xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 48ca54e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 	if (ret)
203 		return ret;
204 
205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 
208 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 			 "Wait for controller to be ready for doorbell rings");
210 	/*
211 	 * xHCI cannot write to any doorbells or operational registers other
212 	 * than status until the "Controller Not Ready" flag is cleared.
213 	 */
214 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 	u32 intrs;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 		      ARRAY_SIZE(xhci->run_regs->ir_set));
272 
273 	for (i = 0; i < intrs; i++) {
274 		struct xhci_intr_reg __iomem *ir;
275 
276 		ir = &xhci->run_regs->ir_set[i];
277 		val = xhci_read_64(xhci, &ir->erst_base);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_base);
280 		val= xhci_read_64(xhci, &ir->erst_dequeue);
281 		if (upper_32_bits(val))
282 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 	}
284 
285 	/* Wait for the fault to appear. It will be cleared on reset */
286 	err = xhci_handshake(&xhci->op_regs->status,
287 			     STS_FATAL, STS_FATAL,
288 			     XHCI_MAX_HALT_USEC);
289 	if (!err)
290 		xhci_info(xhci, "Fault detected\n");
291 }
292 
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 	int ret;
300 	/*
301 	 * TODO:Check with MSI Soc for sysdev
302 	 */
303 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 	if (ret < 0) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"failed to allocate MSI entry");
309 		return ret;
310 	}
311 
312 	ret = request_irq(pdev->irq, xhci_msi_irq,
313 				0, "xhci_hcd", xhci_to_hcd(xhci));
314 	if (ret) {
315 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 				"disable MSI interrupt");
317 		pci_free_irq_vectors(pdev);
318 	}
319 
320 	return ret;
321 }
322 
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 	int i, ret;
329 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 
332 	/*
333 	 * calculate number of msi-x vectors supported.
334 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
336 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 	 *   Add additional 1 vector to ensure always available interrupt.
338 	 */
339 	xhci->msix_count = min(num_online_cpus() + 1,
340 				HCS_MAX_INTRS(xhci->hcs_params1));
341 
342 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 			PCI_IRQ_MSIX);
344 	if (ret < 0) {
345 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 				"Failed to enable MSI-X");
347 		return ret;
348 	}
349 
350 	for (i = 0; i < xhci->msix_count; i++) {
351 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 				"xhci_hcd", xhci_to_hcd(xhci));
353 		if (ret)
354 			goto disable_msix;
355 	}
356 
357 	hcd->msix_enabled = 1;
358 	return ret;
359 
360 disable_msix:
361 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 	while (--i >= 0)
363 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 	pci_free_irq_vectors(pdev);
365 	return ret;
366 }
367 
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 
374 	if (xhci->quirks & XHCI_PLAT)
375 		return;
376 
377 	/* return if using legacy interrupt */
378 	if (hcd->irq > 0)
379 		return;
380 
381 	if (hcd->msix_enabled) {
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 	} else {
387 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 	}
389 
390 	pci_free_irq_vectors(pdev);
391 	hcd->msix_enabled = 0;
392 }
393 
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 
398 	if (hcd->msix_enabled) {
399 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 		int i;
401 
402 		for (i = 0; i < xhci->msix_count; i++)
403 			synchronize_irq(pci_irq_vector(pdev, i));
404 	}
405 }
406 
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	struct pci_dev  *pdev;
411 	int ret;
412 
413 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
414 	if (xhci->quirks & XHCI_PLAT)
415 		return 0;
416 
417 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 	/*
419 	 * Some Fresco Logic host controllers advertise MSI, but fail to
420 	 * generate interrupts.  Don't even try to enable MSI.
421 	 */
422 	if (xhci->quirks & XHCI_BROKEN_MSI)
423 		goto legacy_irq;
424 
425 	/* unregister the legacy interrupt */
426 	if (hcd->irq)
427 		free_irq(hcd->irq, hcd);
428 	hcd->irq = 0;
429 
430 	ret = xhci_setup_msix(xhci);
431 	if (ret)
432 		/* fall back to msi*/
433 		ret = xhci_setup_msi(xhci);
434 
435 	if (!ret) {
436 		hcd->msi_enabled = 1;
437 		return 0;
438 	}
439 
440 	if (!pdev->irq) {
441 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 		return -EINVAL;
443 	}
444 
445  legacy_irq:
446 	if (!strlen(hcd->irq_descr))
447 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 			 hcd->driver->description, hcd->self.busnum);
449 
450 	/* fall back to legacy interrupt*/
451 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 			hcd->irq_descr, hcd);
453 	if (ret) {
454 		xhci_err(xhci, "request interrupt %d failed\n",
455 				pdev->irq);
456 		return ret;
457 	}
458 	hcd->irq = pdev->irq;
459 	return 0;
460 }
461 
462 #else
463 
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 	return 0;
467 }
468 
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472 
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476 
477 #endif
478 
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 	struct xhci_hcd *xhci;
482 	struct usb_hcd *hcd;
483 	struct xhci_hub *rhub;
484 	u32 temp;
485 	int i;
486 
487 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 	rhub = &xhci->usb3_rhub;
489 	hcd = rhub->hcd;
490 
491 	if (!hcd)
492 		return;
493 
494 	for (i = 0; i < rhub->num_ports; i++) {
495 		temp = readl(rhub->ports[i]->addr);
496 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497 			/*
498 			 * Compliance Mode Detected. Letting USB Core
499 			 * handle the Warm Reset
500 			 */
501 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502 					"Compliance mode detected->port %d",
503 					i + 1);
504 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 					"Attempting compliance mode recovery");
506 
507 			if (hcd->state == HC_STATE_SUSPENDED)
508 				usb_hcd_resume_root_hub(hcd);
509 
510 			usb_hcd_poll_rh_status(hcd);
511 		}
512 	}
513 
514 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515 		mod_timer(&xhci->comp_mode_recovery_timer,
516 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518 
519 /*
520  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521  * that causes ports behind that hardware to enter compliance mode sometimes.
522  * The quirk creates a timer that polls every 2 seconds the link state of
523  * each host controller's port and recovers it by issuing a Warm reset
524  * if Compliance mode is detected, otherwise the port will become "dead" (no
525  * device connections or disconnections will be detected anymore). Becasue no
526  * status event is generated when entering compliance mode (per xhci spec),
527  * this quirk is needed on systems that have the failing hardware installed.
528  */
529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531 	xhci->port_status_u0 = 0;
532 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533 		    0);
534 	xhci->comp_mode_recovery_timer.expires = jiffies +
535 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536 
537 	add_timer(&xhci->comp_mode_recovery_timer);
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539 			"Compliance mode recovery timer initialized");
540 }
541 
542 /*
543  * This function identifies the systems that have installed the SN65LVPE502CP
544  * USB3.0 re-driver and that need the Compliance Mode Quirk.
545  * Systems:
546  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547  */
548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550 	const char *dmi_product_name, *dmi_sys_vendor;
551 
552 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554 	if (!dmi_product_name || !dmi_sys_vendor)
555 		return false;
556 
557 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558 		return false;
559 
560 	if (strstr(dmi_product_name, "Z420") ||
561 			strstr(dmi_product_name, "Z620") ||
562 			strstr(dmi_product_name, "Z820") ||
563 			strstr(dmi_product_name, "Z1 Workstation"))
564 		return true;
565 
566 	return false;
567 }
568 
569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573 
574 
575 /*
576  * Initialize memory for HCD and xHC (one-time init).
577  *
578  * Program the PAGESIZE register, initialize the device context array, create
579  * device contexts (?), set up a command ring segment (or two?), create event
580  * ring (one for now).
581  */
582 static int xhci_init(struct usb_hcd *hcd)
583 {
584 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585 	int retval;
586 
587 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588 	spin_lock_init(&xhci->lock);
589 	if (xhci->hci_version == 0x95 && link_quirk) {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591 				"QUIRK: Not clearing Link TRB chain bits.");
592 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593 	} else {
594 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595 				"xHCI doesn't need link TRB QUIRK");
596 	}
597 	retval = xhci_mem_init(xhci, GFP_KERNEL);
598 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599 
600 	/* Initializing Compliance Mode Recovery Data If Needed */
601 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603 		compliance_mode_recovery_timer_init(xhci);
604 	}
605 
606 	return retval;
607 }
608 
609 /*-------------------------------------------------------------------------*/
610 
611 
612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614 	if (xhci_start(xhci)) {
615 		xhci_halt(xhci);
616 		return -ENODEV;
617 	}
618 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
619 
620 	if (xhci->quirks & XHCI_NEC_HOST)
621 		xhci_ring_cmd_db(xhci);
622 
623 	return 0;
624 }
625 
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
638 int xhci_run(struct usb_hcd *hcd)
639 {
640 	u32 temp;
641 	u64 temp_64;
642 	int ret;
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	/* Start the xHCI host controller running only after the USB 2.0 roothub
646 	 * is setup.
647 	 */
648 
649 	hcd->uses_new_polling = 1;
650 	if (!usb_hcd_is_primary_hcd(hcd))
651 		return xhci_run_finished(xhci);
652 
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 
655 	ret = xhci_try_enable_msi(hcd);
656 	if (ret)
657 		return ret;
658 
659 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 	temp_64 &= ~ERST_PTR_MASK;
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663 
664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 			"// Set the interrupt modulation register");
666 	temp = readl(&xhci->ir_set->irq_control);
667 	temp &= ~ER_IRQ_INTERVAL_MASK;
668 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 	writel(temp, &xhci->ir_set->irq_control);
670 
671 	/* Set the HCD state before we enable the irqs */
672 	temp = readl(&xhci->op_regs->command);
673 	temp |= (CMD_EIE);
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"// Enable interrupts, cmd = 0x%x.", temp);
676 	writel(temp, &xhci->op_regs->command);
677 
678 	temp = readl(&xhci->ir_set->irq_pending);
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683 
684 	if (xhci->quirks & XHCI_NEC_HOST) {
685 		struct xhci_command *command;
686 
687 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 		if (!command)
689 			return -ENOMEM;
690 
691 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 				TRB_TYPE(TRB_NEC_GET_FW));
693 		if (ret)
694 			xhci_free_command(xhci, command);
695 	}
696 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 			"Finished %s for main hcd", __func__);
698 
699 	xhci_create_dbc_dev(xhci);
700 
701 	xhci_debugfs_init(xhci);
702 
703 	if (xhci_has_one_roothub(xhci))
704 		return xhci_run_finished(xhci);
705 
706 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
707 
708 	return 0;
709 }
710 EXPORT_SYMBOL_GPL(xhci_run);
711 
712 /*
713  * Stop xHCI driver.
714  *
715  * This function is called by the USB core when the HC driver is removed.
716  * Its opposite is xhci_run().
717  *
718  * Disable device contexts, disable IRQs, and quiesce the HC.
719  * Reset the HC, finish any completed transactions, and cleanup memory.
720  */
721 static void xhci_stop(struct usb_hcd *hcd)
722 {
723 	u32 temp;
724 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
725 
726 	mutex_lock(&xhci->mutex);
727 
728 	/* Only halt host and free memory after both hcds are removed */
729 	if (!usb_hcd_is_primary_hcd(hcd)) {
730 		mutex_unlock(&xhci->mutex);
731 		return;
732 	}
733 
734 	xhci_remove_dbc_dev(xhci);
735 
736 	spin_lock_irq(&xhci->lock);
737 	xhci->xhc_state |= XHCI_STATE_HALTED;
738 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
739 	xhci_halt(xhci);
740 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
741 	spin_unlock_irq(&xhci->lock);
742 
743 	xhci_cleanup_msix(xhci);
744 
745 	/* Deleting Compliance Mode Recovery Timer */
746 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
747 			(!(xhci_all_ports_seen_u0(xhci)))) {
748 		del_timer_sync(&xhci->comp_mode_recovery_timer);
749 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
750 				"%s: compliance mode recovery timer deleted",
751 				__func__);
752 	}
753 
754 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
755 		usb_amd_dev_put();
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 			"// Disabling event ring interrupts");
759 	temp = readl(&xhci->op_regs->status);
760 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
761 	temp = readl(&xhci->ir_set->irq_pending);
762 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
763 
764 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
765 	xhci_mem_cleanup(xhci);
766 	xhci_debugfs_exit(xhci);
767 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 			"xhci_stop completed - status = %x",
769 			readl(&xhci->op_regs->status));
770 	mutex_unlock(&xhci->mutex);
771 }
772 
773 /*
774  * Shutdown HC (not bus-specific)
775  *
776  * This is called when the machine is rebooting or halting.  We assume that the
777  * machine will be powered off, and the HC's internal state will be reset.
778  * Don't bother to free memory.
779  *
780  * This will only ever be called with the main usb_hcd (the USB3 roothub).
781  */
782 void xhci_shutdown(struct usb_hcd *hcd)
783 {
784 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
785 
786 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
787 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
788 
789 	/* Don't poll the roothubs after shutdown. */
790 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
791 			__func__, hcd->self.busnum);
792 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
793 	del_timer_sync(&hcd->rh_timer);
794 
795 	if (xhci->shared_hcd) {
796 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
797 		del_timer_sync(&xhci->shared_hcd->rh_timer);
798 	}
799 
800 	spin_lock_irq(&xhci->lock);
801 	xhci_halt(xhci);
802 	/* Workaround for spurious wakeups at shutdown with HSW */
803 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
804 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805 	spin_unlock_irq(&xhci->lock);
806 
807 	xhci_cleanup_msix(xhci);
808 
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"xhci_shutdown completed - status = %x",
811 			readl(&xhci->op_regs->status));
812 }
813 EXPORT_SYMBOL_GPL(xhci_shutdown);
814 
815 #ifdef CONFIG_PM
816 static void xhci_save_registers(struct xhci_hcd *xhci)
817 {
818 	xhci->s3.command = readl(&xhci->op_regs->command);
819 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
820 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
821 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
822 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
823 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
824 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
825 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
826 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
827 }
828 
829 static void xhci_restore_registers(struct xhci_hcd *xhci)
830 {
831 	writel(xhci->s3.command, &xhci->op_regs->command);
832 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
833 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
834 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
835 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
836 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
837 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
838 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
839 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
840 }
841 
842 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
843 {
844 	u64	val_64;
845 
846 	/* step 2: initialize command ring buffer */
847 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
848 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
849 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
850 				      xhci->cmd_ring->dequeue) &
851 		 (u64) ~CMD_RING_RSVD_BITS) |
852 		xhci->cmd_ring->cycle_state;
853 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
854 			"// Setting command ring address to 0x%llx",
855 			(long unsigned long) val_64);
856 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
857 }
858 
859 /*
860  * The whole command ring must be cleared to zero when we suspend the host.
861  *
862  * The host doesn't save the command ring pointer in the suspend well, so we
863  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
864  * aligned, because of the reserved bits in the command ring dequeue pointer
865  * register.  Therefore, we can't just set the dequeue pointer back in the
866  * middle of the ring (TRBs are 16-byte aligned).
867  */
868 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
869 {
870 	struct xhci_ring *ring;
871 	struct xhci_segment *seg;
872 
873 	ring = xhci->cmd_ring;
874 	seg = ring->deq_seg;
875 	do {
876 		memset(seg->trbs, 0,
877 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
878 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
879 			cpu_to_le32(~TRB_CYCLE);
880 		seg = seg->next;
881 	} while (seg != ring->deq_seg);
882 
883 	/* Reset the software enqueue and dequeue pointers */
884 	ring->deq_seg = ring->first_seg;
885 	ring->dequeue = ring->first_seg->trbs;
886 	ring->enq_seg = ring->deq_seg;
887 	ring->enqueue = ring->dequeue;
888 
889 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
890 	/*
891 	 * Ring is now zeroed, so the HW should look for change of ownership
892 	 * when the cycle bit is set to 1.
893 	 */
894 	ring->cycle_state = 1;
895 
896 	/*
897 	 * Reset the hardware dequeue pointer.
898 	 * Yes, this will need to be re-written after resume, but we're paranoid
899 	 * and want to make sure the hardware doesn't access bogus memory
900 	 * because, say, the BIOS or an SMI started the host without changing
901 	 * the command ring pointers.
902 	 */
903 	xhci_set_cmd_ring_deq(xhci);
904 }
905 
906 /*
907  * Disable port wake bits if do_wakeup is not set.
908  *
909  * Also clear a possible internal port wake state left hanging for ports that
910  * detected termination but never successfully enumerated (trained to 0U).
911  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
912  * at enumeration clears this wake, force one here as well for unconnected ports
913  */
914 
915 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
916 				       struct xhci_hub *rhub,
917 				       bool do_wakeup)
918 {
919 	unsigned long flags;
920 	u32 t1, t2, portsc;
921 	int i;
922 
923 	spin_lock_irqsave(&xhci->lock, flags);
924 
925 	for (i = 0; i < rhub->num_ports; i++) {
926 		portsc = readl(rhub->ports[i]->addr);
927 		t1 = xhci_port_state_to_neutral(portsc);
928 		t2 = t1;
929 
930 		/* clear wake bits if do_wake is not set */
931 		if (!do_wakeup)
932 			t2 &= ~PORT_WAKE_BITS;
933 
934 		/* Don't touch csc bit if connected or connect change is set */
935 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
936 			t2 |= PORT_CSC;
937 
938 		if (t1 != t2) {
939 			writel(t2, rhub->ports[i]->addr);
940 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
941 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
942 		}
943 	}
944 	spin_unlock_irqrestore(&xhci->lock, flags);
945 }
946 
947 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
948 {
949 	struct xhci_port	**ports;
950 	int			port_index;
951 	u32			status;
952 	u32			portsc;
953 
954 	status = readl(&xhci->op_regs->status);
955 	if (status & STS_EINT)
956 		return true;
957 	/*
958 	 * Checking STS_EINT is not enough as there is a lag between a change
959 	 * bit being set and the Port Status Change Event that it generated
960 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
961 	 */
962 
963 	port_index = xhci->usb2_rhub.num_ports;
964 	ports = xhci->usb2_rhub.ports;
965 	while (port_index--) {
966 		portsc = readl(ports[port_index]->addr);
967 		if (portsc & PORT_CHANGE_MASK ||
968 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
969 			return true;
970 	}
971 	port_index = xhci->usb3_rhub.num_ports;
972 	ports = xhci->usb3_rhub.ports;
973 	while (port_index--) {
974 		portsc = readl(ports[port_index]->addr);
975 		if (portsc & PORT_CHANGE_MASK ||
976 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
977 			return true;
978 	}
979 	return false;
980 }
981 
982 /*
983  * Stop HC (not bus-specific)
984  *
985  * This is called when the machine transition into S3/S4 mode.
986  *
987  */
988 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
989 {
990 	int			rc = 0;
991 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
992 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
993 	u32			command;
994 	u32			res;
995 
996 	if (!hcd->state)
997 		return 0;
998 
999 	if (hcd->state != HC_STATE_SUSPENDED ||
1000 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1001 		return -EINVAL;
1002 
1003 	/* Clear root port wake on bits if wakeup not allowed. */
1004 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1005 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1006 
1007 	if (!HCD_HW_ACCESSIBLE(hcd))
1008 		return 0;
1009 
1010 	xhci_dbc_suspend(xhci);
1011 
1012 	/* Don't poll the roothubs on bus suspend. */
1013 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1014 		 __func__, hcd->self.busnum);
1015 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016 	del_timer_sync(&hcd->rh_timer);
1017 	if (xhci->shared_hcd) {
1018 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1019 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1020 	}
1021 
1022 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1023 		usleep_range(1000, 1500);
1024 
1025 	spin_lock_irq(&xhci->lock);
1026 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027 	if (xhci->shared_hcd)
1028 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029 	/* step 1: stop endpoint */
1030 	/* skipped assuming that port suspend has done */
1031 
1032 	/* step 2: clear Run/Stop bit */
1033 	command = readl(&xhci->op_regs->command);
1034 	command &= ~CMD_RUN;
1035 	writel(command, &xhci->op_regs->command);
1036 
1037 	/* Some chips from Fresco Logic need an extraordinary delay */
1038 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1039 
1040 	if (xhci_handshake(&xhci->op_regs->status,
1041 		      STS_HALT, STS_HALT, delay)) {
1042 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1043 		spin_unlock_irq(&xhci->lock);
1044 		return -ETIMEDOUT;
1045 	}
1046 	xhci_clear_command_ring(xhci);
1047 
1048 	/* step 3: save registers */
1049 	xhci_save_registers(xhci);
1050 
1051 	/* step 4: set CSS flag */
1052 	command = readl(&xhci->op_regs->command);
1053 	command |= CMD_CSS;
1054 	writel(command, &xhci->op_regs->command);
1055 	xhci->broken_suspend = 0;
1056 	if (xhci_handshake(&xhci->op_regs->status,
1057 				STS_SAVE, 0, 20 * 1000)) {
1058 	/*
1059 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1060 	 * SSS bit of USBSTS and when driver tries to poll
1061 	 * to see if the xHC clears BIT(8) which never happens
1062 	 * and driver assumes that controller is not responding
1063 	 * and times out. To workaround this, its good to check
1064 	 * if SRE and HCE bits are not set (as per xhci
1065 	 * Section 5.4.2) and bypass the timeout.
