1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 158 return ret; 159 } 160 161 /* 162 * Reset a halted HC. 163 * 164 * This resets pipelines, timers, counters, state machines, etc. 165 * Transactions will be terminated immediately, and operational registers 166 * will be set to their defaults. 167 */ 168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 169 { 170 u32 command; 171 u32 state; 172 int ret; 173 174 state = readl(&xhci->op_regs->status); 175 176 if (state == ~(u32)0) { 177 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 178 return -ENODEV; 179 } 180 181 if ((state & STS_HALT) == 0) { 182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 183 return 0; 184 } 185 186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 187 command = readl(&xhci->op_regs->command); 188 command |= CMD_RESET; 189 writel(command, &xhci->op_regs->command); 190 191 /* Existing Intel xHCI controllers require a delay of 1 mS, 192 * after setting the CMD_RESET bit, and before accessing any 193 * HC registers. This allows the HC to complete the 194 * reset operation and be ready for HC register access. 195 * Without this delay, the subsequent HC register access, 196 * may result in a system hang very rarely. 197 */ 198 if (xhci->quirks & XHCI_INTEL_HOST) 199 udelay(1000); 200 201 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 202 if (ret) 203 return ret; 204 205 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 206 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 207 208 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 209 "Wait for controller to be ready for doorbell rings"); 210 /* 211 * xHCI cannot write to any doorbells or operational registers other 212 * than status until the "Controller Not Ready" flag is cleared. 213 */ 214 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 u32 intrs; 232 233 /* 234 * Some Renesas controllers get into a weird state if they are 235 * reset while programmed with 64bit addresses (they will preserve 236 * the top half of the address in internal, non visible 237 * registers). You end up with half the address coming from the 238 * kernel, and the other half coming from the firmware. Also, 239 * changing the programming leads to extra accesses even if the 240 * controller is supposed to be halted. The controller ends up with 241 * a fatal fault, and is then ripe for being properly reset. 242 * 243 * Special care is taken to only apply this if the device is behind 244 * an iommu. Doing anything when there is no iommu is definitely 245 * unsafe... 246 */ 247 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 248 return; 249 250 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 251 252 /* Clear HSEIE so that faults do not get signaled */ 253 val = readl(&xhci->op_regs->command); 254 val &= ~CMD_HSEIE; 255 writel(val, &xhci->op_regs->command); 256 257 /* Clear HSE (aka FATAL) */ 258 val = readl(&xhci->op_regs->status); 259 val |= STS_FATAL; 260 writel(val, &xhci->op_regs->status); 261 262 /* Now zero the registers, and brace for impact */ 263 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 264 if (upper_32_bits(val)) 265 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 266 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 267 if (upper_32_bits(val)) 268 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 269 270 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 271 ARRAY_SIZE(xhci->run_regs->ir_set)); 272 273 for (i = 0; i < intrs; i++) { 274 struct xhci_intr_reg __iomem *ir; 275 276 ir = &xhci->run_regs->ir_set[i]; 277 val = xhci_read_64(xhci, &ir->erst_base); 278 if (upper_32_bits(val)) 279 xhci_write_64(xhci, 0, &ir->erst_base); 280 val= xhci_read_64(xhci, &ir->erst_dequeue); 281 if (upper_32_bits(val)) 282 xhci_write_64(xhci, 0, &ir->erst_dequeue); 283 } 284 285 /* Wait for the fault to appear. It will be cleared on reset */ 286 err = xhci_handshake(&xhci->op_regs->status, 287 STS_FATAL, STS_FATAL, 288 XHCI_MAX_HALT_USEC); 289 if (!err) 290 xhci_info(xhci, "Fault detected\n"); 291 } 292 293 #ifdef CONFIG_USB_PCI 294 /* 295 * Set up MSI 296 */ 297 static int xhci_setup_msi(struct xhci_hcd *xhci) 298 { 299 int ret; 300 /* 301 * TODO:Check with MSI Soc for sysdev 302 */ 303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 304 305 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 306 if (ret < 0) { 307 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 308 "failed to allocate MSI entry"); 309 return ret; 310 } 311 312 ret = request_irq(pdev->irq, xhci_msi_irq, 313 0, "xhci_hcd", xhci_to_hcd(xhci)); 314 if (ret) { 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 316 "disable MSI interrupt"); 317 pci_free_irq_vectors(pdev); 318 } 319 320 return ret; 321 } 322 323 /* 324 * Set up MSI-X 325 */ 326 static int xhci_setup_msix(struct xhci_hcd *xhci) 327 { 328 int i, ret; 329 struct usb_hcd *hcd = xhci_to_hcd(xhci); 330 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 331 332 /* 333 * calculate number of msi-x vectors supported. 334 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 335 * with max number of interrupters based on the xhci HCSPARAMS1. 336 * - num_online_cpus: maximum msi-x vectors per CPUs core. 337 * Add additional 1 vector to ensure always available interrupt. 338 */ 339 xhci->msix_count = min(num_online_cpus() + 1, 340 HCS_MAX_INTRS(xhci->hcs_params1)); 341 342 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 343 PCI_IRQ_MSIX); 344 if (ret < 0) { 345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 346 "Failed to enable MSI-X"); 347 return ret; 348 } 349 350 for (i = 0; i < xhci->msix_count; i++) { 351 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 352 "xhci_hcd", xhci_to_hcd(xhci)); 353 if (ret) 354 goto disable_msix; 355 } 356 357 hcd->msix_enabled = 1; 358 return ret; 359 360 disable_msix: 361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 362 while (--i >= 0) 363 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 364 pci_free_irq_vectors(pdev); 365 return ret; 366 } 367 368 /* Free any IRQs and disable MSI-X */ 369 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 370 { 371 struct usb_hcd *hcd = xhci_to_hcd(xhci); 372 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 373 374 if (xhci->quirks & XHCI_PLAT) 375 return; 376 377 /* return if using legacy interrupt */ 378 if (hcd->irq > 0) 379 return; 380 381 if (hcd->msix_enabled) { 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 386 } else { 387 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 388 } 389 390 pci_free_irq_vectors(pdev); 391 hcd->msix_enabled = 0; 392 } 393 394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 395 { 396 struct usb_hcd *hcd = xhci_to_hcd(xhci); 397 398 if (hcd->msix_enabled) { 399 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 400 int i; 401 402 for (i = 0; i < xhci->msix_count; i++) 403 synchronize_irq(pci_irq_vector(pdev, i)); 404 } 405 } 406 407 static int xhci_try_enable_msi(struct usb_hcd *hcd) 408 { 409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 struct pci_dev *pdev; 411 int ret; 412 413 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 414 if (xhci->quirks & XHCI_PLAT) 415 return 0; 416 417 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 418 /* 419 * Some Fresco Logic host controllers advertise MSI, but fail to 420 * generate interrupts. Don't even try to enable MSI. 421 */ 422 if (xhci->quirks & XHCI_BROKEN_MSI) 423 goto legacy_irq; 424 425 /* unregister the legacy interrupt */ 426 if (hcd->irq) 427 free_irq(hcd->irq, hcd); 428 hcd->irq = 0; 429 430 ret = xhci_setup_msix(xhci); 431 if (ret) 432 /* fall back to msi*/ 433 ret = xhci_setup_msi(xhci); 434 435 if (!ret) { 436 hcd->msi_enabled = 1; 437 return 0; 438 } 439 440 if (!pdev->irq) { 441 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 442 return -EINVAL; 443 } 444 445 legacy_irq: 446 if (!strlen(hcd->irq_descr)) 447 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 448 hcd->driver->description, hcd->self.busnum); 449 450 /* fall back to legacy interrupt*/ 451 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 452 hcd->irq_descr, hcd); 453 if (ret) { 454 xhci_err(xhci, "request interrupt %d failed\n", 455 pdev->irq); 456 return ret; 457 } 458 hcd->irq = pdev->irq; 459 return 0; 460 } 461 462 #else 463 464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 465 { 466 return 0; 467 } 468 469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 470 { 471 } 472 473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 474 { 475 } 476 477 #endif 478 479 static void compliance_mode_recovery(struct timer_list *t) 480 { 481 struct xhci_hcd *xhci; 482 struct usb_hcd *hcd; 483 struct xhci_hub *rhub; 484 u32 temp; 485 int i; 486 487 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 488 rhub = &xhci->usb3_rhub; 489 hcd = rhub->hcd; 490 491 if (!hcd) 492 return; 493 494 for (i = 0; i < rhub->num_ports; i++) { 495 temp = readl(rhub->ports[i]->addr); 496 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 497 /* 498 * Compliance Mode Detected. Letting USB Core 499 * handle the Warm Reset 500 */ 501 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 502 "Compliance mode detected->port %d", 503 i + 1); 504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 505 "Attempting compliance mode recovery"); 506 507 if (hcd->state == HC_STATE_SUSPENDED) 508 usb_hcd_resume_root_hub(hcd); 509 510 usb_hcd_poll_rh_status(hcd); 511 } 512 } 513 514 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 515 mod_timer(&xhci->comp_mode_recovery_timer, 516 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 517 } 518 519 /* 520 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 521 * that causes ports behind that hardware to enter compliance mode sometimes. 522 * The quirk creates a timer that polls every 2 seconds the link state of 523 * each host controller's port and recovers it by issuing a Warm reset 524 * if Compliance mode is detected, otherwise the port will become "dead" (no 525 * device connections or disconnections will be detected anymore). Becasue no 526 * status event is generated when entering compliance mode (per xhci spec), 527 * this quirk is needed on systems that have the failing hardware installed. 528 */ 529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 530 { 531 xhci->port_status_u0 = 0; 532 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 533 0); 534 xhci->comp_mode_recovery_timer.expires = jiffies + 535 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 536 537 add_timer(&xhci->comp_mode_recovery_timer); 538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 539 "Compliance mode recovery timer initialized"); 540 } 541 542 /* 543 * This function identifies the systems that have installed the SN65LVPE502CP 544 * USB3.0 re-driver and that need the Compliance Mode Quirk. 545 * Systems: 546 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 547 */ 548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 549 { 550 const char *dmi_product_name, *dmi_sys_vendor; 551 552 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 553 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 554 if (!dmi_product_name || !dmi_sys_vendor) 555 return false; 556 557 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 558 return false; 559 560 if (strstr(dmi_product_name, "Z420") || 561 strstr(dmi_product_name, "Z620") || 562 strstr(dmi_product_name, "Z820") || 563 strstr(dmi_product_name, "Z1 Workstation")) 564 return true; 565 566 return false; 567 } 568 569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 570 { 571 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 572 } 573 574 575 /* 576 * Initialize memory for HCD and xHC (one-time init). 577 * 578 * Program the PAGESIZE register, initialize the device context array, create 579 * device contexts (?), set up a command ring segment (or two?), create event 580 * ring (one for now). 581 */ 582 static int xhci_init(struct usb_hcd *hcd) 583 { 584 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 585 int retval; 586 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 588 spin_lock_init(&xhci->lock); 589 if (xhci->hci_version == 0x95 && link_quirk) { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 591 "QUIRK: Not clearing Link TRB chain bits."); 592 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 593 } else { 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 595 "xHCI doesn't need link TRB QUIRK"); 596 } 597 retval = xhci_mem_init(xhci, GFP_KERNEL); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 599 600 /* Initializing Compliance Mode Recovery Data If Needed */ 601 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 602 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 603 compliance_mode_recovery_timer_init(xhci); 604 } 605 606 return retval; 607 } 608 609 /*-------------------------------------------------------------------------*/ 610 611 612 static int xhci_run_finished(struct xhci_hcd *xhci) 613 { 614 if (xhci_start(xhci)) { 615 xhci_halt(xhci); 616 return -ENODEV; 617 } 618 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 619 620 if (xhci->quirks & XHCI_NEC_HOST) 621 xhci_ring_cmd_db(xhci); 622 623 return 0; 624 } 625 626 /* 627 * Start the HC after it was halted. 628 * 629 * This function is called by the USB core when the HC driver is added. 630 * Its opposite is xhci_stop(). 631 * 632 * xhci_init() must be called once before this function can be called. 633 * Reset the HC, enable device slot contexts, program DCBAAP, and 634 * set command ring pointer and event ring pointer. 635 * 636 * Setup MSI-X vectors and enable interrupts. 637 */ 638 int xhci_run(struct usb_hcd *hcd) 639 { 640 u32 temp; 641 u64 temp_64; 642 int ret; 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 /* Start the xHCI host controller running only after the USB 2.0 roothub 646 * is setup. 647 */ 648 649 hcd->uses_new_polling = 1; 650 if (!usb_hcd_is_primary_hcd(hcd)) 651 return xhci_run_finished(xhci); 652 653 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 654 655 ret = xhci_try_enable_msi(hcd); 656 if (ret) 657 return ret; 658 659 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 660 temp_64 &= ~ERST_PTR_MASK; 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 663 664 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 665 "// Set the interrupt modulation register"); 666 temp = readl(&xhci->ir_set->irq_control); 667 temp &= ~ER_IRQ_INTERVAL_MASK; 668 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 669 writel(temp, &xhci->ir_set->irq_control); 670 671 /* Set the HCD state before we enable the irqs */ 672 temp = readl(&xhci->op_regs->command); 673 temp |= (CMD_EIE); 674 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 675 "// Enable interrupts, cmd = 0x%x.", temp); 676 writel(temp, &xhci->op_regs->command); 677 678 temp = readl(&xhci->ir_set->irq_pending); 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 680 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 681 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 682 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 683 684 if (xhci->quirks & XHCI_NEC_HOST) { 685 struct xhci_command *command; 686 687 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 688 if (!command) 689 return -ENOMEM; 690 691 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 692 TRB_TYPE(TRB_NEC_GET_FW)); 693 if (ret) 694 xhci_free_command(xhci, command); 695 } 696 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 697 "Finished %s for main hcd", __func__); 698 699 xhci_create_dbc_dev(xhci); 700 701 xhci_debugfs_init(xhci); 702 703 if (xhci_has_one_roothub(xhci)) 704 return xhci_run_finished(xhci); 705 706 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 707 708 return 0; 709 } 710 EXPORT_SYMBOL_GPL(xhci_run); 711 712 /* 713 * Stop xHCI driver. 714 * 715 * This function is called by the USB core when the HC driver is removed. 716 * Its opposite is xhci_run(). 717 * 718 * Disable device contexts, disable IRQs, and quiesce the HC. 719 * Reset the HC, finish any completed transactions, and cleanup memory. 720 */ 721 static void xhci_stop(struct usb_hcd *hcd) 722 { 723 u32 temp; 724 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 725 726 mutex_lock(&xhci->mutex); 727 728 /* Only halt host and free memory after both hcds are removed */ 729 if (!usb_hcd_is_primary_hcd(hcd)) { 730 mutex_unlock(&xhci->mutex); 731 return; 732 } 733 734 xhci_remove_dbc_dev(xhci); 735 736 spin_lock_irq(&xhci->lock); 737 xhci->xhc_state |= XHCI_STATE_HALTED; 738 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 739 xhci_halt(xhci); 740 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 741 spin_unlock_irq(&xhci->lock); 742 743 xhci_cleanup_msix(xhci); 744 745 /* Deleting Compliance Mode Recovery Timer */ 746 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 747 (!(xhci_all_ports_seen_u0(xhci)))) { 748 del_timer_sync(&xhci->comp_mode_recovery_timer); 749 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 750 "%s: compliance mode recovery timer deleted", 751 __func__); 752 } 753 754 if (xhci->quirks & XHCI_AMD_PLL_FIX) 755 usb_amd_dev_put(); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 758 "// Disabling event ring interrupts"); 759 temp = readl(&xhci->op_regs->status); 760 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 761 temp = readl(&xhci->ir_set->irq_pending); 762 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 763 764 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 765 xhci_mem_cleanup(xhci); 766 xhci_debugfs_exit(xhci); 767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 768 "xhci_stop completed - status = %x", 769 readl(&xhci->op_regs->status)); 770 mutex_unlock(&xhci->mutex); 771 } 772 773 /* 774 * Shutdown HC (not bus-specific) 775 * 776 * This is called when the machine is rebooting or halting. We assume that the 777 * machine will be powered off, and the HC's internal state will be reset. 778 * Don't bother to free memory. 779 * 780 * This will only ever be called with the main usb_hcd (the USB3 roothub). 781 */ 782 void xhci_shutdown(struct usb_hcd *hcd) 783 { 784 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 785 786 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 787 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 788 789 /* Don't poll the roothubs after shutdown. */ 790 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 791 __func__, hcd->self.busnum); 792 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 793 del_timer_sync(&hcd->rh_timer); 794 795 if (xhci->shared_hcd) { 796 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 797 del_timer_sync(&xhci->shared_hcd->rh_timer); 798 } 799 800 spin_lock_irq(&xhci->lock); 801 xhci_halt(xhci); 802 /* Workaround for spurious wakeups at shutdown with HSW */ 803 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 804 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 805 spin_unlock_irq(&xhci->lock); 806 807 xhci_cleanup_msix(xhci); 808 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "xhci_shutdown completed - status = %x", 811 readl(&xhci->op_regs->status)); 812 } 813 EXPORT_SYMBOL_GPL(xhci_shutdown); 814 815 #ifdef CONFIG_PM 816 static void xhci_save_registers(struct xhci_hcd *xhci) 817 { 818 xhci->s3.command = readl(&xhci->op_regs->command); 819 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 820 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 821 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 822 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 823 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 824 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 825 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 826 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 827 } 828 829 static void xhci_restore_registers(struct xhci_hcd *xhci) 830 { 831 writel(xhci->s3.command, &xhci->op_regs->command); 832 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 833 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 834 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 835 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 836 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 837 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 838 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 839 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 840 } 841 842 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 843 { 844 u64 val_64; 845 846 /* step 2: initialize command ring buffer */ 847 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 848 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 849 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 850 xhci->cmd_ring->dequeue) & 851 (u64) ~CMD_RING_RSVD_BITS) | 852 xhci->cmd_ring->cycle_state; 853 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 854 "// Setting command ring address to 0x%llx", 855 (long unsigned long) val_64); 856 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 857 } 858 859 /* 860 * The whole command ring must be cleared to zero when we suspend the host. 861 * 862 * The host doesn't save the command ring pointer in the suspend well, so we 863 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 864 * aligned, because of the reserved bits in the command ring dequeue pointer 865 * register. Therefore, we can't just set the dequeue pointer back in the 866 * middle of the ring (TRBs are 16-byte aligned). 