xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 5c7587f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 	struct xhci_hcd *xhci;
328 	struct usb_hcd *hcd;
329 	struct xhci_hub *rhub;
330 	u32 temp;
331 	int i;
332 
333 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 	rhub = &xhci->usb3_rhub;
335 	hcd = rhub->hcd;
336 
337 	if (!hcd)
338 		return;
339 
340 	for (i = 0; i < rhub->num_ports; i++) {
341 		temp = readl(rhub->ports[i]->addr);
342 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 			/*
344 			 * Compliance Mode Detected. Letting USB Core
345 			 * handle the Warm Reset
346 			 */
347 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 					"Compliance mode detected->port %d",
349 					i + 1);
350 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 					"Attempting compliance mode recovery");
352 
353 			if (hcd->state == HC_STATE_SUSPENDED)
354 				usb_hcd_resume_root_hub(hcd);
355 
356 			usb_hcd_poll_rh_status(hcd);
357 		}
358 	}
359 
360 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 		mod_timer(&xhci->comp_mode_recovery_timer,
362 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364 
365 /*
366  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367  * that causes ports behind that hardware to enter compliance mode sometimes.
368  * The quirk creates a timer that polls every 2 seconds the link state of
369  * each host controller's port and recovers it by issuing a Warm reset
370  * if Compliance mode is detected, otherwise the port will become "dead" (no
371  * device connections or disconnections will be detected anymore). Becasue no
372  * status event is generated when entering compliance mode (per xhci spec),
373  * this quirk is needed on systems that have the failing hardware installed.
374  */
375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 	xhci->port_status_u0 = 0;
378 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 		    0);
380 	xhci->comp_mode_recovery_timer.expires = jiffies +
381 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382 
383 	add_timer(&xhci->comp_mode_recovery_timer);
384 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 			"Compliance mode recovery timer initialized");
386 }
387 
388 /*
389  * This function identifies the systems that have installed the SN65LVPE502CP
390  * USB3.0 re-driver and that need the Compliance Mode Quirk.
391  * Systems:
392  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393  */
394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 	const char *dmi_product_name, *dmi_sys_vendor;
397 
398 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 	if (!dmi_product_name || !dmi_sys_vendor)
401 		return false;
402 
403 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 		return false;
405 
406 	if (strstr(dmi_product_name, "Z420") ||
407 			strstr(dmi_product_name, "Z620") ||
408 			strstr(dmi_product_name, "Z820") ||
409 			strstr(dmi_product_name, "Z1 Workstation"))
410 		return true;
411 
412 	return false;
413 }
414 
415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419 
420 
421 /*
422  * Initialize memory for HCD and xHC (one-time init).
423  *
424  * Program the PAGESIZE register, initialize the device context array, create
425  * device contexts (?), set up a command ring segment (or two?), create event
426  * ring (one for now).
427  */
428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 	int retval;
432 
433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 	spin_lock_init(&xhci->lock);
435 	if (xhci->hci_version == 0x95 && link_quirk) {
436 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 				"QUIRK: Not clearing Link TRB chain bits.");
438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 	} else {
440 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 				"xHCI doesn't need link TRB QUIRK");
442 	}
443 	retval = xhci_mem_init(xhci, GFP_KERNEL);
444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445 
446 	/* Initializing Compliance Mode Recovery Data If Needed */
447 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 		compliance_mode_recovery_timer_init(xhci);
450 	}
451 
452 	return retval;
453 }
454 
455 /*-------------------------------------------------------------------------*/
456 
457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 	struct xhci_interrupter *ir = xhci->interrupter;
460 	unsigned long	flags;
461 	u32		temp;
462 
463 	/*
464 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 	 * Protect the short window before host is running with a lock
466 	 */
467 	spin_lock_irqsave(&xhci->lock, flags);
468 
469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 	temp = readl(&xhci->op_regs->command);
471 	temp |= (CMD_EIE);
472 	writel(temp, &xhci->op_regs->command);
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 	xhci_enable_interrupter(ir);
476 
477 	if (xhci_start(xhci)) {
478 		xhci_halt(xhci);
479 		spin_unlock_irqrestore(&xhci->lock, flags);
480 		return -ENODEV;
481 	}
482 
483 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484 
485 	if (xhci->quirks & XHCI_NEC_HOST)
486 		xhci_ring_cmd_db(xhci);
487 
488 	spin_unlock_irqrestore(&xhci->lock, flags);
489 
490 	return 0;
491 }
492 
493 /*
494  * Start the HC after it was halted.
495  *
496  * This function is called by the USB core when the HC driver is added.
497  * Its opposite is xhci_stop().
498  *
499  * xhci_init() must be called once before this function can be called.
500  * Reset the HC, enable device slot contexts, program DCBAAP, and
501  * set command ring pointer and event ring pointer.
502  *
503  * Setup MSI-X vectors and enable interrupts.
504  */
505 int xhci_run(struct usb_hcd *hcd)
506 {
507 	u32 temp;
508 	u64 temp_64;
509 	int ret;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 	struct xhci_interrupter *ir = xhci->interrupter;
512 	/* Start the xHCI host controller running only after the USB 2.0 roothub
513 	 * is setup.
514 	 */
515 
516 	hcd->uses_new_polling = 1;
517 	if (!usb_hcd_is_primary_hcd(hcd))
518 		return xhci_run_finished(xhci);
519 
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521 
522 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 	temp_64 &= ~ERST_PTR_MASK;
524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526 
527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 			"// Set the interrupt modulation register");
529 	temp = readl(&ir->ir_set->irq_control);
530 	temp &= ~ER_IRQ_INTERVAL_MASK;
531 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 	writel(temp, &ir->ir_set->irq_control);
533 
534 	if (xhci->quirks & XHCI_NEC_HOST) {
535 		struct xhci_command *command;
536 
537 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 		if (!command)
539 			return -ENOMEM;
540 
541 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 				TRB_TYPE(TRB_NEC_GET_FW));
543 		if (ret)
544 			xhci_free_command(xhci, command);
545 	}
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished %s for main hcd", __func__);
548 
549 	xhci_create_dbc_dev(xhci);
550 
551 	xhci_debugfs_init(xhci);
552 
553 	if (xhci_has_one_roothub(xhci))
554 		return xhci_run_finished(xhci);
555 
556 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561 
562 /*
563  * Stop xHCI driver.
564  *
565  * This function is called by the USB core when the HC driver is removed.
566  * Its opposite is xhci_run().
567  *
568  * Disable device contexts, disable IRQs, and quiesce the HC.
569  * Reset the HC, finish any completed transactions, and cleanup memory.
570  */
571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 	u32 temp;
574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 	struct xhci_interrupter *ir = xhci->interrupter;
576 
577 	mutex_lock(&xhci->mutex);
578 
579 	/* Only halt host and free memory after both hcds are removed */
580 	if (!usb_hcd_is_primary_hcd(hcd)) {
581 		mutex_unlock(&xhci->mutex);
582 		return;
583 	}
584 
585 	xhci_remove_dbc_dev(xhci);
586 
587 	spin_lock_irq(&xhci->lock);
588 	xhci->xhc_state |= XHCI_STATE_HALTED;
589 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 	xhci_halt(xhci);
591 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 	spin_unlock_irq(&xhci->lock);
593 
594 	/* Deleting Compliance Mode Recovery Timer */
595 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 			(!(xhci_all_ports_seen_u0(xhci)))) {
597 		del_timer_sync(&xhci->comp_mode_recovery_timer);
598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 				"%s: compliance mode recovery timer deleted",
600 				__func__);
601 	}
602 
603 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 		usb_amd_dev_put();
605 
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Disabling event ring interrupts");
608 	temp = readl(&xhci->op_regs->status);
609 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 	xhci_disable_interrupter(ir);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 	xhci_mem_cleanup(xhci);
614 	xhci_debugfs_exit(xhci);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"xhci_stop completed - status = %x",
617 			readl(&xhci->op_regs->status));
618 	mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621 
622 /*
623  * Shutdown HC (not bus-specific)
624  *
625  * This is called when the machine is rebooting or halting.  We assume that the
626  * machine will be powered off, and the HC's internal state will be reset.
627  * Don't bother to free memory.
628  *
629  * This will only ever be called with the main usb_hcd (the USB3 roothub).
630  */
631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634 
635 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637 
638 	/* Don't poll the roothubs after shutdown. */
639 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 			__func__, hcd->self.busnum);
641 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 	del_timer_sync(&hcd->rh_timer);
643 
644 	if (xhci->shared_hcd) {
645 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 		del_timer_sync(&xhci->shared_hcd->rh_timer);
647 	}
648 
649 	spin_lock_irq(&xhci->lock);
650 	xhci_halt(xhci);
651 
652 	/*
653 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 	 */
656 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659 
660 	spin_unlock_irq(&xhci->lock);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"xhci_shutdown completed - status = %x",
664 			readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667 
668 #ifdef CONFIG_PM
669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 	struct xhci_interrupter *ir = xhci->interrupter;
672 
673 	xhci->s3.command = readl(&xhci->op_regs->command);
674 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677 
678 	if (!ir)
679 		return;
680 
681 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687 
688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 	struct xhci_interrupter *ir = xhci->interrupter;
691 
692 	writel(xhci->s3.command, &xhci->op_regs->command);
693 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702 
703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 	u64	val_64;
706 
707 	/* step 2: initialize command ring buffer */
708 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 				      xhci->cmd_ring->dequeue) &
712 		 (u64) ~CMD_RING_RSVD_BITS) |
713 		xhci->cmd_ring->cycle_state;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Setting command ring address to 0x%llx",
716 			(long unsigned long) val_64);
717 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719 
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 	struct xhci_ring *ring;
732 	struct xhci_segment *seg;
733 
734 	ring = xhci->cmd_ring;
735 	seg = ring->deq_seg;
736 	do {
737 		memset(seg->trbs, 0,
738 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 			cpu_to_le32(~TRB_CYCLE);
741 		seg = seg->next;
742 	} while (seg != ring->deq_seg);
743 
744 	/* Reset the software enqueue and dequeue pointers */
745 	ring->deq_seg = ring->first_seg;
746 	ring->dequeue = ring->first_seg->trbs;
747 	ring->enq_seg = ring->deq_seg;
748 	ring->enqueue = ring->dequeue;
749 
750 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 	/*
752 	 * Ring is now zeroed, so the HW should look for change of ownership
753 	 * when the cycle bit is set to 1.
754 	 */
755 	ring->cycle_state = 1;
756 
757 	/*
758 	 * Reset the hardware dequeue pointer.
759 	 * Yes, this will need to be re-written after resume, but we're paranoid
760 	 * and want to make sure the hardware doesn't access bogus memory
761 	 * because, say, the BIOS or an SMI started the host without changing
762 	 * the command ring pointers.
763 	 */
764 	xhci_set_cmd_ring_deq(xhci);
765 }
766 
767 /*
768  * Disable port wake bits if do_wakeup is not set.
769  *
770  * Also clear a possible internal port wake state left hanging for ports that
771  * detected termination but never successfully enumerated (trained to 0U).
772  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773  * at enumeration clears this wake, force one here as well for unconnected ports
774  */
775 
776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 				       struct xhci_hub *rhub,
778 				       bool do_wakeup)
779 {
780 	unsigned long flags;
781 	u32 t1, t2, portsc;
782 	int i;
783 
784 	spin_lock_irqsave(&xhci->lock, flags);
785 
786 	for (i = 0; i < rhub->num_ports; i++) {
787 		portsc = readl(rhub->ports[i]->addr);
788 		t1 = xhci_port_state_to_neutral(portsc);
789 		t2 = t1;
790 
791 		/* clear wake bits if do_wake is not set */
792 		if (!do_wakeup)
793 			t2 &= ~PORT_WAKE_BITS;
794 
795 		/* Don't touch csc bit if connected or connect change is set */
796 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 			t2 |= PORT_CSC;
798 
799 		if (t1 != t2) {
800 			writel(t2, rhub->ports[i]->addr);
801 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 		}
804 	}
805 	spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807 
808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 	struct xhci_port	**ports;
811 	int			port_index;
812 	u32			status;
813 	u32			portsc;
814 
815 	status = readl(&xhci->op_regs->status);
816 	if (status & STS_EINT)
817 		return true;
818 	/*
819 	 * Checking STS_EINT is not enough as there is a lag between a change
820 	 * bit being set and the Port Status Change Event that it generated
821 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 	 */
823 
824 	port_index = xhci->usb2_rhub.num_ports;
825 	ports = xhci->usb2_rhub.ports;
826 	while (port_index--) {
827 		portsc = readl(ports[port_index]->addr);
828 		if (portsc & PORT_CHANGE_MASK ||
829 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 			return true;
831 	}
832 	port_index = xhci->usb3_rhub.num_ports;
833 	ports = xhci->usb3_rhub.ports;
834 	while (port_index--) {
835 		portsc = readl(ports[port_index]->addr);
836 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 			return true;
839 	}
840 	return false;
841 }
842 
843 /*
844  * Stop HC (not bus-specific)
845  *
846  * This is called when the machine transition into S3/S4 mode.
847  *
848  */
849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 	int			rc = 0;
852 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
853 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
854 	u32			command;
855 	u32			res;
856 
857 	if (!hcd->state)
858 		return 0;
859 
860 	if (hcd->state != HC_STATE_SUSPENDED ||
861 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 		return -EINVAL;
863 
864 	/* Clear root port wake on bits if wakeup not allowed. */
865 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867 
868 	if (!HCD_HW_ACCESSIBLE(hcd))
869 		return 0;
870 
871 	xhci_dbc_suspend(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 		 __func__, hcd->self.busnum);
876 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 	del_timer_sync(&hcd->rh_timer);
878 	if (xhci->shared_hcd) {
879 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 		del_timer_sync(&xhci->shared_hcd->rh_timer);
881 	}
882 
883 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 		usleep_range(1000, 1500);
885 
886 	spin_lock_irq(&xhci->lock);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 	if (xhci->shared_hcd)
889 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = readl(&xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	writel(command, &xhci->op_regs->command);
897 
898 	/* Some chips from Fresco Logic need an extraordinary delay */
899 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900 
901 	if (xhci_handshake(&xhci->op_regs->status,
902 		      STS_HALT, STS_HALT, delay)) {
903 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 		spin_unlock_irq(&xhci->lock);
905 		return -ETIMEDOUT;
906 	}
907 	xhci_clear_command_ring(xhci);
908 
909 	/* step 3: save registers */
910 	xhci_save_registers(xhci);
911 
912 	/* step 4: set CSS flag */
913 	command = readl(&xhci->op_regs->command);
914 	command |= CMD_CSS;
915 	writel(command, &xhci->op_regs->command);
916 	xhci->broken_suspend = 0;
917 	if (xhci_handshake(&xhci->op_regs->status,
918 				STS_SAVE, 0, 20 * 1000)) {
919 	/*
920 	 * AMD SNPS xHC 3.0 occasionally does not clear the
921 	 * SSS bit of USBSTS and when driver tries to poll
922 	 * to see if the xHC clears BIT(8) which never happens
923 	 * and driver assumes that controller is not responding
924 	 * and times out. To workaround this, its good to check
925 	 * if SRE and HCE bits are not set (as per xhci
926 	 * Section 5.4.2) and bypass the timeout.
927 	 */
928 		res = readl(&xhci->op_regs->status);
929 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 		    (((res & STS_SRE) == 0) &&
931 				((res & STS_HCE) == 0))) {
932 			xhci->broken_suspend = 1;
933 		} else {
934 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 			spin_unlock_irq(&xhci->lock);
936 			return -ETIMEDOUT;
937 		}
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 				"%s: compliance mode recovery timer deleted",
950 				__func__);
951 	}
952 
953 	return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956 
957 /*
958  * start xHC (not bus-specific)
959  *
960  * This is called when the machine transition from S3/S4 mode.
961  *
962  */
963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
966 	u32			command, temp = 0;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	int			retval = 0;
969 	bool			comp_timer_running = false;
970 	bool			pending_portevent = false;
971 	bool			suspended_usb3_devs = false;
972 	bool			reinit_xhc = false;
973 
974 	if (!hcd->state)
975 		return 0;
976 
977 	/* Wait a bit if either of the roothubs need to settle from the
978 	 * transition into bus suspend.
979 	 */
980 
981 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
982 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
983 		msleep(100);
984 
985 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986 	if (xhci->shared_hcd)
987 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
988 
989 	spin_lock_irq(&xhci->lock);
990 
991 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
992 		reinit_xhc = true;
993 
994 	if (!reinit_xhc) {
995 		/*
996 		 * Some controllers might lose power during suspend, so wait
997 		 * for controller not ready bit to clear, just as in xHC init.
998 		 */
999 		retval = xhci_handshake(&xhci->op_regs->status,
1000 					STS_CNR, 0, 10 * 1000 * 1000);
1001 		if (retval) {
1002 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1003 				  retval);
1004 			spin_unlock_irq(&xhci->lock);
1005 			return retval;
1006 		}
1007 		/* step 1: restore register */
1008 		xhci_restore_registers(xhci);
1009 		/* step 2: initialize command ring buffer */
1010 		xhci_set_cmd_ring_deq(xhci);
1011 		/* step 3: restore state and start state*/
1012 		/* step 3: set CRS flag */
1013 		command = readl(&xhci->op_regs->command);
1014 		command |= CMD_CRS;
1015 		writel(command, &xhci->op_regs->command);
1016 		/*
1017 		 * Some controllers take up to 55+ ms to complete the controller
1018 		 * restore so setting the timeout to 100ms. Xhci specification
1019 		 * doesn't mention any timeout value.
1020 		 */
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 100 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 	}
1028 
1029 	temp = readl(&xhci->op_regs->status);
1030 
1031 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1032 	if ((temp & (STS_SRE | STS_HCE)) &&
1033 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1034 		reinit_xhc = true;
1035 		if (!xhci->broken_suspend)
1036 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1037 	}
1038 
1039 	if (reinit_xhc) {
1040 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1041 				!(xhci_all_ports_seen_u0(xhci))) {
1042 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1043 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1044 				"Compliance Mode Recovery Timer deleted!");
1045 		}
1046 
1047 		/* Let the USB core know _both_ roothubs lost power. */
1048 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1049 		if (xhci->shared_hcd)
1050 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051 
1052 		xhci_dbg(xhci, "Stop HCD\n");
1053 		xhci_halt(xhci);
1054 		xhci_zero_64b_regs(xhci);
1055 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1056 		spin_unlock_irq(&xhci->lock);
1057 		if (retval)
1058 			return retval;
1059 
1060 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1061 		temp = readl(&xhci->op_regs->status);
1062 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1063 		xhci_disable_interrupter(xhci->interrupter);
1064 
1065 		xhci_dbg(xhci, "cleaning up memory\n");
1066 		xhci_mem_cleanup(xhci);
1067 		xhci_debugfs_exit(xhci);
1068 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069 			    readl(&xhci->op_regs->status));
1070 
1071 		/* USB core calls the PCI reinit and start functions twice:
1072 		 * first with the primary HCD, and then with the secondary HCD.
1073 		 * If we don't do the same, the host will never be started.
