1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 static void compliance_mode_recovery(struct timer_list *t) 326 { 327 struct xhci_hcd *xhci; 328 struct usb_hcd *hcd; 329 struct xhci_hub *rhub; 330 u32 temp; 331 int i; 332 333 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 334 rhub = &xhci->usb3_rhub; 335 hcd = rhub->hcd; 336 337 if (!hcd) 338 return; 339 340 for (i = 0; i < rhub->num_ports; i++) { 341 temp = readl(rhub->ports[i]->addr); 342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 343 /* 344 * Compliance Mode Detected. Letting USB Core 345 * handle the Warm Reset 346 */ 347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 348 "Compliance mode detected->port %d", 349 i + 1); 350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 351 "Attempting compliance mode recovery"); 352 353 if (hcd->state == HC_STATE_SUSPENDED) 354 usb_hcd_resume_root_hub(hcd); 355 356 usb_hcd_poll_rh_status(hcd); 357 } 358 } 359 360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 361 mod_timer(&xhci->comp_mode_recovery_timer, 362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 363 } 364 365 /* 366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 367 * that causes ports behind that hardware to enter compliance mode sometimes. 368 * The quirk creates a timer that polls every 2 seconds the link state of 369 * each host controller's port and recovers it by issuing a Warm reset 370 * if Compliance mode is detected, otherwise the port will become "dead" (no 371 * device connections or disconnections will be detected anymore). Becasue no 372 * status event is generated when entering compliance mode (per xhci spec), 373 * this quirk is needed on systems that have the failing hardware installed. 374 */ 375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 376 { 377 xhci->port_status_u0 = 0; 378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 379 0); 380 xhci->comp_mode_recovery_timer.expires = jiffies + 381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 382 383 add_timer(&xhci->comp_mode_recovery_timer); 384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 385 "Compliance mode recovery timer initialized"); 386 } 387 388 /* 389 * This function identifies the systems that have installed the SN65LVPE502CP 390 * USB3.0 re-driver and that need the Compliance Mode Quirk. 391 * Systems: 392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 393 */ 394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 395 { 396 const char *dmi_product_name, *dmi_sys_vendor; 397 398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 400 if (!dmi_product_name || !dmi_sys_vendor) 401 return false; 402 403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 404 return false; 405 406 if (strstr(dmi_product_name, "Z420") || 407 strstr(dmi_product_name, "Z620") || 408 strstr(dmi_product_name, "Z820") || 409 strstr(dmi_product_name, "Z1 Workstation")) 410 return true; 411 412 return false; 413 } 414 415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 416 { 417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 418 } 419 420 421 /* 422 * Initialize memory for HCD and xHC (one-time init). 423 * 424 * Program the PAGESIZE register, initialize the device context array, create 425 * device contexts (?), set up a command ring segment (or two?), create event 426 * ring (one for now). 427 */ 428 static int xhci_init(struct usb_hcd *hcd) 429 { 430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 431 int retval; 432 433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 434 spin_lock_init(&xhci->lock); 435 if (xhci->hci_version == 0x95 && link_quirk) { 436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 437 "QUIRK: Not clearing Link TRB chain bits."); 438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 439 } else { 440 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 441 "xHCI doesn't need link TRB QUIRK"); 442 } 443 retval = xhci_mem_init(xhci, GFP_KERNEL); 444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 445 446 /* Initializing Compliance Mode Recovery Data If Needed */ 447 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 448 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 449 compliance_mode_recovery_timer_init(xhci); 450 } 451 452 return retval; 453 } 454 455 /*-------------------------------------------------------------------------*/ 456 457 static int xhci_run_finished(struct xhci_hcd *xhci) 458 { 459 struct xhci_interrupter *ir = xhci->interrupter; 460 unsigned long flags; 461 u32 temp; 462 463 /* 464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 465 * Protect the short window before host is running with a lock 466 */ 467 spin_lock_irqsave(&xhci->lock, flags); 468 469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 470 temp = readl(&xhci->op_regs->command); 471 temp |= (CMD_EIE); 472 writel(temp, &xhci->op_regs->command); 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 475 xhci_enable_interrupter(ir); 476 477 if (xhci_start(xhci)) { 478 xhci_halt(xhci); 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 return -ENODEV; 481 } 482 483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 484 485 if (xhci->quirks & XHCI_NEC_HOST) 486 xhci_ring_cmd_db(xhci); 487 488 spin_unlock_irqrestore(&xhci->lock, flags); 489 490 return 0; 491 } 492 493 /* 494 * Start the HC after it was halted. 495 * 496 * This function is called by the USB core when the HC driver is added. 497 * Its opposite is xhci_stop(). 498 * 499 * xhci_init() must be called once before this function can be called. 500 * Reset the HC, enable device slot contexts, program DCBAAP, and 501 * set command ring pointer and event ring pointer. 502 * 503 * Setup MSI-X vectors and enable interrupts. 504 */ 505 int xhci_run(struct usb_hcd *hcd) 506 { 507 u32 temp; 508 u64 temp_64; 509 int ret; 510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 511 struct xhci_interrupter *ir = xhci->interrupter; 512 /* Start the xHCI host controller running only after the USB 2.0 roothub 513 * is setup. 514 */ 515 516 hcd->uses_new_polling = 1; 517 if (!usb_hcd_is_primary_hcd(hcd)) 518 return xhci_run_finished(xhci); 519 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 521 522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 523 temp_64 &= ~ERST_PTR_MASK; 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 526 527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 528 "// Set the interrupt modulation register"); 529 temp = readl(&ir->ir_set->irq_control); 530 temp &= ~ER_IRQ_INTERVAL_MASK; 531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 532 writel(temp, &ir->ir_set->irq_control); 533 534 if (xhci->quirks & XHCI_NEC_HOST) { 535 struct xhci_command *command; 536 537 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 538 if (!command) 539 return -ENOMEM; 540 541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 542 TRB_TYPE(TRB_NEC_GET_FW)); 543 if (ret) 544 xhci_free_command(xhci, command); 545 } 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished %s for main hcd", __func__); 548 549 xhci_create_dbc_dev(xhci); 550 551 xhci_debugfs_init(xhci); 552 553 if (xhci_has_one_roothub(xhci)) 554 return xhci_run_finished(xhci); 555 556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 557 558 return 0; 559 } 560 EXPORT_SYMBOL_GPL(xhci_run); 561 562 /* 563 * Stop xHCI driver. 564 * 565 * This function is called by the USB core when the HC driver is removed. 566 * Its opposite is xhci_run(). 567 * 568 * Disable device contexts, disable IRQs, and quiesce the HC. 569 * Reset the HC, finish any completed transactions, and cleanup memory. 570 */ 571 void xhci_stop(struct usb_hcd *hcd) 572 { 573 u32 temp; 574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 575 struct xhci_interrupter *ir = xhci->interrupter; 576 577 mutex_lock(&xhci->mutex); 578 579 /* Only halt host and free memory after both hcds are removed */ 580 if (!usb_hcd_is_primary_hcd(hcd)) { 581 mutex_unlock(&xhci->mutex); 582 return; 583 } 584 585 xhci_remove_dbc_dev(xhci); 586 587 spin_lock_irq(&xhci->lock); 588 xhci->xhc_state |= XHCI_STATE_HALTED; 589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 590 xhci_halt(xhci); 591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 592 spin_unlock_irq(&xhci->lock); 593 594 /* Deleting Compliance Mode Recovery Timer */ 595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 596 (!(xhci_all_ports_seen_u0(xhci)))) { 597 del_timer_sync(&xhci->comp_mode_recovery_timer); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 599 "%s: compliance mode recovery timer deleted", 600 __func__); 601 } 602 603 if (xhci->quirks & XHCI_AMD_PLL_FIX) 604 usb_amd_dev_put(); 605 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Disabling event ring interrupts"); 608 temp = readl(&xhci->op_regs->status); 609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 610 xhci_disable_interrupter(ir); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 613 xhci_mem_cleanup(xhci); 614 xhci_debugfs_exit(xhci); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "xhci_stop completed - status = %x", 617 readl(&xhci->op_regs->status)); 618 mutex_unlock(&xhci->mutex); 619 } 620 EXPORT_SYMBOL_GPL(xhci_stop); 621 622 /* 623 * Shutdown HC (not bus-specific) 624 * 625 * This is called when the machine is rebooting or halting. We assume that the 626 * machine will be powered off, and the HC's internal state will be reset. 627 * Don't bother to free memory. 628 * 629 * This will only ever be called with the main usb_hcd (the USB3 roothub). 630 */ 631 void xhci_shutdown(struct usb_hcd *hcd) 632 { 633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 634 635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 637 638 /* Don't poll the roothubs after shutdown. */ 639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 640 __func__, hcd->self.busnum); 641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 642 del_timer_sync(&hcd->rh_timer); 643 644 if (xhci->shared_hcd) { 645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 646 del_timer_sync(&xhci->shared_hcd->rh_timer); 647 } 648 649 spin_lock_irq(&xhci->lock); 650 xhci_halt(xhci); 651 652 /* 653 * Workaround for spurious wakeps at shutdown with HSW, and for boot 654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 655 */ 656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 657 xhci->quirks & XHCI_RESET_TO_DEFAULT) 658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 659 660 spin_unlock_irq(&xhci->lock); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "xhci_shutdown completed - status = %x", 664 readl(&xhci->op_regs->status)); 665 } 666 EXPORT_SYMBOL_GPL(xhci_shutdown); 667 668 #ifdef CONFIG_PM 669 static void xhci_save_registers(struct xhci_hcd *xhci) 670 { 671 struct xhci_interrupter *ir = xhci->interrupter; 672 673 xhci->s3.command = readl(&xhci->op_regs->command); 674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 677 678 if (!ir) 679 return; 680 681 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 685 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 686 } 687 688 static void xhci_restore_registers(struct xhci_hcd *xhci) 689 { 690 struct xhci_interrupter *ir = xhci->interrupter; 691 692 writel(xhci->s3.command, &xhci->op_regs->command); 693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 696 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 700 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 701 } 702 703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 704 { 705 u64 val_64; 706 707 /* step 2: initialize command ring buffer */ 708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 711 xhci->cmd_ring->dequeue) & 712 (u64) ~CMD_RING_RSVD_BITS) | 713 xhci->cmd_ring->cycle_state; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Setting command ring address to 0x%llx", 716 (long unsigned long) val_64); 717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 718 } 719 720 /* 721 * The whole command ring must be cleared to zero when we suspend the host. 722 * 723 * The host doesn't save the command ring pointer in the suspend well, so we 724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 725 * aligned, because of the reserved bits in the command ring dequeue pointer 726 * register. Therefore, we can't just set the dequeue pointer back in the 727 * middle of the ring (TRBs are 16-byte aligned). 728 */ 729 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 730 { 731 struct xhci_ring *ring; 732 struct xhci_segment *seg; 733 734 ring = xhci->cmd_ring; 735 seg = ring->deq_seg; 736 do { 737 memset(seg->trbs, 0, 738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 740 cpu_to_le32(~TRB_CYCLE); 741 seg = seg->next; 742 } while (seg != ring->deq_seg); 743 744 /* Reset the software enqueue and dequeue pointers */ 745 ring->deq_seg = ring->first_seg; 746 ring->dequeue = ring->first_seg->trbs; 747 ring->enq_seg = ring->deq_seg; 748 ring->enqueue = ring->dequeue; 749 750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 751 /* 752 * Ring is now zeroed, so the HW should look for change of ownership 753 * when the cycle bit is set to 1. 754 */ 755 ring->cycle_state = 1; 756 757 /* 758 * Reset the hardware dequeue pointer. 759 * Yes, this will need to be re-written after resume, but we're paranoid 760 * and want to make sure the hardware doesn't access bogus memory 761 * because, say, the BIOS or an SMI started the host without changing 762 * the command ring pointers. 763 */ 764 xhci_set_cmd_ring_deq(xhci); 765 } 766 767 /* 768 * Disable port wake bits if do_wakeup is not set. 769 * 770 * Also clear a possible internal port wake state left hanging for ports that 771 * detected termination but never successfully enumerated (trained to 0U). 772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 773 * at enumeration clears this wake, force one here as well for unconnected ports 774 */ 775 776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 777 struct xhci_hub *rhub, 778 bool do_wakeup) 779 { 780 unsigned long flags; 781 u32 t1, t2, portsc; 782 int i; 783 784 spin_lock_irqsave(&xhci->lock, flags); 785 786 for (i = 0; i < rhub->num_ports; i++) { 787 portsc = readl(rhub->ports[i]->addr); 788 t1 = xhci_port_state_to_neutral(portsc); 789 t2 = t1; 790 791 /* clear wake bits if do_wake is not set */ 792 if (!do_wakeup) 793 t2 &= ~PORT_WAKE_BITS; 794 795 /* Don't touch csc bit if connected or connect change is set */ 796 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 797 t2 |= PORT_CSC; 798 799 if (t1 != t2) { 800 writel(t2, rhub->ports[i]->addr); 801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 802 rhub->hcd->self.busnum, i + 1, portsc, t2); 803 } 804 } 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 } 807 808 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 809 { 810 struct xhci_port **ports; 811 int port_index; 812 u32 status; 813 u32 portsc; 814 815 status = readl(&xhci->op_regs->status); 816 if (status & STS_EINT) 817 return true; 818 /* 819 * Checking STS_EINT is not enough as there is a lag between a change 820 * bit being set and the Port Status Change Event that it generated 821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 822 */ 823 824 port_index = xhci->usb2_rhub.num_ports; 825 ports = xhci->usb2_rhub.ports; 826 while (port_index--) { 827 portsc = readl(ports[port_index]->addr); 828 if (portsc & PORT_CHANGE_MASK || 829 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 830 return true; 831 } 832 port_index = xhci->usb3_rhub.num_ports; 833 ports = xhci->usb3_rhub.ports; 834 while (port_index--) { 835 portsc = readl(ports[port_index]->addr); 836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 837 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 838 return true; 839 } 840 return false; 841 } 842 843 /* 844 * Stop HC (not bus-specific) 845 * 846 * This is called when the machine transition into S3/S4 mode. 847 * 848 */ 849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 850 { 851 int rc = 0; 852 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 853 struct usb_hcd *hcd = xhci_to_hcd(xhci); 854 u32 command; 855 u32 res; 856 857 if (!hcd->state) 858 return 0; 859 860 if (hcd->state != HC_STATE_SUSPENDED || 861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 862 return -EINVAL; 863 864 /* Clear root port wake on bits if wakeup not allowed. */ 865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 867 868 if (!HCD_HW_ACCESSIBLE(hcd)) 869 return 0; 870 871 xhci_dbc_suspend(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 875 __func__, hcd->self.busnum); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 if (xhci->shared_hcd) { 879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 880 del_timer_sync(&xhci->shared_hcd->rh_timer); 881 } 882 883 if (xhci->quirks & XHCI_SUSPEND_DELAY) 884 usleep_range(1000, 1500); 885 886 spin_lock_irq(&xhci->lock); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 if (xhci->shared_hcd) 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = readl(&xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 writel(command, &xhci->op_regs->command); 897 898 /* Some chips from Fresco Logic need an extraordinary delay */ 899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 900 901 if (xhci_handshake(&xhci->op_regs->status, 902 STS_HALT, STS_HALT, delay)) { 903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 904 spin_unlock_irq(&xhci->lock); 905 return -ETIMEDOUT; 906 } 907 xhci_clear_command_ring(xhci); 908 909 /* step 3: save registers */ 910 xhci_save_registers(xhci); 911 912 /* step 4: set CSS flag */ 913 command = readl(&xhci->op_regs->command); 914 command |= CMD_CSS; 915 writel(command, &xhci->op_regs->command); 916 xhci->broken_suspend = 0; 917 if (xhci_handshake(&xhci->op_regs->status, 918 STS_SAVE, 0, 20 * 1000)) { 919 /* 920 * AMD SNPS xHC 3.0 occasionally does not clear the 921 * SSS bit of USBSTS and when driver tries to poll 922 * to see if the xHC clears BIT(8) which never happens 923 * and driver assumes that controller is not responding 924 * and times out. To workaround this, its good to check 925 * if SRE and HCE bits are not set (as per xhci 926 * Section 5.4.2) and bypass the timeout. 927 */ 928 res = readl(&xhci->op_regs->status); 929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 930 (((res & STS_SRE) == 0) && 931 ((res & STS_HCE) == 0))) { 932 xhci->broken_suspend = 1; 933 } else { 934 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 } 939 spin_unlock_irq(&xhci->lock); 940 941 /* 942 * Deleting Compliance Mode Recovery Timer because the xHCI Host 943 * is about to be suspended. 944 */ 945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 946 (!(xhci_all_ports_seen_u0(xhci)))) { 947 del_timer_sync(&xhci->comp_mode_recovery_timer); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 949 "%s: compliance mode recovery timer deleted", 950 __func__); 951 } 952 953 return rc; 954 } 955 EXPORT_SYMBOL_GPL(xhci_suspend); 956 957 /* 958 * start xHC (not bus-specific) 959 * 960 * This is called when the machine transition from S3/S4 mode. 961 * 962 */ 963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 964 { 965 bool hibernated = (msg.event == PM_EVENT_RESTORE); 966 u32 command, temp = 0; 967 struct usb_hcd *hcd = xhci_to_hcd(xhci); 968 int retval = 0; 969 bool comp_timer_running = false; 970 bool pending_portevent = false; 971 bool suspended_usb3_devs = false; 972 bool reinit_xhc = false; 973 974 if (!hcd->state) 975 return 0; 976 977 /* Wait a bit if either of the roothubs need to settle from the 978 * transition into bus suspend. 979 */ 980 981 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 982 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 983 msleep(100); 984 985 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 986 if (xhci->shared_hcd) 987 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 988 989 spin_lock_irq(&xhci->lock); 990 991 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 992 reinit_xhc = true; 993 994 if (!reinit_xhc) { 995 /* 996 * Some controllers might lose power during suspend, so wait 997 * for controller not ready bit to clear, just as in xHC init. 998 */ 999 retval = xhci_handshake(&xhci->op_regs->status, 1000 STS_CNR, 0, 10 * 1000 * 1000); 1001 if (retval) { 1002 xhci_warn(xhci, "Controller not ready at resume %d\n", 1003 retval); 1004 spin_unlock_irq(&xhci->lock); 1005 return retval; 1006 } 1007 /* step 1: restore register */ 1008 xhci_restore_registers(xhci); 1009 /* step 2: initialize command ring buffer */ 1010 xhci_set_cmd_ring_deq(xhci); 1011 /* step 3: restore state and start state*/ 1012 /* step 3: set CRS flag */ 1013 command = readl(&xhci->op_regs->command); 1014 command |= CMD_CRS; 1015 writel(command, &xhci->op_regs->command); 1016 /* 1017 * Some controllers take up to 55+ ms to complete the controller 1018 * restore so setting the timeout to 100ms. Xhci specification 1019 * doesn't mention any timeout value. 