * We need to reserve the new number of endpoints before the configure endpoint
2097  * command completes.  We can't subtract the dropped endpoints from the number
2098  * of active endpoints until the command completes because we can oversubscribe
2099  * the host in this case:
2100  *
2101  *  - the first configure endpoint command drops more endpoints than it adds
2102  *  - a second configure endpoint command that adds more endpoints is queued
2103  *  - the first configure endpoint command fails, so the config is unchanged
2104  *  - the second command may succeed, even though there isn't enough resources
2105  *
2106  * Must be called with xhci->lock held.
2107  */
2108 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2109 		struct xhci_input_control_ctx *ctrl_ctx)
2110 {
2111 	u32 added_eps;
2112 
2113 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2114 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2115 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2116 				"Not enough ep ctxs: "
2117 				"%u active, need to add %u, limit is %u.",
2118 				xhci->num_active_eps, added_eps,
2119 				xhci->limit_active_eps);
2120 		return -ENOMEM;
2121 	}
2122 	xhci->num_active_eps += added_eps;
2123 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2124 			"Adding %u ep ctxs, %u now active.", added_eps,
2125 			xhci->num_active_eps);
2126 	return 0;
2127 }
2128 
2129 /*
2130  * The configure endpoint was failed by the xHC for some other reason, so we
2131  * need to revert the resources that failed configuration would have used.
2132  *
2133  * Must be called with xhci->lock held.
2134  */
2135 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2136 		struct xhci_input_control_ctx *ctrl_ctx)
2137 {
2138 	u32 num_failed_eps;
2139 
2140 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2141 	xhci->num_active_eps -= num_failed_eps;
2142 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 			"Removing %u failed ep ctxs, %u now active.",
2144 			num_failed_eps,
2145 			xhci->num_active_eps);
2146 }
2147 
2148 /*
2149  * Now that the command has completed, clean up the active endpoint count by
2150  * subtracting out the endpoints that were dropped (but not changed).
2151  *
2152  * Must be called with xhci->lock held.
2153  */
2154 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2155 		struct xhci_input_control_ctx *ctrl_ctx)
2156 {
2157 	u32 num_dropped_eps;
2158 
2159 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2160 	xhci->num_active_eps -= num_dropped_eps;
2161 	if (num_dropped_eps)
2162 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2163 				"Removing %u dropped ep ctxs, %u now active.",
2164 				num_dropped_eps,
2165 				xhci->num_active_eps);
2166 }
2167 
2168 static unsigned int xhci_get_block_size(struct usb_device *udev)
2169 {
2170 	switch (udev->speed) {
2171 	case USB_SPEED_LOW:
2172 	case USB_SPEED_FULL:
2173 		return FS_BLOCK;
2174 	case USB_SPEED_HIGH:
2175 		return HS_BLOCK;
2176 	case USB_SPEED_SUPER:
2177 	case USB_SPEED_SUPER_PLUS:
2178 		return SS_BLOCK;
2179 	case USB_SPEED_UNKNOWN:
2180 	case USB_SPEED_WIRELESS:
2181 	default:
2182 		/* Should never happen */
2183 		return 1;
2184 	}
2185 }
2186 
2187 static unsigned int
2188 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2189 {
2190 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2191 		return LS_OVERHEAD;
2192 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2193 		return FS_OVERHEAD;
2194 	return HS_OVERHEAD;
2195 }
2196 
2197 /* If we are changing a LS/FS device under a HS hub,
2198  * make sure (if we are activating a new TT) that the HS bus has enough
2199  * bandwidth for this new TT.
2200  */
2201 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2202 		struct xhci_virt_device *virt_dev,
2203 		int old_active_eps)
2204 {
2205 	struct xhci_interval_bw_table *bw_table;
2206 	struct xhci_tt_bw_info *tt_info;
2207 
2208 	/* Find the bandwidth table for the root port this TT is attached to. */
2209 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2210 	tt_info = virt_dev->tt_info;
2211 	/* If this TT already had active endpoints, the bandwidth for this TT
2212 	 * has already been added.  Removing all periodic endpoints (and thus
2213 	 * making the TT enactive) will only decrease the bandwidth used.
2214 	 */
2215 	if (old_active_eps)
2216 		return 0;
2217 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2218 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2219 			return -ENOMEM;
2220 		return 0;
2221 	}
2222 	/* Not sure why we would have no new active endpoints...
2223 	 *
2224 	 * Maybe because of an Evaluate Context change for a hub update or a
2225 	 * control endpoint 0 max packet size change?
2226 	 * FIXME: skip the bandwidth calculation in that case.
2227 	 */
2228 	return 0;
2229 }
2230 
2231 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2232 		struct xhci_virt_device *virt_dev)
2233 {
2234 	unsigned int bw_reserved;
2235 
2236 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2237 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2238 		return -ENOMEM;
2239 
2240 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2241 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2242 		return -ENOMEM;
2243 
2244 	return 0;
2245 }
2246 
2247 /*
2248  * This algorithm is a very conservative estimate of the worst-case scheduling
2249  * scenario for any one interval.  The hardware dynamically schedules the
2250  * packets, so we can't tell which microframe could be the limiting factor in
2251  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2252  *
2253  * Obviously, we can't solve an NP complete problem to find the minimum worst
2254  * case scenario.  Instead, we come up with an estimate that is no less than
2255  * the worst case bandwidth used for any one microframe, but may be an
2256  * over-estimate.
2257  *
2258  * We walk the requirements for each endpoint by interval, starting with the
2259  * smallest interval, and place packets in the schedule where there is only one
2260  * possible way to schedule packets for that interval.  In order to simplify
2261  * this algorithm, we record the largest max packet size for each interval, and
2262  * assume all packets will be that size.
2263  *
2264  * For interval 0, we obviously must schedule all packets for each interval.
2265  * The bandwidth for interval 0 is just the amount of data to be transmitted
2266  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2267  * the number of packets).
2268  *
2269  * For interval 1, we have two possible microframes to schedule those packets
2270  * in.  For this algorithm, if we can schedule the same number of packets for
2271  * each possible scheduling opportunity (each microframe), we will do so.  The
2272  * remaining number of packets will be saved to be transmitted in the gaps in
2273  * the next interval's scheduling sequence.
2274  *
2275  * As we move those remaining packets to be scheduled with interval 2 packets,
2276  * we have to double the number of remaining packets to transmit.  This is
2277  * because the intervals are actually powers of 2, and we would be transmitting
2278  * the previous interval's packets twice in this interval.  We also have to be
2279  * sure that when we look at the largest max packet size for this interval, we
2280  * also look at the largest max packet size for the remaining packets and take
2281  * the greater of the two.
2282  *
2283  * The algorithm continues to evenly distribute packets in each scheduling
2284  * opportunity, and push the remaining packets out, until we get to the last
2285  * interval.  Then those packets and their associated overhead are just added
2286  * to the bandwidth used.
2287  */
2288 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2289 		struct xhci_virt_device *virt_dev,
2290 		int old_active_eps)
2291 {
2292 	unsigned int bw_reserved;
2293 	unsigned int max_bandwidth;
2294 	unsigned int bw_used;
2295 	unsigned int block_size;
2296 	struct xhci_interval_bw_table *bw_table;
2297 	unsigned int packet_size = 0;
2298 	unsigned int overhead = 0;
2299 	unsigned int packets_transmitted = 0;
2300 	unsigned int packets_remaining = 0;
2301 	unsigned int i;
2302 
2303 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2304 		return xhci_check_ss_bw(xhci, virt_dev);
2305 
2306 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2307 		max_bandwidth = HS_BW_LIMIT;
2308 		/* Convert percent of bus BW reserved to blocks reserved */
2309 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2310 	} else {
2311 		max_bandwidth = FS_BW_LIMIT;
2312 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2313 	}
2314 
2315 	bw_table = virt_dev->bw_table;
2316 	/* We need to translate the max packet size and max ESIT payloads into
2317 	 * the units the hardware uses.
2318 	 */
2319 	block_size = xhci_get_block_size(virt_dev->udev);
2320 
2321 	/* If we are manipulating a LS/FS device under a HS hub, double check
2322 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2323 	 */
2324 	if (virt_dev->tt_info) {
2325 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2326 				"Recalculating BW for rootport %u",
2327 				virt_dev->real_port);
2328 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2329 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2330 					"newly activated TT.\n");
2331 			return -ENOMEM;
2332 		}
2333 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334 				"Recalculating BW for TT slot %u port %u",
2335 				virt_dev->tt_info->slot_id,
2336 				virt_dev->tt_info->ttport);
2337 	} else {
2338 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2339 				"Recalculating BW for rootport %u",
2340 				virt_dev->real_port);
2341 	}
2342 
2343 	/* Add in how much bandwidth will be used for interval zero, or the
2344 	 * rounded max ESIT payload + number of packets * largest overhead.
2345 	 */
2346 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2347 		bw_table->interval_bw[0].num_packets *
2348 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2349 
2350 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2351 		unsigned int bw_added;
2352 		unsigned int largest_mps;
2353 		unsigned int interval_overhead;
2354 
2355 		/*
2356 		 * How many packets could we transmit in this interval?
2357 		 * If packets didn't fit in the previous interval, we will need
2358 		 * to transmit that many packets twice within this interval.
2359 		 */
2360 		packets_remaining = 2 * packets_remaining +
2361 			bw_table->interval_bw[i].num_packets;
2362 
2363 		/* Find the largest max packet size of this or the previous
2364 		 * interval.
2365 		 */
2366 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2367 			largest_mps = 0;
2368 		else {
2369 			struct xhci_virt_ep *virt_ep;
2370 			struct list_head *ep_entry;
2371 
2372 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2373 			virt_ep = list_entry(ep_entry,
2374 					struct xhci_virt_ep, bw_endpoint_list);
2375 			/* Convert to blocks, rounding up */
2376 			largest_mps = DIV_ROUND_UP(
2377 					virt_ep->bw_info.max_packet_size,
2378 					block_size);
2379 		}
2380 		if (largest_mps > packet_size)
2381 			packet_size = largest_mps;
2382 
2383 		/* Use the larger overhead of this or the previous interval. */
2384 		interval_overhead = xhci_get_largest_overhead(
2385 				&bw_table->interval_bw[i]);
2386 		if (interval_overhead > overhead)
2387 			overhead = interval_overhead;
2388 
2389 		/* How many packets can we evenly distribute across
2390 		 * (1 << (i + 1)) possible scheduling opportunities?
2391 		 */
2392 		packets_transmitted = packets_remaining >> (i + 1);
2393 
2394 		/* Add in the bandwidth used for those scheduled packets */
2395 		bw_added = packets_transmitted * (overhead + packet_size);
2396 
2397 		/* How many packets do we have remaining to transmit? */
2398 		packets_remaining = packets_remaining % (1 << (i + 1));
2399 
2400 		/* What largest max packet size should those packets have? */
2401 		/* If we've transmitted all packets, don't carry over the
2402 		 * largest packet size.
2403 		 */
2404 		if (packets_remaining == 0) {
2405 			packet_size = 0;
2406 			overhead = 0;
2407 		} else if (packets_transmitted > 0) {
2408 			/* Otherwise if we do have remaining packets, and we've
2409 			 * scheduled some packets in this interval, take the
2410 			 * largest max packet size from endpoints with this
2411 			 * interval.
2412 			 */
2413 			packet_size = largest_mps;
2414 			overhead = interval_overhead;
2415 		}
2416 		/* Otherwise carry over packet_size and overhead from the last
2417 		 * time we had a remainder.
2418 		 */
2419 		bw_used += bw_added;
2420 		if (bw_used > max_bandwidth) {
2421 			xhci_warn(xhci, "Not enough bandwidth. "
2422 					"Proposed: %u, Max: %u\n",
2423 				bw_used, max_bandwidth);
2424 			return -ENOMEM;
2425 		}
2426 	}
2427 	/*
2428 	 * Ok, we know we have some packets left over after even-handedly
2429 	 * scheduling interval 15.  We don't know which microframes they will
2430 	 * fit into, so we over-schedule and say they will be scheduled every
2431 	 * microframe.
2432 	 */
2433 	if (packets_remaining > 0)
2434 		bw_used += overhead + packet_size;
2435 
2436 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2437 		unsigned int port_index = virt_dev->real_port - 1;
2438 
2439 		/* OK, we're manipulating a HS device attached to a
2440 		 * root port bandwidth domain.  Include the number of active TTs
2441 		 * in the bandwidth used.
