1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 202 if (ret) 203 return ret; 204 205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 207 208 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 209 "Wait for controller to be ready for doorbell rings"); 210 /* 211 * xHCI cannot write to any doorbells or operational registers other 212 * than status until the "Controller Not Ready" flag is cleared. 213 */ 214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 u32 intrs; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 271 ARRAY_SIZE(xhci->run_regs->ir_set)); 272 273 for (i = 0; i < intrs; i++) { 274 struct xhci_intr_reg __iomem *ir; 275 276 ir = &xhci->run_regs->ir_set[i]; 277 val = xhci_read_64(xhci, &ir->erst_base); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_base); 280 val= xhci_read_64(xhci, &ir->erst_dequeue); 281 if (upper_32_bits(val)) 282 xhci_write_64(xhci, 0, &ir->erst_dequeue); 283 } 284 285 /* Wait for the fault to appear. It will be cleared on reset */ 286 err = xhci_handshake(&xhci->op_regs->status, 287 STS_FATAL, STS_FATAL, 288 XHCI_MAX_HALT_USEC); 289 if (!err) 290 xhci_info(xhci, "Fault detected\n"); 291 } 292 293 #ifdef CONFIG_USB_PCI 294 /* 295 * Set up MSI 296 */ 297 static int xhci_setup_msi(struct xhci_hcd *xhci) 298 { 299 int ret; 300 /* 301 * TODO:Check with MSI Soc for sysdev 302 */ 303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 304 305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 306 if (ret < 0) { 307 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 308 "failed to allocate MSI entry"); 309 return ret; 310 } 311 312 ret = request_irq(pdev->irq, xhci_msi_irq, 313 0, "xhci_hcd", xhci_to_hcd(xhci)); 314 if (ret) { 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 316 "disable MSI interrupt"); 317 pci_free_irq_vectors(pdev); 318 } 319 320 return ret; 321 } 322 323 /* 324 * Set up MSI-X 325 */ 326 static int xhci_setup_msix(struct xhci_hcd *xhci) 327 { 328 int i, ret; 329 struct usb_hcd *hcd = xhci_to_hcd(xhci); 330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 331 332 /* 333 * calculate number of msi-x vectors supported. 334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 335 * with max number of interrupters based on the xhci HCSPARAMS1. 336 * - num_online_cpus: maximum msi-x vectors per CPUs core. 337 * Add additional 1 vector to ensure always available interrupt. 338 */ 339 xhci->msix_count = min(num_online_cpus() + 1, 340 HCS_MAX_INTRS(xhci->hcs_params1)); 341 342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 343 PCI_IRQ_MSIX); 344 if (ret < 0) { 345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 346 "Failed to enable MSI-X"); 347 return ret; 348 } 349 350 for (i = 0; i < xhci->msix_count; i++) { 351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 352 "xhci_hcd", xhci_to_hcd(xhci)); 353 if (ret) 354 goto disable_msix; 355 } 356 357 hcd->msix_enabled = 1; 358 return ret; 359 360 disable_msix: 361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 362 while (--i >= 0) 363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 364 pci_free_irq_vectors(pdev); 365 return ret; 366 } 367 368 /* Free any IRQs and disable MSI-X */ 369 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 370 { 371 struct usb_hcd *hcd = xhci_to_hcd(xhci); 372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 373 374 if (xhci->quirks & XHCI_PLAT) 375 return; 376 377 /* return if using legacy interrupt */ 378 if (hcd->irq > 0) 379 return; 380 381 if (hcd->msix_enabled) { 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 386 } else { 387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 388 } 389 390 pci_free_irq_vectors(pdev); 391 hcd->msix_enabled = 0; 392 } 393 394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 395 { 396 struct usb_hcd *hcd = xhci_to_hcd(xhci); 397 398 if (hcd->msix_enabled) { 399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 400 int i; 401 402 for (i = 0; i < xhci->msix_count; i++) 403 synchronize_irq(pci_irq_vector(pdev, i)); 404 } 405 } 406 407 static int xhci_try_enable_msi(struct usb_hcd *hcd) 408 { 409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 struct pci_dev *pdev; 411 int ret; 412 413 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 414 if (xhci->quirks & XHCI_PLAT) 415 return 0; 416 417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 418 /* 419 * Some Fresco Logic host controllers advertise MSI, but fail to 420 * generate interrupts. Don't even try to enable MSI. 421 */ 422 if (xhci->quirks & XHCI_BROKEN_MSI) 423 goto legacy_irq; 424 425 /* unregister the legacy interrupt */ 426 if (hcd->irq) 427 free_irq(hcd->irq, hcd); 428 hcd->irq = 0; 429 430 ret = xhci_setup_msix(xhci); 431 if (ret) 432 /* fall back to msi*/ 433 ret = xhci_setup_msi(xhci); 434 435 if (!ret) { 436 hcd->msi_enabled = 1; 437 return 0; 438 } 439 440 if (!pdev->irq) { 441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 442 return -EINVAL; 443 } 444 445 legacy_irq: 446 if (!strlen(hcd->irq_descr)) 447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 448 hcd->driver->description, hcd->self.busnum); 449 450 /* fall back to legacy interrupt*/ 451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 452 hcd->irq_descr, hcd); 453 if (ret) { 454 xhci_err(xhci, "request interrupt %d failed\n", 455 pdev->irq); 456 return ret; 457 } 458 hcd->irq = pdev->irq; 459 return 0; 460 } 461 462 #else 463 464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 465 { 466 return 0; 467 } 468 469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 470 { 471 } 472 473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 474 { 475 } 476 477 #endif 478 479 static void compliance_mode_recovery(struct timer_list *t) 480 { 481 struct xhci_hcd *xhci; 482 struct usb_hcd *hcd; 483 struct xhci_hub *rhub; 484 u32 temp; 485 int i; 486 487 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 488 rhub = &xhci->usb3_rhub; 489 hcd = rhub->hcd; 490 491 if (!hcd) 492 return; 493 494 for (i = 0; i < rhub->num_ports; i++) { 495 temp = readl(rhub->ports[i]->addr); 496 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 497 /* 498 * Compliance Mode Detected. Letting USB Core 499 * handle the Warm Reset 500 */ 501 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 502 "Compliance mode detected->port %d", 503 i + 1); 504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 505 "Attempting compliance mode recovery"); 506 507 if (hcd->state == HC_STATE_SUSPENDED) 508 usb_hcd_resume_root_hub(hcd); 509 510 usb_hcd_poll_rh_status(hcd); 511 } 512 } 513 514 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 515 mod_timer(&xhci->comp_mode_recovery_timer, 516 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 517 } 518 519 /* 520 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 521 * that causes ports behind that hardware to enter compliance mode sometimes. 522 * The quirk creates a timer that polls every 2 seconds the link state of 523 * each host controller's port and recovers it by issuing a Warm reset 524 * if Compliance mode is detected, otherwise the port will become "dead" (no 525 * device connections or disconnections will be detected anymore). Becasue no 526 * status event is generated when entering compliance mode (per xhci spec), 527 * this quirk is needed on systems that have the failing hardware installed. 528 */ 529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 530 { 531 xhci->port_status_u0 = 0; 532 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 533 0); 534 xhci->comp_mode_recovery_timer.expires = jiffies + 535 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 536 537 add_timer(&xhci->comp_mode_recovery_timer); 538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 539 "Compliance mode recovery timer initialized"); 540 } 541 542 /* 543 * This function identifies the systems that have installed the SN65LVPE502CP 544 * USB3.0 re-driver and that need the Compliance Mode Quirk. 545 * Systems: 546 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 547 */ 548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 549 { 550 const char *dmi_product_name, *dmi_sys_vendor; 551 552 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 553 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 554 if (!dmi_product_name || !dmi_sys_vendor) 555 return false; 556 557 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 558 return false; 559 560 if (strstr(dmi_product_name, "Z420") || 561 strstr(dmi_product_name, "Z620") || 562 strstr(dmi_product_name, "Z820") || 563 strstr(dmi_product_name, "Z1 Workstation")) 564 return true; 565 566 return false; 567 } 568 569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 570 { 571 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 572 } 573 574 575 /* 576 * Initialize memory for HCD and xHC (one-time init). 577 * 578 * Program the PAGESIZE register, initialize the device context array, create 579 * device contexts (?), set up a command ring segment (or two?), create event 580 * ring (one for now). 581 */ 582 static int xhci_init(struct usb_hcd *hcd) 583 { 584 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 585 int retval; 586 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 588 spin_lock_init(&xhci->lock); 589 if (xhci->hci_version == 0x95 && link_quirk) { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 591 "QUIRK: Not clearing Link TRB chain bits."); 592 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 593 } else { 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 595 "xHCI doesn't need link TRB QUIRK"); 596 } 597 retval = xhci_mem_init(xhci, GFP_KERNEL); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 599 600 /* Initializing Compliance Mode Recovery Data If Needed */ 601 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 602 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 603 compliance_mode_recovery_timer_init(xhci); 604 } 605 606 return retval; 607 } 608 609 /*-------------------------------------------------------------------------*/ 610 611 612 static int xhci_run_finished(struct xhci_hcd *xhci) 613 { 614 if (xhci_start(xhci)) { 615 xhci_halt(xhci); 616 return -ENODEV; 617 } 618 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 619 620 if (xhci->quirks & XHCI_NEC_HOST) 621 xhci_ring_cmd_db(xhci); 622 623 return 0; 624 } 625 626 /* 627 * Start the HC after it was halted. 628 * 629 * This function is called by the USB core when the HC driver is added. 630 * Its opposite is xhci_stop(). 631 * 632 * xhci_init() must be called once before this function can be called. 633 * Reset the HC, enable device slot contexts, program DCBAAP, and 634 * set command ring pointer and event ring pointer. 635 * 636 * Setup MSI-X vectors and enable interrupts. 637 */ 638 int xhci_run(struct usb_hcd *hcd) 639 { 640 u32 temp; 641 u64 temp_64; 642 int ret; 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 /* Start the xHCI host controller running only after the USB 2.0 roothub 646 * is setup. 647 */ 648 649 hcd->uses_new_polling = 1; 650 if (!usb_hcd_is_primary_hcd(hcd)) 651 return xhci_run_finished(xhci); 652 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 654 655 ret = xhci_try_enable_msi(hcd); 656 if (ret) 657 return ret; 658 659 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 660 temp_64 &= ~ERST_PTR_MASK; 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 663 664 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 665 "// Set the interrupt modulation register"); 666 temp = readl(&xhci->ir_set->irq_control); 667 temp &= ~ER_IRQ_INTERVAL_MASK; 668 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 669 writel(temp, &xhci->ir_set->irq_control); 670 671 /* Set the HCD state before we enable the irqs */ 672 temp = readl(&xhci->op_regs->command); 673 temp |= (CMD_EIE); 674 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 675 "// Enable interrupts, cmd = 0x%x.", temp); 676 writel(temp, &xhci->op_regs->command); 677 678 temp = readl(&xhci->ir_set->irq_pending); 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 680 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 681 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 682 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 683 684 if (xhci->quirks & XHCI_NEC_HOST) { 685 struct xhci_command *command; 686 687 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 688 if (!command) 689 return -ENOMEM; 690 691 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 692 TRB_TYPE(TRB_NEC_GET_FW)); 693 if (ret) 694 xhci_free_command(xhci, command); 695 } 696 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 697 "Finished %s for main hcd", __func__); 698 699 xhci_create_dbc_dev(xhci); 700 701 xhci_debugfs_init(xhci); 702 703 if (xhci_has_one_roothub(xhci)) 704 return xhci_run_finished(xhci); 705 706 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 707 708 return 0; 709 } 710 EXPORT_SYMBOL_GPL(xhci_run); 711 712 /* 713 * Stop xHCI driver. 714 * 715 * This function is called by the USB core when the HC driver is removed. 716 * Its opposite is xhci_run(). 717 * 718 * Disable device contexts, disable IRQs, and quiesce the HC. 719 * Reset the HC, finish any completed transactions, and cleanup memory. 720 */ 721 static void xhci_stop(struct usb_hcd *hcd) 722 { 723 u32 temp; 724 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 725 726 mutex_lock(&xhci->mutex); 727 728 /* Only halt host and free memory after both hcds are removed */ 729 if (!usb_hcd_is_primary_hcd(hcd)) { 730 mutex_unlock(&xhci->mutex); 731 return; 732 } 733 734 xhci_remove_dbc_dev(xhci); 735 736 spin_lock_irq(&xhci->lock); 737 xhci->xhc_state |= XHCI_STATE_HALTED; 738 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 739 xhci_halt(xhci); 740 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 741 spin_unlock_irq(&xhci->lock); 742 743 xhci_cleanup_msix(xhci); 744 745 /* Deleting Compliance Mode Recovery Timer */ 746 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 747 (!(xhci_all_ports_seen_u0(xhci)))) { 748 del_timer_sync(&xhci->comp_mode_recovery_timer); 749 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 750 "%s: compliance mode recovery timer deleted", 751 __func__); 752 } 753 754 if (xhci->quirks & XHCI_AMD_PLL_FIX) 755 usb_amd_dev_put(); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 758 "// Disabling event ring interrupts"); 759 temp = readl(&xhci->op_regs->status); 760 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 761 temp = readl(&xhci->ir_set->irq_pending); 762 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 763 764 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 765 xhci_mem_cleanup(xhci); 766 xhci_debugfs_exit(xhci); 767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 768 "xhci_stop completed - status = %x", 769 readl(&xhci->op_regs->status)); 770 mutex_unlock(&xhci->mutex); 771 } 772 773 /* 774 * Shutdown HC (not bus-specific) 775 * 776 * This is called when the machine is rebooting or halting. We assume that the 777 * machine will be powered off, and the HC's internal state will be reset. 778 * Don't bother to free memory. 779 * 780 * This will only ever be called with the main usb_hcd (the USB3 roothub). 781 */ 782 void xhci_shutdown(struct usb_hcd *hcd) 783 { 784 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 785 786 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 787 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 788 789 /* Don't poll the roothubs after shutdown. */ 790 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 791 __func__, hcd->self.busnum); 792 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 793 del_timer_sync(&hcd->rh_timer); 794 795 if (xhci->shared_hcd) { 796 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 797 del_timer_sync(&xhci->shared_hcd->rh_timer); 798 } 799 800 spin_lock_irq(&xhci->lock); 801 xhci_halt(xhci); 802 /* Workaround for spurious wakeups at shutdown with HSW */ 803 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 804 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 805 spin_unlock_irq(&xhci->lock); 806 807 xhci_cleanup_msix(xhci); 808 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "xhci_shutdown completed - status = %x", 811 readl(&xhci->op_regs->status)); 812 } 813 EXPORT_SYMBOL_GPL(xhci_shutdown); 814 815 #ifdef CONFIG_PM 816 static void xhci_save_registers(struct xhci_hcd *xhci) 817 { 818 xhci->s3.command = readl(&xhci->op_regs->command); 819 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 820 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 821 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 822 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 823 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 824 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 825 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 826 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 827 } 828 829 static void xhci_restore_registers(struct xhci_hcd *xhci) 830 { 831 writel(xhci->s3.command, &xhci->op_regs->command); 832 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 833 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 834 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 835 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 836 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 837 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 838 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 839 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 840 } 841 842 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 843 { 844 u64 val_64; 845 846 /* step 2: initialize command ring buffer */ 847 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 848 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 849 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 850 xhci->cmd_ring->dequeue) & 851 (u64) ~CMD_RING_RSVD_BITS) | 852 xhci->cmd_ring->cycle_state; 853 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 854 "// Setting command ring address to 0x%llx", 855 (long unsigned long) val_64); 856 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 857 } 858 859 /* 860 * The whole command ring must be cleared to zero when we suspend the host. 861 * 862 * The host doesn't save the command ring pointer in the suspend well, so we 863 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 864 * aligned, because of the reserved bits in the command ring dequeue pointer 865 * register. Therefore, we can't just set the dequeue pointer back in the 866 * middle of the ring (TRBs are 16-byte aligned). 867 */ 868 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 869 { 870 struct xhci_ring *ring; 871 struct xhci_segment *seg; 872 873 ring = xhci->cmd_ring; 874 seg = ring->deq_seg; 875 do { 876 memset(seg->trbs, 0, 877 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 878 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 879 cpu_to_le32(~TRB_CYCLE); 880 seg = seg->next; 881 } while (seg != ring->deq_seg); 882 883 /* Reset the software enqueue and dequeue pointers */ 884 ring->deq_seg = ring->first_seg; 885 ring->dequeue = ring->first_seg->trbs; 886 ring->enq_seg = ring->deq_seg; 887 ring->enqueue = ring->dequeue; 888 889 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 890 /* 891 * Ring is now zeroed, so the HW should look for change of ownership 892 * when the cycle bit is set to 1. 893 */ 894 ring->cycle_state = 1; 895 896 /* 897 * Reset the hardware dequeue pointer. 898 * Yes, this will need to be re-written after resume, but we're paranoid 899 * and want to make sure the hardware doesn't access bogus memory 900 * because, say, the BIOS or an SMI started the host without changing 901 * the command ring pointers. 902 */ 903 xhci_set_cmd_ring_deq(xhci); 904 } 905 906 /* 907 * Disable port wake bits if do_wakeup is not set. 908 * 909 * Also clear a possible internal port wake state left hanging for ports that 910 * detected termination but never successfully enumerated (trained to 0U). 