1074 		 */
1075 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 		retval = xhci_init(hcd);
1077 		if (retval)
1078 			return retval;
1079 		comp_timer_running = true;
1080 
1081 		xhci_dbg(xhci, "Start the primary HCD\n");
1082 		retval = xhci_run(hcd);
1083 		if (!retval && xhci->shared_hcd) {
1084 			xhci_dbg(xhci, "Start the secondary HCD\n");
1085 			retval = xhci_run(xhci->shared_hcd);
1086 		}
1087 
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		if (xhci->shared_hcd)
1090 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091 		goto done;
1092 	}
1093 
1094 	/* step 4: set Run/Stop bit */
1095 	command = readl(&xhci->op_regs->command);
1096 	command |= CMD_RUN;
1097 	writel(command, &xhci->op_regs->command);
1098 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1099 		  0, 250 * 1000);
1100 
1101 	/* step 5: walk topology and initialize portsc,
1102 	 * portpmsc and portli
1103 	 */
1104 	/* this is done in bus_resume */
1105 
1106 	/* step 6: restart each of the previously
1107 	 * Running endpoints by ringing their doorbells
1108 	 */
1109 
1110 	spin_unlock_irq(&xhci->lock);
1111 
1112 	xhci_dbc_resume(xhci);
1113 
1114  done:
1115 	if (retval == 0) {
1116 		/*
1117 		 * Resume roothubs only if there are pending events.
1118 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1119 		 * the first wake signalling failed, give it that chance if
1120 		 * there are suspended USB 3 devices.
1121 		 */
1122 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1123 		    xhci->usb3_rhub.bus_state.bus_suspended)
1124 			suspended_usb3_devs = true;
1125 
1126 		pending_portevent = xhci_pending_portevent(xhci);
1127 
1128 		if (suspended_usb3_devs && !pending_portevent &&
1129 		    msg.event == PM_EVENT_AUTO_RESUME) {
1130 			msleep(120);
1131 			pending_portevent = xhci_pending_portevent(xhci);
1132 		}
1133 
1134 		if (pending_portevent) {
1135 			if (xhci->shared_hcd)
1136 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1137 			usb_hcd_resume_root_hub(hcd);
1138 		}
1139 	}
1140 	/*
1141 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1142 	 * be re-initialized Always after a system resume. Ports are subject
1143 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1144 	 * ports have entered previously to U0 before system's suspension.
1145 	 */
1146 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1147 		compliance_mode_recovery_timer_init(xhci);
1148 
1149 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1150 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1151 
1152 	/* Re-enable port polling. */
1153 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1154 		 __func__, hcd->self.busnum);
1155 	if (xhci->shared_hcd) {
1156 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1157 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1158 	}
1159 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1160 	usb_hcd_poll_rh_status(hcd);
1161 
1162 	return retval;
1163 }
1164 EXPORT_SYMBOL_GPL(xhci_resume);
1165 #endif	/* CONFIG_PM */
1166 
1167 /*-------------------------------------------------------------------------*/
1168 
1169 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1170 {
1171 	void *temp;
1172 	int ret = 0;
1173 	unsigned int buf_len;
1174 	enum dma_data_direction dir;
1175 
1176 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1177 	buf_len = urb->transfer_buffer_length;
1178 
1179 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1180 			    dev_to_node(hcd->self.sysdev));
1181 
1182 	if (usb_urb_dir_out(urb))
1183 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1184 				   temp, buf_len, 0);
1185 
1186 	urb->transfer_buffer = temp;
1187 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1188 					   urb->transfer_buffer,
1189 					   urb->transfer_buffer_length,
1190 					   dir);
1191 
1192 	if (dma_mapping_error(hcd->self.sysdev,
1193 			      urb->transfer_dma)) {
1194 		ret = -EAGAIN;
1195 		kfree(temp);
1196 	} else {
1197 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1198 	}
1199 
1200 	return ret;
1201 }
1202 
1203 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1204 					  struct urb *urb)
1205 {
1206 	bool ret = false;
1207 	unsigned int i;
1208 	unsigned int len = 0;
1209 	unsigned int trb_size;
1210 	unsigned int max_pkt;
1211 	struct scatterlist *sg;
1212 	struct scatterlist *tail_sg;
1213 
1214 	tail_sg = urb->sg;
1215 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1216 
1217 	if (!urb->num_sgs)
1218 		return ret;
1219 
1220 	if (urb->dev->speed >= USB_SPEED_SUPER)
1221 		trb_size = TRB_CACHE_SIZE_SS;
1222 	else
1223 		trb_size = TRB_CACHE_SIZE_HS;
1224 
1225 	if (urb->transfer_buffer_length != 0 &&
1226 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1228 			len = len + sg->length;
1229 			if (i > trb_size - 2) {
1230 				len = len - tail_sg->length;
1231 				if (len < max_pkt) {
1232 					ret = true;
1233 					break;
1234 				}
1235 
1236 				tail_sg = sg_next(tail_sg);
1237 			}
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 
1243 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1244 {
1245 	unsigned int len;
1246 	unsigned int buf_len;
1247 	enum dma_data_direction dir;
1248 
1249 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1250 
1251 	buf_len = urb->transfer_buffer_length;
1252 
1253 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1254 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1255 		dma_unmap_single(hcd->self.sysdev,
1256 				 urb->transfer_dma,
1257 				 urb->transfer_buffer_length,
1258 				 dir);
1259 
1260 	if (usb_urb_dir_in(urb)) {
1261 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1262 					   urb->transfer_buffer,
1263 					   buf_len,
1264 					   0);
1265 		if (len != buf_len) {
1266 			xhci_dbg(hcd_to_xhci(hcd),
1267 				 "Copy from tmp buf to urb sg list failed\n");
1268 			urb->actual_length = len;
1269 		}
1270 	}
1271 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1272 	kfree(urb->transfer_buffer);
1273 	urb->transfer_buffer = NULL;
1274 }
1275 
1276 /*
1277  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1278  * we'll copy the actual data into the TRB address register. This is limited to
1279  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1280  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1281  */
1282 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1283 				gfp_t mem_flags)
1284 {
1285 	struct xhci_hcd *xhci;
1286 
1287 	xhci = hcd_to_xhci(hcd);
1288 
1289 	if (xhci_urb_suitable_for_idt(urb))
1290 		return 0;
1291 
1292 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1293 		if (xhci_urb_temp_buffer_required(hcd, urb))
1294 			return xhci_map_temp_buffer(hcd, urb);
1295 	}
1296 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1297 }
1298 
1299 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1300 {
1301 	struct xhci_hcd *xhci;
1302 	bool unmap_temp_buf = false;
1303 
1304 	xhci = hcd_to_xhci(hcd);
1305 
1306 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1307 		unmap_temp_buf = true;
1308 
1309 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1310 		xhci_unmap_temp_buf(hcd, urb);
1311 	else
1312 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1313 }
1314 
1315 /**
1316  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1317  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1318  * value to right shift 1 for the bitmask.
1319  *
1320  * Index  = (epnum * 2) + direction - 1,
1321  * where direction = 0 for OUT, 1 for IN.
1322  * For control endpoints, the IN index is used (OUT index is unused), so
1323  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1324  */
1325 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1326 {
1327 	unsigned int index;
1328 	if (usb_endpoint_xfer_control(desc))
1329 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1330 	else
1331 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1332 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1333 	return index;
1334 }
1335 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1336 
1337 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1338  * address from the XHCI endpoint index.
1339  */
1340 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1341 {
1342 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1343 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1344 	return direction | number;
1345 }
1346 
1347 /* Find the flag for this endpoint (for use in the control context).  Use the
1348  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1349  * bit 1, etc.
1350  */
1351 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1352 {
1353 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1354 }
1355 
1356 /* Compute the last valid endpoint context index.  Basically, this is the
1357  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1358  * we find the most significant bit set in the added contexts flags.
1359  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1360  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1361  */
1362 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1363 {
1364 	return fls(added_ctxs) - 1;
1365 }
1366 
1367 /* Returns 1 if the arguments are OK;
1368  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1369  */
1370 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1371 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1372 		const char *func) {
1373 	struct xhci_hcd	*xhci;
1374 	struct xhci_virt_device	*virt_dev;
1375 
1376 	if (!hcd || (check_ep && !ep) || !udev) {
1377 		pr_debug("xHCI %s called with invalid args\n", func);
1378 		return -EINVAL;
1379 	}
1380 	if (!udev->parent) {
1381 		pr_debug("xHCI %s called for root hub\n", func);
1382 		return 0;
1383 	}
1384 
1385 	xhci = hcd_to_xhci(hcd);
1386 	if (check_virt_dev) {
1387 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1388 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1389 					func);
1390 			return -EINVAL;
1391 		}
1392 
1393 		virt_dev = xhci->devs[udev->slot_id];
1394 		if (virt_dev->udev != udev) {
1395 			xhci_dbg(xhci, "xHCI %s called with udev and "
1396 					  "virt_dev does not match\n", func);
1397 			return -EINVAL;
1398 		}
1399 	}
1400 
1401 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1402 		return -ENODEV;
1403 
1404 	return 1;
1405 }
1406 
1407 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1408 		struct usb_device *udev, struct xhci_command *command,
1409 		bool ctx_change, bool must_succeed);
1410 
1411 /*
1412  * Full speed devices may have a max packet size greater than 8 bytes, but the
1413  * USB core doesn't know that until it reads the first 8 bytes of the
1414  * descriptor.  If the usb_device's max packet size changes after that point,
1415  * we need to issue an evaluate context command and wait on it.
1416  */
1417 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1418 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1419 {
1420 	struct xhci_container_ctx *out_ctx;
1421 	struct xhci_input_control_ctx *ctrl_ctx;
1422 	struct xhci_ep_ctx *ep_ctx;
1423 	struct xhci_command *command;
1424 	int max_packet_size;
1425 	int hw_max_packet_size;
1426 	int ret = 0;
1427 
1428 	out_ctx = xhci->devs[slot_id]->out_ctx;
1429 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1430 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1431 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1432 	if (hw_max_packet_size != max_packet_size) {
1433 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1434 				"Max Packet Size for ep 0 changed.");
1435 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1436 				"Max packet size in usb_device = %d",
1437 				max_packet_size);
1438 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1439 				"Max packet size in xHCI HW = %d",
1440 				hw_max_packet_size);
1441 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1442 				"Issuing evaluate context command.");
1443 
1444 		/* Set up the input context flags for the command */
1445 		/* FIXME: This won't work if a non-default control endpoint
1446 		 * changes max packet sizes.
1447 		 */
1448 
1449 		command = xhci_alloc_command(xhci, true, mem_flags);
1450 		if (!command)
1451 			return -ENOMEM;
1452 
1453 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1454 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1455 		if (!ctrl_ctx) {
1456 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1457 					__func__);
1458 			ret = -ENOMEM;
1459 			goto command_cleanup;
1460 		}
1461 		/* Set up the modified control endpoint 0 */
1462 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1463 				xhci->devs[slot_id]->out_ctx, ep_index);
1464 
1465 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1466 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1467 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1468 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1469 
1470 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1471 		ctrl_ctx->drop_flags = 0;
1472 
1473 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1474 				true, false);
1475 
1476 		/* Clean up the input context for later use by bandwidth
1477 		 * functions.
1478 		 */
1479 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1480 command_cleanup:
1481 		kfree(command->completion);
1482 		kfree(command);
1483 	}
1484 	return ret;
1485 }
1486 
1487 /*
1488  * non-error returns are a promise to giveback() the urb later
1489  * we drop ownership so next owner (or urb unlink) can get it
1490  */
1491 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1492 {
1493 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1494 	unsigned long flags;
1495 	int ret = 0;
1496 	unsigned int slot_id, ep_index;
1497 	unsigned int *ep_state;
1498 	struct urb_priv	*urb_priv;
1499 	int num_tds;
1500 
1501 	if (!urb)
1502 		return -EINVAL;
1503 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1504 					true, true, __func__);
1505 	if (ret <= 0)
1506 		return ret ? ret : -EINVAL;
1507 
1508 	slot_id = urb->dev->slot_id;
1509 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1510 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1511 
1512 	if (!HCD_HW_ACCESSIBLE(hcd))
1513 		return -ESHUTDOWN;
1514 
1515 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1516 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1517 		return -ENODEV;
1518 	}
1519 
1520 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1521 		num_tds = urb->number_of_packets;
1522 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1523 	    urb->transfer_buffer_length > 0 &&
1524 	    urb->transfer_flags & URB_ZERO_PACKET &&
1525 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1526 		num_tds = 2;
1527 	else
1528 		num_tds = 1;
1529 
1530 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1531 	if (!urb_priv)
1532 		return -ENOMEM;
1533 
1534 	urb_priv->num_tds = num_tds;
1535 	urb_priv->num_tds_done = 0;
1536 	urb->hcpriv = urb_priv;
1537 
1538 	trace_xhci_urb_enqueue(urb);
1539 
1540 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1541 		/* Check to see if the max packet size for the default control
1542 		 * endpoint changed during FS device enumeration
1543 		 */
1544 		if (urb->dev->speed == USB_SPEED_FULL) {
1545 			ret = xhci_check_maxpacket(xhci, slot_id,
1546 					ep_index, urb, mem_flags);
1547 			if (ret < 0) {
1548 				xhci_urb_free_priv(urb_priv);
1549 				urb->hcpriv = NULL;
1550 				return ret;
1551 			}
1552 		}
1553 	}
1554 
1555 	spin_lock_irqsave(&xhci->lock, flags);
1556 
1557 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1558 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1559 			 urb->ep->desc.bEndpointAddress, urb);
1560 		ret = -ESHUTDOWN;
1561 		goto free_priv;
1562 	}
1563 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1564 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1565 			  *ep_state);
1566 		ret = -EINVAL;
1567 		goto free_priv;
1568 	}
1569 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1570 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1571 		ret = -EINVAL;
1572 		goto free_priv;
1573 	}
1574 
1575 	switch (usb_endpoint_type(&urb->ep->desc)) {
1576 
1577 	case USB_ENDPOINT_XFER_CONTROL:
1578 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1579 					 slot_id, ep_index);
1580 		break;
1581 	case USB_ENDPOINT_XFER_BULK:
1582 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1583 					 slot_id, ep_index);
1584 		break;
1585 	case USB_ENDPOINT_XFER_INT:
1586 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1587 				slot_id, ep_index);
1588 		break;
1589 	case USB_ENDPOINT_XFER_ISOC:
1590 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1591 				slot_id, ep_index);
1592 	}
1593 
1594 	if (ret) {
1595 free_priv:
1596 		xhci_urb_free_priv(urb_priv);
1597 		urb->hcpriv = NULL;
1598 	}
1599 	spin_unlock_irqrestore(&xhci->lock, flags);
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1605  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1606  * should pick up where it left off in the TD, unless a Set Transfer Ring
1607  * Dequeue Pointer is issued.
1608  *
1609  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1610  * the ring.  Since the ring is a contiguous structure, they can't be physically
1611  * removed.  Instead, there are two options:
1612  *
1613  *  1) If the HC is in the middle of processing the URB to be canceled, we
1614  *     simply move the ring's dequeue pointer past those TRBs using the Set
1615  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1616  *     when drivers timeout on the last submitted URB and attempt to cancel.
1617  *
1618  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1619  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1620  *     HC will need to invalidate the any TRBs it has cached after the stop
1621  *     endpoint command, as noted in the xHCI 0.95 errata.
1622  *
1623  *  3) The TD may have completed by the time the Stop Endpoint Command
1624  *     completes, so software needs to handle that case too.
1625  *
1626  * This function should protect against the TD enqueueing code ringing the
1627  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1628  * It also needs to account for multiple cancellations on happening at the same
1629  * time for the same endpoint.
1630  *
1631  * Note that this function can be called in any context, or so says
1632  * usb_hcd_unlink_urb()
1633  */
1634 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1635 {
1636 	unsigned long flags;
1637 	int ret, i;
1638 	u32 temp;
1639 	struct xhci_hcd *xhci;
1640 	struct urb_priv	*urb_priv;
1641 	struct xhci_td *td;
1642 	unsigned int ep_index;
1643 	struct xhci_ring *ep_ring;
1644 	struct xhci_virt_ep *ep;
1645 	struct xhci_command *command;
1646 	struct xhci_virt_device *vdev;
1647 
1648 	xhci = hcd_to_xhci(hcd);
1649 	spin_lock_irqsave(&xhci->lock, flags);
1650 
1651 	trace_xhci_urb_dequeue(urb);
1652 
1653 	/* Make sure the URB hasn't completed or been unlinked already */
1654 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1655 	if (ret)
1656 		goto done;
1657 
1658 	/* give back URB now if we can't queue it for cancel */
1659 	vdev = xhci->devs[urb->dev->slot_id];
1660 	urb_priv = urb->hcpriv;
1661 	if (!vdev || !urb_priv)
1662 		goto err_giveback;
1663 
1664 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1665 	ep = &vdev->eps[ep_index];
1666 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1667 	if (!ep || !ep_ring)
1668 		goto err_giveback;
1669 
1670 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1671 	temp = readl(&xhci->op_regs->status);
1672 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1673 		xhci_hc_died(xhci);
1674 		goto done;
1675 	}
1676 
1677 	/*
1678 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1679 	 * make sure none of the ring related pointers in this URB private data
1680 	 * are touched, such as td_list, otherwise we overwrite freed data
1681 	 */
1682 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1683 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1684 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1685 			td = &urb_priv->td[i];
1686 			if (!list_empty(&td->cancelled_td_list))
1687 				list_del_init(&td->cancelled_td_list);
1688 		}
1689 		goto err_giveback;
1690 	}
1691 
1692 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1693 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1694 				"HC halted, freeing TD manually.");
1695 		for (i = urb_priv->num_tds_done;
1696 		     i < urb_priv->num_tds;
1697 		     i++) {
1698 			td = &urb_priv->td[i];
1699 			if (!list_empty(&td->td_list))
1700 				list_del_init(&td->td_list);
1701 			if (!list_empty(&td->cancelled_td_list))
1702 				list_del_init(&td->cancelled_td_list);
1703 		}
1704 		goto err_giveback;
1705 	}
1706 
1707 	i = urb_priv->num_tds_done;
1708 	if (i < urb_priv->num_tds)
1709 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1710 				"Cancel URB %p, dev %s, ep 0x%x, "
1711 				"starting at offset 0x%llx",
1712 				urb, urb->dev->devpath,
1713 				urb->ep->desc.bEndpointAddress,
1714 				(unsigned long long) xhci_trb_virt_to_dma(
1715 					urb_priv->td[i].start_seg,
1716 					urb_priv->td[i].first_trb));
1717 
1718 	for (; i < urb_priv->num_tds; i++) {
1719 		td = &urb_priv->td[i];
1720 		/* TD can already be on cancelled list if ep halted on it */
1721 		if (list_empty(&td->cancelled_td_list)) {
1722 			td->cancel_status = TD_DIRTY;
1723 			list_add_tail(&td->cancelled_td_list,
1724 				      &ep->cancelled_td_list);
1725 		}
1726 	}
1727 
1728 	/* Queue a stop endpoint command, but only if this is
1729 	 * the first cancellation to be handled.
1730 	 */
1731 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1732 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1733 		if (!command) {
1734 			ret = -ENOMEM;
1735 			goto done;
1736 		}
1737 		ep->ep_state |= EP_STOP_CMD_PENDING;
1738 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1739 					 ep_index, 0);
1740 		xhci_ring_cmd_db(xhci);
1741 	}
1742 done:
1743 	spin_unlock_irqrestore(&xhci->lock, flags);
1744 	return ret;
1745 
1746 err_giveback:
1747 	if (urb_priv)
1748 		xhci_urb_free_priv(urb_priv);
1749 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1750 	spin_unlock_irqrestore(&xhci->lock, flags);
1751 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1752 	return ret;
1753 }
1754 
1755 /* Drop an endpoint from a new bandwidth configuration for this device.
