1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 static void compliance_mode_recovery(struct timer_list *t) 326 { 327 struct xhci_hcd *xhci; 328 struct usb_hcd *hcd; 329 struct xhci_hub *rhub; 330 u32 temp; 331 int i; 332 333 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 334 rhub = &xhci->usb3_rhub; 335 hcd = rhub->hcd; 336 337 if (!hcd) 338 return; 339 340 for (i = 0; i < rhub->num_ports; i++) { 341 temp = readl(rhub->ports[i]->addr); 342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 343 /* 344 * Compliance Mode Detected. Letting USB Core 345 * handle the Warm Reset 346 */ 347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 348 "Compliance mode detected->port %d", 349 i + 1); 350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 351 "Attempting compliance mode recovery"); 352 353 if (hcd->state == HC_STATE_SUSPENDED) 354 usb_hcd_resume_root_hub(hcd); 355 356 usb_hcd_poll_rh_status(hcd); 357 } 358 } 359 360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 361 mod_timer(&xhci->comp_mode_recovery_timer, 362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 363 } 364 365 /* 366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 367 * that causes ports behind that hardware to enter compliance mode sometimes. 368 * The quirk creates a timer that polls every 2 seconds the link state of 369 * each host controller's port and recovers it by issuing a Warm reset 370 * if Compliance mode is detected, otherwise the port will become "dead" (no 371 * device connections or disconnections will be detected anymore). Becasue no 372 * status event is generated when entering compliance mode (per xhci spec), 373 * this quirk is needed on systems that have the failing hardware installed. 374 */ 375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 376 { 377 xhci->port_status_u0 = 0; 378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 379 0); 380 xhci->comp_mode_recovery_timer.expires = jiffies + 381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 382 383 add_timer(&xhci->comp_mode_recovery_timer); 384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 385 "Compliance mode recovery timer initialized"); 386 } 387 388 /* 389 * This function identifies the systems that have installed the SN65LVPE502CP 390 * USB3.0 re-driver and that need the Compliance Mode Quirk. 391 * Systems: 392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 393 */ 394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 395 { 396 const char *dmi_product_name, *dmi_sys_vendor; 397 398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 400 if (!dmi_product_name || !dmi_sys_vendor) 401 return false; 402 403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 404 return false; 405 406 if (strstr(dmi_product_name, "Z420") || 407 strstr(dmi_product_name, "Z620") || 408 strstr(dmi_product_name, "Z820") || 409 strstr(dmi_product_name, "Z1 Workstation")) 410 return true; 411 412 return false; 413 } 414 415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 416 { 417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 418 } 419 420 421 /* 422 * Initialize memory for HCD and xHC (one-time init). 423 * 424 * Program the PAGESIZE register, initialize the device context array, create 425 * device contexts (?), set up a command ring segment (or two?), create event 426 * ring (one for now). 427 */ 428 static int xhci_init(struct usb_hcd *hcd) 429 { 430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 431 int retval; 432 433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 434 spin_lock_init(&xhci->lock); 435 if (xhci->hci_version == 0x95 && link_quirk) { 436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 437 "QUIRK: Not clearing Link TRB chain bits."); 438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 439 } else { 440 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 441 "xHCI doesn't need link TRB QUIRK"); 442 } 443 retval = xhci_mem_init(xhci, GFP_KERNEL); 444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 445 446 /* Initializing Compliance Mode Recovery Data If Needed */ 447 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 448 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 449 compliance_mode_recovery_timer_init(xhci); 450 } 451 452 return retval; 453 } 454 455 /*-------------------------------------------------------------------------*/ 456 457 static int xhci_run_finished(struct xhci_hcd *xhci) 458 { 459 struct xhci_interrupter *ir = xhci->interrupter; 460 unsigned long flags; 461 u32 temp; 462 463 /* 464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 465 * Protect the short window before host is running with a lock 466 */ 467 spin_lock_irqsave(&xhci->lock, flags); 468 469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 470 temp = readl(&xhci->op_regs->command); 471 temp |= (CMD_EIE); 472 writel(temp, &xhci->op_regs->command); 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 475 xhci_enable_interrupter(ir); 476 477 if (xhci_start(xhci)) { 478 xhci_halt(xhci); 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 return -ENODEV; 481 } 482 483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 484 485 if (xhci->quirks & XHCI_NEC_HOST) 486 xhci_ring_cmd_db(xhci); 487 488 spin_unlock_irqrestore(&xhci->lock, flags); 489 490 return 0; 491 } 492 493 /* 494 * Start the HC after it was halted. 495 * 496 * This function is called by the USB core when the HC driver is added. 497 * Its opposite is xhci_stop(). 498 * 499 * xhci_init() must be called once before this function can be called. 500 * Reset the HC, enable device slot contexts, program DCBAAP, and 501 * set command ring pointer and event ring pointer. 502 * 503 * Setup MSI-X vectors and enable interrupts. 504 */ 505 int xhci_run(struct usb_hcd *hcd) 506 { 507 u32 temp; 508 u64 temp_64; 509 int ret; 510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 511 struct xhci_interrupter *ir = xhci->interrupter; 512 /* Start the xHCI host controller running only after the USB 2.0 roothub 513 * is setup. 514 */ 515 516 hcd->uses_new_polling = 1; 517 if (!usb_hcd_is_primary_hcd(hcd)) 518 return xhci_run_finished(xhci); 519 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 521 522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 523 temp_64 &= ~ERST_PTR_MASK; 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 526 527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 528 "// Set the interrupt modulation register"); 529 temp = readl(&ir->ir_set->irq_control); 530 temp &= ~ER_IRQ_INTERVAL_MASK; 531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 532 writel(temp, &ir->ir_set->irq_control); 533 534 if (xhci->quirks & XHCI_NEC_HOST) { 535 struct xhci_command *command; 536 537 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 538 if (!command) 539 return -ENOMEM; 540 541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 542 TRB_TYPE(TRB_NEC_GET_FW)); 543 if (ret) 544 xhci_free_command(xhci, command); 545 } 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished %s for main hcd", __func__); 548 549 xhci_create_dbc_dev(xhci); 550 551 xhci_debugfs_init(xhci); 552 553 if (xhci_has_one_roothub(xhci)) 554 return xhci_run_finished(xhci); 555 556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 557 558 return 0; 559 } 560 EXPORT_SYMBOL_GPL(xhci_run); 561 562 /* 563 * Stop xHCI driver. 564 * 565 * This function is called by the USB core when the HC driver is removed. 566 * Its opposite is xhci_run(). 567 * 568 * Disable device contexts, disable IRQs, and quiesce the HC. 569 * Reset the HC, finish any completed transactions, and cleanup memory. 570 */ 571 void xhci_stop(struct usb_hcd *hcd) 572 { 573 u32 temp; 574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 575 struct xhci_interrupter *ir = xhci->interrupter; 576 577 mutex_lock(&xhci->mutex); 578 579 /* Only halt host and free memory after both hcds are removed */ 580 if (!usb_hcd_is_primary_hcd(hcd)) { 581 mutex_unlock(&xhci->mutex); 582 return; 583 } 584 585 xhci_remove_dbc_dev(xhci); 586 587 spin_lock_irq(&xhci->lock); 588 xhci->xhc_state |= XHCI_STATE_HALTED; 589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 590 xhci_halt(xhci); 591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 592 spin_unlock_irq(&xhci->lock); 593 594 /* Deleting Compliance Mode Recovery Timer */ 595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 596 (!(xhci_all_ports_seen_u0(xhci)))) { 597 del_timer_sync(&xhci->comp_mode_recovery_timer); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 599 "%s: compliance mode recovery timer deleted", 600 __func__); 601 } 602 603 if (xhci->quirks & XHCI_AMD_PLL_FIX) 604 usb_amd_dev_put(); 605 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Disabling event ring interrupts"); 608 temp = readl(&xhci->op_regs->status); 609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 610 xhci_disable_interrupter(ir); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 613 xhci_mem_cleanup(xhci); 614 xhci_debugfs_exit(xhci); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "xhci_stop completed - status = %x", 617 readl(&xhci->op_regs->status)); 618 mutex_unlock(&xhci->mutex); 619 } 620 EXPORT_SYMBOL_GPL(xhci_stop); 621 622 /* 623 * Shutdown HC (not bus-specific) 624 * 625 * This is called when the machine is rebooting or halting. We assume that the 626 * machine will be powered off, and the HC's internal state will be reset. 627 * Don't bother to free memory. 628 * 629 * This will only ever be called with the main usb_hcd (the USB3 roothub). 630 */ 631 void xhci_shutdown(struct usb_hcd *hcd) 632 { 633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 634 635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 637 638 /* Don't poll the roothubs after shutdown. */ 639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 640 __func__, hcd->self.busnum); 641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 642 del_timer_sync(&hcd->rh_timer); 643 644 if (xhci->shared_hcd) { 645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 646 del_timer_sync(&xhci->shared_hcd->rh_timer); 647 } 648 649 spin_lock_irq(&xhci->lock); 650 xhci_halt(xhci); 651 652 /* 653 * Workaround for spurious wakeps at shutdown with HSW, and for boot 654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 655 */ 656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 657 xhci->quirks & XHCI_RESET_TO_DEFAULT) 658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 659 660 spin_unlock_irq(&xhci->lock); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "xhci_shutdown completed - status = %x", 664 readl(&xhci->op_regs->status)); 665 } 666 EXPORT_SYMBOL_GPL(xhci_shutdown); 667 668 #ifdef CONFIG_PM 669 static void xhci_save_registers(struct xhci_hcd *xhci) 670 { 671 struct xhci_interrupter *ir = xhci->interrupter; 672 673 xhci->s3.command = readl(&xhci->op_regs->command); 674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 677 678 if (!ir) 679 return; 680 681 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 685 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 686 } 687 688 static void xhci_restore_registers(struct xhci_hcd *xhci) 689 { 690 struct xhci_interrupter *ir = xhci->interrupter; 691 692 writel(xhci->s3.command, &xhci->op_regs->command); 693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 696 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 700 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 701 } 702 703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 704 { 705 u64 val_64; 706 707 /* step 2: initialize command ring buffer */ 708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 711 xhci->cmd_ring->dequeue) & 712 (u64) ~CMD_RING_RSVD_BITS) | 713 xhci->cmd_ring->cycle_state; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Setting command ring address to 0x%llx", 716 (long unsigned long) val_64); 717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 718 } 719 720 /* 721 * The whole command ring must be cleared to zero when we suspend the host. 722 * 723 * The host doesn't save the command ring pointer in the suspend well, so we 724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 725 * aligned, because of the reserved bits in the command ring dequeue pointer 726 * register. Therefore, we can't just set the dequeue pointer back in the 727 * middle of the ring (TRBs are 16-byte aligned). 728 */ 729 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 730 { 731 struct xhci_ring *ring; 732 struct xhci_segment *seg; 733 734 ring = xhci->cmd_ring; 735 seg = ring->deq_seg; 736 do { 737 memset(seg->trbs, 0, 738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 740 cpu_to_le32(~TRB_CYCLE); 741 seg = seg->next; 742 } while (seg != ring->deq_seg); 743 744 /* Reset the software enqueue and dequeue pointers */ 745 ring->deq_seg = ring->first_seg; 746 ring->dequeue = ring->first_seg->trbs; 747 ring->enq_seg = ring->deq_seg; 748 ring->enqueue = ring->dequeue; 749 750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 751 /* 752 * Ring is now zeroed, so the HW should look for change of ownership 753 * when the cycle bit is set to 1. 754 */ 755 ring->cycle_state = 1; 756 757 /* 758 * Reset the hardware dequeue pointer. 759 * Yes, this will need to be re-written after resume, but we're paranoid 760 * and want to make sure the hardware doesn't access bogus memory 761 * because, say, the BIOS or an SMI started the host without changing 762 * the command ring pointers. 763 */ 764 xhci_set_cmd_ring_deq(xhci); 765 } 766 767 /* 768 * Disable port wake bits if do_wakeup is not set. 769 * 770 * Also clear a possible internal port wake state left hanging for ports that 771 * detected termination but never successfully enumerated (trained to 0U). 