xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 4a44bcb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 	struct xhci_hcd *xhci;
328 	struct usb_hcd *hcd;
329 	struct xhci_hub *rhub;
330 	u32 temp;
331 	int i;
332 
333 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 	rhub = &xhci->usb3_rhub;
335 	hcd = rhub->hcd;
336 
337 	if (!hcd)
338 		return;
339 
340 	for (i = 0; i < rhub->num_ports; i++) {
341 		temp = readl(rhub->ports[i]->addr);
342 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 			/*
344 			 * Compliance Mode Detected. Letting USB Core
345 			 * handle the Warm Reset
346 			 */
347 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 					"Compliance mode detected->port %d",
349 					i + 1);
350 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 					"Attempting compliance mode recovery");
352 
353 			if (hcd->state == HC_STATE_SUSPENDED)
354 				usb_hcd_resume_root_hub(hcd);
355 
356 			usb_hcd_poll_rh_status(hcd);
357 		}
358 	}
359 
360 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 		mod_timer(&xhci->comp_mode_recovery_timer,
362 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364 
365 /*
366  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367  * that causes ports behind that hardware to enter compliance mode sometimes.
368  * The quirk creates a timer that polls every 2 seconds the link state of
369  * each host controller's port and recovers it by issuing a Warm reset
370  * if Compliance mode is detected, otherwise the port will become "dead" (no
371  * device connections or disconnections will be detected anymore). Becasue no
372  * status event is generated when entering compliance mode (per xhci spec),
373  * this quirk is needed on systems that have the failing hardware installed.
374  */
375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 	xhci->port_status_u0 = 0;
378 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 		    0);
380 	xhci->comp_mode_recovery_timer.expires = jiffies +
381 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382 
383 	add_timer(&xhci->comp_mode_recovery_timer);
384 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 			"Compliance mode recovery timer initialized");
386 }
387 
388 /*
389  * This function identifies the systems that have installed the SN65LVPE502CP
390  * USB3.0 re-driver and that need the Compliance Mode Quirk.
391  * Systems:
392  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393  */
394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 	const char *dmi_product_name, *dmi_sys_vendor;
397 
398 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 	if (!dmi_product_name || !dmi_sys_vendor)
401 		return false;
402 
403 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 		return false;
405 
406 	if (strstr(dmi_product_name, "Z420") ||
407 			strstr(dmi_product_name, "Z620") ||
408 			strstr(dmi_product_name, "Z820") ||
409 			strstr(dmi_product_name, "Z1 Workstation"))
410 		return true;
411 
412 	return false;
413 }
414 
415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419 
420 
421 /*
422  * Initialize memory for HCD and xHC (one-time init).
423  *
424  * Program the PAGESIZE register, initialize the device context array, create
425  * device contexts (?), set up a command ring segment (or two?), create event
426  * ring (one for now).
427  */
428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 	int retval;
432 
433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 	spin_lock_init(&xhci->lock);
435 	if (xhci->hci_version == 0x95 && link_quirk) {
436 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 				"QUIRK: Not clearing Link TRB chain bits.");
438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 	} else {
440 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 				"xHCI doesn't need link TRB QUIRK");
442 	}
443 	retval = xhci_mem_init(xhci, GFP_KERNEL);
444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445 
446 	/* Initializing Compliance Mode Recovery Data If Needed */
447 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 		compliance_mode_recovery_timer_init(xhci);
450 	}
451 
452 	return retval;
453 }
454 
455 /*-------------------------------------------------------------------------*/
456 
457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 	struct xhci_interrupter *ir = xhci->interrupter;
460 	unsigned long	flags;
461 	u32		temp;
462 
463 	/*
464 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 	 * Protect the short window before host is running with a lock
466 	 */
467 	spin_lock_irqsave(&xhci->lock, flags);
468 
469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 	temp = readl(&xhci->op_regs->command);
471 	temp |= (CMD_EIE);
472 	writel(temp, &xhci->op_regs->command);
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 	xhci_enable_interrupter(ir);
476 
477 	if (xhci_start(xhci)) {
478 		xhci_halt(xhci);
479 		spin_unlock_irqrestore(&xhci->lock, flags);
480 		return -ENODEV;
481 	}
482 
483 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484 
485 	if (xhci->quirks & XHCI_NEC_HOST)
486 		xhci_ring_cmd_db(xhci);
487 
488 	spin_unlock_irqrestore(&xhci->lock, flags);
489 
490 	return 0;
491 }
492 
493 /*
494  * Start the HC after it was halted.
495  *
496  * This function is called by the USB core when the HC driver is added.
497  * Its opposite is xhci_stop().
498  *
499  * xhci_init() must be called once before this function can be called.
500  * Reset the HC, enable device slot contexts, program DCBAAP, and
501  * set command ring pointer and event ring pointer.
502  *
503  * Setup MSI-X vectors and enable interrupts.
504  */
505 int xhci_run(struct usb_hcd *hcd)
506 {
507 	u32 temp;
508 	u64 temp_64;
509 	int ret;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 	struct xhci_interrupter *ir = xhci->interrupter;
512 	/* Start the xHCI host controller running only after the USB 2.0 roothub
513 	 * is setup.
514 	 */
515 
516 	hcd->uses_new_polling = 1;
517 	if (!usb_hcd_is_primary_hcd(hcd))
518 		return xhci_run_finished(xhci);
519 
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521 
522 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 	temp_64 &= ~ERST_PTR_MASK;
524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526 
527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 			"// Set the interrupt modulation register");
529 	temp = readl(&ir->ir_set->irq_control);
530 	temp &= ~ER_IRQ_INTERVAL_MASK;
531 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 	writel(temp, &ir->ir_set->irq_control);
533 
534 	if (xhci->quirks & XHCI_NEC_HOST) {
535 		struct xhci_command *command;
536 
537 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 		if (!command)
539 			return -ENOMEM;
540 
541 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 				TRB_TYPE(TRB_NEC_GET_FW));
543 		if (ret)
544 			xhci_free_command(xhci, command);
545 	}
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished %s for main hcd", __func__);
548 
549 	xhci_create_dbc_dev(xhci);
550 
551 	xhci_debugfs_init(xhci);
552 
553 	if (xhci_has_one_roothub(xhci))
554 		return xhci_run_finished(xhci);
555 
556 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561 
562 /*
563  * Stop xHCI driver.
564  *
565  * This function is called by the USB core when the HC driver is removed.
566  * Its opposite is xhci_run().
567  *
568  * Disable device contexts, disable IRQs, and quiesce the HC.
569  * Reset the HC, finish any completed transactions, and cleanup memory.
570  */
571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 	u32 temp;
574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 	struct xhci_interrupter *ir = xhci->interrupter;
576 
577 	mutex_lock(&xhci->mutex);
578 
579 	/* Only halt host and free memory after both hcds are removed */
580 	if (!usb_hcd_is_primary_hcd(hcd)) {
581 		mutex_unlock(&xhci->mutex);
582 		return;
583 	}
584 
585 	xhci_remove_dbc_dev(xhci);
586 
587 	spin_lock_irq(&xhci->lock);
588 	xhci->xhc_state |= XHCI_STATE_HALTED;
589 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 	xhci_halt(xhci);
591 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 	spin_unlock_irq(&xhci->lock);
593 
594 	/* Deleting Compliance Mode Recovery Timer */
595 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 			(!(xhci_all_ports_seen_u0(xhci)))) {
597 		del_timer_sync(&xhci->comp_mode_recovery_timer);
598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 				"%s: compliance mode recovery timer deleted",
600 				__func__);
601 	}
602 
603 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 		usb_amd_dev_put();
605 
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Disabling event ring interrupts");
608 	temp = readl(&xhci->op_regs->status);
609 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 	xhci_disable_interrupter(ir);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 	xhci_mem_cleanup(xhci);
614 	xhci_debugfs_exit(xhci);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"xhci_stop completed - status = %x",
617 			readl(&xhci->op_regs->status));
618 	mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621 
622 /*
623  * Shutdown HC (not bus-specific)
624  *
625  * This is called when the machine is rebooting or halting.  We assume that the
626  * machine will be powered off, and the HC's internal state will be reset.
627  * Don't bother to free memory.
628  *
629  * This will only ever be called with the main usb_hcd (the USB3 roothub).
630  */
631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634 
635 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637 
638 	/* Don't poll the roothubs after shutdown. */
639 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 			__func__, hcd->self.busnum);
641 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 	del_timer_sync(&hcd->rh_timer);
643 
644 	if (xhci->shared_hcd) {
645 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 		del_timer_sync(&xhci->shared_hcd->rh_timer);
647 	}
648 
649 	spin_lock_irq(&xhci->lock);
650 	xhci_halt(xhci);
651 
652 	/*
653 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 	 */
656 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659 
660 	spin_unlock_irq(&xhci->lock);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"xhci_shutdown completed - status = %x",
664 			readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667 
668 #ifdef CONFIG_PM
669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 	struct xhci_interrupter *ir = xhci->interrupter;
672 
673 	xhci->s3.command = readl(&xhci->op_regs->command);
674 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677 
678 	if (!ir)
679 		return;
680 
681 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687 
688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 	struct xhci_interrupter *ir = xhci->interrupter;
691 
692 	writel(xhci->s3.command, &xhci->op_regs->command);
693 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702 
703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 	u64	val_64;
706 
707 	/* step 2: initialize command ring buffer */
708 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 				      xhci->cmd_ring->dequeue) &
712 		 (u64) ~CMD_RING_RSVD_BITS) |
713 		xhci->cmd_ring->cycle_state;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Setting command ring address to 0x%llx",
716 			(long unsigned long) val_64);
717 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719 
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 	struct xhci_ring *ring;
732 	struct xhci_segment *seg;
733 
734 	ring = xhci->cmd_ring;
735 	seg = ring->deq_seg;
736 	do {
737 		memset(seg->trbs, 0,
738 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 			cpu_to_le32(~TRB_CYCLE);
741 		seg = seg->next;
742 	} while (seg != ring->deq_seg);
743 
744 	/* Reset the software enqueue and dequeue pointers */
745 	ring->deq_seg = ring->first_seg;
746 	ring->dequeue = ring->first_seg->trbs;
747 	ring->enq_seg = ring->deq_seg;
748 	ring->enqueue = ring->dequeue;
749 
750 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 	/*
752 	 * Ring is now zeroed, so the HW should look for change of ownership
753 	 * when the cycle bit is set to 1.
754 	 */
755 	ring->cycle_state = 1;
756 
757 	/*
758 	 * Reset the hardware dequeue pointer.
759 	 * Yes, this will need to be re-written after resume, but we're paranoid
760 	 * and want to make sure the hardware doesn't access bogus memory
761 	 * because, say, the BIOS or an SMI started the host without changing
762 	 * the command ring pointers.
763 	 */
764 	xhci_set_cmd_ring_deq(xhci);
765 }
766 
767 /*
768  * Disable port wake bits if do_wakeup is not set.
769  *
770  * Also clear a possible internal port wake state left hanging for ports that
771  * detected termination but never successfully enumerated (trained to 0U).
772  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773  * at enumeration clears this wake, force one here as well for unconnected ports
774  */
775 
776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 				       struct xhci_hub *rhub,
778 				       bool do_wakeup)
779 {
780 	unsigned long flags;
781 	u32 t1, t2, portsc;
782 	int i;
783 
784 	spin_lock_irqsave(&xhci->lock, flags);
785 
786 	for (i = 0; i < rhub->num_ports; i++) {
787 		portsc = readl(rhub->ports[i]->addr);
788 		t1 = xhci_port_state_to_neutral(portsc);
789 		t2 = t1;
790 
791 		/* clear wake bits if do_wake is not set */
792 		if (!do_wakeup)
793 			t2 &= ~PORT_WAKE_BITS;
794 
795 		/* Don't touch csc bit if connected or connect change is set */
796 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 			t2 |= PORT_CSC;
798 
799 		if (t1 != t2) {
800 			writel(t2, rhub->ports[i]->addr);
801 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 		}
804 	}
805 	spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807 
808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 	struct xhci_port	**ports;
811 	int			port_index;
812 	u32			status;
813 	u32			portsc;
814 
815 	status = readl(&xhci->op_regs->status);
816 	if (status & STS_EINT)
817 		return true;
818 	/*
819 	 * Checking STS_EINT is not enough as there is a lag between a change
820 	 * bit being set and the Port Status Change Event that it generated
821 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 	 */
823 
824 	port_index = xhci->usb2_rhub.num_ports;
825 	ports = xhci->usb2_rhub.ports;
826 	while (port_index--) {
827 		portsc = readl(ports[port_index]->addr);
828 		if (portsc & PORT_CHANGE_MASK ||
829 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 			return true;
831 	}
832 	port_index = xhci->usb3_rhub.num_ports;
833 	ports = xhci->usb3_rhub.ports;
834 	while (port_index--) {
835 		portsc = readl(ports[port_index]->addr);
836 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 			return true;
839 	}
840 	return false;
841 }
842 
843 /*
844  * Stop HC (not bus-specific)
845  *
846  * This is called when the machine transition into S3/S4 mode.
847  *
848  */
849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 	int			rc = 0;
852 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
853 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
854 	u32			command;
855 	u32			res;
856 
857 	if (!hcd->state)
858 		return 0;
859 
860 	if (hcd->state != HC_STATE_SUSPENDED ||
861 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 		return -EINVAL;
863 
864 	/* Clear root port wake on bits if wakeup not allowed. */
865 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867 
868 	if (!HCD_HW_ACCESSIBLE(hcd))
869 		return 0;
870 
871 	xhci_dbc_suspend(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 		 __func__, hcd->self.busnum);
876 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 	del_timer_sync(&hcd->rh_timer);
878 	if (xhci->shared_hcd) {
879 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 		del_timer_sync(&xhci->shared_hcd->rh_timer);
881 	}
882 
883 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 		usleep_range(1000, 1500);
885 
886 	spin_lock_irq(&xhci->lock);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 	if (xhci->shared_hcd)
889 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = readl(&xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	writel(command, &xhci->op_regs->command);
897 
898 	/* Some chips from Fresco Logic need an extraordinary delay */
899 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900 
901 	if (xhci_handshake(&xhci->op_regs->status,
902 		      STS_HALT, STS_HALT, delay)) {
903 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 		spin_unlock_irq(&xhci->lock);
905 		return -ETIMEDOUT;
906 	}
907 	xhci_clear_command_ring(xhci);
908 
909 	/* step 3: save registers */
910 	xhci_save_registers(xhci);
911 
912 	/* step 4: set CSS flag */
913 	command = readl(&xhci->op_regs->command);
914 	command |= CMD_CSS;
915 	writel(command, &xhci->op_regs->command);
916 	xhci->broken_suspend = 0;
917 	if (xhci_handshake(&xhci->op_regs->status,
918 				STS_SAVE, 0, 20 * 1000)) {
919 	/*
920 	 * AMD SNPS xHC 3.0 occasionally does not clear the
921 	 * SSS bit of USBSTS and when driver tries to poll
922 	 * to see if the xHC clears BIT(8) which never happens
923 	 * and driver assumes that controller is not responding
924 	 * and times out. To workaround this, its good to check
925 	 * if SRE and HCE bits are not set (as per xhci
926 	 * Section 5.4.2) and bypass the timeout.
927 	 */
928 		res = readl(&xhci->op_regs->status);
929 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 		    (((res & STS_SRE) == 0) &&
931 				((res & STS_HCE) == 0))) {
932 			xhci->broken_suspend = 1;
933 		} else {
934 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 			spin_unlock_irq(&xhci->lock);
936 			return -ETIMEDOUT;
937 		}
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 				"%s: compliance mode recovery timer deleted",
950 				__func__);
951 	}
952 
953 	return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956 
957 /*
958  * start xHC (not bus-specific)
959  *
960  * This is called when the machine transition from S3/S4 mode.
961  *
962  */
963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
966 	u32			command, temp = 0;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	int			retval = 0;
969 	bool			comp_timer_running = false;
970 	bool			pending_portevent = false;
971 	bool			suspended_usb3_devs = false;
972 	bool			reinit_xhc = false;
973 
974 	if (!hcd->state)
975 		return 0;
976 
977 	/* Wait a bit if either of the roothubs need to settle from the
978 	 * transition into bus suspend.
979 	 */
980 
981 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
982 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
983 		msleep(100);
984 
985 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986 	if (xhci->shared_hcd)
987 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
988 
989 	spin_lock_irq(&xhci->lock);
990 
991 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
992 		reinit_xhc = true;
993 
994 	if (!reinit_xhc) {
995 		/*
996 		 * Some controllers might lose power during suspend, so wait
997 		 * for controller not ready bit to clear, just as in xHC init.
998 		 */
999 		retval = xhci_handshake(&xhci->op_regs->status,
1000 					STS_CNR, 0, 10 * 1000 * 1000);
1001 		if (retval) {
1002 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1003 				  retval);
1004 			spin_unlock_irq(&xhci->lock);
1005 			return retval;
1006 		}
1007 		/* step 1: restore register */
1008 		xhci_restore_registers(xhci);
1009 		/* step 2: initialize command ring buffer */
1010 		xhci_set_cmd_ring_deq(xhci);
1011 		/* step 3: restore state and start state*/
1012 		/* step 3: set CRS flag */
1013 		command = readl(&xhci->op_regs->command);
1014 		command |= CMD_CRS;
1015 		writel(command, &xhci->op_regs->command);
1016 		/*
1017 		 * Some controllers take up to 55+ ms to complete the controller
1018 		 * restore so setting the timeout to 100ms. Xhci specification
1019 		 * doesn't mention any timeout value.
1020 		 */
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 100 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 	}
1028 
1029 	temp = readl(&xhci->op_regs->status);
1030 
1031 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1032 	if ((temp & (STS_SRE | STS_HCE)) &&
1033 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1034 		reinit_xhc = true;
1035 		if (!xhci->broken_suspend)
1036 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1037 	}
1038 
1039 	if (reinit_xhc) {
1040 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1041 				!(xhci_all_ports_seen_u0(xhci))) {
1042 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1043 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1044 				"Compliance Mode Recovery Timer deleted!");
1045 		}
1046 
1047 		/* Let the USB core know _both_ roothubs lost power. */
1048 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1049 		if (xhci->shared_hcd)
1050 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051 
1052 		xhci_dbg(xhci, "Stop HCD\n");
1053 		xhci_halt(xhci);
1054 		xhci_zero_64b_regs(xhci);
1055 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1056 		spin_unlock_irq(&xhci->lock);
1057 		if (retval)
1058 			return retval;
1059 
1060 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1061 		temp = readl(&xhci->op_regs->status);
1062 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1063 		xhci_disable_interrupter(xhci->interrupter);
1064 
1065 		xhci_dbg(xhci, "cleaning up memory\n");
1066 		xhci_mem_cleanup(xhci);
1067 		xhci_debugfs_exit(xhci);
1068 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069 			    readl(&xhci->op_regs->status));
1070 
1071 		/* USB core calls the PCI reinit and start functions twice:
1072 		 * first with the primary HCD, and then with the secondary HCD.
1073 		 * If we don't do the same, the host will never be started.