2442 		 */
2443 		bw_used += TT_HS_OVERHEAD *
2444 			xhci->rh_bw[port_index].num_active_tts;
2445 	}
2446 
2447 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2448 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2449 		"Available: %u " "percent",
2450 		bw_used, max_bandwidth, bw_reserved,
2451 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2452 		max_bandwidth);
2453 
2454 	bw_used += bw_reserved;
2455 	if (bw_used > max_bandwidth) {
2456 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2457 				bw_used, max_bandwidth);
2458 		return -ENOMEM;
2459 	}
2460 
2461 	bw_table->bw_used = bw_used;
2462 	return 0;
2463 }
2464 
2465 static bool xhci_is_async_ep(unsigned int ep_type)
2466 {
2467 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2468 					ep_type != ISOC_IN_EP &&
2469 					ep_type != INT_IN_EP);
2470 }
2471 
2472 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2473 {
2474 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2475 }
2476 
2477 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2478 {
2479 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2480 
2481 	if (ep_bw->ep_interval == 0)
2482 		return SS_OVERHEAD_BURST +
2483 			(ep_bw->mult * ep_bw->num_packets *
2484 					(SS_OVERHEAD + mps));
2485 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2486 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2487 				1 << ep_bw->ep_interval);
2488 
2489 }
2490 
2491 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2492 		struct xhci_bw_info *ep_bw,
2493 		struct xhci_interval_bw_table *bw_table,
2494 		struct usb_device *udev,
2495 		struct xhci_virt_ep *virt_ep,
2496 		struct xhci_tt_bw_info *tt_info)
2497 {
2498 	struct xhci_interval_bw	*interval_bw;
2499 	int normalized_interval;
2500 
2501 	if (xhci_is_async_ep(ep_bw->type))
2502 		return;
2503 
2504 	if (udev->speed >= USB_SPEED_SUPER) {
2505 		if (xhci_is_sync_in_ep(ep_bw->type))
2506 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2507 				xhci_get_ss_bw_consumed(ep_bw);
2508 		else
2509 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2510 				xhci_get_ss_bw_consumed(ep_bw);
2511 		return;
2512 	}
2513 
2514 	/* SuperSpeed endpoints never get added to intervals in the table, so
2515 	 * this check is only valid for HS/FS/LS devices.
2516 	 */
2517 	if (list_empty(&virt_ep->bw_endpoint_list))
2518 		return;
2519 	/* For LS/FS devices, we need to translate the interval expressed in
2520 	 * microframes to frames.
2521 	 */
2522 	if (udev->speed == USB_SPEED_HIGH)
2523 		normalized_interval = ep_bw->ep_interval;
2524 	else
2525 		normalized_interval = ep_bw->ep_interval - 3;
2526 
2527 	if (normalized_interval == 0)
2528 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2529 	interval_bw = &bw_table->interval_bw[normalized_interval];
2530 	interval_bw->num_packets -= ep_bw->num_packets;
2531 	switch (udev->speed) {
2532 	case USB_SPEED_LOW:
2533 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2534 		break;
2535 	case USB_SPEED_FULL:
2536 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2537 		break;
2538 	case USB_SPEED_HIGH:
2539 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2540 		break;
2541 	case USB_SPEED_SUPER:
2542 	case USB_SPEED_SUPER_PLUS:
2543 	case USB_SPEED_UNKNOWN:
2544 	case USB_SPEED_WIRELESS:
2545 		/* Should never happen because only LS/FS/HS endpoints will get
2546 		 * added to the endpoint list.
2547 		 */
2548 		return;
2549 	}
2550 	if (tt_info)
2551 		tt_info->active_eps -= 1;
2552 	list_del_init(&virt_ep->bw_endpoint_list);
2553 }
2554 
2555 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2556 		struct xhci_bw_info *ep_bw,
2557 		struct xhci_interval_bw_table *bw_table,
2558 		struct usb_device *udev,
2559 		struct xhci_virt_ep *virt_ep,
2560 		struct xhci_tt_bw_info *tt_info)
2561 {
2562 	struct xhci_interval_bw	*interval_bw;
2563 	struct xhci_virt_ep *smaller_ep;
2564 	int normalized_interval;
2565 
2566 	if (xhci_is_async_ep(ep_bw->type))
2567 		return;
2568 
2569 	if (udev->speed == USB_SPEED_SUPER) {
2570 		if (xhci_is_sync_in_ep(ep_bw->type))
2571 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2572 				xhci_get_ss_bw_consumed(ep_bw);
2573 		else
2574 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2575 				xhci_get_ss_bw_consumed(ep_bw);
2576 		return;
2577 	}
2578 
2579 	/* For LS/FS devices, we need to translate the interval expressed in
2580 	 * microframes to frames.
2581 	 */
2582 	if (udev->speed == USB_SPEED_HIGH)
2583 		normalized_interval = ep_bw->ep_interval;
2584 	else
2585 		normalized_interval = ep_bw->ep_interval - 3;
2586 
2587 	if (normalized_interval == 0)
2588 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2589 	interval_bw = &bw_table->interval_bw[normalized_interval];
2590 	interval_bw->num_packets += ep_bw->num_packets;
2591 	switch (udev->speed) {
2592 	case USB_SPEED_LOW:
2593 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2594 		break;
2595 	case USB_SPEED_FULL:
2596 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2597 		break;
2598 	case USB_SPEED_HIGH:
2599 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2600 		break;
2601 	case USB_SPEED_SUPER:
2602 	case USB_SPEED_SUPER_PLUS:
2603 	case USB_SPEED_UNKNOWN:
2604 	case USB_SPEED_WIRELESS:
2605 		/* Should never happen because only LS/FS/HS endpoints will get
2606 		 * added to the endpoint list.
2607 		 */
2608 		return;
2609 	}
2610 
2611 	if (tt_info)
2612 		tt_info->active_eps += 1;
2613 	/* Insert the endpoint into the list, largest max packet size first. */
2614 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2615 			bw_endpoint_list) {
2616 		if (ep_bw->max_packet_size >=
2617 				smaller_ep->bw_info.max_packet_size) {
2618 			/* Add the new ep before the smaller endpoint */
2619 			list_add_tail(&virt_ep->bw_endpoint_list,
2620 					&smaller_ep->bw_endpoint_list);
2621 			return;
2622 		}
2623 	}
2624 	/* Add the new endpoint at the end of the list. */
2625 	list_add_tail(&virt_ep->bw_endpoint_list,
2626 			&interval_bw->endpoints);
2627 }
2628 
2629 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2630 		struct xhci_virt_device *virt_dev,
2631 		int old_active_eps)
2632 {
2633 	struct xhci_root_port_bw_info *rh_bw_info;
2634 	if (!virt_dev->tt_info)
2635 		return;
2636 
2637 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2638 	if (old_active_eps == 0 &&
2639 				virt_dev->tt_info->active_eps != 0) {
2640 		rh_bw_info->num_active_tts += 1;
2641 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2642 	} else if (old_active_eps != 0 &&
2643 				virt_dev->tt_info->active_eps == 0) {
2644 		rh_bw_info->num_active_tts -= 1;
2645 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2646 	}
2647 }
2648 
2649 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2650 		struct xhci_virt_device *virt_dev,
2651 		struct xhci_container_ctx *in_ctx)
2652 {
2653 	struct xhci_bw_info ep_bw_info[31];
2654 	int i;
2655 	struct xhci_input_control_ctx *ctrl_ctx;
2656 	int old_active_eps = 0;
2657 
2658 	if (virt_dev->tt_info)
2659 		old_active_eps = virt_dev->tt_info->active_eps;
2660 
2661 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2662 	if (!ctrl_ctx) {
2663 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2664 				__func__);
2665 		return -ENOMEM;
2666 	}
2667 
2668 	for (i = 0; i < 31; i++) {
2669 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2670 			continue;
2671 
2672 		/* Make a copy of the BW info in case we need to revert this */
2673 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2674 				sizeof(ep_bw_info[i]));
2675 		/* Drop the endpoint from the interval table if the endpoint is
2676 		 * being dropped or changed.
2677 		 */
2678 		if (EP_IS_DROPPED(ctrl_ctx, i))
2679 			xhci_drop_ep_from_interval_table(xhci,
2680 					&virt_dev->eps[i].bw_info,
2681 					virt_dev->bw_table,
2682 					virt_dev->udev,
2683 					&virt_dev->eps[i],
2684 					virt_dev->tt_info);
2685 	}
2686 	/* Overwrite the information stored in the endpoints' bw_info */
2687 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2688 	for (i = 0; i < 31; i++) {
2689 		/* Add any changed or added endpoints to the interval table */
2690 		if (EP_IS_ADDED(ctrl_ctx, i))
2691 			xhci_add_ep_to_interval_table(xhci,
2692 					&virt_dev->eps[i].bw_info,
2693 					virt_dev->bw_table,
2694 					virt_dev->udev,
2695 					&virt_dev->eps[i],
2696 					virt_dev->tt_info);
2697 	}
2698 
2699 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2700 		/* Ok, this fits in the bandwidth we have.
2701 		 * Update the number of active TTs.
2702 		 */
2703 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2704 		return 0;
2705 	}
2706 
2707 	/* We don't have enough bandwidth for this, revert the stored info. */
2708 	for (i = 0; i < 31; i++) {
2709 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2710 			continue;
2711 
2712 		/* Drop the new copies of any added or changed endpoints from
2713 		 * the interval table.
2714 		 */
2715 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2716 			xhci_drop_ep_from_interval_table(xhci,
2717 					&virt_dev->eps[i].bw_info,
2718 					virt_dev->bw_table,
2719 					virt_dev->udev,
2720 					&virt_dev->eps[i],
2721 					virt_dev->tt_info);
2722 		}
2723 		/* Revert the endpoint back to its old information */
2724 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2725 				sizeof(ep_bw_info[i]));
2726 		/* Add any changed or dropped endpoints back into the table */
2727 		if (EP_IS_DROPPED(ctrl_ctx, i))
2728 			xhci_add_ep_to_interval_table(xhci,
2729 					&virt_dev->eps[i].bw_info,
2730 					virt_dev->bw_table,
2731 					virt_dev->udev,
2732 					&virt_dev->eps[i],
2733 					virt_dev->tt_info);
2734 	}
2735 	return -ENOMEM;
2736 }
2737 
2738 
2739 /* Issue a configure endpoint command or evaluate context command
2740  * and wait for it to finish.
2741  */
2742 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2743 		struct usb_device *udev,
2744 		struct xhci_command *command,
2745 		bool ctx_change, bool must_succeed)
2746 {
2747 	int ret;
2748 	unsigned long flags;
2749 	struct xhci_input_control_ctx *ctrl_ctx;
2750 	struct xhci_virt_device *virt_dev;
2751 	struct xhci_slot_ctx *slot_ctx;
2752 
2753 	if (!command)
2754 		return -EINVAL;
2755 
2756 	spin_lock_irqsave(&xhci->lock, flags);
2757 
2758 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2759 		spin_unlock_irqrestore(&xhci->lock, flags);
2760 		return -ESHUTDOWN;
2761 	}
2762 
2763 	virt_dev = xhci->devs[udev->slot_id];
2764 
2765 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2766 	if (!ctrl_ctx) {
2767 		spin_unlock_irqrestore(&xhci->lock, flags);
2768 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2769 				__func__);
2770 		return -ENOMEM;
2771 	}
2772 
2773 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2774 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2775 		spin_unlock_irqrestore(&xhci->lock, flags);
2776 		xhci_warn(xhci, "Not enough host resources, "
2777 				"active endpoint contexts = %u\n",
2778 				xhci->num_active_eps);
2779 		return -ENOMEM;
2780 	}
2781 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2782 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2783 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2784 			xhci_free_host_resources(xhci, ctrl_ctx);
2785 		spin_unlock_irqrestore(&xhci->lock, flags);
2786 		xhci_warn(xhci, "Not enough bandwidth\n");
2787 		return -ENOMEM;
2788 	}
2789 
2790 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2791 
2792 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2793 	trace_xhci_configure_endpoint(slot_ctx);
2794 
2795 	if (!ctx_change)
2796 		ret = xhci_queue_configure_endpoint(xhci, command,
2797 				command->in_ctx->dma,
2798 				udev->slot_id, must_succeed);
2799 	else
2800 		ret = xhci_queue_evaluate_context(xhci, command,
2801 				command->in_ctx->dma,
2802 				udev->slot_id, must_succeed);
2803 	if (ret < 0) {
2804 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2805 			xhci_free_host_resources(xhci, ctrl_ctx);
2806 		spin_unlock_irqrestore(&xhci->lock, flags);
2807 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2808 				"FIXME allocate a new ring segment");
2809 		return -ENOMEM;
2810 	}
2811 	xhci_ring_cmd_db(xhci);
2812 	spin_unlock_irqrestore(&xhci->lock, flags);
2813 
2814 	/* Wait for the configure endpoint command to complete */
2815 	wait_for_completion(command->completion);
2816 
2817 	if (!ctx_change)
2818 		ret = xhci_configure_endpoint_result(xhci, udev,
2819 						     &command->status);
2820 	else
2821 		ret = xhci_evaluate_context_result(xhci, udev,
2822 						   &command->status);
2823 
2824 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2825 		spin_lock_irqsave(&xhci->lock, flags);
2826 		/* If the command failed, remove the reserved resources.
2827 		 * Otherwise, clean up the estimate to include dropped eps.
2828 		 */
2829 		if (ret)
2830 			xhci_free_host_resources(xhci, ctrl_ctx);
2831 		else
2832 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2833 		spin_unlock_irqrestore(&xhci->lock, flags);
2834 	}
2835 	return ret;
2836 }
2837 
2838 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2839 	struct xhci_virt_device *vdev, int i)
2840 {
2841 	struct xhci_virt_ep *ep = &vdev->eps[i];
2842 
2843 	if (ep->ep_state & EP_HAS_STREAMS) {
2844 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2845 				xhci_get_endpoint_address(i));
2846 		xhci_free_stream_info(xhci, ep->stream_info);
2847 		ep->stream_info = NULL;
2848 		ep->ep_state &= ~EP_HAS_STREAMS;
2849 	}
2850 }
2851 
2852 /* Called after one or more calls to xhci_add_endpoint() or
2853  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2854  * to call xhci_reset_bandwidth().