1020 */ 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_RESTORE, 0, 100 * 1000)) { 1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 } 1028 1029 temp = readl(&xhci->op_regs->status); 1030 1031 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1032 if ((temp & (STS_SRE | STS_HCE)) && 1033 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1034 reinit_xhc = true; 1035 if (!xhci->broken_suspend) 1036 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1037 } 1038 1039 if (reinit_xhc) { 1040 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1041 !(xhci_all_ports_seen_u0(xhci))) { 1042 del_timer_sync(&xhci->comp_mode_recovery_timer); 1043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1044 "Compliance Mode Recovery Timer deleted!"); 1045 } 1046 1047 /* Let the USB core know _both_ roothubs lost power. */ 1048 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1049 if (xhci->shared_hcd) 1050 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1051 1052 xhci_dbg(xhci, "Stop HCD\n"); 1053 xhci_halt(xhci); 1054 xhci_zero_64b_regs(xhci); 1055 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1056 spin_unlock_irq(&xhci->lock); 1057 if (retval) 1058 return retval; 1059 1060 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1061 temp = readl(&xhci->op_regs->status); 1062 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1063 xhci_disable_interrupter(xhci->interrupter); 1064 1065 xhci_dbg(xhci, "cleaning up memory\n"); 1066 xhci_mem_cleanup(xhci); 1067 xhci_debugfs_exit(xhci); 1068 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1069 readl(&xhci->op_regs->status)); 1070 1071 /* USB core calls the PCI reinit and start functions twice: 1072 * first with the primary HCD, and then with the secondary HCD. 1073 * If we don't do the same, the host will never be started. 1074 */ 1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1076 retval = xhci_init(hcd); 1077 if (retval) 1078 return retval; 1079 comp_timer_running = true; 1080 1081 xhci_dbg(xhci, "Start the primary HCD\n"); 1082 retval = xhci_run(hcd); 1083 if (!retval && xhci->shared_hcd) { 1084 xhci_dbg(xhci, "Start the secondary HCD\n"); 1085 retval = xhci_run(xhci->shared_hcd); 1086 } 1087 1088 hcd->state = HC_STATE_SUSPENDED; 1089 if (xhci->shared_hcd) 1090 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1091 goto done; 1092 } 1093 1094 /* step 4: set Run/Stop bit */ 1095 command = readl(&xhci->op_regs->command); 1096 command |= CMD_RUN; 1097 writel(command, &xhci->op_regs->command); 1098 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1099 0, 250 * 1000); 1100 1101 /* step 5: walk topology and initialize portsc, 1102 * portpmsc and portli 1103 */ 1104 /* this is done in bus_resume */ 1105 1106 /* step 6: restart each of the previously 1107 * Running endpoints by ringing their doorbells 1108 */ 1109 1110 spin_unlock_irq(&xhci->lock); 1111 1112 xhci_dbc_resume(xhci); 1113 1114 done: 1115 if (retval == 0) { 1116 /* 1117 * Resume roothubs only if there are pending events. 1118 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1119 * the first wake signalling failed, give it that chance if 1120 * there are suspended USB 3 devices. 1121 */ 1122 if (xhci->usb3_rhub.bus_state.suspended_ports || 1123 xhci->usb3_rhub.bus_state.bus_suspended) 1124 suspended_usb3_devs = true; 1125 1126 pending_portevent = xhci_pending_portevent(xhci); 1127 1128 if (suspended_usb3_devs && !pending_portevent && 1129 msg.event == PM_EVENT_AUTO_RESUME) { 1130 msleep(120); 1131 pending_portevent = xhci_pending_portevent(xhci); 1132 } 1133 1134 if (pending_portevent) { 1135 if (xhci->shared_hcd) 1136 usb_hcd_resume_root_hub(xhci->shared_hcd); 1137 usb_hcd_resume_root_hub(hcd); 1138 } 1139 } 1140 /* 1141 * If system is subject to the Quirk, Compliance Mode Timer needs to 1142 * be re-initialized Always after a system resume. Ports are subject 1143 * to suffer the Compliance Mode issue again. It doesn't matter if 1144 * ports have entered previously to U0 before system's suspension. 1145 */ 1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1147 compliance_mode_recovery_timer_init(xhci); 1148 1149 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1150 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1151 1152 /* Re-enable port polling. */ 1153 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1154 __func__, hcd->self.busnum); 1155 if (xhci->shared_hcd) { 1156 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1157 usb_hcd_poll_rh_status(xhci->shared_hcd); 1158 } 1159 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1160 usb_hcd_poll_rh_status(hcd); 1161 1162 return retval; 1163 } 1164 EXPORT_SYMBOL_GPL(xhci_resume); 1165 #endif /* CONFIG_PM */ 1166 1167 /*-------------------------------------------------------------------------*/ 1168 1169 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1170 { 1171 void *temp; 1172 int ret = 0; 1173 unsigned int buf_len; 1174 enum dma_data_direction dir; 1175 1176 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1177 buf_len = urb->transfer_buffer_length; 1178 1179 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1180 dev_to_node(hcd->self.sysdev)); 1181 if (!temp) 1182 return -ENOMEM; 1183 1184 if (usb_urb_dir_out(urb)) 1185 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1186 temp, buf_len, 0); 1187 1188 urb->transfer_buffer = temp; 1189 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1190 urb->transfer_buffer, 1191 urb->transfer_buffer_length, 1192 dir); 1193 1194 if (dma_mapping_error(hcd->self.sysdev, 1195 urb->transfer_dma)) { 1196 ret = -EAGAIN; 1197 kfree(temp); 1198 } else { 1199 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1200 } 1201 1202 return ret; 1203 } 1204 1205 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1206 struct urb *urb) 1207 { 1208 bool ret = false; 1209 unsigned int i; 1210 unsigned int len = 0; 1211 unsigned int trb_size; 1212 unsigned int max_pkt; 1213 struct scatterlist *sg; 1214 struct scatterlist *tail_sg; 1215 1216 tail_sg = urb->sg; 1217 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1218 1219 if (!urb->num_sgs) 1220 return ret; 1221 1222 if (urb->dev->speed >= USB_SPEED_SUPER) 1223 trb_size = TRB_CACHE_SIZE_SS; 1224 else 1225 trb_size = TRB_CACHE_SIZE_HS; 1226 1227 if (urb->transfer_buffer_length != 0 && 1228 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1229 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1230 len = len + sg->length; 1231 if (i > trb_size - 2) { 1232 len = len - tail_sg->length; 1233 if (len < max_pkt) { 1234 ret = true; 1235 break; 1236 } 1237 1238 tail_sg = sg_next(tail_sg); 1239 } 1240 } 1241 } 1242 return ret; 1243 } 1244 1245 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1246 { 1247 unsigned int len; 1248 unsigned int buf_len; 1249 enum dma_data_direction dir; 1250 1251 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1252 1253 buf_len = urb->transfer_buffer_length; 1254 1255 if (IS_ENABLED(CONFIG_HAS_DMA) && 1256 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1257 dma_unmap_single(hcd->self.sysdev, 1258 urb->transfer_dma, 1259 urb->transfer_buffer_length, 1260 dir); 1261 1262 if (usb_urb_dir_in(urb)) { 1263 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1264 urb->transfer_buffer, 1265 buf_len, 1266 0); 1267 if (len != buf_len) { 1268 xhci_dbg(hcd_to_xhci(hcd), 1269 "Copy from tmp buf to urb sg list failed\n"); 1270 urb->actual_length = len; 1271 } 1272 } 1273 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1274 kfree(urb->transfer_buffer); 1275 urb->transfer_buffer = NULL; 1276 } 1277 1278 /* 1279 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1280 * we'll copy the actual data into the TRB address register. This is limited to 1281 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1282 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1283 */ 1284 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1285 gfp_t mem_flags) 1286 { 1287 struct xhci_hcd *xhci; 1288 1289 xhci = hcd_to_xhci(hcd); 1290 1291 if (xhci_urb_suitable_for_idt(urb)) 1292 return 0; 1293 1294 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1295 if (xhci_urb_temp_buffer_required(hcd, urb)) 1296 return xhci_map_temp_buffer(hcd, urb); 1297 } 1298 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1299 } 1300 1301 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1302 { 1303 struct xhci_hcd *xhci; 1304 bool unmap_temp_buf = false; 1305 1306 xhci = hcd_to_xhci(hcd); 1307 1308 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1309 unmap_temp_buf = true; 1310 1311 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1312 xhci_unmap_temp_buf(hcd, urb); 1313 else 1314 usb_hcd_unmap_urb_for_dma(hcd, urb); 1315 } 1316 1317 /** 1318 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1319 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1320 * value to right shift 1 for the bitmask. 1321 * 1322 * Index = (epnum * 2) + direction - 1, 1323 * where direction = 0 for OUT, 1 for IN. 1324 * For control endpoints, the IN index is used (OUT index is unused), so 1325 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1326 */ 1327 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1328 { 1329 unsigned int index; 1330 if (usb_endpoint_xfer_control(desc)) 1331 index = (unsigned int) (usb_endpoint_num(desc)*2); 1332 else 1333 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1334 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1335 return index; 1336 } 1337 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1338 1339 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1340 * address from the XHCI endpoint index. 1341 */ 1342 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1343 { 1344 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1345 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1346 return direction | number; 1347 } 1348 1349 /* Find the flag for this endpoint (for use in the control context). Use the 1350 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1351 * bit 1, etc. 1352 */ 1353 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1354 { 1355 return 1 << (xhci_get_endpoint_index(desc) + 1); 1356 } 1357 1358 /* Compute the last valid endpoint context index. Basically, this is the 1359 * endpoint index plus one. For slot contexts with more than valid endpoint, 1360 * we find the most significant bit set in the added contexts flags. 1361 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1362 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1363 */ 1364 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1365 { 1366 return fls(added_ctxs) - 1; 1367 } 1368 1369 /* Returns 1 if the arguments are OK; 1370 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1371 */ 1372 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1373 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1374 const char *func) { 1375 struct xhci_hcd *xhci; 1376 struct xhci_virt_device *virt_dev; 1377 1378 if (!hcd || (check_ep && !ep) || !udev) { 1379 pr_debug("xHCI %s called with invalid args\n", func); 1380 return -EINVAL; 1381 } 1382 if (!udev->parent) { 1383 pr_debug("xHCI %s called for root hub\n", func); 1384 return 0; 1385 } 1386 1387 xhci = hcd_to_xhci(hcd); 1388 if (check_virt_dev) { 1389 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1390 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1391 func); 1392 return -EINVAL; 1393 } 1394 1395 virt_dev = xhci->devs[udev->slot_id]; 1396 if (virt_dev->udev != udev) { 1397 xhci_dbg(xhci, "xHCI %s called with udev and " 1398 "virt_dev does not match\n", func); 1399 return -EINVAL; 1400 } 1401 } 1402 1403 if (xhci->xhc_state & XHCI_STATE_HALTED) 1404 return -ENODEV; 1405 1406 return 1; 1407 } 1408 1409 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1410 struct usb_device *udev, struct xhci_command *command, 1411 bool ctx_change, bool must_succeed); 1412 1413 /* 1414 * Full speed devices may have a max packet size greater than 8 bytes, but the 1415 * USB core doesn't know that until it reads the first 8 bytes of the 1416 * descriptor. If the usb_device's max packet size changes after that point, 1417 * we need to issue an evaluate context command and wait on it. 1418 */ 1419 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1420 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1421 { 1422 struct xhci_container_ctx *out_ctx; 1423 struct xhci_input_control_ctx *ctrl_ctx; 1424 struct xhci_ep_ctx *ep_ctx; 1425 struct xhci_command *command; 1426 int max_packet_size; 1427 int hw_max_packet_size; 1428 int ret = 0; 1429 1430 out_ctx = xhci->devs[slot_id]->out_ctx; 1431 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1432 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1433 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1434 if (hw_max_packet_size != max_packet_size) { 1435 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1436 "Max Packet Size for ep 0 changed."); 1437 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1438 "Max packet size in usb_device = %d", 1439 max_packet_size); 1440 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1441 "Max packet size in xHCI HW = %d", 1442 hw_max_packet_size); 1443 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1444 "Issuing evaluate context command."); 1445 1446 /* Set up the input context flags for the command */ 1447 /* FIXME: This won't work if a non-default control endpoint 1448 * changes max packet sizes. 1449 */ 1450 1451 command = xhci_alloc_command(xhci, true, mem_flags); 1452 if (!command) 1453 return -ENOMEM; 1454 1455 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1456 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1457 if (!ctrl_ctx) { 1458 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1459 __func__); 1460 ret = -ENOMEM; 1461 goto command_cleanup; 1462 } 1463 /* Set up the modified control endpoint 0 */ 1464 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1465 xhci->devs[slot_id]->out_ctx, ep_index); 1466 1467 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1468 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1469 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1470 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1471 1472 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1473 ctrl_ctx->drop_flags = 0; 1474 1475 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1476 true, false); 1477 1478 /* Clean up the input context for later use by bandwidth 1479 * functions. 1480 */ 1481 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1482 command_cleanup: 1483 kfree(command->completion); 1484 kfree(command); 1485 } 1486 return ret; 1487 } 1488 1489 /* 1490 * non-error returns are a promise to giveback() the urb later 1491 * we drop ownership so next owner (or urb unlink) can get it 1492 */ 1493 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1494 { 1495 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1496 unsigned long flags; 1497 int ret = 0; 1498 unsigned int slot_id, ep_index; 1499 unsigned int *ep_state; 1500 struct urb_priv *urb_priv; 1501 int num_tds; 1502 1503 if (!urb) 1504 return -EINVAL; 1505 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1506 true, true, __func__); 1507 if (ret <= 0) 1508 return ret ? ret : -EINVAL; 1509 1510 slot_id = urb->dev->slot_id; 1511 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1512 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1513 1514 if (!HCD_HW_ACCESSIBLE(hcd)) 1515 return -ESHUTDOWN; 1516 1517 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1518 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1519 return -ENODEV; 1520 } 1521 1522 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1523 num_tds = urb->number_of_packets; 1524 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1525 urb->transfer_buffer_length > 0 && 1526 urb->transfer_flags & URB_ZERO_PACKET && 1527 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1528 num_tds = 2; 1529 else 1530 num_tds = 1; 1531 1532 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1533 if (!urb_priv) 1534 return -ENOMEM; 1535 1536 urb_priv->num_tds = num_tds; 1537 urb_priv->num_tds_done = 0; 1538 urb->hcpriv = urb_priv; 1539 1540 trace_xhci_urb_enqueue(urb); 1541 1542 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1543 /* Check to see if the max packet size for the default control 1544 * endpoint changed during FS device enumeration 1545 */ 1546 if (urb->dev->speed == USB_SPEED_FULL) { 1547 ret = xhci_check_maxpacket(xhci, slot_id, 1548 ep_index, urb, mem_flags); 1549 if (ret < 0) { 1550 xhci_urb_free_priv(urb_priv); 1551 urb->hcpriv = NULL; 1552 return ret; 1553 } 1554 } 1555 } 1556 1557 spin_lock_irqsave(&xhci->lock, flags); 1558 1559 if (xhci->xhc_state & XHCI_STATE_DYING) { 1560 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1561 urb->ep->desc.bEndpointAddress, urb); 1562 ret = -ESHUTDOWN; 1563 goto free_priv; 1564 } 1565 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1566 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1567 *ep_state); 1568 ret = -EINVAL; 1569 goto free_priv; 1570 } 1571 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1572 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1573 ret = -EINVAL; 1574 goto free_priv; 1575 } 1576 1577 switch (usb_endpoint_type(&urb->ep->desc)) { 1578 1579 case USB_ENDPOINT_XFER_CONTROL: 1580 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1581 slot_id, ep_index); 1582 break; 1583 case USB_ENDPOINT_XFER_BULK: 1584 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1585 slot_id, ep_index); 1586 break; 1587 case USB_ENDPOINT_XFER_INT: 1588 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1589 slot_id, ep_index); 1590 break; 1591 case USB_ENDPOINT_XFER_ISOC: 1592 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1593 slot_id, ep_index); 1594 } 1595 1596 if (ret) { 1597 free_priv: 1598 xhci_urb_free_priv(urb_priv); 1599 urb->hcpriv = NULL; 1600 } 1601 spin_unlock_irqrestore(&xhci->lock, flags); 1602 return ret; 1603 } 1604 1605 /* 1606 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1607 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1608 * should pick up where it left off in the TD, unless a Set Transfer Ring 1609 * Dequeue Pointer is issued. 1610 * 1611 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1612 * the ring. Since the ring is a contiguous structure, they can't be physically 1613 * removed. Instead, there are two options: 1614 * 1615 * 1) If the HC is in the middle of processing the URB to be canceled, we 1616 * simply move the ring's dequeue pointer past those TRBs using the Set 1617 * Transfer Ring Dequeue Pointer command. This will be the common case, 1618 * when drivers timeout on the last submitted URB and attempt to cancel. 1619 * 1620 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1621 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1622 * HC will need to invalidate the any TRBs it has cached after the stop 1623 * endpoint command, as noted in the xHCI 0.95 errata. 1624 * 1625 * 3) The TD may have completed by the time the Stop Endpoint Command 1626 * completes, so software needs to handle that case too. 1627 * 1628 * This function should protect against the TD enqueueing code ringing the 1629 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1630 * It also needs to account for multiple cancellations on happening at the same 1631 * time for the same endpoint. 