xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 49c23519)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 
115 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 	xhci_quiesce(xhci);
117 
118 	ret = xhci_handshake(&xhci->op_regs->status,
119 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 	if (ret) {
121 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 		return ret;
123 	}
124 
125 	xhci->xhc_state |= XHCI_STATE_HALTED;
126 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 
128 	return ret;
129 }
130 
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 	u32 temp;
137 	int ret;
138 
139 	temp = readl(&xhci->op_regs->command);
140 	temp |= (CMD_RUN);
141 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 			temp);
143 	writel(temp, &xhci->op_regs->command);
144 
145 	/*
146 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 	 * running.
148 	 */
149 	ret = xhci_handshake(&xhci->op_regs->status,
150 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 	if (ret == -ETIMEDOUT)
152 		xhci_err(xhci, "Host took too long to start, "
153 				"waited %u microseconds.\n",
154 				XHCI_MAX_HALT_USEC);
155 	if (!ret) {
156 		/* clear state flags. Including dying, halted or removing */
157 		xhci->xhc_state = 0;
158 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 	}
160 
161 	return ret;
162 }
163 
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 	u32 command;
174 	u32 state;
175 	int ret;
176 
177 	state = readl(&xhci->op_regs->status);
178 
179 	if (state == ~(u32)0) {
180 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 		return -ENODEV;
182 	}
183 
184 	if ((state & STS_HALT) == 0) {
185 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 		return 0;
187 	}
188 
189 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 	command = readl(&xhci->op_regs->command);
191 	command |= CMD_RESET;
192 	writel(command, &xhci->op_regs->command);
193 
194 	/* Existing Intel xHCI controllers require a delay of 1 mS,
195 	 * after setting the CMD_RESET bit, and before accessing any
196 	 * HC registers. This allows the HC to complete the
197 	 * reset operation and be ready for HC register access.
198 	 * Without this delay, the subsequent HC register access,
199 	 * may result in a system hang very rarely.
200 	 */
201 	if (xhci->quirks & XHCI_INTEL_HOST)
202 		udelay(1000);
203 
204 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 	if (ret)
206 		return ret;
207 
208 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 
211 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 			 "Wait for controller to be ready for doorbell rings");
213 	/*
214 	 * xHCI cannot write to any doorbells or operational registers other
215 	 * than status until the "Controller Not Ready" flag is cleared.
216 	 */
217 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 
219 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 
226 	return ret;
227 }
228 
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 	struct iommu_domain *domain;
233 	int err, i;
234 	u64 val;
235 	u32 intrs;
236 
237 	/*
238 	 * Some Renesas controllers get into a weird state if they are
239 	 * reset while programmed with 64bit addresses (they will preserve
240 	 * the top half of the address in internal, non visible
241 	 * registers). You end up with half the address coming from the
242 	 * kernel, and the other half coming from the firmware. Also,
243 	 * changing the programming leads to extra accesses even if the
244 	 * controller is supposed to be halted. The controller ends up with
245 	 * a fatal fault, and is then ripe for being properly reset.
246 	 *
247 	 * Special care is taken to only apply this if the device is behind
248 	 * an iommu. Doing anything when there is no iommu is definitely
249 	 * unsafe...
250 	 */
251 	domain = iommu_get_domain_for_dev(dev);
252 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 	    domain->type == IOMMU_DOMAIN_IDENTITY)
254 		return;
255 
256 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257 
258 	/* Clear HSEIE so that faults do not get signaled */
259 	val = readl(&xhci->op_regs->command);
260 	val &= ~CMD_HSEIE;
261 	writel(val, &xhci->op_regs->command);
262 
263 	/* Clear HSE (aka FATAL) */
264 	val = readl(&xhci->op_regs->status);
265 	val |= STS_FATAL;
266 	writel(val, &xhci->op_regs->status);
267 
268 	/* Now zero the registers, and brace for impact */
269 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 	if (upper_32_bits(val))
271 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275 
276 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 		      ARRAY_SIZE(xhci->run_regs->ir_set));
278 
279 	for (i = 0; i < intrs; i++) {
280 		struct xhci_intr_reg __iomem *ir;
281 
282 		ir = &xhci->run_regs->ir_set[i];
283 		val = xhci_read_64(xhci, &ir->erst_base);
284 		if (upper_32_bits(val))
285 			xhci_write_64(xhci, 0, &ir->erst_base);
286 		val= xhci_read_64(xhci, &ir->erst_dequeue);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 	}
290 
291 	/* Wait for the fault to appear. It will be cleared on reset */
292 	err = xhci_handshake(&xhci->op_regs->status,
293 			     STS_FATAL, STS_FATAL,
294 			     XHCI_MAX_HALT_USEC);
295 	if (!err)
296 		xhci_info(xhci, "Fault detected\n");
297 }
298 
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 	u32 iman;
302 
303 	if (!ir || !ir->ir_set)
304 		return -EINVAL;
305 
306 	iman = readl(&ir->ir_set->irq_pending);
307 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308 
309 	return 0;
310 }
311 
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 	u32 iman;
315 
316 	if (!ir || !ir->ir_set)
317 		return -EINVAL;
318 
319 	iman = readl(&ir->ir_set->irq_pending);
320 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321 
322 	return 0;
323 }
324 
325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 	struct xhci_hcd *xhci;
328 	struct usb_hcd *hcd;
329 	struct xhci_hub *rhub;
330 	u32 temp;
331 	int i;
332 
333 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 	rhub = &xhci->usb3_rhub;
335 	hcd = rhub->hcd;
336 
337 	if (!hcd)
338 		return;
339 
340 	for (i = 0; i < rhub->num_ports; i++) {
341 		temp = readl(rhub->ports[i]->addr);
342 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 			/*
344 			 * Compliance Mode Detected. Letting USB Core
345 			 * handle the Warm Reset
346 			 */
347 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 					"Compliance mode detected->port %d",
349 					i + 1);
350 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 					"Attempting compliance mode recovery");
352 
353 			if (hcd->state == HC_STATE_SUSPENDED)
354 				usb_hcd_resume_root_hub(hcd);
355 
356 			usb_hcd_poll_rh_status(hcd);
357 		}
358 	}
359 
360 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 		mod_timer(&xhci->comp_mode_recovery_timer,
362 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364 
365 /*
366  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367  * that causes ports behind that hardware to enter compliance mode sometimes.
368  * The quirk creates a timer that polls every 2 seconds the link state of
369  * each host controller's port and recovers it by issuing a Warm reset
370  * if Compliance mode is detected, otherwise the port will become "dead" (no
371  * device connections or disconnections will be detected anymore). Becasue no
372  * status event is generated when entering compliance mode (per xhci spec),
373  * this quirk is needed on systems that have the failing hardware installed.
374  */
375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 	xhci->port_status_u0 = 0;
378 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 		    0);
380 	xhci->comp_mode_recovery_timer.expires = jiffies +
381 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382 
383 	add_timer(&xhci->comp_mode_recovery_timer);
384 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 			"Compliance mode recovery timer initialized");
386 }
387 
388 /*
389  * This function identifies the systems that have installed the SN65LVPE502CP
390  * USB3.0 re-driver and that need the Compliance Mode Quirk.
391  * Systems:
392  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393  */
394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 	const char *dmi_product_name, *dmi_sys_vendor;
397 
398 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 	if (!dmi_product_name || !dmi_sys_vendor)
401 		return false;
402 
403 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 		return false;
405 
406 	if (strstr(dmi_product_name, "Z420") ||
407 			strstr(dmi_product_name, "Z620") ||
408 			strstr(dmi_product_name, "Z820") ||
409 			strstr(dmi_product_name, "Z1 Workstation"))
410 		return true;
411 
412 	return false;
413 }
414 
415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419 
420 
421 /*
422  * Initialize memory for HCD and xHC (one-time init).
423  *
424  * Program the PAGESIZE register, initialize the device context array, create
425  * device contexts (?), set up a command ring segment (or two?), create event
426  * ring (one for now).
427  */
428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 	int retval;
432 
433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 	spin_lock_init(&xhci->lock);
435 	if (xhci->hci_version == 0x95 && link_quirk) {
436 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 				"QUIRK: Not clearing Link TRB chain bits.");
438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 	} else {
440 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 				"xHCI doesn't need link TRB QUIRK");
442 	}
443 	retval = xhci_mem_init(xhci, GFP_KERNEL);
444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445 
446 	/* Initializing Compliance Mode Recovery Data If Needed */
447 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 		compliance_mode_recovery_timer_init(xhci);
450 	}
451 
452 	return retval;
453 }
454 
455 /*-------------------------------------------------------------------------*/
456 
457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 	struct xhci_interrupter *ir = xhci->interrupter;
460 	unsigned long	flags;
461 	u32		temp;
462 
463 	/*
464 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 	 * Protect the short window before host is running with a lock
466 	 */
467 	spin_lock_irqsave(&xhci->lock, flags);
468 
469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 	temp = readl(&xhci->op_regs->command);
471 	temp |= (CMD_EIE);
472 	writel(temp, &xhci->op_regs->command);
473 
474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 	xhci_enable_interrupter(ir);
476 
477 	if (xhci_start(xhci)) {
478 		xhci_halt(xhci);
479 		spin_unlock_irqrestore(&xhci->lock, flags);
480 		return -ENODEV;
481 	}
482 
483 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484 
485 	if (xhci->quirks & XHCI_NEC_HOST)
486 		xhci_ring_cmd_db(xhci);
487 
488 	spin_unlock_irqrestore(&xhci->lock, flags);
489 
490 	return 0;
491 }
492 
493 /*
494  * Start the HC after it was halted.
495  *
496  * This function is called by the USB core when the HC driver is added.
497  * Its opposite is xhci_stop().
498  *
499  * xhci_init() must be called once before this function can be called.
500  * Reset the HC, enable device slot contexts, program DCBAAP, and
501  * set command ring pointer and event ring pointer.
502  *
503  * Setup MSI-X vectors and enable interrupts.
504  */
505 int xhci_run(struct usb_hcd *hcd)
506 {
507 	u32 temp;
508 	u64 temp_64;
509 	int ret;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 	struct xhci_interrupter *ir = xhci->interrupter;
512 	/* Start the xHCI host controller running only after the USB 2.0 roothub
513 	 * is setup.
514 	 */
515 
516 	hcd->uses_new_polling = 1;
517 	if (!usb_hcd_is_primary_hcd(hcd))
518 		return xhci_run_finished(xhci);
519 
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521 
522 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 	temp_64 &= ~ERST_PTR_MASK;
524 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526 
527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 			"// Set the interrupt modulation register");
529 	temp = readl(&ir->ir_set->irq_control);
530 	temp &= ~ER_IRQ_INTERVAL_MASK;
531 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 	writel(temp, &ir->ir_set->irq_control);
533 
534 	if (xhci->quirks & XHCI_NEC_HOST) {
535 		struct xhci_command *command;
536 
537 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 		if (!command)
539 			return -ENOMEM;
540 
541 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 				TRB_TYPE(TRB_NEC_GET_FW));
543 		if (ret)
544 			xhci_free_command(xhci, command);
545 	}
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished %s for main hcd", __func__);
548 
549 	xhci_create_dbc_dev(xhci);
550 
551 	xhci_debugfs_init(xhci);
552 
553 	if (xhci_has_one_roothub(xhci))
554 		return xhci_run_finished(xhci);
555 
556 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557 
558 	return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561 
562 /*
563  * Stop xHCI driver.
564  *
565  * This function is called by the USB core when the HC driver is removed.
566  * Its opposite is xhci_run().
567  *
568  * Disable device contexts, disable IRQs, and quiesce the HC.
569  * Reset the HC, finish any completed transactions, and cleanup memory.
570  */
571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 	u32 temp;
574 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 	struct xhci_interrupter *ir = xhci->interrupter;
576 
577 	mutex_lock(&xhci->mutex);
578 
579 	/* Only halt host and free memory after both hcds are removed */
580 	if (!usb_hcd_is_primary_hcd(hcd)) {
581 		mutex_unlock(&xhci->mutex);
582 		return;
583 	}
584 
585 	xhci_remove_dbc_dev(xhci);
586 
587 	spin_lock_irq(&xhci->lock);
588 	xhci->xhc_state |= XHCI_STATE_HALTED;
589 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 	xhci_halt(xhci);
591 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 	spin_unlock_irq(&xhci->lock);
593 
594 	/* Deleting Compliance Mode Recovery Timer */
595 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 			(!(xhci_all_ports_seen_u0(xhci)))) {
597 		del_timer_sync(&xhci->comp_mode_recovery_timer);
598 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 				"%s: compliance mode recovery timer deleted",
600 				__func__);
601 	}
602 
603 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 		usb_amd_dev_put();
605 
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Disabling event ring interrupts");
608 	temp = readl(&xhci->op_regs->status);
609 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 	xhci_disable_interrupter(ir);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 	xhci_mem_cleanup(xhci);
614 	xhci_debugfs_exit(xhci);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"xhci_stop completed - status = %x",
617 			readl(&xhci->op_regs->status));
618 	mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621 
622 /*
623  * Shutdown HC (not bus-specific)
624  *
625  * This is called when the machine is rebooting or halting.  We assume that the
626  * machine will be powered off, and the HC's internal state will be reset.
627  * Don't bother to free memory.
628  *
629  * This will only ever be called with the main usb_hcd (the USB3 roothub).
630  */
631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634 
635 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637 
638 	/* Don't poll the roothubs after shutdown. */
639 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 			__func__, hcd->self.busnum);
641 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 	del_timer_sync(&hcd->rh_timer);
643 
644 	if (xhci->shared_hcd) {
645 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 		del_timer_sync(&xhci->shared_hcd->rh_timer);
647 	}
648 
649 	spin_lock_irq(&xhci->lock);
650 	xhci_halt(xhci);
651 
652 	/*
653 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 	 */
656 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659 
660 	spin_unlock_irq(&xhci->lock);
661 
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"xhci_shutdown completed - status = %x",
664 			readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667 
668 #ifdef CONFIG_PM
669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 	struct xhci_interrupter *ir = xhci->interrupter;
672 
673 	xhci->s3.command = readl(&xhci->op_regs->command);
674 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677 
678 	if (!ir)
679 		return;
680 
681 	ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 	ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 	ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 	ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 	ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687 
688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 	struct xhci_interrupter *ir = xhci->interrupter;
691 
692 	writel(xhci->s3.command, &xhci->op_regs->command);
693 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 	writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 	xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 	xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 	writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 	writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702 
703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 	u64	val_64;
706 
707 	/* step 2: initialize command ring buffer */
708 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 				      xhci->cmd_ring->dequeue) &
712 		 (u64) ~CMD_RING_RSVD_BITS) |
713 		xhci->cmd_ring->cycle_state;
714 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 			"// Setting command ring address to 0x%llx",
716 			(long unsigned long) val_64);
717 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719 
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 	struct xhci_ring *ring;
732 	struct xhci_segment *seg;
733 
734 	ring = xhci->cmd_ring;
735 	seg = ring->deq_seg;
736 	do {
737 		memset(seg->trbs, 0,
738 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 			cpu_to_le32(~TRB_CYCLE);
741 		seg = seg->next;
742 	} while (seg != ring->deq_seg);
743 
744 	/* Reset the software enqueue and dequeue pointers */
745 	ring->deq_seg = ring->first_seg;
746 	ring->dequeue = ring->first_seg->trbs;
747 	ring->enq_seg = ring->deq_seg;
748 	ring->enqueue = ring->dequeue;
749 
750 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 	/*
752 	 * Ring is now zeroed, so the HW should look for change of ownership
753 	 * when the cycle bit is set to 1.
754 	 */
755 	ring->cycle_state = 1;
756 
757 	/*
758 	 * Reset the hardware dequeue pointer.
759 	 * Yes, this will need to be re-written after resume, but we're paranoid
760 	 * and want to make sure the hardware doesn't access bogus memory
761 	 * because, say, the BIOS or an SMI started the host without changing
762 	 * the command ring pointers.
763 	 */
764 	xhci_set_cmd_ring_deq(xhci);
765 }
766 
767 /*
768  * Disable port wake bits if do_wakeup is not set.
769  *
770  * Also clear a possible internal port wake state left hanging for ports that
771  * detected termination but never successfully enumerated (trained to 0U).
772  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773  * at enumeration clears this wake, force one here as well for unconnected ports
774  */
775 
776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 				       struct xhci_hub *rhub,
778 				       bool do_wakeup)
779 {
780 	unsigned long flags;
781 	u32 t1, t2, portsc;
782 	int i;
783 
784 	spin_lock_irqsave(&xhci->lock, flags);
785 
786 	for (i = 0; i < rhub->num_ports; i++) {
787 		portsc = readl(rhub->ports[i]->addr);
788 		t1 = xhci_port_state_to_neutral(portsc);
789 		t2 = t1;
790 
791 		/* clear wake bits if do_wake is not set */
792 		if (!do_wakeup)
793 			t2 &= ~PORT_WAKE_BITS;
794 
795 		/* Don't touch csc bit if connected or connect change is set */
796 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 			t2 |= PORT_CSC;
798 
799 		if (t1 != t2) {
800 			writel(t2, rhub->ports[i]->addr);
801 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 		}
804 	}
805 	spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807 
808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 	struct xhci_port	**ports;
811 	int			port_index;
812 	u32			status;
813 	u32			portsc;
814 
815 	status = readl(&xhci->op_regs->status);
816 	if (status & STS_EINT)
817 		return true;
818 	/*
819 	 * Checking STS_EINT is not enough as there is a lag between a change
820 	 * bit being set and the Port Status Change Event that it generated
821 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 	 */
823 
824 	port_index = xhci->usb2_rhub.num_ports;
825 	ports = xhci->usb2_rhub.ports;
826 	while (port_index--) {
827 		portsc = readl(ports[port_index]->addr);
828 		if (portsc & PORT_CHANGE_MASK ||
829 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 			return true;
831 	}
832 	port_index = xhci->usb3_rhub.num_ports;
833 	ports = xhci->usb3_rhub.ports;
834 	while (port_index--) {
835 		portsc = readl(ports[port_index]->addr);
836 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 			return true;
839 	}
840 	return false;
841 }
842 
843 /*
844  * Stop HC (not bus-specific)
845  *
846  * This is called when the machine transition into S3/S4 mode.
847  *
848  */
849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 	int			rc = 0;
852 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
853 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
854 	u32			command;
855 	u32			res;
856 
857 	if (!hcd->state)
858 		return 0;
859 
860 	if (hcd->state != HC_STATE_SUSPENDED ||
861 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 		return -EINVAL;
863 
864 	/* Clear root port wake on bits if wakeup not allowed. */
865 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867 
868 	if (!HCD_HW_ACCESSIBLE(hcd))
869 		return 0;
870 
871 	xhci_dbc_suspend(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 		 __func__, hcd->self.busnum);
876 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 	del_timer_sync(&hcd->rh_timer);
878 	if (xhci->shared_hcd) {
879 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 		del_timer_sync(&xhci->shared_hcd->rh_timer);
881 	}
882 
883 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 		usleep_range(1000, 1500);
885 
886 	spin_lock_irq(&xhci->lock);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 	if (xhci->shared_hcd)
889 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 	/* step 1: stop endpoint */
891 	/* skipped assuming that port suspend has done */
892 
893 	/* step 2: clear Run/Stop bit */
894 	command = readl(&xhci->op_regs->command);
895 	command &= ~CMD_RUN;
896 	writel(command, &xhci->op_regs->command);
897 
898 	/* Some chips from Fresco Logic need an extraordinary delay */
899 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900 
901 	if (xhci_handshake(&xhci->op_regs->status,
902 		      STS_HALT, STS_HALT, delay)) {
903 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 		spin_unlock_irq(&xhci->lock);
905 		return -ETIMEDOUT;
906 	}
907 	xhci_clear_command_ring(xhci);
908 
909 	/* step 3: save registers */
910 	xhci_save_registers(xhci);
911 
912 	/* step 4: set CSS flag */
913 	command = readl(&xhci->op_regs->command);
914 	command |= CMD_CSS;
915 	writel(command, &xhci->op_regs->command);
916 	xhci->broken_suspend = 0;
917 	if (xhci_handshake(&xhci->op_regs->status,
918 				STS_SAVE, 0, 20 * 1000)) {
919 	/*
920 	 * AMD SNPS xHC 3.0 occasionally does not clear the
921 	 * SSS bit of USBSTS and when driver tries to poll
922 	 * to see if the xHC clears BIT(8) which never happens
923 	 * and driver assumes that controller is not responding
924 	 * and times out. To workaround this, its good to check
925 	 * if SRE and HCE bits are not set (as per xhci
926 	 * Section 5.4.2) and bypass the timeout.
