1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41 static int link_quirk; 42 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45 static unsigned int quirks; 46 module_param(quirks, uint, S_IRUGO); 47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 50 /* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 64 u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(xhci, &xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(xhci, &xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 xhci->xhc_state &= ~XHCI_STATE_HALTED; 151 return ret; 152 } 153 154 /* 155 * Reset a halted HC. 156 * 157 * This resets pipelines, timers, counters, state machines, etc. 158 * Transactions will be terminated immediately, and operational registers 159 * will be set to their defaults. 160 */ 161 int xhci_reset(struct xhci_hcd *xhci) 162 { 163 u32 command; 164 u32 state; 165 int ret, i; 166 167 state = readl(&xhci->op_regs->status); 168 if ((state & STS_HALT) == 0) { 169 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 170 return 0; 171 } 172 173 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 174 command = readl(&xhci->op_regs->command); 175 command |= CMD_RESET; 176 writel(command, &xhci->op_regs->command); 177 178 ret = xhci_handshake(xhci, &xhci->op_regs->command, 179 CMD_RESET, 0, 10 * 1000 * 1000); 180 if (ret) 181 return ret; 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 184 "Wait for controller to be ready for doorbell rings"); 185 /* 186 * xHCI cannot write to any doorbells or operational registers other 187 * than status until the "Controller Not Ready" flag is cleared. 188 */ 189 ret = xhci_handshake(xhci, &xhci->op_regs->status, 190 STS_CNR, 0, 10 * 1000 * 1000); 191 192 for (i = 0; i < 2; ++i) { 193 xhci->bus_state[i].port_c_suspend = 0; 194 xhci->bus_state[i].suspended_ports = 0; 195 xhci->bus_state[i].resuming_ports = 0; 196 } 197 198 return ret; 199 } 200 201 #ifdef CONFIG_PCI 202 static int xhci_free_msi(struct xhci_hcd *xhci) 203 { 204 int i; 205 206 if (!xhci->msix_entries) 207 return -EINVAL; 208 209 for (i = 0; i < xhci->msix_count; i++) 210 if (xhci->msix_entries[i].vector) 211 free_irq(xhci->msix_entries[i].vector, 212 xhci_to_hcd(xhci)); 213 return 0; 214 } 215 216 /* 217 * Set up MSI 218 */ 219 static int xhci_setup_msi(struct xhci_hcd *xhci) 220 { 221 int ret; 222 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 223 224 ret = pci_enable_msi(pdev); 225 if (ret) { 226 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 227 "failed to allocate MSI entry"); 228 return ret; 229 } 230 231 ret = request_irq(pdev->irq, xhci_msi_irq, 232 0, "xhci_hcd", xhci_to_hcd(xhci)); 233 if (ret) { 234 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 235 "disable MSI interrupt"); 236 pci_disable_msi(pdev); 237 } 238 239 return ret; 240 } 241 242 /* 243 * Free IRQs 244 * free all IRQs request 245 */ 246 static void xhci_free_irq(struct xhci_hcd *xhci) 247 { 248 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 249 int ret; 250 251 /* return if using legacy interrupt */ 252 if (xhci_to_hcd(xhci)->irq > 0) 253 return; 254 255 ret = xhci_free_msi(xhci); 256 if (!ret) 257 return; 258 if (pdev->irq > 0) 259 free_irq(pdev->irq, xhci_to_hcd(xhci)); 260 261 return; 262 } 263 264 /* 265 * Set up MSI-X 266 */ 267 static int xhci_setup_msix(struct xhci_hcd *xhci) 268 { 269 int i, ret = 0; 270 struct usb_hcd *hcd = xhci_to_hcd(xhci); 271 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 272 273 /* 274 * calculate number of msi-x vectors supported. 275 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 276 * with max number of interrupters based on the xhci HCSPARAMS1. 277 * - num_online_cpus: maximum msi-x vectors per CPUs core. 278 * Add additional 1 vector to ensure always available interrupt. 279 */ 280 xhci->msix_count = min(num_online_cpus() + 1, 281 HCS_MAX_INTRS(xhci->hcs_params1)); 282 283 xhci->msix_entries = 284 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 285 GFP_KERNEL); 286 if (!xhci->msix_entries) { 287 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 288 return -ENOMEM; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 xhci->msix_entries[i].entry = i; 293 xhci->msix_entries[i].vector = 0; 294 } 295 296 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 297 if (ret) { 298 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 299 "Failed to enable MSI-X"); 300 goto free_entries; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 ret = request_irq(xhci->msix_entries[i].vector, 305 xhci_msi_irq, 306 0, "xhci_hcd", xhci_to_hcd(xhci)); 307 if (ret) 308 goto disable_msix; 309 } 310 311 hcd->msix_enabled = 1; 312 return ret; 313 314 disable_msix: 315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 316 xhci_free_irq(xhci); 317 pci_disable_msix(pdev); 318 free_entries: 319 kfree(xhci->msix_entries); 320 xhci->msix_entries = NULL; 321 return ret; 322 } 323 324 /* Free any IRQs and disable MSI-X */ 325 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 326 { 327 struct usb_hcd *hcd = xhci_to_hcd(xhci); 328 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 329 330 if (xhci->quirks & XHCI_PLAT) 331 return; 332 333 xhci_free_irq(xhci); 334 335 if (xhci->msix_entries) { 336 pci_disable_msix(pdev); 337 kfree(xhci->msix_entries); 338 xhci->msix_entries = NULL; 339 } else { 340 pci_disable_msi(pdev); 341 } 342 343 hcd->msix_enabled = 0; 344 return; 345 } 346 347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 348 { 349 int i; 350 351 if (xhci->msix_entries) { 352 for (i = 0; i < xhci->msix_count; i++) 353 synchronize_irq(xhci->msix_entries[i].vector); 354 } 355 } 356 357 static int xhci_try_enable_msi(struct usb_hcd *hcd) 358 { 359 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 360 struct pci_dev *pdev; 361 int ret; 362 363 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 364 if (xhci->quirks & XHCI_PLAT) 365 return 0; 366 367 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 368 /* 369 * Some Fresco Logic host controllers advertise MSI, but fail to 370 * generate interrupts. Don't even try to enable MSI. 371 */ 372 if (xhci->quirks & XHCI_BROKEN_MSI) 373 goto legacy_irq; 374 375 /* unregister the legacy interrupt */ 376 if (hcd->irq) 377 free_irq(hcd->irq, hcd); 378 hcd->irq = 0; 379 380 ret = xhci_setup_msix(xhci); 381 if (ret) 382 /* fall back to msi*/ 383 ret = xhci_setup_msi(xhci); 384 385 if (!ret) 386 /* hcd->irq is 0, we have MSI */ 387 return 0; 388 389 if (!pdev->irq) { 390 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 391 return -EINVAL; 392 } 393 394 legacy_irq: 395 if (!strlen(hcd->irq_descr)) 396 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 397 hcd->driver->description, hcd->self.busnum); 398 399 /* fall back to legacy interrupt*/ 400 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 401 hcd->irq_descr, hcd); 402 if (ret) { 403 xhci_err(xhci, "request interrupt %d failed\n", 404 pdev->irq); 405 return ret; 406 } 407 hcd->irq = pdev->irq; 408 return 0; 409 } 410 411 #else 412 413 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 414 { 415 return 0; 416 } 417 418 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 419 { 420 } 421 422 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 423 { 424 } 425 426 #endif 427 428 static void compliance_mode_recovery(unsigned long arg) 429 { 430 struct xhci_hcd *xhci; 431 struct usb_hcd *hcd; 432 u32 temp; 433 int i; 434 435 xhci = (struct xhci_hcd *)arg; 436 437 for (i = 0; i < xhci->num_usb3_ports; i++) { 438 temp = readl(xhci->usb3_ports[i]); 439 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 440 /* 441 * Compliance Mode Detected. Letting USB Core 442 * handle the Warm Reset 443 */ 444 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 445 "Compliance mode detected->port %d", 446 i + 1); 447 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 448 "Attempting compliance mode recovery"); 449 hcd = xhci->shared_hcd; 450 451 if (hcd->state == HC_STATE_SUSPENDED) 452 usb_hcd_resume_root_hub(hcd); 453 454 usb_hcd_poll_rh_status(hcd); 455 } 456 } 457 458 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 459 mod_timer(&xhci->comp_mode_recovery_timer, 460 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 461 } 462 463 /* 464 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 465 * that causes ports behind that hardware to enter compliance mode sometimes. 466 * The quirk creates a timer that polls every 2 seconds the link state of 467 * each host controller's port and recovers it by issuing a Warm reset 468 * if Compliance mode is detected, otherwise the port will become "dead" (no 469 * device connections or disconnections will be detected anymore). Becasue no 470 * status event is generated when entering compliance mode (per xhci spec), 471 * this quirk is needed on systems that have the failing hardware installed. 472 */ 473 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 474 { 475 xhci->port_status_u0 = 0; 476 init_timer(&xhci->comp_mode_recovery_timer); 477 478 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 479 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 480 xhci->comp_mode_recovery_timer.expires = jiffies + 481 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 482 483 set_timer_slack(&xhci->comp_mode_recovery_timer, 484 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 485 add_timer(&xhci->comp_mode_recovery_timer); 486 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 487 "Compliance mode recovery timer initialized"); 488 } 489 490 /* 491 * This function identifies the systems that have installed the SN65LVPE502CP 492 * USB3.0 re-driver and that need the Compliance Mode Quirk. 493 * Systems: 494 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 495 */ 496 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 497 { 498 const char *dmi_product_name, *dmi_sys_vendor; 499 500 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 501 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 502 if (!dmi_product_name || !dmi_sys_vendor) 503 return false; 504 505 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 506 return false; 507 508 if (strstr(dmi_product_name, "Z420") || 509 strstr(dmi_product_name, "Z620") || 510 strstr(dmi_product_name, "Z820") || 511 strstr(dmi_product_name, "Z1 Workstation")) 512 return true; 513 514 return false; 515 } 516 517 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 518 { 519 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 520 } 521 522 523 /* 524 * Initialize memory for HCD and xHC (one-time init). 525 * 526 * Program the PAGESIZE register, initialize the device context array, create 527 * device contexts (?), set up a command ring segment (or two?), create event 528 * ring (one for now). 529 */ 530 int xhci_init(struct usb_hcd *hcd) 531 { 532 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 533 int retval = 0; 534 535 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 536 spin_lock_init(&xhci->lock); 537 if (xhci->hci_version == 0x95 && link_quirk) { 538 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 539 "QUIRK: Not clearing Link TRB chain bits."); 540 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 541 } else { 542 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 543 "xHCI doesn't need link TRB QUIRK"); 544 } 545 retval = xhci_mem_init(xhci, GFP_KERNEL); 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 547 548 /* Initializing Compliance Mode Recovery Data If Needed */ 549 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 550 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 551 compliance_mode_recovery_timer_init(xhci); 552 } 553 554 return retval; 555 } 556 557 /*-------------------------------------------------------------------------*/ 558 559 560 static int xhci_run_finished(struct xhci_hcd *xhci) 561 { 562 if (xhci_start(xhci)) { 563 xhci_halt(xhci); 564 return -ENODEV; 565 } 566 xhci->shared_hcd->state = HC_STATE_RUNNING; 567 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 568 569 if (xhci->quirks & XHCI_NEC_HOST) 570 xhci_ring_cmd_db(xhci); 571 572 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 573 "Finished xhci_run for USB3 roothub"); 574 return 0; 575 } 576 577 /* 578 * Start the HC after it was halted. 579 * 580 * This function is called by the USB core when the HC driver is added. 581 * Its opposite is xhci_stop(). 582 * 583 * xhci_init() must be called once before this function can be called. 584 * Reset the HC, enable device slot contexts, program DCBAAP, and 585 * set command ring pointer and event ring pointer. 586 * 587 * Setup MSI-X vectors and enable interrupts. 588 */ 589 int xhci_run(struct usb_hcd *hcd) 590 { 591 u32 temp; 592 u64 temp_64; 593 int ret; 594 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 595 596 /* Start the xHCI host controller running only after the USB 2.0 roothub 597 * is setup. 598 */ 599 600 hcd->uses_new_polling = 1; 601 if (!usb_hcd_is_primary_hcd(hcd)) 602 return xhci_run_finished(xhci); 603 604 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 605 606 ret = xhci_try_enable_msi(hcd); 607 if (ret) 608 return ret; 609 610 xhci_dbg(xhci, "Command ring memory map follows:\n"); 611 xhci_debug_ring(xhci, xhci->cmd_ring); 612 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 613 xhci_dbg_cmd_ptrs(xhci); 614 615 xhci_dbg(xhci, "ERST memory map follows:\n"); 616 xhci_dbg_erst(xhci, &xhci->erst); 617 xhci_dbg(xhci, "Event ring:\n"); 618 xhci_debug_ring(xhci, xhci->event_ring); 619 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 620 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 621 temp_64 &= ~ERST_PTR_MASK; 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 624 625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 626 "// Set the interrupt modulation register"); 627 temp = readl(&xhci->ir_set->irq_control); 628 temp &= ~ER_IRQ_INTERVAL_MASK; 629 temp |= (u32) 160; 630 writel(temp, &xhci->ir_set->irq_control); 631 632 /* Set the HCD state before we enable the irqs */ 633 temp = readl(&xhci->op_regs->command); 634 temp |= (CMD_EIE); 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 636 "// Enable interrupts, cmd = 0x%x.", temp); 637 writel(temp, &xhci->op_regs->command); 638 639 temp = readl(&xhci->ir_set->irq_pending); 640 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 641 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 642 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 643 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 644 xhci_print_ir_set(xhci, 0); 645 646 if (xhci->quirks & XHCI_NEC_HOST) { 647 struct xhci_command *command; 648 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 649 if (!command) 650 return -ENOMEM; 651 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 652 TRB_TYPE(TRB_NEC_GET_FW)); 653 } 654 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 655 "Finished xhci_run for USB2 roothub"); 656 return 0; 657 } 658 EXPORT_SYMBOL_GPL(xhci_run); 659 660 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 661 { 662 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 663 664 spin_lock_irq(&xhci->lock); 665 xhci_halt(xhci); 666 667 /* The shared_hcd is going to be deallocated shortly (the USB core only 668 * calls this function when allocation fails in usb_add_hcd(), or 669 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 670 */ 671 xhci->shared_hcd = NULL; 672 spin_unlock_irq(&xhci->lock); 673 } 674 675 /* 676 * Stop xHCI driver. 677 * 678 * This function is called by the USB core when the HC driver is removed. 679 * Its opposite is xhci_run(). 680 * 681 * Disable device contexts, disable IRQs, and quiesce the HC. 682 * Reset the HC, finish any completed transactions, and cleanup memory. 683 */ 684 void xhci_stop(struct usb_hcd *hcd) 685 { 686 u32 temp; 687 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 688 689 if (!usb_hcd_is_primary_hcd(hcd)) { 690 xhci_only_stop_hcd(xhci->shared_hcd); 691 return; 692 } 693 694 spin_lock_irq(&xhci->lock); 695 /* Make sure the xHC is halted for a USB3 roothub 696 * (xhci_stop() could be called as part of failed init). 697 */ 698 xhci_halt(xhci); 699 xhci_reset(xhci); 700 spin_unlock_irq(&xhci->lock); 701 702 xhci_cleanup_msix(xhci); 703 704 /* Deleting Compliance Mode Recovery Timer */ 705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 706 (!(xhci_all_ports_seen_u0(xhci)))) { 707 del_timer_sync(&xhci->comp_mode_recovery_timer); 708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 709 "%s: compliance mode recovery timer deleted", 710 __func__); 711 } 712 713 if (xhci->quirks & XHCI_AMD_PLL_FIX) 714 usb_amd_dev_put(); 715 716 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 717 "// Disabling event ring interrupts"); 718 temp = readl(&xhci->op_regs->status); 719 writel(temp & ~STS_EINT, &xhci->op_regs->status); 720 temp = readl(&xhci->ir_set->irq_pending); 721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 722 xhci_print_ir_set(xhci, 0); 723 724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 725 xhci_mem_cleanup(xhci); 726 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 727 "xhci_stop completed - status = %x", 728 readl(&xhci->op_regs->status)); 729 } 730 731 /* 732 * Shutdown HC (not bus-specific) 733 * 734 * This is called when the machine is rebooting or halting. We assume that the 735 * machine will be powered off, and the HC's internal state will be reset. 736 * Don't bother to free memory. 737 * 738 * This will only ever be called with the main usb_hcd (the USB3 roothub). 739 */ 740 void xhci_shutdown(struct usb_hcd *hcd) 741 { 742 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 743 744 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 745 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 746 747 spin_lock_irq(&xhci->lock); 748 xhci_halt(xhci); 749 /* Workaround for spurious wakeups at shutdown with HSW */ 750 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 751 xhci_reset(xhci); 752 spin_unlock_irq(&xhci->lock); 753 754 xhci_cleanup_msix(xhci); 755 756 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 757 "xhci_shutdown completed - status = %x", 758 readl(&xhci->op_regs->status)); 759 760 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 761 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 762 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 763 } 764 765 #ifdef CONFIG_PM 766 static void xhci_save_registers(struct xhci_hcd *xhci) 767 { 768 xhci->s3.command = readl(&xhci->op_regs->command); 769 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 770 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 771 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 772 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 773 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 774 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 775 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 776 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 777 } 778 779 static void xhci_restore_registers(struct xhci_hcd *xhci) 780 { 781 writel(xhci->s3.command, &xhci->op_regs->command); 782 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 783 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 784 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 785 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 786 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 787 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 788 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 789 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 790 } 791 792 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 793 { 794 u64 val_64; 795 796 /* step 2: initialize command ring buffer */ 797 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 798 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 799 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 800 xhci->cmd_ring->dequeue) & 801 (u64) ~CMD_RING_RSVD_BITS) | 802 xhci->cmd_ring->cycle_state; 803 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 804 "// Setting command ring address to 0x%llx", 805 (long unsigned long) val_64); 806 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 807 } 808 809 /* 810 * The whole command ring must be cleared to zero when we suspend the host. 811 * 812 * The host doesn't save the command ring pointer in the suspend well, so we 813 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 814 * aligned, because of the reserved bits in the command ring dequeue pointer 815 * register. Therefore, we can't just set the dequeue pointer back in the 816 * middle of the ring (TRBs are 16-byte aligned). 