867 */ 868 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 869 { 870 struct xhci_ring *ring; 871 struct xhci_segment *seg; 872 873 ring = xhci->cmd_ring; 874 seg = ring->deq_seg; 875 do { 876 memset(seg->trbs, 0, 877 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 878 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 879 cpu_to_le32(~TRB_CYCLE); 880 seg = seg->next; 881 } while (seg != ring->deq_seg); 882 883 /* Reset the software enqueue and dequeue pointers */ 884 ring->deq_seg = ring->first_seg; 885 ring->dequeue = ring->first_seg->trbs; 886 ring->enq_seg = ring->deq_seg; 887 ring->enqueue = ring->dequeue; 888 889 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 890 /* 891 * Ring is now zeroed, so the HW should look for change of ownership 892 * when the cycle bit is set to 1. 893 */ 894 ring->cycle_state = 1; 895 896 /* 897 * Reset the hardware dequeue pointer. 898 * Yes, this will need to be re-written after resume, but we're paranoid 899 * and want to make sure the hardware doesn't access bogus memory 900 * because, say, the BIOS or an SMI started the host without changing 901 * the command ring pointers. 902 */ 903 xhci_set_cmd_ring_deq(xhci); 904 } 905 906 /* 907 * Disable port wake bits if do_wakeup is not set. 908 * 909 * Also clear a possible internal port wake state left hanging for ports that 910 * detected termination but never successfully enumerated (trained to 0U). 911 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 912 * at enumeration clears this wake, force one here as well for unconnected ports 913 */ 914 915 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 916 struct xhci_hub *rhub, 917 bool do_wakeup) 918 { 919 unsigned long flags; 920 u32 t1, t2, portsc; 921 int i; 922 923 spin_lock_irqsave(&xhci->lock, flags); 924 925 for (i = 0; i < rhub->num_ports; i++) { 926 portsc = readl(rhub->ports[i]->addr); 927 t1 = xhci_port_state_to_neutral(portsc); 928 t2 = t1; 929 930 /* clear wake bits if do_wake is not set */ 931 if (!do_wakeup) 932 t2 &= ~PORT_WAKE_BITS; 933 934 /* Don't touch csc bit if connected or connect change is set */ 935 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 936 t2 |= PORT_CSC; 937 938 if (t1 != t2) { 939 writel(t2, rhub->ports[i]->addr); 940 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 941 rhub->hcd->self.busnum, i + 1, portsc, t2); 942 } 943 } 944 spin_unlock_irqrestore(&xhci->lock, flags); 945 } 946 947 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 948 { 949 struct xhci_port **ports; 950 int port_index; 951 u32 status; 952 u32 portsc; 953 954 status = readl(&xhci->op_regs->status); 955 if (status & STS_EINT) 956 return true; 957 /* 958 * Checking STS_EINT is not enough as there is a lag between a change 959 * bit being set and the Port Status Change Event that it generated 960 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 961 */ 962 963 port_index = xhci->usb2_rhub.num_ports; 964 ports = xhci->usb2_rhub.ports; 965 while (port_index--) { 966 portsc = readl(ports[port_index]->addr); 967 if (portsc & PORT_CHANGE_MASK || 968 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 969 return true; 970 } 971 port_index = xhci->usb3_rhub.num_ports; 972 ports = xhci->usb3_rhub.ports; 973 while (port_index--) { 974 portsc = readl(ports[port_index]->addr); 975 if (portsc & PORT_CHANGE_MASK || 976 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 977 return true; 978 } 979 return false; 980 } 981 982 /* 983 * Stop HC (not bus-specific) 984 * 985 * This is called when the machine transition into S3/S4 mode. 986 * 987 */ 988 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 989 { 990 int rc = 0; 991 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 992 struct usb_hcd *hcd = xhci_to_hcd(xhci); 993 u32 command; 994 u32 res; 995 996 if (!hcd->state) 997 return 0; 998 999 if (hcd->state != HC_STATE_SUSPENDED || 1000 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1001 return -EINVAL; 1002 1003 /* Clear root port wake on bits if wakeup not allowed. */ 1004 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1005 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1006 1007 if (!HCD_HW_ACCESSIBLE(hcd)) 1008 return 0; 1009 1010 xhci_dbc_suspend(xhci); 1011 1012 /* Don't poll the roothubs on bus suspend. */ 1013 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1014 __func__, hcd->self.busnum); 1015 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1016 del_timer_sync(&hcd->rh_timer); 1017 if (xhci->shared_hcd) { 1018 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1019 del_timer_sync(&xhci->shared_hcd->rh_timer); 1020 } 1021 1022 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1023 usleep_range(1000, 1500); 1024 1025 spin_lock_irq(&xhci->lock); 1026 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1027 if (xhci->shared_hcd) 1028 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1029 /* step 1: stop endpoint */ 1030 /* skipped assuming that port suspend has done */ 1031 1032 /* step 2: clear Run/Stop bit */ 1033 command = readl(&xhci->op_regs->command); 1034 command &= ~CMD_RUN; 1035 writel(command, &xhci->op_regs->command); 1036 1037 /* Some chips from Fresco Logic need an extraordinary delay */ 1038 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1039 1040 if (xhci_handshake(&xhci->op_regs->status, 1041 STS_HALT, STS_HALT, delay)) { 1042 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1043 spin_unlock_irq(&xhci->lock); 1044 return -ETIMEDOUT; 1045 } 1046 xhci_clear_command_ring(xhci); 1047 1048 /* step 3: save registers */ 1049 xhci_save_registers(xhci); 1050 1051 /* step 4: set CSS flag */ 1052 command = readl(&xhci->op_regs->command); 1053 command |= CMD_CSS; 1054 writel(command, &xhci->op_regs->command); 1055 xhci->broken_suspend = 0; 1056 if (xhci_handshake(&xhci->op_regs->status, 1057 STS_SAVE, 0, 20 * 1000)) { 1058 /* 1059 * AMD SNPS xHC 3.0 occasionally does not clear the 1060 * SSS bit of USBSTS and when driver tries to poll 1061 * to see if the xHC clears BIT(8) which never happens 1062 * and driver assumes that controller is not responding 1063 * and times out. To workaround this, its good to check 1064 * if SRE and HCE bits are not set (as per xhci 1065 * Section 5.4.2) and bypass the timeout. 1066 */ 1067 res = readl(&xhci->op_regs->status); 1068 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1069 (((res & STS_SRE) == 0) && 1070 ((res & STS_HCE) == 0))) { 1071 xhci->broken_suspend = 1; 1072 } else { 1073 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1074 spin_unlock_irq(&xhci->lock); 1075 return -ETIMEDOUT; 1076 } 1077 } 1078 spin_unlock_irq(&xhci->lock); 1079 1080 /* 1081 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1082 * is about to be suspended. 1083 */ 1084 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1085 (!(xhci_all_ports_seen_u0(xhci)))) { 1086 del_timer_sync(&xhci->comp_mode_recovery_timer); 1087 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1088 "%s: compliance mode recovery timer deleted", 1089 __func__); 1090 } 1091 1092 /* step 5: remove core well power */ 1093 /* synchronize irq when using MSI-X */ 1094 xhci_msix_sync_irqs(xhci); 1095 1096 return rc; 1097 } 1098 EXPORT_SYMBOL_GPL(xhci_suspend); 1099 1100 /* 1101 * start xHC (not bus-specific) 1102 * 1103 * This is called when the machine transition from S3/S4 mode. 1104 * 1105 */ 1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1107 { 1108 u32 command, temp = 0; 1109 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1110 struct usb_hcd *secondary_hcd; 1111 int retval = 0; 1112 bool comp_timer_running = false; 1113 bool pending_portevent = false; 1114 bool reinit_xhc = false; 1115 1116 if (!hcd->state) 1117 return 0; 1118 1119 /* Wait a bit if either of the roothubs need to settle from the 1120 * transition into bus suspend. 1121 */ 1122 1123 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1124 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1125 msleep(100); 1126 1127 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1128 if (xhci->shared_hcd) 1129 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1130 1131 spin_lock_irq(&xhci->lock); 1132 1133 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1134 reinit_xhc = true; 1135 1136 if (!reinit_xhc) { 1137 /* 1138 * Some controllers might lose power during suspend, so wait 1139 * for controller not ready bit to clear, just as in xHC init. 1140 */ 1141 retval = xhci_handshake(&xhci->op_regs->status, 1142 STS_CNR, 0, 10 * 1000 * 1000); 1143 if (retval) { 1144 xhci_warn(xhci, "Controller not ready at resume %d\n", 1145 retval); 1146 spin_unlock_irq(&xhci->lock); 1147 return retval; 1148 } 1149 /* step 1: restore register */ 1150 xhci_restore_registers(xhci); 1151 /* step 2: initialize command ring buffer */ 1152 xhci_set_cmd_ring_deq(xhci); 1153 /* step 3: restore state and start state*/ 1154 /* step 3: set CRS flag */ 1155 command = readl(&xhci->op_regs->command); 1156 command |= CMD_CRS; 1157 writel(command, &xhci->op_regs->command); 1158 /* 1159 * Some controllers take up to 55+ ms to complete the controller 1160 * restore so setting the timeout to 100ms. Xhci specification 1161 * doesn't mention any timeout value. 1162 */ 1163 if (xhci_handshake(&xhci->op_regs->status, 1164 STS_RESTORE, 0, 100 * 1000)) { 1165 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1166 spin_unlock_irq(&xhci->lock); 1167 return -ETIMEDOUT; 1168 } 1169 } 1170 1171 temp = readl(&xhci->op_regs->status); 1172 1173 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1174 if (temp & (STS_SRE | STS_HCE)) { 1175 reinit_xhc = true; 1176 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1177 } 1178 1179 if (reinit_xhc) { 1180 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1181 !(xhci_all_ports_seen_u0(xhci))) { 1182 del_timer_sync(&xhci->comp_mode_recovery_timer); 1183 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1184 "Compliance Mode Recovery Timer deleted!"); 1185 } 1186 1187 /* Let the USB core know _both_ roothubs lost power. */ 1188 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1189 if (xhci->shared_hcd) 1190 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1191 1192 xhci_dbg(xhci, "Stop HCD\n"); 1193 xhci_halt(xhci); 1194 xhci_zero_64b_regs(xhci); 1195 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1196 spin_unlock_irq(&xhci->lock); 1197 if (retval) 1198 return retval; 1199 xhci_cleanup_msix(xhci); 1200 1201 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1202 temp = readl(&xhci->op_regs->status); 1203 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1204 temp = readl(&xhci->ir_set->irq_pending); 1205 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1206 1207 xhci_dbg(xhci, "cleaning up memory\n"); 1208 xhci_mem_cleanup(xhci); 1209 xhci_debugfs_exit(xhci); 1210 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1211 readl(&xhci->op_regs->status)); 1212 1213 /* USB core calls the PCI reinit and start functions twice: 1214 * first with the primary HCD, and then with the secondary HCD. 1215 * If we don't do the same, the host will never be started. 1216 */ 1217 if (!usb_hcd_is_primary_hcd(hcd)) 1218 secondary_hcd = hcd; 1219 else 1220 secondary_hcd = xhci->shared_hcd; 1221 1222 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1223 retval = xhci_init(hcd->primary_hcd); 1224 if (retval) 1225 return retval; 1226 comp_timer_running = true; 1227 1228 xhci_dbg(xhci, "Start the primary HCD\n"); 1229 retval = xhci_run(hcd->primary_hcd); 1230 if (!retval && secondary_hcd) { 1231 xhci_dbg(xhci, "Start the secondary HCD\n"); 1232 retval = xhci_run(secondary_hcd); 1233 } 1234 hcd->state = HC_STATE_SUSPENDED; 1235 if (xhci->shared_hcd) 1236 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1237 goto done; 1238 } 1239 1240 /* step 4: set Run/Stop bit */ 1241 command = readl(&xhci->op_regs->command); 1242 command |= CMD_RUN; 1243 writel(command, &xhci->op_regs->command); 1244 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1245 0, 250 * 1000); 1246 1247 /* step 5: walk topology and initialize portsc, 1248 * portpmsc and portli 1249 */ 1250 /* this is done in bus_resume */ 1251 1252 /* step 6: restart each of the previously 1253 * Running endpoints by ringing their doorbells 1254 */ 1255 1256 spin_unlock_irq(&xhci->lock); 1257 1258 xhci_dbc_resume(xhci); 1259 1260 done: 1261 if (retval == 0) { 1262 /* 1263 * Resume roothubs only if there are pending events. 1264 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1265 * the first wake signalling failed, give it that chance. 1266 */ 1267 pending_portevent = xhci_pending_portevent(xhci); 1268 if (!pending_portevent) { 1269 msleep(120); 1270 pending_portevent = xhci_pending_portevent(xhci); 1271 } 1272 1273 if (pending_portevent) { 1274 if (xhci->shared_hcd) 1275 usb_hcd_resume_root_hub(xhci->shared_hcd); 1276 usb_hcd_resume_root_hub(hcd); 1277 } 1278 } 1279 /* 1280 * If system is subject to the Quirk, Compliance Mode Timer needs to 1281 * be re-initialized Always after a system resume. Ports are subject 1282 * to suffer the Compliance Mode issue again. It doesn't matter if 1283 * ports have entered previously to U0 before system's suspension. 1284 */ 1285 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1286 compliance_mode_recovery_timer_init(xhci); 1287 1288 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1289 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1290 1291 /* Re-enable port polling. */ 1292 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1293 __func__, hcd->self.busnum); 1294 if (xhci->shared_hcd) { 1295 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1296 usb_hcd_poll_rh_status(xhci->shared_hcd); 1297 } 1298 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1299 usb_hcd_poll_rh_status(hcd); 1300 1301 return retval; 1302 } 1303 EXPORT_SYMBOL_GPL(xhci_resume); 1304 #endif /* CONFIG_PM */ 1305 1306 /*-------------------------------------------------------------------------*/ 1307 1308 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1309 { 1310 void *temp; 1311 int ret = 0; 1312 unsigned int buf_len; 1313 enum dma_data_direction dir; 1314 1315 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1316 buf_len = urb->transfer_buffer_length; 1317 1318 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1319 dev_to_node(hcd->self.sysdev)); 1320 1321 if (usb_urb_dir_out(urb)) 1322 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1323 temp, buf_len, 0); 1324 1325 urb->transfer_buffer = temp; 1326 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1327 urb->transfer_buffer, 1328 urb->transfer_buffer_length, 1329 dir); 1330 1331 if (dma_mapping_error(hcd->self.sysdev, 1332 urb->transfer_dma)) { 1333 ret = -EAGAIN; 1334 kfree(temp); 1335 } else { 1336 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1337 } 1338 1339 return ret; 1340 } 1341 1342 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1343 struct urb *urb) 1344 { 1345 bool ret = false; 1346 unsigned int i; 1347 unsigned int len = 0; 1348 unsigned int trb_size; 1349 unsigned int max_pkt; 1350 struct scatterlist *sg; 1351 struct scatterlist *tail_sg; 1352 1353 tail_sg = urb->sg; 1354 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1355 1356 if (!urb->num_sgs) 1357 return ret; 1358 1359 if (urb->dev->speed >= USB_SPEED_SUPER) 1360 trb_size = TRB_CACHE_SIZE_SS; 1361 else 1362 trb_size = TRB_CACHE_SIZE_HS; 1363 1364 if (urb->transfer_buffer_length != 0 && 1365 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1366 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1367 len = len + sg->length; 1368 if (i > trb_size - 2) { 1369 len = len - tail_sg->length; 1370 if (len < max_pkt) { 1371 ret = true; 1372 break; 1373 } 1374 1375 tail_sg = sg_next(tail_sg); 1376 } 1377 } 1378 } 1379 return ret; 1380 } 1381 1382 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1383 { 1384 unsigned int len; 1385 unsigned int buf_len; 1386 enum dma_data_direction dir; 1387 1388 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1389 1390 buf_len = urb->transfer_buffer_length; 1391 1392 if (IS_ENABLED(CONFIG_HAS_DMA) && 1393 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1394 dma_unmap_single(hcd->self.sysdev, 1395 urb->transfer_dma, 1396 urb->transfer_buffer_length, 1397 dir); 1398 1399 if (usb_urb_dir_in(urb)) { 1400 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1401 urb->transfer_buffer, 1402 buf_len, 1403 0); 1404 if (len != buf_len) { 1405 xhci_dbg(hcd_to_xhci(hcd), 1406 "Copy from tmp buf to urb sg list failed\n"); 1407 urb->actual_length = len; 1408 } 1409 } 1410 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1411 kfree(urb->transfer_buffer); 1412 urb->transfer_buffer = NULL; 1413 } 1414 1415 /* 1416 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1417 * we'll copy the actual data into the TRB address register. This is limited to 1418 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1419 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1420 */ 1421 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1422 gfp_t mem_flags) 1423 { 1424 struct xhci_hcd *xhci; 1425 1426 xhci = hcd_to_xhci(hcd); 1427 1428 if (xhci_urb_suitable_for_idt(urb)) 1429 return 0; 1430 1431 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1432 if (xhci_urb_temp_buffer_required(hcd, urb)) 1433 return xhci_map_temp_buffer(hcd, urb); 1434 } 1435 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1436 } 1437 1438 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1439 { 1440 struct xhci_hcd *xhci; 1441 bool unmap_temp_buf = false; 1442 1443 xhci = hcd_to_xhci(hcd); 1444 1445 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1446 unmap_temp_buf = true; 1447 1448 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1449 xhci_unmap_temp_buf(hcd, urb); 1450 else 1451 usb_hcd_unmap_urb_for_dma(hcd, urb); 1452 } 1453 1454 /** 1455 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1456 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1457 * value to right shift 1 for the bitmask. 1458 * 1459 * Index = (epnum * 2) + direction - 1, 1460 * where direction = 0 for OUT, 1 for IN. 1461 * For control endpoints, the IN index is used (OUT index is unused), so 1462 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1463 */ 1464 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1465 { 1466 unsigned int index; 1467 if (usb_endpoint_xfer_control(desc)) 1468 index = (unsigned int) (usb_endpoint_num(desc)*2); 1469 else 1470 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1471 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1472 return index; 1473 } 1474 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1475 1476 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1477 * address from the XHCI endpoint index. 1478 */ 1479 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1480 { 1481 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1482 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1483 return direction | number; 1484 } 1485 1486 /* Find the flag for this endpoint (for use in the control context). Use the 1487 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1488 * bit 1, etc. 1489 */ 1490 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1491 { 1492 return 1 << (xhci_get_endpoint_index(desc) + 1); 1493 } 1494 1495 /* Compute the last valid endpoint context index. Basically, this is the 1496 * endpoint index plus one. For slot contexts with more than valid endpoint, 1497 * we find the most significant bit set in the added contexts flags. 1498 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1499 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1500 */ 1501 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1502 { 1503 return fls(added_ctxs) - 1; 1504 } 1505 1506 /* Returns 1 if the arguments are OK; 1507 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1508 */ 1509 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1510 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1511 const char *func) { 1512 struct xhci_hcd *xhci; 1513 struct xhci_virt_device *virt_dev; 1514 1515 if (!hcd || (check_ep && !ep) || !udev) { 1516 pr_debug("xHCI %s called with invalid args\n", func); 1517 return -EINVAL; 1518 } 1519 if (!udev->parent) { 1520 pr_debug("xHCI %s called for root hub\n", func); 1521 return 0; 1522 } 1523 1524 xhci = hcd_to_xhci(hcd); 1525 if (check_virt_dev) { 1526 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1527 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1528 func); 1529 return -EINVAL; 1530 } 1531 1532 virt_dev = xhci->devs[udev->slot_id]; 1533 if (virt_dev->udev != udev) { 1534 xhci_dbg(xhci, "xHCI %s called with udev and " 1535 "virt_dev does not match\n", func); 1536 return -EINVAL; 1537 } 1538 } 1539 1540 if (xhci->xhc_state & XHCI_STATE_HALTED) 1541 return -ENODEV; 1542 1543 return 1; 1544 } 1545 1546 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1547 struct usb_device *udev, struct xhci_command *command, 1548 bool ctx_change, bool must_succeed); 1549 1550 /* 1551 * Full speed devices may have a max packet size greater than 8 bytes, but the 1552 * USB core doesn't know that until it reads the first 8 bytes of the 1553 * descriptor. If the usb_device's max packet size changes after that point, 1554 * we need to issue an evaluate context command and wait on it. 1555 */ 1556 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1557 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1558 { 1559 struct xhci_container_ctx *out_ctx; 1560 struct xhci_input_control_ctx *ctrl_ctx; 1561 struct xhci_ep_ctx *ep_ctx; 1562 struct xhci_command *command; 1563 int max_packet_size; 1564 int hw_max_packet_size; 1565 int ret = 0; 1566 1567 out_ctx = xhci->devs[slot_id]->out_ctx; 1568 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1569 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1570 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1571 if (hw_max_packet_size != max_packet_size) { 1572 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1573 "Max Packet Size for ep 0 changed."); 1574 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1575 "Max packet size in usb_device = %d", 1576 max_packet_size); 1577 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1578 "Max packet size in xHCI HW = %d", 1579 hw_max_packet_size); 1580 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1581 "Issuing evaluate context command."); 1582 1583 /* Set up the input context flags for the command */ 1584 /* FIXME: This won't work if a non-default control endpoint 1585 * changes max packet sizes. 