1756  * Only one call to this function is allowed per endpoint before
1757  * check_bandwidth() or reset_bandwidth() must be called.
1758  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1759  * add the endpoint to the schedule with possibly new parameters denoted by a
1760  * different endpoint descriptor in usb_host_endpoint.
1761  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1762  * not allowed.
1763  *
1764  * The USB core will not allow URBs to be queued to an endpoint that is being
1765  * disabled, so there's no need for mutual exclusion to protect
1766  * the xhci->devs[slot_id] structure.
1767  */
1768 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1769 		       struct usb_host_endpoint *ep)
1770 {
1771 	struct xhci_hcd *xhci;
1772 	struct xhci_container_ctx *in_ctx, *out_ctx;
1773 	struct xhci_input_control_ctx *ctrl_ctx;
1774 	unsigned int ep_index;
1775 	struct xhci_ep_ctx *ep_ctx;
1776 	u32 drop_flag;
1777 	u32 new_add_flags, new_drop_flags;
1778 	int ret;
1779 
1780 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1781 	if (ret <= 0)
1782 		return ret;
1783 	xhci = hcd_to_xhci(hcd);
1784 	if (xhci->xhc_state & XHCI_STATE_DYING)
1785 		return -ENODEV;
1786 
1787 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1788 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1789 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1790 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1791 				__func__, drop_flag);
1792 		return 0;
1793 	}
1794 
1795 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1796 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1797 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1798 	if (!ctrl_ctx) {
1799 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1800 				__func__);
1801 		return 0;
1802 	}
1803 
1804 	ep_index = xhci_get_endpoint_index(&ep->desc);
1805 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1806 	/* If the HC already knows the endpoint is disabled,
1807 	 * or the HCD has noted it is disabled, ignore this request
1808 	 */
1809 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1810 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1811 	    xhci_get_endpoint_flag(&ep->desc)) {
1812 		/* Do not warn when called after a usb_device_reset */
1813 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1814 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1815 				  __func__, ep);
1816 		return 0;
1817 	}
1818 
1819 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1820 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1821 
1822 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1823 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1824 
1825 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1826 
1827 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1828 
1829 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830 			(unsigned int) ep->desc.bEndpointAddress,
1831 			udev->slot_id,
1832 			(unsigned int) new_drop_flags,
1833 			(unsigned int) new_add_flags);
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1837 
1838 /* Add an endpoint to a new possible bandwidth configuration for this device.
1839  * Only one call to this function is allowed per endpoint before
1840  * check_bandwidth() or reset_bandwidth() must be called.
1841  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1842  * add the endpoint to the schedule with possibly new parameters denoted by a
1843  * different endpoint descriptor in usb_host_endpoint.
1844  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1845  * not allowed.
1846  *
1847  * The USB core will not allow URBs to be queued to an endpoint until the
1848  * configuration or alt setting is installed in the device, so there's no need
1849  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1850  */
1851 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1852 		      struct usb_host_endpoint *ep)
1853 {
1854 	struct xhci_hcd *xhci;
1855 	struct xhci_container_ctx *in_ctx;
1856 	unsigned int ep_index;
1857 	struct xhci_input_control_ctx *ctrl_ctx;
1858 	struct xhci_ep_ctx *ep_ctx;
1859 	u32 added_ctxs;
1860 	u32 new_add_flags, new_drop_flags;
1861 	struct xhci_virt_device *virt_dev;
1862 	int ret = 0;
1863 
1864 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1865 	if (ret <= 0) {
1866 		/* So we won't queue a reset ep command for a root hub */
1867 		ep->hcpriv = NULL;
1868 		return ret;
1869 	}
1870 	xhci = hcd_to_xhci(hcd);
1871 	if (xhci->xhc_state & XHCI_STATE_DYING)
1872 		return -ENODEV;
1873 
1874 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1875 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1876 		/* FIXME when we have to issue an evaluate endpoint command to
1877 		 * deal with ep0 max packet size changing once we get the
1878 		 * descriptors
1879 		 */
1880 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1881 				__func__, added_ctxs);
1882 		return 0;
1883 	}
1884 
1885 	virt_dev = xhci->devs[udev->slot_id];
1886 	in_ctx = virt_dev->in_ctx;
1887 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1888 	if (!ctrl_ctx) {
1889 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1890 				__func__);
1891 		return 0;
1892 	}
1893 
1894 	ep_index = xhci_get_endpoint_index(&ep->desc);
1895 	/* If this endpoint is already in use, and the upper layers are trying
1896 	 * to add it again without dropping it, reject the addition.
1897 	 */
1898 	if (virt_dev->eps[ep_index].ring &&
1899 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1900 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1901 				"without dropping it.\n",
1902 				(unsigned int) ep->desc.bEndpointAddress);
1903 		return -EINVAL;
1904 	}
1905 
1906 	/* If the HCD has already noted the endpoint is enabled,
1907 	 * ignore this request.
1908 	 */
1909 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1910 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1911 				__func__, ep);
1912 		return 0;
1913 	}
1914 
1915 	/*
1916 	 * Configuration and alternate setting changes must be done in
1917 	 * process context, not interrupt context (or so documenation
1918 	 * for usb_set_interface() and usb_set_configuration() claim).
1919 	 */
1920 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1921 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1922 				__func__, ep->desc.bEndpointAddress);
1923 		return -ENOMEM;
1924 	}
1925 
1926 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1927 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1928 
1929 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1930 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1931 	 * this re-adds a new state for the endpoint from the new endpoint
1932 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1933 	 * drop flags alone.
1934 	 */
1935 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1936 
1937 	/* Store the usb_device pointer for later use */
1938 	ep->hcpriv = udev;
1939 
1940 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1941 	trace_xhci_add_endpoint(ep_ctx);
1942 
1943 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1944 			(unsigned int) ep->desc.bEndpointAddress,
1945 			udev->slot_id,
1946 			(unsigned int) new_drop_flags,
1947 			(unsigned int) new_add_flags);
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1951 
1952 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1953 {
1954 	struct xhci_input_control_ctx *ctrl_ctx;
1955 	struct xhci_ep_ctx *ep_ctx;
1956 	struct xhci_slot_ctx *slot_ctx;
1957 	int i;
1958 
1959 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1960 	if (!ctrl_ctx) {
1961 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1962 				__func__);
1963 		return;
1964 	}
1965 
1966 	/* When a device's add flag and drop flag are zero, any subsequent
1967 	 * configure endpoint command will leave that endpoint's state
1968 	 * untouched.  Make sure we don't leave any old state in the input
1969 	 * endpoint contexts.
1970 	 */
1971 	ctrl_ctx->drop_flags = 0;
1972 	ctrl_ctx->add_flags = 0;
1973 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1974 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1975 	/* Endpoint 0 is always valid */
1976 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1977 	for (i = 1; i < 31; i++) {
1978 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1979 		ep_ctx->ep_info = 0;
1980 		ep_ctx->ep_info2 = 0;
1981 		ep_ctx->deq = 0;
1982 		ep_ctx->tx_info = 0;
1983 	}
1984 }
1985 
1986 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1987 		struct usb_device *udev, u32 *cmd_status)
1988 {
1989 	int ret;
1990 
1991 	switch (*cmd_status) {
1992 	case COMP_COMMAND_ABORTED:
1993 	case COMP_COMMAND_RING_STOPPED:
1994 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1995 		ret = -ETIME;
1996 		break;
1997 	case COMP_RESOURCE_ERROR:
1998 		dev_warn(&udev->dev,
1999 			 "Not enough host controller resources for new device state.\n");
2000 		ret = -ENOMEM;
2001 		/* FIXME: can we allocate more resources for the HC? */
2002 		break;
2003 	case COMP_BANDWIDTH_ERROR:
2004 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2005 		dev_warn(&udev->dev,
2006 			 "Not enough bandwidth for new device state.\n");
2007 		ret = -ENOSPC;
2008 		/* FIXME: can we go back to the old state? */
2009 		break;
2010 	case COMP_TRB_ERROR:
2011 		/* the HCD set up something wrong */
2012 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2013 				"add flag = 1, "
2014 				"and endpoint is not disabled.\n");
2015 		ret = -EINVAL;
2016 		break;
2017 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2018 		dev_warn(&udev->dev,
2019 			 "ERROR: Incompatible device for endpoint configure command.\n");
2020 		ret = -ENODEV;
2021 		break;
2022 	case COMP_SUCCESS:
2023 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2024 				"Successful Endpoint Configure command");
2025 		ret = 0;
2026 		break;
2027 	default:
2028 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2029 				*cmd_status);
2030 		ret = -EINVAL;
2031 		break;
2032 	}
2033 	return ret;
2034 }
2035 
2036 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2037 		struct usb_device *udev, u32 *cmd_status)
2038 {
2039 	int ret;
2040 
2041 	switch (*cmd_status) {
2042 	case COMP_COMMAND_ABORTED:
2043 	case COMP_COMMAND_RING_STOPPED:
2044 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2045 		ret = -ETIME;
2046 		break;
2047 	case COMP_PARAMETER_ERROR:
2048 		dev_warn(&udev->dev,
2049 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2050 		ret = -EINVAL;
2051 		break;
2052 	case COMP_SLOT_NOT_ENABLED_ERROR:
2053 		dev_warn(&udev->dev,
2054 			"WARN: slot not enabled for evaluate context command.\n");
2055 		ret = -EINVAL;
2056 		break;
2057 	case COMP_CONTEXT_STATE_ERROR:
2058 		dev_warn(&udev->dev,
2059 			"WARN: invalid context state for evaluate context command.\n");
2060 		ret = -EINVAL;
2061 		break;
2062 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2063 		dev_warn(&udev->dev,
2064 			"ERROR: Incompatible device for evaluate context command.\n");
2065 		ret = -ENODEV;
2066 		break;
2067 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2068 		/* Max Exit Latency too large error */
2069 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2070 		ret = -EINVAL;
2071 		break;
2072 	case COMP_SUCCESS:
2073 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2074 				"Successful evaluate context command");
2075 		ret = 0;
2076 		break;
2077 	default:
2078 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2079 			*cmd_status);
2080 		ret = -EINVAL;
2081 		break;
2082 	}
2083 	return ret;
2084 }
2085 
2086 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2087 		struct xhci_input_control_ctx *ctrl_ctx)
2088 {
2089 	u32 valid_add_flags;
2090 	u32 valid_drop_flags;
2091 
2092 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2093 	 * (bit 1).  The default control endpoint is added during the Address
2094 	 * Device command and is never removed until the slot is disabled.
2095 	 */
2096 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2097 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2098 
2099 	/* Use hweight32 to count the number of ones in the add flags, or
2100 	 * number of endpoints added.  Don't count endpoints that are changed
2101 	 * (both added and dropped).
2102 	 */
2103 	return hweight32(valid_add_flags) -
2104 		hweight32(valid_add_flags & valid_drop_flags);
2105 }
2106 
2107 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2108 		struct xhci_input_control_ctx *ctrl_ctx)
2109 {
2110 	u32 valid_add_flags;
2111 	u32 valid_drop_flags;
2112 
2113 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2114 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2115 
2116 	return hweight32(valid_drop_flags) -
2117 		hweight32(valid_add_flags & valid_drop_flags);
2118 }
2119 
2120 /*
2121  * We need to reserve the new number of endpoints before the configure endpoint
2122  * command completes.  We can't subtract the dropped endpoints from the number
2123  * of active endpoints until the command completes because we can oversubscribe
2124  * the host in this case:
2125  *
2126  *  - the first configure endpoint command drops more endpoints than it adds
2127  *  - a second configure endpoint command that adds more endpoints is queued
2128  *  - the first configure endpoint command fails, so the config is unchanged
2129  *  - the second command may succeed, even though there isn't enough resources
2130  *
2131  * Must be called with xhci->lock held.
2132  */
2133 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2134 		struct xhci_input_control_ctx *ctrl_ctx)
2135 {
2136 	u32 added_eps;
2137 
2138 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2139 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2140 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 				"Not enough ep ctxs: "
2142 				"%u active, need to add %u, limit is %u.",
2143 				xhci->num_active_eps, added_eps,
2144 				xhci->limit_active_eps);
2145 		return -ENOMEM;
2146 	}
2147 	xhci->num_active_eps += added_eps;
2148 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 			"Adding %u ep ctxs, %u now active.", added_eps,
2150 			xhci->num_active_eps);
2151 	return 0;
2152 }
2153 
2154 /*
2155  * The configure endpoint was failed by the xHC for some other reason, so we
2156  * need to revert the resources that failed configuration would have used.
2157  *
2158  * Must be called with xhci->lock held.
2159  */
2160 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2161 		struct xhci_input_control_ctx *ctrl_ctx)
2162 {
2163 	u32 num_failed_eps;
2164 
2165 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2166 	xhci->num_active_eps -= num_failed_eps;
2167 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2168 			"Removing %u failed ep ctxs, %u now active.",
2169 			num_failed_eps,
2170 			xhci->num_active_eps);
2171 }
2172 
2173 /*
2174  * Now that the command has completed, clean up the active endpoint count by
2175  * subtracting out the endpoints that were dropped (but not changed).
2176  *
2177  * Must be called with xhci->lock held.
2178  */
2179 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2180 		struct xhci_input_control_ctx *ctrl_ctx)
2181 {
2182 	u32 num_dropped_eps;
2183 
2184 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2185 	xhci->num_active_eps -= num_dropped_eps;
2186 	if (num_dropped_eps)
2187 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188 				"Removing %u dropped ep ctxs, %u now active.",
2189 				num_dropped_eps,
2190 				xhci->num_active_eps);
2191 }
2192 
2193 static unsigned int xhci_get_block_size(struct usb_device *udev)
2194 {
2195 	switch (udev->speed) {
2196 	case USB_SPEED_LOW:
2197 	case USB_SPEED_FULL:
2198 		return FS_BLOCK;
2199 	case USB_SPEED_HIGH:
2200 		return HS_BLOCK;
2201 	case USB_SPEED_SUPER:
2202 	case USB_SPEED_SUPER_PLUS:
2203 		return SS_BLOCK;
2204 	case USB_SPEED_UNKNOWN:
2205 	default:
2206 		/* Should never happen */
2207 		return 1;
2208 	}
2209 }
2210 
2211 static unsigned int
2212 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2213 {
2214 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2215 		return LS_OVERHEAD;
2216 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2217 		return FS_OVERHEAD;
2218 	return HS_OVERHEAD;
2219 }
2220 
2221 /* If we are changing a LS/FS device under a HS hub,
2222  * make sure (if we are activating a new TT) that the HS bus has enough
2223  * bandwidth for this new TT.
2224  */
2225 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2226 		struct xhci_virt_device *virt_dev,
2227 		int old_active_eps)
2228 {
2229 	struct xhci_interval_bw_table *bw_table;
2230 	struct xhci_tt_bw_info *tt_info;
2231 
2232 	/* Find the bandwidth table for the root port this TT is attached to. */
2233 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2234 	tt_info = virt_dev->tt_info;
2235 	/* If this TT already had active endpoints, the bandwidth for this TT
2236 	 * has already been added.  Removing all periodic endpoints (and thus
2237 	 * making the TT enactive) will only decrease the bandwidth used.
2238 	 */
2239 	if (old_active_eps)
2240 		return 0;
2241 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2242 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2243 			return -ENOMEM;
2244 		return 0;
2245 	}
2246 	/* Not sure why we would have no new active endpoints...
2247 	 *
2248 	 * Maybe because of an Evaluate Context change for a hub update or a
2249 	 * control endpoint 0 max packet size change?
2250 	 * FIXME: skip the bandwidth calculation in that case.
2251 	 */
2252 	return 0;
2253 }
2254 
2255 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2256 		struct xhci_virt_device *virt_dev)
2257 {
2258 	unsigned int bw_reserved;
2259 
2260 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2261 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2262 		return -ENOMEM;
2263 
2264 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2265 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2266 		return -ENOMEM;
2267 
2268 	return 0;
2269 }
2270 
2271 /*
2272  * This algorithm is a very conservative estimate of the worst-case scheduling
2273  * scenario for any one interval.  The hardware dynamically schedules the
2274  * packets, so we can't tell which microframe could be the limiting factor in
2275  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2276  *
2277  * Obviously, we can't solve an NP complete problem to find the minimum worst
2278  * case scenario.  Instead, we come up with an estimate that is no less than
2279  * the worst case bandwidth used for any one microframe, but may be an
2280  * over-estimate.
2281  *
2282  * We walk the requirements for each endpoint by interval, starting with the
2283  * smallest interval, and place packets in the schedule where there is only one
2284  * possible way to schedule packets for that interval.  In order to simplify
2285  * this algorithm, we record the largest max packet size for each interval, and
2286  * assume all packets will be that size.
2287  *
2288  * For interval 0, we obviously must schedule all packets for each interval.
2289  * The bandwidth for interval 0 is just the amount of data to be transmitted
2290  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2291  * the number of packets).
2292  *
2293  * For interval 1, we have two possible microframes to schedule those packets
2294  * in.  For this algorithm, if we can schedule the same number of packets for
2295  * each possible scheduling opportunity (each microframe), we will do so.  The
2296  * remaining number of packets will be saved to be transmitted in the gaps in
2297  * the next interval's scheduling sequence.
2298  *
2299  * As we move those remaining packets to be scheduled with interval 2 packets,
2300  * we have to double the number of remaining packets to transmit.  This is
2301  * because the intervals are actually powers of 2, and we would be transmitting
2302  * the previous interval's packets twice in this interval.  We also have to be
2303  * sure that when we look at the largest max packet size for this interval, we
2304  * also look at the largest max packet size for the remaining packets and take
2305  * the greater of the two.
2306  *
2307  * The algorithm continues to evenly distribute packets in each scheduling
2308  * opportunity, and push the remaining packets out, until we get to the last
2309  * interval.  Then those packets and their associated overhead are just added
2310  * to the bandwidth used.
2311  */
2312 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2313 		struct xhci_virt_device *virt_dev,
2314 		int old_active_eps)
2315 {
2316 	unsigned int bw_reserved;
2317 	unsigned int max_bandwidth;
2318 	unsigned int bw_used;
2319 	unsigned int block_size;
2320 	struct xhci_interval_bw_table *bw_table;
2321 	unsigned int packet_size = 0;
2322 	unsigned int overhead = 0;
2323 	unsigned int packets_transmitted = 0;
2324 	unsigned int packets_remaining = 0;
2325 	unsigned int i;
2326 
2327 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2328 		return xhci_check_ss_bw(xhci, virt_dev);
2329 
2330 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2331 		max_bandwidth = HS_BW_LIMIT;
2332 		/* Convert percent of bus BW reserved to blocks reserved */
2333 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2334 	} else {
2335 		max_bandwidth = FS_BW_LIMIT;
2336 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2337 	}
2338 
2339 	bw_table = virt_dev->bw_table;
2340 	/* We need to translate the max packet size and max ESIT payloads into
2341 	 * the units the hardware uses.