772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 773 * at enumeration clears this wake, force one here as well for unconnected ports 774 */ 775 776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 777 struct xhci_hub *rhub, 778 bool do_wakeup) 779 { 780 unsigned long flags; 781 u32 t1, t2, portsc; 782 int i; 783 784 spin_lock_irqsave(&xhci->lock, flags); 785 786 for (i = 0; i < rhub->num_ports; i++) { 787 portsc = readl(rhub->ports[i]->addr); 788 t1 = xhci_port_state_to_neutral(portsc); 789 t2 = t1; 790 791 /* clear wake bits if do_wake is not set */ 792 if (!do_wakeup) 793 t2 &= ~PORT_WAKE_BITS; 794 795 /* Don't touch csc bit if connected or connect change is set */ 796 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 797 t2 |= PORT_CSC; 798 799 if (t1 != t2) { 800 writel(t2, rhub->ports[i]->addr); 801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 802 rhub->hcd->self.busnum, i + 1, portsc, t2); 803 } 804 } 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 } 807 808 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 809 { 810 struct xhci_port **ports; 811 int port_index; 812 u32 status; 813 u32 portsc; 814 815 status = readl(&xhci->op_regs->status); 816 if (status & STS_EINT) 817 return true; 818 /* 819 * Checking STS_EINT is not enough as there is a lag between a change 820 * bit being set and the Port Status Change Event that it generated 821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 822 */ 823 824 port_index = xhci->usb2_rhub.num_ports; 825 ports = xhci->usb2_rhub.ports; 826 while (port_index--) { 827 portsc = readl(ports[port_index]->addr); 828 if (portsc & PORT_CHANGE_MASK || 829 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 830 return true; 831 } 832 port_index = xhci->usb3_rhub.num_ports; 833 ports = xhci->usb3_rhub.ports; 834 while (port_index--) { 835 portsc = readl(ports[port_index]->addr); 836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 837 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 838 return true; 839 } 840 return false; 841 } 842 843 /* 844 * Stop HC (not bus-specific) 845 * 846 * This is called when the machine transition into S3/S4 mode. 847 * 848 */ 849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 850 { 851 int rc = 0; 852 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 853 struct usb_hcd *hcd = xhci_to_hcd(xhci); 854 u32 command; 855 u32 res; 856 857 if (!hcd->state) 858 return 0; 859 860 if (hcd->state != HC_STATE_SUSPENDED || 861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 862 return -EINVAL; 863 864 /* Clear root port wake on bits if wakeup not allowed. */ 865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 867 868 if (!HCD_HW_ACCESSIBLE(hcd)) 869 return 0; 870 871 xhci_dbc_suspend(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 875 __func__, hcd->self.busnum); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 if (xhci->shared_hcd) { 879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 880 del_timer_sync(&xhci->shared_hcd->rh_timer); 881 } 882 883 if (xhci->quirks & XHCI_SUSPEND_DELAY) 884 usleep_range(1000, 1500); 885 886 spin_lock_irq(&xhci->lock); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 if (xhci->shared_hcd) 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = readl(&xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 writel(command, &xhci->op_regs->command); 897 898 /* Some chips from Fresco Logic need an extraordinary delay */ 899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 900 901 if (xhci_handshake(&xhci->op_regs->status, 902 STS_HALT, STS_HALT, delay)) { 903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 904 spin_unlock_irq(&xhci->lock); 905 return -ETIMEDOUT; 906 } 907 xhci_clear_command_ring(xhci); 908 909 /* step 3: save registers */ 910 xhci_save_registers(xhci); 911 912 /* step 4: set CSS flag */ 913 command = readl(&xhci->op_regs->command); 914 command |= CMD_CSS; 915 writel(command, &xhci->op_regs->command); 916 xhci->broken_suspend = 0; 917 if (xhci_handshake(&xhci->op_regs->status, 918 STS_SAVE, 0, 20 * 1000)) { 919 /* 920 * AMD SNPS xHC 3.0 occasionally does not clear the 921 * SSS bit of USBSTS and when driver tries to poll 922 * to see if the xHC clears BIT(8) which never happens 923 * and driver assumes that controller is not responding 924 * and times out. To workaround this, its good to check 925 * if SRE and HCE bits are not set (as per xhci 926 * Section 5.4.2) and bypass the timeout. 927 */ 928 res = readl(&xhci->op_regs->status); 929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 930 (((res & STS_SRE) == 0) && 931 ((res & STS_HCE) == 0))) { 932 xhci->broken_suspend = 1; 933 } else { 934 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 } 939 spin_unlock_irq(&xhci->lock); 940 941 /* 942 * Deleting Compliance Mode Recovery Timer because the xHCI Host 943 * is about to be suspended. 944 */ 945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 946 (!(xhci_all_ports_seen_u0(xhci)))) { 947 del_timer_sync(&xhci->comp_mode_recovery_timer); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 949 "%s: compliance mode recovery timer deleted", 950 __func__); 951 } 952 953 return rc; 954 } 955 EXPORT_SYMBOL_GPL(xhci_suspend); 956 957 /* 958 * start xHC (not bus-specific) 959 * 960 * This is called when the machine transition from S3/S4 mode. 961 * 962 */ 963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 964 { 965 bool hibernated = (msg.event == PM_EVENT_RESTORE); 966 u32 command, temp = 0; 967 struct usb_hcd *hcd = xhci_to_hcd(xhci); 968 int retval = 0; 969 bool comp_timer_running = false; 970 bool pending_portevent = false; 971 bool suspended_usb3_devs = false; 972 bool reinit_xhc = false; 973 974 if (!hcd->state) 975 return 0; 976 977 /* Wait a bit if either of the roothubs need to settle from the 978 * transition into bus suspend. 979 */ 980 981 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 982 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 983 msleep(100); 984 985 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 986 if (xhci->shared_hcd) 987 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 988 989 spin_lock_irq(&xhci->lock); 990 991 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 992 reinit_xhc = true; 993 994 if (!reinit_xhc) { 995 /* 996 * Some controllers might lose power during suspend, so wait 997 * for controller not ready bit to clear, just as in xHC init. 998 */ 999 retval = xhci_handshake(&xhci->op_regs->status, 1000 STS_CNR, 0, 10 * 1000 * 1000); 1001 if (retval) { 1002 xhci_warn(xhci, "Controller not ready at resume %d\n", 1003 retval); 1004 spin_unlock_irq(&xhci->lock); 1005 return retval; 1006 } 1007 /* step 1: restore register */ 1008 xhci_restore_registers(xhci); 1009 /* step 2: initialize command ring buffer */ 1010 xhci_set_cmd_ring_deq(xhci); 1011 /* step 3: restore state and start state*/ 1012 /* step 3: set CRS flag */ 1013 command = readl(&xhci->op_regs->command); 1014 command |= CMD_CRS; 1015 writel(command, &xhci->op_regs->command); 1016 /* 1017 * Some controllers take up to 55+ ms to complete the controller 1018 * restore so setting the timeout to 100ms. Xhci specification 1019 * doesn't mention any timeout value. 1020 */ 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_RESTORE, 0, 100 * 1000)) { 1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 } 1028 1029 temp = readl(&xhci->op_regs->status); 1030 1031 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1032 if ((temp & (STS_SRE | STS_HCE)) && 1033 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1034 reinit_xhc = true; 1035 if (!xhci->broken_suspend) 1036 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1037 } 1038 1039 if (reinit_xhc) { 1040 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1041 !(xhci_all_ports_seen_u0(xhci))) { 1042 del_timer_sync(&xhci->comp_mode_recovery_timer); 1043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1044 "Compliance Mode Recovery Timer deleted!"); 1045 } 1046 1047 /* Let the USB core know _both_ roothubs lost power. */ 1048 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1049 if (xhci->shared_hcd) 1050 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1051 1052 xhci_dbg(xhci, "Stop HCD\n"); 1053 xhci_halt(xhci); 1054 xhci_zero_64b_regs(xhci); 1055 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1056 spin_unlock_irq(&xhci->lock); 1057 if (retval) 1058 return retval; 1059 1060 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1061 temp = readl(&xhci->op_regs->status); 1062 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1063 xhci_disable_interrupter(xhci->interrupter); 1064 1065 xhci_dbg(xhci, "cleaning up memory\n"); 1066 xhci_mem_cleanup(xhci); 1067 xhci_debugfs_exit(xhci); 1068 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1069 readl(&xhci->op_regs->status)); 1070 1071 /* USB core calls the PCI reinit and start functions twice: 1072 * first with the primary HCD, and then with the secondary HCD. 1073 * If we don't do the same, the host will never be started. 1074 */ 1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1076 retval = xhci_init(hcd); 1077 if (retval) 1078 return retval; 1079 comp_timer_running = true; 1080 1081 xhci_dbg(xhci, "Start the primary HCD\n"); 1082 retval = xhci_run(hcd); 1083 if (!retval && xhci->shared_hcd) { 1084 xhci_dbg(xhci, "Start the secondary HCD\n"); 1085 retval = xhci_run(xhci->shared_hcd); 1086 } 1087 1088 hcd->state = HC_STATE_SUSPENDED; 1089 if (xhci->shared_hcd) 1090 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1091 goto done; 1092 } 1093 1094 /* step 4: set Run/Stop bit */ 1095 command = readl(&xhci->op_regs->command); 1096 command |= CMD_RUN; 1097 writel(command, &xhci->op_regs->command); 1098 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1099 0, 250 * 1000); 1100 1101 /* step 5: walk topology and initialize portsc, 1102 * portpmsc and portli 1103 */ 1104 /* this is done in bus_resume */ 1105 1106 /* step 6: restart each of the previously 1107 * Running endpoints by ringing their doorbells 1108 */ 1109 1110 spin_unlock_irq(&xhci->lock); 1111 1112 xhci_dbc_resume(xhci); 1113 1114 done: 1115 if (retval == 0) { 1116 /* 1117 * Resume roothubs only if there are pending events. 1118 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1119 * the first wake signalling failed, give it that chance if 1120 * there are suspended USB 3 devices. 1121 */ 1122 if (xhci->usb3_rhub.bus_state.suspended_ports || 1123 xhci->usb3_rhub.bus_state.bus_suspended) 1124 suspended_usb3_devs = true; 1125 1126 pending_portevent = xhci_pending_portevent(xhci); 1127 1128 if (suspended_usb3_devs && !pending_portevent && 1129 msg.event == PM_EVENT_AUTO_RESUME) { 1130 msleep(120); 1131 pending_portevent = xhci_pending_portevent(xhci); 1132 } 1133 1134 if (pending_portevent) { 1135 if (xhci->shared_hcd) 1136 usb_hcd_resume_root_hub(xhci->shared_hcd); 1137 usb_hcd_resume_root_hub(hcd); 1138 } 1139 } 1140 /* 1141 * If system is subject to the Quirk, Compliance Mode Timer needs to 1142 * be re-initialized Always after a system resume. Ports are subject 1143 * to suffer the Compliance Mode issue again. It doesn't matter if 1144 * ports have entered previously to U0 before system's suspension. 1145 */ 1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1147 compliance_mode_recovery_timer_init(xhci); 1148 1149 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1150 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1151 1152 /* Re-enable port polling. */ 1153 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1154 __func__, hcd->self.busnum); 1155 if (xhci->shared_hcd) { 1156 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1157 usb_hcd_poll_rh_status(xhci->shared_hcd); 1158 } 1159 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1160 usb_hcd_poll_rh_status(hcd); 1161 1162 return retval; 1163 } 1164 EXPORT_SYMBOL_GPL(xhci_resume); 1165 #endif /* CONFIG_PM */ 1166 1167 /*-------------------------------------------------------------------------*/ 1168 1169 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1170 { 1171 void *temp; 1172 int ret = 0; 1173 unsigned int buf_len; 1174 enum dma_data_direction dir; 1175 1176 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1177 buf_len = urb->transfer_buffer_length; 1178 1179 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1180 dev_to_node(hcd->self.sysdev)); 1181 1182 if (usb_urb_dir_out(urb)) 1183 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1184 temp, buf_len, 0); 1185 1186 urb->transfer_buffer = temp; 1187 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1188 urb->transfer_buffer, 1189 urb->transfer_buffer_length, 1190 dir); 1191 1192 if (dma_mapping_error(hcd->self.sysdev, 1193 urb->transfer_dma)) { 1194 ret = -EAGAIN; 1195 kfree(temp); 1196 } else { 1197 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1198 } 1199 1200 return ret; 1201 } 1202 1203 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1204 struct urb *urb) 1205 { 1206 bool ret = false; 1207 unsigned int i; 1208 unsigned int len = 0; 1209 unsigned int trb_size; 1210 unsigned int max_pkt; 1211 struct scatterlist *sg; 1212 struct scatterlist *tail_sg; 1213 1214 tail_sg = urb->sg; 1215 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1216 1217 if (!urb->num_sgs) 1218 return ret; 1219 1220 if (urb->dev->speed >= USB_SPEED_SUPER) 1221 trb_size = TRB_CACHE_SIZE_SS; 1222 else 1223 trb_size = TRB_CACHE_SIZE_HS; 1224 1225 if (urb->transfer_buffer_length != 0 && 1226 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1227 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1228 len = len + sg->length; 1229 if (i > trb_size - 2) { 1230 len = len - tail_sg->length; 1231 if (len < max_pkt) { 1232 ret = true; 1233 break; 1234 } 1235 1236 tail_sg = sg_next(tail_sg); 1237 } 1238 } 1239 } 1240 return ret; 1241 } 1242 1243 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1244 { 1245 unsigned int len; 1246 unsigned int buf_len; 1247 enum dma_data_direction dir; 1248 1249 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1250 1251 buf_len = urb->transfer_buffer_length; 1252 1253 if (IS_ENABLED(CONFIG_HAS_DMA) && 1254 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1255 dma_unmap_single(hcd->self.sysdev, 1256 urb->transfer_dma, 1257 urb->transfer_buffer_length, 1258 dir); 1259 1260 if (usb_urb_dir_in(urb)) { 1261 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1262 urb->transfer_buffer, 1263 buf_len, 1264 0); 1265 if (len != buf_len) { 1266 xhci_dbg(hcd_to_xhci(hcd), 1267 "Copy from tmp buf to urb sg list failed\n"); 1268 urb->actual_length = len; 1269 } 1270 } 1271 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1272 kfree(urb->transfer_buffer); 1273 urb->transfer_buffer = NULL; 1274 } 1275 1276 /* 1277 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1278 * we'll copy the actual data into the TRB address register. This is limited to 1279 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1280 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1281 */ 1282 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1283 gfp_t mem_flags) 1284 { 1285 struct xhci_hcd *xhci; 1286 1287 xhci = hcd_to_xhci(hcd); 1288 1289 if (xhci_urb_suitable_for_idt(urb)) 1290 return 0; 1291 1292 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1293 if (xhci_urb_temp_buffer_required(hcd, urb)) 1294 return xhci_map_temp_buffer(hcd, urb); 1295 } 1296 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1297 } 1298 1299 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1300 { 1301 struct xhci_hcd *xhci; 1302 bool unmap_temp_buf = false; 1303 1304 xhci = hcd_to_xhci(hcd); 1305 1306 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1307 unmap_temp_buf = true; 1308 1309 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1310 xhci_unmap_temp_buf(hcd, urb); 1311 else 1312 usb_hcd_unmap_urb_for_dma(hcd, urb); 1313 } 1314 1315 /** 1316 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1317 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1318 * value to right shift 1 for the bitmask. 