1586 */ 1587 1588 command = xhci_alloc_command(xhci, true, mem_flags); 1589 if (!command) 1590 return -ENOMEM; 1591 1592 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1593 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1594 if (!ctrl_ctx) { 1595 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1596 __func__); 1597 ret = -ENOMEM; 1598 goto command_cleanup; 1599 } 1600 /* Set up the modified control endpoint 0 */ 1601 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1602 xhci->devs[slot_id]->out_ctx, ep_index); 1603 1604 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1605 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1606 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1607 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1608 1609 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1610 ctrl_ctx->drop_flags = 0; 1611 1612 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1613 true, false); 1614 1615 /* Clean up the input context for later use by bandwidth 1616 * functions. 1617 */ 1618 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1619 command_cleanup: 1620 kfree(command->completion); 1621 kfree(command); 1622 } 1623 return ret; 1624 } 1625 1626 /* 1627 * non-error returns are a promise to giveback() the urb later 1628 * we drop ownership so next owner (or urb unlink) can get it 1629 */ 1630 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1631 { 1632 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1633 unsigned long flags; 1634 int ret = 0; 1635 unsigned int slot_id, ep_index; 1636 unsigned int *ep_state; 1637 struct urb_priv *urb_priv; 1638 int num_tds; 1639 1640 if (!urb) 1641 return -EINVAL; 1642 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1643 true, true, __func__); 1644 if (ret <= 0) 1645 return ret ? ret : -EINVAL; 1646 1647 slot_id = urb->dev->slot_id; 1648 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1649 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1650 1651 if (!HCD_HW_ACCESSIBLE(hcd)) 1652 return -ESHUTDOWN; 1653 1654 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1655 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1656 return -ENODEV; 1657 } 1658 1659 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1660 num_tds = urb->number_of_packets; 1661 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1662 urb->transfer_buffer_length > 0 && 1663 urb->transfer_flags & URB_ZERO_PACKET && 1664 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1665 num_tds = 2; 1666 else 1667 num_tds = 1; 1668 1669 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1670 if (!urb_priv) 1671 return -ENOMEM; 1672 1673 urb_priv->num_tds = num_tds; 1674 urb_priv->num_tds_done = 0; 1675 urb->hcpriv = urb_priv; 1676 1677 trace_xhci_urb_enqueue(urb); 1678 1679 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1680 /* Check to see if the max packet size for the default control 1681 * endpoint changed during FS device enumeration 1682 */ 1683 if (urb->dev->speed == USB_SPEED_FULL) { 1684 ret = xhci_check_maxpacket(xhci, slot_id, 1685 ep_index, urb, mem_flags); 1686 if (ret < 0) { 1687 xhci_urb_free_priv(urb_priv); 1688 urb->hcpriv = NULL; 1689 return ret; 1690 } 1691 } 1692 } 1693 1694 spin_lock_irqsave(&xhci->lock, flags); 1695 1696 if (xhci->xhc_state & XHCI_STATE_DYING) { 1697 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1698 urb->ep->desc.bEndpointAddress, urb); 1699 ret = -ESHUTDOWN; 1700 goto free_priv; 1701 } 1702 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1703 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1704 *ep_state); 1705 ret = -EINVAL; 1706 goto free_priv; 1707 } 1708 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1709 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1710 ret = -EINVAL; 1711 goto free_priv; 1712 } 1713 1714 switch (usb_endpoint_type(&urb->ep->desc)) { 1715 1716 case USB_ENDPOINT_XFER_CONTROL: 1717 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1718 slot_id, ep_index); 1719 break; 1720 case USB_ENDPOINT_XFER_BULK: 1721 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1722 slot_id, ep_index); 1723 break; 1724 case USB_ENDPOINT_XFER_INT: 1725 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1726 slot_id, ep_index); 1727 break; 1728 case USB_ENDPOINT_XFER_ISOC: 1729 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1730 slot_id, ep_index); 1731 } 1732 1733 if (ret) { 1734 free_priv: 1735 xhci_urb_free_priv(urb_priv); 1736 urb->hcpriv = NULL; 1737 } 1738 spin_unlock_irqrestore(&xhci->lock, flags); 1739 return ret; 1740 } 1741 1742 /* 1743 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1744 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1745 * should pick up where it left off in the TD, unless a Set Transfer Ring 1746 * Dequeue Pointer is issued. 1747 * 1748 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1749 * the ring. Since the ring is a contiguous structure, they can't be physically 1750 * removed. Instead, there are two options: 1751 * 1752 * 1) If the HC is in the middle of processing the URB to be canceled, we 1753 * simply move the ring's dequeue pointer past those TRBs using the Set 1754 * Transfer Ring Dequeue Pointer command. This will be the common case, 1755 * when drivers timeout on the last submitted URB and attempt to cancel. 1756 * 1757 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1758 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1759 * HC will need to invalidate the any TRBs it has cached after the stop 1760 * endpoint command, as noted in the xHCI 0.95 errata. 1761 * 1762 * 3) The TD may have completed by the time the Stop Endpoint Command 1763 * completes, so software needs to handle that case too. 1764 * 1765 * This function should protect against the TD enqueueing code ringing the 1766 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1767 * It also needs to account for multiple cancellations on happening at the same 1768 * time for the same endpoint. 1769 * 1770 * Note that this function can be called in any context, or so says 1771 * usb_hcd_unlink_urb() 1772 */ 1773 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1774 { 1775 unsigned long flags; 1776 int ret, i; 1777 u32 temp; 1778 struct xhci_hcd *xhci; 1779 struct urb_priv *urb_priv; 1780 struct xhci_td *td; 1781 unsigned int ep_index; 1782 struct xhci_ring *ep_ring; 1783 struct xhci_virt_ep *ep; 1784 struct xhci_command *command; 1785 struct xhci_virt_device *vdev; 1786 1787 xhci = hcd_to_xhci(hcd); 1788 spin_lock_irqsave(&xhci->lock, flags); 1789 1790 trace_xhci_urb_dequeue(urb); 1791 1792 /* Make sure the URB hasn't completed or been unlinked already */ 1793 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1794 if (ret) 1795 goto done; 1796 1797 /* give back URB now if we can't queue it for cancel */ 1798 vdev = xhci->devs[urb->dev->slot_id]; 1799 urb_priv = urb->hcpriv; 1800 if (!vdev || !urb_priv) 1801 goto err_giveback; 1802 1803 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1804 ep = &vdev->eps[ep_index]; 1805 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1806 if (!ep || !ep_ring) 1807 goto err_giveback; 1808 1809 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1810 temp = readl(&xhci->op_regs->status); 1811 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1812 xhci_hc_died(xhci); 1813 goto done; 1814 } 1815 1816 /* 1817 * check ring is not re-allocated since URB was enqueued. If it is, then 1818 * make sure none of the ring related pointers in this URB private data 1819 * are touched, such as td_list, otherwise we overwrite freed data 1820 */ 1821 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1822 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1823 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1824 td = &urb_priv->td[i]; 1825 if (!list_empty(&td->cancelled_td_list)) 1826 list_del_init(&td->cancelled_td_list); 1827 } 1828 goto err_giveback; 1829 } 1830 1831 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1832 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1833 "HC halted, freeing TD manually."); 1834 for (i = urb_priv->num_tds_done; 1835 i < urb_priv->num_tds; 1836 i++) { 1837 td = &urb_priv->td[i]; 1838 if (!list_empty(&td->td_list)) 1839 list_del_init(&td->td_list); 1840 if (!list_empty(&td->cancelled_td_list)) 1841 list_del_init(&td->cancelled_td_list); 1842 } 1843 goto err_giveback; 1844 } 1845 1846 i = urb_priv->num_tds_done; 1847 if (i < urb_priv->num_tds) 1848 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1849 "Cancel URB %p, dev %s, ep 0x%x, " 1850 "starting at offset 0x%llx", 1851 urb, urb->dev->devpath, 1852 urb->ep->desc.bEndpointAddress, 1853 (unsigned long long) xhci_trb_virt_to_dma( 1854 urb_priv->td[i].start_seg, 1855 urb_priv->td[i].first_trb)); 1856 1857 for (; i < urb_priv->num_tds; i++) { 1858 td = &urb_priv->td[i]; 1859 /* TD can already be on cancelled list if ep halted on it */ 1860 if (list_empty(&td->cancelled_td_list)) { 1861 td->cancel_status = TD_DIRTY; 1862 list_add_tail(&td->cancelled_td_list, 1863 &ep->cancelled_td_list); 1864 } 1865 } 1866 1867 /* Queue a stop endpoint command, but only if this is 1868 * the first cancellation to be handled. 1869 */ 1870 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1871 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1872 if (!command) { 1873 ret = -ENOMEM; 1874 goto done; 1875 } 1876 ep->ep_state |= EP_STOP_CMD_PENDING; 1877 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1878 ep_index, 0); 1879 xhci_ring_cmd_db(xhci); 1880 } 1881 done: 1882 spin_unlock_irqrestore(&xhci->lock, flags); 1883 return ret; 1884 1885 err_giveback: 1886 if (urb_priv) 1887 xhci_urb_free_priv(urb_priv); 1888 usb_hcd_unlink_urb_from_ep(hcd, urb); 1889 spin_unlock_irqrestore(&xhci->lock, flags); 1890 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1891 return ret; 1892 } 1893 1894 /* Drop an endpoint from a new bandwidth configuration for this device. 1895 * Only one call to this function is allowed per endpoint before 1896 * check_bandwidth() or reset_bandwidth() must be called. 1897 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1898 * add the endpoint to the schedule with possibly new parameters denoted by a 1899 * different endpoint descriptor in usb_host_endpoint. 1900 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1901 * not allowed. 1902 * 1903 * The USB core will not allow URBs to be queued to an endpoint that is being 1904 * disabled, so there's no need for mutual exclusion to protect 1905 * the xhci->devs[slot_id] structure. 1906 */ 1907 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1908 struct usb_host_endpoint *ep) 1909 { 1910 struct xhci_hcd *xhci; 1911 struct xhci_container_ctx *in_ctx, *out_ctx; 1912 struct xhci_input_control_ctx *ctrl_ctx; 1913 unsigned int ep_index; 1914 struct xhci_ep_ctx *ep_ctx; 1915 u32 drop_flag; 1916 u32 new_add_flags, new_drop_flags; 1917 int ret; 1918 1919 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1920 if (ret <= 0) 1921 return ret; 1922 xhci = hcd_to_xhci(hcd); 1923 if (xhci->xhc_state & XHCI_STATE_DYING) 1924 return -ENODEV; 1925 1926 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1927 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1928 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1929 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1930 __func__, drop_flag); 1931 return 0; 1932 } 1933 1934 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1935 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1936 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1937 if (!ctrl_ctx) { 1938 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1939 __func__); 1940 return 0; 1941 } 1942 1943 ep_index = xhci_get_endpoint_index(&ep->desc); 1944 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1945 /* If the HC already knows the endpoint is disabled, 1946 * or the HCD has noted it is disabled, ignore this request 1947 */ 1948 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1949 le32_to_cpu(ctrl_ctx->drop_flags) & 1950 xhci_get_endpoint_flag(&ep->desc)) { 1951 /* Do not warn when called after a usb_device_reset */ 1952 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1953 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1954 __func__, ep); 1955 return 0; 1956 } 1957 1958 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1959 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1960 1961 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1962 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1963 1964 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1965 1966 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1967 1968 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1969 (unsigned int) ep->desc.bEndpointAddress, 1970 udev->slot_id, 1971 (unsigned int) new_drop_flags, 1972 (unsigned int) new_add_flags); 1973 return 0; 1974 } 1975 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1976 1977 /* Add an endpoint to a new possible bandwidth configuration for this device. 1978 * Only one call to this function is allowed per endpoint before 1979 * check_bandwidth() or reset_bandwidth() must be called. 1980 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1981 * add the endpoint to the schedule with possibly new parameters denoted by a 1982 * different endpoint descriptor in usb_host_endpoint. 1983 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1984 * not allowed. 1985 * 1986 * The USB core will not allow URBs to be queued to an endpoint until the 1987 * configuration or alt setting is installed in the device, so there's no need 1988 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1989 */ 1990 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1991 struct usb_host_endpoint *ep) 1992 { 1993 struct xhci_hcd *xhci; 1994 struct xhci_container_ctx *in_ctx; 1995 unsigned int ep_index; 1996 struct xhci_input_control_ctx *ctrl_ctx; 1997 struct xhci_ep_ctx *ep_ctx; 1998 u32 added_ctxs; 1999 u32 new_add_flags, new_drop_flags; 2000 struct xhci_virt_device *virt_dev; 2001 int ret = 0; 2002 2003 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2004 if (ret <= 0) { 2005 /* So we won't queue a reset ep command for a root hub */ 2006 ep->hcpriv = NULL; 2007 return ret; 2008 } 2009 xhci = hcd_to_xhci(hcd); 2010 if (xhci->xhc_state & XHCI_STATE_DYING) 2011 return -ENODEV; 2012 2013 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2014 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2015 /* FIXME when we have to issue an evaluate endpoint command to 2016 * deal with ep0 max packet size changing once we get the 2017 * descriptors 2018 */ 2019 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2020 __func__, added_ctxs); 2021 return 0; 2022 } 2023 2024 virt_dev = xhci->devs[udev->slot_id]; 2025 in_ctx = virt_dev->in_ctx; 2026 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2027 if (!ctrl_ctx) { 2028 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2029 __func__); 2030 return 0; 2031 } 2032 2033 ep_index = xhci_get_endpoint_index(&ep->desc); 2034 /* If this endpoint is already in use, and the upper layers are trying 2035 * to add it again without dropping it, reject the addition. 2036 */ 2037 if (virt_dev->eps[ep_index].ring && 2038 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2039 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2040 "without dropping it.\n", 2041 (unsigned int) ep->desc.bEndpointAddress); 2042 return -EINVAL; 2043 } 2044 2045 /* If the HCD has already noted the endpoint is enabled, 2046 * ignore this request. 2047 */ 2048 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2049 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2050 __func__, ep); 2051 return 0; 2052 } 2053 2054 /* 2055 * Configuration and alternate setting changes must be done in 2056 * process context, not interrupt context (or so documenation 2057 * for usb_set_interface() and usb_set_configuration() claim). 2058 */ 2059 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2060 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2061 __func__, ep->desc.bEndpointAddress); 2062 return -ENOMEM; 2063 } 2064 2065 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2066 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2067 2068 /* If xhci_endpoint_disable() was called for this endpoint, but the 2069 * xHC hasn't been notified yet through the check_bandwidth() call, 2070 * this re-adds a new state for the endpoint from the new endpoint 2071 * descriptors. We must drop and re-add this endpoint, so we leave the 2072 * drop flags alone. 2073 */ 2074 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2075 2076 /* Store the usb_device pointer for later use */ 2077 ep->hcpriv = udev; 2078 2079 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2080 trace_xhci_add_endpoint(ep_ctx); 2081 2082 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2083 (unsigned int) ep->desc.bEndpointAddress, 2084 udev->slot_id, 2085 (unsigned int) new_drop_flags, 2086 (unsigned int) new_add_flags); 2087 return 0; 2088 } 2089 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2090 2091 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2092 { 2093 struct xhci_input_control_ctx *ctrl_ctx; 2094 struct xhci_ep_ctx *ep_ctx; 2095 struct xhci_slot_ctx *slot_ctx; 2096 int i; 2097 2098 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2099 if (!ctrl_ctx) { 2100 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2101 __func__); 2102 return; 2103 } 2104 2105 /* When a device's add flag and drop flag are zero, any subsequent 2106 * configure endpoint command will leave that endpoint's state 2107 * untouched. Make sure we don't leave any old state in the input 2108 * endpoint contexts. 2109 */ 2110 ctrl_ctx->drop_flags = 0; 2111 ctrl_ctx->add_flags = 0; 2112 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2113 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2114 /* Endpoint 0 is always valid */ 2115 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2116 for (i = 1; i < 31; i++) { 2117 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2118 ep_ctx->ep_info = 0; 2119 ep_ctx->ep_info2 = 0; 2120 ep_ctx->deq = 0; 2121 ep_ctx->tx_info = 0; 2122 } 2123 } 2124 2125 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2126 struct usb_device *udev, u32 *cmd_status) 2127 { 2128 int ret; 2129 2130 switch (*cmd_status) { 2131 case COMP_COMMAND_ABORTED: 2132 case COMP_COMMAND_RING_STOPPED: 2133 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2134 ret = -ETIME; 2135 break; 2136 case COMP_RESOURCE_ERROR: 2137 dev_warn(&udev->dev, 2138 "Not enough host controller resources for new device state.\n"); 2139 ret = -ENOMEM; 2140 /* FIXME: can we allocate more resources for the HC? */ 2141 break; 2142 case COMP_BANDWIDTH_ERROR: 2143 case COMP_SECONDARY_BANDWIDTH_ERROR: 2144 dev_warn(&udev->dev, 2145 "Not enough bandwidth for new device state.\n"); 2146 ret = -ENOSPC; 2147 /* FIXME: can we go back to the old state? */ 2148 break; 2149 case COMP_TRB_ERROR: 2150 /* the HCD set up something wrong */ 2151 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2152 "add flag = 1, " 2153 "and endpoint is not disabled.\n"); 2154 ret = -EINVAL; 2155 break; 2156 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2157 dev_warn(&udev->dev, 2158 "ERROR: Incompatible device for endpoint configure command.\n"); 2159 ret = -ENODEV; 2160 break; 2161 case COMP_SUCCESS: 2162 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2163 "Successful Endpoint Configure command"); 2164 ret = 0; 2165 break; 2166 default: 2167 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2168 *cmd_status); 2169 ret = -EINVAL; 2170 break; 2171 } 2172 return ret; 2173 } 2174 2175 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2176 struct usb_device *udev, u32 *cmd_status) 2177 { 2178 int ret; 2179 2180 switch (*cmd_status) { 2181 case COMP_COMMAND_ABORTED: 2182 case COMP_COMMAND_RING_STOPPED: 2183 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2184 ret = -ETIME; 2185 break; 2186 case COMP_PARAMETER_ERROR: 2187 dev_warn(&udev->dev, 2188 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2189 ret = -EINVAL; 2190 break; 2191 case COMP_SLOT_NOT_ENABLED_ERROR: 2192 dev_warn(&udev->dev, 2193 "WARN: slot not enabled for evaluate context command.\n"); 2194 ret = -EINVAL; 2195 break; 2196 case COMP_CONTEXT_STATE_ERROR: 2197 dev_warn(&udev->dev, 2198 "WARN: invalid context state for evaluate context command.\n"); 2199 ret = -EINVAL; 2200 break; 2201 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2202 dev_warn(&udev->dev, 2203 "ERROR: Incompatible device for evaluate context command.\n"); 2204 ret = -ENODEV; 2205 break; 2206 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2207 /* Max Exit Latency too large error */ 2208 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2209 ret = -EINVAL; 2210 break; 2211 case COMP_SUCCESS: 2212 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2213 "Successful evaluate context command"); 2214 ret = 0; 2215 break; 2216 default: 2217 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2218 *cmd_status); 2219 ret = -EINVAL; 2220 break; 2221 } 2222 return ret; 2223 } 2224 2225 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2226 struct xhci_input_control_ctx *ctrl_ctx) 2227 { 2228 u32 valid_add_flags; 2229 u32 valid_drop_flags; 2230 2231 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2232 * (bit 1). The default control endpoint is added during the Address 2233 * Device command and is never removed until the slot is disabled. 