1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 static void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 793 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 794 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 795 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 796 } 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 890 { 891 struct xhci_port **ports; 892 int port_index; 893 unsigned long flags; 894 u32 t1, t2, portsc; 895 896 spin_lock_irqsave(&xhci->lock, flags); 897 898 /* disable usb3 ports Wake bits */ 899 port_index = xhci->usb3_rhub.num_ports; 900 ports = xhci->usb3_rhub.ports; 901 while (port_index--) { 902 t1 = readl(ports[port_index]->addr); 903 portsc = t1; 904 t1 = xhci_port_state_to_neutral(t1); 905 t2 = t1 & ~PORT_WAKE_BITS; 906 if (t1 != t2) { 907 writel(t2, ports[port_index]->addr); 908 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 909 xhci->usb3_rhub.hcd->self.busnum, 910 port_index + 1, portsc, t2); 911 } 912 } 913 914 /* disable usb2 ports Wake bits */ 915 port_index = xhci->usb2_rhub.num_ports; 916 ports = xhci->usb2_rhub.ports; 917 while (port_index--) { 918 t1 = readl(ports[port_index]->addr); 919 portsc = t1; 920 t1 = xhci_port_state_to_neutral(t1); 921 t2 = t1 & ~PORT_WAKE_BITS; 922 if (t1 != t2) { 923 writel(t2, ports[port_index]->addr); 924 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 925 xhci->usb2_rhub.hcd->self.busnum, 926 port_index + 1, portsc, t2); 927 } 928 } 929 spin_unlock_irqrestore(&xhci->lock, flags); 930 } 931 932 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 933 { 934 struct xhci_port **ports; 935 int port_index; 936 u32 status; 937 u32 portsc; 938 939 status = readl(&xhci->op_regs->status); 940 if (status & STS_EINT) 941 return true; 942 /* 943 * Checking STS_EINT is not enough as there is a lag between a change 944 * bit being set and the Port Status Change Event that it generated 945 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 946 */ 947 948 port_index = xhci->usb2_rhub.num_ports; 949 ports = xhci->usb2_rhub.ports; 950 while (port_index--) { 951 portsc = readl(ports[port_index]->addr); 952 if (portsc & PORT_CHANGE_MASK || 953 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 954 return true; 955 } 956 port_index = xhci->usb3_rhub.num_ports; 957 ports = xhci->usb3_rhub.ports; 958 while (port_index--) { 959 portsc = readl(ports[port_index]->addr); 960 if (portsc & PORT_CHANGE_MASK || 961 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 962 return true; 963 } 964 return false; 965 } 966 967 /* 968 * Stop HC (not bus-specific) 969 * 970 * This is called when the machine transition into S3/S4 mode. 971 * 972 */ 973 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 974 { 975 int rc = 0; 976 unsigned int delay = XHCI_MAX_HALT_USEC; 977 struct usb_hcd *hcd = xhci_to_hcd(xhci); 978 u32 command; 979 u32 res; 980 981 if (!hcd->state) 982 return 0; 983 984 if (hcd->state != HC_STATE_SUSPENDED || 985 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 986 return -EINVAL; 987 988 xhci_dbc_suspend(xhci); 989 990 /* Clear root port wake on bits if wakeup not allowed. */ 991 if (!do_wakeup) 992 xhci_disable_port_wake_on_bits(xhci); 993 994 /* Don't poll the roothubs on bus suspend. */ 995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 997 del_timer_sync(&hcd->rh_timer); 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 del_timer_sync(&xhci->shared_hcd->rh_timer); 1000 1001 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1002 usleep_range(1000, 1500); 1003 1004 spin_lock_irq(&xhci->lock); 1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 /* step 1: stop endpoint */ 1008 /* skipped assuming that port suspend has done */ 1009 1010 /* step 2: clear Run/Stop bit */ 1011 command = readl(&xhci->op_regs->command); 1012 command &= ~CMD_RUN; 1013 writel(command, &xhci->op_regs->command); 1014 1015 /* Some chips from Fresco Logic need an extraordinary delay */ 1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1017 1018 if (xhci_handshake(&xhci->op_regs->status, 1019 STS_HALT, STS_HALT, delay)) { 1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1021 spin_unlock_irq(&xhci->lock); 1022 return -ETIMEDOUT; 1023 } 1024 xhci_clear_command_ring(xhci); 1025 1026 /* step 3: save registers */ 1027 xhci_save_registers(xhci); 1028 1029 /* step 4: set CSS flag */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_CSS; 1032 writel(command, &xhci->op_regs->command); 1033 xhci->broken_suspend = 0; 1034 if (xhci_handshake(&xhci->op_regs->status, 1035 STS_SAVE, 0, 10 * 1000)) { 1036 /* 1037 * AMD SNPS xHC 3.0 occasionally does not clear the 1038 * SSS bit of USBSTS and when driver tries to poll 1039 * to see if the xHC clears BIT(8) which never happens 1040 * and driver assumes that controller is not responding 1041 * and times out. To workaround this, its good to check 1042 * if SRE and HCE bits are not set (as per xhci 1043 * Section 5.4.2) and bypass the timeout. 1044 */ 1045 res = readl(&xhci->op_regs->status); 1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1047 (((res & STS_SRE) == 0) && 1048 ((res & STS_HCE) == 0))) { 1049 xhci->broken_suspend = 1; 1050 } else { 1051 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1052 spin_unlock_irq(&xhci->lock); 1053 return -ETIMEDOUT; 1054 } 1055 } 1056 spin_unlock_irq(&xhci->lock); 1057 1058 /* 1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1060 * is about to be suspended. 1061 */ 1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1063 (!(xhci_all_ports_seen_u0(xhci)))) { 1064 del_timer_sync(&xhci->comp_mode_recovery_timer); 1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1066 "%s: compliance mode recovery timer deleted", 1067 __func__); 1068 } 1069 1070 /* step 5: remove core well power */ 1071 /* synchronize irq when using MSI-X */ 1072 xhci_msix_sync_irqs(xhci); 1073 1074 return rc; 1075 } 1076 EXPORT_SYMBOL_GPL(xhci_suspend); 1077 1078 /* 1079 * start xHC (not bus-specific) 1080 * 1081 * This is called when the machine transition from S3/S4 mode. 1082 * 1083 */ 1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1085 { 1086 u32 command, temp = 0; 1087 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1088 struct usb_hcd *secondary_hcd; 1089 int retval = 0; 1090 bool comp_timer_running = false; 1091 1092 if (!hcd->state) 1093 return 0; 1094 1095 /* Wait a bit if either of the roothubs need to settle from the 1096 * transition into bus suspend. 1097 */ 1098 1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1101 msleep(100); 1102 1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1108 hibernated = true; 1109 1110 if (!hibernated) { 1111 /* step 1: restore register */ 1112 xhci_restore_registers(xhci); 1113 /* step 2: initialize command ring buffer */ 1114 xhci_set_cmd_ring_deq(xhci); 1115 /* step 3: restore state and start state*/ 1116 /* step 3: set CRS flag */ 1117 command = readl(&xhci->op_regs->command); 1118 command |= CMD_CRS; 1119 writel(command, &xhci->op_regs->command); 1120 /* 1121 * Some controllers take up to 55+ ms to complete the controller 1122 * restore so setting the timeout to 100ms. Xhci specification 1123 * doesn't mention any timeout value. 1124 */ 1125 if (xhci_handshake(&xhci->op_regs->status, 1126 STS_RESTORE, 0, 100 * 1000)) { 1127 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1128 spin_unlock_irq(&xhci->lock); 1129 return -ETIMEDOUT; 1130 } 1131 temp = readl(&xhci->op_regs->status); 1132 } 1133 1134 /* If restore operation fails, re-initialize the HC during resume */ 1135 if ((temp & STS_SRE) || hibernated) { 1136 1137 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1138 !(xhci_all_ports_seen_u0(xhci))) { 1139 del_timer_sync(&xhci->comp_mode_recovery_timer); 1140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1141 "Compliance Mode Recovery Timer deleted!"); 1142 } 1143 1144 /* Let the USB core know _both_ roothubs lost power. */ 1145 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1146 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1147 1148 xhci_dbg(xhci, "Stop HCD\n"); 1149 xhci_halt(xhci); 1150 xhci_zero_64b_regs(xhci); 1151 xhci_reset(xhci); 1152 spin_unlock_irq(&xhci->lock); 1153 xhci_cleanup_msix(xhci); 1154 1155 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1156 temp = readl(&xhci->op_regs->status); 1157 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1158 temp = readl(&xhci->ir_set->irq_pending); 1159 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1160 1161 xhci_dbg(xhci, "cleaning up memory\n"); 1162 xhci_mem_cleanup(xhci); 1163 xhci_debugfs_exit(xhci); 1164 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1165 readl(&xhci->op_regs->status)); 1166 1167 /* USB core calls the PCI reinit and start functions twice: 1168 * first with the primary HCD, and then with the secondary HCD. 1169 * If we don't do the same, the host will never be started. 1170 */ 1171 if (!usb_hcd_is_primary_hcd(hcd)) 1172 secondary_hcd = hcd; 1173 else 1174 secondary_hcd = xhci->shared_hcd; 1175 1176 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1177 retval = xhci_init(hcd->primary_hcd); 1178 if (retval) 1179 return retval; 1180 comp_timer_running = true; 1181 1182 xhci_dbg(xhci, "Start the primary HCD\n"); 1183 retval = xhci_run(hcd->primary_hcd); 1184 if (!retval) { 1185 xhci_dbg(xhci, "Start the secondary HCD\n"); 1186 retval = xhci_run(secondary_hcd); 1187 } 1188 hcd->state = HC_STATE_SUSPENDED; 1189 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1190 goto done; 1191 } 1192 1193 /* step 4: set Run/Stop bit */ 1194 command = readl(&xhci->op_regs->command); 1195 command |= CMD_RUN; 1196 writel(command, &xhci->op_regs->command); 1197 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1198 0, 250 * 1000); 1199 1200 /* step 5: walk topology and initialize portsc, 1201 * portpmsc and portli 1202 */ 1203 /* this is done in bus_resume */ 1204 1205 /* step 6: restart each of the previously 1206 * Running endpoints by ringing their doorbells 1207 */ 1208 1209 spin_unlock_irq(&xhci->lock); 1210 1211 xhci_dbc_resume(xhci); 1212 1213 done: 1214 if (retval == 0) { 1215 /* Resume root hubs only when have pending events. */ 1216 if (xhci_pending_portevent(xhci)) { 1217 usb_hcd_resume_root_hub(xhci->shared_hcd); 1218 usb_hcd_resume_root_hub(hcd); 1219 } 1220 } 1221 1222 /* 1223 * If system is subject to the Quirk, Compliance Mode Timer needs to 1224 * be re-initialized Always after a system resume. Ports are subject 1225 * to suffer the Compliance Mode issue again. It doesn't matter if 1226 * ports have entered previously to U0 before system's suspension. 1227 */ 1228 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1229 compliance_mode_recovery_timer_init(xhci); 1230 1231 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1232 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1233 1234 /* Re-enable port polling. */ 1235 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1236 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1237 usb_hcd_poll_rh_status(xhci->shared_hcd); 1238 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1239 usb_hcd_poll_rh_status(hcd); 1240 1241 return retval; 1242 } 1243 EXPORT_SYMBOL_GPL(xhci_resume); 1244 #endif /* CONFIG_PM */ 1245 1246 /*-------------------------------------------------------------------------*/ 1247 1248 /* 1249 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1250 * we'll copy the actual data into the TRB address register. This is limited to 1251 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1252 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1253 */ 1254 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1255 gfp_t mem_flags) 1256 { 1257 if (xhci_urb_suitable_for_idt(urb)) 1258 return 0; 1259 1260 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1261 } 1262 1263 /** 1264 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1265 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1266 * value to right shift 1 for the bitmask. 1267 * 1268 * Index = (epnum * 2) + direction - 1, 1269 * where direction = 0 for OUT, 1 for IN. 1270 * For control endpoints, the IN index is used (OUT index is unused), so 1271 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1272 */ 1273 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1274 { 1275 unsigned int index; 1276 if (usb_endpoint_xfer_control(desc)) 1277 index = (unsigned int) (usb_endpoint_num(desc)*2); 1278 else 1279 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1280 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1281 return index; 1282 } 1283 1284 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1285 * address from the XHCI endpoint index. 1286 */ 1287 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1288 { 1289 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1290 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1291 return direction | number; 1292 } 1293 1294 /* Find the flag for this endpoint (for use in the control context). Use the 1295 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1296 * bit 1, etc. 1297 */ 1298 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1299 { 1300 return 1 << (xhci_get_endpoint_index(desc) + 1); 1301 } 1302 1303 /* Find the flag for this endpoint (for use in the control context). Use the 1304 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1305 * bit 1, etc. 1306 */ 1307 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1308 { 1309 return 1 << (ep_index + 1); 1310 } 1311 1312 /* Compute the last valid endpoint context index. Basically, this is the 1313 * endpoint index plus one. For slot contexts with more than valid endpoint, 1314 * we find the most significant bit set in the added contexts flags. 1315 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1316 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1317 */ 1318 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1319 { 1320 return fls(added_ctxs) - 1; 1321 } 1322 1323 /* Returns 1 if the arguments are OK; 1324 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1325 */ 1326 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1327 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1328 const char *func) { 1329 struct xhci_hcd *xhci; 1330 struct xhci_virt_device *virt_dev; 1331 1332 if (!hcd || (check_ep && !ep) || !udev) { 1333 pr_debug("xHCI %s called with invalid args\n", func); 1334 return -EINVAL; 1335 } 1336 if (!udev->parent) { 1337 pr_debug("xHCI %s called for root hub\n", func); 1338 return 0; 1339 } 1340 1341 xhci = hcd_to_xhci(hcd); 1342 if (check_virt_dev) { 1343 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1344 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1345 func); 1346 return -EINVAL; 1347 } 1348 1349 virt_dev = xhci->devs[udev->slot_id]; 1350 if (virt_dev->udev != udev) { 1351 xhci_dbg(xhci, "xHCI %s called with udev and " 1352 "virt_dev does not match\n", func); 1353 return -EINVAL; 1354 } 1355 } 1356 1357 if (xhci->xhc_state & XHCI_STATE_HALTED) 1358 return -ENODEV; 1359 1360 return 1; 1361 } 1362 1363 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1364 struct usb_device *udev, struct xhci_command *command, 1365 bool ctx_change, bool must_succeed); 1366 1367 /* 1368 * Full speed devices may have a max packet size greater than 8 bytes, but the 1369 * USB core doesn't know that until it reads the first 8 bytes of the 1370 * descriptor. If the usb_device's max packet size changes after that point, 1371 * we need to issue an evaluate context command and wait on it. 1372 */ 1373 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1374 unsigned int ep_index, struct urb *urb) 1375 { 1376 struct xhci_container_ctx *out_ctx; 1377 struct xhci_input_control_ctx *ctrl_ctx; 1378 struct xhci_ep_ctx *ep_ctx; 1379 struct xhci_command *command; 1380 int max_packet_size; 1381 int hw_max_packet_size; 1382 int ret = 0; 1383 1384 out_ctx = xhci->devs[slot_id]->out_ctx; 1385 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1386 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1387 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1388 if (hw_max_packet_size != max_packet_size) { 1389 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1390 "Max Packet Size for ep 0 changed."); 1391 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1392 "Max packet size in usb_device = %d", 1393 max_packet_size); 1394 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1395 "Max packet size in xHCI HW = %d", 1396 hw_max_packet_size); 1397 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1398 "Issuing evaluate context command."); 1399 1400 /* Set up the input context flags for the command */ 1401 /* FIXME: This won't work if a non-default control endpoint 1402 * changes max packet sizes. 1403 */ 1404 1405 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1406 if (!command) 1407 return -ENOMEM; 1408 1409 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1410 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1411 if (!ctrl_ctx) { 1412 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1413 __func__); 1414 ret = -ENOMEM; 1415 goto command_cleanup; 1416 } 1417 /* Set up the modified control endpoint 0 */ 1418 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1419 xhci->devs[slot_id]->out_ctx, ep_index); 1420 1421 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1422 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1423 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1424 1425 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1426 ctrl_ctx->drop_flags = 0; 1427 1428 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1429 true, false); 1430 1431 /* Clean up the input context for later use by bandwidth 1432 * functions. 