927 	 */
928 		res = readl(&xhci->op_regs->status);
929 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 		    (((res & STS_SRE) == 0) &&
931 				((res & STS_HCE) == 0))) {
932 			xhci->broken_suspend = 1;
933 		} else {
934 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 			spin_unlock_irq(&xhci->lock);
936 			return -ETIMEDOUT;
937 		}
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 				"%s: compliance mode recovery timer deleted",
950 				__func__);
951 	}
952 
953 	return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956 
957 /*
958  * start xHC (not bus-specific)
959  *
960  * This is called when the machine transition from S3/S4 mode.
961  *
962  */
963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
966 	u32			command, temp = 0;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	int			retval = 0;
969 	bool			comp_timer_running = false;
970 	bool			pending_portevent = false;
971 	bool			suspended_usb3_devs = false;
972 	bool			reinit_xhc = false;
973 
974 	if (!hcd->state)
975 		return 0;
976 
977 	/* Wait a bit if either of the roothubs need to settle from the
978 	 * transition into bus suspend.
979 	 */
980 
981 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
982 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
983 		msleep(100);
984 
985 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986 	if (xhci->shared_hcd)
987 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
988 
989 	spin_lock_irq(&xhci->lock);
990 
991 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
992 		reinit_xhc = true;
993 
994 	if (!reinit_xhc) {
995 		/*
996 		 * Some controllers might lose power during suspend, so wait
997 		 * for controller not ready bit to clear, just as in xHC init.
998 		 */
999 		retval = xhci_handshake(&xhci->op_regs->status,
1000 					STS_CNR, 0, 10 * 1000 * 1000);
1001 		if (retval) {
1002 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1003 				  retval);
1004 			spin_unlock_irq(&xhci->lock);
1005 			return retval;
1006 		}
1007 		/* step 1: restore register */
1008 		xhci_restore_registers(xhci);
1009 		/* step 2: initialize command ring buffer */
1010 		xhci_set_cmd_ring_deq(xhci);
1011 		/* step 3: restore state and start state*/
1012 		/* step 3: set CRS flag */
1013 		command = readl(&xhci->op_regs->command);
1014 		command |= CMD_CRS;
1015 		writel(command, &xhci->op_regs->command);
1016 		/*
1017 		 * Some controllers take up to 55+ ms to complete the controller
1018 		 * restore so setting the timeout to 100ms. Xhci specification
1019 		 * doesn't mention any timeout value.
1020 		 */
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 100 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 	}
1028 
1029 	temp = readl(&xhci->op_regs->status);
1030 
1031 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1032 	if ((temp & (STS_SRE | STS_HCE)) &&
1033 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1034 		reinit_xhc = true;
1035 		if (!xhci->broken_suspend)
1036 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1037 	}
1038 
1039 	if (reinit_xhc) {
1040 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1041 				!(xhci_all_ports_seen_u0(xhci))) {
1042 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1043 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1044 				"Compliance Mode Recovery Timer deleted!");
1045 		}
1046 
1047 		/* Let the USB core know _both_ roothubs lost power. */
1048 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1049 		if (xhci->shared_hcd)
1050 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051 
1052 		xhci_dbg(xhci, "Stop HCD\n");
1053 		xhci_halt(xhci);
1054 		xhci_zero_64b_regs(xhci);
1055 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1056 		spin_unlock_irq(&xhci->lock);
1057 		if (retval)
1058 			return retval;
1059 
1060 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1061 		temp = readl(&xhci->op_regs->status);
1062 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1063 		xhci_disable_interrupter(xhci->interrupter);
1064 
1065 		xhci_dbg(xhci, "cleaning up memory\n");
1066 		xhci_mem_cleanup(xhci);
1067 		xhci_debugfs_exit(xhci);
1068 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069 			    readl(&xhci->op_regs->status));
1070 
1071 		/* USB core calls the PCI reinit and start functions twice:
1072 		 * first with the primary HCD, and then with the secondary HCD.
1073 		 * If we don't do the same, the host will never be started.
1074 		 */
1075 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 		retval = xhci_init(hcd);
1077 		if (retval)
1078 			return retval;
1079 		comp_timer_running = true;
1080 
1081 		xhci_dbg(xhci, "Start the primary HCD\n");
1082 		retval = xhci_run(hcd);
1083 		if (!retval && xhci->shared_hcd) {
1084 			xhci_dbg(xhci, "Start the secondary HCD\n");
1085 			retval = xhci_run(xhci->shared_hcd);
1086 		}
1087 
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		if (xhci->shared_hcd)
1090 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091 		goto done;
1092 	}
1093 
1094 	/* step 4: set Run/Stop bit */
1095 	command = readl(&xhci->op_regs->command);
1096 	command |= CMD_RUN;
1097 	writel(command, &xhci->op_regs->command);
1098 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1099 		  0, 250 * 1000);
1100 
1101 	/* step 5: walk topology and initialize portsc,
1102 	 * portpmsc and portli
1103 	 */
1104 	/* this is done in bus_resume */
1105 
1106 	/* step 6: restart each of the previously
1107 	 * Running endpoints by ringing their doorbells
1108 	 */
1109 
1110 	spin_unlock_irq(&xhci->lock);
1111 
1112 	xhci_dbc_resume(xhci);
1113 
1114  done:
1115 	if (retval == 0) {
1116 		/*
1117 		 * Resume roothubs only if there are pending events.
1118 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1119 		 * the first wake signalling failed, give it that chance if
1120 		 * there are suspended USB 3 devices.
1121 		 */
1122 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1123 		    xhci->usb3_rhub.bus_state.bus_suspended)
1124 			suspended_usb3_devs = true;
1125 
1126 		pending_portevent = xhci_pending_portevent(xhci);
1127 
1128 		if (suspended_usb3_devs && !pending_portevent &&
1129 		    msg.event == PM_EVENT_AUTO_RESUME) {
1130 			msleep(120);
1131 			pending_portevent = xhci_pending_portevent(xhci);
1132 		}
1133 
1134 		if (pending_portevent) {
1135 			if (xhci->shared_hcd)
1136 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1137 			usb_hcd_resume_root_hub(hcd);
1138 		}
1139 	}
1140 	/*
1141 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1142 	 * be re-initialized Always after a system resume. Ports are subject
1143 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1144 	 * ports have entered previously to U0 before system's suspension.
1145 	 */
1146 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1147 		compliance_mode_recovery_timer_init(xhci);
1148 
1149 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1150 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1151 
1152 	/* Re-enable port polling. */
1153 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1154 		 __func__, hcd->self.busnum);
1155 	if (xhci->shared_hcd) {
1156 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1157 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1158 	}
1159 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1160 	usb_hcd_poll_rh_status(hcd);
1161 
1162 	return retval;
1163 }
1164 EXPORT_SYMBOL_GPL(xhci_resume);
1165 #endif	/* CONFIG_PM */
1166 
1167 /*-------------------------------------------------------------------------*/
1168 
1169 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1170 {
1171 	void *temp;
1172 	int ret = 0;
1173 	unsigned int buf_len;
1174 	enum dma_data_direction dir;
1175 
1176 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1177 	buf_len = urb->transfer_buffer_length;
1178 
1179 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1180 			    dev_to_node(hcd->self.sysdev));
1181 	if (!temp)
1182 		return -ENOMEM;
1183 
1184 	if (usb_urb_dir_out(urb))
1185 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1186 				   temp, buf_len, 0);
1187 
1188 	urb->transfer_buffer = temp;
1189 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1190 					   urb->transfer_buffer,
1191 					   urb->transfer_buffer_length,
1192 					   dir);
1193 
1194 	if (dma_mapping_error(hcd->self.sysdev,
1195 			      urb->transfer_dma)) {
1196 		ret = -EAGAIN;
1197 		kfree(temp);
1198 	} else {
1199 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1200 	}
1201 
1202 	return ret;
1203 }
1204 
1205 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1206 					  struct urb *urb)
1207 {
1208 	bool ret = false;
1209 	unsigned int i;
1210 	unsigned int len = 0;
1211 	unsigned int trb_size;
1212 	unsigned int max_pkt;
1213 	struct scatterlist *sg;
1214 	struct scatterlist *tail_sg;
1215 
1216 	tail_sg = urb->sg;
1217 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1218 
1219 	if (!urb->num_sgs)
1220 		return ret;
1221 
1222 	if (urb->dev->speed >= USB_SPEED_SUPER)
1223 		trb_size = TRB_CACHE_SIZE_SS;
1224 	else
1225 		trb_size = TRB_CACHE_SIZE_HS;
1226 
1227 	if (urb->transfer_buffer_length != 0 &&
1228 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1229 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1230 			len = len + sg->length;
1231 			if (i > trb_size - 2) {
1232 				len = len - tail_sg->length;
1233 				if (len < max_pkt) {
1234 					ret = true;
1235 					break;
1236 				}
1237 
1238 				tail_sg = sg_next(tail_sg);
1239 			}
1240 		}
1241 	}
1242 	return ret;
1243 }
1244 
1245 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1246 {
1247 	unsigned int len;
1248 	unsigned int buf_len;
1249 	enum dma_data_direction dir;
1250 
1251 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1252 
1253 	buf_len = urb->transfer_buffer_length;
1254 
1255 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1256 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1257 		dma_unmap_single(hcd->self.sysdev,
1258 				 urb->transfer_dma,
1259 				 urb->transfer_buffer_length,
1260 				 dir);
1261 
1262 	if (usb_urb_dir_in(urb)) {
1263 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1264 					   urb->transfer_buffer,
1265 					   buf_len,
1266 					   0);
1267 		if (len != buf_len) {
1268 			xhci_dbg(hcd_to_xhci(hcd),
1269 				 "Copy from tmp buf to urb sg list failed\n");
1270 			urb->actual_length = len;
1271 		}
1272 	}
1273 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1274 	kfree(urb->transfer_buffer);
1275 	urb->transfer_buffer = NULL;
1276 }
1277 
1278 /*
1279  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1280  * we'll copy the actual data into the TRB address register. This is limited to
1281  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1282  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1283  */
1284 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1285 				gfp_t mem_flags)
1286 {
1287 	struct xhci_hcd *xhci;
1288 
1289 	xhci = hcd_to_xhci(hcd);
1290 
1291 	if (xhci_urb_suitable_for_idt(urb))
1292 		return 0;
1293 
1294 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1295 		if (xhci_urb_temp_buffer_required(hcd, urb))
1296 			return xhci_map_temp_buffer(hcd, urb);
1297 	}
1298 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1299 }
1300 
1301 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1302 {
1303 	struct xhci_hcd *xhci;
1304 	bool unmap_temp_buf = false;
1305 
1306 	xhci = hcd_to_xhci(hcd);
1307 
1308 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1309 		unmap_temp_buf = true;
1310 
1311 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1312 		xhci_unmap_temp_buf(hcd, urb);
1313 	else
1314 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1315 }
1316 
1317 /**
1318  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1319  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1320  * value to right shift 1 for the bitmask.
1321  *
1322  * Index  = (epnum * 2) + direction - 1,
1323  * where direction = 0 for OUT, 1 for IN.
1324  * For control endpoints, the IN index is used (OUT index is unused), so
1325  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1326  */
1327 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1328 {
1329 	unsigned int index;
1330 	if (usb_endpoint_xfer_control(desc))
1331 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1332 	else
1333 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1334 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1335 	return index;
1336 }
1337 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1338 
1339 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1340  * address from the XHCI endpoint index.
1341  */
1342 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1343 {
1344 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1345 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1346 	return direction | number;
1347 }
1348 
1349 /* Find the flag for this endpoint (for use in the control context).  Use the
1350  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1351  * bit 1, etc.
1352  */
1353 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1354 {
1355 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1356 }
1357 
1358 /* Compute the last valid endpoint context index.  Basically, this is the
1359  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1360  * we find the most significant bit set in the added contexts flags.
1361  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1362  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1363  */
1364 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1365 {
1366 	return fls(added_ctxs) - 1;
1367 }
1368 
1369 /* Returns 1 if the arguments are OK;
1370  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1371  */
1372 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1373 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1374 		const char *func) {
1375 	struct xhci_hcd	*xhci;
1376 	struct xhci_virt_device	*virt_dev;
1377 
1378 	if (!hcd || (check_ep && !ep) || !udev) {
1379 		pr_debug("xHCI %s called with invalid args\n", func);
1380 		return -EINVAL;
1381 	}
1382 	if (!udev->parent) {
1383 		pr_debug("xHCI %s called for root hub\n", func);
1384 		return 0;
1385 	}
1386 
1387 	xhci = hcd_to_xhci(hcd);
1388 	if (check_virt_dev) {
1389 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1390 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1391 					func);
1392 			return -EINVAL;
1393 		}
1394 
1395 		virt_dev = xhci->devs[udev->slot_id];
1396 		if (virt_dev->udev != udev) {
1397 			xhci_dbg(xhci, "xHCI %s called with udev and "
1398 					  "virt_dev does not match\n", func);
1399 			return -EINVAL;
1400 		}
1401 	}
1402 
1403 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1404 		return -ENODEV;
1405 
1406 	return 1;
1407 }
1408 
1409 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1410 		struct usb_device *udev, struct xhci_command *command,
1411 		bool ctx_change, bool must_succeed);
1412 
1413 /*
1414  * Full speed devices may have a max packet size greater than 8 bytes, but the
1415  * USB core doesn't know that until it reads the first 8 bytes of the
1416  * descriptor.  If the usb_device's max packet size changes after that point,
1417  * we need to issue an evaluate context command and wait on it.
1418  */
1419 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1420 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1421 {
1422 	struct xhci_container_ctx *out_ctx;
1423 	struct xhci_input_control_ctx *ctrl_ctx;
1424 	struct xhci_ep_ctx *ep_ctx;
1425 	struct xhci_command *command;
1426 	int max_packet_size;
1427 	int hw_max_packet_size;
1428 	int ret = 0;
1429 
1430 	out_ctx = xhci->devs[slot_id]->out_ctx;
1431 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1432 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1433 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1434 	if (hw_max_packet_size != max_packet_size) {
1435 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1436 				"Max Packet Size for ep 0 changed.");
1437 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1438 				"Max packet size in usb_device = %d",
1439 				max_packet_size);
1440 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1441 				"Max packet size in xHCI HW = %d",
1442 				hw_max_packet_size);
1443 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1444 				"Issuing evaluate context command.");
1445 
1446 		/* Set up the input context flags for the command */
1447 		/* FIXME: This won't work if a non-default control endpoint
1448 		 * changes max packet sizes.
1449 		 */
1450 
1451 		command = xhci_alloc_command(xhci, true, mem_flags);
1452 		if (!command)
1453 			return -ENOMEM;
1454 
1455 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1456 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1457 		if (!ctrl_ctx) {
1458 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1459 					__func__);
1460 			ret = -ENOMEM;
1461 			goto command_cleanup;
1462 		}
1463 		/* Set up the modified control endpoint 0 */
1464 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1465 				xhci->devs[slot_id]->out_ctx, ep_index);
1466 
1467 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1468 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1469 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1470 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1471 
1472 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1473 		ctrl_ctx->drop_flags = 0;
1474 
1475 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1476 				true, false);
1477 
1478 		/* Clean up the input context for later use by bandwidth
1479 		 * functions.
1480 		 */
1481 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1482 command_cleanup:
1483 		kfree(command->completion);
1484 		kfree(command);
1485 	}
1486 	return ret;
1487 }
1488 
1489 /*
1490  * non-error returns are a promise to giveback() the urb later
1491  * we drop ownership so next owner (or urb unlink) can get it
1492  */
1493 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1494 {
1495 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1496 	unsigned long flags;
1497 	int ret = 0;
1498 	unsigned int slot_id, ep_index;
1499 	unsigned int *ep_state;
1500 	struct urb_priv	*urb_priv;
1501 	int num_tds;
1502 
1503 	if (!urb)
1504 		return -EINVAL;
1505 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1506 					true, true, __func__);
1507 	if (ret <= 0)
1508 		return ret ? ret : -EINVAL;
1509 
1510 	slot_id = urb->dev->slot_id;
1511 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1512 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1513 
1514 	if (!HCD_HW_ACCESSIBLE(hcd))
1515 		return -ESHUTDOWN;
1516 
1517 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1518 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1519 		return -ENODEV;
1520 	}
1521 
1522 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1523 		num_tds = urb->number_of_packets;
1524 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1525 	    urb->transfer_buffer_length > 0 &&
1526 	    urb->transfer_flags & URB_ZERO_PACKET &&
1527 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1528 		num_tds = 2;
1529 	else
1530 		num_tds = 1;
1531 
1532 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1533 	if (!urb_priv)
1534 		return -ENOMEM;
1535 
1536 	urb_priv->num_tds = num_tds;
1537 	urb_priv->num_tds_done = 0;
1538 	urb->hcpriv = urb_priv;
1539 
1540 	trace_xhci_urb_enqueue(urb);
1541 
1542 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1543 		/* Check to see if the max packet size for the default control
1544 		 * endpoint changed during FS device enumeration
1545 		 */
1546 		if (urb->dev->speed == USB_SPEED_FULL) {
1547 			ret = xhci_check_maxpacket(xhci, slot_id,
1548 					ep_index, urb, mem_flags);
1549 			if (ret < 0) {
1550 				xhci_urb_free_priv(urb_priv);
1551 				urb->hcpriv = NULL;
1552 				return ret;
1553 			}
1554 		}
1555 	}
1556 
1557 	spin_lock_irqsave(&xhci->lock, flags);
1558 
1559 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1560 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1561 			 urb->ep->desc.bEndpointAddress, urb);
1562 		ret = -ESHUTDOWN;
1563 		goto free_priv;
1564 	}
1565 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1566 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1567 			  *ep_state);
1568 		ret = -EINVAL;
1569 		goto free_priv;
1570 	}
1571 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1572 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1573 		ret = -EINVAL;
1574 		goto free_priv;
1575 	}
1576 
1577 	switch (usb_endpoint_type(&urb->ep->desc)) {
1578 
1579 	case USB_ENDPOINT_XFER_CONTROL:
1580 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1581 					 slot_id, ep_index);
1582 		break;
1583 	case USB_ENDPOINT_XFER_BULK:
1584 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1585 					 slot_id, ep_index);
1586 		break;
1587 	case USB_ENDPOINT_XFER_INT:
1588 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1589 				slot_id, ep_index);
1590 		break;
1591 	case USB_ENDPOINT_XFER_ISOC:
1592 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1593 				slot_id, ep_index);
1594 	}
1595 
1596 	if (ret) {
1597 free_priv:
1598 		xhci_urb_free_priv(urb_priv);
1599 		urb->hcpriv = NULL;
1600 	}
1601 	spin_unlock_irqrestore(&xhci->lock, flags);
1602 	return ret;
1603 }
1604 
1605 /*
1606  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1607  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1608  * should pick up where it left off in the TD, unless a Set Transfer Ring
1609  * Dequeue Pointer is issued.
1610  *
1611  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1612  * the ring.  Since the ring is a contiguous structure, they can't be physically
1613  * removed.  Instead, there are two options:
1614  *
1615  *  1) If the HC is in the middle of processing the URB to be canceled, we
1616  *     simply move the ring's dequeue pointer past those TRBs using the Set
1617  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1618  *     when drivers timeout on the last submitted URB and attempt to cancel.
1619  *
1620  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1621  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1622  *     HC will need to invalidate the any TRBs it has cached after the stop
1623  *     endpoint command, as noted in the xHCI 0.95 errata.
1624  *
1625  *  3) The TD may have completed by the time the Stop Endpoint Command
1626  *     completes, so software needs to handle that case too.