1066 	 */
1067 		res = readl(&xhci->op_regs->status);
1068 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1069 		    (((res & STS_SRE) == 0) &&
1070 				((res & STS_HCE) == 0))) {
1071 			xhci->broken_suspend = 1;
1072 		} else {
1073 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1074 			spin_unlock_irq(&xhci->lock);
1075 			return -ETIMEDOUT;
1076 		}
1077 	}
1078 	spin_unlock_irq(&xhci->lock);
1079 
1080 	/*
1081 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1082 	 * is about to be suspended.
1083 	 */
1084 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085 			(!(xhci_all_ports_seen_u0(xhci)))) {
1086 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1087 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088 				"%s: compliance mode recovery timer deleted",
1089 				__func__);
1090 	}
1091 
1092 	/* step 5: remove core well power */
1093 	/* synchronize irq when using MSI-X */
1094 	xhci_msix_sync_irqs(xhci);
1095 
1096 	return rc;
1097 }
1098 EXPORT_SYMBOL_GPL(xhci_suspend);
1099 
1100 /*
1101  * start xHC (not bus-specific)
1102  *
1103  * This is called when the machine transition from S3/S4 mode.
1104  *
1105  */
1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1107 {
1108 	u32			command, temp = 0;
1109 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1110 	int			retval = 0;
1111 	bool			comp_timer_running = false;
1112 	bool			pending_portevent = false;
1113 	bool			reinit_xhc = false;
1114 
1115 	if (!hcd->state)
1116 		return 0;
1117 
1118 	/* Wait a bit if either of the roothubs need to settle from the
1119 	 * transition into bus suspend.
1120 	 */
1121 
1122 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1123 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1124 		msleep(100);
1125 
1126 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1127 	if (xhci->shared_hcd)
1128 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1129 
1130 	spin_lock_irq(&xhci->lock);
1131 
1132 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1133 		reinit_xhc = true;
1134 
1135 	if (!reinit_xhc) {
1136 		/*
1137 		 * Some controllers might lose power during suspend, so wait
1138 		 * for controller not ready bit to clear, just as in xHC init.
1139 		 */
1140 		retval = xhci_handshake(&xhci->op_regs->status,
1141 					STS_CNR, 0, 10 * 1000 * 1000);
1142 		if (retval) {
1143 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1144 				  retval);
1145 			spin_unlock_irq(&xhci->lock);
1146 			return retval;
1147 		}
1148 		/* step 1: restore register */
1149 		xhci_restore_registers(xhci);
1150 		/* step 2: initialize command ring buffer */
1151 		xhci_set_cmd_ring_deq(xhci);
1152 		/* step 3: restore state and start state*/
1153 		/* step 3: set CRS flag */
1154 		command = readl(&xhci->op_regs->command);
1155 		command |= CMD_CRS;
1156 		writel(command, &xhci->op_regs->command);
1157 		/*
1158 		 * Some controllers take up to 55+ ms to complete the controller
1159 		 * restore so setting the timeout to 100ms. Xhci specification
1160 		 * doesn't mention any timeout value.
1161 		 */
1162 		if (xhci_handshake(&xhci->op_regs->status,
1163 			      STS_RESTORE, 0, 100 * 1000)) {
1164 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1165 			spin_unlock_irq(&xhci->lock);
1166 			return -ETIMEDOUT;
1167 		}
1168 	}
1169 
1170 	temp = readl(&xhci->op_regs->status);
1171 
1172 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1173 	if (temp & (STS_SRE | STS_HCE)) {
1174 		reinit_xhc = true;
1175 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1176 	}
1177 
1178 	if (reinit_xhc) {
1179 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1180 				!(xhci_all_ports_seen_u0(xhci))) {
1181 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1182 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1183 				"Compliance Mode Recovery Timer deleted!");
1184 		}
1185 
1186 		/* Let the USB core know _both_ roothubs lost power. */
1187 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1188 		if (xhci->shared_hcd)
1189 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1190 
1191 		xhci_dbg(xhci, "Stop HCD\n");
1192 		xhci_halt(xhci);
1193 		xhci_zero_64b_regs(xhci);
1194 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1195 		spin_unlock_irq(&xhci->lock);
1196 		if (retval)
1197 			return retval;
1198 		xhci_cleanup_msix(xhci);
1199 
1200 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1201 		temp = readl(&xhci->op_regs->status);
1202 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1203 		temp = readl(&xhci->ir_set->irq_pending);
1204 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1205 
1206 		xhci_dbg(xhci, "cleaning up memory\n");
1207 		xhci_mem_cleanup(xhci);
1208 		xhci_debugfs_exit(xhci);
1209 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1210 			    readl(&xhci->op_regs->status));
1211 
1212 		/* USB core calls the PCI reinit and start functions twice:
1213 		 * first with the primary HCD, and then with the secondary HCD.
1214 		 * If we don't do the same, the host will never be started.
1215 		 */
1216 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1217 		retval = xhci_init(hcd);
1218 		if (retval)
1219 			return retval;
1220 		comp_timer_running = true;
1221 
1222 		xhci_dbg(xhci, "Start the primary HCD\n");
1223 		retval = xhci_run(hcd);
1224 		if (!retval && xhci->shared_hcd) {
1225 			xhci_dbg(xhci, "Start the secondary HCD\n");
1226 			retval = xhci_run(xhci->shared_hcd);
1227 		}
1228 
1229 		hcd->state = HC_STATE_SUSPENDED;
1230 		if (xhci->shared_hcd)
1231 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1232 		goto done;
1233 	}
1234 
1235 	/* step 4: set Run/Stop bit */
1236 	command = readl(&xhci->op_regs->command);
1237 	command |= CMD_RUN;
1238 	writel(command, &xhci->op_regs->command);
1239 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1240 		  0, 250 * 1000);
1241 
1242 	/* step 5: walk topology and initialize portsc,
1243 	 * portpmsc and portli
1244 	 */
1245 	/* this is done in bus_resume */
1246 
1247 	/* step 6: restart each of the previously
1248 	 * Running endpoints by ringing their doorbells
1249 	 */
1250 
1251 	spin_unlock_irq(&xhci->lock);
1252 
1253 	xhci_dbc_resume(xhci);
1254 
1255  done:
1256 	if (retval == 0) {
1257 		/*
1258 		 * Resume roothubs only if there are pending events.
1259 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1260 		 * the first wake signalling failed, give it that chance.
1261 		 */
1262 		pending_portevent = xhci_pending_portevent(xhci);
1263 		if (!pending_portevent) {
1264 			msleep(120);
1265 			pending_portevent = xhci_pending_portevent(xhci);
1266 		}
1267 
1268 		if (pending_portevent) {
1269 			if (xhci->shared_hcd)
1270 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1271 			usb_hcd_resume_root_hub(hcd);
1272 		}
1273 	}
1274 	/*
1275 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1276 	 * be re-initialized Always after a system resume. Ports are subject
1277 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1278 	 * ports have entered previously to U0 before system's suspension.
1279 	 */
1280 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1281 		compliance_mode_recovery_timer_init(xhci);
1282 
1283 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1284 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1285 
1286 	/* Re-enable port polling. */
1287 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1288 		 __func__, hcd->self.busnum);
1289 	if (xhci->shared_hcd) {
1290 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1291 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1292 	}
1293 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1294 	usb_hcd_poll_rh_status(hcd);
1295 
1296 	return retval;
1297 }
1298 EXPORT_SYMBOL_GPL(xhci_resume);
1299 #endif	/* CONFIG_PM */
1300 
1301 /*-------------------------------------------------------------------------*/
1302 
1303 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1304 {
1305 	void *temp;
1306 	int ret = 0;
1307 	unsigned int buf_len;
1308 	enum dma_data_direction dir;
1309 
1310 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1311 	buf_len = urb->transfer_buffer_length;
1312 
1313 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1314 			    dev_to_node(hcd->self.sysdev));
1315 
1316 	if (usb_urb_dir_out(urb))
1317 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1318 				   temp, buf_len, 0);
1319 
1320 	urb->transfer_buffer = temp;
1321 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1322 					   urb->transfer_buffer,
1323 					   urb->transfer_buffer_length,
1324 					   dir);
1325 
1326 	if (dma_mapping_error(hcd->self.sysdev,
1327 			      urb->transfer_dma)) {
1328 		ret = -EAGAIN;
1329 		kfree(temp);
1330 	} else {
1331 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1332 	}
1333 
1334 	return ret;
1335 }
1336 
1337 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1338 					  struct urb *urb)
1339 {
1340 	bool ret = false;
1341 	unsigned int i;
1342 	unsigned int len = 0;
1343 	unsigned int trb_size;
1344 	unsigned int max_pkt;
1345 	struct scatterlist *sg;
1346 	struct scatterlist *tail_sg;
1347 
1348 	tail_sg = urb->sg;
1349 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1350 
1351 	if (!urb->num_sgs)
1352 		return ret;
1353 
1354 	if (urb->dev->speed >= USB_SPEED_SUPER)
1355 		trb_size = TRB_CACHE_SIZE_SS;
1356 	else
1357 		trb_size = TRB_CACHE_SIZE_HS;
1358 
1359 	if (urb->transfer_buffer_length != 0 &&
1360 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1361 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1362 			len = len + sg->length;
1363 			if (i > trb_size - 2) {
1364 				len = len - tail_sg->length;
1365 				if (len < max_pkt) {
1366 					ret = true;
1367 					break;
1368 				}
1369 
1370 				tail_sg = sg_next(tail_sg);
1371 			}
1372 		}
1373 	}
1374 	return ret;
1375 }
1376 
1377 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1378 {
1379 	unsigned int len;
1380 	unsigned int buf_len;
1381 	enum dma_data_direction dir;
1382 
1383 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1384 
1385 	buf_len = urb->transfer_buffer_length;
1386 
1387 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1388 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1389 		dma_unmap_single(hcd->self.sysdev,
1390 				 urb->transfer_dma,
1391 				 urb->transfer_buffer_length,
1392 				 dir);
1393 
1394 	if (usb_urb_dir_in(urb)) {
1395 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1396 					   urb->transfer_buffer,
1397 					   buf_len,
1398 					   0);
1399 		if (len != buf_len) {
1400 			xhci_dbg(hcd_to_xhci(hcd),
1401 				 "Copy from tmp buf to urb sg list failed\n");
1402 			urb->actual_length = len;
1403 		}
1404 	}
1405 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1406 	kfree(urb->transfer_buffer);
1407 	urb->transfer_buffer = NULL;
1408 }
1409 
1410 /*
1411  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1412  * we'll copy the actual data into the TRB address register. This is limited to
1413  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1414  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1415  */
1416 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1417 				gfp_t mem_flags)
1418 {
1419 	struct xhci_hcd *xhci;
1420 
1421 	xhci = hcd_to_xhci(hcd);
1422 
1423 	if (xhci_urb_suitable_for_idt(urb))
1424 		return 0;
1425 
1426 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1427 		if (xhci_urb_temp_buffer_required(hcd, urb))
1428 			return xhci_map_temp_buffer(hcd, urb);
1429 	}
1430 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1431 }
1432 
1433 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1434 {
1435 	struct xhci_hcd *xhci;
1436 	bool unmap_temp_buf = false;
1437 
1438 	xhci = hcd_to_xhci(hcd);
1439 
1440 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1441 		unmap_temp_buf = true;
1442 
1443 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1444 		xhci_unmap_temp_buf(hcd, urb);
1445 	else
1446 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1447 }
1448 
1449 /**
1450  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1451  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1452  * value to right shift 1 for the bitmask.
1453  *
1454  * Index  = (epnum * 2) + direction - 1,
1455  * where direction = 0 for OUT, 1 for IN.
1456  * For control endpoints, the IN index is used (OUT index is unused), so
1457  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1458  */
1459 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1460 {
1461 	unsigned int index;
1462 	if (usb_endpoint_xfer_control(desc))
1463 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1464 	else
1465 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1466 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1467 	return index;
1468 }
1469 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1470 
1471 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1472  * address from the XHCI endpoint index.
1473  */
1474 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1475 {
1476 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1477 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1478 	return direction | number;
1479 }
1480 
1481 /* Find the flag for this endpoint (for use in the control context).  Use the
1482  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1483  * bit 1, etc.
1484  */
1485 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1486 {
1487 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1488 }
1489 
1490 /* Compute the last valid endpoint context index.  Basically, this is the
1491  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1492  * we find the most significant bit set in the added contexts flags.
1493  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1494  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1495  */
1496 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1497 {
1498 	return fls(added_ctxs) - 1;
1499 }
1500 
1501 /* Returns 1 if the arguments are OK;
1502  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1503  */
1504 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1505 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1506 		const char *func) {
1507 	struct xhci_hcd	*xhci;
1508 	struct xhci_virt_device	*virt_dev;
1509 
1510 	if (!hcd || (check_ep && !ep) || !udev) {
1511 		pr_debug("xHCI %s called with invalid args\n", func);
1512 		return -EINVAL;
1513 	}
1514 	if (!udev->parent) {
1515 		pr_debug("xHCI %s called for root hub\n", func);
1516 		return 0;
1517 	}
1518 
1519 	xhci = hcd_to_xhci(hcd);
1520 	if (check_virt_dev) {
1521 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1522 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1523 					func);
1524 			return -EINVAL;
1525 		}
1526 
1527 		virt_dev = xhci->devs[udev->slot_id];
1528 		if (virt_dev->udev != udev) {
1529 			xhci_dbg(xhci, "xHCI %s called with udev and "
1530 					  "virt_dev does not match\n", func);
1531 			return -EINVAL;
1532 		}
1533 	}
1534 
1535 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1536 		return -ENODEV;
1537 
1538 	return 1;
1539 }
1540 
1541 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1542 		struct usb_device *udev, struct xhci_command *command,
1543 		bool ctx_change, bool must_succeed);
1544 
1545 /*
1546  * Full speed devices may have a max packet size greater than 8 bytes, but the
1547  * USB core doesn't know that until it reads the first 8 bytes of the
1548  * descriptor.  If the usb_device's max packet size changes after that point,
1549  * we need to issue an evaluate context command and wait on it.
1550  */
1551 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1552 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1553 {
1554 	struct xhci_container_ctx *out_ctx;
1555 	struct xhci_input_control_ctx *ctrl_ctx;
1556 	struct xhci_ep_ctx *ep_ctx;
1557 	struct xhci_command *command;
1558 	int max_packet_size;
1559 	int hw_max_packet_size;
1560 	int ret = 0;
1561 
1562 	out_ctx = xhci->devs[slot_id]->out_ctx;
1563 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1564 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1565 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1566 	if (hw_max_packet_size != max_packet_size) {
1567 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1568 				"Max Packet Size for ep 0 changed.");
1569 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1570 				"Max packet size in usb_device = %d",
1571 				max_packet_size);
1572 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1573 				"Max packet size in xHCI HW = %d",
1574 				hw_max_packet_size);
1575 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1576 				"Issuing evaluate context command.");
1577 
1578 		/* Set up the input context flags for the command */
1579 		/* FIXME: This won't work if a non-default control endpoint
1580 		 * changes max packet sizes.
1581 		 */
1582 
1583 		command = xhci_alloc_command(xhci, true, mem_flags);
1584 		if (!command)
1585 			return -ENOMEM;
1586 
1587 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1588 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1589 		if (!ctrl_ctx) {
1590 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1591 					__func__);
1592 			ret = -ENOMEM;
1593 			goto command_cleanup;
1594 		}
1595 		/* Set up the modified control endpoint 0 */
1596 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1597 				xhci->devs[slot_id]->out_ctx, ep_index);
1598 
1599 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1600 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1601 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1602 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1603 
1604 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1605 		ctrl_ctx->drop_flags = 0;
1606 
1607 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1608 				true, false);
1609 
1610 		/* Clean up the input context for later use by bandwidth
1611 		 * functions.
1612 		 */
1613 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1614 command_cleanup:
1615 		kfree(command->completion);
1616 		kfree(command);
1617 	}
1618 	return ret;
1619 }
1620 
1621 /*
1622  * non-error returns are a promise to giveback() the urb later
1623  * we drop ownership so next owner (or urb unlink) can get it
1624  */
1625 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1626 {
1627 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1628 	unsigned long flags;
1629 	int ret = 0;
1630 	unsigned int slot_id, ep_index;
1631 	unsigned int *ep_state;
1632 	struct urb_priv	*urb_priv;
1633 	int num_tds;
1634 
1635 	if (!urb)
1636 		return -EINVAL;
1637 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1638 					true, true, __func__);
1639 	if (ret <= 0)
1640 		return ret ? ret : -EINVAL;
1641 
1642 	slot_id = urb->dev->slot_id;
1643 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1644 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1645 
1646 	if (!HCD_HW_ACCESSIBLE(hcd))
1647 		return -ESHUTDOWN;
1648 
1649 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1650 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1651 		return -ENODEV;
1652 	}
1653 
1654 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1655 		num_tds = urb->number_of_packets;
1656 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1657 	    urb->transfer_buffer_length > 0 &&
1658 	    urb->transfer_flags & URB_ZERO_PACKET &&
1659 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1660 		num_tds = 2;
1661 	else
1662 		num_tds = 1;
1663 
1664 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1665 	if (!urb_priv)
1666 		return -ENOMEM;
1667 
1668 	urb_priv->num_tds = num_tds;
1669 	urb_priv->num_tds_done = 0;
1670 	urb->hcpriv = urb_priv;
1671 
1672 	trace_xhci_urb_enqueue(urb);
1673 
1674 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1675 		/* Check to see if the max packet size for the default control
1676 		 * endpoint changed during FS device enumeration
1677 		 */
1678 		if (urb->dev->speed == USB_SPEED_FULL) {
1679 			ret = xhci_check_maxpacket(xhci, slot_id,
1680 					ep_index, urb, mem_flags);
1681 			if (ret < 0) {
1682 				xhci_urb_free_priv(urb_priv);
1683 				urb->hcpriv = NULL;
1684 				return ret;
1685 			}
1686 		}
1687 	}
1688 
1689 	spin_lock_irqsave(&xhci->lock, flags);
1690 
1691 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1692 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1693 			 urb->ep->desc.bEndpointAddress, urb);
1694 		ret = -ESHUTDOWN;
1695 		goto free_priv;
1696 	}
1697 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1698 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1699 			  *ep_state);
1700 		ret = -EINVAL;
1701 		goto free_priv;
1702 	}
1703 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1704 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1705 		ret = -EINVAL;
1706 		goto free_priv;
1707 	}
1708 
1709 	switch (usb_endpoint_type(&urb->ep->desc)) {
1710 
1711 	case USB_ENDPOINT_XFER_CONTROL:
1712 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1713 					 slot_id, ep_index);
1714 		break;
1715 	case USB_ENDPOINT_XFER_BULK:
1716 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1717 					 slot_id, ep_index);
1718 		break;
1719 	case USB_ENDPOINT_XFER_INT:
1720 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1721 				slot_id, ep_index);
1722 		break;
1723 	case USB_ENDPOINT_XFER_ISOC:
1724 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1725 				slot_id, ep_index);
1726 	}
1727 
1728 	if (ret) {
1729 free_priv:
1730 		xhci_urb_free_priv(urb_priv);
1731 		urb->hcpriv = NULL;
1732 	}
1733 	spin_unlock_irqrestore(&xhci->lock, flags);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1739  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1740  * should pick up where it left off in the TD, unless a Set Transfer Ring
1741  * Dequeue Pointer is issued.