1433 */ 1434 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1435 command_cleanup: 1436 kfree(command->completion); 1437 kfree(command); 1438 } 1439 return ret; 1440 } 1441 1442 /* 1443 * non-error returns are a promise to giveback() the urb later 1444 * we drop ownership so next owner (or urb unlink) can get it 1445 */ 1446 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1447 { 1448 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1449 unsigned long flags; 1450 int ret = 0; 1451 unsigned int slot_id, ep_index; 1452 unsigned int *ep_state; 1453 struct urb_priv *urb_priv; 1454 int num_tds; 1455 1456 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1457 true, true, __func__) <= 0) 1458 return -EINVAL; 1459 1460 slot_id = urb->dev->slot_id; 1461 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1462 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1463 1464 if (!HCD_HW_ACCESSIBLE(hcd)) { 1465 if (!in_interrupt()) 1466 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1467 return -ESHUTDOWN; 1468 } 1469 1470 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1471 num_tds = urb->number_of_packets; 1472 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1473 urb->transfer_buffer_length > 0 && 1474 urb->transfer_flags & URB_ZERO_PACKET && 1475 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1476 num_tds = 2; 1477 else 1478 num_tds = 1; 1479 1480 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1481 if (!urb_priv) 1482 return -ENOMEM; 1483 1484 urb_priv->num_tds = num_tds; 1485 urb_priv->num_tds_done = 0; 1486 urb->hcpriv = urb_priv; 1487 1488 trace_xhci_urb_enqueue(urb); 1489 1490 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1491 /* Check to see if the max packet size for the default control 1492 * endpoint changed during FS device enumeration 1493 */ 1494 if (urb->dev->speed == USB_SPEED_FULL) { 1495 ret = xhci_check_maxpacket(xhci, slot_id, 1496 ep_index, urb); 1497 if (ret < 0) { 1498 xhci_urb_free_priv(urb_priv); 1499 urb->hcpriv = NULL; 1500 return ret; 1501 } 1502 } 1503 } 1504 1505 spin_lock_irqsave(&xhci->lock, flags); 1506 1507 if (xhci->xhc_state & XHCI_STATE_DYING) { 1508 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1509 urb->ep->desc.bEndpointAddress, urb); 1510 ret = -ESHUTDOWN; 1511 goto free_priv; 1512 } 1513 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1514 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1515 *ep_state); 1516 ret = -EINVAL; 1517 goto free_priv; 1518 } 1519 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1520 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1521 ret = -EINVAL; 1522 goto free_priv; 1523 } 1524 1525 switch (usb_endpoint_type(&urb->ep->desc)) { 1526 1527 case USB_ENDPOINT_XFER_CONTROL: 1528 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1529 slot_id, ep_index); 1530 break; 1531 case USB_ENDPOINT_XFER_BULK: 1532 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1533 slot_id, ep_index); 1534 break; 1535 case USB_ENDPOINT_XFER_INT: 1536 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1537 slot_id, ep_index); 1538 break; 1539 case USB_ENDPOINT_XFER_ISOC: 1540 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1541 slot_id, ep_index); 1542 } 1543 1544 if (ret) { 1545 free_priv: 1546 xhci_urb_free_priv(urb_priv); 1547 urb->hcpriv = NULL; 1548 } 1549 spin_unlock_irqrestore(&xhci->lock, flags); 1550 return ret; 1551 } 1552 1553 /* 1554 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1555 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1556 * should pick up where it left off in the TD, unless a Set Transfer Ring 1557 * Dequeue Pointer is issued. 1558 * 1559 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1560 * the ring. Since the ring is a contiguous structure, they can't be physically 1561 * removed. Instead, there are two options: 1562 * 1563 * 1) If the HC is in the middle of processing the URB to be canceled, we 1564 * simply move the ring's dequeue pointer past those TRBs using the Set 1565 * Transfer Ring Dequeue Pointer command. This will be the common case, 1566 * when drivers timeout on the last submitted URB and attempt to cancel. 1567 * 1568 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1569 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1570 * HC will need to invalidate the any TRBs it has cached after the stop 1571 * endpoint command, as noted in the xHCI 0.95 errata. 1572 * 1573 * 3) The TD may have completed by the time the Stop Endpoint Command 1574 * completes, so software needs to handle that case too. 1575 * 1576 * This function should protect against the TD enqueueing code ringing the 1577 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1578 * It also needs to account for multiple cancellations on happening at the same 1579 * time for the same endpoint. 1580 * 1581 * Note that this function can be called in any context, or so says 1582 * usb_hcd_unlink_urb() 1583 */ 1584 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1585 { 1586 unsigned long flags; 1587 int ret, i; 1588 u32 temp; 1589 struct xhci_hcd *xhci; 1590 struct urb_priv *urb_priv; 1591 struct xhci_td *td; 1592 unsigned int ep_index; 1593 struct xhci_ring *ep_ring; 1594 struct xhci_virt_ep *ep; 1595 struct xhci_command *command; 1596 struct xhci_virt_device *vdev; 1597 1598 xhci = hcd_to_xhci(hcd); 1599 spin_lock_irqsave(&xhci->lock, flags); 1600 1601 trace_xhci_urb_dequeue(urb); 1602 1603 /* Make sure the URB hasn't completed or been unlinked already */ 1604 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1605 if (ret) 1606 goto done; 1607 1608 /* give back URB now if we can't queue it for cancel */ 1609 vdev = xhci->devs[urb->dev->slot_id]; 1610 urb_priv = urb->hcpriv; 1611 if (!vdev || !urb_priv) 1612 goto err_giveback; 1613 1614 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1615 ep = &vdev->eps[ep_index]; 1616 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1617 if (!ep || !ep_ring) 1618 goto err_giveback; 1619 1620 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1621 temp = readl(&xhci->op_regs->status); 1622 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1623 xhci_hc_died(xhci); 1624 goto done; 1625 } 1626 1627 /* 1628 * check ring is not re-allocated since URB was enqueued. If it is, then 1629 * make sure none of the ring related pointers in this URB private data 1630 * are touched, such as td_list, otherwise we overwrite freed data 1631 */ 1632 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1633 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1634 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1635 td = &urb_priv->td[i]; 1636 if (!list_empty(&td->cancelled_td_list)) 1637 list_del_init(&td->cancelled_td_list); 1638 } 1639 goto err_giveback; 1640 } 1641 1642 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1643 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1644 "HC halted, freeing TD manually."); 1645 for (i = urb_priv->num_tds_done; 1646 i < urb_priv->num_tds; 1647 i++) { 1648 td = &urb_priv->td[i]; 1649 if (!list_empty(&td->td_list)) 1650 list_del_init(&td->td_list); 1651 if (!list_empty(&td->cancelled_td_list)) 1652 list_del_init(&td->cancelled_td_list); 1653 } 1654 goto err_giveback; 1655 } 1656 1657 i = urb_priv->num_tds_done; 1658 if (i < urb_priv->num_tds) 1659 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1660 "Cancel URB %p, dev %s, ep 0x%x, " 1661 "starting at offset 0x%llx", 1662 urb, urb->dev->devpath, 1663 urb->ep->desc.bEndpointAddress, 1664 (unsigned long long) xhci_trb_virt_to_dma( 1665 urb_priv->td[i].start_seg, 1666 urb_priv->td[i].first_trb)); 1667 1668 for (; i < urb_priv->num_tds; i++) { 1669 td = &urb_priv->td[i]; 1670 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1671 } 1672 1673 /* Queue a stop endpoint command, but only if this is 1674 * the first cancellation to be handled. 1675 */ 1676 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1677 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1678 if (!command) { 1679 ret = -ENOMEM; 1680 goto done; 1681 } 1682 ep->ep_state |= EP_STOP_CMD_PENDING; 1683 ep->stop_cmd_timer.expires = jiffies + 1684 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1685 add_timer(&ep->stop_cmd_timer); 1686 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1687 ep_index, 0); 1688 xhci_ring_cmd_db(xhci); 1689 } 1690 done: 1691 spin_unlock_irqrestore(&xhci->lock, flags); 1692 return ret; 1693 1694 err_giveback: 1695 if (urb_priv) 1696 xhci_urb_free_priv(urb_priv); 1697 usb_hcd_unlink_urb_from_ep(hcd, urb); 1698 spin_unlock_irqrestore(&xhci->lock, flags); 1699 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1700 return ret; 1701 } 1702 1703 /* Drop an endpoint from a new bandwidth configuration for this device. 1704 * Only one call to this function is allowed per endpoint before 1705 * check_bandwidth() or reset_bandwidth() must be called. 1706 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1707 * add the endpoint to the schedule with possibly new parameters denoted by a 1708 * different endpoint descriptor in usb_host_endpoint. 1709 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1710 * not allowed. 1711 * 1712 * The USB core will not allow URBs to be queued to an endpoint that is being 1713 * disabled, so there's no need for mutual exclusion to protect 1714 * the xhci->devs[slot_id] structure. 1715 */ 1716 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1717 struct usb_host_endpoint *ep) 1718 { 1719 struct xhci_hcd *xhci; 1720 struct xhci_container_ctx *in_ctx, *out_ctx; 1721 struct xhci_input_control_ctx *ctrl_ctx; 1722 unsigned int ep_index; 1723 struct xhci_ep_ctx *ep_ctx; 1724 u32 drop_flag; 1725 u32 new_add_flags, new_drop_flags; 1726 int ret; 1727 1728 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1729 if (ret <= 0) 1730 return ret; 1731 xhci = hcd_to_xhci(hcd); 1732 if (xhci->xhc_state & XHCI_STATE_DYING) 1733 return -ENODEV; 1734 1735 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1736 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1737 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1738 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1739 __func__, drop_flag); 1740 return 0; 1741 } 1742 1743 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1744 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1745 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1746 if (!ctrl_ctx) { 1747 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1748 __func__); 1749 return 0; 1750 } 1751 1752 ep_index = xhci_get_endpoint_index(&ep->desc); 1753 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1754 /* If the HC already knows the endpoint is disabled, 1755 * or the HCD has noted it is disabled, ignore this request 1756 */ 1757 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1758 le32_to_cpu(ctrl_ctx->drop_flags) & 1759 xhci_get_endpoint_flag(&ep->desc)) { 1760 /* Do not warn when called after a usb_device_reset */ 1761 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1762 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1763 __func__, ep); 1764 return 0; 1765 } 1766 1767 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1768 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1769 1770 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1771 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1772 1773 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1774 1775 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1776 1777 if (xhci->quirks & XHCI_MTK_HOST) 1778 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1779 1780 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1781 (unsigned int) ep->desc.bEndpointAddress, 1782 udev->slot_id, 1783 (unsigned int) new_drop_flags, 1784 (unsigned int) new_add_flags); 1785 return 0; 1786 } 1787 1788 /* Add an endpoint to a new possible bandwidth configuration for this device. 1789 * Only one call to this function is allowed per endpoint before 1790 * check_bandwidth() or reset_bandwidth() must be called. 1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1792 * add the endpoint to the schedule with possibly new parameters denoted by a 1793 * different endpoint descriptor in usb_host_endpoint. 1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1795 * not allowed. 1796 * 1797 * The USB core will not allow URBs to be queued to an endpoint until the 1798 * configuration or alt setting is installed in the device, so there's no need 1799 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1800 */ 1801 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1802 struct usb_host_endpoint *ep) 1803 { 1804 struct xhci_hcd *xhci; 1805 struct xhci_container_ctx *in_ctx; 1806 unsigned int ep_index; 1807 struct xhci_input_control_ctx *ctrl_ctx; 1808 struct xhci_ep_ctx *ep_ctx; 1809 u32 added_ctxs; 1810 u32 new_add_flags, new_drop_flags; 1811 struct xhci_virt_device *virt_dev; 1812 int ret = 0; 1813 1814 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1815 if (ret <= 0) { 1816 /* So we won't queue a reset ep command for a root hub */ 1817 ep->hcpriv = NULL; 1818 return ret; 1819 } 1820 xhci = hcd_to_xhci(hcd); 1821 if (xhci->xhc_state & XHCI_STATE_DYING) 1822 return -ENODEV; 1823 1824 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1825 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1826 /* FIXME when we have to issue an evaluate endpoint command to 1827 * deal with ep0 max packet size changing once we get the 1828 * descriptors 1829 */ 1830 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1831 __func__, added_ctxs); 1832 return 0; 1833 } 1834 1835 virt_dev = xhci->devs[udev->slot_id]; 1836 in_ctx = virt_dev->in_ctx; 1837 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1838 if (!ctrl_ctx) { 1839 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1840 __func__); 1841 return 0; 1842 } 1843 1844 ep_index = xhci_get_endpoint_index(&ep->desc); 1845 /* If this endpoint is already in use, and the upper layers are trying 1846 * to add it again without dropping it, reject the addition. 1847 */ 1848 if (virt_dev->eps[ep_index].ring && 1849 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1850 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1851 "without dropping it.\n", 1852 (unsigned int) ep->desc.bEndpointAddress); 1853 return -EINVAL; 1854 } 1855 1856 /* If the HCD has already noted the endpoint is enabled, 1857 * ignore this request. 1858 */ 1859 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1860 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1861 __func__, ep); 1862 return 0; 1863 } 1864 1865 /* 1866 * Configuration and alternate setting changes must be done in 1867 * process context, not interrupt context (or so documenation 1868 * for usb_set_interface() and usb_set_configuration() claim). 1869 */ 1870 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1871 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1872 __func__, ep->desc.bEndpointAddress); 1873 return -ENOMEM; 1874 } 1875 1876 if (xhci->quirks & XHCI_MTK_HOST) { 1877 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1878 if (ret < 0) { 1879 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1880 virt_dev->eps[ep_index].new_ring = NULL; 1881 return ret; 1882 } 1883 } 1884 1885 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1886 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1887 1888 /* If xhci_endpoint_disable() was called for this endpoint, but the 1889 * xHC hasn't been notified yet through the check_bandwidth() call, 1890 * this re-adds a new state for the endpoint from the new endpoint 1891 * descriptors. We must drop and re-add this endpoint, so we leave the 1892 * drop flags alone. 1893 */ 1894 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1895 1896 /* Store the usb_device pointer for later use */ 1897 ep->hcpriv = udev; 1898 1899 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1900 trace_xhci_add_endpoint(ep_ctx); 1901 1902 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1903 1904 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1905 (unsigned int) ep->desc.bEndpointAddress, 1906 udev->slot_id, 1907 (unsigned int) new_drop_flags, 1908 (unsigned int) new_add_flags); 1909 return 0; 1910 } 1911 1912 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1913 { 1914 struct xhci_input_control_ctx *ctrl_ctx; 1915 struct xhci_ep_ctx *ep_ctx; 1916 struct xhci_slot_ctx *slot_ctx; 1917 int i; 1918 1919 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1920 if (!ctrl_ctx) { 1921 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1922 __func__); 1923 return; 1924 } 1925 1926 /* When a device's add flag and drop flag are zero, any subsequent 1927 * configure endpoint command will leave that endpoint's state 1928 * untouched. Make sure we don't leave any old state in the input 1929 * endpoint contexts. 1930 */ 1931 ctrl_ctx->drop_flags = 0; 1932 ctrl_ctx->add_flags = 0; 1933 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1934 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1935 /* Endpoint 0 is always valid */ 1936 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1937 for (i = 1; i < 31; i++) { 1938 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1939 ep_ctx->ep_info = 0; 1940 ep_ctx->ep_info2 = 0; 1941 ep_ctx->deq = 0; 1942 ep_ctx->tx_info = 0; 1943 } 1944 } 1945 1946 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1947 struct usb_device *udev, u32 *cmd_status) 1948 { 1949 int ret; 1950 1951 switch (*cmd_status) { 1952 case COMP_COMMAND_ABORTED: 1953 case COMP_COMMAND_RING_STOPPED: 1954 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1955 ret = -ETIME; 1956 break; 1957 case COMP_RESOURCE_ERROR: 1958 dev_warn(&udev->dev, 1959 "Not enough host controller resources for new device state.\n"); 1960 ret = -ENOMEM; 1961 /* FIXME: can we allocate more resources for the HC? */ 1962 break; 1963 case COMP_BANDWIDTH_ERROR: 1964 case COMP_SECONDARY_BANDWIDTH_ERROR: 1965 dev_warn(&udev->dev, 1966 "Not enough bandwidth for new device state.\n"); 1967 ret = -ENOSPC; 1968 /* FIXME: can we go back to the old state? */ 1969 break; 1970 case COMP_TRB_ERROR: 1971 /* the HCD set up something wrong */ 1972 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1973 "add flag = 1, " 1974 "and endpoint is not disabled.\n"); 1975 ret = -EINVAL; 1976 break; 1977 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1978 dev_warn(&udev->dev, 1979 "ERROR: Incompatible device for endpoint configure command.