1319 * 1320 * Index = (epnum * 2) + direction - 1, 1321 * where direction = 0 for OUT, 1 for IN. 1322 * For control endpoints, the IN index is used (OUT index is unused), so 1323 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1324 */ 1325 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1326 { 1327 unsigned int index; 1328 if (usb_endpoint_xfer_control(desc)) 1329 index = (unsigned int) (usb_endpoint_num(desc)*2); 1330 else 1331 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1332 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1333 return index; 1334 } 1335 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1336 1337 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1338 * address from the XHCI endpoint index. 1339 */ 1340 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1341 { 1342 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1343 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1344 return direction | number; 1345 } 1346 1347 /* Find the flag for this endpoint (for use in the control context). Use the 1348 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1349 * bit 1, etc. 1350 */ 1351 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1352 { 1353 return 1 << (xhci_get_endpoint_index(desc) + 1); 1354 } 1355 1356 /* Compute the last valid endpoint context index. Basically, this is the 1357 * endpoint index plus one. For slot contexts with more than valid endpoint, 1358 * we find the most significant bit set in the added contexts flags. 1359 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1360 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1361 */ 1362 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1363 { 1364 return fls(added_ctxs) - 1; 1365 } 1366 1367 /* Returns 1 if the arguments are OK; 1368 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1369 */ 1370 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1371 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1372 const char *func) { 1373 struct xhci_hcd *xhci; 1374 struct xhci_virt_device *virt_dev; 1375 1376 if (!hcd || (check_ep && !ep) || !udev) { 1377 pr_debug("xHCI %s called with invalid args\n", func); 1378 return -EINVAL; 1379 } 1380 if (!udev->parent) { 1381 pr_debug("xHCI %s called for root hub\n", func); 1382 return 0; 1383 } 1384 1385 xhci = hcd_to_xhci(hcd); 1386 if (check_virt_dev) { 1387 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1388 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1389 func); 1390 return -EINVAL; 1391 } 1392 1393 virt_dev = xhci->devs[udev->slot_id]; 1394 if (virt_dev->udev != udev) { 1395 xhci_dbg(xhci, "xHCI %s called with udev and " 1396 "virt_dev does not match\n", func); 1397 return -EINVAL; 1398 } 1399 } 1400 1401 if (xhci->xhc_state & XHCI_STATE_HALTED) 1402 return -ENODEV; 1403 1404 return 1; 1405 } 1406 1407 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1408 struct usb_device *udev, struct xhci_command *command, 1409 bool ctx_change, bool must_succeed); 1410 1411 /* 1412 * Full speed devices may have a max packet size greater than 8 bytes, but the 1413 * USB core doesn't know that until it reads the first 8 bytes of the 1414 * descriptor. If the usb_device's max packet size changes after that point, 1415 * we need to issue an evaluate context command and wait on it. 1416 */ 1417 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1418 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1419 { 1420 struct xhci_container_ctx *out_ctx; 1421 struct xhci_input_control_ctx *ctrl_ctx; 1422 struct xhci_ep_ctx *ep_ctx; 1423 struct xhci_command *command; 1424 int max_packet_size; 1425 int hw_max_packet_size; 1426 int ret = 0; 1427 1428 out_ctx = xhci->devs[slot_id]->out_ctx; 1429 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1430 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1431 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1432 if (hw_max_packet_size != max_packet_size) { 1433 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1434 "Max Packet Size for ep 0 changed."); 1435 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1436 "Max packet size in usb_device = %d", 1437 max_packet_size); 1438 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1439 "Max packet size in xHCI HW = %d", 1440 hw_max_packet_size); 1441 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1442 "Issuing evaluate context command."); 1443 1444 /* Set up the input context flags for the command */ 1445 /* FIXME: This won't work if a non-default control endpoint 1446 * changes max packet sizes. 1447 */ 1448 1449 command = xhci_alloc_command(xhci, true, mem_flags); 1450 if (!command) 1451 return -ENOMEM; 1452 1453 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1454 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1455 if (!ctrl_ctx) { 1456 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1457 __func__); 1458 ret = -ENOMEM; 1459 goto command_cleanup; 1460 } 1461 /* Set up the modified control endpoint 0 */ 1462 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1463 xhci->devs[slot_id]->out_ctx, ep_index); 1464 1465 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1466 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1467 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1468 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1469 1470 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1471 ctrl_ctx->drop_flags = 0; 1472 1473 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1474 true, false); 1475 1476 /* Clean up the input context for later use by bandwidth 1477 * functions. 1478 */ 1479 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1480 command_cleanup: 1481 kfree(command->completion); 1482 kfree(command); 1483 } 1484 return ret; 1485 } 1486 1487 /* 1488 * non-error returns are a promise to giveback() the urb later 1489 * we drop ownership so next owner (or urb unlink) can get it 1490 */ 1491 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1492 { 1493 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1494 unsigned long flags; 1495 int ret = 0; 1496 unsigned int slot_id, ep_index; 1497 unsigned int *ep_state; 1498 struct urb_priv *urb_priv; 1499 int num_tds; 1500 1501 if (!urb) 1502 return -EINVAL; 1503 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1504 true, true, __func__); 1505 if (ret <= 0) 1506 return ret ? ret : -EINVAL; 1507 1508 slot_id = urb->dev->slot_id; 1509 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1510 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1511 1512 if (!HCD_HW_ACCESSIBLE(hcd)) 1513 return -ESHUTDOWN; 1514 1515 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1516 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1517 return -ENODEV; 1518 } 1519 1520 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1521 num_tds = urb->number_of_packets; 1522 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1523 urb->transfer_buffer_length > 0 && 1524 urb->transfer_flags & URB_ZERO_PACKET && 1525 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1526 num_tds = 2; 1527 else 1528 num_tds = 1; 1529 1530 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1531 if (!urb_priv) 1532 return -ENOMEM; 1533 1534 urb_priv->num_tds = num_tds; 1535 urb_priv->num_tds_done = 0; 1536 urb->hcpriv = urb_priv; 1537 1538 trace_xhci_urb_enqueue(urb); 1539 1540 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1541 /* Check to see if the max packet size for the default control 1542 * endpoint changed during FS device enumeration 1543 */ 1544 if (urb->dev->speed == USB_SPEED_FULL) { 1545 ret = xhci_check_maxpacket(xhci, slot_id, 1546 ep_index, urb, mem_flags); 1547 if (ret < 0) { 1548 xhci_urb_free_priv(urb_priv); 1549 urb->hcpriv = NULL; 1550 return ret; 1551 } 1552 } 1553 } 1554 1555 spin_lock_irqsave(&xhci->lock, flags); 1556 1557 if (xhci->xhc_state & XHCI_STATE_DYING) { 1558 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1559 urb->ep->desc.bEndpointAddress, urb); 1560 ret = -ESHUTDOWN; 1561 goto free_priv; 1562 } 1563 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1564 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1565 *ep_state); 1566 ret = -EINVAL; 1567 goto free_priv; 1568 } 1569 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1570 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1571 ret = -EINVAL; 1572 goto free_priv; 1573 } 1574 1575 switch (usb_endpoint_type(&urb->ep->desc)) { 1576 1577 case USB_ENDPOINT_XFER_CONTROL: 1578 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1579 slot_id, ep_index); 1580 break; 1581 case USB_ENDPOINT_XFER_BULK: 1582 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1583 slot_id, ep_index); 1584 break; 1585 case USB_ENDPOINT_XFER_INT: 1586 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1587 slot_id, ep_index); 1588 break; 1589 case USB_ENDPOINT_XFER_ISOC: 1590 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1591 slot_id, ep_index); 1592 } 1593 1594 if (ret) { 1595 free_priv: 1596 xhci_urb_free_priv(urb_priv); 1597 urb->hcpriv = NULL; 1598 } 1599 spin_unlock_irqrestore(&xhci->lock, flags); 1600 return ret; 1601 } 1602 1603 /* 1604 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1605 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1606 * should pick up where it left off in the TD, unless a Set Transfer Ring 1607 * Dequeue Pointer is issued. 1608 * 1609 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1610 * the ring. Since the ring is a contiguous structure, they can't be physically 1611 * removed. Instead, there are two options: 1612 * 1613 * 1) If the HC is in the middle of processing the URB to be canceled, we 1614 * simply move the ring's dequeue pointer past those TRBs using the Set 1615 * Transfer Ring Dequeue Pointer command. This will be the common case, 1616 * when drivers timeout on the last submitted URB and attempt to cancel. 1617 * 1618 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1619 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1620 * HC will need to invalidate the any TRBs it has cached after the stop 1621 * endpoint command, as noted in the xHCI 0.95 errata. 1622 * 1623 * 3) The TD may have completed by the time the Stop Endpoint Command 1624 * completes, so software needs to handle that case too. 1625 * 1626 * This function should protect against the TD enqueueing code ringing the 1627 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1628 * It also needs to account for multiple cancellations on happening at the same 1629 * time for the same endpoint. 1630 * 1631 * Note that this function can be called in any context, or so says 1632 * usb_hcd_unlink_urb() 1633 */ 1634 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1635 { 1636 unsigned long flags; 1637 int ret, i; 1638 u32 temp; 1639 struct xhci_hcd *xhci; 1640 struct urb_priv *urb_priv; 1641 struct xhci_td *td; 1642 unsigned int ep_index; 1643 struct xhci_ring *ep_ring; 1644 struct xhci_virt_ep *ep; 1645 struct xhci_command *command; 1646 struct xhci_virt_device *vdev; 1647 1648 xhci = hcd_to_xhci(hcd); 1649 spin_lock_irqsave(&xhci->lock, flags); 1650 1651 trace_xhci_urb_dequeue(urb); 1652 1653 /* Make sure the URB hasn't completed or been unlinked already */ 1654 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1655 if (ret) 1656 goto done; 1657 1658 /* give back URB now if we can't queue it for cancel */ 1659 vdev = xhci->devs[urb->dev->slot_id]; 1660 urb_priv = urb->hcpriv; 1661 if (!vdev || !urb_priv) 1662 goto err_giveback; 1663 1664 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1665 ep = &vdev->eps[ep_index]; 1666 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1667 if (!ep || !ep_ring) 1668 goto err_giveback; 1669 1670 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1671 temp = readl(&xhci->op_regs->status); 1672 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1673 xhci_hc_died(xhci); 1674 goto done; 1675 } 1676 1677 /* 1678 * check ring is not re-allocated since URB was enqueued. If it is, then 1679 * make sure none of the ring related pointers in this URB private data 1680 * are touched, such as td_list, otherwise we overwrite freed data 1681 */ 1682 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1683 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1684 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1685 td = &urb_priv->td[i]; 1686 if (!list_empty(&td->cancelled_td_list)) 1687 list_del_init(&td->cancelled_td_list); 1688 } 1689 goto err_giveback; 1690 } 1691 1692 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1693 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1694 "HC halted, freeing TD manually."); 1695 for (i = urb_priv->num_tds_done; 1696 i < urb_priv->num_tds; 1697 i++) { 1698 td = &urb_priv->td[i]; 1699 if (!list_empty(&td->td_list)) 1700 list_del_init(&td->td_list); 1701 if (!list_empty(&td->cancelled_td_list)) 1702 list_del_init(&td->cancelled_td_list); 1703 } 1704 goto err_giveback; 1705 } 1706 1707 i = urb_priv->num_tds_done; 1708 if (i < urb_priv->num_tds) 1709 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1710 "Cancel URB %p, dev %s, ep 0x%x, " 1711 "starting at offset 0x%llx", 1712 urb, urb->dev->devpath, 1713 urb->ep->desc.bEndpointAddress, 1714 (unsigned long long) xhci_trb_virt_to_dma( 1715 urb_priv->td[i].start_seg, 1716 urb_priv->td[i].first_trb)); 1717 1718 for (; i < urb_priv->num_tds; i++) { 1719 td = &urb_priv->td[i]; 1720 /* TD can already be on cancelled list if ep halted on it */ 1721 if (list_empty(&td->cancelled_td_list)) { 1722 td->cancel_status = TD_DIRTY; 1723 list_add_tail(&td->cancelled_td_list, 1724 &ep->cancelled_td_list); 1725 } 1726 } 1727 1728 /* Queue a stop endpoint command, but only if this is 1729 * the first cancellation to be handled. 