911 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 912 * at enumeration clears this wake, force one here as well for unconnected ports 913 */ 914 915 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 916 struct xhci_hub *rhub, 917 bool do_wakeup) 918 { 919 unsigned long flags; 920 u32 t1, t2, portsc; 921 int i; 922 923 spin_lock_irqsave(&xhci->lock, flags); 924 925 for (i = 0; i < rhub->num_ports; i++) { 926 portsc = readl(rhub->ports[i]->addr); 927 t1 = xhci_port_state_to_neutral(portsc); 928 t2 = t1; 929 930 /* clear wake bits if do_wake is not set */ 931 if (!do_wakeup) 932 t2 &= ~PORT_WAKE_BITS; 933 934 /* Don't touch csc bit if connected or connect change is set */ 935 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 936 t2 |= PORT_CSC; 937 938 if (t1 != t2) { 939 writel(t2, rhub->ports[i]->addr); 940 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 941 rhub->hcd->self.busnum, i + 1, portsc, t2); 942 } 943 } 944 spin_unlock_irqrestore(&xhci->lock, flags); 945 } 946 947 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 948 { 949 struct xhci_port **ports; 950 int port_index; 951 u32 status; 952 u32 portsc; 953 954 status = readl(&xhci->op_regs->status); 955 if (status & STS_EINT) 956 return true; 957 /* 958 * Checking STS_EINT is not enough as there is a lag between a change 959 * bit being set and the Port Status Change Event that it generated 960 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 961 */ 962 963 port_index = xhci->usb2_rhub.num_ports; 964 ports = xhci->usb2_rhub.ports; 965 while (port_index--) { 966 portsc = readl(ports[port_index]->addr); 967 if (portsc & PORT_CHANGE_MASK || 968 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 969 return true; 970 } 971 port_index = xhci->usb3_rhub.num_ports; 972 ports = xhci->usb3_rhub.ports; 973 while (port_index--) { 974 portsc = readl(ports[port_index]->addr); 975 if (portsc & PORT_CHANGE_MASK || 976 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 977 return true; 978 } 979 return false; 980 } 981 982 /* 983 * Stop HC (not bus-specific) 984 * 985 * This is called when the machine transition into S3/S4 mode. 986 * 987 */ 988 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 989 { 990 int rc = 0; 991 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 992 struct usb_hcd *hcd = xhci_to_hcd(xhci); 993 u32 command; 994 u32 res; 995 996 if (!hcd->state) 997 return 0; 998 999 if (hcd->state != HC_STATE_SUSPENDED || 1000 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1001 return -EINVAL; 1002 1003 /* Clear root port wake on bits if wakeup not allowed. */ 1004 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1005 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1006 1007 if (!HCD_HW_ACCESSIBLE(hcd)) 1008 return 0; 1009 1010 xhci_dbc_suspend(xhci); 1011 1012 /* Don't poll the roothubs on bus suspend. */ 1013 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1014 __func__, hcd->self.busnum); 1015 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1016 del_timer_sync(&hcd->rh_timer); 1017 if (xhci->shared_hcd) { 1018 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1019 del_timer_sync(&xhci->shared_hcd->rh_timer); 1020 } 1021 1022 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1023 usleep_range(1000, 1500); 1024 1025 spin_lock_irq(&xhci->lock); 1026 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1027 if (xhci->shared_hcd) 1028 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1029 /* step 1: stop endpoint */ 1030 /* skipped assuming that port suspend has done */ 1031 1032 /* step 2: clear Run/Stop bit */ 1033 command = readl(&xhci->op_regs->command); 1034 command &= ~CMD_RUN; 1035 writel(command, &xhci->op_regs->command); 1036 1037 /* Some chips from Fresco Logic need an extraordinary delay */ 1038 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1039 1040 if (xhci_handshake(&xhci->op_regs->status, 1041 STS_HALT, STS_HALT, delay)) { 1042 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1043 spin_unlock_irq(&xhci->lock); 1044 return -ETIMEDOUT; 1045 } 1046 xhci_clear_command_ring(xhci); 1047 1048 /* step 3: save registers */ 1049 xhci_save_registers(xhci); 1050 1051 /* step 4: set CSS flag */ 1052 command = readl(&xhci->op_regs->command); 1053 command |= CMD_CSS; 1054 writel(command, &xhci->op_regs->command); 1055 xhci->broken_suspend = 0; 1056 if (xhci_handshake(&xhci->op_regs->status, 1057 STS_SAVE, 0, 20 * 1000)) { 1058 /* 1059 * AMD SNPS xHC 3.0 occasionally does not clear the 1060 * SSS bit of USBSTS and when driver tries to poll 1061 * to see if the xHC clears BIT(8) which never happens 1062 * and driver assumes that controller is not responding 1063 * and times out. To workaround this, its good to check 1064 * if SRE and HCE bits are not set (as per xhci 1065 * Section 5.4.2) and bypass the timeout. 1066 */ 1067 res = readl(&xhci->op_regs->status); 1068 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1069 (((res & STS_SRE) == 0) && 1070 ((res & STS_HCE) == 0))) { 1071 xhci->broken_suspend = 1; 1072 } else { 1073 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1074 spin_unlock_irq(&xhci->lock); 1075 return -ETIMEDOUT; 1076 } 1077 } 1078 spin_unlock_irq(&xhci->lock); 1079 1080 /* 1081 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1082 * is about to be suspended. 1083 */ 1084 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1085 (!(xhci_all_ports_seen_u0(xhci)))) { 1086 del_timer_sync(&xhci->comp_mode_recovery_timer); 1087 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1088 "%s: compliance mode recovery timer deleted", 1089 __func__); 1090 } 1091 1092 /* step 5: remove core well power */ 1093 /* synchronize irq when using MSI-X */ 1094 xhci_msix_sync_irqs(xhci); 1095 1096 return rc; 1097 } 1098 EXPORT_SYMBOL_GPL(xhci_suspend); 1099 1100 /* 1101 * start xHC (not bus-specific) 1102 * 1103 * This is called when the machine transition from S3/S4 mode. 1104 * 1105 */ 1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1107 { 1108 u32 command, temp = 0; 1109 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1110 int retval = 0; 1111 bool comp_timer_running = false; 1112 bool pending_portevent = false; 1113 bool reinit_xhc = false; 1114 1115 if (!hcd->state) 1116 return 0; 1117 1118 /* Wait a bit if either of the roothubs need to settle from the 1119 * transition into bus suspend. 1120 */ 1121 1122 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1123 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1124 msleep(100); 1125 1126 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1127 if (xhci->shared_hcd) 1128 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1129 1130 spin_lock_irq(&xhci->lock); 1131 1132 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1133 reinit_xhc = true; 1134 1135 if (!reinit_xhc) { 1136 /* 1137 * Some controllers might lose power during suspend, so wait 1138 * for controller not ready bit to clear, just as in xHC init. 1139 */ 1140 retval = xhci_handshake(&xhci->op_regs->status, 1141 STS_CNR, 0, 10 * 1000 * 1000); 1142 if (retval) { 1143 xhci_warn(xhci, "Controller not ready at resume %d\n", 1144 retval); 1145 spin_unlock_irq(&xhci->lock); 1146 return retval; 1147 } 1148 /* step 1: restore register */ 1149 xhci_restore_registers(xhci); 1150 /* step 2: initialize command ring buffer */ 1151 xhci_set_cmd_ring_deq(xhci); 1152 /* step 3: restore state and start state*/ 1153 /* step 3: set CRS flag */ 1154 command = readl(&xhci->op_regs->command); 1155 command |= CMD_CRS; 1156 writel(command, &xhci->op_regs->command); 1157 /* 1158 * Some controllers take up to 55+ ms to complete the controller 1159 * restore so setting the timeout to 100ms. Xhci specification 1160 * doesn't mention any timeout value. 1161 */ 1162 if (xhci_handshake(&xhci->op_regs->status, 1163 STS_RESTORE, 0, 100 * 1000)) { 1164 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1165 spin_unlock_irq(&xhci->lock); 1166 return -ETIMEDOUT; 1167 } 1168 } 1169 1170 temp = readl(&xhci->op_regs->status); 1171 1172 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1173 if (temp & (STS_SRE | STS_HCE)) { 1174 reinit_xhc = true; 1175 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1176 } 1177 1178 if (reinit_xhc) { 1179 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1180 !(xhci_all_ports_seen_u0(xhci))) { 1181 del_timer_sync(&xhci->comp_mode_recovery_timer); 1182 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1183 "Compliance Mode Recovery Timer deleted!"); 1184 } 1185 1186 /* Let the USB core know _both_ roothubs lost power. */ 1187 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1188 if (xhci->shared_hcd) 1189 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1190 1191 xhci_dbg(xhci, "Stop HCD\n"); 1192 xhci_halt(xhci); 1193 xhci_zero_64b_regs(xhci); 1194 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1195 spin_unlock_irq(&xhci->lock); 1196 if (retval) 1197 return retval; 1198 xhci_cleanup_msix(xhci); 1199 1200 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1201 temp = readl(&xhci->op_regs->status); 1202 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1203 temp = readl(&xhci->ir_set->irq_pending); 1204 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1205 1206 xhci_dbg(xhci, "cleaning up memory\n"); 1207 xhci_mem_cleanup(xhci); 1208 xhci_debugfs_exit(xhci); 1209 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1210 readl(&xhci->op_regs->status)); 1211 1212 /* USB core calls the PCI reinit and start functions twice: 1213 * first with the primary HCD, and then with the secondary HCD. 1214 * If we don't do the same, the host will never be started. 1215 */ 1216 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1217 retval = xhci_init(hcd); 1218 if (retval) 1219 return retval; 1220 comp_timer_running = true; 1221 1222 xhci_dbg(xhci, "Start the primary HCD\n"); 1223 retval = xhci_run(hcd); 1224 if (!retval && xhci->shared_hcd) { 1225 xhci_dbg(xhci, "Start the secondary HCD\n"); 1226 retval = xhci_run(xhci->shared_hcd); 1227 } 1228 1229 hcd->state = HC_STATE_SUSPENDED; 1230 if (xhci->shared_hcd) 1231 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1232 goto done; 1233 } 1234 1235 /* step 4: set Run/Stop bit */ 1236 command = readl(&xhci->op_regs->command); 1237 command |= CMD_RUN; 1238 writel(command, &xhci->op_regs->command); 1239 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1240 0, 250 * 1000); 1241 1242 /* step 5: walk topology and initialize portsc, 1243 * portpmsc and portli 1244 */ 1245 /* this is done in bus_resume */ 1246 1247 /* step 6: restart each of the previously 1248 * Running endpoints by ringing their doorbells 1249 */ 1250 1251 spin_unlock_irq(&xhci->lock); 1252 1253 xhci_dbc_resume(xhci); 1254 1255 done: 1256 if (retval == 0) { 1257 /* 1258 * Resume roothubs only if there are pending events. 1259 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1260 * the first wake signalling failed, give it that chance. 1261 */ 1262 pending_portevent = xhci_pending_portevent(xhci); 1263 if (!pending_portevent) { 1264 msleep(120); 1265 pending_portevent = xhci_pending_portevent(xhci); 1266 } 1267 1268 if (pending_portevent) { 1269 if (xhci->shared_hcd) 1270 usb_hcd_resume_root_hub(xhci->shared_hcd); 1271 usb_hcd_resume_root_hub(hcd); 1272 } 1273 } 1274 /* 1275 * If system is subject to the Quirk, Compliance Mode Timer needs to 1276 * be re-initialized Always after a system resume. Ports are subject 1277 * to suffer the Compliance Mode issue again. It doesn't matter if 1278 * ports have entered previously to U0 before system's suspension. 1279 */ 1280 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1281 compliance_mode_recovery_timer_init(xhci); 1282 1283 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1284 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1285 1286 /* Re-enable port polling. */ 1287 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1288 __func__, hcd->self.busnum); 1289 if (xhci->shared_hcd) { 1290 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1291 usb_hcd_poll_rh_status(xhci->shared_hcd); 1292 } 1293 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1294 usb_hcd_poll_rh_status(hcd); 1295 1296 return retval; 1297 } 1298 EXPORT_SYMBOL_GPL(xhci_resume); 1299 #endif /* CONFIG_PM */ 1300 1301 /*-------------------------------------------------------------------------*/ 1302 1303 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1304 { 1305 void *temp; 1306 int ret = 0; 1307 unsigned int buf_len; 1308 enum dma_data_direction dir; 1309 1310 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1311 buf_len = urb->transfer_buffer_length; 1312 1313 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1314 dev_to_node(hcd->self.sysdev)); 1315 1316 if (usb_urb_dir_out(urb)) 1317 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1318 temp, buf_len, 0); 1319 1320 urb->transfer_buffer = temp; 1321 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1322 urb->transfer_buffer, 1323 urb->transfer_buffer_length, 1324 dir); 1325 1326 if (dma_mapping_error(hcd->self.sysdev, 1327 urb->transfer_dma)) { 1328 ret = -EAGAIN; 1329 kfree(temp); 1330 } else { 1331 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1332 } 1333 1334 return ret; 1335 } 1336 1337 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1338 struct urb *urb) 1339 { 1340 bool ret = false; 1341 unsigned int i; 1342 unsigned int len = 0; 1343 unsigned int trb_size; 1344 unsigned int max_pkt; 1345 struct scatterlist *sg; 1346 struct scatterlist *tail_sg; 1347 1348 tail_sg = urb->sg; 1349 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1350 1351 if (!urb->num_sgs) 1352 return ret; 1353 1354 if (urb->dev->speed >= USB_SPEED_SUPER) 1355 trb_size = TRB_CACHE_SIZE_SS; 1356 else 1357 trb_size = TRB_CACHE_SIZE_HS; 1358 1359 if (urb->transfer_buffer_length != 0 && 1360 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1361 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1362 len = len + sg->length; 1363 if (i > trb_size - 2) { 1364 len = len - tail_sg->length; 1365 if (len < max_pkt) { 1366 ret = true; 1367 break; 1368 } 1369 1370 tail_sg = sg_next(tail_sg); 1371 } 1372 } 1373 } 1374 return ret; 1375 } 1376 1377 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1378 { 1379 unsigned int len; 1380 unsigned int buf_len; 1381 enum dma_data_direction dir; 1382 1383 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1384 1385 buf_len = urb->transfer_buffer_length; 1386 1387 if (IS_ENABLED(CONFIG_HAS_DMA) && 1388 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1389 dma_unmap_single(hcd->self.sysdev, 1390 urb->transfer_dma, 1391 urb->transfer_buffer_length, 1392 dir); 1393 1394 if (usb_urb_dir_in(urb)) { 1395 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1396 urb->transfer_buffer, 1397 buf_len, 1398 0); 1399 if (len != buf_len) { 1400 xhci_dbg(hcd_to_xhci(hcd), 1401 "Copy from tmp buf to urb sg list failed\n"); 1402 urb->actual_length = len; 1403 } 1404 } 1405 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1406 kfree(urb->transfer_buffer); 1407 urb->transfer_buffer = NULL; 1408 } 1409 1410 /* 1411 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1412 * we'll copy the actual data into the TRB address register. This is limited to 1413 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1414 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1415 */ 1416 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1417 gfp_t mem_flags) 1418 { 1419 struct xhci_hcd *xhci; 1420 1421 xhci = hcd_to_xhci(hcd); 1422 1423 if (xhci_urb_suitable_for_idt(urb)) 1424 return 0; 1425 1426 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1427 if (xhci_urb_temp_buffer_required(hcd, urb)) 1428 return xhci_map_temp_buffer(hcd, urb); 1429 } 1430 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1431 } 1432 1433 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1434 { 1435 struct xhci_hcd *xhci; 1436 bool unmap_temp_buf = false; 1437 1438 xhci = hcd_to_xhci(hcd); 1439 1440 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1441 unmap_temp_buf = true; 1442 1443 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1444 xhci_unmap_temp_buf(hcd, urb); 1445 else 1446 usb_hcd_unmap_urb_for_dma(hcd, urb); 1447 } 1448 1449 /** 1450 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1451 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1452 * value to right shift 1 for the bitmask. 1453 * 1454 * Index = (epnum * 2) + direction - 1, 1455 * where direction = 0 for OUT, 1 for IN. 1456 * For control endpoints, the IN index is used (OUT index is unused), so 1457 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1458 */ 1459 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1460 { 1461 unsigned int index; 1462 if (usb_endpoint_xfer_control(desc)) 1463 index = (unsigned int) (usb_endpoint_num(desc)*2); 1464 else 1465 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1466 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1467 return index; 1468 } 1469 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1470 1471 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1472 * address from the XHCI endpoint index. 1473 */ 1474 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1475 { 1476 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1477 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1478 return direction | number; 1479 } 1480 1481 /* Find the flag for this endpoint (for use in the control context). Use the 1482 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1483 * bit 1, etc. 1484 */ 1485 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1486 { 1487 return 1 << (xhci_get_endpoint_index(desc) + 1); 1488 } 1489 1490 /* Compute the last valid endpoint context index. Basically, this is the 1491 * endpoint index plus one. For slot contexts with more than valid endpoint, 1492 * we find the most significant bit set in the added contexts flags. 1493 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1494 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1495 */ 1496 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1497 { 1498 return fls(added_ctxs) - 1; 1499 } 1500 1501 /* Returns 1 if the arguments are OK; 1502 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1503 */ 1504 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1505 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1506 const char *func) { 1507 struct xhci_hcd *xhci; 1508 struct xhci_virt_device *virt_dev; 1509 1510 if (!hcd || (check_ep && !ep) || !udev) { 1511 pr_debug("xHCI %s called with invalid args\n", func); 1512 return -EINVAL; 1513 } 1514 if (!udev->parent) { 1515 pr_debug("xHCI %s called for root hub\n", func); 1516 return 0; 1517 } 1518 1519 xhci = hcd_to_xhci(hcd); 1520 if (check_virt_dev) { 1521 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1522 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1523 func); 1524 return -EINVAL; 1525 } 1526 1527 virt_dev = xhci->devs[udev->slot_id]; 1528 if (virt_dev->udev != udev) { 1529 xhci_dbg(xhci, "xHCI %s called with udev and " 1530 "virt_dev does not match\n", func); 1531 return -EINVAL; 1532 } 1533 } 1534 1535 if (xhci->xhc_state & XHCI_STATE_HALTED) 1536 return -ENODEV; 1537 1538 return 1; 1539 } 1540 1541 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1542 struct usb_device *udev, struct xhci_command *command, 1543 bool ctx_change, bool must_succeed); 1544 1545 /* 1546 * Full speed devices may have a max packet size greater than 8 bytes, but the 1547 * USB core doesn't know that until it reads the first 8 bytes of the 1548 * descriptor. If the usb_device's max packet size changes after that point, 1549 * we need to issue an evaluate context command and wait on it. 1550 */ 1551 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1552 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1553 { 1554 struct xhci_container_ctx *out_ctx; 1555 struct xhci_input_control_ctx *ctrl_ctx; 1556 struct xhci_ep_ctx *ep_ctx; 1557 struct xhci_command *command; 1558 int max_packet_size; 1559 int hw_max_packet_size; 1560 int ret = 0; 1561 1562 out_ctx = xhci->devs[slot_id]->out_ctx; 1563 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1564 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1565 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1566 if (hw_max_packet_size != max_packet_size) { 1567 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1568 "Max Packet Size for ep 0 changed."); 1569 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1570 "Max packet size in usb_device = %d", 1571 max_packet_size); 1572 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1573 "Max packet size in xHCI HW = %d", 1574 hw_max_packet_size); 1575 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1576 "Issuing evaluate context command."); 1577 1578 /* Set up the input context flags for the command */ 1579 /* FIXME: This won't work if a non-default control endpoint 1580 * changes max packet sizes. 1581 */ 1582 1583 command = xhci_alloc_command(xhci, true, mem_flags); 1584 if (!command) 1585 return -ENOMEM; 1586 1587 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1588 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1589 if (!ctrl_ctx) { 1590 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1591 __func__); 1592 ret = -ENOMEM; 1593 goto command_cleanup; 1594 } 1595 /* Set up the modified control endpoint 0 */ 1596 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1597 xhci->devs[slot_id]->out_ctx, ep_index); 1598 1599 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1600 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1601 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1602 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1603 1604 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1605 ctrl_ctx->drop_flags = 0; 1606 1607 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1608 true, false); 1609 1610 /* Clean up the input context for later use by bandwidth 1611 * functions. 