\n"); 1980 ret = -ENODEV; 1981 break; 1982 case COMP_SUCCESS: 1983 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1984 "Successful Endpoint Configure command"); 1985 ret = 0; 1986 break; 1987 default: 1988 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1989 *cmd_status); 1990 ret = -EINVAL; 1991 break; 1992 } 1993 return ret; 1994 } 1995 1996 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1997 struct usb_device *udev, u32 *cmd_status) 1998 { 1999 int ret; 2000 2001 switch (*cmd_status) { 2002 case COMP_COMMAND_ABORTED: 2003 case COMP_COMMAND_RING_STOPPED: 2004 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2005 ret = -ETIME; 2006 break; 2007 case COMP_PARAMETER_ERROR: 2008 dev_warn(&udev->dev, 2009 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2010 ret = -EINVAL; 2011 break; 2012 case COMP_SLOT_NOT_ENABLED_ERROR: 2013 dev_warn(&udev->dev, 2014 "WARN: slot not enabled for evaluate context command.\n"); 2015 ret = -EINVAL; 2016 break; 2017 case COMP_CONTEXT_STATE_ERROR: 2018 dev_warn(&udev->dev, 2019 "WARN: invalid context state for evaluate context command.\n"); 2020 ret = -EINVAL; 2021 break; 2022 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2023 dev_warn(&udev->dev, 2024 "ERROR: Incompatible device for evaluate context command.\n"); 2025 ret = -ENODEV; 2026 break; 2027 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2028 /* Max Exit Latency too large error */ 2029 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2030 ret = -EINVAL; 2031 break; 2032 case COMP_SUCCESS: 2033 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2034 "Successful evaluate context command"); 2035 ret = 0; 2036 break; 2037 default: 2038 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2039 *cmd_status); 2040 ret = -EINVAL; 2041 break; 2042 } 2043 return ret; 2044 } 2045 2046 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2047 struct xhci_input_control_ctx *ctrl_ctx) 2048 { 2049 u32 valid_add_flags; 2050 u32 valid_drop_flags; 2051 2052 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2053 * (bit 1). The default control endpoint is added during the Address 2054 * Device command and is never removed until the slot is disabled. 2055 */ 2056 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2057 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2058 2059 /* Use hweight32 to count the number of ones in the add flags, or 2060 * number of endpoints added. Don't count endpoints that are changed 2061 * (both added and dropped). 2062 */ 2063 return hweight32(valid_add_flags) - 2064 hweight32(valid_add_flags & valid_drop_flags); 2065 } 2066 2067 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2068 struct xhci_input_control_ctx *ctrl_ctx) 2069 { 2070 u32 valid_add_flags; 2071 u32 valid_drop_flags; 2072 2073 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2074 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2075 2076 return hweight32(valid_drop_flags) - 2077 hweight32(valid_add_flags & valid_drop_flags); 2078 } 2079 2080 /* 2081 * We need to reserve the new number of endpoints before the configure endpoint 2082 * command completes. We can't subtract the dropped endpoints from the number 2083 * of active endpoints until the command completes because we can oversubscribe 2084 * the host in this case: 2085 * 2086 * - the first configure endpoint command drops more endpoints than it adds 2087 * - a second configure endpoint command that adds more endpoints is queued 2088 * - the first configure endpoint command fails, so the config is unchanged 2089 * - the second command may succeed, even though there isn't enough resources 2090 * 2091 * Must be called with xhci->lock held. 2092 */ 2093 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2094 struct xhci_input_control_ctx *ctrl_ctx) 2095 { 2096 u32 added_eps; 2097 2098 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2099 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2100 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2101 "Not enough ep ctxs: " 2102 "%u active, need to add %u, limit is %u.", 2103 xhci->num_active_eps, added_eps, 2104 xhci->limit_active_eps); 2105 return -ENOMEM; 2106 } 2107 xhci->num_active_eps += added_eps; 2108 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2109 "Adding %u ep ctxs, %u now active.", added_eps, 2110 xhci->num_active_eps); 2111 return 0; 2112 } 2113 2114 /* 2115 * The configure endpoint was failed by the xHC for some other reason, so we 2116 * need to revert the resources that failed configuration would have used. 2117 * 2118 * Must be called with xhci->lock held. 2119 */ 2120 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2121 struct xhci_input_control_ctx *ctrl_ctx) 2122 { 2123 u32 num_failed_eps; 2124 2125 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2126 xhci->num_active_eps -= num_failed_eps; 2127 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2128 "Removing %u failed ep ctxs, %u now active.", 2129 num_failed_eps, 2130 xhci->num_active_eps); 2131 } 2132 2133 /* 2134 * Now that the command has completed, clean up the active endpoint count by 2135 * subtracting out the endpoints that were dropped (but not changed). 2136 * 2137 * Must be called with xhci->lock held. 2138 */ 2139 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2140 struct xhci_input_control_ctx *ctrl_ctx) 2141 { 2142 u32 num_dropped_eps; 2143 2144 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2145 xhci->num_active_eps -= num_dropped_eps; 2146 if (num_dropped_eps) 2147 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2148 "Removing %u dropped ep ctxs, %u now active.", 2149 num_dropped_eps, 2150 xhci->num_active_eps); 2151 } 2152 2153 static unsigned int xhci_get_block_size(struct usb_device *udev) 2154 { 2155 switch (udev->speed) { 2156 case USB_SPEED_LOW: 2157 case USB_SPEED_FULL: 2158 return FS_BLOCK; 2159 case USB_SPEED_HIGH: 2160 return HS_BLOCK; 2161 case USB_SPEED_SUPER: 2162 case USB_SPEED_SUPER_PLUS: 2163 return SS_BLOCK; 2164 case USB_SPEED_UNKNOWN: 2165 case USB_SPEED_WIRELESS: 2166 default: 2167 /* Should never happen */ 2168 return 1; 2169 } 2170 } 2171 2172 static unsigned int 2173 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2174 { 2175 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2176 return LS_OVERHEAD; 2177 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2178 return FS_OVERHEAD; 2179 return HS_OVERHEAD; 2180 } 2181 2182 /* If we are changing a LS/FS device under a HS hub, 2183 * make sure (if we are activating a new TT) that the HS bus has enough 2184 * bandwidth for this new TT. 2185 */ 2186 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2187 struct xhci_virt_device *virt_dev, 2188 int old_active_eps) 2189 { 2190 struct xhci_interval_bw_table *bw_table; 2191 struct xhci_tt_bw_info *tt_info; 2192 2193 /* Find the bandwidth table for the root port this TT is attached to. */ 2194 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2195 tt_info = virt_dev->tt_info; 2196 /* If this TT already had active endpoints, the bandwidth for this TT 2197 * has already been added. Removing all periodic endpoints (and thus 2198 * making the TT enactive) will only decrease the bandwidth used. 2199 */ 2200 if (old_active_eps) 2201 return 0; 2202 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2203 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2204 return -ENOMEM; 2205 return 0; 2206 } 2207 /* Not sure why we would have no new active endpoints... 2208 * 2209 * Maybe because of an Evaluate Context change for a hub update or a 2210 * control endpoint 0 max packet size change? 2211 * FIXME: skip the bandwidth calculation in that case. 2212 */ 2213 return 0; 2214 } 2215 2216 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2217 struct xhci_virt_device *virt_dev) 2218 { 2219 unsigned int bw_reserved; 2220 2221 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2222 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2223 return -ENOMEM; 2224 2225 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2226 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2227 return -ENOMEM; 2228 2229 return 0; 2230 } 2231 2232 /* 2233 * This algorithm is a very conservative estimate of the worst-case scheduling 2234 * scenario for any one interval. The hardware dynamically schedules the 2235 * packets, so we can't tell which microframe could be the limiting factor in 2236 * the bandwidth scheduling. This only takes into account periodic endpoints. 2237 * 2238 * Obviously, we can't solve an NP complete problem to find the minimum worst 2239 * case scenario. Instead, we come up with an estimate that is no less than 2240 * the worst case bandwidth used for any one microframe, but may be an 2241 * over-estimate. 2242 * 2243 * We walk the requirements for each endpoint by interval, starting with the 2244 * smallest interval, and place packets in the schedule where there is only one 2245 * possible way to schedule packets for that interval. In order to simplify 2246 * this algorithm, we record the largest max packet size for each interval, and 2247 * assume all packets will be that size. 2248 * 2249 * For interval 0, we obviously must schedule all packets for each interval. 2250 * The bandwidth for interval 0 is just the amount of data to be transmitted 2251 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2252 * the number of packets). 2253 * 2254 * For interval 1, we have two possible microframes to schedule those packets 2255 * in. For this algorithm, if we can schedule the same number of packets for 2256 * each possible scheduling opportunity (each microframe), we will do so. The 2257 * remaining number of packets will be saved to be transmitted in the gaps in 2258 * the next interval's scheduling sequence. 2259 * 2260 * As we move those remaining packets to be scheduled with interval 2 packets, 2261 * we have to double the number of remaining packets to transmit. This is 2262 * because the intervals are actually powers of 2, and we would be transmitting 2263 * the previous interval's packets twice in this interval. We also have to be 2264 * sure that when we look at the largest max packet size for this interval, we 2265 * also look at the largest max packet size for the remaining packets and take 2266 * the greater of the two. 2267 * 2268 * The algorithm continues to evenly distribute packets in each scheduling 2269 * opportunity, and push the remaining packets out, until we get to the last 2270 * interval. Then those packets and their associated overhead are just added 2271 * to the bandwidth used. 2272 */ 2273 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2274 struct xhci_virt_device *virt_dev, 2275 int old_active_eps) 2276 { 2277 unsigned int bw_reserved; 2278 unsigned int max_bandwidth; 2279 unsigned int bw_used; 2280 unsigned int block_size; 2281 struct xhci_interval_bw_table *bw_table; 2282 unsigned int packet_size = 0; 2283 unsigned int overhead = 0; 2284 unsigned int packets_transmitted = 0; 2285 unsigned int packets_remaining = 0; 2286 unsigned int i; 2287 2288 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2289 return xhci_check_ss_bw(xhci, virt_dev); 2290 2291 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2292 max_bandwidth = HS_BW_LIMIT; 2293 /* Convert percent of bus BW reserved to blocks reserved */ 2294 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2295 } else { 2296 max_bandwidth = FS_BW_LIMIT; 2297 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2298 } 2299 2300 bw_table = virt_dev->bw_table; 2301 /* We need to translate the max packet size and max ESIT payloads into 2302 * the units the hardware uses. 2303 */ 2304 block_size = xhci_get_block_size(virt_dev->udev); 2305 2306 /* If we are manipulating a LS/FS device under a HS hub, double check 2307 * that the HS bus has enough bandwidth if we are activing a new TT. 2308 */ 2309 if (virt_dev->tt_info) { 2310 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2311 "Recalculating BW for rootport %u", 2312 virt_dev->real_port); 2313 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2314 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2315 "newly activated TT.\n"); 2316 return -ENOMEM; 2317 } 2318 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2319 "Recalculating BW for TT slot %u port %u", 2320 virt_dev->tt_info->slot_id, 2321 virt_dev->tt_info->ttport); 2322 } else { 2323 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2324 "Recalculating BW for rootport %u", 2325 virt_dev->real_port); 2326 } 2327 2328 /* Add in how much bandwidth will be used for interval zero, or the 2329 * rounded max ESIT payload + number of packets * largest overhead. 2330 */ 2331 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2332 bw_table->interval_bw[0].num_packets * 2333 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2334 2335 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2336 unsigned int bw_added; 2337 unsigned int largest_mps; 2338 unsigned int interval_overhead; 2339 2340 /* 2341 * How many packets could we transmit in this interval? 2342 * If packets didn't fit in the previous interval, we will need 2343 * to transmit that many packets twice within this interval. 2344 */ 2345 packets_remaining = 2 * packets_remaining + 2346 bw_table->interval_bw[i].num_packets; 2347 2348 /* Find the largest max packet size of this or the previous 2349 * interval. 2350 */ 2351 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2352 largest_mps = 0; 2353 else { 2354 struct xhci_virt_ep *virt_ep; 2355 struct list_head *ep_entry; 2356 2357 ep_entry = bw_table->interval_bw[i].endpoints.next; 2358 virt_ep = list_entry(ep_entry, 2359 struct xhci_virt_ep, bw_endpoint_list); 2360 /* Convert to blocks, rounding up */ 2361 largest_mps = DIV_ROUND_UP( 2362 virt_ep->bw_info.max_packet_size, 2363 block_size); 2364 } 2365 if (largest_mps > packet_size) 2366 packet_size = largest_mps; 2367 2368 /* Use the larger overhead of this or the previous interval. */ 2369 interval_overhead = xhci_get_largest_overhead( 2370 &bw_table->interval_bw[i]); 2371 if (interval_overhead > overhead) 2372 overhead = interval_overhead; 2373 2374 /* How many packets can we evenly distribute across 2375 * (1 << (i + 1)) possible scheduling opportunities? 2376 */ 2377 packets_transmitted = packets_remaining >> (i + 1); 2378 2379 /* Add in the bandwidth used for those scheduled packets */ 2380 bw_added = packets_transmitted * (overhead + packet_size); 2381 2382 /* How many packets do we have remaining to transmit? */ 2383 packets_remaining = packets_remaining % (1 << (i + 1)); 2384 2385 /* What largest max packet size should those packets have? */ 2386 /* If we've transmitted all packets, don't carry over the 2387 * largest packet size. 2388 */ 2389 if (packets_remaining == 0) { 2390 packet_size = 0; 2391 overhead = 0; 2392 } else if (packets_transmitted > 0) { 2393 /* Otherwise if we do have remaining packets, and we've 2394 * scheduled some packets in this interval, take the 2395 * largest max packet size from endpoints with this 2396 * interval. 2397 */ 2398 packet_size = largest_mps; 2399 overhead = interval_overhead; 2400 } 2401 /* Otherwise carry over packet_size and overhead from the last 2402 * time we had a remainder. 2403 */ 2404 bw_used += bw_added; 2405 if (bw_used > max_bandwidth) { 2406 xhci_warn(xhci, "Not enough bandwidth. " 2407 "Proposed: %u, Max: %u\n", 2408 bw_used, max_bandwidth); 2409 return -ENOMEM; 2410 } 2411 } 2412 /* 2413 * Ok, we know we have some packets left over after even-handedly 2414 * scheduling interval 15. We don't know which microframes they will 2415 * fit into, so we over-schedule and say they will be scheduled every 2416 * microframe. 2417 */ 2418 if (packets_remaining > 0) 2419 bw_used += overhead + packet_size; 2420 2421 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2422 unsigned int port_index = virt_dev->real_port - 1; 2423 2424 /* OK, we're manipulating a HS device attached to a 2425 * root port bandwidth domain. Include the number of active TTs 2426 * in the bandwidth used. 2427 */ 2428 bw_used += TT_HS_OVERHEAD * 2429 xhci->rh_bw[port_index].num_active_tts; 2430 } 2431 2432 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2433 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2434 "Available: %u " "percent", 2435 bw_used, max_bandwidth, bw_reserved, 2436 (max_bandwidth - bw_used - bw_reserved) * 100 / 2437 max_bandwidth); 2438 2439 bw_used += bw_reserved; 2440 if (bw_used > max_bandwidth) { 2441 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2442 bw_used, max_bandwidth); 2443 return -ENOMEM; 2444 } 2445 2446 bw_table->bw_used = bw_used; 2447 return 0; 2448 } 2449 2450 static bool xhci_is_async_ep(unsigned int ep_type) 2451 { 2452 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2453 ep_type != ISOC_IN_EP && 2454 ep_type != INT_IN_EP); 2455 } 2456 2457 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2458 { 2459 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2460 } 2461 2462 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2463 { 2464 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2465 2466 if (ep_bw->ep_interval == 0) 2467 return SS_OVERHEAD_BURST + 2468 (ep_bw->mult * ep_bw->num_packets * 2469 (SS_OVERHEAD + mps)); 2470 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2471 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2472 1 << ep_bw->ep_interval); 2473 2474 } 2475 2476 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2477 struct xhci_bw_info *ep_bw, 2478 struct xhci_interval_bw_table *bw_table, 2479 struct usb_device *udev, 2480 struct xhci_virt_ep *virt_ep, 2481 struct xhci_tt_bw_info *tt_info) 2482 { 2483 struct xhci_interval_bw *interval_bw; 2484 int normalized_interval; 2485 2486 if (xhci_is_async_ep(ep_bw->type)) 2487 return; 2488 2489 if (udev->speed >= USB_SPEED_SUPER) { 2490 if (xhci_is_sync_in_ep(ep_bw->type)) 2491 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2492 xhci_get_ss_bw_consumed(ep_bw); 2493 else 2494 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2495 xhci_get_ss_bw_consumed(ep_bw); 2496 return; 2497 } 2498 2499 /* SuperSpeed endpoints never get added to intervals in the table, so 2500 * this check is only valid for HS/FS/LS devices. 2501 */ 2502 if (list_empty(&virt_ep->bw_endpoint_list)) 2503 return; 2504 /* For LS/FS devices, we need to translate the interval expressed in 2505 * microframes to frames. 