2855  *
2856  * Since we are in the middle of changing either configuration or
2857  * installing a new alt setting, the USB core won't allow URBs to be
2858  * enqueued for any endpoint on the old config or interface.  Nothing
2859  * else should be touching the xhci->devs[slot_id] structure, so we
2860  * don't need to take the xhci->lock for manipulating that.
2861  */
2862 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2863 {
2864 	int i;
2865 	int ret = 0;
2866 	struct xhci_hcd *xhci;
2867 	struct xhci_virt_device	*virt_dev;
2868 	struct xhci_input_control_ctx *ctrl_ctx;
2869 	struct xhci_slot_ctx *slot_ctx;
2870 	struct xhci_command *command;
2871 
2872 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2873 	if (ret <= 0)
2874 		return ret;
2875 	xhci = hcd_to_xhci(hcd);
2876 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2877 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2878 		return -ENODEV;
2879 
2880 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2881 	virt_dev = xhci->devs[udev->slot_id];
2882 
2883 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2884 	if (!command)
2885 		return -ENOMEM;
2886 
2887 	command->in_ctx = virt_dev->in_ctx;
2888 
2889 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2890 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2891 	if (!ctrl_ctx) {
2892 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2893 				__func__);
2894 		ret = -ENOMEM;
2895 		goto command_cleanup;
2896 	}
2897 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2899 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2900 
2901 	/* Don't issue the command if there's no endpoints to update. */
2902 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2903 	    ctrl_ctx->drop_flags == 0) {
2904 		ret = 0;
2905 		goto command_cleanup;
2906 	}
2907 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2908 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2909 	for (i = 31; i >= 1; i--) {
2910 		__le32 le32 = cpu_to_le32(BIT(i));
2911 
2912 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2913 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2914 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2915 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2916 			break;
2917 		}
2918 	}
2919 
2920 	ret = xhci_configure_endpoint(xhci, udev, command,
2921 			false, false);
2922 	if (ret)
2923 		/* Callee should call reset_bandwidth() */
2924 		goto command_cleanup;
2925 
2926 	/* Free any rings that were dropped, but not changed. */
2927 	for (i = 1; i < 31; i++) {
2928 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2929 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2930 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2931 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2932 		}
2933 	}
2934 	xhci_zero_in_ctx(xhci, virt_dev);
2935 	/*
2936 	 * Install any rings for completely new endpoints or changed endpoints,
2937 	 * and free any old rings from changed endpoints.
2938 	 */
2939 	for (i = 1; i < 31; i++) {
2940 		if (!virt_dev->eps[i].new_ring)
2941 			continue;
2942 		/* Only free the old ring if it exists.
2943 		 * It may not if this is the first add of an endpoint.
2944 		 */
2945 		if (virt_dev->eps[i].ring) {
2946 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2947 		}
2948 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2949 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2950 		virt_dev->eps[i].new_ring = NULL;
2951 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2952 	}
2953 command_cleanup:
2954 	kfree(command->completion);
2955 	kfree(command);
2956 
2957 	return ret;
2958 }
2959 
2960 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961 {
2962 	struct xhci_hcd *xhci;
2963 	struct xhci_virt_device	*virt_dev;
2964 	int i, ret;
2965 
2966 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967 	if (ret <= 0)
2968 		return;
2969 	xhci = hcd_to_xhci(hcd);
2970 
2971 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972 	virt_dev = xhci->devs[udev->slot_id];
2973 	/* Free any rings allocated for added endpoints */
2974 	for (i = 0; i < 31; i++) {
2975 		if (virt_dev->eps[i].new_ring) {
2976 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978 			virt_dev->eps[i].new_ring = NULL;
2979 		}
2980 	}
2981 	xhci_zero_in_ctx(xhci, virt_dev);
2982 }
2983 
2984 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985 		struct xhci_container_ctx *in_ctx,
2986 		struct xhci_container_ctx *out_ctx,
2987 		struct xhci_input_control_ctx *ctrl_ctx,
2988 		u32 add_flags, u32 drop_flags)
2989 {
2990 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2993 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 }
2995 
2996 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997 		unsigned int slot_id, unsigned int ep_index,
2998 		struct xhci_dequeue_state *deq_state)
2999 {
3000 	struct xhci_input_control_ctx *ctrl_ctx;
3001 	struct xhci_container_ctx *in_ctx;
3002 	struct xhci_ep_ctx *ep_ctx;
3003 	u32 added_ctxs;
3004 	dma_addr_t addr;
3005 
3006 	in_ctx = xhci->devs[slot_id]->in_ctx;
3007 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008 	if (!ctrl_ctx) {
3009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010 				__func__);
3011 		return;
3012 	}
3013 
3014 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015 			xhci->devs[slot_id]->out_ctx, ep_index);
3016 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018 			deq_state->new_deq_ptr);
3019 	if (addr == 0) {
3020 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3021 				"reset ep command\n");
3022 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023 				deq_state->new_deq_seg,
3024 				deq_state->new_deq_ptr);
3025 		return;
3026 	}
3027 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028 
3029 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032 			added_ctxs, added_ctxs);
3033 }
3034 
3035 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3036 			       unsigned int ep_index, unsigned int stream_id,
3037 			       struct xhci_td *td)
3038 {
3039 	struct xhci_dequeue_state deq_state;
3040 
3041 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042 			"Cleaning up stalled endpoint ring");
3043 	/* We need to move the HW's dequeue pointer past this TD,
3044 	 * or it will attempt to resend it on the next doorbell ring.
3045 	 */
3046 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3047 				    &deq_state);
3048 
3049 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050 		return;
3051 
3052 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3053 	 * issue a configure endpoint command later.
3054 	 */
3055 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057 				"Queueing new dequeue state");
3058 		xhci_queue_new_dequeue_state(xhci, slot_id,
3059 				ep_index, &deq_state);
3060 	} else {
3061 		/* Better hope no one uses the input context between now and the
3062 		 * reset endpoint completion!
3063 		 * XXX: No idea how this hardware will react when stream rings
3064 		 * are enabled.
3065 		 */
3066 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067 				"Setting up input context for "
3068 				"configure endpoint command");
3069 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3070 				ep_index, &deq_state);
3071 	}
3072 }
3073 
3074 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075 				  struct usb_host_endpoint *host_ep)
3076 {
3077 	struct xhci_hcd		*xhci;
3078 	struct xhci_virt_device	*vdev;
3079 	struct xhci_virt_ep	*ep;
3080 	struct usb_device	*udev;
3081 	unsigned long		flags;
3082 	unsigned int		ep_index;
3083 
3084 	xhci = hcd_to_xhci(hcd);
3085 rescan:
3086 	spin_lock_irqsave(&xhci->lock, flags);
3087 
3088 	udev = (struct usb_device *)host_ep->hcpriv;
3089 	if (!udev || !udev->slot_id)
3090 		goto done;
3091 
3092 	vdev = xhci->devs[udev->slot_id];
3093 	if (!vdev)
3094 		goto done;
3095 
3096 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097 	ep = &vdev->eps[ep_index];
3098 	if (!ep)
3099 		goto done;
3100 
3101 	/* wait for hub_tt_work to finish clearing hub TT */
3102 	if (ep->ep_state & EP_CLEARING_TT) {
3103 		spin_unlock_irqrestore(&xhci->lock, flags);
3104 		schedule_timeout_uninterruptible(1);
3105 		goto rescan;
3106 	}
3107 
3108 	if (ep->ep_state)
3109 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110 			 ep->ep_state);
3111 done:
3112 	host_ep->hcpriv = NULL;
3113 	spin_unlock_irqrestore(&xhci->lock, flags);
3114 }
3115 
3116 /*
3117  * Called after usb core issues a clear halt control message.
3118  * The host side of the halt should already be cleared by a reset endpoint
3119  * command issued when the STALL event was received.
3120  *
3121  * The reset endpoint command may only be issued to endpoints in the halted
3122  * state. For software that wishes to reset the data toggle or sequence number
3123  * of an endpoint that isn't in the halted state this function will issue a
3124  * configure endpoint command with the Drop and Add bits set for the target
3125  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126  */
3127 
3128 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129 		struct usb_host_endpoint *host_ep)
3130 {
3131 	struct xhci_hcd *xhci;
3132 	struct usb_device *udev;
3133 	struct xhci_virt_device *vdev;
3134 	struct xhci_virt_ep *ep;
3135 	struct xhci_input_control_ctx *ctrl_ctx;
3136 	struct xhci_command *stop_cmd, *cfg_cmd;
3137 	unsigned int ep_index;
3138 	unsigned long flags;
3139 	u32 ep_flag;
3140 	int err;
3141 
3142 	xhci = hcd_to_xhci(hcd);
3143 	if (!host_ep->hcpriv)
3144 		return;
3145 	udev = (struct usb_device *) host_ep->hcpriv;
3146 	vdev = xhci->devs[udev->slot_id];
3147 
3148 	/*
3149 	 * vdev may be lost due to xHC restore error and re-initialization
3150 	 * during S3/S4 resume. A new vdev will be allocated later by
3151 	 * xhci_discover_or_reset_device()
3152 	 */
3153 	if (!udev->slot_id || !vdev)
3154 		return;
3155 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156 	ep = &vdev->eps[ep_index];
3157 	if (!ep)
3158 		return;
3159 
3160 	/* Bail out if toggle is already being cleared by a endpoint reset */
3161 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163 		return;
3164 	}
3165 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3168 		return;
3169 
3170 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171 
3172 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173 		return;
3174 
3175 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176 	if (!stop_cmd)
3177 		return;
3178 
3179 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180 	if (!cfg_cmd)
3181 		goto cleanup;
3182 
3183 	spin_lock_irqsave(&xhci->lock, flags);
3184 
3185 	/* block queuing new trbs and ringing ep doorbell */
3186 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187 
3188 	/*
3189 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3190 	 * Driver is required to synchronously cancel all transfer request.
3191 	 * Stop the endpoint to force xHC to update the output context
3192 	 */
3193 
3194 	if (!list_empty(&ep->ring->td_list)) {
3195 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196 		spin_unlock_irqrestore(&xhci->lock, flags);
3197 		xhci_free_command(xhci, cfg_cmd);
3198 		goto cleanup;
3199 	}
3200 
3201 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202 					ep_index, 0);
3203 	if (err < 0) {
3204 		spin_unlock_irqrestore(&xhci->lock, flags);
3205 		xhci_free_command(xhci, cfg_cmd);
3206 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207 				__func__, err);
3208 		goto cleanup;
3209 	}
3210 
3211 	xhci_ring_cmd_db(xhci);
3212 	spin_unlock_irqrestore(&xhci->lock, flags);
3213 
3214 	wait_for_completion(stop_cmd->completion);
3215 
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 
3218 	/* config ep command clears toggle if add and drop ep flags are set */
3219 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221 					   ctrl_ctx, ep_flag, ep_flag);
3222 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223 
3224 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225 				      udev->slot_id, false);
3226 	if (err < 0) {
3227 		spin_unlock_irqrestore(&xhci->lock, flags);
3228 		xhci_free_command(xhci, cfg_cmd);
3229 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230 				__func__, err);
3231 		goto cleanup;
3232 	}
3233 
3234 	xhci_ring_cmd_db(xhci);
3235 	spin_unlock_irqrestore(&xhci->lock, flags);
3236 
3237 	wait_for_completion(cfg_cmd->completion);
3238 
3239 	xhci_free_command(xhci, cfg_cmd);
3240 cleanup:
3241 	xhci_free_command(xhci, stop_cmd);
3242 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3243 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3244 }
3245 
3246 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3247 		struct usb_device *udev, struct usb_host_endpoint *ep,
3248 		unsigned int slot_id)
3249 {
3250 	int ret;
3251 	unsigned int ep_index;
3252 	unsigned int ep_state;
3253 
3254 	if (!ep)
3255 		return -EINVAL;
3256 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3257 	if (ret <= 0)
3258 		return -EINVAL;
3259 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3260 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3261 				" descriptor for ep 0x%x does not support streams\n",
3262 				ep->desc.bEndpointAddress);
3263 		return -EINVAL;
3264 	}
3265 
3266 	ep_index = xhci_get_endpoint_index(&ep->desc);
3267 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3268 	if (ep_state & EP_HAS_STREAMS ||
3269 			ep_state & EP_GETTING_STREAMS) {
3270 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3271 				"already has streams set up.\n",
3272 				ep->desc.bEndpointAddress);
3273 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3274 				"dynamic stream context array reallocation.\n");
3275 		return -EINVAL;
3276 	}
3277 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3278 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3279 				"endpoint 0x%x; URBs are pending.\n",
3280 				ep->desc.bEndpointAddress);
3281 		return -EINVAL;
3282 	}
3283 	return 0;
3284 }
3285 
3286 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3287 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3288 {
3289 	unsigned int max_streams;
3290 
3291 	/* The stream context array size must be a power of two */
3292 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3293 	/*
3294 	 * Find out how many primary stream array entries the host controller
3295 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3296 	 * level page entries), but that's an optional feature for xHCI host
3297 	 * controllers. xHCs must support at least 4 stream IDs.
3298 	 */
3299 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3300 	if (*num_stream_ctxs > max_streams) {
3301 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3302 				max_streams);
3303 		*num_stream_ctxs = max_streams;
3304 		*num_streams = max_streams;
3305 	}
3306 }
3307 
3308 /* Returns an error code if one of the endpoint already has streams.
