1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 73 do { 74 result = readl(ptr); 75 if (result == ~(u32)0) /* card removed */ 76 return -ENODEV; 77 result &= mask; 78 if (result == done) 79 return 0; 80 udelay(1); 81 usec--; 82 } while (usec > 0); 83 return -ETIMEDOUT; 84 } 85 86 /* 87 * Disable interrupts and begin the xHCI halting process. 88 */ 89 void xhci_quiesce(struct xhci_hcd *xhci) 90 { 91 u32 halted; 92 u32 cmd; 93 u32 mask; 94 95 mask = ~(XHCI_IRQS); 96 halted = readl(&xhci->op_regs->status) & STS_HALT; 97 if (!halted) 98 mask &= ~CMD_RUN; 99 100 cmd = readl(&xhci->op_regs->command); 101 cmd &= mask; 102 writel(cmd, &xhci->op_regs->command); 103 } 104 105 /* 106 * Force HC into halt state. 107 * 108 * Disable any IRQs and clear the run/stop bit. 109 * HC will complete any current and actively pipelined transactions, and 110 * should halt within 16 ms of the run/stop bit being cleared. 111 * Read HC Halted bit in the status register to see when the HC is finished. 112 */ 113 int xhci_halt(struct xhci_hcd *xhci) 114 { 115 int ret; 116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 117 xhci_quiesce(xhci); 118 119 ret = xhci_handshake(&xhci->op_regs->status, 120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 121 if (ret) { 122 xhci_warn(xhci, "Host halt failed, %d\n", ret); 123 return ret; 124 } 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, 202 CMD_RESET, 0, 10 * 1000 * 1000); 203 if (ret) 204 return ret; 205 206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 208 209 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 210 "Wait for controller to be ready for doorbell rings"); 211 /* 212 * xHCI cannot write to any doorbells or operational registers other 213 * than status until the "Controller Not Ready" flag is cleared. 214 */ 215 ret = xhci_handshake(&xhci->op_regs->status, 216 STS_CNR, 0, 10 * 1000 * 1000); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 234 /* 235 * Some Renesas controllers get into a weird state if they are 236 * reset while programmed with 64bit addresses (they will preserve 237 * the top half of the address in internal, non visible 238 * registers). You end up with half the address coming from the 239 * kernel, and the other half coming from the firmware. Also, 240 * changing the programming leads to extra accesses even if the 241 * controller is supposed to be halted. The controller ends up with 242 * a fatal fault, and is then ripe for being properly reset. 243 * 244 * Special care is taken to only apply this if the device is behind 245 * an iommu. Doing anything when there is no iommu is definitely 246 * unsafe... 247 */ 248 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 249 return; 250 251 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 252 253 /* Clear HSEIE so that faults do not get signaled */ 254 val = readl(&xhci->op_regs->command); 255 val &= ~CMD_HSEIE; 256 writel(val, &xhci->op_regs->command); 257 258 /* Clear HSE (aka FATAL) */ 259 val = readl(&xhci->op_regs->status); 260 val |= STS_FATAL; 261 writel(val, &xhci->op_regs->status); 262 263 /* Now zero the registers, and brace for impact */ 264 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 265 if (upper_32_bits(val)) 266 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 267 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 268 if (upper_32_bits(val)) 269 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 270 271 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 272 struct xhci_intr_reg __iomem *ir; 273 274 ir = &xhci->run_regs->ir_set[i]; 275 val = xhci_read_64(xhci, &ir->erst_base); 276 if (upper_32_bits(val)) 277 xhci_write_64(xhci, 0, &ir->erst_base); 278 val= xhci_read_64(xhci, &ir->erst_dequeue); 279 if (upper_32_bits(val)) 280 xhci_write_64(xhci, 0, &ir->erst_dequeue); 281 } 282 283 /* Wait for the fault to appear. It will be cleared on reset */ 284 err = xhci_handshake(&xhci->op_regs->status, 285 STS_FATAL, STS_FATAL, 286 XHCI_MAX_HALT_USEC); 287 if (!err) 288 xhci_info(xhci, "Fault detected\n"); 289 } 290 291 #ifdef CONFIG_USB_PCI 292 /* 293 * Set up MSI 294 */ 295 static int xhci_setup_msi(struct xhci_hcd *xhci) 296 { 297 int ret; 298 /* 299 * TODO:Check with MSI Soc for sysdev 300 */ 301 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 302 303 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 304 if (ret < 0) { 305 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 306 "failed to allocate MSI entry"); 307 return ret; 308 } 309 310 ret = request_irq(pdev->irq, xhci_msi_irq, 311 0, "xhci_hcd", xhci_to_hcd(xhci)); 312 if (ret) { 313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 314 "disable MSI interrupt"); 315 pci_free_irq_vectors(pdev); 316 } 317 318 return ret; 319 } 320 321 /* 322 * Set up MSI-X 323 */ 324 static int xhci_setup_msix(struct xhci_hcd *xhci) 325 { 326 int i, ret = 0; 327 struct usb_hcd *hcd = xhci_to_hcd(xhci); 328 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 329 330 /* 331 * calculate number of msi-x vectors supported. 332 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 333 * with max number of interrupters based on the xhci HCSPARAMS1. 334 * - num_online_cpus: maximum msi-x vectors per CPUs core. 335 * Add additional 1 vector to ensure always available interrupt. 336 */ 337 xhci->msix_count = min(num_online_cpus() + 1, 338 HCS_MAX_INTRS(xhci->hcs_params1)); 339 340 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 341 PCI_IRQ_MSIX); 342 if (ret < 0) { 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 344 "Failed to enable MSI-X"); 345 return ret; 346 } 347 348 for (i = 0; i < xhci->msix_count; i++) { 349 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 350 "xhci_hcd", xhci_to_hcd(xhci)); 351 if (ret) 352 goto disable_msix; 353 } 354 355 hcd->msix_enabled = 1; 356 return ret; 357 358 disable_msix: 359 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 360 while (--i >= 0) 361 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 362 pci_free_irq_vectors(pdev); 363 return ret; 364 } 365 366 /* Free any IRQs and disable MSI-X */ 367 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 368 { 369 struct usb_hcd *hcd = xhci_to_hcd(xhci); 370 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 371 372 if (xhci->quirks & XHCI_PLAT) 373 return; 374 375 /* return if using legacy interrupt */ 376 if (hcd->irq > 0) 377 return; 378 379 if (hcd->msix_enabled) { 380 int i; 381 382 for (i = 0; i < xhci->msix_count; i++) 383 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 384 } else { 385 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 386 } 387 388 pci_free_irq_vectors(pdev); 389 hcd->msix_enabled = 0; 390 } 391 392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 393 { 394 struct usb_hcd *hcd = xhci_to_hcd(xhci); 395 396 if (hcd->msix_enabled) { 397 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 398 int i; 399 400 for (i = 0; i < xhci->msix_count; i++) 401 synchronize_irq(pci_irq_vector(pdev, i)); 402 } 403 } 404 405 static int xhci_try_enable_msi(struct usb_hcd *hcd) 406 { 407 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 408 struct pci_dev *pdev; 409 int ret; 410 411 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 412 if (xhci->quirks & XHCI_PLAT) 413 return 0; 414 415 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 416 /* 417 * Some Fresco Logic host controllers advertise MSI, but fail to 418 * generate interrupts. Don't even try to enable MSI. 419 */ 420 if (xhci->quirks & XHCI_BROKEN_MSI) 421 goto legacy_irq; 422 423 /* unregister the legacy interrupt */ 424 if (hcd->irq) 425 free_irq(hcd->irq, hcd); 426 hcd->irq = 0; 427 428 ret = xhci_setup_msix(xhci); 429 if (ret) 430 /* fall back to msi*/ 431 ret = xhci_setup_msi(xhci); 432 433 if (!ret) { 434 hcd->msi_enabled = 1; 435 return 0; 436 } 437 438 if (!pdev->irq) { 439 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 440 return -EINVAL; 441 } 442 443 legacy_irq: 444 if (!strlen(hcd->irq_descr)) 445 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 446 hcd->driver->description, hcd->self.busnum); 447 448 /* fall back to legacy interrupt*/ 449 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 450 hcd->irq_descr, hcd); 451 if (ret) { 452 xhci_err(xhci, "request interrupt %d failed\n", 453 pdev->irq); 454 return ret; 455 } 456 hcd->irq = pdev->irq; 457 return 0; 458 } 459 460 #else 461 462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 463 { 464 return 0; 465 } 466 467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 468 { 469 } 470 471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 472 { 473 } 474 475 #endif 476 477 static void compliance_mode_recovery(struct timer_list *t) 478 { 479 struct xhci_hcd *xhci; 480 struct usb_hcd *hcd; 481 struct xhci_hub *rhub; 482 u32 temp; 483 int i; 484 485 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 486 rhub = &xhci->usb3_rhub; 487 488 for (i = 0; i < rhub->num_ports; i++) { 489 temp = readl(rhub->ports[i]->addr); 490 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 491 /* 492 * Compliance Mode Detected. Letting USB Core 493 * handle the Warm Reset 494 */ 495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 496 "Compliance mode detected->port %d", 497 i + 1); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Attempting compliance mode recovery"); 500 hcd = xhci->shared_hcd; 501 502 if (hcd->state == HC_STATE_SUSPENDED) 503 usb_hcd_resume_root_hub(hcd); 504 505 usb_hcd_poll_rh_status(hcd); 506 } 507 } 508 509 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 510 mod_timer(&xhci->comp_mode_recovery_timer, 511 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 512 } 513 514 /* 515 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 516 * that causes ports behind that hardware to enter compliance mode sometimes. 517 * The quirk creates a timer that polls every 2 seconds the link state of 518 * each host controller's port and recovers it by issuing a Warm reset 519 * if Compliance mode is detected, otherwise the port will become "dead" (no 520 * device connections or disconnections will be detected anymore). Becasue no 521 * status event is generated when entering compliance mode (per xhci spec), 522 * this quirk is needed on systems that have the failing hardware installed. 523 */ 524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 525 { 526 xhci->port_status_u0 = 0; 527 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 528 0); 529 xhci->comp_mode_recovery_timer.expires = jiffies + 530 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 531 532 add_timer(&xhci->comp_mode_recovery_timer); 533 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 534 "Compliance mode recovery timer initialized"); 535 } 536 537 /* 538 * This function identifies the systems that have installed the SN65LVPE502CP 539 * USB3.0 re-driver and that need the Compliance Mode Quirk. 540 * Systems: 541 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 542 */ 543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 544 { 545 const char *dmi_product_name, *dmi_sys_vendor; 546 547 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 548 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 549 if (!dmi_product_name || !dmi_sys_vendor) 550 return false; 551 552 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 553 return false; 554 555 if (strstr(dmi_product_name, "Z420") || 556 strstr(dmi_product_name, "Z620") || 557 strstr(dmi_product_name, "Z820") || 558 strstr(dmi_product_name, "Z1 Workstation")) 559 return true; 560 561 return false; 562 } 563 564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 565 { 566 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 567 } 568 569 570 /* 571 * Initialize memory for HCD and xHC (one-time init). 572 * 573 * Program the PAGESIZE register, initialize the device context array, create 574 * device contexts (?), set up a command ring segment (or two?), create event 575 * ring (one for now). 576 */ 577 static int xhci_init(struct usb_hcd *hcd) 578 { 579 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 580 int retval = 0; 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 583 spin_lock_init(&xhci->lock); 584 if (xhci->hci_version == 0x95 && link_quirk) { 585 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 586 "QUIRK: Not clearing Link TRB chain bits."); 587 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 588 } else { 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 590 "xHCI doesn't need link TRB QUIRK"); 591 } 592 retval = xhci_mem_init(xhci, GFP_KERNEL); 593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 594 595 /* Initializing Compliance Mode Recovery Data If Needed */ 596 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 597 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 598 compliance_mode_recovery_timer_init(xhci); 599 } 600 601 return retval; 602 } 603 604 /*-------------------------------------------------------------------------*/ 605 606 607 static int xhci_run_finished(struct xhci_hcd *xhci) 608 { 609 if (xhci_start(xhci)) { 610 xhci_halt(xhci); 611 return -ENODEV; 612 } 613 xhci->shared_hcd->state = HC_STATE_RUNNING; 614 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 615 616 if (xhci->quirks & XHCI_NEC_HOST) 617 xhci_ring_cmd_db(xhci); 618 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 620 "Finished xhci_run for USB3 roothub"); 621 return 0; 622 } 623 624 /* 625 * Start the HC after it was halted. 626 * 627 * This function is called by the USB core when the HC driver is added. 628 * Its opposite is xhci_stop(). 629 * 630 * xhci_init() must be called once before this function can be called. 631 * Reset the HC, enable device slot contexts, program DCBAAP, and 632 * set command ring pointer and event ring pointer. 633 * 634 * Setup MSI-X vectors and enable interrupts. 635 */ 636 int xhci_run(struct usb_hcd *hcd) 637 { 638 u32 temp; 639 u64 temp_64; 640 int ret; 641 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 642 643 /* Start the xHCI host controller running only after the USB 2.0 roothub 644 * is setup. 645 */ 646 647 hcd->uses_new_polling = 1; 648 if (!usb_hcd_is_primary_hcd(hcd)) 649 return xhci_run_finished(xhci); 650 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 652 653 ret = xhci_try_enable_msi(hcd); 654 if (ret) 655 return ret; 656 657 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 658 temp_64 &= ~ERST_PTR_MASK; 659 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 660 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "// Set the interrupt modulation register"); 664 temp = readl(&xhci->ir_set->irq_control); 665 temp &= ~ER_IRQ_INTERVAL_MASK; 666 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 667 writel(temp, &xhci->ir_set->irq_control); 668 669 /* Set the HCD state before we enable the irqs */ 670 temp = readl(&xhci->op_regs->command); 671 temp |= (CMD_EIE); 672 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 673 "// Enable interrupts, cmd = 0x%x.", temp); 674 writel(temp, &xhci->op_regs->command); 675 676 temp = readl(&xhci->ir_set->irq_pending); 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 678 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 679 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 680 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 681 682 if (xhci->quirks & XHCI_NEC_HOST) { 683 struct xhci_command *command; 684 685 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 686 if (!command) 687 return -ENOMEM; 688 689 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 690 TRB_TYPE(TRB_NEC_GET_FW)); 691 if (ret) 692 xhci_free_command(xhci, command); 693 } 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "Finished xhci_run for USB2 roothub"); 696 697 xhci_dbc_init(xhci); 698 699 xhci_debugfs_init(xhci); 700 701 return 0; 702 } 703 EXPORT_SYMBOL_GPL(xhci_run); 704 705 /* 706 * Stop xHCI driver. 707 * 708 * This function is called by the USB core when the HC driver is removed. 709 * Its opposite is xhci_run(). 710 * 711 * Disable device contexts, disable IRQs, and quiesce the HC. 712 * Reset the HC, finish any completed transactions, and cleanup memory. 713 */ 714 static void xhci_stop(struct usb_hcd *hcd) 715 { 716 u32 temp; 717 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 718 719 mutex_lock(&xhci->mutex); 720 721 /* Only halt host and free memory after both hcds are removed */ 722 if (!usb_hcd_is_primary_hcd(hcd)) { 723 mutex_unlock(&xhci->mutex); 724 return; 725 } 726 727 xhci_dbc_exit(xhci); 728 729 spin_lock_irq(&xhci->lock); 730 xhci->xhc_state |= XHCI_STATE_HALTED; 731 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 732 xhci_halt(xhci); 733 xhci_reset(xhci); 734 spin_unlock_irq(&xhci->lock); 735 736 xhci_cleanup_msix(xhci); 737 738 /* Deleting Compliance Mode Recovery Timer */ 739 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 740 (!(xhci_all_ports_seen_u0(xhci)))) { 741 del_timer_sync(&xhci->comp_mode_recovery_timer); 742 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 743 "%s: compliance mode recovery timer deleted", 744 __func__); 745 } 746 747 if (xhci->quirks & XHCI_AMD_PLL_FIX) 748 usb_amd_dev_put(); 749 750 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 751 "// Disabling event ring interrupts"); 752 temp = readl(&xhci->op_regs->status); 753 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 754 temp = readl(&xhci->ir_set->irq_pending); 755 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 758 xhci_mem_cleanup(xhci); 759 xhci_debugfs_exit(xhci); 760 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 761 "xhci_stop completed - status = %x", 762 readl(&xhci->op_regs->status)); 763 mutex_unlock(&xhci->mutex); 764 } 765 766 /* 767 * Shutdown HC (not bus-specific) 768 * 769 * This is called when the machine is rebooting or halting. We assume that the 770 * machine will be powered off, and the HC's internal state will be reset. 771 * Don't bother to free memory. 772 * 773 * This will only ever be called with the main usb_hcd (the USB3 roothub). 774 */ 775 static void xhci_shutdown(struct usb_hcd *hcd) 776 { 777 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 778 779 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 780 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 781 782 spin_lock_irq(&xhci->lock); 783 xhci_halt(xhci); 784 /* Workaround for spurious wakeups at shutdown with HSW */ 785 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 786 xhci_reset(xhci); 787 spin_unlock_irq(&xhci->lock); 788 789 xhci_cleanup_msix(xhci); 790 791 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 792 "xhci_shutdown completed - status = %x", 793 readl(&xhci->op_regs->status)); 794 795 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 796 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 797 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 798 } 799 800 #ifdef CONFIG_PM 801 static void xhci_save_registers(struct xhci_hcd *xhci) 802 { 803 xhci->s3.command = readl(&xhci->op_regs->command); 804 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 805 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 806 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 807 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 808 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 809 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 810 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 811 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 812 } 813 814 static void xhci_restore_registers(struct xhci_hcd *xhci) 815 { 816 writel(xhci->s3.command, &xhci->op_regs->command); 817 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 818 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 819 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 820 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 821 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 822 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 823 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 824 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 825 } 826 827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 828 { 829 u64 val_64; 830 831 /* step 2: initialize command ring buffer */ 832 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 833 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 834 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 835 xhci->cmd_ring->dequeue) & 836 (u64) ~CMD_RING_RSVD_BITS) | 837 xhci->cmd_ring->cycle_state; 838 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 839 "// Setting command ring address to 0x%llx", 840 (long unsigned long) val_64); 841 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 842 } 843 844 /* 845 * The whole command ring must be cleared to zero when we suspend the host. 846 * 847 * The host doesn't save the command ring pointer in the suspend well, so we 848 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 849 * aligned, because of the reserved bits in the command ring dequeue pointer 850 * register. Therefore, we can't just set the dequeue pointer back in the 851 * middle of the ring (TRBs are 16-byte aligned). 