1730 */ 1731 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1732 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1733 if (!command) { 1734 ret = -ENOMEM; 1735 goto done; 1736 } 1737 ep->ep_state |= EP_STOP_CMD_PENDING; 1738 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1739 ep_index, 0); 1740 xhci_ring_cmd_db(xhci); 1741 } 1742 done: 1743 spin_unlock_irqrestore(&xhci->lock, flags); 1744 return ret; 1745 1746 err_giveback: 1747 if (urb_priv) 1748 xhci_urb_free_priv(urb_priv); 1749 usb_hcd_unlink_urb_from_ep(hcd, urb); 1750 spin_unlock_irqrestore(&xhci->lock, flags); 1751 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1752 return ret; 1753 } 1754 1755 /* Drop an endpoint from a new bandwidth configuration for this device. 1756 * Only one call to this function is allowed per endpoint before 1757 * check_bandwidth() or reset_bandwidth() must be called. 1758 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1759 * add the endpoint to the schedule with possibly new parameters denoted by a 1760 * different endpoint descriptor in usb_host_endpoint. 1761 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1762 * not allowed. 1763 * 1764 * The USB core will not allow URBs to be queued to an endpoint that is being 1765 * disabled, so there's no need for mutual exclusion to protect 1766 * the xhci->devs[slot_id] structure. 1767 */ 1768 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1769 struct usb_host_endpoint *ep) 1770 { 1771 struct xhci_hcd *xhci; 1772 struct xhci_container_ctx *in_ctx, *out_ctx; 1773 struct xhci_input_control_ctx *ctrl_ctx; 1774 unsigned int ep_index; 1775 struct xhci_ep_ctx *ep_ctx; 1776 u32 drop_flag; 1777 u32 new_add_flags, new_drop_flags; 1778 int ret; 1779 1780 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1781 if (ret <= 0) 1782 return ret; 1783 xhci = hcd_to_xhci(hcd); 1784 if (xhci->xhc_state & XHCI_STATE_DYING) 1785 return -ENODEV; 1786 1787 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1788 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1789 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1790 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1791 __func__, drop_flag); 1792 return 0; 1793 } 1794 1795 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1796 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1797 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1798 if (!ctrl_ctx) { 1799 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1800 __func__); 1801 return 0; 1802 } 1803 1804 ep_index = xhci_get_endpoint_index(&ep->desc); 1805 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1806 /* If the HC already knows the endpoint is disabled, 1807 * or the HCD has noted it is disabled, ignore this request 1808 */ 1809 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1810 le32_to_cpu(ctrl_ctx->drop_flags) & 1811 xhci_get_endpoint_flag(&ep->desc)) { 1812 /* Do not warn when called after a usb_device_reset */ 1813 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1814 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1815 __func__, ep); 1816 return 0; 1817 } 1818 1819 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1820 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1821 1822 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1823 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1824 1825 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1826 1827 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1828 1829 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1830 (unsigned int) ep->desc.bEndpointAddress, 1831 udev->slot_id, 1832 (unsigned int) new_drop_flags, 1833 (unsigned int) new_add_flags); 1834 return 0; 1835 } 1836 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1837 1838 /* Add an endpoint to a new possible bandwidth configuration for this device. 1839 * Only one call to this function is allowed per endpoint before 1840 * check_bandwidth() or reset_bandwidth() must be called. 1841 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1842 * add the endpoint to the schedule with possibly new parameters denoted by a 1843 * different endpoint descriptor in usb_host_endpoint. 1844 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1845 * not allowed. 1846 * 1847 * The USB core will not allow URBs to be queued to an endpoint until the 1848 * configuration or alt setting is installed in the device, so there's no need 1849 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1850 */ 1851 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1852 struct usb_host_endpoint *ep) 1853 { 1854 struct xhci_hcd *xhci; 1855 struct xhci_container_ctx *in_ctx; 1856 unsigned int ep_index; 1857 struct xhci_input_control_ctx *ctrl_ctx; 1858 struct xhci_ep_ctx *ep_ctx; 1859 u32 added_ctxs; 1860 u32 new_add_flags, new_drop_flags; 1861 struct xhci_virt_device *virt_dev; 1862 int ret = 0; 1863 1864 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1865 if (ret <= 0) { 1866 /* So we won't queue a reset ep command for a root hub */ 1867 ep->hcpriv = NULL; 1868 return ret; 1869 } 1870 xhci = hcd_to_xhci(hcd); 1871 if (xhci->xhc_state & XHCI_STATE_DYING) 1872 return -ENODEV; 1873 1874 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1875 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1876 /* FIXME when we have to issue an evaluate endpoint command to 1877 * deal with ep0 max packet size changing once we get the 1878 * descriptors 1879 */ 1880 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1881 __func__, added_ctxs); 1882 return 0; 1883 } 1884 1885 virt_dev = xhci->devs[udev->slot_id]; 1886 in_ctx = virt_dev->in_ctx; 1887 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1888 if (!ctrl_ctx) { 1889 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1890 __func__); 1891 return 0; 1892 } 1893 1894 ep_index = xhci_get_endpoint_index(&ep->desc); 1895 /* If this endpoint is already in use, and the upper layers are trying 1896 * to add it again without dropping it, reject the addition. 1897 */ 1898 if (virt_dev->eps[ep_index].ring && 1899 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1900 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1901 "without dropping it.\n", 1902 (unsigned int) ep->desc.bEndpointAddress); 1903 return -EINVAL; 1904 } 1905 1906 /* If the HCD has already noted the endpoint is enabled, 1907 * ignore this request. 1908 */ 1909 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1910 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1911 __func__, ep); 1912 return 0; 1913 } 1914 1915 /* 1916 * Configuration and alternate setting changes must be done in 1917 * process context, not interrupt context (or so documenation 1918 * for usb_set_interface() and usb_set_configuration() claim). 1919 */ 1920 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1921 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1922 __func__, ep->desc.bEndpointAddress); 1923 return -ENOMEM; 1924 } 1925 1926 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1927 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1928 1929 /* If xhci_endpoint_disable() was called for this endpoint, but the 1930 * xHC hasn't been notified yet through the check_bandwidth() call, 1931 * this re-adds a new state for the endpoint from the new endpoint 1932 * descriptors. We must drop and re-add this endpoint, so we leave the 1933 * drop flags alone. 1934 */ 1935 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1936 1937 /* Store the usb_device pointer for later use */ 1938 ep->hcpriv = udev; 1939 1940 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1941 trace_xhci_add_endpoint(ep_ctx); 1942 1943 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1944 (unsigned int) ep->desc.bEndpointAddress, 1945 udev->slot_id, 1946 (unsigned int) new_drop_flags, 1947 (unsigned int) new_add_flags); 1948 return 0; 1949 } 1950 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1951 1952 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1953 { 1954 struct xhci_input_control_ctx *ctrl_ctx; 1955 struct xhci_ep_ctx *ep_ctx; 1956 struct xhci_slot_ctx *slot_ctx; 1957 int i; 1958 1959 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1960 if (!ctrl_ctx) { 1961 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1962 __func__); 1963 return; 1964 } 1965 1966 /* When a device's add flag and drop flag are zero, any subsequent 1967 * configure endpoint command will leave that endpoint's state 1968 * untouched. Make sure we don't leave any old state in the input 1969 * endpoint contexts. 1970 */ 1971 ctrl_ctx->drop_flags = 0; 1972 ctrl_ctx->add_flags = 0; 1973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1974 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1975 /* Endpoint 0 is always valid */ 1976 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1977 for (i = 1; i < 31; i++) { 1978 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1979 ep_ctx->ep_info = 0; 1980 ep_ctx->ep_info2 = 0; 1981 ep_ctx->deq = 0; 1982 ep_ctx->tx_info = 0; 1983 } 1984 } 1985 1986 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1987 struct usb_device *udev, u32 *cmd_status) 1988 { 1989 int ret; 1990 1991 switch (*cmd_status) { 1992 case COMP_COMMAND_ABORTED: 1993 case COMP_COMMAND_RING_STOPPED: 1994 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1995 ret = -ETIME; 1996 break; 1997 case COMP_RESOURCE_ERROR: 1998 dev_warn(&udev->dev, 1999 "Not enough host controller resources for new device state.\n"); 2000 ret = -ENOMEM; 2001 /* FIXME: can we allocate more resources for the HC? */ 2002 break; 2003 case COMP_BANDWIDTH_ERROR: 2004 case COMP_SECONDARY_BANDWIDTH_ERROR: 2005 dev_warn(&udev->dev, 2006 "Not enough bandwidth for new device state.\n"); 2007 ret = -ENOSPC; 2008 /* FIXME: can we go back to the old state? */ 2009 break; 2010 case COMP_TRB_ERROR: 2011 /* the HCD set up something wrong */ 2012 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2013 "add flag = 1, " 2014 "and endpoint is not disabled.\n"); 2015 ret = -EINVAL; 2016 break; 2017 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2018 dev_warn(&udev->dev, 2019 "ERROR: Incompatible device for endpoint configure command.\n"); 2020 ret = -ENODEV; 2021 break; 2022 case COMP_SUCCESS: 2023 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2024 "Successful Endpoint Configure command"); 2025 ret = 0; 2026 break; 2027 default: 2028 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2029 *cmd_status); 2030 ret = -EINVAL; 2031 break; 2032 } 2033 return ret; 2034 } 2035 2036 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2037 struct usb_device *udev, u32 *cmd_status) 2038 { 2039 int ret; 2040 2041 switch (*cmd_status) { 2042 case COMP_COMMAND_ABORTED: 2043 case COMP_COMMAND_RING_STOPPED: 2044 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2045 ret = -ETIME; 2046 break; 2047 case COMP_PARAMETER_ERROR: 2048 dev_warn(&udev->dev, 2049 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2050 ret = -EINVAL; 2051 break; 2052 case COMP_SLOT_NOT_ENABLED_ERROR: 2053 dev_warn(&udev->dev, 2054 "WARN: slot not enabled for evaluate context command.\n"); 2055 ret = -EINVAL; 2056 break; 2057 case COMP_CONTEXT_STATE_ERROR: 2058 dev_warn(&udev->dev, 2059 "WARN: invalid context state for evaluate context command.\n"); 2060 ret = -EINVAL; 2061 break; 2062 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2063 dev_warn(&udev->dev, 2064 "ERROR: Incompatible device for evaluate context command.\n"); 2065 ret = -ENODEV; 2066 break; 2067 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2068 /* Max Exit Latency too large error */ 2069 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2070 ret = -EINVAL; 2071 break; 2072 case COMP_SUCCESS: 2073 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2074 "Successful evaluate context command"); 2075 ret = 0; 2076 break; 2077 default: 2078 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2079 *cmd_status); 2080 ret = -EINVAL; 2081 break; 2082 } 2083 return ret; 2084 } 2085 2086 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2087 struct xhci_input_control_ctx *ctrl_ctx) 2088 { 2089 u32 valid_add_flags; 2090 u32 valid_drop_flags; 2091 2092 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2093 * (bit 1). The default control endpoint is added during the Address 2094 * Device command and is never removed until the slot is disabled. 2095 */ 2096 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2097 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2098 2099 /* Use hweight32 to count the number of ones in the add flags, or 2100 * number of endpoints added. Don't count endpoints that are changed 2101 * (both added and dropped). 