1742  *
1743  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1744  * the ring.  Since the ring is a contiguous structure, they can't be physically
1745  * removed.  Instead, there are two options:
1746  *
1747  *  1) If the HC is in the middle of processing the URB to be canceled, we
1748  *     simply move the ring's dequeue pointer past those TRBs using the Set
1749  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1750  *     when drivers timeout on the last submitted URB and attempt to cancel.
1751  *
1752  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1753  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1754  *     HC will need to invalidate the any TRBs it has cached after the stop
1755  *     endpoint command, as noted in the xHCI 0.95 errata.
1756  *
1757  *  3) The TD may have completed by the time the Stop Endpoint Command
1758  *     completes, so software needs to handle that case too.
1759  *
1760  * This function should protect against the TD enqueueing code ringing the
1761  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1762  * It also needs to account for multiple cancellations on happening at the same
1763  * time for the same endpoint.
1764  *
1765  * Note that this function can be called in any context, or so says
1766  * usb_hcd_unlink_urb()
1767  */
1768 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1769 {
1770 	unsigned long flags;
1771 	int ret, i;
1772 	u32 temp;
1773 	struct xhci_hcd *xhci;
1774 	struct urb_priv	*urb_priv;
1775 	struct xhci_td *td;
1776 	unsigned int ep_index;
1777 	struct xhci_ring *ep_ring;
1778 	struct xhci_virt_ep *ep;
1779 	struct xhci_command *command;
1780 	struct xhci_virt_device *vdev;
1781 
1782 	xhci = hcd_to_xhci(hcd);
1783 	spin_lock_irqsave(&xhci->lock, flags);
1784 
1785 	trace_xhci_urb_dequeue(urb);
1786 
1787 	/* Make sure the URB hasn't completed or been unlinked already */
1788 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1789 	if (ret)
1790 		goto done;
1791 
1792 	/* give back URB now if we can't queue it for cancel */
1793 	vdev = xhci->devs[urb->dev->slot_id];
1794 	urb_priv = urb->hcpriv;
1795 	if (!vdev || !urb_priv)
1796 		goto err_giveback;
1797 
1798 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1799 	ep = &vdev->eps[ep_index];
1800 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1801 	if (!ep || !ep_ring)
1802 		goto err_giveback;
1803 
1804 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1805 	temp = readl(&xhci->op_regs->status);
1806 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1807 		xhci_hc_died(xhci);
1808 		goto done;
1809 	}
1810 
1811 	/*
1812 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1813 	 * make sure none of the ring related pointers in this URB private data
1814 	 * are touched, such as td_list, otherwise we overwrite freed data
1815 	 */
1816 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1817 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1818 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1819 			td = &urb_priv->td[i];
1820 			if (!list_empty(&td->cancelled_td_list))
1821 				list_del_init(&td->cancelled_td_list);
1822 		}
1823 		goto err_giveback;
1824 	}
1825 
1826 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1827 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1828 				"HC halted, freeing TD manually.");
1829 		for (i = urb_priv->num_tds_done;
1830 		     i < urb_priv->num_tds;
1831 		     i++) {
1832 			td = &urb_priv->td[i];
1833 			if (!list_empty(&td->td_list))
1834 				list_del_init(&td->td_list);
1835 			if (!list_empty(&td->cancelled_td_list))
1836 				list_del_init(&td->cancelled_td_list);
1837 		}
1838 		goto err_giveback;
1839 	}
1840 
1841 	i = urb_priv->num_tds_done;
1842 	if (i < urb_priv->num_tds)
1843 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1844 				"Cancel URB %p, dev %s, ep 0x%x, "
1845 				"starting at offset 0x%llx",
1846 				urb, urb->dev->devpath,
1847 				urb->ep->desc.bEndpointAddress,
1848 				(unsigned long long) xhci_trb_virt_to_dma(
1849 					urb_priv->td[i].start_seg,
1850 					urb_priv->td[i].first_trb));
1851 
1852 	for (; i < urb_priv->num_tds; i++) {
1853 		td = &urb_priv->td[i];
1854 		/* TD can already be on cancelled list if ep halted on it */
1855 		if (list_empty(&td->cancelled_td_list)) {
1856 			td->cancel_status = TD_DIRTY;
1857 			list_add_tail(&td->cancelled_td_list,
1858 				      &ep->cancelled_td_list);
1859 		}
1860 	}
1861 
1862 	/* Queue a stop endpoint command, but only if this is
1863 	 * the first cancellation to be handled.
1864 	 */
1865 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1866 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1867 		if (!command) {
1868 			ret = -ENOMEM;
1869 			goto done;
1870 		}
1871 		ep->ep_state |= EP_STOP_CMD_PENDING;
1872 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1873 					 ep_index, 0);
1874 		xhci_ring_cmd_db(xhci);
1875 	}
1876 done:
1877 	spin_unlock_irqrestore(&xhci->lock, flags);
1878 	return ret;
1879 
1880 err_giveback:
1881 	if (urb_priv)
1882 		xhci_urb_free_priv(urb_priv);
1883 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1884 	spin_unlock_irqrestore(&xhci->lock, flags);
1885 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1886 	return ret;
1887 }
1888 
1889 /* Drop an endpoint from a new bandwidth configuration for this device.
1890  * Only one call to this function is allowed per endpoint before
1891  * check_bandwidth() or reset_bandwidth() must be called.
1892  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1893  * add the endpoint to the schedule with possibly new parameters denoted by a
1894  * different endpoint descriptor in usb_host_endpoint.
1895  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1896  * not allowed.
1897  *
1898  * The USB core will not allow URBs to be queued to an endpoint that is being
1899  * disabled, so there's no need for mutual exclusion to protect
1900  * the xhci->devs[slot_id] structure.
1901  */
1902 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1903 		       struct usb_host_endpoint *ep)
1904 {
1905 	struct xhci_hcd *xhci;
1906 	struct xhci_container_ctx *in_ctx, *out_ctx;
1907 	struct xhci_input_control_ctx *ctrl_ctx;
1908 	unsigned int ep_index;
1909 	struct xhci_ep_ctx *ep_ctx;
1910 	u32 drop_flag;
1911 	u32 new_add_flags, new_drop_flags;
1912 	int ret;
1913 
1914 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1915 	if (ret <= 0)
1916 		return ret;
1917 	xhci = hcd_to_xhci(hcd);
1918 	if (xhci->xhc_state & XHCI_STATE_DYING)
1919 		return -ENODEV;
1920 
1921 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1922 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1923 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1924 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1925 				__func__, drop_flag);
1926 		return 0;
1927 	}
1928 
1929 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1930 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1931 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1932 	if (!ctrl_ctx) {
1933 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1934 				__func__);
1935 		return 0;
1936 	}
1937 
1938 	ep_index = xhci_get_endpoint_index(&ep->desc);
1939 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1940 	/* If the HC already knows the endpoint is disabled,
1941 	 * or the HCD has noted it is disabled, ignore this request
1942 	 */
1943 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1944 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1945 	    xhci_get_endpoint_flag(&ep->desc)) {
1946 		/* Do not warn when called after a usb_device_reset */
1947 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1948 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1949 				  __func__, ep);
1950 		return 0;
1951 	}
1952 
1953 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1954 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1955 
1956 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1957 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1958 
1959 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1960 
1961 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1962 
1963 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1964 			(unsigned int) ep->desc.bEndpointAddress,
1965 			udev->slot_id,
1966 			(unsigned int) new_drop_flags,
1967 			(unsigned int) new_add_flags);
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1971 
1972 /* Add an endpoint to a new possible bandwidth configuration for this device.
1973  * Only one call to this function is allowed per endpoint before
1974  * check_bandwidth() or reset_bandwidth() must be called.
1975  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1976  * add the endpoint to the schedule with possibly new parameters denoted by a
1977  * different endpoint descriptor in usb_host_endpoint.
1978  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1979  * not allowed.
1980  *
1981  * The USB core will not allow URBs to be queued to an endpoint until the
1982  * configuration or alt setting is installed in the device, so there's no need
1983  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1984  */
1985 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1986 		      struct usb_host_endpoint *ep)
1987 {
1988 	struct xhci_hcd *xhci;
1989 	struct xhci_container_ctx *in_ctx;
1990 	unsigned int ep_index;
1991 	struct xhci_input_control_ctx *ctrl_ctx;
1992 	struct xhci_ep_ctx *ep_ctx;
1993 	u32 added_ctxs;
1994 	u32 new_add_flags, new_drop_flags;
1995 	struct xhci_virt_device *virt_dev;
1996 	int ret = 0;
1997 
1998 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1999 	if (ret <= 0) {
2000 		/* So we won't queue a reset ep command for a root hub */
2001 		ep->hcpriv = NULL;
2002 		return ret;
2003 	}
2004 	xhci = hcd_to_xhci(hcd);
2005 	if (xhci->xhc_state & XHCI_STATE_DYING)
2006 		return -ENODEV;
2007 
2008 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2009 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2010 		/* FIXME when we have to issue an evaluate endpoint command to
2011 		 * deal with ep0 max packet size changing once we get the
2012 		 * descriptors
2013 		 */
2014 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2015 				__func__, added_ctxs);
2016 		return 0;
2017 	}
2018 
2019 	virt_dev = xhci->devs[udev->slot_id];
2020 	in_ctx = virt_dev->in_ctx;
2021 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2022 	if (!ctrl_ctx) {
2023 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2024 				__func__);
2025 		return 0;
2026 	}
2027 
2028 	ep_index = xhci_get_endpoint_index(&ep->desc);
2029 	/* If this endpoint is already in use, and the upper layers are trying
2030 	 * to add it again without dropping it, reject the addition.
2031 	 */
2032 	if (virt_dev->eps[ep_index].ring &&
2033 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2034 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2035 				"without dropping it.\n",
2036 				(unsigned int) ep->desc.bEndpointAddress);
2037 		return -EINVAL;
2038 	}
2039 
2040 	/* If the HCD has already noted the endpoint is enabled,
2041 	 * ignore this request.
2042 	 */
2043 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2044 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2045 				__func__, ep);
2046 		return 0;
2047 	}
2048 
2049 	/*
2050 	 * Configuration and alternate setting changes must be done in
2051 	 * process context, not interrupt context (or so documenation
2052 	 * for usb_set_interface() and usb_set_configuration() claim).
2053 	 */
2054 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2055 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2056 				__func__, ep->desc.bEndpointAddress);
2057 		return -ENOMEM;
2058 	}
2059 
2060 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2061 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2062 
2063 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2064 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2065 	 * this re-adds a new state for the endpoint from the new endpoint
2066 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2067 	 * drop flags alone.
2068 	 */
2069 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2070 
2071 	/* Store the usb_device pointer for later use */
2072 	ep->hcpriv = udev;
2073 
2074 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2075 	trace_xhci_add_endpoint(ep_ctx);
2076 
2077 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2078 			(unsigned int) ep->desc.bEndpointAddress,
2079 			udev->slot_id,
2080 			(unsigned int) new_drop_flags,
2081 			(unsigned int) new_add_flags);
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2085 
2086 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2087 {
2088 	struct xhci_input_control_ctx *ctrl_ctx;
2089 	struct xhci_ep_ctx *ep_ctx;
2090 	struct xhci_slot_ctx *slot_ctx;
2091 	int i;
2092 
2093 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2094 	if (!ctrl_ctx) {
2095 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2096 				__func__);
2097 		return;
2098 	}
2099 
2100 	/* When a device's add flag and drop flag are zero, any subsequent
2101 	 * configure endpoint command will leave that endpoint's state
2102 	 * untouched.  Make sure we don't leave any old state in the input
2103 	 * endpoint contexts.
2104 	 */
2105 	ctrl_ctx->drop_flags = 0;
2106 	ctrl_ctx->add_flags = 0;
2107 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2108 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2109 	/* Endpoint 0 is always valid */
2110 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2111 	for (i = 1; i < 31; i++) {
2112 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2113 		ep_ctx->ep_info = 0;
2114 		ep_ctx->ep_info2 = 0;
2115 		ep_ctx->deq = 0;
2116 		ep_ctx->tx_info = 0;
2117 	}
2118 }
2119 
2120 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2121 		struct usb_device *udev, u32 *cmd_status)
2122 {
2123 	int ret;
2124 
2125 	switch (*cmd_status) {
2126 	case COMP_COMMAND_ABORTED:
2127 	case COMP_COMMAND_RING_STOPPED:
2128 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2129 		ret = -ETIME;
2130 		break;
2131 	case COMP_RESOURCE_ERROR:
2132 		dev_warn(&udev->dev,
2133 			 "Not enough host controller resources for new device state.\n");
2134 		ret = -ENOMEM;
2135 		/* FIXME: can we allocate more resources for the HC? */
2136 		break;
2137 	case COMP_BANDWIDTH_ERROR:
2138 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2139 		dev_warn(&udev->dev,
2140 			 "Not enough bandwidth for new device state.\n");
2141 		ret = -ENOSPC;
2142 		/* FIXME: can we go back to the old state? */
2143 		break;
2144 	case COMP_TRB_ERROR:
2145 		/* the HCD set up something wrong */
2146 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2147 				"add flag = 1, "
2148 				"and endpoint is not disabled.\n");
2149 		ret = -EINVAL;
2150 		break;
2151 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2152 		dev_warn(&udev->dev,
2153 			 "ERROR: Incompatible device for endpoint configure command.\n");
2154 		ret = -ENODEV;
2155 		break;
2156 	case COMP_SUCCESS:
2157 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2158 				"Successful Endpoint Configure command");
2159 		ret = 0;
2160 		break;
2161 	default:
2162 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2163 				*cmd_status);
2164 		ret = -EINVAL;
2165 		break;
2166 	}
2167 	return ret;
2168 }
2169 
2170 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2171 		struct usb_device *udev, u32 *cmd_status)
2172 {
2173 	int ret;
2174 
2175 	switch (*cmd_status) {
2176 	case COMP_COMMAND_ABORTED:
2177 	case COMP_COMMAND_RING_STOPPED:
2178 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2179 		ret = -ETIME;
2180 		break;
2181 	case COMP_PARAMETER_ERROR:
2182 		dev_warn(&udev->dev,
2183 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2184 		ret = -EINVAL;
2185 		break;
2186 	case COMP_SLOT_NOT_ENABLED_ERROR:
2187 		dev_warn(&udev->dev,
2188 			"WARN: slot not enabled for evaluate context command.\n");
2189 		ret = -EINVAL;
2190 		break;
2191 	case COMP_CONTEXT_STATE_ERROR:
2192 		dev_warn(&udev->dev,
2193 			"WARN: invalid context state for evaluate context command.\n");
2194 		ret = -EINVAL;
2195 		break;
2196 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2197 		dev_warn(&udev->dev,
2198 			"ERROR: Incompatible device for evaluate context command.\n");
2199 		ret = -ENODEV;
2200 		break;
2201 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2202 		/* Max Exit Latency too large error */
2203 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2204 		ret = -EINVAL;
2205 		break;
2206 	case COMP_SUCCESS:
2207 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2208 				"Successful evaluate context command");
2209 		ret = 0;
2210 		break;
2211 	default:
2212 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2213 			*cmd_status);
2214 		ret = -EINVAL;
2215 		break;
2216 	}
2217 	return ret;
2218 }
2219 
2220 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2221 		struct xhci_input_control_ctx *ctrl_ctx)
2222 {
2223 	u32 valid_add_flags;
2224 	u32 valid_drop_flags;
2225 
2226 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2227 	 * (bit 1).  The default control endpoint is added during the Address
2228 	 * Device command and is never removed until the slot is disabled.
2229 	 */
2230 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2231 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2232 
2233 	/* Use hweight32 to count the number of ones in the add flags, or
2234 	 * number of endpoints added.  Don't count endpoints that are changed
2235 	 * (both added and dropped).
2236 	 */
2237 	return hweight32(valid_add_flags) -
2238 		hweight32(valid_add_flags & valid_drop_flags);
2239 }
2240 
2241 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2242 		struct xhci_input_control_ctx *ctrl_ctx)
2243 {
2244 	u32 valid_add_flags;
2245 	u32 valid_drop_flags;
2246 
2247 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2248 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2249 
2250 	return hweight32(valid_drop_flags) -
2251 		hweight32(valid_add_flags & valid_drop_flags);
2252 }
2253 
2254 /*
2255  * We need to reserve the new number of endpoints before the configure endpoint
2256  * command completes.  We can't subtract the dropped endpoints from the number
2257  * of active endpoints until the command completes because we can oversubscribe
2258  * the host in this case:
2259  *
2260  *  - the first configure endpoint command drops more endpoints than it adds
2261  *  - a second configure endpoint command that adds more endpoints is queued
2262  *  - the first configure endpoint command fails, so the config is unchanged
2263  *  - the second command may succeed, even though there isn't enough resources
2264  *
2265  * Must be called with xhci->lock held.
2266  */
2267 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2268 		struct xhci_input_control_ctx *ctrl_ctx)
2269 {
2270 	u32 added_eps;
2271 
2272 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2274 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275 				"Not enough ep ctxs: "
2276 				"%u active, need to add %u, limit is %u.",
2277 				xhci->num_active_eps, added_eps,
2278 				xhci->limit_active_eps);
2279 		return -ENOMEM;
2280 	}
2281 	xhci->num_active_eps += added_eps;
2282 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2283 			"Adding %u ep ctxs, %u now active.", added_eps,
2284 			xhci->num_active_eps);
2285 	return 0;
2286 }
2287 
2288 /*
2289  * The configure endpoint was failed by the xHC for some other reason, so we
2290  * need to revert the resources that failed configuration would have used.
2291  *
2292  * Must be called with xhci->lock held.
2293  */
2294 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2295 		struct xhci_input_control_ctx *ctrl_ctx)
2296 {
2297 	u32 num_failed_eps;
2298 
2299 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2300 	xhci->num_active_eps -= num_failed_eps;
2301 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2302 			"Removing %u failed ep ctxs, %u now active.",
2303 			num_failed_eps,
2304 			xhci->num_active_eps);
2305 }
2306 
2307 /*
2308  * Now that the command has completed, clean up the active endpoint count by
2309  * subtracting out the endpoints that were dropped (but not changed).
2310  *
2311  * Must be called with xhci->lock held.
2312  */
2313 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2314 		struct xhci_input_control_ctx *ctrl_ctx)
2315 {
2316 	u32 num_dropped_eps;
2317 
2318 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2319 	xhci->num_active_eps -= num_dropped_eps;
2320 	if (num_dropped_eps)
2321 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2322 				"Removing %u dropped ep ctxs, %u now active.",
2323 				num_dropped_eps,
2324 				xhci->num_active_eps);
2325 }
2326 
2327 static unsigned int xhci_get_block_size(struct usb_device *udev)
2328 {
2329 	switch (udev->speed) {
2330 	case USB_SPEED_LOW:
2331 	case USB_SPEED_FULL:
2332 		return FS_BLOCK;
2333 	case USB_SPEED_HIGH:
2334 		return HS_BLOCK;
2335 	case USB_SPEED_SUPER:
2336 	case USB_SPEED_SUPER_PLUS:
2337 		return SS_BLOCK;
2338 	case USB_SPEED_UNKNOWN:
2339 	case USB_SPEED_WIRELESS:
2340 	default:
2341 		/* Should never happen */
2342 		return 1;
2343 	}
2344 }
2345 
2346 static unsigned int
2347 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2348 {
2349 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2350 		return LS_OVERHEAD;
2351 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2352 		return FS_OVERHEAD;
2353 	return HS_OVERHEAD;
2354 }
2355 
2356 /* If we are changing a LS/FS device under a HS hub,
2357  * make sure (if we are activating a new TT) that the HS bus has enough
2358  * bandwidth for this new TT.
2359  */
2360 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2361 		struct xhci_virt_device *virt_dev,
2362 		int old_active_eps)
2363 {
2364 	struct xhci_interval_bw_table *bw_table;
2365 	struct xhci_tt_bw_info *tt_info;
2366 
2367 	/* Find the bandwidth table for the root port this TT is attached to. */
2368 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2369 	tt_info = virt_dev->tt_info;
2370 	/* If this TT already had active endpoints, the bandwidth for this TT
2371 	 * has already been added.  Removing all periodic endpoints (and thus
2372 	 * making the TT enactive) will only decrease the bandwidth used.