2506 */ 2507 if (udev->speed == USB_SPEED_HIGH) 2508 normalized_interval = ep_bw->ep_interval; 2509 else 2510 normalized_interval = ep_bw->ep_interval - 3; 2511 2512 if (normalized_interval == 0) 2513 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2514 interval_bw = &bw_table->interval_bw[normalized_interval]; 2515 interval_bw->num_packets -= ep_bw->num_packets; 2516 switch (udev->speed) { 2517 case USB_SPEED_LOW: 2518 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2519 break; 2520 case USB_SPEED_FULL: 2521 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2522 break; 2523 case USB_SPEED_HIGH: 2524 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2525 break; 2526 case USB_SPEED_SUPER: 2527 case USB_SPEED_SUPER_PLUS: 2528 case USB_SPEED_UNKNOWN: 2529 case USB_SPEED_WIRELESS: 2530 /* Should never happen because only LS/FS/HS endpoints will get 2531 * added to the endpoint list. 2532 */ 2533 return; 2534 } 2535 if (tt_info) 2536 tt_info->active_eps -= 1; 2537 list_del_init(&virt_ep->bw_endpoint_list); 2538 } 2539 2540 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2541 struct xhci_bw_info *ep_bw, 2542 struct xhci_interval_bw_table *bw_table, 2543 struct usb_device *udev, 2544 struct xhci_virt_ep *virt_ep, 2545 struct xhci_tt_bw_info *tt_info) 2546 { 2547 struct xhci_interval_bw *interval_bw; 2548 struct xhci_virt_ep *smaller_ep; 2549 int normalized_interval; 2550 2551 if (xhci_is_async_ep(ep_bw->type)) 2552 return; 2553 2554 if (udev->speed == USB_SPEED_SUPER) { 2555 if (xhci_is_sync_in_ep(ep_bw->type)) 2556 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2557 xhci_get_ss_bw_consumed(ep_bw); 2558 else 2559 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2560 xhci_get_ss_bw_consumed(ep_bw); 2561 return; 2562 } 2563 2564 /* For LS/FS devices, we need to translate the interval expressed in 2565 * microframes to frames. 2566 */ 2567 if (udev->speed == USB_SPEED_HIGH) 2568 normalized_interval = ep_bw->ep_interval; 2569 else 2570 normalized_interval = ep_bw->ep_interval - 3; 2571 2572 if (normalized_interval == 0) 2573 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2574 interval_bw = &bw_table->interval_bw[normalized_interval]; 2575 interval_bw->num_packets += ep_bw->num_packets; 2576 switch (udev->speed) { 2577 case USB_SPEED_LOW: 2578 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2579 break; 2580 case USB_SPEED_FULL: 2581 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2582 break; 2583 case USB_SPEED_HIGH: 2584 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2585 break; 2586 case USB_SPEED_SUPER: 2587 case USB_SPEED_SUPER_PLUS: 2588 case USB_SPEED_UNKNOWN: 2589 case USB_SPEED_WIRELESS: 2590 /* Should never happen because only LS/FS/HS endpoints will get 2591 * added to the endpoint list. 2592 */ 2593 return; 2594 } 2595 2596 if (tt_info) 2597 tt_info->active_eps += 1; 2598 /* Insert the endpoint into the list, largest max packet size first. */ 2599 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2600 bw_endpoint_list) { 2601 if (ep_bw->max_packet_size >= 2602 smaller_ep->bw_info.max_packet_size) { 2603 /* Add the new ep before the smaller endpoint */ 2604 list_add_tail(&virt_ep->bw_endpoint_list, 2605 &smaller_ep->bw_endpoint_list); 2606 return; 2607 } 2608 } 2609 /* Add the new endpoint at the end of the list. */ 2610 list_add_tail(&virt_ep->bw_endpoint_list, 2611 &interval_bw->endpoints); 2612 } 2613 2614 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2615 struct xhci_virt_device *virt_dev, 2616 int old_active_eps) 2617 { 2618 struct xhci_root_port_bw_info *rh_bw_info; 2619 if (!virt_dev->tt_info) 2620 return; 2621 2622 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2623 if (old_active_eps == 0 && 2624 virt_dev->tt_info->active_eps != 0) { 2625 rh_bw_info->num_active_tts += 1; 2626 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2627 } else if (old_active_eps != 0 && 2628 virt_dev->tt_info->active_eps == 0) { 2629 rh_bw_info->num_active_tts -= 1; 2630 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2631 } 2632 } 2633 2634 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2635 struct xhci_virt_device *virt_dev, 2636 struct xhci_container_ctx *in_ctx) 2637 { 2638 struct xhci_bw_info ep_bw_info[31]; 2639 int i; 2640 struct xhci_input_control_ctx *ctrl_ctx; 2641 int old_active_eps = 0; 2642 2643 if (virt_dev->tt_info) 2644 old_active_eps = virt_dev->tt_info->active_eps; 2645 2646 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2647 if (!ctrl_ctx) { 2648 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2649 __func__); 2650 return -ENOMEM; 2651 } 2652 2653 for (i = 0; i < 31; i++) { 2654 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2655 continue; 2656 2657 /* Make a copy of the BW info in case we need to revert this */ 2658 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2659 sizeof(ep_bw_info[i])); 2660 /* Drop the endpoint from the interval table if the endpoint is 2661 * being dropped or changed. 2662 */ 2663 if (EP_IS_DROPPED(ctrl_ctx, i)) 2664 xhci_drop_ep_from_interval_table(xhci, 2665 &virt_dev->eps[i].bw_info, 2666 virt_dev->bw_table, 2667 virt_dev->udev, 2668 &virt_dev->eps[i], 2669 virt_dev->tt_info); 2670 } 2671 /* Overwrite the information stored in the endpoints' bw_info */ 2672 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2673 for (i = 0; i < 31; i++) { 2674 /* Add any changed or added endpoints to the interval table */ 2675 if (EP_IS_ADDED(ctrl_ctx, i)) 2676 xhci_add_ep_to_interval_table(xhci, 2677 &virt_dev->eps[i].bw_info, 2678 virt_dev->bw_table, 2679 virt_dev->udev, 2680 &virt_dev->eps[i], 2681 virt_dev->tt_info); 2682 } 2683 2684 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2685 /* Ok, this fits in the bandwidth we have. 2686 * Update the number of active TTs. 2687 */ 2688 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2689 return 0; 2690 } 2691 2692 /* We don't have enough bandwidth for this, revert the stored info. */ 2693 for (i = 0; i < 31; i++) { 2694 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2695 continue; 2696 2697 /* Drop the new copies of any added or changed endpoints from 2698 * the interval table. 2699 */ 2700 if (EP_IS_ADDED(ctrl_ctx, i)) { 2701 xhci_drop_ep_from_interval_table(xhci, 2702 &virt_dev->eps[i].bw_info, 2703 virt_dev->bw_table, 2704 virt_dev->udev, 2705 &virt_dev->eps[i], 2706 virt_dev->tt_info); 2707 } 2708 /* Revert the endpoint back to its old information */ 2709 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2710 sizeof(ep_bw_info[i])); 2711 /* Add any changed or dropped endpoints back into the table */ 2712 if (EP_IS_DROPPED(ctrl_ctx, i)) 2713 xhci_add_ep_to_interval_table(xhci, 2714 &virt_dev->eps[i].bw_info, 2715 virt_dev->bw_table, 2716 virt_dev->udev, 2717 &virt_dev->eps[i], 2718 virt_dev->tt_info); 2719 } 2720 return -ENOMEM; 2721 } 2722 2723 2724 /* Issue a configure endpoint command or evaluate context command 2725 * and wait for it to finish. 2726 */ 2727 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2728 struct usb_device *udev, 2729 struct xhci_command *command, 2730 bool ctx_change, bool must_succeed) 2731 { 2732 int ret; 2733 unsigned long flags; 2734 struct xhci_input_control_ctx *ctrl_ctx; 2735 struct xhci_virt_device *virt_dev; 2736 struct xhci_slot_ctx *slot_ctx; 2737 2738 if (!command) 2739 return -EINVAL; 2740 2741 spin_lock_irqsave(&xhci->lock, flags); 2742 2743 if (xhci->xhc_state & XHCI_STATE_DYING) { 2744 spin_unlock_irqrestore(&xhci->lock, flags); 2745 return -ESHUTDOWN; 2746 } 2747 2748 virt_dev = xhci->devs[udev->slot_id]; 2749 2750 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2751 if (!ctrl_ctx) { 2752 spin_unlock_irqrestore(&xhci->lock, flags); 2753 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2754 __func__); 2755 return -ENOMEM; 2756 } 2757 2758 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2759 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2760 spin_unlock_irqrestore(&xhci->lock, flags); 2761 xhci_warn(xhci, "Not enough host resources, " 2762 "active endpoint contexts = %u\n", 2763 xhci->num_active_eps); 2764 return -ENOMEM; 2765 } 2766 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2767 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2768 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2769 xhci_free_host_resources(xhci, ctrl_ctx); 2770 spin_unlock_irqrestore(&xhci->lock, flags); 2771 xhci_warn(xhci, "Not enough bandwidth\n"); 2772 return -ENOMEM; 2773 } 2774 2775 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2776 2777 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2778 trace_xhci_configure_endpoint(slot_ctx); 2779 2780 if (!ctx_change) 2781 ret = xhci_queue_configure_endpoint(xhci, command, 2782 command->in_ctx->dma, 2783 udev->slot_id, must_succeed); 2784 else 2785 ret = xhci_queue_evaluate_context(xhci, command, 2786 command->in_ctx->dma, 2787 udev->slot_id, must_succeed); 2788 if (ret < 0) { 2789 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2790 xhci_free_host_resources(xhci, ctrl_ctx); 2791 spin_unlock_irqrestore(&xhci->lock, flags); 2792 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2793 "FIXME allocate a new ring segment"); 2794 return -ENOMEM; 2795 } 2796 xhci_ring_cmd_db(xhci); 2797 spin_unlock_irqrestore(&xhci->lock, flags); 2798 2799 /* Wait for the configure endpoint command to complete */ 2800 wait_for_completion(command->completion); 2801 2802 if (!ctx_change) 2803 ret = xhci_configure_endpoint_result(xhci, udev, 2804 &command->status); 2805 else 2806 ret = xhci_evaluate_context_result(xhci, udev, 2807 &command->status); 2808 2809 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2810 spin_lock_irqsave(&xhci->lock, flags); 2811 /* If the command failed, remove the reserved resources. 2812 * Otherwise, clean up the estimate to include dropped eps. 2813 */ 2814 if (ret) 2815 xhci_free_host_resources(xhci, ctrl_ctx); 2816 else 2817 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2818 spin_unlock_irqrestore(&xhci->lock, flags); 2819 } 2820 return ret; 2821 } 2822 2823 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2824 struct xhci_virt_device *vdev, int i) 2825 { 2826 struct xhci_virt_ep *ep = &vdev->eps[i]; 2827 2828 if (ep->ep_state & EP_HAS_STREAMS) { 2829 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2830 xhci_get_endpoint_address(i)); 2831 xhci_free_stream_info(xhci, ep->stream_info); 2832 ep->stream_info = NULL; 2833 ep->ep_state &= ~EP_HAS_STREAMS; 2834 } 2835 } 2836 2837 /* Called after one or more calls to xhci_add_endpoint() or 2838 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2839 * to call xhci_reset_bandwidth(). 2840 * 2841 * Since we are in the middle of changing either configuration or 2842 * installing a new alt setting, the USB core won't allow URBs to be 2843 * enqueued for any endpoint on the old config or interface. Nothing 2844 * else should be touching the xhci->devs[slot_id] structure, so we 2845 * don't need to take the xhci->lock for manipulating that. 2846 */ 2847 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2848 { 2849 int i; 2850 int ret = 0; 2851 struct xhci_hcd *xhci; 2852 struct xhci_virt_device *virt_dev; 2853 struct xhci_input_control_ctx *ctrl_ctx; 2854 struct xhci_slot_ctx *slot_ctx; 2855 struct xhci_command *command; 2856 2857 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2858 if (ret <= 0) 2859 return ret; 2860 xhci = hcd_to_xhci(hcd); 2861 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2862 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2863 return -ENODEV; 2864 2865 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2866 virt_dev = xhci->devs[udev->slot_id]; 2867 2868 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2869 if (!command) 2870 return -ENOMEM; 2871 2872 command->in_ctx = virt_dev->in_ctx; 2873 2874 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2875 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2876 if (!ctrl_ctx) { 2877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2878 __func__); 2879 ret = -ENOMEM; 2880 goto command_cleanup; 2881 } 2882 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2883 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2884 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2885 2886 /* Don't issue the command if there's no endpoints to update. */ 2887 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2888 ctrl_ctx->drop_flags == 0) { 2889 ret = 0; 2890 goto command_cleanup; 2891 } 2892 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2893 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2894 for (i = 31; i >= 1; i--) { 2895 __le32 le32 = cpu_to_le32(BIT(i)); 2896 2897 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2898 || (ctrl_ctx->add_flags & le32) || i == 1) { 2899 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2900 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2901 break; 2902 } 2903 } 2904 2905 ret = xhci_configure_endpoint(xhci, udev, command, 2906 false, false); 2907 if (ret) 2908 /* Callee should call reset_bandwidth() */ 2909 goto command_cleanup; 2910 2911 /* Free any rings that were dropped, but not changed. */ 2912 for (i = 1; i < 31; i++) { 2913 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2914 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2915 xhci_free_endpoint_ring(xhci, virt_dev, i); 2916 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2917 } 2918 } 2919 xhci_zero_in_ctx(xhci, virt_dev); 2920 /* 2921 * Install any rings for completely new endpoints or changed endpoints, 2922 * and free any old rings from changed endpoints. 2923 */ 2924 for (i = 1; i < 31; i++) { 2925 if (!virt_dev->eps[i].new_ring) 2926 continue; 2927 /* Only free the old ring if it exists. 2928 * It may not if this is the first add of an endpoint. 2929 */ 2930 if (virt_dev->eps[i].ring) { 2931 xhci_free_endpoint_ring(xhci, virt_dev, i); 2932 } 2933 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2934 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2935 virt_dev->eps[i].new_ring = NULL; 2936 } 2937 command_cleanup: 2938 kfree(command->completion); 2939 kfree(command); 2940 2941 return ret; 2942 } 2943 2944 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2945 { 2946 struct xhci_hcd *xhci; 2947 struct xhci_virt_device *virt_dev; 2948 int i, ret; 2949 2950 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2951 if (ret <= 0) 2952 return; 2953 xhci = hcd_to_xhci(hcd); 2954 2955 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2956 virt_dev = xhci->devs[udev->slot_id]; 2957 /* Free any rings allocated for added endpoints */ 2958 for (i = 0; i < 31; i++) { 2959 if (virt_dev->eps[i].new_ring) { 2960 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2961 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2962 virt_dev->eps[i].new_ring = NULL; 2963 } 2964 } 2965 xhci_zero_in_ctx(xhci, virt_dev); 2966 } 2967 2968 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2969 struct xhci_container_ctx *in_ctx, 2970 struct xhci_container_ctx *out_ctx, 2971 struct xhci_input_control_ctx *ctrl_ctx, 2972 u32 add_flags, u32 drop_flags) 2973 { 2974 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2975 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2976 xhci_slot_copy(xhci, in_ctx, out_ctx); 2977 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2978 } 2979 2980 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2981 unsigned int slot_id, unsigned int ep_index, 2982 struct xhci_dequeue_state *deq_state) 2983 { 2984 struct xhci_input_control_ctx *ctrl_ctx; 2985 struct xhci_container_ctx *in_ctx; 2986 struct xhci_ep_ctx *ep_ctx; 2987 u32 added_ctxs; 2988 dma_addr_t addr; 2989 2990 in_ctx = xhci->devs[slot_id]->in_ctx; 2991 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2992 if (!ctrl_ctx) { 2993 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2994 __func__); 2995 return; 2996 } 2997 2998 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2999 xhci->devs[slot_id]->out_ctx, ep_index); 3000 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3001 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3002 deq_state->new_deq_ptr); 3003 if (addr == 0) { 3004 xhci_warn(xhci, "WARN Cannot submit config ep after " 3005 "reset ep command\n"); 3006 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3007 deq_state->new_deq_seg, 3008 deq_state->new_deq_ptr); 3009 return; 3010 } 3011 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3012 3013 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3014 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3015 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3016 added_ctxs, added_ctxs); 3017 } 3018 3019 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 3020 unsigned int stream_id, struct xhci_td *td) 3021 { 3022 struct xhci_dequeue_state deq_state; 3023 struct usb_device *udev = td->urb->dev; 3024 3025 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3026 "Cleaning up stalled endpoint ring"); 3027 /* We need to move the HW's dequeue pointer past this TD, 3028 * or it will attempt to resend it on the next doorbell ring. 3029 */ 3030 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3031 ep_index, stream_id, td, &deq_state); 3032 3033 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3034 return; 3035 3036 /* HW with the reset endpoint quirk will use the saved dequeue state to 3037 * issue a configure endpoint command later. 3038 */ 3039 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3040 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3041 "Queueing new dequeue state"); 3042 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3043 ep_index, &deq_state); 3044 } else { 3045 /* Better hope no one uses the input context between now and the 3046 * reset endpoint completion! 3047 * XXX: No idea how this hardware will react when stream rings 3048 * are enabled. 3049 */ 3050 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3051 "Setting up input context for " 3052 "configure endpoint command"); 3053 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3054 ep_index, &deq_state); 3055 } 3056 } 3057 3058 /* 3059 * Called after usb core issues a clear halt control message. 3060 * The host side of the halt should already be cleared by a reset endpoint 3061 * command issued when the STALL event was received. 