1632 * 1633 * Note that this function can be called in any context, or so says 1634 * usb_hcd_unlink_urb() 1635 */ 1636 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1637 { 1638 unsigned long flags; 1639 int ret, i; 1640 u32 temp; 1641 struct xhci_hcd *xhci; 1642 struct urb_priv *urb_priv; 1643 struct xhci_td *td; 1644 unsigned int ep_index; 1645 struct xhci_ring *ep_ring; 1646 struct xhci_virt_ep *ep; 1647 struct xhci_command *command; 1648 struct xhci_virt_device *vdev; 1649 1650 xhci = hcd_to_xhci(hcd); 1651 spin_lock_irqsave(&xhci->lock, flags); 1652 1653 trace_xhci_urb_dequeue(urb); 1654 1655 /* Make sure the URB hasn't completed or been unlinked already */ 1656 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1657 if (ret) 1658 goto done; 1659 1660 /* give back URB now if we can't queue it for cancel */ 1661 vdev = xhci->devs[urb->dev->slot_id]; 1662 urb_priv = urb->hcpriv; 1663 if (!vdev || !urb_priv) 1664 goto err_giveback; 1665 1666 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1667 ep = &vdev->eps[ep_index]; 1668 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1669 if (!ep || !ep_ring) 1670 goto err_giveback; 1671 1672 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1673 temp = readl(&xhci->op_regs->status); 1674 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1675 xhci_hc_died(xhci); 1676 goto done; 1677 } 1678 1679 /* 1680 * check ring is not re-allocated since URB was enqueued. If it is, then 1681 * make sure none of the ring related pointers in this URB private data 1682 * are touched, such as td_list, otherwise we overwrite freed data 1683 */ 1684 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1685 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1686 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1687 td = &urb_priv->td[i]; 1688 if (!list_empty(&td->cancelled_td_list)) 1689 list_del_init(&td->cancelled_td_list); 1690 } 1691 goto err_giveback; 1692 } 1693 1694 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1695 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1696 "HC halted, freeing TD manually."); 1697 for (i = urb_priv->num_tds_done; 1698 i < urb_priv->num_tds; 1699 i++) { 1700 td = &urb_priv->td[i]; 1701 if (!list_empty(&td->td_list)) 1702 list_del_init(&td->td_list); 1703 if (!list_empty(&td->cancelled_td_list)) 1704 list_del_init(&td->cancelled_td_list); 1705 } 1706 goto err_giveback; 1707 } 1708 1709 i = urb_priv->num_tds_done; 1710 if (i < urb_priv->num_tds) 1711 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1712 "Cancel URB %p, dev %s, ep 0x%x, " 1713 "starting at offset 0x%llx", 1714 urb, urb->dev->devpath, 1715 urb->ep->desc.bEndpointAddress, 1716 (unsigned long long) xhci_trb_virt_to_dma( 1717 urb_priv->td[i].start_seg, 1718 urb_priv->td[i].first_trb)); 1719 1720 for (; i < urb_priv->num_tds; i++) { 1721 td = &urb_priv->td[i]; 1722 /* TD can already be on cancelled list if ep halted on it */ 1723 if (list_empty(&td->cancelled_td_list)) { 1724 td->cancel_status = TD_DIRTY; 1725 list_add_tail(&td->cancelled_td_list, 1726 &ep->cancelled_td_list); 1727 } 1728 } 1729 1730 /* Queue a stop endpoint command, but only if this is 1731 * the first cancellation to be handled. 1732 */ 1733 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1734 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1735 if (!command) { 1736 ret = -ENOMEM; 1737 goto done; 1738 } 1739 ep->ep_state |= EP_STOP_CMD_PENDING; 1740 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1741 ep_index, 0); 1742 xhci_ring_cmd_db(xhci); 1743 } 1744 done: 1745 spin_unlock_irqrestore(&xhci->lock, flags); 1746 return ret; 1747 1748 err_giveback: 1749 if (urb_priv) 1750 xhci_urb_free_priv(urb_priv); 1751 usb_hcd_unlink_urb_from_ep(hcd, urb); 1752 spin_unlock_irqrestore(&xhci->lock, flags); 1753 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1754 return ret; 1755 } 1756 1757 /* Drop an endpoint from a new bandwidth configuration for this device. 1758 * Only one call to this function is allowed per endpoint before 1759 * check_bandwidth() or reset_bandwidth() must be called. 1760 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1761 * add the endpoint to the schedule with possibly new parameters denoted by a 1762 * different endpoint descriptor in usb_host_endpoint. 1763 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1764 * not allowed. 1765 * 1766 * The USB core will not allow URBs to be queued to an endpoint that is being 1767 * disabled, so there's no need for mutual exclusion to protect 1768 * the xhci->devs[slot_id] structure. 1769 */ 1770 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1771 struct usb_host_endpoint *ep) 1772 { 1773 struct xhci_hcd *xhci; 1774 struct xhci_container_ctx *in_ctx, *out_ctx; 1775 struct xhci_input_control_ctx *ctrl_ctx; 1776 unsigned int ep_index; 1777 struct xhci_ep_ctx *ep_ctx; 1778 u32 drop_flag; 1779 u32 new_add_flags, new_drop_flags; 1780 int ret; 1781 1782 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1783 if (ret <= 0) 1784 return ret; 1785 xhci = hcd_to_xhci(hcd); 1786 if (xhci->xhc_state & XHCI_STATE_DYING) 1787 return -ENODEV; 1788 1789 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1790 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1791 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1792 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1793 __func__, drop_flag); 1794 return 0; 1795 } 1796 1797 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1798 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1799 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1800 if (!ctrl_ctx) { 1801 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1802 __func__); 1803 return 0; 1804 } 1805 1806 ep_index = xhci_get_endpoint_index(&ep->desc); 1807 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1808 /* If the HC already knows the endpoint is disabled, 1809 * or the HCD has noted it is disabled, ignore this request 1810 */ 1811 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1812 le32_to_cpu(ctrl_ctx->drop_flags) & 1813 xhci_get_endpoint_flag(&ep->desc)) { 1814 /* Do not warn when called after a usb_device_reset */ 1815 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1816 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1817 __func__, ep); 1818 return 0; 1819 } 1820 1821 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1822 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1823 1824 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1825 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1826 1827 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1828 1829 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1830 1831 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1832 (unsigned int) ep->desc.bEndpointAddress, 1833 udev->slot_id, 1834 (unsigned int) new_drop_flags, 1835 (unsigned int) new_add_flags); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1839 1840 /* Add an endpoint to a new possible bandwidth configuration for this device. 1841 * Only one call to this function is allowed per endpoint before 1842 * check_bandwidth() or reset_bandwidth() must be called. 1843 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1844 * add the endpoint to the schedule with possibly new parameters denoted by a 1845 * different endpoint descriptor in usb_host_endpoint. 1846 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1847 * not allowed. 1848 * 1849 * The USB core will not allow URBs to be queued to an endpoint until the 1850 * configuration or alt setting is installed in the device, so there's no need 1851 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1852 */ 1853 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1854 struct usb_host_endpoint *ep) 1855 { 1856 struct xhci_hcd *xhci; 1857 struct xhci_container_ctx *in_ctx; 1858 unsigned int ep_index; 1859 struct xhci_input_control_ctx *ctrl_ctx; 1860 struct xhci_ep_ctx *ep_ctx; 1861 u32 added_ctxs; 1862 u32 new_add_flags, new_drop_flags; 1863 struct xhci_virt_device *virt_dev; 1864 int ret = 0; 1865 1866 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1867 if (ret <= 0) { 1868 /* So we won't queue a reset ep command for a root hub */ 1869 ep->hcpriv = NULL; 1870 return ret; 1871 } 1872 xhci = hcd_to_xhci(hcd); 1873 if (xhci->xhc_state & XHCI_STATE_DYING) 1874 return -ENODEV; 1875 1876 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1877 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1878 /* FIXME when we have to issue an evaluate endpoint command to 1879 * deal with ep0 max packet size changing once we get the 1880 * descriptors 1881 */ 1882 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1883 __func__, added_ctxs); 1884 return 0; 1885 } 1886 1887 virt_dev = xhci->devs[udev->slot_id]; 1888 in_ctx = virt_dev->in_ctx; 1889 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1890 if (!ctrl_ctx) { 1891 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1892 __func__); 1893 return 0; 1894 } 1895 1896 ep_index = xhci_get_endpoint_index(&ep->desc); 1897 /* If this endpoint is already in use, and the upper layers are trying 1898 * to add it again without dropping it, reject the addition. 1899 */ 1900 if (virt_dev->eps[ep_index].ring && 1901 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1902 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1903 "without dropping it.\n", 1904 (unsigned int) ep->desc.bEndpointAddress); 1905 return -EINVAL; 1906 } 1907 1908 /* If the HCD has already noted the endpoint is enabled, 1909 * ignore this request. 1910 */ 1911 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1912 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1913 __func__, ep); 1914 return 0; 1915 } 1916 1917 /* 1918 * Configuration and alternate setting changes must be done in 1919 * process context, not interrupt context (or so documenation 1920 * for usb_set_interface() and usb_set_configuration() claim). 1921 */ 1922 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1923 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1924 __func__, ep->desc.bEndpointAddress); 1925 return -ENOMEM; 1926 } 1927 1928 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1929 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1930 1931 /* If xhci_endpoint_disable() was called for this endpoint, but the 1932 * xHC hasn't been notified yet through the check_bandwidth() call, 1933 * this re-adds a new state for the endpoint from the new endpoint 1934 * descriptors. We must drop and re-add this endpoint, so we leave the 1935 * drop flags alone. 1936 */ 1937 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1938 1939 /* Store the usb_device pointer for later use */ 1940 ep->hcpriv = udev; 1941 1942 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1943 trace_xhci_add_endpoint(ep_ctx); 1944 1945 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1946 (unsigned int) ep->desc.bEndpointAddress, 1947 udev->slot_id, 1948 (unsigned int) new_drop_flags, 1949 (unsigned int) new_add_flags); 1950 return 0; 1951 } 1952 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1953 1954 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1955 { 1956 struct xhci_input_control_ctx *ctrl_ctx; 1957 struct xhci_ep_ctx *ep_ctx; 1958 struct xhci_slot_ctx *slot_ctx; 1959 int i; 1960 1961 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1962 if (!ctrl_ctx) { 1963 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1964 __func__); 1965 return; 1966 } 1967 1968 /* When a device's add flag and drop flag are zero, any subsequent 1969 * configure endpoint command will leave that endpoint's state 1970 * untouched. Make sure we don't leave any old state in the input 1971 * endpoint contexts. 1972 */ 1973 ctrl_ctx->drop_flags = 0; 1974 ctrl_ctx->add_flags = 0; 1975 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1976 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1977 /* Endpoint 0 is always valid */ 1978 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1979 for (i = 1; i < 31; i++) { 1980 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1981 ep_ctx->ep_info = 0; 1982 ep_ctx->ep_info2 = 0; 1983 ep_ctx->deq = 0; 1984 ep_ctx->tx_info = 0; 1985 } 1986 } 1987 1988 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1989 struct usb_device *udev, u32 *cmd_status) 1990 { 1991 int ret; 1992 1993 switch (*cmd_status) { 1994 case COMP_COMMAND_ABORTED: 1995 case COMP_COMMAND_RING_STOPPED: 1996 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1997 ret = -ETIME; 1998 break; 1999 case COMP_RESOURCE_ERROR: 2000 dev_warn(&udev->dev, 2001 "Not enough host controller resources for new device state.\n"); 2002 ret = -ENOMEM; 2003 /* FIXME: can we allocate more resources for the HC? */ 2004 break; 2005 case COMP_BANDWIDTH_ERROR: 2006 case COMP_SECONDARY_BANDWIDTH_ERROR: 2007 dev_warn(&udev->dev, 2008 "Not enough bandwidth for new device state.\n"); 2009 ret = -ENOSPC; 2010 /* FIXME: can we go back to the old state? */ 2011 break; 2012 case COMP_TRB_ERROR: 2013 /* the HCD set up something wrong */ 2014 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2015 "add flag = 1, " 2016 "and endpoint is not disabled.\n"); 2017 ret = -EINVAL; 2018 break; 2019 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2020 dev_warn(&udev->dev, 2021 "ERROR: Incompatible device for endpoint configure command.\n"); 2022 ret = -ENODEV; 2023 break; 2024 case COMP_SUCCESS: 2025 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2026 "Successful Endpoint Configure command"); 2027 ret = 0; 2028 break; 2029 default: 2030 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2031 *cmd_status); 2032 ret = -EINVAL; 2033 break; 2034 } 2035 return ret; 2036 } 2037 2038 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2039 struct usb_device *udev, u32 *cmd_status) 2040 { 2041 int ret; 2042 2043 switch (*cmd_status) { 2044 case COMP_COMMAND_ABORTED: 2045 case COMP_COMMAND_RING_STOPPED: 2046 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2047 ret = -ETIME; 2048 break; 2049 case COMP_PARAMETER_ERROR: 2050 dev_warn(&udev->dev, 2051 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2052 ret = -EINVAL; 2053 break; 2054 case COMP_SLOT_NOT_ENABLED_ERROR: 2055 dev_warn(&udev->dev, 2056 "WARN: slot not enabled for evaluate context command.\n"); 2057 ret = -EINVAL; 2058 break; 2059 case COMP_CONTEXT_STATE_ERROR: 2060 dev_warn(&udev->dev, 2061 "WARN: invalid context state for evaluate context command.\n"); 2062 ret = -EINVAL; 2063 break; 2064 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2065 dev_warn(&udev->dev, 2066 "ERROR: Incompatible device for evaluate context command.\n"); 2067 ret = -ENODEV; 2068 break; 2069 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2070 /* Max Exit Latency too large error */ 2071 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2072 ret = -EINVAL; 2073 break; 2074 case COMP_SUCCESS: 2075 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2076 "Successful evaluate context command"); 2077 ret = 0; 2078 break; 2079 default: 2080 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2081 *cmd_status); 2082 ret = -EINVAL; 2083 break; 2084 } 2085 return ret; 2086 } 2087 2088 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2089 struct xhci_input_control_ctx *ctrl_ctx) 2090 { 2091 u32 valid_add_flags; 2092 u32 valid_drop_flags; 2093 2094 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2095 * (bit 1). The default control endpoint is added during the Address 2096 * Device command and is never removed until the slot is disabled. 2097 */ 2098 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2099 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2100 2101 /* Use hweight32 to count the number of ones in the add flags, or 2102 * number of endpoints added. Don't count endpoints that are changed 2103 * (both added and dropped). 2104 */ 2105 return hweight32(valid_add_flags) - 2106 hweight32(valid_add_flags & valid_drop_flags); 2107 } 2108 2109 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2110 struct xhci_input_control_ctx *ctrl_ctx) 2111 { 2112 u32 valid_add_flags; 2113 u32 valid_drop_flags; 2114 2115 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2116 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2117 2118 return hweight32(valid_drop_flags) - 2119 hweight32(valid_add_flags & valid_drop_flags); 2120 } 2121 2122 /* 2123 * We need to reserve the new number of endpoints before the configure endpoint 2124 * command completes. We can't subtract the dropped endpoints from the number 2125 * of active endpoints until the command completes because we can oversubscribe 2126 * the host in this case: 2127 * 2128 * - the first configure endpoint command drops more endpoints than it adds 2129 * - a second configure endpoint command that adds more endpoints is queued 2130 * - the first configure endpoint command fails, so the config is unchanged 2131 * - the second command may succeed, even though there isn't enough resources 2132 * 2133 * Must be called with xhci->lock held. 2134 */ 2135 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2136 struct xhci_input_control_ctx *ctrl_ctx) 2137 { 2138 u32 added_eps; 2139 2140 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2141 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2143 "Not enough ep ctxs: " 2144 "%u active, need to add %u, limit is %u.", 2145 xhci->num_active_eps, added_eps, 2146 xhci->limit_active_eps); 2147 return -ENOMEM; 2148 } 2149 xhci->num_active_eps += added_eps; 2150 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2151 "Adding %u ep ctxs, %u now active.", added_eps, 2152 xhci->num_active_eps); 2153 return 0; 2154 } 2155 2156 /* 2157 * The configure endpoint was failed by the xHC for some other reason, so we 2158 * need to revert the resources that failed configuration would have used. 2159 * 2160 * Must be called with xhci->lock held. 2161 */ 2162 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2163 struct xhci_input_control_ctx *ctrl_ctx) 2164 { 2165 u32 num_failed_eps; 2166 2167 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2168 xhci->num_active_eps -= num_failed_eps; 2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2170 "Removing %u failed ep ctxs, %u now active.", 2171 num_failed_eps, 2172 xhci->num_active_eps); 2173 } 2174 2175 /* 2176 * Now that the command has completed, clean up the active endpoint count by 2177 * subtracting out the endpoints that were dropped (but not changed). 2178 * 2179 * Must be called with xhci->lock held. 2180 */ 2181 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2182 struct xhci_input_control_ctx *ctrl_ctx) 2183 { 2184 u32 num_dropped_eps; 2185 2186 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2187 xhci->num_active_eps -= num_dropped_eps; 2188 if (num_dropped_eps) 2189 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2190 "Removing %u dropped ep ctxs, %u now active.", 2191 num_dropped_eps, 2192 xhci->num_active_eps); 2193 } 2194 2195 static unsigned int xhci_get_block_size(struct usb_device *udev) 2196 { 2197 switch (udev->speed) { 2198 case USB_SPEED_LOW: 2199 case USB_SPEED_FULL: 2200 return FS_BLOCK; 2201 case USB_SPEED_HIGH: 2202 return HS_BLOCK; 2203 case USB_SPEED_SUPER: 2204 case USB_SPEED_SUPER_PLUS: 2205 return SS_BLOCK; 2206 case USB_SPEED_UNKNOWN: 2207 default: 2208 /* Should never happen */ 2209 return 1; 2210 } 2211 } 2212 2213 static unsigned int 2214 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2215 { 2216 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2217 return LS_OVERHEAD; 2218 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2219 return FS_OVERHEAD; 2220 return HS_OVERHEAD; 2221 } 2222 2223 /* If we are changing a LS/FS device under a HS hub, 2224 * make sure (if we are activating a new TT) that the HS bus has enough 2225 * bandwidth for this new TT. 2226 */ 2227 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2228 struct xhci_virt_device *virt_dev, 2229 int old_active_eps) 2230 { 2231 struct xhci_interval_bw_table *bw_table; 2232 struct xhci_tt_bw_info *tt_info; 2233 2234 /* Find the bandwidth table for the root port this TT is attached to. */ 2235 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2236 tt_info = virt_dev->tt_info; 2237 /* If this TT already had active endpoints, the bandwidth for this TT 2238 * has already been added. Removing all periodic endpoints (and thus 2239 * making the TT enactive) will only decrease the bandwidth used. 2240 */ 2241 if (old_active_eps) 2242 return 0; 2243 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2244 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2245 return -ENOMEM; 2246 return 0; 2247 } 2248 /* Not sure why we would have no new active endpoints... 2249 * 2250 * Maybe because of an Evaluate Context change for a hub update or a 2251 * control endpoint 0 max packet size change? 2252 * FIXME: skip the bandwidth calculation in that case. 2253 */ 2254 return 0; 2255 } 2256 2257 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2258 struct xhci_virt_device *virt_dev) 2259 { 2260 unsigned int bw_reserved; 2261 2262 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2263 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2264 return -ENOMEM; 2265 2266 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2267 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2268 return -ENOMEM; 2269 2270 return 0; 2271 } 2272 2273 /* 2274 * This algorithm is a very conservative estimate of the worst-case scheduling 2275 * scenario for any one interval. The hardware dynamically schedules the 2276 * packets, so we can't tell which microframe could be the limiting factor in 2277 * the bandwidth scheduling. This only takes into account periodic endpoints. 