817 */ 818 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 819 { 820 struct xhci_ring *ring; 821 struct xhci_segment *seg; 822 823 ring = xhci->cmd_ring; 824 seg = ring->deq_seg; 825 do { 826 memset(seg->trbs, 0, 827 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 828 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 829 cpu_to_le32(~TRB_CYCLE); 830 seg = seg->next; 831 } while (seg != ring->deq_seg); 832 833 /* Reset the software enqueue and dequeue pointers */ 834 ring->deq_seg = ring->first_seg; 835 ring->dequeue = ring->first_seg->trbs; 836 ring->enq_seg = ring->deq_seg; 837 ring->enqueue = ring->dequeue; 838 839 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 840 /* 841 * Ring is now zeroed, so the HW should look for change of ownership 842 * when the cycle bit is set to 1. 843 */ 844 ring->cycle_state = 1; 845 846 /* 847 * Reset the hardware dequeue pointer. 848 * Yes, this will need to be re-written after resume, but we're paranoid 849 * and want to make sure the hardware doesn't access bogus memory 850 * because, say, the BIOS or an SMI started the host without changing 851 * the command ring pointers. 852 */ 853 xhci_set_cmd_ring_deq(xhci); 854 } 855 856 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 857 { 858 int port_index; 859 __le32 __iomem **port_array; 860 unsigned long flags; 861 u32 t1, t2; 862 863 spin_lock_irqsave(&xhci->lock, flags); 864 865 /* disble usb3 ports Wake bits*/ 866 port_index = xhci->num_usb3_ports; 867 port_array = xhci->usb3_ports; 868 while (port_index--) { 869 t1 = readl(port_array[port_index]); 870 t1 = xhci_port_state_to_neutral(t1); 871 t2 = t1 & ~PORT_WAKE_BITS; 872 if (t1 != t2) 873 writel(t2, port_array[port_index]); 874 } 875 876 /* disble usb2 ports Wake bits*/ 877 port_index = xhci->num_usb2_ports; 878 port_array = xhci->usb2_ports; 879 while (port_index--) { 880 t1 = readl(port_array[port_index]); 881 t1 = xhci_port_state_to_neutral(t1); 882 t2 = t1 & ~PORT_WAKE_BITS; 883 if (t1 != t2) 884 writel(t2, port_array[port_index]); 885 } 886 887 spin_unlock_irqrestore(&xhci->lock, flags); 888 } 889 890 /* 891 * Stop HC (not bus-specific) 892 * 893 * This is called when the machine transition into S3/S4 mode. 894 * 895 */ 896 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 897 { 898 int rc = 0; 899 unsigned int delay = XHCI_MAX_HALT_USEC; 900 struct usb_hcd *hcd = xhci_to_hcd(xhci); 901 u32 command; 902 903 if (hcd->state != HC_STATE_SUSPENDED || 904 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 905 return -EINVAL; 906 907 /* Clear root port wake on bits if wakeup not allowed. */ 908 if (!do_wakeup) 909 xhci_disable_port_wake_on_bits(xhci); 910 911 /* Don't poll the roothubs on bus suspend. */ 912 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 913 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 914 del_timer_sync(&hcd->rh_timer); 915 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 916 del_timer_sync(&xhci->shared_hcd->rh_timer); 917 918 spin_lock_irq(&xhci->lock); 919 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 920 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 921 /* step 1: stop endpoint */ 922 /* skipped assuming that port suspend has done */ 923 924 /* step 2: clear Run/Stop bit */ 925 command = readl(&xhci->op_regs->command); 926 command &= ~CMD_RUN; 927 writel(command, &xhci->op_regs->command); 928 929 /* Some chips from Fresco Logic need an extraordinary delay */ 930 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 931 932 if (xhci_handshake(xhci, &xhci->op_regs->status, 933 STS_HALT, STS_HALT, delay)) { 934 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 xhci_clear_command_ring(xhci); 939 940 /* step 3: save registers */ 941 xhci_save_registers(xhci); 942 943 /* step 4: set CSS flag */ 944 command = readl(&xhci->op_regs->command); 945 command |= CMD_CSS; 946 writel(command, &xhci->op_regs->command); 947 if (xhci_handshake(xhci, &xhci->op_regs->status, 948 STS_SAVE, 0, 10 * 1000)) { 949 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 950 spin_unlock_irq(&xhci->lock); 951 return -ETIMEDOUT; 952 } 953 spin_unlock_irq(&xhci->lock); 954 955 /* 956 * Deleting Compliance Mode Recovery Timer because the xHCI Host 957 * is about to be suspended. 958 */ 959 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 960 (!(xhci_all_ports_seen_u0(xhci)))) { 961 del_timer_sync(&xhci->comp_mode_recovery_timer); 962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 963 "%s: compliance mode recovery timer deleted", 964 __func__); 965 } 966 967 /* step 5: remove core well power */ 968 /* synchronize irq when using MSI-X */ 969 xhci_msix_sync_irqs(xhci); 970 971 return rc; 972 } 973 EXPORT_SYMBOL_GPL(xhci_suspend); 974 975 /* 976 * start xHC (not bus-specific) 977 * 978 * This is called when the machine transition from S3/S4 mode. 979 * 980 */ 981 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 982 { 983 u32 command, temp = 0, status; 984 struct usb_hcd *hcd = xhci_to_hcd(xhci); 985 struct usb_hcd *secondary_hcd; 986 int retval = 0; 987 bool comp_timer_running = false; 988 989 /* Wait a bit if either of the roothubs need to settle from the 990 * transition into bus suspend. 991 */ 992 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 993 time_before(jiffies, 994 xhci->bus_state[1].next_statechange)) 995 msleep(100); 996 997 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 998 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 999 1000 spin_lock_irq(&xhci->lock); 1001 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1002 hibernated = true; 1003 1004 if (!hibernated) { 1005 /* step 1: restore register */ 1006 xhci_restore_registers(xhci); 1007 /* step 2: initialize command ring buffer */ 1008 xhci_set_cmd_ring_deq(xhci); 1009 /* step 3: restore state and start state*/ 1010 /* step 3: set CRS flag */ 1011 command = readl(&xhci->op_regs->command); 1012 command |= CMD_CRS; 1013 writel(command, &xhci->op_regs->command); 1014 if (xhci_handshake(xhci, &xhci->op_regs->status, 1015 STS_RESTORE, 0, 10 * 1000)) { 1016 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1017 spin_unlock_irq(&xhci->lock); 1018 return -ETIMEDOUT; 1019 } 1020 temp = readl(&xhci->op_regs->status); 1021 } 1022 1023 /* If restore operation fails, re-initialize the HC during resume */ 1024 if ((temp & STS_SRE) || hibernated) { 1025 1026 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1027 !(xhci_all_ports_seen_u0(xhci))) { 1028 del_timer_sync(&xhci->comp_mode_recovery_timer); 1029 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1030 "Compliance Mode Recovery Timer deleted!"); 1031 } 1032 1033 /* Let the USB core know _both_ roothubs lost power. */ 1034 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1035 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1036 1037 xhci_dbg(xhci, "Stop HCD\n"); 1038 xhci_halt(xhci); 1039 xhci_reset(xhci); 1040 spin_unlock_irq(&xhci->lock); 1041 xhci_cleanup_msix(xhci); 1042 1043 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1044 temp = readl(&xhci->op_regs->status); 1045 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1046 temp = readl(&xhci->ir_set->irq_pending); 1047 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1048 xhci_print_ir_set(xhci, 0); 1049 1050 xhci_dbg(xhci, "cleaning up memory\n"); 1051 xhci_mem_cleanup(xhci); 1052 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1053 readl(&xhci->op_regs->status)); 1054 1055 /* USB core calls the PCI reinit and start functions twice: 1056 * first with the primary HCD, and then with the secondary HCD. 1057 * If we don't do the same, the host will never be started. 1058 */ 1059 if (!usb_hcd_is_primary_hcd(hcd)) 1060 secondary_hcd = hcd; 1061 else 1062 secondary_hcd = xhci->shared_hcd; 1063 1064 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1065 retval = xhci_init(hcd->primary_hcd); 1066 if (retval) 1067 return retval; 1068 comp_timer_running = true; 1069 1070 xhci_dbg(xhci, "Start the primary HCD\n"); 1071 retval = xhci_run(hcd->primary_hcd); 1072 if (!retval) { 1073 xhci_dbg(xhci, "Start the secondary HCD\n"); 1074 retval = xhci_run(secondary_hcd); 1075 } 1076 hcd->state = HC_STATE_SUSPENDED; 1077 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1078 goto done; 1079 } 1080 1081 /* step 4: set Run/Stop bit */ 1082 command = readl(&xhci->op_regs->command); 1083 command |= CMD_RUN; 1084 writel(command, &xhci->op_regs->command); 1085 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1086 0, 250 * 1000); 1087 1088 /* step 5: walk topology and initialize portsc, 1089 * portpmsc and portli 1090 */ 1091 /* this is done in bus_resume */ 1092 1093 /* step 6: restart each of the previously 1094 * Running endpoints by ringing their doorbells 1095 */ 1096 1097 spin_unlock_irq(&xhci->lock); 1098 1099 done: 1100 if (retval == 0) { 1101 /* Resume root hubs only when have pending events. */ 1102 status = readl(&xhci->op_regs->status); 1103 if (status & STS_EINT) { 1104 usb_hcd_resume_root_hub(hcd); 1105 usb_hcd_resume_root_hub(xhci->shared_hcd); 1106 } 1107 } 1108 1109 /* 1110 * If system is subject to the Quirk, Compliance Mode Timer needs to 1111 * be re-initialized Always after a system resume. Ports are subject 1112 * to suffer the Compliance Mode issue again. It doesn't matter if 1113 * ports have entered previously to U0 before system's suspension. 1114 */ 1115 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1116 compliance_mode_recovery_timer_init(xhci); 1117 1118 /* Re-enable port polling. */ 1119 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1120 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1121 usb_hcd_poll_rh_status(hcd); 1122 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1123 usb_hcd_poll_rh_status(xhci->shared_hcd); 1124 1125 return retval; 1126 } 1127 EXPORT_SYMBOL_GPL(xhci_resume); 1128 #endif /* CONFIG_PM */ 1129 1130 /*-------------------------------------------------------------------------*/ 1131 1132 /** 1133 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1134 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1135 * value to right shift 1 for the bitmask. 1136 * 1137 * Index = (epnum * 2) + direction - 1, 1138 * where direction = 0 for OUT, 1 for IN. 1139 * For control endpoints, the IN index is used (OUT index is unused), so 1140 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1141 */ 1142 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1143 { 1144 unsigned int index; 1145 if (usb_endpoint_xfer_control(desc)) 1146 index = (unsigned int) (usb_endpoint_num(desc)*2); 1147 else 1148 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1149 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1150 return index; 1151 } 1152 1153 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1154 * address from the XHCI endpoint index. 1155 */ 1156 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1157 { 1158 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1159 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1160 return direction | number; 1161 } 1162 1163 /* Find the flag for this endpoint (for use in the control context). Use the 1164 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1165 * bit 1, etc. 1166 */ 1167 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1168 { 1169 return 1 << (xhci_get_endpoint_index(desc) + 1); 1170 } 1171 1172 /* Find the flag for this endpoint (for use in the control context). Use the 1173 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1174 * bit 1, etc. 1175 */ 1176 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1177 { 1178 return 1 << (ep_index + 1); 1179 } 1180 1181 /* Compute the last valid endpoint context index. Basically, this is the 1182 * endpoint index plus one. For slot contexts with more than valid endpoint, 1183 * we find the most significant bit set in the added contexts flags. 1184 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1185 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1186 */ 1187 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1188 { 1189 return fls(added_ctxs) - 1; 1190 } 1191 1192 /* Returns 1 if the arguments are OK; 1193 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1194 */ 1195 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1196 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1197 const char *func) { 1198 struct xhci_hcd *xhci; 1199 struct xhci_virt_device *virt_dev; 1200 1201 if (!hcd || (check_ep && !ep) || !udev) { 1202 pr_debug("xHCI %s called with invalid args\n", func); 1203 return -EINVAL; 1204 } 1205 if (!udev->parent) { 1206 pr_debug("xHCI %s called for root hub\n", func); 1207 return 0; 1208 } 1209 1210 xhci = hcd_to_xhci(hcd); 1211 if (check_virt_dev) { 1212 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1213 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1214 func); 1215 return -EINVAL; 1216 } 1217 1218 virt_dev = xhci->devs[udev->slot_id]; 1219 if (virt_dev->udev != udev) { 1220 xhci_dbg(xhci, "xHCI %s called with udev and " 1221 "virt_dev does not match\n", func); 1222 return -EINVAL; 1223 } 1224 } 1225 1226 if (xhci->xhc_state & XHCI_STATE_HALTED) 1227 return -ENODEV; 1228 1229 return 1; 1230 } 1231 1232 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1233 struct usb_device *udev, struct xhci_command *command, 1234 bool ctx_change, bool must_succeed); 1235 1236 /* 1237 * Full speed devices may have a max packet size greater than 8 bytes, but the 1238 * USB core doesn't know that until it reads the first 8 bytes of the 1239 * descriptor. If the usb_device's max packet size changes after that point, 1240 * we need to issue an evaluate context command and wait on it. 1241 */ 1242 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1243 unsigned int ep_index, struct urb *urb) 1244 { 1245 struct xhci_container_ctx *out_ctx; 1246 struct xhci_input_control_ctx *ctrl_ctx; 1247 struct xhci_ep_ctx *ep_ctx; 1248 struct xhci_command *command; 1249 int max_packet_size; 1250 int hw_max_packet_size; 1251 int ret = 0; 1252 1253 out_ctx = xhci->devs[slot_id]->out_ctx; 1254 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1255 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1256 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1257 if (hw_max_packet_size != max_packet_size) { 1258 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1259 "Max Packet Size for ep 0 changed."); 1260 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1261 "Max packet size in usb_device = %d", 1262 max_packet_size); 1263 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1264 "Max packet size in xHCI HW = %d", 1265 hw_max_packet_size); 1266 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1267 "Issuing evaluate context command."); 1268 1269 /* Set up the input context flags for the command */ 1270 /* FIXME: This won't work if a non-default control endpoint 1271 * changes max packet sizes. 1272 */ 1273 1274 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1275 if (!command) 1276 return -ENOMEM; 1277 1278 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1279 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 1280 if (!ctrl_ctx) { 1281 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1282 __func__); 1283 ret = -ENOMEM; 1284 goto command_cleanup; 1285 } 1286 /* Set up the modified control endpoint 0 */ 1287 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1288 xhci->devs[slot_id]->out_ctx, ep_index); 1289 1290 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1291 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1292 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1293 1294 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1295 ctrl_ctx->drop_flags = 0; 1296 1297 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1298 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1299 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1300 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1301 1302 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1303 true, false); 1304 1305 /* Clean up the input context for later use by bandwidth 1306 * functions. 1307 */ 1308 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1309 command_cleanup: 1310 kfree(command->completion); 1311 kfree(command); 1312 } 1313 return ret; 1314 } 1315 1316 /* 1317 * non-error returns are a promise to giveback() the urb later 1318 * we drop ownership so next owner (or urb unlink) can get it 1319 */ 1320 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1321 { 1322 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1323 struct xhci_td *buffer; 1324 unsigned long flags; 1325 int ret = 0; 1326 unsigned int slot_id, ep_index; 1327 struct urb_priv *urb_priv; 1328 int size, i; 1329 1330 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1331 true, true, __func__) <= 0) 1332 return -EINVAL; 1333 1334 slot_id = urb->dev->slot_id; 1335 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1336 1337 if (!HCD_HW_ACCESSIBLE(hcd)) { 1338 if (!in_interrupt()) 1339 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1340 ret = -ESHUTDOWN; 1341 goto exit; 1342 } 1343 1344 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1345 size = urb->number_of_packets; 1346 else 1347 size = 1; 1348 1349 urb_priv = kzalloc(sizeof(struct urb_priv) + 1350 size * sizeof(struct xhci_td *), mem_flags); 1351 if (!urb_priv) 1352 return -ENOMEM; 1353 1354 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1355 if (!buffer) { 1356 kfree(urb_priv); 1357 return -ENOMEM; 1358 } 1359 1360 for (i = 0; i < size; i++) { 1361 urb_priv->td[i] = buffer; 1362 buffer++; 1363 } 1364 1365 urb_priv->length = size; 1366 urb_priv->td_cnt = 0; 1367 urb->hcpriv = urb_priv; 1368 1369 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1370 /* Check to see if the max packet size for the default control 1371 * endpoint changed during FS device enumeration 1372 */ 1373 if (urb->dev->speed == USB_SPEED_FULL) { 1374 ret = xhci_check_maxpacket(xhci, slot_id, 1375 ep_index, urb); 1376 if (ret < 0) { 1377 xhci_urb_free_priv(xhci, urb_priv); 1378 urb->hcpriv = NULL; 1379 return ret; 1380 } 1381 } 1382 1383 /* We have a spinlock and interrupts disabled, so we must pass 1384 * atomic context to this function, which may allocate memory. 1385 */ 1386 spin_lock_irqsave(&xhci->lock, flags); 1387 if (xhci->xhc_state & XHCI_STATE_DYING) 1388 goto dying; 1389 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1390 slot_id, ep_index); 1391 if (ret) 1392 goto free_priv; 1393 spin_unlock_irqrestore(&xhci->lock, flags); 1394 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1395 spin_lock_irqsave(&xhci->lock, flags); 1396 if (xhci->xhc_state & XHCI_STATE_DYING) 1397 goto dying; 1398 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1399 EP_GETTING_STREAMS) { 1400 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1401 "is transitioning to using streams.\n"); 1402 ret = -EINVAL; 1403 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1404 EP_GETTING_NO_STREAMS) { 1405 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1406 "is transitioning to " 1407 "not having streams.\n"); 1408 ret = -EINVAL; 1409 } else { 1410 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1411 slot_id, ep_index); 1412 } 1413 if (ret) 1414 goto free_priv; 1415 spin_unlock_irqrestore(&xhci->lock, flags); 1416 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1417 spin_lock_irqsave(&xhci->lock, flags); 1418 if (xhci->xhc_state & XHCI_STATE_DYING) 1419 goto dying; 1420 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1421 slot_id, ep_index); 1422 if (ret) 1423 goto free_priv; 1424 spin_unlock_irqrestore(&xhci->lock, flags); 1425 } else { 1426 spin_lock_irqsave(&xhci->lock, flags); 1427 if (xhci->xhc_state & XHCI_STATE_DYING) 1428 goto dying; 1429 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1430 slot_id, ep_index); 1431 if (ret) 1432 goto free_priv; 1433 spin_unlock_irqrestore(&xhci->lock, flags); 1434 } 1435 exit: 1436 return ret; 1437 dying: 1438 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1439 "non-responsive xHCI host.