2234 */ 2235 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2236 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2237 2238 /* Use hweight32 to count the number of ones in the add flags, or 2239 * number of endpoints added. Don't count endpoints that are changed 2240 * (both added and dropped). 2241 */ 2242 return hweight32(valid_add_flags) - 2243 hweight32(valid_add_flags & valid_drop_flags); 2244 } 2245 2246 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2247 struct xhci_input_control_ctx *ctrl_ctx) 2248 { 2249 u32 valid_add_flags; 2250 u32 valid_drop_flags; 2251 2252 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2253 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2254 2255 return hweight32(valid_drop_flags) - 2256 hweight32(valid_add_flags & valid_drop_flags); 2257 } 2258 2259 /* 2260 * We need to reserve the new number of endpoints before the configure endpoint 2261 * command completes. We can't subtract the dropped endpoints from the number 2262 * of active endpoints until the command completes because we can oversubscribe 2263 * the host in this case: 2264 * 2265 * - the first configure endpoint command drops more endpoints than it adds 2266 * - a second configure endpoint command that adds more endpoints is queued 2267 * - the first configure endpoint command fails, so the config is unchanged 2268 * - the second command may succeed, even though there isn't enough resources 2269 * 2270 * Must be called with xhci->lock held. 2271 */ 2272 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2273 struct xhci_input_control_ctx *ctrl_ctx) 2274 { 2275 u32 added_eps; 2276 2277 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2278 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2279 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2280 "Not enough ep ctxs: " 2281 "%u active, need to add %u, limit is %u.", 2282 xhci->num_active_eps, added_eps, 2283 xhci->limit_active_eps); 2284 return -ENOMEM; 2285 } 2286 xhci->num_active_eps += added_eps; 2287 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2288 "Adding %u ep ctxs, %u now active.", added_eps, 2289 xhci->num_active_eps); 2290 return 0; 2291 } 2292 2293 /* 2294 * The configure endpoint was failed by the xHC for some other reason, so we 2295 * need to revert the resources that failed configuration would have used. 2296 * 2297 * Must be called with xhci->lock held. 2298 */ 2299 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2300 struct xhci_input_control_ctx *ctrl_ctx) 2301 { 2302 u32 num_failed_eps; 2303 2304 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2305 xhci->num_active_eps -= num_failed_eps; 2306 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2307 "Removing %u failed ep ctxs, %u now active.", 2308 num_failed_eps, 2309 xhci->num_active_eps); 2310 } 2311 2312 /* 2313 * Now that the command has completed, clean up the active endpoint count by 2314 * subtracting out the endpoints that were dropped (but not changed). 2315 * 2316 * Must be called with xhci->lock held. 2317 */ 2318 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2319 struct xhci_input_control_ctx *ctrl_ctx) 2320 { 2321 u32 num_dropped_eps; 2322 2323 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2324 xhci->num_active_eps -= num_dropped_eps; 2325 if (num_dropped_eps) 2326 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2327 "Removing %u dropped ep ctxs, %u now active.", 2328 num_dropped_eps, 2329 xhci->num_active_eps); 2330 } 2331 2332 static unsigned int xhci_get_block_size(struct usb_device *udev) 2333 { 2334 switch (udev->speed) { 2335 case USB_SPEED_LOW: 2336 case USB_SPEED_FULL: 2337 return FS_BLOCK; 2338 case USB_SPEED_HIGH: 2339 return HS_BLOCK; 2340 case USB_SPEED_SUPER: 2341 case USB_SPEED_SUPER_PLUS: 2342 return SS_BLOCK; 2343 case USB_SPEED_UNKNOWN: 2344 case USB_SPEED_WIRELESS: 2345 default: 2346 /* Should never happen */ 2347 return 1; 2348 } 2349 } 2350 2351 static unsigned int 2352 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2353 { 2354 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2355 return LS_OVERHEAD; 2356 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2357 return FS_OVERHEAD; 2358 return HS_OVERHEAD; 2359 } 2360 2361 /* If we are changing a LS/FS device under a HS hub, 2362 * make sure (if we are activating a new TT) that the HS bus has enough 2363 * bandwidth for this new TT. 2364 */ 2365 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2366 struct xhci_virt_device *virt_dev, 2367 int old_active_eps) 2368 { 2369 struct xhci_interval_bw_table *bw_table; 2370 struct xhci_tt_bw_info *tt_info; 2371 2372 /* Find the bandwidth table for the root port this TT is attached to. */ 2373 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2374 tt_info = virt_dev->tt_info; 2375 /* If this TT already had active endpoints, the bandwidth for this TT 2376 * has already been added. Removing all periodic endpoints (and thus 2377 * making the TT enactive) will only decrease the bandwidth used. 2378 */ 2379 if (old_active_eps) 2380 return 0; 2381 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2382 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2383 return -ENOMEM; 2384 return 0; 2385 } 2386 /* Not sure why we would have no new active endpoints... 2387 * 2388 * Maybe because of an Evaluate Context change for a hub update or a 2389 * control endpoint 0 max packet size change? 2390 * FIXME: skip the bandwidth calculation in that case. 2391 */ 2392 return 0; 2393 } 2394 2395 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2396 struct xhci_virt_device *virt_dev) 2397 { 2398 unsigned int bw_reserved; 2399 2400 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2401 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2402 return -ENOMEM; 2403 2404 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2405 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2406 return -ENOMEM; 2407 2408 return 0; 2409 } 2410 2411 /* 2412 * This algorithm is a very conservative estimate of the worst-case scheduling 2413 * scenario for any one interval. The hardware dynamically schedules the 2414 * packets, so we can't tell which microframe could be the limiting factor in 2415 * the bandwidth scheduling. This only takes into account periodic endpoints. 2416 * 2417 * Obviously, we can't solve an NP complete problem to find the minimum worst 2418 * case scenario. Instead, we come up with an estimate that is no less than 2419 * the worst case bandwidth used for any one microframe, but may be an 2420 * over-estimate. 2421 * 2422 * We walk the requirements for each endpoint by interval, starting with the 2423 * smallest interval, and place packets in the schedule where there is only one 2424 * possible way to schedule packets for that interval. In order to simplify 2425 * this algorithm, we record the largest max packet size for each interval, and 2426 * assume all packets will be that size. 2427 * 2428 * For interval 0, we obviously must schedule all packets for each interval. 2429 * The bandwidth for interval 0 is just the amount of data to be transmitted 2430 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2431 * the number of packets). 2432 * 2433 * For interval 1, we have two possible microframes to schedule those packets 2434 * in. For this algorithm, if we can schedule the same number of packets for 2435 * each possible scheduling opportunity (each microframe), we will do so. The 2436 * remaining number of packets will be saved to be transmitted in the gaps in 2437 * the next interval's scheduling sequence. 2438 * 2439 * As we move those remaining packets to be scheduled with interval 2 packets, 2440 * we have to double the number of remaining packets to transmit. This is 2441 * because the intervals are actually powers of 2, and we would be transmitting 2442 * the previous interval's packets twice in this interval. We also have to be 2443 * sure that when we look at the largest max packet size for this interval, we 2444 * also look at the largest max packet size for the remaining packets and take 2445 * the greater of the two. 2446 * 2447 * The algorithm continues to evenly distribute packets in each scheduling 2448 * opportunity, and push the remaining packets out, until we get to the last 2449 * interval. Then those packets and their associated overhead are just added 2450 * to the bandwidth used. 2451 */ 2452 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2453 struct xhci_virt_device *virt_dev, 2454 int old_active_eps) 2455 { 2456 unsigned int bw_reserved; 2457 unsigned int max_bandwidth; 2458 unsigned int bw_used; 2459 unsigned int block_size; 2460 struct xhci_interval_bw_table *bw_table; 2461 unsigned int packet_size = 0; 2462 unsigned int overhead = 0; 2463 unsigned int packets_transmitted = 0; 2464 unsigned int packets_remaining = 0; 2465 unsigned int i; 2466 2467 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2468 return xhci_check_ss_bw(xhci, virt_dev); 2469 2470 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2471 max_bandwidth = HS_BW_LIMIT; 2472 /* Convert percent of bus BW reserved to blocks reserved */ 2473 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2474 } else { 2475 max_bandwidth = FS_BW_LIMIT; 2476 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2477 } 2478 2479 bw_table = virt_dev->bw_table; 2480 /* We need to translate the max packet size and max ESIT payloads into 2481 * the units the hardware uses. 2482 */ 2483 block_size = xhci_get_block_size(virt_dev->udev); 2484 2485 /* If we are manipulating a LS/FS device under a HS hub, double check 2486 * that the HS bus has enough bandwidth if we are activing a new TT. 2487 */ 2488 if (virt_dev->tt_info) { 2489 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2490 "Recalculating BW for rootport %u", 2491 virt_dev->real_port); 2492 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2493 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2494 "newly activated TT.\n"); 2495 return -ENOMEM; 2496 } 2497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2498 "Recalculating BW for TT slot %u port %u", 2499 virt_dev->tt_info->slot_id, 2500 virt_dev->tt_info->ttport); 2501 } else { 2502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2503 "Recalculating BW for rootport %u", 2504 virt_dev->real_port); 2505 } 2506 2507 /* Add in how much bandwidth will be used for interval zero, or the 2508 * rounded max ESIT payload + number of packets * largest overhead. 2509 */ 2510 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2511 bw_table->interval_bw[0].num_packets * 2512 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2513 2514 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2515 unsigned int bw_added; 2516 unsigned int largest_mps; 2517 unsigned int interval_overhead; 2518 2519 /* 2520 * How many packets could we transmit in this interval? 2521 * If packets didn't fit in the previous interval, we will need 2522 * to transmit that many packets twice within this interval. 2523 */ 2524 packets_remaining = 2 * packets_remaining + 2525 bw_table->interval_bw[i].num_packets; 2526 2527 /* Find the largest max packet size of this or the previous 2528 * interval. 2529 */ 2530 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2531 largest_mps = 0; 2532 else { 2533 struct xhci_virt_ep *virt_ep; 2534 struct list_head *ep_entry; 2535 2536 ep_entry = bw_table->interval_bw[i].endpoints.next; 2537 virt_ep = list_entry(ep_entry, 2538 struct xhci_virt_ep, bw_endpoint_list); 2539 /* Convert to blocks, rounding up */ 2540 largest_mps = DIV_ROUND_UP( 2541 virt_ep->bw_info.max_packet_size, 2542 block_size); 2543 } 2544 if (largest_mps > packet_size) 2545 packet_size = largest_mps; 2546 2547 /* Use the larger overhead of this or the previous interval. */ 2548 interval_overhead = xhci_get_largest_overhead( 2549 &bw_table->interval_bw[i]); 2550 if (interval_overhead > overhead) 2551 overhead = interval_overhead; 2552 2553 /* How many packets can we evenly distribute across 2554 * (1 << (i + 1)) possible scheduling opportunities? 2555 */ 2556 packets_transmitted = packets_remaining >> (i + 1); 2557 2558 /* Add in the bandwidth used for those scheduled packets */ 2559 bw_added = packets_transmitted * (overhead + packet_size); 2560 2561 /* How many packets do we have remaining to transmit? */ 2562 packets_remaining = packets_remaining % (1 << (i + 1)); 2563 2564 /* What largest max packet size should those packets have? */ 2565 /* If we've transmitted all packets, don't carry over the 2566 * largest packet size. 2567 */ 2568 if (packets_remaining == 0) { 2569 packet_size = 0; 2570 overhead = 0; 2571 } else if (packets_transmitted > 0) { 2572 /* Otherwise if we do have remaining packets, and we've 2573 * scheduled some packets in this interval, take the 2574 * largest max packet size from endpoints with this 2575 * interval. 2576 */ 2577 packet_size = largest_mps; 2578 overhead = interval_overhead; 2579 } 2580 /* Otherwise carry over packet_size and overhead from the last 2581 * time we had a remainder. 2582 */ 2583 bw_used += bw_added; 2584 if (bw_used > max_bandwidth) { 2585 xhci_warn(xhci, "Not enough bandwidth. " 2586 "Proposed: %u, Max: %u\n", 2587 bw_used, max_bandwidth); 2588 return -ENOMEM; 2589 } 2590 } 2591 /* 2592 * Ok, we know we have some packets left over after even-handedly 2593 * scheduling interval 15. We don't know which microframes they will 2594 * fit into, so we over-schedule and say they will be scheduled every 2595 * microframe. 2596 */ 2597 if (packets_remaining > 0) 2598 bw_used += overhead + packet_size; 2599 2600 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2601 unsigned int port_index = virt_dev->real_port - 1; 2602 2603 /* OK, we're manipulating a HS device attached to a 2604 * root port bandwidth domain. Include the number of active TTs 2605 * in the bandwidth used. 2606 */ 2607 bw_used += TT_HS_OVERHEAD * 2608 xhci->rh_bw[port_index].num_active_tts; 2609 } 2610 2611 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2612 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2613 "Available: %u " "percent", 2614 bw_used, max_bandwidth, bw_reserved, 2615 (max_bandwidth - bw_used - bw_reserved) * 100 / 2616 max_bandwidth); 2617 2618 bw_used += bw_reserved; 2619 if (bw_used > max_bandwidth) { 2620 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2621 bw_used, max_bandwidth); 2622 return -ENOMEM; 2623 } 2624 2625 bw_table->bw_used = bw_used; 2626 return 0; 2627 } 2628 2629 static bool xhci_is_async_ep(unsigned int ep_type) 2630 { 2631 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2632 ep_type != ISOC_IN_EP && 2633 ep_type != INT_IN_EP); 2634 } 2635 2636 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2637 { 2638 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2639 } 2640 2641 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2642 { 2643 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2644 2645 if (ep_bw->ep_interval == 0) 2646 return SS_OVERHEAD_BURST + 2647 (ep_bw->mult * ep_bw->num_packets * 2648 (SS_OVERHEAD + mps)); 2649 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2650 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2651 1 << ep_bw->ep_interval); 2652 2653 } 2654 2655 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2656 struct xhci_bw_info *ep_bw, 2657 struct xhci_interval_bw_table *bw_table, 2658 struct usb_device *udev, 2659 struct xhci_virt_ep *virt_ep, 2660 struct xhci_tt_bw_info *tt_info) 2661 { 2662 struct xhci_interval_bw *interval_bw; 2663 int normalized_interval; 2664 2665 if (xhci_is_async_ep(ep_bw->type)) 2666 return; 2667 2668 if (udev->speed >= USB_SPEED_SUPER) { 2669 if (xhci_is_sync_in_ep(ep_bw->type)) 2670 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2671 xhci_get_ss_bw_consumed(ep_bw); 2672 else 2673 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2674 xhci_get_ss_bw_consumed(ep_bw); 2675 return; 2676 } 2677 2678 /* SuperSpeed endpoints never get added to intervals in the table, so 2679 * this check is only valid for HS/FS/LS devices. 2680 */ 2681 if (list_empty(&virt_ep->bw_endpoint_list)) 2682 return; 2683 /* For LS/FS devices, we need to translate the interval expressed in 2684 * microframes to frames. 2685 */ 2686 if (udev->speed == USB_SPEED_HIGH) 2687 normalized_interval = ep_bw->ep_interval; 2688 else 2689 normalized_interval = ep_bw->ep_interval - 3; 2690 2691 if (normalized_interval == 0) 2692 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2693 interval_bw = &bw_table->interval_bw[normalized_interval]; 2694 interval_bw->num_packets -= ep_bw->num_packets; 2695 switch (udev->speed) { 2696 case USB_SPEED_LOW: 2697 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2698 break; 2699 case USB_SPEED_FULL: 2700 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2701 break; 2702 case USB_SPEED_HIGH: 2703 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2704 break; 2705 case USB_SPEED_SUPER: 2706 case USB_SPEED_SUPER_PLUS: 2707 case USB_SPEED_UNKNOWN: 2708 case USB_SPEED_WIRELESS: 2709 /* Should never happen because only LS/FS/HS endpoints will get 2710 * added to the endpoint list. 2711 */ 2712 return; 2713 } 2714 if (tt_info) 2715 tt_info->active_eps -= 1; 2716 list_del_init(&virt_ep->bw_endpoint_list); 2717 } 2718 2719 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2720 struct xhci_bw_info *ep_bw, 2721 struct xhci_interval_bw_table *bw_table, 2722 struct usb_device *udev, 2723 struct xhci_virt_ep *virt_ep, 2724 struct xhci_tt_bw_info *tt_info) 2725 { 2726 struct xhci_interval_bw *interval_bw; 2727 struct xhci_virt_ep *smaller_ep; 2728 int normalized_interval; 2729 2730 if (xhci_is_async_ep(ep_bw->type)) 2731 return; 2732 2733 if (udev->speed == USB_SPEED_SUPER) { 2734 if (xhci_is_sync_in_ep(ep_bw->type)) 2735 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2736 xhci_get_ss_bw_consumed(ep_bw); 2737 else 2738 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2739 xhci_get_ss_bw_consumed(ep_bw); 2740 return; 2741 } 2742 2743 /* For LS/FS devices, we need to translate the interval expressed in 2744 * microframes to frames. 2745 */ 2746 if (udev->speed == USB_SPEED_HIGH) 2747 normalized_interval = ep_bw->ep_interval; 2748 else 2749 normalized_interval = ep_bw->ep_interval - 3; 2750 2751 if (normalized_interval == 0) 2752 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2753 interval_bw = &bw_table->interval_bw[normalized_interval]; 2754 interval_bw->num_packets += ep_bw->num_packets; 2755 switch (udev->speed) { 2756 case USB_SPEED_LOW: 2757 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2758 break; 2759 case USB_SPEED_FULL: 2760 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2761 break; 2762 case USB_SPEED_HIGH: 2763 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2764 break; 2765 case USB_SPEED_SUPER: 2766 case USB_SPEED_SUPER_PLUS: 2767 case USB_SPEED_UNKNOWN: 2768 case USB_SPEED_WIRELESS: 2769 /* Should never happen because only LS/FS/HS endpoints will get 2770 * added to the endpoint list. 2771 */ 2772 return; 2773 } 2774 2775 if (tt_info) 2776 tt_info->active_eps += 1; 2777 /* Insert the endpoint into the list, largest max packet size first. */ 2778 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2779 bw_endpoint_list) { 2780 if (ep_bw->max_packet_size >= 2781 smaller_ep->bw_info.max_packet_size) { 2782 /* Add the new ep before the smaller endpoint */ 2783 list_add_tail(&virt_ep->bw_endpoint_list, 2784 &smaller_ep->bw_endpoint_list); 2785 return; 2786 } 2787 } 2788 /* Add the new endpoint at the end of the list. */ 2789 list_add_tail(&virt_ep->bw_endpoint_list, 2790 &interval_bw->endpoints); 2791 } 2792 2793 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2794 struct xhci_virt_device *virt_dev, 2795 int old_active_eps) 2796 { 2797 struct xhci_root_port_bw_info *rh_bw_info; 2798 if (!virt_dev->tt_info) 2799 return; 2800 2801 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2802 if (old_active_eps == 0 && 2803 virt_dev->tt_info->active_eps != 0) { 2804 rh_bw_info->num_active_tts += 1; 2805 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2806 } else if (old_active_eps != 0 && 2807 virt_dev->tt_info->active_eps == 0) { 2808 rh_bw_info->num_active_tts -= 1; 2809 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2810 } 2811 } 2812 2813 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2814 struct xhci_virt_device *virt_dev, 2815 struct xhci_container_ctx *in_ctx) 2816 { 2817 struct xhci_bw_info ep_bw_info[31]; 2818 int i; 2819 struct xhci_input_control_ctx *ctrl_ctx; 2820 int old_active_eps = 0; 2821 2822 if (virt_dev->tt_info) 2823 old_active_eps = virt_dev->tt_info->active_eps; 2824 2825 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2826 if (!ctrl_ctx) { 2827 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2828 __func__); 2829 return -ENOMEM; 2830 } 2831 2832 for (i = 0; i < 31; i++) { 2833 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2834 continue; 2835 2836 /* Make a copy of the BW info in case we need to revert this */ 2837 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2838 sizeof(ep_bw_info[i])); 2839 /* Drop the endpoint from the interval table if the endpoint is 2840 * being dropped or changed. 