3062 * 3063 * The reset endpoint command may only be issued to endpoints in the halted 3064 * state. For software that wishes to reset the data toggle or sequence number 3065 * of an endpoint that isn't in the halted state this function will issue a 3066 * configure endpoint command with the Drop and Add bits set for the target 3067 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3068 */ 3069 3070 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3071 struct usb_host_endpoint *host_ep) 3072 { 3073 struct xhci_hcd *xhci; 3074 struct usb_device *udev; 3075 struct xhci_virt_device *vdev; 3076 struct xhci_virt_ep *ep; 3077 struct xhci_input_control_ctx *ctrl_ctx; 3078 struct xhci_command *stop_cmd, *cfg_cmd; 3079 unsigned int ep_index; 3080 unsigned long flags; 3081 u32 ep_flag; 3082 3083 xhci = hcd_to_xhci(hcd); 3084 if (!host_ep->hcpriv) 3085 return; 3086 udev = (struct usb_device *) host_ep->hcpriv; 3087 vdev = xhci->devs[udev->slot_id]; 3088 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3089 ep = &vdev->eps[ep_index]; 3090 3091 /* Bail out if toggle is already being cleared by a endpoint reset */ 3092 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3093 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3094 return; 3095 } 3096 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3097 if (usb_endpoint_xfer_control(&host_ep->desc) || 3098 usb_endpoint_xfer_isoc(&host_ep->desc)) 3099 return; 3100 3101 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3102 3103 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3104 return; 3105 3106 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3107 if (!stop_cmd) 3108 return; 3109 3110 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3111 if (!cfg_cmd) 3112 goto cleanup; 3113 3114 spin_lock_irqsave(&xhci->lock, flags); 3115 3116 /* block queuing new trbs and ringing ep doorbell */ 3117 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3118 3119 /* 3120 * Make sure endpoint ring is empty before resetting the toggle/seq. 3121 * Driver is required to synchronously cancel all transfer request. 3122 * Stop the endpoint to force xHC to update the output context 3123 */ 3124 3125 if (!list_empty(&ep->ring->td_list)) { 3126 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3127 spin_unlock_irqrestore(&xhci->lock, flags); 3128 xhci_free_command(xhci, cfg_cmd); 3129 goto cleanup; 3130 } 3131 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3132 xhci_ring_cmd_db(xhci); 3133 spin_unlock_irqrestore(&xhci->lock, flags); 3134 3135 wait_for_completion(stop_cmd->completion); 3136 3137 spin_lock_irqsave(&xhci->lock, flags); 3138 3139 /* config ep command clears toggle if add and drop ep flags are set */ 3140 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3141 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3142 ctrl_ctx, ep_flag, ep_flag); 3143 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3144 3145 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3146 udev->slot_id, false); 3147 xhci_ring_cmd_db(xhci); 3148 spin_unlock_irqrestore(&xhci->lock, flags); 3149 3150 wait_for_completion(cfg_cmd->completion); 3151 3152 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3153 xhci_free_command(xhci, cfg_cmd); 3154 cleanup: 3155 xhci_free_command(xhci, stop_cmd); 3156 } 3157 3158 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3159 struct usb_device *udev, struct usb_host_endpoint *ep, 3160 unsigned int slot_id) 3161 { 3162 int ret; 3163 unsigned int ep_index; 3164 unsigned int ep_state; 3165 3166 if (!ep) 3167 return -EINVAL; 3168 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3169 if (ret <= 0) 3170 return -EINVAL; 3171 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3172 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3173 " descriptor for ep 0x%x does not support streams\n", 3174 ep->desc.bEndpointAddress); 3175 return -EINVAL; 3176 } 3177 3178 ep_index = xhci_get_endpoint_index(&ep->desc); 3179 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3180 if (ep_state & EP_HAS_STREAMS || 3181 ep_state & EP_GETTING_STREAMS) { 3182 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3183 "already has streams set up.\n", 3184 ep->desc.bEndpointAddress); 3185 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3186 "dynamic stream context array reallocation.\n"); 3187 return -EINVAL; 3188 } 3189 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3190 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3191 "endpoint 0x%x; URBs are pending.\n", 3192 ep->desc.bEndpointAddress); 3193 return -EINVAL; 3194 } 3195 return 0; 3196 } 3197 3198 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3199 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3200 { 3201 unsigned int max_streams; 3202 3203 /* The stream context array size must be a power of two */ 3204 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3205 /* 3206 * Find out how many primary stream array entries the host controller 3207 * supports. Later we may use secondary stream arrays (similar to 2nd 3208 * level page entries), but that's an optional feature for xHCI host 3209 * controllers. xHCs must support at least 4 stream IDs. 3210 */ 3211 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3212 if (*num_stream_ctxs > max_streams) { 3213 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3214 max_streams); 3215 *num_stream_ctxs = max_streams; 3216 *num_streams = max_streams; 3217 } 3218 } 3219 3220 /* Returns an error code if one of the endpoint already has streams. 3221 * This does not change any data structures, it only checks and gathers 3222 * information. 3223 */ 3224 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3225 struct usb_device *udev, 3226 struct usb_host_endpoint **eps, unsigned int num_eps, 3227 unsigned int *num_streams, u32 *changed_ep_bitmask) 3228 { 3229 unsigned int max_streams; 3230 unsigned int endpoint_flag; 3231 int i; 3232 int ret; 3233 3234 for (i = 0; i < num_eps; i++) { 3235 ret = xhci_check_streams_endpoint(xhci, udev, 3236 eps[i], udev->slot_id); 3237 if (ret < 0) 3238 return ret; 3239 3240 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3241 if (max_streams < (*num_streams - 1)) { 3242 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3243 eps[i]->desc.bEndpointAddress, 3244 max_streams); 3245 *num_streams = max_streams+1; 3246 } 3247 3248 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3249 if (*changed_ep_bitmask & endpoint_flag) 3250 return -EINVAL; 3251 *changed_ep_bitmask |= endpoint_flag; 3252 } 3253 return 0; 3254 } 3255 3256 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3257 struct usb_device *udev, 3258 struct usb_host_endpoint **eps, unsigned int num_eps) 3259 { 3260 u32 changed_ep_bitmask = 0; 3261 unsigned int slot_id; 3262 unsigned int ep_index; 3263 unsigned int ep_state; 3264 int i; 3265 3266 slot_id = udev->slot_id; 3267 if (!xhci->devs[slot_id]) 3268 return 0; 3269 3270 for (i = 0; i < num_eps; i++) { 3271 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3272 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3273 /* Are streams already being freed for the endpoint? */ 3274 if (ep_state & EP_GETTING_NO_STREAMS) { 3275 xhci_warn(xhci, "WARN Can't disable streams for " 3276 "endpoint 0x%x, " 3277 "streams are being disabled already\n", 3278 eps[i]->desc.bEndpointAddress); 3279 return 0; 3280 } 3281 /* Are there actually any streams to free? */ 3282 if (!(ep_state & EP_HAS_STREAMS) && 3283 !(ep_state & EP_GETTING_STREAMS)) { 3284 xhci_warn(xhci, "WARN Can't disable streams for " 3285 "endpoint 0x%x, " 3286 "streams are already disabled!\n", 3287 eps[i]->desc.bEndpointAddress); 3288 xhci_warn(xhci, "WARN xhci_free_streams() called " 3289 "with non-streams endpoint\n"); 3290 return 0; 3291 } 3292 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3293 } 3294 return changed_ep_bitmask; 3295 } 3296 3297 /* 3298 * The USB device drivers use this function (through the HCD interface in USB 3299 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3300 * coordinate mass storage command queueing across multiple endpoints (basically 3301 * a stream ID == a task ID). 3302 * 3303 * Setting up streams involves allocating the same size stream context array 3304 * for each endpoint and issuing a configure endpoint command for all endpoints. 3305 * 3306 * Don't allow the call to succeed if one endpoint only supports one stream 3307 * (which means it doesn't support streams at all). 3308 * 3309 * Drivers may get less stream IDs than they asked for, if the host controller 3310 * hardware or endpoints claim they can't support the number of requested 3311 * stream IDs. 3312 */ 3313 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3314 struct usb_host_endpoint **eps, unsigned int num_eps, 3315 unsigned int num_streams, gfp_t mem_flags) 3316 { 3317 int i, ret; 3318 struct xhci_hcd *xhci; 3319 struct xhci_virt_device *vdev; 3320 struct xhci_command *config_cmd; 3321 struct xhci_input_control_ctx *ctrl_ctx; 3322 unsigned int ep_index; 3323 unsigned int num_stream_ctxs; 3324 unsigned int max_packet; 3325 unsigned long flags; 3326 u32 changed_ep_bitmask = 0; 3327 3328 if (!eps) 3329 return -EINVAL; 3330 3331 /* Add one to the number of streams requested to account for 3332 * stream 0 that is reserved for xHCI usage. 3333 */ 3334 num_streams += 1; 3335 xhci = hcd_to_xhci(hcd); 3336 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3337 num_streams); 3338 3339 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3340 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3341 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3342 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3343 return -ENOSYS; 3344 } 3345 3346 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3347 if (!config_cmd) 3348 return -ENOMEM; 3349 3350 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3351 if (!ctrl_ctx) { 3352 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3353 __func__); 3354 xhci_free_command(xhci, config_cmd); 3355 return -ENOMEM; 3356 } 3357 3358 /* Check to make sure all endpoints are not already configured for 3359 * streams. While we're at it, find the maximum number of streams that 3360 * all the endpoints will support and check for duplicate endpoints. 3361 */ 3362 spin_lock_irqsave(&xhci->lock, flags); 3363 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3364 num_eps, &num_streams, &changed_ep_bitmask); 3365 if (ret < 0) { 3366 xhci_free_command(xhci, config_cmd); 3367 spin_unlock_irqrestore(&xhci->lock, flags); 3368 return ret; 3369 } 3370 if (num_streams <= 1) { 3371 xhci_warn(xhci, "WARN: endpoints can't handle " 3372 "more than one stream.\n"); 3373 xhci_free_command(xhci, config_cmd); 3374 spin_unlock_irqrestore(&xhci->lock, flags); 3375 return -EINVAL; 3376 } 3377 vdev = xhci->devs[udev->slot_id]; 3378 /* Mark each endpoint as being in transition, so 3379 * xhci_urb_enqueue() will reject all URBs. 3380 */ 3381 for (i = 0; i < num_eps; i++) { 3382 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3383 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3384 } 3385 spin_unlock_irqrestore(&xhci->lock, flags); 3386 3387 /* Setup internal data structures and allocate HW data structures for 3388 * streams (but don't install the HW structures in the input context 3389 * until we're sure all memory allocation succeeded). 3390 */ 3391 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3392 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3393 num_stream_ctxs, num_streams); 3394 3395 for (i = 0; i < num_eps; i++) { 3396 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3397 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3398 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3399 num_stream_ctxs, 3400 num_streams, 3401 max_packet, mem_flags); 3402 if (!vdev->eps[ep_index].stream_info) 3403 goto cleanup; 3404 /* Set maxPstreams in endpoint context and update deq ptr to 3405 * point to stream context array. FIXME 3406 */ 3407 } 3408 3409 /* Set up the input context for a configure endpoint command. */ 3410 for (i = 0; i < num_eps; i++) { 3411 struct xhci_ep_ctx *ep_ctx; 3412 3413 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3414 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3415 3416 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3417 vdev->out_ctx, ep_index); 3418 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3419 vdev->eps[ep_index].stream_info); 3420 } 3421 /* Tell the HW to drop its old copy of the endpoint context info 3422 * and add the updated copy from the input context. 3423 */ 3424 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3425 vdev->out_ctx, ctrl_ctx, 3426 changed_ep_bitmask, changed_ep_bitmask); 3427 3428 /* Issue and wait for the configure endpoint command */ 3429 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3430 false, false); 3431 3432 /* xHC rejected the configure endpoint command for some reason, so we 3433 * leave the old ring intact and free our internal streams data 3434 * structure. 3435 */ 3436 if (ret < 0) 3437 goto cleanup; 3438 3439 spin_lock_irqsave(&xhci->lock, flags); 3440 for (i = 0; i < num_eps; i++) { 3441 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3442 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3443 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3444 udev->slot_id, ep_index); 3445 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3446 } 3447 xhci_free_command(xhci, config_cmd); 3448 spin_unlock_irqrestore(&xhci->lock, flags); 3449 3450 /* Subtract 1 for stream 0, which drivers can't use */ 3451 return num_streams - 1; 3452 3453 cleanup: 3454 /* If it didn't work, free the streams! */ 3455 for (i = 0; i < num_eps; i++) { 3456 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3457 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3458 vdev->eps[ep_index].stream_info = NULL; 3459 /* FIXME Unset maxPstreams in endpoint context and 3460 * update deq ptr to point to normal string ring. 3461 */ 3462 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3463 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3464 xhci_endpoint_zero(xhci, vdev, eps[i]); 3465 } 3466 xhci_free_command(xhci, config_cmd); 3467 return -ENOMEM; 3468 } 3469 3470 /* Transition the endpoint from using streams to being a "normal" endpoint 3471 * without streams. 3472 * 3473 * Modify the endpoint context state, submit a configure endpoint command, 3474 * and free all endpoint rings for streams if that completes successfully. 3475 */ 3476 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3477 struct usb_host_endpoint **eps, unsigned int num_eps, 3478 gfp_t mem_flags) 3479 { 3480 int i, ret; 3481 struct xhci_hcd *xhci; 3482 struct xhci_virt_device *vdev; 3483 struct xhci_command *command; 3484 struct xhci_input_control_ctx *ctrl_ctx; 3485 unsigned int ep_index; 3486 unsigned long flags; 3487 u32 changed_ep_bitmask; 3488 3489 xhci = hcd_to_xhci(hcd); 3490 vdev = xhci->devs[udev->slot_id]; 3491 3492 /* Set up a configure endpoint command to remove the streams rings */ 3493 spin_lock_irqsave(&xhci->lock, flags); 3494 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3495 udev, eps, num_eps); 3496 if (changed_ep_bitmask == 0) { 3497 spin_unlock_irqrestore(&xhci->lock, flags); 3498 return -EINVAL; 3499 } 3500 3501 /* Use the xhci_command structure from the first endpoint. We may have 3502 * allocated too many, but the driver may call xhci_free_streams() for 3503 * each endpoint it grouped into one call to xhci_alloc_streams(). 3504 */ 3505 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3506 command = vdev->eps[ep_index].stream_info->free_streams_command; 3507 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3508 if (!ctrl_ctx) { 3509 spin_unlock_irqrestore(&xhci->lock, flags); 3510 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3511 __func__); 3512 return -EINVAL; 3513 } 3514 3515 for (i = 0; i < num_eps; i++) { 3516 struct xhci_ep_ctx *ep_ctx; 3517 3518 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3519 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3520 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3521 EP_GETTING_NO_STREAMS; 3522 3523 xhci_endpoint_copy(xhci, command->in_ctx, 3524 vdev->out_ctx, ep_index); 3525 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3526 &vdev->eps[ep_index]); 3527 } 3528 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3529 vdev->out_ctx, ctrl_ctx, 3530 changed_ep_bitmask, changed_ep_bitmask); 3531 spin_unlock_irqrestore(&xhci->lock, flags); 3532 3533 /* Issue and wait for the configure endpoint command, 3534 * which must succeed. 3535 */ 3536 ret = xhci_configure_endpoint(xhci, udev, command, 3537 false, true); 3538 3539 /* xHC rejected the configure endpoint command for some reason, so we 3540 * leave the streams rings intact. 3541 */ 3542 if (ret < 0) 3543 return ret; 3544 3545 spin_lock_irqsave(&xhci->lock, flags); 3546 for (i = 0; i < num_eps; i++) { 3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3548 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3549 vdev->eps[ep_index].stream_info = NULL; 3550 /* FIXME Unset maxPstreams in endpoint context and 3551 * update deq ptr to point to normal string ring. 3552 */ 3553 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3554 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3555 } 3556 spin_unlock_irqrestore(&xhci->lock, flags); 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * Deletes endpoint resources for endpoints that were active before a Reset 3563 * Device command, or a Disable Slot command. The Reset Device command leaves 3564 * the control endpoint intact, whereas the Disable Slot command deletes it. 3565 * 3566 * Must be called with xhci->lock held. 3567 */ 3568 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3569 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3570 { 3571 int i; 3572 unsigned int num_dropped_eps = 0; 3573 unsigned int drop_flags = 0; 3574 3575 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3576 if (virt_dev->eps[i].ring) { 3577 drop_flags |= 1 << i; 3578 num_dropped_eps++; 3579 } 3580 } 3581 xhci->num_active_eps -= num_dropped_eps; 3582 if (num_dropped_eps) 3583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3584 "Dropped %u ep ctxs, flags = 0x%x, " 3585 "%u now active.", 3586 num_dropped_eps, drop_flags, 3587 xhci->num_active_eps); 3588 } 3589 3590 /* 3591 * This submits a Reset Device Command, which will set the device state to 0, 3592 * set the device address to 0, and disable all the endpoints except the default 3593 * control endpoint. The USB core should come back and call 3594 * xhci_address_device(), and then re-set up the configuration. If this is 3595 * called because of a usb_reset_and_verify_device(), then the old alternate 3596 * settings will be re-installed through the normal bandwidth allocation 3597 * functions. 