\n", 1440 urb->ep->desc.bEndpointAddress, urb); 1441 ret = -ESHUTDOWN; 1442 free_priv: 1443 xhci_urb_free_priv(xhci, urb_priv); 1444 urb->hcpriv = NULL; 1445 spin_unlock_irqrestore(&xhci->lock, flags); 1446 return ret; 1447 } 1448 1449 /* Get the right ring for the given URB. 1450 * If the endpoint supports streams, boundary check the URB's stream ID. 1451 * If the endpoint doesn't support streams, return the singular endpoint ring. 1452 */ 1453 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1454 struct urb *urb) 1455 { 1456 unsigned int slot_id; 1457 unsigned int ep_index; 1458 unsigned int stream_id; 1459 struct xhci_virt_ep *ep; 1460 1461 slot_id = urb->dev->slot_id; 1462 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1463 stream_id = urb->stream_id; 1464 ep = &xhci->devs[slot_id]->eps[ep_index]; 1465 /* Common case: no streams */ 1466 if (!(ep->ep_state & EP_HAS_STREAMS)) 1467 return ep->ring; 1468 1469 if (stream_id == 0) { 1470 xhci_warn(xhci, 1471 "WARN: Slot ID %u, ep index %u has streams, " 1472 "but URB has no stream ID.\n", 1473 slot_id, ep_index); 1474 return NULL; 1475 } 1476 1477 if (stream_id < ep->stream_info->num_streams) 1478 return ep->stream_info->stream_rings[stream_id]; 1479 1480 xhci_warn(xhci, 1481 "WARN: Slot ID %u, ep index %u has " 1482 "stream IDs 1 to %u allocated, " 1483 "but stream ID %u is requested.\n", 1484 slot_id, ep_index, 1485 ep->stream_info->num_streams - 1, 1486 stream_id); 1487 return NULL; 1488 } 1489 1490 /* 1491 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1492 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1493 * should pick up where it left off in the TD, unless a Set Transfer Ring 1494 * Dequeue Pointer is issued. 1495 * 1496 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1497 * the ring. Since the ring is a contiguous structure, they can't be physically 1498 * removed. Instead, there are two options: 1499 * 1500 * 1) If the HC is in the middle of processing the URB to be canceled, we 1501 * simply move the ring's dequeue pointer past those TRBs using the Set 1502 * Transfer Ring Dequeue Pointer command. This will be the common case, 1503 * when drivers timeout on the last submitted URB and attempt to cancel. 1504 * 1505 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1506 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1507 * HC will need to invalidate the any TRBs it has cached after the stop 1508 * endpoint command, as noted in the xHCI 0.95 errata. 1509 * 1510 * 3) The TD may have completed by the time the Stop Endpoint Command 1511 * completes, so software needs to handle that case too. 1512 * 1513 * This function should protect against the TD enqueueing code ringing the 1514 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1515 * It also needs to account for multiple cancellations on happening at the same 1516 * time for the same endpoint. 1517 * 1518 * Note that this function can be called in any context, or so says 1519 * usb_hcd_unlink_urb() 1520 */ 1521 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1522 { 1523 unsigned long flags; 1524 int ret, i; 1525 u32 temp; 1526 struct xhci_hcd *xhci; 1527 struct urb_priv *urb_priv; 1528 struct xhci_td *td; 1529 unsigned int ep_index; 1530 struct xhci_ring *ep_ring; 1531 struct xhci_virt_ep *ep; 1532 struct xhci_command *command; 1533 1534 xhci = hcd_to_xhci(hcd); 1535 spin_lock_irqsave(&xhci->lock, flags); 1536 /* Make sure the URB hasn't completed or been unlinked already */ 1537 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1538 if (ret || !urb->hcpriv) 1539 goto done; 1540 temp = readl(&xhci->op_regs->status); 1541 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1542 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1543 "HW died, freeing TD."); 1544 urb_priv = urb->hcpriv; 1545 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1546 td = urb_priv->td[i]; 1547 if (!list_empty(&td->td_list)) 1548 list_del_init(&td->td_list); 1549 if (!list_empty(&td->cancelled_td_list)) 1550 list_del_init(&td->cancelled_td_list); 1551 } 1552 1553 usb_hcd_unlink_urb_from_ep(hcd, urb); 1554 spin_unlock_irqrestore(&xhci->lock, flags); 1555 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1556 xhci_urb_free_priv(xhci, urb_priv); 1557 return ret; 1558 } 1559 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1560 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1561 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1562 "Ep 0x%x: URB %p to be canceled on " 1563 "non-responsive xHCI host.", 1564 urb->ep->desc.bEndpointAddress, urb); 1565 /* Let the stop endpoint command watchdog timer (which set this 1566 * state) finish cleaning up the endpoint TD lists. We must 1567 * have caught it in the middle of dropping a lock and giving 1568 * back an URB. 1569 */ 1570 goto done; 1571 } 1572 1573 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1574 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1575 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1576 if (!ep_ring) { 1577 ret = -EINVAL; 1578 goto done; 1579 } 1580 1581 urb_priv = urb->hcpriv; 1582 i = urb_priv->td_cnt; 1583 if (i < urb_priv->length) 1584 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1585 "Cancel URB %p, dev %s, ep 0x%x, " 1586 "starting at offset 0x%llx", 1587 urb, urb->dev->devpath, 1588 urb->ep->desc.bEndpointAddress, 1589 (unsigned long long) xhci_trb_virt_to_dma( 1590 urb_priv->td[i]->start_seg, 1591 urb_priv->td[i]->first_trb)); 1592 1593 for (; i < urb_priv->length; i++) { 1594 td = urb_priv->td[i]; 1595 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1596 } 1597 1598 /* Queue a stop endpoint command, but only if this is 1599 * the first cancellation to be handled. 1600 */ 1601 if (!(ep->ep_state & EP_HALT_PENDING)) { 1602 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1603 if (!command) { 1604 ret = -ENOMEM; 1605 goto done; 1606 } 1607 ep->ep_state |= EP_HALT_PENDING; 1608 ep->stop_cmds_pending++; 1609 ep->stop_cmd_timer.expires = jiffies + 1610 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1611 add_timer(&ep->stop_cmd_timer); 1612 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1613 ep_index, 0); 1614 xhci_ring_cmd_db(xhci); 1615 } 1616 done: 1617 spin_unlock_irqrestore(&xhci->lock, flags); 1618 return ret; 1619 } 1620 1621 /* Drop an endpoint from a new bandwidth configuration for this device. 1622 * Only one call to this function is allowed per endpoint before 1623 * check_bandwidth() or reset_bandwidth() must be called. 1624 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1625 * add the endpoint to the schedule with possibly new parameters denoted by a 1626 * different endpoint descriptor in usb_host_endpoint. 1627 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1628 * not allowed. 1629 * 1630 * The USB core will not allow URBs to be queued to an endpoint that is being 1631 * disabled, so there's no need for mutual exclusion to protect 1632 * the xhci->devs[slot_id] structure. 1633 */ 1634 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1635 struct usb_host_endpoint *ep) 1636 { 1637 struct xhci_hcd *xhci; 1638 struct xhci_container_ctx *in_ctx, *out_ctx; 1639 struct xhci_input_control_ctx *ctrl_ctx; 1640 unsigned int ep_index; 1641 struct xhci_ep_ctx *ep_ctx; 1642 u32 drop_flag; 1643 u32 new_add_flags, new_drop_flags; 1644 int ret; 1645 1646 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1647 if (ret <= 0) 1648 return ret; 1649 xhci = hcd_to_xhci(hcd); 1650 if (xhci->xhc_state & XHCI_STATE_DYING) 1651 return -ENODEV; 1652 1653 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1654 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1655 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1656 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1657 __func__, drop_flag); 1658 return 0; 1659 } 1660 1661 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1662 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1663 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1664 if (!ctrl_ctx) { 1665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1666 __func__); 1667 return 0; 1668 } 1669 1670 ep_index = xhci_get_endpoint_index(&ep->desc); 1671 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1672 /* If the HC already knows the endpoint is disabled, 1673 * or the HCD has noted it is disabled, ignore this request 1674 */ 1675 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1676 cpu_to_le32(EP_STATE_DISABLED)) || 1677 le32_to_cpu(ctrl_ctx->drop_flags) & 1678 xhci_get_endpoint_flag(&ep->desc)) { 1679 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1680 __func__, ep); 1681 return 0; 1682 } 1683 1684 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1685 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1686 1687 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1688 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1689 1690 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1691 1692 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1693 (unsigned int) ep->desc.bEndpointAddress, 1694 udev->slot_id, 1695 (unsigned int) new_drop_flags, 1696 (unsigned int) new_add_flags); 1697 return 0; 1698 } 1699 1700 /* Add an endpoint to a new possible bandwidth configuration for this device. 1701 * Only one call to this function is allowed per endpoint before 1702 * check_bandwidth() or reset_bandwidth() must be called. 1703 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1704 * add the endpoint to the schedule with possibly new parameters denoted by a 1705 * different endpoint descriptor in usb_host_endpoint. 1706 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1707 * not allowed. 1708 * 1709 * The USB core will not allow URBs to be queued to an endpoint until the 1710 * configuration or alt setting is installed in the device, so there's no need 1711 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1712 */ 1713 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1714 struct usb_host_endpoint *ep) 1715 { 1716 struct xhci_hcd *xhci; 1717 struct xhci_container_ctx *in_ctx, *out_ctx; 1718 unsigned int ep_index; 1719 struct xhci_input_control_ctx *ctrl_ctx; 1720 u32 added_ctxs; 1721 u32 new_add_flags, new_drop_flags; 1722 struct xhci_virt_device *virt_dev; 1723 int ret = 0; 1724 1725 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1726 if (ret <= 0) { 1727 /* So we won't queue a reset ep command for a root hub */ 1728 ep->hcpriv = NULL; 1729 return ret; 1730 } 1731 xhci = hcd_to_xhci(hcd); 1732 if (xhci->xhc_state & XHCI_STATE_DYING) 1733 return -ENODEV; 1734 1735 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1736 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1737 /* FIXME when we have to issue an evaluate endpoint command to 1738 * deal with ep0 max packet size changing once we get the 1739 * descriptors 1740 */ 1741 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1742 __func__, added_ctxs); 1743 return 0; 1744 } 1745 1746 virt_dev = xhci->devs[udev->slot_id]; 1747 in_ctx = virt_dev->in_ctx; 1748 out_ctx = virt_dev->out_ctx; 1749 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1750 if (!ctrl_ctx) { 1751 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1752 __func__); 1753 return 0; 1754 } 1755 1756 ep_index = xhci_get_endpoint_index(&ep->desc); 1757 /* If this endpoint is already in use, and the upper layers are trying 1758 * to add it again without dropping it, reject the addition. 1759 */ 1760 if (virt_dev->eps[ep_index].ring && 1761 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1762 xhci_get_endpoint_flag(&ep->desc))) { 1763 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1764 "without dropping it.\n", 1765 (unsigned int) ep->desc.bEndpointAddress); 1766 return -EINVAL; 1767 } 1768 1769 /* If the HCD has already noted the endpoint is enabled, 1770 * ignore this request. 1771 */ 1772 if (le32_to_cpu(ctrl_ctx->add_flags) & 1773 xhci_get_endpoint_flag(&ep->desc)) { 1774 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1775 __func__, ep); 1776 return 0; 1777 } 1778 1779 /* 1780 * Configuration and alternate setting changes must be done in 1781 * process context, not interrupt context (or so documenation 1782 * for usb_set_interface() and usb_set_configuration() claim). 1783 */ 1784 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1785 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1786 __func__, ep->desc.bEndpointAddress); 1787 return -ENOMEM; 1788 } 1789 1790 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1791 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1792 1793 /* If xhci_endpoint_disable() was called for this endpoint, but the 1794 * xHC hasn't been notified yet through the check_bandwidth() call, 1795 * this re-adds a new state for the endpoint from the new endpoint 1796 * descriptors. We must drop and re-add this endpoint, so we leave the 1797 * drop flags alone. 1798 */ 1799 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1800 1801 /* Store the usb_device pointer for later use */ 1802 ep->hcpriv = udev; 1803 1804 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1805 (unsigned int) ep->desc.bEndpointAddress, 1806 udev->slot_id, 1807 (unsigned int) new_drop_flags, 1808 (unsigned int) new_add_flags); 1809 return 0; 1810 } 1811 1812 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1813 { 1814 struct xhci_input_control_ctx *ctrl_ctx; 1815 struct xhci_ep_ctx *ep_ctx; 1816 struct xhci_slot_ctx *slot_ctx; 1817 int i; 1818 1819 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1820 if (!ctrl_ctx) { 1821 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1822 __func__); 1823 return; 1824 } 1825 1826 /* When a device's add flag and drop flag are zero, any subsequent 1827 * configure endpoint command will leave that endpoint's state 1828 * untouched. Make sure we don't leave any old state in the input 1829 * endpoint contexts. 1830 */ 1831 ctrl_ctx->drop_flags = 0; 1832 ctrl_ctx->add_flags = 0; 1833 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1834 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1835 /* Endpoint 0 is always valid */ 1836 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1837 for (i = 1; i < 31; ++i) { 1838 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1839 ep_ctx->ep_info = 0; 1840 ep_ctx->ep_info2 = 0; 1841 ep_ctx->deq = 0; 1842 ep_ctx->tx_info = 0; 1843 } 1844 } 1845 1846 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1847 struct usb_device *udev, u32 *cmd_status) 1848 { 1849 int ret; 1850 1851 switch (*cmd_status) { 1852 case COMP_CMD_ABORT: 1853 case COMP_CMD_STOP: 1854 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1855 ret = -ETIME; 1856 break; 1857 case COMP_ENOMEM: 1858 dev_warn(&udev->dev, 1859 "Not enough host controller resources for new device state.\n"); 1860 ret = -ENOMEM; 1861 /* FIXME: can we allocate more resources for the HC? */ 1862 break; 1863 case COMP_BW_ERR: 1864 case COMP_2ND_BW_ERR: 1865 dev_warn(&udev->dev, 1866 "Not enough bandwidth for new device state.\n"); 1867 ret = -ENOSPC; 1868 /* FIXME: can we go back to the old state? */ 1869 break; 1870 case COMP_TRB_ERR: 1871 /* the HCD set up something wrong */ 1872 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1873 "add flag = 1, " 1874 "and endpoint is not disabled.\n"); 1875 ret = -EINVAL; 1876 break; 1877 case COMP_DEV_ERR: 1878 dev_warn(&udev->dev, 1879 "ERROR: Incompatible device for endpoint configure command.\n"); 1880 ret = -ENODEV; 1881 break; 1882 case COMP_SUCCESS: 1883 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1884 "Successful Endpoint Configure command"); 1885 ret = 0; 1886 break; 1887 default: 1888 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1889 *cmd_status); 1890 ret = -EINVAL; 1891 break; 1892 } 1893 return ret; 1894 } 1895 1896 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1897 struct usb_device *udev, u32 *cmd_status) 1898 { 1899 int ret; 1900 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1901 1902 switch (*cmd_status) { 1903 case COMP_CMD_ABORT: 1904 case COMP_CMD_STOP: 1905 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1906 ret = -ETIME; 1907 break; 1908 case COMP_EINVAL: 1909 dev_warn(&udev->dev, 1910 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1911 ret = -EINVAL; 1912 break; 1913 case COMP_EBADSLT: 1914 dev_warn(&udev->dev, 1915 "WARN: slot not enabled for evaluate context command.\n"); 1916 ret = -EINVAL; 1917 break; 1918 case COMP_CTX_STATE: 1919 dev_warn(&udev->dev, 1920 "WARN: invalid context state for evaluate context command.\n"); 1921 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1922 ret = -EINVAL; 1923 break; 1924 case COMP_DEV_ERR: 1925 dev_warn(&udev->dev, 1926 "ERROR: Incompatible device for evaluate context command.\n"); 1927 ret = -ENODEV; 1928 break; 1929 case COMP_MEL_ERR: 1930 /* Max Exit Latency too large error */ 1931 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1932 ret = -EINVAL; 1933 break; 1934 case COMP_SUCCESS: 1935 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1936 "Successful evaluate context command"); 1937 ret = 0; 1938 break; 1939 default: 1940 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1941 *cmd_status); 1942 ret = -EINVAL; 1943 break; 1944 } 1945 return ret; 1946 } 1947 1948 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1949 struct xhci_input_control_ctx *ctrl_ctx) 1950 { 1951 u32 valid_add_flags; 1952 u32 valid_drop_flags; 1953 1954 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1955 * (bit 1). The default control endpoint is added during the Address 1956 * Device command and is never removed until the slot is disabled. 1957 */ 1958 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1959 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1960 1961 /* Use hweight32 to count the number of ones in the add flags, or 1962 * number of endpoints added. Don't count endpoints that are changed 1963 * (both added and dropped). 1964 */ 1965 return hweight32(valid_add_flags) - 1966 hweight32(valid_add_flags & valid_drop_flags); 1967 } 1968 1969 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1970 struct xhci_input_control_ctx *ctrl_ctx) 1971 { 1972 u32 valid_add_flags; 1973 u32 valid_drop_flags; 1974 1975 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1976 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1977 1978 return hweight32(valid_drop_flags) - 1979 hweight32(valid_add_flags & valid_drop_flags); 1980 } 1981 1982 /* 1983 * We need to reserve the new number of endpoints before the configure endpoint 1984 * command completes. We can't subtract the dropped endpoints from the number 1985 * of active endpoints until the command completes because we can oversubscribe 1986 * the host in this case: 1987 * 1988 * - the first configure endpoint command drops more endpoints than it adds 1989 * - a second configure endpoint command that adds more endpoints is queued 1990 * - the first configure endpoint command fails, so the config is unchanged 1991 * - the second command may succeed, even though there isn't enough resources 1992 * 1993 * Must be called with xhci->lock held. 1994 */ 1995 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1996 struct xhci_input_control_ctx *ctrl_ctx) 1997 { 1998 u32 added_eps; 1999 2000 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2001 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2002 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2003 "Not enough ep ctxs: " 2004 "%u active, need to add %u, limit is %u.", 2005 xhci->num_active_eps, added_eps, 2006 xhci->limit_active_eps); 2007 return -ENOMEM; 2008 } 2009 xhci->num_active_eps += added_eps; 2010 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2011 "Adding %u ep ctxs, %u now active.", added_eps, 2012 xhci->num_active_eps); 2013 return 0; 2014 } 2015 2016 /* 2017 * The configure endpoint was failed by the xHC for some other reason, so we 2018 * need to revert the resources that failed configuration would have used. 2019 * 2020 * Must be called with xhci->lock held. 2021 */ 2022 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2023 struct xhci_input_control_ctx *ctrl_ctx) 2024 { 2025 u32 num_failed_eps; 2026 2027 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2028 xhci->num_active_eps -= num_failed_eps; 2029 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2030 "Removing %u failed ep ctxs, %u now active.", 2031 num_failed_eps, 2032 xhci->num_active_eps); 2033 } 2034 2035 /* 2036 * Now that the command has completed, clean up the active endpoint count by 2037 * subtracting out the endpoints that were dropped (but not changed). 