2373 	 */
2374 	if (old_active_eps)
2375 		return 0;
2376 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2377 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2378 			return -ENOMEM;
2379 		return 0;
2380 	}
2381 	/* Not sure why we would have no new active endpoints...
2382 	 *
2383 	 * Maybe because of an Evaluate Context change for a hub update or a
2384 	 * control endpoint 0 max packet size change?
2385 	 * FIXME: skip the bandwidth calculation in that case.
2386 	 */
2387 	return 0;
2388 }
2389 
2390 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2391 		struct xhci_virt_device *virt_dev)
2392 {
2393 	unsigned int bw_reserved;
2394 
2395 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2396 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2397 		return -ENOMEM;
2398 
2399 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2400 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2401 		return -ENOMEM;
2402 
2403 	return 0;
2404 }
2405 
2406 /*
2407  * This algorithm is a very conservative estimate of the worst-case scheduling
2408  * scenario for any one interval.  The hardware dynamically schedules the
2409  * packets, so we can't tell which microframe could be the limiting factor in
2410  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2411  *
2412  * Obviously, we can't solve an NP complete problem to find the minimum worst
2413  * case scenario.  Instead, we come up with an estimate that is no less than
2414  * the worst case bandwidth used for any one microframe, but may be an
2415  * over-estimate.
2416  *
2417  * We walk the requirements for each endpoint by interval, starting with the
2418  * smallest interval, and place packets in the schedule where there is only one
2419  * possible way to schedule packets for that interval.  In order to simplify
2420  * this algorithm, we record the largest max packet size for each interval, and
2421  * assume all packets will be that size.
2422  *
2423  * For interval 0, we obviously must schedule all packets for each interval.
2424  * The bandwidth for interval 0 is just the amount of data to be transmitted
2425  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2426  * the number of packets).
2427  *
2428  * For interval 1, we have two possible microframes to schedule those packets
2429  * in.  For this algorithm, if we can schedule the same number of packets for
2430  * each possible scheduling opportunity (each microframe), we will do so.  The
2431  * remaining number of packets will be saved to be transmitted in the gaps in
2432  * the next interval's scheduling sequence.
2433  *
2434  * As we move those remaining packets to be scheduled with interval 2 packets,
2435  * we have to double the number of remaining packets to transmit.  This is
2436  * because the intervals are actually powers of 2, and we would be transmitting
2437  * the previous interval's packets twice in this interval.  We also have to be
2438  * sure that when we look at the largest max packet size for this interval, we
2439  * also look at the largest max packet size for the remaining packets and take
2440  * the greater of the two.
2441  *
2442  * The algorithm continues to evenly distribute packets in each scheduling
2443  * opportunity, and push the remaining packets out, until we get to the last
2444  * interval.  Then those packets and their associated overhead are just added
2445  * to the bandwidth used.
2446  */
2447 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2448 		struct xhci_virt_device *virt_dev,
2449 		int old_active_eps)
2450 {
2451 	unsigned int bw_reserved;
2452 	unsigned int max_bandwidth;
2453 	unsigned int bw_used;
2454 	unsigned int block_size;
2455 	struct xhci_interval_bw_table *bw_table;
2456 	unsigned int packet_size = 0;
2457 	unsigned int overhead = 0;
2458 	unsigned int packets_transmitted = 0;
2459 	unsigned int packets_remaining = 0;
2460 	unsigned int i;
2461 
2462 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2463 		return xhci_check_ss_bw(xhci, virt_dev);
2464 
2465 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2466 		max_bandwidth = HS_BW_LIMIT;
2467 		/* Convert percent of bus BW reserved to blocks reserved */
2468 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2469 	} else {
2470 		max_bandwidth = FS_BW_LIMIT;
2471 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2472 	}
2473 
2474 	bw_table = virt_dev->bw_table;
2475 	/* We need to translate the max packet size and max ESIT payloads into
2476 	 * the units the hardware uses.
2477 	 */
2478 	block_size = xhci_get_block_size(virt_dev->udev);
2479 
2480 	/* If we are manipulating a LS/FS device under a HS hub, double check
2481 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2482 	 */
2483 	if (virt_dev->tt_info) {
2484 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2485 				"Recalculating BW for rootport %u",
2486 				virt_dev->real_port);
2487 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2488 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2489 					"newly activated TT.\n");
2490 			return -ENOMEM;
2491 		}
2492 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2493 				"Recalculating BW for TT slot %u port %u",
2494 				virt_dev->tt_info->slot_id,
2495 				virt_dev->tt_info->ttport);
2496 	} else {
2497 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2498 				"Recalculating BW for rootport %u",
2499 				virt_dev->real_port);
2500 	}
2501 
2502 	/* Add in how much bandwidth will be used for interval zero, or the
2503 	 * rounded max ESIT payload + number of packets * largest overhead.
2504 	 */
2505 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2506 		bw_table->interval_bw[0].num_packets *
2507 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2508 
2509 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2510 		unsigned int bw_added;
2511 		unsigned int largest_mps;
2512 		unsigned int interval_overhead;
2513 
2514 		/*
2515 		 * How many packets could we transmit in this interval?
2516 		 * If packets didn't fit in the previous interval, we will need
2517 		 * to transmit that many packets twice within this interval.
2518 		 */
2519 		packets_remaining = 2 * packets_remaining +
2520 			bw_table->interval_bw[i].num_packets;
2521 
2522 		/* Find the largest max packet size of this or the previous
2523 		 * interval.
2524 		 */
2525 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2526 			largest_mps = 0;
2527 		else {
2528 			struct xhci_virt_ep *virt_ep;
2529 			struct list_head *ep_entry;
2530 
2531 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2532 			virt_ep = list_entry(ep_entry,
2533 					struct xhci_virt_ep, bw_endpoint_list);
2534 			/* Convert to blocks, rounding up */
2535 			largest_mps = DIV_ROUND_UP(
2536 					virt_ep->bw_info.max_packet_size,
2537 					block_size);
2538 		}
2539 		if (largest_mps > packet_size)
2540 			packet_size = largest_mps;
2541 
2542 		/* Use the larger overhead of this or the previous interval. */
2543 		interval_overhead = xhci_get_largest_overhead(
2544 				&bw_table->interval_bw[i]);
2545 		if (interval_overhead > overhead)
2546 			overhead = interval_overhead;
2547 
2548 		/* How many packets can we evenly distribute across
2549 		 * (1 << (i + 1)) possible scheduling opportunities?
2550 		 */
2551 		packets_transmitted = packets_remaining >> (i + 1);
2552 
2553 		/* Add in the bandwidth used for those scheduled packets */
2554 		bw_added = packets_transmitted * (overhead + packet_size);
2555 
2556 		/* How many packets do we have remaining to transmit? */
2557 		packets_remaining = packets_remaining % (1 << (i + 1));
2558 
2559 		/* What largest max packet size should those packets have? */
2560 		/* If we've transmitted all packets, don't carry over the
2561 		 * largest packet size.
2562 		 */
2563 		if (packets_remaining == 0) {
2564 			packet_size = 0;
2565 			overhead = 0;
2566 		} else if (packets_transmitted > 0) {
2567 			/* Otherwise if we do have remaining packets, and we've
2568 			 * scheduled some packets in this interval, take the
2569 			 * largest max packet size from endpoints with this
2570 			 * interval.
2571 			 */
2572 			packet_size = largest_mps;
2573 			overhead = interval_overhead;
2574 		}
2575 		/* Otherwise carry over packet_size and overhead from the last
2576 		 * time we had a remainder.
2577 		 */
2578 		bw_used += bw_added;
2579 		if (bw_used > max_bandwidth) {
2580 			xhci_warn(xhci, "Not enough bandwidth. "
2581 					"Proposed: %u, Max: %u\n",
2582 				bw_used, max_bandwidth);
2583 			return -ENOMEM;
2584 		}
2585 	}
2586 	/*
2587 	 * Ok, we know we have some packets left over after even-handedly
2588 	 * scheduling interval 15.  We don't know which microframes they will
2589 	 * fit into, so we over-schedule and say they will be scheduled every
2590 	 * microframe.
2591 	 */
2592 	if (packets_remaining > 0)
2593 		bw_used += overhead + packet_size;
2594 
2595 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2596 		unsigned int port_index = virt_dev->real_port - 1;
2597 
2598 		/* OK, we're manipulating a HS device attached to a
2599 		 * root port bandwidth domain.  Include the number of active TTs
2600 		 * in the bandwidth used.
2601 		 */
2602 		bw_used += TT_HS_OVERHEAD *
2603 			xhci->rh_bw[port_index].num_active_tts;
2604 	}
2605 
2606 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2607 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2608 		"Available: %u " "percent",
2609 		bw_used, max_bandwidth, bw_reserved,
2610 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2611 		max_bandwidth);
2612 
2613 	bw_used += bw_reserved;
2614 	if (bw_used > max_bandwidth) {
2615 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2616 				bw_used, max_bandwidth);
2617 		return -ENOMEM;
2618 	}
2619 
2620 	bw_table->bw_used = bw_used;
2621 	return 0;
2622 }
2623 
2624 static bool xhci_is_async_ep(unsigned int ep_type)
2625 {
2626 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2627 					ep_type != ISOC_IN_EP &&
2628 					ep_type != INT_IN_EP);
2629 }
2630 
2631 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2632 {
2633 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2634 }
2635 
2636 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2637 {
2638 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2639 
2640 	if (ep_bw->ep_interval == 0)
2641 		return SS_OVERHEAD_BURST +
2642 			(ep_bw->mult * ep_bw->num_packets *
2643 					(SS_OVERHEAD + mps));
2644 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2645 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2646 				1 << ep_bw->ep_interval);
2647 
2648 }
2649 
2650 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2651 		struct xhci_bw_info *ep_bw,
2652 		struct xhci_interval_bw_table *bw_table,
2653 		struct usb_device *udev,
2654 		struct xhci_virt_ep *virt_ep,
2655 		struct xhci_tt_bw_info *tt_info)
2656 {
2657 	struct xhci_interval_bw	*interval_bw;
2658 	int normalized_interval;
2659 
2660 	if (xhci_is_async_ep(ep_bw->type))
2661 		return;
2662 
2663 	if (udev->speed >= USB_SPEED_SUPER) {
2664 		if (xhci_is_sync_in_ep(ep_bw->type))
2665 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2666 				xhci_get_ss_bw_consumed(ep_bw);
2667 		else
2668 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2669 				xhci_get_ss_bw_consumed(ep_bw);
2670 		return;
2671 	}
2672 
2673 	/* SuperSpeed endpoints never get added to intervals in the table, so
2674 	 * this check is only valid for HS/FS/LS devices.
2675 	 */
2676 	if (list_empty(&virt_ep->bw_endpoint_list))
2677 		return;
2678 	/* For LS/FS devices, we need to translate the interval expressed in
2679 	 * microframes to frames.
2680 	 */
2681 	if (udev->speed == USB_SPEED_HIGH)
2682 		normalized_interval = ep_bw->ep_interval;
2683 	else
2684 		normalized_interval = ep_bw->ep_interval - 3;
2685 
2686 	if (normalized_interval == 0)
2687 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2688 	interval_bw = &bw_table->interval_bw[normalized_interval];
2689 	interval_bw->num_packets -= ep_bw->num_packets;
2690 	switch (udev->speed) {
2691 	case USB_SPEED_LOW:
2692 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2693 		break;
2694 	case USB_SPEED_FULL:
2695 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2696 		break;
2697 	case USB_SPEED_HIGH:
2698 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2699 		break;
2700 	case USB_SPEED_SUPER:
2701 	case USB_SPEED_SUPER_PLUS:
2702 	case USB_SPEED_UNKNOWN:
2703 	case USB_SPEED_WIRELESS:
2704 		/* Should never happen because only LS/FS/HS endpoints will get
2705 		 * added to the endpoint list.
2706 		 */
2707 		return;
2708 	}
2709 	if (tt_info)
2710 		tt_info->active_eps -= 1;
2711 	list_del_init(&virt_ep->bw_endpoint_list);
2712 }
2713 
2714 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2715 		struct xhci_bw_info *ep_bw,
2716 		struct xhci_interval_bw_table *bw_table,
2717 		struct usb_device *udev,
2718 		struct xhci_virt_ep *virt_ep,
2719 		struct xhci_tt_bw_info *tt_info)
2720 {
2721 	struct xhci_interval_bw	*interval_bw;
2722 	struct xhci_virt_ep *smaller_ep;
2723 	int normalized_interval;
2724 
2725 	if (xhci_is_async_ep(ep_bw->type))
2726 		return;
2727 
2728 	if (udev->speed == USB_SPEED_SUPER) {
2729 		if (xhci_is_sync_in_ep(ep_bw->type))
2730 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2731 				xhci_get_ss_bw_consumed(ep_bw);
2732 		else
2733 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2734 				xhci_get_ss_bw_consumed(ep_bw);
2735 		return;
2736 	}
2737 
2738 	/* For LS/FS devices, we need to translate the interval expressed in
2739 	 * microframes to frames.
2740 	 */
2741 	if (udev->speed == USB_SPEED_HIGH)
2742 		normalized_interval = ep_bw->ep_interval;
2743 	else
2744 		normalized_interval = ep_bw->ep_interval - 3;
2745 
2746 	if (normalized_interval == 0)
2747 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2748 	interval_bw = &bw_table->interval_bw[normalized_interval];
2749 	interval_bw->num_packets += ep_bw->num_packets;
2750 	switch (udev->speed) {
2751 	case USB_SPEED_LOW:
2752 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2753 		break;
2754 	case USB_SPEED_FULL:
2755 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2756 		break;
2757 	case USB_SPEED_HIGH:
2758 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2759 		break;
2760 	case USB_SPEED_SUPER:
2761 	case USB_SPEED_SUPER_PLUS:
2762 	case USB_SPEED_UNKNOWN:
2763 	case USB_SPEED_WIRELESS:
2764 		/* Should never happen because only LS/FS/HS endpoints will get
2765 		 * added to the endpoint list.
2766 		 */
2767 		return;
2768 	}
2769 
2770 	if (tt_info)
2771 		tt_info->active_eps += 1;
2772 	/* Insert the endpoint into the list, largest max packet size first. */
2773 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2774 			bw_endpoint_list) {
2775 		if (ep_bw->max_packet_size >=
2776 				smaller_ep->bw_info.max_packet_size) {
2777 			/* Add the new ep before the smaller endpoint */
2778 			list_add_tail(&virt_ep->bw_endpoint_list,
2779 					&smaller_ep->bw_endpoint_list);
2780 			return;
2781 		}
2782 	}
2783 	/* Add the new endpoint at the end of the list. */
2784 	list_add_tail(&virt_ep->bw_endpoint_list,
2785 			&interval_bw->endpoints);
2786 }
2787 
2788 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2789 		struct xhci_virt_device *virt_dev,
2790 		int old_active_eps)
2791 {
2792 	struct xhci_root_port_bw_info *rh_bw_info;
2793 	if (!virt_dev->tt_info)
2794 		return;
2795 
2796 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2797 	if (old_active_eps == 0 &&
2798 				virt_dev->tt_info->active_eps != 0) {
2799 		rh_bw_info->num_active_tts += 1;
2800 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2801 	} else if (old_active_eps != 0 &&
2802 				virt_dev->tt_info->active_eps == 0) {
2803 		rh_bw_info->num_active_tts -= 1;
2804 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2805 	}
2806 }
2807 
2808 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2809 		struct xhci_virt_device *virt_dev,
2810 		struct xhci_container_ctx *in_ctx)
2811 {
2812 	struct xhci_bw_info ep_bw_info[31];
2813 	int i;
2814 	struct xhci_input_control_ctx *ctrl_ctx;
2815 	int old_active_eps = 0;
2816 
2817 	if (virt_dev->tt_info)
2818 		old_active_eps = virt_dev->tt_info->active_eps;
2819 
2820 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2821 	if (!ctrl_ctx) {
2822 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2823 				__func__);
2824 		return -ENOMEM;
2825 	}
2826 
2827 	for (i = 0; i < 31; i++) {
2828 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2829 			continue;
2830 
2831 		/* Make a copy of the BW info in case we need to revert this */
2832 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2833 				sizeof(ep_bw_info[i]));
2834 		/* Drop the endpoint from the interval table if the endpoint is
2835 		 * being dropped or changed.
2836 		 */
2837 		if (EP_IS_DROPPED(ctrl_ctx, i))
2838 			xhci_drop_ep_from_interval_table(xhci,
2839 					&virt_dev->eps[i].bw_info,
2840 					virt_dev->bw_table,
2841 					virt_dev->udev,
2842 					&virt_dev->eps[i],
2843 					virt_dev->tt_info);
2844 	}
2845 	/* Overwrite the information stored in the endpoints' bw_info */
2846 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2847 	for (i = 0; i < 31; i++) {
2848 		/* Add any changed or added endpoints to the interval table */
2849 		if (EP_IS_ADDED(ctrl_ctx, i))
2850 			xhci_add_ep_to_interval_table(xhci,
2851 					&virt_dev->eps[i].bw_info,
2852 					virt_dev->bw_table,
2853 					virt_dev->udev,
2854 					&virt_dev->eps[i],
2855 					virt_dev->tt_info);
2856 	}
2857 
2858 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2859 		/* Ok, this fits in the bandwidth we have.
2860 		 * Update the number of active TTs.
2861 		 */
2862 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2863 		return 0;
2864 	}
2865 
2866 	/* We don't have enough bandwidth for this, revert the stored info. */
2867 	for (i = 0; i < 31; i++) {
2868 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2869 			continue;
2870 
2871 		/* Drop the new copies of any added or changed endpoints from
2872 		 * the interval table.
2873 		 */
2874 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2875 			xhci_drop_ep_from_interval_table(xhci,
2876 					&virt_dev->eps[i].bw_info,
2877 					virt_dev->bw_table,
2878 					virt_dev->udev,
2879 					&virt_dev->eps[i],
2880 					virt_dev->tt_info);
2881 		}
2882 		/* Revert the endpoint back to its old information */
2883 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2884 				sizeof(ep_bw_info[i]));
2885 		/* Add any changed or dropped endpoints back into the table */
2886 		if (EP_IS_DROPPED(ctrl_ctx, i))
2887 			xhci_add_ep_to_interval_table(xhci,
2888 					&virt_dev->eps[i].bw_info,
2889 					virt_dev->bw_table,
2890 					virt_dev->udev,
2891 					&virt_dev->eps[i],
2892 					virt_dev->tt_info);
2893 	}
2894 	return -ENOMEM;
2895 }
2896 
2897 
2898 /* Issue a configure endpoint command or evaluate context command
2899  * and wait for it to finish.