2278 * 2279 * Obviously, we can't solve an NP complete problem to find the minimum worst 2280 * case scenario. Instead, we come up with an estimate that is no less than 2281 * the worst case bandwidth used for any one microframe, but may be an 2282 * over-estimate. 2283 * 2284 * We walk the requirements for each endpoint by interval, starting with the 2285 * smallest interval, and place packets in the schedule where there is only one 2286 * possible way to schedule packets for that interval. In order to simplify 2287 * this algorithm, we record the largest max packet size for each interval, and 2288 * assume all packets will be that size. 2289 * 2290 * For interval 0, we obviously must schedule all packets for each interval. 2291 * The bandwidth for interval 0 is just the amount of data to be transmitted 2292 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2293 * the number of packets). 2294 * 2295 * For interval 1, we have two possible microframes to schedule those packets 2296 * in. For this algorithm, if we can schedule the same number of packets for 2297 * each possible scheduling opportunity (each microframe), we will do so. The 2298 * remaining number of packets will be saved to be transmitted in the gaps in 2299 * the next interval's scheduling sequence. 2300 * 2301 * As we move those remaining packets to be scheduled with interval 2 packets, 2302 * we have to double the number of remaining packets to transmit. This is 2303 * because the intervals are actually powers of 2, and we would be transmitting 2304 * the previous interval's packets twice in this interval. We also have to be 2305 * sure that when we look at the largest max packet size for this interval, we 2306 * also look at the largest max packet size for the remaining packets and take 2307 * the greater of the two. 2308 * 2309 * The algorithm continues to evenly distribute packets in each scheduling 2310 * opportunity, and push the remaining packets out, until we get to the last 2311 * interval. Then those packets and their associated overhead are just added 2312 * to the bandwidth used. 2313 */ 2314 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2315 struct xhci_virt_device *virt_dev, 2316 int old_active_eps) 2317 { 2318 unsigned int bw_reserved; 2319 unsigned int max_bandwidth; 2320 unsigned int bw_used; 2321 unsigned int block_size; 2322 struct xhci_interval_bw_table *bw_table; 2323 unsigned int packet_size = 0; 2324 unsigned int overhead = 0; 2325 unsigned int packets_transmitted = 0; 2326 unsigned int packets_remaining = 0; 2327 unsigned int i; 2328 2329 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2330 return xhci_check_ss_bw(xhci, virt_dev); 2331 2332 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2333 max_bandwidth = HS_BW_LIMIT; 2334 /* Convert percent of bus BW reserved to blocks reserved */ 2335 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2336 } else { 2337 max_bandwidth = FS_BW_LIMIT; 2338 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2339 } 2340 2341 bw_table = virt_dev->bw_table; 2342 /* We need to translate the max packet size and max ESIT payloads into 2343 * the units the hardware uses. 2344 */ 2345 block_size = xhci_get_block_size(virt_dev->udev); 2346 2347 /* If we are manipulating a LS/FS device under a HS hub, double check 2348 * that the HS bus has enough bandwidth if we are activing a new TT. 2349 */ 2350 if (virt_dev->tt_info) { 2351 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2352 "Recalculating BW for rootport %u", 2353 virt_dev->real_port); 2354 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2355 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2356 "newly activated TT.\n"); 2357 return -ENOMEM; 2358 } 2359 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2360 "Recalculating BW for TT slot %u port %u", 2361 virt_dev->tt_info->slot_id, 2362 virt_dev->tt_info->ttport); 2363 } else { 2364 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2365 "Recalculating BW for rootport %u", 2366 virt_dev->real_port); 2367 } 2368 2369 /* Add in how much bandwidth will be used for interval zero, or the 2370 * rounded max ESIT payload + number of packets * largest overhead. 2371 */ 2372 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2373 bw_table->interval_bw[0].num_packets * 2374 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2375 2376 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2377 unsigned int bw_added; 2378 unsigned int largest_mps; 2379 unsigned int interval_overhead; 2380 2381 /* 2382 * How many packets could we transmit in this interval? 2383 * If packets didn't fit in the previous interval, we will need 2384 * to transmit that many packets twice within this interval. 2385 */ 2386 packets_remaining = 2 * packets_remaining + 2387 bw_table->interval_bw[i].num_packets; 2388 2389 /* Find the largest max packet size of this or the previous 2390 * interval. 2391 */ 2392 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2393 largest_mps = 0; 2394 else { 2395 struct xhci_virt_ep *virt_ep; 2396 struct list_head *ep_entry; 2397 2398 ep_entry = bw_table->interval_bw[i].endpoints.next; 2399 virt_ep = list_entry(ep_entry, 2400 struct xhci_virt_ep, bw_endpoint_list); 2401 /* Convert to blocks, rounding up */ 2402 largest_mps = DIV_ROUND_UP( 2403 virt_ep->bw_info.max_packet_size, 2404 block_size); 2405 } 2406 if (largest_mps > packet_size) 2407 packet_size = largest_mps; 2408 2409 /* Use the larger overhead of this or the previous interval. */ 2410 interval_overhead = xhci_get_largest_overhead( 2411 &bw_table->interval_bw[i]); 2412 if (interval_overhead > overhead) 2413 overhead = interval_overhead; 2414 2415 /* How many packets can we evenly distribute across 2416 * (1 << (i + 1)) possible scheduling opportunities? 2417 */ 2418 packets_transmitted = packets_remaining >> (i + 1); 2419 2420 /* Add in the bandwidth used for those scheduled packets */ 2421 bw_added = packets_transmitted * (overhead + packet_size); 2422 2423 /* How many packets do we have remaining to transmit? */ 2424 packets_remaining = packets_remaining % (1 << (i + 1)); 2425 2426 /* What largest max packet size should those packets have? */ 2427 /* If we've transmitted all packets, don't carry over the 2428 * largest packet size. 2429 */ 2430 if (packets_remaining == 0) { 2431 packet_size = 0; 2432 overhead = 0; 2433 } else if (packets_transmitted > 0) { 2434 /* Otherwise if we do have remaining packets, and we've 2435 * scheduled some packets in this interval, take the 2436 * largest max packet size from endpoints with this 2437 * interval. 2438 */ 2439 packet_size = largest_mps; 2440 overhead = interval_overhead; 2441 } 2442 /* Otherwise carry over packet_size and overhead from the last 2443 * time we had a remainder. 2444 */ 2445 bw_used += bw_added; 2446 if (bw_used > max_bandwidth) { 2447 xhci_warn(xhci, "Not enough bandwidth. " 2448 "Proposed: %u, Max: %u\n", 2449 bw_used, max_bandwidth); 2450 return -ENOMEM; 2451 } 2452 } 2453 /* 2454 * Ok, we know we have some packets left over after even-handedly 2455 * scheduling interval 15. We don't know which microframes they will 2456 * fit into, so we over-schedule and say they will be scheduled every 2457 * microframe. 2458 */ 2459 if (packets_remaining > 0) 2460 bw_used += overhead + packet_size; 2461 2462 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2463 unsigned int port_index = virt_dev->real_port - 1; 2464 2465 /* OK, we're manipulating a HS device attached to a 2466 * root port bandwidth domain. Include the number of active TTs 2467 * in the bandwidth used. 2468 */ 2469 bw_used += TT_HS_OVERHEAD * 2470 xhci->rh_bw[port_index].num_active_tts; 2471 } 2472 2473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2474 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2475 "Available: %u " "percent", 2476 bw_used, max_bandwidth, bw_reserved, 2477 (max_bandwidth - bw_used - bw_reserved) * 100 / 2478 max_bandwidth); 2479 2480 bw_used += bw_reserved; 2481 if (bw_used > max_bandwidth) { 2482 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2483 bw_used, max_bandwidth); 2484 return -ENOMEM; 2485 } 2486 2487 bw_table->bw_used = bw_used; 2488 return 0; 2489 } 2490 2491 static bool xhci_is_async_ep(unsigned int ep_type) 2492 { 2493 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2494 ep_type != ISOC_IN_EP && 2495 ep_type != INT_IN_EP); 2496 } 2497 2498 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2499 { 2500 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2501 } 2502 2503 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2504 { 2505 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2506 2507 if (ep_bw->ep_interval == 0) 2508 return SS_OVERHEAD_BURST + 2509 (ep_bw->mult * ep_bw->num_packets * 2510 (SS_OVERHEAD + mps)); 2511 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2512 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2513 1 << ep_bw->ep_interval); 2514 2515 } 2516 2517 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2518 struct xhci_bw_info *ep_bw, 2519 struct xhci_interval_bw_table *bw_table, 2520 struct usb_device *udev, 2521 struct xhci_virt_ep *virt_ep, 2522 struct xhci_tt_bw_info *tt_info) 2523 { 2524 struct xhci_interval_bw *interval_bw; 2525 int normalized_interval; 2526 2527 if (xhci_is_async_ep(ep_bw->type)) 2528 return; 2529 2530 if (udev->speed >= USB_SPEED_SUPER) { 2531 if (xhci_is_sync_in_ep(ep_bw->type)) 2532 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2533 xhci_get_ss_bw_consumed(ep_bw); 2534 else 2535 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2536 xhci_get_ss_bw_consumed(ep_bw); 2537 return; 2538 } 2539 2540 /* SuperSpeed endpoints never get added to intervals in the table, so 2541 * this check is only valid for HS/FS/LS devices. 2542 */ 2543 if (list_empty(&virt_ep->bw_endpoint_list)) 2544 return; 2545 /* For LS/FS devices, we need to translate the interval expressed in 2546 * microframes to frames. 2547 */ 2548 if (udev->speed == USB_SPEED_HIGH) 2549 normalized_interval = ep_bw->ep_interval; 2550 else 2551 normalized_interval = ep_bw->ep_interval - 3; 2552 2553 if (normalized_interval == 0) 2554 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2555 interval_bw = &bw_table->interval_bw[normalized_interval]; 2556 interval_bw->num_packets -= ep_bw->num_packets; 2557 switch (udev->speed) { 2558 case USB_SPEED_LOW: 2559 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2560 break; 2561 case USB_SPEED_FULL: 2562 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2563 break; 2564 case USB_SPEED_HIGH: 2565 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2566 break; 2567 default: 2568 /* Should never happen because only LS/FS/HS endpoints will get 2569 * added to the endpoint list. 2570 */ 2571 return; 2572 } 2573 if (tt_info) 2574 tt_info->active_eps -= 1; 2575 list_del_init(&virt_ep->bw_endpoint_list); 2576 } 2577 2578 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2579 struct xhci_bw_info *ep_bw, 2580 struct xhci_interval_bw_table *bw_table, 2581 struct usb_device *udev, 2582 struct xhci_virt_ep *virt_ep, 2583 struct xhci_tt_bw_info *tt_info) 2584 { 2585 struct xhci_interval_bw *interval_bw; 2586 struct xhci_virt_ep *smaller_ep; 2587 int normalized_interval; 2588 2589 if (xhci_is_async_ep(ep_bw->type)) 2590 return; 2591 2592 if (udev->speed == USB_SPEED_SUPER) { 2593 if (xhci_is_sync_in_ep(ep_bw->type)) 2594 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2595 xhci_get_ss_bw_consumed(ep_bw); 2596 else 2597 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2598 xhci_get_ss_bw_consumed(ep_bw); 2599 return; 2600 } 2601 2602 /* For LS/FS devices, we need to translate the interval expressed in 2603 * microframes to frames. 2604 */ 2605 if (udev->speed == USB_SPEED_HIGH) 2606 normalized_interval = ep_bw->ep_interval; 2607 else 2608 normalized_interval = ep_bw->ep_interval - 3; 2609 2610 if (normalized_interval == 0) 2611 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2612 interval_bw = &bw_table->interval_bw[normalized_interval]; 2613 interval_bw->num_packets += ep_bw->num_packets; 2614 switch (udev->speed) { 2615 case USB_SPEED_LOW: 2616 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2617 break; 2618 case USB_SPEED_FULL: 2619 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2620 break; 2621 case USB_SPEED_HIGH: 2622 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2623 break; 2624 default: 2625 /* Should never happen because only LS/FS/HS endpoints will get 2626 * added to the endpoint list. 2627 */ 2628 return; 2629 } 2630 2631 if (tt_info) 2632 tt_info->active_eps += 1; 2633 /* Insert the endpoint into the list, largest max packet size first. */ 2634 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2635 bw_endpoint_list) { 2636 if (ep_bw->max_packet_size >= 2637 smaller_ep->bw_info.max_packet_size) { 2638 /* Add the new ep before the smaller endpoint */ 2639 list_add_tail(&virt_ep->bw_endpoint_list, 2640 &smaller_ep->bw_endpoint_list); 2641 return; 2642 } 2643 } 2644 /* Add the new endpoint at the end of the list. */ 2645 list_add_tail(&virt_ep->bw_endpoint_list, 2646 &interval_bw->endpoints); 2647 } 2648 2649 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2650 struct xhci_virt_device *virt_dev, 2651 int old_active_eps) 2652 { 2653 struct xhci_root_port_bw_info *rh_bw_info; 2654 if (!virt_dev->tt_info) 2655 return; 2656 2657 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2658 if (old_active_eps == 0 && 2659 virt_dev->tt_info->active_eps != 0) { 2660 rh_bw_info->num_active_tts += 1; 2661 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2662 } else if (old_active_eps != 0 && 2663 virt_dev->tt_info->active_eps == 0) { 2664 rh_bw_info->num_active_tts -= 1; 2665 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2666 } 2667 } 2668 2669 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2670 struct xhci_virt_device *virt_dev, 2671 struct xhci_container_ctx *in_ctx) 2672 { 2673 struct xhci_bw_info ep_bw_info[31]; 2674 int i; 2675 struct xhci_input_control_ctx *ctrl_ctx; 2676 int old_active_eps = 0; 2677 2678 if (virt_dev->tt_info) 2679 old_active_eps = virt_dev->tt_info->active_eps; 2680 2681 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2682 if (!ctrl_ctx) { 2683 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2684 __func__); 2685 return -ENOMEM; 2686 } 2687 2688 for (i = 0; i < 31; i++) { 2689 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2690 continue; 2691 2692 /* Make a copy of the BW info in case we need to revert this */ 2693 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2694 sizeof(ep_bw_info[i])); 2695 /* Drop the endpoint from the interval table if the endpoint is 2696 * being dropped or changed. 2697 */ 2698 if (EP_IS_DROPPED(ctrl_ctx, i)) 2699 xhci_drop_ep_from_interval_table(xhci, 2700 &virt_dev->eps[i].bw_info, 2701 virt_dev->bw_table, 2702 virt_dev->udev, 2703 &virt_dev->eps[i], 2704 virt_dev->tt_info); 2705 } 2706 /* Overwrite the information stored in the endpoints' bw_info */ 2707 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2708 for (i = 0; i < 31; i++) { 2709 /* Add any changed or added endpoints to the interval table */ 2710 if (EP_IS_ADDED(ctrl_ctx, i)) 2711 xhci_add_ep_to_interval_table(xhci, 2712 &virt_dev->eps[i].bw_info, 2713 virt_dev->bw_table, 2714 virt_dev->udev, 2715 &virt_dev->eps[i], 2716 virt_dev->tt_info); 2717 } 2718 2719 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2720 /* Ok, this fits in the bandwidth we have. 2721 * Update the number of active TTs. 2722 */ 2723 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2724 return 0; 2725 } 2726 2727 /* We don't have enough bandwidth for this, revert the stored info. */ 2728 for (i = 0; i < 31; i++) { 2729 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2730 continue; 2731 2732 /* Drop the new copies of any added or changed endpoints from 2733 * the interval table. 2734 */ 2735 if (EP_IS_ADDED(ctrl_ctx, i)) { 2736 xhci_drop_ep_from_interval_table(xhci, 2737 &virt_dev->eps[i].bw_info, 2738 virt_dev->bw_table, 2739 virt_dev->udev, 2740 &virt_dev->eps[i], 2741 virt_dev->tt_info); 2742 } 2743 /* Revert the endpoint back to its old information */ 2744 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2745 sizeof(ep_bw_info[i])); 2746 /* Add any changed or dropped endpoints back into the table */ 2747 if (EP_IS_DROPPED(ctrl_ctx, i)) 2748 xhci_add_ep_to_interval_table(xhci, 2749 &virt_dev->eps[i].bw_info, 2750 virt_dev->bw_table, 2751 virt_dev->udev, 2752 &virt_dev->eps[i], 2753 virt_dev->tt_info); 2754 } 2755 return -ENOMEM; 2756 } 2757 2758 2759 /* Issue a configure endpoint command or evaluate context command 2760 * and wait for it to finish. 2761 */ 2762 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2763 struct usb_device *udev, 2764 struct xhci_command *command, 2765 bool ctx_change, bool must_succeed) 2766 { 2767 int ret; 2768 unsigned long flags; 2769 struct xhci_input_control_ctx *ctrl_ctx; 2770 struct xhci_virt_device *virt_dev; 2771 struct xhci_slot_ctx *slot_ctx; 2772 2773 if (!command) 2774 return -EINVAL; 2775 2776 spin_lock_irqsave(&xhci->lock, flags); 2777 2778 if (xhci->xhc_state & XHCI_STATE_DYING) { 2779 spin_unlock_irqrestore(&xhci->lock, flags); 2780 return -ESHUTDOWN; 2781 } 2782 2783 virt_dev = xhci->devs[udev->slot_id]; 2784 2785 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2786 if (!ctrl_ctx) { 2787 spin_unlock_irqrestore(&xhci->lock, flags); 2788 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2789 __func__); 2790 return -ENOMEM; 2791 } 2792 2793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2794 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2795 spin_unlock_irqrestore(&xhci->lock, flags); 2796 xhci_warn(xhci, "Not enough host resources, " 2797 "active endpoint contexts = %u\n", 2798 xhci->num_active_eps); 2799 return -ENOMEM; 2800 } 2801 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2802 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2803 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2804 xhci_free_host_resources(xhci, ctrl_ctx); 2805 spin_unlock_irqrestore(&xhci->lock, flags); 2806 xhci_warn(xhci, "Not enough bandwidth\n"); 2807 return -ENOMEM; 2808 } 2809 2810 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2811 2812 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2813 trace_xhci_configure_endpoint(slot_ctx); 2814 2815 if (!ctx_change) 2816 ret = xhci_queue_configure_endpoint(xhci, command, 2817 command->in_ctx->dma, 2818 udev->slot_id, must_succeed); 2819 else 2820 ret = xhci_queue_evaluate_context(xhci, command, 2821 command->in_ctx->dma, 2822 udev->slot_id, must_succeed); 2823 if (ret < 0) { 2824 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2825 xhci_free_host_resources(xhci, ctrl_ctx); 2826 spin_unlock_irqrestore(&xhci->lock, flags); 2827 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2828 "FIXME allocate a new ring segment"); 2829 return -ENOMEM; 2830 } 2831 xhci_ring_cmd_db(xhci); 2832 spin_unlock_irqrestore(&xhci->lock, flags); 2833 2834 /* Wait for the configure endpoint command to complete */ 2835 wait_for_completion(command->completion); 2836 2837 if (!ctx_change) 2838 ret = xhci_configure_endpoint_result(xhci, udev, 2839 &command->status); 2840 else 2841 ret = xhci_evaluate_context_result(xhci, udev, 2842 &command->status); 2843 2844 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2845 spin_lock_irqsave(&xhci->lock, flags); 2846 /* If the command failed, remove the reserved resources. 2847 * Otherwise, clean up the estimate to include dropped eps. 2848 */ 2849 if (ret) 2850 xhci_free_host_resources(xhci, ctrl_ctx); 2851 else 2852 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2853 spin_unlock_irqrestore(&xhci->lock, flags); 2854 } 2855 return ret; 2856 } 2857 2858 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2859 struct xhci_virt_device *vdev, int i) 2860 { 2861 struct xhci_virt_ep *ep = &vdev->eps[i]; 2862 2863 if (ep->ep_state & EP_HAS_STREAMS) { 2864 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2865 xhci_get_endpoint_address(i)); 2866 xhci_free_stream_info(xhci, ep->stream_info); 2867 ep->stream_info = NULL; 2868 ep->ep_state &= ~EP_HAS_STREAMS; 2869 } 2870 } 2871 2872 /* Called after one or more calls to xhci_add_endpoint() or 2873 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2874 * to call xhci_reset_bandwidth(). 