2038 * 2039 * Must be called with xhci->lock held. 2040 */ 2041 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2042 struct xhci_input_control_ctx *ctrl_ctx) 2043 { 2044 u32 num_dropped_eps; 2045 2046 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2047 xhci->num_active_eps -= num_dropped_eps; 2048 if (num_dropped_eps) 2049 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2050 "Removing %u dropped ep ctxs, %u now active.", 2051 num_dropped_eps, 2052 xhci->num_active_eps); 2053 } 2054 2055 static unsigned int xhci_get_block_size(struct usb_device *udev) 2056 { 2057 switch (udev->speed) { 2058 case USB_SPEED_LOW: 2059 case USB_SPEED_FULL: 2060 return FS_BLOCK; 2061 case USB_SPEED_HIGH: 2062 return HS_BLOCK; 2063 case USB_SPEED_SUPER: 2064 return SS_BLOCK; 2065 case USB_SPEED_UNKNOWN: 2066 case USB_SPEED_WIRELESS: 2067 default: 2068 /* Should never happen */ 2069 return 1; 2070 } 2071 } 2072 2073 static unsigned int 2074 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2075 { 2076 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2077 return LS_OVERHEAD; 2078 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2079 return FS_OVERHEAD; 2080 return HS_OVERHEAD; 2081 } 2082 2083 /* If we are changing a LS/FS device under a HS hub, 2084 * make sure (if we are activating a new TT) that the HS bus has enough 2085 * bandwidth for this new TT. 2086 */ 2087 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2088 struct xhci_virt_device *virt_dev, 2089 int old_active_eps) 2090 { 2091 struct xhci_interval_bw_table *bw_table; 2092 struct xhci_tt_bw_info *tt_info; 2093 2094 /* Find the bandwidth table for the root port this TT is attached to. */ 2095 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2096 tt_info = virt_dev->tt_info; 2097 /* If this TT already had active endpoints, the bandwidth for this TT 2098 * has already been added. Removing all periodic endpoints (and thus 2099 * making the TT enactive) will only decrease the bandwidth used. 2100 */ 2101 if (old_active_eps) 2102 return 0; 2103 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2104 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2105 return -ENOMEM; 2106 return 0; 2107 } 2108 /* Not sure why we would have no new active endpoints... 2109 * 2110 * Maybe because of an Evaluate Context change for a hub update or a 2111 * control endpoint 0 max packet size change? 2112 * FIXME: skip the bandwidth calculation in that case. 2113 */ 2114 return 0; 2115 } 2116 2117 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2118 struct xhci_virt_device *virt_dev) 2119 { 2120 unsigned int bw_reserved; 2121 2122 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2123 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2124 return -ENOMEM; 2125 2126 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2127 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2128 return -ENOMEM; 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * This algorithm is a very conservative estimate of the worst-case scheduling 2135 * scenario for any one interval. The hardware dynamically schedules the 2136 * packets, so we can't tell which microframe could be the limiting factor in 2137 * the bandwidth scheduling. This only takes into account periodic endpoints. 2138 * 2139 * Obviously, we can't solve an NP complete problem to find the minimum worst 2140 * case scenario. Instead, we come up with an estimate that is no less than 2141 * the worst case bandwidth used for any one microframe, but may be an 2142 * over-estimate. 2143 * 2144 * We walk the requirements for each endpoint by interval, starting with the 2145 * smallest interval, and place packets in the schedule where there is only one 2146 * possible way to schedule packets for that interval. In order to simplify 2147 * this algorithm, we record the largest max packet size for each interval, and 2148 * assume all packets will be that size. 2149 * 2150 * For interval 0, we obviously must schedule all packets for each interval. 2151 * The bandwidth for interval 0 is just the amount of data to be transmitted 2152 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2153 * the number of packets). 2154 * 2155 * For interval 1, we have two possible microframes to schedule those packets 2156 * in. For this algorithm, if we can schedule the same number of packets for 2157 * each possible scheduling opportunity (each microframe), we will do so. The 2158 * remaining number of packets will be saved to be transmitted in the gaps in 2159 * the next interval's scheduling sequence. 2160 * 2161 * As we move those remaining packets to be scheduled with interval 2 packets, 2162 * we have to double the number of remaining packets to transmit. This is 2163 * because the intervals are actually powers of 2, and we would be transmitting 2164 * the previous interval's packets twice in this interval. We also have to be 2165 * sure that when we look at the largest max packet size for this interval, we 2166 * also look at the largest max packet size for the remaining packets and take 2167 * the greater of the two. 2168 * 2169 * The algorithm continues to evenly distribute packets in each scheduling 2170 * opportunity, and push the remaining packets out, until we get to the last 2171 * interval. Then those packets and their associated overhead are just added 2172 * to the bandwidth used. 2173 */ 2174 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2175 struct xhci_virt_device *virt_dev, 2176 int old_active_eps) 2177 { 2178 unsigned int bw_reserved; 2179 unsigned int max_bandwidth; 2180 unsigned int bw_used; 2181 unsigned int block_size; 2182 struct xhci_interval_bw_table *bw_table; 2183 unsigned int packet_size = 0; 2184 unsigned int overhead = 0; 2185 unsigned int packets_transmitted = 0; 2186 unsigned int packets_remaining = 0; 2187 unsigned int i; 2188 2189 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2190 return xhci_check_ss_bw(xhci, virt_dev); 2191 2192 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2193 max_bandwidth = HS_BW_LIMIT; 2194 /* Convert percent of bus BW reserved to blocks reserved */ 2195 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2196 } else { 2197 max_bandwidth = FS_BW_LIMIT; 2198 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2199 } 2200 2201 bw_table = virt_dev->bw_table; 2202 /* We need to translate the max packet size and max ESIT payloads into 2203 * the units the hardware uses. 2204 */ 2205 block_size = xhci_get_block_size(virt_dev->udev); 2206 2207 /* If we are manipulating a LS/FS device under a HS hub, double check 2208 * that the HS bus has enough bandwidth if we are activing a new TT. 2209 */ 2210 if (virt_dev->tt_info) { 2211 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2212 "Recalculating BW for rootport %u", 2213 virt_dev->real_port); 2214 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2215 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2216 "newly activated TT.\n"); 2217 return -ENOMEM; 2218 } 2219 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2220 "Recalculating BW for TT slot %u port %u", 2221 virt_dev->tt_info->slot_id, 2222 virt_dev->tt_info->ttport); 2223 } else { 2224 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2225 "Recalculating BW for rootport %u", 2226 virt_dev->real_port); 2227 } 2228 2229 /* Add in how much bandwidth will be used for interval zero, or the 2230 * rounded max ESIT payload + number of packets * largest overhead. 2231 */ 2232 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2233 bw_table->interval_bw[0].num_packets * 2234 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2235 2236 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2237 unsigned int bw_added; 2238 unsigned int largest_mps; 2239 unsigned int interval_overhead; 2240 2241 /* 2242 * How many packets could we transmit in this interval? 2243 * If packets didn't fit in the previous interval, we will need 2244 * to transmit that many packets twice within this interval. 2245 */ 2246 packets_remaining = 2 * packets_remaining + 2247 bw_table->interval_bw[i].num_packets; 2248 2249 /* Find the largest max packet size of this or the previous 2250 * interval. 2251 */ 2252 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2253 largest_mps = 0; 2254 else { 2255 struct xhci_virt_ep *virt_ep; 2256 struct list_head *ep_entry; 2257 2258 ep_entry = bw_table->interval_bw[i].endpoints.next; 2259 virt_ep = list_entry(ep_entry, 2260 struct xhci_virt_ep, bw_endpoint_list); 2261 /* Convert to blocks, rounding up */ 2262 largest_mps = DIV_ROUND_UP( 2263 virt_ep->bw_info.max_packet_size, 2264 block_size); 2265 } 2266 if (largest_mps > packet_size) 2267 packet_size = largest_mps; 2268 2269 /* Use the larger overhead of this or the previous interval. */ 2270 interval_overhead = xhci_get_largest_overhead( 2271 &bw_table->interval_bw[i]); 2272 if (interval_overhead > overhead) 2273 overhead = interval_overhead; 2274 2275 /* How many packets can we evenly distribute across 2276 * (1 << (i + 1)) possible scheduling opportunities? 2277 */ 2278 packets_transmitted = packets_remaining >> (i + 1); 2279 2280 /* Add in the bandwidth used for those scheduled packets */ 2281 bw_added = packets_transmitted * (overhead + packet_size); 2282 2283 /* How many packets do we have remaining to transmit? */ 2284 packets_remaining = packets_remaining % (1 << (i + 1)); 2285 2286 /* What largest max packet size should those packets have? */ 2287 /* If we've transmitted all packets, don't carry over the 2288 * largest packet size. 2289 */ 2290 if (packets_remaining == 0) { 2291 packet_size = 0; 2292 overhead = 0; 2293 } else if (packets_transmitted > 0) { 2294 /* Otherwise if we do have remaining packets, and we've 2295 * scheduled some packets in this interval, take the 2296 * largest max packet size from endpoints with this 2297 * interval. 2298 */ 2299 packet_size = largest_mps; 2300 overhead = interval_overhead; 2301 } 2302 /* Otherwise carry over packet_size and overhead from the last 2303 * time we had a remainder. 2304 */ 2305 bw_used += bw_added; 2306 if (bw_used > max_bandwidth) { 2307 xhci_warn(xhci, "Not enough bandwidth. " 2308 "Proposed: %u, Max: %u\n", 2309 bw_used, max_bandwidth); 2310 return -ENOMEM; 2311 } 2312 } 2313 /* 2314 * Ok, we know we have some packets left over after even-handedly 2315 * scheduling interval 15. We don't know which microframes they will 2316 * fit into, so we over-schedule and say they will be scheduled every 2317 * microframe. 2318 */ 2319 if (packets_remaining > 0) 2320 bw_used += overhead + packet_size; 2321 2322 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2323 unsigned int port_index = virt_dev->real_port - 1; 2324 2325 /* OK, we're manipulating a HS device attached to a 2326 * root port bandwidth domain. Include the number of active TTs 2327 * in the bandwidth used. 2328 */ 2329 bw_used += TT_HS_OVERHEAD * 2330 xhci->rh_bw[port_index].num_active_tts; 2331 } 2332 2333 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2334 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2335 "Available: %u " "percent", 2336 bw_used, max_bandwidth, bw_reserved, 2337 (max_bandwidth - bw_used - bw_reserved) * 100 / 2338 max_bandwidth); 2339 2340 bw_used += bw_reserved; 2341 if (bw_used > max_bandwidth) { 2342 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2343 bw_used, max_bandwidth); 2344 return -ENOMEM; 2345 } 2346 2347 bw_table->bw_used = bw_used; 2348 return 0; 2349 } 2350 2351 static bool xhci_is_async_ep(unsigned int ep_type) 2352 { 2353 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2354 ep_type != ISOC_IN_EP && 2355 ep_type != INT_IN_EP); 2356 } 2357 2358 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2359 { 2360 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2361 } 2362 2363 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2364 { 2365 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2366 2367 if (ep_bw->ep_interval == 0) 2368 return SS_OVERHEAD_BURST + 2369 (ep_bw->mult * ep_bw->num_packets * 2370 (SS_OVERHEAD + mps)); 2371 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2372 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2373 1 << ep_bw->ep_interval); 2374 2375 } 2376 2377 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2378 struct xhci_bw_info *ep_bw, 2379 struct xhci_interval_bw_table *bw_table, 2380 struct usb_device *udev, 2381 struct xhci_virt_ep *virt_ep, 2382 struct xhci_tt_bw_info *tt_info) 2383 { 2384 struct xhci_interval_bw *interval_bw; 2385 int normalized_interval; 2386 2387 if (xhci_is_async_ep(ep_bw->type)) 2388 return; 2389 2390 if (udev->speed == USB_SPEED_SUPER) { 2391 if (xhci_is_sync_in_ep(ep_bw->type)) 2392 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2393 xhci_get_ss_bw_consumed(ep_bw); 2394 else 2395 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2396 xhci_get_ss_bw_consumed(ep_bw); 2397 return; 2398 } 2399 2400 /* SuperSpeed endpoints never get added to intervals in the table, so 2401 * this check is only valid for HS/FS/LS devices. 2402 */ 2403 if (list_empty(&virt_ep->bw_endpoint_list)) 2404 return; 2405 /* For LS/FS devices, we need to translate the interval expressed in 2406 * microframes to frames. 2407 */ 2408 if (udev->speed == USB_SPEED_HIGH) 2409 normalized_interval = ep_bw->ep_interval; 2410 else 2411 normalized_interval = ep_bw->ep_interval - 3; 2412 2413 if (normalized_interval == 0) 2414 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2415 interval_bw = &bw_table->interval_bw[normalized_interval]; 2416 interval_bw->num_packets -= ep_bw->num_packets; 2417 switch (udev->speed) { 2418 case USB_SPEED_LOW: 2419 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2420 break; 2421 case USB_SPEED_FULL: 2422 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2423 break; 2424 case USB_SPEED_HIGH: 2425 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2426 break; 2427 case USB_SPEED_SUPER: 2428 case USB_SPEED_UNKNOWN: 2429 case USB_SPEED_WIRELESS: 2430 /* Should never happen because only LS/FS/HS endpoints will get 2431 * added to the endpoint list. 2432 */ 2433 return; 2434 } 2435 if (tt_info) 2436 tt_info->active_eps -= 1; 2437 list_del_init(&virt_ep->bw_endpoint_list); 2438 } 2439 2440 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2441 struct xhci_bw_info *ep_bw, 2442 struct xhci_interval_bw_table *bw_table, 2443 struct usb_device *udev, 2444 struct xhci_virt_ep *virt_ep, 2445 struct xhci_tt_bw_info *tt_info) 2446 { 2447 struct xhci_interval_bw *interval_bw; 2448 struct xhci_virt_ep *smaller_ep; 2449 int normalized_interval; 2450 2451 if (xhci_is_async_ep(ep_bw->type)) 2452 return; 2453 2454 if (udev->speed == USB_SPEED_SUPER) { 2455 if (xhci_is_sync_in_ep(ep_bw->type)) 2456 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2457 xhci_get_ss_bw_consumed(ep_bw); 2458 else 2459 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2460 xhci_get_ss_bw_consumed(ep_bw); 2461 return; 2462 } 2463 2464 /* For LS/FS devices, we need to translate the interval expressed in 2465 * microframes to frames. 2466 */ 2467 if (udev->speed == USB_SPEED_HIGH) 2468 normalized_interval = ep_bw->ep_interval; 2469 else 2470 normalized_interval = ep_bw->ep_interval - 3; 2471 2472 if (normalized_interval == 0) 2473 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2474 interval_bw = &bw_table->interval_bw[normalized_interval]; 2475 interval_bw->num_packets += ep_bw->num_packets; 2476 switch (udev->speed) { 2477 case USB_SPEED_LOW: 2478 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2479 break; 2480 case USB_SPEED_FULL: 2481 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2482 break; 2483 case USB_SPEED_HIGH: 2484 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2485 break; 2486 case USB_SPEED_SUPER: 2487 case USB_SPEED_UNKNOWN: 2488 case USB_SPEED_WIRELESS: 2489 /* Should never happen because only LS/FS/HS endpoints will get 2490 * added to the endpoint list. 2491 */ 2492 return; 2493 } 2494 2495 if (tt_info) 2496 tt_info->active_eps += 1; 2497 /* Insert the endpoint into the list, largest max packet size first. */ 2498 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2499 bw_endpoint_list) { 2500 if (ep_bw->max_packet_size >= 2501 smaller_ep->bw_info.max_packet_size) { 2502 /* Add the new ep before the smaller endpoint */ 2503 list_add_tail(&virt_ep->bw_endpoint_list, 2504 &smaller_ep->bw_endpoint_list); 2505 return; 2506 } 2507 } 2508 /* Add the new endpoint at the end of the list. */ 2509 list_add_tail(&virt_ep->bw_endpoint_list, 2510 &interval_bw->endpoints); 2511 } 2512 2513 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2514 struct xhci_virt_device *virt_dev, 2515 int old_active_eps) 2516 { 2517 struct xhci_root_port_bw_info *rh_bw_info; 2518 if (!virt_dev->tt_info) 2519 return; 2520 2521 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2522 if (old_active_eps == 0 && 2523 virt_dev->tt_info->active_eps != 0) { 2524 rh_bw_info->num_active_tts += 1; 2525 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2526 } else if (old_active_eps != 0 && 2527 virt_dev->tt_info->active_eps == 0) { 2528 rh_bw_info->num_active_tts -= 1; 2529 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2530 } 2531 } 2532 2533 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2534 struct xhci_virt_device *virt_dev, 2535 struct xhci_container_ctx *in_ctx) 2536 { 2537 struct xhci_bw_info ep_bw_info[31]; 2538 int i; 2539 struct xhci_input_control_ctx *ctrl_ctx; 2540 int old_active_eps = 0; 2541 2542 if (virt_dev->tt_info) 2543 old_active_eps = virt_dev->tt_info->active_eps; 2544 2545 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2546 if (!ctrl_ctx) { 2547 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2548 __func__); 2549 return -ENOMEM; 2550 } 2551 2552 for (i = 0; i < 31; i++) { 2553 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2554 continue; 2555 2556 /* Make a copy of the BW info in case we need to revert this */ 2557 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2558 sizeof(ep_bw_info[i])); 2559 /* Drop the endpoint from the interval table if the endpoint is 2560 * being dropped or changed. 2561 */ 2562 if (EP_IS_DROPPED(ctrl_ctx, i)) 2563 xhci_drop_ep_from_interval_table(xhci, 2564 &virt_dev->eps[i].bw_info, 2565 virt_dev->bw_table, 2566 virt_dev->udev, 2567 &virt_dev->eps[i], 2568 virt_dev->tt_info); 2569 } 2570 /* Overwrite the information stored in the endpoints' bw_info */ 2571 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2572 for (i = 0; i < 31; i++) { 2573 /* Add any changed or added endpoints to the interval table */ 2574 if (EP_IS_ADDED(ctrl_ctx, i)) 2575 xhci_add_ep_to_interval_table(xhci, 2576 &virt_dev->eps[i].bw_info, 2577 virt_dev->bw_table, 2578 virt_dev->udev, 2579 &virt_dev->eps[i], 2580 virt_dev->tt_info); 2581 } 2582 2583 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2584 /* Ok, this fits in the bandwidth we have. 2585 * Update the number of active TTs. 2586 */ 2587 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2588 return 0; 2589 } 2590 2591 /* We don't have enough bandwidth for this, revert the stored info. */ 2592 for (i = 0; i < 31; i++) { 2593 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2594 continue; 2595 2596 /* Drop the new copies of any added or changed endpoints from 2597 * the interval table. 