1627  *
1628  * This function should protect against the TD enqueueing code ringing the
1629  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1630  * It also needs to account for multiple cancellations on happening at the same
1631  * time for the same endpoint.
1632  *
1633  * Note that this function can be called in any context, or so says
1634  * usb_hcd_unlink_urb()
1635  */
1636 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1637 {
1638 	unsigned long flags;
1639 	int ret, i;
1640 	u32 temp;
1641 	struct xhci_hcd *xhci;
1642 	struct urb_priv	*urb_priv;
1643 	struct xhci_td *td;
1644 	unsigned int ep_index;
1645 	struct xhci_ring *ep_ring;
1646 	struct xhci_virt_ep *ep;
1647 	struct xhci_command *command;
1648 	struct xhci_virt_device *vdev;
1649 
1650 	xhci = hcd_to_xhci(hcd);
1651 	spin_lock_irqsave(&xhci->lock, flags);
1652 
1653 	trace_xhci_urb_dequeue(urb);
1654 
1655 	/* Make sure the URB hasn't completed or been unlinked already */
1656 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1657 	if (ret)
1658 		goto done;
1659 
1660 	/* give back URB now if we can't queue it for cancel */
1661 	vdev = xhci->devs[urb->dev->slot_id];
1662 	urb_priv = urb->hcpriv;
1663 	if (!vdev || !urb_priv)
1664 		goto err_giveback;
1665 
1666 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1667 	ep = &vdev->eps[ep_index];
1668 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1669 	if (!ep || !ep_ring)
1670 		goto err_giveback;
1671 
1672 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1673 	temp = readl(&xhci->op_regs->status);
1674 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1675 		xhci_hc_died(xhci);
1676 		goto done;
1677 	}
1678 
1679 	/*
1680 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1681 	 * make sure none of the ring related pointers in this URB private data
1682 	 * are touched, such as td_list, otherwise we overwrite freed data
1683 	 */
1684 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1685 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1686 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1687 			td = &urb_priv->td[i];
1688 			if (!list_empty(&td->cancelled_td_list))
1689 				list_del_init(&td->cancelled_td_list);
1690 		}
1691 		goto err_giveback;
1692 	}
1693 
1694 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1695 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1696 				"HC halted, freeing TD manually.");
1697 		for (i = urb_priv->num_tds_done;
1698 		     i < urb_priv->num_tds;
1699 		     i++) {
1700 			td = &urb_priv->td[i];
1701 			if (!list_empty(&td->td_list))
1702 				list_del_init(&td->td_list);
1703 			if (!list_empty(&td->cancelled_td_list))
1704 				list_del_init(&td->cancelled_td_list);
1705 		}
1706 		goto err_giveback;
1707 	}
1708 
1709 	i = urb_priv->num_tds_done;
1710 	if (i < urb_priv->num_tds)
1711 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1712 				"Cancel URB %p, dev %s, ep 0x%x, "
1713 				"starting at offset 0x%llx",
1714 				urb, urb->dev->devpath,
1715 				urb->ep->desc.bEndpointAddress,
1716 				(unsigned long long) xhci_trb_virt_to_dma(
1717 					urb_priv->td[i].start_seg,
1718 					urb_priv->td[i].first_trb));
1719 
1720 	for (; i < urb_priv->num_tds; i++) {
1721 		td = &urb_priv->td[i];
1722 		/* TD can already be on cancelled list if ep halted on it */
1723 		if (list_empty(&td->cancelled_td_list)) {
1724 			td->cancel_status = TD_DIRTY;
1725 			list_add_tail(&td->cancelled_td_list,
1726 				      &ep->cancelled_td_list);
1727 		}
1728 	}
1729 
1730 	/* Queue a stop endpoint command, but only if this is
1731 	 * the first cancellation to be handled.
1732 	 */
1733 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1734 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1735 		if (!command) {
1736 			ret = -ENOMEM;
1737 			goto done;
1738 		}
1739 		ep->ep_state |= EP_STOP_CMD_PENDING;
1740 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1741 					 ep_index, 0);
1742 		xhci_ring_cmd_db(xhci);
1743 	}
1744 done:
1745 	spin_unlock_irqrestore(&xhci->lock, flags);
1746 	return ret;
1747 
1748 err_giveback:
1749 	if (urb_priv)
1750 		xhci_urb_free_priv(urb_priv);
1751 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1752 	spin_unlock_irqrestore(&xhci->lock, flags);
1753 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1754 	return ret;
1755 }
1756 
1757 /* Drop an endpoint from a new bandwidth configuration for this device.
1758  * Only one call to this function is allowed per endpoint before
1759  * check_bandwidth() or reset_bandwidth() must be called.
1760  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1761  * add the endpoint to the schedule with possibly new parameters denoted by a
1762  * different endpoint descriptor in usb_host_endpoint.
1763  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1764  * not allowed.
1765  *
1766  * The USB core will not allow URBs to be queued to an endpoint that is being
1767  * disabled, so there's no need for mutual exclusion to protect
1768  * the xhci->devs[slot_id] structure.
1769  */
1770 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1771 		       struct usb_host_endpoint *ep)
1772 {
1773 	struct xhci_hcd *xhci;
1774 	struct xhci_container_ctx *in_ctx, *out_ctx;
1775 	struct xhci_input_control_ctx *ctrl_ctx;
1776 	unsigned int ep_index;
1777 	struct xhci_ep_ctx *ep_ctx;
1778 	u32 drop_flag;
1779 	u32 new_add_flags, new_drop_flags;
1780 	int ret;
1781 
1782 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1783 	if (ret <= 0)
1784 		return ret;
1785 	xhci = hcd_to_xhci(hcd);
1786 	if (xhci->xhc_state & XHCI_STATE_DYING)
1787 		return -ENODEV;
1788 
1789 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1790 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1791 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1792 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1793 				__func__, drop_flag);
1794 		return 0;
1795 	}
1796 
1797 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1798 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1799 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1800 	if (!ctrl_ctx) {
1801 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1802 				__func__);
1803 		return 0;
1804 	}
1805 
1806 	ep_index = xhci_get_endpoint_index(&ep->desc);
1807 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1808 	/* If the HC already knows the endpoint is disabled,
1809 	 * or the HCD has noted it is disabled, ignore this request
1810 	 */
1811 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1812 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1813 	    xhci_get_endpoint_flag(&ep->desc)) {
1814 		/* Do not warn when called after a usb_device_reset */
1815 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1816 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1817 				  __func__, ep);
1818 		return 0;
1819 	}
1820 
1821 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1822 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1823 
1824 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1825 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1826 
1827 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1828 
1829 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1830 
1831 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1832 			(unsigned int) ep->desc.bEndpointAddress,
1833 			udev->slot_id,
1834 			(unsigned int) new_drop_flags,
1835 			(unsigned int) new_add_flags);
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1839 
1840 /* Add an endpoint to a new possible bandwidth configuration for this device.
1841  * Only one call to this function is allowed per endpoint before
1842  * check_bandwidth() or reset_bandwidth() must be called.
1843  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1844  * add the endpoint to the schedule with possibly new parameters denoted by a
1845  * different endpoint descriptor in usb_host_endpoint.
1846  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1847  * not allowed.
1848  *
1849  * The USB core will not allow URBs to be queued to an endpoint until the
1850  * configuration or alt setting is installed in the device, so there's no need
1851  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1852  */
1853 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1854 		      struct usb_host_endpoint *ep)
1855 {
1856 	struct xhci_hcd *xhci;
1857 	struct xhci_container_ctx *in_ctx;
1858 	unsigned int ep_index;
1859 	struct xhci_input_control_ctx *ctrl_ctx;
1860 	struct xhci_ep_ctx *ep_ctx;
1861 	u32 added_ctxs;
1862 	u32 new_add_flags, new_drop_flags;
1863 	struct xhci_virt_device *virt_dev;
1864 	int ret = 0;
1865 
1866 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1867 	if (ret <= 0) {
1868 		/* So we won't queue a reset ep command for a root hub */
1869 		ep->hcpriv = NULL;
1870 		return ret;
1871 	}
1872 	xhci = hcd_to_xhci(hcd);
1873 	if (xhci->xhc_state & XHCI_STATE_DYING)
1874 		return -ENODEV;
1875 
1876 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1877 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1878 		/* FIXME when we have to issue an evaluate endpoint command to
1879 		 * deal with ep0 max packet size changing once we get the
1880 		 * descriptors
1881 		 */
1882 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1883 				__func__, added_ctxs);
1884 		return 0;
1885 	}
1886 
1887 	virt_dev = xhci->devs[udev->slot_id];
1888 	in_ctx = virt_dev->in_ctx;
1889 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1890 	if (!ctrl_ctx) {
1891 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1892 				__func__);
1893 		return 0;
1894 	}
1895 
1896 	ep_index = xhci_get_endpoint_index(&ep->desc);
1897 	/* If this endpoint is already in use, and the upper layers are trying
1898 	 * to add it again without dropping it, reject the addition.
1899 	 */
1900 	if (virt_dev->eps[ep_index].ring &&
1901 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1902 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1903 				"without dropping it.\n",
1904 				(unsigned int) ep->desc.bEndpointAddress);
1905 		return -EINVAL;
1906 	}
1907 
1908 	/* If the HCD has already noted the endpoint is enabled,
1909 	 * ignore this request.
1910 	 */
1911 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1912 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1913 				__func__, ep);
1914 		return 0;
1915 	}
1916 
1917 	/*
1918 	 * Configuration and alternate setting changes must be done in
1919 	 * process context, not interrupt context (or so documenation
1920 	 * for usb_set_interface() and usb_set_configuration() claim).
1921 	 */
1922 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1923 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1924 				__func__, ep->desc.bEndpointAddress);
1925 		return -ENOMEM;
1926 	}
1927 
1928 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1929 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1930 
1931 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1932 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1933 	 * this re-adds a new state for the endpoint from the new endpoint
1934 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1935 	 * drop flags alone.
1936 	 */
1937 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1938 
1939 	/* Store the usb_device pointer for later use */
1940 	ep->hcpriv = udev;
1941 
1942 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1943 	trace_xhci_add_endpoint(ep_ctx);
1944 
1945 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1946 			(unsigned int) ep->desc.bEndpointAddress,
1947 			udev->slot_id,
1948 			(unsigned int) new_drop_flags,
1949 			(unsigned int) new_add_flags);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1953 
1954 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1955 {
1956 	struct xhci_input_control_ctx *ctrl_ctx;
1957 	struct xhci_ep_ctx *ep_ctx;
1958 	struct xhci_slot_ctx *slot_ctx;
1959 	int i;
1960 
1961 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1962 	if (!ctrl_ctx) {
1963 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1964 				__func__);
1965 		return;
1966 	}
1967 
1968 	/* When a device's add flag and drop flag are zero, any subsequent
1969 	 * configure endpoint command will leave that endpoint's state
1970 	 * untouched.  Make sure we don't leave any old state in the input
1971 	 * endpoint contexts.
1972 	 */
1973 	ctrl_ctx->drop_flags = 0;
1974 	ctrl_ctx->add_flags = 0;
1975 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1976 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1977 	/* Endpoint 0 is always valid */
1978 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1979 	for (i = 1; i < 31; i++) {
1980 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1981 		ep_ctx->ep_info = 0;
1982 		ep_ctx->ep_info2 = 0;
1983 		ep_ctx->deq = 0;
1984 		ep_ctx->tx_info = 0;
1985 	}
1986 }
1987 
1988 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1989 		struct usb_device *udev, u32 *cmd_status)
1990 {
1991 	int ret;
1992 
1993 	switch (*cmd_status) {
1994 	case COMP_COMMAND_ABORTED:
1995 	case COMP_COMMAND_RING_STOPPED:
1996 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1997 		ret = -ETIME;
1998 		break;
1999 	case COMP_RESOURCE_ERROR:
2000 		dev_warn(&udev->dev,
2001 			 "Not enough host controller resources for new device state.\n");
2002 		ret = -ENOMEM;
2003 		/* FIXME: can we allocate more resources for the HC? */
2004 		break;
2005 	case COMP_BANDWIDTH_ERROR:
2006 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2007 		dev_warn(&udev->dev,
2008 			 "Not enough bandwidth for new device state.\n");
2009 		ret = -ENOSPC;
2010 		/* FIXME: can we go back to the old state? */
2011 		break;
2012 	case COMP_TRB_ERROR:
2013 		/* the HCD set up something wrong */
2014 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2015 				"add flag = 1, "
2016 				"and endpoint is not disabled.\n");
2017 		ret = -EINVAL;
2018 		break;
2019 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2020 		dev_warn(&udev->dev,
2021 			 "ERROR: Incompatible device for endpoint configure command.\n");
2022 		ret = -ENODEV;
2023 		break;
2024 	case COMP_SUCCESS:
2025 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2026 				"Successful Endpoint Configure command");
2027 		ret = 0;
2028 		break;
2029 	default:
2030 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2031 				*cmd_status);
2032 		ret = -EINVAL;
2033 		break;
2034 	}
2035 	return ret;
2036 }
2037 
2038 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2039 		struct usb_device *udev, u32 *cmd_status)
2040 {
2041 	int ret;
2042 
2043 	switch (*cmd_status) {
2044 	case COMP_COMMAND_ABORTED:
2045 	case COMP_COMMAND_RING_STOPPED:
2046 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2047 		ret = -ETIME;
2048 		break;
2049 	case COMP_PARAMETER_ERROR:
2050 		dev_warn(&udev->dev,
2051 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2052 		ret = -EINVAL;
2053 		break;
2054 	case COMP_SLOT_NOT_ENABLED_ERROR:
2055 		dev_warn(&udev->dev,
2056 			"WARN: slot not enabled for evaluate context command.\n");
2057 		ret = -EINVAL;
2058 		break;
2059 	case COMP_CONTEXT_STATE_ERROR:
2060 		dev_warn(&udev->dev,
2061 			"WARN: invalid context state for evaluate context command.\n");
2062 		ret = -EINVAL;
2063 		break;
2064 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2065 		dev_warn(&udev->dev,
2066 			"ERROR: Incompatible device for evaluate context command.\n");
2067 		ret = -ENODEV;
2068 		break;
2069 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2070 		/* Max Exit Latency too large error */
2071 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2072 		ret = -EINVAL;
2073 		break;
2074 	case COMP_SUCCESS:
2075 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2076 				"Successful evaluate context command");
2077 		ret = 0;
2078 		break;
2079 	default:
2080 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2081 			*cmd_status);
2082 		ret = -EINVAL;
2083 		break;
2084 	}
2085 	return ret;
2086 }
2087 
2088 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2089 		struct xhci_input_control_ctx *ctrl_ctx)
2090 {
2091 	u32 valid_add_flags;
2092 	u32 valid_drop_flags;
2093 
2094 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2095 	 * (bit 1).  The default control endpoint is added during the Address
2096 	 * Device command and is never removed until the slot is disabled.
2097 	 */
2098 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2099 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2100 
2101 	/* Use hweight32 to count the number of ones in the add flags, or
2102 	 * number of endpoints added.  Don't count endpoints that are changed
2103 	 * (both added and dropped).
2104 	 */
2105 	return hweight32(valid_add_flags) -
2106 		hweight32(valid_add_flags & valid_drop_flags);
2107 }
2108 
2109 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2110 		struct xhci_input_control_ctx *ctrl_ctx)
2111 {
2112 	u32 valid_add_flags;
2113 	u32 valid_drop_flags;
2114 
2115 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2116 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2117 
2118 	return hweight32(valid_drop_flags) -
2119 		hweight32(valid_add_flags & valid_drop_flags);
2120 }
2121 
2122 /*
2123  * We need to reserve the new number of endpoints before the configure endpoint
2124  * command completes.  We can't subtract the dropped endpoints from the number
2125  * of active endpoints until the command completes because we can oversubscribe
2126  * the host in this case:
2127  *
2128  *  - the first configure endpoint command drops more endpoints than it adds
2129  *  - a second configure endpoint command that adds more endpoints is queued
2130  *  - the first configure endpoint command fails, so the config is unchanged
2131  *  - the second command may succeed, even though there isn't enough resources
2132  *
2133  * Must be called with xhci->lock held.
2134  */
2135 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2136 		struct xhci_input_control_ctx *ctrl_ctx)
2137 {
2138 	u32 added_eps;
2139 
2140 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2141 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2142 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 				"Not enough ep ctxs: "
2144 				"%u active, need to add %u, limit is %u.",
2145 				xhci->num_active_eps, added_eps,
2146 				xhci->limit_active_eps);
2147 		return -ENOMEM;
2148 	}
2149 	xhci->num_active_eps += added_eps;
2150 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2151 			"Adding %u ep ctxs, %u now active.", added_eps,
2152 			xhci->num_active_eps);
2153 	return 0;
2154 }
2155 
2156 /*
2157  * The configure endpoint was failed by the xHC for some other reason, so we
2158  * need to revert the resources that failed configuration would have used.
2159  *
2160  * Must be called with xhci->lock held.
2161  */
2162 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2163 		struct xhci_input_control_ctx *ctrl_ctx)
2164 {
2165 	u32 num_failed_eps;
2166 
2167 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2168 	xhci->num_active_eps -= num_failed_eps;
2169 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 			"Removing %u failed ep ctxs, %u now active.",
2171 			num_failed_eps,
2172 			xhci->num_active_eps);
2173 }
2174 
2175 /*
2176  * Now that the command has completed, clean up the active endpoint count by
2177  * subtracting out the endpoints that were dropped (but not changed).
2178  *
2179  * Must be called with xhci->lock held.
2180  */
2181 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2182 		struct xhci_input_control_ctx *ctrl_ctx)
2183 {
2184 	u32 num_dropped_eps;
2185 
2186 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2187 	xhci->num_active_eps -= num_dropped_eps;
2188 	if (num_dropped_eps)
2189 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2190 				"Removing %u dropped ep ctxs, %u now active.",
2191 				num_dropped_eps,
2192 				xhci->num_active_eps);
2193 }
2194 
2195 static unsigned int xhci_get_block_size(struct usb_device *udev)
2196 {
2197 	switch (udev->speed) {
2198 	case USB_SPEED_LOW:
2199 	case USB_SPEED_FULL:
2200 		return FS_BLOCK;
2201 	case USB_SPEED_HIGH:
2202 		return HS_BLOCK;
2203 	case USB_SPEED_SUPER:
2204 	case USB_SPEED_SUPER_PLUS:
2205 		return SS_BLOCK;
2206 	case USB_SPEED_UNKNOWN:
2207 	default:
2208 		/* Should never happen */
2209 		return 1;
2210 	}
2211 }
2212 
2213 static unsigned int
2214 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2215 {
2216 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2217 		return LS_OVERHEAD;
2218 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2219 		return FS_OVERHEAD;
2220 	return HS_OVERHEAD;
2221 }
2222 
2223 /* If we are changing a LS/FS device under a HS hub,
2224  * make sure (if we are activating a new TT) that the HS bus has enough
2225  * bandwidth for this new TT.
2226  */
2227 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2228 		struct xhci_virt_device *virt_dev,
2229 		int old_active_eps)
2230 {
2231 	struct xhci_interval_bw_table *bw_table;
2232 	struct xhci_tt_bw_info *tt_info;
2233 
2234 	/* Find the bandwidth table for the root port this TT is attached to. */
2235 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2236 	tt_info = virt_dev->tt_info;
2237 	/* If this TT already had active endpoints, the bandwidth for this TT
2238 	 * has already been added.  Removing all periodic endpoints (and thus
2239 	 * making the TT enactive) will only decrease the bandwidth used.
2240 	 */
2241 	if (old_active_eps)
2242 		return 0;
2243 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2244 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2245 			return -ENOMEM;
2246 		return 0;
2247 	}
2248 	/* Not sure why we would have no new active endpoints...
2249 	 *
2250 	 * Maybe because of an Evaluate Context change for a hub update or a
2251 	 * control endpoint 0 max packet size change?
2252 	 * FIXME: skip the bandwidth calculation in that case.