852 */ 853 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 854 { 855 struct xhci_ring *ring; 856 struct xhci_segment *seg; 857 858 ring = xhci->cmd_ring; 859 seg = ring->deq_seg; 860 do { 861 memset(seg->trbs, 0, 862 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 863 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 864 cpu_to_le32(~TRB_CYCLE); 865 seg = seg->next; 866 } while (seg != ring->deq_seg); 867 868 /* Reset the software enqueue and dequeue pointers */ 869 ring->deq_seg = ring->first_seg; 870 ring->dequeue = ring->first_seg->trbs; 871 ring->enq_seg = ring->deq_seg; 872 ring->enqueue = ring->dequeue; 873 874 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 875 /* 876 * Ring is now zeroed, so the HW should look for change of ownership 877 * when the cycle bit is set to 1. 878 */ 879 ring->cycle_state = 1; 880 881 /* 882 * Reset the hardware dequeue pointer. 883 * Yes, this will need to be re-written after resume, but we're paranoid 884 * and want to make sure the hardware doesn't access bogus memory 885 * because, say, the BIOS or an SMI started the host without changing 886 * the command ring pointers. 887 */ 888 xhci_set_cmd_ring_deq(xhci); 889 } 890 891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 892 { 893 struct xhci_port **ports; 894 int port_index; 895 unsigned long flags; 896 u32 t1, t2, portsc; 897 898 spin_lock_irqsave(&xhci->lock, flags); 899 900 /* disable usb3 ports Wake bits */ 901 port_index = xhci->usb3_rhub.num_ports; 902 ports = xhci->usb3_rhub.ports; 903 while (port_index--) { 904 t1 = readl(ports[port_index]->addr); 905 portsc = t1; 906 t1 = xhci_port_state_to_neutral(t1); 907 t2 = t1 & ~PORT_WAKE_BITS; 908 if (t1 != t2) { 909 writel(t2, ports[port_index]->addr); 910 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 911 xhci->usb3_rhub.hcd->self.busnum, 912 port_index + 1, portsc, t2); 913 } 914 } 915 916 /* disable usb2 ports Wake bits */ 917 port_index = xhci->usb2_rhub.num_ports; 918 ports = xhci->usb2_rhub.ports; 919 while (port_index--) { 920 t1 = readl(ports[port_index]->addr); 921 portsc = t1; 922 t1 = xhci_port_state_to_neutral(t1); 923 t2 = t1 & ~PORT_WAKE_BITS; 924 if (t1 != t2) { 925 writel(t2, ports[port_index]->addr); 926 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 927 xhci->usb2_rhub.hcd->self.busnum, 928 port_index + 1, portsc, t2); 929 } 930 } 931 spin_unlock_irqrestore(&xhci->lock, flags); 932 } 933 934 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 935 { 936 struct xhci_port **ports; 937 int port_index; 938 u32 status; 939 u32 portsc; 940 941 status = readl(&xhci->op_regs->status); 942 if (status & STS_EINT) 943 return true; 944 /* 945 * Checking STS_EINT is not enough as there is a lag between a change 946 * bit being set and the Port Status Change Event that it generated 947 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 948 */ 949 950 port_index = xhci->usb2_rhub.num_ports; 951 ports = xhci->usb2_rhub.ports; 952 while (port_index--) { 953 portsc = readl(ports[port_index]->addr); 954 if (portsc & PORT_CHANGE_MASK || 955 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 956 return true; 957 } 958 port_index = xhci->usb3_rhub.num_ports; 959 ports = xhci->usb3_rhub.ports; 960 while (port_index--) { 961 portsc = readl(ports[port_index]->addr); 962 if (portsc & PORT_CHANGE_MASK || 963 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 964 return true; 965 } 966 return false; 967 } 968 969 /* 970 * Stop HC (not bus-specific) 971 * 972 * This is called when the machine transition into S3/S4 mode. 973 * 974 */ 975 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 976 { 977 int rc = 0; 978 unsigned int delay = XHCI_MAX_HALT_USEC; 979 struct usb_hcd *hcd = xhci_to_hcd(xhci); 980 u32 command; 981 u32 res; 982 983 if (!hcd->state) 984 return 0; 985 986 if (hcd->state != HC_STATE_SUSPENDED || 987 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 988 return -EINVAL; 989 990 xhci_dbc_suspend(xhci); 991 992 /* Clear root port wake on bits if wakeup not allowed. */ 993 if (!do_wakeup) 994 xhci_disable_port_wake_on_bits(xhci); 995 996 /* Don't poll the roothubs on bus suspend. */ 997 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 999 del_timer_sync(&hcd->rh_timer); 1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1001 del_timer_sync(&xhci->shared_hcd->rh_timer); 1002 1003 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1004 usleep_range(1000, 1500); 1005 1006 spin_lock_irq(&xhci->lock); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1009 /* step 1: stop endpoint */ 1010 /* skipped assuming that port suspend has done */ 1011 1012 /* step 2: clear Run/Stop bit */ 1013 command = readl(&xhci->op_regs->command); 1014 command &= ~CMD_RUN; 1015 writel(command, &xhci->op_regs->command); 1016 1017 /* Some chips from Fresco Logic need an extraordinary delay */ 1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1019 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_HALT, STS_HALT, delay)) { 1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 xhci_clear_command_ring(xhci); 1027 1028 /* step 3: save registers */ 1029 xhci_save_registers(xhci); 1030 1031 /* step 4: set CSS flag */ 1032 command = readl(&xhci->op_regs->command); 1033 command |= CMD_CSS; 1034 writel(command, &xhci->op_regs->command); 1035 xhci->broken_suspend = 0; 1036 if (xhci_handshake(&xhci->op_regs->status, 1037 STS_SAVE, 0, 10 * 1000)) { 1038 /* 1039 * AMD SNPS xHC 3.0 occasionally does not clear the 1040 * SSS bit of USBSTS and when driver tries to poll 1041 * to see if the xHC clears BIT(8) which never happens 1042 * and driver assumes that controller is not responding 1043 * and times out. To workaround this, its good to check 1044 * if SRE and HCE bits are not set (as per xhci 1045 * Section 5.4.2) and bypass the timeout. 1046 */ 1047 res = readl(&xhci->op_regs->status); 1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1049 (((res & STS_SRE) == 0) && 1050 ((res & STS_HCE) == 0))) { 1051 xhci->broken_suspend = 1; 1052 } else { 1053 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 } 1058 spin_unlock_irq(&xhci->lock); 1059 1060 /* 1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1062 * is about to be suspended. 1063 */ 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 (!(xhci_all_ports_seen_u0(xhci)))) { 1066 del_timer_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "%s: compliance mode recovery timer deleted", 1069 __func__); 1070 } 1071 1072 /* step 5: remove core well power */ 1073 /* synchronize irq when using MSI-X */ 1074 xhci_msix_sync_irqs(xhci); 1075 1076 return rc; 1077 } 1078 EXPORT_SYMBOL_GPL(xhci_suspend); 1079 1080 /* 1081 * start xHC (not bus-specific) 1082 * 1083 * This is called when the machine transition from S3/S4 mode. 1084 * 1085 */ 1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1087 { 1088 u32 command, temp = 0; 1089 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1090 struct usb_hcd *secondary_hcd; 1091 int retval = 0; 1092 bool comp_timer_running = false; 1093 1094 if (!hcd->state) 1095 return 0; 1096 1097 /* Wait a bit if either of the roothubs need to settle from the 1098 * transition into bus suspend. 1099 */ 1100 1101 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1102 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1103 msleep(100); 1104 1105 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1107 1108 spin_lock_irq(&xhci->lock); 1109 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1110 hibernated = true; 1111 1112 if (!hibernated) { 1113 /* step 1: restore register */ 1114 xhci_restore_registers(xhci); 1115 /* step 2: initialize command ring buffer */ 1116 xhci_set_cmd_ring_deq(xhci); 1117 /* step 3: restore state and start state*/ 1118 /* step 3: set CRS flag */ 1119 command = readl(&xhci->op_regs->command); 1120 command |= CMD_CRS; 1121 writel(command, &xhci->op_regs->command); 1122 /* 1123 * Some controllers take up to 55+ ms to complete the controller 1124 * restore so setting the timeout to 100ms. Xhci specification 1125 * doesn't mention any timeout value. 1126 */ 1127 if (xhci_handshake(&xhci->op_regs->status, 1128 STS_RESTORE, 0, 100 * 1000)) { 1129 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1130 spin_unlock_irq(&xhci->lock); 1131 return -ETIMEDOUT; 1132 } 1133 temp = readl(&xhci->op_regs->status); 1134 } 1135 1136 /* If restore operation fails, re-initialize the HC during resume */ 1137 if ((temp & STS_SRE) || hibernated) { 1138 1139 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1140 !(xhci_all_ports_seen_u0(xhci))) { 1141 del_timer_sync(&xhci->comp_mode_recovery_timer); 1142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1143 "Compliance Mode Recovery Timer deleted!"); 1144 } 1145 1146 /* Let the USB core know _both_ roothubs lost power. */ 1147 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1148 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1149 1150 xhci_dbg(xhci, "Stop HCD\n"); 1151 xhci_halt(xhci); 1152 xhci_zero_64b_regs(xhci); 1153 xhci_reset(xhci); 1154 spin_unlock_irq(&xhci->lock); 1155 xhci_cleanup_msix(xhci); 1156 1157 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1158 temp = readl(&xhci->op_regs->status); 1159 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1160 temp = readl(&xhci->ir_set->irq_pending); 1161 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1162 1163 xhci_dbg(xhci, "cleaning up memory\n"); 1164 xhci_mem_cleanup(xhci); 1165 xhci_debugfs_exit(xhci); 1166 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1167 readl(&xhci->op_regs->status)); 1168 1169 /* USB core calls the PCI reinit and start functions twice: 1170 * first with the primary HCD, and then with the secondary HCD. 1171 * If we don't do the same, the host will never be started. 1172 */ 1173 if (!usb_hcd_is_primary_hcd(hcd)) 1174 secondary_hcd = hcd; 1175 else 1176 secondary_hcd = xhci->shared_hcd; 1177 1178 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1179 retval = xhci_init(hcd->primary_hcd); 1180 if (retval) 1181 return retval; 1182 comp_timer_running = true; 1183 1184 xhci_dbg(xhci, "Start the primary HCD\n"); 1185 retval = xhci_run(hcd->primary_hcd); 1186 if (!retval) { 1187 xhci_dbg(xhci, "Start the secondary HCD\n"); 1188 retval = xhci_run(secondary_hcd); 1189 } 1190 hcd->state = HC_STATE_SUSPENDED; 1191 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1192 goto done; 1193 } 1194 1195 /* step 4: set Run/Stop bit */ 1196 command = readl(&xhci->op_regs->command); 1197 command |= CMD_RUN; 1198 writel(command, &xhci->op_regs->command); 1199 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1200 0, 250 * 1000); 1201 1202 /* step 5: walk topology and initialize portsc, 1203 * portpmsc and portli 1204 */ 1205 /* this is done in bus_resume */ 1206 1207 /* step 6: restart each of the previously 1208 * Running endpoints by ringing their doorbells 1209 */ 1210 1211 spin_unlock_irq(&xhci->lock); 1212 1213 xhci_dbc_resume(xhci); 1214 1215 done: 1216 if (retval == 0) { 1217 /* Resume root hubs only when have pending events. */ 1218 if (xhci_pending_portevent(xhci)) { 1219 usb_hcd_resume_root_hub(xhci->shared_hcd); 1220 usb_hcd_resume_root_hub(hcd); 1221 } 1222 } 1223 1224 /* 1225 * If system is subject to the Quirk, Compliance Mode Timer needs to 1226 * be re-initialized Always after a system resume. Ports are subject 1227 * to suffer the Compliance Mode issue again. It doesn't matter if 1228 * ports have entered previously to U0 before system's suspension. 1229 */ 1230 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1231 compliance_mode_recovery_timer_init(xhci); 1232 1233 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1234 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1235 1236 /* Re-enable port polling. */ 1237 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1238 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1239 usb_hcd_poll_rh_status(xhci->shared_hcd); 1240 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1241 usb_hcd_poll_rh_status(hcd); 1242 1243 return retval; 1244 } 1245 EXPORT_SYMBOL_GPL(xhci_resume); 1246 #endif /* CONFIG_PM */ 1247 1248 /*-------------------------------------------------------------------------*/ 1249 1250 /* 1251 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1252 * we'll copy the actual data into the TRB address register. This is limited to 1253 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1254 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1255 */ 1256 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1257 gfp_t mem_flags) 1258 { 1259 if (xhci_urb_suitable_for_idt(urb)) 1260 return 0; 1261 1262 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1263 } 1264 1265 /** 1266 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1267 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1268 * value to right shift 1 for the bitmask. 1269 * 1270 * Index = (epnum * 2) + direction - 1, 1271 * where direction = 0 for OUT, 1 for IN. 1272 * For control endpoints, the IN index is used (OUT index is unused), so 1273 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1274 */ 1275 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1276 { 1277 unsigned int index; 1278 if (usb_endpoint_xfer_control(desc)) 1279 index = (unsigned int) (usb_endpoint_num(desc)*2); 1280 else 1281 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1282 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1283 return index; 1284 } 1285 1286 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1287 * address from the XHCI endpoint index. 1288 */ 1289 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1290 { 1291 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1292 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1293 return direction | number; 1294 } 1295 1296 /* Find the flag for this endpoint (for use in the control context). Use the 1297 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1298 * bit 1, etc. 1299 */ 1300 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1301 { 1302 return 1 << (xhci_get_endpoint_index(desc) + 1); 1303 } 1304 1305 /* Find the flag for this endpoint (for use in the control context). Use the 1306 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1307 * bit 1, etc. 1308 */ 1309 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1310 { 1311 return 1 << (ep_index + 1); 1312 } 1313 1314 /* Compute the last valid endpoint context index. Basically, this is the 1315 * endpoint index plus one. For slot contexts with more than valid endpoint, 1316 * we find the most significant bit set in the added contexts flags. 1317 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1318 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1319 */ 1320 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1321 { 1322 return fls(added_ctxs) - 1; 1323 } 1324 1325 /* Returns 1 if the arguments are OK; 1326 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1327 */ 1328 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1329 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1330 const char *func) { 1331 struct xhci_hcd *xhci; 1332 struct xhci_virt_device *virt_dev; 1333 1334 if (!hcd || (check_ep && !ep) || !udev) { 1335 pr_debug("xHCI %s called with invalid args\n", func); 1336 return -EINVAL; 1337 } 1338 if (!udev->parent) { 1339 pr_debug("xHCI %s called for root hub\n", func); 1340 return 0; 1341 } 1342 1343 xhci = hcd_to_xhci(hcd); 1344 if (check_virt_dev) { 1345 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1346 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1347 func); 1348 return -EINVAL; 1349 } 1350 1351 virt_dev = xhci->devs[udev->slot_id]; 1352 if (virt_dev->udev != udev) { 1353 xhci_dbg(xhci, "xHCI %s called with udev and " 1354 "virt_dev does not match\n", func); 1355 return -EINVAL; 1356 } 1357 } 1358 1359 if (xhci->xhc_state & XHCI_STATE_HALTED) 1360 return -ENODEV; 1361 1362 return 1; 1363 } 1364 1365 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1366 struct usb_device *udev, struct xhci_command *command, 1367 bool ctx_change, bool must_succeed); 1368 1369 /* 1370 * Full speed devices may have a max packet size greater than 8 bytes, but the 1371 * USB core doesn't know that until it reads the first 8 bytes of the 1372 * descriptor. If the usb_device's max packet size changes after that point, 1373 * we need to issue an evaluate context command and wait on it. 1374 */ 1375 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1376 unsigned int ep_index, struct urb *urb) 1377 { 1378 struct xhci_container_ctx *out_ctx; 1379 struct xhci_input_control_ctx *ctrl_ctx; 1380 struct xhci_ep_ctx *ep_ctx; 1381 struct xhci_command *command; 1382 int max_packet_size; 1383 int hw_max_packet_size; 1384 int ret = 0; 1385 1386 out_ctx = xhci->devs[slot_id]->out_ctx; 1387 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1388 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1389 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1390 if (hw_max_packet_size != max_packet_size) { 1391 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1392 "Max Packet Size for ep 0 changed."); 1393 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1394 "Max packet size in usb_device = %d", 1395 max_packet_size); 1396 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1397 "Max packet size in xHCI HW = %d", 1398 hw_max_packet_size); 1399 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1400 "Issuing evaluate context command."); 1401 1402 /* Set up the input context flags for the command */ 1403 /* FIXME: This won't work if a non-default control endpoint 1404 * changes max packet sizes. 1405 */ 1406 1407 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1408 if (!command) 1409 return -ENOMEM; 1410 1411 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1412 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1413 if (!ctrl_ctx) { 1414 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1415 __func__); 1416 ret = -ENOMEM; 1417 goto command_cleanup; 1418 } 1419 /* Set up the modified control endpoint 0 */ 1420 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1421 xhci->devs[slot_id]->out_ctx, ep_index); 1422 1423 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1424 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1425 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1426 1427 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1428 ctrl_ctx->drop_flags = 0; 1429 1430 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1431 true, false); 1432 1433 /* Clean up the input context for later use by bandwidth 1434 * functions. 1435 */ 1436 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1437 command_cleanup: 1438 kfree(command->completion); 1439 kfree(command); 1440 } 1441 return ret; 1442 } 1443 1444 /* 1445 * non-error returns are a promise to giveback() the urb later 1446 * we drop ownership so next owner (or urb unlink) can get it 1447 */ 1448 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1449 { 1450 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1451 unsigned long flags; 1452 int ret = 0; 1453 unsigned int slot_id, ep_index; 1454 unsigned int *ep_state; 1455 struct urb_priv *urb_priv; 1456 int num_tds; 1457 1458 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1459 true, true, __func__) <= 0) 1460 return -EINVAL; 1461 1462 slot_id = urb->dev->slot_id; 1463 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1464 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1465 1466 if (!HCD_HW_ACCESSIBLE(hcd)) { 1467 if (!in_interrupt()) 1468 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1469 return -ESHUTDOWN; 1470 } 1471 1472 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1473 num_tds = urb->number_of_packets; 1474 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1475 urb->transfer_buffer_length > 0 && 1476 urb->transfer_flags & URB_ZERO_PACKET && 1477 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1478 num_tds = 2; 1479 else 1480 num_tds = 1; 1481 1482 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1483 if (!urb_priv) 1484 return -ENOMEM; 1485 1486 urb_priv->num_tds = num_tds; 1487 urb_priv->num_tds_done = 0; 1488 urb->hcpriv = urb_priv; 1489 1490 trace_xhci_urb_enqueue(urb); 1491 1492 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1493 /* Check to see if the max packet size for the default control 1494 * endpoint changed during FS device enumeration 1495 */ 1496 if (urb->dev->speed == USB_SPEED_FULL) { 1497 ret = xhci_check_maxpacket(xhci, slot_id, 1498 ep_index, urb); 1499 if (ret < 0) { 1500 xhci_urb_free_priv(urb_priv); 1501 urb->hcpriv = NULL; 1502 return ret; 1503 } 1504 } 1505 } 1506 1507 spin_lock_irqsave(&xhci->lock, flags); 1508 1509 if (xhci->xhc_state & XHCI_STATE_DYING) { 1510 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1511 urb->ep->desc.bEndpointAddress, urb); 1512 ret = -ESHUTDOWN; 1513 goto free_priv; 1514 } 1515 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1516 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1517 *ep_state); 1518 ret = -EINVAL; 1519 goto free_priv; 1520 } 1521 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1522 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1523 ret = -EINVAL; 1524 goto free_priv; 1525 } 1526 1527 switch (usb_endpoint_type(&urb->ep->desc)) { 1528 1529 case USB_ENDPOINT_XFER_CONTROL: 1530 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1531 slot_id, ep_index); 1532 break; 1533 case USB_ENDPOINT_XFER_BULK: 1534 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1535 slot_id, ep_index); 1536 break; 1537 case USB_ENDPOINT_XFER_INT: 1538 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1539 slot_id, ep_index); 1540 break; 1541 case USB_ENDPOINT_XFER_ISOC: 1542 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1543 slot_id, ep_index); 1544 } 1545 1546 if (ret) { 1547 free_priv: 1548 xhci_urb_free_priv(urb_priv); 1549 urb->hcpriv = NULL; 1550 } 1551 spin_unlock_irqrestore(&xhci->lock, flags); 1552 return ret; 1553 } 1554 1555 /* 1556 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1557 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1558 * should pick up where it left off in the TD, unless a Set Transfer Ring 1559 * Dequeue Pointer is issued. 