1074 		 */
1075 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 		retval = xhci_init(hcd);
1077 		if (retval)
1078 			return retval;
1079 		comp_timer_running = true;
1080 
1081 		xhci_dbg(xhci, "Start the primary HCD\n");
1082 		retval = xhci_run(hcd);
1083 		if (!retval && xhci->shared_hcd) {
1084 			xhci_dbg(xhci, "Start the secondary HCD\n");
1085 			retval = xhci_run(xhci->shared_hcd);
1086 		}
1087 		if (retval)
1088 			return retval;
1089 		/*
1090 		 * Resume roothubs unconditionally as PORTSC change bits are not
1091 		 * immediately visible after xHC reset
1092 		 */
1093 		hcd->state = HC_STATE_SUSPENDED;
1094 
1095 		if (xhci->shared_hcd) {
1096 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1097 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1098 		}
1099 		usb_hcd_resume_root_hub(hcd);
1100 
1101 		goto done;
1102 	}
1103 
1104 	/* step 4: set Run/Stop bit */
1105 	command = readl(&xhci->op_regs->command);
1106 	command |= CMD_RUN;
1107 	writel(command, &xhci->op_regs->command);
1108 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1109 		  0, 250 * 1000);
1110 
1111 	/* step 5: walk topology and initialize portsc,
1112 	 * portpmsc and portli
1113 	 */
1114 	/* this is done in bus_resume */
1115 
1116 	/* step 6: restart each of the previously
1117 	 * Running endpoints by ringing their doorbells
1118 	 */
1119 
1120 	spin_unlock_irq(&xhci->lock);
1121 
1122 	xhci_dbc_resume(xhci);
1123 
1124 	if (retval == 0) {
1125 		/*
1126 		 * Resume roothubs only if there are pending events.
1127 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1128 		 * the first wake signalling failed, give it that chance if
1129 		 * there are suspended USB 3 devices.
1130 		 */
1131 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1132 		    xhci->usb3_rhub.bus_state.bus_suspended)
1133 			suspended_usb3_devs = true;
1134 
1135 		pending_portevent = xhci_pending_portevent(xhci);
1136 
1137 		if (suspended_usb3_devs && !pending_portevent &&
1138 		    msg.event == PM_EVENT_AUTO_RESUME) {
1139 			msleep(120);
1140 			pending_portevent = xhci_pending_portevent(xhci);
1141 		}
1142 
1143 		if (pending_portevent) {
1144 			if (xhci->shared_hcd)
1145 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1146 			usb_hcd_resume_root_hub(hcd);
1147 		}
1148 	}
1149 done:
1150 	/*
1151 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1152 	 * be re-initialized Always after a system resume. Ports are subject
1153 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1154 	 * ports have entered previously to U0 before system's suspension.
1155 	 */
1156 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1157 		compliance_mode_recovery_timer_init(xhci);
1158 
1159 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1160 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1161 
1162 	/* Re-enable port polling. */
1163 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1164 		 __func__, hcd->self.busnum);
1165 	if (xhci->shared_hcd) {
1166 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1167 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1168 	}
1169 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1170 	usb_hcd_poll_rh_status(hcd);
1171 
1172 	return retval;
1173 }
1174 EXPORT_SYMBOL_GPL(xhci_resume);
1175 #endif	/* CONFIG_PM */
1176 
1177 /*-------------------------------------------------------------------------*/
1178 
1179 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1180 {
1181 	void *temp;
1182 	int ret = 0;
1183 	unsigned int buf_len;
1184 	enum dma_data_direction dir;
1185 
1186 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1187 	buf_len = urb->transfer_buffer_length;
1188 
1189 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1190 			    dev_to_node(hcd->self.sysdev));
1191 	if (!temp)
1192 		return -ENOMEM;
1193 
1194 	if (usb_urb_dir_out(urb))
1195 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1196 				   temp, buf_len, 0);
1197 
1198 	urb->transfer_buffer = temp;
1199 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1200 					   urb->transfer_buffer,
1201 					   urb->transfer_buffer_length,
1202 					   dir);
1203 
1204 	if (dma_mapping_error(hcd->self.sysdev,
1205 			      urb->transfer_dma)) {
1206 		ret = -EAGAIN;
1207 		kfree(temp);
1208 	} else {
1209 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1216 					  struct urb *urb)
1217 {
1218 	bool ret = false;
1219 	unsigned int i;
1220 	unsigned int len = 0;
1221 	unsigned int trb_size;
1222 	unsigned int max_pkt;
1223 	struct scatterlist *sg;
1224 	struct scatterlist *tail_sg;
1225 
1226 	tail_sg = urb->sg;
1227 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1228 
1229 	if (!urb->num_sgs)
1230 		return ret;
1231 
1232 	if (urb->dev->speed >= USB_SPEED_SUPER)
1233 		trb_size = TRB_CACHE_SIZE_SS;
1234 	else
1235 		trb_size = TRB_CACHE_SIZE_HS;
1236 
1237 	if (urb->transfer_buffer_length != 0 &&
1238 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1239 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1240 			len = len + sg->length;
1241 			if (i > trb_size - 2) {
1242 				len = len - tail_sg->length;
1243 				if (len < max_pkt) {
1244 					ret = true;
1245 					break;
1246 				}
1247 
1248 				tail_sg = sg_next(tail_sg);
1249 			}
1250 		}
1251 	}
1252 	return ret;
1253 }
1254 
1255 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1256 {
1257 	unsigned int len;
1258 	unsigned int buf_len;
1259 	enum dma_data_direction dir;
1260 
1261 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1262 
1263 	buf_len = urb->transfer_buffer_length;
1264 
1265 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1266 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1267 		dma_unmap_single(hcd->self.sysdev,
1268 				 urb->transfer_dma,
1269 				 urb->transfer_buffer_length,
1270 				 dir);
1271 
1272 	if (usb_urb_dir_in(urb)) {
1273 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1274 					   urb->transfer_buffer,
1275 					   buf_len,
1276 					   0);
1277 		if (len != buf_len) {
1278 			xhci_dbg(hcd_to_xhci(hcd),
1279 				 "Copy from tmp buf to urb sg list failed\n");
1280 			urb->actual_length = len;
1281 		}
1282 	}
1283 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1284 	kfree(urb->transfer_buffer);
1285 	urb->transfer_buffer = NULL;
1286 }
1287 
1288 /*
1289  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1290  * we'll copy the actual data into the TRB address register. This is limited to
1291  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1292  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1293  */
1294 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1295 				gfp_t mem_flags)
1296 {
1297 	struct xhci_hcd *xhci;
1298 
1299 	xhci = hcd_to_xhci(hcd);
1300 
1301 	if (xhci_urb_suitable_for_idt(urb))
1302 		return 0;
1303 
1304 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1305 		if (xhci_urb_temp_buffer_required(hcd, urb))
1306 			return xhci_map_temp_buffer(hcd, urb);
1307 	}
1308 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1309 }
1310 
1311 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1312 {
1313 	struct xhci_hcd *xhci;
1314 	bool unmap_temp_buf = false;
1315 
1316 	xhci = hcd_to_xhci(hcd);
1317 
1318 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1319 		unmap_temp_buf = true;
1320 
1321 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1322 		xhci_unmap_temp_buf(hcd, urb);
1323 	else
1324 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1325 }
1326 
1327 /**
1328  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1329  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1330  * value to right shift 1 for the bitmask.
1331  *
1332  * Index  = (epnum * 2) + direction - 1,
1333  * where direction = 0 for OUT, 1 for IN.
1334  * For control endpoints, the IN index is used (OUT index is unused), so
1335  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1336  */
1337 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1338 {
1339 	unsigned int index;
1340 	if (usb_endpoint_xfer_control(desc))
1341 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1342 	else
1343 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1344 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1345 	return index;
1346 }
1347 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1348 
1349 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1350  * address from the XHCI endpoint index.
1351  */
1352 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1353 {
1354 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1355 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1356 	return direction | number;
1357 }
1358 
1359 /* Find the flag for this endpoint (for use in the control context).  Use the
1360  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1361  * bit 1, etc.
1362  */
1363 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1364 {
1365 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1366 }
1367 
1368 /* Compute the last valid endpoint context index.  Basically, this is the
1369  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1370  * we find the most significant bit set in the added contexts flags.
1371  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1372  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1373  */
1374 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1375 {
1376 	return fls(added_ctxs) - 1;
1377 }
1378 
1379 /* Returns 1 if the arguments are OK;
1380  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1381  */
1382 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1383 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1384 		const char *func) {
1385 	struct xhci_hcd	*xhci;
1386 	struct xhci_virt_device	*virt_dev;
1387 
1388 	if (!hcd || (check_ep && !ep) || !udev) {
1389 		pr_debug("xHCI %s called with invalid args\n", func);
1390 		return -EINVAL;
1391 	}
1392 	if (!udev->parent) {
1393 		pr_debug("xHCI %s called for root hub\n", func);
1394 		return 0;
1395 	}
1396 
1397 	xhci = hcd_to_xhci(hcd);
1398 	if (check_virt_dev) {
1399 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1400 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1401 					func);
1402 			return -EINVAL;
1403 		}
1404 
1405 		virt_dev = xhci->devs[udev->slot_id];
1406 		if (virt_dev->udev != udev) {
1407 			xhci_dbg(xhci, "xHCI %s called with udev and "
1408 					  "virt_dev does not match\n", func);
1409 			return -EINVAL;
1410 		}
1411 	}
1412 
1413 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1414 		return -ENODEV;
1415 
1416 	return 1;
1417 }
1418 
1419 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1420 		struct usb_device *udev, struct xhci_command *command,
1421 		bool ctx_change, bool must_succeed);
1422 
1423 /*
1424  * Full speed devices may have a max packet size greater than 8 bytes, but the
1425  * USB core doesn't know that until it reads the first 8 bytes of the
1426  * descriptor.  If the usb_device's max packet size changes after that point,
1427  * we need to issue an evaluate context command and wait on it.
1428  */
1429 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1430 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1431 {
1432 	struct xhci_container_ctx *out_ctx;
1433 	struct xhci_input_control_ctx *ctrl_ctx;
1434 	struct xhci_ep_ctx *ep_ctx;
1435 	struct xhci_command *command;
1436 	int max_packet_size;
1437 	int hw_max_packet_size;
1438 	int ret = 0;
1439 
1440 	out_ctx = xhci->devs[slot_id]->out_ctx;
1441 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1442 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1443 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1444 	if (hw_max_packet_size != max_packet_size) {
1445 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1446 				"Max Packet Size for ep 0 changed.");
1447 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1448 				"Max packet size in usb_device = %d",
1449 				max_packet_size);
1450 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1451 				"Max packet size in xHCI HW = %d",
1452 				hw_max_packet_size);
1453 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1454 				"Issuing evaluate context command.");
1455 
1456 		/* Set up the input context flags for the command */
1457 		/* FIXME: This won't work if a non-default control endpoint
1458 		 * changes max packet sizes.
1459 		 */
1460 
1461 		command = xhci_alloc_command(xhci, true, mem_flags);
1462 		if (!command)
1463 			return -ENOMEM;
1464 
1465 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1466 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1467 		if (!ctrl_ctx) {
1468 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1469 					__func__);
1470 			ret = -ENOMEM;
1471 			goto command_cleanup;
1472 		}
1473 		/* Set up the modified control endpoint 0 */
1474 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1475 				xhci->devs[slot_id]->out_ctx, ep_index);
1476 
1477 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1478 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1479 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1480 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1481 
1482 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1483 		ctrl_ctx->drop_flags = 0;
1484 
1485 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1486 				true, false);
1487 
1488 		/* Clean up the input context for later use by bandwidth
1489 		 * functions.
1490 		 */
1491 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1492 command_cleanup:
1493 		kfree(command->completion);
1494 		kfree(command);
1495 	}
1496 	return ret;
1497 }
1498 
1499 /*
1500  * non-error returns are a promise to giveback() the urb later
1501  * we drop ownership so next owner (or urb unlink) can get it
1502  */
1503 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1504 {
1505 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1506 	unsigned long flags;
1507 	int ret = 0;
1508 	unsigned int slot_id, ep_index;
1509 	unsigned int *ep_state;
1510 	struct urb_priv	*urb_priv;
1511 	int num_tds;
1512 
1513 	if (!urb)
1514 		return -EINVAL;
1515 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1516 					true, true, __func__);
1517 	if (ret <= 0)
1518 		return ret ? ret : -EINVAL;
1519 
1520 	slot_id = urb->dev->slot_id;
1521 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1522 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1523 
1524 	if (!HCD_HW_ACCESSIBLE(hcd))
1525 		return -ESHUTDOWN;
1526 
1527 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1528 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1529 		return -ENODEV;
1530 	}
1531 
1532 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1533 		num_tds = urb->number_of_packets;
1534 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1535 	    urb->transfer_buffer_length > 0 &&
1536 	    urb->transfer_flags & URB_ZERO_PACKET &&
1537 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1538 		num_tds = 2;
1539 	else
1540 		num_tds = 1;
1541 
1542 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1543 	if (!urb_priv)
1544 		return -ENOMEM;
1545 
1546 	urb_priv->num_tds = num_tds;
1547 	urb_priv->num_tds_done = 0;
1548 	urb->hcpriv = urb_priv;
1549 
1550 	trace_xhci_urb_enqueue(urb);
1551 
1552 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1553 		/* Check to see if the max packet size for the default control
1554 		 * endpoint changed during FS device enumeration
1555 		 */
1556 		if (urb->dev->speed == USB_SPEED_FULL) {
1557 			ret = xhci_check_maxpacket(xhci, slot_id,
1558 					ep_index, urb, mem_flags);
1559 			if (ret < 0) {
1560 				xhci_urb_free_priv(urb_priv);
1561 				urb->hcpriv = NULL;
1562 				return ret;
1563 			}
1564 		}
1565 	}
1566 
1567 	spin_lock_irqsave(&xhci->lock, flags);
1568 
1569 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1570 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1571 			 urb->ep->desc.bEndpointAddress, urb);
1572 		ret = -ESHUTDOWN;
1573 		goto free_priv;
1574 	}
1575 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1576 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1577 			  *ep_state);
1578 		ret = -EINVAL;
1579 		goto free_priv;
1580 	}
1581 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1582 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1583 		ret = -EINVAL;
1584 		goto free_priv;
1585 	}
1586 
1587 	switch (usb_endpoint_type(&urb->ep->desc)) {
1588 
1589 	case USB_ENDPOINT_XFER_CONTROL:
1590 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1591 					 slot_id, ep_index);
1592 		break;
1593 	case USB_ENDPOINT_XFER_BULK:
1594 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1595 					 slot_id, ep_index);
1596 		break;
1597 	case USB_ENDPOINT_XFER_INT:
1598 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1599 				slot_id, ep_index);
1600 		break;
1601 	case USB_ENDPOINT_XFER_ISOC:
1602 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1603 				slot_id, ep_index);
1604 	}
1605 
1606 	if (ret) {
1607 free_priv:
1608 		xhci_urb_free_priv(urb_priv);
1609 		urb->hcpriv = NULL;
1610 	}
1611 	spin_unlock_irqrestore(&xhci->lock, flags);
1612 	return ret;
1613 }
1614 
1615 /*
1616  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1617  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1618  * should pick up where it left off in the TD, unless a Set Transfer Ring
1619  * Dequeue Pointer is issued.
1620  *
1621  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1622  * the ring.  Since the ring is a contiguous structure, they can't be physically
1623  * removed.  Instead, there are two options:
1624  *
1625  *  1) If the HC is in the middle of processing the URB to be canceled, we
1626  *     simply move the ring's dequeue pointer past those TRBs using the Set
1627  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1628  *     when drivers timeout on the last submitted URB and attempt to cancel.
1629  *
1630  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1631  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1632  *     HC will need to invalidate the any TRBs it has cached after the stop
1633  *     endpoint command, as noted in the xHCI 0.95 errata.
1634  *
1635  *  3) The TD may have completed by the time the Stop Endpoint Command
1636  *     completes, so software needs to handle that case too.
1637  *
1638  * This function should protect against the TD enqueueing code ringing the
1639  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1640  * It also needs to account for multiple cancellations on happening at the same
1641  * time for the same endpoint.
1642  *
1643  * Note that this function can be called in any context, or so says
1644  * usb_hcd_unlink_urb()
1645  */
1646 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1647 {
1648 	unsigned long flags;
1649 	int ret, i;
1650 	u32 temp;
1651 	struct xhci_hcd *xhci;
1652 	struct urb_priv	*urb_priv;
1653 	struct xhci_td *td;
1654 	unsigned int ep_index;
1655 	struct xhci_ring *ep_ring;
1656 	struct xhci_virt_ep *ep;
1657 	struct xhci_command *command;
1658 	struct xhci_virt_device *vdev;
1659 
1660 	xhci = hcd_to_xhci(hcd);
1661 	spin_lock_irqsave(&xhci->lock, flags);
1662 
1663 	trace_xhci_urb_dequeue(urb);
1664 
1665 	/* Make sure the URB hasn't completed or been unlinked already */
1666 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1667 	if (ret)
1668 		goto done;
1669 
1670 	/* give back URB now if we can't queue it for cancel */
1671 	vdev = xhci->devs[urb->dev->slot_id];
1672 	urb_priv = urb->hcpriv;
1673 	if (!vdev || !urb_priv)
1674 		goto err_giveback;
1675 
1676 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1677 	ep = &vdev->eps[ep_index];
1678 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1679 	if (!ep || !ep_ring)
1680 		goto err_giveback;
1681 
1682 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1683 	temp = readl(&xhci->op_regs->status);
1684 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1685 		xhci_hc_died(xhci);
1686 		goto done;
1687 	}
1688 
1689 	/*
1690 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1691 	 * make sure none of the ring related pointers in this URB private data
1692 	 * are touched, such as td_list, otherwise we overwrite freed data
1693 	 */
1694 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1695 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1696 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1697 			td = &urb_priv->td[i];
1698 			if (!list_empty(&td->cancelled_td_list))
1699 				list_del_init(&td->cancelled_td_list);
1700 		}
1701 		goto err_giveback;
1702 	}
1703 
1704 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1705 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1706 				"HC halted, freeing TD manually.");
1707 		for (i = urb_priv->num_tds_done;
1708 		     i < urb_priv->num_tds;
1709 		     i++) {
1710 			td = &urb_priv->td[i];
1711 			if (!list_empty(&td->td_list))
1712 				list_del_init(&td->td_list);
1713 			if (!list_empty(&td->cancelled_td_list))
1714 				list_del_init(&td->cancelled_td_list);
1715 		}
1716 		goto err_giveback;
1717 	}
1718 
1719 	i = urb_priv->num_tds_done;
1720 	if (i < urb_priv->num_tds)
1721 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1722 				"Cancel URB %p, dev %s, ep 0x%x, "
1723 				"starting at offset 0x%llx",
1724 				urb, urb->dev->devpath,
1725 				urb->ep->desc.bEndpointAddress,
1726 				(unsigned long long) xhci_trb_virt_to_dma(
1727 					urb_priv->td[i].start_seg,
1728 					urb_priv->td[i].first_trb));
1729 
1730 	for (; i < urb_priv->num_tds; i++) {
1731 		td = &urb_priv->td[i];
1732 		/* TD can already be on cancelled list if ep halted on it */
1733 		if (list_empty(&td->cancelled_td_list)) {
1734 			td->cancel_status = TD_DIRTY;
1735 			list_add_tail(&td->cancelled_td_list,
1736 				      &ep->cancelled_td_list);
1737 		}
1738 	}
1739 
1740 	/* Queue a stop endpoint command, but only if this is
1741 	 * the first cancellation to be handled.