2253 	 */
2254 	return 0;
2255 }
2256 
2257 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2258 		struct xhci_virt_device *virt_dev)
2259 {
2260 	unsigned int bw_reserved;
2261 
2262 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2263 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2264 		return -ENOMEM;
2265 
2266 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2267 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2268 		return -ENOMEM;
2269 
2270 	return 0;
2271 }
2272 
2273 /*
2274  * This algorithm is a very conservative estimate of the worst-case scheduling
2275  * scenario for any one interval.  The hardware dynamically schedules the
2276  * packets, so we can't tell which microframe could be the limiting factor in
2277  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2278  *
2279  * Obviously, we can't solve an NP complete problem to find the minimum worst
2280  * case scenario.  Instead, we come up with an estimate that is no less than
2281  * the worst case bandwidth used for any one microframe, but may be an
2282  * over-estimate.
2283  *
2284  * We walk the requirements for each endpoint by interval, starting with the
2285  * smallest interval, and place packets in the schedule where there is only one
2286  * possible way to schedule packets for that interval.  In order to simplify
2287  * this algorithm, we record the largest max packet size for each interval, and
2288  * assume all packets will be that size.
2289  *
2290  * For interval 0, we obviously must schedule all packets for each interval.
2291  * The bandwidth for interval 0 is just the amount of data to be transmitted
2292  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2293  * the number of packets).
2294  *
2295  * For interval 1, we have two possible microframes to schedule those packets
2296  * in.  For this algorithm, if we can schedule the same number of packets for
2297  * each possible scheduling opportunity (each microframe), we will do so.  The
2298  * remaining number of packets will be saved to be transmitted in the gaps in
2299  * the next interval's scheduling sequence.
2300  *
2301  * As we move those remaining packets to be scheduled with interval 2 packets,
2302  * we have to double the number of remaining packets to transmit.  This is
2303  * because the intervals are actually powers of 2, and we would be transmitting
2304  * the previous interval's packets twice in this interval.  We also have to be
2305  * sure that when we look at the largest max packet size for this interval, we
2306  * also look at the largest max packet size for the remaining packets and take
2307  * the greater of the two.
2308  *
2309  * The algorithm continues to evenly distribute packets in each scheduling
2310  * opportunity, and push the remaining packets out, until we get to the last
2311  * interval.  Then those packets and their associated overhead are just added
2312  * to the bandwidth used.
2313  */
2314 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2315 		struct xhci_virt_device *virt_dev,
2316 		int old_active_eps)
2317 {
2318 	unsigned int bw_reserved;
2319 	unsigned int max_bandwidth;
2320 	unsigned int bw_used;
2321 	unsigned int block_size;
2322 	struct xhci_interval_bw_table *bw_table;
2323 	unsigned int packet_size = 0;
2324 	unsigned int overhead = 0;
2325 	unsigned int packets_transmitted = 0;
2326 	unsigned int packets_remaining = 0;
2327 	unsigned int i;
2328 
2329 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2330 		return xhci_check_ss_bw(xhci, virt_dev);
2331 
2332 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2333 		max_bandwidth = HS_BW_LIMIT;
2334 		/* Convert percent of bus BW reserved to blocks reserved */
2335 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2336 	} else {
2337 		max_bandwidth = FS_BW_LIMIT;
2338 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2339 	}
2340 
2341 	bw_table = virt_dev->bw_table;
2342 	/* We need to translate the max packet size and max ESIT payloads into
2343 	 * the units the hardware uses.
2344 	 */
2345 	block_size = xhci_get_block_size(virt_dev->udev);
2346 
2347 	/* If we are manipulating a LS/FS device under a HS hub, double check
2348 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2349 	 */
2350 	if (virt_dev->tt_info) {
2351 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2352 				"Recalculating BW for rootport %u",
2353 				virt_dev->real_port);
2354 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2355 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2356 					"newly activated TT.\n");
2357 			return -ENOMEM;
2358 		}
2359 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2360 				"Recalculating BW for TT slot %u port %u",
2361 				virt_dev->tt_info->slot_id,
2362 				virt_dev->tt_info->ttport);
2363 	} else {
2364 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2365 				"Recalculating BW for rootport %u",
2366 				virt_dev->real_port);
2367 	}
2368 
2369 	/* Add in how much bandwidth will be used for interval zero, or the
2370 	 * rounded max ESIT payload + number of packets * largest overhead.
2371 	 */
2372 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2373 		bw_table->interval_bw[0].num_packets *
2374 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2375 
2376 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2377 		unsigned int bw_added;
2378 		unsigned int largest_mps;
2379 		unsigned int interval_overhead;
2380 
2381 		/*
2382 		 * How many packets could we transmit in this interval?
2383 		 * If packets didn't fit in the previous interval, we will need
2384 		 * to transmit that many packets twice within this interval.
2385 		 */
2386 		packets_remaining = 2 * packets_remaining +
2387 			bw_table->interval_bw[i].num_packets;
2388 
2389 		/* Find the largest max packet size of this or the previous
2390 		 * interval.
2391 		 */
2392 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2393 			largest_mps = 0;
2394 		else {
2395 			struct xhci_virt_ep *virt_ep;
2396 			struct list_head *ep_entry;
2397 
2398 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2399 			virt_ep = list_entry(ep_entry,
2400 					struct xhci_virt_ep, bw_endpoint_list);
2401 			/* Convert to blocks, rounding up */
2402 			largest_mps = DIV_ROUND_UP(
2403 					virt_ep->bw_info.max_packet_size,
2404 					block_size);
2405 		}
2406 		if (largest_mps > packet_size)
2407 			packet_size = largest_mps;
2408 
2409 		/* Use the larger overhead of this or the previous interval. */
2410 		interval_overhead = xhci_get_largest_overhead(
2411 				&bw_table->interval_bw[i]);
2412 		if (interval_overhead > overhead)
2413 			overhead = interval_overhead;
2414 
2415 		/* How many packets can we evenly distribute across
2416 		 * (1 << (i + 1)) possible scheduling opportunities?
2417 		 */
2418 		packets_transmitted = packets_remaining >> (i + 1);
2419 
2420 		/* Add in the bandwidth used for those scheduled packets */
2421 		bw_added = packets_transmitted * (overhead + packet_size);
2422 
2423 		/* How many packets do we have remaining to transmit? */
2424 		packets_remaining = packets_remaining % (1 << (i + 1));
2425 
2426 		/* What largest max packet size should those packets have? */
2427 		/* If we've transmitted all packets, don't carry over the
2428 		 * largest packet size.
2429 		 */
2430 		if (packets_remaining == 0) {
2431 			packet_size = 0;
2432 			overhead = 0;
2433 		} else if (packets_transmitted > 0) {
2434 			/* Otherwise if we do have remaining packets, and we've
2435 			 * scheduled some packets in this interval, take the
2436 			 * largest max packet size from endpoints with this
2437 			 * interval.
2438 			 */
2439 			packet_size = largest_mps;
2440 			overhead = interval_overhead;
2441 		}
2442 		/* Otherwise carry over packet_size and overhead from the last
2443 		 * time we had a remainder.
2444 		 */
2445 		bw_used += bw_added;
2446 		if (bw_used > max_bandwidth) {
2447 			xhci_warn(xhci, "Not enough bandwidth. "
2448 					"Proposed: %u, Max: %u\n",
2449 				bw_used, max_bandwidth);
2450 			return -ENOMEM;
2451 		}
2452 	}
2453 	/*
2454 	 * Ok, we know we have some packets left over after even-handedly
2455 	 * scheduling interval 15.  We don't know which microframes they will
2456 	 * fit into, so we over-schedule and say they will be scheduled every
2457 	 * microframe.
2458 	 */
2459 	if (packets_remaining > 0)
2460 		bw_used += overhead + packet_size;
2461 
2462 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2463 		unsigned int port_index = virt_dev->real_port - 1;
2464 
2465 		/* OK, we're manipulating a HS device attached to a
2466 		 * root port bandwidth domain.  Include the number of active TTs
2467 		 * in the bandwidth used.
2468 		 */
2469 		bw_used += TT_HS_OVERHEAD *
2470 			xhci->rh_bw[port_index].num_active_tts;
2471 	}
2472 
2473 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2474 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2475 		"Available: %u " "percent",
2476 		bw_used, max_bandwidth, bw_reserved,
2477 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2478 		max_bandwidth);
2479 
2480 	bw_used += bw_reserved;
2481 	if (bw_used > max_bandwidth) {
2482 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2483 				bw_used, max_bandwidth);
2484 		return -ENOMEM;
2485 	}
2486 
2487 	bw_table->bw_used = bw_used;
2488 	return 0;
2489 }
2490 
2491 static bool xhci_is_async_ep(unsigned int ep_type)
2492 {
2493 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2494 					ep_type != ISOC_IN_EP &&
2495 					ep_type != INT_IN_EP);
2496 }
2497 
2498 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2499 {
2500 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2501 }
2502 
2503 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2504 {
2505 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2506 
2507 	if (ep_bw->ep_interval == 0)
2508 		return SS_OVERHEAD_BURST +
2509 			(ep_bw->mult * ep_bw->num_packets *
2510 					(SS_OVERHEAD + mps));
2511 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2512 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2513 				1 << ep_bw->ep_interval);
2514 
2515 }
2516 
2517 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2518 		struct xhci_bw_info *ep_bw,
2519 		struct xhci_interval_bw_table *bw_table,
2520 		struct usb_device *udev,
2521 		struct xhci_virt_ep *virt_ep,
2522 		struct xhci_tt_bw_info *tt_info)
2523 {
2524 	struct xhci_interval_bw	*interval_bw;
2525 	int normalized_interval;
2526 
2527 	if (xhci_is_async_ep(ep_bw->type))
2528 		return;
2529 
2530 	if (udev->speed >= USB_SPEED_SUPER) {
2531 		if (xhci_is_sync_in_ep(ep_bw->type))
2532 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2533 				xhci_get_ss_bw_consumed(ep_bw);
2534 		else
2535 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2536 				xhci_get_ss_bw_consumed(ep_bw);
2537 		return;
2538 	}
2539 
2540 	/* SuperSpeed endpoints never get added to intervals in the table, so
2541 	 * this check is only valid for HS/FS/LS devices.
2542 	 */
2543 	if (list_empty(&virt_ep->bw_endpoint_list))
2544 		return;
2545 	/* For LS/FS devices, we need to translate the interval expressed in
2546 	 * microframes to frames.
2547 	 */
2548 	if (udev->speed == USB_SPEED_HIGH)
2549 		normalized_interval = ep_bw->ep_interval;
2550 	else
2551 		normalized_interval = ep_bw->ep_interval - 3;
2552 
2553 	if (normalized_interval == 0)
2554 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2555 	interval_bw = &bw_table->interval_bw[normalized_interval];
2556 	interval_bw->num_packets -= ep_bw->num_packets;
2557 	switch (udev->speed) {
2558 	case USB_SPEED_LOW:
2559 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2560 		break;
2561 	case USB_SPEED_FULL:
2562 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2563 		break;
2564 	case USB_SPEED_HIGH:
2565 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2566 		break;
2567 	default:
2568 		/* Should never happen because only LS/FS/HS endpoints will get
2569 		 * added to the endpoint list.
2570 		 */
2571 		return;
2572 	}
2573 	if (tt_info)
2574 		tt_info->active_eps -= 1;
2575 	list_del_init(&virt_ep->bw_endpoint_list);
2576 }
2577 
2578 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2579 		struct xhci_bw_info *ep_bw,
2580 		struct xhci_interval_bw_table *bw_table,
2581 		struct usb_device *udev,
2582 		struct xhci_virt_ep *virt_ep,
2583 		struct xhci_tt_bw_info *tt_info)
2584 {
2585 	struct xhci_interval_bw	*interval_bw;
2586 	struct xhci_virt_ep *smaller_ep;
2587 	int normalized_interval;
2588 
2589 	if (xhci_is_async_ep(ep_bw->type))
2590 		return;
2591 
2592 	if (udev->speed == USB_SPEED_SUPER) {
2593 		if (xhci_is_sync_in_ep(ep_bw->type))
2594 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2595 				xhci_get_ss_bw_consumed(ep_bw);
2596 		else
2597 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2598 				xhci_get_ss_bw_consumed(ep_bw);
2599 		return;
2600 	}
2601 
2602 	/* For LS/FS devices, we need to translate the interval expressed in
2603 	 * microframes to frames.
2604 	 */
2605 	if (udev->speed == USB_SPEED_HIGH)
2606 		normalized_interval = ep_bw->ep_interval;
2607 	else
2608 		normalized_interval = ep_bw->ep_interval - 3;
2609 
2610 	if (normalized_interval == 0)
2611 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2612 	interval_bw = &bw_table->interval_bw[normalized_interval];
2613 	interval_bw->num_packets += ep_bw->num_packets;
2614 	switch (udev->speed) {
2615 	case USB_SPEED_LOW:
2616 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2617 		break;
2618 	case USB_SPEED_FULL:
2619 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2620 		break;
2621 	case USB_SPEED_HIGH:
2622 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2623 		break;
2624 	default:
2625 		/* Should never happen because only LS/FS/HS endpoints will get
2626 		 * added to the endpoint list.
2627 		 */
2628 		return;
2629 	}
2630 
2631 	if (tt_info)
2632 		tt_info->active_eps += 1;
2633 	/* Insert the endpoint into the list, largest max packet size first. */
2634 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2635 			bw_endpoint_list) {
2636 		if (ep_bw->max_packet_size >=
2637 				smaller_ep->bw_info.max_packet_size) {
2638 			/* Add the new ep before the smaller endpoint */
2639 			list_add_tail(&virt_ep->bw_endpoint_list,
2640 					&smaller_ep->bw_endpoint_list);
2641 			return;
2642 		}
2643 	}
2644 	/* Add the new endpoint at the end of the list. */
2645 	list_add_tail(&virt_ep->bw_endpoint_list,
2646 			&interval_bw->endpoints);
2647 }
2648 
2649 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2650 		struct xhci_virt_device *virt_dev,
2651 		int old_active_eps)
2652 {
2653 	struct xhci_root_port_bw_info *rh_bw_info;
2654 	if (!virt_dev->tt_info)
2655 		return;
2656 
2657 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2658 	if (old_active_eps == 0 &&
2659 				virt_dev->tt_info->active_eps != 0) {
2660 		rh_bw_info->num_active_tts += 1;
2661 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2662 	} else if (old_active_eps != 0 &&
2663 				virt_dev->tt_info->active_eps == 0) {
2664 		rh_bw_info->num_active_tts -= 1;
2665 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2666 	}
2667 }
2668 
2669 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2670 		struct xhci_virt_device *virt_dev,
2671 		struct xhci_container_ctx *in_ctx)
2672 {
2673 	struct xhci_bw_info ep_bw_info[31];
2674 	int i;
2675 	struct xhci_input_control_ctx *ctrl_ctx;
2676 	int old_active_eps = 0;
2677 
2678 	if (virt_dev->tt_info)
2679 		old_active_eps = virt_dev->tt_info->active_eps;
2680 
2681 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2682 	if (!ctrl_ctx) {
2683 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2684 				__func__);
2685 		return -ENOMEM;
2686 	}
2687 
2688 	for (i = 0; i < 31; i++) {
2689 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2690 			continue;
2691 
2692 		/* Make a copy of the BW info in case we need to revert this */
2693 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2694 				sizeof(ep_bw_info[i]));
2695 		/* Drop the endpoint from the interval table if the endpoint is
2696 		 * being dropped or changed.
2697 		 */
2698 		if (EP_IS_DROPPED(ctrl_ctx, i))
2699 			xhci_drop_ep_from_interval_table(xhci,
2700 					&virt_dev->eps[i].bw_info,
2701 					virt_dev->bw_table,
2702 					virt_dev->udev,
2703 					&virt_dev->eps[i],
2704 					virt_dev->tt_info);
2705 	}
2706 	/* Overwrite the information stored in the endpoints' bw_info */
2707 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2708 	for (i = 0; i < 31; i++) {
2709 		/* Add any changed or added endpoints to the interval table */
2710 		if (EP_IS_ADDED(ctrl_ctx, i))
2711 			xhci_add_ep_to_interval_table(xhci,
2712 					&virt_dev->eps[i].bw_info,
2713 					virt_dev->bw_table,
2714 					virt_dev->udev,
2715 					&virt_dev->eps[i],
2716 					virt_dev->tt_info);
2717 	}
2718 
2719 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2720 		/* Ok, this fits in the bandwidth we have.
2721 		 * Update the number of active TTs.
2722 		 */
2723 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2724 		return 0;
2725 	}
2726 
2727 	/* We don't have enough bandwidth for this, revert the stored info. */
2728 	for (i = 0; i < 31; i++) {
2729 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2730 			continue;
2731 
2732 		/* Drop the new copies of any added or changed endpoints from
2733 		 * the interval table.
2734 		 */
2735 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2736 			xhci_drop_ep_from_interval_table(xhci,
2737 					&virt_dev->eps[i].bw_info,
2738 					virt_dev->bw_table,
2739 					virt_dev->udev,
2740 					&virt_dev->eps[i],
2741 					virt_dev->tt_info);
2742 		}
2743 		/* Revert the endpoint back to its old information */
2744 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2745 				sizeof(ep_bw_info[i]));
2746 		/* Add any changed or dropped endpoints back into the table */
2747 		if (EP_IS_DROPPED(ctrl_ctx, i))
2748 			xhci_add_ep_to_interval_table(xhci,
2749 					&virt_dev->eps[i].bw_info,
2750 					virt_dev->bw_table,
2751 					virt_dev->udev,
2752 					&virt_dev->eps[i],
2753 					virt_dev->tt_info);
2754 	}
2755 	return -ENOMEM;
2756 }
2757 
2758 
2759 /* Issue a configure endpoint command or evaluate context command
2760  * and wait for it to finish.
2761  */
2762 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2763 		struct usb_device *udev,
2764 		struct xhci_command *command,
2765 		bool ctx_change, bool must_succeed)
2766 {
2767 	int ret;
2768 	unsigned long flags;
2769 	struct xhci_input_control_ctx *ctrl_ctx;
2770 	struct xhci_virt_device *virt_dev;
2771 	struct xhci_slot_ctx *slot_ctx;
2772 
2773 	if (!command)
2774 		return -EINVAL;
2775 
2776 	spin_lock_irqsave(&xhci->lock, flags);
2777 
2778 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2779 		spin_unlock_irqrestore(&xhci->lock, flags);
2780 		return -ESHUTDOWN;
2781 	}
2782 
2783 	virt_dev = xhci->devs[udev->slot_id];
2784 
2785 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2786 	if (!ctrl_ctx) {
2787 		spin_unlock_irqrestore(&xhci->lock, flags);
2788 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2789 				__func__);
2790 		return -ENOMEM;
2791 	}
2792 
2793 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2794 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2795 		spin_unlock_irqrestore(&xhci->lock, flags);
2796 		xhci_warn(xhci, "Not enough host resources, "
2797 				"active endpoint contexts = %u\n",
2798 				xhci->num_active_eps);
2799 		return -ENOMEM;
2800 	}
2801 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2802 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2803 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2804 			xhci_free_host_resources(xhci, ctrl_ctx);
2805 		spin_unlock_irqrestore(&xhci->lock, flags);
2806 		xhci_warn(xhci, "Not enough bandwidth\n");
2807 		return -ENOMEM;
2808 	}
2809 
2810 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2811 
2812 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2813 	trace_xhci_configure_endpoint(slot_ctx);
2814 
2815 	if (!ctx_change)
2816 		ret = xhci_queue_configure_endpoint(xhci, command,
2817 				command->in_ctx->dma,
2818 				udev->slot_id, must_succeed);
2819 	else
2820 		ret = xhci_queue_evaluate_context(xhci, command,
2821 				command->in_ctx->dma,
2822 				udev->slot_id, must_succeed);
2823 	if (ret < 0) {
2824 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2825 			xhci_free_host_resources(xhci, ctrl_ctx);
2826 		spin_unlock_irqrestore(&xhci->lock, flags);
2827 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2828 				"FIXME allocate a new ring segment");
2829 		return -ENOMEM;
2830 	}
2831 	xhci_ring_cmd_db(xhci);
2832 	spin_unlock_irqrestore(&xhci->lock, flags);
2833 
2834 	/* Wait for the configure endpoint command to complete */
2835 	wait_for_completion(command->completion);
2836 
2837 	if (!ctx_change)
2838 		ret = xhci_configure_endpoint_result(xhci, udev,
2839 						     &command->status);
2840 	else
2841 		ret = xhci_evaluate_context_result(xhci, udev,
2842 						   &command->status);
2843 
2844 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2845 		spin_lock_irqsave(&xhci->lock, flags);
2846 		/* If the command failed, remove the reserved resources.