1560 * 1561 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1562 * the ring. Since the ring is a contiguous structure, they can't be physically 1563 * removed. Instead, there are two options: 1564 * 1565 * 1) If the HC is in the middle of processing the URB to be canceled, we 1566 * simply move the ring's dequeue pointer past those TRBs using the Set 1567 * Transfer Ring Dequeue Pointer command. This will be the common case, 1568 * when drivers timeout on the last submitted URB and attempt to cancel. 1569 * 1570 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1571 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1572 * HC will need to invalidate the any TRBs it has cached after the stop 1573 * endpoint command, as noted in the xHCI 0.95 errata. 1574 * 1575 * 3) The TD may have completed by the time the Stop Endpoint Command 1576 * completes, so software needs to handle that case too. 1577 * 1578 * This function should protect against the TD enqueueing code ringing the 1579 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1580 * It also needs to account for multiple cancellations on happening at the same 1581 * time for the same endpoint. 1582 * 1583 * Note that this function can be called in any context, or so says 1584 * usb_hcd_unlink_urb() 1585 */ 1586 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1587 { 1588 unsigned long flags; 1589 int ret, i; 1590 u32 temp; 1591 struct xhci_hcd *xhci; 1592 struct urb_priv *urb_priv; 1593 struct xhci_td *td; 1594 unsigned int ep_index; 1595 struct xhci_ring *ep_ring; 1596 struct xhci_virt_ep *ep; 1597 struct xhci_command *command; 1598 struct xhci_virt_device *vdev; 1599 1600 xhci = hcd_to_xhci(hcd); 1601 spin_lock_irqsave(&xhci->lock, flags); 1602 1603 trace_xhci_urb_dequeue(urb); 1604 1605 /* Make sure the URB hasn't completed or been unlinked already */ 1606 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1607 if (ret) 1608 goto done; 1609 1610 /* give back URB now if we can't queue it for cancel */ 1611 vdev = xhci->devs[urb->dev->slot_id]; 1612 urb_priv = urb->hcpriv; 1613 if (!vdev || !urb_priv) 1614 goto err_giveback; 1615 1616 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1617 ep = &vdev->eps[ep_index]; 1618 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1619 if (!ep || !ep_ring) 1620 goto err_giveback; 1621 1622 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1623 temp = readl(&xhci->op_regs->status); 1624 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1625 xhci_hc_died(xhci); 1626 goto done; 1627 } 1628 1629 /* 1630 * check ring is not re-allocated since URB was enqueued. If it is, then 1631 * make sure none of the ring related pointers in this URB private data 1632 * are touched, such as td_list, otherwise we overwrite freed data 1633 */ 1634 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1635 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1636 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1637 td = &urb_priv->td[i]; 1638 if (!list_empty(&td->cancelled_td_list)) 1639 list_del_init(&td->cancelled_td_list); 1640 } 1641 goto err_giveback; 1642 } 1643 1644 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1645 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1646 "HC halted, freeing TD manually."); 1647 for (i = urb_priv->num_tds_done; 1648 i < urb_priv->num_tds; 1649 i++) { 1650 td = &urb_priv->td[i]; 1651 if (!list_empty(&td->td_list)) 1652 list_del_init(&td->td_list); 1653 if (!list_empty(&td->cancelled_td_list)) 1654 list_del_init(&td->cancelled_td_list); 1655 } 1656 goto err_giveback; 1657 } 1658 1659 i = urb_priv->num_tds_done; 1660 if (i < urb_priv->num_tds) 1661 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1662 "Cancel URB %p, dev %s, ep 0x%x, " 1663 "starting at offset 0x%llx", 1664 urb, urb->dev->devpath, 1665 urb->ep->desc.bEndpointAddress, 1666 (unsigned long long) xhci_trb_virt_to_dma( 1667 urb_priv->td[i].start_seg, 1668 urb_priv->td[i].first_trb)); 1669 1670 for (; i < urb_priv->num_tds; i++) { 1671 td = &urb_priv->td[i]; 1672 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1673 } 1674 1675 /* Queue a stop endpoint command, but only if this is 1676 * the first cancellation to be handled. 1677 */ 1678 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1679 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1680 if (!command) { 1681 ret = -ENOMEM; 1682 goto done; 1683 } 1684 ep->ep_state |= EP_STOP_CMD_PENDING; 1685 ep->stop_cmd_timer.expires = jiffies + 1686 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1687 add_timer(&ep->stop_cmd_timer); 1688 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1689 ep_index, 0); 1690 xhci_ring_cmd_db(xhci); 1691 } 1692 done: 1693 spin_unlock_irqrestore(&xhci->lock, flags); 1694 return ret; 1695 1696 err_giveback: 1697 if (urb_priv) 1698 xhci_urb_free_priv(urb_priv); 1699 usb_hcd_unlink_urb_from_ep(hcd, urb); 1700 spin_unlock_irqrestore(&xhci->lock, flags); 1701 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1702 return ret; 1703 } 1704 1705 /* Drop an endpoint from a new bandwidth configuration for this device. 1706 * Only one call to this function is allowed per endpoint before 1707 * check_bandwidth() or reset_bandwidth() must be called. 1708 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1709 * add the endpoint to the schedule with possibly new parameters denoted by a 1710 * different endpoint descriptor in usb_host_endpoint. 1711 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1712 * not allowed. 1713 * 1714 * The USB core will not allow URBs to be queued to an endpoint that is being 1715 * disabled, so there's no need for mutual exclusion to protect 1716 * the xhci->devs[slot_id] structure. 1717 */ 1718 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1719 struct usb_host_endpoint *ep) 1720 { 1721 struct xhci_hcd *xhci; 1722 struct xhci_container_ctx *in_ctx, *out_ctx; 1723 struct xhci_input_control_ctx *ctrl_ctx; 1724 unsigned int ep_index; 1725 struct xhci_ep_ctx *ep_ctx; 1726 u32 drop_flag; 1727 u32 new_add_flags, new_drop_flags; 1728 int ret; 1729 1730 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1731 if (ret <= 0) 1732 return ret; 1733 xhci = hcd_to_xhci(hcd); 1734 if (xhci->xhc_state & XHCI_STATE_DYING) 1735 return -ENODEV; 1736 1737 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1738 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1739 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1740 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1741 __func__, drop_flag); 1742 return 0; 1743 } 1744 1745 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1746 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1747 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1748 if (!ctrl_ctx) { 1749 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1750 __func__); 1751 return 0; 1752 } 1753 1754 ep_index = xhci_get_endpoint_index(&ep->desc); 1755 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1756 /* If the HC already knows the endpoint is disabled, 1757 * or the HCD has noted it is disabled, ignore this request 1758 */ 1759 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1760 le32_to_cpu(ctrl_ctx->drop_flags) & 1761 xhci_get_endpoint_flag(&ep->desc)) { 1762 /* Do not warn when called after a usb_device_reset */ 1763 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1764 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1765 __func__, ep); 1766 return 0; 1767 } 1768 1769 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1770 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1771 1772 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1773 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1774 1775 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1776 1777 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1778 1779 if (xhci->quirks & XHCI_MTK_HOST) 1780 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1781 1782 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1783 (unsigned int) ep->desc.bEndpointAddress, 1784 udev->slot_id, 1785 (unsigned int) new_drop_flags, 1786 (unsigned int) new_add_flags); 1787 return 0; 1788 } 1789 1790 /* Add an endpoint to a new possible bandwidth configuration for this device. 1791 * Only one call to this function is allowed per endpoint before 1792 * check_bandwidth() or reset_bandwidth() must be called. 1793 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1794 * add the endpoint to the schedule with possibly new parameters denoted by a 1795 * different endpoint descriptor in usb_host_endpoint. 1796 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1797 * not allowed. 1798 * 1799 * The USB core will not allow URBs to be queued to an endpoint until the 1800 * configuration or alt setting is installed in the device, so there's no need 1801 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1802 */ 1803 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1804 struct usb_host_endpoint *ep) 1805 { 1806 struct xhci_hcd *xhci; 1807 struct xhci_container_ctx *in_ctx; 1808 unsigned int ep_index; 1809 struct xhci_input_control_ctx *ctrl_ctx; 1810 struct xhci_ep_ctx *ep_ctx; 1811 u32 added_ctxs; 1812 u32 new_add_flags, new_drop_flags; 1813 struct xhci_virt_device *virt_dev; 1814 int ret = 0; 1815 1816 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1817 if (ret <= 0) { 1818 /* So we won't queue a reset ep command for a root hub */ 1819 ep->hcpriv = NULL; 1820 return ret; 1821 } 1822 xhci = hcd_to_xhci(hcd); 1823 if (xhci->xhc_state & XHCI_STATE_DYING) 1824 return -ENODEV; 1825 1826 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1827 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1828 /* FIXME when we have to issue an evaluate endpoint command to 1829 * deal with ep0 max packet size changing once we get the 1830 * descriptors 1831 */ 1832 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1833 __func__, added_ctxs); 1834 return 0; 1835 } 1836 1837 virt_dev = xhci->devs[udev->slot_id]; 1838 in_ctx = virt_dev->in_ctx; 1839 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1840 if (!ctrl_ctx) { 1841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1842 __func__); 1843 return 0; 1844 } 1845 1846 ep_index = xhci_get_endpoint_index(&ep->desc); 1847 /* If this endpoint is already in use, and the upper layers are trying 1848 * to add it again without dropping it, reject the addition. 1849 */ 1850 if (virt_dev->eps[ep_index].ring && 1851 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1852 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1853 "without dropping it.\n", 1854 (unsigned int) ep->desc.bEndpointAddress); 1855 return -EINVAL; 1856 } 1857 1858 /* If the HCD has already noted the endpoint is enabled, 1859 * ignore this request. 1860 */ 1861 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1862 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1863 __func__, ep); 1864 return 0; 1865 } 1866 1867 /* 1868 * Configuration and alternate setting changes must be done in 1869 * process context, not interrupt context (or so documenation 1870 * for usb_set_interface() and usb_set_configuration() claim). 1871 */ 1872 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1873 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1874 __func__, ep->desc.bEndpointAddress); 1875 return -ENOMEM; 1876 } 1877 1878 if (xhci->quirks & XHCI_MTK_HOST) { 1879 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1880 if (ret < 0) { 1881 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1882 virt_dev->eps[ep_index].new_ring = NULL; 1883 return ret; 1884 } 1885 } 1886 1887 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1888 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1889 1890 /* If xhci_endpoint_disable() was called for this endpoint, but the 1891 * xHC hasn't been notified yet through the check_bandwidth() call, 1892 * this re-adds a new state for the endpoint from the new endpoint 1893 * descriptors. We must drop and re-add this endpoint, so we leave the 1894 * drop flags alone. 1895 */ 1896 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1897 1898 /* Store the usb_device pointer for later use */ 1899 ep->hcpriv = udev; 1900 1901 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1902 trace_xhci_add_endpoint(ep_ctx); 1903 1904 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1905 1906 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1907 (unsigned int) ep->desc.bEndpointAddress, 1908 udev->slot_id, 1909 (unsigned int) new_drop_flags, 1910 (unsigned int) new_add_flags); 1911 return 0; 1912 } 1913 1914 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1915 { 1916 struct xhci_input_control_ctx *ctrl_ctx; 1917 struct xhci_ep_ctx *ep_ctx; 1918 struct xhci_slot_ctx *slot_ctx; 1919 int i; 1920 1921 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1922 if (!ctrl_ctx) { 1923 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1924 __func__); 1925 return; 1926 } 1927 1928 /* When a device's add flag and drop flag are zero, any subsequent 1929 * configure endpoint command will leave that endpoint's state 1930 * untouched. Make sure we don't leave any old state in the input 1931 * endpoint contexts. 1932 */ 1933 ctrl_ctx->drop_flags = 0; 1934 ctrl_ctx->add_flags = 0; 1935 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1936 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1937 /* Endpoint 0 is always valid */ 1938 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1939 for (i = 1; i < 31; i++) { 1940 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1941 ep_ctx->ep_info = 0; 1942 ep_ctx->ep_info2 = 0; 1943 ep_ctx->deq = 0; 1944 ep_ctx->tx_info = 0; 1945 } 1946 } 1947 1948 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1949 struct usb_device *udev, u32 *cmd_status) 1950 { 1951 int ret; 1952 1953 switch (*cmd_status) { 1954 case COMP_COMMAND_ABORTED: 1955 case COMP_COMMAND_RING_STOPPED: 1956 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1957 ret = -ETIME; 1958 break; 1959 case COMP_RESOURCE_ERROR: 1960 dev_warn(&udev->dev, 1961 "Not enough host controller resources for new device state.\n"); 1962 ret = -ENOMEM; 1963 /* FIXME: can we allocate more resources for the HC? */ 1964 break; 1965 case COMP_BANDWIDTH_ERROR: 1966 case COMP_SECONDARY_BANDWIDTH_ERROR: 1967 dev_warn(&udev->dev, 1968 "Not enough bandwidth for new device state.\n"); 1969 ret = -ENOSPC; 1970 /* FIXME: can we go back to the old state? */ 1971 break; 1972 case COMP_TRB_ERROR: 1973 /* the HCD set up something wrong */ 1974 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1975 "add flag = 1, " 1976 "and endpoint is not disabled.\n"); 1977 ret = -EINVAL; 1978 break; 1979 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1980 dev_warn(&udev->dev, 1981 "ERROR: Incompatible device for endpoint configure command.\n"); 1982 ret = -ENODEV; 1983 break; 1984 case COMP_SUCCESS: 1985 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1986 "Successful Endpoint Configure command"); 1987 ret = 0; 1988 break; 1989 default: 1990 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1991 *cmd_status); 1992 ret = -EINVAL; 1993 break; 1994 } 1995 return ret; 1996 } 1997 1998 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1999 struct usb_device *udev, u32 *cmd_status) 2000 { 2001 int ret; 2002 2003 switch (*cmd_status) { 2004 case COMP_COMMAND_ABORTED: 2005 case COMP_COMMAND_RING_STOPPED: 2006 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2007 ret = -ETIME; 2008 break; 2009 case COMP_PARAMETER_ERROR: 2010 dev_warn(&udev->dev, 2011 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2012 ret = -EINVAL; 2013 break; 2014 case COMP_SLOT_NOT_ENABLED_ERROR: 2015 dev_warn(&udev->dev, 2016 "WARN: slot not enabled for evaluate context command.\n"); 2017 ret = -EINVAL; 2018 break; 2019 case COMP_CONTEXT_STATE_ERROR: 2020 dev_warn(&udev->dev, 2021 "WARN: invalid context state for evaluate context command.\n"); 2022 ret = -EINVAL; 2023 break; 2024 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2025 dev_warn(&udev->dev, 2026 "ERROR: Incompatible device for evaluate context command.\n"); 2027 ret = -ENODEV; 2028 break; 2029 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2030 /* Max Exit Latency too large error */ 2031 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2032 ret = -EINVAL; 2033 break; 2034 case COMP_SUCCESS: 2035 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2036 "Successful evaluate context command"); 2037 ret = 0; 2038 break; 2039 default: 2040 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2041 *cmd_status); 2042 ret = -EINVAL; 2043 break; 2044 } 2045 return ret; 2046 } 2047 2048 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2049 struct xhci_input_control_ctx *ctrl_ctx) 2050 { 2051 u32 valid_add_flags; 2052 u32 valid_drop_flags; 2053 2054 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2055 * (bit 1). The default control endpoint is added during the Address 2056 * Device command and is never removed until the slot is disabled. 2057 */ 2058 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2059 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2060 2061 /* Use hweight32 to count the number of ones in the add flags, or 2062 * number of endpoints added. Don't count endpoints that are changed 2063 * (both added and dropped). 2064 */ 2065 return hweight32(valid_add_flags) - 2066 hweight32(valid_add_flags & valid_drop_flags); 2067 } 2068 2069 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2070 struct xhci_input_control_ctx *ctrl_ctx) 2071 { 2072 u32 valid_add_flags; 2073 u32 valid_drop_flags; 2074 2075 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2076 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2077 2078 return hweight32(valid_drop_flags) - 2079 hweight32(valid_add_flags & valid_drop_flags); 2080 } 2081 2082 /* 2083 * We need to reserve the new number of endpoints before the configure endpoint 2084 * command completes. We can't subtract the dropped endpoints from the number 2085 * of active endpoints until the command completes because we can oversubscribe 2086 * the host in this case: 2087 * 2088 * - the first configure endpoint command drops more endpoints than it adds 2089 * - a second configure endpoint command that adds more endpoints is queued 2090 * - the first configure endpoint command fails, so the config is unchanged 2091 * - the second command may succeed, even though there isn't enough resources 2092 * 2093 * Must be called with xhci->lock held. 2094 */ 2095 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2096 struct xhci_input_control_ctx *ctrl_ctx) 2097 { 2098 u32 added_eps; 2099 2100 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2101 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2102 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2103 "Not enough ep ctxs: " 2104 "%u active, need to add %u, limit is %u.", 2105 xhci->num_active_eps, added_eps, 2106 xhci->limit_active_eps); 2107 return -ENOMEM; 2108 } 2109 xhci->num_active_eps += added_eps; 2110 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2111 "Adding %u ep ctxs, %u now active.", added_eps, 2112 xhci->num_active_eps); 2113 return 0; 2114 } 2115 2116 /* 2117 * The configure endpoint was failed by the xHC for some other reason, so we 2118 * need to revert the resources that failed configuration would have used. 2119 * 2120 * Must be called with xhci->lock held. 2121 */ 2122 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2123 struct xhci_input_control_ctx *ctrl_ctx) 2124 { 2125 u32 num_failed_eps; 2126 2127 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2128 xhci->num_active_eps -= num_failed_eps; 2129 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2130 "Removing %u failed ep ctxs, %u now active.", 2131 num_failed_eps, 2132 xhci->num_active_eps); 2133 } 2134 2135 /* 2136 * Now that the command has completed, clean up the active endpoint count by 2137 * subtracting out the endpoints that were dropped (but not changed). 