2102 */ 2103 return hweight32(valid_add_flags) - 2104 hweight32(valid_add_flags & valid_drop_flags); 2105 } 2106 2107 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2108 struct xhci_input_control_ctx *ctrl_ctx) 2109 { 2110 u32 valid_add_flags; 2111 u32 valid_drop_flags; 2112 2113 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2114 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2115 2116 return hweight32(valid_drop_flags) - 2117 hweight32(valid_add_flags & valid_drop_flags); 2118 } 2119 2120 /* 2121 * We need to reserve the new number of endpoints before the configure endpoint 2122 * command completes. We can't subtract the dropped endpoints from the number 2123 * of active endpoints until the command completes because we can oversubscribe 2124 * the host in this case: 2125 * 2126 * - the first configure endpoint command drops more endpoints than it adds 2127 * - a second configure endpoint command that adds more endpoints is queued 2128 * - the first configure endpoint command fails, so the config is unchanged 2129 * - the second command may succeed, even though there isn't enough resources 2130 * 2131 * Must be called with xhci->lock held. 2132 */ 2133 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2134 struct xhci_input_control_ctx *ctrl_ctx) 2135 { 2136 u32 added_eps; 2137 2138 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2139 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2141 "Not enough ep ctxs: " 2142 "%u active, need to add %u, limit is %u.", 2143 xhci->num_active_eps, added_eps, 2144 xhci->limit_active_eps); 2145 return -ENOMEM; 2146 } 2147 xhci->num_active_eps += added_eps; 2148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2149 "Adding %u ep ctxs, %u now active.", added_eps, 2150 xhci->num_active_eps); 2151 return 0; 2152 } 2153 2154 /* 2155 * The configure endpoint was failed by the xHC for some other reason, so we 2156 * need to revert the resources that failed configuration would have used. 2157 * 2158 * Must be called with xhci->lock held. 2159 */ 2160 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2161 struct xhci_input_control_ctx *ctrl_ctx) 2162 { 2163 u32 num_failed_eps; 2164 2165 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2166 xhci->num_active_eps -= num_failed_eps; 2167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2168 "Removing %u failed ep ctxs, %u now active.", 2169 num_failed_eps, 2170 xhci->num_active_eps); 2171 } 2172 2173 /* 2174 * Now that the command has completed, clean up the active endpoint count by 2175 * subtracting out the endpoints that were dropped (but not changed). 2176 * 2177 * Must be called with xhci->lock held. 2178 */ 2179 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2180 struct xhci_input_control_ctx *ctrl_ctx) 2181 { 2182 u32 num_dropped_eps; 2183 2184 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2185 xhci->num_active_eps -= num_dropped_eps; 2186 if (num_dropped_eps) 2187 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2188 "Removing %u dropped ep ctxs, %u now active.", 2189 num_dropped_eps, 2190 xhci->num_active_eps); 2191 } 2192 2193 static unsigned int xhci_get_block_size(struct usb_device *udev) 2194 { 2195 switch (udev->speed) { 2196 case USB_SPEED_LOW: 2197 case USB_SPEED_FULL: 2198 return FS_BLOCK; 2199 case USB_SPEED_HIGH: 2200 return HS_BLOCK; 2201 case USB_SPEED_SUPER: 2202 case USB_SPEED_SUPER_PLUS: 2203 return SS_BLOCK; 2204 case USB_SPEED_UNKNOWN: 2205 default: 2206 /* Should never happen */ 2207 return 1; 2208 } 2209 } 2210 2211 static unsigned int 2212 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2213 { 2214 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2215 return LS_OVERHEAD; 2216 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2217 return FS_OVERHEAD; 2218 return HS_OVERHEAD; 2219 } 2220 2221 /* If we are changing a LS/FS device under a HS hub, 2222 * make sure (if we are activating a new TT) that the HS bus has enough 2223 * bandwidth for this new TT. 2224 */ 2225 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2226 struct xhci_virt_device *virt_dev, 2227 int old_active_eps) 2228 { 2229 struct xhci_interval_bw_table *bw_table; 2230 struct xhci_tt_bw_info *tt_info; 2231 2232 /* Find the bandwidth table for the root port this TT is attached to. */ 2233 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2234 tt_info = virt_dev->tt_info; 2235 /* If this TT already had active endpoints, the bandwidth for this TT 2236 * has already been added. Removing all periodic endpoints (and thus 2237 * making the TT enactive) will only decrease the bandwidth used. 2238 */ 2239 if (old_active_eps) 2240 return 0; 2241 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2242 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2243 return -ENOMEM; 2244 return 0; 2245 } 2246 /* Not sure why we would have no new active endpoints... 2247 * 2248 * Maybe because of an Evaluate Context change for a hub update or a 2249 * control endpoint 0 max packet size change? 2250 * FIXME: skip the bandwidth calculation in that case. 2251 */ 2252 return 0; 2253 } 2254 2255 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2256 struct xhci_virt_device *virt_dev) 2257 { 2258 unsigned int bw_reserved; 2259 2260 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2261 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2262 return -ENOMEM; 2263 2264 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2265 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2266 return -ENOMEM; 2267 2268 return 0; 2269 } 2270 2271 /* 2272 * This algorithm is a very conservative estimate of the worst-case scheduling 2273 * scenario for any one interval. The hardware dynamically schedules the 2274 * packets, so we can't tell which microframe could be the limiting factor in 2275 * the bandwidth scheduling. This only takes into account periodic endpoints. 2276 * 2277 * Obviously, we can't solve an NP complete problem to find the minimum worst 2278 * case scenario. Instead, we come up with an estimate that is no less than 2279 * the worst case bandwidth used for any one microframe, but may be an 2280 * over-estimate. 2281 * 2282 * We walk the requirements for each endpoint by interval, starting with the 2283 * smallest interval, and place packets in the schedule where there is only one 2284 * possible way to schedule packets for that interval. In order to simplify 2285 * this algorithm, we record the largest max packet size for each interval, and 2286 * assume all packets will be that size. 2287 * 2288 * For interval 0, we obviously must schedule all packets for each interval. 2289 * The bandwidth for interval 0 is just the amount of data to be transmitted 2290 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2291 * the number of packets). 2292 * 2293 * For interval 1, we have two possible microframes to schedule those packets 2294 * in. For this algorithm, if we can schedule the same number of packets for 2295 * each possible scheduling opportunity (each microframe), we will do so. The 2296 * remaining number of packets will be saved to be transmitted in the gaps in 2297 * the next interval's scheduling sequence. 2298 * 2299 * As we move those remaining packets to be scheduled with interval 2 packets, 2300 * we have to double the number of remaining packets to transmit. This is 2301 * because the intervals are actually powers of 2, and we would be transmitting 2302 * the previous interval's packets twice in this interval. We also have to be 2303 * sure that when we look at the largest max packet size for this interval, we 2304 * also look at the largest max packet size for the remaining packets and take 2305 * the greater of the two. 2306 * 2307 * The algorithm continues to evenly distribute packets in each scheduling 2308 * opportunity, and push the remaining packets out, until we get to the last 2309 * interval. Then those packets and their associated overhead are just added 2310 * to the bandwidth used. 2311 */ 2312 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2313 struct xhci_virt_device *virt_dev, 2314 int old_active_eps) 2315 { 2316 unsigned int bw_reserved; 2317 unsigned int max_bandwidth; 2318 unsigned int bw_used; 2319 unsigned int block_size; 2320 struct xhci_interval_bw_table *bw_table; 2321 unsigned int packet_size = 0; 2322 unsigned int overhead = 0; 2323 unsigned int packets_transmitted = 0; 2324 unsigned int packets_remaining = 0; 2325 unsigned int i; 2326 2327 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2328 return xhci_check_ss_bw(xhci, virt_dev); 2329 2330 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2331 max_bandwidth = HS_BW_LIMIT; 2332 /* Convert percent of bus BW reserved to blocks reserved */ 2333 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2334 } else { 2335 max_bandwidth = FS_BW_LIMIT; 2336 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2337 } 2338 2339 bw_table = virt_dev->bw_table; 2340 /* We need to translate the max packet size and max ESIT payloads into 2341 * the units the hardware uses. 2342 */ 2343 block_size = xhci_get_block_size(virt_dev->udev); 2344 2345 /* If we are manipulating a LS/FS device under a HS hub, double check 2346 * that the HS bus has enough bandwidth if we are activing a new TT. 2347 */ 2348 if (virt_dev->tt_info) { 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2350 "Recalculating BW for rootport %u", 2351 virt_dev->real_port); 2352 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2353 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2354 "newly activated TT.\n"); 2355 return -ENOMEM; 2356 } 2357 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2358 "Recalculating BW for TT slot %u port %u", 2359 virt_dev->tt_info->slot_id, 2360 virt_dev->tt_info->ttport); 2361 } else { 2362 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2363 "Recalculating BW for rootport %u", 2364 virt_dev->real_port); 2365 } 2366 2367 /* Add in how much bandwidth will be used for interval zero, or the 2368 * rounded max ESIT payload + number of packets * largest overhead. 2369 */ 2370 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2371 bw_table->interval_bw[0].num_packets * 2372 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2373 2374 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2375 unsigned int bw_added; 2376 unsigned int largest_mps; 2377 unsigned int interval_overhead; 2378 2379 /* 2380 * How many packets could we transmit in this interval? 2381 * If packets didn't fit in the previous interval, we will need 2382 * to transmit that many packets twice within this interval. 2383 */ 2384 packets_remaining = 2 * packets_remaining + 2385 bw_table->interval_bw[i].num_packets; 2386 2387 /* Find the largest max packet size of this or the previous 2388 * interval. 2389 */ 2390 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2391 largest_mps = 0; 2392 else { 2393 struct xhci_virt_ep *virt_ep; 2394 struct list_head *ep_entry; 2395 2396 ep_entry = bw_table->interval_bw[i].endpoints.next; 2397 virt_ep = list_entry(ep_entry, 2398 struct xhci_virt_ep, bw_endpoint_list); 2399 /* Convert to blocks, rounding up */ 2400 largest_mps = DIV_ROUND_UP( 2401 virt_ep->bw_info.max_packet_size, 2402 block_size); 2403 } 2404 if (largest_mps > packet_size) 2405 packet_size = largest_mps; 2406 2407 /* Use the larger overhead of this or the previous interval. */ 2408 interval_overhead = xhci_get_largest_overhead( 2409 &bw_table->interval_bw[i]); 2410 if (interval_overhead > overhead) 2411 overhead = interval_overhead; 2412 2413 /* How many packets can we evenly distribute across 2414 * (1 << (i + 1)) possible scheduling opportunities? 2415 */ 2416 packets_transmitted = packets_remaining >> (i + 1); 2417 2418 /* Add in the bandwidth used for those scheduled packets */ 2419 bw_added = packets_transmitted * (overhead + packet_size); 2420 2421 /* How many packets do we have remaining to transmit? */ 2422 packets_remaining = packets_remaining % (1 << (i + 1)); 2423 2424 /* What largest max packet size should those packets have? */ 2425 /* If we've transmitted all packets, don't carry over the 2426 * largest packet size. 2427 */ 2428 if (packets_remaining == 0) { 2429 packet_size = 0; 2430 overhead = 0; 2431 } else if (packets_transmitted > 0) { 2432 /* Otherwise if we do have remaining packets, and we've 2433 * scheduled some packets in this interval, take the 2434 * largest max packet size from endpoints with this 2435 * interval. 2436 */ 2437 packet_size = largest_mps; 2438 overhead = interval_overhead; 2439 } 2440 /* Otherwise carry over packet_size and overhead from the last 2441 * time we had a remainder. 2442 */ 2443 bw_used += bw_added; 2444 if (bw_used > max_bandwidth) { 2445 xhci_warn(xhci, "Not enough bandwidth. " 2446 "Proposed: %u, Max: %u\n", 2447 bw_used, max_bandwidth); 2448 return -ENOMEM; 2449 } 2450 } 2451 /* 2452 * Ok, we know we have some packets left over after even-handedly 2453 * scheduling interval 15. We don't know which microframes they will 2454 * fit into, so we over-schedule and say they will be scheduled every 2455 * microframe. 2456 */ 2457 if (packets_remaining > 0) 2458 bw_used += overhead + packet_size; 2459 2460 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2461 unsigned int port_index = virt_dev->real_port - 1; 2462 2463 /* OK, we're manipulating a HS device attached to a 2464 * root port bandwidth domain. Include the number of active TTs 2465 * in the bandwidth used. 2466 */ 2467 bw_used += TT_HS_OVERHEAD * 2468 xhci->rh_bw[port_index].num_active_tts; 2469 } 2470 2471 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2472 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2473 "Available: %u " "percent", 2474 bw_used, max_bandwidth, bw_reserved, 2475 (max_bandwidth - bw_used - bw_reserved) * 100 / 2476 max_bandwidth); 2477 2478 bw_used += bw_reserved; 2479 if (bw_used > max_bandwidth) { 2480 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2481 bw_used, max_bandwidth); 2482 return -ENOMEM; 2483 } 2484 2485 bw_table->bw_used = bw_used; 2486 return 0; 2487 } 2488 2489 static bool xhci_is_async_ep(unsigned int ep_type) 2490 { 2491 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2492 ep_type != ISOC_IN_EP && 2493 ep_type != INT_IN_EP); 2494 } 2495 2496 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2497 { 2498 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2499 } 2500 2501 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2502 { 2503 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2504 2505 if (ep_bw->ep_interval == 0) 2506 return SS_OVERHEAD_BURST + 2507 (ep_bw->mult * ep_bw->num_packets * 2508 (SS_OVERHEAD + mps)); 2509 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2510 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2511 1 << ep_bw->ep_interval); 2512 2513 } 2514 2515 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2516 struct xhci_bw_info *ep_bw, 2517 struct xhci_interval_bw_table *bw_table, 2518 struct usb_device *udev, 2519 struct xhci_virt_ep *virt_ep, 2520 struct xhci_tt_bw_info *tt_info) 2521 { 2522 struct xhci_interval_bw *interval_bw; 2523 int normalized_interval; 2524 2525 if (xhci_is_async_ep(ep_bw->type)) 2526 return; 2527 2528 if (udev->speed >= USB_SPEED_SUPER) { 2529 if (xhci_is_sync_in_ep(ep_bw->type)) 2530 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2531 xhci_get_ss_bw_consumed(ep_bw); 2532 else 2533 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2534 xhci_get_ss_bw_consumed(ep_bw); 2535 return; 2536 } 2537 2538 /* SuperSpeed endpoints never get added to intervals in the table, so 2539 * this check is only valid for HS/FS/LS devices. 