3598 * 3599 * Wait for the Reset Device command to finish. Remove all structures 3600 * associated with the endpoints that were disabled. Clear the input device 3601 * structure? Reset the control endpoint 0 max packet size? 3602 * 3603 * If the virt_dev to be reset does not exist or does not match the udev, 3604 * it means the device is lost, possibly due to the xHC restore error and 3605 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3606 * re-allocate the device. 3607 */ 3608 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3609 struct usb_device *udev) 3610 { 3611 int ret, i; 3612 unsigned long flags; 3613 struct xhci_hcd *xhci; 3614 unsigned int slot_id; 3615 struct xhci_virt_device *virt_dev; 3616 struct xhci_command *reset_device_cmd; 3617 struct xhci_slot_ctx *slot_ctx; 3618 int old_active_eps = 0; 3619 3620 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3621 if (ret <= 0) 3622 return ret; 3623 xhci = hcd_to_xhci(hcd); 3624 slot_id = udev->slot_id; 3625 virt_dev = xhci->devs[slot_id]; 3626 if (!virt_dev) { 3627 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3628 "not exist. Re-allocate the device\n", slot_id); 3629 ret = xhci_alloc_dev(hcd, udev); 3630 if (ret == 1) 3631 return 0; 3632 else 3633 return -EINVAL; 3634 } 3635 3636 if (virt_dev->tt_info) 3637 old_active_eps = virt_dev->tt_info->active_eps; 3638 3639 if (virt_dev->udev != udev) { 3640 /* If the virt_dev and the udev does not match, this virt_dev 3641 * may belong to another udev. 3642 * Re-allocate the device. 3643 */ 3644 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3645 "not match the udev. Re-allocate the device\n", 3646 slot_id); 3647 ret = xhci_alloc_dev(hcd, udev); 3648 if (ret == 1) 3649 return 0; 3650 else 3651 return -EINVAL; 3652 } 3653 3654 /* If device is not setup, there is no point in resetting it */ 3655 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3656 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3657 SLOT_STATE_DISABLED) 3658 return 0; 3659 3660 trace_xhci_discover_or_reset_device(slot_ctx); 3661 3662 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3663 /* Allocate the command structure that holds the struct completion. 3664 * Assume we're in process context, since the normal device reset 3665 * process has to wait for the device anyway. Storage devices are 3666 * reset as part of error handling, so use GFP_NOIO instead of 3667 * GFP_KERNEL. 3668 */ 3669 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3670 if (!reset_device_cmd) { 3671 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3672 return -ENOMEM; 3673 } 3674 3675 /* Attempt to submit the Reset Device command to the command ring */ 3676 spin_lock_irqsave(&xhci->lock, flags); 3677 3678 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3679 if (ret) { 3680 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3681 spin_unlock_irqrestore(&xhci->lock, flags); 3682 goto command_cleanup; 3683 } 3684 xhci_ring_cmd_db(xhci); 3685 spin_unlock_irqrestore(&xhci->lock, flags); 3686 3687 /* Wait for the Reset Device command to finish */ 3688 wait_for_completion(reset_device_cmd->completion); 3689 3690 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3691 * unless we tried to reset a slot ID that wasn't enabled, 3692 * or the device wasn't in the addressed or configured state. 3693 */ 3694 ret = reset_device_cmd->status; 3695 switch (ret) { 3696 case COMP_COMMAND_ABORTED: 3697 case COMP_COMMAND_RING_STOPPED: 3698 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3699 ret = -ETIME; 3700 goto command_cleanup; 3701 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3702 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3703 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3704 slot_id, 3705 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3706 xhci_dbg(xhci, "Not freeing device rings.\n"); 3707 /* Don't treat this as an error. May change my mind later. */ 3708 ret = 0; 3709 goto command_cleanup; 3710 case COMP_SUCCESS: 3711 xhci_dbg(xhci, "Successful reset device command.\n"); 3712 break; 3713 default: 3714 if (xhci_is_vendor_info_code(xhci, ret)) 3715 break; 3716 xhci_warn(xhci, "Unknown completion code %u for " 3717 "reset device command.\n", ret); 3718 ret = -EINVAL; 3719 goto command_cleanup; 3720 } 3721 3722 /* Free up host controller endpoint resources */ 3723 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3724 spin_lock_irqsave(&xhci->lock, flags); 3725 /* Don't delete the default control endpoint resources */ 3726 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3727 spin_unlock_irqrestore(&xhci->lock, flags); 3728 } 3729 3730 /* Everything but endpoint 0 is disabled, so free the rings. */ 3731 for (i = 1; i < 31; i++) { 3732 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3733 3734 if (ep->ep_state & EP_HAS_STREAMS) { 3735 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3736 xhci_get_endpoint_address(i)); 3737 xhci_free_stream_info(xhci, ep->stream_info); 3738 ep->stream_info = NULL; 3739 ep->ep_state &= ~EP_HAS_STREAMS; 3740 } 3741 3742 if (ep->ring) { 3743 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3744 xhci_free_endpoint_ring(xhci, virt_dev, i); 3745 } 3746 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3747 xhci_drop_ep_from_interval_table(xhci, 3748 &virt_dev->eps[i].bw_info, 3749 virt_dev->bw_table, 3750 udev, 3751 &virt_dev->eps[i], 3752 virt_dev->tt_info); 3753 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3754 } 3755 /* If necessary, update the number of active TTs on this root port */ 3756 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3757 ret = 0; 3758 3759 command_cleanup: 3760 xhci_free_command(xhci, reset_device_cmd); 3761 return ret; 3762 } 3763 3764 /* 3765 * At this point, the struct usb_device is about to go away, the device has 3766 * disconnected, and all traffic has been stopped and the endpoints have been 3767 * disabled. Free any HC data structures associated with that device. 3768 */ 3769 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3770 { 3771 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3772 struct xhci_virt_device *virt_dev; 3773 struct xhci_slot_ctx *slot_ctx; 3774 int i, ret; 3775 3776 #ifndef CONFIG_USB_DEFAULT_PERSIST 3777 /* 3778 * We called pm_runtime_get_noresume when the device was attached. 3779 * Decrement the counter here to allow controller to runtime suspend 3780 * if no devices remain. 3781 */ 3782 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3783 pm_runtime_put_noidle(hcd->self.controller); 3784 #endif 3785 3786 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3787 /* If the host is halted due to driver unload, we still need to free the 3788 * device. 3789 */ 3790 if (ret <= 0 && ret != -ENODEV) 3791 return; 3792 3793 virt_dev = xhci->devs[udev->slot_id]; 3794 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3795 trace_xhci_free_dev(slot_ctx); 3796 3797 /* Stop any wayward timer functions (which may grab the lock) */ 3798 for (i = 0; i < 31; i++) { 3799 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3800 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3801 } 3802 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3803 virt_dev->udev = NULL; 3804 ret = xhci_disable_slot(xhci, udev->slot_id); 3805 if (ret) 3806 xhci_free_virt_device(xhci, udev->slot_id); 3807 } 3808 3809 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3810 { 3811 struct xhci_command *command; 3812 unsigned long flags; 3813 u32 state; 3814 int ret = 0; 3815 3816 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3817 if (!command) 3818 return -ENOMEM; 3819 3820 spin_lock_irqsave(&xhci->lock, flags); 3821 /* Don't disable the slot if the host controller is dead. */ 3822 state = readl(&xhci->op_regs->status); 3823 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3824 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3825 spin_unlock_irqrestore(&xhci->lock, flags); 3826 kfree(command); 3827 return -ENODEV; 3828 } 3829 3830 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3831 slot_id); 3832 if (ret) { 3833 spin_unlock_irqrestore(&xhci->lock, flags); 3834 kfree(command); 3835 return ret; 3836 } 3837 xhci_ring_cmd_db(xhci); 3838 spin_unlock_irqrestore(&xhci->lock, flags); 3839 return ret; 3840 } 3841 3842 /* 3843 * Checks if we have enough host controller resources for the default control 3844 * endpoint. 3845 * 3846 * Must be called with xhci->lock held. 3847 */ 3848 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3849 { 3850 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3851 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3852 "Not enough ep ctxs: " 3853 "%u active, need to add 1, limit is %u.", 3854 xhci->num_active_eps, xhci->limit_active_eps); 3855 return -ENOMEM; 3856 } 3857 xhci->num_active_eps += 1; 3858 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3859 "Adding 1 ep ctx, %u now active.", 3860 xhci->num_active_eps); 3861 return 0; 3862 } 3863 3864 3865 /* 3866 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3867 * timed out, or allocating memory failed. Returns 1 on success. 3868 */ 3869 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3870 { 3871 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3872 struct xhci_virt_device *vdev; 3873 struct xhci_slot_ctx *slot_ctx; 3874 unsigned long flags; 3875 int ret, slot_id; 3876 struct xhci_command *command; 3877 3878 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3879 if (!command) 3880 return 0; 3881 3882 spin_lock_irqsave(&xhci->lock, flags); 3883 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3884 if (ret) { 3885 spin_unlock_irqrestore(&xhci->lock, flags); 3886 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3887 xhci_free_command(xhci, command); 3888 return 0; 3889 } 3890 xhci_ring_cmd_db(xhci); 3891 spin_unlock_irqrestore(&xhci->lock, flags); 3892 3893 wait_for_completion(command->completion); 3894 slot_id = command->slot_id; 3895 3896 if (!slot_id || command->status != COMP_SUCCESS) { 3897 xhci_err(xhci, "Error while assigning device slot ID\n"); 3898 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3899 HCS_MAX_SLOTS( 3900 readl(&xhci->cap_regs->hcs_params1))); 3901 xhci_free_command(xhci, command); 3902 return 0; 3903 } 3904 3905 xhci_free_command(xhci, command); 3906 3907 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3908 spin_lock_irqsave(&xhci->lock, flags); 3909 ret = xhci_reserve_host_control_ep_resources(xhci); 3910 if (ret) { 3911 spin_unlock_irqrestore(&xhci->lock, flags); 3912 xhci_warn(xhci, "Not enough host resources, " 3913 "active endpoint contexts = %u\n", 3914 xhci->num_active_eps); 3915 goto disable_slot; 3916 } 3917 spin_unlock_irqrestore(&xhci->lock, flags); 3918 } 3919 /* Use GFP_NOIO, since this function can be called from 3920 * xhci_discover_or_reset_device(), which may be called as part of 3921 * mass storage driver error handling. 3922 */ 3923 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3924 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3925 goto disable_slot; 3926 } 3927 vdev = xhci->devs[slot_id]; 3928 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3929 trace_xhci_alloc_dev(slot_ctx); 3930 3931 udev->slot_id = slot_id; 3932 3933 xhci_debugfs_create_slot(xhci, slot_id); 3934 3935 #ifndef CONFIG_USB_DEFAULT_PERSIST 3936 /* 3937 * If resetting upon resume, we can't put the controller into runtime 3938 * suspend if there is a device attached. 3939 */ 3940 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3941 pm_runtime_get_noresume(hcd->self.controller); 3942 #endif 3943 3944 /* Is this a LS or FS device under a HS hub? */ 3945 /* Hub or peripherial? */ 3946 return 1; 3947 3948 disable_slot: 3949 ret = xhci_disable_slot(xhci, udev->slot_id); 3950 if (ret) 3951 xhci_free_virt_device(xhci, udev->slot_id); 3952 3953 return 0; 3954 } 3955 3956 /* 3957 * Issue an Address Device command and optionally send a corresponding 3958 * SetAddress request to the device. 3959 */ 3960 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3961 enum xhci_setup_dev setup) 3962 { 3963 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3964 unsigned long flags; 3965 struct xhci_virt_device *virt_dev; 3966 int ret = 0; 3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3968 struct xhci_slot_ctx *slot_ctx; 3969 struct xhci_input_control_ctx *ctrl_ctx; 3970 u64 temp_64; 3971 struct xhci_command *command = NULL; 3972 3973 mutex_lock(&xhci->mutex); 3974 3975 if (xhci->xhc_state) { /* dying, removing or halted */ 3976 ret = -ESHUTDOWN; 3977 goto out; 3978 } 3979 3980 if (!udev->slot_id) { 3981 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3982 "Bad Slot ID %d", udev->slot_id); 3983 ret = -EINVAL; 3984 goto out; 3985 } 3986 3987 virt_dev = xhci->devs[udev->slot_id]; 3988 3989 if (WARN_ON(!virt_dev)) { 3990 /* 3991 * In plug/unplug torture test with an NEC controller, 3992 * a zero-dereference was observed once due to virt_dev = 0. 3993 * Print useful debug rather than crash if it is observed again! 3994 */ 3995 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3996 udev->slot_id); 3997 ret = -EINVAL; 3998 goto out; 3999 } 4000 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4001 trace_xhci_setup_device_slot(slot_ctx); 4002 4003 if (setup == SETUP_CONTEXT_ONLY) { 4004 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4005 SLOT_STATE_DEFAULT) { 4006 xhci_dbg(xhci, "Slot already in default state\n"); 4007 goto out; 4008 } 4009 } 4010 4011 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4012 if (!command) { 4013 ret = -ENOMEM; 4014 goto out; 4015 } 4016 4017 command->in_ctx = virt_dev->in_ctx; 4018 4019 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4020 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4021 if (!ctrl_ctx) { 4022 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4023 __func__); 4024 ret = -EINVAL; 4025 goto out; 4026 } 4027 /* 4028 * If this is the first Set Address since device plug-in or 4029 * virt_device realloaction after a resume with an xHCI power loss, 4030 * then set up the slot context. 4031 */ 4032 if (!slot_ctx->dev_info) 4033 xhci_setup_addressable_virt_dev(xhci, udev); 4034 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4035 else 4036 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4037 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4038 ctrl_ctx->drop_flags = 0; 4039 4040 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4041 le32_to_cpu(slot_ctx->dev_info) >> 27); 4042 4043 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4044 spin_lock_irqsave(&xhci->lock, flags); 4045 trace_xhci_setup_device(virt_dev); 4046 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4047 udev->slot_id, setup); 4048 if (ret) { 4049 spin_unlock_irqrestore(&xhci->lock, flags); 4050 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4051 "FIXME: allocate a command ring segment"); 4052 goto out; 4053 } 4054 xhci_ring_cmd_db(xhci); 4055 spin_unlock_irqrestore(&xhci->lock, flags); 4056 4057 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4058 wait_for_completion(command->completion); 4059 4060 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4061 * the SetAddress() "recovery interval" required by USB and aborting the 4062 * command on a timeout. 4063 */ 4064 switch (command->status) { 4065 case COMP_COMMAND_ABORTED: 4066 case COMP_COMMAND_RING_STOPPED: 4067 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4068 ret = -ETIME; 4069 break; 4070 case COMP_CONTEXT_STATE_ERROR: 4071 case COMP_SLOT_NOT_ENABLED_ERROR: 4072 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4073 act, udev->slot_id); 4074 ret = -EINVAL; 4075 break; 4076 case COMP_USB_TRANSACTION_ERROR: 4077 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4078 4079 mutex_unlock(&xhci->mutex); 4080 ret = xhci_disable_slot(xhci, udev->slot_id); 4081 if (!ret) 4082 xhci_alloc_dev(hcd, udev); 4083 kfree(command->completion); 4084 kfree(command); 4085 return -EPROTO; 4086 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4087 dev_warn(&udev->dev, 4088 "ERROR: Incompatible device for setup %s command\n", act); 4089 ret = -ENODEV; 4090 break; 4091 case COMP_SUCCESS: 4092 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4093 "Successful setup %s command", act); 4094 break; 4095 default: 4096 xhci_err(xhci, 4097 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4098 act, command->status); 4099 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4100 ret = -EINVAL; 4101 break; 4102 } 4103 if (ret) 4104 goto out; 4105 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4106 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4107 "Op regs DCBAA ptr = %#016llx", temp_64); 4108 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4109 "Slot ID %d dcbaa entry @%p = %#016llx", 4110 udev->slot_id, 4111 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4112 (unsigned long long) 4113 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4114 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4115 "Output Context DMA address = %#08llx", 4116 (unsigned long long)virt_dev->out_ctx->dma); 4117 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4118 le32_to_cpu(slot_ctx->dev_info) >> 27); 4119 /* 4120 * USB core uses address 1 for the roothubs, so we add one to the 4121 * address given back to us by the HC. 4122 */ 4123 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4124 le32_to_cpu(slot_ctx->dev_info) >> 27); 4125 /* Zero the input context control for later use */ 4126 ctrl_ctx->add_flags = 0; 4127 ctrl_ctx->drop_flags = 0; 4128 4129 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4130 "Internal device address = %d", 4131 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4132 out: 4133 mutex_unlock(&xhci->mutex); 4134 if (command) { 4135 kfree(command->completion); 4136 kfree(command); 4137 } 4138 return ret; 4139 } 4140 4141 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4142 { 4143 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4144 } 4145 4146 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4147 { 4148 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4149 } 4150 4151 /* 4152 * Transfer the port index into real index in the HW port status 4153 * registers. Caculate offset between the port's PORTSC register 4154 * and port status base. Divide the number of per port register 4155 * to get the real index. The raw port number bases 1. 