2847 		 * Otherwise, clean up the estimate to include dropped eps.
2848 		 */
2849 		if (ret)
2850 			xhci_free_host_resources(xhci, ctrl_ctx);
2851 		else
2852 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2853 		spin_unlock_irqrestore(&xhci->lock, flags);
2854 	}
2855 	return ret;
2856 }
2857 
2858 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2859 	struct xhci_virt_device *vdev, int i)
2860 {
2861 	struct xhci_virt_ep *ep = &vdev->eps[i];
2862 
2863 	if (ep->ep_state & EP_HAS_STREAMS) {
2864 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2865 				xhci_get_endpoint_address(i));
2866 		xhci_free_stream_info(xhci, ep->stream_info);
2867 		ep->stream_info = NULL;
2868 		ep->ep_state &= ~EP_HAS_STREAMS;
2869 	}
2870 }
2871 
2872 /* Called after one or more calls to xhci_add_endpoint() or
2873  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2874  * to call xhci_reset_bandwidth().
2875  *
2876  * Since we are in the middle of changing either configuration or
2877  * installing a new alt setting, the USB core won't allow URBs to be
2878  * enqueued for any endpoint on the old config or interface.  Nothing
2879  * else should be touching the xhci->devs[slot_id] structure, so we
2880  * don't need to take the xhci->lock for manipulating that.
2881  */
2882 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2883 {
2884 	int i;
2885 	int ret = 0;
2886 	struct xhci_hcd *xhci;
2887 	struct xhci_virt_device	*virt_dev;
2888 	struct xhci_input_control_ctx *ctrl_ctx;
2889 	struct xhci_slot_ctx *slot_ctx;
2890 	struct xhci_command *command;
2891 
2892 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2893 	if (ret <= 0)
2894 		return ret;
2895 	xhci = hcd_to_xhci(hcd);
2896 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2897 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2898 		return -ENODEV;
2899 
2900 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2901 	virt_dev = xhci->devs[udev->slot_id];
2902 
2903 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2904 	if (!command)
2905 		return -ENOMEM;
2906 
2907 	command->in_ctx = virt_dev->in_ctx;
2908 
2909 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2910 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2911 	if (!ctrl_ctx) {
2912 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2913 				__func__);
2914 		ret = -ENOMEM;
2915 		goto command_cleanup;
2916 	}
2917 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2918 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2919 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2920 
2921 	/* Don't issue the command if there's no endpoints to update. */
2922 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2923 	    ctrl_ctx->drop_flags == 0) {
2924 		ret = 0;
2925 		goto command_cleanup;
2926 	}
2927 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2928 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2929 	for (i = 31; i >= 1; i--) {
2930 		__le32 le32 = cpu_to_le32(BIT(i));
2931 
2932 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2933 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2934 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2935 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2936 			break;
2937 		}
2938 	}
2939 
2940 	ret = xhci_configure_endpoint(xhci, udev, command,
2941 			false, false);
2942 	if (ret)
2943 		/* Callee should call reset_bandwidth() */
2944 		goto command_cleanup;
2945 
2946 	/* Free any rings that were dropped, but not changed. */
2947 	for (i = 1; i < 31; i++) {
2948 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2949 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2950 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2951 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2952 		}
2953 	}
2954 	xhci_zero_in_ctx(xhci, virt_dev);
2955 	/*
2956 	 * Install any rings for completely new endpoints or changed endpoints,
2957 	 * and free any old rings from changed endpoints.
2958 	 */
2959 	for (i = 1; i < 31; i++) {
2960 		if (!virt_dev->eps[i].new_ring)
2961 			continue;
2962 		/* Only free the old ring if it exists.
2963 		 * It may not if this is the first add of an endpoint.
2964 		 */
2965 		if (virt_dev->eps[i].ring) {
2966 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2967 		}
2968 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2969 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2970 		virt_dev->eps[i].new_ring = NULL;
2971 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2972 	}
2973 command_cleanup:
2974 	kfree(command->completion);
2975 	kfree(command);
2976 
2977 	return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2980 
2981 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2982 {
2983 	struct xhci_hcd *xhci;
2984 	struct xhci_virt_device	*virt_dev;
2985 	int i, ret;
2986 
2987 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2988 	if (ret <= 0)
2989 		return;
2990 	xhci = hcd_to_xhci(hcd);
2991 
2992 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2993 	virt_dev = xhci->devs[udev->slot_id];
2994 	/* Free any rings allocated for added endpoints */
2995 	for (i = 0; i < 31; i++) {
2996 		if (virt_dev->eps[i].new_ring) {
2997 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2998 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2999 			virt_dev->eps[i].new_ring = NULL;
3000 		}
3001 	}
3002 	xhci_zero_in_ctx(xhci, virt_dev);
3003 }
3004 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3005 
3006 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3007 		struct xhci_container_ctx *in_ctx,
3008 		struct xhci_container_ctx *out_ctx,
3009 		struct xhci_input_control_ctx *ctrl_ctx,
3010 		u32 add_flags, u32 drop_flags)
3011 {
3012 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3013 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3014 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3015 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3016 }
3017 
3018 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3019 				  struct usb_host_endpoint *host_ep)
3020 {
3021 	struct xhci_hcd		*xhci;
3022 	struct xhci_virt_device	*vdev;
3023 	struct xhci_virt_ep	*ep;
3024 	struct usb_device	*udev;
3025 	unsigned long		flags;
3026 	unsigned int		ep_index;
3027 
3028 	xhci = hcd_to_xhci(hcd);
3029 rescan:
3030 	spin_lock_irqsave(&xhci->lock, flags);
3031 
3032 	udev = (struct usb_device *)host_ep->hcpriv;
3033 	if (!udev || !udev->slot_id)
3034 		goto done;
3035 
3036 	vdev = xhci->devs[udev->slot_id];
3037 	if (!vdev)
3038 		goto done;
3039 
3040 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3041 	ep = &vdev->eps[ep_index];
3042 
3043 	/* wait for hub_tt_work to finish clearing hub TT */
3044 	if (ep->ep_state & EP_CLEARING_TT) {
3045 		spin_unlock_irqrestore(&xhci->lock, flags);
3046 		schedule_timeout_uninterruptible(1);
3047 		goto rescan;
3048 	}
3049 
3050 	if (ep->ep_state)
3051 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3052 			 ep->ep_state);
3053 done:
3054 	host_ep->hcpriv = NULL;
3055 	spin_unlock_irqrestore(&xhci->lock, flags);
3056 }
3057 
3058 /*
3059  * Called after usb core issues a clear halt control message.
3060  * The host side of the halt should already be cleared by a reset endpoint
3061  * command issued when the STALL event was received.
3062  *
3063  * The reset endpoint command may only be issued to endpoints in the halted
3064  * state. For software that wishes to reset the data toggle or sequence number
3065  * of an endpoint that isn't in the halted state this function will issue a
3066  * configure endpoint command with the Drop and Add bits set for the target
3067  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3068  */
3069 
3070 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3071 		struct usb_host_endpoint *host_ep)
3072 {
3073 	struct xhci_hcd *xhci;
3074 	struct usb_device *udev;
3075 	struct xhci_virt_device *vdev;
3076 	struct xhci_virt_ep *ep;
3077 	struct xhci_input_control_ctx *ctrl_ctx;
3078 	struct xhci_command *stop_cmd, *cfg_cmd;
3079 	unsigned int ep_index;
3080 	unsigned long flags;
3081 	u32 ep_flag;
3082 	int err;
3083 
3084 	xhci = hcd_to_xhci(hcd);
3085 	if (!host_ep->hcpriv)
3086 		return;
3087 	udev = (struct usb_device *) host_ep->hcpriv;
3088 	vdev = xhci->devs[udev->slot_id];
3089 
3090 	/*
3091 	 * vdev may be lost due to xHC restore error and re-initialization
3092 	 * during S3/S4 resume. A new vdev will be allocated later by
3093 	 * xhci_discover_or_reset_device()
3094 	 */
3095 	if (!udev->slot_id || !vdev)
3096 		return;
3097 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3098 	ep = &vdev->eps[ep_index];
3099 
3100 	/* Bail out if toggle is already being cleared by a endpoint reset */
3101 	spin_lock_irqsave(&xhci->lock, flags);
3102 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3103 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3104 		spin_unlock_irqrestore(&xhci->lock, flags);
3105 		return;
3106 	}
3107 	spin_unlock_irqrestore(&xhci->lock, flags);
3108 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3109 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3110 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3111 		return;
3112 
3113 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3114 
3115 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3116 		return;
3117 
3118 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3119 	if (!stop_cmd)
3120 		return;
3121 
3122 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3123 	if (!cfg_cmd)
3124 		goto cleanup;
3125 
3126 	spin_lock_irqsave(&xhci->lock, flags);
3127 
3128 	/* block queuing new trbs and ringing ep doorbell */
3129 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3130 
3131 	/*
3132 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3133 	 * Driver is required to synchronously cancel all transfer request.
3134 	 * Stop the endpoint to force xHC to update the output context
3135 	 */
3136 
3137 	if (!list_empty(&ep->ring->td_list)) {
3138 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3139 		spin_unlock_irqrestore(&xhci->lock, flags);
3140 		xhci_free_command(xhci, cfg_cmd);
3141 		goto cleanup;
3142 	}
3143 
3144 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3145 					ep_index, 0);
3146 	if (err < 0) {
3147 		spin_unlock_irqrestore(&xhci->lock, flags);
3148 		xhci_free_command(xhci, cfg_cmd);
3149 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3150 				__func__, err);
3151 		goto cleanup;
3152 	}
3153 
3154 	xhci_ring_cmd_db(xhci);
3155 	spin_unlock_irqrestore(&xhci->lock, flags);
3156 
3157 	wait_for_completion(stop_cmd->completion);
3158 
3159 	spin_lock_irqsave(&xhci->lock, flags);
3160 
3161 	/* config ep command clears toggle if add and drop ep flags are set */
3162 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3163 	if (!ctrl_ctx) {
3164 		spin_unlock_irqrestore(&xhci->lock, flags);
3165 		xhci_free_command(xhci, cfg_cmd);
3166 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3167 				__func__);
3168 		goto cleanup;
3169 	}
3170 
3171 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3172 					   ctrl_ctx, ep_flag, ep_flag);
3173 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3174 
3175 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3176 				      udev->slot_id, false);
3177 	if (err < 0) {
3178 		spin_unlock_irqrestore(&xhci->lock, flags);
3179 		xhci_free_command(xhci, cfg_cmd);
3180 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3181 				__func__, err);
3182 		goto cleanup;
3183 	}
3184 
3185 	xhci_ring_cmd_db(xhci);
3186 	spin_unlock_irqrestore(&xhci->lock, flags);
3187 
3188 	wait_for_completion(cfg_cmd->completion);
3189 
3190 	xhci_free_command(xhci, cfg_cmd);
3191 cleanup:
3192 	xhci_free_command(xhci, stop_cmd);
3193 	spin_lock_irqsave(&xhci->lock, flags);
3194 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3195 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3196 	spin_unlock_irqrestore(&xhci->lock, flags);
3197 }
3198 
3199 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3200 		struct usb_device *udev, struct usb_host_endpoint *ep,
3201 		unsigned int slot_id)
3202 {
3203 	int ret;
3204 	unsigned int ep_index;
3205 	unsigned int ep_state;
3206 
3207 	if (!ep)
3208 		return -EINVAL;
3209 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3210 	if (ret <= 0)
3211 		return ret ? ret : -EINVAL;
3212 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3213 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3214 				" descriptor for ep 0x%x does not support streams\n",
3215 				ep->desc.bEndpointAddress);
3216 		return -EINVAL;
3217 	}
3218 
3219 	ep_index = xhci_get_endpoint_index(&ep->desc);
3220 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3221 	if (ep_state & EP_HAS_STREAMS ||
3222 			ep_state & EP_GETTING_STREAMS) {
3223 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3224 				"already has streams set up.\n",
3225 				ep->desc.bEndpointAddress);
3226 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3227 				"dynamic stream context array reallocation.\n");
3228 		return -EINVAL;
3229 	}
3230 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3231 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3232 				"endpoint 0x%x; URBs are pending.\n",
3233 				ep->desc.bEndpointAddress);
3234 		return -EINVAL;
3235 	}
3236 	return 0;
3237 }
3238 
3239 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3240 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3241 {
3242 	unsigned int max_streams;
3243 
3244 	/* The stream context array size must be a power of two */
3245 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3246 	/*
3247 	 * Find out how many primary stream array entries the host controller
3248 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3249 	 * level page entries), but that's an optional feature for xHCI host
3250 	 * controllers. xHCs must support at least 4 stream IDs.
3251 	 */
3252 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3253 	if (*num_stream_ctxs > max_streams) {
3254 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3255 				max_streams);
3256 		*num_stream_ctxs = max_streams;
3257 		*num_streams = max_streams;
3258 	}
3259 }
3260 
3261 /* Returns an error code if one of the endpoint already has streams.
3262  * This does not change any data structures, it only checks and gathers
3263  * information.
3264  */
3265 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3266 		struct usb_device *udev,
3267 		struct usb_host_endpoint **eps, unsigned int num_eps,
3268 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3269 {
3270 	unsigned int max_streams;
3271 	unsigned int endpoint_flag;
3272 	int i;
3273 	int ret;
3274 
3275 	for (i = 0; i < num_eps; i++) {
3276 		ret = xhci_check_streams_endpoint(xhci, udev,
3277 				eps[i], udev->slot_id);
3278 		if (ret < 0)
3279 			return ret;
3280 
3281 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3282 		if (max_streams < (*num_streams - 1)) {
3283 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3284 					eps[i]->desc.bEndpointAddress,
3285 					max_streams);
3286 			*num_streams = max_streams+1;
3287 		}
3288 
3289 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3290 		if (*changed_ep_bitmask & endpoint_flag)
3291 			return -EINVAL;
3292 		*changed_ep_bitmask |= endpoint_flag;
3293 	}
3294 	return 0;
3295 }
3296 
3297 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3298 		struct usb_device *udev,
3299 		struct usb_host_endpoint **eps, unsigned int num_eps)
3300 {
3301 	u32 changed_ep_bitmask = 0;
3302 	unsigned int slot_id;
3303 	unsigned int ep_index;
3304 	unsigned int ep_state;
3305 	int i;
3306 
3307 	slot_id = udev->slot_id;
3308 	if (!xhci->devs[slot_id])
3309 		return 0;
3310 
3311 	for (i = 0; i < num_eps; i++) {
3312 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3313 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3314 		/* Are streams already being freed for the endpoint? */
3315 		if (ep_state & EP_GETTING_NO_STREAMS) {
3316 			xhci_warn(xhci, "WARN Can't disable streams for "
3317 					"endpoint 0x%x, "
3318 					"streams are being disabled already\n",
3319 					eps[i]->desc.bEndpointAddress);
3320 			return 0;
3321 		}
3322 		/* Are there actually any streams to free? */
3323 		if (!(ep_state & EP_HAS_STREAMS) &&
3324 				!(ep_state & EP_GETTING_STREAMS)) {
3325 			xhci_warn(xhci, "WARN Can't disable streams for "
3326 					"endpoint 0x%x, "
3327 					"streams are already disabled!\n",
3328 					eps[i]->desc.bEndpointAddress);
3329 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3330 					"with non-streams endpoint\n");
3331 			return 0;
3332 		}
3333 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3334 	}
3335 	return changed_ep_bitmask;
3336 }
3337 
3338 /*
3339  * The USB device drivers use this function (through the HCD interface in USB
3340  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3341  * coordinate mass storage command queueing across multiple endpoints (basically
3342  * a stream ID == a task ID).
3343  *
3344  * Setting up streams involves allocating the same size stream context array
3345  * for each endpoint and issuing a configure endpoint command for all endpoints.
3346  *
3347  * Don't allow the call to succeed if one endpoint only supports one stream
3348  * (which means it doesn't support streams at all).
3349  *
3350  * Drivers may get less stream IDs than they asked for, if the host controller
3351  * hardware or endpoints claim they can't support the number of requested
3352  * stream IDs.
3353  */
3354 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3355 		struct usb_host_endpoint **eps, unsigned int num_eps,
3356 		unsigned int num_streams, gfp_t mem_flags)
3357 {
3358 	int i, ret;
3359 	struct xhci_hcd *xhci;
3360 	struct xhci_virt_device *vdev;
3361 	struct xhci_command *config_cmd;
3362 	struct xhci_input_control_ctx *ctrl_ctx;
3363 	unsigned int ep_index;
3364 	unsigned int num_stream_ctxs;
3365 	unsigned int max_packet;
3366 	unsigned long flags;
3367 	u32 changed_ep_bitmask = 0;
3368 
3369 	if (!eps)
3370 		return -EINVAL;
3371 
3372 	/* Add one to the number of streams requested to account for
3373 	 * stream 0 that is reserved for xHCI usage.
3374 	 */
3375 	num_streams += 1;
3376 	xhci = hcd_to_xhci(hcd);
3377 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3378 			num_streams);
3379 
3380 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3381 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3382 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3383 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3384 		return -ENOSYS;
3385 	}
3386 
3387 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3388 	if (!config_cmd)
3389 		return -ENOMEM;
3390 
3391 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3392 	if (!ctrl_ctx) {
3393 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3394 				__func__);
3395 		xhci_free_command(xhci, config_cmd);
3396 		return -ENOMEM;
3397 	}
3398 
3399 	/* Check to make sure all endpoints are not already configured for
3400 	 * streams.  While we're at it, find the maximum number of streams that
3401 	 * all the endpoints will support and check for duplicate endpoints.
3402 	 */
3403 	spin_lock_irqsave(&xhci->lock, flags);
3404 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3405 			num_eps, &num_streams, &changed_ep_bitmask);
3406 	if (ret < 0) {
3407 		xhci_free_command(xhci, config_cmd);
3408 		spin_unlock_irqrestore(&xhci->lock, flags);
3409 		return ret;
3410 	}
3411 	if (num_streams <= 1) {
3412 		xhci_warn(xhci, "WARN: endpoints can't handle "
3413 				"more than one stream.\n");
3414 		xhci_free_command(xhci, config_cmd);
3415 		spin_unlock_irqrestore(&xhci->lock, flags);
3416 		return -EINVAL;
3417 	}
3418 	vdev = xhci->devs[udev->slot_id];
3419 	/* Mark each endpoint as being in transition, so
3420 	 * xhci_urb_enqueue() will reject all URBs.
3421 	 */
3422 	for (i = 0; i < num_eps; i++) {
3423 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3424 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3425 	}
3426 	spin_unlock_irqrestore(&xhci->lock, flags);
3427 
3428 	/* Setup internal data structures and allocate HW data structures for
3429 	 * streams (but don't install the HW structures in the input context
3430 	 * until we're sure all memory allocation succeeded).
3431 	 */
3432 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3433 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3434 			num_stream_ctxs, num_streams);
3435 
3436 	for (i = 0; i < num_eps; i++) {
3437 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3438 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3439 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3440 				num_stream_ctxs,
3441 				num_streams,
3442 				max_packet, mem_flags);
3443 		if (!vdev->eps[ep_index].stream_info)
3444 			goto cleanup;
3445 		/* Set maxPstreams in endpoint context and update deq ptr to
3446 		 * point to stream context array. FIXME
3447 		 */
3448 	}
3449 
3450 	/* Set up the input context for a configure endpoint command. */
3451 	for (i = 0; i < num_eps; i++) {
3452 		struct xhci_ep_ctx *ep_ctx;
3453 
3454 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3455 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3456 
3457 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3458 				vdev->out_ctx, ep_index);
3459 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3460 				vdev->eps[ep_index].stream_info);
3461 	}
3462 	/* Tell the HW to drop its old copy of the endpoint context info
3463 	 * and add the updated copy from the input context.