1612 */ 1613 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1614 command_cleanup: 1615 kfree(command->completion); 1616 kfree(command); 1617 } 1618 return ret; 1619 } 1620 1621 /* 1622 * non-error returns are a promise to giveback() the urb later 1623 * we drop ownership so next owner (or urb unlink) can get it 1624 */ 1625 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1626 { 1627 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1628 unsigned long flags; 1629 int ret = 0; 1630 unsigned int slot_id, ep_index; 1631 unsigned int *ep_state; 1632 struct urb_priv *urb_priv; 1633 int num_tds; 1634 1635 if (!urb) 1636 return -EINVAL; 1637 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1638 true, true, __func__); 1639 if (ret <= 0) 1640 return ret ? ret : -EINVAL; 1641 1642 slot_id = urb->dev->slot_id; 1643 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1644 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1645 1646 if (!HCD_HW_ACCESSIBLE(hcd)) 1647 return -ESHUTDOWN; 1648 1649 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1650 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1651 return -ENODEV; 1652 } 1653 1654 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1655 num_tds = urb->number_of_packets; 1656 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1657 urb->transfer_buffer_length > 0 && 1658 urb->transfer_flags & URB_ZERO_PACKET && 1659 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1660 num_tds = 2; 1661 else 1662 num_tds = 1; 1663 1664 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1665 if (!urb_priv) 1666 return -ENOMEM; 1667 1668 urb_priv->num_tds = num_tds; 1669 urb_priv->num_tds_done = 0; 1670 urb->hcpriv = urb_priv; 1671 1672 trace_xhci_urb_enqueue(urb); 1673 1674 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1675 /* Check to see if the max packet size for the default control 1676 * endpoint changed during FS device enumeration 1677 */ 1678 if (urb->dev->speed == USB_SPEED_FULL) { 1679 ret = xhci_check_maxpacket(xhci, slot_id, 1680 ep_index, urb, mem_flags); 1681 if (ret < 0) { 1682 xhci_urb_free_priv(urb_priv); 1683 urb->hcpriv = NULL; 1684 return ret; 1685 } 1686 } 1687 } 1688 1689 spin_lock_irqsave(&xhci->lock, flags); 1690 1691 if (xhci->xhc_state & XHCI_STATE_DYING) { 1692 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1693 urb->ep->desc.bEndpointAddress, urb); 1694 ret = -ESHUTDOWN; 1695 goto free_priv; 1696 } 1697 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1698 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1699 *ep_state); 1700 ret = -EINVAL; 1701 goto free_priv; 1702 } 1703 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1704 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1705 ret = -EINVAL; 1706 goto free_priv; 1707 } 1708 1709 switch (usb_endpoint_type(&urb->ep->desc)) { 1710 1711 case USB_ENDPOINT_XFER_CONTROL: 1712 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1713 slot_id, ep_index); 1714 break; 1715 case USB_ENDPOINT_XFER_BULK: 1716 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1717 slot_id, ep_index); 1718 break; 1719 case USB_ENDPOINT_XFER_INT: 1720 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1721 slot_id, ep_index); 1722 break; 1723 case USB_ENDPOINT_XFER_ISOC: 1724 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1725 slot_id, ep_index); 1726 } 1727 1728 if (ret) { 1729 free_priv: 1730 xhci_urb_free_priv(urb_priv); 1731 urb->hcpriv = NULL; 1732 } 1733 spin_unlock_irqrestore(&xhci->lock, flags); 1734 return ret; 1735 } 1736 1737 /* 1738 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1739 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1740 * should pick up where it left off in the TD, unless a Set Transfer Ring 1741 * Dequeue Pointer is issued. 1742 * 1743 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1744 * the ring. Since the ring is a contiguous structure, they can't be physically 1745 * removed. Instead, there are two options: 1746 * 1747 * 1) If the HC is in the middle of processing the URB to be canceled, we 1748 * simply move the ring's dequeue pointer past those TRBs using the Set 1749 * Transfer Ring Dequeue Pointer command. This will be the common case, 1750 * when drivers timeout on the last submitted URB and attempt to cancel. 1751 * 1752 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1753 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1754 * HC will need to invalidate the any TRBs it has cached after the stop 1755 * endpoint command, as noted in the xHCI 0.95 errata. 1756 * 1757 * 3) The TD may have completed by the time the Stop Endpoint Command 1758 * completes, so software needs to handle that case too. 1759 * 1760 * This function should protect against the TD enqueueing code ringing the 1761 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1762 * It also needs to account for multiple cancellations on happening at the same 1763 * time for the same endpoint. 1764 * 1765 * Note that this function can be called in any context, or so says 1766 * usb_hcd_unlink_urb() 1767 */ 1768 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1769 { 1770 unsigned long flags; 1771 int ret, i; 1772 u32 temp; 1773 struct xhci_hcd *xhci; 1774 struct urb_priv *urb_priv; 1775 struct xhci_td *td; 1776 unsigned int ep_index; 1777 struct xhci_ring *ep_ring; 1778 struct xhci_virt_ep *ep; 1779 struct xhci_command *command; 1780 struct xhci_virt_device *vdev; 1781 1782 xhci = hcd_to_xhci(hcd); 1783 spin_lock_irqsave(&xhci->lock, flags); 1784 1785 trace_xhci_urb_dequeue(urb); 1786 1787 /* Make sure the URB hasn't completed or been unlinked already */ 1788 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1789 if (ret) 1790 goto done; 1791 1792 /* give back URB now if we can't queue it for cancel */ 1793 vdev = xhci->devs[urb->dev->slot_id]; 1794 urb_priv = urb->hcpriv; 1795 if (!vdev || !urb_priv) 1796 goto err_giveback; 1797 1798 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1799 ep = &vdev->eps[ep_index]; 1800 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1801 if (!ep || !ep_ring) 1802 goto err_giveback; 1803 1804 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1805 temp = readl(&xhci->op_regs->status); 1806 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1807 xhci_hc_died(xhci); 1808 goto done; 1809 } 1810 1811 /* 1812 * check ring is not re-allocated since URB was enqueued. If it is, then 1813 * make sure none of the ring related pointers in this URB private data 1814 * are touched, such as td_list, otherwise we overwrite freed data 1815 */ 1816 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1817 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1818 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1819 td = &urb_priv->td[i]; 1820 if (!list_empty(&td->cancelled_td_list)) 1821 list_del_init(&td->cancelled_td_list); 1822 } 1823 goto err_giveback; 1824 } 1825 1826 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1827 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1828 "HC halted, freeing TD manually."); 1829 for (i = urb_priv->num_tds_done; 1830 i < urb_priv->num_tds; 1831 i++) { 1832 td = &urb_priv->td[i]; 1833 if (!list_empty(&td->td_list)) 1834 list_del_init(&td->td_list); 1835 if (!list_empty(&td->cancelled_td_list)) 1836 list_del_init(&td->cancelled_td_list); 1837 } 1838 goto err_giveback; 1839 } 1840 1841 i = urb_priv->num_tds_done; 1842 if (i < urb_priv->num_tds) 1843 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1844 "Cancel URB %p, dev %s, ep 0x%x, " 1845 "starting at offset 0x%llx", 1846 urb, urb->dev->devpath, 1847 urb->ep->desc.bEndpointAddress, 1848 (unsigned long long) xhci_trb_virt_to_dma( 1849 urb_priv->td[i].start_seg, 1850 urb_priv->td[i].first_trb)); 1851 1852 for (; i < urb_priv->num_tds; i++) { 1853 td = &urb_priv->td[i]; 1854 /* TD can already be on cancelled list if ep halted on it */ 1855 if (list_empty(&td->cancelled_td_list)) { 1856 td->cancel_status = TD_DIRTY; 1857 list_add_tail(&td->cancelled_td_list, 1858 &ep->cancelled_td_list); 1859 } 1860 } 1861 1862 /* Queue a stop endpoint command, but only if this is 1863 * the first cancellation to be handled. 1864 */ 1865 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1866 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1867 if (!command) { 1868 ret = -ENOMEM; 1869 goto done; 1870 } 1871 ep->ep_state |= EP_STOP_CMD_PENDING; 1872 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1873 ep_index, 0); 1874 xhci_ring_cmd_db(xhci); 1875 } 1876 done: 1877 spin_unlock_irqrestore(&xhci->lock, flags); 1878 return ret; 1879 1880 err_giveback: 1881 if (urb_priv) 1882 xhci_urb_free_priv(urb_priv); 1883 usb_hcd_unlink_urb_from_ep(hcd, urb); 1884 spin_unlock_irqrestore(&xhci->lock, flags); 1885 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1886 return ret; 1887 } 1888 1889 /* Drop an endpoint from a new bandwidth configuration for this device. 1890 * Only one call to this function is allowed per endpoint before 1891 * check_bandwidth() or reset_bandwidth() must be called. 1892 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1893 * add the endpoint to the schedule with possibly new parameters denoted by a 1894 * different endpoint descriptor in usb_host_endpoint. 1895 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1896 * not allowed. 1897 * 1898 * The USB core will not allow URBs to be queued to an endpoint that is being 1899 * disabled, so there's no need for mutual exclusion to protect 1900 * the xhci->devs[slot_id] structure. 1901 */ 1902 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1903 struct usb_host_endpoint *ep) 1904 { 1905 struct xhci_hcd *xhci; 1906 struct xhci_container_ctx *in_ctx, *out_ctx; 1907 struct xhci_input_control_ctx *ctrl_ctx; 1908 unsigned int ep_index; 1909 struct xhci_ep_ctx *ep_ctx; 1910 u32 drop_flag; 1911 u32 new_add_flags, new_drop_flags; 1912 int ret; 1913 1914 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1915 if (ret <= 0) 1916 return ret; 1917 xhci = hcd_to_xhci(hcd); 1918 if (xhci->xhc_state & XHCI_STATE_DYING) 1919 return -ENODEV; 1920 1921 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1922 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1923 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1924 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1925 __func__, drop_flag); 1926 return 0; 1927 } 1928 1929 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1930 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1931 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1932 if (!ctrl_ctx) { 1933 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1934 __func__); 1935 return 0; 1936 } 1937 1938 ep_index = xhci_get_endpoint_index(&ep->desc); 1939 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1940 /* If the HC already knows the endpoint is disabled, 1941 * or the HCD has noted it is disabled, ignore this request 1942 */ 1943 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1944 le32_to_cpu(ctrl_ctx->drop_flags) & 1945 xhci_get_endpoint_flag(&ep->desc)) { 1946 /* Do not warn when called after a usb_device_reset */ 1947 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1948 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1949 __func__, ep); 1950 return 0; 1951 } 1952 1953 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1954 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1955 1956 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1957 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1958 1959 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1960 1961 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1962 1963 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1964 (unsigned int) ep->desc.bEndpointAddress, 1965 udev->slot_id, 1966 (unsigned int) new_drop_flags, 1967 (unsigned int) new_add_flags); 1968 return 0; 1969 } 1970 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1971 1972 /* Add an endpoint to a new possible bandwidth configuration for this device. 1973 * Only one call to this function is allowed per endpoint before 1974 * check_bandwidth() or reset_bandwidth() must be called. 1975 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1976 * add the endpoint to the schedule with possibly new parameters denoted by a 1977 * different endpoint descriptor in usb_host_endpoint. 1978 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1979 * not allowed. 1980 * 1981 * The USB core will not allow URBs to be queued to an endpoint until the 1982 * configuration or alt setting is installed in the device, so there's no need 1983 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1984 */ 1985 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1986 struct usb_host_endpoint *ep) 1987 { 1988 struct xhci_hcd *xhci; 1989 struct xhci_container_ctx *in_ctx; 1990 unsigned int ep_index; 1991 struct xhci_input_control_ctx *ctrl_ctx; 1992 struct xhci_ep_ctx *ep_ctx; 1993 u32 added_ctxs; 1994 u32 new_add_flags, new_drop_flags; 1995 struct xhci_virt_device *virt_dev; 1996 int ret = 0; 1997 1998 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1999 if (ret <= 0) { 2000 /* So we won't queue a reset ep command for a root hub */ 2001 ep->hcpriv = NULL; 2002 return ret; 2003 } 2004 xhci = hcd_to_xhci(hcd); 2005 if (xhci->xhc_state & XHCI_STATE_DYING) 2006 return -ENODEV; 2007 2008 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2009 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2010 /* FIXME when we have to issue an evaluate endpoint command to 2011 * deal with ep0 max packet size changing once we get the 2012 * descriptors 2013 */ 2014 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2015 __func__, added_ctxs); 2016 return 0; 2017 } 2018 2019 virt_dev = xhci->devs[udev->slot_id]; 2020 in_ctx = virt_dev->in_ctx; 2021 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2022 if (!ctrl_ctx) { 2023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2024 __func__); 2025 return 0; 2026 } 2027 2028 ep_index = xhci_get_endpoint_index(&ep->desc); 2029 /* If this endpoint is already in use, and the upper layers are trying 2030 * to add it again without dropping it, reject the addition. 2031 */ 2032 if (virt_dev->eps[ep_index].ring && 2033 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2034 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2035 "without dropping it.\n", 2036 (unsigned int) ep->desc.bEndpointAddress); 2037 return -EINVAL; 2038 } 2039 2040 /* If the HCD has already noted the endpoint is enabled, 2041 * ignore this request. 2042 */ 2043 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2044 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2045 __func__, ep); 2046 return 0; 2047 } 2048 2049 /* 2050 * Configuration and alternate setting changes must be done in 2051 * process context, not interrupt context (or so documenation 2052 * for usb_set_interface() and usb_set_configuration() claim). 2053 */ 2054 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2055 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2056 __func__, ep->desc.bEndpointAddress); 2057 return -ENOMEM; 2058 } 2059 2060 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2061 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2062 2063 /* If xhci_endpoint_disable() was called for this endpoint, but the 2064 * xHC hasn't been notified yet through the check_bandwidth() call, 2065 * this re-adds a new state for the endpoint from the new endpoint 2066 * descriptors. We must drop and re-add this endpoint, so we leave the 2067 * drop flags alone. 2068 */ 2069 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2070 2071 /* Store the usb_device pointer for later use */ 2072 ep->hcpriv = udev; 2073 2074 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2075 trace_xhci_add_endpoint(ep_ctx); 2076 2077 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2078 (unsigned int) ep->desc.bEndpointAddress, 2079 udev->slot_id, 2080 (unsigned int) new_drop_flags, 2081 (unsigned int) new_add_flags); 2082 return 0; 2083 } 2084 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2085 2086 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2087 { 2088 struct xhci_input_control_ctx *ctrl_ctx; 2089 struct xhci_ep_ctx *ep_ctx; 2090 struct xhci_slot_ctx *slot_ctx; 2091 int i; 2092 2093 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2094 if (!ctrl_ctx) { 2095 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2096 __func__); 2097 return; 2098 } 2099 2100 /* When a device's add flag and drop flag are zero, any subsequent 2101 * configure endpoint command will leave that endpoint's state 2102 * untouched. Make sure we don't leave any old state in the input 2103 * endpoint contexts. 2104 */ 2105 ctrl_ctx->drop_flags = 0; 2106 ctrl_ctx->add_flags = 0; 2107 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2108 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2109 /* Endpoint 0 is always valid */ 2110 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2111 for (i = 1; i < 31; i++) { 2112 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2113 ep_ctx->ep_info = 0; 2114 ep_ctx->ep_info2 = 0; 2115 ep_ctx->deq = 0; 2116 ep_ctx->tx_info = 0; 2117 } 2118 } 2119 2120 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2121 struct usb_device *udev, u32 *cmd_status) 2122 { 2123 int ret; 2124 2125 switch (*cmd_status) { 2126 case COMP_COMMAND_ABORTED: 2127 case COMP_COMMAND_RING_STOPPED: 2128 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2129 ret = -ETIME; 2130 break; 2131 case COMP_RESOURCE_ERROR: 2132 dev_warn(&udev->dev, 2133 "Not enough host controller resources for new device state.\n"); 2134 ret = -ENOMEM; 2135 /* FIXME: can we allocate more resources for the HC? */ 2136 break; 2137 case COMP_BANDWIDTH_ERROR: 2138 case COMP_SECONDARY_BANDWIDTH_ERROR: 2139 dev_warn(&udev->dev, 2140 "Not enough bandwidth for new device state.\n"); 2141 ret = -ENOSPC; 2142 /* FIXME: can we go back to the old state? */ 2143 break; 2144 case COMP_TRB_ERROR: 2145 /* the HCD set up something wrong */ 2146 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2147 "add flag = 1, " 2148 "and endpoint is not disabled.\n"); 2149 ret = -EINVAL; 2150 break; 2151 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2152 dev_warn(&udev->dev, 2153 "ERROR: Incompatible device for endpoint configure command.\n"); 2154 ret = -ENODEV; 2155 break; 2156 case COMP_SUCCESS: 2157 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2158 "Successful Endpoint Configure command"); 2159 ret = 0; 2160 break; 2161 default: 2162 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2163 *cmd_status); 2164 ret = -EINVAL; 2165 break; 2166 } 2167 return ret; 2168 } 2169 2170 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2171 struct usb_device *udev, u32 *cmd_status) 2172 { 2173 int ret; 2174 2175 switch (*cmd_status) { 2176 case COMP_COMMAND_ABORTED: 2177 case COMP_COMMAND_RING_STOPPED: 2178 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2179 ret = -ETIME; 2180 break; 2181 case COMP_PARAMETER_ERROR: 2182 dev_warn(&udev->dev, 2183 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2184 ret = -EINVAL; 2185 break; 2186 case COMP_SLOT_NOT_ENABLED_ERROR: 2187 dev_warn(&udev->dev, 2188 "WARN: slot not enabled for evaluate context command.\n"); 2189 ret = -EINVAL; 2190 break; 2191 case COMP_CONTEXT_STATE_ERROR: 2192 dev_warn(&udev->dev, 2193 "WARN: invalid context state for evaluate context command.\n"); 2194 ret = -EINVAL; 2195 break; 2196 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2197 dev_warn(&udev->dev, 2198 "ERROR: Incompatible device for evaluate context command.\n"); 2199 ret = -ENODEV; 2200 break; 2201 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2202 /* Max Exit Latency too large error */ 2203 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2204 ret = -EINVAL; 2205 break; 2206 case COMP_SUCCESS: 2207 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2208 "Successful evaluate context command"); 2209 ret = 0; 2210 break; 2211 default: 2212 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2213 *cmd_status); 2214 ret = -EINVAL; 2215 break; 2216 } 2217 return ret; 2218 } 2219 2220 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2221 struct xhci_input_control_ctx *ctrl_ctx) 2222 { 2223 u32 valid_add_flags; 2224 u32 valid_drop_flags; 2225 2226 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2227 * (bit 1). The default control endpoint is added during the Address 2228 * Device command and is never removed until the slot is disabled. 2229 */ 2230 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2231 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2232 2233 /* Use hweight32 to count the number of ones in the add flags, or 2234 * number of endpoints added. Don't count endpoints that are changed 2235 * (both added and dropped). 2236 */ 2237 return hweight32(valid_add_flags) - 2238 hweight32(valid_add_flags & valid_drop_flags); 2239 } 2240 2241 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2242 struct xhci_input_control_ctx *ctrl_ctx) 2243 { 2244 u32 valid_add_flags; 2245 u32 valid_drop_flags; 2246 2247 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2248 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2249 2250 return hweight32(valid_drop_flags) - 2251 hweight32(valid_add_flags & valid_drop_flags); 2252 } 2253 2254 /* 2255 * We need to reserve the new number of endpoints before the configure endpoint 2256 * command completes. We can't subtract the dropped endpoints from the number 2257 * of active endpoints until the command completes because we can oversubscribe 2258 * the host in this case: 2259 * 2260 * - the first configure endpoint command drops more endpoints than it adds 2261 * - a second configure endpoint command that adds more endpoints is queued 2262 * - the first configure endpoint command fails, so the config is unchanged 2263 * - the second command may succeed, even though there isn't enough resources 2264 * 2265 * Must be called with xhci->lock held. 2266 */ 2267 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2268 struct xhci_input_control_ctx *ctrl_ctx) 2269 { 2270 u32 added_eps; 2271 2272 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2273 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2275 "Not enough ep ctxs: " 2276 "%u active, need to add %u, limit is %u.", 2277 xhci->num_active_eps, added_eps, 2278 xhci->limit_active_eps); 2279 return -ENOMEM; 2280 } 2281 xhci->num_active_eps += added_eps; 2282 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2283 "Adding %u ep ctxs, %u now active.", added_eps, 2284 xhci->num_active_eps); 2285 return 0; 2286 } 2287 2288 /* 2289 * The configure endpoint was failed by the xHC for some other reason, so we 2290 * need to revert the resources that failed configuration would have used. 2291 * 2292 * Must be called with xhci->lock held. 2293 */ 2294 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2295 struct xhci_input_control_ctx *ctrl_ctx) 2296 { 2297 u32 num_failed_eps; 2298 2299 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2300 xhci->num_active_eps -= num_failed_eps; 2301 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2302 "Removing %u failed ep ctxs, %u now active.", 2303 num_failed_eps, 2304 xhci->num_active_eps); 2305 } 2306 2307 /* 2308 * Now that the command has completed, clean up the active endpoint count by 2309 * subtracting out the endpoints that were dropped (but not changed). 