2540 */ 2541 if (list_empty(&virt_ep->bw_endpoint_list)) 2542 return; 2543 /* For LS/FS devices, we need to translate the interval expressed in 2544 * microframes to frames. 2545 */ 2546 if (udev->speed == USB_SPEED_HIGH) 2547 normalized_interval = ep_bw->ep_interval; 2548 else 2549 normalized_interval = ep_bw->ep_interval - 3; 2550 2551 if (normalized_interval == 0) 2552 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2553 interval_bw = &bw_table->interval_bw[normalized_interval]; 2554 interval_bw->num_packets -= ep_bw->num_packets; 2555 switch (udev->speed) { 2556 case USB_SPEED_LOW: 2557 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2558 break; 2559 case USB_SPEED_FULL: 2560 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2561 break; 2562 case USB_SPEED_HIGH: 2563 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2564 break; 2565 default: 2566 /* Should never happen because only LS/FS/HS endpoints will get 2567 * added to the endpoint list. 2568 */ 2569 return; 2570 } 2571 if (tt_info) 2572 tt_info->active_eps -= 1; 2573 list_del_init(&virt_ep->bw_endpoint_list); 2574 } 2575 2576 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2577 struct xhci_bw_info *ep_bw, 2578 struct xhci_interval_bw_table *bw_table, 2579 struct usb_device *udev, 2580 struct xhci_virt_ep *virt_ep, 2581 struct xhci_tt_bw_info *tt_info) 2582 { 2583 struct xhci_interval_bw *interval_bw; 2584 struct xhci_virt_ep *smaller_ep; 2585 int normalized_interval; 2586 2587 if (xhci_is_async_ep(ep_bw->type)) 2588 return; 2589 2590 if (udev->speed == USB_SPEED_SUPER) { 2591 if (xhci_is_sync_in_ep(ep_bw->type)) 2592 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2593 xhci_get_ss_bw_consumed(ep_bw); 2594 else 2595 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2596 xhci_get_ss_bw_consumed(ep_bw); 2597 return; 2598 } 2599 2600 /* For LS/FS devices, we need to translate the interval expressed in 2601 * microframes to frames. 2602 */ 2603 if (udev->speed == USB_SPEED_HIGH) 2604 normalized_interval = ep_bw->ep_interval; 2605 else 2606 normalized_interval = ep_bw->ep_interval - 3; 2607 2608 if (normalized_interval == 0) 2609 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2610 interval_bw = &bw_table->interval_bw[normalized_interval]; 2611 interval_bw->num_packets += ep_bw->num_packets; 2612 switch (udev->speed) { 2613 case USB_SPEED_LOW: 2614 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2615 break; 2616 case USB_SPEED_FULL: 2617 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2618 break; 2619 case USB_SPEED_HIGH: 2620 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2621 break; 2622 default: 2623 /* Should never happen because only LS/FS/HS endpoints will get 2624 * added to the endpoint list. 2625 */ 2626 return; 2627 } 2628 2629 if (tt_info) 2630 tt_info->active_eps += 1; 2631 /* Insert the endpoint into the list, largest max packet size first. */ 2632 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2633 bw_endpoint_list) { 2634 if (ep_bw->max_packet_size >= 2635 smaller_ep->bw_info.max_packet_size) { 2636 /* Add the new ep before the smaller endpoint */ 2637 list_add_tail(&virt_ep->bw_endpoint_list, 2638 &smaller_ep->bw_endpoint_list); 2639 return; 2640 } 2641 } 2642 /* Add the new endpoint at the end of the list. */ 2643 list_add_tail(&virt_ep->bw_endpoint_list, 2644 &interval_bw->endpoints); 2645 } 2646 2647 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2648 struct xhci_virt_device *virt_dev, 2649 int old_active_eps) 2650 { 2651 struct xhci_root_port_bw_info *rh_bw_info; 2652 if (!virt_dev->tt_info) 2653 return; 2654 2655 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2656 if (old_active_eps == 0 && 2657 virt_dev->tt_info->active_eps != 0) { 2658 rh_bw_info->num_active_tts += 1; 2659 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2660 } else if (old_active_eps != 0 && 2661 virt_dev->tt_info->active_eps == 0) { 2662 rh_bw_info->num_active_tts -= 1; 2663 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2664 } 2665 } 2666 2667 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2668 struct xhci_virt_device *virt_dev, 2669 struct xhci_container_ctx *in_ctx) 2670 { 2671 struct xhci_bw_info ep_bw_info[31]; 2672 int i; 2673 struct xhci_input_control_ctx *ctrl_ctx; 2674 int old_active_eps = 0; 2675 2676 if (virt_dev->tt_info) 2677 old_active_eps = virt_dev->tt_info->active_eps; 2678 2679 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2680 if (!ctrl_ctx) { 2681 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2682 __func__); 2683 return -ENOMEM; 2684 } 2685 2686 for (i = 0; i < 31; i++) { 2687 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2688 continue; 2689 2690 /* Make a copy of the BW info in case we need to revert this */ 2691 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2692 sizeof(ep_bw_info[i])); 2693 /* Drop the endpoint from the interval table if the endpoint is 2694 * being dropped or changed. 2695 */ 2696 if (EP_IS_DROPPED(ctrl_ctx, i)) 2697 xhci_drop_ep_from_interval_table(xhci, 2698 &virt_dev->eps[i].bw_info, 2699 virt_dev->bw_table, 2700 virt_dev->udev, 2701 &virt_dev->eps[i], 2702 virt_dev->tt_info); 2703 } 2704 /* Overwrite the information stored in the endpoints' bw_info */ 2705 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2706 for (i = 0; i < 31; i++) { 2707 /* Add any changed or added endpoints to the interval table */ 2708 if (EP_IS_ADDED(ctrl_ctx, i)) 2709 xhci_add_ep_to_interval_table(xhci, 2710 &virt_dev->eps[i].bw_info, 2711 virt_dev->bw_table, 2712 virt_dev->udev, 2713 &virt_dev->eps[i], 2714 virt_dev->tt_info); 2715 } 2716 2717 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2718 /* Ok, this fits in the bandwidth we have. 2719 * Update the number of active TTs. 2720 */ 2721 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2722 return 0; 2723 } 2724 2725 /* We don't have enough bandwidth for this, revert the stored info. */ 2726 for (i = 0; i < 31; i++) { 2727 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2728 continue; 2729 2730 /* Drop the new copies of any added or changed endpoints from 2731 * the interval table. 2732 */ 2733 if (EP_IS_ADDED(ctrl_ctx, i)) { 2734 xhci_drop_ep_from_interval_table(xhci, 2735 &virt_dev->eps[i].bw_info, 2736 virt_dev->bw_table, 2737 virt_dev->udev, 2738 &virt_dev->eps[i], 2739 virt_dev->tt_info); 2740 } 2741 /* Revert the endpoint back to its old information */ 2742 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2743 sizeof(ep_bw_info[i])); 2744 /* Add any changed or dropped endpoints back into the table */ 2745 if (EP_IS_DROPPED(ctrl_ctx, i)) 2746 xhci_add_ep_to_interval_table(xhci, 2747 &virt_dev->eps[i].bw_info, 2748 virt_dev->bw_table, 2749 virt_dev->udev, 2750 &virt_dev->eps[i], 2751 virt_dev->tt_info); 2752 } 2753 return -ENOMEM; 2754 } 2755 2756 2757 /* Issue a configure endpoint command or evaluate context command 2758 * and wait for it to finish. 2759 */ 2760 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2761 struct usb_device *udev, 2762 struct xhci_command *command, 2763 bool ctx_change, bool must_succeed) 2764 { 2765 int ret; 2766 unsigned long flags; 2767 struct xhci_input_control_ctx *ctrl_ctx; 2768 struct xhci_virt_device *virt_dev; 2769 struct xhci_slot_ctx *slot_ctx; 2770 2771 if (!command) 2772 return -EINVAL; 2773 2774 spin_lock_irqsave(&xhci->lock, flags); 2775 2776 if (xhci->xhc_state & XHCI_STATE_DYING) { 2777 spin_unlock_irqrestore(&xhci->lock, flags); 2778 return -ESHUTDOWN; 2779 } 2780 2781 virt_dev = xhci->devs[udev->slot_id]; 2782 2783 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2784 if (!ctrl_ctx) { 2785 spin_unlock_irqrestore(&xhci->lock, flags); 2786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2787 __func__); 2788 return -ENOMEM; 2789 } 2790 2791 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2792 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2793 spin_unlock_irqrestore(&xhci->lock, flags); 2794 xhci_warn(xhci, "Not enough host resources, " 2795 "active endpoint contexts = %u\n", 2796 xhci->num_active_eps); 2797 return -ENOMEM; 2798 } 2799 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2800 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2801 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2802 xhci_free_host_resources(xhci, ctrl_ctx); 2803 spin_unlock_irqrestore(&xhci->lock, flags); 2804 xhci_warn(xhci, "Not enough bandwidth\n"); 2805 return -ENOMEM; 2806 } 2807 2808 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2809 2810 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2811 trace_xhci_configure_endpoint(slot_ctx); 2812 2813 if (!ctx_change) 2814 ret = xhci_queue_configure_endpoint(xhci, command, 2815 command->in_ctx->dma, 2816 udev->slot_id, must_succeed); 2817 else 2818 ret = xhci_queue_evaluate_context(xhci, command, 2819 command->in_ctx->dma, 2820 udev->slot_id, must_succeed); 2821 if (ret < 0) { 2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2823 xhci_free_host_resources(xhci, ctrl_ctx); 2824 spin_unlock_irqrestore(&xhci->lock, flags); 2825 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2826 "FIXME allocate a new ring segment"); 2827 return -ENOMEM; 2828 } 2829 xhci_ring_cmd_db(xhci); 2830 spin_unlock_irqrestore(&xhci->lock, flags); 2831 2832 /* Wait for the configure endpoint command to complete */ 2833 wait_for_completion(command->completion); 2834 2835 if (!ctx_change) 2836 ret = xhci_configure_endpoint_result(xhci, udev, 2837 &command->status); 2838 else 2839 ret = xhci_evaluate_context_result(xhci, udev, 2840 &command->status); 2841 2842 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2843 spin_lock_irqsave(&xhci->lock, flags); 2844 /* If the command failed, remove the reserved resources. 2845 * Otherwise, clean up the estimate to include dropped eps. 2846 */ 2847 if (ret) 2848 xhci_free_host_resources(xhci, ctrl_ctx); 2849 else 2850 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2851 spin_unlock_irqrestore(&xhci->lock, flags); 2852 } 2853 return ret; 2854 } 2855 2856 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2857 struct xhci_virt_device *vdev, int i) 2858 { 2859 struct xhci_virt_ep *ep = &vdev->eps[i]; 2860 2861 if (ep->ep_state & EP_HAS_STREAMS) { 2862 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2863 xhci_get_endpoint_address(i)); 2864 xhci_free_stream_info(xhci, ep->stream_info); 2865 ep->stream_info = NULL; 2866 ep->ep_state &= ~EP_HAS_STREAMS; 2867 } 2868 } 2869 2870 /* Called after one or more calls to xhci_add_endpoint() or 2871 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2872 * to call xhci_reset_bandwidth(). 2873 * 2874 * Since we are in the middle of changing either configuration or 2875 * installing a new alt setting, the USB core won't allow URBs to be 2876 * enqueued for any endpoint on the old config or interface. Nothing 2877 * else should be touching the xhci->devs[slot_id] structure, so we 2878 * don't need to take the xhci->lock for manipulating that. 2879 */ 2880 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2881 { 2882 int i; 2883 int ret = 0; 2884 struct xhci_hcd *xhci; 2885 struct xhci_virt_device *virt_dev; 2886 struct xhci_input_control_ctx *ctrl_ctx; 2887 struct xhci_slot_ctx *slot_ctx; 2888 struct xhci_command *command; 2889 2890 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2891 if (ret <= 0) 2892 return ret; 2893 xhci = hcd_to_xhci(hcd); 2894 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2895 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2896 return -ENODEV; 2897 2898 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2899 virt_dev = xhci->devs[udev->slot_id]; 2900 2901 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2902 if (!command) 2903 return -ENOMEM; 2904 2905 command->in_ctx = virt_dev->in_ctx; 2906 2907 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2908 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2909 if (!ctrl_ctx) { 2910 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2911 __func__); 2912 ret = -ENOMEM; 2913 goto command_cleanup; 2914 } 2915 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2916 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2917 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2918 2919 /* Don't issue the command if there's no endpoints to update. */ 2920 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2921 ctrl_ctx->drop_flags == 0) { 2922 ret = 0; 2923 goto command_cleanup; 2924 } 2925 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2926 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2927 for (i = 31; i >= 1; i--) { 2928 __le32 le32 = cpu_to_le32(BIT(i)); 2929 2930 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2931 || (ctrl_ctx->add_flags & le32) || i == 1) { 2932 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2933 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2934 break; 2935 } 2936 } 2937 2938 ret = xhci_configure_endpoint(xhci, udev, command, 2939 false, false); 2940 if (ret) 2941 /* Callee should call reset_bandwidth() */ 2942 goto command_cleanup; 2943 2944 /* Free any rings that were dropped, but not changed. */ 2945 for (i = 1; i < 31; i++) { 2946 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2947 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2948 xhci_free_endpoint_ring(xhci, virt_dev, i); 2949 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2950 } 2951 } 2952 xhci_zero_in_ctx(xhci, virt_dev); 2953 /* 2954 * Install any rings for completely new endpoints or changed endpoints, 2955 * and free any old rings from changed endpoints. 