2598 */ 2599 if (EP_IS_ADDED(ctrl_ctx, i)) { 2600 xhci_drop_ep_from_interval_table(xhci, 2601 &virt_dev->eps[i].bw_info, 2602 virt_dev->bw_table, 2603 virt_dev->udev, 2604 &virt_dev->eps[i], 2605 virt_dev->tt_info); 2606 } 2607 /* Revert the endpoint back to its old information */ 2608 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2609 sizeof(ep_bw_info[i])); 2610 /* Add any changed or dropped endpoints back into the table */ 2611 if (EP_IS_DROPPED(ctrl_ctx, i)) 2612 xhci_add_ep_to_interval_table(xhci, 2613 &virt_dev->eps[i].bw_info, 2614 virt_dev->bw_table, 2615 virt_dev->udev, 2616 &virt_dev->eps[i], 2617 virt_dev->tt_info); 2618 } 2619 return -ENOMEM; 2620 } 2621 2622 2623 /* Issue a configure endpoint command or evaluate context command 2624 * and wait for it to finish. 2625 */ 2626 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2627 struct usb_device *udev, 2628 struct xhci_command *command, 2629 bool ctx_change, bool must_succeed) 2630 { 2631 int ret; 2632 unsigned long flags; 2633 struct xhci_input_control_ctx *ctrl_ctx; 2634 struct xhci_virt_device *virt_dev; 2635 2636 if (!command) 2637 return -EINVAL; 2638 2639 spin_lock_irqsave(&xhci->lock, flags); 2640 virt_dev = xhci->devs[udev->slot_id]; 2641 2642 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2643 if (!ctrl_ctx) { 2644 spin_unlock_irqrestore(&xhci->lock, flags); 2645 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2646 __func__); 2647 return -ENOMEM; 2648 } 2649 2650 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2651 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2652 spin_unlock_irqrestore(&xhci->lock, flags); 2653 xhci_warn(xhci, "Not enough host resources, " 2654 "active endpoint contexts = %u\n", 2655 xhci->num_active_eps); 2656 return -ENOMEM; 2657 } 2658 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2659 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2660 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2661 xhci_free_host_resources(xhci, ctrl_ctx); 2662 spin_unlock_irqrestore(&xhci->lock, flags); 2663 xhci_warn(xhci, "Not enough bandwidth\n"); 2664 return -ENOMEM; 2665 } 2666 2667 if (!ctx_change) 2668 ret = xhci_queue_configure_endpoint(xhci, command, 2669 command->in_ctx->dma, 2670 udev->slot_id, must_succeed); 2671 else 2672 ret = xhci_queue_evaluate_context(xhci, command, 2673 command->in_ctx->dma, 2674 udev->slot_id, must_succeed); 2675 if (ret < 0) { 2676 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2677 xhci_free_host_resources(xhci, ctrl_ctx); 2678 spin_unlock_irqrestore(&xhci->lock, flags); 2679 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2680 "FIXME allocate a new ring segment"); 2681 return -ENOMEM; 2682 } 2683 xhci_ring_cmd_db(xhci); 2684 spin_unlock_irqrestore(&xhci->lock, flags); 2685 2686 /* Wait for the configure endpoint command to complete */ 2687 wait_for_completion(command->completion); 2688 2689 if (!ctx_change) 2690 ret = xhci_configure_endpoint_result(xhci, udev, 2691 &command->status); 2692 else 2693 ret = xhci_evaluate_context_result(xhci, udev, 2694 &command->status); 2695 2696 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2697 spin_lock_irqsave(&xhci->lock, flags); 2698 /* If the command failed, remove the reserved resources. 2699 * Otherwise, clean up the estimate to include dropped eps. 2700 */ 2701 if (ret) 2702 xhci_free_host_resources(xhci, ctrl_ctx); 2703 else 2704 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2705 spin_unlock_irqrestore(&xhci->lock, flags); 2706 } 2707 return ret; 2708 } 2709 2710 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2711 struct xhci_virt_device *vdev, int i) 2712 { 2713 struct xhci_virt_ep *ep = &vdev->eps[i]; 2714 2715 if (ep->ep_state & EP_HAS_STREAMS) { 2716 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2717 xhci_get_endpoint_address(i)); 2718 xhci_free_stream_info(xhci, ep->stream_info); 2719 ep->stream_info = NULL; 2720 ep->ep_state &= ~EP_HAS_STREAMS; 2721 } 2722 } 2723 2724 /* Called after one or more calls to xhci_add_endpoint() or 2725 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2726 * to call xhci_reset_bandwidth(). 2727 * 2728 * Since we are in the middle of changing either configuration or 2729 * installing a new alt setting, the USB core won't allow URBs to be 2730 * enqueued for any endpoint on the old config or interface. Nothing 2731 * else should be touching the xhci->devs[slot_id] structure, so we 2732 * don't need to take the xhci->lock for manipulating that. 2733 */ 2734 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2735 { 2736 int i; 2737 int ret = 0; 2738 struct xhci_hcd *xhci; 2739 struct xhci_virt_device *virt_dev; 2740 struct xhci_input_control_ctx *ctrl_ctx; 2741 struct xhci_slot_ctx *slot_ctx; 2742 struct xhci_command *command; 2743 2744 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2745 if (ret <= 0) 2746 return ret; 2747 xhci = hcd_to_xhci(hcd); 2748 if (xhci->xhc_state & XHCI_STATE_DYING) 2749 return -ENODEV; 2750 2751 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2752 virt_dev = xhci->devs[udev->slot_id]; 2753 2754 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2755 if (!command) 2756 return -ENOMEM; 2757 2758 command->in_ctx = virt_dev->in_ctx; 2759 2760 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2761 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 2762 if (!ctrl_ctx) { 2763 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2764 __func__); 2765 ret = -ENOMEM; 2766 goto command_cleanup; 2767 } 2768 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2769 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2770 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2771 2772 /* Don't issue the command if there's no endpoints to update. */ 2773 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2774 ctrl_ctx->drop_flags == 0) { 2775 ret = 0; 2776 goto command_cleanup; 2777 } 2778 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2779 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2780 for (i = 31; i >= 1; i--) { 2781 __le32 le32 = cpu_to_le32(BIT(i)); 2782 2783 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2784 || (ctrl_ctx->add_flags & le32) || i == 1) { 2785 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2786 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2787 break; 2788 } 2789 } 2790 xhci_dbg(xhci, "New Input Control Context:\n"); 2791 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2792 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2793 2794 ret = xhci_configure_endpoint(xhci, udev, command, 2795 false, false); 2796 if (ret) 2797 /* Callee should call reset_bandwidth() */ 2798 goto command_cleanup; 2799 2800 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2801 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2802 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2803 2804 /* Free any rings that were dropped, but not changed. */ 2805 for (i = 1; i < 31; ++i) { 2806 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2807 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2808 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2809 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2810 } 2811 } 2812 xhci_zero_in_ctx(xhci, virt_dev); 2813 /* 2814 * Install any rings for completely new endpoints or changed endpoints, 2815 * and free or cache any old rings from changed endpoints. 2816 */ 2817 for (i = 1; i < 31; ++i) { 2818 if (!virt_dev->eps[i].new_ring) 2819 continue; 2820 /* Only cache or free the old ring if it exists. 2821 * It may not if this is the first add of an endpoint. 2822 */ 2823 if (virt_dev->eps[i].ring) { 2824 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2825 } 2826 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2827 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2828 virt_dev->eps[i].new_ring = NULL; 2829 } 2830 command_cleanup: 2831 kfree(command->completion); 2832 kfree(command); 2833 2834 return ret; 2835 } 2836 2837 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2838 { 2839 struct xhci_hcd *xhci; 2840 struct xhci_virt_device *virt_dev; 2841 int i, ret; 2842 2843 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2844 if (ret <= 0) 2845 return; 2846 xhci = hcd_to_xhci(hcd); 2847 2848 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2849 virt_dev = xhci->devs[udev->slot_id]; 2850 /* Free any rings allocated for added endpoints */ 2851 for (i = 0; i < 31; ++i) { 2852 if (virt_dev->eps[i].new_ring) { 2853 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2854 virt_dev->eps[i].new_ring = NULL; 2855 } 2856 } 2857 xhci_zero_in_ctx(xhci, virt_dev); 2858 } 2859 2860 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2861 struct xhci_container_ctx *in_ctx, 2862 struct xhci_container_ctx *out_ctx, 2863 struct xhci_input_control_ctx *ctrl_ctx, 2864 u32 add_flags, u32 drop_flags) 2865 { 2866 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2867 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2868 xhci_slot_copy(xhci, in_ctx, out_ctx); 2869 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2870 2871 xhci_dbg(xhci, "Input Context:\n"); 2872 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2873 } 2874 2875 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2876 unsigned int slot_id, unsigned int ep_index, 2877 struct xhci_dequeue_state *deq_state) 2878 { 2879 struct xhci_input_control_ctx *ctrl_ctx; 2880 struct xhci_container_ctx *in_ctx; 2881 struct xhci_ep_ctx *ep_ctx; 2882 u32 added_ctxs; 2883 dma_addr_t addr; 2884 2885 in_ctx = xhci->devs[slot_id]->in_ctx; 2886 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2887 if (!ctrl_ctx) { 2888 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2889 __func__); 2890 return; 2891 } 2892 2893 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2894 xhci->devs[slot_id]->out_ctx, ep_index); 2895 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2896 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2897 deq_state->new_deq_ptr); 2898 if (addr == 0) { 2899 xhci_warn(xhci, "WARN Cannot submit config ep after " 2900 "reset ep command\n"); 2901 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2902 deq_state->new_deq_seg, 2903 deq_state->new_deq_ptr); 2904 return; 2905 } 2906 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2907 2908 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2909 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2910 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2911 added_ctxs, added_ctxs); 2912 } 2913 2914 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2915 unsigned int ep_index, struct xhci_td *td) 2916 { 2917 struct xhci_dequeue_state deq_state; 2918 struct xhci_virt_ep *ep; 2919 struct usb_device *udev = td->urb->dev; 2920 2921 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2922 "Cleaning up stalled endpoint ring"); 2923 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2924 /* We need to move the HW's dequeue pointer past this TD, 2925 * or it will attempt to resend it on the next doorbell ring. 2926 */ 2927 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2928 ep_index, ep->stopped_stream, td, &deq_state); 2929 2930 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2931 return; 2932 2933 /* HW with the reset endpoint quirk will use the saved dequeue state to 2934 * issue a configure endpoint command later. 2935 */ 2936 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2937 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2938 "Queueing new dequeue state"); 2939 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2940 ep_index, ep->stopped_stream, &deq_state); 2941 } else { 2942 /* Better hope no one uses the input context between now and the 2943 * reset endpoint completion! 2944 * XXX: No idea how this hardware will react when stream rings 2945 * are enabled. 2946 */ 2947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2948 "Setting up input context for " 2949 "configure endpoint command"); 2950 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2951 ep_index, &deq_state); 2952 } 2953 } 2954 2955 /* Called when clearing halted device. The core should have sent the control 2956 * message to clear the device halt condition. The host side of the halt should 2957 * already be cleared with a reset endpoint command issued when the STALL tx 2958 * event was received. 2959 * 2960 * Context: in_interrupt 2961 */ 2962 2963 void xhci_endpoint_reset(struct usb_hcd *hcd, 2964 struct usb_host_endpoint *ep) 2965 { 2966 struct xhci_hcd *xhci; 2967 2968 xhci = hcd_to_xhci(hcd); 2969 2970 /* 2971 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2972 * The Reset Endpoint Command may only be issued to endpoints in the 2973 * Halted state. If software wishes reset the Data Toggle or Sequence 2974 * Number of an endpoint that isn't in the Halted state, then software 2975 * may issue a Configure Endpoint Command with the Drop and Add bits set 2976 * for the target endpoint. that is in the Stopped state. 2977 */ 2978 2979 /* For now just print debug to follow the situation */ 2980 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2981 ep->desc.bEndpointAddress); 2982 } 2983 2984 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2985 struct usb_device *udev, struct usb_host_endpoint *ep, 2986 unsigned int slot_id) 2987 { 2988 int ret; 2989 unsigned int ep_index; 2990 unsigned int ep_state; 2991 2992 if (!ep) 2993 return -EINVAL; 2994 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2995 if (ret <= 0) 2996 return -EINVAL; 2997 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2998 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2999 " descriptor for ep 0x%x does not support streams\n", 3000 ep->desc.bEndpointAddress); 3001 return -EINVAL; 3002 } 3003 3004 ep_index = xhci_get_endpoint_index(&ep->desc); 3005 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3006 if (ep_state & EP_HAS_STREAMS || 3007 ep_state & EP_GETTING_STREAMS) { 3008 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3009 "already has streams set up.\n", 3010 ep->desc.bEndpointAddress); 3011 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3012 "dynamic stream context array reallocation.\n"); 3013 return -EINVAL; 3014 } 3015 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3016 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3017 "endpoint 0x%x; URBs are pending.\n", 3018 ep->desc.bEndpointAddress); 3019 return -EINVAL; 3020 } 3021 return 0; 3022 } 3023 3024 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3025 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3026 { 3027 unsigned int max_streams; 3028 3029 /* The stream context array size must be a power of two */ 3030 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3031 /* 3032 * Find out how many primary stream array entries the host controller 3033 * supports. Later we may use secondary stream arrays (similar to 2nd 3034 * level page entries), but that's an optional feature for xHCI host 3035 * controllers. xHCs must support at least 4 stream IDs. 3036 */ 3037 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3038 if (*num_stream_ctxs > max_streams) { 3039 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3040 max_streams); 3041 *num_stream_ctxs = max_streams; 3042 *num_streams = max_streams; 3043 } 3044 } 3045 3046 /* Returns an error code if one of the endpoint already has streams. 3047 * This does not change any data structures, it only checks and gathers 3048 * information. 3049 */ 3050 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3051 struct usb_device *udev, 3052 struct usb_host_endpoint **eps, unsigned int num_eps, 3053 unsigned int *num_streams, u32 *changed_ep_bitmask) 3054 { 3055 unsigned int max_streams; 3056 unsigned int endpoint_flag; 3057 int i; 3058 int ret; 3059 3060 for (i = 0; i < num_eps; i++) { 3061 ret = xhci_check_streams_endpoint(xhci, udev, 3062 eps[i], udev->slot_id); 3063 if (ret < 0) 3064 return ret; 3065 3066 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3067 if (max_streams < (*num_streams - 1)) { 3068 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3069 eps[i]->desc.bEndpointAddress, 3070 max_streams); 3071 *num_streams = max_streams+1; 3072 } 3073 3074 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3075 if (*changed_ep_bitmask & endpoint_flag) 3076 return -EINVAL; 3077 *changed_ep_bitmask |= endpoint_flag; 3078 } 3079 return 0; 3080 } 3081 3082 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3083 struct usb_device *udev, 3084 struct usb_host_endpoint **eps, unsigned int num_eps) 3085 { 3086 u32 changed_ep_bitmask = 0; 3087 unsigned int slot_id; 3088 unsigned int ep_index; 3089 unsigned int ep_state; 3090 int i; 3091 3092 slot_id = udev->slot_id; 3093 if (!xhci->devs[slot_id]) 3094 return 0; 3095 3096 for (i = 0; i < num_eps; i++) { 3097 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3098 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3099 /* Are streams already being freed for the endpoint? */ 3100 if (ep_state & EP_GETTING_NO_STREAMS) { 3101 xhci_warn(xhci, "WARN Can't disable streams for " 3102 "endpoint 0x%x, " 3103 "streams are being disabled already\n", 3104 eps[i]->desc.bEndpointAddress); 3105 return 0; 3106 } 3107 /* Are there actually any streams to free? */ 3108 if (!(ep_state & EP_HAS_STREAMS) && 3109 !(ep_state & EP_GETTING_STREAMS)) { 3110 xhci_warn(xhci, "WARN Can't disable streams for " 3111 "endpoint 0x%x, " 3112 "streams are already disabled!\n", 3113 eps[i]->desc.bEndpointAddress); 3114 xhci_warn(xhci, "WARN xhci_free_streams() called " 3115 "with non-streams endpoint\n"); 3116 return 0; 3117 } 3118 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3119 } 3120 return changed_ep_bitmask; 3121 } 3122 3123 /* 3124 * The USB device drivers use this function (though the HCD interface in USB 3125 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3126 * coordinate mass storage command queueing across multiple endpoints (basically 3127 * a stream ID == a task ID). 3128 * 3129 * Setting up streams involves allocating the same size stream context array 3130 * for each endpoint and issuing a configure endpoint command for all endpoints. 3131 * 3132 * Don't allow the call to succeed if one endpoint only supports one stream 3133 * (which means it doesn't support streams at all). 3134 * 3135 * Drivers may get less stream IDs than they asked for, if the host controller 3136 * hardware or endpoints claim they can't support the number of requested 3137 * stream IDs. 3138 */ 3139 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3140 struct usb_host_endpoint **eps, unsigned int num_eps, 3141 unsigned int num_streams, gfp_t mem_flags) 3142 { 3143 int i, ret; 3144 struct xhci_hcd *xhci; 3145 struct xhci_virt_device *vdev; 3146 struct xhci_command *config_cmd; 3147 struct xhci_input_control_ctx *ctrl_ctx; 3148 unsigned int ep_index; 3149 unsigned int num_stream_ctxs; 3150 unsigned long flags; 3151 u32 changed_ep_bitmask = 0; 3152 3153 if (!eps) 3154 return -EINVAL; 3155 3156 /* Add one to the number of streams requested to account for 3157 * stream 0 that is reserved for xHCI usage. 3158 */ 3159 num_streams += 1; 3160 xhci = hcd_to_xhci(hcd); 3161 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3162 num_streams); 3163 3164 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3165 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3166 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3167 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3168 return -ENOSYS; 3169 } 3170 3171 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3172 if (!config_cmd) { 3173 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3174 return -ENOMEM; 3175 } 3176 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3177 if (!ctrl_ctx) { 3178 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3179 __func__); 3180 xhci_free_command(xhci, config_cmd); 3181 return -ENOMEM; 3182 } 3183 3184 /* Check to make sure all endpoints are not already configured for 3185 * streams. While we're at it, find the maximum number of streams that 3186 * all the endpoints will support and check for duplicate endpoints. 