2310 * 2311 * Must be called with xhci->lock held. 2312 */ 2313 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2314 struct xhci_input_control_ctx *ctrl_ctx) 2315 { 2316 u32 num_dropped_eps; 2317 2318 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2319 xhci->num_active_eps -= num_dropped_eps; 2320 if (num_dropped_eps) 2321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2322 "Removing %u dropped ep ctxs, %u now active.", 2323 num_dropped_eps, 2324 xhci->num_active_eps); 2325 } 2326 2327 static unsigned int xhci_get_block_size(struct usb_device *udev) 2328 { 2329 switch (udev->speed) { 2330 case USB_SPEED_LOW: 2331 case USB_SPEED_FULL: 2332 return FS_BLOCK; 2333 case USB_SPEED_HIGH: 2334 return HS_BLOCK; 2335 case USB_SPEED_SUPER: 2336 case USB_SPEED_SUPER_PLUS: 2337 return SS_BLOCK; 2338 case USB_SPEED_UNKNOWN: 2339 case USB_SPEED_WIRELESS: 2340 default: 2341 /* Should never happen */ 2342 return 1; 2343 } 2344 } 2345 2346 static unsigned int 2347 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2348 { 2349 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2350 return LS_OVERHEAD; 2351 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2352 return FS_OVERHEAD; 2353 return HS_OVERHEAD; 2354 } 2355 2356 /* If we are changing a LS/FS device under a HS hub, 2357 * make sure (if we are activating a new TT) that the HS bus has enough 2358 * bandwidth for this new TT. 2359 */ 2360 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2361 struct xhci_virt_device *virt_dev, 2362 int old_active_eps) 2363 { 2364 struct xhci_interval_bw_table *bw_table; 2365 struct xhci_tt_bw_info *tt_info; 2366 2367 /* Find the bandwidth table for the root port this TT is attached to. */ 2368 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2369 tt_info = virt_dev->tt_info; 2370 /* If this TT already had active endpoints, the bandwidth for this TT 2371 * has already been added. Removing all periodic endpoints (and thus 2372 * making the TT enactive) will only decrease the bandwidth used. 2373 */ 2374 if (old_active_eps) 2375 return 0; 2376 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2377 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2378 return -ENOMEM; 2379 return 0; 2380 } 2381 /* Not sure why we would have no new active endpoints... 2382 * 2383 * Maybe because of an Evaluate Context change for a hub update or a 2384 * control endpoint 0 max packet size change? 2385 * FIXME: skip the bandwidth calculation in that case. 2386 */ 2387 return 0; 2388 } 2389 2390 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2391 struct xhci_virt_device *virt_dev) 2392 { 2393 unsigned int bw_reserved; 2394 2395 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2396 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2397 return -ENOMEM; 2398 2399 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2400 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2401 return -ENOMEM; 2402 2403 return 0; 2404 } 2405 2406 /* 2407 * This algorithm is a very conservative estimate of the worst-case scheduling 2408 * scenario for any one interval. The hardware dynamically schedules the 2409 * packets, so we can't tell which microframe could be the limiting factor in 2410 * the bandwidth scheduling. This only takes into account periodic endpoints. 2411 * 2412 * Obviously, we can't solve an NP complete problem to find the minimum worst 2413 * case scenario. Instead, we come up with an estimate that is no less than 2414 * the worst case bandwidth used for any one microframe, but may be an 2415 * over-estimate. 2416 * 2417 * We walk the requirements for each endpoint by interval, starting with the 2418 * smallest interval, and place packets in the schedule where there is only one 2419 * possible way to schedule packets for that interval. In order to simplify 2420 * this algorithm, we record the largest max packet size for each interval, and 2421 * assume all packets will be that size. 2422 * 2423 * For interval 0, we obviously must schedule all packets for each interval. 2424 * The bandwidth for interval 0 is just the amount of data to be transmitted 2425 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2426 * the number of packets). 2427 * 2428 * For interval 1, we have two possible microframes to schedule those packets 2429 * in. For this algorithm, if we can schedule the same number of packets for 2430 * each possible scheduling opportunity (each microframe), we will do so. The 2431 * remaining number of packets will be saved to be transmitted in the gaps in 2432 * the next interval's scheduling sequence. 2433 * 2434 * As we move those remaining packets to be scheduled with interval 2 packets, 2435 * we have to double the number of remaining packets to transmit. This is 2436 * because the intervals are actually powers of 2, and we would be transmitting 2437 * the previous interval's packets twice in this interval. We also have to be 2438 * sure that when we look at the largest max packet size for this interval, we 2439 * also look at the largest max packet size for the remaining packets and take 2440 * the greater of the two. 2441 * 2442 * The algorithm continues to evenly distribute packets in each scheduling 2443 * opportunity, and push the remaining packets out, until we get to the last 2444 * interval. Then those packets and their associated overhead are just added 2445 * to the bandwidth used. 2446 */ 2447 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2448 struct xhci_virt_device *virt_dev, 2449 int old_active_eps) 2450 { 2451 unsigned int bw_reserved; 2452 unsigned int max_bandwidth; 2453 unsigned int bw_used; 2454 unsigned int block_size; 2455 struct xhci_interval_bw_table *bw_table; 2456 unsigned int packet_size = 0; 2457 unsigned int overhead = 0; 2458 unsigned int packets_transmitted = 0; 2459 unsigned int packets_remaining = 0; 2460 unsigned int i; 2461 2462 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2463 return xhci_check_ss_bw(xhci, virt_dev); 2464 2465 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2466 max_bandwidth = HS_BW_LIMIT; 2467 /* Convert percent of bus BW reserved to blocks reserved */ 2468 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2469 } else { 2470 max_bandwidth = FS_BW_LIMIT; 2471 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2472 } 2473 2474 bw_table = virt_dev->bw_table; 2475 /* We need to translate the max packet size and max ESIT payloads into 2476 * the units the hardware uses. 2477 */ 2478 block_size = xhci_get_block_size(virt_dev->udev); 2479 2480 /* If we are manipulating a LS/FS device under a HS hub, double check 2481 * that the HS bus has enough bandwidth if we are activing a new TT. 2482 */ 2483 if (virt_dev->tt_info) { 2484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2485 "Recalculating BW for rootport %u", 2486 virt_dev->real_port); 2487 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2488 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2489 "newly activated TT.\n"); 2490 return -ENOMEM; 2491 } 2492 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2493 "Recalculating BW for TT slot %u port %u", 2494 virt_dev->tt_info->slot_id, 2495 virt_dev->tt_info->ttport); 2496 } else { 2497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2498 "Recalculating BW for rootport %u", 2499 virt_dev->real_port); 2500 } 2501 2502 /* Add in how much bandwidth will be used for interval zero, or the 2503 * rounded max ESIT payload + number of packets * largest overhead. 2504 */ 2505 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2506 bw_table->interval_bw[0].num_packets * 2507 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2508 2509 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2510 unsigned int bw_added; 2511 unsigned int largest_mps; 2512 unsigned int interval_overhead; 2513 2514 /* 2515 * How many packets could we transmit in this interval? 2516 * If packets didn't fit in the previous interval, we will need 2517 * to transmit that many packets twice within this interval. 2518 */ 2519 packets_remaining = 2 * packets_remaining + 2520 bw_table->interval_bw[i].num_packets; 2521 2522 /* Find the largest max packet size of this or the previous 2523 * interval. 2524 */ 2525 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2526 largest_mps = 0; 2527 else { 2528 struct xhci_virt_ep *virt_ep; 2529 struct list_head *ep_entry; 2530 2531 ep_entry = bw_table->interval_bw[i].endpoints.next; 2532 virt_ep = list_entry(ep_entry, 2533 struct xhci_virt_ep, bw_endpoint_list); 2534 /* Convert to blocks, rounding up */ 2535 largest_mps = DIV_ROUND_UP( 2536 virt_ep->bw_info.max_packet_size, 2537 block_size); 2538 } 2539 if (largest_mps > packet_size) 2540 packet_size = largest_mps; 2541 2542 /* Use the larger overhead of this or the previous interval. */ 2543 interval_overhead = xhci_get_largest_overhead( 2544 &bw_table->interval_bw[i]); 2545 if (interval_overhead > overhead) 2546 overhead = interval_overhead; 2547 2548 /* How many packets can we evenly distribute across 2549 * (1 << (i + 1)) possible scheduling opportunities? 2550 */ 2551 packets_transmitted = packets_remaining >> (i + 1); 2552 2553 /* Add in the bandwidth used for those scheduled packets */ 2554 bw_added = packets_transmitted * (overhead + packet_size); 2555 2556 /* How many packets do we have remaining to transmit? */ 2557 packets_remaining = packets_remaining % (1 << (i + 1)); 2558 2559 /* What largest max packet size should those packets have? */ 2560 /* If we've transmitted all packets, don't carry over the 2561 * largest packet size. 2562 */ 2563 if (packets_remaining == 0) { 2564 packet_size = 0; 2565 overhead = 0; 2566 } else if (packets_transmitted > 0) { 2567 /* Otherwise if we do have remaining packets, and we've 2568 * scheduled some packets in this interval, take the 2569 * largest max packet size from endpoints with this 2570 * interval. 2571 */ 2572 packet_size = largest_mps; 2573 overhead = interval_overhead; 2574 } 2575 /* Otherwise carry over packet_size and overhead from the last 2576 * time we had a remainder. 2577 */ 2578 bw_used += bw_added; 2579 if (bw_used > max_bandwidth) { 2580 xhci_warn(xhci, "Not enough bandwidth. " 2581 "Proposed: %u, Max: %u\n", 2582 bw_used, max_bandwidth); 2583 return -ENOMEM; 2584 } 2585 } 2586 /* 2587 * Ok, we know we have some packets left over after even-handedly 2588 * scheduling interval 15. We don't know which microframes they will 2589 * fit into, so we over-schedule and say they will be scheduled every 2590 * microframe. 2591 */ 2592 if (packets_remaining > 0) 2593 bw_used += overhead + packet_size; 2594 2595 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2596 unsigned int port_index = virt_dev->real_port - 1; 2597 2598 /* OK, we're manipulating a HS device attached to a 2599 * root port bandwidth domain. Include the number of active TTs 2600 * in the bandwidth used. 2601 */ 2602 bw_used += TT_HS_OVERHEAD * 2603 xhci->rh_bw[port_index].num_active_tts; 2604 } 2605 2606 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2607 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2608 "Available: %u " "percent", 2609 bw_used, max_bandwidth, bw_reserved, 2610 (max_bandwidth - bw_used - bw_reserved) * 100 / 2611 max_bandwidth); 2612 2613 bw_used += bw_reserved; 2614 if (bw_used > max_bandwidth) { 2615 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2616 bw_used, max_bandwidth); 2617 return -ENOMEM; 2618 } 2619 2620 bw_table->bw_used = bw_used; 2621 return 0; 2622 } 2623 2624 static bool xhci_is_async_ep(unsigned int ep_type) 2625 { 2626 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2627 ep_type != ISOC_IN_EP && 2628 ep_type != INT_IN_EP); 2629 } 2630 2631 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2632 { 2633 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2634 } 2635 2636 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2637 { 2638 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2639 2640 if (ep_bw->ep_interval == 0) 2641 return SS_OVERHEAD_BURST + 2642 (ep_bw->mult * ep_bw->num_packets * 2643 (SS_OVERHEAD + mps)); 2644 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2645 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2646 1 << ep_bw->ep_interval); 2647 2648 } 2649 2650 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2651 struct xhci_bw_info *ep_bw, 2652 struct xhci_interval_bw_table *bw_table, 2653 struct usb_device *udev, 2654 struct xhci_virt_ep *virt_ep, 2655 struct xhci_tt_bw_info *tt_info) 2656 { 2657 struct xhci_interval_bw *interval_bw; 2658 int normalized_interval; 2659 2660 if (xhci_is_async_ep(ep_bw->type)) 2661 return; 2662 2663 if (udev->speed >= USB_SPEED_SUPER) { 2664 if (xhci_is_sync_in_ep(ep_bw->type)) 2665 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2666 xhci_get_ss_bw_consumed(ep_bw); 2667 else 2668 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2669 xhci_get_ss_bw_consumed(ep_bw); 2670 return; 2671 } 2672 2673 /* SuperSpeed endpoints never get added to intervals in the table, so 2674 * this check is only valid for HS/FS/LS devices. 2675 */ 2676 if (list_empty(&virt_ep->bw_endpoint_list)) 2677 return; 2678 /* For LS/FS devices, we need to translate the interval expressed in 2679 * microframes to frames. 2680 */ 2681 if (udev->speed == USB_SPEED_HIGH) 2682 normalized_interval = ep_bw->ep_interval; 2683 else 2684 normalized_interval = ep_bw->ep_interval - 3; 2685 2686 if (normalized_interval == 0) 2687 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2688 interval_bw = &bw_table->interval_bw[normalized_interval]; 2689 interval_bw->num_packets -= ep_bw->num_packets; 2690 switch (udev->speed) { 2691 case USB_SPEED_LOW: 2692 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2693 break; 2694 case USB_SPEED_FULL: 2695 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2696 break; 2697 case USB_SPEED_HIGH: 2698 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2699 break; 2700 case USB_SPEED_SUPER: 2701 case USB_SPEED_SUPER_PLUS: 2702 case USB_SPEED_UNKNOWN: 2703 case USB_SPEED_WIRELESS: 2704 /* Should never happen because only LS/FS/HS endpoints will get 2705 * added to the endpoint list. 2706 */ 2707 return; 2708 } 2709 if (tt_info) 2710 tt_info->active_eps -= 1; 2711 list_del_init(&virt_ep->bw_endpoint_list); 2712 } 2713 2714 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2715 struct xhci_bw_info *ep_bw, 2716 struct xhci_interval_bw_table *bw_table, 2717 struct usb_device *udev, 2718 struct xhci_virt_ep *virt_ep, 2719 struct xhci_tt_bw_info *tt_info) 2720 { 2721 struct xhci_interval_bw *interval_bw; 2722 struct xhci_virt_ep *smaller_ep; 2723 int normalized_interval; 2724 2725 if (xhci_is_async_ep(ep_bw->type)) 2726 return; 2727 2728 if (udev->speed == USB_SPEED_SUPER) { 2729 if (xhci_is_sync_in_ep(ep_bw->type)) 2730 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2731 xhci_get_ss_bw_consumed(ep_bw); 2732 else 2733 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2734 xhci_get_ss_bw_consumed(ep_bw); 2735 return; 2736 } 2737 2738 /* For LS/FS devices, we need to translate the interval expressed in 2739 * microframes to frames. 2740 */ 2741 if (udev->speed == USB_SPEED_HIGH) 2742 normalized_interval = ep_bw->ep_interval; 2743 else 2744 normalized_interval = ep_bw->ep_interval - 3; 2745 2746 if (normalized_interval == 0) 2747 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2748 interval_bw = &bw_table->interval_bw[normalized_interval]; 2749 interval_bw->num_packets += ep_bw->num_packets; 2750 switch (udev->speed) { 2751 case USB_SPEED_LOW: 2752 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2753 break; 2754 case USB_SPEED_FULL: 2755 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2756 break; 2757 case USB_SPEED_HIGH: 2758 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2759 break; 2760 case USB_SPEED_SUPER: 2761 case USB_SPEED_SUPER_PLUS: 2762 case USB_SPEED_UNKNOWN: 2763 case USB_SPEED_WIRELESS: 2764 /* Should never happen because only LS/FS/HS endpoints will get 2765 * added to the endpoint list. 2766 */ 2767 return; 2768 } 2769 2770 if (tt_info) 2771 tt_info->active_eps += 1; 2772 /* Insert the endpoint into the list, largest max packet size first. */ 2773 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2774 bw_endpoint_list) { 2775 if (ep_bw->max_packet_size >= 2776 smaller_ep->bw_info.max_packet_size) { 2777 /* Add the new ep before the smaller endpoint */ 2778 list_add_tail(&virt_ep->bw_endpoint_list, 2779 &smaller_ep->bw_endpoint_list); 2780 return; 2781 } 2782 } 2783 /* Add the new endpoint at the end of the list. */ 2784 list_add_tail(&virt_ep->bw_endpoint_list, 2785 &interval_bw->endpoints); 2786 } 2787 2788 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2789 struct xhci_virt_device *virt_dev, 2790 int old_active_eps) 2791 { 2792 struct xhci_root_port_bw_info *rh_bw_info; 2793 if (!virt_dev->tt_info) 2794 return; 2795 2796 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2797 if (old_active_eps == 0 && 2798 virt_dev->tt_info->active_eps != 0) { 2799 rh_bw_info->num_active_tts += 1; 2800 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2801 } else if (old_active_eps != 0 && 2802 virt_dev->tt_info->active_eps == 0) { 2803 rh_bw_info->num_active_tts -= 1; 2804 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2805 } 2806 } 2807 2808 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2809 struct xhci_virt_device *virt_dev, 2810 struct xhci_container_ctx *in_ctx) 2811 { 2812 struct xhci_bw_info ep_bw_info[31]; 2813 int i; 2814 struct xhci_input_control_ctx *ctrl_ctx; 2815 int old_active_eps = 0; 2816 2817 if (virt_dev->tt_info) 2818 old_active_eps = virt_dev->tt_info->active_eps; 2819 2820 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2821 if (!ctrl_ctx) { 2822 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2823 __func__); 2824 return -ENOMEM; 2825 } 2826 2827 for (i = 0; i < 31; i++) { 2828 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2829 continue; 2830 2831 /* Make a copy of the BW info in case we need to revert this */ 2832 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2833 sizeof(ep_bw_info[i])); 2834 /* Drop the endpoint from the interval table if the endpoint is 2835 * being dropped or changed. 2836 */ 2837 if (EP_IS_DROPPED(ctrl_ctx, i)) 2838 xhci_drop_ep_from_interval_table(xhci, 2839 &virt_dev->eps[i].bw_info, 2840 virt_dev->bw_table, 2841 virt_dev->udev, 2842 &virt_dev->eps[i], 2843 virt_dev->tt_info); 2844 } 2845 /* Overwrite the information stored in the endpoints' bw_info */ 2846 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2847 for (i = 0; i < 31; i++) { 2848 /* Add any changed or added endpoints to the interval table */ 2849 if (EP_IS_ADDED(ctrl_ctx, i)) 2850 xhci_add_ep_to_interval_table(xhci, 2851 &virt_dev->eps[i].bw_info, 2852 virt_dev->bw_table, 2853 virt_dev->udev, 2854 &virt_dev->eps[i], 2855 virt_dev->tt_info); 2856 } 2857 2858 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2859 /* Ok, this fits in the bandwidth we have. 2860 * Update the number of active TTs. 2861 */ 2862 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2863 return 0; 2864 } 2865 2866 /* We don't have enough bandwidth for this, revert the stored info. */ 2867 for (i = 0; i < 31; i++) { 2868 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2869 continue; 2870 2871 /* Drop the new copies of any added or changed endpoints from 2872 * the interval table. 2873 */ 2874 if (EP_IS_ADDED(ctrl_ctx, i)) { 2875 xhci_drop_ep_from_interval_table(xhci, 2876 &virt_dev->eps[i].bw_info, 2877 virt_dev->bw_table, 2878 virt_dev->udev, 2879 &virt_dev->eps[i], 2880 virt_dev->tt_info); 2881 } 2882 /* Revert the endpoint back to its old information */ 2883 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2884 sizeof(ep_bw_info[i])); 2885 /* Add any changed or dropped endpoints back into the table */ 2886 if (EP_IS_DROPPED(ctrl_ctx, i)) 2887 xhci_add_ep_to_interval_table(xhci, 2888 &virt_dev->eps[i].bw_info, 2889 virt_dev->bw_table, 2890 virt_dev->udev, 2891 &virt_dev->eps[i], 2892 virt_dev->tt_info); 2893 } 2894 return -ENOMEM; 2895 } 2896 2897 2898 /* Issue a configure endpoint command or evaluate context command 2899 * and wait for it to finish. 