2138 * 2139 * Must be called with xhci->lock held. 2140 */ 2141 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2142 struct xhci_input_control_ctx *ctrl_ctx) 2143 { 2144 u32 num_dropped_eps; 2145 2146 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2147 xhci->num_active_eps -= num_dropped_eps; 2148 if (num_dropped_eps) 2149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2150 "Removing %u dropped ep ctxs, %u now active.", 2151 num_dropped_eps, 2152 xhci->num_active_eps); 2153 } 2154 2155 static unsigned int xhci_get_block_size(struct usb_device *udev) 2156 { 2157 switch (udev->speed) { 2158 case USB_SPEED_LOW: 2159 case USB_SPEED_FULL: 2160 return FS_BLOCK; 2161 case USB_SPEED_HIGH: 2162 return HS_BLOCK; 2163 case USB_SPEED_SUPER: 2164 case USB_SPEED_SUPER_PLUS: 2165 return SS_BLOCK; 2166 case USB_SPEED_UNKNOWN: 2167 case USB_SPEED_WIRELESS: 2168 default: 2169 /* Should never happen */ 2170 return 1; 2171 } 2172 } 2173 2174 static unsigned int 2175 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2176 { 2177 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2178 return LS_OVERHEAD; 2179 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2180 return FS_OVERHEAD; 2181 return HS_OVERHEAD; 2182 } 2183 2184 /* If we are changing a LS/FS device under a HS hub, 2185 * make sure (if we are activating a new TT) that the HS bus has enough 2186 * bandwidth for this new TT. 2187 */ 2188 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2189 struct xhci_virt_device *virt_dev, 2190 int old_active_eps) 2191 { 2192 struct xhci_interval_bw_table *bw_table; 2193 struct xhci_tt_bw_info *tt_info; 2194 2195 /* Find the bandwidth table for the root port this TT is attached to. */ 2196 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2197 tt_info = virt_dev->tt_info; 2198 /* If this TT already had active endpoints, the bandwidth for this TT 2199 * has already been added. Removing all periodic endpoints (and thus 2200 * making the TT enactive) will only decrease the bandwidth used. 2201 */ 2202 if (old_active_eps) 2203 return 0; 2204 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2205 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2206 return -ENOMEM; 2207 return 0; 2208 } 2209 /* Not sure why we would have no new active endpoints... 2210 * 2211 * Maybe because of an Evaluate Context change for a hub update or a 2212 * control endpoint 0 max packet size change? 2213 * FIXME: skip the bandwidth calculation in that case. 2214 */ 2215 return 0; 2216 } 2217 2218 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2219 struct xhci_virt_device *virt_dev) 2220 { 2221 unsigned int bw_reserved; 2222 2223 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2224 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2225 return -ENOMEM; 2226 2227 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2228 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2229 return -ENOMEM; 2230 2231 return 0; 2232 } 2233 2234 /* 2235 * This algorithm is a very conservative estimate of the worst-case scheduling 2236 * scenario for any one interval. The hardware dynamically schedules the 2237 * packets, so we can't tell which microframe could be the limiting factor in 2238 * the bandwidth scheduling. This only takes into account periodic endpoints. 2239 * 2240 * Obviously, we can't solve an NP complete problem to find the minimum worst 2241 * case scenario. Instead, we come up with an estimate that is no less than 2242 * the worst case bandwidth used for any one microframe, but may be an 2243 * over-estimate. 2244 * 2245 * We walk the requirements for each endpoint by interval, starting with the 2246 * smallest interval, and place packets in the schedule where there is only one 2247 * possible way to schedule packets for that interval. In order to simplify 2248 * this algorithm, we record the largest max packet size for each interval, and 2249 * assume all packets will be that size. 2250 * 2251 * For interval 0, we obviously must schedule all packets for each interval. 2252 * The bandwidth for interval 0 is just the amount of data to be transmitted 2253 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2254 * the number of packets). 2255 * 2256 * For interval 1, we have two possible microframes to schedule those packets 2257 * in. For this algorithm, if we can schedule the same number of packets for 2258 * each possible scheduling opportunity (each microframe), we will do so. The 2259 * remaining number of packets will be saved to be transmitted in the gaps in 2260 * the next interval's scheduling sequence. 2261 * 2262 * As we move those remaining packets to be scheduled with interval 2 packets, 2263 * we have to double the number of remaining packets to transmit. This is 2264 * because the intervals are actually powers of 2, and we would be transmitting 2265 * the previous interval's packets twice in this interval. We also have to be 2266 * sure that when we look at the largest max packet size for this interval, we 2267 * also look at the largest max packet size for the remaining packets and take 2268 * the greater of the two. 2269 * 2270 * The algorithm continues to evenly distribute packets in each scheduling 2271 * opportunity, and push the remaining packets out, until we get to the last 2272 * interval. Then those packets and their associated overhead are just added 2273 * to the bandwidth used. 2274 */ 2275 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2276 struct xhci_virt_device *virt_dev, 2277 int old_active_eps) 2278 { 2279 unsigned int bw_reserved; 2280 unsigned int max_bandwidth; 2281 unsigned int bw_used; 2282 unsigned int block_size; 2283 struct xhci_interval_bw_table *bw_table; 2284 unsigned int packet_size = 0; 2285 unsigned int overhead = 0; 2286 unsigned int packets_transmitted = 0; 2287 unsigned int packets_remaining = 0; 2288 unsigned int i; 2289 2290 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2291 return xhci_check_ss_bw(xhci, virt_dev); 2292 2293 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2294 max_bandwidth = HS_BW_LIMIT; 2295 /* Convert percent of bus BW reserved to blocks reserved */ 2296 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2297 } else { 2298 max_bandwidth = FS_BW_LIMIT; 2299 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2300 } 2301 2302 bw_table = virt_dev->bw_table; 2303 /* We need to translate the max packet size and max ESIT payloads into 2304 * the units the hardware uses. 2305 */ 2306 block_size = xhci_get_block_size(virt_dev->udev); 2307 2308 /* If we are manipulating a LS/FS device under a HS hub, double check 2309 * that the HS bus has enough bandwidth if we are activing a new TT. 2310 */ 2311 if (virt_dev->tt_info) { 2312 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2313 "Recalculating BW for rootport %u", 2314 virt_dev->real_port); 2315 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2316 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2317 "newly activated TT.\n"); 2318 return -ENOMEM; 2319 } 2320 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2321 "Recalculating BW for TT slot %u port %u", 2322 virt_dev->tt_info->slot_id, 2323 virt_dev->tt_info->ttport); 2324 } else { 2325 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2326 "Recalculating BW for rootport %u", 2327 virt_dev->real_port); 2328 } 2329 2330 /* Add in how much bandwidth will be used for interval zero, or the 2331 * rounded max ESIT payload + number of packets * largest overhead. 2332 */ 2333 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2334 bw_table->interval_bw[0].num_packets * 2335 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2336 2337 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2338 unsigned int bw_added; 2339 unsigned int largest_mps; 2340 unsigned int interval_overhead; 2341 2342 /* 2343 * How many packets could we transmit in this interval? 2344 * If packets didn't fit in the previous interval, we will need 2345 * to transmit that many packets twice within this interval. 2346 */ 2347 packets_remaining = 2 * packets_remaining + 2348 bw_table->interval_bw[i].num_packets; 2349 2350 /* Find the largest max packet size of this or the previous 2351 * interval. 2352 */ 2353 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2354 largest_mps = 0; 2355 else { 2356 struct xhci_virt_ep *virt_ep; 2357 struct list_head *ep_entry; 2358 2359 ep_entry = bw_table->interval_bw[i].endpoints.next; 2360 virt_ep = list_entry(ep_entry, 2361 struct xhci_virt_ep, bw_endpoint_list); 2362 /* Convert to blocks, rounding up */ 2363 largest_mps = DIV_ROUND_UP( 2364 virt_ep->bw_info.max_packet_size, 2365 block_size); 2366 } 2367 if (largest_mps > packet_size) 2368 packet_size = largest_mps; 2369 2370 /* Use the larger overhead of this or the previous interval. */ 2371 interval_overhead = xhci_get_largest_overhead( 2372 &bw_table->interval_bw[i]); 2373 if (interval_overhead > overhead) 2374 overhead = interval_overhead; 2375 2376 /* How many packets can we evenly distribute across 2377 * (1 << (i + 1)) possible scheduling opportunities? 2378 */ 2379 packets_transmitted = packets_remaining >> (i + 1); 2380 2381 /* Add in the bandwidth used for those scheduled packets */ 2382 bw_added = packets_transmitted * (overhead + packet_size); 2383 2384 /* How many packets do we have remaining to transmit? */ 2385 packets_remaining = packets_remaining % (1 << (i + 1)); 2386 2387 /* What largest max packet size should those packets have? */ 2388 /* If we've transmitted all packets, don't carry over the 2389 * largest packet size. 2390 */ 2391 if (packets_remaining == 0) { 2392 packet_size = 0; 2393 overhead = 0; 2394 } else if (packets_transmitted > 0) { 2395 /* Otherwise if we do have remaining packets, and we've 2396 * scheduled some packets in this interval, take the 2397 * largest max packet size from endpoints with this 2398 * interval. 2399 */ 2400 packet_size = largest_mps; 2401 overhead = interval_overhead; 2402 } 2403 /* Otherwise carry over packet_size and overhead from the last 2404 * time we had a remainder. 2405 */ 2406 bw_used += bw_added; 2407 if (bw_used > max_bandwidth) { 2408 xhci_warn(xhci, "Not enough bandwidth. " 2409 "Proposed: %u, Max: %u\n", 2410 bw_used, max_bandwidth); 2411 return -ENOMEM; 2412 } 2413 } 2414 /* 2415 * Ok, we know we have some packets left over after even-handedly 2416 * scheduling interval 15. We don't know which microframes they will 2417 * fit into, so we over-schedule and say they will be scheduled every 2418 * microframe. 2419 */ 2420 if (packets_remaining > 0) 2421 bw_used += overhead + packet_size; 2422 2423 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2424 unsigned int port_index = virt_dev->real_port - 1; 2425 2426 /* OK, we're manipulating a HS device attached to a 2427 * root port bandwidth domain. Include the number of active TTs 2428 * in the bandwidth used. 2429 */ 2430 bw_used += TT_HS_OVERHEAD * 2431 xhci->rh_bw[port_index].num_active_tts; 2432 } 2433 2434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2435 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2436 "Available: %u " "percent", 2437 bw_used, max_bandwidth, bw_reserved, 2438 (max_bandwidth - bw_used - bw_reserved) * 100 / 2439 max_bandwidth); 2440 2441 bw_used += bw_reserved; 2442 if (bw_used > max_bandwidth) { 2443 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2444 bw_used, max_bandwidth); 2445 return -ENOMEM; 2446 } 2447 2448 bw_table->bw_used = bw_used; 2449 return 0; 2450 } 2451 2452 static bool xhci_is_async_ep(unsigned int ep_type) 2453 { 2454 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2455 ep_type != ISOC_IN_EP && 2456 ep_type != INT_IN_EP); 2457 } 2458 2459 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2460 { 2461 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2462 } 2463 2464 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2465 { 2466 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2467 2468 if (ep_bw->ep_interval == 0) 2469 return SS_OVERHEAD_BURST + 2470 (ep_bw->mult * ep_bw->num_packets * 2471 (SS_OVERHEAD + mps)); 2472 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2473 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2474 1 << ep_bw->ep_interval); 2475 2476 } 2477 2478 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2479 struct xhci_bw_info *ep_bw, 2480 struct xhci_interval_bw_table *bw_table, 2481 struct usb_device *udev, 2482 struct xhci_virt_ep *virt_ep, 2483 struct xhci_tt_bw_info *tt_info) 2484 { 2485 struct xhci_interval_bw *interval_bw; 2486 int normalized_interval; 2487 2488 if (xhci_is_async_ep(ep_bw->type)) 2489 return; 2490 2491 if (udev->speed >= USB_SPEED_SUPER) { 2492 if (xhci_is_sync_in_ep(ep_bw->type)) 2493 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2494 xhci_get_ss_bw_consumed(ep_bw); 2495 else 2496 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2497 xhci_get_ss_bw_consumed(ep_bw); 2498 return; 2499 } 2500 2501 /* SuperSpeed endpoints never get added to intervals in the table, so 2502 * this check is only valid for HS/FS/LS devices. 2503 */ 2504 if (list_empty(&virt_ep->bw_endpoint_list)) 2505 return; 2506 /* For LS/FS devices, we need to translate the interval expressed in 2507 * microframes to frames. 2508 */ 2509 if (udev->speed == USB_SPEED_HIGH) 2510 normalized_interval = ep_bw->ep_interval; 2511 else 2512 normalized_interval = ep_bw->ep_interval - 3; 2513 2514 if (normalized_interval == 0) 2515 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2516 interval_bw = &bw_table->interval_bw[normalized_interval]; 2517 interval_bw->num_packets -= ep_bw->num_packets; 2518 switch (udev->speed) { 2519 case USB_SPEED_LOW: 2520 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2521 break; 2522 case USB_SPEED_FULL: 2523 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2524 break; 2525 case USB_SPEED_HIGH: 2526 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2527 break; 2528 case USB_SPEED_SUPER: 2529 case USB_SPEED_SUPER_PLUS: 2530 case USB_SPEED_UNKNOWN: 2531 case USB_SPEED_WIRELESS: 2532 /* Should never happen because only LS/FS/HS endpoints will get 2533 * added to the endpoint list. 2534 */ 2535 return; 2536 } 2537 if (tt_info) 2538 tt_info->active_eps -= 1; 2539 list_del_init(&virt_ep->bw_endpoint_list); 2540 } 2541 2542 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2543 struct xhci_bw_info *ep_bw, 2544 struct xhci_interval_bw_table *bw_table, 2545 struct usb_device *udev, 2546 struct xhci_virt_ep *virt_ep, 2547 struct xhci_tt_bw_info *tt_info) 2548 { 2549 struct xhci_interval_bw *interval_bw; 2550 struct xhci_virt_ep *smaller_ep; 2551 int normalized_interval; 2552 2553 if (xhci_is_async_ep(ep_bw->type)) 2554 return; 2555 2556 if (udev->speed == USB_SPEED_SUPER) { 2557 if (xhci_is_sync_in_ep(ep_bw->type)) 2558 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2559 xhci_get_ss_bw_consumed(ep_bw); 2560 else 2561 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2562 xhci_get_ss_bw_consumed(ep_bw); 2563 return; 2564 } 2565 2566 /* For LS/FS devices, we need to translate the interval expressed in 2567 * microframes to frames. 2568 */ 2569 if (udev->speed == USB_SPEED_HIGH) 2570 normalized_interval = ep_bw->ep_interval; 2571 else 2572 normalized_interval = ep_bw->ep_interval - 3; 2573 2574 if (normalized_interval == 0) 2575 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2576 interval_bw = &bw_table->interval_bw[normalized_interval]; 2577 interval_bw->num_packets += ep_bw->num_packets; 2578 switch (udev->speed) { 2579 case USB_SPEED_LOW: 2580 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2581 break; 2582 case USB_SPEED_FULL: 2583 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2584 break; 2585 case USB_SPEED_HIGH: 2586 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2587 break; 2588 case USB_SPEED_SUPER: 2589 case USB_SPEED_SUPER_PLUS: 2590 case USB_SPEED_UNKNOWN: 2591 case USB_SPEED_WIRELESS: 2592 /* Should never happen because only LS/FS/HS endpoints will get 2593 * added to the endpoint list. 2594 */ 2595 return; 2596 } 2597 2598 if (tt_info) 2599 tt_info->active_eps += 1; 2600 /* Insert the endpoint into the list, largest max packet size first. */ 2601 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2602 bw_endpoint_list) { 2603 if (ep_bw->max_packet_size >= 2604 smaller_ep->bw_info.max_packet_size) { 2605 /* Add the new ep before the smaller endpoint */ 2606 list_add_tail(&virt_ep->bw_endpoint_list, 2607 &smaller_ep->bw_endpoint_list); 2608 return; 2609 } 2610 } 2611 /* Add the new endpoint at the end of the list. */ 2612 list_add_tail(&virt_ep->bw_endpoint_list, 2613 &interval_bw->endpoints); 2614 } 2615 2616 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2617 struct xhci_virt_device *virt_dev, 2618 int old_active_eps) 2619 { 2620 struct xhci_root_port_bw_info *rh_bw_info; 2621 if (!virt_dev->tt_info) 2622 return; 2623 2624 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2625 if (old_active_eps == 0 && 2626 virt_dev->tt_info->active_eps != 0) { 2627 rh_bw_info->num_active_tts += 1; 2628 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2629 } else if (old_active_eps != 0 && 2630 virt_dev->tt_info->active_eps == 0) { 2631 rh_bw_info->num_active_tts -= 1; 2632 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2633 } 2634 } 2635 2636 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2637 struct xhci_virt_device *virt_dev, 2638 struct xhci_container_ctx *in_ctx) 2639 { 2640 struct xhci_bw_info ep_bw_info[31]; 2641 int i; 2642 struct xhci_input_control_ctx *ctrl_ctx; 2643 int old_active_eps = 0; 2644 2645 if (virt_dev->tt_info) 2646 old_active_eps = virt_dev->tt_info->active_eps; 2647 2648 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2649 if (!ctrl_ctx) { 2650 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2651 __func__); 2652 return -ENOMEM; 2653 } 2654 2655 for (i = 0; i < 31; i++) { 2656 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2657 continue; 2658 2659 /* Make a copy of the BW info in case we need to revert this */ 2660 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2661 sizeof(ep_bw_info[i])); 2662 /* Drop the endpoint from the interval table if the endpoint is 2663 * being dropped or changed. 2664 */ 2665 if (EP_IS_DROPPED(ctrl_ctx, i)) 2666 xhci_drop_ep_from_interval_table(xhci, 2667 &virt_dev->eps[i].bw_info, 2668 virt_dev->bw_table, 2669 virt_dev->udev, 2670 &virt_dev->eps[i], 2671 virt_dev->tt_info); 2672 } 2673 /* Overwrite the information stored in the endpoints' bw_info */ 2674 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2675 for (i = 0; i < 31; i++) { 2676 /* Add any changed or added endpoints to the interval table */ 2677 if (EP_IS_ADDED(ctrl_ctx, i)) 2678 xhci_add_ep_to_interval_table(xhci, 2679 &virt_dev->eps[i].bw_info, 2680 virt_dev->bw_table, 2681 virt_dev->udev, 2682 &virt_dev->eps[i], 2683 virt_dev->tt_info); 2684 } 2685 2686 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2687 /* Ok, this fits in the bandwidth we have. 2688 * Update the number of active TTs. 2689 */ 2690 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2691 return 0; 2692 } 2693 2694 /* We don't have enough bandwidth for this, revert the stored info. */ 2695 for (i = 0; i < 31; i++) { 2696 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2697 continue; 2698 2699 /* Drop the new copies of any added or changed endpoints from 2700 * the interval table. 2701 */ 2702 if (EP_IS_ADDED(ctrl_ctx, i)) { 2703 xhci_drop_ep_from_interval_table(xhci, 2704 &virt_dev->eps[i].bw_info, 2705 virt_dev->bw_table, 2706 virt_dev->udev, 2707 &virt_dev->eps[i], 2708 virt_dev->tt_info); 2709 } 2710 /* Revert the endpoint back to its old information */ 2711 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2712 sizeof(ep_bw_info[i])); 2713 /* Add any changed or dropped endpoints back into the table */ 2714 if (EP_IS_DROPPED(ctrl_ctx, i)) 2715 xhci_add_ep_to_interval_table(xhci, 2716 &virt_dev->eps[i].bw_info, 2717 virt_dev->bw_table, 2718 virt_dev->udev, 2719 &virt_dev->eps[i], 2720 virt_dev->tt_info); 2721 } 2722 return -ENOMEM; 2723 } 2724 2725 2726 /* Issue a configure endpoint command or evaluate context command 2727 * and wait for it to finish. 