2342 	 */
2343 	block_size = xhci_get_block_size(virt_dev->udev);
2344 
2345 	/* If we are manipulating a LS/FS device under a HS hub, double check
2346 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2347 	 */
2348 	if (virt_dev->tt_info) {
2349 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2350 				"Recalculating BW for rootport %u",
2351 				virt_dev->real_port);
2352 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2353 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2354 					"newly activated TT.\n");
2355 			return -ENOMEM;
2356 		}
2357 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2358 				"Recalculating BW for TT slot %u port %u",
2359 				virt_dev->tt_info->slot_id,
2360 				virt_dev->tt_info->ttport);
2361 	} else {
2362 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2363 				"Recalculating BW for rootport %u",
2364 				virt_dev->real_port);
2365 	}
2366 
2367 	/* Add in how much bandwidth will be used for interval zero, or the
2368 	 * rounded max ESIT payload + number of packets * largest overhead.
2369 	 */
2370 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2371 		bw_table->interval_bw[0].num_packets *
2372 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2373 
2374 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2375 		unsigned int bw_added;
2376 		unsigned int largest_mps;
2377 		unsigned int interval_overhead;
2378 
2379 		/*
2380 		 * How many packets could we transmit in this interval?
2381 		 * If packets didn't fit in the previous interval, we will need
2382 		 * to transmit that many packets twice within this interval.
2383 		 */
2384 		packets_remaining = 2 * packets_remaining +
2385 			bw_table->interval_bw[i].num_packets;
2386 
2387 		/* Find the largest max packet size of this or the previous
2388 		 * interval.
2389 		 */
2390 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2391 			largest_mps = 0;
2392 		else {
2393 			struct xhci_virt_ep *virt_ep;
2394 			struct list_head *ep_entry;
2395 
2396 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2397 			virt_ep = list_entry(ep_entry,
2398 					struct xhci_virt_ep, bw_endpoint_list);
2399 			/* Convert to blocks, rounding up */
2400 			largest_mps = DIV_ROUND_UP(
2401 					virt_ep->bw_info.max_packet_size,
2402 					block_size);
2403 		}
2404 		if (largest_mps > packet_size)
2405 			packet_size = largest_mps;
2406 
2407 		/* Use the larger overhead of this or the previous interval. */
2408 		interval_overhead = xhci_get_largest_overhead(
2409 				&bw_table->interval_bw[i]);
2410 		if (interval_overhead > overhead)
2411 			overhead = interval_overhead;
2412 
2413 		/* How many packets can we evenly distribute across
2414 		 * (1 << (i + 1)) possible scheduling opportunities?
2415 		 */
2416 		packets_transmitted = packets_remaining >> (i + 1);
2417 
2418 		/* Add in the bandwidth used for those scheduled packets */
2419 		bw_added = packets_transmitted * (overhead + packet_size);
2420 
2421 		/* How many packets do we have remaining to transmit? */
2422 		packets_remaining = packets_remaining % (1 << (i + 1));
2423 
2424 		/* What largest max packet size should those packets have? */
2425 		/* If we've transmitted all packets, don't carry over the
2426 		 * largest packet size.
2427 		 */
2428 		if (packets_remaining == 0) {
2429 			packet_size = 0;
2430 			overhead = 0;
2431 		} else if (packets_transmitted > 0) {
2432 			/* Otherwise if we do have remaining packets, and we've
2433 			 * scheduled some packets in this interval, take the
2434 			 * largest max packet size from endpoints with this
2435 			 * interval.
2436 			 */
2437 			packet_size = largest_mps;
2438 			overhead = interval_overhead;
2439 		}
2440 		/* Otherwise carry over packet_size and overhead from the last
2441 		 * time we had a remainder.
2442 		 */
2443 		bw_used += bw_added;
2444 		if (bw_used > max_bandwidth) {
2445 			xhci_warn(xhci, "Not enough bandwidth. "
2446 					"Proposed: %u, Max: %u\n",
2447 				bw_used, max_bandwidth);
2448 			return -ENOMEM;
2449 		}
2450 	}
2451 	/*
2452 	 * Ok, we know we have some packets left over after even-handedly
2453 	 * scheduling interval 15.  We don't know which microframes they will
2454 	 * fit into, so we over-schedule and say they will be scheduled every
2455 	 * microframe.
2456 	 */
2457 	if (packets_remaining > 0)
2458 		bw_used += overhead + packet_size;
2459 
2460 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2461 		unsigned int port_index = virt_dev->real_port - 1;
2462 
2463 		/* OK, we're manipulating a HS device attached to a
2464 		 * root port bandwidth domain.  Include the number of active TTs
2465 		 * in the bandwidth used.
2466 		 */
2467 		bw_used += TT_HS_OVERHEAD *
2468 			xhci->rh_bw[port_index].num_active_tts;
2469 	}
2470 
2471 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2472 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2473 		"Available: %u " "percent",
2474 		bw_used, max_bandwidth, bw_reserved,
2475 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2476 		max_bandwidth);
2477 
2478 	bw_used += bw_reserved;
2479 	if (bw_used > max_bandwidth) {
2480 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2481 				bw_used, max_bandwidth);
2482 		return -ENOMEM;
2483 	}
2484 
2485 	bw_table->bw_used = bw_used;
2486 	return 0;
2487 }
2488 
2489 static bool xhci_is_async_ep(unsigned int ep_type)
2490 {
2491 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2492 					ep_type != ISOC_IN_EP &&
2493 					ep_type != INT_IN_EP);
2494 }
2495 
2496 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2497 {
2498 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2499 }
2500 
2501 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2502 {
2503 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2504 
2505 	if (ep_bw->ep_interval == 0)
2506 		return SS_OVERHEAD_BURST +
2507 			(ep_bw->mult * ep_bw->num_packets *
2508 					(SS_OVERHEAD + mps));
2509 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2510 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2511 				1 << ep_bw->ep_interval);
2512 
2513 }
2514 
2515 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2516 		struct xhci_bw_info *ep_bw,
2517 		struct xhci_interval_bw_table *bw_table,
2518 		struct usb_device *udev,
2519 		struct xhci_virt_ep *virt_ep,
2520 		struct xhci_tt_bw_info *tt_info)
2521 {
2522 	struct xhci_interval_bw	*interval_bw;
2523 	int normalized_interval;
2524 
2525 	if (xhci_is_async_ep(ep_bw->type))
2526 		return;
2527 
2528 	if (udev->speed >= USB_SPEED_SUPER) {
2529 		if (xhci_is_sync_in_ep(ep_bw->type))
2530 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2531 				xhci_get_ss_bw_consumed(ep_bw);
2532 		else
2533 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2534 				xhci_get_ss_bw_consumed(ep_bw);
2535 		return;
2536 	}
2537 
2538 	/* SuperSpeed endpoints never get added to intervals in the table, so
2539 	 * this check is only valid for HS/FS/LS devices.
2540 	 */
2541 	if (list_empty(&virt_ep->bw_endpoint_list))
2542 		return;
2543 	/* For LS/FS devices, we need to translate the interval expressed in
2544 	 * microframes to frames.
2545 	 */
2546 	if (udev->speed == USB_SPEED_HIGH)
2547 		normalized_interval = ep_bw->ep_interval;
2548 	else
2549 		normalized_interval = ep_bw->ep_interval - 3;
2550 
2551 	if (normalized_interval == 0)
2552 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2553 	interval_bw = &bw_table->interval_bw[normalized_interval];
2554 	interval_bw->num_packets -= ep_bw->num_packets;
2555 	switch (udev->speed) {
2556 	case USB_SPEED_LOW:
2557 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2558 		break;
2559 	case USB_SPEED_FULL:
2560 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2561 		break;
2562 	case USB_SPEED_HIGH:
2563 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2564 		break;
2565 	default:
2566 		/* Should never happen because only LS/FS/HS endpoints will get
2567 		 * added to the endpoint list.
2568 		 */
2569 		return;
2570 	}
2571 	if (tt_info)
2572 		tt_info->active_eps -= 1;
2573 	list_del_init(&virt_ep->bw_endpoint_list);
2574 }
2575 
2576 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2577 		struct xhci_bw_info *ep_bw,
2578 		struct xhci_interval_bw_table *bw_table,
2579 		struct usb_device *udev,
2580 		struct xhci_virt_ep *virt_ep,
2581 		struct xhci_tt_bw_info *tt_info)
2582 {
2583 	struct xhci_interval_bw	*interval_bw;
2584 	struct xhci_virt_ep *smaller_ep;
2585 	int normalized_interval;
2586 
2587 	if (xhci_is_async_ep(ep_bw->type))
2588 		return;
2589 
2590 	if (udev->speed == USB_SPEED_SUPER) {
2591 		if (xhci_is_sync_in_ep(ep_bw->type))
2592 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2593 				xhci_get_ss_bw_consumed(ep_bw);
2594 		else
2595 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2596 				xhci_get_ss_bw_consumed(ep_bw);
2597 		return;
2598 	}
2599 
2600 	/* For LS/FS devices, we need to translate the interval expressed in
2601 	 * microframes to frames.
2602 	 */
2603 	if (udev->speed == USB_SPEED_HIGH)
2604 		normalized_interval = ep_bw->ep_interval;
2605 	else
2606 		normalized_interval = ep_bw->ep_interval - 3;
2607 
2608 	if (normalized_interval == 0)
2609 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2610 	interval_bw = &bw_table->interval_bw[normalized_interval];
2611 	interval_bw->num_packets += ep_bw->num_packets;
2612 	switch (udev->speed) {
2613 	case USB_SPEED_LOW:
2614 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2615 		break;
2616 	case USB_SPEED_FULL:
2617 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2618 		break;
2619 	case USB_SPEED_HIGH:
2620 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2621 		break;
2622 	default:
2623 		/* Should never happen because only LS/FS/HS endpoints will get
2624 		 * added to the endpoint list.
2625 		 */
2626 		return;
2627 	}
2628 
2629 	if (tt_info)
2630 		tt_info->active_eps += 1;
2631 	/* Insert the endpoint into the list, largest max packet size first. */
2632 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2633 			bw_endpoint_list) {
2634 		if (ep_bw->max_packet_size >=
2635 				smaller_ep->bw_info.max_packet_size) {
2636 			/* Add the new ep before the smaller endpoint */
2637 			list_add_tail(&virt_ep->bw_endpoint_list,
2638 					&smaller_ep->bw_endpoint_list);
2639 			return;
2640 		}
2641 	}
2642 	/* Add the new endpoint at the end of the list. */
2643 	list_add_tail(&virt_ep->bw_endpoint_list,
2644 			&interval_bw->endpoints);
2645 }
2646 
2647 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2648 		struct xhci_virt_device *virt_dev,
2649 		int old_active_eps)
2650 {
2651 	struct xhci_root_port_bw_info *rh_bw_info;
2652 	if (!virt_dev->tt_info)
2653 		return;
2654 
2655 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2656 	if (old_active_eps == 0 &&
2657 				virt_dev->tt_info->active_eps != 0) {
2658 		rh_bw_info->num_active_tts += 1;
2659 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2660 	} else if (old_active_eps != 0 &&
2661 				virt_dev->tt_info->active_eps == 0) {
2662 		rh_bw_info->num_active_tts -= 1;
2663 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2664 	}
2665 }
2666 
2667 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2668 		struct xhci_virt_device *virt_dev,
2669 		struct xhci_container_ctx *in_ctx)
2670 {
2671 	struct xhci_bw_info ep_bw_info[31];
2672 	int i;
2673 	struct xhci_input_control_ctx *ctrl_ctx;
2674 	int old_active_eps = 0;
2675 
2676 	if (virt_dev->tt_info)
2677 		old_active_eps = virt_dev->tt_info->active_eps;
2678 
2679 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2680 	if (!ctrl_ctx) {
2681 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2682 				__func__);
2683 		return -ENOMEM;
2684 	}
2685 
2686 	for (i = 0; i < 31; i++) {
2687 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2688 			continue;
2689 
2690 		/* Make a copy of the BW info in case we need to revert this */
2691 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2692 				sizeof(ep_bw_info[i]));
2693 		/* Drop the endpoint from the interval table if the endpoint is
2694 		 * being dropped or changed.
2695 		 */
2696 		if (EP_IS_DROPPED(ctrl_ctx, i))
2697 			xhci_drop_ep_from_interval_table(xhci,
2698 					&virt_dev->eps[i].bw_info,
2699 					virt_dev->bw_table,
2700 					virt_dev->udev,
2701 					&virt_dev->eps[i],
2702 					virt_dev->tt_info);
2703 	}
2704 	/* Overwrite the information stored in the endpoints' bw_info */
2705 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2706 	for (i = 0; i < 31; i++) {
2707 		/* Add any changed or added endpoints to the interval table */
2708 		if (EP_IS_ADDED(ctrl_ctx, i))
2709 			xhci_add_ep_to_interval_table(xhci,
2710 					&virt_dev->eps[i].bw_info,
2711 					virt_dev->bw_table,
2712 					virt_dev->udev,
2713 					&virt_dev->eps[i],
2714 					virt_dev->tt_info);
2715 	}
2716 
2717 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2718 		/* Ok, this fits in the bandwidth we have.
2719 		 * Update the number of active TTs.
2720 		 */
2721 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2722 		return 0;
2723 	}
2724 
2725 	/* We don't have enough bandwidth for this, revert the stored info. */
2726 	for (i = 0; i < 31; i++) {
2727 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2728 			continue;
2729 
2730 		/* Drop the new copies of any added or changed endpoints from
2731 		 * the interval table.
2732 		 */
2733 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2734 			xhci_drop_ep_from_interval_table(xhci,
2735 					&virt_dev->eps[i].bw_info,
2736 					virt_dev->bw_table,
2737 					virt_dev->udev,
2738 					&virt_dev->eps[i],
2739 					virt_dev->tt_info);
2740 		}
2741 		/* Revert the endpoint back to its old information */
2742 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2743 				sizeof(ep_bw_info[i]));
2744 		/* Add any changed or dropped endpoints back into the table */
2745 		if (EP_IS_DROPPED(ctrl_ctx, i))
2746 			xhci_add_ep_to_interval_table(xhci,
2747 					&virt_dev->eps[i].bw_info,
2748 					virt_dev->bw_table,
2749 					virt_dev->udev,
2750 					&virt_dev->eps[i],
2751 					virt_dev->tt_info);
2752 	}
2753 	return -ENOMEM;
2754 }
2755 
2756 
2757 /* Issue a configure endpoint command or evaluate context command
2758  * and wait for it to finish.
2759  */
2760 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2761 		struct usb_device *udev,
2762 		struct xhci_command *command,
2763 		bool ctx_change, bool must_succeed)
2764 {
2765 	int ret;
2766 	unsigned long flags;
2767 	struct xhci_input_control_ctx *ctrl_ctx;
2768 	struct xhci_virt_device *virt_dev;
2769 	struct xhci_slot_ctx *slot_ctx;
2770 
2771 	if (!command)
2772 		return -EINVAL;
2773 
2774 	spin_lock_irqsave(&xhci->lock, flags);
2775 
2776 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2777 		spin_unlock_irqrestore(&xhci->lock, flags);
2778 		return -ESHUTDOWN;
2779 	}
2780 
2781 	virt_dev = xhci->devs[udev->slot_id];
2782 
2783 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2784 	if (!ctrl_ctx) {
2785 		spin_unlock_irqrestore(&xhci->lock, flags);
2786 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2787 				__func__);
2788 		return -ENOMEM;
2789 	}
2790 
2791 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2792 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2793 		spin_unlock_irqrestore(&xhci->lock, flags);
2794 		xhci_warn(xhci, "Not enough host resources, "
2795 				"active endpoint contexts = %u\n",
2796 				xhci->num_active_eps);
2797 		return -ENOMEM;
2798 	}
2799 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2800 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2801 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2802 			xhci_free_host_resources(xhci, ctrl_ctx);
2803 		spin_unlock_irqrestore(&xhci->lock, flags);
2804 		xhci_warn(xhci, "Not enough bandwidth\n");
2805 		return -ENOMEM;
2806 	}
2807 
2808 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2809 
2810 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2811 	trace_xhci_configure_endpoint(slot_ctx);
2812 
2813 	if (!ctx_change)
2814 		ret = xhci_queue_configure_endpoint(xhci, command,
2815 				command->in_ctx->dma,
2816 				udev->slot_id, must_succeed);
2817 	else
2818 		ret = xhci_queue_evaluate_context(xhci, command,
2819 				command->in_ctx->dma,
2820 				udev->slot_id, must_succeed);
2821 	if (ret < 0) {
2822 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2823 			xhci_free_host_resources(xhci, ctrl_ctx);
2824 		spin_unlock_irqrestore(&xhci->lock, flags);
2825 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2826 				"FIXME allocate a new ring segment");
2827 		return -ENOMEM;
2828 	}
2829 	xhci_ring_cmd_db(xhci);
2830 	spin_unlock_irqrestore(&xhci->lock, flags);
2831 
2832 	/* Wait for the configure endpoint command to complete */
2833 	wait_for_completion(command->completion);
2834 
2835 	if (!ctx_change)
2836 		ret = xhci_configure_endpoint_result(xhci, udev,
2837 						     &command->status);
2838 	else
2839 		ret = xhci_evaluate_context_result(xhci, udev,
2840 						   &command->status);
2841 
2842 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2843 		spin_lock_irqsave(&xhci->lock, flags);
2844 		/* If the command failed, remove the reserved resources.
2845 		 * Otherwise, clean up the estimate to include dropped eps.
2846 		 */
2847 		if (ret)
2848 			xhci_free_host_resources(xhci, ctrl_ctx);
2849 		else
2850 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2851 		spin_unlock_irqrestore(&xhci->lock, flags);
2852 	}
2853 	return ret;
2854 }
2855 
2856 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2857 	struct xhci_virt_device *vdev, int i)
2858 {
2859 	struct xhci_virt_ep *ep = &vdev->eps[i];
2860 
2861 	if (ep->ep_state & EP_HAS_STREAMS) {
2862 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2863 				xhci_get_endpoint_address(i));
2864 		xhci_free_stream_info(xhci, ep->stream_info);
2865 		ep->stream_info = NULL;
2866 		ep->ep_state &= ~EP_HAS_STREAMS;
2867 	}
2868 }
2869 
2870 /* Called after one or more calls to xhci_add_endpoint() or
2871  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2872  * to call xhci_reset_bandwidth().
2873  *
2874  * Since we are in the middle of changing either configuration or
2875  * installing a new alt setting, the USB core won't allow URBs to be
2876  * enqueued for any endpoint on the old config or interface.  Nothing
2877  * else should be touching the xhci->devs[slot_id] structure, so we
2878  * don't need to take the xhci->lock for manipulating that.