2900 */ 2901 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2902 struct usb_device *udev, 2903 struct xhci_command *command, 2904 bool ctx_change, bool must_succeed) 2905 { 2906 int ret; 2907 unsigned long flags; 2908 struct xhci_input_control_ctx *ctrl_ctx; 2909 struct xhci_virt_device *virt_dev; 2910 struct xhci_slot_ctx *slot_ctx; 2911 2912 if (!command) 2913 return -EINVAL; 2914 2915 spin_lock_irqsave(&xhci->lock, flags); 2916 2917 if (xhci->xhc_state & XHCI_STATE_DYING) { 2918 spin_unlock_irqrestore(&xhci->lock, flags); 2919 return -ESHUTDOWN; 2920 } 2921 2922 virt_dev = xhci->devs[udev->slot_id]; 2923 2924 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2925 if (!ctrl_ctx) { 2926 spin_unlock_irqrestore(&xhci->lock, flags); 2927 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2928 __func__); 2929 return -ENOMEM; 2930 } 2931 2932 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2933 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2934 spin_unlock_irqrestore(&xhci->lock, flags); 2935 xhci_warn(xhci, "Not enough host resources, " 2936 "active endpoint contexts = %u\n", 2937 xhci->num_active_eps); 2938 return -ENOMEM; 2939 } 2940 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2941 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2942 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2943 xhci_free_host_resources(xhci, ctrl_ctx); 2944 spin_unlock_irqrestore(&xhci->lock, flags); 2945 xhci_warn(xhci, "Not enough bandwidth\n"); 2946 return -ENOMEM; 2947 } 2948 2949 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2950 2951 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2952 trace_xhci_configure_endpoint(slot_ctx); 2953 2954 if (!ctx_change) 2955 ret = xhci_queue_configure_endpoint(xhci, command, 2956 command->in_ctx->dma, 2957 udev->slot_id, must_succeed); 2958 else 2959 ret = xhci_queue_evaluate_context(xhci, command, 2960 command->in_ctx->dma, 2961 udev->slot_id, must_succeed); 2962 if (ret < 0) { 2963 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2964 xhci_free_host_resources(xhci, ctrl_ctx); 2965 spin_unlock_irqrestore(&xhci->lock, flags); 2966 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2967 "FIXME allocate a new ring segment"); 2968 return -ENOMEM; 2969 } 2970 xhci_ring_cmd_db(xhci); 2971 spin_unlock_irqrestore(&xhci->lock, flags); 2972 2973 /* Wait for the configure endpoint command to complete */ 2974 wait_for_completion(command->completion); 2975 2976 if (!ctx_change) 2977 ret = xhci_configure_endpoint_result(xhci, udev, 2978 &command->status); 2979 else 2980 ret = xhci_evaluate_context_result(xhci, udev, 2981 &command->status); 2982 2983 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2984 spin_lock_irqsave(&xhci->lock, flags); 2985 /* If the command failed, remove the reserved resources. 2986 * Otherwise, clean up the estimate to include dropped eps. 2987 */ 2988 if (ret) 2989 xhci_free_host_resources(xhci, ctrl_ctx); 2990 else 2991 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2992 spin_unlock_irqrestore(&xhci->lock, flags); 2993 } 2994 return ret; 2995 } 2996 2997 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2998 struct xhci_virt_device *vdev, int i) 2999 { 3000 struct xhci_virt_ep *ep = &vdev->eps[i]; 3001 3002 if (ep->ep_state & EP_HAS_STREAMS) { 3003 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3004 xhci_get_endpoint_address(i)); 3005 xhci_free_stream_info(xhci, ep->stream_info); 3006 ep->stream_info = NULL; 3007 ep->ep_state &= ~EP_HAS_STREAMS; 3008 } 3009 } 3010 3011 /* Called after one or more calls to xhci_add_endpoint() or 3012 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3013 * to call xhci_reset_bandwidth(). 3014 * 3015 * Since we are in the middle of changing either configuration or 3016 * installing a new alt setting, the USB core won't allow URBs to be 3017 * enqueued for any endpoint on the old config or interface. Nothing 3018 * else should be touching the xhci->devs[slot_id] structure, so we 3019 * don't need to take the xhci->lock for manipulating that. 3020 */ 3021 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3022 { 3023 int i; 3024 int ret = 0; 3025 struct xhci_hcd *xhci; 3026 struct xhci_virt_device *virt_dev; 3027 struct xhci_input_control_ctx *ctrl_ctx; 3028 struct xhci_slot_ctx *slot_ctx; 3029 struct xhci_command *command; 3030 3031 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3032 if (ret <= 0) 3033 return ret; 3034 xhci = hcd_to_xhci(hcd); 3035 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3036 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3037 return -ENODEV; 3038 3039 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3040 virt_dev = xhci->devs[udev->slot_id]; 3041 3042 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3043 if (!command) 3044 return -ENOMEM; 3045 3046 command->in_ctx = virt_dev->in_ctx; 3047 3048 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3049 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3050 if (!ctrl_ctx) { 3051 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3052 __func__); 3053 ret = -ENOMEM; 3054 goto command_cleanup; 3055 } 3056 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3057 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3058 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3059 3060 /* Don't issue the command if there's no endpoints to update. */ 3061 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3062 ctrl_ctx->drop_flags == 0) { 3063 ret = 0; 3064 goto command_cleanup; 3065 } 3066 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3067 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3068 for (i = 31; i >= 1; i--) { 3069 __le32 le32 = cpu_to_le32(BIT(i)); 3070 3071 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3072 || (ctrl_ctx->add_flags & le32) || i == 1) { 3073 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3074 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3075 break; 3076 } 3077 } 3078 3079 ret = xhci_configure_endpoint(xhci, udev, command, 3080 false, false); 3081 if (ret) 3082 /* Callee should call reset_bandwidth() */ 3083 goto command_cleanup; 3084 3085 /* Free any rings that were dropped, but not changed. */ 3086 for (i = 1; i < 31; i++) { 3087 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3088 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3089 xhci_free_endpoint_ring(xhci, virt_dev, i); 3090 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3091 } 3092 } 3093 xhci_zero_in_ctx(xhci, virt_dev); 3094 /* 3095 * Install any rings for completely new endpoints or changed endpoints, 3096 * and free any old rings from changed endpoints. 3097 */ 3098 for (i = 1; i < 31; i++) { 3099 if (!virt_dev->eps[i].new_ring) 3100 continue; 3101 /* Only free the old ring if it exists. 3102 * It may not if this is the first add of an endpoint. 3103 */ 3104 if (virt_dev->eps[i].ring) { 3105 xhci_free_endpoint_ring(xhci, virt_dev, i); 3106 } 3107 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3108 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3109 virt_dev->eps[i].new_ring = NULL; 3110 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3111 } 3112 command_cleanup: 3113 kfree(command->completion); 3114 kfree(command); 3115 3116 return ret; 3117 } 3118 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3119 3120 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3121 { 3122 struct xhci_hcd *xhci; 3123 struct xhci_virt_device *virt_dev; 3124 int i, ret; 3125 3126 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3127 if (ret <= 0) 3128 return; 3129 xhci = hcd_to_xhci(hcd); 3130 3131 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3132 virt_dev = xhci->devs[udev->slot_id]; 3133 /* Free any rings allocated for added endpoints */ 3134 for (i = 0; i < 31; i++) { 3135 if (virt_dev->eps[i].new_ring) { 3136 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3137 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3138 virt_dev->eps[i].new_ring = NULL; 3139 } 3140 } 3141 xhci_zero_in_ctx(xhci, virt_dev); 3142 } 3143 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3144 3145 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3146 struct xhci_container_ctx *in_ctx, 3147 struct xhci_container_ctx *out_ctx, 3148 struct xhci_input_control_ctx *ctrl_ctx, 3149 u32 add_flags, u32 drop_flags) 3150 { 3151 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3152 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3153 xhci_slot_copy(xhci, in_ctx, out_ctx); 3154 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3155 } 3156 3157 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3158 struct usb_host_endpoint *host_ep) 3159 { 3160 struct xhci_hcd *xhci; 3161 struct xhci_virt_device *vdev; 3162 struct xhci_virt_ep *ep; 3163 struct usb_device *udev; 3164 unsigned long flags; 3165 unsigned int ep_index; 3166 3167 xhci = hcd_to_xhci(hcd); 3168 rescan: 3169 spin_lock_irqsave(&xhci->lock, flags); 3170 3171 udev = (struct usb_device *)host_ep->hcpriv; 3172 if (!udev || !udev->slot_id) 3173 goto done; 3174 3175 vdev = xhci->devs[udev->slot_id]; 3176 if (!vdev) 3177 goto done; 3178 3179 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3180 ep = &vdev->eps[ep_index]; 3181 3182 /* wait for hub_tt_work to finish clearing hub TT */ 3183 if (ep->ep_state & EP_CLEARING_TT) { 3184 spin_unlock_irqrestore(&xhci->lock, flags); 3185 schedule_timeout_uninterruptible(1); 3186 goto rescan; 3187 } 3188 3189 if (ep->ep_state) 3190 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3191 ep->ep_state); 3192 done: 3193 host_ep->hcpriv = NULL; 3194 spin_unlock_irqrestore(&xhci->lock, flags); 3195 } 3196 3197 /* 3198 * Called after usb core issues a clear halt control message. 3199 * The host side of the halt should already be cleared by a reset endpoint 3200 * command issued when the STALL event was received. 3201 * 3202 * The reset endpoint command may only be issued to endpoints in the halted 3203 * state. For software that wishes to reset the data toggle or sequence number 3204 * of an endpoint that isn't in the halted state this function will issue a 3205 * configure endpoint command with the Drop and Add bits set for the target 3206 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3207 */ 3208 3209 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3210 struct usb_host_endpoint *host_ep) 3211 { 3212 struct xhci_hcd *xhci; 3213 struct usb_device *udev; 3214 struct xhci_virt_device *vdev; 3215 struct xhci_virt_ep *ep; 3216 struct xhci_input_control_ctx *ctrl_ctx; 3217 struct xhci_command *stop_cmd, *cfg_cmd; 3218 unsigned int ep_index; 3219 unsigned long flags; 3220 u32 ep_flag; 3221 int err; 3222 3223 xhci = hcd_to_xhci(hcd); 3224 if (!host_ep->hcpriv) 3225 return; 3226 udev = (struct usb_device *) host_ep->hcpriv; 3227 vdev = xhci->devs[udev->slot_id]; 3228 3229 /* 3230 * vdev may be lost due to xHC restore error and re-initialization 3231 * during S3/S4 resume. A new vdev will be allocated later by 3232 * xhci_discover_or_reset_device() 3233 */ 3234 if (!udev->slot_id || !vdev) 3235 return; 3236 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3237 ep = &vdev->eps[ep_index]; 3238 3239 /* Bail out if toggle is already being cleared by a endpoint reset */ 3240 spin_lock_irqsave(&xhci->lock, flags); 3241 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3242 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3243 spin_unlock_irqrestore(&xhci->lock, flags); 3244 return; 3245 } 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3248 if (usb_endpoint_xfer_control(&host_ep->desc) || 3249 usb_endpoint_xfer_isoc(&host_ep->desc)) 3250 return; 3251 3252 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3253 3254 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3255 return; 3256 3257 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3258 if (!stop_cmd) 3259 return; 3260 3261 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3262 if (!cfg_cmd) 3263 goto cleanup; 3264 3265 spin_lock_irqsave(&xhci->lock, flags); 3266 3267 /* block queuing new trbs and ringing ep doorbell */ 3268 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3269 3270 /* 3271 * Make sure endpoint ring is empty before resetting the toggle/seq. 3272 * Driver is required to synchronously cancel all transfer request. 3273 * Stop the endpoint to force xHC to update the output context 3274 */ 3275 3276 if (!list_empty(&ep->ring->td_list)) { 3277 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3278 spin_unlock_irqrestore(&xhci->lock, flags); 3279 xhci_free_command(xhci, cfg_cmd); 3280 goto cleanup; 3281 } 3282 3283 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3284 ep_index, 0); 3285 if (err < 0) { 3286 spin_unlock_irqrestore(&xhci->lock, flags); 3287 xhci_free_command(xhci, cfg_cmd); 3288 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3289 __func__, err); 3290 goto cleanup; 3291 } 3292 3293 xhci_ring_cmd_db(xhci); 3294 spin_unlock_irqrestore(&xhci->lock, flags); 3295 3296 wait_for_completion(stop_cmd->completion); 3297 3298 spin_lock_irqsave(&xhci->lock, flags); 3299 3300 /* config ep command clears toggle if add and drop ep flags are set */ 3301 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3302 if (!ctrl_ctx) { 3303 spin_unlock_irqrestore(&xhci->lock, flags); 3304 xhci_free_command(xhci, cfg_cmd); 3305 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3306 __func__); 3307 goto cleanup; 3308 } 3309 3310 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3311 ctrl_ctx, ep_flag, ep_flag); 3312 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3313 3314 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3315 udev->slot_id, false); 3316 if (err < 0) { 3317 spin_unlock_irqrestore(&xhci->lock, flags); 3318 xhci_free_command(xhci, cfg_cmd); 3319 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3320 __func__, err); 3321 goto cleanup; 3322 } 3323 3324 xhci_ring_cmd_db(xhci); 3325 spin_unlock_irqrestore(&xhci->lock, flags); 3326 3327 wait_for_completion(cfg_cmd->completion); 3328 3329 xhci_free_command(xhci, cfg_cmd); 3330 cleanup: 3331 xhci_free_command(xhci, stop_cmd); 3332 spin_lock_irqsave(&xhci->lock, flags); 3333 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3334 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3335 spin_unlock_irqrestore(&xhci->lock, flags); 3336 } 3337 3338 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3339 struct usb_device *udev, struct usb_host_endpoint *ep, 3340 unsigned int slot_id) 3341 { 3342 int ret; 3343 unsigned int ep_index; 3344 unsigned int ep_state; 3345 3346 if (!ep) 3347 return -EINVAL; 3348 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3349 if (ret <= 0) 3350 return ret ? ret : -EINVAL; 3351 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3352 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3353 " descriptor for ep 0x%x does not support streams\n", 3354 ep->desc.bEndpointAddress); 3355 return -EINVAL; 3356 } 3357 3358 ep_index = xhci_get_endpoint_index(&ep->desc); 3359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3360 if (ep_state & EP_HAS_STREAMS || 3361 ep_state & EP_GETTING_STREAMS) { 3362 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3363 "already has streams set up.\n", 3364 ep->desc.bEndpointAddress); 3365 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3366 "dynamic stream context array reallocation.\n"); 3367 return -EINVAL; 3368 } 3369 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3370 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3371 "endpoint 0x%x; URBs are pending.\n", 3372 ep->desc.bEndpointAddress); 3373 return -EINVAL; 3374 } 3375 return 0; 3376 } 3377 3378 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3379 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3380 { 3381 unsigned int max_streams; 3382 3383 /* The stream context array size must be a power of two */ 3384 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3385 /* 3386 * Find out how many primary stream array entries the host controller 3387 * supports. Later we may use secondary stream arrays (similar to 2nd 3388 * level page entries), but that's an optional feature for xHCI host 3389 * controllers. xHCs must support at least 4 stream IDs. 3390 */ 3391 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3392 if (*num_stream_ctxs > max_streams) { 3393 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3394 max_streams); 3395 *num_stream_ctxs = max_streams; 3396 *num_streams = max_streams; 3397 } 3398 } 3399 3400 /* Returns an error code if one of the endpoint already has streams. 3401 * This does not change any data structures, it only checks and gathers 3402 * information. 3403 */ 3404 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3405 struct usb_device *udev, 3406 struct usb_host_endpoint **eps, unsigned int num_eps, 3407 unsigned int *num_streams, u32 *changed_ep_bitmask) 3408 { 3409 unsigned int max_streams; 3410 unsigned int endpoint_flag; 3411 int i; 3412 int ret; 3413 3414 for (i = 0; i < num_eps; i++) { 3415 ret = xhci_check_streams_endpoint(xhci, udev, 3416 eps[i], udev->slot_id); 3417 if (ret < 0) 3418 return ret; 3419 3420 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3421 if (max_streams < (*num_streams - 1)) { 3422 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3423 eps[i]->desc.bEndpointAddress, 3424 max_streams); 3425 *num_streams = max_streams+1; 3426 } 3427 3428 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3429 if (*changed_ep_bitmask & endpoint_flag) 3430 return -EINVAL; 3431 *changed_ep_bitmask |= endpoint_flag; 3432 } 3433 return 0; 3434 } 3435 3436 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3437 struct usb_device *udev, 3438 struct usb_host_endpoint **eps, unsigned int num_eps) 3439 { 3440 u32 changed_ep_bitmask = 0; 3441 unsigned int slot_id; 3442 unsigned int ep_index; 3443 unsigned int ep_state; 3444 int i; 3445 3446 slot_id = udev->slot_id; 3447 if (!xhci->devs[slot_id]) 3448 return 0; 3449 3450 for (i = 0; i < num_eps; i++) { 3451 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3452 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3453 /* Are streams already being freed for the endpoint? */ 3454 if (ep_state & EP_GETTING_NO_STREAMS) { 3455 xhci_warn(xhci, "WARN Can't disable streams for " 3456 "endpoint 0x%x, " 3457 "streams are being disabled already\n", 3458 eps[i]->desc.bEndpointAddress); 3459 return 0; 3460 } 3461 /* Are there actually any streams to free? */ 3462 if (!(ep_state & EP_HAS_STREAMS) && 3463 !(ep_state & EP_GETTING_STREAMS)) { 3464 xhci_warn(xhci, "WARN Can't disable streams for " 3465 "endpoint 0x%x, " 3466 "streams are already disabled!\n", 3467 eps[i]->desc.bEndpointAddress); 3468 xhci_warn(xhci, "WARN xhci_free_streams() called " 3469 "with non-streams endpoint\n"); 3470 return 0; 3471 } 3472 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3473 } 3474 return changed_ep_bitmask; 3475 } 3476 3477 /* 3478 * The USB device drivers use this function (through the HCD interface in USB 3479 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3480 * coordinate mass storage command queueing across multiple endpoints (basically 3481 * a stream ID == a task ID). 3482 * 3483 * Setting up streams involves allocating the same size stream context array 3484 * for each endpoint and issuing a configure endpoint command for all endpoints. 3485 * 3486 * Don't allow the call to succeed if one endpoint only supports one stream 3487 * (which means it doesn't support streams at all). 3488 * 3489 * Drivers may get less stream IDs than they asked for, if the host controller 3490 * hardware or endpoints claim they can't support the number of requested 3491 * stream IDs. 3492 */ 3493 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3494 struct usb_host_endpoint **eps, unsigned int num_eps, 3495 unsigned int num_streams, gfp_t mem_flags) 3496 { 3497 int i, ret; 3498 struct xhci_hcd *xhci; 3499 struct xhci_virt_device *vdev; 3500 struct xhci_command *config_cmd; 3501 struct xhci_input_control_ctx *ctrl_ctx; 3502 unsigned int ep_index; 3503 unsigned int num_stream_ctxs; 3504 unsigned int max_packet; 3505 unsigned long flags; 3506 u32 changed_ep_bitmask = 0; 3507 3508 if (!eps) 3509 return -EINVAL; 3510 3511 /* Add one to the number of streams requested to account for 3512 * stream 0 that is reserved for xHCI usage. 3513 */ 3514 num_streams += 1; 3515 xhci = hcd_to_xhci(hcd); 3516 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3517 num_streams); 3518 3519 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3520 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3521 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3522 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3523 return -ENOSYS; 3524 } 3525 3526 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3527 if (!config_cmd) 3528 return -ENOMEM; 3529 3530 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3531 if (!ctrl_ctx) { 3532 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3533 __func__); 3534 xhci_free_command(xhci, config_cmd); 3535 return -ENOMEM; 3536 } 3537 3538 /* Check to make sure all endpoints are not already configured for 3539 * streams. While we're at it, find the maximum number of streams that 3540 * all the endpoints will support and check for duplicate endpoints. 3541 */ 3542 spin_lock_irqsave(&xhci->lock, flags); 3543 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3544 num_eps, &num_streams, &changed_ep_bitmask); 3545 if (ret < 0) { 3546 xhci_free_command(xhci, config_cmd); 3547 spin_unlock_irqrestore(&xhci->lock, flags); 3548 return ret; 3549 } 3550 if (num_streams <= 1) { 3551 xhci_warn(xhci, "WARN: endpoints can't handle " 3552 "more than one stream.