3464 	 */
3465 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3466 			vdev->out_ctx, ctrl_ctx,
3467 			changed_ep_bitmask, changed_ep_bitmask);
3468 
3469 	/* Issue and wait for the configure endpoint command */
3470 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3471 			false, false);
3472 
3473 	/* xHC rejected the configure endpoint command for some reason, so we
3474 	 * leave the old ring intact and free our internal streams data
3475 	 * structure.
3476 	 */
3477 	if (ret < 0)
3478 		goto cleanup;
3479 
3480 	spin_lock_irqsave(&xhci->lock, flags);
3481 	for (i = 0; i < num_eps; i++) {
3482 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3484 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3485 			 udev->slot_id, ep_index);
3486 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3487 	}
3488 	xhci_free_command(xhci, config_cmd);
3489 	spin_unlock_irqrestore(&xhci->lock, flags);
3490 
3491 	for (i = 0; i < num_eps; i++) {
3492 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3493 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3494 	}
3495 	/* Subtract 1 for stream 0, which drivers can't use */
3496 	return num_streams - 1;
3497 
3498 cleanup:
3499 	/* If it didn't work, free the streams! */
3500 	for (i = 0; i < num_eps; i++) {
3501 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3502 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3503 		vdev->eps[ep_index].stream_info = NULL;
3504 		/* FIXME Unset maxPstreams in endpoint context and
3505 		 * update deq ptr to point to normal string ring.
3506 		 */
3507 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3508 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3509 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3510 	}
3511 	xhci_free_command(xhci, config_cmd);
3512 	return -ENOMEM;
3513 }
3514 
3515 /* Transition the endpoint from using streams to being a "normal" endpoint
3516  * without streams.
3517  *
3518  * Modify the endpoint context state, submit a configure endpoint command,
3519  * and free all endpoint rings for streams if that completes successfully.
3520  */
3521 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3522 		struct usb_host_endpoint **eps, unsigned int num_eps,
3523 		gfp_t mem_flags)
3524 {
3525 	int i, ret;
3526 	struct xhci_hcd *xhci;
3527 	struct xhci_virt_device *vdev;
3528 	struct xhci_command *command;
3529 	struct xhci_input_control_ctx *ctrl_ctx;
3530 	unsigned int ep_index;
3531 	unsigned long flags;
3532 	u32 changed_ep_bitmask;
3533 
3534 	xhci = hcd_to_xhci(hcd);
3535 	vdev = xhci->devs[udev->slot_id];
3536 
3537 	/* Set up a configure endpoint command to remove the streams rings */
3538 	spin_lock_irqsave(&xhci->lock, flags);
3539 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3540 			udev, eps, num_eps);
3541 	if (changed_ep_bitmask == 0) {
3542 		spin_unlock_irqrestore(&xhci->lock, flags);
3543 		return -EINVAL;
3544 	}
3545 
3546 	/* Use the xhci_command structure from the first endpoint.  We may have
3547 	 * allocated too many, but the driver may call xhci_free_streams() for
3548 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3549 	 */
3550 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3551 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3552 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3553 	if (!ctrl_ctx) {
3554 		spin_unlock_irqrestore(&xhci->lock, flags);
3555 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3556 				__func__);
3557 		return -EINVAL;
3558 	}
3559 
3560 	for (i = 0; i < num_eps; i++) {
3561 		struct xhci_ep_ctx *ep_ctx;
3562 
3563 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3564 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3565 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3566 			EP_GETTING_NO_STREAMS;
3567 
3568 		xhci_endpoint_copy(xhci, command->in_ctx,
3569 				vdev->out_ctx, ep_index);
3570 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3571 				&vdev->eps[ep_index]);
3572 	}
3573 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3574 			vdev->out_ctx, ctrl_ctx,
3575 			changed_ep_bitmask, changed_ep_bitmask);
3576 	spin_unlock_irqrestore(&xhci->lock, flags);
3577 
3578 	/* Issue and wait for the configure endpoint command,
3579 	 * which must succeed.
3580 	 */
3581 	ret = xhci_configure_endpoint(xhci, udev, command,
3582 			false, true);
3583 
3584 	/* xHC rejected the configure endpoint command for some reason, so we
3585 	 * leave the streams rings intact.
3586 	 */
3587 	if (ret < 0)
3588 		return ret;
3589 
3590 	spin_lock_irqsave(&xhci->lock, flags);
3591 	for (i = 0; i < num_eps; i++) {
3592 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3594 		vdev->eps[ep_index].stream_info = NULL;
3595 		/* FIXME Unset maxPstreams in endpoint context and
3596 		 * update deq ptr to point to normal string ring.
3597 		 */
3598 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3599 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3600 	}
3601 	spin_unlock_irqrestore(&xhci->lock, flags);
3602 
3603 	return 0;
3604 }
3605 
3606 /*
3607  * Deletes endpoint resources for endpoints that were active before a Reset
3608  * Device command, or a Disable Slot command.  The Reset Device command leaves
3609  * the control endpoint intact, whereas the Disable Slot command deletes it.
3610  *
3611  * Must be called with xhci->lock held.
3612  */
3613 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3614 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3615 {
3616 	int i;
3617 	unsigned int num_dropped_eps = 0;
3618 	unsigned int drop_flags = 0;
3619 
3620 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3621 		if (virt_dev->eps[i].ring) {
3622 			drop_flags |= 1 << i;
3623 			num_dropped_eps++;
3624 		}
3625 	}
3626 	xhci->num_active_eps -= num_dropped_eps;
3627 	if (num_dropped_eps)
3628 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3629 				"Dropped %u ep ctxs, flags = 0x%x, "
3630 				"%u now active.",
3631 				num_dropped_eps, drop_flags,
3632 				xhci->num_active_eps);
3633 }
3634 
3635 /*
3636  * This submits a Reset Device Command, which will set the device state to 0,
3637  * set the device address to 0, and disable all the endpoints except the default
3638  * control endpoint.  The USB core should come back and call
3639  * xhci_address_device(), and then re-set up the configuration.  If this is
3640  * called because of a usb_reset_and_verify_device(), then the old alternate
3641  * settings will be re-installed through the normal bandwidth allocation
3642  * functions.
3643  *
3644  * Wait for the Reset Device command to finish.  Remove all structures
3645  * associated with the endpoints that were disabled.  Clear the input device
3646  * structure? Reset the control endpoint 0 max packet size?
3647  *
3648  * If the virt_dev to be reset does not exist or does not match the udev,
3649  * it means the device is lost, possibly due to the xHC restore error and
3650  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3651  * re-allocate the device.
3652  */
3653 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3654 		struct usb_device *udev)
3655 {
3656 	int ret, i;
3657 	unsigned long flags;
3658 	struct xhci_hcd *xhci;
3659 	unsigned int slot_id;
3660 	struct xhci_virt_device *virt_dev;
3661 	struct xhci_command *reset_device_cmd;
3662 	struct xhci_slot_ctx *slot_ctx;
3663 	int old_active_eps = 0;
3664 
3665 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3666 	if (ret <= 0)
3667 		return ret;
3668 	xhci = hcd_to_xhci(hcd);
3669 	slot_id = udev->slot_id;
3670 	virt_dev = xhci->devs[slot_id];
3671 	if (!virt_dev) {
3672 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3673 				"not exist. Re-allocate the device\n", slot_id);
3674 		ret = xhci_alloc_dev(hcd, udev);
3675 		if (ret == 1)
3676 			return 0;
3677 		else
3678 			return -EINVAL;
3679 	}
3680 
3681 	if (virt_dev->tt_info)
3682 		old_active_eps = virt_dev->tt_info->active_eps;
3683 
3684 	if (virt_dev->udev != udev) {
3685 		/* If the virt_dev and the udev does not match, this virt_dev
3686 		 * may belong to another udev.
3687 		 * Re-allocate the device.
3688 		 */
3689 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3690 				"not match the udev. Re-allocate the device\n",
3691 				slot_id);
3692 		ret = xhci_alloc_dev(hcd, udev);
3693 		if (ret == 1)
3694 			return 0;
3695 		else
3696 			return -EINVAL;
3697 	}
3698 
3699 	/* If device is not setup, there is no point in resetting it */
3700 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3701 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3702 						SLOT_STATE_DISABLED)
3703 		return 0;
3704 
3705 	trace_xhci_discover_or_reset_device(slot_ctx);
3706 
3707 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3708 	/* Allocate the command structure that holds the struct completion.
3709 	 * Assume we're in process context, since the normal device reset
3710 	 * process has to wait for the device anyway.  Storage devices are
3711 	 * reset as part of error handling, so use GFP_NOIO instead of
3712 	 * GFP_KERNEL.
3713 	 */
3714 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3715 	if (!reset_device_cmd) {
3716 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3717 		return -ENOMEM;
3718 	}
3719 
3720 	/* Attempt to submit the Reset Device command to the command ring */
3721 	spin_lock_irqsave(&xhci->lock, flags);
3722 
3723 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3724 	if (ret) {
3725 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3726 		spin_unlock_irqrestore(&xhci->lock, flags);
3727 		goto command_cleanup;
3728 	}
3729 	xhci_ring_cmd_db(xhci);
3730 	spin_unlock_irqrestore(&xhci->lock, flags);
3731 
3732 	/* Wait for the Reset Device command to finish */
3733 	wait_for_completion(reset_device_cmd->completion);
3734 
3735 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3736 	 * unless we tried to reset a slot ID that wasn't enabled,
3737 	 * or the device wasn't in the addressed or configured state.
3738 	 */
3739 	ret = reset_device_cmd->status;
3740 	switch (ret) {
3741 	case COMP_COMMAND_ABORTED:
3742 	case COMP_COMMAND_RING_STOPPED:
3743 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3744 		ret = -ETIME;
3745 		goto command_cleanup;
3746 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3747 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3748 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3749 				slot_id,
3750 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3751 		xhci_dbg(xhci, "Not freeing device rings.\n");
3752 		/* Don't treat this as an error.  May change my mind later. */
3753 		ret = 0;
3754 		goto command_cleanup;
3755 	case COMP_SUCCESS:
3756 		xhci_dbg(xhci, "Successful reset device command.\n");
3757 		break;
3758 	default:
3759 		if (xhci_is_vendor_info_code(xhci, ret))
3760 			break;
3761 		xhci_warn(xhci, "Unknown completion code %u for "
3762 				"reset device command.\n", ret);
3763 		ret = -EINVAL;
3764 		goto command_cleanup;
3765 	}
3766 
3767 	/* Free up host controller endpoint resources */
3768 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3769 		spin_lock_irqsave(&xhci->lock, flags);
3770 		/* Don't delete the default control endpoint resources */
3771 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3772 		spin_unlock_irqrestore(&xhci->lock, flags);
3773 	}
3774 
3775 	/* Everything but endpoint 0 is disabled, so free the rings. */
3776 	for (i = 1; i < 31; i++) {
3777 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3778 
3779 		if (ep->ep_state & EP_HAS_STREAMS) {
3780 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3781 					xhci_get_endpoint_address(i));
3782 			xhci_free_stream_info(xhci, ep->stream_info);
3783 			ep->stream_info = NULL;
3784 			ep->ep_state &= ~EP_HAS_STREAMS;
3785 		}
3786 
3787 		if (ep->ring) {
3788 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3789 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3790 		}
3791 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3792 			xhci_drop_ep_from_interval_table(xhci,
3793 					&virt_dev->eps[i].bw_info,
3794 					virt_dev->bw_table,
3795 					udev,
3796 					&virt_dev->eps[i],
3797 					virt_dev->tt_info);
3798 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3799 	}
3800 	/* If necessary, update the number of active TTs on this root port */
3801 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3802 	virt_dev->flags = 0;
3803 	ret = 0;
3804 
3805 command_cleanup:
3806 	xhci_free_command(xhci, reset_device_cmd);
3807 	return ret;
3808 }
3809 
3810 /*
3811  * At this point, the struct usb_device is about to go away, the device has
3812  * disconnected, and all traffic has been stopped and the endpoints have been
3813  * disabled.  Free any HC data structures associated with that device.
3814  */
3815 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3816 {
3817 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818 	struct xhci_virt_device *virt_dev;
3819 	struct xhci_slot_ctx *slot_ctx;
3820 	unsigned long flags;
3821 	int i, ret;
3822 
3823 	/*
3824 	 * We called pm_runtime_get_noresume when the device was attached.
3825 	 * Decrement the counter here to allow controller to runtime suspend
3826 	 * if no devices remain.
3827 	 */
3828 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3829 		pm_runtime_put_noidle(hcd->self.controller);
3830 
3831 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3832 	/* If the host is halted due to driver unload, we still need to free the
3833 	 * device.
3834 	 */
3835 	if (ret <= 0 && ret != -ENODEV)
3836 		return;
3837 
3838 	virt_dev = xhci->devs[udev->slot_id];
3839 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3840 	trace_xhci_free_dev(slot_ctx);
3841 
3842 	/* Stop any wayward timer functions (which may grab the lock) */
3843 	for (i = 0; i < 31; i++)
3844 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3845 	virt_dev->udev = NULL;
3846 	xhci_disable_slot(xhci, udev->slot_id);
3847 
3848 	spin_lock_irqsave(&xhci->lock, flags);
3849 	xhci_free_virt_device(xhci, udev->slot_id);
3850 	spin_unlock_irqrestore(&xhci->lock, flags);
3851 
3852 }
3853 
3854 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3855 {
3856 	struct xhci_command *command;
3857 	unsigned long flags;
3858 	u32 state;
3859 	int ret;
3860 
3861 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3862 	if (!command)
3863 		return -ENOMEM;
3864 
3865 	xhci_debugfs_remove_slot(xhci, slot_id);
3866 
3867 	spin_lock_irqsave(&xhci->lock, flags);
3868 	/* Don't disable the slot if the host controller is dead. */
3869 	state = readl(&xhci->op_regs->status);
3870 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3871 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3872 		spin_unlock_irqrestore(&xhci->lock, flags);
3873 		kfree(command);
3874 		return -ENODEV;
3875 	}
3876 
3877 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3878 				slot_id);
3879 	if (ret) {
3880 		spin_unlock_irqrestore(&xhci->lock, flags);
3881 		kfree(command);
3882 		return ret;
3883 	}
3884 	xhci_ring_cmd_db(xhci);
3885 	spin_unlock_irqrestore(&xhci->lock, flags);
3886 
3887 	wait_for_completion(command->completion);
3888 
3889 	if (command->status != COMP_SUCCESS)
3890 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3891 			  slot_id, command->status);
3892 
3893 	xhci_free_command(xhci, command);
3894 
3895 	return 0;
3896 }
3897 
3898 /*
3899  * Checks if we have enough host controller resources for the default control
3900  * endpoint.
3901  *
3902  * Must be called with xhci->lock held.
3903  */
3904 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3905 {
3906 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3907 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3908 				"Not enough ep ctxs: "
3909 				"%u active, need to add 1, limit is %u.",
3910 				xhci->num_active_eps, xhci->limit_active_eps);
3911 		return -ENOMEM;
3912 	}
3913 	xhci->num_active_eps += 1;
3914 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3915 			"Adding 1 ep ctx, %u now active.",
3916 			xhci->num_active_eps);
3917 	return 0;
3918 }
3919 
3920 
3921 /*
3922  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3923  * timed out, or allocating memory failed.  Returns 1 on success.
3924  */
3925 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3926 {
3927 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928 	struct xhci_virt_device *vdev;
3929 	struct xhci_slot_ctx *slot_ctx;
3930 	unsigned long flags;
3931 	int ret, slot_id;
3932 	struct xhci_command *command;
3933 
3934 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3935 	if (!command)
3936 		return 0;
3937 
3938 	spin_lock_irqsave(&xhci->lock, flags);
3939 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3940 	if (ret) {
3941 		spin_unlock_irqrestore(&xhci->lock, flags);
3942 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3943 		xhci_free_command(xhci, command);
3944 		return 0;
3945 	}
3946 	xhci_ring_cmd_db(xhci);
3947 	spin_unlock_irqrestore(&xhci->lock, flags);
3948 
3949 	wait_for_completion(command->completion);
3950 	slot_id = command->slot_id;
3951 
3952 	if (!slot_id || command->status != COMP_SUCCESS) {
3953 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3954 			 xhci_trb_comp_code_string(command->status));
3955 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3956 				HCS_MAX_SLOTS(
3957 					readl(&xhci->cap_regs->hcs_params1)));
3958 		xhci_free_command(xhci, command);
3959 		return 0;
3960 	}
3961 
3962 	xhci_free_command(xhci, command);
3963 
3964 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3965 		spin_lock_irqsave(&xhci->lock, flags);
3966 		ret = xhci_reserve_host_control_ep_resources(xhci);
3967 		if (ret) {
3968 			spin_unlock_irqrestore(&xhci->lock, flags);
3969 			xhci_warn(xhci, "Not enough host resources, "
3970 					"active endpoint contexts = %u\n",
3971 					xhci->num_active_eps);
3972 			goto disable_slot;
3973 		}
3974 		spin_unlock_irqrestore(&xhci->lock, flags);
3975 	}
3976 	/* Use GFP_NOIO, since this function can be called from
3977 	 * xhci_discover_or_reset_device(), which may be called as part of
3978 	 * mass storage driver error handling.
3979 	 */
3980 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3981 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3982 		goto disable_slot;
3983 	}
3984 	vdev = xhci->devs[slot_id];
3985 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3986 	trace_xhci_alloc_dev(slot_ctx);
3987 
3988 	udev->slot_id = slot_id;
3989 
3990 	xhci_debugfs_create_slot(xhci, slot_id);
3991 
3992 	/*
3993 	 * If resetting upon resume, we can't put the controller into runtime
3994 	 * suspend if there is a device attached.
3995 	 */
3996 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3997 		pm_runtime_get_noresume(hcd->self.controller);
3998 
3999 	/* Is this a LS or FS device under a HS hub? */
4000 	/* Hub or peripherial? */
4001 	return 1;
4002 
4003 disable_slot:
4004 	xhci_disable_slot(xhci, udev->slot_id);
4005 	xhci_free_virt_device(xhci, udev->slot_id);
4006 
4007 	return 0;
4008 }
4009 
4010 /**
4011  * xhci_setup_device - issues an Address Device command to assign a unique
4012  *			USB bus address.
4013  * @hcd: USB host controller data structure.
4014  * @udev: USB dev structure representing the connected device.
4015  * @setup: Enum specifying setup mode: address only or with context.
4016  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4017  *
4018  * Return: 0 if successful; otherwise, negative error code.
4019  */
4020 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4021 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4022 {
4023 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4024 	unsigned long flags;
4025 	struct xhci_virt_device *virt_dev;
4026 	int ret = 0;
4027 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4028 	struct xhci_slot_ctx *slot_ctx;
4029 	struct xhci_input_control_ctx *ctrl_ctx;
4030 	u64 temp_64;
4031 	struct xhci_command *command = NULL;
4032 
4033 	mutex_lock(&xhci->mutex);
4034 
4035 	if (xhci->xhc_state) {	/* dying, removing or halted */
4036 		ret = -ESHUTDOWN;
4037 		goto out;
4038 	}
4039 
4040 	if (!udev->slot_id) {
4041 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4042 				"Bad Slot ID %d", udev->slot_id);
4043 		ret = -EINVAL;
4044 		goto out;
4045 	}
4046 
4047 	virt_dev = xhci->devs[udev->slot_id];
4048 
4049 	if (WARN_ON(!virt_dev)) {
4050 		/*
4051 		 * In plug/unplug torture test with an NEC controller,
4052 		 * a zero-dereference was observed once due to virt_dev = 0.
4053 		 * Print useful debug rather than crash if it is observed again!