3309  * This does not change any data structures, it only checks and gathers
3310  * information.
3311  */
3312 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3313 		struct usb_device *udev,
3314 		struct usb_host_endpoint **eps, unsigned int num_eps,
3315 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3316 {
3317 	unsigned int max_streams;
3318 	unsigned int endpoint_flag;
3319 	int i;
3320 	int ret;
3321 
3322 	for (i = 0; i < num_eps; i++) {
3323 		ret = xhci_check_streams_endpoint(xhci, udev,
3324 				eps[i], udev->slot_id);
3325 		if (ret < 0)
3326 			return ret;
3327 
3328 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3329 		if (max_streams < (*num_streams - 1)) {
3330 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3331 					eps[i]->desc.bEndpointAddress,
3332 					max_streams);
3333 			*num_streams = max_streams+1;
3334 		}
3335 
3336 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3337 		if (*changed_ep_bitmask & endpoint_flag)
3338 			return -EINVAL;
3339 		*changed_ep_bitmask |= endpoint_flag;
3340 	}
3341 	return 0;
3342 }
3343 
3344 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3345 		struct usb_device *udev,
3346 		struct usb_host_endpoint **eps, unsigned int num_eps)
3347 {
3348 	u32 changed_ep_bitmask = 0;
3349 	unsigned int slot_id;
3350 	unsigned int ep_index;
3351 	unsigned int ep_state;
3352 	int i;
3353 
3354 	slot_id = udev->slot_id;
3355 	if (!xhci->devs[slot_id])
3356 		return 0;
3357 
3358 	for (i = 0; i < num_eps; i++) {
3359 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3360 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3361 		/* Are streams already being freed for the endpoint? */
3362 		if (ep_state & EP_GETTING_NO_STREAMS) {
3363 			xhci_warn(xhci, "WARN Can't disable streams for "
3364 					"endpoint 0x%x, "
3365 					"streams are being disabled already\n",
3366 					eps[i]->desc.bEndpointAddress);
3367 			return 0;
3368 		}
3369 		/* Are there actually any streams to free? */
3370 		if (!(ep_state & EP_HAS_STREAMS) &&
3371 				!(ep_state & EP_GETTING_STREAMS)) {
3372 			xhci_warn(xhci, "WARN Can't disable streams for "
3373 					"endpoint 0x%x, "
3374 					"streams are already disabled!\n",
3375 					eps[i]->desc.bEndpointAddress);
3376 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3377 					"with non-streams endpoint\n");
3378 			return 0;
3379 		}
3380 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3381 	}
3382 	return changed_ep_bitmask;
3383 }
3384 
3385 /*
3386  * The USB device drivers use this function (through the HCD interface in USB
3387  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3388  * coordinate mass storage command queueing across multiple endpoints (basically
3389  * a stream ID == a task ID).
3390  *
3391  * Setting up streams involves allocating the same size stream context array
3392  * for each endpoint and issuing a configure endpoint command for all endpoints.
3393  *
3394  * Don't allow the call to succeed if one endpoint only supports one stream
3395  * (which means it doesn't support streams at all).
3396  *
3397  * Drivers may get less stream IDs than they asked for, if the host controller
3398  * hardware or endpoints claim they can't support the number of requested
3399  * stream IDs.
3400  */
3401 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3402 		struct usb_host_endpoint **eps, unsigned int num_eps,
3403 		unsigned int num_streams, gfp_t mem_flags)
3404 {
3405 	int i, ret;
3406 	struct xhci_hcd *xhci;
3407 	struct xhci_virt_device *vdev;
3408 	struct xhci_command *config_cmd;
3409 	struct xhci_input_control_ctx *ctrl_ctx;
3410 	unsigned int ep_index;
3411 	unsigned int num_stream_ctxs;
3412 	unsigned int max_packet;
3413 	unsigned long flags;
3414 	u32 changed_ep_bitmask = 0;
3415 
3416 	if (!eps)
3417 		return -EINVAL;
3418 
3419 	/* Add one to the number of streams requested to account for
3420 	 * stream 0 that is reserved for xHCI usage.
3421 	 */
3422 	num_streams += 1;
3423 	xhci = hcd_to_xhci(hcd);
3424 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3425 			num_streams);
3426 
3427 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3428 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3429 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3430 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3431 		return -ENOSYS;
3432 	}
3433 
3434 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3435 	if (!config_cmd)
3436 		return -ENOMEM;
3437 
3438 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3439 	if (!ctrl_ctx) {
3440 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3441 				__func__);
3442 		xhci_free_command(xhci, config_cmd);
3443 		return -ENOMEM;
3444 	}
3445 
3446 	/* Check to make sure all endpoints are not already configured for
3447 	 * streams.  While we're at it, find the maximum number of streams that
3448 	 * all the endpoints will support and check for duplicate endpoints.
3449 	 */
3450 	spin_lock_irqsave(&xhci->lock, flags);
3451 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3452 			num_eps, &num_streams, &changed_ep_bitmask);
3453 	if (ret < 0) {
3454 		xhci_free_command(xhci, config_cmd);
3455 		spin_unlock_irqrestore(&xhci->lock, flags);
3456 		return ret;
3457 	}
3458 	if (num_streams <= 1) {
3459 		xhci_warn(xhci, "WARN: endpoints can't handle "
3460 				"more than one stream.\n");
3461 		xhci_free_command(xhci, config_cmd);
3462 		spin_unlock_irqrestore(&xhci->lock, flags);
3463 		return -EINVAL;
3464 	}
3465 	vdev = xhci->devs[udev->slot_id];
3466 	/* Mark each endpoint as being in transition, so
3467 	 * xhci_urb_enqueue() will reject all URBs.
3468 	 */
3469 	for (i = 0; i < num_eps; i++) {
3470 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3471 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3472 	}
3473 	spin_unlock_irqrestore(&xhci->lock, flags);
3474 
3475 	/* Setup internal data structures and allocate HW data structures for
3476 	 * streams (but don't install the HW structures in the input context
3477 	 * until we're sure all memory allocation succeeded).
3478 	 */
3479 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3480 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3481 			num_stream_ctxs, num_streams);
3482 
3483 	for (i = 0; i < num_eps; i++) {
3484 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3485 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3486 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3487 				num_stream_ctxs,
3488 				num_streams,
3489 				max_packet, mem_flags);
3490 		if (!vdev->eps[ep_index].stream_info)
3491 			goto cleanup;
3492 		/* Set maxPstreams in endpoint context and update deq ptr to
3493 		 * point to stream context array. FIXME
3494 		 */
3495 	}
3496 
3497 	/* Set up the input context for a configure endpoint command. */
3498 	for (i = 0; i < num_eps; i++) {
3499 		struct xhci_ep_ctx *ep_ctx;
3500 
3501 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3502 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3503 
3504 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3505 				vdev->out_ctx, ep_index);
3506 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3507 				vdev->eps[ep_index].stream_info);
3508 	}
3509 	/* Tell the HW to drop its old copy of the endpoint context info
3510 	 * and add the updated copy from the input context.
3511 	 */
3512 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3513 			vdev->out_ctx, ctrl_ctx,
3514 			changed_ep_bitmask, changed_ep_bitmask);
3515 
3516 	/* Issue and wait for the configure endpoint command */
3517 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3518 			false, false);
3519 
3520 	/* xHC rejected the configure endpoint command for some reason, so we
3521 	 * leave the old ring intact and free our internal streams data
3522 	 * structure.
3523 	 */
3524 	if (ret < 0)
3525 		goto cleanup;
3526 
3527 	spin_lock_irqsave(&xhci->lock, flags);
3528 	for (i = 0; i < num_eps; i++) {
3529 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3530 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3531 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3532 			 udev->slot_id, ep_index);
3533 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3534 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3535 	}
3536 	xhci_free_command(xhci, config_cmd);
3537 	spin_unlock_irqrestore(&xhci->lock, flags);
3538 
3539 	/* Subtract 1 for stream 0, which drivers can't use */
3540 	return num_streams - 1;
3541 
3542 cleanup:
3543 	/* If it didn't work, free the streams! */
3544 	for (i = 0; i < num_eps; i++) {
3545 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3547 		vdev->eps[ep_index].stream_info = NULL;
3548 		/* FIXME Unset maxPstreams in endpoint context and
3549 		 * update deq ptr to point to normal string ring.
3550 		 */
3551 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3552 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3553 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3554 	}
3555 	xhci_free_command(xhci, config_cmd);
3556 	return -ENOMEM;
3557 }
3558 
3559 /* Transition the endpoint from using streams to being a "normal" endpoint
3560  * without streams.
3561  *
3562  * Modify the endpoint context state, submit a configure endpoint command,
3563  * and free all endpoint rings for streams if that completes successfully.
3564  */
3565 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3566 		struct usb_host_endpoint **eps, unsigned int num_eps,
3567 		gfp_t mem_flags)
3568 {
3569 	int i, ret;
3570 	struct xhci_hcd *xhci;
3571 	struct xhci_virt_device *vdev;
3572 	struct xhci_command *command;
3573 	struct xhci_input_control_ctx *ctrl_ctx;
3574 	unsigned int ep_index;
3575 	unsigned long flags;
3576 	u32 changed_ep_bitmask;
3577 
3578 	xhci = hcd_to_xhci(hcd);
3579 	vdev = xhci->devs[udev->slot_id];
3580 
3581 	/* Set up a configure endpoint command to remove the streams rings */
3582 	spin_lock_irqsave(&xhci->lock, flags);
3583 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3584 			udev, eps, num_eps);
3585 	if (changed_ep_bitmask == 0) {
3586 		spin_unlock_irqrestore(&xhci->lock, flags);
3587 		return -EINVAL;
3588 	}
3589 
3590 	/* Use the xhci_command structure from the first endpoint.  We may have
3591 	 * allocated too many, but the driver may call xhci_free_streams() for
3592 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3593 	 */
3594 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3595 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3596 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3597 	if (!ctrl_ctx) {
3598 		spin_unlock_irqrestore(&xhci->lock, flags);
3599 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3600 				__func__);
3601 		return -EINVAL;
3602 	}
3603 
3604 	for (i = 0; i < num_eps; i++) {
3605 		struct xhci_ep_ctx *ep_ctx;
3606 
3607 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3609 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3610 			EP_GETTING_NO_STREAMS;
3611 
3612 		xhci_endpoint_copy(xhci, command->in_ctx,
3613 				vdev->out_ctx, ep_index);
3614 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3615 				&vdev->eps[ep_index]);
3616 	}
3617 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3618 			vdev->out_ctx, ctrl_ctx,
3619 			changed_ep_bitmask, changed_ep_bitmask);
3620 	spin_unlock_irqrestore(&xhci->lock, flags);
3621 
3622 	/* Issue and wait for the configure endpoint command,
3623 	 * which must succeed.
3624 	 */
3625 	ret = xhci_configure_endpoint(xhci, udev, command,
3626 			false, true);
3627 
3628 	/* xHC rejected the configure endpoint command for some reason, so we
3629 	 * leave the streams rings intact.
3630 	 */
3631 	if (ret < 0)
3632 		return ret;
3633 
3634 	spin_lock_irqsave(&xhci->lock, flags);
3635 	for (i = 0; i < num_eps; i++) {
3636 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3637 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3638 		vdev->eps[ep_index].stream_info = NULL;
3639 		/* FIXME Unset maxPstreams in endpoint context and
3640 		 * update deq ptr to point to normal string ring.
3641 		 */
3642 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3643 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3644 	}
3645 	spin_unlock_irqrestore(&xhci->lock, flags);
3646 
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Deletes endpoint resources for endpoints that were active before a Reset
3652  * Device command, or a Disable Slot command.  The Reset Device command leaves
3653  * the control endpoint intact, whereas the Disable Slot command deletes it.
3654  *
3655  * Must be called with xhci->lock held.
3656  */
3657 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3658 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3659 {
3660 	int i;
3661 	unsigned int num_dropped_eps = 0;
3662 	unsigned int drop_flags = 0;
3663 
3664 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3665 		if (virt_dev->eps[i].ring) {
3666 			drop_flags |= 1 << i;
3667 			num_dropped_eps++;
3668 		}
3669 	}
3670 	xhci->num_active_eps -= num_dropped_eps;
3671 	if (num_dropped_eps)
3672 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673 				"Dropped %u ep ctxs, flags = 0x%x, "
3674 				"%u now active.",
3675 				num_dropped_eps, drop_flags,
3676 				xhci->num_active_eps);
3677 }
3678 
3679 /*
3680  * This submits a Reset Device Command, which will set the device state to 0,
3681  * set the device address to 0, and disable all the endpoints except the default
3682  * control endpoint.  The USB core should come back and call
3683  * xhci_address_device(), and then re-set up the configuration.  If this is
3684  * called because of a usb_reset_and_verify_device(), then the old alternate
3685  * settings will be re-installed through the normal bandwidth allocation
3686  * functions.
3687  *
3688  * Wait for the Reset Device command to finish.  Remove all structures
3689  * associated with the endpoints that were disabled.  Clear the input device
3690  * structure? Reset the control endpoint 0 max packet size?
3691  *
3692  * If the virt_dev to be reset does not exist or does not match the udev,
3693  * it means the device is lost, possibly due to the xHC restore error and
3694  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3695  * re-allocate the device.