\n"); 3553 xhci_free_command(xhci, config_cmd); 3554 spin_unlock_irqrestore(&xhci->lock, flags); 3555 return -EINVAL; 3556 } 3557 vdev = xhci->devs[udev->slot_id]; 3558 /* Mark each endpoint as being in transition, so 3559 * xhci_urb_enqueue() will reject all URBs. 3560 */ 3561 for (i = 0; i < num_eps; i++) { 3562 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3563 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3564 } 3565 spin_unlock_irqrestore(&xhci->lock, flags); 3566 3567 /* Setup internal data structures and allocate HW data structures for 3568 * streams (but don't install the HW structures in the input context 3569 * until we're sure all memory allocation succeeded). 3570 */ 3571 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3572 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3573 num_stream_ctxs, num_streams); 3574 3575 for (i = 0; i < num_eps; i++) { 3576 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3577 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3578 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3579 num_stream_ctxs, 3580 num_streams, 3581 max_packet, mem_flags); 3582 if (!vdev->eps[ep_index].stream_info) 3583 goto cleanup; 3584 /* Set maxPstreams in endpoint context and update deq ptr to 3585 * point to stream context array. FIXME 3586 */ 3587 } 3588 3589 /* Set up the input context for a configure endpoint command. */ 3590 for (i = 0; i < num_eps; i++) { 3591 struct xhci_ep_ctx *ep_ctx; 3592 3593 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3594 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3595 3596 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3597 vdev->out_ctx, ep_index); 3598 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3599 vdev->eps[ep_index].stream_info); 3600 } 3601 /* Tell the HW to drop its old copy of the endpoint context info 3602 * and add the updated copy from the input context. 3603 */ 3604 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3605 vdev->out_ctx, ctrl_ctx, 3606 changed_ep_bitmask, changed_ep_bitmask); 3607 3608 /* Issue and wait for the configure endpoint command */ 3609 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3610 false, false); 3611 3612 /* xHC rejected the configure endpoint command for some reason, so we 3613 * leave the old ring intact and free our internal streams data 3614 * structure. 3615 */ 3616 if (ret < 0) 3617 goto cleanup; 3618 3619 spin_lock_irqsave(&xhci->lock, flags); 3620 for (i = 0; i < num_eps; i++) { 3621 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3622 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3623 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3624 udev->slot_id, ep_index); 3625 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3626 } 3627 xhci_free_command(xhci, config_cmd); 3628 spin_unlock_irqrestore(&xhci->lock, flags); 3629 3630 for (i = 0; i < num_eps; i++) { 3631 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3632 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3633 } 3634 /* Subtract 1 for stream 0, which drivers can't use */ 3635 return num_streams - 1; 3636 3637 cleanup: 3638 /* If it didn't work, free the streams! */ 3639 for (i = 0; i < num_eps; i++) { 3640 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3641 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3642 vdev->eps[ep_index].stream_info = NULL; 3643 /* FIXME Unset maxPstreams in endpoint context and 3644 * update deq ptr to point to normal string ring. 3645 */ 3646 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3647 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3648 xhci_endpoint_zero(xhci, vdev, eps[i]); 3649 } 3650 xhci_free_command(xhci, config_cmd); 3651 return -ENOMEM; 3652 } 3653 3654 /* Transition the endpoint from using streams to being a "normal" endpoint 3655 * without streams. 3656 * 3657 * Modify the endpoint context state, submit a configure endpoint command, 3658 * and free all endpoint rings for streams if that completes successfully. 3659 */ 3660 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3661 struct usb_host_endpoint **eps, unsigned int num_eps, 3662 gfp_t mem_flags) 3663 { 3664 int i, ret; 3665 struct xhci_hcd *xhci; 3666 struct xhci_virt_device *vdev; 3667 struct xhci_command *command; 3668 struct xhci_input_control_ctx *ctrl_ctx; 3669 unsigned int ep_index; 3670 unsigned long flags; 3671 u32 changed_ep_bitmask; 3672 3673 xhci = hcd_to_xhci(hcd); 3674 vdev = xhci->devs[udev->slot_id]; 3675 3676 /* Set up a configure endpoint command to remove the streams rings */ 3677 spin_lock_irqsave(&xhci->lock, flags); 3678 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3679 udev, eps, num_eps); 3680 if (changed_ep_bitmask == 0) { 3681 spin_unlock_irqrestore(&xhci->lock, flags); 3682 return -EINVAL; 3683 } 3684 3685 /* Use the xhci_command structure from the first endpoint. We may have 3686 * allocated too many, but the driver may call xhci_free_streams() for 3687 * each endpoint it grouped into one call to xhci_alloc_streams(). 3688 */ 3689 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3690 command = vdev->eps[ep_index].stream_info->free_streams_command; 3691 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3692 if (!ctrl_ctx) { 3693 spin_unlock_irqrestore(&xhci->lock, flags); 3694 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3695 __func__); 3696 return -EINVAL; 3697 } 3698 3699 for (i = 0; i < num_eps; i++) { 3700 struct xhci_ep_ctx *ep_ctx; 3701 3702 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3703 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3704 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3705 EP_GETTING_NO_STREAMS; 3706 3707 xhci_endpoint_copy(xhci, command->in_ctx, 3708 vdev->out_ctx, ep_index); 3709 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3710 &vdev->eps[ep_index]); 3711 } 3712 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3713 vdev->out_ctx, ctrl_ctx, 3714 changed_ep_bitmask, changed_ep_bitmask); 3715 spin_unlock_irqrestore(&xhci->lock, flags); 3716 3717 /* Issue and wait for the configure endpoint command, 3718 * which must succeed. 3719 */ 3720 ret = xhci_configure_endpoint(xhci, udev, command, 3721 false, true); 3722 3723 /* xHC rejected the configure endpoint command for some reason, so we 3724 * leave the streams rings intact. 3725 */ 3726 if (ret < 0) 3727 return ret; 3728 3729 spin_lock_irqsave(&xhci->lock, flags); 3730 for (i = 0; i < num_eps; i++) { 3731 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3732 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3733 vdev->eps[ep_index].stream_info = NULL; 3734 /* FIXME Unset maxPstreams in endpoint context and 3735 * update deq ptr to point to normal string ring. 3736 */ 3737 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3738 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3739 } 3740 spin_unlock_irqrestore(&xhci->lock, flags); 3741 3742 return 0; 3743 } 3744 3745 /* 3746 * Deletes endpoint resources for endpoints that were active before a Reset 3747 * Device command, or a Disable Slot command. The Reset Device command leaves 3748 * the control endpoint intact, whereas the Disable Slot command deletes it. 3749 * 3750 * Must be called with xhci->lock held. 3751 */ 3752 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3753 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3754 { 3755 int i; 3756 unsigned int num_dropped_eps = 0; 3757 unsigned int drop_flags = 0; 3758 3759 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3760 if (virt_dev->eps[i].ring) { 3761 drop_flags |= 1 << i; 3762 num_dropped_eps++; 3763 } 3764 } 3765 xhci->num_active_eps -= num_dropped_eps; 3766 if (num_dropped_eps) 3767 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3768 "Dropped %u ep ctxs, flags = 0x%x, " 3769 "%u now active.", 3770 num_dropped_eps, drop_flags, 3771 xhci->num_active_eps); 3772 } 3773 3774 /* 3775 * This submits a Reset Device Command, which will set the device state to 0, 3776 * set the device address to 0, and disable all the endpoints except the default 3777 * control endpoint. The USB core should come back and call 3778 * xhci_address_device(), and then re-set up the configuration. If this is 3779 * called because of a usb_reset_and_verify_device(), then the old alternate 3780 * settings will be re-installed through the normal bandwidth allocation 3781 * functions. 3782 * 3783 * Wait for the Reset Device command to finish. Remove all structures 3784 * associated with the endpoints that were disabled. Clear the input device 3785 * structure? Reset the control endpoint 0 max packet size? 3786 * 3787 * If the virt_dev to be reset does not exist or does not match the udev, 3788 * it means the device is lost, possibly due to the xHC restore error and 3789 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3790 * re-allocate the device. 3791 */ 3792 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3793 struct usb_device *udev) 3794 { 3795 int ret, i; 3796 unsigned long flags; 3797 struct xhci_hcd *xhci; 3798 unsigned int slot_id; 3799 struct xhci_virt_device *virt_dev; 3800 struct xhci_command *reset_device_cmd; 3801 struct xhci_slot_ctx *slot_ctx; 3802 int old_active_eps = 0; 3803 3804 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3805 if (ret <= 0) 3806 return ret; 3807 xhci = hcd_to_xhci(hcd); 3808 slot_id = udev->slot_id; 3809 virt_dev = xhci->devs[slot_id]; 3810 if (!virt_dev) { 3811 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3812 "not exist. Re-allocate the device\n", slot_id); 3813 ret = xhci_alloc_dev(hcd, udev); 3814 if (ret == 1) 3815 return 0; 3816 else 3817 return -EINVAL; 3818 } 3819 3820 if (virt_dev->tt_info) 3821 old_active_eps = virt_dev->tt_info->active_eps; 3822 3823 if (virt_dev->udev != udev) { 3824 /* If the virt_dev and the udev does not match, this virt_dev 3825 * may belong to another udev. 3826 * Re-allocate the device. 3827 */ 3828 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3829 "not match the udev. Re-allocate the device\n", 3830 slot_id); 3831 ret = xhci_alloc_dev(hcd, udev); 3832 if (ret == 1) 3833 return 0; 3834 else 3835 return -EINVAL; 3836 } 3837 3838 /* If device is not setup, there is no point in resetting it */ 3839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3840 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3841 SLOT_STATE_DISABLED) 3842 return 0; 3843 3844 trace_xhci_discover_or_reset_device(slot_ctx); 3845 3846 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3847 /* Allocate the command structure that holds the struct completion. 3848 * Assume we're in process context, since the normal device reset 3849 * process has to wait for the device anyway. Storage devices are 3850 * reset as part of error handling, so use GFP_NOIO instead of 3851 * GFP_KERNEL. 3852 */ 3853 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3854 if (!reset_device_cmd) { 3855 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3856 return -ENOMEM; 3857 } 3858 3859 /* Attempt to submit the Reset Device command to the command ring */ 3860 spin_lock_irqsave(&xhci->lock, flags); 3861 3862 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3863 if (ret) { 3864 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3865 spin_unlock_irqrestore(&xhci->lock, flags); 3866 goto command_cleanup; 3867 } 3868 xhci_ring_cmd_db(xhci); 3869 spin_unlock_irqrestore(&xhci->lock, flags); 3870 3871 /* Wait for the Reset Device command to finish */ 3872 wait_for_completion(reset_device_cmd->completion); 3873 3874 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3875 * unless we tried to reset a slot ID that wasn't enabled, 3876 * or the device wasn't in the addressed or configured state. 3877 */ 3878 ret = reset_device_cmd->status; 3879 switch (ret) { 3880 case COMP_COMMAND_ABORTED: 3881 case COMP_COMMAND_RING_STOPPED: 3882 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3883 ret = -ETIME; 3884 goto command_cleanup; 3885 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3886 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3887 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3888 slot_id, 3889 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3890 xhci_dbg(xhci, "Not freeing device rings.\n"); 3891 /* Don't treat this as an error. May change my mind later. */ 3892 ret = 0; 3893 goto command_cleanup; 3894 case COMP_SUCCESS: 3895 xhci_dbg(xhci, "Successful reset device command.\n"); 3896 break; 3897 default: 3898 if (xhci_is_vendor_info_code(xhci, ret)) 3899 break; 3900 xhci_warn(xhci, "Unknown completion code %u for " 3901 "reset device command.\n", ret); 3902 ret = -EINVAL; 3903 goto command_cleanup; 3904 } 3905 3906 /* Free up host controller endpoint resources */ 3907 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3908 spin_lock_irqsave(&xhci->lock, flags); 3909 /* Don't delete the default control endpoint resources */ 3910 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3911 spin_unlock_irqrestore(&xhci->lock, flags); 3912 } 3913 3914 /* Everything but endpoint 0 is disabled, so free the rings. */ 3915 for (i = 1; i < 31; i++) { 3916 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3917 3918 if (ep->ep_state & EP_HAS_STREAMS) { 3919 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3920 xhci_get_endpoint_address(i)); 3921 xhci_free_stream_info(xhci, ep->stream_info); 3922 ep->stream_info = NULL; 3923 ep->ep_state &= ~EP_HAS_STREAMS; 3924 } 3925 3926 if (ep->ring) { 3927 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3928 xhci_free_endpoint_ring(xhci, virt_dev, i); 3929 } 3930 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3931 xhci_drop_ep_from_interval_table(xhci, 3932 &virt_dev->eps[i].bw_info, 3933 virt_dev->bw_table, 3934 udev, 3935 &virt_dev->eps[i], 3936 virt_dev->tt_info); 3937 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3938 } 3939 /* If necessary, update the number of active TTs on this root port */ 3940 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3941 virt_dev->flags = 0; 3942 ret = 0; 3943 3944 command_cleanup: 3945 xhci_free_command(xhci, reset_device_cmd); 3946 return ret; 3947 } 3948 3949 /* 3950 * At this point, the struct usb_device is about to go away, the device has 3951 * disconnected, and all traffic has been stopped and the endpoints have been 3952 * disabled. Free any HC data structures associated with that device. 3953 */ 3954 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3955 { 3956 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3957 struct xhci_virt_device *virt_dev; 3958 struct xhci_slot_ctx *slot_ctx; 3959 int i, ret; 3960 3961 /* 3962 * We called pm_runtime_get_noresume when the device was attached. 3963 * Decrement the counter here to allow controller to runtime suspend 3964 * if no devices remain. 3965 */ 3966 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3967 pm_runtime_put_noidle(hcd->self.controller); 3968 3969 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3970 /* If the host is halted due to driver unload, we still need to free the 3971 * device. 3972 */ 3973 if (ret <= 0 && ret != -ENODEV) 3974 return; 3975 3976 virt_dev = xhci->devs[udev->slot_id]; 3977 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3978 trace_xhci_free_dev(slot_ctx); 3979 3980 /* Stop any wayward timer functions (which may grab the lock) */ 3981 for (i = 0; i < 31; i++) 3982 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3983 virt_dev->udev = NULL; 3984 xhci_disable_slot(xhci, udev->slot_id); 3985 xhci_free_virt_device(xhci, udev->slot_id); 3986 } 3987 3988 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3989 { 3990 struct xhci_command *command; 3991 unsigned long flags; 3992 u32 state; 3993 int ret; 3994 3995 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3996 if (!command) 3997 return -ENOMEM; 3998 3999 xhci_debugfs_remove_slot(xhci, slot_id); 4000 4001 spin_lock_irqsave(&xhci->lock, flags); 4002 /* Don't disable the slot if the host controller is dead. */ 4003 state = readl(&xhci->op_regs->status); 4004 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4005 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4006 spin_unlock_irqrestore(&xhci->lock, flags); 4007 kfree(command); 4008 return -ENODEV; 4009 } 4010 4011 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4012 slot_id); 4013 if (ret) { 4014 spin_unlock_irqrestore(&xhci->lock, flags); 4015 kfree(command); 4016 return ret; 4017 } 4018 xhci_ring_cmd_db(xhci); 4019 spin_unlock_irqrestore(&xhci->lock, flags); 4020 4021 wait_for_completion(command->completion); 4022 4023 if (command->status != COMP_SUCCESS) 4024 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4025 slot_id, command->status); 4026 4027 xhci_free_command(xhci, command); 4028 4029 return 0; 4030 } 4031 4032 /* 4033 * Checks if we have enough host controller resources for the default control 4034 * endpoint. 4035 * 4036 * Must be called with xhci->lock held. 4037 */ 4038 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4039 { 4040 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4042 "Not enough ep ctxs: " 4043 "%u active, need to add 1, limit is %u.", 4044 xhci->num_active_eps, xhci->limit_active_eps); 4045 return -ENOMEM; 4046 } 4047 xhci->num_active_eps += 1; 4048 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4049 "Adding 1 ep ctx, %u now active.", 4050 xhci->num_active_eps); 4051 return 0; 4052 } 4053 4054 4055 /* 4056 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4057 * timed out, or allocating memory failed. Returns 1 on success. 4058 */ 4059 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4060 { 4061 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4062 struct xhci_virt_device *vdev; 4063 struct xhci_slot_ctx *slot_ctx; 4064 unsigned long flags; 4065 int ret, slot_id; 4066 struct xhci_command *command; 4067 4068 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4069 if (!command) 4070 return 0; 4071 4072 spin_lock_irqsave(&xhci->lock, flags); 4073 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4074 if (ret) { 4075 spin_unlock_irqrestore(&xhci->lock, flags); 4076 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4077 xhci_free_command(xhci, command); 4078 return 0; 4079 } 4080 xhci_ring_cmd_db(xhci); 4081 spin_unlock_irqrestore(&xhci->lock, flags); 4082 4083 wait_for_completion(command->completion); 4084 slot_id = command->slot_id; 4085 4086 if (!slot_id || command->status != COMP_SUCCESS) { 4087 xhci_err(xhci, "Error while assigning device slot ID\n"); 4088 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4089 HCS_MAX_SLOTS( 4090 readl(&xhci->cap_regs->hcs_params1))); 4091 xhci_free_command(xhci, command); 4092 return 0; 4093 } 4094 4095 xhci_free_command(xhci, command); 4096 4097 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4098 spin_lock_irqsave(&xhci->lock, flags); 4099 ret = xhci_reserve_host_control_ep_resources(xhci); 4100 if (ret) { 4101 spin_unlock_irqrestore(&xhci->lock, flags); 4102 xhci_warn(xhci, "Not enough host resources, " 4103 "active endpoint contexts = %u\n", 4104 xhci->num_active_eps); 4105 goto disable_slot; 4106 } 4107 spin_unlock_irqrestore(&xhci->lock, flags); 4108 } 4109 /* Use GFP_NOIO, since this function can be called from 4110 * xhci_discover_or_reset_device(), which may be called as part of 4111 * mass storage driver error handling. 4112 */ 4113 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4114 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4115 goto disable_slot; 4116 } 4117 vdev = xhci->devs[slot_id]; 4118 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4119 trace_xhci_alloc_dev(slot_ctx); 4120 4121 udev->slot_id = slot_id; 4122 4123 xhci_debugfs_create_slot(xhci, slot_id); 4124 4125 /* 4126 * If resetting upon resume, we can't put the controller into runtime 4127 * suspend if there is a device attached. 4128 */ 4129 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4130 pm_runtime_get_noresume(hcd->self.controller); 4131 4132 /* Is this a LS or FS device under a HS hub? */ 4133 /* Hub or peripherial? */ 4134 return 1; 4135 4136 disable_slot: 4137 xhci_disable_slot(xhci, udev->slot_id); 4138 xhci_free_virt_device(xhci, udev->slot_id); 4139 4140 return 0; 4141 } 4142 4143 /* 4144 * Issue an Address Device command and optionally send a corresponding 4145 * SetAddress request to the device. 4146 */ 4147 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4148 enum xhci_setup_dev setup) 4149 { 4150 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4151 unsigned long flags; 4152 struct xhci_virt_device *virt_dev; 4153 int ret = 0; 4154 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4155 struct xhci_slot_ctx *slot_ctx; 4156 struct xhci_input_control_ctx *ctrl_ctx; 4157 u64 temp_64; 4158 struct xhci_command *command = NULL; 4159 4160 mutex_lock(&xhci->mutex); 4161 4162 if (xhci->xhc_state) { /* dying, removing or halted */ 4163 ret = -ESHUTDOWN; 4164 goto out; 4165 } 4166 4167 if (!udev->slot_id) { 4168 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4169 "Bad Slot ID %d", udev->slot_id); 4170 ret = -EINVAL; 4171 goto out; 4172 } 4173 4174 virt_dev = xhci->devs[udev->slot_id]; 4175 4176 if (WARN_ON(!virt_dev)) { 4177 /* 4178 * In plug/unplug torture test with an NEC controller, 4179 * a zero-dereference was observed once due to virt_dev = 0. 