2900  */
2901 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2902 		struct usb_device *udev,
2903 		struct xhci_command *command,
2904 		bool ctx_change, bool must_succeed)
2905 {
2906 	int ret;
2907 	unsigned long flags;
2908 	struct xhci_input_control_ctx *ctrl_ctx;
2909 	struct xhci_virt_device *virt_dev;
2910 	struct xhci_slot_ctx *slot_ctx;
2911 
2912 	if (!command)
2913 		return -EINVAL;
2914 
2915 	spin_lock_irqsave(&xhci->lock, flags);
2916 
2917 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2918 		spin_unlock_irqrestore(&xhci->lock, flags);
2919 		return -ESHUTDOWN;
2920 	}
2921 
2922 	virt_dev = xhci->devs[udev->slot_id];
2923 
2924 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2925 	if (!ctrl_ctx) {
2926 		spin_unlock_irqrestore(&xhci->lock, flags);
2927 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2928 				__func__);
2929 		return -ENOMEM;
2930 	}
2931 
2932 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2933 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2934 		spin_unlock_irqrestore(&xhci->lock, flags);
2935 		xhci_warn(xhci, "Not enough host resources, "
2936 				"active endpoint contexts = %u\n",
2937 				xhci->num_active_eps);
2938 		return -ENOMEM;
2939 	}
2940 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2941 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2942 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2943 			xhci_free_host_resources(xhci, ctrl_ctx);
2944 		spin_unlock_irqrestore(&xhci->lock, flags);
2945 		xhci_warn(xhci, "Not enough bandwidth\n");
2946 		return -ENOMEM;
2947 	}
2948 
2949 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2950 
2951 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2952 	trace_xhci_configure_endpoint(slot_ctx);
2953 
2954 	if (!ctx_change)
2955 		ret = xhci_queue_configure_endpoint(xhci, command,
2956 				command->in_ctx->dma,
2957 				udev->slot_id, must_succeed);
2958 	else
2959 		ret = xhci_queue_evaluate_context(xhci, command,
2960 				command->in_ctx->dma,
2961 				udev->slot_id, must_succeed);
2962 	if (ret < 0) {
2963 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2964 			xhci_free_host_resources(xhci, ctrl_ctx);
2965 		spin_unlock_irqrestore(&xhci->lock, flags);
2966 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2967 				"FIXME allocate a new ring segment");
2968 		return -ENOMEM;
2969 	}
2970 	xhci_ring_cmd_db(xhci);
2971 	spin_unlock_irqrestore(&xhci->lock, flags);
2972 
2973 	/* Wait for the configure endpoint command to complete */
2974 	wait_for_completion(command->completion);
2975 
2976 	if (!ctx_change)
2977 		ret = xhci_configure_endpoint_result(xhci, udev,
2978 						     &command->status);
2979 	else
2980 		ret = xhci_evaluate_context_result(xhci, udev,
2981 						   &command->status);
2982 
2983 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2984 		spin_lock_irqsave(&xhci->lock, flags);
2985 		/* If the command failed, remove the reserved resources.
2986 		 * Otherwise, clean up the estimate to include dropped eps.
2987 		 */
2988 		if (ret)
2989 			xhci_free_host_resources(xhci, ctrl_ctx);
2990 		else
2991 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2992 		spin_unlock_irqrestore(&xhci->lock, flags);
2993 	}
2994 	return ret;
2995 }
2996 
2997 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2998 	struct xhci_virt_device *vdev, int i)
2999 {
3000 	struct xhci_virt_ep *ep = &vdev->eps[i];
3001 
3002 	if (ep->ep_state & EP_HAS_STREAMS) {
3003 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3004 				xhci_get_endpoint_address(i));
3005 		xhci_free_stream_info(xhci, ep->stream_info);
3006 		ep->stream_info = NULL;
3007 		ep->ep_state &= ~EP_HAS_STREAMS;
3008 	}
3009 }
3010 
3011 /* Called after one or more calls to xhci_add_endpoint() or
3012  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3013  * to call xhci_reset_bandwidth().
3014  *
3015  * Since we are in the middle of changing either configuration or
3016  * installing a new alt setting, the USB core won't allow URBs to be
3017  * enqueued for any endpoint on the old config or interface.  Nothing
3018  * else should be touching the xhci->devs[slot_id] structure, so we
3019  * don't need to take the xhci->lock for manipulating that.
3020  */
3021 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3022 {
3023 	int i;
3024 	int ret = 0;
3025 	struct xhci_hcd *xhci;
3026 	struct xhci_virt_device	*virt_dev;
3027 	struct xhci_input_control_ctx *ctrl_ctx;
3028 	struct xhci_slot_ctx *slot_ctx;
3029 	struct xhci_command *command;
3030 
3031 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3032 	if (ret <= 0)
3033 		return ret;
3034 	xhci = hcd_to_xhci(hcd);
3035 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3036 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3037 		return -ENODEV;
3038 
3039 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3040 	virt_dev = xhci->devs[udev->slot_id];
3041 
3042 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3043 	if (!command)
3044 		return -ENOMEM;
3045 
3046 	command->in_ctx = virt_dev->in_ctx;
3047 
3048 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3049 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3050 	if (!ctrl_ctx) {
3051 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3052 				__func__);
3053 		ret = -ENOMEM;
3054 		goto command_cleanup;
3055 	}
3056 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3057 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3058 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3059 
3060 	/* Don't issue the command if there's no endpoints to update. */
3061 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3062 	    ctrl_ctx->drop_flags == 0) {
3063 		ret = 0;
3064 		goto command_cleanup;
3065 	}
3066 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3067 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3068 	for (i = 31; i >= 1; i--) {
3069 		__le32 le32 = cpu_to_le32(BIT(i));
3070 
3071 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3072 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3073 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3074 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3075 			break;
3076 		}
3077 	}
3078 
3079 	ret = xhci_configure_endpoint(xhci, udev, command,
3080 			false, false);
3081 	if (ret)
3082 		/* Callee should call reset_bandwidth() */
3083 		goto command_cleanup;
3084 
3085 	/* Free any rings that were dropped, but not changed. */
3086 	for (i = 1; i < 31; i++) {
3087 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3088 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3089 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3090 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3091 		}
3092 	}
3093 	xhci_zero_in_ctx(xhci, virt_dev);
3094 	/*
3095 	 * Install any rings for completely new endpoints or changed endpoints,
3096 	 * and free any old rings from changed endpoints.
3097 	 */
3098 	for (i = 1; i < 31; i++) {
3099 		if (!virt_dev->eps[i].new_ring)
3100 			continue;
3101 		/* Only free the old ring if it exists.
3102 		 * It may not if this is the first add of an endpoint.
3103 		 */
3104 		if (virt_dev->eps[i].ring) {
3105 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3106 		}
3107 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3108 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3109 		virt_dev->eps[i].new_ring = NULL;
3110 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3111 	}
3112 command_cleanup:
3113 	kfree(command->completion);
3114 	kfree(command);
3115 
3116 	return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3119 
3120 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3121 {
3122 	struct xhci_hcd *xhci;
3123 	struct xhci_virt_device	*virt_dev;
3124 	int i, ret;
3125 
3126 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3127 	if (ret <= 0)
3128 		return;
3129 	xhci = hcd_to_xhci(hcd);
3130 
3131 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3132 	virt_dev = xhci->devs[udev->slot_id];
3133 	/* Free any rings allocated for added endpoints */
3134 	for (i = 0; i < 31; i++) {
3135 		if (virt_dev->eps[i].new_ring) {
3136 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3137 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3138 			virt_dev->eps[i].new_ring = NULL;
3139 		}
3140 	}
3141 	xhci_zero_in_ctx(xhci, virt_dev);
3142 }
3143 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3144 
3145 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3146 		struct xhci_container_ctx *in_ctx,
3147 		struct xhci_container_ctx *out_ctx,
3148 		struct xhci_input_control_ctx *ctrl_ctx,
3149 		u32 add_flags, u32 drop_flags)
3150 {
3151 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3152 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3153 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3154 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3155 }
3156 
3157 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3158 				  struct usb_host_endpoint *host_ep)
3159 {
3160 	struct xhci_hcd		*xhci;
3161 	struct xhci_virt_device	*vdev;
3162 	struct xhci_virt_ep	*ep;
3163 	struct usb_device	*udev;
3164 	unsigned long		flags;
3165 	unsigned int		ep_index;
3166 
3167 	xhci = hcd_to_xhci(hcd);
3168 rescan:
3169 	spin_lock_irqsave(&xhci->lock, flags);
3170 
3171 	udev = (struct usb_device *)host_ep->hcpriv;
3172 	if (!udev || !udev->slot_id)
3173 		goto done;
3174 
3175 	vdev = xhci->devs[udev->slot_id];
3176 	if (!vdev)
3177 		goto done;
3178 
3179 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3180 	ep = &vdev->eps[ep_index];
3181 
3182 	/* wait for hub_tt_work to finish clearing hub TT */
3183 	if (ep->ep_state & EP_CLEARING_TT) {
3184 		spin_unlock_irqrestore(&xhci->lock, flags);
3185 		schedule_timeout_uninterruptible(1);
3186 		goto rescan;
3187 	}
3188 
3189 	if (ep->ep_state)
3190 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3191 			 ep->ep_state);
3192 done:
3193 	host_ep->hcpriv = NULL;
3194 	spin_unlock_irqrestore(&xhci->lock, flags);
3195 }
3196 
3197 /*
3198  * Called after usb core issues a clear halt control message.
3199  * The host side of the halt should already be cleared by a reset endpoint
3200  * command issued when the STALL event was received.
3201  *
3202  * The reset endpoint command may only be issued to endpoints in the halted
3203  * state. For software that wishes to reset the data toggle or sequence number
3204  * of an endpoint that isn't in the halted state this function will issue a
3205  * configure endpoint command with the Drop and Add bits set for the target
3206  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3207  */
3208 
3209 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3210 		struct usb_host_endpoint *host_ep)
3211 {
3212 	struct xhci_hcd *xhci;
3213 	struct usb_device *udev;
3214 	struct xhci_virt_device *vdev;
3215 	struct xhci_virt_ep *ep;
3216 	struct xhci_input_control_ctx *ctrl_ctx;
3217 	struct xhci_command *stop_cmd, *cfg_cmd;
3218 	unsigned int ep_index;
3219 	unsigned long flags;
3220 	u32 ep_flag;
3221 	int err;
3222 
3223 	xhci = hcd_to_xhci(hcd);
3224 	if (!host_ep->hcpriv)
3225 		return;
3226 	udev = (struct usb_device *) host_ep->hcpriv;
3227 	vdev = xhci->devs[udev->slot_id];
3228 
3229 	/*
3230 	 * vdev may be lost due to xHC restore error and re-initialization
3231 	 * during S3/S4 resume. A new vdev will be allocated later by
3232 	 * xhci_discover_or_reset_device()
3233 	 */
3234 	if (!udev->slot_id || !vdev)
3235 		return;
3236 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3237 	ep = &vdev->eps[ep_index];
3238 
3239 	/* Bail out if toggle is already being cleared by a endpoint reset */
3240 	spin_lock_irqsave(&xhci->lock, flags);
3241 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3242 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3243 		spin_unlock_irqrestore(&xhci->lock, flags);
3244 		return;
3245 	}
3246 	spin_unlock_irqrestore(&xhci->lock, flags);
3247 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3248 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3249 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3250 		return;
3251 
3252 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3253 
3254 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3255 		return;
3256 
3257 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3258 	if (!stop_cmd)
3259 		return;
3260 
3261 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3262 	if (!cfg_cmd)
3263 		goto cleanup;
3264 
3265 	spin_lock_irqsave(&xhci->lock, flags);
3266 
3267 	/* block queuing new trbs and ringing ep doorbell */
3268 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3269 
3270 	/*
3271 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3272 	 * Driver is required to synchronously cancel all transfer request.
3273 	 * Stop the endpoint to force xHC to update the output context
3274 	 */
3275 
3276 	if (!list_empty(&ep->ring->td_list)) {
3277 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3278 		spin_unlock_irqrestore(&xhci->lock, flags);
3279 		xhci_free_command(xhci, cfg_cmd);
3280 		goto cleanup;
3281 	}
3282 
3283 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3284 					ep_index, 0);
3285 	if (err < 0) {
3286 		spin_unlock_irqrestore(&xhci->lock, flags);
3287 		xhci_free_command(xhci, cfg_cmd);
3288 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3289 				__func__, err);
3290 		goto cleanup;
3291 	}
3292 
3293 	xhci_ring_cmd_db(xhci);
3294 	spin_unlock_irqrestore(&xhci->lock, flags);
3295 
3296 	wait_for_completion(stop_cmd->completion);
3297 
3298 	spin_lock_irqsave(&xhci->lock, flags);
3299 
3300 	/* config ep command clears toggle if add and drop ep flags are set */
3301 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3302 	if (!ctrl_ctx) {
3303 		spin_unlock_irqrestore(&xhci->lock, flags);
3304 		xhci_free_command(xhci, cfg_cmd);
3305 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3306 				__func__);
3307 		goto cleanup;
3308 	}
3309 
3310 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3311 					   ctrl_ctx, ep_flag, ep_flag);
3312 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3313 
3314 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3315 				      udev->slot_id, false);
3316 	if (err < 0) {
3317 		spin_unlock_irqrestore(&xhci->lock, flags);
3318 		xhci_free_command(xhci, cfg_cmd);
3319 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3320 				__func__, err);
3321 		goto cleanup;
3322 	}
3323 
3324 	xhci_ring_cmd_db(xhci);
3325 	spin_unlock_irqrestore(&xhci->lock, flags);
3326 
3327 	wait_for_completion(cfg_cmd->completion);
3328 
3329 	xhci_free_command(xhci, cfg_cmd);
3330 cleanup:
3331 	xhci_free_command(xhci, stop_cmd);
3332 	spin_lock_irqsave(&xhci->lock, flags);
3333 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3334 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3335 	spin_unlock_irqrestore(&xhci->lock, flags);
3336 }
3337 
3338 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3339 		struct usb_device *udev, struct usb_host_endpoint *ep,
3340 		unsigned int slot_id)
3341 {
3342 	int ret;
3343 	unsigned int ep_index;
3344 	unsigned int ep_state;
3345 
3346 	if (!ep)
3347 		return -EINVAL;
3348 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3349 	if (ret <= 0)
3350 		return ret ? ret : -EINVAL;
3351 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3352 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3353 				" descriptor for ep 0x%x does not support streams\n",
3354 				ep->desc.bEndpointAddress);
3355 		return -EINVAL;
3356 	}
3357 
3358 	ep_index = xhci_get_endpoint_index(&ep->desc);
3359 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360 	if (ep_state & EP_HAS_STREAMS ||
3361 			ep_state & EP_GETTING_STREAMS) {
3362 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3363 				"already has streams set up.\n",
3364 				ep->desc.bEndpointAddress);
3365 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3366 				"dynamic stream context array reallocation.\n");
3367 		return -EINVAL;
3368 	}
3369 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3370 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3371 				"endpoint 0x%x; URBs are pending.\n",
3372 				ep->desc.bEndpointAddress);
3373 		return -EINVAL;
3374 	}
3375 	return 0;
3376 }
3377 
3378 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3379 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3380 {
3381 	unsigned int max_streams;
3382 
3383 	/* The stream context array size must be a power of two */
3384 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3385 	/*
3386 	 * Find out how many primary stream array entries the host controller
3387 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3388 	 * level page entries), but that's an optional feature for xHCI host
3389 	 * controllers. xHCs must support at least 4 stream IDs.
3390 	 */
3391 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3392 	if (*num_stream_ctxs > max_streams) {
3393 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3394 				max_streams);
3395 		*num_stream_ctxs = max_streams;
3396 		*num_streams = max_streams;
3397 	}
3398 }
3399 
3400 /* Returns an error code if one of the endpoint already has streams.
3401  * This does not change any data structures, it only checks and gathers
3402  * information.
3403  */
3404 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3405 		struct usb_device *udev,
3406 		struct usb_host_endpoint **eps, unsigned int num_eps,
3407 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3408 {
3409 	unsigned int max_streams;
3410 	unsigned int endpoint_flag;
3411 	int i;
3412 	int ret;
3413 
3414 	for (i = 0; i < num_eps; i++) {
3415 		ret = xhci_check_streams_endpoint(xhci, udev,
3416 				eps[i], udev->slot_id);
3417 		if (ret < 0)
3418 			return ret;
3419 
3420 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3421 		if (max_streams < (*num_streams - 1)) {
3422 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3423 					eps[i]->desc.bEndpointAddress,
3424 					max_streams);
3425 			*num_streams = max_streams+1;
3426 		}
3427 
3428 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3429 		if (*changed_ep_bitmask & endpoint_flag)
3430 			return -EINVAL;
3431 		*changed_ep_bitmask |= endpoint_flag;
3432 	}
3433 	return 0;
3434 }
3435 
3436 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3437 		struct usb_device *udev,
3438 		struct usb_host_endpoint **eps, unsigned int num_eps)
3439 {
3440 	u32 changed_ep_bitmask = 0;
3441 	unsigned int slot_id;
3442 	unsigned int ep_index;
3443 	unsigned int ep_state;
3444 	int i;
3445 
3446 	slot_id = udev->slot_id;
3447 	if (!xhci->devs[slot_id])
3448 		return 0;
3449 
3450 	for (i = 0; i < num_eps; i++) {
3451 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3452 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3453 		/* Are streams already being freed for the endpoint? */
3454 		if (ep_state & EP_GETTING_NO_STREAMS) {
3455 			xhci_warn(xhci, "WARN Can't disable streams for "
3456 					"endpoint 0x%x, "
3457 					"streams are being disabled already\n",
3458 					eps[i]->desc.bEndpointAddress);
3459 			return 0;
3460 		}
3461 		/* Are there actually any streams to free? */
3462 		if (!(ep_state & EP_HAS_STREAMS) &&
3463 				!(ep_state & EP_GETTING_STREAMS)) {
3464 			xhci_warn(xhci, "WARN Can't disable streams for "
3465 					"endpoint 0x%x, "
3466 					"streams are already disabled!\n",
3467 					eps[i]->desc.bEndpointAddress);
3468 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3469 					"with non-streams endpoint\n");
3470 			return 0;
3471 		}
3472 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3473 	}
3474 	return changed_ep_bitmask;
3475 }
3476 
3477 /*
3478  * The USB device drivers use this function (through the HCD interface in USB
3479  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3480  * coordinate mass storage command queueing across multiple endpoints (basically
3481  * a stream ID == a task ID).
3482  *
3483  * Setting up streams involves allocating the same size stream context array
3484  * for each endpoint and issuing a configure endpoint command for all endpoints.
3485  *
3486  * Don't allow the call to succeed if one endpoint only supports one stream
3487  * (which means it doesn't support streams at all).
3488  *
3489  * Drivers may get less stream IDs than they asked for, if the host controller
3490  * hardware or endpoints claim they can't support the number of requested
3491  * stream IDs.
3492  */
3493 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3494 		struct usb_host_endpoint **eps, unsigned int num_eps,
3495 		unsigned int num_streams, gfp_t mem_flags)
3496 {
3497 	int i, ret;
3498 	struct xhci_hcd *xhci;
3499 	struct xhci_virt_device *vdev;
3500 	struct xhci_command *config_cmd;
3501 	struct xhci_input_control_ctx *ctrl_ctx;
3502 	unsigned int ep_index;
3503 	unsigned int num_stream_ctxs;
3504 	unsigned int max_packet;
3505 	unsigned long flags;
3506 	u32 changed_ep_bitmask = 0;
3507 
3508 	if (!eps)
3509 		return -EINVAL;
3510 
3511 	/* Add one to the number of streams requested to account for
3512 	 * stream 0 that is reserved for xHCI usage.
3513 	 */
3514 	num_streams += 1;
3515 	xhci = hcd_to_xhci(hcd);
3516 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3517 			num_streams);
3518 
3519 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3520 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3521 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3522 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3523 		return -ENOSYS;
3524 	}
3525 
3526 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3527 	if (!config_cmd)
3528 		return -ENOMEM;
3529 
3530 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3531 	if (!ctrl_ctx) {
3532 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3533 				__func__);
3534 		xhci_free_command(xhci, config_cmd);
3535 		return -ENOMEM;
3536 	}
3537 
3538 	/* Check to make sure all endpoints are not already configured for
3539 	 * streams.  While we're at it, find the maximum number of streams that
3540 	 * all the endpoints will support and check for duplicate endpoints.
3541 	 */
3542 	spin_lock_irqsave(&xhci->lock, flags);
3543 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3544 			num_eps, &num_streams, &changed_ep_bitmask);
3545 	if (ret < 0) {
3546 		xhci_free_command(xhci, config_cmd);
3547 		spin_unlock_irqrestore(&xhci->lock, flags);
3548 		return ret;
3549 	}
3550 	if (num_streams <= 1) {
3551 		xhci_warn(xhci, "WARN: endpoints can't handle "
3552 				"more than one stream.\n");
3553 		xhci_free_command(xhci, config_cmd);
3554 		spin_unlock_irqrestore(&xhci->lock, flags);
3555 		return -EINVAL;
3556 	}
3557 	vdev = xhci->devs[udev->slot_id];
3558 	/* Mark each endpoint as being in transition, so
3559 	 * xhci_urb_enqueue() will reject all URBs.