3187 */ 3188 spin_lock_irqsave(&xhci->lock, flags); 3189 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3190 num_eps, &num_streams, &changed_ep_bitmask); 3191 if (ret < 0) { 3192 xhci_free_command(xhci, config_cmd); 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 return ret; 3195 } 3196 if (num_streams <= 1) { 3197 xhci_warn(xhci, "WARN: endpoints can't handle " 3198 "more than one stream.\n"); 3199 xhci_free_command(xhci, config_cmd); 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 return -EINVAL; 3202 } 3203 vdev = xhci->devs[udev->slot_id]; 3204 /* Mark each endpoint as being in transition, so 3205 * xhci_urb_enqueue() will reject all URBs. 3206 */ 3207 for (i = 0; i < num_eps; i++) { 3208 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3209 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3210 } 3211 spin_unlock_irqrestore(&xhci->lock, flags); 3212 3213 /* Setup internal data structures and allocate HW data structures for 3214 * streams (but don't install the HW structures in the input context 3215 * until we're sure all memory allocation succeeded). 3216 */ 3217 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3218 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3219 num_stream_ctxs, num_streams); 3220 3221 for (i = 0; i < num_eps; i++) { 3222 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3223 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3224 num_stream_ctxs, 3225 num_streams, mem_flags); 3226 if (!vdev->eps[ep_index].stream_info) 3227 goto cleanup; 3228 /* Set maxPstreams in endpoint context and update deq ptr to 3229 * point to stream context array. FIXME 3230 */ 3231 } 3232 3233 /* Set up the input context for a configure endpoint command. */ 3234 for (i = 0; i < num_eps; i++) { 3235 struct xhci_ep_ctx *ep_ctx; 3236 3237 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3238 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3239 3240 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3241 vdev->out_ctx, ep_index); 3242 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3243 vdev->eps[ep_index].stream_info); 3244 } 3245 /* Tell the HW to drop its old copy of the endpoint context info 3246 * and add the updated copy from the input context. 3247 */ 3248 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3249 vdev->out_ctx, ctrl_ctx, 3250 changed_ep_bitmask, changed_ep_bitmask); 3251 3252 /* Issue and wait for the configure endpoint command */ 3253 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3254 false, false); 3255 3256 /* xHC rejected the configure endpoint command for some reason, so we 3257 * leave the old ring intact and free our internal streams data 3258 * structure. 3259 */ 3260 if (ret < 0) 3261 goto cleanup; 3262 3263 spin_lock_irqsave(&xhci->lock, flags); 3264 for (i = 0; i < num_eps; i++) { 3265 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3266 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3267 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3268 udev->slot_id, ep_index); 3269 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3270 } 3271 xhci_free_command(xhci, config_cmd); 3272 spin_unlock_irqrestore(&xhci->lock, flags); 3273 3274 /* Subtract 1 for stream 0, which drivers can't use */ 3275 return num_streams - 1; 3276 3277 cleanup: 3278 /* If it didn't work, free the streams! */ 3279 for (i = 0; i < num_eps; i++) { 3280 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3281 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3282 vdev->eps[ep_index].stream_info = NULL; 3283 /* FIXME Unset maxPstreams in endpoint context and 3284 * update deq ptr to point to normal string ring. 3285 */ 3286 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3287 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3288 xhci_endpoint_zero(xhci, vdev, eps[i]); 3289 } 3290 xhci_free_command(xhci, config_cmd); 3291 return -ENOMEM; 3292 } 3293 3294 /* Transition the endpoint from using streams to being a "normal" endpoint 3295 * without streams. 3296 * 3297 * Modify the endpoint context state, submit a configure endpoint command, 3298 * and free all endpoint rings for streams if that completes successfully. 3299 */ 3300 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3301 struct usb_host_endpoint **eps, unsigned int num_eps, 3302 gfp_t mem_flags) 3303 { 3304 int i, ret; 3305 struct xhci_hcd *xhci; 3306 struct xhci_virt_device *vdev; 3307 struct xhci_command *command; 3308 struct xhci_input_control_ctx *ctrl_ctx; 3309 unsigned int ep_index; 3310 unsigned long flags; 3311 u32 changed_ep_bitmask; 3312 3313 xhci = hcd_to_xhci(hcd); 3314 vdev = xhci->devs[udev->slot_id]; 3315 3316 /* Set up a configure endpoint command to remove the streams rings */ 3317 spin_lock_irqsave(&xhci->lock, flags); 3318 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3319 udev, eps, num_eps); 3320 if (changed_ep_bitmask == 0) { 3321 spin_unlock_irqrestore(&xhci->lock, flags); 3322 return -EINVAL; 3323 } 3324 3325 /* Use the xhci_command structure from the first endpoint. We may have 3326 * allocated too many, but the driver may call xhci_free_streams() for 3327 * each endpoint it grouped into one call to xhci_alloc_streams(). 3328 */ 3329 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3330 command = vdev->eps[ep_index].stream_info->free_streams_command; 3331 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3332 if (!ctrl_ctx) { 3333 spin_unlock_irqrestore(&xhci->lock, flags); 3334 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3335 __func__); 3336 return -EINVAL; 3337 } 3338 3339 for (i = 0; i < num_eps; i++) { 3340 struct xhci_ep_ctx *ep_ctx; 3341 3342 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3343 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3344 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3345 EP_GETTING_NO_STREAMS; 3346 3347 xhci_endpoint_copy(xhci, command->in_ctx, 3348 vdev->out_ctx, ep_index); 3349 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3350 &vdev->eps[ep_index]); 3351 } 3352 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3353 vdev->out_ctx, ctrl_ctx, 3354 changed_ep_bitmask, changed_ep_bitmask); 3355 spin_unlock_irqrestore(&xhci->lock, flags); 3356 3357 /* Issue and wait for the configure endpoint command, 3358 * which must succeed. 3359 */ 3360 ret = xhci_configure_endpoint(xhci, udev, command, 3361 false, true); 3362 3363 /* xHC rejected the configure endpoint command for some reason, so we 3364 * leave the streams rings intact. 3365 */ 3366 if (ret < 0) 3367 return ret; 3368 3369 spin_lock_irqsave(&xhci->lock, flags); 3370 for (i = 0; i < num_eps; i++) { 3371 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3372 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3373 vdev->eps[ep_index].stream_info = NULL; 3374 /* FIXME Unset maxPstreams in endpoint context and 3375 * update deq ptr to point to normal string ring. 3376 */ 3377 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3378 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3379 } 3380 spin_unlock_irqrestore(&xhci->lock, flags); 3381 3382 return 0; 3383 } 3384 3385 /* 3386 * Deletes endpoint resources for endpoints that were active before a Reset 3387 * Device command, or a Disable Slot command. The Reset Device command leaves 3388 * the control endpoint intact, whereas the Disable Slot command deletes it. 3389 * 3390 * Must be called with xhci->lock held. 3391 */ 3392 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3393 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3394 { 3395 int i; 3396 unsigned int num_dropped_eps = 0; 3397 unsigned int drop_flags = 0; 3398 3399 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3400 if (virt_dev->eps[i].ring) { 3401 drop_flags |= 1 << i; 3402 num_dropped_eps++; 3403 } 3404 } 3405 xhci->num_active_eps -= num_dropped_eps; 3406 if (num_dropped_eps) 3407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3408 "Dropped %u ep ctxs, flags = 0x%x, " 3409 "%u now active.", 3410 num_dropped_eps, drop_flags, 3411 xhci->num_active_eps); 3412 } 3413 3414 /* 3415 * This submits a Reset Device Command, which will set the device state to 0, 3416 * set the device address to 0, and disable all the endpoints except the default 3417 * control endpoint. The USB core should come back and call 3418 * xhci_address_device(), and then re-set up the configuration. If this is 3419 * called because of a usb_reset_and_verify_device(), then the old alternate 3420 * settings will be re-installed through the normal bandwidth allocation 3421 * functions. 3422 * 3423 * Wait for the Reset Device command to finish. Remove all structures 3424 * associated with the endpoints that were disabled. Clear the input device 3425 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3426 * 3427 * If the virt_dev to be reset does not exist or does not match the udev, 3428 * it means the device is lost, possibly due to the xHC restore error and 3429 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3430 * re-allocate the device. 3431 */ 3432 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3433 { 3434 int ret, i; 3435 unsigned long flags; 3436 struct xhci_hcd *xhci; 3437 unsigned int slot_id; 3438 struct xhci_virt_device *virt_dev; 3439 struct xhci_command *reset_device_cmd; 3440 int last_freed_endpoint; 3441 struct xhci_slot_ctx *slot_ctx; 3442 int old_active_eps = 0; 3443 3444 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3445 if (ret <= 0) 3446 return ret; 3447 xhci = hcd_to_xhci(hcd); 3448 slot_id = udev->slot_id; 3449 virt_dev = xhci->devs[slot_id]; 3450 if (!virt_dev) { 3451 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3452 "not exist. Re-allocate the device\n", slot_id); 3453 ret = xhci_alloc_dev(hcd, udev); 3454 if (ret == 1) 3455 return 0; 3456 else 3457 return -EINVAL; 3458 } 3459 3460 if (virt_dev->udev != udev) { 3461 /* If the virt_dev and the udev does not match, this virt_dev 3462 * may belong to another udev. 3463 * Re-allocate the device. 3464 */ 3465 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3466 "not match the udev. Re-allocate the device\n", 3467 slot_id); 3468 ret = xhci_alloc_dev(hcd, udev); 3469 if (ret == 1) 3470 return 0; 3471 else 3472 return -EINVAL; 3473 } 3474 3475 /* If device is not setup, there is no point in resetting it */ 3476 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3477 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3478 SLOT_STATE_DISABLED) 3479 return 0; 3480 3481 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3482 /* Allocate the command structure that holds the struct completion. 3483 * Assume we're in process context, since the normal device reset 3484 * process has to wait for the device anyway. Storage devices are 3485 * reset as part of error handling, so use GFP_NOIO instead of 3486 * GFP_KERNEL. 3487 */ 3488 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3489 if (!reset_device_cmd) { 3490 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3491 return -ENOMEM; 3492 } 3493 3494 /* Attempt to submit the Reset Device command to the command ring */ 3495 spin_lock_irqsave(&xhci->lock, flags); 3496 3497 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3498 if (ret) { 3499 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3500 spin_unlock_irqrestore(&xhci->lock, flags); 3501 goto command_cleanup; 3502 } 3503 xhci_ring_cmd_db(xhci); 3504 spin_unlock_irqrestore(&xhci->lock, flags); 3505 3506 /* Wait for the Reset Device command to finish */ 3507 wait_for_completion(reset_device_cmd->completion); 3508 3509 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3510 * unless we tried to reset a slot ID that wasn't enabled, 3511 * or the device wasn't in the addressed or configured state. 3512 */ 3513 ret = reset_device_cmd->status; 3514 switch (ret) { 3515 case COMP_CMD_ABORT: 3516 case COMP_CMD_STOP: 3517 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3518 ret = -ETIME; 3519 goto command_cleanup; 3520 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3521 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3522 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3523 slot_id, 3524 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3525 xhci_dbg(xhci, "Not freeing device rings.\n"); 3526 /* Don't treat this as an error. May change my mind later. */ 3527 ret = 0; 3528 goto command_cleanup; 3529 case COMP_SUCCESS: 3530 xhci_dbg(xhci, "Successful reset device command.\n"); 3531 break; 3532 default: 3533 if (xhci_is_vendor_info_code(xhci, ret)) 3534 break; 3535 xhci_warn(xhci, "Unknown completion code %u for " 3536 "reset device command.\n", ret); 3537 ret = -EINVAL; 3538 goto command_cleanup; 3539 } 3540 3541 /* Free up host controller endpoint resources */ 3542 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3543 spin_lock_irqsave(&xhci->lock, flags); 3544 /* Don't delete the default control endpoint resources */ 3545 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3546 spin_unlock_irqrestore(&xhci->lock, flags); 3547 } 3548 3549 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3550 last_freed_endpoint = 1; 3551 for (i = 1; i < 31; ++i) { 3552 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3553 3554 if (ep->ep_state & EP_HAS_STREAMS) { 3555 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3556 xhci_get_endpoint_address(i)); 3557 xhci_free_stream_info(xhci, ep->stream_info); 3558 ep->stream_info = NULL; 3559 ep->ep_state &= ~EP_HAS_STREAMS; 3560 } 3561 3562 if (ep->ring) { 3563 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3564 last_freed_endpoint = i; 3565 } 3566 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3567 xhci_drop_ep_from_interval_table(xhci, 3568 &virt_dev->eps[i].bw_info, 3569 virt_dev->bw_table, 3570 udev, 3571 &virt_dev->eps[i], 3572 virt_dev->tt_info); 3573 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3574 } 3575 /* If necessary, update the number of active TTs on this root port */ 3576 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3577 3578 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3579 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3580 ret = 0; 3581 3582 command_cleanup: 3583 xhci_free_command(xhci, reset_device_cmd); 3584 return ret; 3585 } 3586 3587 /* 3588 * At this point, the struct usb_device is about to go away, the device has 3589 * disconnected, and all traffic has been stopped and the endpoints have been 3590 * disabled. Free any HC data structures associated with that device. 3591 */ 3592 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3593 { 3594 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3595 struct xhci_virt_device *virt_dev; 3596 unsigned long flags; 3597 u32 state; 3598 int i, ret; 3599 struct xhci_command *command; 3600 3601 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3602 if (!command) 3603 return; 3604 3605 #ifndef CONFIG_USB_DEFAULT_PERSIST 3606 /* 3607 * We called pm_runtime_get_noresume when the device was attached. 3608 * Decrement the counter here to allow controller to runtime suspend 3609 * if no devices remain. 3610 */ 3611 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3612 pm_runtime_put_noidle(hcd->self.controller); 3613 #endif 3614 3615 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3616 /* If the host is halted due to driver unload, we still need to free the 3617 * device. 3618 */ 3619 if (ret <= 0 && ret != -ENODEV) { 3620 kfree(command); 3621 return; 3622 } 3623 3624 virt_dev = xhci->devs[udev->slot_id]; 3625 3626 /* Stop any wayward timer functions (which may grab the lock) */ 3627 for (i = 0; i < 31; ++i) { 3628 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3629 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3630 } 3631 3632 spin_lock_irqsave(&xhci->lock, flags); 3633 /* Don't disable the slot if the host controller is dead. */ 3634 state = readl(&xhci->op_regs->status); 3635 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3636 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3637 xhci_free_virt_device(xhci, udev->slot_id); 3638 spin_unlock_irqrestore(&xhci->lock, flags); 3639 kfree(command); 3640 return; 3641 } 3642 3643 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3644 udev->slot_id)) { 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3647 return; 3648 } 3649 xhci_ring_cmd_db(xhci); 3650 spin_unlock_irqrestore(&xhci->lock, flags); 3651 3652 /* 3653 * Event command completion handler will free any data structures 3654 * associated with the slot. XXX Can free sleep? 3655 */ 3656 } 3657 3658 /* 3659 * Checks if we have enough host controller resources for the default control 3660 * endpoint. 3661 * 3662 * Must be called with xhci->lock held. 3663 */ 3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3665 { 3666 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3667 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3668 "Not enough ep ctxs: " 3669 "%u active, need to add 1, limit is %u.", 3670 xhci->num_active_eps, xhci->limit_active_eps); 3671 return -ENOMEM; 3672 } 3673 xhci->num_active_eps += 1; 3674 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3675 "Adding 1 ep ctx, %u now active.", 3676 xhci->num_active_eps); 3677 return 0; 3678 } 3679 3680 3681 /* 3682 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3683 * timed out, or allocating memory failed. Returns 1 on success. 3684 */ 3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3686 { 3687 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3688 unsigned long flags; 3689 int ret; 3690 struct xhci_command *command; 3691 3692 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3693 if (!command) 3694 return 0; 3695 3696 spin_lock_irqsave(&xhci->lock, flags); 3697 command->completion = &xhci->addr_dev; 3698 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3699 if (ret) { 3700 spin_unlock_irqrestore(&xhci->lock, flags); 3701 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3702 kfree(command); 3703 return 0; 3704 } 3705 xhci_ring_cmd_db(xhci); 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 3708 wait_for_completion(command->completion); 3709 3710 if (!xhci->slot_id || command->status != COMP_SUCCESS) { 3711 xhci_err(xhci, "Error while assigning device slot ID\n"); 3712 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3713 HCS_MAX_SLOTS( 3714 readl(&xhci->cap_regs->hcs_params1))); 3715 kfree(command); 3716 return 0; 3717 } 3718 3719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3720 spin_lock_irqsave(&xhci->lock, flags); 3721 ret = xhci_reserve_host_control_ep_resources(xhci); 3722 if (ret) { 3723 spin_unlock_irqrestore(&xhci->lock, flags); 3724 xhci_warn(xhci, "Not enough host resources, " 3725 "active endpoint contexts = %u\n", 3726 xhci->num_active_eps); 3727 goto disable_slot; 3728 } 3729 spin_unlock_irqrestore(&xhci->lock, flags); 3730 } 3731 /* Use GFP_NOIO, since this function can be called from 3732 * xhci_discover_or_reset_device(), which may be called as part of 3733 * mass storage driver error handling. 3734 */ 3735 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3736 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3737 goto disable_slot; 3738 } 3739 udev->slot_id = xhci->slot_id; 3740 3741 #ifndef CONFIG_USB_DEFAULT_PERSIST 3742 /* 3743 * If resetting upon resume, we can't put the controller into runtime 3744 * suspend if there is a device attached. 3745 */ 3746 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3747 pm_runtime_get_noresume(hcd->self.controller); 3748 #endif 3749 3750 3751 kfree(command); 3752 /* Is this a LS or FS device under a HS hub? */ 3753 /* Hub or peripherial? */ 3754 return 1; 3755 3756 disable_slot: 3757 /* Disable slot, if we can do it without mem alloc */ 3758 spin_lock_irqsave(&xhci->lock, flags); 3759 command->completion = NULL; 3760 command->status = 0; 3761 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3762 udev->slot_id)) 3763 xhci_ring_cmd_db(xhci); 3764 spin_unlock_irqrestore(&xhci->lock, flags); 3765 return 0; 3766 } 3767 3768 /* 3769 * Issue an Address Device command and optionally send a corresponding 3770 * SetAddress request to the device. 