2841 */ 2842 if (EP_IS_DROPPED(ctrl_ctx, i)) 2843 xhci_drop_ep_from_interval_table(xhci, 2844 &virt_dev->eps[i].bw_info, 2845 virt_dev->bw_table, 2846 virt_dev->udev, 2847 &virt_dev->eps[i], 2848 virt_dev->tt_info); 2849 } 2850 /* Overwrite the information stored in the endpoints' bw_info */ 2851 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2852 for (i = 0; i < 31; i++) { 2853 /* Add any changed or added endpoints to the interval table */ 2854 if (EP_IS_ADDED(ctrl_ctx, i)) 2855 xhci_add_ep_to_interval_table(xhci, 2856 &virt_dev->eps[i].bw_info, 2857 virt_dev->bw_table, 2858 virt_dev->udev, 2859 &virt_dev->eps[i], 2860 virt_dev->tt_info); 2861 } 2862 2863 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2864 /* Ok, this fits in the bandwidth we have. 2865 * Update the number of active TTs. 2866 */ 2867 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2868 return 0; 2869 } 2870 2871 /* We don't have enough bandwidth for this, revert the stored info. */ 2872 for (i = 0; i < 31; i++) { 2873 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2874 continue; 2875 2876 /* Drop the new copies of any added or changed endpoints from 2877 * the interval table. 2878 */ 2879 if (EP_IS_ADDED(ctrl_ctx, i)) { 2880 xhci_drop_ep_from_interval_table(xhci, 2881 &virt_dev->eps[i].bw_info, 2882 virt_dev->bw_table, 2883 virt_dev->udev, 2884 &virt_dev->eps[i], 2885 virt_dev->tt_info); 2886 } 2887 /* Revert the endpoint back to its old information */ 2888 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2889 sizeof(ep_bw_info[i])); 2890 /* Add any changed or dropped endpoints back into the table */ 2891 if (EP_IS_DROPPED(ctrl_ctx, i)) 2892 xhci_add_ep_to_interval_table(xhci, 2893 &virt_dev->eps[i].bw_info, 2894 virt_dev->bw_table, 2895 virt_dev->udev, 2896 &virt_dev->eps[i], 2897 virt_dev->tt_info); 2898 } 2899 return -ENOMEM; 2900 } 2901 2902 2903 /* Issue a configure endpoint command or evaluate context command 2904 * and wait for it to finish. 2905 */ 2906 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2907 struct usb_device *udev, 2908 struct xhci_command *command, 2909 bool ctx_change, bool must_succeed) 2910 { 2911 int ret; 2912 unsigned long flags; 2913 struct xhci_input_control_ctx *ctrl_ctx; 2914 struct xhci_virt_device *virt_dev; 2915 struct xhci_slot_ctx *slot_ctx; 2916 2917 if (!command) 2918 return -EINVAL; 2919 2920 spin_lock_irqsave(&xhci->lock, flags); 2921 2922 if (xhci->xhc_state & XHCI_STATE_DYING) { 2923 spin_unlock_irqrestore(&xhci->lock, flags); 2924 return -ESHUTDOWN; 2925 } 2926 2927 virt_dev = xhci->devs[udev->slot_id]; 2928 2929 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2930 if (!ctrl_ctx) { 2931 spin_unlock_irqrestore(&xhci->lock, flags); 2932 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2933 __func__); 2934 return -ENOMEM; 2935 } 2936 2937 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2938 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2939 spin_unlock_irqrestore(&xhci->lock, flags); 2940 xhci_warn(xhci, "Not enough host resources, " 2941 "active endpoint contexts = %u\n", 2942 xhci->num_active_eps); 2943 return -ENOMEM; 2944 } 2945 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2946 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2947 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2948 xhci_free_host_resources(xhci, ctrl_ctx); 2949 spin_unlock_irqrestore(&xhci->lock, flags); 2950 xhci_warn(xhci, "Not enough bandwidth\n"); 2951 return -ENOMEM; 2952 } 2953 2954 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2955 2956 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2957 trace_xhci_configure_endpoint(slot_ctx); 2958 2959 if (!ctx_change) 2960 ret = xhci_queue_configure_endpoint(xhci, command, 2961 command->in_ctx->dma, 2962 udev->slot_id, must_succeed); 2963 else 2964 ret = xhci_queue_evaluate_context(xhci, command, 2965 command->in_ctx->dma, 2966 udev->slot_id, must_succeed); 2967 if (ret < 0) { 2968 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2969 xhci_free_host_resources(xhci, ctrl_ctx); 2970 spin_unlock_irqrestore(&xhci->lock, flags); 2971 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2972 "FIXME allocate a new ring segment"); 2973 return -ENOMEM; 2974 } 2975 xhci_ring_cmd_db(xhci); 2976 spin_unlock_irqrestore(&xhci->lock, flags); 2977 2978 /* Wait for the configure endpoint command to complete */ 2979 wait_for_completion(command->completion); 2980 2981 if (!ctx_change) 2982 ret = xhci_configure_endpoint_result(xhci, udev, 2983 &command->status); 2984 else 2985 ret = xhci_evaluate_context_result(xhci, udev, 2986 &command->status); 2987 2988 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2989 spin_lock_irqsave(&xhci->lock, flags); 2990 /* If the command failed, remove the reserved resources. 2991 * Otherwise, clean up the estimate to include dropped eps. 2992 */ 2993 if (ret) 2994 xhci_free_host_resources(xhci, ctrl_ctx); 2995 else 2996 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2997 spin_unlock_irqrestore(&xhci->lock, flags); 2998 } 2999 return ret; 3000 } 3001 3002 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3003 struct xhci_virt_device *vdev, int i) 3004 { 3005 struct xhci_virt_ep *ep = &vdev->eps[i]; 3006 3007 if (ep->ep_state & EP_HAS_STREAMS) { 3008 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3009 xhci_get_endpoint_address(i)); 3010 xhci_free_stream_info(xhci, ep->stream_info); 3011 ep->stream_info = NULL; 3012 ep->ep_state &= ~EP_HAS_STREAMS; 3013 } 3014 } 3015 3016 /* Called after one or more calls to xhci_add_endpoint() or 3017 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3018 * to call xhci_reset_bandwidth(). 3019 * 3020 * Since we are in the middle of changing either configuration or 3021 * installing a new alt setting, the USB core won't allow URBs to be 3022 * enqueued for any endpoint on the old config or interface. Nothing 3023 * else should be touching the xhci->devs[slot_id] structure, so we 3024 * don't need to take the xhci->lock for manipulating that. 3025 */ 3026 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3027 { 3028 int i; 3029 int ret = 0; 3030 struct xhci_hcd *xhci; 3031 struct xhci_virt_device *virt_dev; 3032 struct xhci_input_control_ctx *ctrl_ctx; 3033 struct xhci_slot_ctx *slot_ctx; 3034 struct xhci_command *command; 3035 3036 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3037 if (ret <= 0) 3038 return ret; 3039 xhci = hcd_to_xhci(hcd); 3040 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3041 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3042 return -ENODEV; 3043 3044 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3045 virt_dev = xhci->devs[udev->slot_id]; 3046 3047 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3048 if (!command) 3049 return -ENOMEM; 3050 3051 command->in_ctx = virt_dev->in_ctx; 3052 3053 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3054 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3055 if (!ctrl_ctx) { 3056 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3057 __func__); 3058 ret = -ENOMEM; 3059 goto command_cleanup; 3060 } 3061 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3062 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3063 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3064 3065 /* Don't issue the command if there's no endpoints to update. */ 3066 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3067 ctrl_ctx->drop_flags == 0) { 3068 ret = 0; 3069 goto command_cleanup; 3070 } 3071 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3072 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3073 for (i = 31; i >= 1; i--) { 3074 __le32 le32 = cpu_to_le32(BIT(i)); 3075 3076 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3077 || (ctrl_ctx->add_flags & le32) || i == 1) { 3078 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3079 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3080 break; 3081 } 3082 } 3083 3084 ret = xhci_configure_endpoint(xhci, udev, command, 3085 false, false); 3086 if (ret) 3087 /* Callee should call reset_bandwidth() */ 3088 goto command_cleanup; 3089 3090 /* Free any rings that were dropped, but not changed. */ 3091 for (i = 1; i < 31; i++) { 3092 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3093 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3094 xhci_free_endpoint_ring(xhci, virt_dev, i); 3095 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3096 } 3097 } 3098 xhci_zero_in_ctx(xhci, virt_dev); 3099 /* 3100 * Install any rings for completely new endpoints or changed endpoints, 3101 * and free any old rings from changed endpoints. 3102 */ 3103 for (i = 1; i < 31; i++) { 3104 if (!virt_dev->eps[i].new_ring) 3105 continue; 3106 /* Only free the old ring if it exists. 3107 * It may not if this is the first add of an endpoint. 3108 */ 3109 if (virt_dev->eps[i].ring) { 3110 xhci_free_endpoint_ring(xhci, virt_dev, i); 3111 } 3112 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3113 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3114 virt_dev->eps[i].new_ring = NULL; 3115 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3116 } 3117 command_cleanup: 3118 kfree(command->completion); 3119 kfree(command); 3120 3121 return ret; 3122 } 3123 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3124 3125 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3126 { 3127 struct xhci_hcd *xhci; 3128 struct xhci_virt_device *virt_dev; 3129 int i, ret; 3130 3131 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3132 if (ret <= 0) 3133 return; 3134 xhci = hcd_to_xhci(hcd); 3135 3136 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3137 virt_dev = xhci->devs[udev->slot_id]; 3138 /* Free any rings allocated for added endpoints */ 3139 for (i = 0; i < 31; i++) { 3140 if (virt_dev->eps[i].new_ring) { 3141 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3142 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3143 virt_dev->eps[i].new_ring = NULL; 3144 } 3145 } 3146 xhci_zero_in_ctx(xhci, virt_dev); 3147 } 3148 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3149 3150 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3151 struct xhci_container_ctx *in_ctx, 3152 struct xhci_container_ctx *out_ctx, 3153 struct xhci_input_control_ctx *ctrl_ctx, 3154 u32 add_flags, u32 drop_flags) 3155 { 3156 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3157 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3158 xhci_slot_copy(xhci, in_ctx, out_ctx); 3159 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3160 } 3161 3162 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3163 struct usb_host_endpoint *host_ep) 3164 { 3165 struct xhci_hcd *xhci; 3166 struct xhci_virt_device *vdev; 3167 struct xhci_virt_ep *ep; 3168 struct usb_device *udev; 3169 unsigned long flags; 3170 unsigned int ep_index; 3171 3172 xhci = hcd_to_xhci(hcd); 3173 rescan: 3174 spin_lock_irqsave(&xhci->lock, flags); 3175 3176 udev = (struct usb_device *)host_ep->hcpriv; 3177 if (!udev || !udev->slot_id) 3178 goto done; 3179 3180 vdev = xhci->devs[udev->slot_id]; 3181 if (!vdev) 3182 goto done; 3183 3184 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3185 ep = &vdev->eps[ep_index]; 3186 3187 /* wait for hub_tt_work to finish clearing hub TT */ 3188 if (ep->ep_state & EP_CLEARING_TT) { 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 schedule_timeout_uninterruptible(1); 3191 goto rescan; 3192 } 3193 3194 if (ep->ep_state) 3195 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3196 ep->ep_state); 3197 done: 3198 host_ep->hcpriv = NULL; 3199 spin_unlock_irqrestore(&xhci->lock, flags); 3200 } 3201 3202 /* 3203 * Called after usb core issues a clear halt control message. 3204 * The host side of the halt should already be cleared by a reset endpoint 3205 * command issued when the STALL event was received. 3206 * 3207 * The reset endpoint command may only be issued to endpoints in the halted 3208 * state. For software that wishes to reset the data toggle or sequence number 3209 * of an endpoint that isn't in the halted state this function will issue a 3210 * configure endpoint command with the Drop and Add bits set for the target 3211 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3212 */ 3213 3214 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3215 struct usb_host_endpoint *host_ep) 3216 { 3217 struct xhci_hcd *xhci; 3218 struct usb_device *udev; 3219 struct xhci_virt_device *vdev; 3220 struct xhci_virt_ep *ep; 3221 struct xhci_input_control_ctx *ctrl_ctx; 3222 struct xhci_command *stop_cmd, *cfg_cmd; 3223 unsigned int ep_index; 3224 unsigned long flags; 3225 u32 ep_flag; 3226 int err; 3227 3228 xhci = hcd_to_xhci(hcd); 3229 if (!host_ep->hcpriv) 3230 return; 3231 udev = (struct usb_device *) host_ep->hcpriv; 3232 vdev = xhci->devs[udev->slot_id]; 3233 3234 /* 3235 * vdev may be lost due to xHC restore error and re-initialization 3236 * during S3/S4 resume. A new vdev will be allocated later by 3237 * xhci_discover_or_reset_device() 3238 */ 3239 if (!udev->slot_id || !vdev) 3240 return; 3241 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3242 ep = &vdev->eps[ep_index]; 3243 3244 /* Bail out if toggle is already being cleared by a endpoint reset */ 3245 spin_lock_irqsave(&xhci->lock, flags); 3246 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3247 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3248 spin_unlock_irqrestore(&xhci->lock, flags); 3249 return; 3250 } 3251 spin_unlock_irqrestore(&xhci->lock, flags); 3252 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3253 if (usb_endpoint_xfer_control(&host_ep->desc) || 3254 usb_endpoint_xfer_isoc(&host_ep->desc)) 3255 return; 3256 3257 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3258 3259 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3260 return; 3261 3262 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3263 if (!stop_cmd) 3264 return; 3265 3266 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3267 if (!cfg_cmd) 3268 goto cleanup; 3269 3270 spin_lock_irqsave(&xhci->lock, flags); 3271 3272 /* block queuing new trbs and ringing ep doorbell */ 3273 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3274 3275 /* 3276 * Make sure endpoint ring is empty before resetting the toggle/seq. 3277 * Driver is required to synchronously cancel all transfer request. 3278 * Stop the endpoint to force xHC to update the output context 3279 */ 3280 3281 if (!list_empty(&ep->ring->td_list)) { 3282 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3283 spin_unlock_irqrestore(&xhci->lock, flags); 3284 xhci_free_command(xhci, cfg_cmd); 3285 goto cleanup; 3286 } 3287 3288 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3289 ep_index, 0); 3290 if (err < 0) { 3291 spin_unlock_irqrestore(&xhci->lock, flags); 3292 xhci_free_command(xhci, cfg_cmd); 3293 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3294 __func__, err); 3295 goto cleanup; 3296 } 3297 3298 xhci_ring_cmd_db(xhci); 3299 spin_unlock_irqrestore(&xhci->lock, flags); 3300 3301 wait_for_completion(stop_cmd->completion); 3302 3303 spin_lock_irqsave(&xhci->lock, flags); 3304 3305 /* config ep command clears toggle if add and drop ep flags are set */ 3306 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3307 if (!ctrl_ctx) { 3308 spin_unlock_irqrestore(&xhci->lock, flags); 3309 xhci_free_command(xhci, cfg_cmd); 3310 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3311 __func__); 3312 goto cleanup; 3313 } 3314 3315 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3316 ctrl_ctx, ep_flag, ep_flag); 3317 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3318 3319 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3320 udev->slot_id, false); 3321 if (err < 0) { 3322 spin_unlock_irqrestore(&xhci->lock, flags); 3323 xhci_free_command(xhci, cfg_cmd); 3324 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3325 __func__, err); 3326 goto cleanup; 3327 } 3328 3329 xhci_ring_cmd_db(xhci); 3330 spin_unlock_irqrestore(&xhci->lock, flags); 3331 3332 wait_for_completion(cfg_cmd->completion); 3333 3334 xhci_free_command(xhci, cfg_cmd); 3335 cleanup: 3336 xhci_free_command(xhci, stop_cmd); 3337 spin_lock_irqsave(&xhci->lock, flags); 3338 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3339 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3340 spin_unlock_irqrestore(&xhci->lock, flags); 3341 } 3342 3343 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3344 struct usb_device *udev, struct usb_host_endpoint *ep, 3345 unsigned int slot_id) 3346 { 3347 int ret; 3348 unsigned int ep_index; 3349 unsigned int ep_state; 3350 3351 if (!ep) 3352 return -EINVAL; 3353 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3354 if (ret <= 0) 3355 return ret ? ret : -EINVAL; 3356 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3357 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3358 " descriptor for ep 0x%x does not support streams\n", 3359 ep->desc.bEndpointAddress); 3360 return -EINVAL; 3361 } 3362 3363 ep_index = xhci_get_endpoint_index(&ep->desc); 3364 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3365 if (ep_state & EP_HAS_STREAMS || 3366 ep_state & EP_GETTING_STREAMS) { 3367 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3368 "already has streams set up.\n", 3369 ep->desc.bEndpointAddress); 3370 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3371 "dynamic stream context array reallocation.\n"); 3372 return -EINVAL; 3373 } 3374 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3375 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3376 "endpoint 0x%x; URBs are pending.\n", 3377 ep->desc.bEndpointAddress); 3378 return -EINVAL; 3379 } 3380 return 0; 3381 } 3382 3383 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3384 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3385 { 3386 unsigned int max_streams; 3387 3388 /* The stream context array size must be a power of two */ 3389 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3390 /* 3391 * Find out how many primary stream array entries the host controller 3392 * supports. Later we may use secondary stream arrays (similar to 2nd 3393 * level page entries), but that's an optional feature for xHCI host 3394 * controllers. xHCs must support at least 4 stream IDs. 3395 */ 3396 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3397 if (*num_stream_ctxs > max_streams) { 3398 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3399 max_streams); 3400 *num_stream_ctxs = max_streams; 3401 *num_streams = max_streams; 3402 } 3403 } 3404 3405 /* Returns an error code if one of the endpoint already has streams. 3406 * This does not change any data structures, it only checks and gathers 3407 * information. 3408 */ 3409 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3410 struct usb_device *udev, 3411 struct usb_host_endpoint **eps, unsigned int num_eps, 3412 unsigned int *num_streams, u32 *changed_ep_bitmask) 3413 { 3414 unsigned int max_streams; 3415 unsigned int endpoint_flag; 3416 int i; 3417 int ret; 3418 3419 for (i = 0; i < num_eps; i++) { 3420 ret = xhci_check_streams_endpoint(xhci, udev, 3421 eps[i], udev->slot_id); 3422 if (ret < 0) 3423 return ret; 3424 3425 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3426 if (max_streams < (*num_streams - 1)) { 3427 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3428 eps[i]->desc.bEndpointAddress, 3429 max_streams); 3430 *num_streams = max_streams+1; 3431 } 3432 3433 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3434 if (*changed_ep_bitmask & endpoint_flag) 3435 return -EINVAL; 3436 *changed_ep_bitmask |= endpoint_flag; 3437 } 3438 return 0; 3439 } 3440 3441 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3442 struct usb_device *udev, 3443 struct usb_host_endpoint **eps, unsigned int num_eps) 3444 { 3445 u32 changed_ep_bitmask = 0; 3446 unsigned int slot_id; 3447 unsigned int ep_index; 3448 unsigned int ep_state; 3449 int i; 3450 3451 slot_id = udev->slot_id; 3452 if (!xhci->devs[slot_id]) 3453 return 0; 3454 3455 for (i = 0; i < num_eps; i++) { 3456 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3457 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3458 /* Are streams already being freed for the endpoint? */ 3459 if (ep_state & EP_GETTING_NO_STREAMS) { 3460 xhci_warn(xhci, "WARN Can't disable streams for " 3461 "endpoint 0x%x, " 3462 "streams are being disabled already\n", 3463 eps[i]->desc.bEndpointAddress); 3464 return 0; 3465 } 3466 /* Are there actually any streams to free? */ 3467 if (!(ep_state & EP_HAS_STREAMS) && 3468 !(ep_state & EP_GETTING_STREAMS)) { 3469 xhci_warn(xhci, "WARN Can't disable streams for " 3470 "endpoint 0x%x, " 3471 "streams are already disabled!\n", 3472 eps[i]->desc.bEndpointAddress); 3473 xhci_warn(xhci, "WARN xhci_free_streams() called " 3474 "with non-streams endpoint\n"); 3475 return 0; 3476 } 3477 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3478 } 3479 return changed_ep_bitmask; 3480 } 3481 3482 /* 3483 * The USB device drivers use this function (through the HCD interface in USB 3484 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3485 * coordinate mass storage command queueing across multiple endpoints (basically 3486 * a stream ID == a task ID). 3487 * 3488 * Setting up streams involves allocating the same size stream context array 3489 * for each endpoint and issuing a configure endpoint command for all endpoints. 3490 * 3491 * Don't allow the call to succeed if one endpoint only supports one stream 3492 * (which means it doesn't support streams at all). 3493 * 3494 * Drivers may get less stream IDs than they asked for, if the host controller 3495 * hardware or endpoints claim they can't support the number of requested 3496 * stream IDs. 3497 */ 3498 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3499 struct usb_host_endpoint **eps, unsigned int num_eps, 3500 unsigned int num_streams, gfp_t mem_flags) 3501 { 3502 int i, ret; 3503 struct xhci_hcd *xhci; 3504 struct xhci_virt_device *vdev; 3505 struct xhci_command *config_cmd; 3506 struct xhci_input_control_ctx *ctrl_ctx; 3507 unsigned int ep_index; 3508 unsigned int num_stream_ctxs; 3509 unsigned int max_packet; 3510 unsigned long flags; 3511 u32 changed_ep_bitmask = 0; 3512 3513 if (!eps) 3514 return -EINVAL; 3515 3516 /* Add one to the number of streams requested to account for 3517 * stream 0 that is reserved for xHCI usage. 