1742 	 */
1743 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1744 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1745 		if (!command) {
1746 			ret = -ENOMEM;
1747 			goto done;
1748 		}
1749 		ep->ep_state |= EP_STOP_CMD_PENDING;
1750 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1751 					 ep_index, 0);
1752 		xhci_ring_cmd_db(xhci);
1753 	}
1754 done:
1755 	spin_unlock_irqrestore(&xhci->lock, flags);
1756 	return ret;
1757 
1758 err_giveback:
1759 	if (urb_priv)
1760 		xhci_urb_free_priv(urb_priv);
1761 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1762 	spin_unlock_irqrestore(&xhci->lock, flags);
1763 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1764 	return ret;
1765 }
1766 
1767 /* Drop an endpoint from a new bandwidth configuration for this device.
1768  * Only one call to this function is allowed per endpoint before
1769  * check_bandwidth() or reset_bandwidth() must be called.
1770  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1771  * add the endpoint to the schedule with possibly new parameters denoted by a
1772  * different endpoint descriptor in usb_host_endpoint.
1773  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1774  * not allowed.
1775  *
1776  * The USB core will not allow URBs to be queued to an endpoint that is being
1777  * disabled, so there's no need for mutual exclusion to protect
1778  * the xhci->devs[slot_id] structure.
1779  */
1780 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1781 		       struct usb_host_endpoint *ep)
1782 {
1783 	struct xhci_hcd *xhci;
1784 	struct xhci_container_ctx *in_ctx, *out_ctx;
1785 	struct xhci_input_control_ctx *ctrl_ctx;
1786 	unsigned int ep_index;
1787 	struct xhci_ep_ctx *ep_ctx;
1788 	u32 drop_flag;
1789 	u32 new_add_flags, new_drop_flags;
1790 	int ret;
1791 
1792 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1793 	if (ret <= 0)
1794 		return ret;
1795 	xhci = hcd_to_xhci(hcd);
1796 	if (xhci->xhc_state & XHCI_STATE_DYING)
1797 		return -ENODEV;
1798 
1799 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1800 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1801 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1802 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1803 				__func__, drop_flag);
1804 		return 0;
1805 	}
1806 
1807 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1808 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1809 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1810 	if (!ctrl_ctx) {
1811 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1812 				__func__);
1813 		return 0;
1814 	}
1815 
1816 	ep_index = xhci_get_endpoint_index(&ep->desc);
1817 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1818 	/* If the HC already knows the endpoint is disabled,
1819 	 * or the HCD has noted it is disabled, ignore this request
1820 	 */
1821 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1822 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1823 	    xhci_get_endpoint_flag(&ep->desc)) {
1824 		/* Do not warn when called after a usb_device_reset */
1825 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1826 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1827 				  __func__, ep);
1828 		return 0;
1829 	}
1830 
1831 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1832 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1833 
1834 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1835 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1836 
1837 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1838 
1839 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1840 
1841 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1842 			(unsigned int) ep->desc.bEndpointAddress,
1843 			udev->slot_id,
1844 			(unsigned int) new_drop_flags,
1845 			(unsigned int) new_add_flags);
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1849 
1850 /* Add an endpoint to a new possible bandwidth configuration for this device.
1851  * Only one call to this function is allowed per endpoint before
1852  * check_bandwidth() or reset_bandwidth() must be called.
1853  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1854  * add the endpoint to the schedule with possibly new parameters denoted by a
1855  * different endpoint descriptor in usb_host_endpoint.
1856  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1857  * not allowed.
1858  *
1859  * The USB core will not allow URBs to be queued to an endpoint until the
1860  * configuration or alt setting is installed in the device, so there's no need
1861  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1862  */
1863 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1864 		      struct usb_host_endpoint *ep)
1865 {
1866 	struct xhci_hcd *xhci;
1867 	struct xhci_container_ctx *in_ctx;
1868 	unsigned int ep_index;
1869 	struct xhci_input_control_ctx *ctrl_ctx;
1870 	struct xhci_ep_ctx *ep_ctx;
1871 	u32 added_ctxs;
1872 	u32 new_add_flags, new_drop_flags;
1873 	struct xhci_virt_device *virt_dev;
1874 	int ret = 0;
1875 
1876 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1877 	if (ret <= 0) {
1878 		/* So we won't queue a reset ep command for a root hub */
1879 		ep->hcpriv = NULL;
1880 		return ret;
1881 	}
1882 	xhci = hcd_to_xhci(hcd);
1883 	if (xhci->xhc_state & XHCI_STATE_DYING)
1884 		return -ENODEV;
1885 
1886 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1887 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1888 		/* FIXME when we have to issue an evaluate endpoint command to
1889 		 * deal with ep0 max packet size changing once we get the
1890 		 * descriptors
1891 		 */
1892 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1893 				__func__, added_ctxs);
1894 		return 0;
1895 	}
1896 
1897 	virt_dev = xhci->devs[udev->slot_id];
1898 	in_ctx = virt_dev->in_ctx;
1899 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1900 	if (!ctrl_ctx) {
1901 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1902 				__func__);
1903 		return 0;
1904 	}
1905 
1906 	ep_index = xhci_get_endpoint_index(&ep->desc);
1907 	/* If this endpoint is already in use, and the upper layers are trying
1908 	 * to add it again without dropping it, reject the addition.
1909 	 */
1910 	if (virt_dev->eps[ep_index].ring &&
1911 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1912 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1913 				"without dropping it.\n",
1914 				(unsigned int) ep->desc.bEndpointAddress);
1915 		return -EINVAL;
1916 	}
1917 
1918 	/* If the HCD has already noted the endpoint is enabled,
1919 	 * ignore this request.
1920 	 */
1921 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1922 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1923 				__func__, ep);
1924 		return 0;
1925 	}
1926 
1927 	/*
1928 	 * Configuration and alternate setting changes must be done in
1929 	 * process context, not interrupt context (or so documenation
1930 	 * for usb_set_interface() and usb_set_configuration() claim).
1931 	 */
1932 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1933 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1934 				__func__, ep->desc.bEndpointAddress);
1935 		return -ENOMEM;
1936 	}
1937 
1938 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1939 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1940 
1941 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1942 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1943 	 * this re-adds a new state for the endpoint from the new endpoint
1944 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1945 	 * drop flags alone.
1946 	 */
1947 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1948 
1949 	/* Store the usb_device pointer for later use */
1950 	ep->hcpriv = udev;
1951 
1952 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1953 	trace_xhci_add_endpoint(ep_ctx);
1954 
1955 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1956 			(unsigned int) ep->desc.bEndpointAddress,
1957 			udev->slot_id,
1958 			(unsigned int) new_drop_flags,
1959 			(unsigned int) new_add_flags);
1960 	return 0;
1961 }
1962 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1963 
1964 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1965 {
1966 	struct xhci_input_control_ctx *ctrl_ctx;
1967 	struct xhci_ep_ctx *ep_ctx;
1968 	struct xhci_slot_ctx *slot_ctx;
1969 	int i;
1970 
1971 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1972 	if (!ctrl_ctx) {
1973 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1974 				__func__);
1975 		return;
1976 	}
1977 
1978 	/* When a device's add flag and drop flag are zero, any subsequent
1979 	 * configure endpoint command will leave that endpoint's state
1980 	 * untouched.  Make sure we don't leave any old state in the input
1981 	 * endpoint contexts.
1982 	 */
1983 	ctrl_ctx->drop_flags = 0;
1984 	ctrl_ctx->add_flags = 0;
1985 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1986 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1987 	/* Endpoint 0 is always valid */
1988 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1989 	for (i = 1; i < 31; i++) {
1990 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1991 		ep_ctx->ep_info = 0;
1992 		ep_ctx->ep_info2 = 0;
1993 		ep_ctx->deq = 0;
1994 		ep_ctx->tx_info = 0;
1995 	}
1996 }
1997 
1998 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1999 		struct usb_device *udev, u32 *cmd_status)
2000 {
2001 	int ret;
2002 
2003 	switch (*cmd_status) {
2004 	case COMP_COMMAND_ABORTED:
2005 	case COMP_COMMAND_RING_STOPPED:
2006 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2007 		ret = -ETIME;
2008 		break;
2009 	case COMP_RESOURCE_ERROR:
2010 		dev_warn(&udev->dev,
2011 			 "Not enough host controller resources for new device state.\n");
2012 		ret = -ENOMEM;
2013 		/* FIXME: can we allocate more resources for the HC? */
2014 		break;
2015 	case COMP_BANDWIDTH_ERROR:
2016 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2017 		dev_warn(&udev->dev,
2018 			 "Not enough bandwidth for new device state.\n");
2019 		ret = -ENOSPC;
2020 		/* FIXME: can we go back to the old state? */
2021 		break;
2022 	case COMP_TRB_ERROR:
2023 		/* the HCD set up something wrong */
2024 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2025 				"add flag = 1, "
2026 				"and endpoint is not disabled.\n");
2027 		ret = -EINVAL;
2028 		break;
2029 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2030 		dev_warn(&udev->dev,
2031 			 "ERROR: Incompatible device for endpoint configure command.\n");
2032 		ret = -ENODEV;
2033 		break;
2034 	case COMP_SUCCESS:
2035 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2036 				"Successful Endpoint Configure command");
2037 		ret = 0;
2038 		break;
2039 	default:
2040 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2041 				*cmd_status);
2042 		ret = -EINVAL;
2043 		break;
2044 	}
2045 	return ret;
2046 }
2047 
2048 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2049 		struct usb_device *udev, u32 *cmd_status)
2050 {
2051 	int ret;
2052 
2053 	switch (*cmd_status) {
2054 	case COMP_COMMAND_ABORTED:
2055 	case COMP_COMMAND_RING_STOPPED:
2056 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2057 		ret = -ETIME;
2058 		break;
2059 	case COMP_PARAMETER_ERROR:
2060 		dev_warn(&udev->dev,
2061 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2062 		ret = -EINVAL;
2063 		break;
2064 	case COMP_SLOT_NOT_ENABLED_ERROR:
2065 		dev_warn(&udev->dev,
2066 			"WARN: slot not enabled for evaluate context command.\n");
2067 		ret = -EINVAL;
2068 		break;
2069 	case COMP_CONTEXT_STATE_ERROR:
2070 		dev_warn(&udev->dev,
2071 			"WARN: invalid context state for evaluate context command.\n");
2072 		ret = -EINVAL;
2073 		break;
2074 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2075 		dev_warn(&udev->dev,
2076 			"ERROR: Incompatible device for evaluate context command.\n");
2077 		ret = -ENODEV;
2078 		break;
2079 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2080 		/* Max Exit Latency too large error */
2081 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2082 		ret = -EINVAL;
2083 		break;
2084 	case COMP_SUCCESS:
2085 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2086 				"Successful evaluate context command");
2087 		ret = 0;
2088 		break;
2089 	default:
2090 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2091 			*cmd_status);
2092 		ret = -EINVAL;
2093 		break;
2094 	}
2095 	return ret;
2096 }
2097 
2098 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2099 		struct xhci_input_control_ctx *ctrl_ctx)
2100 {
2101 	u32 valid_add_flags;
2102 	u32 valid_drop_flags;
2103 
2104 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2105 	 * (bit 1).  The default control endpoint is added during the Address
2106 	 * Device command and is never removed until the slot is disabled.
2107 	 */
2108 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2109 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2110 
2111 	/* Use hweight32 to count the number of ones in the add flags, or
2112 	 * number of endpoints added.  Don't count endpoints that are changed
2113 	 * (both added and dropped).
2114 	 */
2115 	return hweight32(valid_add_flags) -
2116 		hweight32(valid_add_flags & valid_drop_flags);
2117 }
2118 
2119 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2120 		struct xhci_input_control_ctx *ctrl_ctx)
2121 {
2122 	u32 valid_add_flags;
2123 	u32 valid_drop_flags;
2124 
2125 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127 
2128 	return hweight32(valid_drop_flags) -
2129 		hweight32(valid_add_flags & valid_drop_flags);
2130 }
2131 
2132 /*
2133  * We need to reserve the new number of endpoints before the configure endpoint
2134  * command completes.  We can't subtract the dropped endpoints from the number
2135  * of active endpoints until the command completes because we can oversubscribe
2136  * the host in this case:
2137  *
2138  *  - the first configure endpoint command drops more endpoints than it adds
2139  *  - a second configure endpoint command that adds more endpoints is queued
2140  *  - the first configure endpoint command fails, so the config is unchanged
2141  *  - the second command may succeed, even though there isn't enough resources
2142  *
2143  * Must be called with xhci->lock held.
2144  */
2145 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2146 		struct xhci_input_control_ctx *ctrl_ctx)
2147 {
2148 	u32 added_eps;
2149 
2150 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2151 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2152 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2153 				"Not enough ep ctxs: "
2154 				"%u active, need to add %u, limit is %u.",
2155 				xhci->num_active_eps, added_eps,
2156 				xhci->limit_active_eps);
2157 		return -ENOMEM;
2158 	}
2159 	xhci->num_active_eps += added_eps;
2160 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 			"Adding %u ep ctxs, %u now active.", added_eps,
2162 			xhci->num_active_eps);
2163 	return 0;
2164 }
2165 
2166 /*
2167  * The configure endpoint was failed by the xHC for some other reason, so we
2168  * need to revert the resources that failed configuration would have used.
2169  *
2170  * Must be called with xhci->lock held.
2171  */
2172 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2173 		struct xhci_input_control_ctx *ctrl_ctx)
2174 {
2175 	u32 num_failed_eps;
2176 
2177 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2178 	xhci->num_active_eps -= num_failed_eps;
2179 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 			"Removing %u failed ep ctxs, %u now active.",
2181 			num_failed_eps,
2182 			xhci->num_active_eps);
2183 }
2184 
2185 /*
2186  * Now that the command has completed, clean up the active endpoint count by
2187  * subtracting out the endpoints that were dropped (but not changed).
2188  *
2189  * Must be called with xhci->lock held.
2190  */
2191 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2192 		struct xhci_input_control_ctx *ctrl_ctx)
2193 {
2194 	u32 num_dropped_eps;
2195 
2196 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2197 	xhci->num_active_eps -= num_dropped_eps;
2198 	if (num_dropped_eps)
2199 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200 				"Removing %u dropped ep ctxs, %u now active.",
2201 				num_dropped_eps,
2202 				xhci->num_active_eps);
2203 }
2204 
2205 static unsigned int xhci_get_block_size(struct usb_device *udev)
2206 {
2207 	switch (udev->speed) {
2208 	case USB_SPEED_LOW:
2209 	case USB_SPEED_FULL:
2210 		return FS_BLOCK;
2211 	case USB_SPEED_HIGH:
2212 		return HS_BLOCK;
2213 	case USB_SPEED_SUPER:
2214 	case USB_SPEED_SUPER_PLUS:
2215 		return SS_BLOCK;
2216 	case USB_SPEED_UNKNOWN:
2217 	default:
2218 		/* Should never happen */
2219 		return 1;
2220 	}
2221 }
2222 
2223 static unsigned int
2224 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2225 {
2226 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2227 		return LS_OVERHEAD;
2228 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2229 		return FS_OVERHEAD;
2230 	return HS_OVERHEAD;
2231 }
2232 
2233 /* If we are changing a LS/FS device under a HS hub,
2234  * make sure (if we are activating a new TT) that the HS bus has enough
2235  * bandwidth for this new TT.
2236  */
2237 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2238 		struct xhci_virt_device *virt_dev,
2239 		int old_active_eps)
2240 {
2241 	struct xhci_interval_bw_table *bw_table;
2242 	struct xhci_tt_bw_info *tt_info;
2243 
2244 	/* Find the bandwidth table for the root port this TT is attached to. */
2245 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2246 	tt_info = virt_dev->tt_info;
2247 	/* If this TT already had active endpoints, the bandwidth for this TT
2248 	 * has already been added.  Removing all periodic endpoints (and thus
2249 	 * making the TT enactive) will only decrease the bandwidth used.
2250 	 */
2251 	if (old_active_eps)
2252 		return 0;
2253 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2254 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2255 			return -ENOMEM;
2256 		return 0;
2257 	}
2258 	/* Not sure why we would have no new active endpoints...
2259 	 *
2260 	 * Maybe because of an Evaluate Context change for a hub update or a
2261 	 * control endpoint 0 max packet size change?
2262 	 * FIXME: skip the bandwidth calculation in that case.
2263 	 */
2264 	return 0;
2265 }
2266 
2267 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2268 		struct xhci_virt_device *virt_dev)
2269 {
2270 	unsigned int bw_reserved;
2271 
2272 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2273 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2274 		return -ENOMEM;
2275 
2276 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2277 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2278 		return -ENOMEM;
2279 
2280 	return 0;
2281 }
2282 
2283 /*
2284  * This algorithm is a very conservative estimate of the worst-case scheduling
2285  * scenario for any one interval.  The hardware dynamically schedules the
2286  * packets, so we can't tell which microframe could be the limiting factor in
2287  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2288  *
2289  * Obviously, we can't solve an NP complete problem to find the minimum worst
2290  * case scenario.  Instead, we come up with an estimate that is no less than
2291  * the worst case bandwidth used for any one microframe, but may be an
2292  * over-estimate.
2293  *
2294  * We walk the requirements for each endpoint by interval, starting with the
2295  * smallest interval, and place packets in the schedule where there is only one
2296  * possible way to schedule packets for that interval.  In order to simplify
2297  * this algorithm, we record the largest max packet size for each interval, and
2298  * assume all packets will be that size.
2299  *
2300  * For interval 0, we obviously must schedule all packets for each interval.
2301  * The bandwidth for interval 0 is just the amount of data to be transmitted
2302  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2303  * the number of packets).
2304  *
2305  * For interval 1, we have two possible microframes to schedule those packets
2306  * in.  For this algorithm, if we can schedule the same number of packets for
2307  * each possible scheduling opportunity (each microframe), we will do so.  The
2308  * remaining number of packets will be saved to be transmitted in the gaps in
2309  * the next interval's scheduling sequence.
2310  *
2311  * As we move those remaining packets to be scheduled with interval 2 packets,
2312  * we have to double the number of remaining packets to transmit.  This is
2313  * because the intervals are actually powers of 2, and we would be transmitting
2314  * the previous interval's packets twice in this interval.  We also have to be
2315  * sure that when we look at the largest max packet size for this interval, we
2316  * also look at the largest max packet size for the remaining packets and take
2317  * the greater of the two.
2318  *
2319  * The algorithm continues to evenly distribute packets in each scheduling
2320  * opportunity, and push the remaining packets out, until we get to the last
2321  * interval.  Then those packets and their associated overhead are just added
2322  * to the bandwidth used.
2323  */
2324 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2325 		struct xhci_virt_device *virt_dev,
2326 		int old_active_eps)
2327 {
2328 	unsigned int bw_reserved;
2329 	unsigned int max_bandwidth;
2330 	unsigned int bw_used;
2331 	unsigned int block_size;
2332 	struct xhci_interval_bw_table *bw_table;
2333 	unsigned int packet_size = 0;
2334 	unsigned int overhead = 0;
2335 	unsigned int packets_transmitted = 0;
2336 	unsigned int packets_remaining = 0;
2337 	unsigned int i;
2338 
2339 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2340 		return xhci_check_ss_bw(xhci, virt_dev);
2341 
2342 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2343 		max_bandwidth = HS_BW_LIMIT;
2344 		/* Convert percent of bus BW reserved to blocks reserved */
2345 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2346 	} else {
2347 		max_bandwidth = FS_BW_LIMIT;
2348 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2349 	}
2350 
2351 	bw_table = virt_dev->bw_table;
2352 	/* We need to translate the max packet size and max ESIT payloads into
2353 	 * the units the hardware uses.