2875 * 2876 * Since we are in the middle of changing either configuration or 2877 * installing a new alt setting, the USB core won't allow URBs to be 2878 * enqueued for any endpoint on the old config or interface. Nothing 2879 * else should be touching the xhci->devs[slot_id] structure, so we 2880 * don't need to take the xhci->lock for manipulating that. 2881 */ 2882 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2883 { 2884 int i; 2885 int ret = 0; 2886 struct xhci_hcd *xhci; 2887 struct xhci_virt_device *virt_dev; 2888 struct xhci_input_control_ctx *ctrl_ctx; 2889 struct xhci_slot_ctx *slot_ctx; 2890 struct xhci_command *command; 2891 2892 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2893 if (ret <= 0) 2894 return ret; 2895 xhci = hcd_to_xhci(hcd); 2896 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2897 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2898 return -ENODEV; 2899 2900 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2901 virt_dev = xhci->devs[udev->slot_id]; 2902 2903 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2904 if (!command) 2905 return -ENOMEM; 2906 2907 command->in_ctx = virt_dev->in_ctx; 2908 2909 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2910 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2911 if (!ctrl_ctx) { 2912 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2913 __func__); 2914 ret = -ENOMEM; 2915 goto command_cleanup; 2916 } 2917 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2918 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2919 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2920 2921 /* Don't issue the command if there's no endpoints to update. */ 2922 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2923 ctrl_ctx->drop_flags == 0) { 2924 ret = 0; 2925 goto command_cleanup; 2926 } 2927 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2928 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2929 for (i = 31; i >= 1; i--) { 2930 __le32 le32 = cpu_to_le32(BIT(i)); 2931 2932 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2933 || (ctrl_ctx->add_flags & le32) || i == 1) { 2934 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2935 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2936 break; 2937 } 2938 } 2939 2940 ret = xhci_configure_endpoint(xhci, udev, command, 2941 false, false); 2942 if (ret) 2943 /* Callee should call reset_bandwidth() */ 2944 goto command_cleanup; 2945 2946 /* Free any rings that were dropped, but not changed. */ 2947 for (i = 1; i < 31; i++) { 2948 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2949 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2950 xhci_free_endpoint_ring(xhci, virt_dev, i); 2951 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2952 } 2953 } 2954 xhci_zero_in_ctx(xhci, virt_dev); 2955 /* 2956 * Install any rings for completely new endpoints or changed endpoints, 2957 * and free any old rings from changed endpoints. 2958 */ 2959 for (i = 1; i < 31; i++) { 2960 if (!virt_dev->eps[i].new_ring) 2961 continue; 2962 /* Only free the old ring if it exists. 2963 * It may not if this is the first add of an endpoint. 2964 */ 2965 if (virt_dev->eps[i].ring) { 2966 xhci_free_endpoint_ring(xhci, virt_dev, i); 2967 } 2968 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2969 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2970 virt_dev->eps[i].new_ring = NULL; 2971 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2972 } 2973 command_cleanup: 2974 kfree(command->completion); 2975 kfree(command); 2976 2977 return ret; 2978 } 2979 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 2980 2981 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2982 { 2983 struct xhci_hcd *xhci; 2984 struct xhci_virt_device *virt_dev; 2985 int i, ret; 2986 2987 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2988 if (ret <= 0) 2989 return; 2990 xhci = hcd_to_xhci(hcd); 2991 2992 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2993 virt_dev = xhci->devs[udev->slot_id]; 2994 /* Free any rings allocated for added endpoints */ 2995 for (i = 0; i < 31; i++) { 2996 if (virt_dev->eps[i].new_ring) { 2997 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2998 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2999 virt_dev->eps[i].new_ring = NULL; 3000 } 3001 } 3002 xhci_zero_in_ctx(xhci, virt_dev); 3003 } 3004 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3005 3006 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3007 struct xhci_container_ctx *in_ctx, 3008 struct xhci_container_ctx *out_ctx, 3009 struct xhci_input_control_ctx *ctrl_ctx, 3010 u32 add_flags, u32 drop_flags) 3011 { 3012 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3013 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3014 xhci_slot_copy(xhci, in_ctx, out_ctx); 3015 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3016 } 3017 3018 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3019 struct usb_host_endpoint *host_ep) 3020 { 3021 struct xhci_hcd *xhci; 3022 struct xhci_virt_device *vdev; 3023 struct xhci_virt_ep *ep; 3024 struct usb_device *udev; 3025 unsigned long flags; 3026 unsigned int ep_index; 3027 3028 xhci = hcd_to_xhci(hcd); 3029 rescan: 3030 spin_lock_irqsave(&xhci->lock, flags); 3031 3032 udev = (struct usb_device *)host_ep->hcpriv; 3033 if (!udev || !udev->slot_id) 3034 goto done; 3035 3036 vdev = xhci->devs[udev->slot_id]; 3037 if (!vdev) 3038 goto done; 3039 3040 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3041 ep = &vdev->eps[ep_index]; 3042 3043 /* wait for hub_tt_work to finish clearing hub TT */ 3044 if (ep->ep_state & EP_CLEARING_TT) { 3045 spin_unlock_irqrestore(&xhci->lock, flags); 3046 schedule_timeout_uninterruptible(1); 3047 goto rescan; 3048 } 3049 3050 if (ep->ep_state) 3051 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3052 ep->ep_state); 3053 done: 3054 host_ep->hcpriv = NULL; 3055 spin_unlock_irqrestore(&xhci->lock, flags); 3056 } 3057 3058 /* 3059 * Called after usb core issues a clear halt control message. 3060 * The host side of the halt should already be cleared by a reset endpoint 3061 * command issued when the STALL event was received. 3062 * 3063 * The reset endpoint command may only be issued to endpoints in the halted 3064 * state. For software that wishes to reset the data toggle or sequence number 3065 * of an endpoint that isn't in the halted state this function will issue a 3066 * configure endpoint command with the Drop and Add bits set for the target 3067 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3068 */ 3069 3070 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3071 struct usb_host_endpoint *host_ep) 3072 { 3073 struct xhci_hcd *xhci; 3074 struct usb_device *udev; 3075 struct xhci_virt_device *vdev; 3076 struct xhci_virt_ep *ep; 3077 struct xhci_input_control_ctx *ctrl_ctx; 3078 struct xhci_command *stop_cmd, *cfg_cmd; 3079 unsigned int ep_index; 3080 unsigned long flags; 3081 u32 ep_flag; 3082 int err; 3083 3084 xhci = hcd_to_xhci(hcd); 3085 if (!host_ep->hcpriv) 3086 return; 3087 udev = (struct usb_device *) host_ep->hcpriv; 3088 vdev = xhci->devs[udev->slot_id]; 3089 3090 /* 3091 * vdev may be lost due to xHC restore error and re-initialization 3092 * during S3/S4 resume. A new vdev will be allocated later by 3093 * xhci_discover_or_reset_device() 3094 */ 3095 if (!udev->slot_id || !vdev) 3096 return; 3097 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3098 ep = &vdev->eps[ep_index]; 3099 3100 /* Bail out if toggle is already being cleared by a endpoint reset */ 3101 spin_lock_irqsave(&xhci->lock, flags); 3102 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3103 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3104 spin_unlock_irqrestore(&xhci->lock, flags); 3105 return; 3106 } 3107 spin_unlock_irqrestore(&xhci->lock, flags); 3108 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3109 if (usb_endpoint_xfer_control(&host_ep->desc) || 3110 usb_endpoint_xfer_isoc(&host_ep->desc)) 3111 return; 3112 3113 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3114 3115 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3116 return; 3117 3118 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3119 if (!stop_cmd) 3120 return; 3121 3122 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3123 if (!cfg_cmd) 3124 goto cleanup; 3125 3126 spin_lock_irqsave(&xhci->lock, flags); 3127 3128 /* block queuing new trbs and ringing ep doorbell */ 3129 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3130 3131 /* 3132 * Make sure endpoint ring is empty before resetting the toggle/seq. 3133 * Driver is required to synchronously cancel all transfer request. 3134 * Stop the endpoint to force xHC to update the output context 3135 */ 3136 3137 if (!list_empty(&ep->ring->td_list)) { 3138 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3139 spin_unlock_irqrestore(&xhci->lock, flags); 3140 xhci_free_command(xhci, cfg_cmd); 3141 goto cleanup; 3142 } 3143 3144 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3145 ep_index, 0); 3146 if (err < 0) { 3147 spin_unlock_irqrestore(&xhci->lock, flags); 3148 xhci_free_command(xhci, cfg_cmd); 3149 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3150 __func__, err); 3151 goto cleanup; 3152 } 3153 3154 xhci_ring_cmd_db(xhci); 3155 spin_unlock_irqrestore(&xhci->lock, flags); 3156 3157 wait_for_completion(stop_cmd->completion); 3158 3159 spin_lock_irqsave(&xhci->lock, flags); 3160 3161 /* config ep command clears toggle if add and drop ep flags are set */ 3162 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3163 if (!ctrl_ctx) { 3164 spin_unlock_irqrestore(&xhci->lock, flags); 3165 xhci_free_command(xhci, cfg_cmd); 3166 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3167 __func__); 3168 goto cleanup; 3169 } 3170 3171 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3172 ctrl_ctx, ep_flag, ep_flag); 3173 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3174 3175 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3176 udev->slot_id, false); 3177 if (err < 0) { 3178 spin_unlock_irqrestore(&xhci->lock, flags); 3179 xhci_free_command(xhci, cfg_cmd); 3180 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3181 __func__, err); 3182 goto cleanup; 3183 } 3184 3185 xhci_ring_cmd_db(xhci); 3186 spin_unlock_irqrestore(&xhci->lock, flags); 3187 3188 wait_for_completion(cfg_cmd->completion); 3189 3190 xhci_free_command(xhci, cfg_cmd); 3191 cleanup: 3192 xhci_free_command(xhci, stop_cmd); 3193 spin_lock_irqsave(&xhci->lock, flags); 3194 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3195 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 } 3198 3199 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3200 struct usb_device *udev, struct usb_host_endpoint *ep, 3201 unsigned int slot_id) 3202 { 3203 int ret; 3204 unsigned int ep_index; 3205 unsigned int ep_state; 3206 3207 if (!ep) 3208 return -EINVAL; 3209 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3210 if (ret <= 0) 3211 return ret ? ret : -EINVAL; 3212 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3213 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3214 " descriptor for ep 0x%x does not support streams\n", 3215 ep->desc.bEndpointAddress); 3216 return -EINVAL; 3217 } 3218 3219 ep_index = xhci_get_endpoint_index(&ep->desc); 3220 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3221 if (ep_state & EP_HAS_STREAMS || 3222 ep_state & EP_GETTING_STREAMS) { 3223 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3224 "already has streams set up.\n", 3225 ep->desc.bEndpointAddress); 3226 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3227 "dynamic stream context array reallocation.\n"); 3228 return -EINVAL; 3229 } 3230 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3231 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3232 "endpoint 0x%x; URBs are pending.\n", 3233 ep->desc.bEndpointAddress); 3234 return -EINVAL; 3235 } 3236 return 0; 3237 } 3238 3239 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3240 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3241 { 3242 unsigned int max_streams; 3243 3244 /* The stream context array size must be a power of two */ 3245 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3246 /* 3247 * Find out how many primary stream array entries the host controller 3248 * supports. Later we may use secondary stream arrays (similar to 2nd 3249 * level page entries), but that's an optional feature for xHCI host 3250 * controllers. xHCs must support at least 4 stream IDs. 3251 */ 3252 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3253 if (*num_stream_ctxs > max_streams) { 3254 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3255 max_streams); 3256 *num_stream_ctxs = max_streams; 3257 *num_streams = max_streams; 3258 } 3259 } 3260 3261 /* Returns an error code if one of the endpoint already has streams. 3262 * This does not change any data structures, it only checks and gathers 3263 * information. 3264 */ 3265 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3266 struct usb_device *udev, 3267 struct usb_host_endpoint **eps, unsigned int num_eps, 3268 unsigned int *num_streams, u32 *changed_ep_bitmask) 3269 { 3270 unsigned int max_streams; 3271 unsigned int endpoint_flag; 3272 int i; 3273 int ret; 3274 3275 for (i = 0; i < num_eps; i++) { 3276 ret = xhci_check_streams_endpoint(xhci, udev, 3277 eps[i], udev->slot_id); 3278 if (ret < 0) 3279 return ret; 3280 3281 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3282 if (max_streams < (*num_streams - 1)) { 3283 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3284 eps[i]->desc.bEndpointAddress, 3285 max_streams); 3286 *num_streams = max_streams+1; 3287 } 3288 3289 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3290 if (*changed_ep_bitmask & endpoint_flag) 3291 return -EINVAL; 3292 *changed_ep_bitmask |= endpoint_flag; 3293 } 3294 return 0; 3295 } 3296 3297 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3298 struct usb_device *udev, 3299 struct usb_host_endpoint **eps, unsigned int num_eps) 3300 { 3301 u32 changed_ep_bitmask = 0; 3302 unsigned int slot_id; 3303 unsigned int ep_index; 3304 unsigned int ep_state; 3305 int i; 3306 3307 slot_id = udev->slot_id; 3308 if (!xhci->devs[slot_id]) 3309 return 0; 3310 3311 for (i = 0; i < num_eps; i++) { 3312 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3313 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3314 /* Are streams already being freed for the endpoint? */ 3315 if (ep_state & EP_GETTING_NO_STREAMS) { 3316 xhci_warn(xhci, "WARN Can't disable streams for " 3317 "endpoint 0x%x, " 3318 "streams are being disabled already\n", 3319 eps[i]->desc.bEndpointAddress); 3320 return 0; 3321 } 3322 /* Are there actually any streams to free? */ 3323 if (!(ep_state & EP_HAS_STREAMS) && 3324 !(ep_state & EP_GETTING_STREAMS)) { 3325 xhci_warn(xhci, "WARN Can't disable streams for " 3326 "endpoint 0x%x, " 3327 "streams are already disabled!\n", 3328 eps[i]->desc.bEndpointAddress); 3329 xhci_warn(xhci, "WARN xhci_free_streams() called " 3330 "with non-streams endpoint\n"); 3331 return 0; 3332 } 3333 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3334 } 3335 return changed_ep_bitmask; 3336 } 3337 3338 /* 3339 * The USB device drivers use this function (through the HCD interface in USB 3340 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3341 * coordinate mass storage command queueing across multiple endpoints (basically 3342 * a stream ID == a task ID). 3343 * 3344 * Setting up streams involves allocating the same size stream context array 3345 * for each endpoint and issuing a configure endpoint command for all endpoints. 3346 * 3347 * Don't allow the call to succeed if one endpoint only supports one stream 3348 * (which means it doesn't support streams at all). 3349 * 3350 * Drivers may get less stream IDs than they asked for, if the host controller 3351 * hardware or endpoints claim they can't support the number of requested 3352 * stream IDs. 3353 */ 3354 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3355 struct usb_host_endpoint **eps, unsigned int num_eps, 3356 unsigned int num_streams, gfp_t mem_flags) 3357 { 3358 int i, ret; 3359 struct xhci_hcd *xhci; 3360 struct xhci_virt_device *vdev; 3361 struct xhci_command *config_cmd; 3362 struct xhci_input_control_ctx *ctrl_ctx; 3363 unsigned int ep_index; 3364 unsigned int num_stream_ctxs; 3365 unsigned int max_packet; 3366 unsigned long flags; 3367 u32 changed_ep_bitmask = 0; 3368 3369 if (!eps) 3370 return -EINVAL; 3371 3372 /* Add one to the number of streams requested to account for 3373 * stream 0 that is reserved for xHCI usage. 3374 */ 3375 num_streams += 1; 3376 xhci = hcd_to_xhci(hcd); 3377 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3378 num_streams); 3379 3380 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3381 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3382 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3383 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3384 return -ENOSYS; 3385 } 3386 3387 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3388 if (!config_cmd) 3389 return -ENOMEM; 3390 3391 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3392 if (!ctrl_ctx) { 3393 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3394 __func__); 3395 xhci_free_command(xhci, config_cmd); 3396 return -ENOMEM; 3397 } 3398 3399 /* Check to make sure all endpoints are not already configured for 3400 * streams. While we're at it, find the maximum number of streams that 3401 * all the endpoints will support and check for duplicate endpoints. 3402 */ 3403 spin_lock_irqsave(&xhci->lock, flags); 3404 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3405 num_eps, &num_streams, &changed_ep_bitmask); 3406 if (ret < 0) { 3407 xhci_free_command(xhci, config_cmd); 3408 spin_unlock_irqrestore(&xhci->lock, flags); 3409 return ret; 3410 } 3411 if (num_streams <= 1) { 3412 xhci_warn(xhci, "WARN: endpoints can't handle " 3413 "more than one stream.\n"); 3414 xhci_free_command(xhci, config_cmd); 3415 spin_unlock_irqrestore(&xhci->lock, flags); 3416 return -EINVAL; 3417 } 3418 vdev = xhci->devs[udev->slot_id]; 3419 /* Mark each endpoint as being in transition, so 3420 * xhci_urb_enqueue() will reject all URBs. 3421 */ 3422 for (i = 0; i < num_eps; i++) { 3423 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3424 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3425 } 3426 spin_unlock_irqrestore(&xhci->lock, flags); 3427 3428 /* Setup internal data structures and allocate HW data structures for 3429 * streams (but don't install the HW structures in the input context 3430 * until we're sure all memory allocation succeeded). 3431 */ 3432 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3433 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3434 num_stream_ctxs, num_streams); 3435 3436 for (i = 0; i < num_eps; i++) { 3437 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3438 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3439 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3440 num_stream_ctxs, 3441 num_streams, 3442 max_packet, mem_flags); 3443 if (!vdev->eps[ep_index].stream_info) 3444 goto cleanup; 3445 /* Set maxPstreams in endpoint context and update deq ptr to 3446 * point to stream context array. FIXME 3447 */ 3448 } 3449 3450 /* Set up the input context for a configure endpoint command. */ 3451 for (i = 0; i < num_eps; i++) { 3452 struct xhci_ep_ctx *ep_ctx; 3453 3454 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3455 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3456 3457 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3458 vdev->out_ctx, ep_index); 3459 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3460 vdev->eps[ep_index].stream_info); 3461 } 3462 /* Tell the HW to drop its old copy of the endpoint context info 3463 * and add the updated copy from the input context. 3464 */ 3465 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3466 vdev->out_ctx, ctrl_ctx, 3467 changed_ep_bitmask, changed_ep_bitmask); 3468 3469 /* Issue and wait for the configure endpoint command */ 3470 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3471 false, false); 3472 3473 /* xHC rejected the configure endpoint command for some reason, so we 3474 * leave the old ring intact and free our internal streams data 3475 * structure. 3476 */ 3477 if (ret < 0) 3478 goto cleanup; 3479 3480 spin_lock_irqsave(&xhci->lock, flags); 3481 for (i = 0; i < num_eps; i++) { 3482 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3483 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3484 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3485 udev->slot_id, ep_index); 3486 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3487 } 3488 xhci_free_command(xhci, config_cmd); 3489 spin_unlock_irqrestore(&xhci->lock, flags); 3490 3491 for (i = 0; i < num_eps; i++) { 3492 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3493 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3494 } 3495 /* Subtract 1 for stream 0, which drivers can't use */ 3496 return num_streams - 1; 3497 3498 cleanup: 3499 /* If it didn't work, free the streams! */ 3500 for (i = 0; i < num_eps; i++) { 3501 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3502 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3503 vdev->eps[ep_index].stream_info = NULL; 3504 /* FIXME Unset maxPstreams in endpoint context and 3505 * update deq ptr to point to normal string ring. 3506 */ 3507 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3508 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3509 xhci_endpoint_zero(xhci, vdev, eps[i]); 3510 } 3511 xhci_free_command(xhci, config_cmd); 3512 return -ENOMEM; 3513 } 3514 3515 /* Transition the endpoint from using streams to being a "normal" endpoint 3516 * without streams. 