3518 */ 3519 num_streams += 1; 3520 xhci = hcd_to_xhci(hcd); 3521 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3522 num_streams); 3523 3524 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3525 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3526 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3527 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3528 return -ENOSYS; 3529 } 3530 3531 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3532 if (!config_cmd) 3533 return -ENOMEM; 3534 3535 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3536 if (!ctrl_ctx) { 3537 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3538 __func__); 3539 xhci_free_command(xhci, config_cmd); 3540 return -ENOMEM; 3541 } 3542 3543 /* Check to make sure all endpoints are not already configured for 3544 * streams. While we're at it, find the maximum number of streams that 3545 * all the endpoints will support and check for duplicate endpoints. 3546 */ 3547 spin_lock_irqsave(&xhci->lock, flags); 3548 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3549 num_eps, &num_streams, &changed_ep_bitmask); 3550 if (ret < 0) { 3551 xhci_free_command(xhci, config_cmd); 3552 spin_unlock_irqrestore(&xhci->lock, flags); 3553 return ret; 3554 } 3555 if (num_streams <= 1) { 3556 xhci_warn(xhci, "WARN: endpoints can't handle " 3557 "more than one stream.\n"); 3558 xhci_free_command(xhci, config_cmd); 3559 spin_unlock_irqrestore(&xhci->lock, flags); 3560 return -EINVAL; 3561 } 3562 vdev = xhci->devs[udev->slot_id]; 3563 /* Mark each endpoint as being in transition, so 3564 * xhci_urb_enqueue() will reject all URBs. 3565 */ 3566 for (i = 0; i < num_eps; i++) { 3567 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3568 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3569 } 3570 spin_unlock_irqrestore(&xhci->lock, flags); 3571 3572 /* Setup internal data structures and allocate HW data structures for 3573 * streams (but don't install the HW structures in the input context 3574 * until we're sure all memory allocation succeeded). 3575 */ 3576 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3577 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3578 num_stream_ctxs, num_streams); 3579 3580 for (i = 0; i < num_eps; i++) { 3581 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3582 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3583 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3584 num_stream_ctxs, 3585 num_streams, 3586 max_packet, mem_flags); 3587 if (!vdev->eps[ep_index].stream_info) 3588 goto cleanup; 3589 /* Set maxPstreams in endpoint context and update deq ptr to 3590 * point to stream context array. FIXME 3591 */ 3592 } 3593 3594 /* Set up the input context for a configure endpoint command. */ 3595 for (i = 0; i < num_eps; i++) { 3596 struct xhci_ep_ctx *ep_ctx; 3597 3598 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3599 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3600 3601 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3602 vdev->out_ctx, ep_index); 3603 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3604 vdev->eps[ep_index].stream_info); 3605 } 3606 /* Tell the HW to drop its old copy of the endpoint context info 3607 * and add the updated copy from the input context. 3608 */ 3609 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3610 vdev->out_ctx, ctrl_ctx, 3611 changed_ep_bitmask, changed_ep_bitmask); 3612 3613 /* Issue and wait for the configure endpoint command */ 3614 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3615 false, false); 3616 3617 /* xHC rejected the configure endpoint command for some reason, so we 3618 * leave the old ring intact and free our internal streams data 3619 * structure. 3620 */ 3621 if (ret < 0) 3622 goto cleanup; 3623 3624 spin_lock_irqsave(&xhci->lock, flags); 3625 for (i = 0; i < num_eps; i++) { 3626 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3627 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3628 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3629 udev->slot_id, ep_index); 3630 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3631 } 3632 xhci_free_command(xhci, config_cmd); 3633 spin_unlock_irqrestore(&xhci->lock, flags); 3634 3635 for (i = 0; i < num_eps; i++) { 3636 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3637 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3638 } 3639 /* Subtract 1 for stream 0, which drivers can't use */ 3640 return num_streams - 1; 3641 3642 cleanup: 3643 /* If it didn't work, free the streams! */ 3644 for (i = 0; i < num_eps; i++) { 3645 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3646 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3647 vdev->eps[ep_index].stream_info = NULL; 3648 /* FIXME Unset maxPstreams in endpoint context and 3649 * update deq ptr to point to normal string ring. 3650 */ 3651 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3652 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3653 xhci_endpoint_zero(xhci, vdev, eps[i]); 3654 } 3655 xhci_free_command(xhci, config_cmd); 3656 return -ENOMEM; 3657 } 3658 3659 /* Transition the endpoint from using streams to being a "normal" endpoint 3660 * without streams. 3661 * 3662 * Modify the endpoint context state, submit a configure endpoint command, 3663 * and free all endpoint rings for streams if that completes successfully. 3664 */ 3665 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3666 struct usb_host_endpoint **eps, unsigned int num_eps, 3667 gfp_t mem_flags) 3668 { 3669 int i, ret; 3670 struct xhci_hcd *xhci; 3671 struct xhci_virt_device *vdev; 3672 struct xhci_command *command; 3673 struct xhci_input_control_ctx *ctrl_ctx; 3674 unsigned int ep_index; 3675 unsigned long flags; 3676 u32 changed_ep_bitmask; 3677 3678 xhci = hcd_to_xhci(hcd); 3679 vdev = xhci->devs[udev->slot_id]; 3680 3681 /* Set up a configure endpoint command to remove the streams rings */ 3682 spin_lock_irqsave(&xhci->lock, flags); 3683 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3684 udev, eps, num_eps); 3685 if (changed_ep_bitmask == 0) { 3686 spin_unlock_irqrestore(&xhci->lock, flags); 3687 return -EINVAL; 3688 } 3689 3690 /* Use the xhci_command structure from the first endpoint. We may have 3691 * allocated too many, but the driver may call xhci_free_streams() for 3692 * each endpoint it grouped into one call to xhci_alloc_streams(). 3693 */ 3694 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3695 command = vdev->eps[ep_index].stream_info->free_streams_command; 3696 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3697 if (!ctrl_ctx) { 3698 spin_unlock_irqrestore(&xhci->lock, flags); 3699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3700 __func__); 3701 return -EINVAL; 3702 } 3703 3704 for (i = 0; i < num_eps; i++) { 3705 struct xhci_ep_ctx *ep_ctx; 3706 3707 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3708 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3709 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3710 EP_GETTING_NO_STREAMS; 3711 3712 xhci_endpoint_copy(xhci, command->in_ctx, 3713 vdev->out_ctx, ep_index); 3714 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3715 &vdev->eps[ep_index]); 3716 } 3717 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3718 vdev->out_ctx, ctrl_ctx, 3719 changed_ep_bitmask, changed_ep_bitmask); 3720 spin_unlock_irqrestore(&xhci->lock, flags); 3721 3722 /* Issue and wait for the configure endpoint command, 3723 * which must succeed. 3724 */ 3725 ret = xhci_configure_endpoint(xhci, udev, command, 3726 false, true); 3727 3728 /* xHC rejected the configure endpoint command for some reason, so we 3729 * leave the streams rings intact. 3730 */ 3731 if (ret < 0) 3732 return ret; 3733 3734 spin_lock_irqsave(&xhci->lock, flags); 3735 for (i = 0; i < num_eps; i++) { 3736 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3737 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3738 vdev->eps[ep_index].stream_info = NULL; 3739 /* FIXME Unset maxPstreams in endpoint context and 3740 * update deq ptr to point to normal string ring. 3741 */ 3742 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3743 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3744 } 3745 spin_unlock_irqrestore(&xhci->lock, flags); 3746 3747 return 0; 3748 } 3749 3750 /* 3751 * Deletes endpoint resources for endpoints that were active before a Reset 3752 * Device command, or a Disable Slot command. The Reset Device command leaves 3753 * the control endpoint intact, whereas the Disable Slot command deletes it. 3754 * 3755 * Must be called with xhci->lock held. 3756 */ 3757 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3758 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3759 { 3760 int i; 3761 unsigned int num_dropped_eps = 0; 3762 unsigned int drop_flags = 0; 3763 3764 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3765 if (virt_dev->eps[i].ring) { 3766 drop_flags |= 1 << i; 3767 num_dropped_eps++; 3768 } 3769 } 3770 xhci->num_active_eps -= num_dropped_eps; 3771 if (num_dropped_eps) 3772 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3773 "Dropped %u ep ctxs, flags = 0x%x, " 3774 "%u now active.", 3775 num_dropped_eps, drop_flags, 3776 xhci->num_active_eps); 3777 } 3778 3779 /* 3780 * This submits a Reset Device Command, which will set the device state to 0, 3781 * set the device address to 0, and disable all the endpoints except the default 3782 * control endpoint. The USB core should come back and call 3783 * xhci_address_device(), and then re-set up the configuration. If this is 3784 * called because of a usb_reset_and_verify_device(), then the old alternate 3785 * settings will be re-installed through the normal bandwidth allocation 3786 * functions. 3787 * 3788 * Wait for the Reset Device command to finish. Remove all structures 3789 * associated with the endpoints that were disabled. Clear the input device 3790 * structure? Reset the control endpoint 0 max packet size? 3791 * 3792 * If the virt_dev to be reset does not exist or does not match the udev, 3793 * it means the device is lost, possibly due to the xHC restore error and 3794 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3795 * re-allocate the device. 3796 */ 3797 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3798 struct usb_device *udev) 3799 { 3800 int ret, i; 3801 unsigned long flags; 3802 struct xhci_hcd *xhci; 3803 unsigned int slot_id; 3804 struct xhci_virt_device *virt_dev; 3805 struct xhci_command *reset_device_cmd; 3806 struct xhci_slot_ctx *slot_ctx; 3807 int old_active_eps = 0; 3808 3809 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3810 if (ret <= 0) 3811 return ret; 3812 xhci = hcd_to_xhci(hcd); 3813 slot_id = udev->slot_id; 3814 virt_dev = xhci->devs[slot_id]; 3815 if (!virt_dev) { 3816 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3817 "not exist. Re-allocate the device\n", slot_id); 3818 ret = xhci_alloc_dev(hcd, udev); 3819 if (ret == 1) 3820 return 0; 3821 else 3822 return -EINVAL; 3823 } 3824 3825 if (virt_dev->tt_info) 3826 old_active_eps = virt_dev->tt_info->active_eps; 3827 3828 if (virt_dev->udev != udev) { 3829 /* If the virt_dev and the udev does not match, this virt_dev 3830 * may belong to another udev. 3831 * Re-allocate the device. 3832 */ 3833 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3834 "not match the udev. Re-allocate the device\n", 3835 slot_id); 3836 ret = xhci_alloc_dev(hcd, udev); 3837 if (ret == 1) 3838 return 0; 3839 else 3840 return -EINVAL; 3841 } 3842 3843 /* If device is not setup, there is no point in resetting it */ 3844 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3845 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3846 SLOT_STATE_DISABLED) 3847 return 0; 3848 3849 trace_xhci_discover_or_reset_device(slot_ctx); 3850 3851 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3852 /* Allocate the command structure that holds the struct completion. 3853 * Assume we're in process context, since the normal device reset 3854 * process has to wait for the device anyway. Storage devices are 3855 * reset as part of error handling, so use GFP_NOIO instead of 3856 * GFP_KERNEL. 3857 */ 3858 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3859 if (!reset_device_cmd) { 3860 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3861 return -ENOMEM; 3862 } 3863 3864 /* Attempt to submit the Reset Device command to the command ring */ 3865 spin_lock_irqsave(&xhci->lock, flags); 3866 3867 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3868 if (ret) { 3869 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3870 spin_unlock_irqrestore(&xhci->lock, flags); 3871 goto command_cleanup; 3872 } 3873 xhci_ring_cmd_db(xhci); 3874 spin_unlock_irqrestore(&xhci->lock, flags); 3875 3876 /* Wait for the Reset Device command to finish */ 3877 wait_for_completion(reset_device_cmd->completion); 3878 3879 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3880 * unless we tried to reset a slot ID that wasn't enabled, 3881 * or the device wasn't in the addressed or configured state. 3882 */ 3883 ret = reset_device_cmd->status; 3884 switch (ret) { 3885 case COMP_COMMAND_ABORTED: 3886 case COMP_COMMAND_RING_STOPPED: 3887 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3888 ret = -ETIME; 3889 goto command_cleanup; 3890 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3891 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3892 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3893 slot_id, 3894 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3895 xhci_dbg(xhci, "Not freeing device rings.\n"); 3896 /* Don't treat this as an error. May change my mind later. */ 3897 ret = 0; 3898 goto command_cleanup; 3899 case COMP_SUCCESS: 3900 xhci_dbg(xhci, "Successful reset device command.\n"); 3901 break; 3902 default: 3903 if (xhci_is_vendor_info_code(xhci, ret)) 3904 break; 3905 xhci_warn(xhci, "Unknown completion code %u for " 3906 "reset device command.\n", ret); 3907 ret = -EINVAL; 3908 goto command_cleanup; 3909 } 3910 3911 /* Free up host controller endpoint resources */ 3912 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3913 spin_lock_irqsave(&xhci->lock, flags); 3914 /* Don't delete the default control endpoint resources */ 3915 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3916 spin_unlock_irqrestore(&xhci->lock, flags); 3917 } 3918 3919 /* Everything but endpoint 0 is disabled, so free the rings. */ 3920 for (i = 1; i < 31; i++) { 3921 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3922 3923 if (ep->ep_state & EP_HAS_STREAMS) { 3924 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3925 xhci_get_endpoint_address(i)); 3926 xhci_free_stream_info(xhci, ep->stream_info); 3927 ep->stream_info = NULL; 3928 ep->ep_state &= ~EP_HAS_STREAMS; 3929 } 3930 3931 if (ep->ring) { 3932 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3933 xhci_free_endpoint_ring(xhci, virt_dev, i); 3934 } 3935 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3936 xhci_drop_ep_from_interval_table(xhci, 3937 &virt_dev->eps[i].bw_info, 3938 virt_dev->bw_table, 3939 udev, 3940 &virt_dev->eps[i], 3941 virt_dev->tt_info); 3942 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3943 } 3944 /* If necessary, update the number of active TTs on this root port */ 3945 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3946 virt_dev->flags = 0; 3947 ret = 0; 3948 3949 command_cleanup: 3950 xhci_free_command(xhci, reset_device_cmd); 3951 return ret; 3952 } 3953 3954 /* 3955 * At this point, the struct usb_device is about to go away, the device has 3956 * disconnected, and all traffic has been stopped and the endpoints have been 3957 * disabled. Free any HC data structures associated with that device. 3958 */ 3959 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3960 { 3961 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3962 struct xhci_virt_device *virt_dev; 3963 struct xhci_slot_ctx *slot_ctx; 3964 int i, ret; 3965 3966 /* 3967 * We called pm_runtime_get_noresume when the device was attached. 3968 * Decrement the counter here to allow controller to runtime suspend 3969 * if no devices remain. 3970 */ 3971 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3972 pm_runtime_put_noidle(hcd->self.controller); 3973 3974 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3975 /* If the host is halted due to driver unload, we still need to free the 3976 * device. 3977 */ 3978 if (ret <= 0 && ret != -ENODEV) 3979 return; 3980 3981 virt_dev = xhci->devs[udev->slot_id]; 3982 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3983 trace_xhci_free_dev(slot_ctx); 3984 3985 /* Stop any wayward timer functions (which may grab the lock) */ 3986 for (i = 0; i < 31; i++) 3987 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3988 virt_dev->udev = NULL; 3989 xhci_disable_slot(xhci, udev->slot_id); 3990 xhci_free_virt_device(xhci, udev->slot_id); 3991 } 3992 3993 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3994 { 3995 struct xhci_command *command; 3996 unsigned long flags; 3997 u32 state; 3998 int ret; 3999 4000 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4001 if (!command) 4002 return -ENOMEM; 4003 4004 xhci_debugfs_remove_slot(xhci, slot_id); 4005 4006 spin_lock_irqsave(&xhci->lock, flags); 4007 /* Don't disable the slot if the host controller is dead. */ 4008 state = readl(&xhci->op_regs->status); 4009 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4010 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4011 spin_unlock_irqrestore(&xhci->lock, flags); 4012 kfree(command); 4013 return -ENODEV; 4014 } 4015 4016 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4017 slot_id); 4018 if (ret) { 4019 spin_unlock_irqrestore(&xhci->lock, flags); 4020 kfree(command); 4021 return ret; 4022 } 4023 xhci_ring_cmd_db(xhci); 4024 spin_unlock_irqrestore(&xhci->lock, flags); 4025 4026 wait_for_completion(command->completion); 4027 4028 if (command->status != COMP_SUCCESS) 4029 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4030 slot_id, command->status); 4031 4032 xhci_free_command(xhci, command); 4033 4034 return 0; 4035 } 4036 4037 /* 4038 * Checks if we have enough host controller resources for the default control 4039 * endpoint. 4040 * 4041 * Must be called with xhci->lock held. 4042 */ 4043 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4044 { 4045 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4046 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4047 "Not enough ep ctxs: " 4048 "%u active, need to add 1, limit is %u.", 4049 xhci->num_active_eps, xhci->limit_active_eps); 4050 return -ENOMEM; 4051 } 4052 xhci->num_active_eps += 1; 4053 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4054 "Adding 1 ep ctx, %u now active.", 4055 xhci->num_active_eps); 4056 return 0; 4057 } 4058 4059 4060 /* 4061 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4062 * timed out, or allocating memory failed. Returns 1 on success. 4063 */ 4064 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4065 { 4066 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4067 struct xhci_virt_device *vdev; 4068 struct xhci_slot_ctx *slot_ctx; 4069 unsigned long flags; 4070 int ret, slot_id; 4071 struct xhci_command *command; 4072 4073 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4074 if (!command) 4075 return 0; 4076 4077 spin_lock_irqsave(&xhci->lock, flags); 4078 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4079 if (ret) { 4080 spin_unlock_irqrestore(&xhci->lock, flags); 4081 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4082 xhci_free_command(xhci, command); 4083 return 0; 4084 } 4085 xhci_ring_cmd_db(xhci); 4086 spin_unlock_irqrestore(&xhci->lock, flags); 4087 4088 wait_for_completion(command->completion); 4089 slot_id = command->slot_id; 4090 4091 if (!slot_id || command->status != COMP_SUCCESS) { 4092 xhci_err(xhci, "Error while assigning device slot ID\n"); 4093 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4094 HCS_MAX_SLOTS( 4095 readl(&xhci->cap_regs->hcs_params1))); 4096 xhci_free_command(xhci, command); 4097 return 0; 4098 } 4099 4100 xhci_free_command(xhci, command); 4101 4102 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4103 spin_lock_irqsave(&xhci->lock, flags); 4104 ret = xhci_reserve_host_control_ep_resources(xhci); 4105 if (ret) { 4106 spin_unlock_irqrestore(&xhci->lock, flags); 4107 xhci_warn(xhci, "Not enough host resources, " 4108 "active endpoint contexts = %u\n", 4109 xhci->num_active_eps); 4110 goto disable_slot; 4111 } 4112 spin_unlock_irqrestore(&xhci->lock, flags); 4113 } 4114 /* Use GFP_NOIO, since this function can be called from 4115 * xhci_discover_or_reset_device(), which may be called as part of 4116 * mass storage driver error handling. 4117 */ 4118 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4119 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4120 goto disable_slot; 4121 } 4122 vdev = xhci->devs[slot_id]; 4123 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4124 trace_xhci_alloc_dev(slot_ctx); 4125 4126 udev->slot_id = slot_id; 4127 4128 xhci_debugfs_create_slot(xhci, slot_id); 4129 4130 /* 4131 * If resetting upon resume, we can't put the controller into runtime 4132 * suspend if there is a device attached. 4133 */ 4134 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4135 pm_runtime_get_noresume(hcd->self.controller); 4136 4137 /* Is this a LS or FS device under a HS hub? */ 4138 /* Hub or peripherial? */ 4139 return 1; 4140 4141 disable_slot: 4142 xhci_disable_slot(xhci, udev->slot_id); 4143 xhci_free_virt_device(xhci, udev->slot_id); 4144 4145 return 0; 4146 } 4147 4148 /* 4149 * Issue an Address Device command and optionally send a corresponding 4150 * SetAddress request to the device. 