3696  */
3697 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3698 		struct usb_device *udev)
3699 {
3700 	int ret, i;
3701 	unsigned long flags;
3702 	struct xhci_hcd *xhci;
3703 	unsigned int slot_id;
3704 	struct xhci_virt_device *virt_dev;
3705 	struct xhci_command *reset_device_cmd;
3706 	struct xhci_slot_ctx *slot_ctx;
3707 	int old_active_eps = 0;
3708 
3709 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3710 	if (ret <= 0)
3711 		return ret;
3712 	xhci = hcd_to_xhci(hcd);
3713 	slot_id = udev->slot_id;
3714 	virt_dev = xhci->devs[slot_id];
3715 	if (!virt_dev) {
3716 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3717 				"not exist. Re-allocate the device\n", slot_id);
3718 		ret = xhci_alloc_dev(hcd, udev);
3719 		if (ret == 1)
3720 			return 0;
3721 		else
3722 			return -EINVAL;
3723 	}
3724 
3725 	if (virt_dev->tt_info)
3726 		old_active_eps = virt_dev->tt_info->active_eps;
3727 
3728 	if (virt_dev->udev != udev) {
3729 		/* If the virt_dev and the udev does not match, this virt_dev
3730 		 * may belong to another udev.
3731 		 * Re-allocate the device.
3732 		 */
3733 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3734 				"not match the udev. Re-allocate the device\n",
3735 				slot_id);
3736 		ret = xhci_alloc_dev(hcd, udev);
3737 		if (ret == 1)
3738 			return 0;
3739 		else
3740 			return -EINVAL;
3741 	}
3742 
3743 	/* If device is not setup, there is no point in resetting it */
3744 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3745 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3746 						SLOT_STATE_DISABLED)
3747 		return 0;
3748 
3749 	trace_xhci_discover_or_reset_device(slot_ctx);
3750 
3751 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3752 	/* Allocate the command structure that holds the struct completion.
3753 	 * Assume we're in process context, since the normal device reset
3754 	 * process has to wait for the device anyway.  Storage devices are
3755 	 * reset as part of error handling, so use GFP_NOIO instead of
3756 	 * GFP_KERNEL.
3757 	 */
3758 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3759 	if (!reset_device_cmd) {
3760 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3761 		return -ENOMEM;
3762 	}
3763 
3764 	/* Attempt to submit the Reset Device command to the command ring */
3765 	spin_lock_irqsave(&xhci->lock, flags);
3766 
3767 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3768 	if (ret) {
3769 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3770 		spin_unlock_irqrestore(&xhci->lock, flags);
3771 		goto command_cleanup;
3772 	}
3773 	xhci_ring_cmd_db(xhci);
3774 	spin_unlock_irqrestore(&xhci->lock, flags);
3775 
3776 	/* Wait for the Reset Device command to finish */
3777 	wait_for_completion(reset_device_cmd->completion);
3778 
3779 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3780 	 * unless we tried to reset a slot ID that wasn't enabled,
3781 	 * or the device wasn't in the addressed or configured state.
3782 	 */
3783 	ret = reset_device_cmd->status;
3784 	switch (ret) {
3785 	case COMP_COMMAND_ABORTED:
3786 	case COMP_COMMAND_RING_STOPPED:
3787 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3788 		ret = -ETIME;
3789 		goto command_cleanup;
3790 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3791 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3792 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3793 				slot_id,
3794 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3795 		xhci_dbg(xhci, "Not freeing device rings.\n");
3796 		/* Don't treat this as an error.  May change my mind later. */
3797 		ret = 0;
3798 		goto command_cleanup;
3799 	case COMP_SUCCESS:
3800 		xhci_dbg(xhci, "Successful reset device command.\n");
3801 		break;
3802 	default:
3803 		if (xhci_is_vendor_info_code(xhci, ret))
3804 			break;
3805 		xhci_warn(xhci, "Unknown completion code %u for "
3806 				"reset device command.\n", ret);
3807 		ret = -EINVAL;
3808 		goto command_cleanup;
3809 	}
3810 
3811 	/* Free up host controller endpoint resources */
3812 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3813 		spin_lock_irqsave(&xhci->lock, flags);
3814 		/* Don't delete the default control endpoint resources */
3815 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3816 		spin_unlock_irqrestore(&xhci->lock, flags);
3817 	}
3818 
3819 	/* Everything but endpoint 0 is disabled, so free the rings. */
3820 	for (i = 1; i < 31; i++) {
3821 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3822 
3823 		if (ep->ep_state & EP_HAS_STREAMS) {
3824 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3825 					xhci_get_endpoint_address(i));
3826 			xhci_free_stream_info(xhci, ep->stream_info);
3827 			ep->stream_info = NULL;
3828 			ep->ep_state &= ~EP_HAS_STREAMS;
3829 		}
3830 
3831 		if (ep->ring) {
3832 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3833 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3834 		}
3835 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3836 			xhci_drop_ep_from_interval_table(xhci,
3837 					&virt_dev->eps[i].bw_info,
3838 					virt_dev->bw_table,
3839 					udev,
3840 					&virt_dev->eps[i],
3841 					virt_dev->tt_info);
3842 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3843 	}
3844 	/* If necessary, update the number of active TTs on this root port */
3845 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3846 	virt_dev->flags = 0;
3847 	ret = 0;
3848 
3849 command_cleanup:
3850 	xhci_free_command(xhci, reset_device_cmd);
3851 	return ret;
3852 }
3853 
3854 /*
3855  * At this point, the struct usb_device is about to go away, the device has
3856  * disconnected, and all traffic has been stopped and the endpoints have been
3857  * disabled.  Free any HC data structures associated with that device.
3858  */
3859 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3860 {
3861 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3862 	struct xhci_virt_device *virt_dev;
3863 	struct xhci_slot_ctx *slot_ctx;
3864 	int i, ret;
3865 
3866 #ifndef CONFIG_USB_DEFAULT_PERSIST
3867 	/*
3868 	 * We called pm_runtime_get_noresume when the device was attached.
3869 	 * Decrement the counter here to allow controller to runtime suspend
3870 	 * if no devices remain.
3871 	 */
3872 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3873 		pm_runtime_put_noidle(hcd->self.controller);
3874 #endif
3875 
3876 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3877 	/* If the host is halted due to driver unload, we still need to free the
3878 	 * device.
3879 	 */
3880 	if (ret <= 0 && ret != -ENODEV)
3881 		return;
3882 
3883 	virt_dev = xhci->devs[udev->slot_id];
3884 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3885 	trace_xhci_free_dev(slot_ctx);
3886 
3887 	/* Stop any wayward timer functions (which may grab the lock) */
3888 	for (i = 0; i < 31; i++) {
3889 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3890 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3891 	}
3892 	virt_dev->udev = NULL;
3893 	ret = xhci_disable_slot(xhci, udev->slot_id);
3894 	if (ret)
3895 		xhci_free_virt_device(xhci, udev->slot_id);
3896 }
3897 
3898 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3899 {
3900 	struct xhci_command *command;
3901 	unsigned long flags;
3902 	u32 state;
3903 	int ret = 0;
3904 
3905 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3906 	if (!command)
3907 		return -ENOMEM;
3908 
3909 	xhci_debugfs_remove_slot(xhci, slot_id);
3910 
3911 	spin_lock_irqsave(&xhci->lock, flags);
3912 	/* Don't disable the slot if the host controller is dead. */
3913 	state = readl(&xhci->op_regs->status);
3914 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3915 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3916 		spin_unlock_irqrestore(&xhci->lock, flags);
3917 		kfree(command);
3918 		return -ENODEV;
3919 	}
3920 
3921 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3922 				slot_id);
3923 	if (ret) {
3924 		spin_unlock_irqrestore(&xhci->lock, flags);
3925 		kfree(command);
3926 		return ret;
3927 	}
3928 	xhci_ring_cmd_db(xhci);
3929 	spin_unlock_irqrestore(&xhci->lock, flags);
3930 	return ret;
3931 }
3932 
3933 /*
3934  * Checks if we have enough host controller resources for the default control
3935  * endpoint.
3936  *
3937  * Must be called with xhci->lock held.
3938  */
3939 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3940 {
3941 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3942 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3943 				"Not enough ep ctxs: "
3944 				"%u active, need to add 1, limit is %u.",
3945 				xhci->num_active_eps, xhci->limit_active_eps);
3946 		return -ENOMEM;
3947 	}
3948 	xhci->num_active_eps += 1;
3949 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3950 			"Adding 1 ep ctx, %u now active.",
3951 			xhci->num_active_eps);
3952 	return 0;
3953 }
3954 
3955 
3956 /*
3957  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3958  * timed out, or allocating memory failed.  Returns 1 on success.
3959  */
3960 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3961 {
3962 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3963 	struct xhci_virt_device *vdev;
3964 	struct xhci_slot_ctx *slot_ctx;
3965 	unsigned long flags;
3966 	int ret, slot_id;
3967 	struct xhci_command *command;
3968 
3969 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3970 	if (!command)
3971 		return 0;
3972 
3973 	spin_lock_irqsave(&xhci->lock, flags);
3974 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3975 	if (ret) {
3976 		spin_unlock_irqrestore(&xhci->lock, flags);
3977 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3978 		xhci_free_command(xhci, command);
3979 		return 0;
3980 	}
3981 	xhci_ring_cmd_db(xhci);
3982 	spin_unlock_irqrestore(&xhci->lock, flags);
3983 
3984 	wait_for_completion(command->completion);
3985 	slot_id = command->slot_id;
3986 
3987 	if (!slot_id || command->status != COMP_SUCCESS) {
3988 		xhci_err(xhci, "Error while assigning device slot ID\n");
3989 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3990 				HCS_MAX_SLOTS(
3991 					readl(&xhci->cap_regs->hcs_params1)));
3992 		xhci_free_command(xhci, command);
3993 		return 0;
3994 	}
3995 
3996 	xhci_free_command(xhci, command);
3997 
3998 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3999 		spin_lock_irqsave(&xhci->lock, flags);
4000 		ret = xhci_reserve_host_control_ep_resources(xhci);
4001 		if (ret) {
4002 			spin_unlock_irqrestore(&xhci->lock, flags);
4003 			xhci_warn(xhci, "Not enough host resources, "
4004 					"active endpoint contexts = %u\n",
4005 					xhci->num_active_eps);
4006 			goto disable_slot;
4007 		}
4008 		spin_unlock_irqrestore(&xhci->lock, flags);
4009 	}
4010 	/* Use GFP_NOIO, since this function can be called from
4011 	 * xhci_discover_or_reset_device(), which may be called as part of
4012 	 * mass storage driver error handling.
4013 	 */
4014 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4015 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4016 		goto disable_slot;
4017 	}
4018 	vdev = xhci->devs[slot_id];
4019 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4020 	trace_xhci_alloc_dev(slot_ctx);
4021 
4022 	udev->slot_id = slot_id;
4023 
4024 	xhci_debugfs_create_slot(xhci, slot_id);
4025 
4026 #ifndef CONFIG_USB_DEFAULT_PERSIST
4027 	/*
4028 	 * If resetting upon resume, we can't put the controller into runtime
4029 	 * suspend if there is a device attached.
4030 	 */
4031 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4032 		pm_runtime_get_noresume(hcd->self.controller);
4033 #endif
4034 
4035 	/* Is this a LS or FS device under a HS hub? */
4036 	/* Hub or peripherial? */
4037 	return 1;
4038 
4039 disable_slot:
4040 	ret = xhci_disable_slot(xhci, udev->slot_id);
4041 	if (ret)
4042 		xhci_free_virt_device(xhci, udev->slot_id);
4043 
4044 	return 0;
4045 }
4046 
4047 /*
4048  * Issue an Address Device command and optionally send a corresponding
4049  * SetAddress request to the device.
4050  */
4051 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4052 			     enum xhci_setup_dev setup)
4053 {
4054 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4055 	unsigned long flags;
4056 	struct xhci_virt_device *virt_dev;
4057 	int ret = 0;
4058 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4059 	struct xhci_slot_ctx *slot_ctx;
4060 	struct xhci_input_control_ctx *ctrl_ctx;
4061 	u64 temp_64;
4062 	struct xhci_command *command = NULL;
4063 
4064 	mutex_lock(&xhci->mutex);
4065 
4066 	if (xhci->xhc_state) {	/* dying, removing or halted */
4067 		ret = -ESHUTDOWN;
4068 		goto out;
4069 	}
4070 
4071 	if (!udev->slot_id) {
4072 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4073 				"Bad Slot ID %d", udev->slot_id);
4074 		ret = -EINVAL;
4075 		goto out;
4076 	}
4077 
4078 	virt_dev = xhci->devs[udev->slot_id];
4079 
4080 	if (WARN_ON(!virt_dev)) {
4081 		/*
4082 		 * In plug/unplug torture test with an NEC controller,
4083 		 * a zero-dereference was observed once due to virt_dev = 0.
4084 		 * Print useful debug rather than crash if it is observed again!