2879  */
2880 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2881 {
2882 	int i;
2883 	int ret = 0;
2884 	struct xhci_hcd *xhci;
2885 	struct xhci_virt_device	*virt_dev;
2886 	struct xhci_input_control_ctx *ctrl_ctx;
2887 	struct xhci_slot_ctx *slot_ctx;
2888 	struct xhci_command *command;
2889 
2890 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2891 	if (ret <= 0)
2892 		return ret;
2893 	xhci = hcd_to_xhci(hcd);
2894 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2895 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2896 		return -ENODEV;
2897 
2898 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2899 	virt_dev = xhci->devs[udev->slot_id];
2900 
2901 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2902 	if (!command)
2903 		return -ENOMEM;
2904 
2905 	command->in_ctx = virt_dev->in_ctx;
2906 
2907 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2908 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2909 	if (!ctrl_ctx) {
2910 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2911 				__func__);
2912 		ret = -ENOMEM;
2913 		goto command_cleanup;
2914 	}
2915 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2916 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2917 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2918 
2919 	/* Don't issue the command if there's no endpoints to update. */
2920 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2921 	    ctrl_ctx->drop_flags == 0) {
2922 		ret = 0;
2923 		goto command_cleanup;
2924 	}
2925 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2926 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2927 	for (i = 31; i >= 1; i--) {
2928 		__le32 le32 = cpu_to_le32(BIT(i));
2929 
2930 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2931 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2932 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2933 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2934 			break;
2935 		}
2936 	}
2937 
2938 	ret = xhci_configure_endpoint(xhci, udev, command,
2939 			false, false);
2940 	if (ret)
2941 		/* Callee should call reset_bandwidth() */
2942 		goto command_cleanup;
2943 
2944 	/* Free any rings that were dropped, but not changed. */
2945 	for (i = 1; i < 31; i++) {
2946 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2947 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2948 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2949 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950 		}
2951 	}
2952 	xhci_zero_in_ctx(xhci, virt_dev);
2953 	/*
2954 	 * Install any rings for completely new endpoints or changed endpoints,
2955 	 * and free any old rings from changed endpoints.
2956 	 */
2957 	for (i = 1; i < 31; i++) {
2958 		if (!virt_dev->eps[i].new_ring)
2959 			continue;
2960 		/* Only free the old ring if it exists.
2961 		 * It may not if this is the first add of an endpoint.
2962 		 */
2963 		if (virt_dev->eps[i].ring) {
2964 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2965 		}
2966 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2967 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2968 		virt_dev->eps[i].new_ring = NULL;
2969 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2970 	}
2971 command_cleanup:
2972 	kfree(command->completion);
2973 	kfree(command);
2974 
2975 	return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2978 
2979 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2980 {
2981 	struct xhci_hcd *xhci;
2982 	struct xhci_virt_device	*virt_dev;
2983 	int i, ret;
2984 
2985 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2986 	if (ret <= 0)
2987 		return;
2988 	xhci = hcd_to_xhci(hcd);
2989 
2990 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2991 	virt_dev = xhci->devs[udev->slot_id];
2992 	/* Free any rings allocated for added endpoints */
2993 	for (i = 0; i < 31; i++) {
2994 		if (virt_dev->eps[i].new_ring) {
2995 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2996 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2997 			virt_dev->eps[i].new_ring = NULL;
2998 		}
2999 	}
3000 	xhci_zero_in_ctx(xhci, virt_dev);
3001 }
3002 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3003 
3004 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3005 		struct xhci_container_ctx *in_ctx,
3006 		struct xhci_container_ctx *out_ctx,
3007 		struct xhci_input_control_ctx *ctrl_ctx,
3008 		u32 add_flags, u32 drop_flags)
3009 {
3010 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3011 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3012 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3013 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3014 }
3015 
3016 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3017 				  struct usb_host_endpoint *host_ep)
3018 {
3019 	struct xhci_hcd		*xhci;
3020 	struct xhci_virt_device	*vdev;
3021 	struct xhci_virt_ep	*ep;
3022 	struct usb_device	*udev;
3023 	unsigned long		flags;
3024 	unsigned int		ep_index;
3025 
3026 	xhci = hcd_to_xhci(hcd);
3027 rescan:
3028 	spin_lock_irqsave(&xhci->lock, flags);
3029 
3030 	udev = (struct usb_device *)host_ep->hcpriv;
3031 	if (!udev || !udev->slot_id)
3032 		goto done;
3033 
3034 	vdev = xhci->devs[udev->slot_id];
3035 	if (!vdev)
3036 		goto done;
3037 
3038 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3039 	ep = &vdev->eps[ep_index];
3040 
3041 	/* wait for hub_tt_work to finish clearing hub TT */
3042 	if (ep->ep_state & EP_CLEARING_TT) {
3043 		spin_unlock_irqrestore(&xhci->lock, flags);
3044 		schedule_timeout_uninterruptible(1);
3045 		goto rescan;
3046 	}
3047 
3048 	if (ep->ep_state)
3049 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3050 			 ep->ep_state);
3051 done:
3052 	host_ep->hcpriv = NULL;
3053 	spin_unlock_irqrestore(&xhci->lock, flags);
3054 }
3055 
3056 /*
3057  * Called after usb core issues a clear halt control message.
3058  * The host side of the halt should already be cleared by a reset endpoint
3059  * command issued when the STALL event was received.
3060  *
3061  * The reset endpoint command may only be issued to endpoints in the halted
3062  * state. For software that wishes to reset the data toggle or sequence number
3063  * of an endpoint that isn't in the halted state this function will issue a
3064  * configure endpoint command with the Drop and Add bits set for the target
3065  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3066  */
3067 
3068 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3069 		struct usb_host_endpoint *host_ep)
3070 {
3071 	struct xhci_hcd *xhci;
3072 	struct usb_device *udev;
3073 	struct xhci_virt_device *vdev;
3074 	struct xhci_virt_ep *ep;
3075 	struct xhci_input_control_ctx *ctrl_ctx;
3076 	struct xhci_command *stop_cmd, *cfg_cmd;
3077 	unsigned int ep_index;
3078 	unsigned long flags;
3079 	u32 ep_flag;
3080 	int err;
3081 
3082 	xhci = hcd_to_xhci(hcd);
3083 	if (!host_ep->hcpriv)
3084 		return;
3085 	udev = (struct usb_device *) host_ep->hcpriv;
3086 	vdev = xhci->devs[udev->slot_id];
3087 
3088 	/*
3089 	 * vdev may be lost due to xHC restore error and re-initialization
3090 	 * during S3/S4 resume. A new vdev will be allocated later by
3091 	 * xhci_discover_or_reset_device()
3092 	 */
3093 	if (!udev->slot_id || !vdev)
3094 		return;
3095 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3096 	ep = &vdev->eps[ep_index];
3097 
3098 	/* Bail out if toggle is already being cleared by a endpoint reset */
3099 	spin_lock_irqsave(&xhci->lock, flags);
3100 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3101 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3102 		spin_unlock_irqrestore(&xhci->lock, flags);
3103 		return;
3104 	}
3105 	spin_unlock_irqrestore(&xhci->lock, flags);
3106 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3107 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3108 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3109 		return;
3110 
3111 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3112 
3113 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3114 		return;
3115 
3116 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3117 	if (!stop_cmd)
3118 		return;
3119 
3120 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3121 	if (!cfg_cmd)
3122 		goto cleanup;
3123 
3124 	spin_lock_irqsave(&xhci->lock, flags);
3125 
3126 	/* block queuing new trbs and ringing ep doorbell */
3127 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3128 
3129 	/*
3130 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3131 	 * Driver is required to synchronously cancel all transfer request.
3132 	 * Stop the endpoint to force xHC to update the output context
3133 	 */
3134 
3135 	if (!list_empty(&ep->ring->td_list)) {
3136 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3137 		spin_unlock_irqrestore(&xhci->lock, flags);
3138 		xhci_free_command(xhci, cfg_cmd);
3139 		goto cleanup;
3140 	}
3141 
3142 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3143 					ep_index, 0);
3144 	if (err < 0) {
3145 		spin_unlock_irqrestore(&xhci->lock, flags);
3146 		xhci_free_command(xhci, cfg_cmd);
3147 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3148 				__func__, err);
3149 		goto cleanup;
3150 	}
3151 
3152 	xhci_ring_cmd_db(xhci);
3153 	spin_unlock_irqrestore(&xhci->lock, flags);
3154 
3155 	wait_for_completion(stop_cmd->completion);
3156 
3157 	spin_lock_irqsave(&xhci->lock, flags);
3158 
3159 	/* config ep command clears toggle if add and drop ep flags are set */
3160 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3161 	if (!ctrl_ctx) {
3162 		spin_unlock_irqrestore(&xhci->lock, flags);
3163 		xhci_free_command(xhci, cfg_cmd);
3164 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3165 				__func__);
3166 		goto cleanup;
3167 	}
3168 
3169 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3170 					   ctrl_ctx, ep_flag, ep_flag);
3171 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3172 
3173 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3174 				      udev->slot_id, false);
3175 	if (err < 0) {
3176 		spin_unlock_irqrestore(&xhci->lock, flags);
3177 		xhci_free_command(xhci, cfg_cmd);
3178 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3179 				__func__, err);
3180 		goto cleanup;
3181 	}
3182 
3183 	xhci_ring_cmd_db(xhci);
3184 	spin_unlock_irqrestore(&xhci->lock, flags);
3185 
3186 	wait_for_completion(cfg_cmd->completion);
3187 
3188 	xhci_free_command(xhci, cfg_cmd);
3189 cleanup:
3190 	xhci_free_command(xhci, stop_cmd);
3191 	spin_lock_irqsave(&xhci->lock, flags);
3192 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3193 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3194 	spin_unlock_irqrestore(&xhci->lock, flags);
3195 }
3196 
3197 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3198 		struct usb_device *udev, struct usb_host_endpoint *ep,
3199 		unsigned int slot_id)
3200 {
3201 	int ret;
3202 	unsigned int ep_index;
3203 	unsigned int ep_state;
3204 
3205 	if (!ep)
3206 		return -EINVAL;
3207 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3208 	if (ret <= 0)
3209 		return ret ? ret : -EINVAL;
3210 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3211 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3212 				" descriptor for ep 0x%x does not support streams\n",
3213 				ep->desc.bEndpointAddress);
3214 		return -EINVAL;
3215 	}
3216 
3217 	ep_index = xhci_get_endpoint_index(&ep->desc);
3218 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3219 	if (ep_state & EP_HAS_STREAMS ||
3220 			ep_state & EP_GETTING_STREAMS) {
3221 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3222 				"already has streams set up.\n",
3223 				ep->desc.bEndpointAddress);
3224 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3225 				"dynamic stream context array reallocation.\n");
3226 		return -EINVAL;
3227 	}
3228 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3229 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3230 				"endpoint 0x%x; URBs are pending.\n",
3231 				ep->desc.bEndpointAddress);
3232 		return -EINVAL;
3233 	}
3234 	return 0;
3235 }
3236 
3237 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3238 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3239 {
3240 	unsigned int max_streams;
3241 
3242 	/* The stream context array size must be a power of two */
3243 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3244 	/*
3245 	 * Find out how many primary stream array entries the host controller
3246 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3247 	 * level page entries), but that's an optional feature for xHCI host
3248 	 * controllers. xHCs must support at least 4 stream IDs.
3249 	 */
3250 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3251 	if (*num_stream_ctxs > max_streams) {
3252 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3253 				max_streams);
3254 		*num_stream_ctxs = max_streams;
3255 		*num_streams = max_streams;
3256 	}
3257 }
3258 
3259 /* Returns an error code if one of the endpoint already has streams.
3260  * This does not change any data structures, it only checks and gathers
3261  * information.
3262  */
3263 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3264 		struct usb_device *udev,
3265 		struct usb_host_endpoint **eps, unsigned int num_eps,
3266 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3267 {
3268 	unsigned int max_streams;
3269 	unsigned int endpoint_flag;
3270 	int i;
3271 	int ret;
3272 
3273 	for (i = 0; i < num_eps; i++) {
3274 		ret = xhci_check_streams_endpoint(xhci, udev,
3275 				eps[i], udev->slot_id);
3276 		if (ret < 0)
3277 			return ret;
3278 
3279 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3280 		if (max_streams < (*num_streams - 1)) {
3281 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3282 					eps[i]->desc.bEndpointAddress,
3283 					max_streams);
3284 			*num_streams = max_streams+1;
3285 		}
3286 
3287 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3288 		if (*changed_ep_bitmask & endpoint_flag)
3289 			return -EINVAL;
3290 		*changed_ep_bitmask |= endpoint_flag;
3291 	}
3292 	return 0;
3293 }
3294 
3295 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3296 		struct usb_device *udev,
3297 		struct usb_host_endpoint **eps, unsigned int num_eps)
3298 {
3299 	u32 changed_ep_bitmask = 0;
3300 	unsigned int slot_id;
3301 	unsigned int ep_index;
3302 	unsigned int ep_state;
3303 	int i;
3304 
3305 	slot_id = udev->slot_id;
3306 	if (!xhci->devs[slot_id])
3307 		return 0;
3308 
3309 	for (i = 0; i < num_eps; i++) {
3310 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3312 		/* Are streams already being freed for the endpoint? */
3313 		if (ep_state & EP_GETTING_NO_STREAMS) {
3314 			xhci_warn(xhci, "WARN Can't disable streams for "
3315 					"endpoint 0x%x, "
3316 					"streams are being disabled already\n",
3317 					eps[i]->desc.bEndpointAddress);
3318 			return 0;
3319 		}
3320 		/* Are there actually any streams to free? */
3321 		if (!(ep_state & EP_HAS_STREAMS) &&
3322 				!(ep_state & EP_GETTING_STREAMS)) {
3323 			xhci_warn(xhci, "WARN Can't disable streams for "
3324 					"endpoint 0x%x, "
3325 					"streams are already disabled!\n",
3326 					eps[i]->desc.bEndpointAddress);
3327 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3328 					"with non-streams endpoint\n");
3329 			return 0;
3330 		}
3331 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3332 	}
3333 	return changed_ep_bitmask;
3334 }
3335 
3336 /*
3337  * The USB device drivers use this function (through the HCD interface in USB
3338  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3339  * coordinate mass storage command queueing across multiple endpoints (basically
3340  * a stream ID == a task ID).
3341  *
3342  * Setting up streams involves allocating the same size stream context array
3343  * for each endpoint and issuing a configure endpoint command for all endpoints.
3344  *
3345  * Don't allow the call to succeed if one endpoint only supports one stream
3346  * (which means it doesn't support streams at all).
3347  *
3348  * Drivers may get less stream IDs than they asked for, if the host controller
3349  * hardware or endpoints claim they can't support the number of requested
3350  * stream IDs.
3351  */
3352 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3353 		struct usb_host_endpoint **eps, unsigned int num_eps,
3354 		unsigned int num_streams, gfp_t mem_flags)
3355 {
3356 	int i, ret;
3357 	struct xhci_hcd *xhci;
3358 	struct xhci_virt_device *vdev;
3359 	struct xhci_command *config_cmd;
3360 	struct xhci_input_control_ctx *ctrl_ctx;
3361 	unsigned int ep_index;
3362 	unsigned int num_stream_ctxs;
3363 	unsigned int max_packet;
3364 	unsigned long flags;
3365 	u32 changed_ep_bitmask = 0;
3366 
3367 	if (!eps)
3368 		return -EINVAL;
3369 
3370 	/* Add one to the number of streams requested to account for
3371 	 * stream 0 that is reserved for xHCI usage.
3372 	 */
3373 	num_streams += 1;
3374 	xhci = hcd_to_xhci(hcd);
3375 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3376 			num_streams);
3377 
3378 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3379 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3380 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3381 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3382 		return -ENOSYS;
3383 	}
3384 
3385 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3386 	if (!config_cmd)
3387 		return -ENOMEM;
3388 
3389 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3390 	if (!ctrl_ctx) {
3391 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3392 				__func__);
3393 		xhci_free_command(xhci, config_cmd);
3394 		return -ENOMEM;
3395 	}
3396 
3397 	/* Check to make sure all endpoints are not already configured for
3398 	 * streams.  While we're at it, find the maximum number of streams that
3399 	 * all the endpoints will support and check for duplicate endpoints.
3400 	 */
3401 	spin_lock_irqsave(&xhci->lock, flags);
3402 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3403 			num_eps, &num_streams, &changed_ep_bitmask);
3404 	if (ret < 0) {
3405 		xhci_free_command(xhci, config_cmd);
3406 		spin_unlock_irqrestore(&xhci->lock, flags);
3407 		return ret;
3408 	}
3409 	if (num_streams <= 1) {
3410 		xhci_warn(xhci, "WARN: endpoints can't handle "
3411 				"more than one stream.\n");
3412 		xhci_free_command(xhci, config_cmd);
3413 		spin_unlock_irqrestore(&xhci->lock, flags);
3414 		return -EINVAL;
3415 	}
3416 	vdev = xhci->devs[udev->slot_id];
3417 	/* Mark each endpoint as being in transition, so
3418 	 * xhci_urb_enqueue() will reject all URBs.
3419 	 */
3420 	for (i = 0; i < num_eps; i++) {
3421 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3422 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3423 	}
3424 	spin_unlock_irqrestore(&xhci->lock, flags);
3425 
3426 	/* Setup internal data structures and allocate HW data structures for
3427 	 * streams (but don't install the HW structures in the input context
3428 	 * until we're sure all memory allocation succeeded).
3429 	 */
3430 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3431 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3432 			num_stream_ctxs, num_streams);
3433 
3434 	for (i = 0; i < num_eps; i++) {
3435 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3436 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3437 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3438 				num_stream_ctxs,
3439 				num_streams,
3440 				max_packet, mem_flags);
3441 		if (!vdev->eps[ep_index].stream_info)
3442 			goto cleanup;
3443 		/* Set maxPstreams in endpoint context and update deq ptr to
3444 		 * point to stream context array. FIXME
3445 		 */
3446 	}
3447 
3448 	/* Set up the input context for a configure endpoint command. */
3449 	for (i = 0; i < num_eps; i++) {
3450 		struct xhci_ep_ctx *ep_ctx;
3451 
3452 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3453 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3454 
3455 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3456 				vdev->out_ctx, ep_index);
3457 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3458 				vdev->eps[ep_index].stream_info);
3459 	}
3460 	/* Tell the HW to drop its old copy of the endpoint context info
3461 	 * and add the updated copy from the input context.
3462 	 */
3463 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3464 			vdev->out_ctx, ctrl_ctx,
3465 			changed_ep_bitmask, changed_ep_bitmask);
3466 
3467 	/* Issue and wait for the configure endpoint command */
3468 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3469 			false, false);
3470 
3471 	/* xHC rejected the configure endpoint command for some reason, so we
3472 	 * leave the old ring intact and free our internal streams data
3473 	 * structure.
3474 	 */
3475 	if (ret < 0)
3476 		goto cleanup;
3477 
3478 	spin_lock_irqsave(&xhci->lock, flags);
3479 	for (i = 0; i < num_eps; i++) {
3480 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3481 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3482 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3483 			 udev->slot_id, ep_index);
3484 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3485 	}
3486 	xhci_free_command(xhci, config_cmd);
3487 	spin_unlock_irqrestore(&xhci->lock, flags);
3488 
3489 	for (i = 0; i < num_eps; i++) {
3490 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3492 	}
3493 	/* Subtract 1 for stream 0, which drivers can't use */
3494 	return num_streams - 1;
3495 
3496 cleanup:
3497 	/* If it didn't work, free the streams! */
3498 	for (i = 0; i < num_eps; i++) {
3499 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3500 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3501 		vdev->eps[ep_index].stream_info = NULL;
3502 		/* FIXME Unset maxPstreams in endpoint context and
3503 		 * update deq ptr to point to normal string ring.
3504 		 */
3505 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3506 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3507 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3508 	}
3509 	xhci_free_command(xhci, config_cmd);
3510 	return -ENOMEM;
3511 }
3512 
3513 /* Transition the endpoint from using streams to being a "normal" endpoint
3514  * without streams.
3515  *
3516  * Modify the endpoint context state, submit a configure endpoint command,
3517  * and free all endpoint rings for streams if that completes successfully.