2728 */ 2729 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2730 struct usb_device *udev, 2731 struct xhci_command *command, 2732 bool ctx_change, bool must_succeed) 2733 { 2734 int ret; 2735 unsigned long flags; 2736 struct xhci_input_control_ctx *ctrl_ctx; 2737 struct xhci_virt_device *virt_dev; 2738 struct xhci_slot_ctx *slot_ctx; 2739 2740 if (!command) 2741 return -EINVAL; 2742 2743 spin_lock_irqsave(&xhci->lock, flags); 2744 2745 if (xhci->xhc_state & XHCI_STATE_DYING) { 2746 spin_unlock_irqrestore(&xhci->lock, flags); 2747 return -ESHUTDOWN; 2748 } 2749 2750 virt_dev = xhci->devs[udev->slot_id]; 2751 2752 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2753 if (!ctrl_ctx) { 2754 spin_unlock_irqrestore(&xhci->lock, flags); 2755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2756 __func__); 2757 return -ENOMEM; 2758 } 2759 2760 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2761 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2762 spin_unlock_irqrestore(&xhci->lock, flags); 2763 xhci_warn(xhci, "Not enough host resources, " 2764 "active endpoint contexts = %u\n", 2765 xhci->num_active_eps); 2766 return -ENOMEM; 2767 } 2768 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2769 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2770 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2771 xhci_free_host_resources(xhci, ctrl_ctx); 2772 spin_unlock_irqrestore(&xhci->lock, flags); 2773 xhci_warn(xhci, "Not enough bandwidth\n"); 2774 return -ENOMEM; 2775 } 2776 2777 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2778 2779 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2780 trace_xhci_configure_endpoint(slot_ctx); 2781 2782 if (!ctx_change) 2783 ret = xhci_queue_configure_endpoint(xhci, command, 2784 command->in_ctx->dma, 2785 udev->slot_id, must_succeed); 2786 else 2787 ret = xhci_queue_evaluate_context(xhci, command, 2788 command->in_ctx->dma, 2789 udev->slot_id, must_succeed); 2790 if (ret < 0) { 2791 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2792 xhci_free_host_resources(xhci, ctrl_ctx); 2793 spin_unlock_irqrestore(&xhci->lock, flags); 2794 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2795 "FIXME allocate a new ring segment"); 2796 return -ENOMEM; 2797 } 2798 xhci_ring_cmd_db(xhci); 2799 spin_unlock_irqrestore(&xhci->lock, flags); 2800 2801 /* Wait for the configure endpoint command to complete */ 2802 wait_for_completion(command->completion); 2803 2804 if (!ctx_change) 2805 ret = xhci_configure_endpoint_result(xhci, udev, 2806 &command->status); 2807 else 2808 ret = xhci_evaluate_context_result(xhci, udev, 2809 &command->status); 2810 2811 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2812 spin_lock_irqsave(&xhci->lock, flags); 2813 /* If the command failed, remove the reserved resources. 2814 * Otherwise, clean up the estimate to include dropped eps. 2815 */ 2816 if (ret) 2817 xhci_free_host_resources(xhci, ctrl_ctx); 2818 else 2819 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2820 spin_unlock_irqrestore(&xhci->lock, flags); 2821 } 2822 return ret; 2823 } 2824 2825 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2826 struct xhci_virt_device *vdev, int i) 2827 { 2828 struct xhci_virt_ep *ep = &vdev->eps[i]; 2829 2830 if (ep->ep_state & EP_HAS_STREAMS) { 2831 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2832 xhci_get_endpoint_address(i)); 2833 xhci_free_stream_info(xhci, ep->stream_info); 2834 ep->stream_info = NULL; 2835 ep->ep_state &= ~EP_HAS_STREAMS; 2836 } 2837 } 2838 2839 /* Called after one or more calls to xhci_add_endpoint() or 2840 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2841 * to call xhci_reset_bandwidth(). 2842 * 2843 * Since we are in the middle of changing either configuration or 2844 * installing a new alt setting, the USB core won't allow URBs to be 2845 * enqueued for any endpoint on the old config or interface. Nothing 2846 * else should be touching the xhci->devs[slot_id] structure, so we 2847 * don't need to take the xhci->lock for manipulating that. 2848 */ 2849 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2850 { 2851 int i; 2852 int ret = 0; 2853 struct xhci_hcd *xhci; 2854 struct xhci_virt_device *virt_dev; 2855 struct xhci_input_control_ctx *ctrl_ctx; 2856 struct xhci_slot_ctx *slot_ctx; 2857 struct xhci_command *command; 2858 2859 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2860 if (ret <= 0) 2861 return ret; 2862 xhci = hcd_to_xhci(hcd); 2863 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2864 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2865 return -ENODEV; 2866 2867 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2868 virt_dev = xhci->devs[udev->slot_id]; 2869 2870 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2871 if (!command) 2872 return -ENOMEM; 2873 2874 command->in_ctx = virt_dev->in_ctx; 2875 2876 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2877 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2878 if (!ctrl_ctx) { 2879 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2880 __func__); 2881 ret = -ENOMEM; 2882 goto command_cleanup; 2883 } 2884 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2885 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2886 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2887 2888 /* Don't issue the command if there's no endpoints to update. */ 2889 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2890 ctrl_ctx->drop_flags == 0) { 2891 ret = 0; 2892 goto command_cleanup; 2893 } 2894 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2895 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2896 for (i = 31; i >= 1; i--) { 2897 __le32 le32 = cpu_to_le32(BIT(i)); 2898 2899 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2900 || (ctrl_ctx->add_flags & le32) || i == 1) { 2901 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2902 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2903 break; 2904 } 2905 } 2906 2907 ret = xhci_configure_endpoint(xhci, udev, command, 2908 false, false); 2909 if (ret) 2910 /* Callee should call reset_bandwidth() */ 2911 goto command_cleanup; 2912 2913 /* Free any rings that were dropped, but not changed. */ 2914 for (i = 1; i < 31; i++) { 2915 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2916 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2917 xhci_free_endpoint_ring(xhci, virt_dev, i); 2918 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2919 } 2920 } 2921 xhci_zero_in_ctx(xhci, virt_dev); 2922 /* 2923 * Install any rings for completely new endpoints or changed endpoints, 2924 * and free any old rings from changed endpoints. 2925 */ 2926 for (i = 1; i < 31; i++) { 2927 if (!virt_dev->eps[i].new_ring) 2928 continue; 2929 /* Only free the old ring if it exists. 2930 * It may not if this is the first add of an endpoint. 2931 */ 2932 if (virt_dev->eps[i].ring) { 2933 xhci_free_endpoint_ring(xhci, virt_dev, i); 2934 } 2935 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2936 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2937 virt_dev->eps[i].new_ring = NULL; 2938 } 2939 command_cleanup: 2940 kfree(command->completion); 2941 kfree(command); 2942 2943 return ret; 2944 } 2945 2946 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2947 { 2948 struct xhci_hcd *xhci; 2949 struct xhci_virt_device *virt_dev; 2950 int i, ret; 2951 2952 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2953 if (ret <= 0) 2954 return; 2955 xhci = hcd_to_xhci(hcd); 2956 2957 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2958 virt_dev = xhci->devs[udev->slot_id]; 2959 /* Free any rings allocated for added endpoints */ 2960 for (i = 0; i < 31; i++) { 2961 if (virt_dev->eps[i].new_ring) { 2962 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2963 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2964 virt_dev->eps[i].new_ring = NULL; 2965 } 2966 } 2967 xhci_zero_in_ctx(xhci, virt_dev); 2968 } 2969 2970 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2971 struct xhci_container_ctx *in_ctx, 2972 struct xhci_container_ctx *out_ctx, 2973 struct xhci_input_control_ctx *ctrl_ctx, 2974 u32 add_flags, u32 drop_flags) 2975 { 2976 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2977 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2978 xhci_slot_copy(xhci, in_ctx, out_ctx); 2979 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2980 } 2981 2982 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2983 unsigned int slot_id, unsigned int ep_index, 2984 struct xhci_dequeue_state *deq_state) 2985 { 2986 struct xhci_input_control_ctx *ctrl_ctx; 2987 struct xhci_container_ctx *in_ctx; 2988 struct xhci_ep_ctx *ep_ctx; 2989 u32 added_ctxs; 2990 dma_addr_t addr; 2991 2992 in_ctx = xhci->devs[slot_id]->in_ctx; 2993 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2994 if (!ctrl_ctx) { 2995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2996 __func__); 2997 return; 2998 } 2999 3000 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3001 xhci->devs[slot_id]->out_ctx, ep_index); 3002 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3003 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3004 deq_state->new_deq_ptr); 3005 if (addr == 0) { 3006 xhci_warn(xhci, "WARN Cannot submit config ep after " 3007 "reset ep command\n"); 3008 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3009 deq_state->new_deq_seg, 3010 deq_state->new_deq_ptr); 3011 return; 3012 } 3013 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3014 3015 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3016 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3017 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3018 added_ctxs, added_ctxs); 3019 } 3020 3021 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 3022 unsigned int stream_id, struct xhci_td *td) 3023 { 3024 struct xhci_dequeue_state deq_state; 3025 struct usb_device *udev = td->urb->dev; 3026 3027 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3028 "Cleaning up stalled endpoint ring"); 3029 /* We need to move the HW's dequeue pointer past this TD, 3030 * or it will attempt to resend it on the next doorbell ring. 3031 */ 3032 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3033 ep_index, stream_id, td, &deq_state); 3034 3035 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3036 return; 3037 3038 /* HW with the reset endpoint quirk will use the saved dequeue state to 3039 * issue a configure endpoint command later. 3040 */ 3041 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3042 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3043 "Queueing new dequeue state"); 3044 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3045 ep_index, &deq_state); 3046 } else { 3047 /* Better hope no one uses the input context between now and the 3048 * reset endpoint completion! 3049 * XXX: No idea how this hardware will react when stream rings 3050 * are enabled. 3051 */ 3052 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3053 "Setting up input context for " 3054 "configure endpoint command"); 3055 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3056 ep_index, &deq_state); 3057 } 3058 } 3059 3060 /* 3061 * Called after usb core issues a clear halt control message. 3062 * The host side of the halt should already be cleared by a reset endpoint 3063 * command issued when the STALL event was received. 3064 * 3065 * The reset endpoint command may only be issued to endpoints in the halted 3066 * state. For software that wishes to reset the data toggle or sequence number 3067 * of an endpoint that isn't in the halted state this function will issue a 3068 * configure endpoint command with the Drop and Add bits set for the target 3069 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3070 */ 3071 3072 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3073 struct usb_host_endpoint *host_ep) 3074 { 3075 struct xhci_hcd *xhci; 3076 struct usb_device *udev; 3077 struct xhci_virt_device *vdev; 3078 struct xhci_virt_ep *ep; 3079 struct xhci_input_control_ctx *ctrl_ctx; 3080 struct xhci_command *stop_cmd, *cfg_cmd; 3081 unsigned int ep_index; 3082 unsigned long flags; 3083 u32 ep_flag; 3084 3085 xhci = hcd_to_xhci(hcd); 3086 if (!host_ep->hcpriv) 3087 return; 3088 udev = (struct usb_device *) host_ep->hcpriv; 3089 vdev = xhci->devs[udev->slot_id]; 3090 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3091 ep = &vdev->eps[ep_index]; 3092 3093 /* Bail out if toggle is already being cleared by a endpoint reset */ 3094 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3095 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3096 return; 3097 } 3098 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3099 if (usb_endpoint_xfer_control(&host_ep->desc) || 3100 usb_endpoint_xfer_isoc(&host_ep->desc)) 3101 return; 3102 3103 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3104 3105 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3106 return; 3107 3108 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3109 if (!stop_cmd) 3110 return; 3111 3112 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3113 if (!cfg_cmd) 3114 goto cleanup; 3115 3116 spin_lock_irqsave(&xhci->lock, flags); 3117 3118 /* block queuing new trbs and ringing ep doorbell */ 3119 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3120 3121 /* 3122 * Make sure endpoint ring is empty before resetting the toggle/seq. 3123 * Driver is required to synchronously cancel all transfer request. 3124 * Stop the endpoint to force xHC to update the output context 3125 */ 3126 3127 if (!list_empty(&ep->ring->td_list)) { 3128 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3129 spin_unlock_irqrestore(&xhci->lock, flags); 3130 xhci_free_command(xhci, cfg_cmd); 3131 goto cleanup; 3132 } 3133 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3134 xhci_ring_cmd_db(xhci); 3135 spin_unlock_irqrestore(&xhci->lock, flags); 3136 3137 wait_for_completion(stop_cmd->completion); 3138 3139 spin_lock_irqsave(&xhci->lock, flags); 3140 3141 /* config ep command clears toggle if add and drop ep flags are set */ 3142 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3143 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3144 ctrl_ctx, ep_flag, ep_flag); 3145 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3146 3147 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3148 udev->slot_id, false); 3149 xhci_ring_cmd_db(xhci); 3150 spin_unlock_irqrestore(&xhci->lock, flags); 3151 3152 wait_for_completion(cfg_cmd->completion); 3153 3154 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3155 xhci_free_command(xhci, cfg_cmd); 3156 cleanup: 3157 xhci_free_command(xhci, stop_cmd); 3158 } 3159 3160 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3161 struct usb_device *udev, struct usb_host_endpoint *ep, 3162 unsigned int slot_id) 3163 { 3164 int ret; 3165 unsigned int ep_index; 3166 unsigned int ep_state; 3167 3168 if (!ep) 3169 return -EINVAL; 3170 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3171 if (ret <= 0) 3172 return -EINVAL; 3173 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3174 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3175 " descriptor for ep 0x%x does not support streams\n", 3176 ep->desc.bEndpointAddress); 3177 return -EINVAL; 3178 } 3179 3180 ep_index = xhci_get_endpoint_index(&ep->desc); 3181 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3182 if (ep_state & EP_HAS_STREAMS || 3183 ep_state & EP_GETTING_STREAMS) { 3184 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3185 "already has streams set up.\n", 3186 ep->desc.bEndpointAddress); 3187 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3188 "dynamic stream context array reallocation.\n"); 3189 return -EINVAL; 3190 } 3191 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3192 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3193 "endpoint 0x%x; URBs are pending.\n", 3194 ep->desc.bEndpointAddress); 3195 return -EINVAL; 3196 } 3197 return 0; 3198 } 3199 3200 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3201 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3202 { 3203 unsigned int max_streams; 3204 3205 /* The stream context array size must be a power of two */ 3206 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3207 /* 3208 * Find out how many primary stream array entries the host controller 3209 * supports. Later we may use secondary stream arrays (similar to 2nd 3210 * level page entries), but that's an optional feature for xHCI host 3211 * controllers. xHCs must support at least 4 stream IDs. 3212 */ 3213 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3214 if (*num_stream_ctxs > max_streams) { 3215 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3216 max_streams); 3217 *num_stream_ctxs = max_streams; 3218 *num_streams = max_streams; 3219 } 3220 } 3221 3222 /* Returns an error code if one of the endpoint already has streams. 3223 * This does not change any data structures, it only checks and gathers 3224 * information. 3225 */ 3226 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3227 struct usb_device *udev, 3228 struct usb_host_endpoint **eps, unsigned int num_eps, 3229 unsigned int *num_streams, u32 *changed_ep_bitmask) 3230 { 3231 unsigned int max_streams; 3232 unsigned int endpoint_flag; 3233 int i; 3234 int ret; 3235 3236 for (i = 0; i < num_eps; i++) { 3237 ret = xhci_check_streams_endpoint(xhci, udev, 3238 eps[i], udev->slot_id); 3239 if (ret < 0) 3240 return ret; 3241 3242 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3243 if (max_streams < (*num_streams - 1)) { 3244 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3245 eps[i]->desc.bEndpointAddress, 3246 max_streams); 3247 *num_streams = max_streams+1; 3248 } 3249 3250 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3251 if (*changed_ep_bitmask & endpoint_flag) 3252 return -EINVAL; 3253 *changed_ep_bitmask |= endpoint_flag; 3254 } 3255 return 0; 3256 } 3257 3258 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3259 struct usb_device *udev, 3260 struct usb_host_endpoint **eps, unsigned int num_eps) 3261 { 3262 u32 changed_ep_bitmask = 0; 3263 unsigned int slot_id; 3264 unsigned int ep_index; 3265 unsigned int ep_state; 3266 int i; 3267 3268 slot_id = udev->slot_id; 3269 if (!xhci->devs[slot_id]) 3270 return 0; 3271 3272 for (i = 0; i < num_eps; i++) { 3273 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3274 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3275 /* Are streams already being freed for the endpoint? */ 3276 if (ep_state & EP_GETTING_NO_STREAMS) { 3277 xhci_warn(xhci, "WARN Can't disable streams for " 3278 "endpoint 0x%x, " 3279 "streams are being disabled already\n", 3280 eps[i]->desc.bEndpointAddress); 3281 return 0; 3282 } 3283 /* Are there actually any streams to free? */ 3284 if (!(ep_state & EP_HAS_STREAMS) && 3285 !(ep_state & EP_GETTING_STREAMS)) { 3286 xhci_warn(xhci, "WARN Can't disable streams for " 3287 "endpoint 0x%x, " 3288 "streams are already disabled!\n", 3289 eps[i]->desc.bEndpointAddress); 3290 xhci_warn(xhci, "WARN xhci_free_streams() called " 3291 "with non-streams endpoint\n"); 3292 return 0; 3293 } 3294 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3295 } 3296 return changed_ep_bitmask; 3297 } 3298 3299 /* 3300 * The USB device drivers use this function (through the HCD interface in USB 3301 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3302 * coordinate mass storage command queueing across multiple endpoints (basically 3303 * a stream ID == a task ID). 3304 * 3305 * Setting up streams involves allocating the same size stream context array 3306 * for each endpoint and issuing a configure endpoint command for all endpoints. 3307 * 3308 * Don't allow the call to succeed if one endpoint only supports one stream 3309 * (which means it doesn't support streams at all). 3310 * 3311 * Drivers may get less stream IDs than they asked for, if the host controller 3312 * hardware or endpoints claim they can't support the number of requested 3313 * stream IDs. 3314 */ 3315 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3316 struct usb_host_endpoint **eps, unsigned int num_eps, 3317 unsigned int num_streams, gfp_t mem_flags) 3318 { 3319 int i, ret; 3320 struct xhci_hcd *xhci; 3321 struct xhci_virt_device *vdev; 3322 struct xhci_command *config_cmd; 3323 struct xhci_input_control_ctx *ctrl_ctx; 3324 unsigned int ep_index; 3325 unsigned int num_stream_ctxs; 3326 unsigned int max_packet; 3327 unsigned long flags; 3328 u32 changed_ep_bitmask = 0; 3329 3330 if (!eps) 3331 return -EINVAL; 3332 3333 /* Add one to the number of streams requested to account for 3334 * stream 0 that is reserved for xHCI usage. 3335 */ 3336 num_streams += 1; 3337 xhci = hcd_to_xhci(hcd); 3338 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3339 num_streams); 3340 3341 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3342 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3343 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3344 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3345 return -ENOSYS; 3346 } 3347 3348 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3349 if (!config_cmd) 3350 return -ENOMEM; 3351 3352 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3353 if (!ctrl_ctx) { 3354 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3355 __func__); 3356 xhci_free_command(xhci, config_cmd); 3357 return -ENOMEM; 3358 } 3359 3360 /* Check to make sure all endpoints are not already configured for 3361 * streams. While we're at it, find the maximum number of streams that 3362 * all the endpoints will support and check for duplicate endpoints. 