4085 		 */
4086 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4087 			udev->slot_id);
4088 		ret = -EINVAL;
4089 		goto out;
4090 	}
4091 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4092 	trace_xhci_setup_device_slot(slot_ctx);
4093 
4094 	if (setup == SETUP_CONTEXT_ONLY) {
4095 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4096 		    SLOT_STATE_DEFAULT) {
4097 			xhci_dbg(xhci, "Slot already in default state\n");
4098 			goto out;
4099 		}
4100 	}
4101 
4102 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4103 	if (!command) {
4104 		ret = -ENOMEM;
4105 		goto out;
4106 	}
4107 
4108 	command->in_ctx = virt_dev->in_ctx;
4109 
4110 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4111 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4112 	if (!ctrl_ctx) {
4113 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4114 				__func__);
4115 		ret = -EINVAL;
4116 		goto out;
4117 	}
4118 	/*
4119 	 * If this is the first Set Address since device plug-in or
4120 	 * virt_device realloaction after a resume with an xHCI power loss,
4121 	 * then set up the slot context.
4122 	 */
4123 	if (!slot_ctx->dev_info)
4124 		xhci_setup_addressable_virt_dev(xhci, udev);
4125 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4126 	else
4127 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4128 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4129 	ctrl_ctx->drop_flags = 0;
4130 
4131 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4132 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4133 
4134 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4135 	spin_lock_irqsave(&xhci->lock, flags);
4136 	trace_xhci_setup_device(virt_dev);
4137 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4138 					udev->slot_id, setup);
4139 	if (ret) {
4140 		spin_unlock_irqrestore(&xhci->lock, flags);
4141 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4142 				"FIXME: allocate a command ring segment");
4143 		goto out;
4144 	}
4145 	xhci_ring_cmd_db(xhci);
4146 	spin_unlock_irqrestore(&xhci->lock, flags);
4147 
4148 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4149 	wait_for_completion(command->completion);
4150 
4151 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4152 	 * the SetAddress() "recovery interval" required by USB and aborting the
4153 	 * command on a timeout.
4154 	 */
4155 	switch (command->status) {
4156 	case COMP_COMMAND_ABORTED:
4157 	case COMP_COMMAND_RING_STOPPED:
4158 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4159 		ret = -ETIME;
4160 		break;
4161 	case COMP_CONTEXT_STATE_ERROR:
4162 	case COMP_SLOT_NOT_ENABLED_ERROR:
4163 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4164 			 act, udev->slot_id);
4165 		ret = -EINVAL;
4166 		break;
4167 	case COMP_USB_TRANSACTION_ERROR:
4168 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4169 
4170 		mutex_unlock(&xhci->mutex);
4171 		ret = xhci_disable_slot(xhci, udev->slot_id);
4172 		if (!ret)
4173 			xhci_alloc_dev(hcd, udev);
4174 		kfree(command->completion);
4175 		kfree(command);
4176 		return -EPROTO;
4177 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4178 		dev_warn(&udev->dev,
4179 			 "ERROR: Incompatible device for setup %s command\n", act);
4180 		ret = -ENODEV;
4181 		break;
4182 	case COMP_SUCCESS:
4183 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4184 			       "Successful setup %s command", act);
4185 		break;
4186 	default:
4187 		xhci_err(xhci,
4188 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4189 			 act, command->status);
4190 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4191 		ret = -EINVAL;
4192 		break;
4193 	}
4194 	if (ret)
4195 		goto out;
4196 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4197 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198 			"Op regs DCBAA ptr = %#016llx", temp_64);
4199 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4200 		"Slot ID %d dcbaa entry @%p = %#016llx",
4201 		udev->slot_id,
4202 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4203 		(unsigned long long)
4204 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4205 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4206 			"Output Context DMA address = %#08llx",
4207 			(unsigned long long)virt_dev->out_ctx->dma);
4208 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4209 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4210 	/*
4211 	 * USB core uses address 1 for the roothubs, so we add one to the
4212 	 * address given back to us by the HC.
4213 	 */
4214 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4215 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4216 	/* Zero the input context control for later use */
4217 	ctrl_ctx->add_flags = 0;
4218 	ctrl_ctx->drop_flags = 0;
4219 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4220 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4221 
4222 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4223 		       "Internal device address = %d",
4224 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4225 out:
4226 	mutex_unlock(&xhci->mutex);
4227 	if (command) {
4228 		kfree(command->completion);
4229 		kfree(command);
4230 	}
4231 	return ret;
4232 }
4233 
4234 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4237 }
4238 
4239 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4240 {
4241 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4242 }
4243 
4244 /*
4245  * Transfer the port index into real index in the HW port status
4246  * registers. Caculate offset between the port's PORTSC register
4247  * and port status base. Divide the number of per port register
4248  * to get the real index. The raw port number bases 1.
4249  */
4250 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4251 {
4252 	struct xhci_hub *rhub;
4253 
4254 	rhub = xhci_get_rhub(hcd);
4255 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4256 }
4257 
4258 /*
4259  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4260  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4261  */
4262 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4263 			struct usb_device *udev, u16 max_exit_latency)
4264 {
4265 	struct xhci_virt_device *virt_dev;
4266 	struct xhci_command *command;
4267 	struct xhci_input_control_ctx *ctrl_ctx;
4268 	struct xhci_slot_ctx *slot_ctx;
4269 	unsigned long flags;
4270 	int ret;
4271 
4272 	spin_lock_irqsave(&xhci->lock, flags);
4273 
4274 	virt_dev = xhci->devs[udev->slot_id];
4275 
4276 	/*
4277 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4278 	 * xHC was re-initialized. Exit latency will be set later after
4279 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4280 	 */
4281 
4282 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4283 		spin_unlock_irqrestore(&xhci->lock, flags);
4284 		return 0;
4285 	}
4286 
4287 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4288 	command = xhci->lpm_command;
4289 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4290 	if (!ctrl_ctx) {
4291 		spin_unlock_irqrestore(&xhci->lock, flags);
4292 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4293 				__func__);
4294 		return -ENOMEM;
4295 	}
4296 
4297 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4298 	spin_unlock_irqrestore(&xhci->lock, flags);
4299 
4300 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4301 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4302 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4303 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4304 	slot_ctx->dev_state = 0;
4305 
4306 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4307 			"Set up evaluate context for LPM MEL change.");
4308 
4309 	/* Issue and wait for the evaluate context command. */
4310 	ret = xhci_configure_endpoint(xhci, udev, command,
4311 			true, true);
4312 
4313 	if (!ret) {
4314 		spin_lock_irqsave(&xhci->lock, flags);
4315 		virt_dev->current_mel = max_exit_latency;
4316 		spin_unlock_irqrestore(&xhci->lock, flags);
4317 	}
4318 	return ret;
4319 }
4320 
4321 #ifdef CONFIG_PM
4322 
4323 /* BESL to HIRD Encoding array for USB2 LPM */
4324 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4325 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4326 
4327 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4328 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4329 					struct usb_device *udev)
4330 {
4331 	int u2del, besl, besl_host;
4332 	int besl_device = 0;
4333 	u32 field;
4334 
4335 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4336 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4337 
4338 	if (field & USB_BESL_SUPPORT) {
4339 		for (besl_host = 0; besl_host < 16; besl_host++) {
4340 			if (xhci_besl_encoding[besl_host] >= u2del)
4341 				break;
4342 		}
4343 		/* Use baseline BESL value as default */
4344 		if (field & USB_BESL_BASELINE_VALID)
4345 			besl_device = USB_GET_BESL_BASELINE(field);
4346 		else if (field & USB_BESL_DEEP_VALID)
4347 			besl_device = USB_GET_BESL_DEEP(field);
4348 	} else {
4349 		if (u2del <= 50)
4350 			besl_host = 0;
4351 		else
4352 			besl_host = (u2del - 51) / 75 + 1;
4353 	}
4354 
4355 	besl = besl_host + besl_device;
4356 	if (besl > 15)
4357 		besl = 15;
4358 
4359 	return besl;
4360 }
4361 
4362 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4363 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4364 {
4365 	u32 field;
4366 	int l1;
4367 	int besld = 0;
4368 	int hirdm = 0;
4369 
4370 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4371 
4372 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4373 	l1 = udev->l1_params.timeout / 256;
4374 
4375 	/* device has preferred BESLD */
4376 	if (field & USB_BESL_DEEP_VALID) {
4377 		besld = USB_GET_BESL_DEEP(field);
4378 		hirdm = 1;
4379 	}
4380 
4381 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4382 }
4383 
4384 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4385 			struct usb_device *udev, int enable)
4386 {
4387 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4388 	struct xhci_port **ports;
4389 	__le32 __iomem	*pm_addr, *hlpm_addr;
4390 	u32		pm_val, hlpm_val, field;
4391 	unsigned int	port_num;
4392 	unsigned long	flags;
4393 	int		hird, exit_latency;
4394 	int		ret;
4395 
4396 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4397 		return -EPERM;
4398 
4399 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4400 			!udev->lpm_capable)
4401 		return -EPERM;
4402 
4403 	if (!udev->parent || udev->parent->parent ||
4404 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4405 		return -EPERM;
4406 
4407 	if (udev->usb2_hw_lpm_capable != 1)
4408 		return -EPERM;
4409 
4410 	spin_lock_irqsave(&xhci->lock, flags);
4411 
4412 	ports = xhci->usb2_rhub.ports;
4413 	port_num = udev->portnum - 1;
4414 	pm_addr = ports[port_num]->addr + PORTPMSC;
4415 	pm_val = readl(pm_addr);
4416 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4417 
4418 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4419 			enable ? "enable" : "disable", port_num + 1);
4420 
4421 	if (enable) {
4422 		/* Host supports BESL timeout instead of HIRD */
4423 		if (udev->usb2_hw_lpm_besl_capable) {
4424 			/* if device doesn't have a preferred BESL value use a
4425 			 * default one which works with mixed HIRD and BESL
4426 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4427 			 */
4428 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4429 			if ((field & USB_BESL_SUPPORT) &&
4430 			    (field & USB_BESL_BASELINE_VALID))
4431 				hird = USB_GET_BESL_BASELINE(field);
4432 			else
4433 				hird = udev->l1_params.besl;
4434 
4435 			exit_latency = xhci_besl_encoding[hird];
4436 			spin_unlock_irqrestore(&xhci->lock, flags);
4437 
4438 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4439 			 * input context for link powermanagement evaluate
4440 			 * context commands. It is protected by hcd->bandwidth
4441 			 * mutex and is shared by all devices. We need to set
4442 			 * the max ext latency in USB 2 BESL LPM as well, so
4443 			 * use the same mutex and xhci_change_max_exit_latency()
4444 			 */
4445 			mutex_lock(hcd->bandwidth_mutex);
4446 			ret = xhci_change_max_exit_latency(xhci, udev,
4447 							   exit_latency);
4448 			mutex_unlock(hcd->bandwidth_mutex);
4449 
4450 			if (ret < 0)
4451 				return ret;
4452 			spin_lock_irqsave(&xhci->lock, flags);
4453 
4454 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4455 			writel(hlpm_val, hlpm_addr);
4456 			/* flush write */
4457 			readl(hlpm_addr);
4458 		} else {
4459 			hird = xhci_calculate_hird_besl(xhci, udev);
4460 		}
4461 
4462 		pm_val &= ~PORT_HIRD_MASK;
4463 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4464 		writel(pm_val, pm_addr);
4465 		pm_val = readl(pm_addr);
4466 		pm_val |= PORT_HLE;
4467 		writel(pm_val, pm_addr);
4468 		/* flush write */
4469 		readl(pm_addr);
4470 	} else {
4471 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4472 		writel(pm_val, pm_addr);
4473 		/* flush write */
4474 		readl(pm_addr);
4475 		if (udev->usb2_hw_lpm_besl_capable) {
4476 			spin_unlock_irqrestore(&xhci->lock, flags);
4477 			mutex_lock(hcd->bandwidth_mutex);
4478 			xhci_change_max_exit_latency(xhci, udev, 0);
4479 			mutex_unlock(hcd->bandwidth_mutex);
4480 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4481 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4482 					   100, 10000);
4483 			return 0;
4484 		}
4485 	}
4486 
4487 	spin_unlock_irqrestore(&xhci->lock, flags);
4488 	return 0;
4489 }
4490 
4491 /* check if a usb2 port supports a given extened capability protocol
4492  * only USB2 ports extended protocol capability values are cached.