4180 * Print useful debug rather than crash if it is observed again! 4181 */ 4182 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4183 udev->slot_id); 4184 ret = -EINVAL; 4185 goto out; 4186 } 4187 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4188 trace_xhci_setup_device_slot(slot_ctx); 4189 4190 if (setup == SETUP_CONTEXT_ONLY) { 4191 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4192 SLOT_STATE_DEFAULT) { 4193 xhci_dbg(xhci, "Slot already in default state\n"); 4194 goto out; 4195 } 4196 } 4197 4198 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4199 if (!command) { 4200 ret = -ENOMEM; 4201 goto out; 4202 } 4203 4204 command->in_ctx = virt_dev->in_ctx; 4205 4206 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4207 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4208 if (!ctrl_ctx) { 4209 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4210 __func__); 4211 ret = -EINVAL; 4212 goto out; 4213 } 4214 /* 4215 * If this is the first Set Address since device plug-in or 4216 * virt_device realloaction after a resume with an xHCI power loss, 4217 * then set up the slot context. 4218 */ 4219 if (!slot_ctx->dev_info) 4220 xhci_setup_addressable_virt_dev(xhci, udev); 4221 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4222 else 4223 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4224 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4225 ctrl_ctx->drop_flags = 0; 4226 4227 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4228 le32_to_cpu(slot_ctx->dev_info) >> 27); 4229 4230 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4231 spin_lock_irqsave(&xhci->lock, flags); 4232 trace_xhci_setup_device(virt_dev); 4233 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4234 udev->slot_id, setup); 4235 if (ret) { 4236 spin_unlock_irqrestore(&xhci->lock, flags); 4237 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4238 "FIXME: allocate a command ring segment"); 4239 goto out; 4240 } 4241 xhci_ring_cmd_db(xhci); 4242 spin_unlock_irqrestore(&xhci->lock, flags); 4243 4244 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4245 wait_for_completion(command->completion); 4246 4247 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4248 * the SetAddress() "recovery interval" required by USB and aborting the 4249 * command on a timeout. 4250 */ 4251 switch (command->status) { 4252 case COMP_COMMAND_ABORTED: 4253 case COMP_COMMAND_RING_STOPPED: 4254 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4255 ret = -ETIME; 4256 break; 4257 case COMP_CONTEXT_STATE_ERROR: 4258 case COMP_SLOT_NOT_ENABLED_ERROR: 4259 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4260 act, udev->slot_id); 4261 ret = -EINVAL; 4262 break; 4263 case COMP_USB_TRANSACTION_ERROR: 4264 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4265 4266 mutex_unlock(&xhci->mutex); 4267 ret = xhci_disable_slot(xhci, udev->slot_id); 4268 xhci_free_virt_device(xhci, udev->slot_id); 4269 if (!ret) 4270 xhci_alloc_dev(hcd, udev); 4271 kfree(command->completion); 4272 kfree(command); 4273 return -EPROTO; 4274 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4275 dev_warn(&udev->dev, 4276 "ERROR: Incompatible device for setup %s command\n", act); 4277 ret = -ENODEV; 4278 break; 4279 case COMP_SUCCESS: 4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4281 "Successful setup %s command", act); 4282 break; 4283 default: 4284 xhci_err(xhci, 4285 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4286 act, command->status); 4287 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4288 ret = -EINVAL; 4289 break; 4290 } 4291 if (ret) 4292 goto out; 4293 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4295 "Op regs DCBAA ptr = %#016llx", temp_64); 4296 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4297 "Slot ID %d dcbaa entry @%p = %#016llx", 4298 udev->slot_id, 4299 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4300 (unsigned long long) 4301 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4302 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4303 "Output Context DMA address = %#08llx", 4304 (unsigned long long)virt_dev->out_ctx->dma); 4305 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4306 le32_to_cpu(slot_ctx->dev_info) >> 27); 4307 /* 4308 * USB core uses address 1 for the roothubs, so we add one to the 4309 * address given back to us by the HC. 4310 */ 4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4312 le32_to_cpu(slot_ctx->dev_info) >> 27); 4313 /* Zero the input context control for later use */ 4314 ctrl_ctx->add_flags = 0; 4315 ctrl_ctx->drop_flags = 0; 4316 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4317 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4318 4319 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4320 "Internal device address = %d", 4321 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4322 out: 4323 mutex_unlock(&xhci->mutex); 4324 if (command) { 4325 kfree(command->completion); 4326 kfree(command); 4327 } 4328 return ret; 4329 } 4330 4331 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4332 { 4333 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4334 } 4335 4336 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4337 { 4338 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4339 } 4340 4341 /* 4342 * Transfer the port index into real index in the HW port status 4343 * registers. Caculate offset between the port's PORTSC register 4344 * and port status base. Divide the number of per port register 4345 * to get the real index. The raw port number bases 1. 4346 */ 4347 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4348 { 4349 struct xhci_hub *rhub; 4350 4351 rhub = xhci_get_rhub(hcd); 4352 return rhub->ports[port1 - 1]->hw_portnum + 1; 4353 } 4354 4355 /* 4356 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4357 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4358 */ 4359 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4360 struct usb_device *udev, u16 max_exit_latency) 4361 { 4362 struct xhci_virt_device *virt_dev; 4363 struct xhci_command *command; 4364 struct xhci_input_control_ctx *ctrl_ctx; 4365 struct xhci_slot_ctx *slot_ctx; 4366 unsigned long flags; 4367 int ret; 4368 4369 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4370 if (!command) 4371 return -ENOMEM; 4372 4373 spin_lock_irqsave(&xhci->lock, flags); 4374 4375 virt_dev = xhci->devs[udev->slot_id]; 4376 4377 /* 4378 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4379 * xHC was re-initialized. Exit latency will be set later after 4380 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4381 */ 4382 4383 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4384 spin_unlock_irqrestore(&xhci->lock, flags); 4385 return 0; 4386 } 4387 4388 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4389 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4390 if (!ctrl_ctx) { 4391 spin_unlock_irqrestore(&xhci->lock, flags); 4392 xhci_free_command(xhci, command); 4393 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4394 __func__); 4395 return -ENOMEM; 4396 } 4397 4398 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4399 spin_unlock_irqrestore(&xhci->lock, flags); 4400 4401 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4402 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4403 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4404 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4405 slot_ctx->dev_state = 0; 4406 4407 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4408 "Set up evaluate context for LPM MEL change."); 4409 4410 /* Issue and wait for the evaluate context command. */ 4411 ret = xhci_configure_endpoint(xhci, udev, command, 4412 true, true); 4413 4414 if (!ret) { 4415 spin_lock_irqsave(&xhci->lock, flags); 4416 virt_dev->current_mel = max_exit_latency; 4417 spin_unlock_irqrestore(&xhci->lock, flags); 4418 } 4419 4420 xhci_free_command(xhci, command); 4421 4422 return ret; 4423 } 4424 4425 #ifdef CONFIG_PM 4426 4427 /* BESL to HIRD Encoding array for USB2 LPM */ 4428 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4429 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4430 4431 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4432 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4433 struct usb_device *udev) 4434 { 4435 int u2del, besl, besl_host; 4436 int besl_device = 0; 4437 u32 field; 4438 4439 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4440 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4441 4442 if (field & USB_BESL_SUPPORT) { 4443 for (besl_host = 0; besl_host < 16; besl_host++) { 4444 if (xhci_besl_encoding[besl_host] >= u2del) 4445 break; 4446 } 4447 /* Use baseline BESL value as default */ 4448 if (field & USB_BESL_BASELINE_VALID) 4449 besl_device = USB_GET_BESL_BASELINE(field); 4450 else if (field & USB_BESL_DEEP_VALID) 4451 besl_device = USB_GET_BESL_DEEP(field); 4452 } else { 4453 if (u2del <= 50) 4454 besl_host = 0; 4455 else 4456 besl_host = (u2del - 51) / 75 + 1; 4457 } 4458 4459 besl = besl_host + besl_device; 4460 if (besl > 15) 4461 besl = 15; 4462 4463 return besl; 4464 } 4465 4466 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4467 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4468 { 4469 u32 field; 4470 int l1; 4471 int besld = 0; 4472 int hirdm = 0; 4473 4474 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4475 4476 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4477 l1 = udev->l1_params.timeout / 256; 4478 4479 /* device has preferred BESLD */ 4480 if (field & USB_BESL_DEEP_VALID) { 4481 besld = USB_GET_BESL_DEEP(field); 4482 hirdm = 1; 4483 } 4484 4485 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4486 } 4487 4488 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4489 struct usb_device *udev, int enable) 4490 { 4491 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4492 struct xhci_port **ports; 4493 __le32 __iomem *pm_addr, *hlpm_addr; 4494 u32 pm_val, hlpm_val, field; 4495 unsigned int port_num; 4496 unsigned long flags; 4497 int hird, exit_latency; 4498 int ret; 4499 4500 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4501 return -EPERM; 4502 4503 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4504 !udev->lpm_capable) 4505 return -EPERM; 4506 4507 if (!udev->parent || udev->parent->parent || 4508 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4509 return -EPERM; 4510 4511 if (udev->usb2_hw_lpm_capable != 1) 4512 return -EPERM; 4513 4514 spin_lock_irqsave(&xhci->lock, flags); 4515 4516 ports = xhci->usb2_rhub.ports; 4517 port_num = udev->portnum - 1; 4518 pm_addr = ports[port_num]->addr + PORTPMSC; 4519 pm_val = readl(pm_addr); 4520 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4521 4522 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4523 enable ? "enable" : "disable", port_num + 1); 4524 4525 if (enable) { 4526 /* Host supports BESL timeout instead of HIRD */ 4527 if (udev->usb2_hw_lpm_besl_capable) { 4528 /* if device doesn't have a preferred BESL value use a 4529 * default one which works with mixed HIRD and BESL 4530 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4531 */ 4532 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4533 if ((field & USB_BESL_SUPPORT) && 4534 (field & USB_BESL_BASELINE_VALID)) 4535 hird = USB_GET_BESL_BASELINE(field); 4536 else 4537 hird = udev->l1_params.besl; 4538 4539 exit_latency = xhci_besl_encoding[hird]; 4540 spin_unlock_irqrestore(&xhci->lock, flags); 4541 4542 ret = xhci_change_max_exit_latency(xhci, udev, 4543 exit_latency); 4544 if (ret < 0) 4545 return ret; 4546 spin_lock_irqsave(&xhci->lock, flags); 4547 4548 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4549 writel(hlpm_val, hlpm_addr); 4550 /* flush write */ 4551 readl(hlpm_addr); 4552 } else { 4553 hird = xhci_calculate_hird_besl(xhci, udev); 4554 } 4555 4556 pm_val &= ~PORT_HIRD_MASK; 4557 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4558 writel(pm_val, pm_addr); 4559 pm_val = readl(pm_addr); 4560 pm_val |= PORT_HLE; 4561 writel(pm_val, pm_addr); 4562 /* flush write */ 4563 readl(pm_addr); 4564 } else { 4565 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4566 writel(pm_val, pm_addr); 4567 /* flush write */ 4568 readl(pm_addr); 4569 if (udev->usb2_hw_lpm_besl_capable) { 4570 spin_unlock_irqrestore(&xhci->lock, flags); 4571 xhci_change_max_exit_latency(xhci, udev, 0); 4572 readl_poll_timeout(ports[port_num]->addr, pm_val, 4573 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4574 100, 10000); 4575 return 0; 4576 } 4577 } 4578 4579 spin_unlock_irqrestore(&xhci->lock, flags); 4580 return 0; 4581 } 4582 4583 /* check if a usb2 port supports a given extened capability protocol 4584 * only USB2 ports extended protocol capability values are cached. 4585 * Return 1 if capability is supported 4586 */ 4587 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4588 unsigned capability) 4589 { 4590 u32 port_offset, port_count; 4591 int i; 4592 4593 for (i = 0; i < xhci->num_ext_caps; i++) { 4594 if (xhci->ext_caps[i] & capability) { 4595 /* port offsets starts at 1 */ 4596 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4597 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4598 if (port >= port_offset && 4599 port < port_offset + port_count) 4600 return 1; 4601 } 4602 } 4603 return 0; 4604 } 4605 4606 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4607 { 4608 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4609 int portnum = udev->portnum - 1; 4610 4611 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4612 return 0; 4613 4614 /* we only support lpm for non-hub device connected to root hub yet */ 4615 if (!udev->parent || udev->parent->parent || 4616 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4617 return 0; 4618 4619 if (xhci->hw_lpm_support == 1 && 4620 xhci_check_usb2_port_capability( 4621 xhci, portnum, XHCI_HLC)) { 4622 udev->usb2_hw_lpm_capable = 1; 4623 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4624 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4625 if (xhci_check_usb2_port_capability(xhci, portnum, 4626 XHCI_BLC)) 4627 udev->usb2_hw_lpm_besl_capable = 1; 4628 } 4629 4630 return 0; 4631 } 4632 4633 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4634 4635 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4636 static unsigned long long xhci_service_interval_to_ns( 4637 struct usb_endpoint_descriptor *desc) 4638 { 4639 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4640 } 4641 4642 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4643 enum usb3_link_state state) 4644 { 4645 unsigned long long sel; 4646 unsigned long long pel; 4647 unsigned int max_sel_pel; 4648 char *state_name; 4649 4650 switch (state) { 4651 case USB3_LPM_U1: 4652 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4653 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4654 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4655 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4656 state_name = "U1"; 4657 break; 4658 case USB3_LPM_U2: 4659 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4660 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4661 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4662 state_name = "U2"; 4663 break; 4664 default: 4665 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4666 __func__); 4667 return USB3_LPM_DISABLED; 4668 } 4669 4670 if (sel <= max_sel_pel && pel <= max_sel_pel) 4671 return USB3_LPM_DEVICE_INITIATED; 4672 4673 if (sel > max_sel_pel) 4674 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4675 "due to long SEL %llu ms\n", 4676 state_name, sel); 4677 else 4678 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4679 "due to long PEL %llu ms\n", 4680 state_name, pel); 4681 return USB3_LPM_DISABLED; 4682 } 4683 4684 /* The U1 timeout should be the maximum of the following values: 4685 * - For control endpoints, U1 system exit latency (SEL) * 3 4686 * - For bulk endpoints, U1 SEL * 5 4687 * - For interrupt endpoints: 4688 * - Notification EPs, U1 SEL * 3 4689 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4690 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4691 */ 4692 static unsigned long long xhci_calculate_intel_u1_timeout( 4693 struct usb_device *udev, 4694 struct usb_endpoint_descriptor *desc) 4695 { 4696 unsigned long long timeout_ns; 4697 int ep_type; 4698 int intr_type; 4699 4700 ep_type = usb_endpoint_type(desc); 4701 switch (ep_type) { 4702 case USB_ENDPOINT_XFER_CONTROL: 4703 timeout_ns = udev->u1_params.sel * 3; 4704 break; 4705 case USB_ENDPOINT_XFER_BULK: 4706 timeout_ns = udev->u1_params.sel * 5; 4707 break; 4708 case USB_ENDPOINT_XFER_INT: 4709 intr_type = usb_endpoint_interrupt_type(desc); 4710 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4711 timeout_ns = udev->u1_params.sel * 3; 4712 break; 4713 } 4714 /* Otherwise the calculation is the same as isoc eps */ 4715 fallthrough; 4716 case USB_ENDPOINT_XFER_ISOC: 4717 timeout_ns = xhci_service_interval_to_ns(desc); 4718 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4719 if (timeout_ns < udev->u1_params.sel * 2) 4720 timeout_ns = udev->u1_params.sel * 2; 4721 break; 4722 default: 4723 return 0; 4724 } 4725 4726 return timeout_ns; 4727 } 4728 4729 /* Returns the hub-encoded U1 timeout value. */ 4730 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4731 struct usb_device *udev, 4732 struct usb_endpoint_descriptor *desc) 4733 { 4734 unsigned long long timeout_ns; 4735 4736 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4737 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4738 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4739 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4740 return USB3_LPM_DISABLED; 4741 } 4742 } 4743 4744 if (xhci->quirks & XHCI_INTEL_HOST) 4745 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4746 else 4747 timeout_ns = udev->u1_params.sel; 4748 4749 /* The U1 timeout is encoded in 1us intervals. 4750 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4751 */ 4752 if (timeout_ns == USB3_LPM_DISABLED) 4753 timeout_ns = 1; 4754 else 4755 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4756 4757 /* If the necessary timeout value is bigger than what we can set in the 4758 * USB 3.0 hub, we have to disable hub-initiated U1. 4759 */ 4760 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4761 return timeout_ns; 4762 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4763 "due to long timeout %llu ms\n", timeout_ns); 4764 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4765 } 4766 4767 /* The U2 timeout should be the maximum of: 4768 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4769 * - largest bInterval of any active periodic endpoint (to avoid going 4770 * into lower power link states between intervals). 4771 * - the U2 Exit Latency of the device 4772 */ 4773 static unsigned long long xhci_calculate_intel_u2_timeout( 4774 struct usb_device *udev, 4775 struct usb_endpoint_descriptor *desc) 4776 { 4777 unsigned long long timeout_ns; 4778 unsigned long long u2_del_ns; 4779 4780 timeout_ns = 10 * 1000 * 1000; 4781 4782 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4783 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4784 timeout_ns = xhci_service_interval_to_ns(desc); 4785 4786 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4787 if (u2_del_ns > timeout_ns) 4788 timeout_ns = u2_del_ns; 4789 4790 return timeout_ns; 4791 } 4792 4793 /* Returns the hub-encoded U2 timeout value. */ 4794 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4795 struct usb_device *udev, 4796 struct usb_endpoint_descriptor *desc) 4797 { 4798 unsigned long long timeout_ns; 4799 4800 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4801 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4802 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4803 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4804 return USB3_LPM_DISABLED; 4805 } 4806 } 4807 4808 if (xhci->quirks & XHCI_INTEL_HOST) 4809 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4810 else 4811 timeout_ns = udev->u2_params.sel; 4812 4813 /* The U2 timeout is encoded in 256us intervals */ 4814 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4815 /* If the necessary timeout value is bigger than what we can set in the 4816 * USB 3.0 hub, we have to disable hub-initiated U2. 4817 */ 4818 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4819 return timeout_ns; 4820 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4821 "due to long timeout %llu ms\n", timeout_ns); 4822 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4823 } 4824 4825 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4826 struct usb_device *udev, 4827 struct usb_endpoint_descriptor *desc, 4828 enum usb3_link_state state, 4829 u16 *timeout) 4830 { 4831 if (state == USB3_LPM_U1) 4832 return xhci_calculate_u1_timeout(xhci, udev, desc); 4833 else if (state == USB3_LPM_U2) 4834 return xhci_calculate_u2_timeout(xhci, udev, desc); 4835 4836 return USB3_LPM_DISABLED; 4837 } 4838 4839 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4840 struct usb_device *udev, 4841 struct usb_endpoint_descriptor *desc, 4842 enum usb3_link_state state, 4843 u16 *timeout) 4844 { 4845 u16 alt_timeout; 4846 4847 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4848 desc, state, timeout); 4849 4850 /* If we found we can't enable hub-initiated LPM, and 4851 * the U1 or U2 exit latency was too high to allow 4852 * device-initiated LPM as well, then we will disable LPM 4853 * for this device, so stop searching any further. 