3363 */ 3364 spin_lock_irqsave(&xhci->lock, flags); 3365 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3366 num_eps, &num_streams, &changed_ep_bitmask); 3367 if (ret < 0) { 3368 xhci_free_command(xhci, config_cmd); 3369 spin_unlock_irqrestore(&xhci->lock, flags); 3370 return ret; 3371 } 3372 if (num_streams <= 1) { 3373 xhci_warn(xhci, "WARN: endpoints can't handle " 3374 "more than one stream.\n"); 3375 xhci_free_command(xhci, config_cmd); 3376 spin_unlock_irqrestore(&xhci->lock, flags); 3377 return -EINVAL; 3378 } 3379 vdev = xhci->devs[udev->slot_id]; 3380 /* Mark each endpoint as being in transition, so 3381 * xhci_urb_enqueue() will reject all URBs. 3382 */ 3383 for (i = 0; i < num_eps; i++) { 3384 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3385 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3386 } 3387 spin_unlock_irqrestore(&xhci->lock, flags); 3388 3389 /* Setup internal data structures and allocate HW data structures for 3390 * streams (but don't install the HW structures in the input context 3391 * until we're sure all memory allocation succeeded). 3392 */ 3393 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3394 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3395 num_stream_ctxs, num_streams); 3396 3397 for (i = 0; i < num_eps; i++) { 3398 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3399 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3400 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3401 num_stream_ctxs, 3402 num_streams, 3403 max_packet, mem_flags); 3404 if (!vdev->eps[ep_index].stream_info) 3405 goto cleanup; 3406 /* Set maxPstreams in endpoint context and update deq ptr to 3407 * point to stream context array. FIXME 3408 */ 3409 } 3410 3411 /* Set up the input context for a configure endpoint command. */ 3412 for (i = 0; i < num_eps; i++) { 3413 struct xhci_ep_ctx *ep_ctx; 3414 3415 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3416 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3417 3418 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3419 vdev->out_ctx, ep_index); 3420 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3421 vdev->eps[ep_index].stream_info); 3422 } 3423 /* Tell the HW to drop its old copy of the endpoint context info 3424 * and add the updated copy from the input context. 3425 */ 3426 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3427 vdev->out_ctx, ctrl_ctx, 3428 changed_ep_bitmask, changed_ep_bitmask); 3429 3430 /* Issue and wait for the configure endpoint command */ 3431 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3432 false, false); 3433 3434 /* xHC rejected the configure endpoint command for some reason, so we 3435 * leave the old ring intact and free our internal streams data 3436 * structure. 3437 */ 3438 if (ret < 0) 3439 goto cleanup; 3440 3441 spin_lock_irqsave(&xhci->lock, flags); 3442 for (i = 0; i < num_eps; i++) { 3443 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3444 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3445 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3446 udev->slot_id, ep_index); 3447 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3448 } 3449 xhci_free_command(xhci, config_cmd); 3450 spin_unlock_irqrestore(&xhci->lock, flags); 3451 3452 /* Subtract 1 for stream 0, which drivers can't use */ 3453 return num_streams - 1; 3454 3455 cleanup: 3456 /* If it didn't work, free the streams! */ 3457 for (i = 0; i < num_eps; i++) { 3458 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3459 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3460 vdev->eps[ep_index].stream_info = NULL; 3461 /* FIXME Unset maxPstreams in endpoint context and 3462 * update deq ptr to point to normal string ring. 3463 */ 3464 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3465 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3466 xhci_endpoint_zero(xhci, vdev, eps[i]); 3467 } 3468 xhci_free_command(xhci, config_cmd); 3469 return -ENOMEM; 3470 } 3471 3472 /* Transition the endpoint from using streams to being a "normal" endpoint 3473 * without streams. 3474 * 3475 * Modify the endpoint context state, submit a configure endpoint command, 3476 * and free all endpoint rings for streams if that completes successfully. 3477 */ 3478 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3479 struct usb_host_endpoint **eps, unsigned int num_eps, 3480 gfp_t mem_flags) 3481 { 3482 int i, ret; 3483 struct xhci_hcd *xhci; 3484 struct xhci_virt_device *vdev; 3485 struct xhci_command *command; 3486 struct xhci_input_control_ctx *ctrl_ctx; 3487 unsigned int ep_index; 3488 unsigned long flags; 3489 u32 changed_ep_bitmask; 3490 3491 xhci = hcd_to_xhci(hcd); 3492 vdev = xhci->devs[udev->slot_id]; 3493 3494 /* Set up a configure endpoint command to remove the streams rings */ 3495 spin_lock_irqsave(&xhci->lock, flags); 3496 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3497 udev, eps, num_eps); 3498 if (changed_ep_bitmask == 0) { 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 return -EINVAL; 3501 } 3502 3503 /* Use the xhci_command structure from the first endpoint. We may have 3504 * allocated too many, but the driver may call xhci_free_streams() for 3505 * each endpoint it grouped into one call to xhci_alloc_streams(). 3506 */ 3507 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3508 command = vdev->eps[ep_index].stream_info->free_streams_command; 3509 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3510 if (!ctrl_ctx) { 3511 spin_unlock_irqrestore(&xhci->lock, flags); 3512 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3513 __func__); 3514 return -EINVAL; 3515 } 3516 3517 for (i = 0; i < num_eps; i++) { 3518 struct xhci_ep_ctx *ep_ctx; 3519 3520 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3521 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3522 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3523 EP_GETTING_NO_STREAMS; 3524 3525 xhci_endpoint_copy(xhci, command->in_ctx, 3526 vdev->out_ctx, ep_index); 3527 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3528 &vdev->eps[ep_index]); 3529 } 3530 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3531 vdev->out_ctx, ctrl_ctx, 3532 changed_ep_bitmask, changed_ep_bitmask); 3533 spin_unlock_irqrestore(&xhci->lock, flags); 3534 3535 /* Issue and wait for the configure endpoint command, 3536 * which must succeed. 3537 */ 3538 ret = xhci_configure_endpoint(xhci, udev, command, 3539 false, true); 3540 3541 /* xHC rejected the configure endpoint command for some reason, so we 3542 * leave the streams rings intact. 3543 */ 3544 if (ret < 0) 3545 return ret; 3546 3547 spin_lock_irqsave(&xhci->lock, flags); 3548 for (i = 0; i < num_eps; i++) { 3549 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3550 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3551 vdev->eps[ep_index].stream_info = NULL; 3552 /* FIXME Unset maxPstreams in endpoint context and 3553 * update deq ptr to point to normal string ring. 3554 */ 3555 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3556 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3557 } 3558 spin_unlock_irqrestore(&xhci->lock, flags); 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * Deletes endpoint resources for endpoints that were active before a Reset 3565 * Device command, or a Disable Slot command. The Reset Device command leaves 3566 * the control endpoint intact, whereas the Disable Slot command deletes it. 3567 * 3568 * Must be called with xhci->lock held. 3569 */ 3570 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3571 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3572 { 3573 int i; 3574 unsigned int num_dropped_eps = 0; 3575 unsigned int drop_flags = 0; 3576 3577 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3578 if (virt_dev->eps[i].ring) { 3579 drop_flags |= 1 << i; 3580 num_dropped_eps++; 3581 } 3582 } 3583 xhci->num_active_eps -= num_dropped_eps; 3584 if (num_dropped_eps) 3585 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3586 "Dropped %u ep ctxs, flags = 0x%x, " 3587 "%u now active.", 3588 num_dropped_eps, drop_flags, 3589 xhci->num_active_eps); 3590 } 3591 3592 /* 3593 * This submits a Reset Device Command, which will set the device state to 0, 3594 * set the device address to 0, and disable all the endpoints except the default 3595 * control endpoint. The USB core should come back and call 3596 * xhci_address_device(), and then re-set up the configuration. If this is 3597 * called because of a usb_reset_and_verify_device(), then the old alternate 3598 * settings will be re-installed through the normal bandwidth allocation 3599 * functions. 3600 * 3601 * Wait for the Reset Device command to finish. Remove all structures 3602 * associated with the endpoints that were disabled. Clear the input device 3603 * structure? Reset the control endpoint 0 max packet size? 3604 * 3605 * If the virt_dev to be reset does not exist or does not match the udev, 3606 * it means the device is lost, possibly due to the xHC restore error and 3607 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3608 * re-allocate the device. 3609 */ 3610 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3611 struct usb_device *udev) 3612 { 3613 int ret, i; 3614 unsigned long flags; 3615 struct xhci_hcd *xhci; 3616 unsigned int slot_id; 3617 struct xhci_virt_device *virt_dev; 3618 struct xhci_command *reset_device_cmd; 3619 struct xhci_slot_ctx *slot_ctx; 3620 int old_active_eps = 0; 3621 3622 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3623 if (ret <= 0) 3624 return ret; 3625 xhci = hcd_to_xhci(hcd); 3626 slot_id = udev->slot_id; 3627 virt_dev = xhci->devs[slot_id]; 3628 if (!virt_dev) { 3629 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3630 "not exist. Re-allocate the device\n", slot_id); 3631 ret = xhci_alloc_dev(hcd, udev); 3632 if (ret == 1) 3633 return 0; 3634 else 3635 return -EINVAL; 3636 } 3637 3638 if (virt_dev->tt_info) 3639 old_active_eps = virt_dev->tt_info->active_eps; 3640 3641 if (virt_dev->udev != udev) { 3642 /* If the virt_dev and the udev does not match, this virt_dev 3643 * may belong to another udev. 3644 * Re-allocate the device. 3645 */ 3646 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3647 "not match the udev. Re-allocate the device\n", 3648 slot_id); 3649 ret = xhci_alloc_dev(hcd, udev); 3650 if (ret == 1) 3651 return 0; 3652 else 3653 return -EINVAL; 3654 } 3655 3656 /* If device is not setup, there is no point in resetting it */ 3657 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3658 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3659 SLOT_STATE_DISABLED) 3660 return 0; 3661 3662 trace_xhci_discover_or_reset_device(slot_ctx); 3663 3664 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3665 /* Allocate the command structure that holds the struct completion. 3666 * Assume we're in process context, since the normal device reset 3667 * process has to wait for the device anyway. Storage devices are 3668 * reset as part of error handling, so use GFP_NOIO instead of 3669 * GFP_KERNEL. 3670 */ 3671 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3672 if (!reset_device_cmd) { 3673 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3674 return -ENOMEM; 3675 } 3676 3677 /* Attempt to submit the Reset Device command to the command ring */ 3678 spin_lock_irqsave(&xhci->lock, flags); 3679 3680 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3681 if (ret) { 3682 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3683 spin_unlock_irqrestore(&xhci->lock, flags); 3684 goto command_cleanup; 3685 } 3686 xhci_ring_cmd_db(xhci); 3687 spin_unlock_irqrestore(&xhci->lock, flags); 3688 3689 /* Wait for the Reset Device command to finish */ 3690 wait_for_completion(reset_device_cmd->completion); 3691 3692 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3693 * unless we tried to reset a slot ID that wasn't enabled, 3694 * or the device wasn't in the addressed or configured state. 3695 */ 3696 ret = reset_device_cmd->status; 3697 switch (ret) { 3698 case COMP_COMMAND_ABORTED: 3699 case COMP_COMMAND_RING_STOPPED: 3700 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3701 ret = -ETIME; 3702 goto command_cleanup; 3703 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3704 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3705 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3706 slot_id, 3707 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3708 xhci_dbg(xhci, "Not freeing device rings.\n"); 3709 /* Don't treat this as an error. May change my mind later. */ 3710 ret = 0; 3711 goto command_cleanup; 3712 case COMP_SUCCESS: 3713 xhci_dbg(xhci, "Successful reset device command.\n"); 3714 break; 3715 default: 3716 if (xhci_is_vendor_info_code(xhci, ret)) 3717 break; 3718 xhci_warn(xhci, "Unknown completion code %u for " 3719 "reset device command.\n", ret); 3720 ret = -EINVAL; 3721 goto command_cleanup; 3722 } 3723 3724 /* Free up host controller endpoint resources */ 3725 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3726 spin_lock_irqsave(&xhci->lock, flags); 3727 /* Don't delete the default control endpoint resources */ 3728 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3729 spin_unlock_irqrestore(&xhci->lock, flags); 3730 } 3731 3732 /* Everything but endpoint 0 is disabled, so free the rings. */ 3733 for (i = 1; i < 31; i++) { 3734 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3735 3736 if (ep->ep_state & EP_HAS_STREAMS) { 3737 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3738 xhci_get_endpoint_address(i)); 3739 xhci_free_stream_info(xhci, ep->stream_info); 3740 ep->stream_info = NULL; 3741 ep->ep_state &= ~EP_HAS_STREAMS; 3742 } 3743 3744 if (ep->ring) { 3745 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3746 xhci_free_endpoint_ring(xhci, virt_dev, i); 3747 } 3748 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3749 xhci_drop_ep_from_interval_table(xhci, 3750 &virt_dev->eps[i].bw_info, 3751 virt_dev->bw_table, 3752 udev, 3753 &virt_dev->eps[i], 3754 virt_dev->tt_info); 3755 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3756 } 3757 /* If necessary, update the number of active TTs on this root port */ 3758 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3759 ret = 0; 3760 3761 command_cleanup: 3762 xhci_free_command(xhci, reset_device_cmd); 3763 return ret; 3764 } 3765 3766 /* 3767 * At this point, the struct usb_device is about to go away, the device has 3768 * disconnected, and all traffic has been stopped and the endpoints have been 3769 * disabled. Free any HC data structures associated with that device. 3770 */ 3771 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3772 { 3773 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3774 struct xhci_virt_device *virt_dev; 3775 struct xhci_slot_ctx *slot_ctx; 3776 int i, ret; 3777 3778 #ifndef CONFIG_USB_DEFAULT_PERSIST 3779 /* 3780 * We called pm_runtime_get_noresume when the device was attached. 3781 * Decrement the counter here to allow controller to runtime suspend 3782 * if no devices remain. 3783 */ 3784 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3785 pm_runtime_put_noidle(hcd->self.controller); 3786 #endif 3787 3788 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3789 /* If the host is halted due to driver unload, we still need to free the 3790 * device. 3791 */ 3792 if (ret <= 0 && ret != -ENODEV) 3793 return; 3794 3795 virt_dev = xhci->devs[udev->slot_id]; 3796 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3797 trace_xhci_free_dev(slot_ctx); 3798 3799 /* Stop any wayward timer functions (which may grab the lock) */ 3800 for (i = 0; i < 31; i++) { 3801 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3802 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3803 } 3804 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3805 virt_dev->udev = NULL; 3806 ret = xhci_disable_slot(xhci, udev->slot_id); 3807 if (ret) 3808 xhci_free_virt_device(xhci, udev->slot_id); 3809 } 3810 3811 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3812 { 3813 struct xhci_command *command; 3814 unsigned long flags; 3815 u32 state; 3816 int ret = 0; 3817 3818 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3819 if (!command) 3820 return -ENOMEM; 3821 3822 spin_lock_irqsave(&xhci->lock, flags); 3823 /* Don't disable the slot if the host controller is dead. */ 3824 state = readl(&xhci->op_regs->status); 3825 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3826 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3827 spin_unlock_irqrestore(&xhci->lock, flags); 3828 kfree(command); 3829 return -ENODEV; 3830 } 3831 3832 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3833 slot_id); 3834 if (ret) { 3835 spin_unlock_irqrestore(&xhci->lock, flags); 3836 kfree(command); 3837 return ret; 3838 } 3839 xhci_ring_cmd_db(xhci); 3840 spin_unlock_irqrestore(&xhci->lock, flags); 3841 return ret; 3842 } 3843 3844 /* 3845 * Checks if we have enough host controller resources for the default control 3846 * endpoint. 3847 * 3848 * Must be called with xhci->lock held. 3849 */ 3850 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3851 { 3852 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3853 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3854 "Not enough ep ctxs: " 3855 "%u active, need to add 1, limit is %u.", 3856 xhci->num_active_eps, xhci->limit_active_eps); 3857 return -ENOMEM; 3858 } 3859 xhci->num_active_eps += 1; 3860 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3861 "Adding 1 ep ctx, %u now active.", 3862 xhci->num_active_eps); 3863 return 0; 3864 } 3865 3866 3867 /* 3868 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3869 * timed out, or allocating memory failed. Returns 1 on success. 3870 */ 3871 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3872 { 3873 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3874 struct xhci_virt_device *vdev; 3875 struct xhci_slot_ctx *slot_ctx; 3876 unsigned long flags; 3877 int ret, slot_id; 3878 struct xhci_command *command; 3879 3880 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3881 if (!command) 3882 return 0; 3883 3884 spin_lock_irqsave(&xhci->lock, flags); 3885 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3886 if (ret) { 3887 spin_unlock_irqrestore(&xhci->lock, flags); 3888 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3889 xhci_free_command(xhci, command); 3890 return 0; 3891 } 3892 xhci_ring_cmd_db(xhci); 3893 spin_unlock_irqrestore(&xhci->lock, flags); 3894 3895 wait_for_completion(command->completion); 3896 slot_id = command->slot_id; 3897 3898 if (!slot_id || command->status != COMP_SUCCESS) { 3899 xhci_err(xhci, "Error while assigning device slot ID\n"); 3900 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3901 HCS_MAX_SLOTS( 3902 readl(&xhci->cap_regs->hcs_params1))); 3903 xhci_free_command(xhci, command); 3904 return 0; 3905 } 3906 3907 xhci_free_command(xhci, command); 3908 3909 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3910 spin_lock_irqsave(&xhci->lock, flags); 3911 ret = xhci_reserve_host_control_ep_resources(xhci); 3912 if (ret) { 3913 spin_unlock_irqrestore(&xhci->lock, flags); 3914 xhci_warn(xhci, "Not enough host resources, " 3915 "active endpoint contexts = %u\n", 3916 xhci->num_active_eps); 3917 goto disable_slot; 3918 } 3919 spin_unlock_irqrestore(&xhci->lock, flags); 3920 } 3921 /* Use GFP_NOIO, since this function can be called from 3922 * xhci_discover_or_reset_device(), which may be called as part of 3923 * mass storage driver error handling. 3924 */ 3925 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3926 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3927 goto disable_slot; 3928 } 3929 vdev = xhci->devs[slot_id]; 3930 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3931 trace_xhci_alloc_dev(slot_ctx); 3932 3933 udev->slot_id = slot_id; 3934 3935 xhci_debugfs_create_slot(xhci, slot_id); 3936 3937 #ifndef CONFIG_USB_DEFAULT_PERSIST 3938 /* 3939 * If resetting upon resume, we can't put the controller into runtime 3940 * suspend if there is a device attached. 3941 */ 3942 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3943 pm_runtime_get_noresume(hcd->self.controller); 3944 #endif 3945 3946 /* Is this a LS or FS device under a HS hub? */ 3947 /* Hub or peripherial? */ 3948 return 1; 3949 3950 disable_slot: 3951 ret = xhci_disable_slot(xhci, udev->slot_id); 3952 if (ret) 3953 xhci_free_virt_device(xhci, udev->slot_id); 3954 3955 return 0; 3956 } 3957 3958 /* 3959 * Issue an Address Device command and optionally send a corresponding 3960 * SetAddress request to the device. 