4151 */ 4152 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4153 enum xhci_setup_dev setup) 4154 { 4155 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4156 unsigned long flags; 4157 struct xhci_virt_device *virt_dev; 4158 int ret = 0; 4159 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4160 struct xhci_slot_ctx *slot_ctx; 4161 struct xhci_input_control_ctx *ctrl_ctx; 4162 u64 temp_64; 4163 struct xhci_command *command = NULL; 4164 4165 mutex_lock(&xhci->mutex); 4166 4167 if (xhci->xhc_state) { /* dying, removing or halted */ 4168 ret = -ESHUTDOWN; 4169 goto out; 4170 } 4171 4172 if (!udev->slot_id) { 4173 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4174 "Bad Slot ID %d", udev->slot_id); 4175 ret = -EINVAL; 4176 goto out; 4177 } 4178 4179 virt_dev = xhci->devs[udev->slot_id]; 4180 4181 if (WARN_ON(!virt_dev)) { 4182 /* 4183 * In plug/unplug torture test with an NEC controller, 4184 * a zero-dereference was observed once due to virt_dev = 0. 4185 * Print useful debug rather than crash if it is observed again! 4186 */ 4187 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4188 udev->slot_id); 4189 ret = -EINVAL; 4190 goto out; 4191 } 4192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4193 trace_xhci_setup_device_slot(slot_ctx); 4194 4195 if (setup == SETUP_CONTEXT_ONLY) { 4196 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4197 SLOT_STATE_DEFAULT) { 4198 xhci_dbg(xhci, "Slot already in default state\n"); 4199 goto out; 4200 } 4201 } 4202 4203 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4204 if (!command) { 4205 ret = -ENOMEM; 4206 goto out; 4207 } 4208 4209 command->in_ctx = virt_dev->in_ctx; 4210 4211 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4212 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4213 if (!ctrl_ctx) { 4214 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4215 __func__); 4216 ret = -EINVAL; 4217 goto out; 4218 } 4219 /* 4220 * If this is the first Set Address since device plug-in or 4221 * virt_device realloaction after a resume with an xHCI power loss, 4222 * then set up the slot context. 4223 */ 4224 if (!slot_ctx->dev_info) 4225 xhci_setup_addressable_virt_dev(xhci, udev); 4226 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4227 else 4228 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4229 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4230 ctrl_ctx->drop_flags = 0; 4231 4232 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4233 le32_to_cpu(slot_ctx->dev_info) >> 27); 4234 4235 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4236 spin_lock_irqsave(&xhci->lock, flags); 4237 trace_xhci_setup_device(virt_dev); 4238 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4239 udev->slot_id, setup); 4240 if (ret) { 4241 spin_unlock_irqrestore(&xhci->lock, flags); 4242 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4243 "FIXME: allocate a command ring segment"); 4244 goto out; 4245 } 4246 xhci_ring_cmd_db(xhci); 4247 spin_unlock_irqrestore(&xhci->lock, flags); 4248 4249 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4250 wait_for_completion(command->completion); 4251 4252 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4253 * the SetAddress() "recovery interval" required by USB and aborting the 4254 * command on a timeout. 4255 */ 4256 switch (command->status) { 4257 case COMP_COMMAND_ABORTED: 4258 case COMP_COMMAND_RING_STOPPED: 4259 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4260 ret = -ETIME; 4261 break; 4262 case COMP_CONTEXT_STATE_ERROR: 4263 case COMP_SLOT_NOT_ENABLED_ERROR: 4264 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4265 act, udev->slot_id); 4266 ret = -EINVAL; 4267 break; 4268 case COMP_USB_TRANSACTION_ERROR: 4269 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4270 4271 mutex_unlock(&xhci->mutex); 4272 ret = xhci_disable_slot(xhci, udev->slot_id); 4273 xhci_free_virt_device(xhci, udev->slot_id); 4274 if (!ret) 4275 xhci_alloc_dev(hcd, udev); 4276 kfree(command->completion); 4277 kfree(command); 4278 return -EPROTO; 4279 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4280 dev_warn(&udev->dev, 4281 "ERROR: Incompatible device for setup %s command\n", act); 4282 ret = -ENODEV; 4283 break; 4284 case COMP_SUCCESS: 4285 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4286 "Successful setup %s command", act); 4287 break; 4288 default: 4289 xhci_err(xhci, 4290 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4291 act, command->status); 4292 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4293 ret = -EINVAL; 4294 break; 4295 } 4296 if (ret) 4297 goto out; 4298 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4299 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4300 "Op regs DCBAA ptr = %#016llx", temp_64); 4301 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4302 "Slot ID %d dcbaa entry @%p = %#016llx", 4303 udev->slot_id, 4304 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4305 (unsigned long long) 4306 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4308 "Output Context DMA address = %#08llx", 4309 (unsigned long long)virt_dev->out_ctx->dma); 4310 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4311 le32_to_cpu(slot_ctx->dev_info) >> 27); 4312 /* 4313 * USB core uses address 1 for the roothubs, so we add one to the 4314 * address given back to us by the HC. 4315 */ 4316 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4317 le32_to_cpu(slot_ctx->dev_info) >> 27); 4318 /* Zero the input context control for later use */ 4319 ctrl_ctx->add_flags = 0; 4320 ctrl_ctx->drop_flags = 0; 4321 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4322 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4323 4324 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4325 "Internal device address = %d", 4326 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4327 out: 4328 mutex_unlock(&xhci->mutex); 4329 if (command) { 4330 kfree(command->completion); 4331 kfree(command); 4332 } 4333 return ret; 4334 } 4335 4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4337 { 4338 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4339 } 4340 4341 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4342 { 4343 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4344 } 4345 4346 /* 4347 * Transfer the port index into real index in the HW port status 4348 * registers. Caculate offset between the port's PORTSC register 4349 * and port status base. Divide the number of per port register 4350 * to get the real index. The raw port number bases 1. 4351 */ 4352 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4353 { 4354 struct xhci_hub *rhub; 4355 4356 rhub = xhci_get_rhub(hcd); 4357 return rhub->ports[port1 - 1]->hw_portnum + 1; 4358 } 4359 4360 /* 4361 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4362 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4363 */ 4364 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4365 struct usb_device *udev, u16 max_exit_latency) 4366 { 4367 struct xhci_virt_device *virt_dev; 4368 struct xhci_command *command; 4369 struct xhci_input_control_ctx *ctrl_ctx; 4370 struct xhci_slot_ctx *slot_ctx; 4371 unsigned long flags; 4372 int ret; 4373 4374 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4375 if (!command) 4376 return -ENOMEM; 4377 4378 spin_lock_irqsave(&xhci->lock, flags); 4379 4380 virt_dev = xhci->devs[udev->slot_id]; 4381 4382 /* 4383 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4384 * xHC was re-initialized. Exit latency will be set later after 4385 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4386 */ 4387 4388 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4389 spin_unlock_irqrestore(&xhci->lock, flags); 4390 return 0; 4391 } 4392 4393 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4394 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4395 if (!ctrl_ctx) { 4396 spin_unlock_irqrestore(&xhci->lock, flags); 4397 xhci_free_command(xhci, command); 4398 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4399 __func__); 4400 return -ENOMEM; 4401 } 4402 4403 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 4406 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4407 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4408 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4409 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4410 slot_ctx->dev_state = 0; 4411 4412 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4413 "Set up evaluate context for LPM MEL change."); 4414 4415 /* Issue and wait for the evaluate context command. */ 4416 ret = xhci_configure_endpoint(xhci, udev, command, 4417 true, true); 4418 4419 if (!ret) { 4420 spin_lock_irqsave(&xhci->lock, flags); 4421 virt_dev->current_mel = max_exit_latency; 4422 spin_unlock_irqrestore(&xhci->lock, flags); 4423 } 4424 4425 xhci_free_command(xhci, command); 4426 4427 return ret; 4428 } 4429 4430 #ifdef CONFIG_PM 4431 4432 /* BESL to HIRD Encoding array for USB2 LPM */ 4433 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4434 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4435 4436 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4437 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4438 struct usb_device *udev) 4439 { 4440 int u2del, besl, besl_host; 4441 int besl_device = 0; 4442 u32 field; 4443 4444 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4445 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4446 4447 if (field & USB_BESL_SUPPORT) { 4448 for (besl_host = 0; besl_host < 16; besl_host++) { 4449 if (xhci_besl_encoding[besl_host] >= u2del) 4450 break; 4451 } 4452 /* Use baseline BESL value as default */ 4453 if (field & USB_BESL_BASELINE_VALID) 4454 besl_device = USB_GET_BESL_BASELINE(field); 4455 else if (field & USB_BESL_DEEP_VALID) 4456 besl_device = USB_GET_BESL_DEEP(field); 4457 } else { 4458 if (u2del <= 50) 4459 besl_host = 0; 4460 else 4461 besl_host = (u2del - 51) / 75 + 1; 4462 } 4463 4464 besl = besl_host + besl_device; 4465 if (besl > 15) 4466 besl = 15; 4467 4468 return besl; 4469 } 4470 4471 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4472 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4473 { 4474 u32 field; 4475 int l1; 4476 int besld = 0; 4477 int hirdm = 0; 4478 4479 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4480 4481 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4482 l1 = udev->l1_params.timeout / 256; 4483 4484 /* device has preferred BESLD */ 4485 if (field & USB_BESL_DEEP_VALID) { 4486 besld = USB_GET_BESL_DEEP(field); 4487 hirdm = 1; 4488 } 4489 4490 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4491 } 4492 4493 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4494 struct usb_device *udev, int enable) 4495 { 4496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4497 struct xhci_port **ports; 4498 __le32 __iomem *pm_addr, *hlpm_addr; 4499 u32 pm_val, hlpm_val, field; 4500 unsigned int port_num; 4501 unsigned long flags; 4502 int hird, exit_latency; 4503 int ret; 4504 4505 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4506 return -EPERM; 4507 4508 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4509 !udev->lpm_capable) 4510 return -EPERM; 4511 4512 if (!udev->parent || udev->parent->parent || 4513 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4514 return -EPERM; 4515 4516 if (udev->usb2_hw_lpm_capable != 1) 4517 return -EPERM; 4518 4519 spin_lock_irqsave(&xhci->lock, flags); 4520 4521 ports = xhci->usb2_rhub.ports; 4522 port_num = udev->portnum - 1; 4523 pm_addr = ports[port_num]->addr + PORTPMSC; 4524 pm_val = readl(pm_addr); 4525 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4526 4527 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4528 enable ? "enable" : "disable", port_num + 1); 4529 4530 if (enable) { 4531 /* Host supports BESL timeout instead of HIRD */ 4532 if (udev->usb2_hw_lpm_besl_capable) { 4533 /* if device doesn't have a preferred BESL value use a 4534 * default one which works with mixed HIRD and BESL 4535 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4536 */ 4537 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4538 if ((field & USB_BESL_SUPPORT) && 4539 (field & USB_BESL_BASELINE_VALID)) 4540 hird = USB_GET_BESL_BASELINE(field); 4541 else 4542 hird = udev->l1_params.besl; 4543 4544 exit_latency = xhci_besl_encoding[hird]; 4545 spin_unlock_irqrestore(&xhci->lock, flags); 4546 4547 ret = xhci_change_max_exit_latency(xhci, udev, 4548 exit_latency); 4549 if (ret < 0) 4550 return ret; 4551 spin_lock_irqsave(&xhci->lock, flags); 4552 4553 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4554 writel(hlpm_val, hlpm_addr); 4555 /* flush write */ 4556 readl(hlpm_addr); 4557 } else { 4558 hird = xhci_calculate_hird_besl(xhci, udev); 4559 } 4560 4561 pm_val &= ~PORT_HIRD_MASK; 4562 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4563 writel(pm_val, pm_addr); 4564 pm_val = readl(pm_addr); 4565 pm_val |= PORT_HLE; 4566 writel(pm_val, pm_addr); 4567 /* flush write */ 4568 readl(pm_addr); 4569 } else { 4570 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4571 writel(pm_val, pm_addr); 4572 /* flush write */ 4573 readl(pm_addr); 4574 if (udev->usb2_hw_lpm_besl_capable) { 4575 spin_unlock_irqrestore(&xhci->lock, flags); 4576 xhci_change_max_exit_latency(xhci, udev, 0); 4577 readl_poll_timeout(ports[port_num]->addr, pm_val, 4578 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4579 100, 10000); 4580 return 0; 4581 } 4582 } 4583 4584 spin_unlock_irqrestore(&xhci->lock, flags); 4585 return 0; 4586 } 4587 4588 /* check if a usb2 port supports a given extened capability protocol 4589 * only USB2 ports extended protocol capability values are cached. 4590 * Return 1 if capability is supported 4591 */ 4592 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4593 unsigned capability) 4594 { 4595 u32 port_offset, port_count; 4596 int i; 4597 4598 for (i = 0; i < xhci->num_ext_caps; i++) { 4599 if (xhci->ext_caps[i] & capability) { 4600 /* port offsets starts at 1 */ 4601 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4602 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4603 if (port >= port_offset && 4604 port < port_offset + port_count) 4605 return 1; 4606 } 4607 } 4608 return 0; 4609 } 4610 4611 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4612 { 4613 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4614 int portnum = udev->portnum - 1; 4615 4616 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4617 return 0; 4618 4619 /* we only support lpm for non-hub device connected to root hub yet */ 4620 if (!udev->parent || udev->parent->parent || 4621 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4622 return 0; 4623 4624 if (xhci->hw_lpm_support == 1 && 4625 xhci_check_usb2_port_capability( 4626 xhci, portnum, XHCI_HLC)) { 4627 udev->usb2_hw_lpm_capable = 1; 4628 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4629 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4630 if (xhci_check_usb2_port_capability(xhci, portnum, 4631 XHCI_BLC)) 4632 udev->usb2_hw_lpm_besl_capable = 1; 4633 } 4634 4635 return 0; 4636 } 4637 4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4639 4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4641 static unsigned long long xhci_service_interval_to_ns( 4642 struct usb_endpoint_descriptor *desc) 4643 { 4644 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4645 } 4646 4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4648 enum usb3_link_state state) 4649 { 4650 unsigned long long sel; 4651 unsigned long long pel; 4652 unsigned int max_sel_pel; 4653 char *state_name; 4654 4655 switch (state) { 4656 case USB3_LPM_U1: 4657 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4658 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4659 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4660 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4661 state_name = "U1"; 4662 break; 4663 case USB3_LPM_U2: 4664 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4665 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4666 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4667 state_name = "U2"; 4668 break; 4669 default: 4670 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4671 __func__); 4672 return USB3_LPM_DISABLED; 4673 } 4674 4675 if (sel <= max_sel_pel && pel <= max_sel_pel) 4676 return USB3_LPM_DEVICE_INITIATED; 4677 4678 if (sel > max_sel_pel) 4679 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4680 "due to long SEL %llu ms\n", 4681 state_name, sel); 4682 else 4683 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4684 "due to long PEL %llu ms\n", 4685 state_name, pel); 4686 return USB3_LPM_DISABLED; 4687 } 4688 4689 /* The U1 timeout should be the maximum of the following values: 4690 * - For control endpoints, U1 system exit latency (SEL) * 3 4691 * - For bulk endpoints, U1 SEL * 5 4692 * - For interrupt endpoints: 4693 * - Notification EPs, U1 SEL * 3 4694 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4695 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4696 */ 4697 static unsigned long long xhci_calculate_intel_u1_timeout( 4698 struct usb_device *udev, 4699 struct usb_endpoint_descriptor *desc) 4700 { 4701 unsigned long long timeout_ns; 4702 int ep_type; 4703 int intr_type; 4704 4705 ep_type = usb_endpoint_type(desc); 4706 switch (ep_type) { 4707 case USB_ENDPOINT_XFER_CONTROL: 4708 timeout_ns = udev->u1_params.sel * 3; 4709 break; 4710 case USB_ENDPOINT_XFER_BULK: 4711 timeout_ns = udev->u1_params.sel * 5; 4712 break; 4713 case USB_ENDPOINT_XFER_INT: 4714 intr_type = usb_endpoint_interrupt_type(desc); 4715 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4716 timeout_ns = udev->u1_params.sel * 3; 4717 break; 4718 } 4719 /* Otherwise the calculation is the same as isoc eps */ 4720 fallthrough; 4721 case USB_ENDPOINT_XFER_ISOC: 4722 timeout_ns = xhci_service_interval_to_ns(desc); 4723 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4724 if (timeout_ns < udev->u1_params.sel * 2) 4725 timeout_ns = udev->u1_params.sel * 2; 4726 break; 4727 default: 4728 return 0; 4729 } 4730 4731 return timeout_ns; 4732 } 4733 4734 /* Returns the hub-encoded U1 timeout value. */ 4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4736 struct usb_device *udev, 4737 struct usb_endpoint_descriptor *desc) 4738 { 4739 unsigned long long timeout_ns; 4740 4741 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4742 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4743 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4744 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4745 return USB3_LPM_DISABLED; 4746 } 4747 } 4748 4749 if (xhci->quirks & XHCI_INTEL_HOST) 4750 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4751 else 4752 timeout_ns = udev->u1_params.sel; 4753 4754 /* The U1 timeout is encoded in 1us intervals. 4755 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4756 */ 4757 if (timeout_ns == USB3_LPM_DISABLED) 4758 timeout_ns = 1; 4759 else 4760 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4761 4762 /* If the necessary timeout value is bigger than what we can set in the 4763 * USB 3.0 hub, we have to disable hub-initiated U1. 4764 */ 4765 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4766 return timeout_ns; 4767 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4768 "due to long timeout %llu ms\n", timeout_ns); 4769 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4770 } 4771 4772 /* The U2 timeout should be the maximum of: 4773 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4774 * - largest bInterval of any active periodic endpoint (to avoid going 4775 * into lower power link states between intervals). 4776 * - the U2 Exit Latency of the device 4777 */ 4778 static unsigned long long xhci_calculate_intel_u2_timeout( 4779 struct usb_device *udev, 4780 struct usb_endpoint_descriptor *desc) 4781 { 4782 unsigned long long timeout_ns; 4783 unsigned long long u2_del_ns; 4784 4785 timeout_ns = 10 * 1000 * 1000; 4786 4787 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4788 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4789 timeout_ns = xhci_service_interval_to_ns(desc); 4790 4791 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4792 if (u2_del_ns > timeout_ns) 4793 timeout_ns = u2_del_ns; 4794 4795 return timeout_ns; 4796 } 4797 4798 /* Returns the hub-encoded U2 timeout value. */ 4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4800 struct usb_device *udev, 4801 struct usb_endpoint_descriptor *desc) 4802 { 4803 unsigned long long timeout_ns; 4804 4805 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4806 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4807 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4808 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4809 return USB3_LPM_DISABLED; 4810 } 4811 } 4812 4813 if (xhci->quirks & XHCI_INTEL_HOST) 4814 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4815 else 4816 timeout_ns = udev->u2_params.sel; 4817 4818 /* The U2 timeout is encoded in 256us intervals */ 4819 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4820 /* If the necessary timeout value is bigger than what we can set in the 4821 * USB 3.0 hub, we have to disable hub-initiated U2. 4822 */ 4823 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4824 return timeout_ns; 4825 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4826 "due to long timeout %llu ms\n", timeout_ns); 4827 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4828 } 4829 4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4831 struct usb_device *udev, 4832 struct usb_endpoint_descriptor *desc, 4833 enum usb3_link_state state, 4834 u16 *timeout) 4835 { 4836 if (state == USB3_LPM_U1) 4837 return xhci_calculate_u1_timeout(xhci, udev, desc); 4838 else if (state == USB3_LPM_U2) 4839 return xhci_calculate_u2_timeout(xhci, udev, desc); 4840 4841 return USB3_LPM_DISABLED; 4842 } 4843 4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4845 struct usb_device *udev, 4846 struct usb_endpoint_descriptor *desc, 4847 enum usb3_link_state state, 4848 u16 *timeout) 4849 { 4850 u16 alt_timeout; 4851 4852 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4853 desc, state, timeout); 4854 4855 /* If we found we can't enable hub-initiated LPM, and 4856 * the U1 or U2 exit latency was too high to allow 4857 * device-initiated LPM as well, then we will disable LPM 4858 * for this device, so stop searching any further. 