2354 	 */
2355 	block_size = xhci_get_block_size(virt_dev->udev);
2356 
2357 	/* If we are manipulating a LS/FS device under a HS hub, double check
2358 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2359 	 */
2360 	if (virt_dev->tt_info) {
2361 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2362 				"Recalculating BW for rootport %u",
2363 				virt_dev->real_port);
2364 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2365 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2366 					"newly activated TT.\n");
2367 			return -ENOMEM;
2368 		}
2369 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2370 				"Recalculating BW for TT slot %u port %u",
2371 				virt_dev->tt_info->slot_id,
2372 				virt_dev->tt_info->ttport);
2373 	} else {
2374 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2375 				"Recalculating BW for rootport %u",
2376 				virt_dev->real_port);
2377 	}
2378 
2379 	/* Add in how much bandwidth will be used for interval zero, or the
2380 	 * rounded max ESIT payload + number of packets * largest overhead.
2381 	 */
2382 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2383 		bw_table->interval_bw[0].num_packets *
2384 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2385 
2386 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2387 		unsigned int bw_added;
2388 		unsigned int largest_mps;
2389 		unsigned int interval_overhead;
2390 
2391 		/*
2392 		 * How many packets could we transmit in this interval?
2393 		 * If packets didn't fit in the previous interval, we will need
2394 		 * to transmit that many packets twice within this interval.
2395 		 */
2396 		packets_remaining = 2 * packets_remaining +
2397 			bw_table->interval_bw[i].num_packets;
2398 
2399 		/* Find the largest max packet size of this or the previous
2400 		 * interval.
2401 		 */
2402 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2403 			largest_mps = 0;
2404 		else {
2405 			struct xhci_virt_ep *virt_ep;
2406 			struct list_head *ep_entry;
2407 
2408 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2409 			virt_ep = list_entry(ep_entry,
2410 					struct xhci_virt_ep, bw_endpoint_list);
2411 			/* Convert to blocks, rounding up */
2412 			largest_mps = DIV_ROUND_UP(
2413 					virt_ep->bw_info.max_packet_size,
2414 					block_size);
2415 		}
2416 		if (largest_mps > packet_size)
2417 			packet_size = largest_mps;
2418 
2419 		/* Use the larger overhead of this or the previous interval. */
2420 		interval_overhead = xhci_get_largest_overhead(
2421 				&bw_table->interval_bw[i]);
2422 		if (interval_overhead > overhead)
2423 			overhead = interval_overhead;
2424 
2425 		/* How many packets can we evenly distribute across
2426 		 * (1 << (i + 1)) possible scheduling opportunities?
2427 		 */
2428 		packets_transmitted = packets_remaining >> (i + 1);
2429 
2430 		/* Add in the bandwidth used for those scheduled packets */
2431 		bw_added = packets_transmitted * (overhead + packet_size);
2432 
2433 		/* How many packets do we have remaining to transmit? */
2434 		packets_remaining = packets_remaining % (1 << (i + 1));
2435 
2436 		/* What largest max packet size should those packets have? */
2437 		/* If we've transmitted all packets, don't carry over the
2438 		 * largest packet size.
2439 		 */
2440 		if (packets_remaining == 0) {
2441 			packet_size = 0;
2442 			overhead = 0;
2443 		} else if (packets_transmitted > 0) {
2444 			/* Otherwise if we do have remaining packets, and we've
2445 			 * scheduled some packets in this interval, take the
2446 			 * largest max packet size from endpoints with this
2447 			 * interval.
2448 			 */
2449 			packet_size = largest_mps;
2450 			overhead = interval_overhead;
2451 		}
2452 		/* Otherwise carry over packet_size and overhead from the last
2453 		 * time we had a remainder.
2454 		 */
2455 		bw_used += bw_added;
2456 		if (bw_used > max_bandwidth) {
2457 			xhci_warn(xhci, "Not enough bandwidth. "
2458 					"Proposed: %u, Max: %u\n",
2459 				bw_used, max_bandwidth);
2460 			return -ENOMEM;
2461 		}
2462 	}
2463 	/*
2464 	 * Ok, we know we have some packets left over after even-handedly
2465 	 * scheduling interval 15.  We don't know which microframes they will
2466 	 * fit into, so we over-schedule and say they will be scheduled every
2467 	 * microframe.
2468 	 */
2469 	if (packets_remaining > 0)
2470 		bw_used += overhead + packet_size;
2471 
2472 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2473 		unsigned int port_index = virt_dev->real_port - 1;
2474 
2475 		/* OK, we're manipulating a HS device attached to a
2476 		 * root port bandwidth domain.  Include the number of active TTs
2477 		 * in the bandwidth used.
2478 		 */
2479 		bw_used += TT_HS_OVERHEAD *
2480 			xhci->rh_bw[port_index].num_active_tts;
2481 	}
2482 
2483 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2484 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2485 		"Available: %u " "percent",
2486 		bw_used, max_bandwidth, bw_reserved,
2487 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2488 		max_bandwidth);
2489 
2490 	bw_used += bw_reserved;
2491 	if (bw_used > max_bandwidth) {
2492 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2493 				bw_used, max_bandwidth);
2494 		return -ENOMEM;
2495 	}
2496 
2497 	bw_table->bw_used = bw_used;
2498 	return 0;
2499 }
2500 
2501 static bool xhci_is_async_ep(unsigned int ep_type)
2502 {
2503 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2504 					ep_type != ISOC_IN_EP &&
2505 					ep_type != INT_IN_EP);
2506 }
2507 
2508 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2509 {
2510 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2511 }
2512 
2513 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2514 {
2515 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2516 
2517 	if (ep_bw->ep_interval == 0)
2518 		return SS_OVERHEAD_BURST +
2519 			(ep_bw->mult * ep_bw->num_packets *
2520 					(SS_OVERHEAD + mps));
2521 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2522 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2523 				1 << ep_bw->ep_interval);
2524 
2525 }
2526 
2527 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2528 		struct xhci_bw_info *ep_bw,
2529 		struct xhci_interval_bw_table *bw_table,
2530 		struct usb_device *udev,
2531 		struct xhci_virt_ep *virt_ep,
2532 		struct xhci_tt_bw_info *tt_info)
2533 {
2534 	struct xhci_interval_bw	*interval_bw;
2535 	int normalized_interval;
2536 
2537 	if (xhci_is_async_ep(ep_bw->type))
2538 		return;
2539 
2540 	if (udev->speed >= USB_SPEED_SUPER) {
2541 		if (xhci_is_sync_in_ep(ep_bw->type))
2542 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2543 				xhci_get_ss_bw_consumed(ep_bw);
2544 		else
2545 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2546 				xhci_get_ss_bw_consumed(ep_bw);
2547 		return;
2548 	}
2549 
2550 	/* SuperSpeed endpoints never get added to intervals in the table, so
2551 	 * this check is only valid for HS/FS/LS devices.
2552 	 */
2553 	if (list_empty(&virt_ep->bw_endpoint_list))
2554 		return;
2555 	/* For LS/FS devices, we need to translate the interval expressed in
2556 	 * microframes to frames.
2557 	 */
2558 	if (udev->speed == USB_SPEED_HIGH)
2559 		normalized_interval = ep_bw->ep_interval;
2560 	else
2561 		normalized_interval = ep_bw->ep_interval - 3;
2562 
2563 	if (normalized_interval == 0)
2564 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2565 	interval_bw = &bw_table->interval_bw[normalized_interval];
2566 	interval_bw->num_packets -= ep_bw->num_packets;
2567 	switch (udev->speed) {
2568 	case USB_SPEED_LOW:
2569 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2570 		break;
2571 	case USB_SPEED_FULL:
2572 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2573 		break;
2574 	case USB_SPEED_HIGH:
2575 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2576 		break;
2577 	default:
2578 		/* Should never happen because only LS/FS/HS endpoints will get
2579 		 * added to the endpoint list.
2580 		 */
2581 		return;
2582 	}
2583 	if (tt_info)
2584 		tt_info->active_eps -= 1;
2585 	list_del_init(&virt_ep->bw_endpoint_list);
2586 }
2587 
2588 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2589 		struct xhci_bw_info *ep_bw,
2590 		struct xhci_interval_bw_table *bw_table,
2591 		struct usb_device *udev,
2592 		struct xhci_virt_ep *virt_ep,
2593 		struct xhci_tt_bw_info *tt_info)
2594 {
2595 	struct xhci_interval_bw	*interval_bw;
2596 	struct xhci_virt_ep *smaller_ep;
2597 	int normalized_interval;
2598 
2599 	if (xhci_is_async_ep(ep_bw->type))
2600 		return;
2601 
2602 	if (udev->speed == USB_SPEED_SUPER) {
2603 		if (xhci_is_sync_in_ep(ep_bw->type))
2604 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2605 				xhci_get_ss_bw_consumed(ep_bw);
2606 		else
2607 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2608 				xhci_get_ss_bw_consumed(ep_bw);
2609 		return;
2610 	}
2611 
2612 	/* For LS/FS devices, we need to translate the interval expressed in
2613 	 * microframes to frames.
2614 	 */
2615 	if (udev->speed == USB_SPEED_HIGH)
2616 		normalized_interval = ep_bw->ep_interval;
2617 	else
2618 		normalized_interval = ep_bw->ep_interval - 3;
2619 
2620 	if (normalized_interval == 0)
2621 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2622 	interval_bw = &bw_table->interval_bw[normalized_interval];
2623 	interval_bw->num_packets += ep_bw->num_packets;
2624 	switch (udev->speed) {
2625 	case USB_SPEED_LOW:
2626 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2627 		break;
2628 	case USB_SPEED_FULL:
2629 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2630 		break;
2631 	case USB_SPEED_HIGH:
2632 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2633 		break;
2634 	default:
2635 		/* Should never happen because only LS/FS/HS endpoints will get
2636 		 * added to the endpoint list.
2637 		 */
2638 		return;
2639 	}
2640 
2641 	if (tt_info)
2642 		tt_info->active_eps += 1;
2643 	/* Insert the endpoint into the list, largest max packet size first. */
2644 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2645 			bw_endpoint_list) {
2646 		if (ep_bw->max_packet_size >=
2647 				smaller_ep->bw_info.max_packet_size) {
2648 			/* Add the new ep before the smaller endpoint */
2649 			list_add_tail(&virt_ep->bw_endpoint_list,
2650 					&smaller_ep->bw_endpoint_list);
2651 			return;
2652 		}
2653 	}
2654 	/* Add the new endpoint at the end of the list. */
2655 	list_add_tail(&virt_ep->bw_endpoint_list,
2656 			&interval_bw->endpoints);
2657 }
2658 
2659 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2660 		struct xhci_virt_device *virt_dev,
2661 		int old_active_eps)
2662 {
2663 	struct xhci_root_port_bw_info *rh_bw_info;
2664 	if (!virt_dev->tt_info)
2665 		return;
2666 
2667 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2668 	if (old_active_eps == 0 &&
2669 				virt_dev->tt_info->active_eps != 0) {
2670 		rh_bw_info->num_active_tts += 1;
2671 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2672 	} else if (old_active_eps != 0 &&
2673 				virt_dev->tt_info->active_eps == 0) {
2674 		rh_bw_info->num_active_tts -= 1;
2675 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2676 	}
2677 }
2678 
2679 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2680 		struct xhci_virt_device *virt_dev,
2681 		struct xhci_container_ctx *in_ctx)
2682 {
2683 	struct xhci_bw_info ep_bw_info[31];
2684 	int i;
2685 	struct xhci_input_control_ctx *ctrl_ctx;
2686 	int old_active_eps = 0;
2687 
2688 	if (virt_dev->tt_info)
2689 		old_active_eps = virt_dev->tt_info->active_eps;
2690 
2691 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2692 	if (!ctrl_ctx) {
2693 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694 				__func__);
2695 		return -ENOMEM;
2696 	}
2697 
2698 	for (i = 0; i < 31; i++) {
2699 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2700 			continue;
2701 
2702 		/* Make a copy of the BW info in case we need to revert this */
2703 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2704 				sizeof(ep_bw_info[i]));
2705 		/* Drop the endpoint from the interval table if the endpoint is
2706 		 * being dropped or changed.
2707 		 */
2708 		if (EP_IS_DROPPED(ctrl_ctx, i))
2709 			xhci_drop_ep_from_interval_table(xhci,
2710 					&virt_dev->eps[i].bw_info,
2711 					virt_dev->bw_table,
2712 					virt_dev->udev,
2713 					&virt_dev->eps[i],
2714 					virt_dev->tt_info);
2715 	}
2716 	/* Overwrite the information stored in the endpoints' bw_info */
2717 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2718 	for (i = 0; i < 31; i++) {
2719 		/* Add any changed or added endpoints to the interval table */
2720 		if (EP_IS_ADDED(ctrl_ctx, i))
2721 			xhci_add_ep_to_interval_table(xhci,
2722 					&virt_dev->eps[i].bw_info,
2723 					virt_dev->bw_table,
2724 					virt_dev->udev,
2725 					&virt_dev->eps[i],
2726 					virt_dev->tt_info);
2727 	}
2728 
2729 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2730 		/* Ok, this fits in the bandwidth we have.
2731 		 * Update the number of active TTs.
2732 		 */
2733 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2734 		return 0;
2735 	}
2736 
2737 	/* We don't have enough bandwidth for this, revert the stored info. */
2738 	for (i = 0; i < 31; i++) {
2739 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2740 			continue;
2741 
2742 		/* Drop the new copies of any added or changed endpoints from
2743 		 * the interval table.
2744 		 */
2745 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2746 			xhci_drop_ep_from_interval_table(xhci,
2747 					&virt_dev->eps[i].bw_info,
2748 					virt_dev->bw_table,
2749 					virt_dev->udev,
2750 					&virt_dev->eps[i],
2751 					virt_dev->tt_info);
2752 		}
2753 		/* Revert the endpoint back to its old information */
2754 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2755 				sizeof(ep_bw_info[i]));
2756 		/* Add any changed or dropped endpoints back into the table */
2757 		if (EP_IS_DROPPED(ctrl_ctx, i))
2758 			xhci_add_ep_to_interval_table(xhci,
2759 					&virt_dev->eps[i].bw_info,
2760 					virt_dev->bw_table,
2761 					virt_dev->udev,
2762 					&virt_dev->eps[i],
2763 					virt_dev->tt_info);
2764 	}
2765 	return -ENOMEM;
2766 }
2767 
2768 
2769 /* Issue a configure endpoint command or evaluate context command
2770  * and wait for it to finish.
2771  */
2772 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2773 		struct usb_device *udev,
2774 		struct xhci_command *command,
2775 		bool ctx_change, bool must_succeed)
2776 {
2777 	int ret;
2778 	unsigned long flags;
2779 	struct xhci_input_control_ctx *ctrl_ctx;
2780 	struct xhci_virt_device *virt_dev;
2781 	struct xhci_slot_ctx *slot_ctx;
2782 
2783 	if (!command)
2784 		return -EINVAL;
2785 
2786 	spin_lock_irqsave(&xhci->lock, flags);
2787 
2788 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2789 		spin_unlock_irqrestore(&xhci->lock, flags);
2790 		return -ESHUTDOWN;
2791 	}
2792 
2793 	virt_dev = xhci->devs[udev->slot_id];
2794 
2795 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2796 	if (!ctrl_ctx) {
2797 		spin_unlock_irqrestore(&xhci->lock, flags);
2798 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2799 				__func__);
2800 		return -ENOMEM;
2801 	}
2802 
2803 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2804 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2805 		spin_unlock_irqrestore(&xhci->lock, flags);
2806 		xhci_warn(xhci, "Not enough host resources, "
2807 				"active endpoint contexts = %u\n",
2808 				xhci->num_active_eps);
2809 		return -ENOMEM;
2810 	}
2811 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2812 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2813 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2814 			xhci_free_host_resources(xhci, ctrl_ctx);
2815 		spin_unlock_irqrestore(&xhci->lock, flags);
2816 		xhci_warn(xhci, "Not enough bandwidth\n");
2817 		return -ENOMEM;
2818 	}
2819 
2820 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2821 
2822 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2823 	trace_xhci_configure_endpoint(slot_ctx);
2824 
2825 	if (!ctx_change)
2826 		ret = xhci_queue_configure_endpoint(xhci, command,
2827 				command->in_ctx->dma,
2828 				udev->slot_id, must_succeed);
2829 	else
2830 		ret = xhci_queue_evaluate_context(xhci, command,
2831 				command->in_ctx->dma,
2832 				udev->slot_id, must_succeed);
2833 	if (ret < 0) {
2834 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2835 			xhci_free_host_resources(xhci, ctrl_ctx);
2836 		spin_unlock_irqrestore(&xhci->lock, flags);
2837 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2838 				"FIXME allocate a new ring segment");
2839 		return -ENOMEM;
2840 	}
2841 	xhci_ring_cmd_db(xhci);
2842 	spin_unlock_irqrestore(&xhci->lock, flags);
2843 
2844 	/* Wait for the configure endpoint command to complete */
2845 	wait_for_completion(command->completion);
2846 
2847 	if (!ctx_change)
2848 		ret = xhci_configure_endpoint_result(xhci, udev,
2849 						     &command->status);
2850 	else
2851 		ret = xhci_evaluate_context_result(xhci, udev,
2852 						   &command->status);
2853 
2854 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2855 		spin_lock_irqsave(&xhci->lock, flags);
2856 		/* If the command failed, remove the reserved resources.
2857 		 * Otherwise, clean up the estimate to include dropped eps.
2858 		 */
2859 		if (ret)
2860 			xhci_free_host_resources(xhci, ctrl_ctx);
2861 		else
2862 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2863 		spin_unlock_irqrestore(&xhci->lock, flags);
2864 	}
2865 	return ret;
2866 }
2867 
2868 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2869 	struct xhci_virt_device *vdev, int i)
2870 {
2871 	struct xhci_virt_ep *ep = &vdev->eps[i];
2872 
2873 	if (ep->ep_state & EP_HAS_STREAMS) {
2874 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2875 				xhci_get_endpoint_address(i));
2876 		xhci_free_stream_info(xhci, ep->stream_info);
2877 		ep->stream_info = NULL;
2878 		ep->ep_state &= ~EP_HAS_STREAMS;
2879 	}
2880 }
2881 
2882 /* Called after one or more calls to xhci_add_endpoint() or
2883  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2884  * to call xhci_reset_bandwidth().
2885  *
2886  * Since we are in the middle of changing either configuration or
2887  * installing a new alt setting, the USB core won't allow URBs to be
2888  * enqueued for any endpoint on the old config or interface.  Nothing
2889  * else should be touching the xhci->devs[slot_id] structure, so we
2890  * don't need to take the xhci->lock for manipulating that.