4493  * Return 1 if capability is supported
4494  */
4495 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4496 					   unsigned capability)
4497 {
4498 	u32 port_offset, port_count;
4499 	int i;
4500 
4501 	for (i = 0; i < xhci->num_ext_caps; i++) {
4502 		if (xhci->ext_caps[i] & capability) {
4503 			/* port offsets starts at 1 */
4504 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4505 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4506 			if (port >= port_offset &&
4507 			    port < port_offset + port_count)
4508 				return 1;
4509 		}
4510 	}
4511 	return 0;
4512 }
4513 
4514 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4515 {
4516 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4517 	int		portnum = udev->portnum - 1;
4518 
4519 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4520 		return 0;
4521 
4522 	/* we only support lpm for non-hub device connected to root hub yet */
4523 	if (!udev->parent || udev->parent->parent ||
4524 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4525 		return 0;
4526 
4527 	if (xhci->hw_lpm_support == 1 &&
4528 			xhci_check_usb2_port_capability(
4529 				xhci, portnum, XHCI_HLC)) {
4530 		udev->usb2_hw_lpm_capable = 1;
4531 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4532 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4533 		if (xhci_check_usb2_port_capability(xhci, portnum,
4534 					XHCI_BLC))
4535 			udev->usb2_hw_lpm_besl_capable = 1;
4536 	}
4537 
4538 	return 0;
4539 }
4540 
4541 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4542 
4543 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4544 static unsigned long long xhci_service_interval_to_ns(
4545 		struct usb_endpoint_descriptor *desc)
4546 {
4547 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4548 }
4549 
4550 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4551 		enum usb3_link_state state)
4552 {
4553 	unsigned long long sel;
4554 	unsigned long long pel;
4555 	unsigned int max_sel_pel;
4556 	char *state_name;
4557 
4558 	switch (state) {
4559 	case USB3_LPM_U1:
4560 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4561 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4562 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4563 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4564 		state_name = "U1";
4565 		break;
4566 	case USB3_LPM_U2:
4567 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4568 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4569 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4570 		state_name = "U2";
4571 		break;
4572 	default:
4573 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4574 				__func__);
4575 		return USB3_LPM_DISABLED;
4576 	}
4577 
4578 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4579 		return USB3_LPM_DEVICE_INITIATED;
4580 
4581 	if (sel > max_sel_pel)
4582 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4583 				"due to long SEL %llu ms\n",
4584 				state_name, sel);
4585 	else
4586 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4587 				"due to long PEL %llu ms\n",
4588 				state_name, pel);
4589 	return USB3_LPM_DISABLED;
4590 }
4591 
4592 /* The U1 timeout should be the maximum of the following values:
4593  *  - For control endpoints, U1 system exit latency (SEL) * 3
4594  *  - For bulk endpoints, U1 SEL * 5
4595  *  - For interrupt endpoints:
4596  *    - Notification EPs, U1 SEL * 3
4597  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4598  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4599  */
4600 static unsigned long long xhci_calculate_intel_u1_timeout(
4601 		struct usb_device *udev,
4602 		struct usb_endpoint_descriptor *desc)
4603 {
4604 	unsigned long long timeout_ns;
4605 	int ep_type;
4606 	int intr_type;
4607 
4608 	ep_type = usb_endpoint_type(desc);
4609 	switch (ep_type) {
4610 	case USB_ENDPOINT_XFER_CONTROL:
4611 		timeout_ns = udev->u1_params.sel * 3;
4612 		break;
4613 	case USB_ENDPOINT_XFER_BULK:
4614 		timeout_ns = udev->u1_params.sel * 5;
4615 		break;
4616 	case USB_ENDPOINT_XFER_INT:
4617 		intr_type = usb_endpoint_interrupt_type(desc);
4618 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4619 			timeout_ns = udev->u1_params.sel * 3;
4620 			break;
4621 		}
4622 		/* Otherwise the calculation is the same as isoc eps */
4623 		fallthrough;
4624 	case USB_ENDPOINT_XFER_ISOC:
4625 		timeout_ns = xhci_service_interval_to_ns(desc);
4626 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4627 		if (timeout_ns < udev->u1_params.sel * 2)
4628 			timeout_ns = udev->u1_params.sel * 2;
4629 		break;
4630 	default:
4631 		return 0;
4632 	}
4633 
4634 	return timeout_ns;
4635 }
4636 
4637 /* Returns the hub-encoded U1 timeout value. */
4638 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4639 		struct usb_device *udev,
4640 		struct usb_endpoint_descriptor *desc)
4641 {
4642 	unsigned long long timeout_ns;
4643 
4644 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4645 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4646 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4647 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4648 			return USB3_LPM_DISABLED;
4649 		}
4650 	}
4651 
4652 	if (xhci->quirks & XHCI_INTEL_HOST)
4653 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4654 	else
4655 		timeout_ns = udev->u1_params.sel;
4656 
4657 	/* The U1 timeout is encoded in 1us intervals.
4658 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4659 	 */
4660 	if (timeout_ns == USB3_LPM_DISABLED)
4661 		timeout_ns = 1;
4662 	else
4663 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4664 
4665 	/* If the necessary timeout value is bigger than what we can set in the
4666 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4667 	 */
4668 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4669 		return timeout_ns;
4670 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4671 			"due to long timeout %llu ms\n", timeout_ns);
4672 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4673 }
4674 
4675 /* The U2 timeout should be the maximum of:
4676  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4677  *  - largest bInterval of any active periodic endpoint (to avoid going
4678  *    into lower power link states between intervals).
4679  *  - the U2 Exit Latency of the device
4680  */
4681 static unsigned long long xhci_calculate_intel_u2_timeout(
4682 		struct usb_device *udev,
4683 		struct usb_endpoint_descriptor *desc)
4684 {
4685 	unsigned long long timeout_ns;
4686 	unsigned long long u2_del_ns;
4687 
4688 	timeout_ns = 10 * 1000 * 1000;
4689 
4690 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4691 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4692 		timeout_ns = xhci_service_interval_to_ns(desc);
4693 
4694 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4695 	if (u2_del_ns > timeout_ns)
4696 		timeout_ns = u2_del_ns;
4697 
4698 	return timeout_ns;
4699 }
4700 
4701 /* Returns the hub-encoded U2 timeout value. */
4702 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4703 		struct usb_device *udev,
4704 		struct usb_endpoint_descriptor *desc)
4705 {
4706 	unsigned long long timeout_ns;
4707 
4708 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4709 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4710 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4711 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4712 			return USB3_LPM_DISABLED;
4713 		}
4714 	}
4715 
4716 	if (xhci->quirks & XHCI_INTEL_HOST)
4717 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4718 	else
4719 		timeout_ns = udev->u2_params.sel;
4720 
4721 	/* The U2 timeout is encoded in 256us intervals */
4722 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4723 	/* If the necessary timeout value is bigger than what we can set in the
4724 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4725 	 */
4726 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4727 		return timeout_ns;
4728 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4729 			"due to long timeout %llu ms\n", timeout_ns);
4730 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4731 }
4732 
4733 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4734 		struct usb_device *udev,
4735 		struct usb_endpoint_descriptor *desc,
4736 		enum usb3_link_state state,
4737 		u16 *timeout)
4738 {
4739 	if (state == USB3_LPM_U1)
4740 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4741 	else if (state == USB3_LPM_U2)
4742 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4743 
4744 	return USB3_LPM_DISABLED;
4745 }
4746 
4747 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4748 		struct usb_device *udev,
4749 		struct usb_endpoint_descriptor *desc,
4750 		enum usb3_link_state state,
4751 		u16 *timeout)
4752 {
4753 	u16 alt_timeout;
4754 
4755 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4756 		desc, state, timeout);
4757 
4758 	/* If we found we can't enable hub-initiated LPM, and
4759 	 * the U1 or U2 exit latency was too high to allow
4760 	 * device-initiated LPM as well, then we will disable LPM
4761 	 * for this device, so stop searching any further.
4762 	 */
4763 	if (alt_timeout == USB3_LPM_DISABLED) {
4764 		*timeout = alt_timeout;
4765 		return -E2BIG;
4766 	}
4767 	if (alt_timeout > *timeout)
4768 		*timeout = alt_timeout;
4769 	return 0;
4770 }
4771 
4772 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4773 		struct usb_device *udev,
4774 		struct usb_host_interface *alt,
4775 		enum usb3_link_state state,
4776 		u16 *timeout)
4777 {
4778 	int j;
4779 
4780 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4781 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4782 					&alt->endpoint[j].desc, state, timeout))
4783 			return -E2BIG;
4784 		continue;
4785 	}
4786 	return 0;
4787 }
4788 
4789 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4790 		enum usb3_link_state state)
4791 {
4792 	struct usb_device *parent;
4793 	unsigned int num_hubs;
4794 
4795 	if (state == USB3_LPM_U2)
4796 		return 0;
4797 
4798 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4799 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4800 			parent = parent->parent)
4801 		num_hubs++;
4802 
4803 	if (num_hubs < 2)
4804 		return 0;
4805 
4806 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4807 			" below second-tier hub.\n");
4808 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4809 			"to decrease power consumption.\n");
4810 	return -E2BIG;
4811 }
4812 
4813 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4814 		struct usb_device *udev,
4815 		enum usb3_link_state state)
4816 {
4817 	if (xhci->quirks & XHCI_INTEL_HOST)
4818 		return xhci_check_intel_tier_policy(udev, state);
4819 	else
4820 		return 0;
4821 }
4822 
4823 /* Returns the U1 or U2 timeout that should be enabled.
4824  * If the tier check or timeout setting functions return with a non-zero exit
4825  * code, that means the timeout value has been finalized and we shouldn't look
4826  * at any more endpoints.
4827  */
4828 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4829 			struct usb_device *udev, enum usb3_link_state state)
4830 {
4831 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832 	struct usb_host_config *config;
4833 	char *state_name;
4834 	int i;
4835 	u16 timeout = USB3_LPM_DISABLED;
4836 
4837 	if (state == USB3_LPM_U1)
4838 		state_name = "U1";
4839 	else if (state == USB3_LPM_U2)
4840 		state_name = "U2";
4841 	else {
4842 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4843 				state);
4844 		return timeout;
4845 	}
4846 
4847 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4848 		return timeout;
4849 
4850 	/* Gather some information about the currently installed configuration
4851 	 * and alternate interface settings.
4852 	 */
4853 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4854 			state, &timeout))
4855 		return timeout;
4856 
4857 	config = udev->actconfig;
4858 	if (!config)
4859 		return timeout;
4860 
4861 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4862 		struct usb_driver *driver;
4863 		struct usb_interface *intf = config->interface[i];
4864 
4865 		if (!intf)
4866 			continue;
4867 
4868 		/* Check if any currently bound drivers want hub-initiated LPM
4869 		 * disabled.
4870 		 */
4871 		if (intf->dev.driver) {
4872 			driver = to_usb_driver(intf->dev.driver);
4873 			if (driver && driver->disable_hub_initiated_lpm) {
4874 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4875 					state_name, driver->name);
4876 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4877 								      state);
4878 				if (timeout == USB3_LPM_DISABLED)
4879 					return timeout;
4880 			}
4881 		}
4882 
4883 		/* Not sure how this could happen... */
4884 		if (!intf->cur_altsetting)
4885 			continue;
4886 
4887 		if (xhci_update_timeout_for_interface(xhci, udev,
4888 					intf->cur_altsetting,
4889 					state, &timeout))
4890 			return timeout;
4891 	}
4892 	return timeout;
4893 }
4894 
4895 static int calculate_max_exit_latency(struct usb_device *udev,
4896 		enum usb3_link_state state_changed,
4897 		u16 hub_encoded_timeout)
4898 {
4899 	unsigned long long u1_mel_us = 0;
4900 	unsigned long long u2_mel_us = 0;
4901 	unsigned long long mel_us = 0;
4902 	bool disabling_u1;
4903 	bool disabling_u2;
4904 	bool enabling_u1;
4905 	bool enabling_u2;
4906 
4907 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4908 			hub_encoded_timeout == USB3_LPM_DISABLED);
4909 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4910 			hub_encoded_timeout == USB3_LPM_DISABLED);
4911 
4912 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4913 			hub_encoded_timeout != USB3_LPM_DISABLED);
4914 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4915 			hub_encoded_timeout != USB3_LPM_DISABLED);
4916 
4917 	/* If U1 was already enabled and we're not disabling it,
4918 	 * or we're going to enable U1, account for the U1 max exit latency.
4919 	 */
4920 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4921 			enabling_u1)
4922 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4923 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4924 			enabling_u2)
4925 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4926 
4927 	if (u1_mel_us > u2_mel_us)
4928 		mel_us = u1_mel_us;
4929 	else
4930 		mel_us = u2_mel_us;
4931 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4932 	if (mel_us > MAX_EXIT) {
4933 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4934 				"is too big.\n", mel_us);
4935 		return -E2BIG;
4936 	}
4937 	return mel_us;
4938 }
4939 
4940 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4941 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4942 			struct usb_device *udev, enum usb3_link_state state)
4943 {
4944 	struct xhci_hcd	*xhci;
4945 	u16 hub_encoded_timeout;
4946 	int mel;
4947 	int ret;
4948 
4949 	xhci = hcd_to_xhci(hcd);
4950 	/* The LPM timeout values are pretty host-controller specific, so don't
4951 	 * enable hub-initiated timeouts unless the vendor has provided
4952 	 * information about their timeout algorithm.
4953 	 */
4954 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4955 			!xhci->devs[udev->slot_id])
4956 		return USB3_LPM_DISABLED;
4957 
4958 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4959 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4960 	if (mel < 0) {
4961 		/* Max Exit Latency is too big, disable LPM. */
4962 		hub_encoded_timeout = USB3_LPM_DISABLED;
4963 		mel = 0;
4964 	}
4965 
4966 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4967 	if (ret)
4968 		return ret;
4969 	return hub_encoded_timeout;
4970 }
4971 
4972 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4973 			struct usb_device *udev, enum usb3_link_state state)
4974 {
4975 	struct xhci_hcd	*xhci;
4976 	u16 mel;
4977 
4978 	xhci = hcd_to_xhci(hcd);
4979 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4980 			!xhci->devs[udev->slot_id])
4981 		return 0;
4982 
4983 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4984 	return xhci_change_max_exit_latency(xhci, udev, mel);
4985 }
4986 #else /* CONFIG_PM */
4987 
4988 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4989 				struct usb_device *udev, int enable)
4990 {
4991 	return 0;
4992 }
4993 
4994 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4995 {
4996 	return 0;
4997 }
4998 
4999 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5000 			struct usb_device *udev, enum usb3_link_state state)
5001 {
5002 	return USB3_LPM_DISABLED;
5003 }
5004 
5005 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5006 			struct usb_device *udev, enum usb3_link_state state)
5007 {
5008 	return 0;
5009 }
5010 #endif	/* CONFIG_PM */
5011 
5012 /*-------------------------------------------------------------------------*/
5013 
5014 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5015  * internal data structures for the device.