3771 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init, 3772 * so we should only issue and wait on one address command at the same time. 3773 */ 3774 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3775 enum xhci_setup_dev setup) 3776 { 3777 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3778 unsigned long flags; 3779 struct xhci_virt_device *virt_dev; 3780 int ret = 0; 3781 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3782 struct xhci_slot_ctx *slot_ctx; 3783 struct xhci_input_control_ctx *ctrl_ctx; 3784 u64 temp_64; 3785 struct xhci_command *command; 3786 3787 if (!udev->slot_id) { 3788 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3789 "Bad Slot ID %d", udev->slot_id); 3790 return -EINVAL; 3791 } 3792 3793 virt_dev = xhci->devs[udev->slot_id]; 3794 3795 if (WARN_ON(!virt_dev)) { 3796 /* 3797 * In plug/unplug torture test with an NEC controller, 3798 * a zero-dereference was observed once due to virt_dev = 0. 3799 * Print useful debug rather than crash if it is observed again! 3800 */ 3801 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3802 udev->slot_id); 3803 return -EINVAL; 3804 } 3805 3806 if (setup == SETUP_CONTEXT_ONLY) { 3807 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3808 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3809 SLOT_STATE_DEFAULT) { 3810 xhci_dbg(xhci, "Slot already in default state\n"); 3811 return 0; 3812 } 3813 } 3814 3815 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3816 if (!command) 3817 return -ENOMEM; 3818 3819 command->in_ctx = virt_dev->in_ctx; 3820 command->completion = &xhci->addr_dev; 3821 3822 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3823 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3824 if (!ctrl_ctx) { 3825 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3826 __func__); 3827 kfree(command); 3828 return -EINVAL; 3829 } 3830 /* 3831 * If this is the first Set Address since device plug-in or 3832 * virt_device realloaction after a resume with an xHCI power loss, 3833 * then set up the slot context. 3834 */ 3835 if (!slot_ctx->dev_info) 3836 xhci_setup_addressable_virt_dev(xhci, udev); 3837 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3838 else 3839 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3840 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3841 ctrl_ctx->drop_flags = 0; 3842 3843 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3844 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3845 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3846 le32_to_cpu(slot_ctx->dev_info) >> 27); 3847 3848 spin_lock_irqsave(&xhci->lock, flags); 3849 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3850 udev->slot_id, setup); 3851 if (ret) { 3852 spin_unlock_irqrestore(&xhci->lock, flags); 3853 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3854 "FIXME: allocate a command ring segment"); 3855 kfree(command); 3856 return ret; 3857 } 3858 xhci_ring_cmd_db(xhci); 3859 spin_unlock_irqrestore(&xhci->lock, flags); 3860 3861 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3862 wait_for_completion(command->completion); 3863 3864 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3865 * the SetAddress() "recovery interval" required by USB and aborting the 3866 * command on a timeout. 3867 */ 3868 switch (command->status) { 3869 case COMP_CMD_ABORT: 3870 case COMP_CMD_STOP: 3871 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3872 ret = -ETIME; 3873 break; 3874 case COMP_CTX_STATE: 3875 case COMP_EBADSLT: 3876 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3877 act, udev->slot_id); 3878 ret = -EINVAL; 3879 break; 3880 case COMP_TX_ERR: 3881 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3882 ret = -EPROTO; 3883 break; 3884 case COMP_DEV_ERR: 3885 dev_warn(&udev->dev, 3886 "ERROR: Incompatible device for setup %s command\n", act); 3887 ret = -ENODEV; 3888 break; 3889 case COMP_SUCCESS: 3890 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3891 "Successful setup %s command", act); 3892 break; 3893 default: 3894 xhci_err(xhci, 3895 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3896 act, command->status); 3897 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3898 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3899 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3900 ret = -EINVAL; 3901 break; 3902 } 3903 if (ret) { 3904 kfree(command); 3905 return ret; 3906 } 3907 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3908 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3909 "Op regs DCBAA ptr = %#016llx", temp_64); 3910 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3911 "Slot ID %d dcbaa entry @%p = %#016llx", 3912 udev->slot_id, 3913 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3914 (unsigned long long) 3915 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3916 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3917 "Output Context DMA address = %#08llx", 3918 (unsigned long long)virt_dev->out_ctx->dma); 3919 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3920 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3921 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3922 le32_to_cpu(slot_ctx->dev_info) >> 27); 3923 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3924 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3925 /* 3926 * USB core uses address 1 for the roothubs, so we add one to the 3927 * address given back to us by the HC. 3928 */ 3929 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3930 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3931 le32_to_cpu(slot_ctx->dev_info) >> 27); 3932 /* Zero the input context control for later use */ 3933 ctrl_ctx->add_flags = 0; 3934 ctrl_ctx->drop_flags = 0; 3935 3936 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3937 "Internal device address = %d", 3938 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3939 kfree(command); 3940 return 0; 3941 } 3942 3943 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3944 { 3945 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3946 } 3947 3948 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3949 { 3950 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3951 } 3952 3953 /* 3954 * Transfer the port index into real index in the HW port status 3955 * registers. Caculate offset between the port's PORTSC register 3956 * and port status base. Divide the number of per port register 3957 * to get the real index. The raw port number bases 1. 3958 */ 3959 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3960 { 3961 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3962 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3963 __le32 __iomem *addr; 3964 int raw_port; 3965 3966 if (hcd->speed != HCD_USB3) 3967 addr = xhci->usb2_ports[port1 - 1]; 3968 else 3969 addr = xhci->usb3_ports[port1 - 1]; 3970 3971 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3972 return raw_port; 3973 } 3974 3975 /* 3976 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3977 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3978 */ 3979 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3980 struct usb_device *udev, u16 max_exit_latency) 3981 { 3982 struct xhci_virt_device *virt_dev; 3983 struct xhci_command *command; 3984 struct xhci_input_control_ctx *ctrl_ctx; 3985 struct xhci_slot_ctx *slot_ctx; 3986 unsigned long flags; 3987 int ret; 3988 3989 spin_lock_irqsave(&xhci->lock, flags); 3990 3991 virt_dev = xhci->devs[udev->slot_id]; 3992 3993 /* 3994 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3995 * xHC was re-initialized. Exit latency will be set later after 3996 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3997 */ 3998 3999 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4000 spin_unlock_irqrestore(&xhci->lock, flags); 4001 return 0; 4002 } 4003 4004 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4005 command = xhci->lpm_command; 4006 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4007 if (!ctrl_ctx) { 4008 spin_unlock_irqrestore(&xhci->lock, flags); 4009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4010 __func__); 4011 return -ENOMEM; 4012 } 4013 4014 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4015 spin_unlock_irqrestore(&xhci->lock, flags); 4016 4017 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4018 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4019 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4020 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4021 slot_ctx->dev_state = 0; 4022 4023 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4024 "Set up evaluate context for LPM MEL change."); 4025 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4026 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4027 4028 /* Issue and wait for the evaluate context command. */ 4029 ret = xhci_configure_endpoint(xhci, udev, command, 4030 true, true); 4031 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4032 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4033 4034 if (!ret) { 4035 spin_lock_irqsave(&xhci->lock, flags); 4036 virt_dev->current_mel = max_exit_latency; 4037 spin_unlock_irqrestore(&xhci->lock, flags); 4038 } 4039 return ret; 4040 } 4041 4042 #ifdef CONFIG_PM 4043 4044 /* BESL to HIRD Encoding array for USB2 LPM */ 4045 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4046 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4047 4048 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4049 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4050 struct usb_device *udev) 4051 { 4052 int u2del, besl, besl_host; 4053 int besl_device = 0; 4054 u32 field; 4055 4056 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4057 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4058 4059 if (field & USB_BESL_SUPPORT) { 4060 for (besl_host = 0; besl_host < 16; besl_host++) { 4061 if (xhci_besl_encoding[besl_host] >= u2del) 4062 break; 4063 } 4064 /* Use baseline BESL value as default */ 4065 if (field & USB_BESL_BASELINE_VALID) 4066 besl_device = USB_GET_BESL_BASELINE(field); 4067 else if (field & USB_BESL_DEEP_VALID) 4068 besl_device = USB_GET_BESL_DEEP(field); 4069 } else { 4070 if (u2del <= 50) 4071 besl_host = 0; 4072 else 4073 besl_host = (u2del - 51) / 75 + 1; 4074 } 4075 4076 besl = besl_host + besl_device; 4077 if (besl > 15) 4078 besl = 15; 4079 4080 return besl; 4081 } 4082 4083 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4084 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4085 { 4086 u32 field; 4087 int l1; 4088 int besld = 0; 4089 int hirdm = 0; 4090 4091 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4092 4093 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4094 l1 = udev->l1_params.timeout / 256; 4095 4096 /* device has preferred BESLD */ 4097 if (field & USB_BESL_DEEP_VALID) { 4098 besld = USB_GET_BESL_DEEP(field); 4099 hirdm = 1; 4100 } 4101 4102 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4103 } 4104 4105 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4106 struct usb_device *udev, int enable) 4107 { 4108 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4109 __le32 __iomem **port_array; 4110 __le32 __iomem *pm_addr, *hlpm_addr; 4111 u32 pm_val, hlpm_val, field; 4112 unsigned int port_num; 4113 unsigned long flags; 4114 int hird, exit_latency; 4115 int ret; 4116 4117 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4118 !udev->lpm_capable) 4119 return -EPERM; 4120 4121 if (!udev->parent || udev->parent->parent || 4122 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4123 return -EPERM; 4124 4125 if (udev->usb2_hw_lpm_capable != 1) 4126 return -EPERM; 4127 4128 spin_lock_irqsave(&xhci->lock, flags); 4129 4130 port_array = xhci->usb2_ports; 4131 port_num = udev->portnum - 1; 4132 pm_addr = port_array[port_num] + PORTPMSC; 4133 pm_val = readl(pm_addr); 4134 hlpm_addr = port_array[port_num] + PORTHLPMC; 4135 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4136 4137 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4138 enable ? "enable" : "disable", port_num + 1); 4139 4140 if (enable) { 4141 /* Host supports BESL timeout instead of HIRD */ 4142 if (udev->usb2_hw_lpm_besl_capable) { 4143 /* if device doesn't have a preferred BESL value use a 4144 * default one which works with mixed HIRD and BESL 4145 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4146 */ 4147 if ((field & USB_BESL_SUPPORT) && 4148 (field & USB_BESL_BASELINE_VALID)) 4149 hird = USB_GET_BESL_BASELINE(field); 4150 else 4151 hird = udev->l1_params.besl; 4152 4153 exit_latency = xhci_besl_encoding[hird]; 4154 spin_unlock_irqrestore(&xhci->lock, flags); 4155 4156 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4157 * input context for link powermanagement evaluate 4158 * context commands. It is protected by hcd->bandwidth 4159 * mutex and is shared by all devices. We need to set 4160 * the max ext latency in USB 2 BESL LPM as well, so 4161 * use the same mutex and xhci_change_max_exit_latency() 4162 */ 4163 mutex_lock(hcd->bandwidth_mutex); 4164 ret = xhci_change_max_exit_latency(xhci, udev, 4165 exit_latency); 4166 mutex_unlock(hcd->bandwidth_mutex); 4167 4168 if (ret < 0) 4169 return ret; 4170 spin_lock_irqsave(&xhci->lock, flags); 4171 4172 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4173 writel(hlpm_val, hlpm_addr); 4174 /* flush write */ 4175 readl(hlpm_addr); 4176 } else { 4177 hird = xhci_calculate_hird_besl(xhci, udev); 4178 } 4179 4180 pm_val &= ~PORT_HIRD_MASK; 4181 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4182 writel(pm_val, pm_addr); 4183 pm_val = readl(pm_addr); 4184 pm_val |= PORT_HLE; 4185 writel(pm_val, pm_addr); 4186 /* flush write */ 4187 readl(pm_addr); 4188 } else { 4189 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4190 writel(pm_val, pm_addr); 4191 /* flush write */ 4192 readl(pm_addr); 4193 if (udev->usb2_hw_lpm_besl_capable) { 4194 spin_unlock_irqrestore(&xhci->lock, flags); 4195 mutex_lock(hcd->bandwidth_mutex); 4196 xhci_change_max_exit_latency(xhci, udev, 0); 4197 mutex_unlock(hcd->bandwidth_mutex); 4198 return 0; 4199 } 4200 } 4201 4202 spin_unlock_irqrestore(&xhci->lock, flags); 4203 return 0; 4204 } 4205 4206 /* check if a usb2 port supports a given extened capability protocol 4207 * only USB2 ports extended protocol capability values are cached. 4208 * Return 1 if capability is supported 4209 */ 4210 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4211 unsigned capability) 4212 { 4213 u32 port_offset, port_count; 4214 int i; 4215 4216 for (i = 0; i < xhci->num_ext_caps; i++) { 4217 if (xhci->ext_caps[i] & capability) { 4218 /* port offsets starts at 1 */ 4219 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4220 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4221 if (port >= port_offset && 4222 port < port_offset + port_count) 4223 return 1; 4224 } 4225 } 4226 return 0; 4227 } 4228 4229 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4230 { 4231 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4232 int portnum = udev->portnum - 1; 4233 4234 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4235 !udev->lpm_capable) 4236 return 0; 4237 4238 /* we only support lpm for non-hub device connected to root hub yet */ 4239 if (!udev->parent || udev->parent->parent || 4240 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4241 return 0; 4242 4243 if (xhci->hw_lpm_support == 1 && 4244 xhci_check_usb2_port_capability( 4245 xhci, portnum, XHCI_HLC)) { 4246 udev->usb2_hw_lpm_capable = 1; 4247 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4248 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4249 if (xhci_check_usb2_port_capability(xhci, portnum, 4250 XHCI_BLC)) 4251 udev->usb2_hw_lpm_besl_capable = 1; 4252 } 4253 4254 return 0; 4255 } 4256 4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4258 4259 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4260 static unsigned long long xhci_service_interval_to_ns( 4261 struct usb_endpoint_descriptor *desc) 4262 { 4263 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4264 } 4265 4266 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4267 enum usb3_link_state state) 4268 { 4269 unsigned long long sel; 4270 unsigned long long pel; 4271 unsigned int max_sel_pel; 4272 char *state_name; 4273 4274 switch (state) { 4275 case USB3_LPM_U1: 4276 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4277 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4278 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4279 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4280 state_name = "U1"; 4281 break; 4282 case USB3_LPM_U2: 4283 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4284 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4285 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4286 state_name = "U2"; 4287 break; 4288 default: 4289 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4290 __func__); 4291 return USB3_LPM_DISABLED; 4292 } 4293 4294 if (sel <= max_sel_pel && pel <= max_sel_pel) 4295 return USB3_LPM_DEVICE_INITIATED; 4296 4297 if (sel > max_sel_pel) 4298 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4299 "due to long SEL %llu ms\n", 4300 state_name, sel); 4301 else 4302 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4303 "due to long PEL %llu ms\n", 4304 state_name, pel); 4305 return USB3_LPM_DISABLED; 4306 } 4307 4308 /* The U1 timeout should be the maximum of the following values: 4309 * - For control endpoints, U1 system exit latency (SEL) * 3 4310 * - For bulk endpoints, U1 SEL * 5 4311 * - For interrupt endpoints: 4312 * - Notification EPs, U1 SEL * 3 4313 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4314 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4315 */ 4316 static unsigned long long xhci_calculate_intel_u1_timeout( 4317 struct usb_device *udev, 4318 struct usb_endpoint_descriptor *desc) 4319 { 4320 unsigned long long timeout_ns; 4321 int ep_type; 4322 int intr_type; 4323 4324 ep_type = usb_endpoint_type(desc); 4325 switch (ep_type) { 4326 case USB_ENDPOINT_XFER_CONTROL: 4327 timeout_ns = udev->u1_params.sel * 3; 4328 break; 4329 case USB_ENDPOINT_XFER_BULK: 4330 timeout_ns = udev->u1_params.sel * 5; 4331 break; 4332 case USB_ENDPOINT_XFER_INT: 4333 intr_type = usb_endpoint_interrupt_type(desc); 4334 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4335 timeout_ns = udev->u1_params.sel * 3; 4336 break; 4337 } 4338 /* Otherwise the calculation is the same as isoc eps */ 4339 case USB_ENDPOINT_XFER_ISOC: 4340 timeout_ns = xhci_service_interval_to_ns(desc); 4341 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4342 if (timeout_ns < udev->u1_params.sel * 2) 4343 timeout_ns = udev->u1_params.sel * 2; 4344 break; 4345 default: 4346 return 0; 4347 } 4348 4349 return timeout_ns; 4350 } 4351 4352 /* Returns the hub-encoded U1 timeout value. */ 4353 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4354 struct usb_device *udev, 4355 struct usb_endpoint_descriptor *desc) 4356 { 4357 unsigned long long timeout_ns; 4358 4359 if (xhci->quirks & XHCI_INTEL_HOST) 4360 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4361 else 4362 timeout_ns = udev->u1_params.sel; 4363 4364 /* The U1 timeout is encoded in 1us intervals. 4365 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4366 */ 4367 if (timeout_ns == USB3_LPM_DISABLED) 4368 timeout_ns = 1; 4369 else 4370 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4371 4372 /* If the necessary timeout value is bigger than what we can set in the 4373 * USB 3.0 hub, we have to disable hub-initiated U1. 4374 */ 4375 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4376 return timeout_ns; 4377 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4378 "due to long timeout %llu ms\n", timeout_ns); 4379 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4380 } 4381 4382 /* The U2 timeout should be the maximum of: 4383 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4384 * - largest bInterval of any active periodic endpoint (to avoid going 4385 * into lower power link states between intervals). 