4054 		 */
4055 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4056 			udev->slot_id);
4057 		ret = -EINVAL;
4058 		goto out;
4059 	}
4060 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4061 	trace_xhci_setup_device_slot(slot_ctx);
4062 
4063 	if (setup == SETUP_CONTEXT_ONLY) {
4064 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4065 		    SLOT_STATE_DEFAULT) {
4066 			xhci_dbg(xhci, "Slot already in default state\n");
4067 			goto out;
4068 		}
4069 	}
4070 
4071 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4072 	if (!command) {
4073 		ret = -ENOMEM;
4074 		goto out;
4075 	}
4076 
4077 	command->in_ctx = virt_dev->in_ctx;
4078 	command->timeout_ms = timeout_ms;
4079 
4080 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4081 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4082 	if (!ctrl_ctx) {
4083 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4084 				__func__);
4085 		ret = -EINVAL;
4086 		goto out;
4087 	}
4088 	/*
4089 	 * If this is the first Set Address since device plug-in or
4090 	 * virt_device realloaction after a resume with an xHCI power loss,
4091 	 * then set up the slot context.
4092 	 */
4093 	if (!slot_ctx->dev_info)
4094 		xhci_setup_addressable_virt_dev(xhci, udev);
4095 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4096 	else
4097 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4098 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4099 	ctrl_ctx->drop_flags = 0;
4100 
4101 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4102 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4103 
4104 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4105 	spin_lock_irqsave(&xhci->lock, flags);
4106 	trace_xhci_setup_device(virt_dev);
4107 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4108 					udev->slot_id, setup);
4109 	if (ret) {
4110 		spin_unlock_irqrestore(&xhci->lock, flags);
4111 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4112 				"FIXME: allocate a command ring segment");
4113 		goto out;
4114 	}
4115 	xhci_ring_cmd_db(xhci);
4116 	spin_unlock_irqrestore(&xhci->lock, flags);
4117 
4118 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4119 	wait_for_completion(command->completion);
4120 
4121 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4122 	 * the SetAddress() "recovery interval" required by USB and aborting the
4123 	 * command on a timeout.
4124 	 */
4125 	switch (command->status) {
4126 	case COMP_COMMAND_ABORTED:
4127 	case COMP_COMMAND_RING_STOPPED:
4128 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4129 		ret = -ETIME;
4130 		break;
4131 	case COMP_CONTEXT_STATE_ERROR:
4132 	case COMP_SLOT_NOT_ENABLED_ERROR:
4133 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4134 			 act, udev->slot_id);
4135 		ret = -EINVAL;
4136 		break;
4137 	case COMP_USB_TRANSACTION_ERROR:
4138 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4139 
4140 		mutex_unlock(&xhci->mutex);
4141 		ret = xhci_disable_slot(xhci, udev->slot_id);
4142 		xhci_free_virt_device(xhci, udev->slot_id);
4143 		if (!ret)
4144 			xhci_alloc_dev(hcd, udev);
4145 		kfree(command->completion);
4146 		kfree(command);
4147 		return -EPROTO;
4148 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4149 		dev_warn(&udev->dev,
4150 			 "ERROR: Incompatible device for setup %s command\n", act);
4151 		ret = -ENODEV;
4152 		break;
4153 	case COMP_SUCCESS:
4154 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4155 			       "Successful setup %s command", act);
4156 		break;
4157 	default:
4158 		xhci_err(xhci,
4159 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4160 			 act, command->status);
4161 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4162 		ret = -EINVAL;
4163 		break;
4164 	}
4165 	if (ret)
4166 		goto out;
4167 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4168 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4169 			"Op regs DCBAA ptr = %#016llx", temp_64);
4170 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4171 		"Slot ID %d dcbaa entry @%p = %#016llx",
4172 		udev->slot_id,
4173 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4174 		(unsigned long long)
4175 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4176 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4177 			"Output Context DMA address = %#08llx",
4178 			(unsigned long long)virt_dev->out_ctx->dma);
4179 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4180 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4181 	/*
4182 	 * USB core uses address 1 for the roothubs, so we add one to the
4183 	 * address given back to us by the HC.
4184 	 */
4185 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4186 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4187 	/* Zero the input context control for later use */
4188 	ctrl_ctx->add_flags = 0;
4189 	ctrl_ctx->drop_flags = 0;
4190 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4191 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4192 
4193 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4194 		       "Internal device address = %d",
4195 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4196 out:
4197 	mutex_unlock(&xhci->mutex);
4198 	if (command) {
4199 		kfree(command->completion);
4200 		kfree(command);
4201 	}
4202 	return ret;
4203 }
4204 
4205 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4206 			       unsigned int timeout_ms)
4207 {
4208 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4209 }
4210 
4211 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4212 {
4213 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4214 				 XHCI_CMD_DEFAULT_TIMEOUT);
4215 }
4216 
4217 /*
4218  * Transfer the port index into real index in the HW port status
4219  * registers. Caculate offset between the port's PORTSC register
4220  * and port status base. Divide the number of per port register
4221  * to get the real index. The raw port number bases 1.
4222  */
4223 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4224 {
4225 	struct xhci_hub *rhub;
4226 
4227 	rhub = xhci_get_rhub(hcd);
4228 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4229 }
4230 
4231 /*
4232  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4233  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4234  */
4235 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4236 			struct usb_device *udev, u16 max_exit_latency)
4237 {
4238 	struct xhci_virt_device *virt_dev;
4239 	struct xhci_command *command;
4240 	struct xhci_input_control_ctx *ctrl_ctx;
4241 	struct xhci_slot_ctx *slot_ctx;
4242 	unsigned long flags;
4243 	int ret;
4244 
4245 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4246 	if (!command)
4247 		return -ENOMEM;
4248 
4249 	spin_lock_irqsave(&xhci->lock, flags);
4250 
4251 	virt_dev = xhci->devs[udev->slot_id];
4252 
4253 	/*
4254 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4255 	 * xHC was re-initialized. Exit latency will be set later after
4256 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4257 	 */
4258 
4259 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4260 		spin_unlock_irqrestore(&xhci->lock, flags);
4261 		xhci_free_command(xhci, command);
4262 		return 0;
4263 	}
4264 
4265 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4266 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4267 	if (!ctrl_ctx) {
4268 		spin_unlock_irqrestore(&xhci->lock, flags);
4269 		xhci_free_command(xhci, command);
4270 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4271 				__func__);
4272 		return -ENOMEM;
4273 	}
4274 
4275 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4276 	spin_unlock_irqrestore(&xhci->lock, flags);
4277 
4278 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4279 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4280 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4281 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4282 	slot_ctx->dev_state = 0;
4283 
4284 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4285 			"Set up evaluate context for LPM MEL change.");
4286 
4287 	/* Issue and wait for the evaluate context command. */
4288 	ret = xhci_configure_endpoint(xhci, udev, command,
4289 			true, true);
4290 
4291 	if (!ret) {
4292 		spin_lock_irqsave(&xhci->lock, flags);
4293 		virt_dev->current_mel = max_exit_latency;
4294 		spin_unlock_irqrestore(&xhci->lock, flags);
4295 	}
4296 
4297 	xhci_free_command(xhci, command);
4298 
4299 	return ret;
4300 }
4301 
4302 #ifdef CONFIG_PM
4303 
4304 /* BESL to HIRD Encoding array for USB2 LPM */
4305 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4306 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4307 
4308 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4309 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4310 					struct usb_device *udev)
4311 {
4312 	int u2del, besl, besl_host;
4313 	int besl_device = 0;
4314 	u32 field;
4315 
4316 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4317 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4318 
4319 	if (field & USB_BESL_SUPPORT) {
4320 		for (besl_host = 0; besl_host < 16; besl_host++) {
4321 			if (xhci_besl_encoding[besl_host] >= u2del)
4322 				break;
4323 		}
4324 		/* Use baseline BESL value as default */
4325 		if (field & USB_BESL_BASELINE_VALID)
4326 			besl_device = USB_GET_BESL_BASELINE(field);
4327 		else if (field & USB_BESL_DEEP_VALID)
4328 			besl_device = USB_GET_BESL_DEEP(field);
4329 	} else {
4330 		if (u2del <= 50)
4331 			besl_host = 0;
4332 		else
4333 			besl_host = (u2del - 51) / 75 + 1;
4334 	}
4335 
4336 	besl = besl_host + besl_device;
4337 	if (besl > 15)
4338 		besl = 15;
4339 
4340 	return besl;
4341 }
4342 
4343 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4344 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4345 {
4346 	u32 field;
4347 	int l1;
4348 	int besld = 0;
4349 	int hirdm = 0;
4350 
4351 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4352 
4353 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4354 	l1 = udev->l1_params.timeout / 256;
4355 
4356 	/* device has preferred BESLD */
4357 	if (field & USB_BESL_DEEP_VALID) {
4358 		besld = USB_GET_BESL_DEEP(field);
4359 		hirdm = 1;
4360 	}
4361 
4362 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4363 }
4364 
4365 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4366 			struct usb_device *udev, int enable)
4367 {
4368 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4369 	struct xhci_port **ports;
4370 	__le32 __iomem	*pm_addr, *hlpm_addr;
4371 	u32		pm_val, hlpm_val, field;
4372 	unsigned int	port_num;
4373 	unsigned long	flags;
4374 	int		hird, exit_latency;
4375 	int		ret;
4376 
4377 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4378 		return -EPERM;
4379 
4380 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4381 			!udev->lpm_capable)
4382 		return -EPERM;
4383 
4384 	if (!udev->parent || udev->parent->parent ||
4385 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4386 		return -EPERM;
4387 
4388 	if (udev->usb2_hw_lpm_capable != 1)
4389 		return -EPERM;
4390 
4391 	spin_lock_irqsave(&xhci->lock, flags);
4392 
4393 	ports = xhci->usb2_rhub.ports;
4394 	port_num = udev->portnum - 1;
4395 	pm_addr = ports[port_num]->addr + PORTPMSC;
4396 	pm_val = readl(pm_addr);
4397 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4398 
4399 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4400 			enable ? "enable" : "disable", port_num + 1);
4401 
4402 	if (enable) {
4403 		/* Host supports BESL timeout instead of HIRD */
4404 		if (udev->usb2_hw_lpm_besl_capable) {
4405 			/* if device doesn't have a preferred BESL value use a
4406 			 * default one which works with mixed HIRD and BESL
4407 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4408 			 */
4409 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4410 			if ((field & USB_BESL_SUPPORT) &&
4411 			    (field & USB_BESL_BASELINE_VALID))
4412 				hird = USB_GET_BESL_BASELINE(field);
4413 			else
4414 				hird = udev->l1_params.besl;
4415 
4416 			exit_latency = xhci_besl_encoding[hird];
4417 			spin_unlock_irqrestore(&xhci->lock, flags);
4418 
4419 			ret = xhci_change_max_exit_latency(xhci, udev,
4420 							   exit_latency);
4421 			if (ret < 0)
4422 				return ret;
4423 			spin_lock_irqsave(&xhci->lock, flags);
4424 
4425 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4426 			writel(hlpm_val, hlpm_addr);
4427 			/* flush write */
4428 			readl(hlpm_addr);
4429 		} else {
4430 			hird = xhci_calculate_hird_besl(xhci, udev);
4431 		}
4432 
4433 		pm_val &= ~PORT_HIRD_MASK;
4434 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4435 		writel(pm_val, pm_addr);
4436 		pm_val = readl(pm_addr);
4437 		pm_val |= PORT_HLE;
4438 		writel(pm_val, pm_addr);
4439 		/* flush write */
4440 		readl(pm_addr);
4441 	} else {
4442 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4443 		writel(pm_val, pm_addr);
4444 		/* flush write */
4445 		readl(pm_addr);
4446 		if (udev->usb2_hw_lpm_besl_capable) {
4447 			spin_unlock_irqrestore(&xhci->lock, flags);
4448 			xhci_change_max_exit_latency(xhci, udev, 0);
4449 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4450 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4451 					   100, 10000);
4452 			return 0;
4453 		}
4454 	}
4455 
4456 	spin_unlock_irqrestore(&xhci->lock, flags);
4457 	return 0;
4458 }
4459 
4460 /* check if a usb2 port supports a given extened capability protocol
4461  * only USB2 ports extended protocol capability values are cached.
4462  * Return 1 if capability is supported
4463  */
4464 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4465 					   unsigned capability)
4466 {
4467 	u32 port_offset, port_count;
4468 	int i;
4469 
4470 	for (i = 0; i < xhci->num_ext_caps; i++) {
4471 		if (xhci->ext_caps[i] & capability) {
4472 			/* port offsets starts at 1 */
4473 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4474 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4475 			if (port >= port_offset &&
4476 			    port < port_offset + port_count)
4477 				return 1;
4478 		}
4479 	}
4480 	return 0;
4481 }
4482 
4483 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4484 {
4485 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4486 	int		portnum = udev->portnum - 1;
4487 
4488 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4489 		return 0;
4490 
4491 	/* we only support lpm for non-hub device connected to root hub yet */
4492 	if (!udev->parent || udev->parent->parent ||
4493 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4494 		return 0;
4495 
4496 	if (xhci->hw_lpm_support == 1 &&
4497 			xhci_check_usb2_port_capability(
4498 				xhci, portnum, XHCI_HLC)) {
4499 		udev->usb2_hw_lpm_capable = 1;
4500 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4501 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4502 		if (xhci_check_usb2_port_capability(xhci, portnum,
4503 					XHCI_BLC))
4504 			udev->usb2_hw_lpm_besl_capable = 1;
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4511 
4512 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4513 static unsigned long long xhci_service_interval_to_ns(
4514 		struct usb_endpoint_descriptor *desc)
4515 {
4516 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4517 }
4518 
4519 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4520 		enum usb3_link_state state)
4521 {
4522 	unsigned long long sel;
4523 	unsigned long long pel;
4524 	unsigned int max_sel_pel;
4525 	char *state_name;
4526 
4527 	switch (state) {
4528 	case USB3_LPM_U1:
4529 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4530 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4531 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4532 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4533 		state_name = "U1";
4534 		break;
4535 	case USB3_LPM_U2:
4536 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4537 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4538 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4539 		state_name = "U2";
4540 		break;
4541 	default:
4542 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4543 				__func__);
4544 		return USB3_LPM_DISABLED;
4545 	}
4546 
4547 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4548 		return USB3_LPM_DEVICE_INITIATED;
4549 
4550 	if (sel > max_sel_pel)
4551 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4552 				"due to long SEL %llu ms\n",
4553 				state_name, sel);
4554 	else
4555 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4556 				"due to long PEL %llu ms\n",
4557 				state_name, pel);
4558 	return USB3_LPM_DISABLED;
4559 }
4560 
4561 /* The U1 timeout should be the maximum of the following values:
4562  *  - For control endpoints, U1 system exit latency (SEL) * 3
4563  *  - For bulk endpoints, U1 SEL * 5
4564  *  - For interrupt endpoints:
4565  *    - Notification EPs, U1 SEL * 3
4566  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4567  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4568  */
4569 static unsigned long long xhci_calculate_intel_u1_timeout(
4570 		struct usb_device *udev,
4571 		struct usb_endpoint_descriptor *desc)
4572 {
4573 	unsigned long long timeout_ns;
4574 	int ep_type;
4575 	int intr_type;
4576 
4577 	ep_type = usb_endpoint_type(desc);
4578 	switch (ep_type) {
4579 	case USB_ENDPOINT_XFER_CONTROL:
4580 		timeout_ns = udev->u1_params.sel * 3;
4581 		break;
4582 	case USB_ENDPOINT_XFER_BULK:
4583 		timeout_ns = udev->u1_params.sel * 5;
4584 		break;
4585 	case USB_ENDPOINT_XFER_INT:
4586 		intr_type = usb_endpoint_interrupt_type(desc);
4587 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4588 			timeout_ns = udev->u1_params.sel * 3;
4589 			break;
4590 		}
4591 		/* Otherwise the calculation is the same as isoc eps */
4592 		fallthrough;
4593 	case USB_ENDPOINT_XFER_ISOC:
4594 		timeout_ns = xhci_service_interval_to_ns(desc);
4595 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4596 		if (timeout_ns < udev->u1_params.sel * 2)
4597 			timeout_ns = udev->u1_params.sel * 2;
4598 		break;
4599 	default:
4600 		return 0;
4601 	}
4602 
4603 	return timeout_ns;
4604 }
4605 
4606 /* Returns the hub-encoded U1 timeout value. */
4607 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4608 		struct usb_device *udev,
4609 		struct usb_endpoint_descriptor *desc)
4610 {
4611 	unsigned long long timeout_ns;
4612 
4613 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4614 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4615 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4616 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4617 			return USB3_LPM_DISABLED;
4618 		}
4619 	}
4620 
4621 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4622 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4623 	else
4624 		timeout_ns = udev->u1_params.sel;
4625 
4626 	/* The U1 timeout is encoded in 1us intervals.
4627 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4628 	 */
4629 	if (timeout_ns == USB3_LPM_DISABLED)
4630 		timeout_ns = 1;
4631 	else
4632 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4633 
4634 	/* If the necessary timeout value is bigger than what we can set in the
4635 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4636 	 */
4637 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4638 		return timeout_ns;
4639 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4640 			"due to long timeout %llu ms\n", timeout_ns);
4641 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4642 }
4643 
4644 /* The U2 timeout should be the maximum of:
4645  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4646  *  - largest bInterval of any active periodic endpoint (to avoid going
4647  *    into lower power link states between intervals).
4648  *  - the U2 Exit Latency of the device
4649  */
4650 static unsigned long long xhci_calculate_intel_u2_timeout(
4651 		struct usb_device *udev,
4652 		struct usb_endpoint_descriptor *desc)
4653 {
4654 	unsigned long long timeout_ns;
4655 	unsigned long long u2_del_ns;
4656 
4657 	timeout_ns = 10 * 1000 * 1000;
4658 
4659 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4660 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4661 		timeout_ns = xhci_service_interval_to_ns(desc);
4662 
4663 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4664 	if (u2_del_ns > timeout_ns)
4665 		timeout_ns = u2_del_ns;
4666 
4667 	return timeout_ns;
4668 }
4669 
4670 /* Returns the hub-encoded U2 timeout value. */
4671 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4672 		struct usb_device *udev,
4673 		struct usb_endpoint_descriptor *desc)
4674 {
4675 	unsigned long long timeout_ns;
4676 
4677 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4678 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4679 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4680 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4681 			return USB3_LPM_DISABLED;
4682 		}
4683 	}
4684 
4685 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4686 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4687 	else
4688 		timeout_ns = udev->u2_params.sel;
4689 
4690 	/* The U2 timeout is encoded in 256us intervals */
4691 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4692 	/* If the necessary timeout value is bigger than what we can set in the
4693 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4694 	 */
4695 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4696 		return timeout_ns;
4697 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4698 			"due to long timeout %llu ms\n", timeout_ns);
4699 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4700 }
4701 
4702 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4703 		struct usb_device *udev,
4704 		struct usb_endpoint_descriptor *desc,
4705 		enum usb3_link_state state,
4706 		u16 *timeout)
4707 {
4708 	if (state == USB3_LPM_U1)
4709 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4710 	else if (state == USB3_LPM_U2)
4711 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4712 
4713 	return USB3_LPM_DISABLED;
4714 }
4715 
4716 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4717 		struct usb_device *udev,
4718 		struct usb_endpoint_descriptor *desc,
4719 		enum usb3_link_state state,
4720 		u16 *timeout)
4721 {
4722 	u16 alt_timeout;
4723 
4724 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4725 		desc, state, timeout);
4726 
4727 	/* If we found we can't enable hub-initiated LPM, and
4728 	 * the U1 or U2 exit latency was too high to allow
4729 	 * device-initiated LPM as well, then we will disable LPM
4730 	 * for this device, so stop searching any further.
4731 	 */
4732 	if (alt_timeout == USB3_LPM_DISABLED) {
4733 		*timeout = alt_timeout;
4734 		return -E2BIG;
4735 	}
4736 	if (alt_timeout > *timeout)
4737 		*timeout = alt_timeout;
4738 	return 0;
4739 }
4740 
4741 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4742 		struct usb_device *udev,
4743 		struct usb_host_interface *alt,
4744 		enum usb3_link_state state,
4745 		u16 *timeout)
4746 {
4747 	int j;
4748 
4749 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4750 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4751 					&alt->endpoint[j].desc, state, timeout))
4752 			return -E2BIG;
4753 	}
4754 	return 0;
4755 }
4756 
4757 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4758 		struct usb_device *udev,
4759 		enum usb3_link_state state)
4760 {
4761 	struct usb_device *parent = udev->parent;
4762 	int tier = 1; /* roothub is tier1 */
4763 
4764 	while (parent) {
4765 		parent = parent->parent;
4766 		tier++;
4767 	}
4768 
4769 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4770 		goto fail;
4771 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4772 		goto fail;
4773 
4774 	return 0;
4775 fail:
4776 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4777 			tier);
4778 	return -E2BIG;
4779 }
4780 
4781 /* Returns the U1 or U2 timeout that should be enabled.