3518  */
3519 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3520 		struct usb_host_endpoint **eps, unsigned int num_eps,
3521 		gfp_t mem_flags)
3522 {
3523 	int i, ret;
3524 	struct xhci_hcd *xhci;
3525 	struct xhci_virt_device *vdev;
3526 	struct xhci_command *command;
3527 	struct xhci_input_control_ctx *ctrl_ctx;
3528 	unsigned int ep_index;
3529 	unsigned long flags;
3530 	u32 changed_ep_bitmask;
3531 
3532 	xhci = hcd_to_xhci(hcd);
3533 	vdev = xhci->devs[udev->slot_id];
3534 
3535 	/* Set up a configure endpoint command to remove the streams rings */
3536 	spin_lock_irqsave(&xhci->lock, flags);
3537 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3538 			udev, eps, num_eps);
3539 	if (changed_ep_bitmask == 0) {
3540 		spin_unlock_irqrestore(&xhci->lock, flags);
3541 		return -EINVAL;
3542 	}
3543 
3544 	/* Use the xhci_command structure from the first endpoint.  We may have
3545 	 * allocated too many, but the driver may call xhci_free_streams() for
3546 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3547 	 */
3548 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3549 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3550 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3551 	if (!ctrl_ctx) {
3552 		spin_unlock_irqrestore(&xhci->lock, flags);
3553 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3554 				__func__);
3555 		return -EINVAL;
3556 	}
3557 
3558 	for (i = 0; i < num_eps; i++) {
3559 		struct xhci_ep_ctx *ep_ctx;
3560 
3561 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3563 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3564 			EP_GETTING_NO_STREAMS;
3565 
3566 		xhci_endpoint_copy(xhci, command->in_ctx,
3567 				vdev->out_ctx, ep_index);
3568 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3569 				&vdev->eps[ep_index]);
3570 	}
3571 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3572 			vdev->out_ctx, ctrl_ctx,
3573 			changed_ep_bitmask, changed_ep_bitmask);
3574 	spin_unlock_irqrestore(&xhci->lock, flags);
3575 
3576 	/* Issue and wait for the configure endpoint command,
3577 	 * which must succeed.
3578 	 */
3579 	ret = xhci_configure_endpoint(xhci, udev, command,
3580 			false, true);
3581 
3582 	/* xHC rejected the configure endpoint command for some reason, so we
3583 	 * leave the streams rings intact.
3584 	 */
3585 	if (ret < 0)
3586 		return ret;
3587 
3588 	spin_lock_irqsave(&xhci->lock, flags);
3589 	for (i = 0; i < num_eps; i++) {
3590 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3592 		vdev->eps[ep_index].stream_info = NULL;
3593 		/* FIXME Unset maxPstreams in endpoint context and
3594 		 * update deq ptr to point to normal string ring.
3595 		 */
3596 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3597 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3598 	}
3599 	spin_unlock_irqrestore(&xhci->lock, flags);
3600 
3601 	return 0;
3602 }
3603 
3604 /*
3605  * Deletes endpoint resources for endpoints that were active before a Reset
3606  * Device command, or a Disable Slot command.  The Reset Device command leaves
3607  * the control endpoint intact, whereas the Disable Slot command deletes it.
3608  *
3609  * Must be called with xhci->lock held.
3610  */
3611 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3612 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3613 {
3614 	int i;
3615 	unsigned int num_dropped_eps = 0;
3616 	unsigned int drop_flags = 0;
3617 
3618 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3619 		if (virt_dev->eps[i].ring) {
3620 			drop_flags |= 1 << i;
3621 			num_dropped_eps++;
3622 		}
3623 	}
3624 	xhci->num_active_eps -= num_dropped_eps;
3625 	if (num_dropped_eps)
3626 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627 				"Dropped %u ep ctxs, flags = 0x%x, "
3628 				"%u now active.",
3629 				num_dropped_eps, drop_flags,
3630 				xhci->num_active_eps);
3631 }
3632 
3633 /*
3634  * This submits a Reset Device Command, which will set the device state to 0,
3635  * set the device address to 0, and disable all the endpoints except the default
3636  * control endpoint.  The USB core should come back and call
3637  * xhci_address_device(), and then re-set up the configuration.  If this is
3638  * called because of a usb_reset_and_verify_device(), then the old alternate
3639  * settings will be re-installed through the normal bandwidth allocation
3640  * functions.
3641  *
3642  * Wait for the Reset Device command to finish.  Remove all structures
3643  * associated with the endpoints that were disabled.  Clear the input device
3644  * structure? Reset the control endpoint 0 max packet size?
3645  *
3646  * If the virt_dev to be reset does not exist or does not match the udev,
3647  * it means the device is lost, possibly due to the xHC restore error and
3648  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3649  * re-allocate the device.
3650  */
3651 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3652 		struct usb_device *udev)
3653 {
3654 	int ret, i;
3655 	unsigned long flags;
3656 	struct xhci_hcd *xhci;
3657 	unsigned int slot_id;
3658 	struct xhci_virt_device *virt_dev;
3659 	struct xhci_command *reset_device_cmd;
3660 	struct xhci_slot_ctx *slot_ctx;
3661 	int old_active_eps = 0;
3662 
3663 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3664 	if (ret <= 0)
3665 		return ret;
3666 	xhci = hcd_to_xhci(hcd);
3667 	slot_id = udev->slot_id;
3668 	virt_dev = xhci->devs[slot_id];
3669 	if (!virt_dev) {
3670 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3671 				"not exist. Re-allocate the device\n", slot_id);
3672 		ret = xhci_alloc_dev(hcd, udev);
3673 		if (ret == 1)
3674 			return 0;
3675 		else
3676 			return -EINVAL;
3677 	}
3678 
3679 	if (virt_dev->tt_info)
3680 		old_active_eps = virt_dev->tt_info->active_eps;
3681 
3682 	if (virt_dev->udev != udev) {
3683 		/* If the virt_dev and the udev does not match, this virt_dev
3684 		 * may belong to another udev.
3685 		 * Re-allocate the device.
3686 		 */
3687 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3688 				"not match the udev. Re-allocate the device\n",
3689 				slot_id);
3690 		ret = xhci_alloc_dev(hcd, udev);
3691 		if (ret == 1)
3692 			return 0;
3693 		else
3694 			return -EINVAL;
3695 	}
3696 
3697 	/* If device is not setup, there is no point in resetting it */
3698 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3699 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3700 						SLOT_STATE_DISABLED)
3701 		return 0;
3702 
3703 	trace_xhci_discover_or_reset_device(slot_ctx);
3704 
3705 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3706 	/* Allocate the command structure that holds the struct completion.
3707 	 * Assume we're in process context, since the normal device reset
3708 	 * process has to wait for the device anyway.  Storage devices are
3709 	 * reset as part of error handling, so use GFP_NOIO instead of
3710 	 * GFP_KERNEL.
3711 	 */
3712 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3713 	if (!reset_device_cmd) {
3714 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3715 		return -ENOMEM;
3716 	}
3717 
3718 	/* Attempt to submit the Reset Device command to the command ring */
3719 	spin_lock_irqsave(&xhci->lock, flags);
3720 
3721 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3722 	if (ret) {
3723 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3724 		spin_unlock_irqrestore(&xhci->lock, flags);
3725 		goto command_cleanup;
3726 	}
3727 	xhci_ring_cmd_db(xhci);
3728 	spin_unlock_irqrestore(&xhci->lock, flags);
3729 
3730 	/* Wait for the Reset Device command to finish */
3731 	wait_for_completion(reset_device_cmd->completion);
3732 
3733 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3734 	 * unless we tried to reset a slot ID that wasn't enabled,
3735 	 * or the device wasn't in the addressed or configured state.
3736 	 */
3737 	ret = reset_device_cmd->status;
3738 	switch (ret) {
3739 	case COMP_COMMAND_ABORTED:
3740 	case COMP_COMMAND_RING_STOPPED:
3741 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3742 		ret = -ETIME;
3743 		goto command_cleanup;
3744 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3745 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3746 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3747 				slot_id,
3748 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3749 		xhci_dbg(xhci, "Not freeing device rings.\n");
3750 		/* Don't treat this as an error.  May change my mind later. */
3751 		ret = 0;
3752 		goto command_cleanup;
3753 	case COMP_SUCCESS:
3754 		xhci_dbg(xhci, "Successful reset device command.\n");
3755 		break;
3756 	default:
3757 		if (xhci_is_vendor_info_code(xhci, ret))
3758 			break;
3759 		xhci_warn(xhci, "Unknown completion code %u for "
3760 				"reset device command.\n", ret);
3761 		ret = -EINVAL;
3762 		goto command_cleanup;
3763 	}
3764 
3765 	/* Free up host controller endpoint resources */
3766 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3767 		spin_lock_irqsave(&xhci->lock, flags);
3768 		/* Don't delete the default control endpoint resources */
3769 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3770 		spin_unlock_irqrestore(&xhci->lock, flags);
3771 	}
3772 
3773 	/* Everything but endpoint 0 is disabled, so free the rings. */
3774 	for (i = 1; i < 31; i++) {
3775 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3776 
3777 		if (ep->ep_state & EP_HAS_STREAMS) {
3778 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3779 					xhci_get_endpoint_address(i));
3780 			xhci_free_stream_info(xhci, ep->stream_info);
3781 			ep->stream_info = NULL;
3782 			ep->ep_state &= ~EP_HAS_STREAMS;
3783 		}
3784 
3785 		if (ep->ring) {
3786 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3787 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3788 		}
3789 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3790 			xhci_drop_ep_from_interval_table(xhci,
3791 					&virt_dev->eps[i].bw_info,
3792 					virt_dev->bw_table,
3793 					udev,
3794 					&virt_dev->eps[i],
3795 					virt_dev->tt_info);
3796 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3797 	}
3798 	/* If necessary, update the number of active TTs on this root port */
3799 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3800 	virt_dev->flags = 0;
3801 	ret = 0;
3802 
3803 command_cleanup:
3804 	xhci_free_command(xhci, reset_device_cmd);
3805 	return ret;
3806 }
3807 
3808 /*
3809  * At this point, the struct usb_device is about to go away, the device has
3810  * disconnected, and all traffic has been stopped and the endpoints have been
3811  * disabled.  Free any HC data structures associated with that device.
3812  */
3813 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3814 {
3815 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816 	struct xhci_virt_device *virt_dev;
3817 	struct xhci_slot_ctx *slot_ctx;
3818 	unsigned long flags;
3819 	int i, ret;
3820 
3821 	/*
3822 	 * We called pm_runtime_get_noresume when the device was attached.
3823 	 * Decrement the counter here to allow controller to runtime suspend
3824 	 * if no devices remain.
3825 	 */
3826 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3827 		pm_runtime_put_noidle(hcd->self.controller);
3828 
3829 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3830 	/* If the host is halted due to driver unload, we still need to free the
3831 	 * device.
3832 	 */
3833 	if (ret <= 0 && ret != -ENODEV)
3834 		return;
3835 
3836 	virt_dev = xhci->devs[udev->slot_id];
3837 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3838 	trace_xhci_free_dev(slot_ctx);
3839 
3840 	/* Stop any wayward timer functions (which may grab the lock) */
3841 	for (i = 0; i < 31; i++)
3842 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3843 	virt_dev->udev = NULL;
3844 	xhci_disable_slot(xhci, udev->slot_id);
3845 
3846 	spin_lock_irqsave(&xhci->lock, flags);
3847 	xhci_free_virt_device(xhci, udev->slot_id);
3848 	spin_unlock_irqrestore(&xhci->lock, flags);
3849 
3850 }
3851 
3852 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3853 {
3854 	struct xhci_command *command;
3855 	unsigned long flags;
3856 	u32 state;
3857 	int ret;
3858 
3859 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3860 	if (!command)
3861 		return -ENOMEM;
3862 
3863 	xhci_debugfs_remove_slot(xhci, slot_id);
3864 
3865 	spin_lock_irqsave(&xhci->lock, flags);
3866 	/* Don't disable the slot if the host controller is dead. */
3867 	state = readl(&xhci->op_regs->status);
3868 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3869 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3870 		spin_unlock_irqrestore(&xhci->lock, flags);
3871 		kfree(command);
3872 		return -ENODEV;
3873 	}
3874 
3875 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3876 				slot_id);
3877 	if (ret) {
3878 		spin_unlock_irqrestore(&xhci->lock, flags);
3879 		kfree(command);
3880 		return ret;
3881 	}
3882 	xhci_ring_cmd_db(xhci);
3883 	spin_unlock_irqrestore(&xhci->lock, flags);
3884 
3885 	wait_for_completion(command->completion);
3886 
3887 	if (command->status != COMP_SUCCESS)
3888 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3889 			  slot_id, command->status);
3890 
3891 	xhci_free_command(xhci, command);
3892 
3893 	return 0;
3894 }
3895 
3896 /*
3897  * Checks if we have enough host controller resources for the default control
3898  * endpoint.
3899  *
3900  * Must be called with xhci->lock held.
3901  */
3902 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3903 {
3904 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3905 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3906 				"Not enough ep ctxs: "
3907 				"%u active, need to add 1, limit is %u.",
3908 				xhci->num_active_eps, xhci->limit_active_eps);
3909 		return -ENOMEM;
3910 	}
3911 	xhci->num_active_eps += 1;
3912 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3913 			"Adding 1 ep ctx, %u now active.",
3914 			xhci->num_active_eps);
3915 	return 0;
3916 }
3917 
3918 
3919 /*
3920  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3921  * timed out, or allocating memory failed.  Returns 1 on success.
3922  */
3923 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926 	struct xhci_virt_device *vdev;
3927 	struct xhci_slot_ctx *slot_ctx;
3928 	unsigned long flags;
3929 	int ret, slot_id;
3930 	struct xhci_command *command;
3931 
3932 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3933 	if (!command)
3934 		return 0;
3935 
3936 	spin_lock_irqsave(&xhci->lock, flags);
3937 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3938 	if (ret) {
3939 		spin_unlock_irqrestore(&xhci->lock, flags);
3940 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3941 		xhci_free_command(xhci, command);
3942 		return 0;
3943 	}
3944 	xhci_ring_cmd_db(xhci);
3945 	spin_unlock_irqrestore(&xhci->lock, flags);
3946 
3947 	wait_for_completion(command->completion);
3948 	slot_id = command->slot_id;
3949 
3950 	if (!slot_id || command->status != COMP_SUCCESS) {
3951 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3952 			 xhci_trb_comp_code_string(command->status));
3953 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3954 				HCS_MAX_SLOTS(
3955 					readl(&xhci->cap_regs->hcs_params1)));
3956 		xhci_free_command(xhci, command);
3957 		return 0;
3958 	}
3959 
3960 	xhci_free_command(xhci, command);
3961 
3962 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3963 		spin_lock_irqsave(&xhci->lock, flags);
3964 		ret = xhci_reserve_host_control_ep_resources(xhci);
3965 		if (ret) {
3966 			spin_unlock_irqrestore(&xhci->lock, flags);
3967 			xhci_warn(xhci, "Not enough host resources, "
3968 					"active endpoint contexts = %u\n",
3969 					xhci->num_active_eps);
3970 			goto disable_slot;
3971 		}
3972 		spin_unlock_irqrestore(&xhci->lock, flags);
3973 	}
3974 	/* Use GFP_NOIO, since this function can be called from
3975 	 * xhci_discover_or_reset_device(), which may be called as part of
3976 	 * mass storage driver error handling.
3977 	 */
3978 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3979 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3980 		goto disable_slot;
3981 	}
3982 	vdev = xhci->devs[slot_id];
3983 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3984 	trace_xhci_alloc_dev(slot_ctx);
3985 
3986 	udev->slot_id = slot_id;
3987 
3988 	xhci_debugfs_create_slot(xhci, slot_id);
3989 
3990 	/*
3991 	 * If resetting upon resume, we can't put the controller into runtime
3992 	 * suspend if there is a device attached.
3993 	 */
3994 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3995 		pm_runtime_get_noresume(hcd->self.controller);
3996 
3997 	/* Is this a LS or FS device under a HS hub? */
3998 	/* Hub or peripherial? */
3999 	return 1;
4000 
4001 disable_slot:
4002 	xhci_disable_slot(xhci, udev->slot_id);
4003 	xhci_free_virt_device(xhci, udev->slot_id);
4004 
4005 	return 0;
4006 }
4007 
4008 /*
4009  * Issue an Address Device command and optionally send a corresponding
4010  * SetAddress request to the device.
4011  */
4012 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4013 			     enum xhci_setup_dev setup)
4014 {
4015 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4016 	unsigned long flags;
4017 	struct xhci_virt_device *virt_dev;
4018 	int ret = 0;
4019 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4020 	struct xhci_slot_ctx *slot_ctx;
4021 	struct xhci_input_control_ctx *ctrl_ctx;
4022 	u64 temp_64;
4023 	struct xhci_command *command = NULL;
4024 
4025 	mutex_lock(&xhci->mutex);
4026 
4027 	if (xhci->xhc_state) {	/* dying, removing or halted */
4028 		ret = -ESHUTDOWN;
4029 		goto out;
4030 	}
4031 
4032 	if (!udev->slot_id) {
4033 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4034 				"Bad Slot ID %d", udev->slot_id);
4035 		ret = -EINVAL;
4036 		goto out;
4037 	}
4038 
4039 	virt_dev = xhci->devs[udev->slot_id];
4040 
4041 	if (WARN_ON(!virt_dev)) {
4042 		/*
4043 		 * In plug/unplug torture test with an NEC controller,
4044 		 * a zero-dereference was observed once due to virt_dev = 0.
4045 		 * Print useful debug rather than crash if it is observed again!
4046 		 */
4047 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4048 			udev->slot_id);
4049 		ret = -EINVAL;
4050 		goto out;
4051 	}
4052 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4053 	trace_xhci_setup_device_slot(slot_ctx);
4054 
4055 	if (setup == SETUP_CONTEXT_ONLY) {
4056 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4057 		    SLOT_STATE_DEFAULT) {
4058 			xhci_dbg(xhci, "Slot already in default state\n");
4059 			goto out;
4060 		}
4061 	}
4062 
4063 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4064 	if (!command) {
4065 		ret = -ENOMEM;
4066 		goto out;
4067 	}
4068 
4069 	command->in_ctx = virt_dev->in_ctx;
4070 
4071 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4072 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4073 	if (!ctrl_ctx) {
4074 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4075 				__func__);
4076 		ret = -EINVAL;
4077 		goto out;
4078 	}
4079 	/*
4080 	 * If this is the first Set Address since device plug-in or
4081 	 * virt_device realloaction after a resume with an xHCI power loss,
4082 	 * then set up the slot context.
4083 	 */
4084 	if (!slot_ctx->dev_info)
4085 		xhci_setup_addressable_virt_dev(xhci, udev);
4086 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4087 	else
4088 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4089 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4090 	ctrl_ctx->drop_flags = 0;
4091 
4092 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4093 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4094 
4095 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4096 	spin_lock_irqsave(&xhci->lock, flags);
4097 	trace_xhci_setup_device(virt_dev);
4098 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4099 					udev->slot_id, setup);
4100 	if (ret) {
4101 		spin_unlock_irqrestore(&xhci->lock, flags);
4102 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4103 				"FIXME: allocate a command ring segment");
4104 		goto out;
4105 	}
4106 	xhci_ring_cmd_db(xhci);
4107 	spin_unlock_irqrestore(&xhci->lock, flags);
4108 
4109 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4110 	wait_for_completion(command->completion);
4111 
4112 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4113 	 * the SetAddress() "recovery interval" required by USB and aborting the
4114 	 * command on a timeout.