4156 */ 4157 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4158 { 4159 struct xhci_hub *rhub; 4160 4161 rhub = xhci_get_rhub(hcd); 4162 return rhub->ports[port1 - 1]->hw_portnum + 1; 4163 } 4164 4165 /* 4166 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4167 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4168 */ 4169 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4170 struct usb_device *udev, u16 max_exit_latency) 4171 { 4172 struct xhci_virt_device *virt_dev; 4173 struct xhci_command *command; 4174 struct xhci_input_control_ctx *ctrl_ctx; 4175 struct xhci_slot_ctx *slot_ctx; 4176 unsigned long flags; 4177 int ret; 4178 4179 spin_lock_irqsave(&xhci->lock, flags); 4180 4181 virt_dev = xhci->devs[udev->slot_id]; 4182 4183 /* 4184 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4185 * xHC was re-initialized. Exit latency will be set later after 4186 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4187 */ 4188 4189 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4190 spin_unlock_irqrestore(&xhci->lock, flags); 4191 return 0; 4192 } 4193 4194 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4195 command = xhci->lpm_command; 4196 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4197 if (!ctrl_ctx) { 4198 spin_unlock_irqrestore(&xhci->lock, flags); 4199 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4200 __func__); 4201 return -ENOMEM; 4202 } 4203 4204 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4205 spin_unlock_irqrestore(&xhci->lock, flags); 4206 4207 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4208 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4209 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4210 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4211 slot_ctx->dev_state = 0; 4212 4213 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4214 "Set up evaluate context for LPM MEL change."); 4215 4216 /* Issue and wait for the evaluate context command. */ 4217 ret = xhci_configure_endpoint(xhci, udev, command, 4218 true, true); 4219 4220 if (!ret) { 4221 spin_lock_irqsave(&xhci->lock, flags); 4222 virt_dev->current_mel = max_exit_latency; 4223 spin_unlock_irqrestore(&xhci->lock, flags); 4224 } 4225 return ret; 4226 } 4227 4228 #ifdef CONFIG_PM 4229 4230 /* BESL to HIRD Encoding array for USB2 LPM */ 4231 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4232 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4233 4234 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4235 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4236 struct usb_device *udev) 4237 { 4238 int u2del, besl, besl_host; 4239 int besl_device = 0; 4240 u32 field; 4241 4242 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4243 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4244 4245 if (field & USB_BESL_SUPPORT) { 4246 for (besl_host = 0; besl_host < 16; besl_host++) { 4247 if (xhci_besl_encoding[besl_host] >= u2del) 4248 break; 4249 } 4250 /* Use baseline BESL value as default */ 4251 if (field & USB_BESL_BASELINE_VALID) 4252 besl_device = USB_GET_BESL_BASELINE(field); 4253 else if (field & USB_BESL_DEEP_VALID) 4254 besl_device = USB_GET_BESL_DEEP(field); 4255 } else { 4256 if (u2del <= 50) 4257 besl_host = 0; 4258 else 4259 besl_host = (u2del - 51) / 75 + 1; 4260 } 4261 4262 besl = besl_host + besl_device; 4263 if (besl > 15) 4264 besl = 15; 4265 4266 return besl; 4267 } 4268 4269 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4270 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4271 { 4272 u32 field; 4273 int l1; 4274 int besld = 0; 4275 int hirdm = 0; 4276 4277 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4278 4279 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4280 l1 = udev->l1_params.timeout / 256; 4281 4282 /* device has preferred BESLD */ 4283 if (field & USB_BESL_DEEP_VALID) { 4284 besld = USB_GET_BESL_DEEP(field); 4285 hirdm = 1; 4286 } 4287 4288 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4289 } 4290 4291 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4292 struct usb_device *udev, int enable) 4293 { 4294 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4295 struct xhci_port **ports; 4296 __le32 __iomem *pm_addr, *hlpm_addr; 4297 u32 pm_val, hlpm_val, field; 4298 unsigned int port_num; 4299 unsigned long flags; 4300 int hird, exit_latency; 4301 int ret; 4302 4303 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4304 !udev->lpm_capable) 4305 return -EPERM; 4306 4307 if (!udev->parent || udev->parent->parent || 4308 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4309 return -EPERM; 4310 4311 if (udev->usb2_hw_lpm_capable != 1) 4312 return -EPERM; 4313 4314 spin_lock_irqsave(&xhci->lock, flags); 4315 4316 ports = xhci->usb2_rhub.ports; 4317 port_num = udev->portnum - 1; 4318 pm_addr = ports[port_num]->addr + PORTPMSC; 4319 pm_val = readl(pm_addr); 4320 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4321 4322 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4323 enable ? "enable" : "disable", port_num + 1); 4324 4325 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4326 /* Host supports BESL timeout instead of HIRD */ 4327 if (udev->usb2_hw_lpm_besl_capable) { 4328 /* if device doesn't have a preferred BESL value use a 4329 * default one which works with mixed HIRD and BESL 4330 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4331 */ 4332 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4333 if ((field & USB_BESL_SUPPORT) && 4334 (field & USB_BESL_BASELINE_VALID)) 4335 hird = USB_GET_BESL_BASELINE(field); 4336 else 4337 hird = udev->l1_params.besl; 4338 4339 exit_latency = xhci_besl_encoding[hird]; 4340 spin_unlock_irqrestore(&xhci->lock, flags); 4341 4342 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4343 * input context for link powermanagement evaluate 4344 * context commands. It is protected by hcd->bandwidth 4345 * mutex and is shared by all devices. We need to set 4346 * the max ext latency in USB 2 BESL LPM as well, so 4347 * use the same mutex and xhci_change_max_exit_latency() 4348 */ 4349 mutex_lock(hcd->bandwidth_mutex); 4350 ret = xhci_change_max_exit_latency(xhci, udev, 4351 exit_latency); 4352 mutex_unlock(hcd->bandwidth_mutex); 4353 4354 if (ret < 0) 4355 return ret; 4356 spin_lock_irqsave(&xhci->lock, flags); 4357 4358 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4359 writel(hlpm_val, hlpm_addr); 4360 /* flush write */ 4361 readl(hlpm_addr); 4362 } else { 4363 hird = xhci_calculate_hird_besl(xhci, udev); 4364 } 4365 4366 pm_val &= ~PORT_HIRD_MASK; 4367 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4368 writel(pm_val, pm_addr); 4369 pm_val = readl(pm_addr); 4370 pm_val |= PORT_HLE; 4371 writel(pm_val, pm_addr); 4372 /* flush write */ 4373 readl(pm_addr); 4374 } else { 4375 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4376 writel(pm_val, pm_addr); 4377 /* flush write */ 4378 readl(pm_addr); 4379 if (udev->usb2_hw_lpm_besl_capable) { 4380 spin_unlock_irqrestore(&xhci->lock, flags); 4381 mutex_lock(hcd->bandwidth_mutex); 4382 xhci_change_max_exit_latency(xhci, udev, 0); 4383 mutex_unlock(hcd->bandwidth_mutex); 4384 return 0; 4385 } 4386 } 4387 4388 spin_unlock_irqrestore(&xhci->lock, flags); 4389 return 0; 4390 } 4391 4392 /* check if a usb2 port supports a given extened capability protocol 4393 * only USB2 ports extended protocol capability values are cached. 4394 * Return 1 if capability is supported 4395 */ 4396 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4397 unsigned capability) 4398 { 4399 u32 port_offset, port_count; 4400 int i; 4401 4402 for (i = 0; i < xhci->num_ext_caps; i++) { 4403 if (xhci->ext_caps[i] & capability) { 4404 /* port offsets starts at 1 */ 4405 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4406 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4407 if (port >= port_offset && 4408 port < port_offset + port_count) 4409 return 1; 4410 } 4411 } 4412 return 0; 4413 } 4414 4415 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4416 { 4417 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4418 int portnum = udev->portnum - 1; 4419 4420 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4421 return 0; 4422 4423 /* we only support lpm for non-hub device connected to root hub yet */ 4424 if (!udev->parent || udev->parent->parent || 4425 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4426 return 0; 4427 4428 if (xhci->hw_lpm_support == 1 && 4429 xhci_check_usb2_port_capability( 4430 xhci, portnum, XHCI_HLC)) { 4431 udev->usb2_hw_lpm_capable = 1; 4432 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4433 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4434 if (xhci_check_usb2_port_capability(xhci, portnum, 4435 XHCI_BLC)) 4436 udev->usb2_hw_lpm_besl_capable = 1; 4437 } 4438 4439 return 0; 4440 } 4441 4442 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4443 4444 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4445 static unsigned long long xhci_service_interval_to_ns( 4446 struct usb_endpoint_descriptor *desc) 4447 { 4448 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4449 } 4450 4451 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4452 enum usb3_link_state state) 4453 { 4454 unsigned long long sel; 4455 unsigned long long pel; 4456 unsigned int max_sel_pel; 4457 char *state_name; 4458 4459 switch (state) { 4460 case USB3_LPM_U1: 4461 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4462 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4463 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4464 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4465 state_name = "U1"; 4466 break; 4467 case USB3_LPM_U2: 4468 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4469 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4470 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4471 state_name = "U2"; 4472 break; 4473 default: 4474 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4475 __func__); 4476 return USB3_LPM_DISABLED; 4477 } 4478 4479 if (sel <= max_sel_pel && pel <= max_sel_pel) 4480 return USB3_LPM_DEVICE_INITIATED; 4481 4482 if (sel > max_sel_pel) 4483 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4484 "due to long SEL %llu ms\n", 4485 state_name, sel); 4486 else 4487 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4488 "due to long PEL %llu ms\n", 4489 state_name, pel); 4490 return USB3_LPM_DISABLED; 4491 } 4492 4493 /* The U1 timeout should be the maximum of the following values: 4494 * - For control endpoints, U1 system exit latency (SEL) * 3 4495 * - For bulk endpoints, U1 SEL * 5 4496 * - For interrupt endpoints: 4497 * - Notification EPs, U1 SEL * 3 4498 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4499 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4500 */ 4501 static unsigned long long xhci_calculate_intel_u1_timeout( 4502 struct usb_device *udev, 4503 struct usb_endpoint_descriptor *desc) 4504 { 4505 unsigned long long timeout_ns; 4506 int ep_type; 4507 int intr_type; 4508 4509 ep_type = usb_endpoint_type(desc); 4510 switch (ep_type) { 4511 case USB_ENDPOINT_XFER_CONTROL: 4512 timeout_ns = udev->u1_params.sel * 3; 4513 break; 4514 case USB_ENDPOINT_XFER_BULK: 4515 timeout_ns = udev->u1_params.sel * 5; 4516 break; 4517 case USB_ENDPOINT_XFER_INT: 4518 intr_type = usb_endpoint_interrupt_type(desc); 4519 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4520 timeout_ns = udev->u1_params.sel * 3; 4521 break; 4522 } 4523 /* Otherwise the calculation is the same as isoc eps */ 4524 /* fall through */ 4525 case USB_ENDPOINT_XFER_ISOC: 4526 timeout_ns = xhci_service_interval_to_ns(desc); 4527 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4528 if (timeout_ns < udev->u1_params.sel * 2) 4529 timeout_ns = udev->u1_params.sel * 2; 4530 break; 4531 default: 4532 return 0; 4533 } 4534 4535 return timeout_ns; 4536 } 4537 4538 /* Returns the hub-encoded U1 timeout value. */ 4539 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4540 struct usb_device *udev, 4541 struct usb_endpoint_descriptor *desc) 4542 { 4543 unsigned long long timeout_ns; 4544 4545 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4546 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4547 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4548 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4549 return USB3_LPM_DISABLED; 4550 } 4551 } 4552 4553 if (xhci->quirks & XHCI_INTEL_HOST) 4554 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4555 else 4556 timeout_ns = udev->u1_params.sel; 4557 4558 /* The U1 timeout is encoded in 1us intervals. 4559 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4560 */ 4561 if (timeout_ns == USB3_LPM_DISABLED) 4562 timeout_ns = 1; 4563 else 4564 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4565 4566 /* If the necessary timeout value is bigger than what we can set in the 4567 * USB 3.0 hub, we have to disable hub-initiated U1. 4568 */ 4569 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4570 return timeout_ns; 4571 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4572 "due to long timeout %llu ms\n", timeout_ns); 4573 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4574 } 4575 4576 /* The U2 timeout should be the maximum of: 4577 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4578 * - largest bInterval of any active periodic endpoint (to avoid going 4579 * into lower power link states between intervals). 4580 * - the U2 Exit Latency of the device 4581 */ 4582 static unsigned long long xhci_calculate_intel_u2_timeout( 4583 struct usb_device *udev, 4584 struct usb_endpoint_descriptor *desc) 4585 { 4586 unsigned long long timeout_ns; 4587 unsigned long long u2_del_ns; 4588 4589 timeout_ns = 10 * 1000 * 1000; 4590 4591 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4592 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4593 timeout_ns = xhci_service_interval_to_ns(desc); 4594 4595 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4596 if (u2_del_ns > timeout_ns) 4597 timeout_ns = u2_del_ns; 4598 4599 return timeout_ns; 4600 } 4601 4602 /* Returns the hub-encoded U2 timeout value. */ 4603 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4604 struct usb_device *udev, 4605 struct usb_endpoint_descriptor *desc) 4606 { 4607 unsigned long long timeout_ns; 4608 4609 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4610 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4611 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4612 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4613 return USB3_LPM_DISABLED; 4614 } 4615 } 4616 4617 if (xhci->quirks & XHCI_INTEL_HOST) 4618 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4619 else 4620 timeout_ns = udev->u2_params.sel; 4621 4622 /* The U2 timeout is encoded in 256us intervals */ 4623 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4624 /* If the necessary timeout value is bigger than what we can set in the 4625 * USB 3.0 hub, we have to disable hub-initiated U2. 4626 */ 4627 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4628 return timeout_ns; 4629 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4630 "due to long timeout %llu ms\n", timeout_ns); 4631 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4632 } 4633 4634 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4635 struct usb_device *udev, 4636 struct usb_endpoint_descriptor *desc, 4637 enum usb3_link_state state, 4638 u16 *timeout) 4639 { 4640 if (state == USB3_LPM_U1) 4641 return xhci_calculate_u1_timeout(xhci, udev, desc); 4642 else if (state == USB3_LPM_U2) 4643 return xhci_calculate_u2_timeout(xhci, udev, desc); 4644 4645 return USB3_LPM_DISABLED; 4646 } 4647 4648 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4649 struct usb_device *udev, 4650 struct usb_endpoint_descriptor *desc, 4651 enum usb3_link_state state, 4652 u16 *timeout) 4653 { 4654 u16 alt_timeout; 4655 4656 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4657 desc, state, timeout); 4658 4659 /* If we found we can't enable hub-initiated LPM, or 4660 * the U1 or U2 exit latency was too high to allow 4661 * device-initiated LPM as well, just stop searching. 4662 */ 4663 if (alt_timeout == USB3_LPM_DISABLED || 4664 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4665 *timeout = alt_timeout; 4666 return -E2BIG; 4667 } 4668 if (alt_timeout > *timeout) 4669 *timeout = alt_timeout; 4670 return 0; 4671 } 4672 4673 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4674 struct usb_device *udev, 4675 struct usb_host_interface *alt, 4676 enum usb3_link_state state, 4677 u16 *timeout) 4678 { 4679 int j; 4680 4681 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4682 if (xhci_update_timeout_for_endpoint(xhci, udev, 4683 &alt->endpoint[j].desc, state, timeout)) 4684 return -E2BIG; 4685 continue; 4686 } 4687 return 0; 4688 } 4689 4690 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4691 enum usb3_link_state state) 4692 { 4693 struct usb_device *parent; 4694 unsigned int num_hubs; 4695 4696 if (state == USB3_LPM_U2) 4697 return 0; 4698 4699 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4700 for (parent = udev->parent, num_hubs = 0; parent->parent; 4701 parent = parent->parent) 4702 num_hubs++; 4703 4704 if (num_hubs < 2) 4705 return 0; 4706 4707 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4708 " below second-tier hub.\n"); 4709 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4710 "to decrease power consumption.