3560 	 */
3561 	for (i = 0; i < num_eps; i++) {
3562 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3564 	}
3565 	spin_unlock_irqrestore(&xhci->lock, flags);
3566 
3567 	/* Setup internal data structures and allocate HW data structures for
3568 	 * streams (but don't install the HW structures in the input context
3569 	 * until we're sure all memory allocation succeeded).
3570 	 */
3571 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3572 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3573 			num_stream_ctxs, num_streams);
3574 
3575 	for (i = 0; i < num_eps; i++) {
3576 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3577 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3578 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3579 				num_stream_ctxs,
3580 				num_streams,
3581 				max_packet, mem_flags);
3582 		if (!vdev->eps[ep_index].stream_info)
3583 			goto cleanup;
3584 		/* Set maxPstreams in endpoint context and update deq ptr to
3585 		 * point to stream context array. FIXME
3586 		 */
3587 	}
3588 
3589 	/* Set up the input context for a configure endpoint command. */
3590 	for (i = 0; i < num_eps; i++) {
3591 		struct xhci_ep_ctx *ep_ctx;
3592 
3593 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3594 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3595 
3596 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3597 				vdev->out_ctx, ep_index);
3598 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3599 				vdev->eps[ep_index].stream_info);
3600 	}
3601 	/* Tell the HW to drop its old copy of the endpoint context info
3602 	 * and add the updated copy from the input context.
3603 	 */
3604 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3605 			vdev->out_ctx, ctrl_ctx,
3606 			changed_ep_bitmask, changed_ep_bitmask);
3607 
3608 	/* Issue and wait for the configure endpoint command */
3609 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3610 			false, false);
3611 
3612 	/* xHC rejected the configure endpoint command for some reason, so we
3613 	 * leave the old ring intact and free our internal streams data
3614 	 * structure.
3615 	 */
3616 	if (ret < 0)
3617 		goto cleanup;
3618 
3619 	spin_lock_irqsave(&xhci->lock, flags);
3620 	for (i = 0; i < num_eps; i++) {
3621 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3622 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3623 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3624 			 udev->slot_id, ep_index);
3625 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3626 	}
3627 	xhci_free_command(xhci, config_cmd);
3628 	spin_unlock_irqrestore(&xhci->lock, flags);
3629 
3630 	for (i = 0; i < num_eps; i++) {
3631 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3632 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3633 	}
3634 	/* Subtract 1 for stream 0, which drivers can't use */
3635 	return num_streams - 1;
3636 
3637 cleanup:
3638 	/* If it didn't work, free the streams! */
3639 	for (i = 0; i < num_eps; i++) {
3640 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3641 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3642 		vdev->eps[ep_index].stream_info = NULL;
3643 		/* FIXME Unset maxPstreams in endpoint context and
3644 		 * update deq ptr to point to normal string ring.
3645 		 */
3646 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3647 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3648 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3649 	}
3650 	xhci_free_command(xhci, config_cmd);
3651 	return -ENOMEM;
3652 }
3653 
3654 /* Transition the endpoint from using streams to being a "normal" endpoint
3655  * without streams.
3656  *
3657  * Modify the endpoint context state, submit a configure endpoint command,
3658  * and free all endpoint rings for streams if that completes successfully.
3659  */
3660 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3661 		struct usb_host_endpoint **eps, unsigned int num_eps,
3662 		gfp_t mem_flags)
3663 {
3664 	int i, ret;
3665 	struct xhci_hcd *xhci;
3666 	struct xhci_virt_device *vdev;
3667 	struct xhci_command *command;
3668 	struct xhci_input_control_ctx *ctrl_ctx;
3669 	unsigned int ep_index;
3670 	unsigned long flags;
3671 	u32 changed_ep_bitmask;
3672 
3673 	xhci = hcd_to_xhci(hcd);
3674 	vdev = xhci->devs[udev->slot_id];
3675 
3676 	/* Set up a configure endpoint command to remove the streams rings */
3677 	spin_lock_irqsave(&xhci->lock, flags);
3678 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3679 			udev, eps, num_eps);
3680 	if (changed_ep_bitmask == 0) {
3681 		spin_unlock_irqrestore(&xhci->lock, flags);
3682 		return -EINVAL;
3683 	}
3684 
3685 	/* Use the xhci_command structure from the first endpoint.  We may have
3686 	 * allocated too many, but the driver may call xhci_free_streams() for
3687 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3688 	 */
3689 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3690 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3691 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3692 	if (!ctrl_ctx) {
3693 		spin_unlock_irqrestore(&xhci->lock, flags);
3694 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3695 				__func__);
3696 		return -EINVAL;
3697 	}
3698 
3699 	for (i = 0; i < num_eps; i++) {
3700 		struct xhci_ep_ctx *ep_ctx;
3701 
3702 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3704 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3705 			EP_GETTING_NO_STREAMS;
3706 
3707 		xhci_endpoint_copy(xhci, command->in_ctx,
3708 				vdev->out_ctx, ep_index);
3709 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3710 				&vdev->eps[ep_index]);
3711 	}
3712 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3713 			vdev->out_ctx, ctrl_ctx,
3714 			changed_ep_bitmask, changed_ep_bitmask);
3715 	spin_unlock_irqrestore(&xhci->lock, flags);
3716 
3717 	/* Issue and wait for the configure endpoint command,
3718 	 * which must succeed.
3719 	 */
3720 	ret = xhci_configure_endpoint(xhci, udev, command,
3721 			false, true);
3722 
3723 	/* xHC rejected the configure endpoint command for some reason, so we
3724 	 * leave the streams rings intact.
3725 	 */
3726 	if (ret < 0)
3727 		return ret;
3728 
3729 	spin_lock_irqsave(&xhci->lock, flags);
3730 	for (i = 0; i < num_eps; i++) {
3731 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3732 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3733 		vdev->eps[ep_index].stream_info = NULL;
3734 		/* FIXME Unset maxPstreams in endpoint context and
3735 		 * update deq ptr to point to normal string ring.
3736 		 */
3737 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3738 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3739 	}
3740 	spin_unlock_irqrestore(&xhci->lock, flags);
3741 
3742 	return 0;
3743 }
3744 
3745 /*
3746  * Deletes endpoint resources for endpoints that were active before a Reset
3747  * Device command, or a Disable Slot command.  The Reset Device command leaves
3748  * the control endpoint intact, whereas the Disable Slot command deletes it.
3749  *
3750  * Must be called with xhci->lock held.
3751  */
3752 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3753 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3754 {
3755 	int i;
3756 	unsigned int num_dropped_eps = 0;
3757 	unsigned int drop_flags = 0;
3758 
3759 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3760 		if (virt_dev->eps[i].ring) {
3761 			drop_flags |= 1 << i;
3762 			num_dropped_eps++;
3763 		}
3764 	}
3765 	xhci->num_active_eps -= num_dropped_eps;
3766 	if (num_dropped_eps)
3767 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3768 				"Dropped %u ep ctxs, flags = 0x%x, "
3769 				"%u now active.",
3770 				num_dropped_eps, drop_flags,
3771 				xhci->num_active_eps);
3772 }
3773 
3774 /*
3775  * This submits a Reset Device Command, which will set the device state to 0,
3776  * set the device address to 0, and disable all the endpoints except the default
3777  * control endpoint.  The USB core should come back and call
3778  * xhci_address_device(), and then re-set up the configuration.  If this is
3779  * called because of a usb_reset_and_verify_device(), then the old alternate
3780  * settings will be re-installed through the normal bandwidth allocation
3781  * functions.
3782  *
3783  * Wait for the Reset Device command to finish.  Remove all structures
3784  * associated with the endpoints that were disabled.  Clear the input device
3785  * structure? Reset the control endpoint 0 max packet size?
3786  *
3787  * If the virt_dev to be reset does not exist or does not match the udev,
3788  * it means the device is lost, possibly due to the xHC restore error and
3789  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3790  * re-allocate the device.
3791  */
3792 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3793 		struct usb_device *udev)
3794 {
3795 	int ret, i;
3796 	unsigned long flags;
3797 	struct xhci_hcd *xhci;
3798 	unsigned int slot_id;
3799 	struct xhci_virt_device *virt_dev;
3800 	struct xhci_command *reset_device_cmd;
3801 	struct xhci_slot_ctx *slot_ctx;
3802 	int old_active_eps = 0;
3803 
3804 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3805 	if (ret <= 0)
3806 		return ret;
3807 	xhci = hcd_to_xhci(hcd);
3808 	slot_id = udev->slot_id;
3809 	virt_dev = xhci->devs[slot_id];
3810 	if (!virt_dev) {
3811 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3812 				"not exist. Re-allocate the device\n", slot_id);
3813 		ret = xhci_alloc_dev(hcd, udev);
3814 		if (ret == 1)
3815 			return 0;
3816 		else
3817 			return -EINVAL;
3818 	}
3819 
3820 	if (virt_dev->tt_info)
3821 		old_active_eps = virt_dev->tt_info->active_eps;
3822 
3823 	if (virt_dev->udev != udev) {
3824 		/* If the virt_dev and the udev does not match, this virt_dev
3825 		 * may belong to another udev.
3826 		 * Re-allocate the device.
3827 		 */
3828 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3829 				"not match the udev. Re-allocate the device\n",
3830 				slot_id);
3831 		ret = xhci_alloc_dev(hcd, udev);
3832 		if (ret == 1)
3833 			return 0;
3834 		else
3835 			return -EINVAL;
3836 	}
3837 
3838 	/* If device is not setup, there is no point in resetting it */
3839 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3840 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3841 						SLOT_STATE_DISABLED)
3842 		return 0;
3843 
3844 	trace_xhci_discover_or_reset_device(slot_ctx);
3845 
3846 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3847 	/* Allocate the command structure that holds the struct completion.
3848 	 * Assume we're in process context, since the normal device reset
3849 	 * process has to wait for the device anyway.  Storage devices are
3850 	 * reset as part of error handling, so use GFP_NOIO instead of
3851 	 * GFP_KERNEL.
3852 	 */
3853 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3854 	if (!reset_device_cmd) {
3855 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3856 		return -ENOMEM;
3857 	}
3858 
3859 	/* Attempt to submit the Reset Device command to the command ring */
3860 	spin_lock_irqsave(&xhci->lock, flags);
3861 
3862 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3863 	if (ret) {
3864 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3865 		spin_unlock_irqrestore(&xhci->lock, flags);
3866 		goto command_cleanup;
3867 	}
3868 	xhci_ring_cmd_db(xhci);
3869 	spin_unlock_irqrestore(&xhci->lock, flags);
3870 
3871 	/* Wait for the Reset Device command to finish */
3872 	wait_for_completion(reset_device_cmd->completion);
3873 
3874 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3875 	 * unless we tried to reset a slot ID that wasn't enabled,
3876 	 * or the device wasn't in the addressed or configured state.
3877 	 */
3878 	ret = reset_device_cmd->status;
3879 	switch (ret) {
3880 	case COMP_COMMAND_ABORTED:
3881 	case COMP_COMMAND_RING_STOPPED:
3882 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3883 		ret = -ETIME;
3884 		goto command_cleanup;
3885 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3886 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3887 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3888 				slot_id,
3889 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3890 		xhci_dbg(xhci, "Not freeing device rings.\n");
3891 		/* Don't treat this as an error.  May change my mind later. */
3892 		ret = 0;
3893 		goto command_cleanup;
3894 	case COMP_SUCCESS:
3895 		xhci_dbg(xhci, "Successful reset device command.\n");
3896 		break;
3897 	default:
3898 		if (xhci_is_vendor_info_code(xhci, ret))
3899 			break;
3900 		xhci_warn(xhci, "Unknown completion code %u for "
3901 				"reset device command.\n", ret);
3902 		ret = -EINVAL;
3903 		goto command_cleanup;
3904 	}
3905 
3906 	/* Free up host controller endpoint resources */
3907 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3908 		spin_lock_irqsave(&xhci->lock, flags);
3909 		/* Don't delete the default control endpoint resources */
3910 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3911 		spin_unlock_irqrestore(&xhci->lock, flags);
3912 	}
3913 
3914 	/* Everything but endpoint 0 is disabled, so free the rings. */
3915 	for (i = 1; i < 31; i++) {
3916 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3917 
3918 		if (ep->ep_state & EP_HAS_STREAMS) {
3919 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3920 					xhci_get_endpoint_address(i));
3921 			xhci_free_stream_info(xhci, ep->stream_info);
3922 			ep->stream_info = NULL;
3923 			ep->ep_state &= ~EP_HAS_STREAMS;
3924 		}
3925 
3926 		if (ep->ring) {
3927 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3928 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3929 		}
3930 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3931 			xhci_drop_ep_from_interval_table(xhci,
3932 					&virt_dev->eps[i].bw_info,
3933 					virt_dev->bw_table,
3934 					udev,
3935 					&virt_dev->eps[i],
3936 					virt_dev->tt_info);
3937 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3938 	}
3939 	/* If necessary, update the number of active TTs on this root port */
3940 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3941 	virt_dev->flags = 0;
3942 	ret = 0;
3943 
3944 command_cleanup:
3945 	xhci_free_command(xhci, reset_device_cmd);
3946 	return ret;
3947 }
3948 
3949 /*
3950  * At this point, the struct usb_device is about to go away, the device has
3951  * disconnected, and all traffic has been stopped and the endpoints have been
3952  * disabled.  Free any HC data structures associated with that device.
3953  */
3954 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3955 {
3956 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3957 	struct xhci_virt_device *virt_dev;
3958 	struct xhci_slot_ctx *slot_ctx;
3959 	int i, ret;
3960 
3961 	/*
3962 	 * We called pm_runtime_get_noresume when the device was attached.
3963 	 * Decrement the counter here to allow controller to runtime suspend
3964 	 * if no devices remain.
3965 	 */
3966 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3967 		pm_runtime_put_noidle(hcd->self.controller);
3968 
3969 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3970 	/* If the host is halted due to driver unload, we still need to free the
3971 	 * device.
3972 	 */
3973 	if (ret <= 0 && ret != -ENODEV)
3974 		return;
3975 
3976 	virt_dev = xhci->devs[udev->slot_id];
3977 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3978 	trace_xhci_free_dev(slot_ctx);
3979 
3980 	/* Stop any wayward timer functions (which may grab the lock) */
3981 	for (i = 0; i < 31; i++)
3982 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3983 	virt_dev->udev = NULL;
3984 	xhci_disable_slot(xhci, udev->slot_id);
3985 	xhci_free_virt_device(xhci, udev->slot_id);
3986 }
3987 
3988 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3989 {
3990 	struct xhci_command *command;
3991 	unsigned long flags;
3992 	u32 state;
3993 	int ret;
3994 
3995 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3996 	if (!command)
3997 		return -ENOMEM;
3998 
3999 	xhci_debugfs_remove_slot(xhci, slot_id);
4000 
4001 	spin_lock_irqsave(&xhci->lock, flags);
4002 	/* Don't disable the slot if the host controller is dead. */
4003 	state = readl(&xhci->op_regs->status);
4004 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4005 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4006 		spin_unlock_irqrestore(&xhci->lock, flags);
4007 		kfree(command);
4008 		return -ENODEV;
4009 	}
4010 
4011 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4012 				slot_id);
4013 	if (ret) {
4014 		spin_unlock_irqrestore(&xhci->lock, flags);
4015 		kfree(command);
4016 		return ret;
4017 	}
4018 	xhci_ring_cmd_db(xhci);
4019 	spin_unlock_irqrestore(&xhci->lock, flags);
4020 
4021 	wait_for_completion(command->completion);
4022 
4023 	if (command->status != COMP_SUCCESS)
4024 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4025 			  slot_id, command->status);
4026 
4027 	xhci_free_command(xhci, command);
4028 
4029 	return 0;
4030 }
4031 
4032 /*
4033  * Checks if we have enough host controller resources for the default control
4034  * endpoint.
4035  *
4036  * Must be called with xhci->lock held.
4037  */
4038 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4039 {
4040 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4041 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4042 				"Not enough ep ctxs: "
4043 				"%u active, need to add 1, limit is %u.",
4044 				xhci->num_active_eps, xhci->limit_active_eps);
4045 		return -ENOMEM;
4046 	}
4047 	xhci->num_active_eps += 1;
4048 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4049 			"Adding 1 ep ctx, %u now active.",
4050 			xhci->num_active_eps);
4051 	return 0;
4052 }
4053 
4054 
4055 /*
4056  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4057  * timed out, or allocating memory failed.  Returns 1 on success.
4058  */
4059 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4060 {
4061 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4062 	struct xhci_virt_device *vdev;
4063 	struct xhci_slot_ctx *slot_ctx;
4064 	unsigned long flags;
4065 	int ret, slot_id;
4066 	struct xhci_command *command;
4067 
4068 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4069 	if (!command)
4070 		return 0;
4071 
4072 	spin_lock_irqsave(&xhci->lock, flags);
4073 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4074 	if (ret) {
4075 		spin_unlock_irqrestore(&xhci->lock, flags);
4076 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4077 		xhci_free_command(xhci, command);
4078 		return 0;
4079 	}
4080 	xhci_ring_cmd_db(xhci);
4081 	spin_unlock_irqrestore(&xhci->lock, flags);
4082 
4083 	wait_for_completion(command->completion);
4084 	slot_id = command->slot_id;
4085 
4086 	if (!slot_id || command->status != COMP_SUCCESS) {
4087 		xhci_err(xhci, "Error while assigning device slot ID\n");
4088 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4089 				HCS_MAX_SLOTS(
4090 					readl(&xhci->cap_regs->hcs_params1)));
4091 		xhci_free_command(xhci, command);
4092 		return 0;
4093 	}
4094 
4095 	xhci_free_command(xhci, command);
4096 
4097 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4098 		spin_lock_irqsave(&xhci->lock, flags);
4099 		ret = xhci_reserve_host_control_ep_resources(xhci);
4100 		if (ret) {
4101 			spin_unlock_irqrestore(&xhci->lock, flags);
4102 			xhci_warn(xhci, "Not enough host resources, "
4103 					"active endpoint contexts = %u\n",
4104 					xhci->num_active_eps);
4105 			goto disable_slot;
4106 		}
4107 		spin_unlock_irqrestore(&xhci->lock, flags);
4108 	}
4109 	/* Use GFP_NOIO, since this function can be called from
4110 	 * xhci_discover_or_reset_device(), which may be called as part of
4111 	 * mass storage driver error handling.
4112 	 */
4113 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4114 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4115 		goto disable_slot;
4116 	}
4117 	vdev = xhci->devs[slot_id];
4118 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4119 	trace_xhci_alloc_dev(slot_ctx);
4120 
4121 	udev->slot_id = slot_id;
4122 
4123 	xhci_debugfs_create_slot(xhci, slot_id);
4124 
4125 	/*
4126 	 * If resetting upon resume, we can't put the controller into runtime
4127 	 * suspend if there is a device attached.
4128 	 */
4129 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4130 		pm_runtime_get_noresume(hcd->self.controller);
4131 
4132 	/* Is this a LS or FS device under a HS hub? */
4133 	/* Hub or peripherial? */
4134 	return 1;
4135 
4136 disable_slot:
4137 	xhci_disable_slot(xhci, udev->slot_id);
4138 	xhci_free_virt_device(xhci, udev->slot_id);
4139 
4140 	return 0;
4141 }
4142 
4143 /*
4144  * Issue an Address Device command and optionally send a corresponding
4145  * SetAddress request to the device.
4146  */
4147 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4148 			     enum xhci_setup_dev setup)
4149 {
4150 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4151 	unsigned long flags;
4152 	struct xhci_virt_device *virt_dev;
4153 	int ret = 0;
4154 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4155 	struct xhci_slot_ctx *slot_ctx;
4156 	struct xhci_input_control_ctx *ctrl_ctx;
4157 	u64 temp_64;
4158 	struct xhci_command *command = NULL;
4159 
4160 	mutex_lock(&xhci->mutex);
4161 
4162 	if (xhci->xhc_state) {	/* dying, removing or halted */
4163 		ret = -ESHUTDOWN;
4164 		goto out;
4165 	}
4166 
4167 	if (!udev->slot_id) {
4168 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4169 				"Bad Slot ID %d", udev->slot_id);
4170 		ret = -EINVAL;
4171 		goto out;
4172 	}
4173 
4174 	virt_dev = xhci->devs[udev->slot_id];
4175 
4176 	if (WARN_ON(!virt_dev)) {
4177 		/*
4178 		 * In plug/unplug torture test with an NEC controller,
4179 		 * a zero-dereference was observed once due to virt_dev = 0.