4115 	 */
4116 	switch (command->status) {
4117 	case COMP_COMMAND_ABORTED:
4118 	case COMP_COMMAND_RING_STOPPED:
4119 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4120 		ret = -ETIME;
4121 		break;
4122 	case COMP_CONTEXT_STATE_ERROR:
4123 	case COMP_SLOT_NOT_ENABLED_ERROR:
4124 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4125 			 act, udev->slot_id);
4126 		ret = -EINVAL;
4127 		break;
4128 	case COMP_USB_TRANSACTION_ERROR:
4129 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4130 
4131 		mutex_unlock(&xhci->mutex);
4132 		ret = xhci_disable_slot(xhci, udev->slot_id);
4133 		xhci_free_virt_device(xhci, udev->slot_id);
4134 		if (!ret)
4135 			xhci_alloc_dev(hcd, udev);
4136 		kfree(command->completion);
4137 		kfree(command);
4138 		return -EPROTO;
4139 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4140 		dev_warn(&udev->dev,
4141 			 "ERROR: Incompatible device for setup %s command\n", act);
4142 		ret = -ENODEV;
4143 		break;
4144 	case COMP_SUCCESS:
4145 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4146 			       "Successful setup %s command", act);
4147 		break;
4148 	default:
4149 		xhci_err(xhci,
4150 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4151 			 act, command->status);
4152 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4153 		ret = -EINVAL;
4154 		break;
4155 	}
4156 	if (ret)
4157 		goto out;
4158 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4159 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 			"Op regs DCBAA ptr = %#016llx", temp_64);
4161 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162 		"Slot ID %d dcbaa entry @%p = %#016llx",
4163 		udev->slot_id,
4164 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4165 		(unsigned long long)
4166 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4167 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4168 			"Output Context DMA address = %#08llx",
4169 			(unsigned long long)virt_dev->out_ctx->dma);
4170 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4171 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4172 	/*
4173 	 * USB core uses address 1 for the roothubs, so we add one to the
4174 	 * address given back to us by the HC.
4175 	 */
4176 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4177 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4178 	/* Zero the input context control for later use */
4179 	ctrl_ctx->add_flags = 0;
4180 	ctrl_ctx->drop_flags = 0;
4181 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4182 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4183 
4184 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4185 		       "Internal device address = %d",
4186 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4187 out:
4188 	mutex_unlock(&xhci->mutex);
4189 	if (command) {
4190 		kfree(command->completion);
4191 		kfree(command);
4192 	}
4193 	return ret;
4194 }
4195 
4196 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4197 {
4198 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4199 }
4200 
4201 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4202 {
4203 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4204 }
4205 
4206 /*
4207  * Transfer the port index into real index in the HW port status
4208  * registers. Caculate offset between the port's PORTSC register
4209  * and port status base. Divide the number of per port register
4210  * to get the real index. The raw port number bases 1.
4211  */
4212 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4213 {
4214 	struct xhci_hub *rhub;
4215 
4216 	rhub = xhci_get_rhub(hcd);
4217 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4218 }
4219 
4220 /*
4221  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4222  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4223  */
4224 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4225 			struct usb_device *udev, u16 max_exit_latency)
4226 {
4227 	struct xhci_virt_device *virt_dev;
4228 	struct xhci_command *command;
4229 	struct xhci_input_control_ctx *ctrl_ctx;
4230 	struct xhci_slot_ctx *slot_ctx;
4231 	unsigned long flags;
4232 	int ret;
4233 
4234 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4235 	if (!command)
4236 		return -ENOMEM;
4237 
4238 	spin_lock_irqsave(&xhci->lock, flags);
4239 
4240 	virt_dev = xhci->devs[udev->slot_id];
4241 
4242 	/*
4243 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4244 	 * xHC was re-initialized. Exit latency will be set later after
4245 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4246 	 */
4247 
4248 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4249 		spin_unlock_irqrestore(&xhci->lock, flags);
4250 		xhci_free_command(xhci, command);
4251 		return 0;
4252 	}
4253 
4254 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4255 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4256 	if (!ctrl_ctx) {
4257 		spin_unlock_irqrestore(&xhci->lock, flags);
4258 		xhci_free_command(xhci, command);
4259 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4260 				__func__);
4261 		return -ENOMEM;
4262 	}
4263 
4264 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4265 	spin_unlock_irqrestore(&xhci->lock, flags);
4266 
4267 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4268 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4269 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4270 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4271 	slot_ctx->dev_state = 0;
4272 
4273 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4274 			"Set up evaluate context for LPM MEL change.");
4275 
4276 	/* Issue and wait for the evaluate context command. */
4277 	ret = xhci_configure_endpoint(xhci, udev, command,
4278 			true, true);
4279 
4280 	if (!ret) {
4281 		spin_lock_irqsave(&xhci->lock, flags);
4282 		virt_dev->current_mel = max_exit_latency;
4283 		spin_unlock_irqrestore(&xhci->lock, flags);
4284 	}
4285 
4286 	xhci_free_command(xhci, command);
4287 
4288 	return ret;
4289 }
4290 
4291 #ifdef CONFIG_PM
4292 
4293 /* BESL to HIRD Encoding array for USB2 LPM */
4294 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4295 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4296 
4297 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4298 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4299 					struct usb_device *udev)
4300 {
4301 	int u2del, besl, besl_host;
4302 	int besl_device = 0;
4303 	u32 field;
4304 
4305 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4306 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4307 
4308 	if (field & USB_BESL_SUPPORT) {
4309 		for (besl_host = 0; besl_host < 16; besl_host++) {
4310 			if (xhci_besl_encoding[besl_host] >= u2del)
4311 				break;
4312 		}
4313 		/* Use baseline BESL value as default */
4314 		if (field & USB_BESL_BASELINE_VALID)
4315 			besl_device = USB_GET_BESL_BASELINE(field);
4316 		else if (field & USB_BESL_DEEP_VALID)
4317 			besl_device = USB_GET_BESL_DEEP(field);
4318 	} else {
4319 		if (u2del <= 50)
4320 			besl_host = 0;
4321 		else
4322 			besl_host = (u2del - 51) / 75 + 1;
4323 	}
4324 
4325 	besl = besl_host + besl_device;
4326 	if (besl > 15)
4327 		besl = 15;
4328 
4329 	return besl;
4330 }
4331 
4332 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4333 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4334 {
4335 	u32 field;
4336 	int l1;
4337 	int besld = 0;
4338 	int hirdm = 0;
4339 
4340 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4341 
4342 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4343 	l1 = udev->l1_params.timeout / 256;
4344 
4345 	/* device has preferred BESLD */
4346 	if (field & USB_BESL_DEEP_VALID) {
4347 		besld = USB_GET_BESL_DEEP(field);
4348 		hirdm = 1;
4349 	}
4350 
4351 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4352 }
4353 
4354 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4355 			struct usb_device *udev, int enable)
4356 {
4357 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4358 	struct xhci_port **ports;
4359 	__le32 __iomem	*pm_addr, *hlpm_addr;
4360 	u32		pm_val, hlpm_val, field;
4361 	unsigned int	port_num;
4362 	unsigned long	flags;
4363 	int		hird, exit_latency;
4364 	int		ret;
4365 
4366 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4367 		return -EPERM;
4368 
4369 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4370 			!udev->lpm_capable)
4371 		return -EPERM;
4372 
4373 	if (!udev->parent || udev->parent->parent ||
4374 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4375 		return -EPERM;
4376 
4377 	if (udev->usb2_hw_lpm_capable != 1)
4378 		return -EPERM;
4379 
4380 	spin_lock_irqsave(&xhci->lock, flags);
4381 
4382 	ports = xhci->usb2_rhub.ports;
4383 	port_num = udev->portnum - 1;
4384 	pm_addr = ports[port_num]->addr + PORTPMSC;
4385 	pm_val = readl(pm_addr);
4386 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4387 
4388 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4389 			enable ? "enable" : "disable", port_num + 1);
4390 
4391 	if (enable) {
4392 		/* Host supports BESL timeout instead of HIRD */
4393 		if (udev->usb2_hw_lpm_besl_capable) {
4394 			/* if device doesn't have a preferred BESL value use a
4395 			 * default one which works with mixed HIRD and BESL
4396 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4397 			 */
4398 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4399 			if ((field & USB_BESL_SUPPORT) &&
4400 			    (field & USB_BESL_BASELINE_VALID))
4401 				hird = USB_GET_BESL_BASELINE(field);
4402 			else
4403 				hird = udev->l1_params.besl;
4404 
4405 			exit_latency = xhci_besl_encoding[hird];
4406 			spin_unlock_irqrestore(&xhci->lock, flags);
4407 
4408 			ret = xhci_change_max_exit_latency(xhci, udev,
4409 							   exit_latency);
4410 			if (ret < 0)
4411 				return ret;
4412 			spin_lock_irqsave(&xhci->lock, flags);
4413 
4414 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4415 			writel(hlpm_val, hlpm_addr);
4416 			/* flush write */
4417 			readl(hlpm_addr);
4418 		} else {
4419 			hird = xhci_calculate_hird_besl(xhci, udev);
4420 		}
4421 
4422 		pm_val &= ~PORT_HIRD_MASK;
4423 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4424 		writel(pm_val, pm_addr);
4425 		pm_val = readl(pm_addr);
4426 		pm_val |= PORT_HLE;
4427 		writel(pm_val, pm_addr);
4428 		/* flush write */
4429 		readl(pm_addr);
4430 	} else {
4431 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4432 		writel(pm_val, pm_addr);
4433 		/* flush write */
4434 		readl(pm_addr);
4435 		if (udev->usb2_hw_lpm_besl_capable) {
4436 			spin_unlock_irqrestore(&xhci->lock, flags);
4437 			xhci_change_max_exit_latency(xhci, udev, 0);
4438 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4439 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4440 					   100, 10000);
4441 			return 0;
4442 		}
4443 	}
4444 
4445 	spin_unlock_irqrestore(&xhci->lock, flags);
4446 	return 0;
4447 }
4448 
4449 /* check if a usb2 port supports a given extened capability protocol
4450  * only USB2 ports extended protocol capability values are cached.
4451  * Return 1 if capability is supported
4452  */
4453 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4454 					   unsigned capability)
4455 {
4456 	u32 port_offset, port_count;
4457 	int i;
4458 
4459 	for (i = 0; i < xhci->num_ext_caps; i++) {
4460 		if (xhci->ext_caps[i] & capability) {
4461 			/* port offsets starts at 1 */
4462 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4463 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4464 			if (port >= port_offset &&
4465 			    port < port_offset + port_count)
4466 				return 1;
4467 		}
4468 	}
4469 	return 0;
4470 }
4471 
4472 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4473 {
4474 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4475 	int		portnum = udev->portnum - 1;
4476 
4477 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4478 		return 0;
4479 
4480 	/* we only support lpm for non-hub device connected to root hub yet */
4481 	if (!udev->parent || udev->parent->parent ||
4482 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4483 		return 0;
4484 
4485 	if (xhci->hw_lpm_support == 1 &&
4486 			xhci_check_usb2_port_capability(
4487 				xhci, portnum, XHCI_HLC)) {
4488 		udev->usb2_hw_lpm_capable = 1;
4489 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4490 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4491 		if (xhci_check_usb2_port_capability(xhci, portnum,
4492 					XHCI_BLC))
4493 			udev->usb2_hw_lpm_besl_capable = 1;
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4500 
4501 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4502 static unsigned long long xhci_service_interval_to_ns(
4503 		struct usb_endpoint_descriptor *desc)
4504 {
4505 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4506 }
4507 
4508 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4509 		enum usb3_link_state state)
4510 {
4511 	unsigned long long sel;
4512 	unsigned long long pel;
4513 	unsigned int max_sel_pel;
4514 	char *state_name;
4515 
4516 	switch (state) {
4517 	case USB3_LPM_U1:
4518 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4519 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4520 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4521 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4522 		state_name = "U1";
4523 		break;
4524 	case USB3_LPM_U2:
4525 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4526 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4527 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4528 		state_name = "U2";
4529 		break;
4530 	default:
4531 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4532 				__func__);
4533 		return USB3_LPM_DISABLED;
4534 	}
4535 
4536 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4537 		return USB3_LPM_DEVICE_INITIATED;
4538 
4539 	if (sel > max_sel_pel)
4540 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4541 				"due to long SEL %llu ms\n",
4542 				state_name, sel);
4543 	else
4544 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4545 				"due to long PEL %llu ms\n",
4546 				state_name, pel);
4547 	return USB3_LPM_DISABLED;
4548 }
4549 
4550 /* The U1 timeout should be the maximum of the following values:
4551  *  - For control endpoints, U1 system exit latency (SEL) * 3
4552  *  - For bulk endpoints, U1 SEL * 5
4553  *  - For interrupt endpoints:
4554  *    - Notification EPs, U1 SEL * 3
4555  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4556  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4557  */
4558 static unsigned long long xhci_calculate_intel_u1_timeout(
4559 		struct usb_device *udev,
4560 		struct usb_endpoint_descriptor *desc)
4561 {
4562 	unsigned long long timeout_ns;
4563 	int ep_type;
4564 	int intr_type;
4565 
4566 	ep_type = usb_endpoint_type(desc);
4567 	switch (ep_type) {
4568 	case USB_ENDPOINT_XFER_CONTROL:
4569 		timeout_ns = udev->u1_params.sel * 3;
4570 		break;
4571 	case USB_ENDPOINT_XFER_BULK:
4572 		timeout_ns = udev->u1_params.sel * 5;
4573 		break;
4574 	case USB_ENDPOINT_XFER_INT:
4575 		intr_type = usb_endpoint_interrupt_type(desc);
4576 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4577 			timeout_ns = udev->u1_params.sel * 3;
4578 			break;
4579 		}
4580 		/* Otherwise the calculation is the same as isoc eps */
4581 		fallthrough;
4582 	case USB_ENDPOINT_XFER_ISOC:
4583 		timeout_ns = xhci_service_interval_to_ns(desc);
4584 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4585 		if (timeout_ns < udev->u1_params.sel * 2)
4586 			timeout_ns = udev->u1_params.sel * 2;
4587 		break;
4588 	default:
4589 		return 0;
4590 	}
4591 
4592 	return timeout_ns;
4593 }
4594 
4595 /* Returns the hub-encoded U1 timeout value. */
4596 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4597 		struct usb_device *udev,
4598 		struct usb_endpoint_descriptor *desc)
4599 {
4600 	unsigned long long timeout_ns;
4601 
4602 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4603 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4604 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4605 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4606 			return USB3_LPM_DISABLED;
4607 		}
4608 	}
4609 
4610 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4611 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4612 	else
4613 		timeout_ns = udev->u1_params.sel;
4614 
4615 	/* The U1 timeout is encoded in 1us intervals.
4616 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4617 	 */
4618 	if (timeout_ns == USB3_LPM_DISABLED)
4619 		timeout_ns = 1;
4620 	else
4621 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4622 
4623 	/* If the necessary timeout value is bigger than what we can set in the
4624 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4625 	 */
4626 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4627 		return timeout_ns;
4628 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4629 			"due to long timeout %llu ms\n", timeout_ns);
4630 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4631 }
4632 
4633 /* The U2 timeout should be the maximum of:
4634  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4635  *  - largest bInterval of any active periodic endpoint (to avoid going
4636  *    into lower power link states between intervals).
4637  *  - the U2 Exit Latency of the device
4638  */
4639 static unsigned long long xhci_calculate_intel_u2_timeout(
4640 		struct usb_device *udev,
4641 		struct usb_endpoint_descriptor *desc)
4642 {
4643 	unsigned long long timeout_ns;
4644 	unsigned long long u2_del_ns;
4645 
4646 	timeout_ns = 10 * 1000 * 1000;
4647 
4648 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4649 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4650 		timeout_ns = xhci_service_interval_to_ns(desc);
4651 
4652 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4653 	if (u2_del_ns > timeout_ns)
4654 		timeout_ns = u2_del_ns;
4655 
4656 	return timeout_ns;
4657 }
4658 
4659 /* Returns the hub-encoded U2 timeout value. */
4660 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4661 		struct usb_device *udev,
4662 		struct usb_endpoint_descriptor *desc)
4663 {
4664 	unsigned long long timeout_ns;
4665 
4666 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4667 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4668 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4669 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4670 			return USB3_LPM_DISABLED;
4671 		}
4672 	}
4673 
4674 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4675 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4676 	else
4677 		timeout_ns = udev->u2_params.sel;
4678 
4679 	/* The U2 timeout is encoded in 256us intervals */
4680 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4681 	/* If the necessary timeout value is bigger than what we can set in the
4682 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4683 	 */
4684 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4685 		return timeout_ns;
4686 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4687 			"due to long timeout %llu ms\n", timeout_ns);
4688 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4689 }
4690 
4691 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4692 		struct usb_device *udev,
4693 		struct usb_endpoint_descriptor *desc,
4694 		enum usb3_link_state state,
4695 		u16 *timeout)
4696 {
4697 	if (state == USB3_LPM_U1)
4698 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4699 	else if (state == USB3_LPM_U2)
4700 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4701 
4702 	return USB3_LPM_DISABLED;
4703 }
4704 
4705 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4706 		struct usb_device *udev,
4707 		struct usb_endpoint_descriptor *desc,
4708 		enum usb3_link_state state,
4709 		u16 *timeout)
4710 {
4711 	u16 alt_timeout;
4712 
4713 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4714 		desc, state, timeout);
4715 
4716 	/* If we found we can't enable hub-initiated LPM, and
4717 	 * the U1 or U2 exit latency was too high to allow
4718 	 * device-initiated LPM as well, then we will disable LPM
4719 	 * for this device, so stop searching any further.
4720 	 */
4721 	if (alt_timeout == USB3_LPM_DISABLED) {
4722 		*timeout = alt_timeout;
4723 		return -E2BIG;
4724 	}
4725 	if (alt_timeout > *timeout)
4726 		*timeout = alt_timeout;
4727 	return 0;
4728 }
4729 
4730 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4731 		struct usb_device *udev,
4732 		struct usb_host_interface *alt,
4733 		enum usb3_link_state state,
4734 		u16 *timeout)
4735 {
4736 	int j;
4737 
4738 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4739 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4740 					&alt->endpoint[j].desc, state, timeout))
4741 			return -E2BIG;
4742 	}
4743 	return 0;
4744 }
4745 
4746 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4747 		struct usb_device *udev,
4748 		enum usb3_link_state state)
4749 {
4750 	struct usb_device *parent = udev->parent;
4751 	int tier = 1; /* roothub is tier1 */
4752 
4753 	while (parent) {
4754 		parent = parent->parent;
4755 		tier++;
4756 	}
4757 
4758 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4759 		goto fail;
4760 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4761 		goto fail;
4762 
4763 	return 0;
4764 fail:
4765 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4766 			tier);
4767 	return -E2BIG;
4768 }
4769 
4770 /* Returns the U1 or U2 timeout that should be enabled.
4771  * If the tier check or timeout setting functions return with a non-zero exit
4772  * code, that means the timeout value has been finalized and we shouldn't look
4773  * at any more endpoints.