4859 */ 4860 if (alt_timeout == USB3_LPM_DISABLED) { 4861 *timeout = alt_timeout; 4862 return -E2BIG; 4863 } 4864 if (alt_timeout > *timeout) 4865 *timeout = alt_timeout; 4866 return 0; 4867 } 4868 4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4870 struct usb_device *udev, 4871 struct usb_host_interface *alt, 4872 enum usb3_link_state state, 4873 u16 *timeout) 4874 { 4875 int j; 4876 4877 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4878 if (xhci_update_timeout_for_endpoint(xhci, udev, 4879 &alt->endpoint[j].desc, state, timeout)) 4880 return -E2BIG; 4881 } 4882 return 0; 4883 } 4884 4885 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4886 enum usb3_link_state state) 4887 { 4888 struct usb_device *parent; 4889 unsigned int num_hubs; 4890 4891 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4892 for (parent = udev->parent, num_hubs = 0; parent->parent; 4893 parent = parent->parent) 4894 num_hubs++; 4895 4896 if (num_hubs < 2) 4897 return 0; 4898 4899 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4900 " below second-tier hub.\n"); 4901 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4902 "to decrease power consumption.\n"); 4903 return -E2BIG; 4904 } 4905 4906 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4907 struct usb_device *udev, 4908 enum usb3_link_state state) 4909 { 4910 if (xhci->quirks & XHCI_INTEL_HOST) 4911 return xhci_check_intel_tier_policy(udev, state); 4912 else 4913 return 0; 4914 } 4915 4916 /* Returns the U1 or U2 timeout that should be enabled. 4917 * If the tier check or timeout setting functions return with a non-zero exit 4918 * code, that means the timeout value has been finalized and we shouldn't look 4919 * at any more endpoints. 4920 */ 4921 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4922 struct usb_device *udev, enum usb3_link_state state) 4923 { 4924 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4925 struct usb_host_config *config; 4926 char *state_name; 4927 int i; 4928 u16 timeout = USB3_LPM_DISABLED; 4929 4930 if (state == USB3_LPM_U1) 4931 state_name = "U1"; 4932 else if (state == USB3_LPM_U2) 4933 state_name = "U2"; 4934 else { 4935 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4936 state); 4937 return timeout; 4938 } 4939 4940 /* Gather some information about the currently installed configuration 4941 * and alternate interface settings. 4942 */ 4943 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4944 state, &timeout)) 4945 return timeout; 4946 4947 config = udev->actconfig; 4948 if (!config) 4949 return timeout; 4950 4951 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4952 struct usb_driver *driver; 4953 struct usb_interface *intf = config->interface[i]; 4954 4955 if (!intf) 4956 continue; 4957 4958 /* Check if any currently bound drivers want hub-initiated LPM 4959 * disabled. 4960 */ 4961 if (intf->dev.driver) { 4962 driver = to_usb_driver(intf->dev.driver); 4963 if (driver && driver->disable_hub_initiated_lpm) { 4964 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4965 state_name, driver->name); 4966 timeout = xhci_get_timeout_no_hub_lpm(udev, 4967 state); 4968 if (timeout == USB3_LPM_DISABLED) 4969 return timeout; 4970 } 4971 } 4972 4973 /* Not sure how this could happen... */ 4974 if (!intf->cur_altsetting) 4975 continue; 4976 4977 if (xhci_update_timeout_for_interface(xhci, udev, 4978 intf->cur_altsetting, 4979 state, &timeout)) 4980 return timeout; 4981 } 4982 return timeout; 4983 } 4984 4985 static int calculate_max_exit_latency(struct usb_device *udev, 4986 enum usb3_link_state state_changed, 4987 u16 hub_encoded_timeout) 4988 { 4989 unsigned long long u1_mel_us = 0; 4990 unsigned long long u2_mel_us = 0; 4991 unsigned long long mel_us = 0; 4992 bool disabling_u1; 4993 bool disabling_u2; 4994 bool enabling_u1; 4995 bool enabling_u2; 4996 4997 disabling_u1 = (state_changed == USB3_LPM_U1 && 4998 hub_encoded_timeout == USB3_LPM_DISABLED); 4999 disabling_u2 = (state_changed == USB3_LPM_U2 && 5000 hub_encoded_timeout == USB3_LPM_DISABLED); 5001 5002 enabling_u1 = (state_changed == USB3_LPM_U1 && 5003 hub_encoded_timeout != USB3_LPM_DISABLED); 5004 enabling_u2 = (state_changed == USB3_LPM_U2 && 5005 hub_encoded_timeout != USB3_LPM_DISABLED); 5006 5007 /* If U1 was already enabled and we're not disabling it, 5008 * or we're going to enable U1, account for the U1 max exit latency. 5009 */ 5010 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5011 enabling_u1) 5012 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5013 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5014 enabling_u2) 5015 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5016 5017 mel_us = max(u1_mel_us, u2_mel_us); 5018 5019 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5020 if (mel_us > MAX_EXIT) { 5021 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5022 "is too big.\n", mel_us); 5023 return -E2BIG; 5024 } 5025 return mel_us; 5026 } 5027 5028 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5029 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5030 struct usb_device *udev, enum usb3_link_state state) 5031 { 5032 struct xhci_hcd *xhci; 5033 u16 hub_encoded_timeout; 5034 int mel; 5035 int ret; 5036 5037 xhci = hcd_to_xhci(hcd); 5038 /* The LPM timeout values are pretty host-controller specific, so don't 5039 * enable hub-initiated timeouts unless the vendor has provided 5040 * information about their timeout algorithm. 5041 */ 5042 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5043 !xhci->devs[udev->slot_id]) 5044 return USB3_LPM_DISABLED; 5045 5046 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5047 return USB3_LPM_DISABLED; 5048 5049 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5050 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5051 if (mel < 0) { 5052 /* Max Exit Latency is too big, disable LPM. */ 5053 hub_encoded_timeout = USB3_LPM_DISABLED; 5054 mel = 0; 5055 } 5056 5057 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5058 if (ret) 5059 return ret; 5060 return hub_encoded_timeout; 5061 } 5062 5063 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5064 struct usb_device *udev, enum usb3_link_state state) 5065 { 5066 struct xhci_hcd *xhci; 5067 u16 mel; 5068 5069 xhci = hcd_to_xhci(hcd); 5070 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5071 !xhci->devs[udev->slot_id]) 5072 return 0; 5073 5074 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5075 return xhci_change_max_exit_latency(xhci, udev, mel); 5076 } 5077 #else /* CONFIG_PM */ 5078 5079 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5080 struct usb_device *udev, int enable) 5081 { 5082 return 0; 5083 } 5084 5085 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5086 { 5087 return 0; 5088 } 5089 5090 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5091 struct usb_device *udev, enum usb3_link_state state) 5092 { 5093 return USB3_LPM_DISABLED; 5094 } 5095 5096 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5097 struct usb_device *udev, enum usb3_link_state state) 5098 { 5099 return 0; 5100 } 5101 #endif /* CONFIG_PM */ 5102 5103 /*-------------------------------------------------------------------------*/ 5104 5105 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5106 * internal data structures for the device. 5107 */ 5108 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5109 struct usb_tt *tt, gfp_t mem_flags) 5110 { 5111 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5112 struct xhci_virt_device *vdev; 5113 struct xhci_command *config_cmd; 5114 struct xhci_input_control_ctx *ctrl_ctx; 5115 struct xhci_slot_ctx *slot_ctx; 5116 unsigned long flags; 5117 unsigned think_time; 5118 int ret; 5119 5120 /* Ignore root hubs */ 5121 if (!hdev->parent) 5122 return 0; 5123 5124 vdev = xhci->devs[hdev->slot_id]; 5125 if (!vdev) { 5126 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5127 return -EINVAL; 5128 } 5129 5130 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5131 if (!config_cmd) 5132 return -ENOMEM; 5133 5134 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5135 if (!ctrl_ctx) { 5136 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5137 __func__); 5138 xhci_free_command(xhci, config_cmd); 5139 return -ENOMEM; 5140 } 5141 5142 spin_lock_irqsave(&xhci->lock, flags); 5143 if (hdev->speed == USB_SPEED_HIGH && 5144 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5145 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5146 xhci_free_command(xhci, config_cmd); 5147 spin_unlock_irqrestore(&xhci->lock, flags); 5148 return -ENOMEM; 5149 } 5150 5151 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5152 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5153 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5154 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5155 /* 5156 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5157 * but it may be already set to 1 when setup an xHCI virtual 5158 * device, so clear it anyway. 5159 */ 5160 if (tt->multi) 5161 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5162 else if (hdev->speed == USB_SPEED_FULL) 5163 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5164 5165 if (xhci->hci_version > 0x95) { 5166 xhci_dbg(xhci, "xHCI version %x needs hub " 5167 "TT think time and number of ports\n", 5168 (unsigned int) xhci->hci_version); 5169 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5170 /* Set TT think time - convert from ns to FS bit times. 5171 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5172 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5173 * 5174 * xHCI 1.0: this field shall be 0 if the device is not a 5175 * High-spped hub. 5176 */ 5177 think_time = tt->think_time; 5178 if (think_time != 0) 5179 think_time = (think_time / 666) - 1; 5180 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5181 slot_ctx->tt_info |= 5182 cpu_to_le32(TT_THINK_TIME(think_time)); 5183 } else { 5184 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5185 "TT think time or number of ports\n", 5186 (unsigned int) xhci->hci_version); 5187 } 5188 slot_ctx->dev_state = 0; 5189 spin_unlock_irqrestore(&xhci->lock, flags); 5190 5191 xhci_dbg(xhci, "Set up %s for hub device.\n", 5192 (xhci->hci_version > 0x95) ? 5193 "configure endpoint" : "evaluate context"); 5194 5195 /* Issue and wait for the configure endpoint or 5196 * evaluate context command. 5197 */ 5198 if (xhci->hci_version > 0x95) 5199 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5200 false, false); 5201 else 5202 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5203 true, false); 5204 5205 xhci_free_command(xhci, config_cmd); 5206 return ret; 5207 } 5208 5209 static int xhci_get_frame(struct usb_hcd *hcd) 5210 { 5211 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5212 /* EHCI mods by the periodic size. Why? */ 5213 return readl(&xhci->run_regs->microframe_index) >> 3; 5214 } 5215 5216 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5217 { 5218 xhci->usb2_rhub.hcd = hcd; 5219 hcd->speed = HCD_USB2; 5220 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5221 /* 5222 * USB 2.0 roothub under xHCI has an integrated TT, 5223 * (rate matching hub) as opposed to having an OHCI/UHCI 5224 * companion controller. 5225 */ 5226 hcd->has_tt = 1; 5227 } 5228 5229 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5230 { 5231 unsigned int minor_rev; 5232 5233 /* 5234 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5235 * should return 0x31 for sbrn, or that the minor revision 5236 * is a two digit BCD containig minor and sub-minor numbers. 5237 * This was later clarified in xHCI 1.2. 5238 * 5239 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5240 * minor revision set to 0x1 instead of 0x10. 5241 */ 5242 if (xhci->usb3_rhub.min_rev == 0x1) 5243 minor_rev = 1; 5244 else 5245 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5246 5247 switch (minor_rev) { 5248 case 2: 5249 hcd->speed = HCD_USB32; 5250 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5251 hcd->self.root_hub->rx_lanes = 2; 5252 hcd->self.root_hub->tx_lanes = 2; 5253 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5254 break; 5255 case 1: 5256 hcd->speed = HCD_USB31; 5257 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5258 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5259 break; 5260 } 5261 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5262 minor_rev, minor_rev ? "Enhanced " : ""); 5263 5264 xhci->usb3_rhub.hcd = hcd; 5265 } 5266 5267 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5268 { 5269 struct xhci_hcd *xhci; 5270 /* 5271 * TODO: Check with DWC3 clients for sysdev according to 5272 * quirks 5273 */ 5274 struct device *dev = hcd->self.sysdev; 5275 int retval; 5276 5277 /* Accept arbitrarily long scatter-gather lists */ 5278 hcd->self.sg_tablesize = ~0; 5279 5280 /* support to build packet from discontinuous buffers */ 5281 hcd->self.no_sg_constraint = 1; 5282 5283 /* XHCI controllers don't stop the ep queue on short packets :| */ 5284 hcd->self.no_stop_on_short = 1; 5285 5286 xhci = hcd_to_xhci(hcd); 5287 5288 if (!usb_hcd_is_primary_hcd(hcd)) { 5289 xhci_hcd_init_usb3_data(xhci, hcd); 5290 return 0; 5291 } 5292 5293 mutex_init(&xhci->mutex); 5294 xhci->main_hcd = hcd; 5295 xhci->cap_regs = hcd->regs; 5296 xhci->op_regs = hcd->regs + 5297 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5298 xhci->run_regs = hcd->regs + 5299 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5300 /* Cache read-only capability registers */ 5301 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5302 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5303 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5304 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5305 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5306 if (xhci->hci_version > 0x100) 5307 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5308 5309 xhci->quirks |= quirks; 5310 5311 get_quirks(dev, xhci); 5312 5313 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5314 * success event after a short transfer. This quirk will ignore such 5315 * spurious event. 5316 */ 5317 if (xhci->hci_version > 0x96) 5318 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5319 5320 /* Make sure the HC is halted. */ 5321 retval = xhci_halt(xhci); 5322 if (retval) 5323 return retval; 5324 5325 xhci_zero_64b_regs(xhci); 5326 5327 xhci_dbg(xhci, "Resetting HCD\n"); 5328 /* Reset the internal HC memory state and registers. */ 5329 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5330 if (retval) 5331 return retval; 5332 xhci_dbg(xhci, "Reset complete\n"); 5333 5334 /* 5335 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5336 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5337 * address memory pointers actually. So, this driver clears the AC64 5338 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5339 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5340 */ 5341 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5342 xhci->hcc_params &= ~BIT(0); 5343 5344 /* Set dma_mask and coherent_dma_mask to 64-bits, 5345 * if xHC supports 64-bit addressing */ 5346 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5347 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5348 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5349 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5350 } else { 5351 /* 5352 * This is to avoid error in cases where a 32-bit USB 5353 * controller is used on a 64-bit capable system. 5354 */ 5355 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5356 if (retval) 5357 return retval; 5358 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5359 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5360 } 5361 5362 xhci_dbg(xhci, "Calling HCD init\n"); 5363 /* Initialize HCD and host controller data structures. */ 5364 retval = xhci_init(hcd); 5365 if (retval) 5366 return retval; 5367 xhci_dbg(xhci, "Called HCD init\n"); 5368 5369 if (xhci_hcd_is_usb3(hcd)) 5370 xhci_hcd_init_usb3_data(xhci, hcd); 5371 else 5372 xhci_hcd_init_usb2_data(xhci, hcd); 5373 5374 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5375 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5376 5377 return 0; 5378 } 5379 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5380 5381 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5382 struct usb_host_endpoint *ep) 5383 { 5384 struct xhci_hcd *xhci; 5385 struct usb_device *udev; 5386 unsigned int slot_id; 5387 unsigned int ep_index; 5388 unsigned long flags; 5389 5390 xhci = hcd_to_xhci(hcd); 5391 5392 spin_lock_irqsave(&xhci->lock, flags); 5393 udev = (struct usb_device *)ep->hcpriv; 5394 slot_id = udev->slot_id; 5395 ep_index = xhci_get_endpoint_index(&ep->desc); 5396 5397 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5398 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5399 spin_unlock_irqrestore(&xhci->lock, flags); 5400 } 5401 5402 static const struct hc_driver xhci_hc_driver = { 5403 .description = "xhci-hcd", 5404 .product_desc = "xHCI Host Controller", 5405 .hcd_priv_size = sizeof(struct xhci_hcd), 5406 5407 /* 5408 * generic hardware linkage 5409 */ 5410 .irq = xhci_irq, 5411 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5412 HCD_BH, 5413 5414 /* 5415 * basic lifecycle operations 5416 */ 5417 .reset = NULL, /* set in xhci_init_driver() */ 5418 .start = xhci_run, 5419 .stop = xhci_stop, 5420 .shutdown = xhci_shutdown, 5421 5422 /* 5423 * managing i/o requests and associated device resources 5424 */ 5425 .map_urb_for_dma = xhci_map_urb_for_dma, 5426 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5427 .urb_enqueue = xhci_urb_enqueue, 5428 .urb_dequeue = xhci_urb_dequeue, 5429 .alloc_dev = xhci_alloc_dev, 5430 .free_dev = xhci_free_dev, 5431 .alloc_streams = xhci_alloc_streams, 5432 .free_streams = xhci_free_streams, 5433 .add_endpoint = xhci_add_endpoint, 5434 .drop_endpoint = xhci_drop_endpoint, 5435 .endpoint_disable = xhci_endpoint_disable, 5436 .endpoint_reset = xhci_endpoint_reset, 5437 .check_bandwidth = xhci_check_bandwidth, 5438 .reset_bandwidth = xhci_reset_bandwidth, 5439 .address_device = xhci_address_device, 5440 .enable_device = xhci_enable_device, 5441 .update_hub_device = xhci_update_hub_device, 5442 .reset_device = xhci_discover_or_reset_device, 5443 5444 /* 5445 * scheduling support 5446 */ 5447 .get_frame_number = xhci_get_frame, 5448 5449 /* 5450 * root hub support 5451 */ 5452 .hub_control = xhci_hub_control, 5453 .hub_status_data = xhci_hub_status_data, 5454 .bus_suspend = xhci_bus_suspend, 5455 .bus_resume = xhci_bus_resume, 5456 .get_resuming_ports = xhci_get_resuming_ports, 5457 5458 /* 5459 * call back when device connected and addressed 5460 */ 5461 .update_device = xhci_update_device, 5462 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5463 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5464 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5465 .find_raw_port_number = xhci_find_raw_port_number, 5466 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5467 }; 5468 5469 void xhci_init_driver(struct hc_driver *drv, 5470 const struct xhci_driver_overrides *over) 5471 { 5472 BUG_ON(!over); 5473 5474 /* Copy the generic table to drv then apply the overrides */ 5475 *drv = xhci_hc_driver; 5476 5477 if (over) { 5478 drv->hcd_priv_size += over->extra_priv_size; 5479 if (over->reset) 5480 drv->reset = over->reset; 5481 if (over->start) 5482 drv->start = over->start; 5483 if (over->add_endpoint) 5484 drv->add_endpoint = over->add_endpoint; 5485 if (over->drop_endpoint) 5486 drv->drop_endpoint = over->drop_endpoint; 5487 if (over->check_bandwidth) 5488 drv->check_bandwidth = over->check_bandwidth; 5489 if (over->reset_bandwidth) 5490 drv->reset_bandwidth = over->reset_bandwidth; 5491 } 5492 } 5493 EXPORT_SYMBOL_GPL(xhci_init_driver); 5494 5495 MODULE_DESCRIPTION(DRIVER_DESC); 5496 MODULE_AUTHOR(DRIVER_AUTHOR); 5497 MODULE_LICENSE("GPL"); 5498 5499 static int __init xhci_hcd_init(void) 5500 { 5501 /* 5502 * Check the compiler generated sizes of structures that must be laid 5503 * out in specific ways for hardware access. 5504 */ 5505 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5506 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5507 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5508 /* xhci_device_control has eight fields, and also 5509 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5510 */ 5511 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5512 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5513 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5514 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5515 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5516 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5517 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5518 5519 if (usb_disabled()) 5520 return -ENODEV; 5521 5522 xhci_debugfs_create_root(); 5523 xhci_dbc_init(); 5524 5525 return 0; 5526 } 5527 5528 /* 5529 * If an init function is provided, an exit function must also be provided 5530 * to allow module unload. 5531 */ 5532 static void __exit xhci_hcd_fini(void) 5533 { 5534 xhci_debugfs_remove_root(); 5535 xhci_dbc_exit(); 5536 } 5537 5538 module_init(xhci_hcd_init); 5539 module_exit(xhci_hcd_fini); 5540