4782  * If the tier check or timeout setting functions return with a non-zero exit
4783  * code, that means the timeout value has been finalized and we shouldn't look
4784  * at any more endpoints.
4785  */
4786 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4787 			struct usb_device *udev, enum usb3_link_state state)
4788 {
4789 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4790 	struct usb_host_config *config;
4791 	char *state_name;
4792 	int i;
4793 	u16 timeout = USB3_LPM_DISABLED;
4794 
4795 	if (state == USB3_LPM_U1)
4796 		state_name = "U1";
4797 	else if (state == USB3_LPM_U2)
4798 		state_name = "U2";
4799 	else {
4800 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4801 				state);
4802 		return timeout;
4803 	}
4804 
4805 	/* Gather some information about the currently installed configuration
4806 	 * and alternate interface settings.
4807 	 */
4808 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4809 			state, &timeout))
4810 		return timeout;
4811 
4812 	config = udev->actconfig;
4813 	if (!config)
4814 		return timeout;
4815 
4816 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4817 		struct usb_driver *driver;
4818 		struct usb_interface *intf = config->interface[i];
4819 
4820 		if (!intf)
4821 			continue;
4822 
4823 		/* Check if any currently bound drivers want hub-initiated LPM
4824 		 * disabled.
4825 		 */
4826 		if (intf->dev.driver) {
4827 			driver = to_usb_driver(intf->dev.driver);
4828 			if (driver && driver->disable_hub_initiated_lpm) {
4829 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4830 					state_name, driver->name);
4831 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4832 								      state);
4833 				if (timeout == USB3_LPM_DISABLED)
4834 					return timeout;
4835 			}
4836 		}
4837 
4838 		/* Not sure how this could happen... */
4839 		if (!intf->cur_altsetting)
4840 			continue;
4841 
4842 		if (xhci_update_timeout_for_interface(xhci, udev,
4843 					intf->cur_altsetting,
4844 					state, &timeout))
4845 			return timeout;
4846 	}
4847 	return timeout;
4848 }
4849 
4850 static int calculate_max_exit_latency(struct usb_device *udev,
4851 		enum usb3_link_state state_changed,
4852 		u16 hub_encoded_timeout)
4853 {
4854 	unsigned long long u1_mel_us = 0;
4855 	unsigned long long u2_mel_us = 0;
4856 	unsigned long long mel_us = 0;
4857 	bool disabling_u1;
4858 	bool disabling_u2;
4859 	bool enabling_u1;
4860 	bool enabling_u2;
4861 
4862 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4863 			hub_encoded_timeout == USB3_LPM_DISABLED);
4864 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4865 			hub_encoded_timeout == USB3_LPM_DISABLED);
4866 
4867 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4868 			hub_encoded_timeout != USB3_LPM_DISABLED);
4869 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4870 			hub_encoded_timeout != USB3_LPM_DISABLED);
4871 
4872 	/* If U1 was already enabled and we're not disabling it,
4873 	 * or we're going to enable U1, account for the U1 max exit latency.
4874 	 */
4875 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4876 			enabling_u1)
4877 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4878 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4879 			enabling_u2)
4880 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4881 
4882 	mel_us = max(u1_mel_us, u2_mel_us);
4883 
4884 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4885 	if (mel_us > MAX_EXIT) {
4886 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4887 				"is too big.\n", mel_us);
4888 		return -E2BIG;
4889 	}
4890 	return mel_us;
4891 }
4892 
4893 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4894 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4895 			struct usb_device *udev, enum usb3_link_state state)
4896 {
4897 	struct xhci_hcd	*xhci;
4898 	struct xhci_port *port;
4899 	u16 hub_encoded_timeout;
4900 	int mel;
4901 	int ret;
4902 
4903 	xhci = hcd_to_xhci(hcd);
4904 	/* The LPM timeout values are pretty host-controller specific, so don't
4905 	 * enable hub-initiated timeouts unless the vendor has provided
4906 	 * information about their timeout algorithm.
4907 	 */
4908 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4909 			!xhci->devs[udev->slot_id])
4910 		return USB3_LPM_DISABLED;
4911 
4912 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4913 		return USB3_LPM_DISABLED;
4914 
4915 	/* If connected to root port then check port can handle lpm */
4916 	if (udev->parent && !udev->parent->parent) {
4917 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4918 		if (port->lpm_incapable)
4919 			return USB3_LPM_DISABLED;
4920 	}
4921 
4922 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4923 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4924 	if (mel < 0) {
4925 		/* Max Exit Latency is too big, disable LPM. */
4926 		hub_encoded_timeout = USB3_LPM_DISABLED;
4927 		mel = 0;
4928 	}
4929 
4930 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4931 	if (ret)
4932 		return ret;
4933 	return hub_encoded_timeout;
4934 }
4935 
4936 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4937 			struct usb_device *udev, enum usb3_link_state state)
4938 {
4939 	struct xhci_hcd	*xhci;
4940 	u16 mel;
4941 
4942 	xhci = hcd_to_xhci(hcd);
4943 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4944 			!xhci->devs[udev->slot_id])
4945 		return 0;
4946 
4947 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4948 	return xhci_change_max_exit_latency(xhci, udev, mel);
4949 }
4950 #else /* CONFIG_PM */
4951 
4952 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4953 				struct usb_device *udev, int enable)
4954 {
4955 	return 0;
4956 }
4957 
4958 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4959 {
4960 	return 0;
4961 }
4962 
4963 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4964 			struct usb_device *udev, enum usb3_link_state state)
4965 {
4966 	return USB3_LPM_DISABLED;
4967 }
4968 
4969 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4970 			struct usb_device *udev, enum usb3_link_state state)
4971 {
4972 	return 0;
4973 }
4974 #endif	/* CONFIG_PM */
4975 
4976 /*-------------------------------------------------------------------------*/
4977 
4978 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4979  * internal data structures for the device.
4980  */
4981 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4982 			struct usb_tt *tt, gfp_t mem_flags)
4983 {
4984 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4985 	struct xhci_virt_device *vdev;
4986 	struct xhci_command *config_cmd;
4987 	struct xhci_input_control_ctx *ctrl_ctx;
4988 	struct xhci_slot_ctx *slot_ctx;
4989 	unsigned long flags;
4990 	unsigned think_time;
4991 	int ret;
4992 
4993 	/* Ignore root hubs */
4994 	if (!hdev->parent)
4995 		return 0;
4996 
4997 	vdev = xhci->devs[hdev->slot_id];
4998 	if (!vdev) {
4999 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5000 		return -EINVAL;
5001 	}
5002 
5003 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5004 	if (!config_cmd)
5005 		return -ENOMEM;
5006 
5007 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5008 	if (!ctrl_ctx) {
5009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5010 				__func__);
5011 		xhci_free_command(xhci, config_cmd);
5012 		return -ENOMEM;
5013 	}
5014 
5015 	spin_lock_irqsave(&xhci->lock, flags);
5016 	if (hdev->speed == USB_SPEED_HIGH &&
5017 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5018 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5019 		xhci_free_command(xhci, config_cmd);
5020 		spin_unlock_irqrestore(&xhci->lock, flags);
5021 		return -ENOMEM;
5022 	}
5023 
5024 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5025 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5026 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5027 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5028 	/*
5029 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5030 	 * but it may be already set to 1 when setup an xHCI virtual
5031 	 * device, so clear it anyway.
5032 	 */
5033 	if (tt->multi)
5034 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5035 	else if (hdev->speed == USB_SPEED_FULL)
5036 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5037 
5038 	if (xhci->hci_version > 0x95) {
5039 		xhci_dbg(xhci, "xHCI version %x needs hub "
5040 				"TT think time and number of ports\n",
5041 				(unsigned int) xhci->hci_version);
5042 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5043 		/* Set TT think time - convert from ns to FS bit times.
5044 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5045 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5046 		 *
5047 		 * xHCI 1.0: this field shall be 0 if the device is not a
5048 		 * High-spped hub.
5049 		 */
5050 		think_time = tt->think_time;
5051 		if (think_time != 0)
5052 			think_time = (think_time / 666) - 1;
5053 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5054 			slot_ctx->tt_info |=
5055 				cpu_to_le32(TT_THINK_TIME(think_time));
5056 	} else {
5057 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5058 				"TT think time or number of ports\n",
5059 				(unsigned int) xhci->hci_version);
5060 	}
5061 	slot_ctx->dev_state = 0;
5062 	spin_unlock_irqrestore(&xhci->lock, flags);
5063 
5064 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5065 			(xhci->hci_version > 0x95) ?
5066 			"configure endpoint" : "evaluate context");
5067 
5068 	/* Issue and wait for the configure endpoint or
5069 	 * evaluate context command.
5070 	 */
5071 	if (xhci->hci_version > 0x95)
5072 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5073 				false, false);
5074 	else
5075 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5076 				true, false);
5077 
5078 	xhci_free_command(xhci, config_cmd);
5079 	return ret;
5080 }
5081 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5082 
5083 static int xhci_get_frame(struct usb_hcd *hcd)
5084 {
5085 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5086 	/* EHCI mods by the periodic size.  Why? */
5087 	return readl(&xhci->run_regs->microframe_index) >> 3;
5088 }
5089 
5090 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5091 {
5092 	xhci->usb2_rhub.hcd = hcd;
5093 	hcd->speed = HCD_USB2;
5094 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5095 	/*
5096 	 * USB 2.0 roothub under xHCI has an integrated TT,
5097 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5098 	 * companion controller.
5099 	 */
5100 	hcd->has_tt = 1;
5101 }
5102 
5103 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5104 {
5105 	unsigned int minor_rev;
5106 
5107 	/*
5108 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5109 	 * should return 0x31 for sbrn, or that the minor revision
5110 	 * is a two digit BCD containig minor and sub-minor numbers.
5111 	 * This was later clarified in xHCI 1.2.
5112 	 *
5113 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5114 	 * minor revision set to 0x1 instead of 0x10.
5115 	 */
5116 	if (xhci->usb3_rhub.min_rev == 0x1)
5117 		minor_rev = 1;
5118 	else
5119 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5120 
5121 	switch (minor_rev) {
5122 	case 2:
5123 		hcd->speed = HCD_USB32;
5124 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5125 		hcd->self.root_hub->rx_lanes = 2;
5126 		hcd->self.root_hub->tx_lanes = 2;
5127 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5128 		break;
5129 	case 1:
5130 		hcd->speed = HCD_USB31;
5131 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5132 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5133 		break;
5134 	}
5135 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5136 		  minor_rev, minor_rev ? "Enhanced " : "");
5137 
5138 	xhci->usb3_rhub.hcd = hcd;
5139 }
5140 
5141 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5142 {
5143 	struct xhci_hcd		*xhci;
5144 	/*
5145 	 * TODO: Check with DWC3 clients for sysdev according to
5146 	 * quirks
5147 	 */
5148 	struct device		*dev = hcd->self.sysdev;
5149 	int			retval;
5150 
5151 	/* Accept arbitrarily long scatter-gather lists */
5152 	hcd->self.sg_tablesize = ~0;
5153 
5154 	/* support to build packet from discontinuous buffers */
5155 	hcd->self.no_sg_constraint = 1;
5156 
5157 	/* XHCI controllers don't stop the ep queue on short packets :| */
5158 	hcd->self.no_stop_on_short = 1;
5159 
5160 	xhci = hcd_to_xhci(hcd);
5161 
5162 	if (!usb_hcd_is_primary_hcd(hcd)) {
5163 		xhci_hcd_init_usb3_data(xhci, hcd);
5164 		return 0;
5165 	}
5166 
5167 	mutex_init(&xhci->mutex);
5168 	xhci->main_hcd = hcd;
5169 	xhci->cap_regs = hcd->regs;
5170 	xhci->op_regs = hcd->regs +
5171 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5172 	xhci->run_regs = hcd->regs +
5173 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5174 	/* Cache read-only capability registers */
5175 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5176 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5177 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5178 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5179 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5180 	if (xhci->hci_version > 0x100)
5181 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5182 
5183 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5184 	if ((!xhci->max_interrupters) ||
5185 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5186 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5187 
5188 	xhci->quirks |= quirks;
5189 
5190 	if (get_quirks)
5191 		get_quirks(dev, xhci);
5192 
5193 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5194 	 * success event after a short transfer. This quirk will ignore such
5195 	 * spurious event.
5196 	 */
5197 	if (xhci->hci_version > 0x96)
5198 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5199 
5200 	/* Make sure the HC is halted. */
5201 	retval = xhci_halt(xhci);
5202 	if (retval)
5203 		return retval;
5204 
5205 	xhci_zero_64b_regs(xhci);
5206 
5207 	xhci_dbg(xhci, "Resetting HCD\n");
5208 	/* Reset the internal HC memory state and registers. */
5209 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5210 	if (retval)
5211 		return retval;
5212 	xhci_dbg(xhci, "Reset complete\n");
5213 
5214 	/*
5215 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5216 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5217 	 * address memory pointers actually. So, this driver clears the AC64
5218 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5219 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5220 	 */
5221 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5222 		xhci->hcc_params &= ~BIT(0);
5223 
5224 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5225 	 * if xHC supports 64-bit addressing */
5226 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5227 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5228 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5229 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5230 	} else {
5231 		/*
5232 		 * This is to avoid error in cases where a 32-bit USB
5233 		 * controller is used on a 64-bit capable system.
5234 		 */
5235 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5236 		if (retval)
5237 			return retval;
5238 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5239 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5240 	}
5241 
5242 	xhci_dbg(xhci, "Calling HCD init\n");
5243 	/* Initialize HCD and host controller data structures. */
5244 	retval = xhci_init(hcd);
5245 	if (retval)
5246 		return retval;
5247 	xhci_dbg(xhci, "Called HCD init\n");
5248 
5249 	if (xhci_hcd_is_usb3(hcd))
5250 		xhci_hcd_init_usb3_data(xhci, hcd);
5251 	else
5252 		xhci_hcd_init_usb2_data(xhci, hcd);
5253 
5254 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5255 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5256 
5257 	return 0;
5258 }
5259 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5260 
5261 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5262 		struct usb_host_endpoint *ep)
5263 {
5264 	struct xhci_hcd *xhci;
5265 	struct usb_device *udev;
5266 	unsigned int slot_id;
5267 	unsigned int ep_index;
5268 	unsigned long flags;
5269 
5270 	xhci = hcd_to_xhci(hcd);
5271 
5272 	spin_lock_irqsave(&xhci->lock, flags);
5273 	udev = (struct usb_device *)ep->hcpriv;
5274 	slot_id = udev->slot_id;
5275 	ep_index = xhci_get_endpoint_index(&ep->desc);
5276 
5277 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5278 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5279 	spin_unlock_irqrestore(&xhci->lock, flags);
5280 }
5281 
5282 static const struct hc_driver xhci_hc_driver = {
5283 	.description =		"xhci-hcd",
5284 	.product_desc =		"xHCI Host Controller",
5285 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5286 
5287 	/*
5288 	 * generic hardware linkage
5289 	 */
5290 	.irq =			xhci_irq,
5291 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5292 				HCD_BH,
5293 
5294 	/*
5295 	 * basic lifecycle operations
5296 	 */
5297 	.reset =		NULL, /* set in xhci_init_driver() */
5298 	.start =		xhci_run,
5299 	.stop =			xhci_stop,
5300 	.shutdown =		xhci_shutdown,
5301 
5302 	/*
5303 	 * managing i/o requests and associated device resources
5304 	 */
5305 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5306 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5307 	.urb_enqueue =		xhci_urb_enqueue,
5308 	.urb_dequeue =		xhci_urb_dequeue,
5309 	.alloc_dev =		xhci_alloc_dev,
5310 	.free_dev =		xhci_free_dev,
5311 	.alloc_streams =	xhci_alloc_streams,
5312 	.free_streams =		xhci_free_streams,
5313 	.add_endpoint =		xhci_add_endpoint,
5314 	.drop_endpoint =	xhci_drop_endpoint,
5315 	.endpoint_disable =	xhci_endpoint_disable,
5316 	.endpoint_reset =	xhci_endpoint_reset,
5317 	.check_bandwidth =	xhci_check_bandwidth,
5318 	.reset_bandwidth =	xhci_reset_bandwidth,
5319 	.address_device =	xhci_address_device,
5320 	.enable_device =	xhci_enable_device,
5321 	.update_hub_device =	xhci_update_hub_device,
5322 	.reset_device =		xhci_discover_or_reset_device,
5323 
5324 	/*
5325 	 * scheduling support
5326 	 */
5327 	.get_frame_number =	xhci_get_frame,
5328 
5329 	/*
5330 	 * root hub support
5331 	 */
5332 	.hub_control =		xhci_hub_control,
5333 	.hub_status_data =	xhci_hub_status_data,
5334 	.bus_suspend =		xhci_bus_suspend,
5335 	.bus_resume =		xhci_bus_resume,
5336 	.get_resuming_ports =	xhci_get_resuming_ports,
5337 
5338 	/*
5339 	 * call back when device connected and addressed
5340 	 */
5341 	.update_device =        xhci_update_device,
5342 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5343 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5344 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5345 	.find_raw_port_number =	xhci_find_raw_port_number,
5346 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5347 };
5348 
5349 void xhci_init_driver(struct hc_driver *drv,
5350 		      const struct xhci_driver_overrides *over)
5351 {
5352 	BUG_ON(!over);
5353 
5354 	/* Copy the generic table to drv then apply the overrides */
5355 	*drv = xhci_hc_driver;
5356 
5357 	if (over) {
5358 		drv->hcd_priv_size += over->extra_priv_size;
5359 		if (over->reset)
5360 			drv->reset = over->reset;
5361 		if (over->start)
5362 			drv->start = over->start;
5363 		if (over->add_endpoint)
5364 			drv->add_endpoint = over->add_endpoint;
5365 		if (over->drop_endpoint)
5366 			drv->drop_endpoint = over->drop_endpoint;
5367 		if (over->check_bandwidth)
5368 			drv->check_bandwidth = over->check_bandwidth;
5369 		if (over->reset_bandwidth)
5370 			drv->reset_bandwidth = over->reset_bandwidth;
5371 		if (over->update_hub_device)
5372 			drv->update_hub_device = over->update_hub_device;
5373 		if (over->hub_control)
5374 			drv->hub_control = over->hub_control;
5375 	}
5376 }
5377 EXPORT_SYMBOL_GPL(xhci_init_driver);
5378 
5379 MODULE_DESCRIPTION(DRIVER_DESC);
5380 MODULE_AUTHOR(DRIVER_AUTHOR);
5381 MODULE_LICENSE("GPL");
5382 
5383 static int __init xhci_hcd_init(void)
5384 {
5385 	/*
5386 	 * Check the compiler generated sizes of structures that must be laid
5387 	 * out in specific ways for hardware access.
5388 	 */
5389 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5390 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5391 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5392 	/* xhci_device_control has eight fields, and also
5393 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5394 	 */
5395 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5396 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5397 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5398 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5399 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5400 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5401 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5402 
5403 	if (usb_disabled())
5404 		return -ENODEV;
5405 
5406 	xhci_debugfs_create_root();
5407 	xhci_dbc_init();
5408 
5409 	return 0;
5410 }
5411 
5412 /*
5413  * If an init function is provided, an exit function must also be provided
5414  * to allow module unload.
5415  */
5416 static void __exit xhci_hcd_fini(void)
5417 {
5418 	xhci_debugfs_remove_root();
5419 	xhci_dbc_exit();
5420 }
5421 
5422 module_init(xhci_hcd_init);
5423 module_exit(xhci_hcd_fini);
5424