3517 * 3518 * Modify the endpoint context state, submit a configure endpoint command, 3519 * and free all endpoint rings for streams if that completes successfully. 3520 */ 3521 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3522 struct usb_host_endpoint **eps, unsigned int num_eps, 3523 gfp_t mem_flags) 3524 { 3525 int i, ret; 3526 struct xhci_hcd *xhci; 3527 struct xhci_virt_device *vdev; 3528 struct xhci_command *command; 3529 struct xhci_input_control_ctx *ctrl_ctx; 3530 unsigned int ep_index; 3531 unsigned long flags; 3532 u32 changed_ep_bitmask; 3533 3534 xhci = hcd_to_xhci(hcd); 3535 vdev = xhci->devs[udev->slot_id]; 3536 3537 /* Set up a configure endpoint command to remove the streams rings */ 3538 spin_lock_irqsave(&xhci->lock, flags); 3539 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3540 udev, eps, num_eps); 3541 if (changed_ep_bitmask == 0) { 3542 spin_unlock_irqrestore(&xhci->lock, flags); 3543 return -EINVAL; 3544 } 3545 3546 /* Use the xhci_command structure from the first endpoint. We may have 3547 * allocated too many, but the driver may call xhci_free_streams() for 3548 * each endpoint it grouped into one call to xhci_alloc_streams(). 3549 */ 3550 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3551 command = vdev->eps[ep_index].stream_info->free_streams_command; 3552 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3553 if (!ctrl_ctx) { 3554 spin_unlock_irqrestore(&xhci->lock, flags); 3555 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3556 __func__); 3557 return -EINVAL; 3558 } 3559 3560 for (i = 0; i < num_eps; i++) { 3561 struct xhci_ep_ctx *ep_ctx; 3562 3563 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3564 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3565 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3566 EP_GETTING_NO_STREAMS; 3567 3568 xhci_endpoint_copy(xhci, command->in_ctx, 3569 vdev->out_ctx, ep_index); 3570 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3571 &vdev->eps[ep_index]); 3572 } 3573 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3574 vdev->out_ctx, ctrl_ctx, 3575 changed_ep_bitmask, changed_ep_bitmask); 3576 spin_unlock_irqrestore(&xhci->lock, flags); 3577 3578 /* Issue and wait for the configure endpoint command, 3579 * which must succeed. 3580 */ 3581 ret = xhci_configure_endpoint(xhci, udev, command, 3582 false, true); 3583 3584 /* xHC rejected the configure endpoint command for some reason, so we 3585 * leave the streams rings intact. 3586 */ 3587 if (ret < 0) 3588 return ret; 3589 3590 spin_lock_irqsave(&xhci->lock, flags); 3591 for (i = 0; i < num_eps; i++) { 3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3593 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3594 vdev->eps[ep_index].stream_info = NULL; 3595 /* FIXME Unset maxPstreams in endpoint context and 3596 * update deq ptr to point to normal string ring. 3597 */ 3598 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3599 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3600 } 3601 spin_unlock_irqrestore(&xhci->lock, flags); 3602 3603 return 0; 3604 } 3605 3606 /* 3607 * Deletes endpoint resources for endpoints that were active before a Reset 3608 * Device command, or a Disable Slot command. The Reset Device command leaves 3609 * the control endpoint intact, whereas the Disable Slot command deletes it. 3610 * 3611 * Must be called with xhci->lock held. 3612 */ 3613 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3614 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3615 { 3616 int i; 3617 unsigned int num_dropped_eps = 0; 3618 unsigned int drop_flags = 0; 3619 3620 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3621 if (virt_dev->eps[i].ring) { 3622 drop_flags |= 1 << i; 3623 num_dropped_eps++; 3624 } 3625 } 3626 xhci->num_active_eps -= num_dropped_eps; 3627 if (num_dropped_eps) 3628 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3629 "Dropped %u ep ctxs, flags = 0x%x, " 3630 "%u now active.", 3631 num_dropped_eps, drop_flags, 3632 xhci->num_active_eps); 3633 } 3634 3635 /* 3636 * This submits a Reset Device Command, which will set the device state to 0, 3637 * set the device address to 0, and disable all the endpoints except the default 3638 * control endpoint. The USB core should come back and call 3639 * xhci_address_device(), and then re-set up the configuration. If this is 3640 * called because of a usb_reset_and_verify_device(), then the old alternate 3641 * settings will be re-installed through the normal bandwidth allocation 3642 * functions. 3643 * 3644 * Wait for the Reset Device command to finish. Remove all structures 3645 * associated with the endpoints that were disabled. Clear the input device 3646 * structure? Reset the control endpoint 0 max packet size? 3647 * 3648 * If the virt_dev to be reset does not exist or does not match the udev, 3649 * it means the device is lost, possibly due to the xHC restore error and 3650 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3651 * re-allocate the device. 3652 */ 3653 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3654 struct usb_device *udev) 3655 { 3656 int ret, i; 3657 unsigned long flags; 3658 struct xhci_hcd *xhci; 3659 unsigned int slot_id; 3660 struct xhci_virt_device *virt_dev; 3661 struct xhci_command *reset_device_cmd; 3662 struct xhci_slot_ctx *slot_ctx; 3663 int old_active_eps = 0; 3664 3665 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3666 if (ret <= 0) 3667 return ret; 3668 xhci = hcd_to_xhci(hcd); 3669 slot_id = udev->slot_id; 3670 virt_dev = xhci->devs[slot_id]; 3671 if (!virt_dev) { 3672 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3673 "not exist. Re-allocate the device\n", slot_id); 3674 ret = xhci_alloc_dev(hcd, udev); 3675 if (ret == 1) 3676 return 0; 3677 else 3678 return -EINVAL; 3679 } 3680 3681 if (virt_dev->tt_info) 3682 old_active_eps = virt_dev->tt_info->active_eps; 3683 3684 if (virt_dev->udev != udev) { 3685 /* If the virt_dev and the udev does not match, this virt_dev 3686 * may belong to another udev. 3687 * Re-allocate the device. 3688 */ 3689 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3690 "not match the udev. Re-allocate the device\n", 3691 slot_id); 3692 ret = xhci_alloc_dev(hcd, udev); 3693 if (ret == 1) 3694 return 0; 3695 else 3696 return -EINVAL; 3697 } 3698 3699 /* If device is not setup, there is no point in resetting it */ 3700 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3701 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3702 SLOT_STATE_DISABLED) 3703 return 0; 3704 3705 trace_xhci_discover_or_reset_device(slot_ctx); 3706 3707 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3708 /* Allocate the command structure that holds the struct completion. 3709 * Assume we're in process context, since the normal device reset 3710 * process has to wait for the device anyway. Storage devices are 3711 * reset as part of error handling, so use GFP_NOIO instead of 3712 * GFP_KERNEL. 3713 */ 3714 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3715 if (!reset_device_cmd) { 3716 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3717 return -ENOMEM; 3718 } 3719 3720 /* Attempt to submit the Reset Device command to the command ring */ 3721 spin_lock_irqsave(&xhci->lock, flags); 3722 3723 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3724 if (ret) { 3725 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 goto command_cleanup; 3728 } 3729 xhci_ring_cmd_db(xhci); 3730 spin_unlock_irqrestore(&xhci->lock, flags); 3731 3732 /* Wait for the Reset Device command to finish */ 3733 wait_for_completion(reset_device_cmd->completion); 3734 3735 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3736 * unless we tried to reset a slot ID that wasn't enabled, 3737 * or the device wasn't in the addressed or configured state. 3738 */ 3739 ret = reset_device_cmd->status; 3740 switch (ret) { 3741 case COMP_COMMAND_ABORTED: 3742 case COMP_COMMAND_RING_STOPPED: 3743 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3744 ret = -ETIME; 3745 goto command_cleanup; 3746 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3747 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3748 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3749 slot_id, 3750 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3751 xhci_dbg(xhci, "Not freeing device rings.\n"); 3752 /* Don't treat this as an error. May change my mind later. */ 3753 ret = 0; 3754 goto command_cleanup; 3755 case COMP_SUCCESS: 3756 xhci_dbg(xhci, "Successful reset device command.\n"); 3757 break; 3758 default: 3759 if (xhci_is_vendor_info_code(xhci, ret)) 3760 break; 3761 xhci_warn(xhci, "Unknown completion code %u for " 3762 "reset device command.\n", ret); 3763 ret = -EINVAL; 3764 goto command_cleanup; 3765 } 3766 3767 /* Free up host controller endpoint resources */ 3768 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3769 spin_lock_irqsave(&xhci->lock, flags); 3770 /* Don't delete the default control endpoint resources */ 3771 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3772 spin_unlock_irqrestore(&xhci->lock, flags); 3773 } 3774 3775 /* Everything but endpoint 0 is disabled, so free the rings. */ 3776 for (i = 1; i < 31; i++) { 3777 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3778 3779 if (ep->ep_state & EP_HAS_STREAMS) { 3780 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3781 xhci_get_endpoint_address(i)); 3782 xhci_free_stream_info(xhci, ep->stream_info); 3783 ep->stream_info = NULL; 3784 ep->ep_state &= ~EP_HAS_STREAMS; 3785 } 3786 3787 if (ep->ring) { 3788 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3789 xhci_free_endpoint_ring(xhci, virt_dev, i); 3790 } 3791 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3792 xhci_drop_ep_from_interval_table(xhci, 3793 &virt_dev->eps[i].bw_info, 3794 virt_dev->bw_table, 3795 udev, 3796 &virt_dev->eps[i], 3797 virt_dev->tt_info); 3798 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3799 } 3800 /* If necessary, update the number of active TTs on this root port */ 3801 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3802 virt_dev->flags = 0; 3803 ret = 0; 3804 3805 command_cleanup: 3806 xhci_free_command(xhci, reset_device_cmd); 3807 return ret; 3808 } 3809 3810 /* 3811 * At this point, the struct usb_device is about to go away, the device has 3812 * disconnected, and all traffic has been stopped and the endpoints have been 3813 * disabled. Free any HC data structures associated with that device. 3814 */ 3815 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3816 { 3817 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3818 struct xhci_virt_device *virt_dev; 3819 struct xhci_slot_ctx *slot_ctx; 3820 unsigned long flags; 3821 int i, ret; 3822 3823 /* 3824 * We called pm_runtime_get_noresume when the device was attached. 3825 * Decrement the counter here to allow controller to runtime suspend 3826 * if no devices remain. 3827 */ 3828 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3829 pm_runtime_put_noidle(hcd->self.controller); 3830 3831 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3832 /* If the host is halted due to driver unload, we still need to free the 3833 * device. 3834 */ 3835 if (ret <= 0 && ret != -ENODEV) 3836 return; 3837 3838 virt_dev = xhci->devs[udev->slot_id]; 3839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3840 trace_xhci_free_dev(slot_ctx); 3841 3842 /* Stop any wayward timer functions (which may grab the lock) */ 3843 for (i = 0; i < 31; i++) 3844 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3845 virt_dev->udev = NULL; 3846 xhci_disable_slot(xhci, udev->slot_id); 3847 3848 spin_lock_irqsave(&xhci->lock, flags); 3849 xhci_free_virt_device(xhci, udev->slot_id); 3850 spin_unlock_irqrestore(&xhci->lock, flags); 3851 3852 } 3853 3854 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3855 { 3856 struct xhci_command *command; 3857 unsigned long flags; 3858 u32 state; 3859 int ret; 3860 3861 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3862 if (!command) 3863 return -ENOMEM; 3864 3865 xhci_debugfs_remove_slot(xhci, slot_id); 3866 3867 spin_lock_irqsave(&xhci->lock, flags); 3868 /* Don't disable the slot if the host controller is dead. */ 3869 state = readl(&xhci->op_regs->status); 3870 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3871 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3872 spin_unlock_irqrestore(&xhci->lock, flags); 3873 kfree(command); 3874 return -ENODEV; 3875 } 3876 3877 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3878 slot_id); 3879 if (ret) { 3880 spin_unlock_irqrestore(&xhci->lock, flags); 3881 kfree(command); 3882 return ret; 3883 } 3884 xhci_ring_cmd_db(xhci); 3885 spin_unlock_irqrestore(&xhci->lock, flags); 3886 3887 wait_for_completion(command->completion); 3888 3889 if (command->status != COMP_SUCCESS) 3890 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3891 slot_id, command->status); 3892 3893 xhci_free_command(xhci, command); 3894 3895 return 0; 3896 } 3897 3898 /* 3899 * Checks if we have enough host controller resources for the default control 3900 * endpoint. 3901 * 3902 * Must be called with xhci->lock held. 3903 */ 3904 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3905 { 3906 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3907 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3908 "Not enough ep ctxs: " 3909 "%u active, need to add 1, limit is %u.", 3910 xhci->num_active_eps, xhci->limit_active_eps); 3911 return -ENOMEM; 3912 } 3913 xhci->num_active_eps += 1; 3914 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3915 "Adding 1 ep ctx, %u now active.", 3916 xhci->num_active_eps); 3917 return 0; 3918 } 3919 3920 3921 /* 3922 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3923 * timed out, or allocating memory failed. Returns 1 on success. 3924 */ 3925 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3926 { 3927 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3928 struct xhci_virt_device *vdev; 3929 struct xhci_slot_ctx *slot_ctx; 3930 unsigned long flags; 3931 int ret, slot_id; 3932 struct xhci_command *command; 3933 3934 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3935 if (!command) 3936 return 0; 3937 3938 spin_lock_irqsave(&xhci->lock, flags); 3939 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3940 if (ret) { 3941 spin_unlock_irqrestore(&xhci->lock, flags); 3942 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3943 xhci_free_command(xhci, command); 3944 return 0; 3945 } 3946 xhci_ring_cmd_db(xhci); 3947 spin_unlock_irqrestore(&xhci->lock, flags); 3948 3949 wait_for_completion(command->completion); 3950 slot_id = command->slot_id; 3951 3952 if (!slot_id || command->status != COMP_SUCCESS) { 3953 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3954 xhci_trb_comp_code_string(command->status)); 3955 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3956 HCS_MAX_SLOTS( 3957 readl(&xhci->cap_regs->hcs_params1))); 3958 xhci_free_command(xhci, command); 3959 return 0; 3960 } 3961 3962 xhci_free_command(xhci, command); 3963 3964 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3965 spin_lock_irqsave(&xhci->lock, flags); 3966 ret = xhci_reserve_host_control_ep_resources(xhci); 3967 if (ret) { 3968 spin_unlock_irqrestore(&xhci->lock, flags); 3969 xhci_warn(xhci, "Not enough host resources, " 3970 "active endpoint contexts = %u\n", 3971 xhci->num_active_eps); 3972 goto disable_slot; 3973 } 3974 spin_unlock_irqrestore(&xhci->lock, flags); 3975 } 3976 /* Use GFP_NOIO, since this function can be called from 3977 * xhci_discover_or_reset_device(), which may be called as part of 3978 * mass storage driver error handling. 3979 */ 3980 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3981 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3982 goto disable_slot; 3983 } 3984 vdev = xhci->devs[slot_id]; 3985 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3986 trace_xhci_alloc_dev(slot_ctx); 3987 3988 udev->slot_id = slot_id; 3989 3990 xhci_debugfs_create_slot(xhci, slot_id); 3991 3992 /* 3993 * If resetting upon resume, we can't put the controller into runtime 3994 * suspend if there is a device attached. 3995 */ 3996 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3997 pm_runtime_get_noresume(hcd->self.controller); 3998 3999 /* Is this a LS or FS device under a HS hub? */ 4000 /* Hub or peripherial? */ 4001 return 1; 4002 4003 disable_slot: 4004 xhci_disable_slot(xhci, udev->slot_id); 4005 xhci_free_virt_device(xhci, udev->slot_id); 4006 4007 return 0; 4008 } 4009 4010 /** 4011 * xhci_setup_device - issues an Address Device command to assign a unique 4012 * USB bus address. 4013 * @hcd: USB host controller data structure. 4014 * @udev: USB dev structure representing the connected device. 4015 * @setup: Enum specifying setup mode: address only or with context. 4016 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4017 * 4018 * Return: 0 if successful; otherwise, negative error code. 4019 */ 4020 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4021 enum xhci_setup_dev setup, unsigned int timeout_ms) 4022 { 4023 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4024 unsigned long flags; 4025 struct xhci_virt_device *virt_dev; 4026 int ret = 0; 4027 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4028 struct xhci_slot_ctx *slot_ctx; 4029 struct xhci_input_control_ctx *ctrl_ctx; 4030 u64 temp_64; 4031 struct xhci_command *command = NULL; 4032 4033 mutex_lock(&xhci->mutex); 4034 4035 if (xhci->xhc_state) { /* dying, removing or halted */ 4036 ret = -ESHUTDOWN; 4037 goto out; 4038 } 4039 4040 if (!udev->slot_id) { 4041 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4042 "Bad Slot ID %d", udev->slot_id); 4043 ret = -EINVAL; 4044 goto out; 4045 } 4046 4047 virt_dev = xhci->devs[udev->slot_id]; 4048 4049 if (WARN_ON(!virt_dev)) { 4050 /* 4051 * In plug/unplug torture test with an NEC controller, 4052 * a zero-dereference was observed once due to virt_dev = 0. 4053 * Print useful debug rather than crash if it is observed again! 4054 */ 4055 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4056 udev->slot_id); 4057 ret = -EINVAL; 4058 goto out; 4059 } 4060 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4061 trace_xhci_setup_device_slot(slot_ctx); 4062 4063 if (setup == SETUP_CONTEXT_ONLY) { 4064 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4065 SLOT_STATE_DEFAULT) { 4066 xhci_dbg(xhci, "Slot already in default state\n"); 4067 goto out; 4068 } 4069 } 4070 4071 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4072 if (!command) { 4073 ret = -ENOMEM; 4074 goto out; 4075 } 4076 4077 command->in_ctx = virt_dev->in_ctx; 4078 command->timeout_ms = timeout_ms; 4079 4080 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4081 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4082 if (!ctrl_ctx) { 4083 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4084 __func__); 4085 ret = -EINVAL; 4086 goto out; 4087 } 4088 /* 4089 * If this is the first Set Address since device plug-in or 4090 * virt_device realloaction after a resume with an xHCI power loss, 4091 * then set up the slot context. 4092 */ 4093 if (!slot_ctx->dev_info) 4094 xhci_setup_addressable_virt_dev(xhci, udev); 4095 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4096 else 4097 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4098 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4099 ctrl_ctx->drop_flags = 0; 4100 4101 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4102 le32_to_cpu(slot_ctx->dev_info) >> 27); 4103 4104 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4105 spin_lock_irqsave(&xhci->lock, flags); 4106 trace_xhci_setup_device(virt_dev); 4107 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4108 udev->slot_id, setup); 4109 if (ret) { 4110 spin_unlock_irqrestore(&xhci->lock, flags); 4111 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4112 "FIXME: allocate a command ring segment"); 4113 goto out; 4114 } 4115 xhci_ring_cmd_db(xhci); 4116 spin_unlock_irqrestore(&xhci->lock, flags); 4117 4118 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4119 wait_for_completion(command->completion); 4120 4121 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4122 * the SetAddress() "recovery interval" required by USB and aborting the 4123 * command on a timeout. 