2956 */ 2957 for (i = 1; i < 31; i++) { 2958 if (!virt_dev->eps[i].new_ring) 2959 continue; 2960 /* Only free the old ring if it exists. 2961 * It may not if this is the first add of an endpoint. 2962 */ 2963 if (virt_dev->eps[i].ring) { 2964 xhci_free_endpoint_ring(xhci, virt_dev, i); 2965 } 2966 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2967 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2968 virt_dev->eps[i].new_ring = NULL; 2969 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2970 } 2971 command_cleanup: 2972 kfree(command->completion); 2973 kfree(command); 2974 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 2978 2979 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2980 { 2981 struct xhci_hcd *xhci; 2982 struct xhci_virt_device *virt_dev; 2983 int i, ret; 2984 2985 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2986 if (ret <= 0) 2987 return; 2988 xhci = hcd_to_xhci(hcd); 2989 2990 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2991 virt_dev = xhci->devs[udev->slot_id]; 2992 /* Free any rings allocated for added endpoints */ 2993 for (i = 0; i < 31; i++) { 2994 if (virt_dev->eps[i].new_ring) { 2995 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2996 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2997 virt_dev->eps[i].new_ring = NULL; 2998 } 2999 } 3000 xhci_zero_in_ctx(xhci, virt_dev); 3001 } 3002 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3003 3004 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3005 struct xhci_container_ctx *in_ctx, 3006 struct xhci_container_ctx *out_ctx, 3007 struct xhci_input_control_ctx *ctrl_ctx, 3008 u32 add_flags, u32 drop_flags) 3009 { 3010 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3011 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3012 xhci_slot_copy(xhci, in_ctx, out_ctx); 3013 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3014 } 3015 3016 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3017 struct usb_host_endpoint *host_ep) 3018 { 3019 struct xhci_hcd *xhci; 3020 struct xhci_virt_device *vdev; 3021 struct xhci_virt_ep *ep; 3022 struct usb_device *udev; 3023 unsigned long flags; 3024 unsigned int ep_index; 3025 3026 xhci = hcd_to_xhci(hcd); 3027 rescan: 3028 spin_lock_irqsave(&xhci->lock, flags); 3029 3030 udev = (struct usb_device *)host_ep->hcpriv; 3031 if (!udev || !udev->slot_id) 3032 goto done; 3033 3034 vdev = xhci->devs[udev->slot_id]; 3035 if (!vdev) 3036 goto done; 3037 3038 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3039 ep = &vdev->eps[ep_index]; 3040 3041 /* wait for hub_tt_work to finish clearing hub TT */ 3042 if (ep->ep_state & EP_CLEARING_TT) { 3043 spin_unlock_irqrestore(&xhci->lock, flags); 3044 schedule_timeout_uninterruptible(1); 3045 goto rescan; 3046 } 3047 3048 if (ep->ep_state) 3049 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3050 ep->ep_state); 3051 done: 3052 host_ep->hcpriv = NULL; 3053 spin_unlock_irqrestore(&xhci->lock, flags); 3054 } 3055 3056 /* 3057 * Called after usb core issues a clear halt control message. 3058 * The host side of the halt should already be cleared by a reset endpoint 3059 * command issued when the STALL event was received. 3060 * 3061 * The reset endpoint command may only be issued to endpoints in the halted 3062 * state. For software that wishes to reset the data toggle or sequence number 3063 * of an endpoint that isn't in the halted state this function will issue a 3064 * configure endpoint command with the Drop and Add bits set for the target 3065 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3066 */ 3067 3068 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3069 struct usb_host_endpoint *host_ep) 3070 { 3071 struct xhci_hcd *xhci; 3072 struct usb_device *udev; 3073 struct xhci_virt_device *vdev; 3074 struct xhci_virt_ep *ep; 3075 struct xhci_input_control_ctx *ctrl_ctx; 3076 struct xhci_command *stop_cmd, *cfg_cmd; 3077 unsigned int ep_index; 3078 unsigned long flags; 3079 u32 ep_flag; 3080 int err; 3081 3082 xhci = hcd_to_xhci(hcd); 3083 if (!host_ep->hcpriv) 3084 return; 3085 udev = (struct usb_device *) host_ep->hcpriv; 3086 vdev = xhci->devs[udev->slot_id]; 3087 3088 /* 3089 * vdev may be lost due to xHC restore error and re-initialization 3090 * during S3/S4 resume. A new vdev will be allocated later by 3091 * xhci_discover_or_reset_device() 3092 */ 3093 if (!udev->slot_id || !vdev) 3094 return; 3095 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3096 ep = &vdev->eps[ep_index]; 3097 3098 /* Bail out if toggle is already being cleared by a endpoint reset */ 3099 spin_lock_irqsave(&xhci->lock, flags); 3100 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3101 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3102 spin_unlock_irqrestore(&xhci->lock, flags); 3103 return; 3104 } 3105 spin_unlock_irqrestore(&xhci->lock, flags); 3106 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3107 if (usb_endpoint_xfer_control(&host_ep->desc) || 3108 usb_endpoint_xfer_isoc(&host_ep->desc)) 3109 return; 3110 3111 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3112 3113 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3114 return; 3115 3116 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3117 if (!stop_cmd) 3118 return; 3119 3120 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3121 if (!cfg_cmd) 3122 goto cleanup; 3123 3124 spin_lock_irqsave(&xhci->lock, flags); 3125 3126 /* block queuing new trbs and ringing ep doorbell */ 3127 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3128 3129 /* 3130 * Make sure endpoint ring is empty before resetting the toggle/seq. 3131 * Driver is required to synchronously cancel all transfer request. 3132 * Stop the endpoint to force xHC to update the output context 3133 */ 3134 3135 if (!list_empty(&ep->ring->td_list)) { 3136 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3137 spin_unlock_irqrestore(&xhci->lock, flags); 3138 xhci_free_command(xhci, cfg_cmd); 3139 goto cleanup; 3140 } 3141 3142 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3143 ep_index, 0); 3144 if (err < 0) { 3145 spin_unlock_irqrestore(&xhci->lock, flags); 3146 xhci_free_command(xhci, cfg_cmd); 3147 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3148 __func__, err); 3149 goto cleanup; 3150 } 3151 3152 xhci_ring_cmd_db(xhci); 3153 spin_unlock_irqrestore(&xhci->lock, flags); 3154 3155 wait_for_completion(stop_cmd->completion); 3156 3157 spin_lock_irqsave(&xhci->lock, flags); 3158 3159 /* config ep command clears toggle if add and drop ep flags are set */ 3160 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3161 if (!ctrl_ctx) { 3162 spin_unlock_irqrestore(&xhci->lock, flags); 3163 xhci_free_command(xhci, cfg_cmd); 3164 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3165 __func__); 3166 goto cleanup; 3167 } 3168 3169 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3170 ctrl_ctx, ep_flag, ep_flag); 3171 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3172 3173 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3174 udev->slot_id, false); 3175 if (err < 0) { 3176 spin_unlock_irqrestore(&xhci->lock, flags); 3177 xhci_free_command(xhci, cfg_cmd); 3178 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3179 __func__, err); 3180 goto cleanup; 3181 } 3182 3183 xhci_ring_cmd_db(xhci); 3184 spin_unlock_irqrestore(&xhci->lock, flags); 3185 3186 wait_for_completion(cfg_cmd->completion); 3187 3188 xhci_free_command(xhci, cfg_cmd); 3189 cleanup: 3190 xhci_free_command(xhci, stop_cmd); 3191 spin_lock_irqsave(&xhci->lock, flags); 3192 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3193 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3194 spin_unlock_irqrestore(&xhci->lock, flags); 3195 } 3196 3197 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3198 struct usb_device *udev, struct usb_host_endpoint *ep, 3199 unsigned int slot_id) 3200 { 3201 int ret; 3202 unsigned int ep_index; 3203 unsigned int ep_state; 3204 3205 if (!ep) 3206 return -EINVAL; 3207 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3208 if (ret <= 0) 3209 return ret ? ret : -EINVAL; 3210 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3211 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3212 " descriptor for ep 0x%x does not support streams\n", 3213 ep->desc.bEndpointAddress); 3214 return -EINVAL; 3215 } 3216 3217 ep_index = xhci_get_endpoint_index(&ep->desc); 3218 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3219 if (ep_state & EP_HAS_STREAMS || 3220 ep_state & EP_GETTING_STREAMS) { 3221 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3222 "already has streams set up.\n", 3223 ep->desc.bEndpointAddress); 3224 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3225 "dynamic stream context array reallocation.\n"); 3226 return -EINVAL; 3227 } 3228 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3229 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3230 "endpoint 0x%x; URBs are pending.\n", 3231 ep->desc.bEndpointAddress); 3232 return -EINVAL; 3233 } 3234 return 0; 3235 } 3236 3237 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3238 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3239 { 3240 unsigned int max_streams; 3241 3242 /* The stream context array size must be a power of two */ 3243 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3244 /* 3245 * Find out how many primary stream array entries the host controller 3246 * supports. Later we may use secondary stream arrays (similar to 2nd 3247 * level page entries), but that's an optional feature for xHCI host 3248 * controllers. xHCs must support at least 4 stream IDs. 3249 */ 3250 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3251 if (*num_stream_ctxs > max_streams) { 3252 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3253 max_streams); 3254 *num_stream_ctxs = max_streams; 3255 *num_streams = max_streams; 3256 } 3257 } 3258 3259 /* Returns an error code if one of the endpoint already has streams. 3260 * This does not change any data structures, it only checks and gathers 3261 * information. 3262 */ 3263 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3264 struct usb_device *udev, 3265 struct usb_host_endpoint **eps, unsigned int num_eps, 3266 unsigned int *num_streams, u32 *changed_ep_bitmask) 3267 { 3268 unsigned int max_streams; 3269 unsigned int endpoint_flag; 3270 int i; 3271 int ret; 3272 3273 for (i = 0; i < num_eps; i++) { 3274 ret = xhci_check_streams_endpoint(xhci, udev, 3275 eps[i], udev->slot_id); 3276 if (ret < 0) 3277 return ret; 3278 3279 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3280 if (max_streams < (*num_streams - 1)) { 3281 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3282 eps[i]->desc.bEndpointAddress, 3283 max_streams); 3284 *num_streams = max_streams+1; 3285 } 3286 3287 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3288 if (*changed_ep_bitmask & endpoint_flag) 3289 return -EINVAL; 3290 *changed_ep_bitmask |= endpoint_flag; 3291 } 3292 return 0; 3293 } 3294 3295 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3296 struct usb_device *udev, 3297 struct usb_host_endpoint **eps, unsigned int num_eps) 3298 { 3299 u32 changed_ep_bitmask = 0; 3300 unsigned int slot_id; 3301 unsigned int ep_index; 3302 unsigned int ep_state; 3303 int i; 3304 3305 slot_id = udev->slot_id; 3306 if (!xhci->devs[slot_id]) 3307 return 0; 3308 3309 for (i = 0; i < num_eps; i++) { 3310 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3311 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3312 /* Are streams already being freed for the endpoint? */ 3313 if (ep_state & EP_GETTING_NO_STREAMS) { 3314 xhci_warn(xhci, "WARN Can't disable streams for " 3315 "endpoint 0x%x, " 3316 "streams are being disabled already\n", 3317 eps[i]->desc.bEndpointAddress); 3318 return 0; 3319 } 3320 /* Are there actually any streams to free? */ 3321 if (!(ep_state & EP_HAS_STREAMS) && 3322 !(ep_state & EP_GETTING_STREAMS)) { 3323 xhci_warn(xhci, "WARN Can't disable streams for " 3324 "endpoint 0x%x, " 3325 "streams are already disabled!\n", 3326 eps[i]->desc.bEndpointAddress); 3327 xhci_warn(xhci, "WARN xhci_free_streams() called " 3328 "with non-streams endpoint\n"); 3329 return 0; 3330 } 3331 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3332 } 3333 return changed_ep_bitmask; 3334 } 3335 3336 /* 3337 * The USB device drivers use this function (through the HCD interface in USB 3338 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3339 * coordinate mass storage command queueing across multiple endpoints (basically 3340 * a stream ID == a task ID). 3341 * 3342 * Setting up streams involves allocating the same size stream context array 3343 * for each endpoint and issuing a configure endpoint command for all endpoints. 3344 * 3345 * Don't allow the call to succeed if one endpoint only supports one stream 3346 * (which means it doesn't support streams at all). 3347 * 3348 * Drivers may get less stream IDs than they asked for, if the host controller 3349 * hardware or endpoints claim they can't support the number of requested 3350 * stream IDs. 3351 */ 3352 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3353 struct usb_host_endpoint **eps, unsigned int num_eps, 3354 unsigned int num_streams, gfp_t mem_flags) 3355 { 3356 int i, ret; 3357 struct xhci_hcd *xhci; 3358 struct xhci_virt_device *vdev; 3359 struct xhci_command *config_cmd; 3360 struct xhci_input_control_ctx *ctrl_ctx; 3361 unsigned int ep_index; 3362 unsigned int num_stream_ctxs; 3363 unsigned int max_packet; 3364 unsigned long flags; 3365 u32 changed_ep_bitmask = 0; 3366 3367 if (!eps) 3368 return -EINVAL; 3369 3370 /* Add one to the number of streams requested to account for 3371 * stream 0 that is reserved for xHCI usage. 