2891  */
2892 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2893 {
2894 	int i;
2895 	int ret = 0;
2896 	struct xhci_hcd *xhci;
2897 	struct xhci_virt_device	*virt_dev;
2898 	struct xhci_input_control_ctx *ctrl_ctx;
2899 	struct xhci_slot_ctx *slot_ctx;
2900 	struct xhci_command *command;
2901 
2902 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2903 	if (ret <= 0)
2904 		return ret;
2905 	xhci = hcd_to_xhci(hcd);
2906 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2907 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2908 		return -ENODEV;
2909 
2910 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2911 	virt_dev = xhci->devs[udev->slot_id];
2912 
2913 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2914 	if (!command)
2915 		return -ENOMEM;
2916 
2917 	command->in_ctx = virt_dev->in_ctx;
2918 
2919 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2920 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2921 	if (!ctrl_ctx) {
2922 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2923 				__func__);
2924 		ret = -ENOMEM;
2925 		goto command_cleanup;
2926 	}
2927 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2928 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2929 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2930 
2931 	/* Don't issue the command if there's no endpoints to update. */
2932 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2933 	    ctrl_ctx->drop_flags == 0) {
2934 		ret = 0;
2935 		goto command_cleanup;
2936 	}
2937 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2938 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2939 	for (i = 31; i >= 1; i--) {
2940 		__le32 le32 = cpu_to_le32(BIT(i));
2941 
2942 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2943 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2944 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2945 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2946 			break;
2947 		}
2948 	}
2949 
2950 	ret = xhci_configure_endpoint(xhci, udev, command,
2951 			false, false);
2952 	if (ret)
2953 		/* Callee should call reset_bandwidth() */
2954 		goto command_cleanup;
2955 
2956 	/* Free any rings that were dropped, but not changed. */
2957 	for (i = 1; i < 31; i++) {
2958 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2959 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2960 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2961 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2962 		}
2963 	}
2964 	xhci_zero_in_ctx(xhci, virt_dev);
2965 	/*
2966 	 * Install any rings for completely new endpoints or changed endpoints,
2967 	 * and free any old rings from changed endpoints.
2968 	 */
2969 	for (i = 1; i < 31; i++) {
2970 		if (!virt_dev->eps[i].new_ring)
2971 			continue;
2972 		/* Only free the old ring if it exists.
2973 		 * It may not if this is the first add of an endpoint.
2974 		 */
2975 		if (virt_dev->eps[i].ring) {
2976 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2977 		}
2978 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2979 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2980 		virt_dev->eps[i].new_ring = NULL;
2981 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2982 	}
2983 command_cleanup:
2984 	kfree(command->completion);
2985 	kfree(command);
2986 
2987 	return ret;
2988 }
2989 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2990 
2991 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2992 {
2993 	struct xhci_hcd *xhci;
2994 	struct xhci_virt_device	*virt_dev;
2995 	int i, ret;
2996 
2997 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2998 	if (ret <= 0)
2999 		return;
3000 	xhci = hcd_to_xhci(hcd);
3001 
3002 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3003 	virt_dev = xhci->devs[udev->slot_id];
3004 	/* Free any rings allocated for added endpoints */
3005 	for (i = 0; i < 31; i++) {
3006 		if (virt_dev->eps[i].new_ring) {
3007 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3008 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3009 			virt_dev->eps[i].new_ring = NULL;
3010 		}
3011 	}
3012 	xhci_zero_in_ctx(xhci, virt_dev);
3013 }
3014 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3015 
3016 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3017 		struct xhci_container_ctx *in_ctx,
3018 		struct xhci_container_ctx *out_ctx,
3019 		struct xhci_input_control_ctx *ctrl_ctx,
3020 		u32 add_flags, u32 drop_flags)
3021 {
3022 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3023 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3024 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3025 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3026 }
3027 
3028 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3029 				  struct usb_host_endpoint *host_ep)
3030 {
3031 	struct xhci_hcd		*xhci;
3032 	struct xhci_virt_device	*vdev;
3033 	struct xhci_virt_ep	*ep;
3034 	struct usb_device	*udev;
3035 	unsigned long		flags;
3036 	unsigned int		ep_index;
3037 
3038 	xhci = hcd_to_xhci(hcd);
3039 rescan:
3040 	spin_lock_irqsave(&xhci->lock, flags);
3041 
3042 	udev = (struct usb_device *)host_ep->hcpriv;
3043 	if (!udev || !udev->slot_id)
3044 		goto done;
3045 
3046 	vdev = xhci->devs[udev->slot_id];
3047 	if (!vdev)
3048 		goto done;
3049 
3050 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3051 	ep = &vdev->eps[ep_index];
3052 
3053 	/* wait for hub_tt_work to finish clearing hub TT */
3054 	if (ep->ep_state & EP_CLEARING_TT) {
3055 		spin_unlock_irqrestore(&xhci->lock, flags);
3056 		schedule_timeout_uninterruptible(1);
3057 		goto rescan;
3058 	}
3059 
3060 	if (ep->ep_state)
3061 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3062 			 ep->ep_state);
3063 done:
3064 	host_ep->hcpriv = NULL;
3065 	spin_unlock_irqrestore(&xhci->lock, flags);
3066 }
3067 
3068 /*
3069  * Called after usb core issues a clear halt control message.
3070  * The host side of the halt should already be cleared by a reset endpoint
3071  * command issued when the STALL event was received.
3072  *
3073  * The reset endpoint command may only be issued to endpoints in the halted
3074  * state. For software that wishes to reset the data toggle or sequence number
3075  * of an endpoint that isn't in the halted state this function will issue a
3076  * configure endpoint command with the Drop and Add bits set for the target
3077  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3078  */
3079 
3080 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3081 		struct usb_host_endpoint *host_ep)
3082 {
3083 	struct xhci_hcd *xhci;
3084 	struct usb_device *udev;
3085 	struct xhci_virt_device *vdev;
3086 	struct xhci_virt_ep *ep;
3087 	struct xhci_input_control_ctx *ctrl_ctx;
3088 	struct xhci_command *stop_cmd, *cfg_cmd;
3089 	unsigned int ep_index;
3090 	unsigned long flags;
3091 	u32 ep_flag;
3092 	int err;
3093 
3094 	xhci = hcd_to_xhci(hcd);
3095 	if (!host_ep->hcpriv)
3096 		return;
3097 	udev = (struct usb_device *) host_ep->hcpriv;
3098 	vdev = xhci->devs[udev->slot_id];
3099 
3100 	/*
3101 	 * vdev may be lost due to xHC restore error and re-initialization
3102 	 * during S3/S4 resume. A new vdev will be allocated later by
3103 	 * xhci_discover_or_reset_device()
3104 	 */
3105 	if (!udev->slot_id || !vdev)
3106 		return;
3107 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3108 	ep = &vdev->eps[ep_index];
3109 
3110 	/* Bail out if toggle is already being cleared by a endpoint reset */
3111 	spin_lock_irqsave(&xhci->lock, flags);
3112 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3113 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3114 		spin_unlock_irqrestore(&xhci->lock, flags);
3115 		return;
3116 	}
3117 	spin_unlock_irqrestore(&xhci->lock, flags);
3118 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3119 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3120 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3121 		return;
3122 
3123 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3124 
3125 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3126 		return;
3127 
3128 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3129 	if (!stop_cmd)
3130 		return;
3131 
3132 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3133 	if (!cfg_cmd)
3134 		goto cleanup;
3135 
3136 	spin_lock_irqsave(&xhci->lock, flags);
3137 
3138 	/* block queuing new trbs and ringing ep doorbell */
3139 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3140 
3141 	/*
3142 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3143 	 * Driver is required to synchronously cancel all transfer request.
3144 	 * Stop the endpoint to force xHC to update the output context
3145 	 */
3146 
3147 	if (!list_empty(&ep->ring->td_list)) {
3148 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3149 		spin_unlock_irqrestore(&xhci->lock, flags);
3150 		xhci_free_command(xhci, cfg_cmd);
3151 		goto cleanup;
3152 	}
3153 
3154 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3155 					ep_index, 0);
3156 	if (err < 0) {
3157 		spin_unlock_irqrestore(&xhci->lock, flags);
3158 		xhci_free_command(xhci, cfg_cmd);
3159 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3160 				__func__, err);
3161 		goto cleanup;
3162 	}
3163 
3164 	xhci_ring_cmd_db(xhci);
3165 	spin_unlock_irqrestore(&xhci->lock, flags);
3166 
3167 	wait_for_completion(stop_cmd->completion);
3168 
3169 	spin_lock_irqsave(&xhci->lock, flags);
3170 
3171 	/* config ep command clears toggle if add and drop ep flags are set */
3172 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3173 	if (!ctrl_ctx) {
3174 		spin_unlock_irqrestore(&xhci->lock, flags);
3175 		xhci_free_command(xhci, cfg_cmd);
3176 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3177 				__func__);
3178 		goto cleanup;
3179 	}
3180 
3181 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3182 					   ctrl_ctx, ep_flag, ep_flag);
3183 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3184 
3185 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3186 				      udev->slot_id, false);
3187 	if (err < 0) {
3188 		spin_unlock_irqrestore(&xhci->lock, flags);
3189 		xhci_free_command(xhci, cfg_cmd);
3190 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3191 				__func__, err);
3192 		goto cleanup;
3193 	}
3194 
3195 	xhci_ring_cmd_db(xhci);
3196 	spin_unlock_irqrestore(&xhci->lock, flags);
3197 
3198 	wait_for_completion(cfg_cmd->completion);
3199 
3200 	xhci_free_command(xhci, cfg_cmd);
3201 cleanup:
3202 	xhci_free_command(xhci, stop_cmd);
3203 	spin_lock_irqsave(&xhci->lock, flags);
3204 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3205 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3206 	spin_unlock_irqrestore(&xhci->lock, flags);
3207 }
3208 
3209 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3210 		struct usb_device *udev, struct usb_host_endpoint *ep,
3211 		unsigned int slot_id)
3212 {
3213 	int ret;
3214 	unsigned int ep_index;
3215 	unsigned int ep_state;
3216 
3217 	if (!ep)
3218 		return -EINVAL;
3219 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3220 	if (ret <= 0)
3221 		return ret ? ret : -EINVAL;
3222 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3223 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3224 				" descriptor for ep 0x%x does not support streams\n",
3225 				ep->desc.bEndpointAddress);
3226 		return -EINVAL;
3227 	}
3228 
3229 	ep_index = xhci_get_endpoint_index(&ep->desc);
3230 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3231 	if (ep_state & EP_HAS_STREAMS ||
3232 			ep_state & EP_GETTING_STREAMS) {
3233 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3234 				"already has streams set up.\n",
3235 				ep->desc.bEndpointAddress);
3236 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3237 				"dynamic stream context array reallocation.\n");
3238 		return -EINVAL;
3239 	}
3240 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3241 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3242 				"endpoint 0x%x; URBs are pending.\n",
3243 				ep->desc.bEndpointAddress);
3244 		return -EINVAL;
3245 	}
3246 	return 0;
3247 }
3248 
3249 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3250 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3251 {
3252 	unsigned int max_streams;
3253 
3254 	/* The stream context array size must be a power of two */
3255 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3256 	/*
3257 	 * Find out how many primary stream array entries the host controller
3258 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3259 	 * level page entries), but that's an optional feature for xHCI host
3260 	 * controllers. xHCs must support at least 4 stream IDs.
3261 	 */
3262 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3263 	if (*num_stream_ctxs > max_streams) {
3264 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3265 				max_streams);
3266 		*num_stream_ctxs = max_streams;
3267 		*num_streams = max_streams;
3268 	}
3269 }
3270 
3271 /* Returns an error code if one of the endpoint already has streams.
3272  * This does not change any data structures, it only checks and gathers
3273  * information.
3274  */
3275 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3276 		struct usb_device *udev,
3277 		struct usb_host_endpoint **eps, unsigned int num_eps,
3278 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3279 {
3280 	unsigned int max_streams;
3281 	unsigned int endpoint_flag;
3282 	int i;
3283 	int ret;
3284 
3285 	for (i = 0; i < num_eps; i++) {
3286 		ret = xhci_check_streams_endpoint(xhci, udev,
3287 				eps[i], udev->slot_id);
3288 		if (ret < 0)
3289 			return ret;
3290 
3291 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3292 		if (max_streams < (*num_streams - 1)) {
3293 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3294 					eps[i]->desc.bEndpointAddress,
3295 					max_streams);
3296 			*num_streams = max_streams+1;
3297 		}
3298 
3299 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3300 		if (*changed_ep_bitmask & endpoint_flag)
3301 			return -EINVAL;
3302 		*changed_ep_bitmask |= endpoint_flag;
3303 	}
3304 	return 0;
3305 }
3306 
3307 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3308 		struct usb_device *udev,
3309 		struct usb_host_endpoint **eps, unsigned int num_eps)
3310 {
3311 	u32 changed_ep_bitmask = 0;
3312 	unsigned int slot_id;
3313 	unsigned int ep_index;
3314 	unsigned int ep_state;
3315 	int i;
3316 
3317 	slot_id = udev->slot_id;
3318 	if (!xhci->devs[slot_id])
3319 		return 0;
3320 
3321 	for (i = 0; i < num_eps; i++) {
3322 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3324 		/* Are streams already being freed for the endpoint? */
3325 		if (ep_state & EP_GETTING_NO_STREAMS) {
3326 			xhci_warn(xhci, "WARN Can't disable streams for "
3327 					"endpoint 0x%x, "
3328 					"streams are being disabled already\n",
3329 					eps[i]->desc.bEndpointAddress);
3330 			return 0;
3331 		}
3332 		/* Are there actually any streams to free? */
3333 		if (!(ep_state & EP_HAS_STREAMS) &&
3334 				!(ep_state & EP_GETTING_STREAMS)) {
3335 			xhci_warn(xhci, "WARN Can't disable streams for "
3336 					"endpoint 0x%x, "
3337 					"streams are already disabled!\n",
3338 					eps[i]->desc.bEndpointAddress);
3339 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3340 					"with non-streams endpoint\n");
3341 			return 0;
3342 		}
3343 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3344 	}
3345 	return changed_ep_bitmask;
3346 }
3347 
3348 /*
3349  * The USB device drivers use this function (through the HCD interface in USB
3350  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3351  * coordinate mass storage command queueing across multiple endpoints (basically
3352  * a stream ID == a task ID).
3353  *
3354  * Setting up streams involves allocating the same size stream context array
3355  * for each endpoint and issuing a configure endpoint command for all endpoints.
3356  *
3357  * Don't allow the call to succeed if one endpoint only supports one stream
3358  * (which means it doesn't support streams at all).
3359  *
3360  * Drivers may get less stream IDs than they asked for, if the host controller
3361  * hardware or endpoints claim they can't support the number of requested
3362  * stream IDs.
3363  */
3364 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3365 		struct usb_host_endpoint **eps, unsigned int num_eps,
3366 		unsigned int num_streams, gfp_t mem_flags)
3367 {
3368 	int i, ret;
3369 	struct xhci_hcd *xhci;
3370 	struct xhci_virt_device *vdev;
3371 	struct xhci_command *config_cmd;
3372 	struct xhci_input_control_ctx *ctrl_ctx;
3373 	unsigned int ep_index;
3374 	unsigned int num_stream_ctxs;
3375 	unsigned int max_packet;
3376 	unsigned long flags;
3377 	u32 changed_ep_bitmask = 0;
3378 
3379 	if (!eps)
3380 		return -EINVAL;
3381 
3382 	/* Add one to the number of streams requested to account for
3383 	 * stream 0 that is reserved for xHCI usage.
3384 	 */
3385 	num_streams += 1;
3386 	xhci = hcd_to_xhci(hcd);
3387 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3388 			num_streams);
3389 
3390 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3391 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3392 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3393 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3394 		return -ENOSYS;
3395 	}
3396 
3397 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3398 	if (!config_cmd)
3399 		return -ENOMEM;
3400 
3401 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3402 	if (!ctrl_ctx) {
3403 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3404 				__func__);
3405 		xhci_free_command(xhci, config_cmd);
3406 		return -ENOMEM;
3407 	}
3408 
3409 	/* Check to make sure all endpoints are not already configured for
3410 	 * streams.  While we're at it, find the maximum number of streams that
3411 	 * all the endpoints will support and check for duplicate endpoints.
3412 	 */
3413 	spin_lock_irqsave(&xhci->lock, flags);
3414 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3415 			num_eps, &num_streams, &changed_ep_bitmask);
3416 	if (ret < 0) {
3417 		xhci_free_command(xhci, config_cmd);
3418 		spin_unlock_irqrestore(&xhci->lock, flags);
3419 		return ret;
3420 	}
3421 	if (num_streams <= 1) {
3422 		xhci_warn(xhci, "WARN: endpoints can't handle "
3423 				"more than one stream.\n");
3424 		xhci_free_command(xhci, config_cmd);
3425 		spin_unlock_irqrestore(&xhci->lock, flags);
3426 		return -EINVAL;
3427 	}
3428 	vdev = xhci->devs[udev->slot_id];
3429 	/* Mark each endpoint as being in transition, so
3430 	 * xhci_urb_enqueue() will reject all URBs.
3431 	 */
3432 	for (i = 0; i < num_eps; i++) {
3433 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3434 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3435 	}
3436 	spin_unlock_irqrestore(&xhci->lock, flags);
3437 
3438 	/* Setup internal data structures and allocate HW data structures for
3439 	 * streams (but don't install the HW structures in the input context
3440 	 * until we're sure all memory allocation succeeded).
3441 	 */
3442 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3443 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3444 			num_stream_ctxs, num_streams);
3445 
3446 	for (i = 0; i < num_eps; i++) {
3447 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3448 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3449 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3450 				num_stream_ctxs,
3451 				num_streams,
3452 				max_packet, mem_flags);
3453 		if (!vdev->eps[ep_index].stream_info)
3454 			goto cleanup;
3455 		/* Set maxPstreams in endpoint context and update deq ptr to
3456 		 * point to stream context array. FIXME
3457 		 */
3458 	}
3459 
3460 	/* Set up the input context for a configure endpoint command. */
3461 	for (i = 0; i < num_eps; i++) {
3462 		struct xhci_ep_ctx *ep_ctx;
3463 
3464 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3465 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3466 
3467 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3468 				vdev->out_ctx, ep_index);
3469 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3470 				vdev->eps[ep_index].stream_info);
3471 	}
3472 	/* Tell the HW to drop its old copy of the endpoint context info
3473 	 * and add the updated copy from the input context.
3474 	 */
3475 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3476 			vdev->out_ctx, ctrl_ctx,
3477 			changed_ep_bitmask, changed_ep_bitmask);
3478 
3479 	/* Issue and wait for the configure endpoint command */
3480 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3481 			false, false);
3482 
3483 	/* xHC rejected the configure endpoint command for some reason, so we
3484 	 * leave the old ring intact and free our internal streams data
3485 	 * structure.
3486 	 */
3487 	if (ret < 0)
3488 		goto cleanup;
3489 
3490 	spin_lock_irqsave(&xhci->lock, flags);
3491 	for (i = 0; i < num_eps; i++) {
3492 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3493 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3494 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3495 			 udev->slot_id, ep_index);
3496 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3497 	}
3498 	xhci_free_command(xhci, config_cmd);
3499 	spin_unlock_irqrestore(&xhci->lock, flags);
3500 
3501 	for (i = 0; i < num_eps; i++) {
3502 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3504 	}
3505 	/* Subtract 1 for stream 0, which drivers can't use */
3506 	return num_streams - 1;
3507 
3508 cleanup:
3509 	/* If it didn't work, free the streams! */
3510 	for (i = 0; i < num_eps; i++) {
3511 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3512 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3513 		vdev->eps[ep_index].stream_info = NULL;
3514 		/* FIXME Unset maxPstreams in endpoint context and
3515 		 * update deq ptr to point to normal string ring.
3516 		 */
3517 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3518 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3519 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3520 	}
3521 	xhci_free_command(xhci, config_cmd);
3522 	return -ENOMEM;
3523 }
3524 
3525 /* Transition the endpoint from using streams to being a "normal" endpoint
3526  * without streams.
3527  *
3528  * Modify the endpoint context state, submit a configure endpoint command,
3529  * and free all endpoint rings for streams if that completes successfully.