4124 */ 4125 switch (command->status) { 4126 case COMP_COMMAND_ABORTED: 4127 case COMP_COMMAND_RING_STOPPED: 4128 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4129 ret = -ETIME; 4130 break; 4131 case COMP_CONTEXT_STATE_ERROR: 4132 case COMP_SLOT_NOT_ENABLED_ERROR: 4133 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4134 act, udev->slot_id); 4135 ret = -EINVAL; 4136 break; 4137 case COMP_USB_TRANSACTION_ERROR: 4138 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4139 4140 mutex_unlock(&xhci->mutex); 4141 ret = xhci_disable_slot(xhci, udev->slot_id); 4142 xhci_free_virt_device(xhci, udev->slot_id); 4143 if (!ret) 4144 xhci_alloc_dev(hcd, udev); 4145 kfree(command->completion); 4146 kfree(command); 4147 return -EPROTO; 4148 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4149 dev_warn(&udev->dev, 4150 "ERROR: Incompatible device for setup %s command\n", act); 4151 ret = -ENODEV; 4152 break; 4153 case COMP_SUCCESS: 4154 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4155 "Successful setup %s command", act); 4156 break; 4157 default: 4158 xhci_err(xhci, 4159 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4160 act, command->status); 4161 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4162 ret = -EINVAL; 4163 break; 4164 } 4165 if (ret) 4166 goto out; 4167 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4168 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4169 "Op regs DCBAA ptr = %#016llx", temp_64); 4170 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4171 "Slot ID %d dcbaa entry @%p = %#016llx", 4172 udev->slot_id, 4173 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4174 (unsigned long long) 4175 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4176 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4177 "Output Context DMA address = %#08llx", 4178 (unsigned long long)virt_dev->out_ctx->dma); 4179 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4180 le32_to_cpu(slot_ctx->dev_info) >> 27); 4181 /* 4182 * USB core uses address 1 for the roothubs, so we add one to the 4183 * address given back to us by the HC. 4184 */ 4185 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4186 le32_to_cpu(slot_ctx->dev_info) >> 27); 4187 /* Zero the input context control for later use */ 4188 ctrl_ctx->add_flags = 0; 4189 ctrl_ctx->drop_flags = 0; 4190 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4191 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4192 4193 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4194 "Internal device address = %d", 4195 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4196 out: 4197 mutex_unlock(&xhci->mutex); 4198 if (command) { 4199 kfree(command->completion); 4200 kfree(command); 4201 } 4202 return ret; 4203 } 4204 4205 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4206 unsigned int timeout_ms) 4207 { 4208 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4209 } 4210 4211 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4212 { 4213 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4214 XHCI_CMD_DEFAULT_TIMEOUT); 4215 } 4216 4217 /* 4218 * Transfer the port index into real index in the HW port status 4219 * registers. Caculate offset between the port's PORTSC register 4220 * and port status base. Divide the number of per port register 4221 * to get the real index. The raw port number bases 1. 4222 */ 4223 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4224 { 4225 struct xhci_hub *rhub; 4226 4227 rhub = xhci_get_rhub(hcd); 4228 return rhub->ports[port1 - 1]->hw_portnum + 1; 4229 } 4230 4231 /* 4232 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4233 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4234 */ 4235 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4236 struct usb_device *udev, u16 max_exit_latency) 4237 { 4238 struct xhci_virt_device *virt_dev; 4239 struct xhci_command *command; 4240 struct xhci_input_control_ctx *ctrl_ctx; 4241 struct xhci_slot_ctx *slot_ctx; 4242 unsigned long flags; 4243 int ret; 4244 4245 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4246 if (!command) 4247 return -ENOMEM; 4248 4249 spin_lock_irqsave(&xhci->lock, flags); 4250 4251 virt_dev = xhci->devs[udev->slot_id]; 4252 4253 /* 4254 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4255 * xHC was re-initialized. Exit latency will be set later after 4256 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4257 */ 4258 4259 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4260 spin_unlock_irqrestore(&xhci->lock, flags); 4261 xhci_free_command(xhci, command); 4262 return 0; 4263 } 4264 4265 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4266 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4267 if (!ctrl_ctx) { 4268 spin_unlock_irqrestore(&xhci->lock, flags); 4269 xhci_free_command(xhci, command); 4270 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4271 __func__); 4272 return -ENOMEM; 4273 } 4274 4275 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4276 spin_unlock_irqrestore(&xhci->lock, flags); 4277 4278 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4279 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4280 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4281 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4282 slot_ctx->dev_state = 0; 4283 4284 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4285 "Set up evaluate context for LPM MEL change."); 4286 4287 /* Issue and wait for the evaluate context command. */ 4288 ret = xhci_configure_endpoint(xhci, udev, command, 4289 true, true); 4290 4291 if (!ret) { 4292 spin_lock_irqsave(&xhci->lock, flags); 4293 virt_dev->current_mel = max_exit_latency; 4294 spin_unlock_irqrestore(&xhci->lock, flags); 4295 } 4296 4297 xhci_free_command(xhci, command); 4298 4299 return ret; 4300 } 4301 4302 #ifdef CONFIG_PM 4303 4304 /* BESL to HIRD Encoding array for USB2 LPM */ 4305 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4306 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4307 4308 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4309 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4310 struct usb_device *udev) 4311 { 4312 int u2del, besl, besl_host; 4313 int besl_device = 0; 4314 u32 field; 4315 4316 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4317 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4318 4319 if (field & USB_BESL_SUPPORT) { 4320 for (besl_host = 0; besl_host < 16; besl_host++) { 4321 if (xhci_besl_encoding[besl_host] >= u2del) 4322 break; 4323 } 4324 /* Use baseline BESL value as default */ 4325 if (field & USB_BESL_BASELINE_VALID) 4326 besl_device = USB_GET_BESL_BASELINE(field); 4327 else if (field & USB_BESL_DEEP_VALID) 4328 besl_device = USB_GET_BESL_DEEP(field); 4329 } else { 4330 if (u2del <= 50) 4331 besl_host = 0; 4332 else 4333 besl_host = (u2del - 51) / 75 + 1; 4334 } 4335 4336 besl = besl_host + besl_device; 4337 if (besl > 15) 4338 besl = 15; 4339 4340 return besl; 4341 } 4342 4343 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4344 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4345 { 4346 u32 field; 4347 int l1; 4348 int besld = 0; 4349 int hirdm = 0; 4350 4351 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4352 4353 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4354 l1 = udev->l1_params.timeout / 256; 4355 4356 /* device has preferred BESLD */ 4357 if (field & USB_BESL_DEEP_VALID) { 4358 besld = USB_GET_BESL_DEEP(field); 4359 hirdm = 1; 4360 } 4361 4362 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4363 } 4364 4365 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4366 struct usb_device *udev, int enable) 4367 { 4368 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4369 struct xhci_port **ports; 4370 __le32 __iomem *pm_addr, *hlpm_addr; 4371 u32 pm_val, hlpm_val, field; 4372 unsigned int port_num; 4373 unsigned long flags; 4374 int hird, exit_latency; 4375 int ret; 4376 4377 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4378 return -EPERM; 4379 4380 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4381 !udev->lpm_capable) 4382 return -EPERM; 4383 4384 if (!udev->parent || udev->parent->parent || 4385 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4386 return -EPERM; 4387 4388 if (udev->usb2_hw_lpm_capable != 1) 4389 return -EPERM; 4390 4391 spin_lock_irqsave(&xhci->lock, flags); 4392 4393 ports = xhci->usb2_rhub.ports; 4394 port_num = udev->portnum - 1; 4395 pm_addr = ports[port_num]->addr + PORTPMSC; 4396 pm_val = readl(pm_addr); 4397 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4398 4399 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4400 enable ? "enable" : "disable", port_num + 1); 4401 4402 if (enable) { 4403 /* Host supports BESL timeout instead of HIRD */ 4404 if (udev->usb2_hw_lpm_besl_capable) { 4405 /* if device doesn't have a preferred BESL value use a 4406 * default one which works with mixed HIRD and BESL 4407 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4408 */ 4409 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4410 if ((field & USB_BESL_SUPPORT) && 4411 (field & USB_BESL_BASELINE_VALID)) 4412 hird = USB_GET_BESL_BASELINE(field); 4413 else 4414 hird = udev->l1_params.besl; 4415 4416 exit_latency = xhci_besl_encoding[hird]; 4417 spin_unlock_irqrestore(&xhci->lock, flags); 4418 4419 ret = xhci_change_max_exit_latency(xhci, udev, 4420 exit_latency); 4421 if (ret < 0) 4422 return ret; 4423 spin_lock_irqsave(&xhci->lock, flags); 4424 4425 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4426 writel(hlpm_val, hlpm_addr); 4427 /* flush write */ 4428 readl(hlpm_addr); 4429 } else { 4430 hird = xhci_calculate_hird_besl(xhci, udev); 4431 } 4432 4433 pm_val &= ~PORT_HIRD_MASK; 4434 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4435 writel(pm_val, pm_addr); 4436 pm_val = readl(pm_addr); 4437 pm_val |= PORT_HLE; 4438 writel(pm_val, pm_addr); 4439 /* flush write */ 4440 readl(pm_addr); 4441 } else { 4442 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4443 writel(pm_val, pm_addr); 4444 /* flush write */ 4445 readl(pm_addr); 4446 if (udev->usb2_hw_lpm_besl_capable) { 4447 spin_unlock_irqrestore(&xhci->lock, flags); 4448 xhci_change_max_exit_latency(xhci, udev, 0); 4449 readl_poll_timeout(ports[port_num]->addr, pm_val, 4450 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4451 100, 10000); 4452 return 0; 4453 } 4454 } 4455 4456 spin_unlock_irqrestore(&xhci->lock, flags); 4457 return 0; 4458 } 4459 4460 /* check if a usb2 port supports a given extened capability protocol 4461 * only USB2 ports extended protocol capability values are cached. 4462 * Return 1 if capability is supported 4463 */ 4464 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4465 unsigned capability) 4466 { 4467 u32 port_offset, port_count; 4468 int i; 4469 4470 for (i = 0; i < xhci->num_ext_caps; i++) { 4471 if (xhci->ext_caps[i] & capability) { 4472 /* port offsets starts at 1 */ 4473 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4474 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4475 if (port >= port_offset && 4476 port < port_offset + port_count) 4477 return 1; 4478 } 4479 } 4480 return 0; 4481 } 4482 4483 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4484 { 4485 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4486 int portnum = udev->portnum - 1; 4487 4488 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4489 return 0; 4490 4491 /* we only support lpm for non-hub device connected to root hub yet */ 4492 if (!udev->parent || udev->parent->parent || 4493 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4494 return 0; 4495 4496 if (xhci->hw_lpm_support == 1 && 4497 xhci_check_usb2_port_capability( 4498 xhci, portnum, XHCI_HLC)) { 4499 udev->usb2_hw_lpm_capable = 1; 4500 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4501 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4502 if (xhci_check_usb2_port_capability(xhci, portnum, 4503 XHCI_BLC)) 4504 udev->usb2_hw_lpm_besl_capable = 1; 4505 } 4506 4507 return 0; 4508 } 4509 4510 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4511 4512 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4513 static unsigned long long xhci_service_interval_to_ns( 4514 struct usb_endpoint_descriptor *desc) 4515 { 4516 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4517 } 4518 4519 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4520 enum usb3_link_state state) 4521 { 4522 unsigned long long sel; 4523 unsigned long long pel; 4524 unsigned int max_sel_pel; 4525 char *state_name; 4526 4527 switch (state) { 4528 case USB3_LPM_U1: 4529 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4530 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4531 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4532 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4533 state_name = "U1"; 4534 break; 4535 case USB3_LPM_U2: 4536 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4537 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4538 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4539 state_name = "U2"; 4540 break; 4541 default: 4542 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4543 __func__); 4544 return USB3_LPM_DISABLED; 4545 } 4546 4547 if (sel <= max_sel_pel && pel <= max_sel_pel) 4548 return USB3_LPM_DEVICE_INITIATED; 4549 4550 if (sel > max_sel_pel) 4551 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4552 "due to long SEL %llu ms\n", 4553 state_name, sel); 4554 else 4555 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4556 "due to long PEL %llu ms\n", 4557 state_name, pel); 4558 return USB3_LPM_DISABLED; 4559 } 4560 4561 /* The U1 timeout should be the maximum of the following values: 4562 * - For control endpoints, U1 system exit latency (SEL) * 3 4563 * - For bulk endpoints, U1 SEL * 5 4564 * - For interrupt endpoints: 4565 * - Notification EPs, U1 SEL * 3 4566 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4567 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4568 */ 4569 static unsigned long long xhci_calculate_intel_u1_timeout( 4570 struct usb_device *udev, 4571 struct usb_endpoint_descriptor *desc) 4572 { 4573 unsigned long long timeout_ns; 4574 int ep_type; 4575 int intr_type; 4576 4577 ep_type = usb_endpoint_type(desc); 4578 switch (ep_type) { 4579 case USB_ENDPOINT_XFER_CONTROL: 4580 timeout_ns = udev->u1_params.sel * 3; 4581 break; 4582 case USB_ENDPOINT_XFER_BULK: 4583 timeout_ns = udev->u1_params.sel * 5; 4584 break; 4585 case USB_ENDPOINT_XFER_INT: 4586 intr_type = usb_endpoint_interrupt_type(desc); 4587 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4588 timeout_ns = udev->u1_params.sel * 3; 4589 break; 4590 } 4591 /* Otherwise the calculation is the same as isoc eps */ 4592 fallthrough; 4593 case USB_ENDPOINT_XFER_ISOC: 4594 timeout_ns = xhci_service_interval_to_ns(desc); 4595 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4596 if (timeout_ns < udev->u1_params.sel * 2) 4597 timeout_ns = udev->u1_params.sel * 2; 4598 break; 4599 default: 4600 return 0; 4601 } 4602 4603 return timeout_ns; 4604 } 4605 4606 /* Returns the hub-encoded U1 timeout value. */ 4607 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4608 struct usb_device *udev, 4609 struct usb_endpoint_descriptor *desc) 4610 { 4611 unsigned long long timeout_ns; 4612 4613 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4614 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4615 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4616 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4617 return USB3_LPM_DISABLED; 4618 } 4619 } 4620 4621 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4622 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4623 else 4624 timeout_ns = udev->u1_params.sel; 4625 4626 /* The U1 timeout is encoded in 1us intervals. 4627 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4628 */ 4629 if (timeout_ns == USB3_LPM_DISABLED) 4630 timeout_ns = 1; 4631 else 4632 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4633 4634 /* If the necessary timeout value is bigger than what we can set in the 4635 * USB 3.0 hub, we have to disable hub-initiated U1. 4636 */ 4637 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4638 return timeout_ns; 4639 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4640 "due to long timeout %llu ms\n", timeout_ns); 4641 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4642 } 4643 4644 /* The U2 timeout should be the maximum of: 4645 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4646 * - largest bInterval of any active periodic endpoint (to avoid going 4647 * into lower power link states between intervals). 4648 * - the U2 Exit Latency of the device 4649 */ 4650 static unsigned long long xhci_calculate_intel_u2_timeout( 4651 struct usb_device *udev, 4652 struct usb_endpoint_descriptor *desc) 4653 { 4654 unsigned long long timeout_ns; 4655 unsigned long long u2_del_ns; 4656 4657 timeout_ns = 10 * 1000 * 1000; 4658 4659 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4660 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4661 timeout_ns = xhci_service_interval_to_ns(desc); 4662 4663 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4664 if (u2_del_ns > timeout_ns) 4665 timeout_ns = u2_del_ns; 4666 4667 return timeout_ns; 4668 } 4669 4670 /* Returns the hub-encoded U2 timeout value. */ 4671 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4672 struct usb_device *udev, 4673 struct usb_endpoint_descriptor *desc) 4674 { 4675 unsigned long long timeout_ns; 4676 4677 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4678 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4679 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4680 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4681 return USB3_LPM_DISABLED; 4682 } 4683 } 4684 4685 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4686 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4687 else 4688 timeout_ns = udev->u2_params.sel; 4689 4690 /* The U2 timeout is encoded in 256us intervals */ 4691 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4692 /* If the necessary timeout value is bigger than what we can set in the 4693 * USB 3.0 hub, we have to disable hub-initiated U2. 4694 */ 4695 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4696 return timeout_ns; 4697 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4698 "due to long timeout %llu ms\n", timeout_ns); 4699 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4700 } 4701 4702 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4703 struct usb_device *udev, 4704 struct usb_endpoint_descriptor *desc, 4705 enum usb3_link_state state, 4706 u16 *timeout) 4707 { 4708 if (state == USB3_LPM_U1) 4709 return xhci_calculate_u1_timeout(xhci, udev, desc); 4710 else if (state == USB3_LPM_U2) 4711 return xhci_calculate_u2_timeout(xhci, udev, desc); 4712 4713 return USB3_LPM_DISABLED; 4714 } 4715 4716 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4717 struct usb_device *udev, 4718 struct usb_endpoint_descriptor *desc, 4719 enum usb3_link_state state, 4720 u16 *timeout) 4721 { 4722 u16 alt_timeout; 4723 4724 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4725 desc, state, timeout); 4726 4727 /* If we found we can't enable hub-initiated LPM, and 4728 * the U1 or U2 exit latency was too high to allow 4729 * device-initiated LPM as well, then we will disable LPM 4730 * for this device, so stop searching any further. 4731 */ 4732 if (alt_timeout == USB3_LPM_DISABLED) { 4733 *timeout = alt_timeout; 4734 return -E2BIG; 4735 } 4736 if (alt_timeout > *timeout) 4737 *timeout = alt_timeout; 4738 return 0; 4739 } 4740 4741 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4742 struct usb_device *udev, 4743 struct usb_host_interface *alt, 4744 enum usb3_link_state state, 4745 u16 *timeout) 4746 { 4747 int j; 4748 4749 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4750 if (xhci_update_timeout_for_endpoint(xhci, udev, 4751 &alt->endpoint[j].desc, state, timeout)) 4752 return -E2BIG; 4753 } 4754 return 0; 4755 } 4756 4757 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4758 struct usb_device *udev, 4759 enum usb3_link_state state) 4760 { 4761 struct usb_device *parent = udev->parent; 4762 int tier = 1; /* roothub is tier1 */ 4763 4764 while (parent) { 4765 parent = parent->parent; 4766 tier++; 4767 } 4768 4769 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4770 goto fail; 4771 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4772 goto fail; 4773 4774 return 0; 4775 fail: 4776 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4777 tier); 4778 return -E2BIG; 4779 } 4780 4781 /* Returns the U1 or U2 timeout that should be enabled. 