3961 */ 3962 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3963 enum xhci_setup_dev setup) 3964 { 3965 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3966 unsigned long flags; 3967 struct xhci_virt_device *virt_dev; 3968 int ret = 0; 3969 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3970 struct xhci_slot_ctx *slot_ctx; 3971 struct xhci_input_control_ctx *ctrl_ctx; 3972 u64 temp_64; 3973 struct xhci_command *command = NULL; 3974 3975 mutex_lock(&xhci->mutex); 3976 3977 if (xhci->xhc_state) { /* dying, removing or halted */ 3978 ret = -ESHUTDOWN; 3979 goto out; 3980 } 3981 3982 if (!udev->slot_id) { 3983 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3984 "Bad Slot ID %d", udev->slot_id); 3985 ret = -EINVAL; 3986 goto out; 3987 } 3988 3989 virt_dev = xhci->devs[udev->slot_id]; 3990 3991 if (WARN_ON(!virt_dev)) { 3992 /* 3993 * In plug/unplug torture test with an NEC controller, 3994 * a zero-dereference was observed once due to virt_dev = 0. 3995 * Print useful debug rather than crash if it is observed again! 3996 */ 3997 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3998 udev->slot_id); 3999 ret = -EINVAL; 4000 goto out; 4001 } 4002 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4003 trace_xhci_setup_device_slot(slot_ctx); 4004 4005 if (setup == SETUP_CONTEXT_ONLY) { 4006 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4007 SLOT_STATE_DEFAULT) { 4008 xhci_dbg(xhci, "Slot already in default state\n"); 4009 goto out; 4010 } 4011 } 4012 4013 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4014 if (!command) { 4015 ret = -ENOMEM; 4016 goto out; 4017 } 4018 4019 command->in_ctx = virt_dev->in_ctx; 4020 4021 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4022 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4023 if (!ctrl_ctx) { 4024 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4025 __func__); 4026 ret = -EINVAL; 4027 goto out; 4028 } 4029 /* 4030 * If this is the first Set Address since device plug-in or 4031 * virt_device realloaction after a resume with an xHCI power loss, 4032 * then set up the slot context. 4033 */ 4034 if (!slot_ctx->dev_info) 4035 xhci_setup_addressable_virt_dev(xhci, udev); 4036 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4037 else 4038 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4039 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4040 ctrl_ctx->drop_flags = 0; 4041 4042 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4043 le32_to_cpu(slot_ctx->dev_info) >> 27); 4044 4045 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4046 spin_lock_irqsave(&xhci->lock, flags); 4047 trace_xhci_setup_device(virt_dev); 4048 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4049 udev->slot_id, setup); 4050 if (ret) { 4051 spin_unlock_irqrestore(&xhci->lock, flags); 4052 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4053 "FIXME: allocate a command ring segment"); 4054 goto out; 4055 } 4056 xhci_ring_cmd_db(xhci); 4057 spin_unlock_irqrestore(&xhci->lock, flags); 4058 4059 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4060 wait_for_completion(command->completion); 4061 4062 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4063 * the SetAddress() "recovery interval" required by USB and aborting the 4064 * command on a timeout. 4065 */ 4066 switch (command->status) { 4067 case COMP_COMMAND_ABORTED: 4068 case COMP_COMMAND_RING_STOPPED: 4069 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4070 ret = -ETIME; 4071 break; 4072 case COMP_CONTEXT_STATE_ERROR: 4073 case COMP_SLOT_NOT_ENABLED_ERROR: 4074 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4075 act, udev->slot_id); 4076 ret = -EINVAL; 4077 break; 4078 case COMP_USB_TRANSACTION_ERROR: 4079 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4080 4081 mutex_unlock(&xhci->mutex); 4082 ret = xhci_disable_slot(xhci, udev->slot_id); 4083 if (!ret) 4084 xhci_alloc_dev(hcd, udev); 4085 kfree(command->completion); 4086 kfree(command); 4087 return -EPROTO; 4088 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4089 dev_warn(&udev->dev, 4090 "ERROR: Incompatible device for setup %s command\n", act); 4091 ret = -ENODEV; 4092 break; 4093 case COMP_SUCCESS: 4094 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4095 "Successful setup %s command", act); 4096 break; 4097 default: 4098 xhci_err(xhci, 4099 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4100 act, command->status); 4101 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4102 ret = -EINVAL; 4103 break; 4104 } 4105 if (ret) 4106 goto out; 4107 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4108 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4109 "Op regs DCBAA ptr = %#016llx", temp_64); 4110 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4111 "Slot ID %d dcbaa entry @%p = %#016llx", 4112 udev->slot_id, 4113 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4114 (unsigned long long) 4115 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4116 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4117 "Output Context DMA address = %#08llx", 4118 (unsigned long long)virt_dev->out_ctx->dma); 4119 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4120 le32_to_cpu(slot_ctx->dev_info) >> 27); 4121 /* 4122 * USB core uses address 1 for the roothubs, so we add one to the 4123 * address given back to us by the HC. 4124 */ 4125 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4126 le32_to_cpu(slot_ctx->dev_info) >> 27); 4127 /* Zero the input context control for later use */ 4128 ctrl_ctx->add_flags = 0; 4129 ctrl_ctx->drop_flags = 0; 4130 4131 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4132 "Internal device address = %d", 4133 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4134 out: 4135 mutex_unlock(&xhci->mutex); 4136 if (command) { 4137 kfree(command->completion); 4138 kfree(command); 4139 } 4140 return ret; 4141 } 4142 4143 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4144 { 4145 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4146 } 4147 4148 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4149 { 4150 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4151 } 4152 4153 /* 4154 * Transfer the port index into real index in the HW port status 4155 * registers. Caculate offset between the port's PORTSC register 4156 * and port status base. Divide the number of per port register 4157 * to get the real index. The raw port number bases 1. 4158 */ 4159 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4160 { 4161 struct xhci_hub *rhub; 4162 4163 rhub = xhci_get_rhub(hcd); 4164 return rhub->ports[port1 - 1]->hw_portnum + 1; 4165 } 4166 4167 /* 4168 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4169 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4170 */ 4171 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4172 struct usb_device *udev, u16 max_exit_latency) 4173 { 4174 struct xhci_virt_device *virt_dev; 4175 struct xhci_command *command; 4176 struct xhci_input_control_ctx *ctrl_ctx; 4177 struct xhci_slot_ctx *slot_ctx; 4178 unsigned long flags; 4179 int ret; 4180 4181 spin_lock_irqsave(&xhci->lock, flags); 4182 4183 virt_dev = xhci->devs[udev->slot_id]; 4184 4185 /* 4186 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4187 * xHC was re-initialized. Exit latency will be set later after 4188 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4189 */ 4190 4191 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4192 spin_unlock_irqrestore(&xhci->lock, flags); 4193 return 0; 4194 } 4195 4196 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4197 command = xhci->lpm_command; 4198 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4199 if (!ctrl_ctx) { 4200 spin_unlock_irqrestore(&xhci->lock, flags); 4201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4202 __func__); 4203 return -ENOMEM; 4204 } 4205 4206 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4207 spin_unlock_irqrestore(&xhci->lock, flags); 4208 4209 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4210 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4211 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4212 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4213 slot_ctx->dev_state = 0; 4214 4215 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4216 "Set up evaluate context for LPM MEL change."); 4217 4218 /* Issue and wait for the evaluate context command. */ 4219 ret = xhci_configure_endpoint(xhci, udev, command, 4220 true, true); 4221 4222 if (!ret) { 4223 spin_lock_irqsave(&xhci->lock, flags); 4224 virt_dev->current_mel = max_exit_latency; 4225 spin_unlock_irqrestore(&xhci->lock, flags); 4226 } 4227 return ret; 4228 } 4229 4230 #ifdef CONFIG_PM 4231 4232 /* BESL to HIRD Encoding array for USB2 LPM */ 4233 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4234 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4235 4236 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4237 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4238 struct usb_device *udev) 4239 { 4240 int u2del, besl, besl_host; 4241 int besl_device = 0; 4242 u32 field; 4243 4244 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4245 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4246 4247 if (field & USB_BESL_SUPPORT) { 4248 for (besl_host = 0; besl_host < 16; besl_host++) { 4249 if (xhci_besl_encoding[besl_host] >= u2del) 4250 break; 4251 } 4252 /* Use baseline BESL value as default */ 4253 if (field & USB_BESL_BASELINE_VALID) 4254 besl_device = USB_GET_BESL_BASELINE(field); 4255 else if (field & USB_BESL_DEEP_VALID) 4256 besl_device = USB_GET_BESL_DEEP(field); 4257 } else { 4258 if (u2del <= 50) 4259 besl_host = 0; 4260 else 4261 besl_host = (u2del - 51) / 75 + 1; 4262 } 4263 4264 besl = besl_host + besl_device; 4265 if (besl > 15) 4266 besl = 15; 4267 4268 return besl; 4269 } 4270 4271 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4272 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4273 { 4274 u32 field; 4275 int l1; 4276 int besld = 0; 4277 int hirdm = 0; 4278 4279 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4280 4281 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4282 l1 = udev->l1_params.timeout / 256; 4283 4284 /* device has preferred BESLD */ 4285 if (field & USB_BESL_DEEP_VALID) { 4286 besld = USB_GET_BESL_DEEP(field); 4287 hirdm = 1; 4288 } 4289 4290 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4291 } 4292 4293 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4294 struct usb_device *udev, int enable) 4295 { 4296 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4297 struct xhci_port **ports; 4298 __le32 __iomem *pm_addr, *hlpm_addr; 4299 u32 pm_val, hlpm_val, field; 4300 unsigned int port_num; 4301 unsigned long flags; 4302 int hird, exit_latency; 4303 int ret; 4304 4305 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4306 !udev->lpm_capable) 4307 return -EPERM; 4308 4309 if (!udev->parent || udev->parent->parent || 4310 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4311 return -EPERM; 4312 4313 if (udev->usb2_hw_lpm_capable != 1) 4314 return -EPERM; 4315 4316 spin_lock_irqsave(&xhci->lock, flags); 4317 4318 ports = xhci->usb2_rhub.ports; 4319 port_num = udev->portnum - 1; 4320 pm_addr = ports[port_num]->addr + PORTPMSC; 4321 pm_val = readl(pm_addr); 4322 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4323 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4324 4325 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4326 enable ? "enable" : "disable", port_num + 1); 4327 4328 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4329 /* Host supports BESL timeout instead of HIRD */ 4330 if (udev->usb2_hw_lpm_besl_capable) { 4331 /* if device doesn't have a preferred BESL value use a 4332 * default one which works with mixed HIRD and BESL 4333 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4334 */ 4335 if ((field & USB_BESL_SUPPORT) && 4336 (field & USB_BESL_BASELINE_VALID)) 4337 hird = USB_GET_BESL_BASELINE(field); 4338 else 4339 hird = udev->l1_params.besl; 4340 4341 exit_latency = xhci_besl_encoding[hird]; 4342 spin_unlock_irqrestore(&xhci->lock, flags); 4343 4344 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4345 * input context for link powermanagement evaluate 4346 * context commands. It is protected by hcd->bandwidth 4347 * mutex and is shared by all devices. We need to set 4348 * the max ext latency in USB 2 BESL LPM as well, so 4349 * use the same mutex and xhci_change_max_exit_latency() 4350 */ 4351 mutex_lock(hcd->bandwidth_mutex); 4352 ret = xhci_change_max_exit_latency(xhci, udev, 4353 exit_latency); 4354 mutex_unlock(hcd->bandwidth_mutex); 4355 4356 if (ret < 0) 4357 return ret; 4358 spin_lock_irqsave(&xhci->lock, flags); 4359 4360 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4361 writel(hlpm_val, hlpm_addr); 4362 /* flush write */ 4363 readl(hlpm_addr); 4364 } else { 4365 hird = xhci_calculate_hird_besl(xhci, udev); 4366 } 4367 4368 pm_val &= ~PORT_HIRD_MASK; 4369 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4370 writel(pm_val, pm_addr); 4371 pm_val = readl(pm_addr); 4372 pm_val |= PORT_HLE; 4373 writel(pm_val, pm_addr); 4374 /* flush write */ 4375 readl(pm_addr); 4376 } else { 4377 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4378 writel(pm_val, pm_addr); 4379 /* flush write */ 4380 readl(pm_addr); 4381 if (udev->usb2_hw_lpm_besl_capable) { 4382 spin_unlock_irqrestore(&xhci->lock, flags); 4383 mutex_lock(hcd->bandwidth_mutex); 4384 xhci_change_max_exit_latency(xhci, udev, 0); 4385 mutex_unlock(hcd->bandwidth_mutex); 4386 return 0; 4387 } 4388 } 4389 4390 spin_unlock_irqrestore(&xhci->lock, flags); 4391 return 0; 4392 } 4393 4394 /* check if a usb2 port supports a given extened capability protocol 4395 * only USB2 ports extended protocol capability values are cached. 4396 * Return 1 if capability is supported 4397 */ 4398 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4399 unsigned capability) 4400 { 4401 u32 port_offset, port_count; 4402 int i; 4403 4404 for (i = 0; i < xhci->num_ext_caps; i++) { 4405 if (xhci->ext_caps[i] & capability) { 4406 /* port offsets starts at 1 */ 4407 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4408 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4409 if (port >= port_offset && 4410 port < port_offset + port_count) 4411 return 1; 4412 } 4413 } 4414 return 0; 4415 } 4416 4417 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4418 { 4419 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4420 int portnum = udev->portnum - 1; 4421 4422 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4423 return 0; 4424 4425 /* we only support lpm for non-hub device connected to root hub yet */ 4426 if (!udev->parent || udev->parent->parent || 4427 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4428 return 0; 4429 4430 if (xhci->hw_lpm_support == 1 && 4431 xhci_check_usb2_port_capability( 4432 xhci, portnum, XHCI_HLC)) { 4433 udev->usb2_hw_lpm_capable = 1; 4434 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4435 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4436 if (xhci_check_usb2_port_capability(xhci, portnum, 4437 XHCI_BLC)) 4438 udev->usb2_hw_lpm_besl_capable = 1; 4439 } 4440 4441 return 0; 4442 } 4443 4444 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4445 4446 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4447 static unsigned long long xhci_service_interval_to_ns( 4448 struct usb_endpoint_descriptor *desc) 4449 { 4450 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4451 } 4452 4453 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4454 enum usb3_link_state state) 4455 { 4456 unsigned long long sel; 4457 unsigned long long pel; 4458 unsigned int max_sel_pel; 4459 char *state_name; 4460 4461 switch (state) { 4462 case USB3_LPM_U1: 4463 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4464 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4465 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4466 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4467 state_name = "U1"; 4468 break; 4469 case USB3_LPM_U2: 4470 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4471 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4472 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4473 state_name = "U2"; 4474 break; 4475 default: 4476 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4477 __func__); 4478 return USB3_LPM_DISABLED; 4479 } 4480 4481 if (sel <= max_sel_pel && pel <= max_sel_pel) 4482 return USB3_LPM_DEVICE_INITIATED; 4483 4484 if (sel > max_sel_pel) 4485 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4486 "due to long SEL %llu ms\n", 4487 state_name, sel); 4488 else 4489 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4490 "due to long PEL %llu ms\n", 4491 state_name, pel); 4492 return USB3_LPM_DISABLED; 4493 } 4494 4495 /* The U1 timeout should be the maximum of the following values: 4496 * - For control endpoints, U1 system exit latency (SEL) * 3 4497 * - For bulk endpoints, U1 SEL * 5 4498 * - For interrupt endpoints: 4499 * - Notification EPs, U1 SEL * 3 4500 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4501 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4502 */ 4503 static unsigned long long xhci_calculate_intel_u1_timeout( 4504 struct usb_device *udev, 4505 struct usb_endpoint_descriptor *desc) 4506 { 4507 unsigned long long timeout_ns; 4508 int ep_type; 4509 int intr_type; 4510 4511 ep_type = usb_endpoint_type(desc); 4512 switch (ep_type) { 4513 case USB_ENDPOINT_XFER_CONTROL: 4514 timeout_ns = udev->u1_params.sel * 3; 4515 break; 4516 case USB_ENDPOINT_XFER_BULK: 4517 timeout_ns = udev->u1_params.sel * 5; 4518 break; 4519 case USB_ENDPOINT_XFER_INT: 4520 intr_type = usb_endpoint_interrupt_type(desc); 4521 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4522 timeout_ns = udev->u1_params.sel * 3; 4523 break; 4524 } 4525 /* Otherwise the calculation is the same as isoc eps */ 4526 /* fall through */ 4527 case USB_ENDPOINT_XFER_ISOC: 4528 timeout_ns = xhci_service_interval_to_ns(desc); 4529 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4530 if (timeout_ns < udev->u1_params.sel * 2) 4531 timeout_ns = udev->u1_params.sel * 2; 4532 break; 4533 default: 4534 return 0; 4535 } 4536 4537 return timeout_ns; 4538 } 4539 4540 /* Returns the hub-encoded U1 timeout value. */ 4541 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4542 struct usb_device *udev, 4543 struct usb_endpoint_descriptor *desc) 4544 { 4545 unsigned long long timeout_ns; 4546 4547 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4548 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4549 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4550 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4551 return USB3_LPM_DISABLED; 4552 } 4553 } 4554 4555 if (xhci->quirks & XHCI_INTEL_HOST) 4556 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4557 else 4558 timeout_ns = udev->u1_params.sel; 4559 4560 /* The U1 timeout is encoded in 1us intervals. 4561 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4562 */ 4563 if (timeout_ns == USB3_LPM_DISABLED) 4564 timeout_ns = 1; 4565 else 4566 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4567 4568 /* If the necessary timeout value is bigger than what we can set in the 4569 * USB 3.0 hub, we have to disable hub-initiated U1. 4570 */ 4571 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4572 return timeout_ns; 4573 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4574 "due to long timeout %llu ms\n", timeout_ns); 4575 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4576 } 4577 4578 /* The U2 timeout should be the maximum of: 4579 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4580 * - largest bInterval of any active periodic endpoint (to avoid going 4581 * into lower power link states between intervals). 4582 * - the U2 Exit Latency of the device 4583 */ 4584 static unsigned long long xhci_calculate_intel_u2_timeout( 4585 struct usb_device *udev, 4586 struct usb_endpoint_descriptor *desc) 4587 { 4588 unsigned long long timeout_ns; 4589 unsigned long long u2_del_ns; 4590 4591 timeout_ns = 10 * 1000 * 1000; 4592 4593 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4594 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4595 timeout_ns = xhci_service_interval_to_ns(desc); 4596 4597 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4598 if (u2_del_ns > timeout_ns) 4599 timeout_ns = u2_del_ns; 4600 4601 return timeout_ns; 4602 } 4603 4604 /* Returns the hub-encoded U2 timeout value. */ 4605 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4606 struct usb_device *udev, 4607 struct usb_endpoint_descriptor *desc) 4608 { 4609 unsigned long long timeout_ns; 4610 4611 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4612 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4613 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4614 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4615 return USB3_LPM_DISABLED; 4616 } 4617 } 4618 4619 if (xhci->quirks & XHCI_INTEL_HOST) 4620 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4621 else 4622 timeout_ns = udev->u2_params.sel; 4623 4624 /* The U2 timeout is encoded in 256us intervals */ 4625 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4626 /* If the necessary timeout value is bigger than what we can set in the 4627 * USB 3.0 hub, we have to disable hub-initiated U2. 