3530  */
3531 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3532 		struct usb_host_endpoint **eps, unsigned int num_eps,
3533 		gfp_t mem_flags)
3534 {
3535 	int i, ret;
3536 	struct xhci_hcd *xhci;
3537 	struct xhci_virt_device *vdev;
3538 	struct xhci_command *command;
3539 	struct xhci_input_control_ctx *ctrl_ctx;
3540 	unsigned int ep_index;
3541 	unsigned long flags;
3542 	u32 changed_ep_bitmask;
3543 
3544 	xhci = hcd_to_xhci(hcd);
3545 	vdev = xhci->devs[udev->slot_id];
3546 
3547 	/* Set up a configure endpoint command to remove the streams rings */
3548 	spin_lock_irqsave(&xhci->lock, flags);
3549 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3550 			udev, eps, num_eps);
3551 	if (changed_ep_bitmask == 0) {
3552 		spin_unlock_irqrestore(&xhci->lock, flags);
3553 		return -EINVAL;
3554 	}
3555 
3556 	/* Use the xhci_command structure from the first endpoint.  We may have
3557 	 * allocated too many, but the driver may call xhci_free_streams() for
3558 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3559 	 */
3560 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3561 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3562 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3563 	if (!ctrl_ctx) {
3564 		spin_unlock_irqrestore(&xhci->lock, flags);
3565 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3566 				__func__);
3567 		return -EINVAL;
3568 	}
3569 
3570 	for (i = 0; i < num_eps; i++) {
3571 		struct xhci_ep_ctx *ep_ctx;
3572 
3573 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3575 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3576 			EP_GETTING_NO_STREAMS;
3577 
3578 		xhci_endpoint_copy(xhci, command->in_ctx,
3579 				vdev->out_ctx, ep_index);
3580 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3581 				&vdev->eps[ep_index]);
3582 	}
3583 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3584 			vdev->out_ctx, ctrl_ctx,
3585 			changed_ep_bitmask, changed_ep_bitmask);
3586 	spin_unlock_irqrestore(&xhci->lock, flags);
3587 
3588 	/* Issue and wait for the configure endpoint command,
3589 	 * which must succeed.
3590 	 */
3591 	ret = xhci_configure_endpoint(xhci, udev, command,
3592 			false, true);
3593 
3594 	/* xHC rejected the configure endpoint command for some reason, so we
3595 	 * leave the streams rings intact.
3596 	 */
3597 	if (ret < 0)
3598 		return ret;
3599 
3600 	spin_lock_irqsave(&xhci->lock, flags);
3601 	for (i = 0; i < num_eps; i++) {
3602 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3604 		vdev->eps[ep_index].stream_info = NULL;
3605 		/* FIXME Unset maxPstreams in endpoint context and
3606 		 * update deq ptr to point to normal string ring.
3607 		 */
3608 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3609 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3610 	}
3611 	spin_unlock_irqrestore(&xhci->lock, flags);
3612 
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Deletes endpoint resources for endpoints that were active before a Reset
3618  * Device command, or a Disable Slot command.  The Reset Device command leaves
3619  * the control endpoint intact, whereas the Disable Slot command deletes it.
3620  *
3621  * Must be called with xhci->lock held.
3622  */
3623 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3624 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3625 {
3626 	int i;
3627 	unsigned int num_dropped_eps = 0;
3628 	unsigned int drop_flags = 0;
3629 
3630 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3631 		if (virt_dev->eps[i].ring) {
3632 			drop_flags |= 1 << i;
3633 			num_dropped_eps++;
3634 		}
3635 	}
3636 	xhci->num_active_eps -= num_dropped_eps;
3637 	if (num_dropped_eps)
3638 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3639 				"Dropped %u ep ctxs, flags = 0x%x, "
3640 				"%u now active.",
3641 				num_dropped_eps, drop_flags,
3642 				xhci->num_active_eps);
3643 }
3644 
3645 /*
3646  * This submits a Reset Device Command, which will set the device state to 0,
3647  * set the device address to 0, and disable all the endpoints except the default
3648  * control endpoint.  The USB core should come back and call
3649  * xhci_address_device(), and then re-set up the configuration.  If this is
3650  * called because of a usb_reset_and_verify_device(), then the old alternate
3651  * settings will be re-installed through the normal bandwidth allocation
3652  * functions.
3653  *
3654  * Wait for the Reset Device command to finish.  Remove all structures
3655  * associated with the endpoints that were disabled.  Clear the input device
3656  * structure? Reset the control endpoint 0 max packet size?
3657  *
3658  * If the virt_dev to be reset does not exist or does not match the udev,
3659  * it means the device is lost, possibly due to the xHC restore error and
3660  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3661  * re-allocate the device.
3662  */
3663 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3664 		struct usb_device *udev)
3665 {
3666 	int ret, i;
3667 	unsigned long flags;
3668 	struct xhci_hcd *xhci;
3669 	unsigned int slot_id;
3670 	struct xhci_virt_device *virt_dev;
3671 	struct xhci_command *reset_device_cmd;
3672 	struct xhci_slot_ctx *slot_ctx;
3673 	int old_active_eps = 0;
3674 
3675 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3676 	if (ret <= 0)
3677 		return ret;
3678 	xhci = hcd_to_xhci(hcd);
3679 	slot_id = udev->slot_id;
3680 	virt_dev = xhci->devs[slot_id];
3681 	if (!virt_dev) {
3682 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3683 				"not exist. Re-allocate the device\n", slot_id);
3684 		ret = xhci_alloc_dev(hcd, udev);
3685 		if (ret == 1)
3686 			return 0;
3687 		else
3688 			return -EINVAL;
3689 	}
3690 
3691 	if (virt_dev->tt_info)
3692 		old_active_eps = virt_dev->tt_info->active_eps;
3693 
3694 	if (virt_dev->udev != udev) {
3695 		/* If the virt_dev and the udev does not match, this virt_dev
3696 		 * may belong to another udev.
3697 		 * Re-allocate the device.
3698 		 */
3699 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3700 				"not match the udev. Re-allocate the device\n",
3701 				slot_id);
3702 		ret = xhci_alloc_dev(hcd, udev);
3703 		if (ret == 1)
3704 			return 0;
3705 		else
3706 			return -EINVAL;
3707 	}
3708 
3709 	/* If device is not setup, there is no point in resetting it */
3710 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3711 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3712 						SLOT_STATE_DISABLED)
3713 		return 0;
3714 
3715 	trace_xhci_discover_or_reset_device(slot_ctx);
3716 
3717 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3718 	/* Allocate the command structure that holds the struct completion.
3719 	 * Assume we're in process context, since the normal device reset
3720 	 * process has to wait for the device anyway.  Storage devices are
3721 	 * reset as part of error handling, so use GFP_NOIO instead of
3722 	 * GFP_KERNEL.
3723 	 */
3724 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3725 	if (!reset_device_cmd) {
3726 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3727 		return -ENOMEM;
3728 	}
3729 
3730 	/* Attempt to submit the Reset Device command to the command ring */
3731 	spin_lock_irqsave(&xhci->lock, flags);
3732 
3733 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3734 	if (ret) {
3735 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3736 		spin_unlock_irqrestore(&xhci->lock, flags);
3737 		goto command_cleanup;
3738 	}
3739 	xhci_ring_cmd_db(xhci);
3740 	spin_unlock_irqrestore(&xhci->lock, flags);
3741 
3742 	/* Wait for the Reset Device command to finish */
3743 	wait_for_completion(reset_device_cmd->completion);
3744 
3745 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3746 	 * unless we tried to reset a slot ID that wasn't enabled,
3747 	 * or the device wasn't in the addressed or configured state.
3748 	 */
3749 	ret = reset_device_cmd->status;
3750 	switch (ret) {
3751 	case COMP_COMMAND_ABORTED:
3752 	case COMP_COMMAND_RING_STOPPED:
3753 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3754 		ret = -ETIME;
3755 		goto command_cleanup;
3756 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3757 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3758 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3759 				slot_id,
3760 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3761 		xhci_dbg(xhci, "Not freeing device rings.\n");
3762 		/* Don't treat this as an error.  May change my mind later. */
3763 		ret = 0;
3764 		goto command_cleanup;
3765 	case COMP_SUCCESS:
3766 		xhci_dbg(xhci, "Successful reset device command.\n");
3767 		break;
3768 	default:
3769 		if (xhci_is_vendor_info_code(xhci, ret))
3770 			break;
3771 		xhci_warn(xhci, "Unknown completion code %u for "
3772 				"reset device command.\n", ret);
3773 		ret = -EINVAL;
3774 		goto command_cleanup;
3775 	}
3776 
3777 	/* Free up host controller endpoint resources */
3778 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3779 		spin_lock_irqsave(&xhci->lock, flags);
3780 		/* Don't delete the default control endpoint resources */
3781 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3782 		spin_unlock_irqrestore(&xhci->lock, flags);
3783 	}
3784 
3785 	/* Everything but endpoint 0 is disabled, so free the rings. */
3786 	for (i = 1; i < 31; i++) {
3787 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3788 
3789 		if (ep->ep_state & EP_HAS_STREAMS) {
3790 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3791 					xhci_get_endpoint_address(i));
3792 			xhci_free_stream_info(xhci, ep->stream_info);
3793 			ep->stream_info = NULL;
3794 			ep->ep_state &= ~EP_HAS_STREAMS;
3795 		}
3796 
3797 		if (ep->ring) {
3798 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3799 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3800 		}
3801 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3802 			xhci_drop_ep_from_interval_table(xhci,
3803 					&virt_dev->eps[i].bw_info,
3804 					virt_dev->bw_table,
3805 					udev,
3806 					&virt_dev->eps[i],
3807 					virt_dev->tt_info);
3808 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3809 	}
3810 	/* If necessary, update the number of active TTs on this root port */
3811 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3812 	virt_dev->flags = 0;
3813 	ret = 0;
3814 
3815 command_cleanup:
3816 	xhci_free_command(xhci, reset_device_cmd);
3817 	return ret;
3818 }
3819 
3820 /*
3821  * At this point, the struct usb_device is about to go away, the device has
3822  * disconnected, and all traffic has been stopped and the endpoints have been
3823  * disabled.  Free any HC data structures associated with that device.
3824  */
3825 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3826 {
3827 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3828 	struct xhci_virt_device *virt_dev;
3829 	struct xhci_slot_ctx *slot_ctx;
3830 	unsigned long flags;
3831 	int i, ret;
3832 
3833 	/*
3834 	 * We called pm_runtime_get_noresume when the device was attached.
3835 	 * Decrement the counter here to allow controller to runtime suspend
3836 	 * if no devices remain.
3837 	 */
3838 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3839 		pm_runtime_put_noidle(hcd->self.controller);
3840 
3841 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3842 	/* If the host is halted due to driver unload, we still need to free the
3843 	 * device.
3844 	 */
3845 	if (ret <= 0 && ret != -ENODEV)
3846 		return;
3847 
3848 	virt_dev = xhci->devs[udev->slot_id];
3849 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3850 	trace_xhci_free_dev(slot_ctx);
3851 
3852 	/* Stop any wayward timer functions (which may grab the lock) */
3853 	for (i = 0; i < 31; i++)
3854 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3855 	virt_dev->udev = NULL;
3856 	xhci_disable_slot(xhci, udev->slot_id);
3857 
3858 	spin_lock_irqsave(&xhci->lock, flags);
3859 	xhci_free_virt_device(xhci, udev->slot_id);
3860 	spin_unlock_irqrestore(&xhci->lock, flags);
3861 
3862 }
3863 
3864 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3865 {
3866 	struct xhci_command *command;
3867 	unsigned long flags;
3868 	u32 state;
3869 	int ret;
3870 
3871 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3872 	if (!command)
3873 		return -ENOMEM;
3874 
3875 	xhci_debugfs_remove_slot(xhci, slot_id);
3876 
3877 	spin_lock_irqsave(&xhci->lock, flags);
3878 	/* Don't disable the slot if the host controller is dead. */
3879 	state = readl(&xhci->op_regs->status);
3880 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3881 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3882 		spin_unlock_irqrestore(&xhci->lock, flags);
3883 		kfree(command);
3884 		return -ENODEV;
3885 	}
3886 
3887 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3888 				slot_id);
3889 	if (ret) {
3890 		spin_unlock_irqrestore(&xhci->lock, flags);
3891 		kfree(command);
3892 		return ret;
3893 	}
3894 	xhci_ring_cmd_db(xhci);
3895 	spin_unlock_irqrestore(&xhci->lock, flags);
3896 
3897 	wait_for_completion(command->completion);
3898 
3899 	if (command->status != COMP_SUCCESS)
3900 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3901 			  slot_id, command->status);
3902 
3903 	xhci_free_command(xhci, command);
3904 
3905 	return 0;
3906 }
3907 
3908 /*
3909  * Checks if we have enough host controller resources for the default control
3910  * endpoint.
3911  *
3912  * Must be called with xhci->lock held.
3913  */
3914 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3915 {
3916 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3917 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3918 				"Not enough ep ctxs: "
3919 				"%u active, need to add 1, limit is %u.",
3920 				xhci->num_active_eps, xhci->limit_active_eps);
3921 		return -ENOMEM;
3922 	}
3923 	xhci->num_active_eps += 1;
3924 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3925 			"Adding 1 ep ctx, %u now active.",
3926 			xhci->num_active_eps);
3927 	return 0;
3928 }
3929 
3930 
3931 /*
3932  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3933  * timed out, or allocating memory failed.  Returns 1 on success.
3934  */
3935 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3936 {
3937 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3938 	struct xhci_virt_device *vdev;
3939 	struct xhci_slot_ctx *slot_ctx;
3940 	unsigned long flags;
3941 	int ret, slot_id;
3942 	struct xhci_command *command;
3943 
3944 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3945 	if (!command)
3946 		return 0;
3947 
3948 	spin_lock_irqsave(&xhci->lock, flags);
3949 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3950 	if (ret) {
3951 		spin_unlock_irqrestore(&xhci->lock, flags);
3952 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3953 		xhci_free_command(xhci, command);
3954 		return 0;
3955 	}
3956 	xhci_ring_cmd_db(xhci);
3957 	spin_unlock_irqrestore(&xhci->lock, flags);
3958 
3959 	wait_for_completion(command->completion);
3960 	slot_id = command->slot_id;
3961 
3962 	if (!slot_id || command->status != COMP_SUCCESS) {
3963 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3964 			 xhci_trb_comp_code_string(command->status));
3965 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3966 				HCS_MAX_SLOTS(
3967 					readl(&xhci->cap_regs->hcs_params1)));
3968 		xhci_free_command(xhci, command);
3969 		return 0;
3970 	}
3971 
3972 	xhci_free_command(xhci, command);
3973 
3974 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3975 		spin_lock_irqsave(&xhci->lock, flags);
3976 		ret = xhci_reserve_host_control_ep_resources(xhci);
3977 		if (ret) {
3978 			spin_unlock_irqrestore(&xhci->lock, flags);
3979 			xhci_warn(xhci, "Not enough host resources, "
3980 					"active endpoint contexts = %u\n",
3981 					xhci->num_active_eps);
3982 			goto disable_slot;
3983 		}
3984 		spin_unlock_irqrestore(&xhci->lock, flags);
3985 	}
3986 	/* Use GFP_NOIO, since this function can be called from
3987 	 * xhci_discover_or_reset_device(), which may be called as part of
3988 	 * mass storage driver error handling.
3989 	 */
3990 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3991 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3992 		goto disable_slot;
3993 	}
3994 	vdev = xhci->devs[slot_id];
3995 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3996 	trace_xhci_alloc_dev(slot_ctx);
3997 
3998 	udev->slot_id = slot_id;
3999 
4000 	xhci_debugfs_create_slot(xhci, slot_id);
4001 
4002 	/*
4003 	 * If resetting upon resume, we can't put the controller into runtime
4004 	 * suspend if there is a device attached.
4005 	 */
4006 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4007 		pm_runtime_get_noresume(hcd->self.controller);
4008 
4009 	/* Is this a LS or FS device under a HS hub? */
4010 	/* Hub or peripherial? */
4011 	return 1;
4012 
4013 disable_slot:
4014 	xhci_disable_slot(xhci, udev->slot_id);
4015 	xhci_free_virt_device(xhci, udev->slot_id);
4016 
4017 	return 0;
4018 }
4019 
4020 /**
4021  * xhci_setup_device - issues an Address Device command to assign a unique
4022  *			USB bus address.
4023  * @hcd: USB host controller data structure.
4024  * @udev: USB dev structure representing the connected device.
4025  * @setup: Enum specifying setup mode: address only or with context.
4026  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4027  *
4028  * Return: 0 if successful; otherwise, negative error code.
4029  */
4030 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4031 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4032 {
4033 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4034 	unsigned long flags;
4035 	struct xhci_virt_device *virt_dev;
4036 	int ret = 0;
4037 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4038 	struct xhci_slot_ctx *slot_ctx;
4039 	struct xhci_input_control_ctx *ctrl_ctx;
4040 	u64 temp_64;
4041 	struct xhci_command *command = NULL;
4042 
4043 	mutex_lock(&xhci->mutex);
4044 
4045 	if (xhci->xhc_state) {	/* dying, removing or halted */
4046 		ret = -ESHUTDOWN;
4047 		goto out;
4048 	}
4049 
4050 	if (!udev->slot_id) {
4051 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4052 				"Bad Slot ID %d", udev->slot_id);
4053 		ret = -EINVAL;
4054 		goto out;
4055 	}
4056 
4057 	virt_dev = xhci->devs[udev->slot_id];
4058 
4059 	if (WARN_ON(!virt_dev)) {
4060 		/*
4061 		 * In plug/unplug torture test with an NEC controller,
4062 		 * a zero-dereference was observed once due to virt_dev = 0.
4063 		 * Print useful debug rather than crash if it is observed again!
4064 		 */
4065 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4066 			udev->slot_id);
4067 		ret = -EINVAL;
4068 		goto out;
4069 	}
4070 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4071 	trace_xhci_setup_device_slot(slot_ctx);
4072 
4073 	if (setup == SETUP_CONTEXT_ONLY) {
4074 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4075 		    SLOT_STATE_DEFAULT) {
4076 			xhci_dbg(xhci, "Slot already in default state\n");
4077 			goto out;
4078 		}
4079 	}
4080 
4081 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4082 	if (!command) {
4083 		ret = -ENOMEM;
4084 		goto out;
4085 	}
4086 
4087 	command->in_ctx = virt_dev->in_ctx;
4088 	command->timeout_ms = timeout_ms;
4089 
4090 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4091 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4092 	if (!ctrl_ctx) {
4093 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4094 				__func__);
4095 		ret = -EINVAL;
4096 		goto out;
4097 	}
4098 	/*
4099 	 * If this is the first Set Address since device plug-in or
4100 	 * virt_device realloaction after a resume with an xHCI power loss,
4101 	 * then set up the slot context.
4102 	 */
4103 	if (!slot_ctx->dev_info)
4104 		xhci_setup_addressable_virt_dev(xhci, udev);
4105 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4106 	else
4107 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4108 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4109 	ctrl_ctx->drop_flags = 0;
4110 
4111 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4112 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4113 
4114 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4115 	spin_lock_irqsave(&xhci->lock, flags);
4116 	trace_xhci_setup_device(virt_dev);
4117 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4118 					udev->slot_id, setup);
4119 	if (ret) {
4120 		spin_unlock_irqrestore(&xhci->lock, flags);
4121 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4122 				"FIXME: allocate a command ring segment");
4123 		goto out;
4124 	}
4125 	xhci_ring_cmd_db(xhci);
4126 	spin_unlock_irqrestore(&xhci->lock, flags);
4127 
4128 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4129 	wait_for_completion(command->completion);
4130 
4131 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4132 	 * the SetAddress() "recovery interval" required by USB and aborting the
4133 	 * command on a timeout.