4782 * If the tier check or timeout setting functions return with a non-zero exit 4783 * code, that means the timeout value has been finalized and we shouldn't look 4784 * at any more endpoints. 4785 */ 4786 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4787 struct usb_device *udev, enum usb3_link_state state) 4788 { 4789 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4790 struct usb_host_config *config; 4791 char *state_name; 4792 int i; 4793 u16 timeout = USB3_LPM_DISABLED; 4794 4795 if (state == USB3_LPM_U1) 4796 state_name = "U1"; 4797 else if (state == USB3_LPM_U2) 4798 state_name = "U2"; 4799 else { 4800 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4801 state); 4802 return timeout; 4803 } 4804 4805 /* Gather some information about the currently installed configuration 4806 * and alternate interface settings. 4807 */ 4808 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4809 state, &timeout)) 4810 return timeout; 4811 4812 config = udev->actconfig; 4813 if (!config) 4814 return timeout; 4815 4816 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4817 struct usb_driver *driver; 4818 struct usb_interface *intf = config->interface[i]; 4819 4820 if (!intf) 4821 continue; 4822 4823 /* Check if any currently bound drivers want hub-initiated LPM 4824 * disabled. 4825 */ 4826 if (intf->dev.driver) { 4827 driver = to_usb_driver(intf->dev.driver); 4828 if (driver && driver->disable_hub_initiated_lpm) { 4829 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4830 state_name, driver->name); 4831 timeout = xhci_get_timeout_no_hub_lpm(udev, 4832 state); 4833 if (timeout == USB3_LPM_DISABLED) 4834 return timeout; 4835 } 4836 } 4837 4838 /* Not sure how this could happen... */ 4839 if (!intf->cur_altsetting) 4840 continue; 4841 4842 if (xhci_update_timeout_for_interface(xhci, udev, 4843 intf->cur_altsetting, 4844 state, &timeout)) 4845 return timeout; 4846 } 4847 return timeout; 4848 } 4849 4850 static int calculate_max_exit_latency(struct usb_device *udev, 4851 enum usb3_link_state state_changed, 4852 u16 hub_encoded_timeout) 4853 { 4854 unsigned long long u1_mel_us = 0; 4855 unsigned long long u2_mel_us = 0; 4856 unsigned long long mel_us = 0; 4857 bool disabling_u1; 4858 bool disabling_u2; 4859 bool enabling_u1; 4860 bool enabling_u2; 4861 4862 disabling_u1 = (state_changed == USB3_LPM_U1 && 4863 hub_encoded_timeout == USB3_LPM_DISABLED); 4864 disabling_u2 = (state_changed == USB3_LPM_U2 && 4865 hub_encoded_timeout == USB3_LPM_DISABLED); 4866 4867 enabling_u1 = (state_changed == USB3_LPM_U1 && 4868 hub_encoded_timeout != USB3_LPM_DISABLED); 4869 enabling_u2 = (state_changed == USB3_LPM_U2 && 4870 hub_encoded_timeout != USB3_LPM_DISABLED); 4871 4872 /* If U1 was already enabled and we're not disabling it, 4873 * or we're going to enable U1, account for the U1 max exit latency. 4874 */ 4875 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4876 enabling_u1) 4877 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4878 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4879 enabling_u2) 4880 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4881 4882 mel_us = max(u1_mel_us, u2_mel_us); 4883 4884 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4885 if (mel_us > MAX_EXIT) { 4886 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4887 "is too big.\n", mel_us); 4888 return -E2BIG; 4889 } 4890 return mel_us; 4891 } 4892 4893 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4894 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4895 struct usb_device *udev, enum usb3_link_state state) 4896 { 4897 struct xhci_hcd *xhci; 4898 struct xhci_port *port; 4899 u16 hub_encoded_timeout; 4900 int mel; 4901 int ret; 4902 4903 xhci = hcd_to_xhci(hcd); 4904 /* The LPM timeout values are pretty host-controller specific, so don't 4905 * enable hub-initiated timeouts unless the vendor has provided 4906 * information about their timeout algorithm. 4907 */ 4908 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4909 !xhci->devs[udev->slot_id]) 4910 return USB3_LPM_DISABLED; 4911 4912 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4913 return USB3_LPM_DISABLED; 4914 4915 /* If connected to root port then check port can handle lpm */ 4916 if (udev->parent && !udev->parent->parent) { 4917 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4918 if (port->lpm_incapable) 4919 return USB3_LPM_DISABLED; 4920 } 4921 4922 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4923 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4924 if (mel < 0) { 4925 /* Max Exit Latency is too big, disable LPM. */ 4926 hub_encoded_timeout = USB3_LPM_DISABLED; 4927 mel = 0; 4928 } 4929 4930 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4931 if (ret) 4932 return ret; 4933 return hub_encoded_timeout; 4934 } 4935 4936 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4937 struct usb_device *udev, enum usb3_link_state state) 4938 { 4939 struct xhci_hcd *xhci; 4940 u16 mel; 4941 4942 xhci = hcd_to_xhci(hcd); 4943 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4944 !xhci->devs[udev->slot_id]) 4945 return 0; 4946 4947 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4948 return xhci_change_max_exit_latency(xhci, udev, mel); 4949 } 4950 #else /* CONFIG_PM */ 4951 4952 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4953 struct usb_device *udev, int enable) 4954 { 4955 return 0; 4956 } 4957 4958 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4959 { 4960 return 0; 4961 } 4962 4963 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4964 struct usb_device *udev, enum usb3_link_state state) 4965 { 4966 return USB3_LPM_DISABLED; 4967 } 4968 4969 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4970 struct usb_device *udev, enum usb3_link_state state) 4971 { 4972 return 0; 4973 } 4974 #endif /* CONFIG_PM */ 4975 4976 /*-------------------------------------------------------------------------*/ 4977 4978 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4979 * internal data structures for the device. 4980 */ 4981 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4982 struct usb_tt *tt, gfp_t mem_flags) 4983 { 4984 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4985 struct xhci_virt_device *vdev; 4986 struct xhci_command *config_cmd; 4987 struct xhci_input_control_ctx *ctrl_ctx; 4988 struct xhci_slot_ctx *slot_ctx; 4989 unsigned long flags; 4990 unsigned think_time; 4991 int ret; 4992 4993 /* Ignore root hubs */ 4994 if (!hdev->parent) 4995 return 0; 4996 4997 vdev = xhci->devs[hdev->slot_id]; 4998 if (!vdev) { 4999 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5000 return -EINVAL; 5001 } 5002 5003 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5004 if (!config_cmd) 5005 return -ENOMEM; 5006 5007 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5008 if (!ctrl_ctx) { 5009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5010 __func__); 5011 xhci_free_command(xhci, config_cmd); 5012 return -ENOMEM; 5013 } 5014 5015 spin_lock_irqsave(&xhci->lock, flags); 5016 if (hdev->speed == USB_SPEED_HIGH && 5017 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5018 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5019 xhci_free_command(xhci, config_cmd); 5020 spin_unlock_irqrestore(&xhci->lock, flags); 5021 return -ENOMEM; 5022 } 5023 5024 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5025 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5026 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5027 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5028 /* 5029 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5030 * but it may be already set to 1 when setup an xHCI virtual 5031 * device, so clear it anyway. 5032 */ 5033 if (tt->multi) 5034 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5035 else if (hdev->speed == USB_SPEED_FULL) 5036 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5037 5038 if (xhci->hci_version > 0x95) { 5039 xhci_dbg(xhci, "xHCI version %x needs hub " 5040 "TT think time and number of ports\n", 5041 (unsigned int) xhci->hci_version); 5042 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5043 /* Set TT think time - convert from ns to FS bit times. 5044 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5045 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5046 * 5047 * xHCI 1.0: this field shall be 0 if the device is not a 5048 * High-spped hub. 5049 */ 5050 think_time = tt->think_time; 5051 if (think_time != 0) 5052 think_time = (think_time / 666) - 1; 5053 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5054 slot_ctx->tt_info |= 5055 cpu_to_le32(TT_THINK_TIME(think_time)); 5056 } else { 5057 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5058 "TT think time or number of ports\n", 5059 (unsigned int) xhci->hci_version); 5060 } 5061 slot_ctx->dev_state = 0; 5062 spin_unlock_irqrestore(&xhci->lock, flags); 5063 5064 xhci_dbg(xhci, "Set up %s for hub device.\n", 5065 (xhci->hci_version > 0x95) ? 5066 "configure endpoint" : "evaluate context"); 5067 5068 /* Issue and wait for the configure endpoint or 5069 * evaluate context command. 5070 */ 5071 if (xhci->hci_version > 0x95) 5072 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5073 false, false); 5074 else 5075 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5076 true, false); 5077 5078 xhci_free_command(xhci, config_cmd); 5079 return ret; 5080 } 5081 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5082 5083 static int xhci_get_frame(struct usb_hcd *hcd) 5084 { 5085 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5086 /* EHCI mods by the periodic size. Why? */ 5087 return readl(&xhci->run_regs->microframe_index) >> 3; 5088 } 5089 5090 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5091 { 5092 xhci->usb2_rhub.hcd = hcd; 5093 hcd->speed = HCD_USB2; 5094 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5095 /* 5096 * USB 2.0 roothub under xHCI has an integrated TT, 5097 * (rate matching hub) as opposed to having an OHCI/UHCI 5098 * companion controller. 5099 */ 5100 hcd->has_tt = 1; 5101 } 5102 5103 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5104 { 5105 unsigned int minor_rev; 5106 5107 /* 5108 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5109 * should return 0x31 for sbrn, or that the minor revision 5110 * is a two digit BCD containig minor and sub-minor numbers. 5111 * This was later clarified in xHCI 1.2. 5112 * 5113 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5114 * minor revision set to 0x1 instead of 0x10. 5115 */ 5116 if (xhci->usb3_rhub.min_rev == 0x1) 5117 minor_rev = 1; 5118 else 5119 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5120 5121 switch (minor_rev) { 5122 case 2: 5123 hcd->speed = HCD_USB32; 5124 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5125 hcd->self.root_hub->rx_lanes = 2; 5126 hcd->self.root_hub->tx_lanes = 2; 5127 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5128 break; 5129 case 1: 5130 hcd->speed = HCD_USB31; 5131 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5132 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5133 break; 5134 } 5135 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5136 minor_rev, minor_rev ? "Enhanced " : ""); 5137 5138 xhci->usb3_rhub.hcd = hcd; 5139 } 5140 5141 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5142 { 5143 struct xhci_hcd *xhci; 5144 /* 5145 * TODO: Check with DWC3 clients for sysdev according to 5146 * quirks 5147 */ 5148 struct device *dev = hcd->self.sysdev; 5149 int retval; 5150 5151 /* Accept arbitrarily long scatter-gather lists */ 5152 hcd->self.sg_tablesize = ~0; 5153 5154 /* support to build packet from discontinuous buffers */ 5155 hcd->self.no_sg_constraint = 1; 5156 5157 /* XHCI controllers don't stop the ep queue on short packets :| */ 5158 hcd->self.no_stop_on_short = 1; 5159 5160 xhci = hcd_to_xhci(hcd); 5161 5162 if (!usb_hcd_is_primary_hcd(hcd)) { 5163 xhci_hcd_init_usb3_data(xhci, hcd); 5164 return 0; 5165 } 5166 5167 mutex_init(&xhci->mutex); 5168 xhci->main_hcd = hcd; 5169 xhci->cap_regs = hcd->regs; 5170 xhci->op_regs = hcd->regs + 5171 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5172 xhci->run_regs = hcd->regs + 5173 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5174 /* Cache read-only capability registers */ 5175 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5176 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5177 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5178 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5179 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5180 if (xhci->hci_version > 0x100) 5181 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5182 5183 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5184 if ((!xhci->max_interrupters) || 5185 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5186 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5187 5188 xhci->quirks |= quirks; 5189 5190 if (get_quirks) 5191 get_quirks(dev, xhci); 5192 5193 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5194 * success event after a short transfer. This quirk will ignore such 5195 * spurious event. 5196 */ 5197 if (xhci->hci_version > 0x96) 5198 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5199 5200 /* Make sure the HC is halted. */ 5201 retval = xhci_halt(xhci); 5202 if (retval) 5203 return retval; 5204 5205 xhci_zero_64b_regs(xhci); 5206 5207 xhci_dbg(xhci, "Resetting HCD\n"); 5208 /* Reset the internal HC memory state and registers. */ 5209 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5210 if (retval) 5211 return retval; 5212 xhci_dbg(xhci, "Reset complete\n"); 5213 5214 /* 5215 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5216 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5217 * address memory pointers actually. So, this driver clears the AC64 5218 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5219 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5220 */ 5221 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5222 xhci->hcc_params &= ~BIT(0); 5223 5224 /* Set dma_mask and coherent_dma_mask to 64-bits, 5225 * if xHC supports 64-bit addressing */ 5226 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5227 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5228 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5229 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5230 } else { 5231 /* 5232 * This is to avoid error in cases where a 32-bit USB 5233 * controller is used on a 64-bit capable system. 5234 */ 5235 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5236 if (retval) 5237 return retval; 5238 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5239 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5240 } 5241 5242 xhci_dbg(xhci, "Calling HCD init\n"); 5243 /* Initialize HCD and host controller data structures. */ 5244 retval = xhci_init(hcd); 5245 if (retval) 5246 return retval; 5247 xhci_dbg(xhci, "Called HCD init\n"); 5248 5249 if (xhci_hcd_is_usb3(hcd)) 5250 xhci_hcd_init_usb3_data(xhci, hcd); 5251 else 5252 xhci_hcd_init_usb2_data(xhci, hcd); 5253 5254 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5255 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5256 5257 return 0; 5258 } 5259 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5260 5261 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5262 struct usb_host_endpoint *ep) 5263 { 5264 struct xhci_hcd *xhci; 5265 struct usb_device *udev; 5266 unsigned int slot_id; 5267 unsigned int ep_index; 5268 unsigned long flags; 5269 5270 xhci = hcd_to_xhci(hcd); 5271 5272 spin_lock_irqsave(&xhci->lock, flags); 5273 udev = (struct usb_device *)ep->hcpriv; 5274 slot_id = udev->slot_id; 5275 ep_index = xhci_get_endpoint_index(&ep->desc); 5276 5277 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5278 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5279 spin_unlock_irqrestore(&xhci->lock, flags); 5280 } 5281 5282 static const struct hc_driver xhci_hc_driver = { 5283 .description = "xhci-hcd", 5284 .product_desc = "xHCI Host Controller", 5285 .hcd_priv_size = sizeof(struct xhci_hcd), 5286 5287 /* 5288 * generic hardware linkage 5289 */ 5290 .irq = xhci_irq, 5291 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5292 HCD_BH, 5293 5294 /* 5295 * basic lifecycle operations 5296 */ 5297 .reset = NULL, /* set in xhci_init_driver() */ 5298 .start = xhci_run, 5299 .stop = xhci_stop, 5300 .shutdown = xhci_shutdown, 5301 5302 /* 5303 * managing i/o requests and associated device resources 5304 */ 5305 .map_urb_for_dma = xhci_map_urb_for_dma, 5306 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5307 .urb_enqueue = xhci_urb_enqueue, 5308 .urb_dequeue = xhci_urb_dequeue, 5309 .alloc_dev = xhci_alloc_dev, 5310 .free_dev = xhci_free_dev, 5311 .alloc_streams = xhci_alloc_streams, 5312 .free_streams = xhci_free_streams, 5313 .add_endpoint = xhci_add_endpoint, 5314 .drop_endpoint = xhci_drop_endpoint, 5315 .endpoint_disable = xhci_endpoint_disable, 5316 .endpoint_reset = xhci_endpoint_reset, 5317 .check_bandwidth = xhci_check_bandwidth, 5318 .reset_bandwidth = xhci_reset_bandwidth, 5319 .address_device = xhci_address_device, 5320 .enable_device = xhci_enable_device, 5321 .update_hub_device = xhci_update_hub_device, 5322 .reset_device = xhci_discover_or_reset_device, 5323 5324 /* 5325 * scheduling support 5326 */ 5327 .get_frame_number = xhci_get_frame, 5328 5329 /* 5330 * root hub support 5331 */ 5332 .hub_control = xhci_hub_control, 5333 .hub_status_data = xhci_hub_status_data, 5334 .bus_suspend = xhci_bus_suspend, 5335 .bus_resume = xhci_bus_resume, 5336 .get_resuming_ports = xhci_get_resuming_ports, 5337 5338 /* 5339 * call back when device connected and addressed 5340 */ 5341 .update_device = xhci_update_device, 5342 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5343 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5344 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5345 .find_raw_port_number = xhci_find_raw_port_number, 5346 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5347 }; 5348 5349 void xhci_init_driver(struct hc_driver *drv, 5350 const struct xhci_driver_overrides *over) 5351 { 5352 BUG_ON(!over); 5353 5354 /* Copy the generic table to drv then apply the overrides */ 5355 *drv = xhci_hc_driver; 5356 5357 if (over) { 5358 drv->hcd_priv_size += over->extra_priv_size; 5359 if (over->reset) 5360 drv->reset = over->reset; 5361 if (over->start) 5362 drv->start = over->start; 5363 if (over->add_endpoint) 5364 drv->add_endpoint = over->add_endpoint; 5365 if (over->drop_endpoint) 5366 drv->drop_endpoint = over->drop_endpoint; 5367 if (over->check_bandwidth) 5368 drv->check_bandwidth = over->check_bandwidth; 5369 if (over->reset_bandwidth) 5370 drv->reset_bandwidth = over->reset_bandwidth; 5371 if (over->update_hub_device) 5372 drv->update_hub_device = over->update_hub_device; 5373 if (over->hub_control) 5374 drv->hub_control = over->hub_control; 5375 } 5376 } 5377 EXPORT_SYMBOL_GPL(xhci_init_driver); 5378 5379 MODULE_DESCRIPTION(DRIVER_DESC); 5380 MODULE_AUTHOR(DRIVER_AUTHOR); 5381 MODULE_LICENSE("GPL"); 5382 5383 static int __init xhci_hcd_init(void) 5384 { 5385 /* 5386 * Check the compiler generated sizes of structures that must be laid 5387 * out in specific ways for hardware access. 5388 */ 5389 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5390 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5391 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5392 /* xhci_device_control has eight fields, and also 5393 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5394 */ 5395 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5396 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5397 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5398 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5399 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5400 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5401 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5402 5403 if (usb_disabled()) 5404 return -ENODEV; 5405 5406 xhci_debugfs_create_root(); 5407 xhci_dbc_init(); 5408 5409 return 0; 5410 } 5411 5412 /* 5413 * If an init function is provided, an exit function must also be provided 5414 * to allow module unload. 5415 */ 5416 static void __exit xhci_hcd_fini(void) 5417 { 5418 xhci_debugfs_remove_root(); 5419 xhci_dbc_exit(); 5420 } 5421 5422 module_init(xhci_hcd_init); 5423 module_exit(xhci_hcd_fini); 5424