4180 		 * Print useful debug rather than crash if it is observed again!
4181 		 */
4182 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4183 			udev->slot_id);
4184 		ret = -EINVAL;
4185 		goto out;
4186 	}
4187 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4188 	trace_xhci_setup_device_slot(slot_ctx);
4189 
4190 	if (setup == SETUP_CONTEXT_ONLY) {
4191 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4192 		    SLOT_STATE_DEFAULT) {
4193 			xhci_dbg(xhci, "Slot already in default state\n");
4194 			goto out;
4195 		}
4196 	}
4197 
4198 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4199 	if (!command) {
4200 		ret = -ENOMEM;
4201 		goto out;
4202 	}
4203 
4204 	command->in_ctx = virt_dev->in_ctx;
4205 
4206 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4207 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4208 	if (!ctrl_ctx) {
4209 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4210 				__func__);
4211 		ret = -EINVAL;
4212 		goto out;
4213 	}
4214 	/*
4215 	 * If this is the first Set Address since device plug-in or
4216 	 * virt_device realloaction after a resume with an xHCI power loss,
4217 	 * then set up the slot context.
4218 	 */
4219 	if (!slot_ctx->dev_info)
4220 		xhci_setup_addressable_virt_dev(xhci, udev);
4221 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4222 	else
4223 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4224 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4225 	ctrl_ctx->drop_flags = 0;
4226 
4227 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4228 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4229 
4230 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4231 	spin_lock_irqsave(&xhci->lock, flags);
4232 	trace_xhci_setup_device(virt_dev);
4233 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4234 					udev->slot_id, setup);
4235 	if (ret) {
4236 		spin_unlock_irqrestore(&xhci->lock, flags);
4237 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 				"FIXME: allocate a command ring segment");
4239 		goto out;
4240 	}
4241 	xhci_ring_cmd_db(xhci);
4242 	spin_unlock_irqrestore(&xhci->lock, flags);
4243 
4244 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4245 	wait_for_completion(command->completion);
4246 
4247 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4248 	 * the SetAddress() "recovery interval" required by USB and aborting the
4249 	 * command on a timeout.
4250 	 */
4251 	switch (command->status) {
4252 	case COMP_COMMAND_ABORTED:
4253 	case COMP_COMMAND_RING_STOPPED:
4254 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4255 		ret = -ETIME;
4256 		break;
4257 	case COMP_CONTEXT_STATE_ERROR:
4258 	case COMP_SLOT_NOT_ENABLED_ERROR:
4259 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4260 			 act, udev->slot_id);
4261 		ret = -EINVAL;
4262 		break;
4263 	case COMP_USB_TRANSACTION_ERROR:
4264 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4265 
4266 		mutex_unlock(&xhci->mutex);
4267 		ret = xhci_disable_slot(xhci, udev->slot_id);
4268 		xhci_free_virt_device(xhci, udev->slot_id);
4269 		if (!ret)
4270 			xhci_alloc_dev(hcd, udev);
4271 		kfree(command->completion);
4272 		kfree(command);
4273 		return -EPROTO;
4274 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4275 		dev_warn(&udev->dev,
4276 			 "ERROR: Incompatible device for setup %s command\n", act);
4277 		ret = -ENODEV;
4278 		break;
4279 	case COMP_SUCCESS:
4280 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 			       "Successful setup %s command", act);
4282 		break;
4283 	default:
4284 		xhci_err(xhci,
4285 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4286 			 act, command->status);
4287 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4288 		ret = -EINVAL;
4289 		break;
4290 	}
4291 	if (ret)
4292 		goto out;
4293 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4294 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 			"Op regs DCBAA ptr = %#016llx", temp_64);
4296 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4297 		"Slot ID %d dcbaa entry @%p = %#016llx",
4298 		udev->slot_id,
4299 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4300 		(unsigned long long)
4301 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4302 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4303 			"Output Context DMA address = %#08llx",
4304 			(unsigned long long)virt_dev->out_ctx->dma);
4305 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4306 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4307 	/*
4308 	 * USB core uses address 1 for the roothubs, so we add one to the
4309 	 * address given back to us by the HC.
4310 	 */
4311 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4312 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4313 	/* Zero the input context control for later use */
4314 	ctrl_ctx->add_flags = 0;
4315 	ctrl_ctx->drop_flags = 0;
4316 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4317 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4318 
4319 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4320 		       "Internal device address = %d",
4321 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4322 out:
4323 	mutex_unlock(&xhci->mutex);
4324 	if (command) {
4325 		kfree(command->completion);
4326 		kfree(command);
4327 	}
4328 	return ret;
4329 }
4330 
4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4332 {
4333 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4334 }
4335 
4336 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4337 {
4338 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4339 }
4340 
4341 /*
4342  * Transfer the port index into real index in the HW port status
4343  * registers. Caculate offset between the port's PORTSC register
4344  * and port status base. Divide the number of per port register
4345  * to get the real index. The raw port number bases 1.
4346  */
4347 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4348 {
4349 	struct xhci_hub *rhub;
4350 
4351 	rhub = xhci_get_rhub(hcd);
4352 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4353 }
4354 
4355 /*
4356  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4357  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4358  */
4359 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4360 			struct usb_device *udev, u16 max_exit_latency)
4361 {
4362 	struct xhci_virt_device *virt_dev;
4363 	struct xhci_command *command;
4364 	struct xhci_input_control_ctx *ctrl_ctx;
4365 	struct xhci_slot_ctx *slot_ctx;
4366 	unsigned long flags;
4367 	int ret;
4368 
4369 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4370 	if (!command)
4371 		return -ENOMEM;
4372 
4373 	spin_lock_irqsave(&xhci->lock, flags);
4374 
4375 	virt_dev = xhci->devs[udev->slot_id];
4376 
4377 	/*
4378 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4379 	 * xHC was re-initialized. Exit latency will be set later after
4380 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4381 	 */
4382 
4383 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4384 		spin_unlock_irqrestore(&xhci->lock, flags);
4385 		return 0;
4386 	}
4387 
4388 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4389 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4390 	if (!ctrl_ctx) {
4391 		spin_unlock_irqrestore(&xhci->lock, flags);
4392 		xhci_free_command(xhci, command);
4393 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4394 				__func__);
4395 		return -ENOMEM;
4396 	}
4397 
4398 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4399 	spin_unlock_irqrestore(&xhci->lock, flags);
4400 
4401 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4402 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4403 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4404 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4405 	slot_ctx->dev_state = 0;
4406 
4407 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4408 			"Set up evaluate context for LPM MEL change.");
4409 
4410 	/* Issue and wait for the evaluate context command. */
4411 	ret = xhci_configure_endpoint(xhci, udev, command,
4412 			true, true);
4413 
4414 	if (!ret) {
4415 		spin_lock_irqsave(&xhci->lock, flags);
4416 		virt_dev->current_mel = max_exit_latency;
4417 		spin_unlock_irqrestore(&xhci->lock, flags);
4418 	}
4419 
4420 	xhci_free_command(xhci, command);
4421 
4422 	return ret;
4423 }
4424 
4425 #ifdef CONFIG_PM
4426 
4427 /* BESL to HIRD Encoding array for USB2 LPM */
4428 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4429 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4430 
4431 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4432 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4433 					struct usb_device *udev)
4434 {
4435 	int u2del, besl, besl_host;
4436 	int besl_device = 0;
4437 	u32 field;
4438 
4439 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4440 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4441 
4442 	if (field & USB_BESL_SUPPORT) {
4443 		for (besl_host = 0; besl_host < 16; besl_host++) {
4444 			if (xhci_besl_encoding[besl_host] >= u2del)
4445 				break;
4446 		}
4447 		/* Use baseline BESL value as default */
4448 		if (field & USB_BESL_BASELINE_VALID)
4449 			besl_device = USB_GET_BESL_BASELINE(field);
4450 		else if (field & USB_BESL_DEEP_VALID)
4451 			besl_device = USB_GET_BESL_DEEP(field);
4452 	} else {
4453 		if (u2del <= 50)
4454 			besl_host = 0;
4455 		else
4456 			besl_host = (u2del - 51) / 75 + 1;
4457 	}
4458 
4459 	besl = besl_host + besl_device;
4460 	if (besl > 15)
4461 		besl = 15;
4462 
4463 	return besl;
4464 }
4465 
4466 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4467 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4468 {
4469 	u32 field;
4470 	int l1;
4471 	int besld = 0;
4472 	int hirdm = 0;
4473 
4474 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4475 
4476 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4477 	l1 = udev->l1_params.timeout / 256;
4478 
4479 	/* device has preferred BESLD */
4480 	if (field & USB_BESL_DEEP_VALID) {
4481 		besld = USB_GET_BESL_DEEP(field);
4482 		hirdm = 1;
4483 	}
4484 
4485 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4486 }
4487 
4488 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4489 			struct usb_device *udev, int enable)
4490 {
4491 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4492 	struct xhci_port **ports;
4493 	__le32 __iomem	*pm_addr, *hlpm_addr;
4494 	u32		pm_val, hlpm_val, field;
4495 	unsigned int	port_num;
4496 	unsigned long	flags;
4497 	int		hird, exit_latency;
4498 	int		ret;
4499 
4500 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4501 		return -EPERM;
4502 
4503 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4504 			!udev->lpm_capable)
4505 		return -EPERM;
4506 
4507 	if (!udev->parent || udev->parent->parent ||
4508 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4509 		return -EPERM;
4510 
4511 	if (udev->usb2_hw_lpm_capable != 1)
4512 		return -EPERM;
4513 
4514 	spin_lock_irqsave(&xhci->lock, flags);
4515 
4516 	ports = xhci->usb2_rhub.ports;
4517 	port_num = udev->portnum - 1;
4518 	pm_addr = ports[port_num]->addr + PORTPMSC;
4519 	pm_val = readl(pm_addr);
4520 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4521 
4522 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4523 			enable ? "enable" : "disable", port_num + 1);
4524 
4525 	if (enable) {
4526 		/* Host supports BESL timeout instead of HIRD */
4527 		if (udev->usb2_hw_lpm_besl_capable) {
4528 			/* if device doesn't have a preferred BESL value use a
4529 			 * default one which works with mixed HIRD and BESL
4530 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4531 			 */
4532 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4533 			if ((field & USB_BESL_SUPPORT) &&
4534 			    (field & USB_BESL_BASELINE_VALID))
4535 				hird = USB_GET_BESL_BASELINE(field);
4536 			else
4537 				hird = udev->l1_params.besl;
4538 
4539 			exit_latency = xhci_besl_encoding[hird];
4540 			spin_unlock_irqrestore(&xhci->lock, flags);
4541 
4542 			ret = xhci_change_max_exit_latency(xhci, udev,
4543 							   exit_latency);
4544 			if (ret < 0)
4545 				return ret;
4546 			spin_lock_irqsave(&xhci->lock, flags);
4547 
4548 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4549 			writel(hlpm_val, hlpm_addr);
4550 			/* flush write */
4551 			readl(hlpm_addr);
4552 		} else {
4553 			hird = xhci_calculate_hird_besl(xhci, udev);
4554 		}
4555 
4556 		pm_val &= ~PORT_HIRD_MASK;
4557 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4558 		writel(pm_val, pm_addr);
4559 		pm_val = readl(pm_addr);
4560 		pm_val |= PORT_HLE;
4561 		writel(pm_val, pm_addr);
4562 		/* flush write */
4563 		readl(pm_addr);
4564 	} else {
4565 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4566 		writel(pm_val, pm_addr);
4567 		/* flush write */
4568 		readl(pm_addr);
4569 		if (udev->usb2_hw_lpm_besl_capable) {
4570 			spin_unlock_irqrestore(&xhci->lock, flags);
4571 			xhci_change_max_exit_latency(xhci, udev, 0);
4572 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4573 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4574 					   100, 10000);
4575 			return 0;
4576 		}
4577 	}
4578 
4579 	spin_unlock_irqrestore(&xhci->lock, flags);
4580 	return 0;
4581 }
4582 
4583 /* check if a usb2 port supports a given extened capability protocol
4584  * only USB2 ports extended protocol capability values are cached.
4585  * Return 1 if capability is supported
4586  */
4587 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4588 					   unsigned capability)
4589 {
4590 	u32 port_offset, port_count;
4591 	int i;
4592 
4593 	for (i = 0; i < xhci->num_ext_caps; i++) {
4594 		if (xhci->ext_caps[i] & capability) {
4595 			/* port offsets starts at 1 */
4596 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4597 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4598 			if (port >= port_offset &&
4599 			    port < port_offset + port_count)
4600 				return 1;
4601 		}
4602 	}
4603 	return 0;
4604 }
4605 
4606 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4607 {
4608 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4609 	int		portnum = udev->portnum - 1;
4610 
4611 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4612 		return 0;
4613 
4614 	/* we only support lpm for non-hub device connected to root hub yet */
4615 	if (!udev->parent || udev->parent->parent ||
4616 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4617 		return 0;
4618 
4619 	if (xhci->hw_lpm_support == 1 &&
4620 			xhci_check_usb2_port_capability(
4621 				xhci, portnum, XHCI_HLC)) {
4622 		udev->usb2_hw_lpm_capable = 1;
4623 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4624 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4625 		if (xhci_check_usb2_port_capability(xhci, portnum,
4626 					XHCI_BLC))
4627 			udev->usb2_hw_lpm_besl_capable = 1;
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4634 
4635 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4636 static unsigned long long xhci_service_interval_to_ns(
4637 		struct usb_endpoint_descriptor *desc)
4638 {
4639 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4640 }
4641 
4642 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4643 		enum usb3_link_state state)
4644 {
4645 	unsigned long long sel;
4646 	unsigned long long pel;
4647 	unsigned int max_sel_pel;
4648 	char *state_name;
4649 
4650 	switch (state) {
4651 	case USB3_LPM_U1:
4652 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4653 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4654 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4655 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4656 		state_name = "U1";
4657 		break;
4658 	case USB3_LPM_U2:
4659 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4660 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4661 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4662 		state_name = "U2";
4663 		break;
4664 	default:
4665 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4666 				__func__);
4667 		return USB3_LPM_DISABLED;
4668 	}
4669 
4670 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4671 		return USB3_LPM_DEVICE_INITIATED;
4672 
4673 	if (sel > max_sel_pel)
4674 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4675 				"due to long SEL %llu ms\n",
4676 				state_name, sel);
4677 	else
4678 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4679 				"due to long PEL %llu ms\n",
4680 				state_name, pel);
4681 	return USB3_LPM_DISABLED;
4682 }
4683 
4684 /* The U1 timeout should be the maximum of the following values:
4685  *  - For control endpoints, U1 system exit latency (SEL) * 3
4686  *  - For bulk endpoints, U1 SEL * 5
4687  *  - For interrupt endpoints:
4688  *    - Notification EPs, U1 SEL * 3
4689  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4690  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4691  */
4692 static unsigned long long xhci_calculate_intel_u1_timeout(
4693 		struct usb_device *udev,
4694 		struct usb_endpoint_descriptor *desc)
4695 {
4696 	unsigned long long timeout_ns;
4697 	int ep_type;
4698 	int intr_type;
4699 
4700 	ep_type = usb_endpoint_type(desc);
4701 	switch (ep_type) {
4702 	case USB_ENDPOINT_XFER_CONTROL:
4703 		timeout_ns = udev->u1_params.sel * 3;
4704 		break;
4705 	case USB_ENDPOINT_XFER_BULK:
4706 		timeout_ns = udev->u1_params.sel * 5;
4707 		break;
4708 	case USB_ENDPOINT_XFER_INT:
4709 		intr_type = usb_endpoint_interrupt_type(desc);
4710 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4711 			timeout_ns = udev->u1_params.sel * 3;
4712 			break;
4713 		}
4714 		/* Otherwise the calculation is the same as isoc eps */
4715 		fallthrough;
4716 	case USB_ENDPOINT_XFER_ISOC:
4717 		timeout_ns = xhci_service_interval_to_ns(desc);
4718 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4719 		if (timeout_ns < udev->u1_params.sel * 2)
4720 			timeout_ns = udev->u1_params.sel * 2;
4721 		break;
4722 	default:
4723 		return 0;
4724 	}
4725 
4726 	return timeout_ns;
4727 }
4728 
4729 /* Returns the hub-encoded U1 timeout value. */
4730 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4731 		struct usb_device *udev,
4732 		struct usb_endpoint_descriptor *desc)
4733 {
4734 	unsigned long long timeout_ns;
4735 
4736 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4737 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4738 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4739 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4740 			return USB3_LPM_DISABLED;
4741 		}
4742 	}
4743 
4744 	if (xhci->quirks & XHCI_INTEL_HOST)
4745 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4746 	else
4747 		timeout_ns = udev->u1_params.sel;
4748 
4749 	/* The U1 timeout is encoded in 1us intervals.
4750 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4751 	 */
4752 	if (timeout_ns == USB3_LPM_DISABLED)
4753 		timeout_ns = 1;
4754 	else
4755 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4756 
4757 	/* If the necessary timeout value is bigger than what we can set in the
4758 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4759 	 */
4760 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4761 		return timeout_ns;
4762 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4763 			"due to long timeout %llu ms\n", timeout_ns);
4764 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4765 }
4766 
4767 /* The U2 timeout should be the maximum of:
4768  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4769  *  - largest bInterval of any active periodic endpoint (to avoid going
4770  *    into lower power link states between intervals).
4771  *  - the U2 Exit Latency of the device
4772  */
4773 static unsigned long long xhci_calculate_intel_u2_timeout(
4774 		struct usb_device *udev,
4775 		struct usb_endpoint_descriptor *desc)
4776 {
4777 	unsigned long long timeout_ns;
4778 	unsigned long long u2_del_ns;
4779 
4780 	timeout_ns = 10 * 1000 * 1000;
4781 
4782 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4783 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4784 		timeout_ns = xhci_service_interval_to_ns(desc);
4785 
4786 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4787 	if (u2_del_ns > timeout_ns)
4788 		timeout_ns = u2_del_ns;
4789 
4790 	return timeout_ns;
4791 }
4792 
4793 /* Returns the hub-encoded U2 timeout value. */
4794 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4795 		struct usb_device *udev,
4796 		struct usb_endpoint_descriptor *desc)
4797 {
4798 	unsigned long long timeout_ns;
4799 
4800 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4801 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4802 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4803 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4804 			return USB3_LPM_DISABLED;
4805 		}
4806 	}
4807 
4808 	if (xhci->quirks & XHCI_INTEL_HOST)
4809 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4810 	else
4811 		timeout_ns = udev->u2_params.sel;
4812 
4813 	/* The U2 timeout is encoded in 256us intervals */
4814 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4815 	/* If the necessary timeout value is bigger than what we can set in the
4816 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4817 	 */
4818 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4819 		return timeout_ns;
4820 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4821 			"due to long timeout %llu ms\n", timeout_ns);
4822 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4823 }
4824 
4825 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4826 		struct usb_device *udev,
4827 		struct usb_endpoint_descriptor *desc,
4828 		enum usb3_link_state state,
4829 		u16 *timeout)
4830 {
4831 	if (state == USB3_LPM_U1)
4832 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4833 	else if (state == USB3_LPM_U2)
4834 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4835 
4836 	return USB3_LPM_DISABLED;
4837 }
4838 
4839 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4840 		struct usb_device *udev,
4841 		struct usb_endpoint_descriptor *desc,
4842 		enum usb3_link_state state,
4843 		u16 *timeout)
4844 {
4845 	u16 alt_timeout;
4846 
4847 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4848 		desc, state, timeout);
4849 
4850 	/* If we found we can't enable hub-initiated LPM, and
4851 	 * the U1 or U2 exit latency was too high to allow
4852 	 * device-initiated LPM as well, then we will disable LPM
4853 	 * for this device, so stop searching any further.