4134 	 */
4135 	switch (command->status) {
4136 	case COMP_COMMAND_ABORTED:
4137 	case COMP_COMMAND_RING_STOPPED:
4138 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4139 		ret = -ETIME;
4140 		break;
4141 	case COMP_CONTEXT_STATE_ERROR:
4142 	case COMP_SLOT_NOT_ENABLED_ERROR:
4143 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4144 			 act, udev->slot_id);
4145 		ret = -EINVAL;
4146 		break;
4147 	case COMP_USB_TRANSACTION_ERROR:
4148 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4149 
4150 		mutex_unlock(&xhci->mutex);
4151 		ret = xhci_disable_slot(xhci, udev->slot_id);
4152 		xhci_free_virt_device(xhci, udev->slot_id);
4153 		if (!ret) {
4154 			if (xhci_alloc_dev(hcd, udev) == 1)
4155 				xhci_setup_addressable_virt_dev(xhci, udev);
4156 		}
4157 		kfree(command->completion);
4158 		kfree(command);
4159 		return -EPROTO;
4160 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4161 		dev_warn(&udev->dev,
4162 			 "ERROR: Incompatible device for setup %s command\n", act);
4163 		ret = -ENODEV;
4164 		break;
4165 	case COMP_SUCCESS:
4166 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4167 			       "Successful setup %s command", act);
4168 		break;
4169 	default:
4170 		xhci_err(xhci,
4171 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4172 			 act, command->status);
4173 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4174 		ret = -EINVAL;
4175 		break;
4176 	}
4177 	if (ret)
4178 		goto out;
4179 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4180 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4181 			"Op regs DCBAA ptr = %#016llx", temp_64);
4182 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4183 		"Slot ID %d dcbaa entry @%p = %#016llx",
4184 		udev->slot_id,
4185 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4186 		(unsigned long long)
4187 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4188 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189 			"Output Context DMA address = %#08llx",
4190 			(unsigned long long)virt_dev->out_ctx->dma);
4191 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4192 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4193 	/*
4194 	 * USB core uses address 1 for the roothubs, so we add one to the
4195 	 * address given back to us by the HC.
4196 	 */
4197 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4198 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4199 	/* Zero the input context control for later use */
4200 	ctrl_ctx->add_flags = 0;
4201 	ctrl_ctx->drop_flags = 0;
4202 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4203 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4204 
4205 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4206 		       "Internal device address = %d",
4207 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4208 out:
4209 	mutex_unlock(&xhci->mutex);
4210 	if (command) {
4211 		kfree(command->completion);
4212 		kfree(command);
4213 	}
4214 	return ret;
4215 }
4216 
4217 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4218 			       unsigned int timeout_ms)
4219 {
4220 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4221 }
4222 
4223 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4224 {
4225 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4226 				 XHCI_CMD_DEFAULT_TIMEOUT);
4227 }
4228 
4229 /*
4230  * Transfer the port index into real index in the HW port status
4231  * registers. Caculate offset between the port's PORTSC register
4232  * and port status base. Divide the number of per port register
4233  * to get the real index. The raw port number bases 1.
4234  */
4235 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4236 {
4237 	struct xhci_hub *rhub;
4238 
4239 	rhub = xhci_get_rhub(hcd);
4240 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4241 }
4242 
4243 /*
4244  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4245  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4246  */
4247 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4248 			struct usb_device *udev, u16 max_exit_latency)
4249 {
4250 	struct xhci_virt_device *virt_dev;
4251 	struct xhci_command *command;
4252 	struct xhci_input_control_ctx *ctrl_ctx;
4253 	struct xhci_slot_ctx *slot_ctx;
4254 	unsigned long flags;
4255 	int ret;
4256 
4257 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4258 	if (!command)
4259 		return -ENOMEM;
4260 
4261 	spin_lock_irqsave(&xhci->lock, flags);
4262 
4263 	virt_dev = xhci->devs[udev->slot_id];
4264 
4265 	/*
4266 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4267 	 * xHC was re-initialized. Exit latency will be set later after
4268 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4269 	 */
4270 
4271 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4272 		spin_unlock_irqrestore(&xhci->lock, flags);
4273 		xhci_free_command(xhci, command);
4274 		return 0;
4275 	}
4276 
4277 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4278 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4279 	if (!ctrl_ctx) {
4280 		spin_unlock_irqrestore(&xhci->lock, flags);
4281 		xhci_free_command(xhci, command);
4282 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4283 				__func__);
4284 		return -ENOMEM;
4285 	}
4286 
4287 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4288 	spin_unlock_irqrestore(&xhci->lock, flags);
4289 
4290 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4291 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4292 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4293 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4294 	slot_ctx->dev_state = 0;
4295 
4296 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4297 			"Set up evaluate context for LPM MEL change.");
4298 
4299 	/* Issue and wait for the evaluate context command. */
4300 	ret = xhci_configure_endpoint(xhci, udev, command,
4301 			true, true);
4302 
4303 	if (!ret) {
4304 		spin_lock_irqsave(&xhci->lock, flags);
4305 		virt_dev->current_mel = max_exit_latency;
4306 		spin_unlock_irqrestore(&xhci->lock, flags);
4307 	}
4308 
4309 	xhci_free_command(xhci, command);
4310 
4311 	return ret;
4312 }
4313 
4314 #ifdef CONFIG_PM
4315 
4316 /* BESL to HIRD Encoding array for USB2 LPM */
4317 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4318 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4319 
4320 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4321 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4322 					struct usb_device *udev)
4323 {
4324 	int u2del, besl, besl_host;
4325 	int besl_device = 0;
4326 	u32 field;
4327 
4328 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4329 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4330 
4331 	if (field & USB_BESL_SUPPORT) {
4332 		for (besl_host = 0; besl_host < 16; besl_host++) {
4333 			if (xhci_besl_encoding[besl_host] >= u2del)
4334 				break;
4335 		}
4336 		/* Use baseline BESL value as default */
4337 		if (field & USB_BESL_BASELINE_VALID)
4338 			besl_device = USB_GET_BESL_BASELINE(field);
4339 		else if (field & USB_BESL_DEEP_VALID)
4340 			besl_device = USB_GET_BESL_DEEP(field);
4341 	} else {
4342 		if (u2del <= 50)
4343 			besl_host = 0;
4344 		else
4345 			besl_host = (u2del - 51) / 75 + 1;
4346 	}
4347 
4348 	besl = besl_host + besl_device;
4349 	if (besl > 15)
4350 		besl = 15;
4351 
4352 	return besl;
4353 }
4354 
4355 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4356 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4357 {
4358 	u32 field;
4359 	int l1;
4360 	int besld = 0;
4361 	int hirdm = 0;
4362 
4363 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4364 
4365 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4366 	l1 = udev->l1_params.timeout / 256;
4367 
4368 	/* device has preferred BESLD */
4369 	if (field & USB_BESL_DEEP_VALID) {
4370 		besld = USB_GET_BESL_DEEP(field);
4371 		hirdm = 1;
4372 	}
4373 
4374 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4375 }
4376 
4377 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4378 			struct usb_device *udev, int enable)
4379 {
4380 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4381 	struct xhci_port **ports;
4382 	__le32 __iomem	*pm_addr, *hlpm_addr;
4383 	u32		pm_val, hlpm_val, field;
4384 	unsigned int	port_num;
4385 	unsigned long	flags;
4386 	int		hird, exit_latency;
4387 	int		ret;
4388 
4389 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4390 		return -EPERM;
4391 
4392 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4393 			!udev->lpm_capable)
4394 		return -EPERM;
4395 
4396 	if (!udev->parent || udev->parent->parent ||
4397 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4398 		return -EPERM;
4399 
4400 	if (udev->usb2_hw_lpm_capable != 1)
4401 		return -EPERM;
4402 
4403 	spin_lock_irqsave(&xhci->lock, flags);
4404 
4405 	ports = xhci->usb2_rhub.ports;
4406 	port_num = udev->portnum - 1;
4407 	pm_addr = ports[port_num]->addr + PORTPMSC;
4408 	pm_val = readl(pm_addr);
4409 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4410 
4411 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4412 			enable ? "enable" : "disable", port_num + 1);
4413 
4414 	if (enable) {
4415 		/* Host supports BESL timeout instead of HIRD */
4416 		if (udev->usb2_hw_lpm_besl_capable) {
4417 			/* if device doesn't have a preferred BESL value use a
4418 			 * default one which works with mixed HIRD and BESL
4419 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4420 			 */
4421 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4422 			if ((field & USB_BESL_SUPPORT) &&
4423 			    (field & USB_BESL_BASELINE_VALID))
4424 				hird = USB_GET_BESL_BASELINE(field);
4425 			else
4426 				hird = udev->l1_params.besl;
4427 
4428 			exit_latency = xhci_besl_encoding[hird];
4429 			spin_unlock_irqrestore(&xhci->lock, flags);
4430 
4431 			ret = xhci_change_max_exit_latency(xhci, udev,
4432 							   exit_latency);
4433 			if (ret < 0)
4434 				return ret;
4435 			spin_lock_irqsave(&xhci->lock, flags);
4436 
4437 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4438 			writel(hlpm_val, hlpm_addr);
4439 			/* flush write */
4440 			readl(hlpm_addr);
4441 		} else {
4442 			hird = xhci_calculate_hird_besl(xhci, udev);
4443 		}
4444 
4445 		pm_val &= ~PORT_HIRD_MASK;
4446 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4447 		writel(pm_val, pm_addr);
4448 		pm_val = readl(pm_addr);
4449 		pm_val |= PORT_HLE;
4450 		writel(pm_val, pm_addr);
4451 		/* flush write */
4452 		readl(pm_addr);
4453 	} else {
4454 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4455 		writel(pm_val, pm_addr);
4456 		/* flush write */
4457 		readl(pm_addr);
4458 		if (udev->usb2_hw_lpm_besl_capable) {
4459 			spin_unlock_irqrestore(&xhci->lock, flags);
4460 			xhci_change_max_exit_latency(xhci, udev, 0);
4461 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4462 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4463 					   100, 10000);
4464 			return 0;
4465 		}
4466 	}
4467 
4468 	spin_unlock_irqrestore(&xhci->lock, flags);
4469 	return 0;
4470 }
4471 
4472 /* check if a usb2 port supports a given extened capability protocol
4473  * only USB2 ports extended protocol capability values are cached.
4474  * Return 1 if capability is supported
4475  */
4476 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4477 					   unsigned capability)
4478 {
4479 	u32 port_offset, port_count;
4480 	int i;
4481 
4482 	for (i = 0; i < xhci->num_ext_caps; i++) {
4483 		if (xhci->ext_caps[i] & capability) {
4484 			/* port offsets starts at 1 */
4485 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4486 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4487 			if (port >= port_offset &&
4488 			    port < port_offset + port_count)
4489 				return 1;
4490 		}
4491 	}
4492 	return 0;
4493 }
4494 
4495 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4496 {
4497 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4498 	int		portnum = udev->portnum - 1;
4499 
4500 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4501 		return 0;
4502 
4503 	/* we only support lpm for non-hub device connected to root hub yet */
4504 	if (!udev->parent || udev->parent->parent ||
4505 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4506 		return 0;
4507 
4508 	if (xhci->hw_lpm_support == 1 &&
4509 			xhci_check_usb2_port_capability(
4510 				xhci, portnum, XHCI_HLC)) {
4511 		udev->usb2_hw_lpm_capable = 1;
4512 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4513 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4514 		if (xhci_check_usb2_port_capability(xhci, portnum,
4515 					XHCI_BLC))
4516 			udev->usb2_hw_lpm_besl_capable = 1;
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4523 
4524 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4525 static unsigned long long xhci_service_interval_to_ns(
4526 		struct usb_endpoint_descriptor *desc)
4527 {
4528 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4529 }
4530 
4531 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4532 		enum usb3_link_state state)
4533 {
4534 	unsigned long long sel;
4535 	unsigned long long pel;
4536 	unsigned int max_sel_pel;
4537 	char *state_name;
4538 
4539 	switch (state) {
4540 	case USB3_LPM_U1:
4541 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4542 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4543 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4544 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4545 		state_name = "U1";
4546 		break;
4547 	case USB3_LPM_U2:
4548 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4549 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4550 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4551 		state_name = "U2";
4552 		break;
4553 	default:
4554 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4555 				__func__);
4556 		return USB3_LPM_DISABLED;
4557 	}
4558 
4559 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4560 		return USB3_LPM_DEVICE_INITIATED;
4561 
4562 	if (sel > max_sel_pel)
4563 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4564 				"due to long SEL %llu ms\n",
4565 				state_name, sel);
4566 	else
4567 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4568 				"due to long PEL %llu ms\n",
4569 				state_name, pel);
4570 	return USB3_LPM_DISABLED;
4571 }
4572 
4573 /* The U1 timeout should be the maximum of the following values:
4574  *  - For control endpoints, U1 system exit latency (SEL) * 3
4575  *  - For bulk endpoints, U1 SEL * 5
4576  *  - For interrupt endpoints:
4577  *    - Notification EPs, U1 SEL * 3
4578  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4579  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4580  */
4581 static unsigned long long xhci_calculate_intel_u1_timeout(
4582 		struct usb_device *udev,
4583 		struct usb_endpoint_descriptor *desc)
4584 {
4585 	unsigned long long timeout_ns;
4586 	int ep_type;
4587 	int intr_type;
4588 
4589 	ep_type = usb_endpoint_type(desc);
4590 	switch (ep_type) {
4591 	case USB_ENDPOINT_XFER_CONTROL:
4592 		timeout_ns = udev->u1_params.sel * 3;
4593 		break;
4594 	case USB_ENDPOINT_XFER_BULK:
4595 		timeout_ns = udev->u1_params.sel * 5;
4596 		break;
4597 	case USB_ENDPOINT_XFER_INT:
4598 		intr_type = usb_endpoint_interrupt_type(desc);
4599 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4600 			timeout_ns = udev->u1_params.sel * 3;
4601 			break;
4602 		}
4603 		/* Otherwise the calculation is the same as isoc eps */
4604 		fallthrough;
4605 	case USB_ENDPOINT_XFER_ISOC:
4606 		timeout_ns = xhci_service_interval_to_ns(desc);
4607 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4608 		if (timeout_ns < udev->u1_params.sel * 2)
4609 			timeout_ns = udev->u1_params.sel * 2;
4610 		break;
4611 	default:
4612 		return 0;
4613 	}
4614 
4615 	return timeout_ns;
4616 }
4617 
4618 /* Returns the hub-encoded U1 timeout value. */
4619 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4620 		struct usb_device *udev,
4621 		struct usb_endpoint_descriptor *desc)
4622 {
4623 	unsigned long long timeout_ns;
4624 
4625 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4626 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4627 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4628 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4629 			return USB3_LPM_DISABLED;
4630 		}
4631 	}
4632 
4633 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4634 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4635 	else
4636 		timeout_ns = udev->u1_params.sel;
4637 
4638 	/* The U1 timeout is encoded in 1us intervals.
4639 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4640 	 */
4641 	if (timeout_ns == USB3_LPM_DISABLED)
4642 		timeout_ns = 1;
4643 	else
4644 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4645 
4646 	/* If the necessary timeout value is bigger than what we can set in the
4647 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4648 	 */
4649 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4650 		return timeout_ns;
4651 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4652 			"due to long timeout %llu ms\n", timeout_ns);
4653 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4654 }
4655 
4656 /* The U2 timeout should be the maximum of:
4657  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4658  *  - largest bInterval of any active periodic endpoint (to avoid going
4659  *    into lower power link states between intervals).
4660  *  - the U2 Exit Latency of the device
4661  */
4662 static unsigned long long xhci_calculate_intel_u2_timeout(
4663 		struct usb_device *udev,
4664 		struct usb_endpoint_descriptor *desc)
4665 {
4666 	unsigned long long timeout_ns;
4667 	unsigned long long u2_del_ns;
4668 
4669 	timeout_ns = 10 * 1000 * 1000;
4670 
4671 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4672 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4673 		timeout_ns = xhci_service_interval_to_ns(desc);
4674 
4675 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4676 	if (u2_del_ns > timeout_ns)
4677 		timeout_ns = u2_del_ns;
4678 
4679 	return timeout_ns;
4680 }
4681 
4682 /* Returns the hub-encoded U2 timeout value. */
4683 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4684 		struct usb_device *udev,
4685 		struct usb_endpoint_descriptor *desc)
4686 {
4687 	unsigned long long timeout_ns;
4688 
4689 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4690 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4691 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4692 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4693 			return USB3_LPM_DISABLED;
4694 		}
4695 	}
4696 
4697 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4698 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4699 	else
4700 		timeout_ns = udev->u2_params.sel;
4701 
4702 	/* The U2 timeout is encoded in 256us intervals */
4703 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4704 	/* If the necessary timeout value is bigger than what we can set in the
4705 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4706 	 */
4707 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4708 		return timeout_ns;
4709 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4710 			"due to long timeout %llu ms\n", timeout_ns);
4711 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4712 }
4713 
4714 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4715 		struct usb_device *udev,
4716 		struct usb_endpoint_descriptor *desc,
4717 		enum usb3_link_state state,
4718 		u16 *timeout)
4719 {
4720 	if (state == USB3_LPM_U1)
4721 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4722 	else if (state == USB3_LPM_U2)
4723 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4724 
4725 	return USB3_LPM_DISABLED;
4726 }
4727 
4728 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4729 		struct usb_device *udev,
4730 		struct usb_endpoint_descriptor *desc,
4731 		enum usb3_link_state state,
4732 		u16 *timeout)
4733 {
4734 	u16 alt_timeout;
4735 
4736 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4737 		desc, state, timeout);
4738 
4739 	/* If we found we can't enable hub-initiated LPM, and
4740 	 * the U1 or U2 exit latency was too high to allow
4741 	 * device-initiated LPM as well, then we will disable LPM
4742 	 * for this device, so stop searching any further.
4743 	 */
4744 	if (alt_timeout == USB3_LPM_DISABLED) {
4745 		*timeout = alt_timeout;
4746 		return -E2BIG;
4747 	}
4748 	if (alt_timeout > *timeout)
4749 		*timeout = alt_timeout;
4750 	return 0;
4751 }
4752 
4753 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4754 		struct usb_device *udev,
4755 		struct usb_host_interface *alt,
4756 		enum usb3_link_state state,
4757 		u16 *timeout)
4758 {
4759 	int j;
4760 
4761 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4762 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4763 					&alt->endpoint[j].desc, state, timeout))
4764 			return -E2BIG;
4765 	}
4766 	return 0;
4767 }
4768 
4769 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4770 		struct usb_device *udev,
4771 		enum usb3_link_state state)
4772 {
4773 	struct usb_device *parent = udev->parent;
4774 	int tier = 1; /* roothub is tier1 */
4775 
4776 	while (parent) {
4777 		parent = parent->parent;
4778 		tier++;
4779 	}
4780 
4781 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4782 		goto fail;
4783 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4784 		goto fail;
4785 
4786 	return 0;
4787 fail:
4788 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4789 			tier);
4790 	return -E2BIG;
4791 }
4792 
4793 /* Returns the U1 or U2 timeout that should be enabled.