5016  */
5017 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5018 			struct usb_tt *tt, gfp_t mem_flags)
5019 {
5020 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5021 	struct xhci_virt_device *vdev;
5022 	struct xhci_command *config_cmd;
5023 	struct xhci_input_control_ctx *ctrl_ctx;
5024 	struct xhci_slot_ctx *slot_ctx;
5025 	unsigned long flags;
5026 	unsigned think_time;
5027 	int ret;
5028 
5029 	/* Ignore root hubs */
5030 	if (!hdev->parent)
5031 		return 0;
5032 
5033 	vdev = xhci->devs[hdev->slot_id];
5034 	if (!vdev) {
5035 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5036 		return -EINVAL;
5037 	}
5038 
5039 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5040 	if (!config_cmd)
5041 		return -ENOMEM;
5042 
5043 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5044 	if (!ctrl_ctx) {
5045 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5046 				__func__);
5047 		xhci_free_command(xhci, config_cmd);
5048 		return -ENOMEM;
5049 	}
5050 
5051 	spin_lock_irqsave(&xhci->lock, flags);
5052 	if (hdev->speed == USB_SPEED_HIGH &&
5053 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5054 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5055 		xhci_free_command(xhci, config_cmd);
5056 		spin_unlock_irqrestore(&xhci->lock, flags);
5057 		return -ENOMEM;
5058 	}
5059 
5060 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5061 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5062 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5063 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5064 	/*
5065 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5066 	 * but it may be already set to 1 when setup an xHCI virtual
5067 	 * device, so clear it anyway.
5068 	 */
5069 	if (tt->multi)
5070 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5071 	else if (hdev->speed == USB_SPEED_FULL)
5072 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5073 
5074 	if (xhci->hci_version > 0x95) {
5075 		xhci_dbg(xhci, "xHCI version %x needs hub "
5076 				"TT think time and number of ports\n",
5077 				(unsigned int) xhci->hci_version);
5078 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5079 		/* Set TT think time - convert from ns to FS bit times.
5080 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5081 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5082 		 *
5083 		 * xHCI 1.0: this field shall be 0 if the device is not a
5084 		 * High-spped hub.
5085 		 */
5086 		think_time = tt->think_time;
5087 		if (think_time != 0)
5088 			think_time = (think_time / 666) - 1;
5089 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5090 			slot_ctx->tt_info |=
5091 				cpu_to_le32(TT_THINK_TIME(think_time));
5092 	} else {
5093 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5094 				"TT think time or number of ports\n",
5095 				(unsigned int) xhci->hci_version);
5096 	}
5097 	slot_ctx->dev_state = 0;
5098 	spin_unlock_irqrestore(&xhci->lock, flags);
5099 
5100 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5101 			(xhci->hci_version > 0x95) ?
5102 			"configure endpoint" : "evaluate context");
5103 
5104 	/* Issue and wait for the configure endpoint or
5105 	 * evaluate context command.
5106 	 */
5107 	if (xhci->hci_version > 0x95)
5108 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5109 				false, false);
5110 	else
5111 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5112 				true, false);
5113 
5114 	xhci_free_command(xhci, config_cmd);
5115 	return ret;
5116 }
5117 
5118 static int xhci_get_frame(struct usb_hcd *hcd)
5119 {
5120 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5121 	/* EHCI mods by the periodic size.  Why? */
5122 	return readl(&xhci->run_regs->microframe_index) >> 3;
5123 }
5124 
5125 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5126 {
5127 	struct xhci_hcd		*xhci;
5128 	/*
5129 	 * TODO: Check with DWC3 clients for sysdev according to
5130 	 * quirks
5131 	 */
5132 	struct device		*dev = hcd->self.sysdev;
5133 	unsigned int		minor_rev;
5134 	int			retval;
5135 
5136 	/* Accept arbitrarily long scatter-gather lists */
5137 	hcd->self.sg_tablesize = ~0;
5138 
5139 	/* support to build packet from discontinuous buffers */
5140 	hcd->self.no_sg_constraint = 1;
5141 
5142 	/* XHCI controllers don't stop the ep queue on short packets :| */
5143 	hcd->self.no_stop_on_short = 1;
5144 
5145 	xhci = hcd_to_xhci(hcd);
5146 
5147 	if (usb_hcd_is_primary_hcd(hcd)) {
5148 		xhci->main_hcd = hcd;
5149 		xhci->usb2_rhub.hcd = hcd;
5150 		/* Mark the first roothub as being USB 2.0.
5151 		 * The xHCI driver will register the USB 3.0 roothub.
5152 		 */
5153 		hcd->speed = HCD_USB2;
5154 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5155 		/*
5156 		 * USB 2.0 roothub under xHCI has an integrated TT,
5157 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5158 		 * companion controller.
5159 		 */
5160 		hcd->has_tt = 1;
5161 	} else {
5162 		/*
5163 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5164 		 * should return 0x31 for sbrn, or that the minor revision
5165 		 * is a two digit BCD containig minor and sub-minor numbers.
5166 		 * This was later clarified in xHCI 1.2.
5167 		 *
5168 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5169 		 * minor revision set to 0x1 instead of 0x10.
5170 		 */
5171 		if (xhci->usb3_rhub.min_rev == 0x1)
5172 			minor_rev = 1;
5173 		else
5174 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5175 
5176 		switch (minor_rev) {
5177 		case 2:
5178 			hcd->speed = HCD_USB32;
5179 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5180 			hcd->self.root_hub->rx_lanes = 2;
5181 			hcd->self.root_hub->tx_lanes = 2;
5182 			break;
5183 		case 1:
5184 			hcd->speed = HCD_USB31;
5185 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5186 			break;
5187 		}
5188 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5189 			  minor_rev,
5190 			  minor_rev ? "Enhanced " : "");
5191 
5192 		xhci->usb3_rhub.hcd = hcd;
5193 		/* xHCI private pointer was set in xhci_pci_probe for the second
5194 		 * registered roothub.
5195 		 */
5196 		return 0;
5197 	}
5198 
5199 	mutex_init(&xhci->mutex);
5200 	xhci->cap_regs = hcd->regs;
5201 	xhci->op_regs = hcd->regs +
5202 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5203 	xhci->run_regs = hcd->regs +
5204 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5205 	/* Cache read-only capability registers */
5206 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5207 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5208 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5209 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5210 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5211 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5212 	if (xhci->hci_version > 0x100)
5213 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5214 
5215 	xhci->quirks |= quirks;
5216 
5217 	get_quirks(dev, xhci);
5218 
5219 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5220 	 * success event after a short transfer. This quirk will ignore such
5221 	 * spurious event.
5222 	 */
5223 	if (xhci->hci_version > 0x96)
5224 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5225 
5226 	/* Make sure the HC is halted. */
5227 	retval = xhci_halt(xhci);
5228 	if (retval)
5229 		return retval;
5230 
5231 	xhci_zero_64b_regs(xhci);
5232 
5233 	xhci_dbg(xhci, "Resetting HCD\n");
5234 	/* Reset the internal HC memory state and registers. */
5235 	retval = xhci_reset(xhci);
5236 	if (retval)
5237 		return retval;
5238 	xhci_dbg(xhci, "Reset complete\n");
5239 
5240 	/*
5241 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5242 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5243 	 * address memory pointers actually. So, this driver clears the AC64
5244 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5245 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5246 	 */
5247 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5248 		xhci->hcc_params &= ~BIT(0);
5249 
5250 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5251 	 * if xHC supports 64-bit addressing */
5252 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5253 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5254 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5255 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5256 	} else {
5257 		/*
5258 		 * This is to avoid error in cases where a 32-bit USB
5259 		 * controller is used on a 64-bit capable system.
5260 		 */
5261 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5262 		if (retval)
5263 			return retval;
5264 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5265 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5266 	}
5267 
5268 	xhci_dbg(xhci, "Calling HCD init\n");
5269 	/* Initialize HCD and host controller data structures. */
5270 	retval = xhci_init(hcd);
5271 	if (retval)
5272 		return retval;
5273 	xhci_dbg(xhci, "Called HCD init\n");
5274 
5275 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5276 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5277 
5278 	return 0;
5279 }
5280 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5281 
5282 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5283 		struct usb_host_endpoint *ep)
5284 {
5285 	struct xhci_hcd *xhci;
5286 	struct usb_device *udev;
5287 	unsigned int slot_id;
5288 	unsigned int ep_index;
5289 	unsigned long flags;
5290 
5291 	xhci = hcd_to_xhci(hcd);
5292 
5293 	spin_lock_irqsave(&xhci->lock, flags);
5294 	udev = (struct usb_device *)ep->hcpriv;
5295 	slot_id = udev->slot_id;
5296 	ep_index = xhci_get_endpoint_index(&ep->desc);
5297 
5298 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5299 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5300 	spin_unlock_irqrestore(&xhci->lock, flags);
5301 }
5302 
5303 static const struct hc_driver xhci_hc_driver = {
5304 	.description =		"xhci-hcd",
5305 	.product_desc =		"xHCI Host Controller",
5306 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5307 
5308 	/*
5309 	 * generic hardware linkage
5310 	 */
5311 	.irq =			xhci_irq,
5312 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5313 				HCD_BH,
5314 
5315 	/*
5316 	 * basic lifecycle operations
5317 	 */
5318 	.reset =		NULL, /* set in xhci_init_driver() */
5319 	.start =		xhci_run,
5320 	.stop =			xhci_stop,
5321 	.shutdown =		xhci_shutdown,
5322 
5323 	/*
5324 	 * managing i/o requests and associated device resources
5325 	 */
5326 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5327 	.urb_enqueue =		xhci_urb_enqueue,
5328 	.urb_dequeue =		xhci_urb_dequeue,
5329 	.alloc_dev =		xhci_alloc_dev,
5330 	.free_dev =		xhci_free_dev,
5331 	.alloc_streams =	xhci_alloc_streams,
5332 	.free_streams =		xhci_free_streams,
5333 	.add_endpoint =		xhci_add_endpoint,
5334 	.drop_endpoint =	xhci_drop_endpoint,
5335 	.endpoint_disable =	xhci_endpoint_disable,
5336 	.endpoint_reset =	xhci_endpoint_reset,
5337 	.check_bandwidth =	xhci_check_bandwidth,
5338 	.reset_bandwidth =	xhci_reset_bandwidth,
5339 	.address_device =	xhci_address_device,
5340 	.enable_device =	xhci_enable_device,
5341 	.update_hub_device =	xhci_update_hub_device,
5342 	.reset_device =		xhci_discover_or_reset_device,
5343 
5344 	/*
5345 	 * scheduling support
5346 	 */
5347 	.get_frame_number =	xhci_get_frame,
5348 
5349 	/*
5350 	 * root hub support
5351 	 */
5352 	.hub_control =		xhci_hub_control,
5353 	.hub_status_data =	xhci_hub_status_data,
5354 	.bus_suspend =		xhci_bus_suspend,
5355 	.bus_resume =		xhci_bus_resume,
5356 	.get_resuming_ports =	xhci_get_resuming_ports,
5357 
5358 	/*
5359 	 * call back when device connected and addressed
5360 	 */
5361 	.update_device =        xhci_update_device,
5362 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5363 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5364 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5365 	.find_raw_port_number =	xhci_find_raw_port_number,
5366 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5367 };
5368 
5369 void xhci_init_driver(struct hc_driver *drv,
5370 		      const struct xhci_driver_overrides *over)
5371 {
5372 	BUG_ON(!over);
5373 
5374 	/* Copy the generic table to drv then apply the overrides */
5375 	*drv = xhci_hc_driver;
5376 
5377 	if (over) {
5378 		drv->hcd_priv_size += over->extra_priv_size;
5379 		if (over->reset)
5380 			drv->reset = over->reset;
5381 		if (over->start)
5382 			drv->start = over->start;
5383 	}
5384 }
5385 EXPORT_SYMBOL_GPL(xhci_init_driver);
5386 
5387 MODULE_DESCRIPTION(DRIVER_DESC);
5388 MODULE_AUTHOR(DRIVER_AUTHOR);
5389 MODULE_LICENSE("GPL");
5390 
5391 static int __init xhci_hcd_init(void)
5392 {
5393 	/*
5394 	 * Check the compiler generated sizes of structures that must be laid
5395 	 * out in specific ways for hardware access.
5396 	 */
5397 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5398 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5399 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5400 	/* xhci_device_control has eight fields, and also
5401 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5402 	 */
5403 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5404 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5405 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5406 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5407 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5408 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5409 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5410 
5411 	if (usb_disabled())
5412 		return -ENODEV;
5413 
5414 	xhci_debugfs_create_root();
5415 
5416 	return 0;
5417 }
5418 
5419 /*
5420  * If an init function is provided, an exit function must also be provided
5421  * to allow module unload.
5422  */
5423 static void __exit xhci_hcd_fini(void)
5424 {
5425 	xhci_debugfs_remove_root();
5426 }
5427 
5428 module_init(xhci_hcd_init);
5429 module_exit(xhci_hcd_fini);
5430