4386 * - the U2 Exit Latency of the device 4387 */ 4388 static unsigned long long xhci_calculate_intel_u2_timeout( 4389 struct usb_device *udev, 4390 struct usb_endpoint_descriptor *desc) 4391 { 4392 unsigned long long timeout_ns; 4393 unsigned long long u2_del_ns; 4394 4395 timeout_ns = 10 * 1000 * 1000; 4396 4397 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4398 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4399 timeout_ns = xhci_service_interval_to_ns(desc); 4400 4401 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4402 if (u2_del_ns > timeout_ns) 4403 timeout_ns = u2_del_ns; 4404 4405 return timeout_ns; 4406 } 4407 4408 /* Returns the hub-encoded U2 timeout value. */ 4409 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4410 struct usb_device *udev, 4411 struct usb_endpoint_descriptor *desc) 4412 { 4413 unsigned long long timeout_ns; 4414 4415 if (xhci->quirks & XHCI_INTEL_HOST) 4416 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4417 else 4418 timeout_ns = udev->u2_params.sel; 4419 4420 /* The U2 timeout is encoded in 256us intervals */ 4421 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4422 /* If the necessary timeout value is bigger than what we can set in the 4423 * USB 3.0 hub, we have to disable hub-initiated U2. 4424 */ 4425 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4426 return timeout_ns; 4427 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4428 "due to long timeout %llu ms\n", timeout_ns); 4429 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4430 } 4431 4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4433 struct usb_device *udev, 4434 struct usb_endpoint_descriptor *desc, 4435 enum usb3_link_state state, 4436 u16 *timeout) 4437 { 4438 if (state == USB3_LPM_U1) 4439 return xhci_calculate_u1_timeout(xhci, udev, desc); 4440 else if (state == USB3_LPM_U2) 4441 return xhci_calculate_u2_timeout(xhci, udev, desc); 4442 4443 return USB3_LPM_DISABLED; 4444 } 4445 4446 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4447 struct usb_device *udev, 4448 struct usb_endpoint_descriptor *desc, 4449 enum usb3_link_state state, 4450 u16 *timeout) 4451 { 4452 u16 alt_timeout; 4453 4454 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4455 desc, state, timeout); 4456 4457 /* If we found we can't enable hub-initiated LPM, or 4458 * the U1 or U2 exit latency was too high to allow 4459 * device-initiated LPM as well, just stop searching. 4460 */ 4461 if (alt_timeout == USB3_LPM_DISABLED || 4462 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4463 *timeout = alt_timeout; 4464 return -E2BIG; 4465 } 4466 if (alt_timeout > *timeout) 4467 *timeout = alt_timeout; 4468 return 0; 4469 } 4470 4471 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4472 struct usb_device *udev, 4473 struct usb_host_interface *alt, 4474 enum usb3_link_state state, 4475 u16 *timeout) 4476 { 4477 int j; 4478 4479 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4480 if (xhci_update_timeout_for_endpoint(xhci, udev, 4481 &alt->endpoint[j].desc, state, timeout)) 4482 return -E2BIG; 4483 continue; 4484 } 4485 return 0; 4486 } 4487 4488 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4489 enum usb3_link_state state) 4490 { 4491 struct usb_device *parent; 4492 unsigned int num_hubs; 4493 4494 if (state == USB3_LPM_U2) 4495 return 0; 4496 4497 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4498 for (parent = udev->parent, num_hubs = 0; parent->parent; 4499 parent = parent->parent) 4500 num_hubs++; 4501 4502 if (num_hubs < 2) 4503 return 0; 4504 4505 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4506 " below second-tier hub.\n"); 4507 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4508 "to decrease power consumption.\n"); 4509 return -E2BIG; 4510 } 4511 4512 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4513 struct usb_device *udev, 4514 enum usb3_link_state state) 4515 { 4516 if (xhci->quirks & XHCI_INTEL_HOST) 4517 return xhci_check_intel_tier_policy(udev, state); 4518 else 4519 return 0; 4520 } 4521 4522 /* Returns the U1 or U2 timeout that should be enabled. 4523 * If the tier check or timeout setting functions return with a non-zero exit 4524 * code, that means the timeout value has been finalized and we shouldn't look 4525 * at any more endpoints. 4526 */ 4527 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4528 struct usb_device *udev, enum usb3_link_state state) 4529 { 4530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4531 struct usb_host_config *config; 4532 char *state_name; 4533 int i; 4534 u16 timeout = USB3_LPM_DISABLED; 4535 4536 if (state == USB3_LPM_U1) 4537 state_name = "U1"; 4538 else if (state == USB3_LPM_U2) 4539 state_name = "U2"; 4540 else { 4541 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4542 state); 4543 return timeout; 4544 } 4545 4546 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4547 return timeout; 4548 4549 /* Gather some information about the currently installed configuration 4550 * and alternate interface settings. 4551 */ 4552 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4553 state, &timeout)) 4554 return timeout; 4555 4556 config = udev->actconfig; 4557 if (!config) 4558 return timeout; 4559 4560 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4561 struct usb_driver *driver; 4562 struct usb_interface *intf = config->interface[i]; 4563 4564 if (!intf) 4565 continue; 4566 4567 /* Check if any currently bound drivers want hub-initiated LPM 4568 * disabled. 4569 */ 4570 if (intf->dev.driver) { 4571 driver = to_usb_driver(intf->dev.driver); 4572 if (driver && driver->disable_hub_initiated_lpm) { 4573 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4574 "at request of driver %s\n", 4575 state_name, driver->name); 4576 return xhci_get_timeout_no_hub_lpm(udev, state); 4577 } 4578 } 4579 4580 /* Not sure how this could happen... */ 4581 if (!intf->cur_altsetting) 4582 continue; 4583 4584 if (xhci_update_timeout_for_interface(xhci, udev, 4585 intf->cur_altsetting, 4586 state, &timeout)) 4587 return timeout; 4588 } 4589 return timeout; 4590 } 4591 4592 static int calculate_max_exit_latency(struct usb_device *udev, 4593 enum usb3_link_state state_changed, 4594 u16 hub_encoded_timeout) 4595 { 4596 unsigned long long u1_mel_us = 0; 4597 unsigned long long u2_mel_us = 0; 4598 unsigned long long mel_us = 0; 4599 bool disabling_u1; 4600 bool disabling_u2; 4601 bool enabling_u1; 4602 bool enabling_u2; 4603 4604 disabling_u1 = (state_changed == USB3_LPM_U1 && 4605 hub_encoded_timeout == USB3_LPM_DISABLED); 4606 disabling_u2 = (state_changed == USB3_LPM_U2 && 4607 hub_encoded_timeout == USB3_LPM_DISABLED); 4608 4609 enabling_u1 = (state_changed == USB3_LPM_U1 && 4610 hub_encoded_timeout != USB3_LPM_DISABLED); 4611 enabling_u2 = (state_changed == USB3_LPM_U2 && 4612 hub_encoded_timeout != USB3_LPM_DISABLED); 4613 4614 /* If U1 was already enabled and we're not disabling it, 4615 * or we're going to enable U1, account for the U1 max exit latency. 4616 */ 4617 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4618 enabling_u1) 4619 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4620 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4621 enabling_u2) 4622 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4623 4624 if (u1_mel_us > u2_mel_us) 4625 mel_us = u1_mel_us; 4626 else 4627 mel_us = u2_mel_us; 4628 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4629 if (mel_us > MAX_EXIT) { 4630 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4631 "is too big.\n", mel_us); 4632 return -E2BIG; 4633 } 4634 return mel_us; 4635 } 4636 4637 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4638 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4639 struct usb_device *udev, enum usb3_link_state state) 4640 { 4641 struct xhci_hcd *xhci; 4642 u16 hub_encoded_timeout; 4643 int mel; 4644 int ret; 4645 4646 xhci = hcd_to_xhci(hcd); 4647 /* The LPM timeout values are pretty host-controller specific, so don't 4648 * enable hub-initiated timeouts unless the vendor has provided 4649 * information about their timeout algorithm. 4650 */ 4651 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4652 !xhci->devs[udev->slot_id]) 4653 return USB3_LPM_DISABLED; 4654 4655 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4656 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4657 if (mel < 0) { 4658 /* Max Exit Latency is too big, disable LPM. */ 4659 hub_encoded_timeout = USB3_LPM_DISABLED; 4660 mel = 0; 4661 } 4662 4663 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4664 if (ret) 4665 return ret; 4666 return hub_encoded_timeout; 4667 } 4668 4669 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4670 struct usb_device *udev, enum usb3_link_state state) 4671 { 4672 struct xhci_hcd *xhci; 4673 u16 mel; 4674 int ret; 4675 4676 xhci = hcd_to_xhci(hcd); 4677 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4678 !xhci->devs[udev->slot_id]) 4679 return 0; 4680 4681 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4682 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4683 if (ret) 4684 return ret; 4685 return 0; 4686 } 4687 #else /* CONFIG_PM */ 4688 4689 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4690 struct usb_device *udev, int enable) 4691 { 4692 return 0; 4693 } 4694 4695 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4696 { 4697 return 0; 4698 } 4699 4700 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4701 struct usb_device *udev, enum usb3_link_state state) 4702 { 4703 return USB3_LPM_DISABLED; 4704 } 4705 4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4707 struct usb_device *udev, enum usb3_link_state state) 4708 { 4709 return 0; 4710 } 4711 #endif /* CONFIG_PM */ 4712 4713 /*-------------------------------------------------------------------------*/ 4714 4715 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4716 * internal data structures for the device. 4717 */ 4718 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4719 struct usb_tt *tt, gfp_t mem_flags) 4720 { 4721 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4722 struct xhci_virt_device *vdev; 4723 struct xhci_command *config_cmd; 4724 struct xhci_input_control_ctx *ctrl_ctx; 4725 struct xhci_slot_ctx *slot_ctx; 4726 unsigned long flags; 4727 unsigned think_time; 4728 int ret; 4729 4730 /* Ignore root hubs */ 4731 if (!hdev->parent) 4732 return 0; 4733 4734 vdev = xhci->devs[hdev->slot_id]; 4735 if (!vdev) { 4736 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4737 return -EINVAL; 4738 } 4739 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4740 if (!config_cmd) { 4741 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4742 return -ENOMEM; 4743 } 4744 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4745 if (!ctrl_ctx) { 4746 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4747 __func__); 4748 xhci_free_command(xhci, config_cmd); 4749 return -ENOMEM; 4750 } 4751 4752 spin_lock_irqsave(&xhci->lock, flags); 4753 if (hdev->speed == USB_SPEED_HIGH && 4754 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4755 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4756 xhci_free_command(xhci, config_cmd); 4757 spin_unlock_irqrestore(&xhci->lock, flags); 4758 return -ENOMEM; 4759 } 4760 4761 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4762 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4763 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4764 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4765 if (tt->multi) 4766 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4767 if (xhci->hci_version > 0x95) { 4768 xhci_dbg(xhci, "xHCI version %x needs hub " 4769 "TT think time and number of ports\n", 4770 (unsigned int) xhci->hci_version); 4771 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4772 /* Set TT think time - convert from ns to FS bit times. 4773 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4774 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4775 * 4776 * xHCI 1.0: this field shall be 0 if the device is not a 4777 * High-spped hub. 4778 */ 4779 think_time = tt->think_time; 4780 if (think_time != 0) 4781 think_time = (think_time / 666) - 1; 4782 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4783 slot_ctx->tt_info |= 4784 cpu_to_le32(TT_THINK_TIME(think_time)); 4785 } else { 4786 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4787 "TT think time or number of ports\n", 4788 (unsigned int) xhci->hci_version); 4789 } 4790 slot_ctx->dev_state = 0; 4791 spin_unlock_irqrestore(&xhci->lock, flags); 4792 4793 xhci_dbg(xhci, "Set up %s for hub device.\n", 4794 (xhci->hci_version > 0x95) ? 4795 "configure endpoint" : "evaluate context"); 4796 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4797 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4798 4799 /* Issue and wait for the configure endpoint or 4800 * evaluate context command. 4801 */ 4802 if (xhci->hci_version > 0x95) 4803 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4804 false, false); 4805 else 4806 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4807 true, false); 4808 4809 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4810 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4811 4812 xhci_free_command(xhci, config_cmd); 4813 return ret; 4814 } 4815 4816 int xhci_get_frame(struct usb_hcd *hcd) 4817 { 4818 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4819 /* EHCI mods by the periodic size. Why? */ 4820 return readl(&xhci->run_regs->microframe_index) >> 3; 4821 } 4822 4823 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4824 { 4825 struct xhci_hcd *xhci; 4826 struct device *dev = hcd->self.controller; 4827 int retval; 4828 4829 /* Accept arbitrarily long scatter-gather lists */ 4830 hcd->self.sg_tablesize = ~0; 4831 4832 /* support to build packet from discontinuous buffers */ 4833 hcd->self.no_sg_constraint = 1; 4834 4835 /* XHCI controllers don't stop the ep queue on short packets :| */ 4836 hcd->self.no_stop_on_short = 1; 4837 4838 if (usb_hcd_is_primary_hcd(hcd)) { 4839 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4840 if (!xhci) 4841 return -ENOMEM; 4842 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4843 xhci->main_hcd = hcd; 4844 /* Mark the first roothub as being USB 2.0. 4845 * The xHCI driver will register the USB 3.0 roothub. 4846 */ 4847 hcd->speed = HCD_USB2; 4848 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4849 /* 4850 * USB 2.0 roothub under xHCI has an integrated TT, 4851 * (rate matching hub) as opposed to having an OHCI/UHCI 4852 * companion controller. 4853 */ 4854 hcd->has_tt = 1; 4855 } else { 4856 /* xHCI private pointer was set in xhci_pci_probe for the second 4857 * registered roothub. 4858 */ 4859 return 0; 4860 } 4861 4862 xhci->cap_regs = hcd->regs; 4863 xhci->op_regs = hcd->regs + 4864 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4865 xhci->run_regs = hcd->regs + 4866 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4867 /* Cache read-only capability registers */ 4868 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4869 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4870 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4871 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4872 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4873 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4874 xhci_print_registers(xhci); 4875 4876 xhci->quirks = quirks; 4877 4878 get_quirks(dev, xhci); 4879 4880 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4881 * success event after a short transfer. This quirk will ignore such 4882 * spurious event. 4883 */ 4884 if (xhci->hci_version > 0x96) 4885 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4886 4887 /* Make sure the HC is halted. */ 4888 retval = xhci_halt(xhci); 4889 if (retval) 4890 goto error; 4891 4892 xhci_dbg(xhci, "Resetting HCD\n"); 4893 /* Reset the internal HC memory state and registers. */ 4894 retval = xhci_reset(xhci); 4895 if (retval) 4896 goto error; 4897 xhci_dbg(xhci, "Reset complete\n"); 4898 4899 /* Set dma_mask and coherent_dma_mask to 64-bits, 4900 * if xHC supports 64-bit addressing */ 4901 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4902 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4903 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4904 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4905 } 4906 4907 xhci_dbg(xhci, "Calling HCD init\n"); 4908 /* Initialize HCD and host controller data structures. */ 4909 retval = xhci_init(hcd); 4910 if (retval) 4911 goto error; 4912 xhci_dbg(xhci, "Called HCD init\n"); 4913 return 0; 4914 error: 4915 kfree(xhci); 4916 return retval; 4917 } 4918 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4919 4920 static const struct hc_driver xhci_hc_driver = { 4921 .description = "xhci-hcd", 4922 .product_desc = "xHCI Host Controller", 4923 .hcd_priv_size = sizeof(struct xhci_hcd *), 4924 4925 /* 4926 * generic hardware linkage 4927 */ 4928 .irq = xhci_irq, 4929 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4930 4931 /* 4932 * basic lifecycle operations 4933 */ 4934 .reset = NULL, /* set in xhci_init_driver() */ 4935 .start = xhci_run, 4936 .stop = xhci_stop, 4937 .shutdown = xhci_shutdown, 4938 4939 /* 4940 * managing i/o requests and associated device resources 4941 */ 4942 .urb_enqueue = xhci_urb_enqueue, 4943 .urb_dequeue = xhci_urb_dequeue, 4944 .alloc_dev = xhci_alloc_dev, 4945 .free_dev = xhci_free_dev, 4946 .alloc_streams = xhci_alloc_streams, 4947 .free_streams = xhci_free_streams, 4948 .add_endpoint = xhci_add_endpoint, 4949 .drop_endpoint = xhci_drop_endpoint, 4950 .endpoint_reset = xhci_endpoint_reset, 4951 .check_bandwidth = xhci_check_bandwidth, 4952 .reset_bandwidth = xhci_reset_bandwidth, 4953 .address_device = xhci_address_device, 4954 .enable_device = xhci_enable_device, 4955 .update_hub_device = xhci_update_hub_device, 4956 .reset_device = xhci_discover_or_reset_device, 4957 4958 /* 4959 * scheduling support 4960 */ 4961 .get_frame_number = xhci_get_frame, 4962 4963 /* 4964 * root hub support 4965 */ 4966 .hub_control = xhci_hub_control, 4967 .hub_status_data = xhci_hub_status_data, 4968 .bus_suspend = xhci_bus_suspend, 4969 .bus_resume = xhci_bus_resume, 4970 4971 /* 4972 * call back when device connected and addressed 4973 */ 4974 .update_device = xhci_update_device, 4975 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4976 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4977 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4978 .find_raw_port_number = xhci_find_raw_port_number, 4979 }; 4980 4981 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *)) 4982 { 4983 BUG_ON(!setup_fn); 4984 *drv = xhci_hc_driver; 4985 drv->reset = setup_fn; 4986 } 4987 EXPORT_SYMBOL_GPL(xhci_init_driver); 4988 4989 MODULE_DESCRIPTION(DRIVER_DESC); 4990 MODULE_AUTHOR(DRIVER_AUTHOR); 4991 MODULE_LICENSE("GPL"); 4992 4993 static int __init xhci_hcd_init(void) 4994 { 4995 /* 4996 * Check the compiler generated sizes of structures that must be laid 4997 * out in specific ways for hardware access. 4998 */ 4999 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5000 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5001 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5002 /* xhci_device_control has eight fields, and also 5003 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5004 */ 5005 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5006 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5007 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5008 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 5009 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5010 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5011 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5012 return 0; 5013 } 5014 module_init(xhci_hcd_init); 5015