4774  */
4775 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4776 			struct usb_device *udev, enum usb3_link_state state)
4777 {
4778 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4779 	struct usb_host_config *config;
4780 	char *state_name;
4781 	int i;
4782 	u16 timeout = USB3_LPM_DISABLED;
4783 
4784 	if (state == USB3_LPM_U1)
4785 		state_name = "U1";
4786 	else if (state == USB3_LPM_U2)
4787 		state_name = "U2";
4788 	else {
4789 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4790 				state);
4791 		return timeout;
4792 	}
4793 
4794 	/* Gather some information about the currently installed configuration
4795 	 * and alternate interface settings.
4796 	 */
4797 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4798 			state, &timeout))
4799 		return timeout;
4800 
4801 	config = udev->actconfig;
4802 	if (!config)
4803 		return timeout;
4804 
4805 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4806 		struct usb_driver *driver;
4807 		struct usb_interface *intf = config->interface[i];
4808 
4809 		if (!intf)
4810 			continue;
4811 
4812 		/* Check if any currently bound drivers want hub-initiated LPM
4813 		 * disabled.
4814 		 */
4815 		if (intf->dev.driver) {
4816 			driver = to_usb_driver(intf->dev.driver);
4817 			if (driver && driver->disable_hub_initiated_lpm) {
4818 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4819 					state_name, driver->name);
4820 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4821 								      state);
4822 				if (timeout == USB3_LPM_DISABLED)
4823 					return timeout;
4824 			}
4825 		}
4826 
4827 		/* Not sure how this could happen... */
4828 		if (!intf->cur_altsetting)
4829 			continue;
4830 
4831 		if (xhci_update_timeout_for_interface(xhci, udev,
4832 					intf->cur_altsetting,
4833 					state, &timeout))
4834 			return timeout;
4835 	}
4836 	return timeout;
4837 }
4838 
4839 static int calculate_max_exit_latency(struct usb_device *udev,
4840 		enum usb3_link_state state_changed,
4841 		u16 hub_encoded_timeout)
4842 {
4843 	unsigned long long u1_mel_us = 0;
4844 	unsigned long long u2_mel_us = 0;
4845 	unsigned long long mel_us = 0;
4846 	bool disabling_u1;
4847 	bool disabling_u2;
4848 	bool enabling_u1;
4849 	bool enabling_u2;
4850 
4851 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4852 			hub_encoded_timeout == USB3_LPM_DISABLED);
4853 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4854 			hub_encoded_timeout == USB3_LPM_DISABLED);
4855 
4856 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4857 			hub_encoded_timeout != USB3_LPM_DISABLED);
4858 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4859 			hub_encoded_timeout != USB3_LPM_DISABLED);
4860 
4861 	/* If U1 was already enabled and we're not disabling it,
4862 	 * or we're going to enable U1, account for the U1 max exit latency.
4863 	 */
4864 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4865 			enabling_u1)
4866 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4867 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4868 			enabling_u2)
4869 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4870 
4871 	mel_us = max(u1_mel_us, u2_mel_us);
4872 
4873 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4874 	if (mel_us > MAX_EXIT) {
4875 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4876 				"is too big.\n", mel_us);
4877 		return -E2BIG;
4878 	}
4879 	return mel_us;
4880 }
4881 
4882 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4883 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4884 			struct usb_device *udev, enum usb3_link_state state)
4885 {
4886 	struct xhci_hcd	*xhci;
4887 	struct xhci_port *port;
4888 	u16 hub_encoded_timeout;
4889 	int mel;
4890 	int ret;
4891 
4892 	xhci = hcd_to_xhci(hcd);
4893 	/* The LPM timeout values are pretty host-controller specific, so don't
4894 	 * enable hub-initiated timeouts unless the vendor has provided
4895 	 * information about their timeout algorithm.
4896 	 */
4897 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4898 			!xhci->devs[udev->slot_id])
4899 		return USB3_LPM_DISABLED;
4900 
4901 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4902 		return USB3_LPM_DISABLED;
4903 
4904 	/* If connected to root port then check port can handle lpm */
4905 	if (udev->parent && !udev->parent->parent) {
4906 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4907 		if (port->lpm_incapable)
4908 			return USB3_LPM_DISABLED;
4909 	}
4910 
4911 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4912 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4913 	if (mel < 0) {
4914 		/* Max Exit Latency is too big, disable LPM. */
4915 		hub_encoded_timeout = USB3_LPM_DISABLED;
4916 		mel = 0;
4917 	}
4918 
4919 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4920 	if (ret)
4921 		return ret;
4922 	return hub_encoded_timeout;
4923 }
4924 
4925 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4926 			struct usb_device *udev, enum usb3_link_state state)
4927 {
4928 	struct xhci_hcd	*xhci;
4929 	u16 mel;
4930 
4931 	xhci = hcd_to_xhci(hcd);
4932 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4933 			!xhci->devs[udev->slot_id])
4934 		return 0;
4935 
4936 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4937 	return xhci_change_max_exit_latency(xhci, udev, mel);
4938 }
4939 #else /* CONFIG_PM */
4940 
4941 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4942 				struct usb_device *udev, int enable)
4943 {
4944 	return 0;
4945 }
4946 
4947 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4948 {
4949 	return 0;
4950 }
4951 
4952 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4953 			struct usb_device *udev, enum usb3_link_state state)
4954 {
4955 	return USB3_LPM_DISABLED;
4956 }
4957 
4958 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4959 			struct usb_device *udev, enum usb3_link_state state)
4960 {
4961 	return 0;
4962 }
4963 #endif	/* CONFIG_PM */
4964 
4965 /*-------------------------------------------------------------------------*/
4966 
4967 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4968  * internal data structures for the device.
4969  */
4970 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4971 			struct usb_tt *tt, gfp_t mem_flags)
4972 {
4973 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4974 	struct xhci_virt_device *vdev;
4975 	struct xhci_command *config_cmd;
4976 	struct xhci_input_control_ctx *ctrl_ctx;
4977 	struct xhci_slot_ctx *slot_ctx;
4978 	unsigned long flags;
4979 	unsigned think_time;
4980 	int ret;
4981 
4982 	/* Ignore root hubs */
4983 	if (!hdev->parent)
4984 		return 0;
4985 
4986 	vdev = xhci->devs[hdev->slot_id];
4987 	if (!vdev) {
4988 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4989 		return -EINVAL;
4990 	}
4991 
4992 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4993 	if (!config_cmd)
4994 		return -ENOMEM;
4995 
4996 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4997 	if (!ctrl_ctx) {
4998 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4999 				__func__);
5000 		xhci_free_command(xhci, config_cmd);
5001 		return -ENOMEM;
5002 	}
5003 
5004 	spin_lock_irqsave(&xhci->lock, flags);
5005 	if (hdev->speed == USB_SPEED_HIGH &&
5006 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5007 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5008 		xhci_free_command(xhci, config_cmd);
5009 		spin_unlock_irqrestore(&xhci->lock, flags);
5010 		return -ENOMEM;
5011 	}
5012 
5013 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5014 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5015 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5016 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5017 	/*
5018 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5019 	 * but it may be already set to 1 when setup an xHCI virtual
5020 	 * device, so clear it anyway.
5021 	 */
5022 	if (tt->multi)
5023 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5024 	else if (hdev->speed == USB_SPEED_FULL)
5025 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5026 
5027 	if (xhci->hci_version > 0x95) {
5028 		xhci_dbg(xhci, "xHCI version %x needs hub "
5029 				"TT think time and number of ports\n",
5030 				(unsigned int) xhci->hci_version);
5031 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5032 		/* Set TT think time - convert from ns to FS bit times.
5033 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5034 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5035 		 *
5036 		 * xHCI 1.0: this field shall be 0 if the device is not a
5037 		 * High-spped hub.
5038 		 */
5039 		think_time = tt->think_time;
5040 		if (think_time != 0)
5041 			think_time = (think_time / 666) - 1;
5042 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5043 			slot_ctx->tt_info |=
5044 				cpu_to_le32(TT_THINK_TIME(think_time));
5045 	} else {
5046 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5047 				"TT think time or number of ports\n",
5048 				(unsigned int) xhci->hci_version);
5049 	}
5050 	slot_ctx->dev_state = 0;
5051 	spin_unlock_irqrestore(&xhci->lock, flags);
5052 
5053 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5054 			(xhci->hci_version > 0x95) ?
5055 			"configure endpoint" : "evaluate context");
5056 
5057 	/* Issue and wait for the configure endpoint or
5058 	 * evaluate context command.
5059 	 */
5060 	if (xhci->hci_version > 0x95)
5061 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5062 				false, false);
5063 	else
5064 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5065 				true, false);
5066 
5067 	xhci_free_command(xhci, config_cmd);
5068 	return ret;
5069 }
5070 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5071 
5072 static int xhci_get_frame(struct usb_hcd *hcd)
5073 {
5074 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5075 	/* EHCI mods by the periodic size.  Why? */
5076 	return readl(&xhci->run_regs->microframe_index) >> 3;
5077 }
5078 
5079 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5080 {
5081 	xhci->usb2_rhub.hcd = hcd;
5082 	hcd->speed = HCD_USB2;
5083 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5084 	/*
5085 	 * USB 2.0 roothub under xHCI has an integrated TT,
5086 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5087 	 * companion controller.
5088 	 */
5089 	hcd->has_tt = 1;
5090 }
5091 
5092 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5093 {
5094 	unsigned int minor_rev;
5095 
5096 	/*
5097 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5098 	 * should return 0x31 for sbrn, or that the minor revision
5099 	 * is a two digit BCD containig minor and sub-minor numbers.
5100 	 * This was later clarified in xHCI 1.2.
5101 	 *
5102 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5103 	 * minor revision set to 0x1 instead of 0x10.
5104 	 */
5105 	if (xhci->usb3_rhub.min_rev == 0x1)
5106 		minor_rev = 1;
5107 	else
5108 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5109 
5110 	switch (minor_rev) {
5111 	case 2:
5112 		hcd->speed = HCD_USB32;
5113 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5114 		hcd->self.root_hub->rx_lanes = 2;
5115 		hcd->self.root_hub->tx_lanes = 2;
5116 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5117 		break;
5118 	case 1:
5119 		hcd->speed = HCD_USB31;
5120 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5121 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5122 		break;
5123 	}
5124 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5125 		  minor_rev, minor_rev ? "Enhanced " : "");
5126 
5127 	xhci->usb3_rhub.hcd = hcd;
5128 }
5129 
5130 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5131 {
5132 	struct xhci_hcd		*xhci;
5133 	/*
5134 	 * TODO: Check with DWC3 clients for sysdev according to
5135 	 * quirks
5136 	 */
5137 	struct device		*dev = hcd->self.sysdev;
5138 	int			retval;
5139 
5140 	/* Accept arbitrarily long scatter-gather lists */
5141 	hcd->self.sg_tablesize = ~0;
5142 
5143 	/* support to build packet from discontinuous buffers */
5144 	hcd->self.no_sg_constraint = 1;
5145 
5146 	/* XHCI controllers don't stop the ep queue on short packets :| */
5147 	hcd->self.no_stop_on_short = 1;
5148 
5149 	xhci = hcd_to_xhci(hcd);
5150 
5151 	if (!usb_hcd_is_primary_hcd(hcd)) {
5152 		xhci_hcd_init_usb3_data(xhci, hcd);
5153 		return 0;
5154 	}
5155 
5156 	mutex_init(&xhci->mutex);
5157 	xhci->main_hcd = hcd;
5158 	xhci->cap_regs = hcd->regs;
5159 	xhci->op_regs = hcd->regs +
5160 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5161 	xhci->run_regs = hcd->regs +
5162 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5163 	/* Cache read-only capability registers */
5164 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5165 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5166 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5167 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5168 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5169 	if (xhci->hci_version > 0x100)
5170 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5171 
5172 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5173 	if ((!xhci->max_interrupters) ||
5174 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5175 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5176 
5177 	xhci->quirks |= quirks;
5178 
5179 	if (get_quirks)
5180 		get_quirks(dev, xhci);
5181 
5182 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5183 	 * success event after a short transfer. This quirk will ignore such
5184 	 * spurious event.
5185 	 */
5186 	if (xhci->hci_version > 0x96)
5187 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5188 
5189 	/* Make sure the HC is halted. */
5190 	retval = xhci_halt(xhci);
5191 	if (retval)
5192 		return retval;
5193 
5194 	xhci_zero_64b_regs(xhci);
5195 
5196 	xhci_dbg(xhci, "Resetting HCD\n");
5197 	/* Reset the internal HC memory state and registers. */
5198 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5199 	if (retval)
5200 		return retval;
5201 	xhci_dbg(xhci, "Reset complete\n");
5202 
5203 	/*
5204 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5205 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5206 	 * address memory pointers actually. So, this driver clears the AC64
5207 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5208 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5209 	 */
5210 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5211 		xhci->hcc_params &= ~BIT(0);
5212 
5213 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5214 	 * if xHC supports 64-bit addressing */
5215 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5216 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5217 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5218 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5219 	} else {
5220 		/*
5221 		 * This is to avoid error in cases where a 32-bit USB
5222 		 * controller is used on a 64-bit capable system.
5223 		 */
5224 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5225 		if (retval)
5226 			return retval;
5227 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5228 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5229 	}
5230 
5231 	xhci_dbg(xhci, "Calling HCD init\n");
5232 	/* Initialize HCD and host controller data structures. */
5233 	retval = xhci_init(hcd);
5234 	if (retval)
5235 		return retval;
5236 	xhci_dbg(xhci, "Called HCD init\n");
5237 
5238 	if (xhci_hcd_is_usb3(hcd))
5239 		xhci_hcd_init_usb3_data(xhci, hcd);
5240 	else
5241 		xhci_hcd_init_usb2_data(xhci, hcd);
5242 
5243 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5244 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5245 
5246 	return 0;
5247 }
5248 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5249 
5250 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5251 		struct usb_host_endpoint *ep)
5252 {
5253 	struct xhci_hcd *xhci;
5254 	struct usb_device *udev;
5255 	unsigned int slot_id;
5256 	unsigned int ep_index;
5257 	unsigned long flags;
5258 
5259 	xhci = hcd_to_xhci(hcd);
5260 
5261 	spin_lock_irqsave(&xhci->lock, flags);
5262 	udev = (struct usb_device *)ep->hcpriv;
5263 	slot_id = udev->slot_id;
5264 	ep_index = xhci_get_endpoint_index(&ep->desc);
5265 
5266 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5267 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5268 	spin_unlock_irqrestore(&xhci->lock, flags);
5269 }
5270 
5271 static const struct hc_driver xhci_hc_driver = {
5272 	.description =		"xhci-hcd",
5273 	.product_desc =		"xHCI Host Controller",
5274 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5275 
5276 	/*
5277 	 * generic hardware linkage
5278 	 */
5279 	.irq =			xhci_irq,
5280 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5281 				HCD_BH,
5282 
5283 	/*
5284 	 * basic lifecycle operations
5285 	 */
5286 	.reset =		NULL, /* set in xhci_init_driver() */
5287 	.start =		xhci_run,
5288 	.stop =			xhci_stop,
5289 	.shutdown =		xhci_shutdown,
5290 
5291 	/*
5292 	 * managing i/o requests and associated device resources
5293 	 */
5294 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5295 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5296 	.urb_enqueue =		xhci_urb_enqueue,
5297 	.urb_dequeue =		xhci_urb_dequeue,
5298 	.alloc_dev =		xhci_alloc_dev,
5299 	.free_dev =		xhci_free_dev,
5300 	.alloc_streams =	xhci_alloc_streams,
5301 	.free_streams =		xhci_free_streams,
5302 	.add_endpoint =		xhci_add_endpoint,
5303 	.drop_endpoint =	xhci_drop_endpoint,
5304 	.endpoint_disable =	xhci_endpoint_disable,
5305 	.endpoint_reset =	xhci_endpoint_reset,
5306 	.check_bandwidth =	xhci_check_bandwidth,
5307 	.reset_bandwidth =	xhci_reset_bandwidth,
5308 	.address_device =	xhci_address_device,
5309 	.enable_device =	xhci_enable_device,
5310 	.update_hub_device =	xhci_update_hub_device,
5311 	.reset_device =		xhci_discover_or_reset_device,
5312 
5313 	/*
5314 	 * scheduling support
5315 	 */
5316 	.get_frame_number =	xhci_get_frame,
5317 
5318 	/*
5319 	 * root hub support
5320 	 */
5321 	.hub_control =		xhci_hub_control,
5322 	.hub_status_data =	xhci_hub_status_data,
5323 	.bus_suspend =		xhci_bus_suspend,
5324 	.bus_resume =		xhci_bus_resume,
5325 	.get_resuming_ports =	xhci_get_resuming_ports,
5326 
5327 	/*
5328 	 * call back when device connected and addressed
5329 	 */
5330 	.update_device =        xhci_update_device,
5331 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5332 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5333 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5334 	.find_raw_port_number =	xhci_find_raw_port_number,
5335 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5336 };
5337 
5338 void xhci_init_driver(struct hc_driver *drv,
5339 		      const struct xhci_driver_overrides *over)
5340 {
5341 	BUG_ON(!over);
5342 
5343 	/* Copy the generic table to drv then apply the overrides */
5344 	*drv = xhci_hc_driver;
5345 
5346 	if (over) {
5347 		drv->hcd_priv_size += over->extra_priv_size;
5348 		if (over->reset)
5349 			drv->reset = over->reset;
5350 		if (over->start)
5351 			drv->start = over->start;
5352 		if (over->add_endpoint)
5353 			drv->add_endpoint = over->add_endpoint;
5354 		if (over->drop_endpoint)
5355 			drv->drop_endpoint = over->drop_endpoint;
5356 		if (over->check_bandwidth)
5357 			drv->check_bandwidth = over->check_bandwidth;
5358 		if (over->reset_bandwidth)
5359 			drv->reset_bandwidth = over->reset_bandwidth;
5360 		if (over->update_hub_device)
5361 			drv->update_hub_device = over->update_hub_device;
5362 		if (over->hub_control)
5363 			drv->hub_control = over->hub_control;
5364 	}
5365 }
5366 EXPORT_SYMBOL_GPL(xhci_init_driver);
5367 
5368 MODULE_DESCRIPTION(DRIVER_DESC);
5369 MODULE_AUTHOR(DRIVER_AUTHOR);
5370 MODULE_LICENSE("GPL");
5371 
5372 static int __init xhci_hcd_init(void)
5373 {
5374 	/*
5375 	 * Check the compiler generated sizes of structures that must be laid
5376 	 * out in specific ways for hardware access.
5377 	 */
5378 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5379 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5380 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5381 	/* xhci_device_control has eight fields, and also
5382 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5383 	 */
5384 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5385 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5386 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5387 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5388 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5389 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5390 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5391 
5392 	if (usb_disabled())
5393 		return -ENODEV;
5394 
5395 	xhci_debugfs_create_root();
5396 	xhci_dbc_init();
5397 
5398 	return 0;
5399 }
5400 
5401 /*
5402  * If an init function is provided, an exit function must also be provided
5403  * to allow module unload.
5404  */
5405 static void __exit xhci_hcd_fini(void)
5406 {
5407 	xhci_debugfs_remove_root();
5408 	xhci_dbc_exit();
5409 }
5410 
5411 module_init(xhci_hcd_init);
5412 module_exit(xhci_hcd_fini);
5413