\n"); 4711 return -E2BIG; 4712 } 4713 4714 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4715 struct usb_device *udev, 4716 enum usb3_link_state state) 4717 { 4718 if (xhci->quirks & XHCI_INTEL_HOST) 4719 return xhci_check_intel_tier_policy(udev, state); 4720 else 4721 return 0; 4722 } 4723 4724 /* Returns the U1 or U2 timeout that should be enabled. 4725 * If the tier check or timeout setting functions return with a non-zero exit 4726 * code, that means the timeout value has been finalized and we shouldn't look 4727 * at any more endpoints. 4728 */ 4729 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4730 struct usb_device *udev, enum usb3_link_state state) 4731 { 4732 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4733 struct usb_host_config *config; 4734 char *state_name; 4735 int i; 4736 u16 timeout = USB3_LPM_DISABLED; 4737 4738 if (state == USB3_LPM_U1) 4739 state_name = "U1"; 4740 else if (state == USB3_LPM_U2) 4741 state_name = "U2"; 4742 else { 4743 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4744 state); 4745 return timeout; 4746 } 4747 4748 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4749 return timeout; 4750 4751 /* Gather some information about the currently installed configuration 4752 * and alternate interface settings. 4753 */ 4754 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4755 state, &timeout)) 4756 return timeout; 4757 4758 config = udev->actconfig; 4759 if (!config) 4760 return timeout; 4761 4762 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4763 struct usb_driver *driver; 4764 struct usb_interface *intf = config->interface[i]; 4765 4766 if (!intf) 4767 continue; 4768 4769 /* Check if any currently bound drivers want hub-initiated LPM 4770 * disabled. 4771 */ 4772 if (intf->dev.driver) { 4773 driver = to_usb_driver(intf->dev.driver); 4774 if (driver && driver->disable_hub_initiated_lpm) { 4775 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4776 "at request of driver %s\n", 4777 state_name, driver->name); 4778 return xhci_get_timeout_no_hub_lpm(udev, state); 4779 } 4780 } 4781 4782 /* Not sure how this could happen... */ 4783 if (!intf->cur_altsetting) 4784 continue; 4785 4786 if (xhci_update_timeout_for_interface(xhci, udev, 4787 intf->cur_altsetting, 4788 state, &timeout)) 4789 return timeout; 4790 } 4791 return timeout; 4792 } 4793 4794 static int calculate_max_exit_latency(struct usb_device *udev, 4795 enum usb3_link_state state_changed, 4796 u16 hub_encoded_timeout) 4797 { 4798 unsigned long long u1_mel_us = 0; 4799 unsigned long long u2_mel_us = 0; 4800 unsigned long long mel_us = 0; 4801 bool disabling_u1; 4802 bool disabling_u2; 4803 bool enabling_u1; 4804 bool enabling_u2; 4805 4806 disabling_u1 = (state_changed == USB3_LPM_U1 && 4807 hub_encoded_timeout == USB3_LPM_DISABLED); 4808 disabling_u2 = (state_changed == USB3_LPM_U2 && 4809 hub_encoded_timeout == USB3_LPM_DISABLED); 4810 4811 enabling_u1 = (state_changed == USB3_LPM_U1 && 4812 hub_encoded_timeout != USB3_LPM_DISABLED); 4813 enabling_u2 = (state_changed == USB3_LPM_U2 && 4814 hub_encoded_timeout != USB3_LPM_DISABLED); 4815 4816 /* If U1 was already enabled and we're not disabling it, 4817 * or we're going to enable U1, account for the U1 max exit latency. 4818 */ 4819 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4820 enabling_u1) 4821 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4822 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4823 enabling_u2) 4824 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4825 4826 if (u1_mel_us > u2_mel_us) 4827 mel_us = u1_mel_us; 4828 else 4829 mel_us = u2_mel_us; 4830 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4831 if (mel_us > MAX_EXIT) { 4832 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4833 "is too big.\n", mel_us); 4834 return -E2BIG; 4835 } 4836 return mel_us; 4837 } 4838 4839 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4840 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4841 struct usb_device *udev, enum usb3_link_state state) 4842 { 4843 struct xhci_hcd *xhci; 4844 u16 hub_encoded_timeout; 4845 int mel; 4846 int ret; 4847 4848 xhci = hcd_to_xhci(hcd); 4849 /* The LPM timeout values are pretty host-controller specific, so don't 4850 * enable hub-initiated timeouts unless the vendor has provided 4851 * information about their timeout algorithm. 4852 */ 4853 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4854 !xhci->devs[udev->slot_id]) 4855 return USB3_LPM_DISABLED; 4856 4857 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4858 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4859 if (mel < 0) { 4860 /* Max Exit Latency is too big, disable LPM. */ 4861 hub_encoded_timeout = USB3_LPM_DISABLED; 4862 mel = 0; 4863 } 4864 4865 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4866 if (ret) 4867 return ret; 4868 return hub_encoded_timeout; 4869 } 4870 4871 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4872 struct usb_device *udev, enum usb3_link_state state) 4873 { 4874 struct xhci_hcd *xhci; 4875 u16 mel; 4876 4877 xhci = hcd_to_xhci(hcd); 4878 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4879 !xhci->devs[udev->slot_id]) 4880 return 0; 4881 4882 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4883 return xhci_change_max_exit_latency(xhci, udev, mel); 4884 } 4885 #else /* CONFIG_PM */ 4886 4887 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4888 struct usb_device *udev, int enable) 4889 { 4890 return 0; 4891 } 4892 4893 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4894 { 4895 return 0; 4896 } 4897 4898 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4899 struct usb_device *udev, enum usb3_link_state state) 4900 { 4901 return USB3_LPM_DISABLED; 4902 } 4903 4904 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4905 struct usb_device *udev, enum usb3_link_state state) 4906 { 4907 return 0; 4908 } 4909 #endif /* CONFIG_PM */ 4910 4911 /*-------------------------------------------------------------------------*/ 4912 4913 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4914 * internal data structures for the device. 4915 */ 4916 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4917 struct usb_tt *tt, gfp_t mem_flags) 4918 { 4919 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4920 struct xhci_virt_device *vdev; 4921 struct xhci_command *config_cmd; 4922 struct xhci_input_control_ctx *ctrl_ctx; 4923 struct xhci_slot_ctx *slot_ctx; 4924 unsigned long flags; 4925 unsigned think_time; 4926 int ret; 4927 4928 /* Ignore root hubs */ 4929 if (!hdev->parent) 4930 return 0; 4931 4932 vdev = xhci->devs[hdev->slot_id]; 4933 if (!vdev) { 4934 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4935 return -EINVAL; 4936 } 4937 4938 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4939 if (!config_cmd) 4940 return -ENOMEM; 4941 4942 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4943 if (!ctrl_ctx) { 4944 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4945 __func__); 4946 xhci_free_command(xhci, config_cmd); 4947 return -ENOMEM; 4948 } 4949 4950 spin_lock_irqsave(&xhci->lock, flags); 4951 if (hdev->speed == USB_SPEED_HIGH && 4952 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4953 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4954 xhci_free_command(xhci, config_cmd); 4955 spin_unlock_irqrestore(&xhci->lock, flags); 4956 return -ENOMEM; 4957 } 4958 4959 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4960 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4961 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4962 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4963 /* 4964 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4965 * but it may be already set to 1 when setup an xHCI virtual 4966 * device, so clear it anyway. 4967 */ 4968 if (tt->multi) 4969 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4970 else if (hdev->speed == USB_SPEED_FULL) 4971 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4972 4973 if (xhci->hci_version > 0x95) { 4974 xhci_dbg(xhci, "xHCI version %x needs hub " 4975 "TT think time and number of ports\n", 4976 (unsigned int) xhci->hci_version); 4977 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4978 /* Set TT think time - convert from ns to FS bit times. 4979 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4980 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4981 * 4982 * xHCI 1.0: this field shall be 0 if the device is not a 4983 * High-spped hub. 4984 */ 4985 think_time = tt->think_time; 4986 if (think_time != 0) 4987 think_time = (think_time / 666) - 1; 4988 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4989 slot_ctx->tt_info |= 4990 cpu_to_le32(TT_THINK_TIME(think_time)); 4991 } else { 4992 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4993 "TT think time or number of ports\n", 4994 (unsigned int) xhci->hci_version); 4995 } 4996 slot_ctx->dev_state = 0; 4997 spin_unlock_irqrestore(&xhci->lock, flags); 4998 4999 xhci_dbg(xhci, "Set up %s for hub device.\n", 5000 (xhci->hci_version > 0x95) ? 5001 "configure endpoint" : "evaluate context"); 5002 5003 /* Issue and wait for the configure endpoint or 5004 * evaluate context command. 5005 */ 5006 if (xhci->hci_version > 0x95) 5007 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5008 false, false); 5009 else 5010 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5011 true, false); 5012 5013 xhci_free_command(xhci, config_cmd); 5014 return ret; 5015 } 5016 5017 static int xhci_get_frame(struct usb_hcd *hcd) 5018 { 5019 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5020 /* EHCI mods by the periodic size. Why? */ 5021 return readl(&xhci->run_regs->microframe_index) >> 3; 5022 } 5023 5024 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5025 { 5026 struct xhci_hcd *xhci; 5027 /* 5028 * TODO: Check with DWC3 clients for sysdev according to 5029 * quirks 5030 */ 5031 struct device *dev = hcd->self.sysdev; 5032 unsigned int minor_rev; 5033 int retval; 5034 5035 /* Accept arbitrarily long scatter-gather lists */ 5036 hcd->self.sg_tablesize = ~0; 5037 5038 /* support to build packet from discontinuous buffers */ 5039 hcd->self.no_sg_constraint = 1; 5040 5041 /* XHCI controllers don't stop the ep queue on short packets :| */ 5042 hcd->self.no_stop_on_short = 1; 5043 5044 xhci = hcd_to_xhci(hcd); 5045 5046 if (usb_hcd_is_primary_hcd(hcd)) { 5047 xhci->main_hcd = hcd; 5048 xhci->usb2_rhub.hcd = hcd; 5049 /* Mark the first roothub as being USB 2.0. 5050 * The xHCI driver will register the USB 3.0 roothub. 5051 */ 5052 hcd->speed = HCD_USB2; 5053 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5054 /* 5055 * USB 2.0 roothub under xHCI has an integrated TT, 5056 * (rate matching hub) as opposed to having an OHCI/UHCI 5057 * companion controller. 5058 */ 5059 hcd->has_tt = 1; 5060 } else { 5061 /* 5062 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 5063 * minor revision instead of sbrn 5064 */ 5065 minor_rev = xhci->usb3_rhub.min_rev; 5066 if (minor_rev) { 5067 hcd->speed = HCD_USB31; 5068 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5069 } 5070 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 5071 minor_rev, 5072 minor_rev ? "Enhanced" : ""); 5073 5074 xhci->usb3_rhub.hcd = hcd; 5075 /* xHCI private pointer was set in xhci_pci_probe for the second 5076 * registered roothub. 5077 */ 5078 return 0; 5079 } 5080 5081 mutex_init(&xhci->mutex); 5082 xhci->cap_regs = hcd->regs; 5083 xhci->op_regs = hcd->regs + 5084 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5085 xhci->run_regs = hcd->regs + 5086 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5087 /* Cache read-only capability registers */ 5088 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5089 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5090 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5091 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5092 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5093 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5094 if (xhci->hci_version > 0x100) 5095 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5096 5097 xhci->quirks |= quirks; 5098 5099 get_quirks(dev, xhci); 5100 5101 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5102 * success event after a short transfer. This quirk will ignore such 5103 * spurious event. 5104 */ 5105 if (xhci->hci_version > 0x96) 5106 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5107 5108 /* Make sure the HC is halted. */ 5109 retval = xhci_halt(xhci); 5110 if (retval) 5111 return retval; 5112 5113 xhci_zero_64b_regs(xhci); 5114 5115 xhci_dbg(xhci, "Resetting HCD\n"); 5116 /* Reset the internal HC memory state and registers. */ 5117 retval = xhci_reset(xhci); 5118 if (retval) 5119 return retval; 5120 xhci_dbg(xhci, "Reset complete\n"); 5121 5122 /* 5123 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5124 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5125 * address memory pointers actually. So, this driver clears the AC64 5126 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5127 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5128 */ 5129 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5130 xhci->hcc_params &= ~BIT(0); 5131 5132 /* Set dma_mask and coherent_dma_mask to 64-bits, 5133 * if xHC supports 64-bit addressing */ 5134 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5135 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5136 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5137 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5138 } else { 5139 /* 5140 * This is to avoid error in cases where a 32-bit USB 5141 * controller is used on a 64-bit capable system. 5142 */ 5143 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5144 if (retval) 5145 return retval; 5146 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5147 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5148 } 5149 5150 xhci_dbg(xhci, "Calling HCD init\n"); 5151 /* Initialize HCD and host controller data structures. */ 5152 retval = xhci_init(hcd); 5153 if (retval) 5154 return retval; 5155 xhci_dbg(xhci, "Called HCD init\n"); 5156 5157 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5158 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5159 5160 return 0; 5161 } 5162 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5163 5164 static const struct hc_driver xhci_hc_driver = { 5165 .description = "xhci-hcd", 5166 .product_desc = "xHCI Host Controller", 5167 .hcd_priv_size = sizeof(struct xhci_hcd), 5168 5169 /* 5170 * generic hardware linkage 5171 */ 5172 .irq = xhci_irq, 5173 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5174 5175 /* 5176 * basic lifecycle operations 5177 */ 5178 .reset = NULL, /* set in xhci_init_driver() */ 5179 .start = xhci_run, 5180 .stop = xhci_stop, 5181 .shutdown = xhci_shutdown, 5182 5183 /* 5184 * managing i/o requests and associated device resources 5185 */ 5186 .map_urb_for_dma = xhci_map_urb_for_dma, 5187 .urb_enqueue = xhci_urb_enqueue, 5188 .urb_dequeue = xhci_urb_dequeue, 5189 .alloc_dev = xhci_alloc_dev, 5190 .free_dev = xhci_free_dev, 5191 .alloc_streams = xhci_alloc_streams, 5192 .free_streams = xhci_free_streams, 5193 .add_endpoint = xhci_add_endpoint, 5194 .drop_endpoint = xhci_drop_endpoint, 5195 .endpoint_reset = xhci_endpoint_reset, 5196 .check_bandwidth = xhci_check_bandwidth, 5197 .reset_bandwidth = xhci_reset_bandwidth, 5198 .address_device = xhci_address_device, 5199 .enable_device = xhci_enable_device, 5200 .update_hub_device = xhci_update_hub_device, 5201 .reset_device = xhci_discover_or_reset_device, 5202 5203 /* 5204 * scheduling support 5205 */ 5206 .get_frame_number = xhci_get_frame, 5207 5208 /* 5209 * root hub support 5210 */ 5211 .hub_control = xhci_hub_control, 5212 .hub_status_data = xhci_hub_status_data, 5213 .bus_suspend = xhci_bus_suspend, 5214 .bus_resume = xhci_bus_resume, 5215 .get_resuming_ports = xhci_get_resuming_ports, 5216 5217 /* 5218 * call back when device connected and addressed 5219 */ 5220 .update_device = xhci_update_device, 5221 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5222 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5223 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5224 .find_raw_port_number = xhci_find_raw_port_number, 5225 }; 5226 5227 void xhci_init_driver(struct hc_driver *drv, 5228 const struct xhci_driver_overrides *over) 5229 { 5230 BUG_ON(!over); 5231 5232 /* Copy the generic table to drv then apply the overrides */ 5233 *drv = xhci_hc_driver; 5234 5235 if (over) { 5236 drv->hcd_priv_size += over->extra_priv_size; 5237 if (over->reset) 5238 drv->reset = over->reset; 5239 if (over->start) 5240 drv->start = over->start; 5241 } 5242 } 5243 EXPORT_SYMBOL_GPL(xhci_init_driver); 5244 5245 MODULE_DESCRIPTION(DRIVER_DESC); 5246 MODULE_AUTHOR(DRIVER_AUTHOR); 5247 MODULE_LICENSE("GPL"); 5248 5249 static int __init xhci_hcd_init(void) 5250 { 5251 /* 5252 * Check the compiler generated sizes of structures that must be laid 5253 * out in specific ways for hardware access. 5254 */ 5255 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5256 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5257 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5258 /* xhci_device_control has eight fields, and also 5259 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5260 */ 5261 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5262 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5263 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5264 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5265 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5266 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5267 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5268 5269 if (usb_disabled()) 5270 return -ENODEV; 5271 5272 xhci_debugfs_create_root(); 5273 5274 return 0; 5275 } 5276 5277 /* 5278 * If an init function is provided, an exit function must also be provided 5279 * to allow module unload. 5280 */ 5281 static void __exit xhci_hcd_fini(void) 5282 { 5283 xhci_debugfs_remove_root(); 5284 } 5285 5286 module_init(xhci_hcd_init); 5287 module_exit(xhci_hcd_fini); 5288