4854 */ 4855 if (alt_timeout == USB3_LPM_DISABLED) { 4856 *timeout = alt_timeout; 4857 return -E2BIG; 4858 } 4859 if (alt_timeout > *timeout) 4860 *timeout = alt_timeout; 4861 return 0; 4862 } 4863 4864 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4865 struct usb_device *udev, 4866 struct usb_host_interface *alt, 4867 enum usb3_link_state state, 4868 u16 *timeout) 4869 { 4870 int j; 4871 4872 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4873 if (xhci_update_timeout_for_endpoint(xhci, udev, 4874 &alt->endpoint[j].desc, state, timeout)) 4875 return -E2BIG; 4876 } 4877 return 0; 4878 } 4879 4880 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4881 enum usb3_link_state state) 4882 { 4883 struct usb_device *parent; 4884 unsigned int num_hubs; 4885 4886 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4887 for (parent = udev->parent, num_hubs = 0; parent->parent; 4888 parent = parent->parent) 4889 num_hubs++; 4890 4891 if (num_hubs < 2) 4892 return 0; 4893 4894 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4895 " below second-tier hub.\n"); 4896 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4897 "to decrease power consumption.\n"); 4898 return -E2BIG; 4899 } 4900 4901 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4902 struct usb_device *udev, 4903 enum usb3_link_state state) 4904 { 4905 if (xhci->quirks & XHCI_INTEL_HOST) 4906 return xhci_check_intel_tier_policy(udev, state); 4907 else 4908 return 0; 4909 } 4910 4911 /* Returns the U1 or U2 timeout that should be enabled. 4912 * If the tier check or timeout setting functions return with a non-zero exit 4913 * code, that means the timeout value has been finalized and we shouldn't look 4914 * at any more endpoints. 4915 */ 4916 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4917 struct usb_device *udev, enum usb3_link_state state) 4918 { 4919 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4920 struct usb_host_config *config; 4921 char *state_name; 4922 int i; 4923 u16 timeout = USB3_LPM_DISABLED; 4924 4925 if (state == USB3_LPM_U1) 4926 state_name = "U1"; 4927 else if (state == USB3_LPM_U2) 4928 state_name = "U2"; 4929 else { 4930 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4931 state); 4932 return timeout; 4933 } 4934 4935 /* Gather some information about the currently installed configuration 4936 * and alternate interface settings. 4937 */ 4938 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4939 state, &timeout)) 4940 return timeout; 4941 4942 config = udev->actconfig; 4943 if (!config) 4944 return timeout; 4945 4946 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4947 struct usb_driver *driver; 4948 struct usb_interface *intf = config->interface[i]; 4949 4950 if (!intf) 4951 continue; 4952 4953 /* Check if any currently bound drivers want hub-initiated LPM 4954 * disabled. 4955 */ 4956 if (intf->dev.driver) { 4957 driver = to_usb_driver(intf->dev.driver); 4958 if (driver && driver->disable_hub_initiated_lpm) { 4959 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4960 state_name, driver->name); 4961 timeout = xhci_get_timeout_no_hub_lpm(udev, 4962 state); 4963 if (timeout == USB3_LPM_DISABLED) 4964 return timeout; 4965 } 4966 } 4967 4968 /* Not sure how this could happen... */ 4969 if (!intf->cur_altsetting) 4970 continue; 4971 4972 if (xhci_update_timeout_for_interface(xhci, udev, 4973 intf->cur_altsetting, 4974 state, &timeout)) 4975 return timeout; 4976 } 4977 return timeout; 4978 } 4979 4980 static int calculate_max_exit_latency(struct usb_device *udev, 4981 enum usb3_link_state state_changed, 4982 u16 hub_encoded_timeout) 4983 { 4984 unsigned long long u1_mel_us = 0; 4985 unsigned long long u2_mel_us = 0; 4986 unsigned long long mel_us = 0; 4987 bool disabling_u1; 4988 bool disabling_u2; 4989 bool enabling_u1; 4990 bool enabling_u2; 4991 4992 disabling_u1 = (state_changed == USB3_LPM_U1 && 4993 hub_encoded_timeout == USB3_LPM_DISABLED); 4994 disabling_u2 = (state_changed == USB3_LPM_U2 && 4995 hub_encoded_timeout == USB3_LPM_DISABLED); 4996 4997 enabling_u1 = (state_changed == USB3_LPM_U1 && 4998 hub_encoded_timeout != USB3_LPM_DISABLED); 4999 enabling_u2 = (state_changed == USB3_LPM_U2 && 5000 hub_encoded_timeout != USB3_LPM_DISABLED); 5001 5002 /* If U1 was already enabled and we're not disabling it, 5003 * or we're going to enable U1, account for the U1 max exit latency. 5004 */ 5005 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5006 enabling_u1) 5007 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5008 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5009 enabling_u2) 5010 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5011 5012 mel_us = max(u1_mel_us, u2_mel_us); 5013 5014 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5015 if (mel_us > MAX_EXIT) { 5016 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5017 "is too big.\n", mel_us); 5018 return -E2BIG; 5019 } 5020 return mel_us; 5021 } 5022 5023 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5024 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5025 struct usb_device *udev, enum usb3_link_state state) 5026 { 5027 struct xhci_hcd *xhci; 5028 u16 hub_encoded_timeout; 5029 int mel; 5030 int ret; 5031 5032 xhci = hcd_to_xhci(hcd); 5033 /* The LPM timeout values are pretty host-controller specific, so don't 5034 * enable hub-initiated timeouts unless the vendor has provided 5035 * information about their timeout algorithm. 5036 */ 5037 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5038 !xhci->devs[udev->slot_id]) 5039 return USB3_LPM_DISABLED; 5040 5041 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5042 return USB3_LPM_DISABLED; 5043 5044 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5045 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5046 if (mel < 0) { 5047 /* Max Exit Latency is too big, disable LPM. */ 5048 hub_encoded_timeout = USB3_LPM_DISABLED; 5049 mel = 0; 5050 } 5051 5052 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5053 if (ret) 5054 return ret; 5055 return hub_encoded_timeout; 5056 } 5057 5058 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5059 struct usb_device *udev, enum usb3_link_state state) 5060 { 5061 struct xhci_hcd *xhci; 5062 u16 mel; 5063 5064 xhci = hcd_to_xhci(hcd); 5065 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5066 !xhci->devs[udev->slot_id]) 5067 return 0; 5068 5069 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5070 return xhci_change_max_exit_latency(xhci, udev, mel); 5071 } 5072 #else /* CONFIG_PM */ 5073 5074 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5075 struct usb_device *udev, int enable) 5076 { 5077 return 0; 5078 } 5079 5080 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5081 { 5082 return 0; 5083 } 5084 5085 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5086 struct usb_device *udev, enum usb3_link_state state) 5087 { 5088 return USB3_LPM_DISABLED; 5089 } 5090 5091 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5092 struct usb_device *udev, enum usb3_link_state state) 5093 { 5094 return 0; 5095 } 5096 #endif /* CONFIG_PM */ 5097 5098 /*-------------------------------------------------------------------------*/ 5099 5100 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5101 * internal data structures for the device. 5102 */ 5103 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5104 struct usb_tt *tt, gfp_t mem_flags) 5105 { 5106 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5107 struct xhci_virt_device *vdev; 5108 struct xhci_command *config_cmd; 5109 struct xhci_input_control_ctx *ctrl_ctx; 5110 struct xhci_slot_ctx *slot_ctx; 5111 unsigned long flags; 5112 unsigned think_time; 5113 int ret; 5114 5115 /* Ignore root hubs */ 5116 if (!hdev->parent) 5117 return 0; 5118 5119 vdev = xhci->devs[hdev->slot_id]; 5120 if (!vdev) { 5121 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5122 return -EINVAL; 5123 } 5124 5125 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5126 if (!config_cmd) 5127 return -ENOMEM; 5128 5129 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5130 if (!ctrl_ctx) { 5131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5132 __func__); 5133 xhci_free_command(xhci, config_cmd); 5134 return -ENOMEM; 5135 } 5136 5137 spin_lock_irqsave(&xhci->lock, flags); 5138 if (hdev->speed == USB_SPEED_HIGH && 5139 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5140 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5141 xhci_free_command(xhci, config_cmd); 5142 spin_unlock_irqrestore(&xhci->lock, flags); 5143 return -ENOMEM; 5144 } 5145 5146 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5147 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5148 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5149 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5150 /* 5151 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5152 * but it may be already set to 1 when setup an xHCI virtual 5153 * device, so clear it anyway. 5154 */ 5155 if (tt->multi) 5156 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5157 else if (hdev->speed == USB_SPEED_FULL) 5158 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5159 5160 if (xhci->hci_version > 0x95) { 5161 xhci_dbg(xhci, "xHCI version %x needs hub " 5162 "TT think time and number of ports\n", 5163 (unsigned int) xhci->hci_version); 5164 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5165 /* Set TT think time - convert from ns to FS bit times. 5166 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5167 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5168 * 5169 * xHCI 1.0: this field shall be 0 if the device is not a 5170 * High-spped hub. 5171 */ 5172 think_time = tt->think_time; 5173 if (think_time != 0) 5174 think_time = (think_time / 666) - 1; 5175 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5176 slot_ctx->tt_info |= 5177 cpu_to_le32(TT_THINK_TIME(think_time)); 5178 } else { 5179 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5180 "TT think time or number of ports\n", 5181 (unsigned int) xhci->hci_version); 5182 } 5183 slot_ctx->dev_state = 0; 5184 spin_unlock_irqrestore(&xhci->lock, flags); 5185 5186 xhci_dbg(xhci, "Set up %s for hub device.\n", 5187 (xhci->hci_version > 0x95) ? 5188 "configure endpoint" : "evaluate context"); 5189 5190 /* Issue and wait for the configure endpoint or 5191 * evaluate context command. 5192 */ 5193 if (xhci->hci_version > 0x95) 5194 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5195 false, false); 5196 else 5197 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5198 true, false); 5199 5200 xhci_free_command(xhci, config_cmd); 5201 return ret; 5202 } 5203 5204 static int xhci_get_frame(struct usb_hcd *hcd) 5205 { 5206 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5207 /* EHCI mods by the periodic size. Why? */ 5208 return readl(&xhci->run_regs->microframe_index) >> 3; 5209 } 5210 5211 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5212 { 5213 xhci->usb2_rhub.hcd = hcd; 5214 hcd->speed = HCD_USB2; 5215 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5216 /* 5217 * USB 2.0 roothub under xHCI has an integrated TT, 5218 * (rate matching hub) as opposed to having an OHCI/UHCI 5219 * companion controller. 5220 */ 5221 hcd->has_tt = 1; 5222 } 5223 5224 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5225 { 5226 unsigned int minor_rev; 5227 5228 /* 5229 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5230 * should return 0x31 for sbrn, or that the minor revision 5231 * is a two digit BCD containig minor and sub-minor numbers. 5232 * This was later clarified in xHCI 1.2. 5233 * 5234 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5235 * minor revision set to 0x1 instead of 0x10. 5236 */ 5237 if (xhci->usb3_rhub.min_rev == 0x1) 5238 minor_rev = 1; 5239 else 5240 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5241 5242 switch (minor_rev) { 5243 case 2: 5244 hcd->speed = HCD_USB32; 5245 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5246 hcd->self.root_hub->rx_lanes = 2; 5247 hcd->self.root_hub->tx_lanes = 2; 5248 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5249 break; 5250 case 1: 5251 hcd->speed = HCD_USB31; 5252 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5253 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5254 break; 5255 } 5256 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5257 minor_rev, minor_rev ? "Enhanced " : ""); 5258 5259 xhci->usb3_rhub.hcd = hcd; 5260 } 5261 5262 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5263 { 5264 struct xhci_hcd *xhci; 5265 /* 5266 * TODO: Check with DWC3 clients for sysdev according to 5267 * quirks 5268 */ 5269 struct device *dev = hcd->self.sysdev; 5270 int retval; 5271 5272 /* Accept arbitrarily long scatter-gather lists */ 5273 hcd->self.sg_tablesize = ~0; 5274 5275 /* support to build packet from discontinuous buffers */ 5276 hcd->self.no_sg_constraint = 1; 5277 5278 /* XHCI controllers don't stop the ep queue on short packets :| */ 5279 hcd->self.no_stop_on_short = 1; 5280 5281 xhci = hcd_to_xhci(hcd); 5282 5283 if (!usb_hcd_is_primary_hcd(hcd)) { 5284 xhci_hcd_init_usb3_data(xhci, hcd); 5285 return 0; 5286 } 5287 5288 mutex_init(&xhci->mutex); 5289 xhci->main_hcd = hcd; 5290 xhci->cap_regs = hcd->regs; 5291 xhci->op_regs = hcd->regs + 5292 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5293 xhci->run_regs = hcd->regs + 5294 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5295 /* Cache read-only capability registers */ 5296 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5297 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5298 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5299 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5300 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5301 if (xhci->hci_version > 0x100) 5302 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5303 5304 xhci->quirks |= quirks; 5305 5306 get_quirks(dev, xhci); 5307 5308 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5309 * success event after a short transfer. This quirk will ignore such 5310 * spurious event. 5311 */ 5312 if (xhci->hci_version > 0x96) 5313 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5314 5315 /* Make sure the HC is halted. */ 5316 retval = xhci_halt(xhci); 5317 if (retval) 5318 return retval; 5319 5320 xhci_zero_64b_regs(xhci); 5321 5322 xhci_dbg(xhci, "Resetting HCD\n"); 5323 /* Reset the internal HC memory state and registers. */ 5324 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5325 if (retval) 5326 return retval; 5327 xhci_dbg(xhci, "Reset complete\n"); 5328 5329 /* 5330 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5331 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5332 * address memory pointers actually. So, this driver clears the AC64 5333 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5334 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5335 */ 5336 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5337 xhci->hcc_params &= ~BIT(0); 5338 5339 /* Set dma_mask and coherent_dma_mask to 64-bits, 5340 * if xHC supports 64-bit addressing */ 5341 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5342 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5343 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5344 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5345 } else { 5346 /* 5347 * This is to avoid error in cases where a 32-bit USB 5348 * controller is used on a 64-bit capable system. 5349 */ 5350 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5351 if (retval) 5352 return retval; 5353 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5354 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5355 } 5356 5357 xhci_dbg(xhci, "Calling HCD init\n"); 5358 /* Initialize HCD and host controller data structures. */ 5359 retval = xhci_init(hcd); 5360 if (retval) 5361 return retval; 5362 xhci_dbg(xhci, "Called HCD init\n"); 5363 5364 if (xhci_hcd_is_usb3(hcd)) 5365 xhci_hcd_init_usb3_data(xhci, hcd); 5366 else 5367 xhci_hcd_init_usb2_data(xhci, hcd); 5368 5369 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5370 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5371 5372 return 0; 5373 } 5374 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5375 5376 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5377 struct usb_host_endpoint *ep) 5378 { 5379 struct xhci_hcd *xhci; 5380 struct usb_device *udev; 5381 unsigned int slot_id; 5382 unsigned int ep_index; 5383 unsigned long flags; 5384 5385 xhci = hcd_to_xhci(hcd); 5386 5387 spin_lock_irqsave(&xhci->lock, flags); 5388 udev = (struct usb_device *)ep->hcpriv; 5389 slot_id = udev->slot_id; 5390 ep_index = xhci_get_endpoint_index(&ep->desc); 5391 5392 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5393 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5394 spin_unlock_irqrestore(&xhci->lock, flags); 5395 } 5396 5397 static const struct hc_driver xhci_hc_driver = { 5398 .description = "xhci-hcd", 5399 .product_desc = "xHCI Host Controller", 5400 .hcd_priv_size = sizeof(struct xhci_hcd), 5401 5402 /* 5403 * generic hardware linkage 5404 */ 5405 .irq = xhci_irq, 5406 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5407 HCD_BH, 5408 5409 /* 5410 * basic lifecycle operations 5411 */ 5412 .reset = NULL, /* set in xhci_init_driver() */ 5413 .start = xhci_run, 5414 .stop = xhci_stop, 5415 .shutdown = xhci_shutdown, 5416 5417 /* 5418 * managing i/o requests and associated device resources 5419 */ 5420 .map_urb_for_dma = xhci_map_urb_for_dma, 5421 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5422 .urb_enqueue = xhci_urb_enqueue, 5423 .urb_dequeue = xhci_urb_dequeue, 5424 .alloc_dev = xhci_alloc_dev, 5425 .free_dev = xhci_free_dev, 5426 .alloc_streams = xhci_alloc_streams, 5427 .free_streams = xhci_free_streams, 5428 .add_endpoint = xhci_add_endpoint, 5429 .drop_endpoint = xhci_drop_endpoint, 5430 .endpoint_disable = xhci_endpoint_disable, 5431 .endpoint_reset = xhci_endpoint_reset, 5432 .check_bandwidth = xhci_check_bandwidth, 5433 .reset_bandwidth = xhci_reset_bandwidth, 5434 .address_device = xhci_address_device, 5435 .enable_device = xhci_enable_device, 5436 .update_hub_device = xhci_update_hub_device, 5437 .reset_device = xhci_discover_or_reset_device, 5438 5439 /* 5440 * scheduling support 5441 */ 5442 .get_frame_number = xhci_get_frame, 5443 5444 /* 5445 * root hub support 5446 */ 5447 .hub_control = xhci_hub_control, 5448 .hub_status_data = xhci_hub_status_data, 5449 .bus_suspend = xhci_bus_suspend, 5450 .bus_resume = xhci_bus_resume, 5451 .get_resuming_ports = xhci_get_resuming_ports, 5452 5453 /* 5454 * call back when device connected and addressed 5455 */ 5456 .update_device = xhci_update_device, 5457 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5458 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5459 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5460 .find_raw_port_number = xhci_find_raw_port_number, 5461 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5462 }; 5463 5464 void xhci_init_driver(struct hc_driver *drv, 5465 const struct xhci_driver_overrides *over) 5466 { 5467 BUG_ON(!over); 5468 5469 /* Copy the generic table to drv then apply the overrides */ 5470 *drv = xhci_hc_driver; 5471 5472 if (over) { 5473 drv->hcd_priv_size += over->extra_priv_size; 5474 if (over->reset) 5475 drv->reset = over->reset; 5476 if (over->start) 5477 drv->start = over->start; 5478 if (over->add_endpoint) 5479 drv->add_endpoint = over->add_endpoint; 5480 if (over->drop_endpoint) 5481 drv->drop_endpoint = over->drop_endpoint; 5482 if (over->check_bandwidth) 5483 drv->check_bandwidth = over->check_bandwidth; 5484 if (over->reset_bandwidth) 5485 drv->reset_bandwidth = over->reset_bandwidth; 5486 } 5487 } 5488 EXPORT_SYMBOL_GPL(xhci_init_driver); 5489 5490 MODULE_DESCRIPTION(DRIVER_DESC); 5491 MODULE_AUTHOR(DRIVER_AUTHOR); 5492 MODULE_LICENSE("GPL"); 5493 5494 static int __init xhci_hcd_init(void) 5495 { 5496 /* 5497 * Check the compiler generated sizes of structures that must be laid 5498 * out in specific ways for hardware access. 5499 */ 5500 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5501 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5502 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5503 /* xhci_device_control has eight fields, and also 5504 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5505 */ 5506 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5507 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5508 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5509 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5510 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5511 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5512 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5513 5514 if (usb_disabled()) 5515 return -ENODEV; 5516 5517 xhci_debugfs_create_root(); 5518 xhci_dbc_init(); 5519 5520 return 0; 5521 } 5522 5523 /* 5524 * If an init function is provided, an exit function must also be provided 5525 * to allow module unload. 5526 */ 5527 static void __exit xhci_hcd_fini(void) 5528 { 5529 xhci_debugfs_remove_root(); 5530 xhci_dbc_exit(); 5531 } 5532 5533 module_init(xhci_hcd_init); 5534 module_exit(xhci_hcd_fini); 5535