4854 	 */
4855 	if (alt_timeout == USB3_LPM_DISABLED) {
4856 		*timeout = alt_timeout;
4857 		return -E2BIG;
4858 	}
4859 	if (alt_timeout > *timeout)
4860 		*timeout = alt_timeout;
4861 	return 0;
4862 }
4863 
4864 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4865 		struct usb_device *udev,
4866 		struct usb_host_interface *alt,
4867 		enum usb3_link_state state,
4868 		u16 *timeout)
4869 {
4870 	int j;
4871 
4872 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4873 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4874 					&alt->endpoint[j].desc, state, timeout))
4875 			return -E2BIG;
4876 	}
4877 	return 0;
4878 }
4879 
4880 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4881 		enum usb3_link_state state)
4882 {
4883 	struct usb_device *parent;
4884 	unsigned int num_hubs;
4885 
4886 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4887 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4888 			parent = parent->parent)
4889 		num_hubs++;
4890 
4891 	if (num_hubs < 2)
4892 		return 0;
4893 
4894 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4895 			" below second-tier hub.\n");
4896 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4897 			"to decrease power consumption.\n");
4898 	return -E2BIG;
4899 }
4900 
4901 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4902 		struct usb_device *udev,
4903 		enum usb3_link_state state)
4904 {
4905 	if (xhci->quirks & XHCI_INTEL_HOST)
4906 		return xhci_check_intel_tier_policy(udev, state);
4907 	else
4908 		return 0;
4909 }
4910 
4911 /* Returns the U1 or U2 timeout that should be enabled.
4912  * If the tier check or timeout setting functions return with a non-zero exit
4913  * code, that means the timeout value has been finalized and we shouldn't look
4914  * at any more endpoints.
4915  */
4916 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4917 			struct usb_device *udev, enum usb3_link_state state)
4918 {
4919 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4920 	struct usb_host_config *config;
4921 	char *state_name;
4922 	int i;
4923 	u16 timeout = USB3_LPM_DISABLED;
4924 
4925 	if (state == USB3_LPM_U1)
4926 		state_name = "U1";
4927 	else if (state == USB3_LPM_U2)
4928 		state_name = "U2";
4929 	else {
4930 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4931 				state);
4932 		return timeout;
4933 	}
4934 
4935 	/* Gather some information about the currently installed configuration
4936 	 * and alternate interface settings.
4937 	 */
4938 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4939 			state, &timeout))
4940 		return timeout;
4941 
4942 	config = udev->actconfig;
4943 	if (!config)
4944 		return timeout;
4945 
4946 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4947 		struct usb_driver *driver;
4948 		struct usb_interface *intf = config->interface[i];
4949 
4950 		if (!intf)
4951 			continue;
4952 
4953 		/* Check if any currently bound drivers want hub-initiated LPM
4954 		 * disabled.
4955 		 */
4956 		if (intf->dev.driver) {
4957 			driver = to_usb_driver(intf->dev.driver);
4958 			if (driver && driver->disable_hub_initiated_lpm) {
4959 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4960 					state_name, driver->name);
4961 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4962 								      state);
4963 				if (timeout == USB3_LPM_DISABLED)
4964 					return timeout;
4965 			}
4966 		}
4967 
4968 		/* Not sure how this could happen... */
4969 		if (!intf->cur_altsetting)
4970 			continue;
4971 
4972 		if (xhci_update_timeout_for_interface(xhci, udev,
4973 					intf->cur_altsetting,
4974 					state, &timeout))
4975 			return timeout;
4976 	}
4977 	return timeout;
4978 }
4979 
4980 static int calculate_max_exit_latency(struct usb_device *udev,
4981 		enum usb3_link_state state_changed,
4982 		u16 hub_encoded_timeout)
4983 {
4984 	unsigned long long u1_mel_us = 0;
4985 	unsigned long long u2_mel_us = 0;
4986 	unsigned long long mel_us = 0;
4987 	bool disabling_u1;
4988 	bool disabling_u2;
4989 	bool enabling_u1;
4990 	bool enabling_u2;
4991 
4992 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4993 			hub_encoded_timeout == USB3_LPM_DISABLED);
4994 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4995 			hub_encoded_timeout == USB3_LPM_DISABLED);
4996 
4997 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4998 			hub_encoded_timeout != USB3_LPM_DISABLED);
4999 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5000 			hub_encoded_timeout != USB3_LPM_DISABLED);
5001 
5002 	/* If U1 was already enabled and we're not disabling it,
5003 	 * or we're going to enable U1, account for the U1 max exit latency.
5004 	 */
5005 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5006 			enabling_u1)
5007 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5008 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5009 			enabling_u2)
5010 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5011 
5012 	mel_us = max(u1_mel_us, u2_mel_us);
5013 
5014 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5015 	if (mel_us > MAX_EXIT) {
5016 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5017 				"is too big.\n", mel_us);
5018 		return -E2BIG;
5019 	}
5020 	return mel_us;
5021 }
5022 
5023 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5024 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5025 			struct usb_device *udev, enum usb3_link_state state)
5026 {
5027 	struct xhci_hcd	*xhci;
5028 	u16 hub_encoded_timeout;
5029 	int mel;
5030 	int ret;
5031 
5032 	xhci = hcd_to_xhci(hcd);
5033 	/* The LPM timeout values are pretty host-controller specific, so don't
5034 	 * enable hub-initiated timeouts unless the vendor has provided
5035 	 * information about their timeout algorithm.
5036 	 */
5037 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5038 			!xhci->devs[udev->slot_id])
5039 		return USB3_LPM_DISABLED;
5040 
5041 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5042 		return USB3_LPM_DISABLED;
5043 
5044 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5045 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5046 	if (mel < 0) {
5047 		/* Max Exit Latency is too big, disable LPM. */
5048 		hub_encoded_timeout = USB3_LPM_DISABLED;
5049 		mel = 0;
5050 	}
5051 
5052 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5053 	if (ret)
5054 		return ret;
5055 	return hub_encoded_timeout;
5056 }
5057 
5058 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5059 			struct usb_device *udev, enum usb3_link_state state)
5060 {
5061 	struct xhci_hcd	*xhci;
5062 	u16 mel;
5063 
5064 	xhci = hcd_to_xhci(hcd);
5065 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5066 			!xhci->devs[udev->slot_id])
5067 		return 0;
5068 
5069 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5070 	return xhci_change_max_exit_latency(xhci, udev, mel);
5071 }
5072 #else /* CONFIG_PM */
5073 
5074 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5075 				struct usb_device *udev, int enable)
5076 {
5077 	return 0;
5078 }
5079 
5080 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5081 {
5082 	return 0;
5083 }
5084 
5085 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5086 			struct usb_device *udev, enum usb3_link_state state)
5087 {
5088 	return USB3_LPM_DISABLED;
5089 }
5090 
5091 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5092 			struct usb_device *udev, enum usb3_link_state state)
5093 {
5094 	return 0;
5095 }
5096 #endif	/* CONFIG_PM */
5097 
5098 /*-------------------------------------------------------------------------*/
5099 
5100 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5101  * internal data structures for the device.
5102  */
5103 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5104 			struct usb_tt *tt, gfp_t mem_flags)
5105 {
5106 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5107 	struct xhci_virt_device *vdev;
5108 	struct xhci_command *config_cmd;
5109 	struct xhci_input_control_ctx *ctrl_ctx;
5110 	struct xhci_slot_ctx *slot_ctx;
5111 	unsigned long flags;
5112 	unsigned think_time;
5113 	int ret;
5114 
5115 	/* Ignore root hubs */
5116 	if (!hdev->parent)
5117 		return 0;
5118 
5119 	vdev = xhci->devs[hdev->slot_id];
5120 	if (!vdev) {
5121 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5122 		return -EINVAL;
5123 	}
5124 
5125 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5126 	if (!config_cmd)
5127 		return -ENOMEM;
5128 
5129 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5130 	if (!ctrl_ctx) {
5131 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5132 				__func__);
5133 		xhci_free_command(xhci, config_cmd);
5134 		return -ENOMEM;
5135 	}
5136 
5137 	spin_lock_irqsave(&xhci->lock, flags);
5138 	if (hdev->speed == USB_SPEED_HIGH &&
5139 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5140 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5141 		xhci_free_command(xhci, config_cmd);
5142 		spin_unlock_irqrestore(&xhci->lock, flags);
5143 		return -ENOMEM;
5144 	}
5145 
5146 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5147 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5148 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5149 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5150 	/*
5151 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5152 	 * but it may be already set to 1 when setup an xHCI virtual
5153 	 * device, so clear it anyway.
5154 	 */
5155 	if (tt->multi)
5156 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5157 	else if (hdev->speed == USB_SPEED_FULL)
5158 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5159 
5160 	if (xhci->hci_version > 0x95) {
5161 		xhci_dbg(xhci, "xHCI version %x needs hub "
5162 				"TT think time and number of ports\n",
5163 				(unsigned int) xhci->hci_version);
5164 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5165 		/* Set TT think time - convert from ns to FS bit times.
5166 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5167 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5168 		 *
5169 		 * xHCI 1.0: this field shall be 0 if the device is not a
5170 		 * High-spped hub.
5171 		 */
5172 		think_time = tt->think_time;
5173 		if (think_time != 0)
5174 			think_time = (think_time / 666) - 1;
5175 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5176 			slot_ctx->tt_info |=
5177 				cpu_to_le32(TT_THINK_TIME(think_time));
5178 	} else {
5179 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5180 				"TT think time or number of ports\n",
5181 				(unsigned int) xhci->hci_version);
5182 	}
5183 	slot_ctx->dev_state = 0;
5184 	spin_unlock_irqrestore(&xhci->lock, flags);
5185 
5186 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5187 			(xhci->hci_version > 0x95) ?
5188 			"configure endpoint" : "evaluate context");
5189 
5190 	/* Issue and wait for the configure endpoint or
5191 	 * evaluate context command.
5192 	 */
5193 	if (xhci->hci_version > 0x95)
5194 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5195 				false, false);
5196 	else
5197 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5198 				true, false);
5199 
5200 	xhci_free_command(xhci, config_cmd);
5201 	return ret;
5202 }
5203 
5204 static int xhci_get_frame(struct usb_hcd *hcd)
5205 {
5206 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5207 	/* EHCI mods by the periodic size.  Why? */
5208 	return readl(&xhci->run_regs->microframe_index) >> 3;
5209 }
5210 
5211 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5212 {
5213 	xhci->usb2_rhub.hcd = hcd;
5214 	hcd->speed = HCD_USB2;
5215 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5216 	/*
5217 	 * USB 2.0 roothub under xHCI has an integrated TT,
5218 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5219 	 * companion controller.
5220 	 */
5221 	hcd->has_tt = 1;
5222 }
5223 
5224 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5225 {
5226 	unsigned int minor_rev;
5227 
5228 	/*
5229 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5230 	 * should return 0x31 for sbrn, or that the minor revision
5231 	 * is a two digit BCD containig minor and sub-minor numbers.
5232 	 * This was later clarified in xHCI 1.2.
5233 	 *
5234 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5235 	 * minor revision set to 0x1 instead of 0x10.
5236 	 */
5237 	if (xhci->usb3_rhub.min_rev == 0x1)
5238 		minor_rev = 1;
5239 	else
5240 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5241 
5242 	switch (minor_rev) {
5243 	case 2:
5244 		hcd->speed = HCD_USB32;
5245 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5246 		hcd->self.root_hub->rx_lanes = 2;
5247 		hcd->self.root_hub->tx_lanes = 2;
5248 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5249 		break;
5250 	case 1:
5251 		hcd->speed = HCD_USB31;
5252 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5253 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5254 		break;
5255 	}
5256 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5257 		  minor_rev, minor_rev ? "Enhanced " : "");
5258 
5259 	xhci->usb3_rhub.hcd = hcd;
5260 }
5261 
5262 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5263 {
5264 	struct xhci_hcd		*xhci;
5265 	/*
5266 	 * TODO: Check with DWC3 clients for sysdev according to
5267 	 * quirks
5268 	 */
5269 	struct device		*dev = hcd->self.sysdev;
5270 	int			retval;
5271 
5272 	/* Accept arbitrarily long scatter-gather lists */
5273 	hcd->self.sg_tablesize = ~0;
5274 
5275 	/* support to build packet from discontinuous buffers */
5276 	hcd->self.no_sg_constraint = 1;
5277 
5278 	/* XHCI controllers don't stop the ep queue on short packets :| */
5279 	hcd->self.no_stop_on_short = 1;
5280 
5281 	xhci = hcd_to_xhci(hcd);
5282 
5283 	if (!usb_hcd_is_primary_hcd(hcd)) {
5284 		xhci_hcd_init_usb3_data(xhci, hcd);
5285 		return 0;
5286 	}
5287 
5288 	mutex_init(&xhci->mutex);
5289 	xhci->main_hcd = hcd;
5290 	xhci->cap_regs = hcd->regs;
5291 	xhci->op_regs = hcd->regs +
5292 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5293 	xhci->run_regs = hcd->regs +
5294 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5295 	/* Cache read-only capability registers */
5296 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5297 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5298 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5299 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5300 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5301 	if (xhci->hci_version > 0x100)
5302 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5303 
5304 	xhci->quirks |= quirks;
5305 
5306 	get_quirks(dev, xhci);
5307 
5308 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5309 	 * success event after a short transfer. This quirk will ignore such
5310 	 * spurious event.
5311 	 */
5312 	if (xhci->hci_version > 0x96)
5313 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5314 
5315 	/* Make sure the HC is halted. */
5316 	retval = xhci_halt(xhci);
5317 	if (retval)
5318 		return retval;
5319 
5320 	xhci_zero_64b_regs(xhci);
5321 
5322 	xhci_dbg(xhci, "Resetting HCD\n");
5323 	/* Reset the internal HC memory state and registers. */
5324 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5325 	if (retval)
5326 		return retval;
5327 	xhci_dbg(xhci, "Reset complete\n");
5328 
5329 	/*
5330 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5331 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5332 	 * address memory pointers actually. So, this driver clears the AC64
5333 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5334 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5335 	 */
5336 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5337 		xhci->hcc_params &= ~BIT(0);
5338 
5339 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5340 	 * if xHC supports 64-bit addressing */
5341 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5342 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5343 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5344 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5345 	} else {
5346 		/*
5347 		 * This is to avoid error in cases where a 32-bit USB
5348 		 * controller is used on a 64-bit capable system.
5349 		 */
5350 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5351 		if (retval)
5352 			return retval;
5353 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5354 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5355 	}
5356 
5357 	xhci_dbg(xhci, "Calling HCD init\n");
5358 	/* Initialize HCD and host controller data structures. */
5359 	retval = xhci_init(hcd);
5360 	if (retval)
5361 		return retval;
5362 	xhci_dbg(xhci, "Called HCD init\n");
5363 
5364 	if (xhci_hcd_is_usb3(hcd))
5365 		xhci_hcd_init_usb3_data(xhci, hcd);
5366 	else
5367 		xhci_hcd_init_usb2_data(xhci, hcd);
5368 
5369 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5370 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5371 
5372 	return 0;
5373 }
5374 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5375 
5376 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5377 		struct usb_host_endpoint *ep)
5378 {
5379 	struct xhci_hcd *xhci;
5380 	struct usb_device *udev;
5381 	unsigned int slot_id;
5382 	unsigned int ep_index;
5383 	unsigned long flags;
5384 
5385 	xhci = hcd_to_xhci(hcd);
5386 
5387 	spin_lock_irqsave(&xhci->lock, flags);
5388 	udev = (struct usb_device *)ep->hcpriv;
5389 	slot_id = udev->slot_id;
5390 	ep_index = xhci_get_endpoint_index(&ep->desc);
5391 
5392 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5393 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5394 	spin_unlock_irqrestore(&xhci->lock, flags);
5395 }
5396 
5397 static const struct hc_driver xhci_hc_driver = {
5398 	.description =		"xhci-hcd",
5399 	.product_desc =		"xHCI Host Controller",
5400 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5401 
5402 	/*
5403 	 * generic hardware linkage
5404 	 */
5405 	.irq =			xhci_irq,
5406 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5407 				HCD_BH,
5408 
5409 	/*
5410 	 * basic lifecycle operations
5411 	 */
5412 	.reset =		NULL, /* set in xhci_init_driver() */
5413 	.start =		xhci_run,
5414 	.stop =			xhci_stop,
5415 	.shutdown =		xhci_shutdown,
5416 
5417 	/*
5418 	 * managing i/o requests and associated device resources
5419 	 */
5420 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5421 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5422 	.urb_enqueue =		xhci_urb_enqueue,
5423 	.urb_dequeue =		xhci_urb_dequeue,
5424 	.alloc_dev =		xhci_alloc_dev,
5425 	.free_dev =		xhci_free_dev,
5426 	.alloc_streams =	xhci_alloc_streams,
5427 	.free_streams =		xhci_free_streams,
5428 	.add_endpoint =		xhci_add_endpoint,
5429 	.drop_endpoint =	xhci_drop_endpoint,
5430 	.endpoint_disable =	xhci_endpoint_disable,
5431 	.endpoint_reset =	xhci_endpoint_reset,
5432 	.check_bandwidth =	xhci_check_bandwidth,
5433 	.reset_bandwidth =	xhci_reset_bandwidth,
5434 	.address_device =	xhci_address_device,
5435 	.enable_device =	xhci_enable_device,
5436 	.update_hub_device =	xhci_update_hub_device,
5437 	.reset_device =		xhci_discover_or_reset_device,
5438 
5439 	/*
5440 	 * scheduling support
5441 	 */
5442 	.get_frame_number =	xhci_get_frame,
5443 
5444 	/*
5445 	 * root hub support
5446 	 */
5447 	.hub_control =		xhci_hub_control,
5448 	.hub_status_data =	xhci_hub_status_data,
5449 	.bus_suspend =		xhci_bus_suspend,
5450 	.bus_resume =		xhci_bus_resume,
5451 	.get_resuming_ports =	xhci_get_resuming_ports,
5452 
5453 	/*
5454 	 * call back when device connected and addressed
5455 	 */
5456 	.update_device =        xhci_update_device,
5457 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5458 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5459 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5460 	.find_raw_port_number =	xhci_find_raw_port_number,
5461 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5462 };
5463 
5464 void xhci_init_driver(struct hc_driver *drv,
5465 		      const struct xhci_driver_overrides *over)
5466 {
5467 	BUG_ON(!over);
5468 
5469 	/* Copy the generic table to drv then apply the overrides */
5470 	*drv = xhci_hc_driver;
5471 
5472 	if (over) {
5473 		drv->hcd_priv_size += over->extra_priv_size;
5474 		if (over->reset)
5475 			drv->reset = over->reset;
5476 		if (over->start)
5477 			drv->start = over->start;
5478 		if (over->add_endpoint)
5479 			drv->add_endpoint = over->add_endpoint;
5480 		if (over->drop_endpoint)
5481 			drv->drop_endpoint = over->drop_endpoint;
5482 		if (over->check_bandwidth)
5483 			drv->check_bandwidth = over->check_bandwidth;
5484 		if (over->reset_bandwidth)
5485 			drv->reset_bandwidth = over->reset_bandwidth;
5486 	}
5487 }
5488 EXPORT_SYMBOL_GPL(xhci_init_driver);
5489 
5490 MODULE_DESCRIPTION(DRIVER_DESC);
5491 MODULE_AUTHOR(DRIVER_AUTHOR);
5492 MODULE_LICENSE("GPL");
5493 
5494 static int __init xhci_hcd_init(void)
5495 {
5496 	/*
5497 	 * Check the compiler generated sizes of structures that must be laid
5498 	 * out in specific ways for hardware access.
5499 	 */
5500 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5501 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5502 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5503 	/* xhci_device_control has eight fields, and also
5504 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5505 	 */
5506 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5507 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5508 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5509 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5510 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5511 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5512 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5513 
5514 	if (usb_disabled())
5515 		return -ENODEV;
5516 
5517 	xhci_debugfs_create_root();
5518 	xhci_dbc_init();
5519 
5520 	return 0;
5521 }
5522 
5523 /*
5524  * If an init function is provided, an exit function must also be provided
5525  * to allow module unload.
5526  */
5527 static void __exit xhci_hcd_fini(void)
5528 {
5529 	xhci_debugfs_remove_root();
5530 	xhci_dbc_exit();
5531 }
5532 
5533 module_init(xhci_hcd_init);
5534 module_exit(xhci_hcd_fini);
5535