4794  * If the tier check or timeout setting functions return with a non-zero exit
4795  * code, that means the timeout value has been finalized and we shouldn't look
4796  * at any more endpoints.
4797  */
4798 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4799 			struct usb_device *udev, enum usb3_link_state state)
4800 {
4801 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4802 	struct usb_host_config *config;
4803 	char *state_name;
4804 	int i;
4805 	u16 timeout = USB3_LPM_DISABLED;
4806 
4807 	if (state == USB3_LPM_U1)
4808 		state_name = "U1";
4809 	else if (state == USB3_LPM_U2)
4810 		state_name = "U2";
4811 	else {
4812 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4813 				state);
4814 		return timeout;
4815 	}
4816 
4817 	/* Gather some information about the currently installed configuration
4818 	 * and alternate interface settings.
4819 	 */
4820 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4821 			state, &timeout))
4822 		return timeout;
4823 
4824 	config = udev->actconfig;
4825 	if (!config)
4826 		return timeout;
4827 
4828 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4829 		struct usb_driver *driver;
4830 		struct usb_interface *intf = config->interface[i];
4831 
4832 		if (!intf)
4833 			continue;
4834 
4835 		/* Check if any currently bound drivers want hub-initiated LPM
4836 		 * disabled.
4837 		 */
4838 		if (intf->dev.driver) {
4839 			driver = to_usb_driver(intf->dev.driver);
4840 			if (driver && driver->disable_hub_initiated_lpm) {
4841 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4842 					state_name, driver->name);
4843 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4844 								      state);
4845 				if (timeout == USB3_LPM_DISABLED)
4846 					return timeout;
4847 			}
4848 		}
4849 
4850 		/* Not sure how this could happen... */
4851 		if (!intf->cur_altsetting)
4852 			continue;
4853 
4854 		if (xhci_update_timeout_for_interface(xhci, udev,
4855 					intf->cur_altsetting,
4856 					state, &timeout))
4857 			return timeout;
4858 	}
4859 	return timeout;
4860 }
4861 
4862 static int calculate_max_exit_latency(struct usb_device *udev,
4863 		enum usb3_link_state state_changed,
4864 		u16 hub_encoded_timeout)
4865 {
4866 	unsigned long long u1_mel_us = 0;
4867 	unsigned long long u2_mel_us = 0;
4868 	unsigned long long mel_us = 0;
4869 	bool disabling_u1;
4870 	bool disabling_u2;
4871 	bool enabling_u1;
4872 	bool enabling_u2;
4873 
4874 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4875 			hub_encoded_timeout == USB3_LPM_DISABLED);
4876 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4877 			hub_encoded_timeout == USB3_LPM_DISABLED);
4878 
4879 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4880 			hub_encoded_timeout != USB3_LPM_DISABLED);
4881 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4882 			hub_encoded_timeout != USB3_LPM_DISABLED);
4883 
4884 	/* If U1 was already enabled and we're not disabling it,
4885 	 * or we're going to enable U1, account for the U1 max exit latency.
4886 	 */
4887 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4888 			enabling_u1)
4889 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4890 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4891 			enabling_u2)
4892 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4893 
4894 	mel_us = max(u1_mel_us, u2_mel_us);
4895 
4896 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4897 	if (mel_us > MAX_EXIT) {
4898 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4899 				"is too big.\n", mel_us);
4900 		return -E2BIG;
4901 	}
4902 	return mel_us;
4903 }
4904 
4905 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4906 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4907 			struct usb_device *udev, enum usb3_link_state state)
4908 {
4909 	struct xhci_hcd	*xhci;
4910 	struct xhci_port *port;
4911 	u16 hub_encoded_timeout;
4912 	int mel;
4913 	int ret;
4914 
4915 	xhci = hcd_to_xhci(hcd);
4916 	/* The LPM timeout values are pretty host-controller specific, so don't
4917 	 * enable hub-initiated timeouts unless the vendor has provided
4918 	 * information about their timeout algorithm.
4919 	 */
4920 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4921 			!xhci->devs[udev->slot_id])
4922 		return USB3_LPM_DISABLED;
4923 
4924 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4925 		return USB3_LPM_DISABLED;
4926 
4927 	/* If connected to root port then check port can handle lpm */
4928 	if (udev->parent && !udev->parent->parent) {
4929 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4930 		if (port->lpm_incapable)
4931 			return USB3_LPM_DISABLED;
4932 	}
4933 
4934 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4935 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4936 	if (mel < 0) {
4937 		/* Max Exit Latency is too big, disable LPM. */
4938 		hub_encoded_timeout = USB3_LPM_DISABLED;
4939 		mel = 0;
4940 	}
4941 
4942 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4943 	if (ret)
4944 		return ret;
4945 	return hub_encoded_timeout;
4946 }
4947 
4948 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4949 			struct usb_device *udev, enum usb3_link_state state)
4950 {
4951 	struct xhci_hcd	*xhci;
4952 	u16 mel;
4953 
4954 	xhci = hcd_to_xhci(hcd);
4955 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4956 			!xhci->devs[udev->slot_id])
4957 		return 0;
4958 
4959 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4960 	return xhci_change_max_exit_latency(xhci, udev, mel);
4961 }
4962 #else /* CONFIG_PM */
4963 
4964 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4965 				struct usb_device *udev, int enable)
4966 {
4967 	return 0;
4968 }
4969 
4970 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4971 {
4972 	return 0;
4973 }
4974 
4975 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4976 			struct usb_device *udev, enum usb3_link_state state)
4977 {
4978 	return USB3_LPM_DISABLED;
4979 }
4980 
4981 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4982 			struct usb_device *udev, enum usb3_link_state state)
4983 {
4984 	return 0;
4985 }
4986 #endif	/* CONFIG_PM */
4987 
4988 /*-------------------------------------------------------------------------*/
4989 
4990 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4991  * internal data structures for the device.
4992  */
4993 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4994 			struct usb_tt *tt, gfp_t mem_flags)
4995 {
4996 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4997 	struct xhci_virt_device *vdev;
4998 	struct xhci_command *config_cmd;
4999 	struct xhci_input_control_ctx *ctrl_ctx;
5000 	struct xhci_slot_ctx *slot_ctx;
5001 	unsigned long flags;
5002 	unsigned think_time;
5003 	int ret;
5004 
5005 	/* Ignore root hubs */
5006 	if (!hdev->parent)
5007 		return 0;
5008 
5009 	vdev = xhci->devs[hdev->slot_id];
5010 	if (!vdev) {
5011 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5012 		return -EINVAL;
5013 	}
5014 
5015 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5016 	if (!config_cmd)
5017 		return -ENOMEM;
5018 
5019 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5020 	if (!ctrl_ctx) {
5021 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5022 				__func__);
5023 		xhci_free_command(xhci, config_cmd);
5024 		return -ENOMEM;
5025 	}
5026 
5027 	spin_lock_irqsave(&xhci->lock, flags);
5028 	if (hdev->speed == USB_SPEED_HIGH &&
5029 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5030 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5031 		xhci_free_command(xhci, config_cmd);
5032 		spin_unlock_irqrestore(&xhci->lock, flags);
5033 		return -ENOMEM;
5034 	}
5035 
5036 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5037 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5038 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5039 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5040 	/*
5041 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5042 	 * but it may be already set to 1 when setup an xHCI virtual
5043 	 * device, so clear it anyway.
5044 	 */
5045 	if (tt->multi)
5046 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5047 	else if (hdev->speed == USB_SPEED_FULL)
5048 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5049 
5050 	if (xhci->hci_version > 0x95) {
5051 		xhci_dbg(xhci, "xHCI version %x needs hub "
5052 				"TT think time and number of ports\n",
5053 				(unsigned int) xhci->hci_version);
5054 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5055 		/* Set TT think time - convert from ns to FS bit times.
5056 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5057 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5058 		 *
5059 		 * xHCI 1.0: this field shall be 0 if the device is not a
5060 		 * High-spped hub.
5061 		 */
5062 		think_time = tt->think_time;
5063 		if (think_time != 0)
5064 			think_time = (think_time / 666) - 1;
5065 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5066 			slot_ctx->tt_info |=
5067 				cpu_to_le32(TT_THINK_TIME(think_time));
5068 	} else {
5069 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5070 				"TT think time or number of ports\n",
5071 				(unsigned int) xhci->hci_version);
5072 	}
5073 	slot_ctx->dev_state = 0;
5074 	spin_unlock_irqrestore(&xhci->lock, flags);
5075 
5076 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5077 			(xhci->hci_version > 0x95) ?
5078 			"configure endpoint" : "evaluate context");
5079 
5080 	/* Issue and wait for the configure endpoint or
5081 	 * evaluate context command.
5082 	 */
5083 	if (xhci->hci_version > 0x95)
5084 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5085 				false, false);
5086 	else
5087 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5088 				true, false);
5089 
5090 	xhci_free_command(xhci, config_cmd);
5091 	return ret;
5092 }
5093 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5094 
5095 static int xhci_get_frame(struct usb_hcd *hcd)
5096 {
5097 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5098 	/* EHCI mods by the periodic size.  Why? */
5099 	return readl(&xhci->run_regs->microframe_index) >> 3;
5100 }
5101 
5102 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5103 {
5104 	xhci->usb2_rhub.hcd = hcd;
5105 	hcd->speed = HCD_USB2;
5106 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5107 	/*
5108 	 * USB 2.0 roothub under xHCI has an integrated TT,
5109 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5110 	 * companion controller.
5111 	 */
5112 	hcd->has_tt = 1;
5113 }
5114 
5115 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5116 {
5117 	unsigned int minor_rev;
5118 
5119 	/*
5120 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5121 	 * should return 0x31 for sbrn, or that the minor revision
5122 	 * is a two digit BCD containig minor and sub-minor numbers.
5123 	 * This was later clarified in xHCI 1.2.
5124 	 *
5125 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5126 	 * minor revision set to 0x1 instead of 0x10.
5127 	 */
5128 	if (xhci->usb3_rhub.min_rev == 0x1)
5129 		minor_rev = 1;
5130 	else
5131 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5132 
5133 	switch (minor_rev) {
5134 	case 2:
5135 		hcd->speed = HCD_USB32;
5136 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5137 		hcd->self.root_hub->rx_lanes = 2;
5138 		hcd->self.root_hub->tx_lanes = 2;
5139 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5140 		break;
5141 	case 1:
5142 		hcd->speed = HCD_USB31;
5143 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5144 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5145 		break;
5146 	}
5147 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5148 		  minor_rev, minor_rev ? "Enhanced " : "");
5149 
5150 	xhci->usb3_rhub.hcd = hcd;
5151 }
5152 
5153 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5154 {
5155 	struct xhci_hcd		*xhci;
5156 	/*
5157 	 * TODO: Check with DWC3 clients for sysdev according to
5158 	 * quirks
5159 	 */
5160 	struct device		*dev = hcd->self.sysdev;
5161 	int			retval;
5162 
5163 	/* Accept arbitrarily long scatter-gather lists */
5164 	hcd->self.sg_tablesize = ~0;
5165 
5166 	/* support to build packet from discontinuous buffers */
5167 	hcd->self.no_sg_constraint = 1;
5168 
5169 	/* XHCI controllers don't stop the ep queue on short packets :| */
5170 	hcd->self.no_stop_on_short = 1;
5171 
5172 	xhci = hcd_to_xhci(hcd);
5173 
5174 	if (!usb_hcd_is_primary_hcd(hcd)) {
5175 		xhci_hcd_init_usb3_data(xhci, hcd);
5176 		return 0;
5177 	}
5178 
5179 	mutex_init(&xhci->mutex);
5180 	xhci->main_hcd = hcd;
5181 	xhci->cap_regs = hcd->regs;
5182 	xhci->op_regs = hcd->regs +
5183 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5184 	xhci->run_regs = hcd->regs +
5185 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5186 	/* Cache read-only capability registers */
5187 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5188 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5189 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5190 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5191 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5192 	if (xhci->hci_version > 0x100)
5193 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5194 
5195 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5196 	if ((!xhci->max_interrupters) ||
5197 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5198 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5199 
5200 	xhci->quirks |= quirks;
5201 
5202 	if (get_quirks)
5203 		get_quirks(dev, xhci);
5204 
5205 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5206 	 * success event after a short transfer. This quirk will ignore such
5207 	 * spurious event.
5208 	 */
5209 	if (xhci->hci_version > 0x96)
5210 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5211 
5212 	/* Make sure the HC is halted. */
5213 	retval = xhci_halt(xhci);
5214 	if (retval)
5215 		return retval;
5216 
5217 	xhci_zero_64b_regs(xhci);
5218 
5219 	xhci_dbg(xhci, "Resetting HCD\n");
5220 	/* Reset the internal HC memory state and registers. */
5221 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5222 	if (retval)
5223 		return retval;
5224 	xhci_dbg(xhci, "Reset complete\n");
5225 
5226 	/*
5227 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5228 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5229 	 * address memory pointers actually. So, this driver clears the AC64
5230 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5231 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5232 	 */
5233 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5234 		xhci->hcc_params &= ~BIT(0);
5235 
5236 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5237 	 * if xHC supports 64-bit addressing */
5238 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5239 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5240 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5241 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5242 	} else {
5243 		/*
5244 		 * This is to avoid error in cases where a 32-bit USB
5245 		 * controller is used on a 64-bit capable system.
5246 		 */
5247 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5248 		if (retval)
5249 			return retval;
5250 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5251 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5252 	}
5253 
5254 	xhci_dbg(xhci, "Calling HCD init\n");
5255 	/* Initialize HCD and host controller data structures. */
5256 	retval = xhci_init(hcd);
5257 	if (retval)
5258 		return retval;
5259 	xhci_dbg(xhci, "Called HCD init\n");
5260 
5261 	if (xhci_hcd_is_usb3(hcd))
5262 		xhci_hcd_init_usb3_data(xhci, hcd);
5263 	else
5264 		xhci_hcd_init_usb2_data(xhci, hcd);
5265 
5266 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5267 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5268 
5269 	return 0;
5270 }
5271 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5272 
5273 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5274 		struct usb_host_endpoint *ep)
5275 {
5276 	struct xhci_hcd *xhci;
5277 	struct usb_device *udev;
5278 	unsigned int slot_id;
5279 	unsigned int ep_index;
5280 	unsigned long flags;
5281 
5282 	xhci = hcd_to_xhci(hcd);
5283 
5284 	spin_lock_irqsave(&xhci->lock, flags);
5285 	udev = (struct usb_device *)ep->hcpriv;
5286 	slot_id = udev->slot_id;
5287 	ep_index = xhci_get_endpoint_index(&ep->desc);
5288 
5289 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5290 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5291 	spin_unlock_irqrestore(&xhci->lock, flags);
5292 }
5293 
5294 static const struct hc_driver xhci_hc_driver = {
5295 	.description =		"xhci-hcd",
5296 	.product_desc =		"xHCI Host Controller",
5297 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5298 
5299 	/*
5300 	 * generic hardware linkage
5301 	 */
5302 	.irq =			xhci_irq,
5303 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5304 				HCD_BH,
5305 
5306 	/*
5307 	 * basic lifecycle operations
5308 	 */
5309 	.reset =		NULL, /* set in xhci_init_driver() */
5310 	.start =		xhci_run,
5311 	.stop =			xhci_stop,
5312 	.shutdown =		xhci_shutdown,
5313 
5314 	/*
5315 	 * managing i/o requests and associated device resources
5316 	 */
5317 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5318 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5319 	.urb_enqueue =		xhci_urb_enqueue,
5320 	.urb_dequeue =		xhci_urb_dequeue,
5321 	.alloc_dev =		xhci_alloc_dev,
5322 	.free_dev =		xhci_free_dev,
5323 	.alloc_streams =	xhci_alloc_streams,
5324 	.free_streams =		xhci_free_streams,
5325 	.add_endpoint =		xhci_add_endpoint,
5326 	.drop_endpoint =	xhci_drop_endpoint,
5327 	.endpoint_disable =	xhci_endpoint_disable,
5328 	.endpoint_reset =	xhci_endpoint_reset,
5329 	.check_bandwidth =	xhci_check_bandwidth,
5330 	.reset_bandwidth =	xhci_reset_bandwidth,
5331 	.address_device =	xhci_address_device,
5332 	.enable_device =	xhci_enable_device,
5333 	.update_hub_device =	xhci_update_hub_device,
5334 	.reset_device =		xhci_discover_or_reset_device,
5335 
5336 	/*
5337 	 * scheduling support
5338 	 */
5339 	.get_frame_number =	xhci_get_frame,
5340 
5341 	/*
5342 	 * root hub support
5343 	 */
5344 	.hub_control =		xhci_hub_control,
5345 	.hub_status_data =	xhci_hub_status_data,
5346 	.bus_suspend =		xhci_bus_suspend,
5347 	.bus_resume =		xhci_bus_resume,
5348 	.get_resuming_ports =	xhci_get_resuming_ports,
5349 
5350 	/*
5351 	 * call back when device connected and addressed
5352 	 */
5353 	.update_device =        xhci_update_device,
5354 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5355 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5356 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5357 	.find_raw_port_number =	xhci_find_raw_port_number,
5358 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5359 };
5360 
5361 void xhci_init_driver(struct hc_driver *drv,
5362 		      const struct xhci_driver_overrides *over)
5363 {
5364 	BUG_ON(!over);
5365 
5366 	/* Copy the generic table to drv then apply the overrides */
5367 	*drv = xhci_hc_driver;
5368 
5369 	if (over) {
5370 		drv->hcd_priv_size += over->extra_priv_size;
5371 		if (over->reset)
5372 			drv->reset = over->reset;
5373 		if (over->start)
5374 			drv->start = over->start;
5375 		if (over->add_endpoint)
5376 			drv->add_endpoint = over->add_endpoint;
5377 		if (over->drop_endpoint)
5378 			drv->drop_endpoint = over->drop_endpoint;
5379 		if (over->check_bandwidth)
5380 			drv->check_bandwidth = over->check_bandwidth;
5381 		if (over->reset_bandwidth)
5382 			drv->reset_bandwidth = over->reset_bandwidth;
5383 		if (over->update_hub_device)
5384 			drv->update_hub_device = over->update_hub_device;
5385 		if (over->hub_control)
5386 			drv->hub_control = over->hub_control;
5387 	}
5388 }
5389 EXPORT_SYMBOL_GPL(xhci_init_driver);
5390 
5391 MODULE_DESCRIPTION(DRIVER_DESC);
5392 MODULE_AUTHOR(DRIVER_AUTHOR);
5393 MODULE_LICENSE("GPL");
5394 
5395 static int __init xhci_hcd_init(void)
5396 {
5397 	/*
5398 	 * Check the compiler generated sizes of structures that must be laid
5399 	 * out in specific ways for hardware access.
5400 	 */
5401 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5402 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5403 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5404 	/* xhci_device_control has eight fields, and also
5405 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5406 	 */
5407 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5408 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5409 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5410 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5411 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5412 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5413 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5414 
5415 	if (usb_disabled())
5416 		return -ENODEV;
5417 
5418 	xhci_debugfs_create_root();
5419 	xhci_dbc_init();
5420 
5421 	return 0;
5422 }
5423 
5424 /*
5425  * If an init function is provided, an exit function must also be provided
5426  * to allow module unload.
5427  */
5428 static void __exit xhci_hcd_fini(void)
5429 {
5430 	xhci_debugfs_remove_root();
5431 	xhci_dbc_exit();
5432 }
5433 
5434 module_init(xhci_hcd_init);
5435 module_exit(xhci_hcd_fini);
5436