4628 */ 4629 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4630 return timeout_ns; 4631 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4632 "due to long timeout %llu ms\n", timeout_ns); 4633 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4634 } 4635 4636 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4637 struct usb_device *udev, 4638 struct usb_endpoint_descriptor *desc, 4639 enum usb3_link_state state, 4640 u16 *timeout) 4641 { 4642 if (state == USB3_LPM_U1) 4643 return xhci_calculate_u1_timeout(xhci, udev, desc); 4644 else if (state == USB3_LPM_U2) 4645 return xhci_calculate_u2_timeout(xhci, udev, desc); 4646 4647 return USB3_LPM_DISABLED; 4648 } 4649 4650 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4651 struct usb_device *udev, 4652 struct usb_endpoint_descriptor *desc, 4653 enum usb3_link_state state, 4654 u16 *timeout) 4655 { 4656 u16 alt_timeout; 4657 4658 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4659 desc, state, timeout); 4660 4661 /* If we found we can't enable hub-initiated LPM, or 4662 * the U1 or U2 exit latency was too high to allow 4663 * device-initiated LPM as well, just stop searching. 4664 */ 4665 if (alt_timeout == USB3_LPM_DISABLED || 4666 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4667 *timeout = alt_timeout; 4668 return -E2BIG; 4669 } 4670 if (alt_timeout > *timeout) 4671 *timeout = alt_timeout; 4672 return 0; 4673 } 4674 4675 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4676 struct usb_device *udev, 4677 struct usb_host_interface *alt, 4678 enum usb3_link_state state, 4679 u16 *timeout) 4680 { 4681 int j; 4682 4683 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4684 if (xhci_update_timeout_for_endpoint(xhci, udev, 4685 &alt->endpoint[j].desc, state, timeout)) 4686 return -E2BIG; 4687 continue; 4688 } 4689 return 0; 4690 } 4691 4692 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4693 enum usb3_link_state state) 4694 { 4695 struct usb_device *parent; 4696 unsigned int num_hubs; 4697 4698 if (state == USB3_LPM_U2) 4699 return 0; 4700 4701 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4702 for (parent = udev->parent, num_hubs = 0; parent->parent; 4703 parent = parent->parent) 4704 num_hubs++; 4705 4706 if (num_hubs < 2) 4707 return 0; 4708 4709 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4710 " below second-tier hub.\n"); 4711 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4712 "to decrease power consumption.\n"); 4713 return -E2BIG; 4714 } 4715 4716 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4717 struct usb_device *udev, 4718 enum usb3_link_state state) 4719 { 4720 if (xhci->quirks & XHCI_INTEL_HOST) 4721 return xhci_check_intel_tier_policy(udev, state); 4722 else 4723 return 0; 4724 } 4725 4726 /* Returns the U1 or U2 timeout that should be enabled. 4727 * If the tier check or timeout setting functions return with a non-zero exit 4728 * code, that means the timeout value has been finalized and we shouldn't look 4729 * at any more endpoints. 4730 */ 4731 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4732 struct usb_device *udev, enum usb3_link_state state) 4733 { 4734 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4735 struct usb_host_config *config; 4736 char *state_name; 4737 int i; 4738 u16 timeout = USB3_LPM_DISABLED; 4739 4740 if (state == USB3_LPM_U1) 4741 state_name = "U1"; 4742 else if (state == USB3_LPM_U2) 4743 state_name = "U2"; 4744 else { 4745 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4746 state); 4747 return timeout; 4748 } 4749 4750 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4751 return timeout; 4752 4753 /* Gather some information about the currently installed configuration 4754 * and alternate interface settings. 4755 */ 4756 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4757 state, &timeout)) 4758 return timeout; 4759 4760 config = udev->actconfig; 4761 if (!config) 4762 return timeout; 4763 4764 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4765 struct usb_driver *driver; 4766 struct usb_interface *intf = config->interface[i]; 4767 4768 if (!intf) 4769 continue; 4770 4771 /* Check if any currently bound drivers want hub-initiated LPM 4772 * disabled. 4773 */ 4774 if (intf->dev.driver) { 4775 driver = to_usb_driver(intf->dev.driver); 4776 if (driver && driver->disable_hub_initiated_lpm) { 4777 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4778 "at request of driver %s\n", 4779 state_name, driver->name); 4780 return xhci_get_timeout_no_hub_lpm(udev, state); 4781 } 4782 } 4783 4784 /* Not sure how this could happen... */ 4785 if (!intf->cur_altsetting) 4786 continue; 4787 4788 if (xhci_update_timeout_for_interface(xhci, udev, 4789 intf->cur_altsetting, 4790 state, &timeout)) 4791 return timeout; 4792 } 4793 return timeout; 4794 } 4795 4796 static int calculate_max_exit_latency(struct usb_device *udev, 4797 enum usb3_link_state state_changed, 4798 u16 hub_encoded_timeout) 4799 { 4800 unsigned long long u1_mel_us = 0; 4801 unsigned long long u2_mel_us = 0; 4802 unsigned long long mel_us = 0; 4803 bool disabling_u1; 4804 bool disabling_u2; 4805 bool enabling_u1; 4806 bool enabling_u2; 4807 4808 disabling_u1 = (state_changed == USB3_LPM_U1 && 4809 hub_encoded_timeout == USB3_LPM_DISABLED); 4810 disabling_u2 = (state_changed == USB3_LPM_U2 && 4811 hub_encoded_timeout == USB3_LPM_DISABLED); 4812 4813 enabling_u1 = (state_changed == USB3_LPM_U1 && 4814 hub_encoded_timeout != USB3_LPM_DISABLED); 4815 enabling_u2 = (state_changed == USB3_LPM_U2 && 4816 hub_encoded_timeout != USB3_LPM_DISABLED); 4817 4818 /* If U1 was already enabled and we're not disabling it, 4819 * or we're going to enable U1, account for the U1 max exit latency. 4820 */ 4821 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4822 enabling_u1) 4823 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4824 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4825 enabling_u2) 4826 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4827 4828 if (u1_mel_us > u2_mel_us) 4829 mel_us = u1_mel_us; 4830 else 4831 mel_us = u2_mel_us; 4832 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4833 if (mel_us > MAX_EXIT) { 4834 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4835 "is too big.\n", mel_us); 4836 return -E2BIG; 4837 } 4838 return mel_us; 4839 } 4840 4841 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4842 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4843 struct usb_device *udev, enum usb3_link_state state) 4844 { 4845 struct xhci_hcd *xhci; 4846 u16 hub_encoded_timeout; 4847 int mel; 4848 int ret; 4849 4850 xhci = hcd_to_xhci(hcd); 4851 /* The LPM timeout values are pretty host-controller specific, so don't 4852 * enable hub-initiated timeouts unless the vendor has provided 4853 * information about their timeout algorithm. 4854 */ 4855 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4856 !xhci->devs[udev->slot_id]) 4857 return USB3_LPM_DISABLED; 4858 4859 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4860 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4861 if (mel < 0) { 4862 /* Max Exit Latency is too big, disable LPM. */ 4863 hub_encoded_timeout = USB3_LPM_DISABLED; 4864 mel = 0; 4865 } 4866 4867 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4868 if (ret) 4869 return ret; 4870 return hub_encoded_timeout; 4871 } 4872 4873 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4874 struct usb_device *udev, enum usb3_link_state state) 4875 { 4876 struct xhci_hcd *xhci; 4877 u16 mel; 4878 4879 xhci = hcd_to_xhci(hcd); 4880 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4881 !xhci->devs[udev->slot_id]) 4882 return 0; 4883 4884 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4885 return xhci_change_max_exit_latency(xhci, udev, mel); 4886 } 4887 #else /* CONFIG_PM */ 4888 4889 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4890 struct usb_device *udev, int enable) 4891 { 4892 return 0; 4893 } 4894 4895 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4896 { 4897 return 0; 4898 } 4899 4900 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4901 struct usb_device *udev, enum usb3_link_state state) 4902 { 4903 return USB3_LPM_DISABLED; 4904 } 4905 4906 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4907 struct usb_device *udev, enum usb3_link_state state) 4908 { 4909 return 0; 4910 } 4911 #endif /* CONFIG_PM */ 4912 4913 /*-------------------------------------------------------------------------*/ 4914 4915 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4916 * internal data structures for the device. 4917 */ 4918 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4919 struct usb_tt *tt, gfp_t mem_flags) 4920 { 4921 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4922 struct xhci_virt_device *vdev; 4923 struct xhci_command *config_cmd; 4924 struct xhci_input_control_ctx *ctrl_ctx; 4925 struct xhci_slot_ctx *slot_ctx; 4926 unsigned long flags; 4927 unsigned think_time; 4928 int ret; 4929 4930 /* Ignore root hubs */ 4931 if (!hdev->parent) 4932 return 0; 4933 4934 vdev = xhci->devs[hdev->slot_id]; 4935 if (!vdev) { 4936 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4937 return -EINVAL; 4938 } 4939 4940 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4941 if (!config_cmd) 4942 return -ENOMEM; 4943 4944 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4945 if (!ctrl_ctx) { 4946 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4947 __func__); 4948 xhci_free_command(xhci, config_cmd); 4949 return -ENOMEM; 4950 } 4951 4952 spin_lock_irqsave(&xhci->lock, flags); 4953 if (hdev->speed == USB_SPEED_HIGH && 4954 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4955 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4956 xhci_free_command(xhci, config_cmd); 4957 spin_unlock_irqrestore(&xhci->lock, flags); 4958 return -ENOMEM; 4959 } 4960 4961 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4962 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4963 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4964 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4965 /* 4966 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4967 * but it may be already set to 1 when setup an xHCI virtual 4968 * device, so clear it anyway. 4969 */ 4970 if (tt->multi) 4971 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4972 else if (hdev->speed == USB_SPEED_FULL) 4973 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4974 4975 if (xhci->hci_version > 0x95) { 4976 xhci_dbg(xhci, "xHCI version %x needs hub " 4977 "TT think time and number of ports\n", 4978 (unsigned int) xhci->hci_version); 4979 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4980 /* Set TT think time - convert from ns to FS bit times. 4981 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4982 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4983 * 4984 * xHCI 1.0: this field shall be 0 if the device is not a 4985 * High-spped hub. 4986 */ 4987 think_time = tt->think_time; 4988 if (think_time != 0) 4989 think_time = (think_time / 666) - 1; 4990 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4991 slot_ctx->tt_info |= 4992 cpu_to_le32(TT_THINK_TIME(think_time)); 4993 } else { 4994 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4995 "TT think time or number of ports\n", 4996 (unsigned int) xhci->hci_version); 4997 } 4998 slot_ctx->dev_state = 0; 4999 spin_unlock_irqrestore(&xhci->lock, flags); 5000 5001 xhci_dbg(xhci, "Set up %s for hub device.\n", 5002 (xhci->hci_version > 0x95) ? 5003 "configure endpoint" : "evaluate context"); 5004 5005 /* Issue and wait for the configure endpoint or 5006 * evaluate context command. 5007 */ 5008 if (xhci->hci_version > 0x95) 5009 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5010 false, false); 5011 else 5012 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5013 true, false); 5014 5015 xhci_free_command(xhci, config_cmd); 5016 return ret; 5017 } 5018 5019 static int xhci_get_frame(struct usb_hcd *hcd) 5020 { 5021 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5022 /* EHCI mods by the periodic size. Why? */ 5023 return readl(&xhci->run_regs->microframe_index) >> 3; 5024 } 5025 5026 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5027 { 5028 struct xhci_hcd *xhci; 5029 /* 5030 * TODO: Check with DWC3 clients for sysdev according to 5031 * quirks 5032 */ 5033 struct device *dev = hcd->self.sysdev; 5034 unsigned int minor_rev; 5035 int retval; 5036 5037 /* Accept arbitrarily long scatter-gather lists */ 5038 hcd->self.sg_tablesize = ~0; 5039 5040 /* support to build packet from discontinuous buffers */ 5041 hcd->self.no_sg_constraint = 1; 5042 5043 /* XHCI controllers don't stop the ep queue on short packets :| */ 5044 hcd->self.no_stop_on_short = 1; 5045 5046 xhci = hcd_to_xhci(hcd); 5047 5048 if (usb_hcd_is_primary_hcd(hcd)) { 5049 xhci->main_hcd = hcd; 5050 xhci->usb2_rhub.hcd = hcd; 5051 /* Mark the first roothub as being USB 2.0. 5052 * The xHCI driver will register the USB 3.0 roothub. 5053 */ 5054 hcd->speed = HCD_USB2; 5055 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5056 /* 5057 * USB 2.0 roothub under xHCI has an integrated TT, 5058 * (rate matching hub) as opposed to having an OHCI/UHCI 5059 * companion controller. 5060 */ 5061 hcd->has_tt = 1; 5062 } else { 5063 /* 5064 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5065 * minor revision instead of sbrn 5066 */ 5067 minor_rev = xhci->usb3_rhub.min_rev; 5068 if (minor_rev) { 5069 hcd->speed = HCD_USB31; 5070 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5071 } 5072 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 5073 minor_rev, 5074 minor_rev ? "Enhanced" : ""); 5075 5076 xhci->usb3_rhub.hcd = hcd; 5077 /* xHCI private pointer was set in xhci_pci_probe for the second 5078 * registered roothub. 5079 */ 5080 return 0; 5081 } 5082 5083 mutex_init(&xhci->mutex); 5084 xhci->cap_regs = hcd->regs; 5085 xhci->op_regs = hcd->regs + 5086 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5087 xhci->run_regs = hcd->regs + 5088 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5089 /* Cache read-only capability registers */ 5090 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5091 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5092 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5093 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5094 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5095 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5096 if (xhci->hci_version > 0x100) 5097 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5098 5099 xhci->quirks |= quirks; 5100 5101 get_quirks(dev, xhci); 5102 5103 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5104 * success event after a short transfer. This quirk will ignore such 5105 * spurious event. 5106 */ 5107 if (xhci->hci_version > 0x96) 5108 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5109 5110 /* Make sure the HC is halted. */ 5111 retval = xhci_halt(xhci); 5112 if (retval) 5113 return retval; 5114 5115 xhci_zero_64b_regs(xhci); 5116 5117 xhci_dbg(xhci, "Resetting HCD\n"); 5118 /* Reset the internal HC memory state and registers. */ 5119 retval = xhci_reset(xhci); 5120 if (retval) 5121 return retval; 5122 xhci_dbg(xhci, "Reset complete\n"); 5123 5124 /* 5125 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5126 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5127 * address memory pointers actually. So, this driver clears the AC64 5128 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5129 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5130 */ 5131 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5132 xhci->hcc_params &= ~BIT(0); 5133 5134 /* Set dma_mask and coherent_dma_mask to 64-bits, 5135 * if xHC supports 64-bit addressing */ 5136 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5137 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5138 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5139 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5140 } else { 5141 /* 5142 * This is to avoid error in cases where a 32-bit USB 5143 * controller is used on a 64-bit capable system. 5144 */ 5145 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5146 if (retval) 5147 return retval; 5148 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5149 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5150 } 5151 5152 xhci_dbg(xhci, "Calling HCD init\n"); 5153 /* Initialize HCD and host controller data structures. */ 5154 retval = xhci_init(hcd); 5155 if (retval) 5156 return retval; 5157 xhci_dbg(xhci, "Called HCD init\n"); 5158 5159 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5160 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5161 5162 return 0; 5163 } 5164 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5165 5166 static const struct hc_driver xhci_hc_driver = { 5167 .description = "xhci-hcd", 5168 .product_desc = "xHCI Host Controller", 5169 .hcd_priv_size = sizeof(struct xhci_hcd), 5170 5171 /* 5172 * generic hardware linkage 5173 */ 5174 .irq = xhci_irq, 5175 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5176 5177 /* 5178 * basic lifecycle operations 5179 */ 5180 .reset = NULL, /* set in xhci_init_driver() */ 5181 .start = xhci_run, 5182 .stop = xhci_stop, 5183 .shutdown = xhci_shutdown, 5184 5185 /* 5186 * managing i/o requests and associated device resources 5187 */ 5188 .map_urb_for_dma = xhci_map_urb_for_dma, 5189 .urb_enqueue = xhci_urb_enqueue, 5190 .urb_dequeue = xhci_urb_dequeue, 5191 .alloc_dev = xhci_alloc_dev, 5192 .free_dev = xhci_free_dev, 5193 .alloc_streams = xhci_alloc_streams, 5194 .free_streams = xhci_free_streams, 5195 .add_endpoint = xhci_add_endpoint, 5196 .drop_endpoint = xhci_drop_endpoint, 5197 .endpoint_reset = xhci_endpoint_reset, 5198 .check_bandwidth = xhci_check_bandwidth, 5199 .reset_bandwidth = xhci_reset_bandwidth, 5200 .address_device = xhci_address_device, 5201 .enable_device = xhci_enable_device, 5202 .update_hub_device = xhci_update_hub_device, 5203 .reset_device = xhci_discover_or_reset_device, 5204 5205 /* 5206 * scheduling support 5207 */ 5208 .get_frame_number = xhci_get_frame, 5209 5210 /* 5211 * root hub support 5212 */ 5213 .hub_control = xhci_hub_control, 5214 .hub_status_data = xhci_hub_status_data, 5215 .bus_suspend = xhci_bus_suspend, 5216 .bus_resume = xhci_bus_resume, 5217 .get_resuming_ports = xhci_get_resuming_ports, 5218 5219 /* 5220 * call back when device connected and addressed 5221 */ 5222 .update_device = xhci_update_device, 5223 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5224 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5225 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5226 .find_raw_port_number = xhci_find_raw_port_number, 5227 }; 5228 5229 void xhci_init_driver(struct hc_driver *drv, 5230 const struct xhci_driver_overrides *over) 5231 { 5232 BUG_ON(!over); 5233 5234 /* Copy the generic table to drv then apply the overrides */ 5235 *drv = xhci_hc_driver; 5236 5237 if (over) { 5238 drv->hcd_priv_size += over->extra_priv_size; 5239 if (over->reset) 5240 drv->reset = over->reset; 5241 if (over->start) 5242 drv->start = over->start; 5243 } 5244 } 5245 EXPORT_SYMBOL_GPL(xhci_init_driver); 5246 5247 MODULE_DESCRIPTION(DRIVER_DESC); 5248 MODULE_AUTHOR(DRIVER_AUTHOR); 5249 MODULE_LICENSE("GPL"); 5250 5251 static int __init xhci_hcd_init(void) 5252 { 5253 /* 5254 * Check the compiler generated sizes of structures that must be laid 5255 * out in specific ways for hardware access. 5256 */ 5257 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5258 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5259 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5260 /* xhci_device_control has eight fields, and also 5261 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5262 */ 5263 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5264 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5265 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5266 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5267 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5268 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5269 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5270 5271 if (usb_disabled()) 5272 return -ENODEV; 5273 5274 xhci_debugfs_create_root(); 5275 5276 return 0; 5277 } 5278 5279 /* 5280 * If an init function is provided, an exit function must also be provided 5281 * to allow module unload. 5282 */ 5283 static void __exit xhci_hcd_fini(void) 5284 { 5285 xhci_debugfs_remove_root(); 5286 } 5287 5288 module_init(xhci_hcd_init); 5289 module_exit(xhci_hcd_fini); 5290