3372 */ 3373 num_streams += 1; 3374 xhci = hcd_to_xhci(hcd); 3375 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3376 num_streams); 3377 3378 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3379 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3380 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3381 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3382 return -ENOSYS; 3383 } 3384 3385 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3386 if (!config_cmd) 3387 return -ENOMEM; 3388 3389 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3390 if (!ctrl_ctx) { 3391 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3392 __func__); 3393 xhci_free_command(xhci, config_cmd); 3394 return -ENOMEM; 3395 } 3396 3397 /* Check to make sure all endpoints are not already configured for 3398 * streams. While we're at it, find the maximum number of streams that 3399 * all the endpoints will support and check for duplicate endpoints. 3400 */ 3401 spin_lock_irqsave(&xhci->lock, flags); 3402 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3403 num_eps, &num_streams, &changed_ep_bitmask); 3404 if (ret < 0) { 3405 xhci_free_command(xhci, config_cmd); 3406 spin_unlock_irqrestore(&xhci->lock, flags); 3407 return ret; 3408 } 3409 if (num_streams <= 1) { 3410 xhci_warn(xhci, "WARN: endpoints can't handle " 3411 "more than one stream.\n"); 3412 xhci_free_command(xhci, config_cmd); 3413 spin_unlock_irqrestore(&xhci->lock, flags); 3414 return -EINVAL; 3415 } 3416 vdev = xhci->devs[udev->slot_id]; 3417 /* Mark each endpoint as being in transition, so 3418 * xhci_urb_enqueue() will reject all URBs. 3419 */ 3420 for (i = 0; i < num_eps; i++) { 3421 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3422 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3423 } 3424 spin_unlock_irqrestore(&xhci->lock, flags); 3425 3426 /* Setup internal data structures and allocate HW data structures for 3427 * streams (but don't install the HW structures in the input context 3428 * until we're sure all memory allocation succeeded). 3429 */ 3430 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3431 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3432 num_stream_ctxs, num_streams); 3433 3434 for (i = 0; i < num_eps; i++) { 3435 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3436 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3437 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3438 num_stream_ctxs, 3439 num_streams, 3440 max_packet, mem_flags); 3441 if (!vdev->eps[ep_index].stream_info) 3442 goto cleanup; 3443 /* Set maxPstreams in endpoint context and update deq ptr to 3444 * point to stream context array. FIXME 3445 */ 3446 } 3447 3448 /* Set up the input context for a configure endpoint command. */ 3449 for (i = 0; i < num_eps; i++) { 3450 struct xhci_ep_ctx *ep_ctx; 3451 3452 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3453 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3454 3455 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3456 vdev->out_ctx, ep_index); 3457 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3458 vdev->eps[ep_index].stream_info); 3459 } 3460 /* Tell the HW to drop its old copy of the endpoint context info 3461 * and add the updated copy from the input context. 3462 */ 3463 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3464 vdev->out_ctx, ctrl_ctx, 3465 changed_ep_bitmask, changed_ep_bitmask); 3466 3467 /* Issue and wait for the configure endpoint command */ 3468 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3469 false, false); 3470 3471 /* xHC rejected the configure endpoint command for some reason, so we 3472 * leave the old ring intact and free our internal streams data 3473 * structure. 3474 */ 3475 if (ret < 0) 3476 goto cleanup; 3477 3478 spin_lock_irqsave(&xhci->lock, flags); 3479 for (i = 0; i < num_eps; i++) { 3480 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3481 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3482 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3483 udev->slot_id, ep_index); 3484 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3485 } 3486 xhci_free_command(xhci, config_cmd); 3487 spin_unlock_irqrestore(&xhci->lock, flags); 3488 3489 for (i = 0; i < num_eps; i++) { 3490 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3491 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3492 } 3493 /* Subtract 1 for stream 0, which drivers can't use */ 3494 return num_streams - 1; 3495 3496 cleanup: 3497 /* If it didn't work, free the streams! */ 3498 for (i = 0; i < num_eps; i++) { 3499 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3500 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3501 vdev->eps[ep_index].stream_info = NULL; 3502 /* FIXME Unset maxPstreams in endpoint context and 3503 * update deq ptr to point to normal string ring. 3504 */ 3505 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3506 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3507 xhci_endpoint_zero(xhci, vdev, eps[i]); 3508 } 3509 xhci_free_command(xhci, config_cmd); 3510 return -ENOMEM; 3511 } 3512 3513 /* Transition the endpoint from using streams to being a "normal" endpoint 3514 * without streams. 3515 * 3516 * Modify the endpoint context state, submit a configure endpoint command, 3517 * and free all endpoint rings for streams if that completes successfully. 3518 */ 3519 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3520 struct usb_host_endpoint **eps, unsigned int num_eps, 3521 gfp_t mem_flags) 3522 { 3523 int i, ret; 3524 struct xhci_hcd *xhci; 3525 struct xhci_virt_device *vdev; 3526 struct xhci_command *command; 3527 struct xhci_input_control_ctx *ctrl_ctx; 3528 unsigned int ep_index; 3529 unsigned long flags; 3530 u32 changed_ep_bitmask; 3531 3532 xhci = hcd_to_xhci(hcd); 3533 vdev = xhci->devs[udev->slot_id]; 3534 3535 /* Set up a configure endpoint command to remove the streams rings */ 3536 spin_lock_irqsave(&xhci->lock, flags); 3537 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3538 udev, eps, num_eps); 3539 if (changed_ep_bitmask == 0) { 3540 spin_unlock_irqrestore(&xhci->lock, flags); 3541 return -EINVAL; 3542 } 3543 3544 /* Use the xhci_command structure from the first endpoint. We may have 3545 * allocated too many, but the driver may call xhci_free_streams() for 3546 * each endpoint it grouped into one call to xhci_alloc_streams(). 3547 */ 3548 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3549 command = vdev->eps[ep_index].stream_info->free_streams_command; 3550 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3551 if (!ctrl_ctx) { 3552 spin_unlock_irqrestore(&xhci->lock, flags); 3553 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3554 __func__); 3555 return -EINVAL; 3556 } 3557 3558 for (i = 0; i < num_eps; i++) { 3559 struct xhci_ep_ctx *ep_ctx; 3560 3561 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3562 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3563 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3564 EP_GETTING_NO_STREAMS; 3565 3566 xhci_endpoint_copy(xhci, command->in_ctx, 3567 vdev->out_ctx, ep_index); 3568 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3569 &vdev->eps[ep_index]); 3570 } 3571 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3572 vdev->out_ctx, ctrl_ctx, 3573 changed_ep_bitmask, changed_ep_bitmask); 3574 spin_unlock_irqrestore(&xhci->lock, flags); 3575 3576 /* Issue and wait for the configure endpoint command, 3577 * which must succeed. 3578 */ 3579 ret = xhci_configure_endpoint(xhci, udev, command, 3580 false, true); 3581 3582 /* xHC rejected the configure endpoint command for some reason, so we 3583 * leave the streams rings intact. 3584 */ 3585 if (ret < 0) 3586 return ret; 3587 3588 spin_lock_irqsave(&xhci->lock, flags); 3589 for (i = 0; i < num_eps; i++) { 3590 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3591 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3592 vdev->eps[ep_index].stream_info = NULL; 3593 /* FIXME Unset maxPstreams in endpoint context and 3594 * update deq ptr to point to normal string ring. 3595 */ 3596 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3597 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3598 } 3599 spin_unlock_irqrestore(&xhci->lock, flags); 3600 3601 return 0; 3602 } 3603 3604 /* 3605 * Deletes endpoint resources for endpoints that were active before a Reset 3606 * Device command, or a Disable Slot command. The Reset Device command leaves 3607 * the control endpoint intact, whereas the Disable Slot command deletes it. 3608 * 3609 * Must be called with xhci->lock held. 3610 */ 3611 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3612 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3613 { 3614 int i; 3615 unsigned int num_dropped_eps = 0; 3616 unsigned int drop_flags = 0; 3617 3618 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3619 if (virt_dev->eps[i].ring) { 3620 drop_flags |= 1 << i; 3621 num_dropped_eps++; 3622 } 3623 } 3624 xhci->num_active_eps -= num_dropped_eps; 3625 if (num_dropped_eps) 3626 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3627 "Dropped %u ep ctxs, flags = 0x%x, " 3628 "%u now active.", 3629 num_dropped_eps, drop_flags, 3630 xhci->num_active_eps); 3631 } 3632 3633 /* 3634 * This submits a Reset Device Command, which will set the device state to 0, 3635 * set the device address to 0, and disable all the endpoints except the default 3636 * control endpoint. The USB core should come back and call 3637 * xhci_address_device(), and then re-set up the configuration. If this is 3638 * called because of a usb_reset_and_verify_device(), then the old alternate 3639 * settings will be re-installed through the normal bandwidth allocation 3640 * functions. 3641 * 3642 * Wait for the Reset Device command to finish. Remove all structures 3643 * associated with the endpoints that were disabled. Clear the input device 3644 * structure? Reset the control endpoint 0 max packet size? 3645 * 3646 * If the virt_dev to be reset does not exist or does not match the udev, 3647 * it means the device is lost, possibly due to the xHC restore error and 3648 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3649 * re-allocate the device. 3650 */ 3651 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3652 struct usb_device *udev) 3653 { 3654 int ret, i; 3655 unsigned long flags; 3656 struct xhci_hcd *xhci; 3657 unsigned int slot_id; 3658 struct xhci_virt_device *virt_dev; 3659 struct xhci_command *reset_device_cmd; 3660 struct xhci_slot_ctx *slot_ctx; 3661 int old_active_eps = 0; 3662 3663 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3664 if (ret <= 0) 3665 return ret; 3666 xhci = hcd_to_xhci(hcd); 3667 slot_id = udev->slot_id; 3668 virt_dev = xhci->devs[slot_id]; 3669 if (!virt_dev) { 3670 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3671 "not exist. Re-allocate the device\n", slot_id); 3672 ret = xhci_alloc_dev(hcd, udev); 3673 if (ret == 1) 3674 return 0; 3675 else 3676 return -EINVAL; 3677 } 3678 3679 if (virt_dev->tt_info) 3680 old_active_eps = virt_dev->tt_info->active_eps; 3681 3682 if (virt_dev->udev != udev) { 3683 /* If the virt_dev and the udev does not match, this virt_dev 3684 * may belong to another udev. 3685 * Re-allocate the device. 3686 */ 3687 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3688 "not match the udev. Re-allocate the device\n", 3689 slot_id); 3690 ret = xhci_alloc_dev(hcd, udev); 3691 if (ret == 1) 3692 return 0; 3693 else 3694 return -EINVAL; 3695 } 3696 3697 /* If device is not setup, there is no point in resetting it */ 3698 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3699 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3700 SLOT_STATE_DISABLED) 3701 return 0; 3702 3703 trace_xhci_discover_or_reset_device(slot_ctx); 3704 3705 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3706 /* Allocate the command structure that holds the struct completion. 3707 * Assume we're in process context, since the normal device reset 3708 * process has to wait for the device anyway. Storage devices are 3709 * reset as part of error handling, so use GFP_NOIO instead of 3710 * GFP_KERNEL. 3711 */ 3712 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3713 if (!reset_device_cmd) { 3714 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3715 return -ENOMEM; 3716 } 3717 3718 /* Attempt to submit the Reset Device command to the command ring */ 3719 spin_lock_irqsave(&xhci->lock, flags); 3720 3721 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3722 if (ret) { 3723 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3724 spin_unlock_irqrestore(&xhci->lock, flags); 3725 goto command_cleanup; 3726 } 3727 xhci_ring_cmd_db(xhci); 3728 spin_unlock_irqrestore(&xhci->lock, flags); 3729 3730 /* Wait for the Reset Device command to finish */ 3731 wait_for_completion(reset_device_cmd->completion); 3732 3733 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3734 * unless we tried to reset a slot ID that wasn't enabled, 3735 * or the device wasn't in the addressed or configured state. 3736 */ 3737 ret = reset_device_cmd->status; 3738 switch (ret) { 3739 case COMP_COMMAND_ABORTED: 3740 case COMP_COMMAND_RING_STOPPED: 3741 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3742 ret = -ETIME; 3743 goto command_cleanup; 3744 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3745 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3746 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3747 slot_id, 3748 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3749 xhci_dbg(xhci, "Not freeing device rings.\n"); 3750 /* Don't treat this as an error. May change my mind later. */ 3751 ret = 0; 3752 goto command_cleanup; 3753 case COMP_SUCCESS: 3754 xhci_dbg(xhci, "Successful reset device command.\n"); 3755 break; 3756 default: 3757 if (xhci_is_vendor_info_code(xhci, ret)) 3758 break; 3759 xhci_warn(xhci, "Unknown completion code %u for " 3760 "reset device command.\n", ret); 3761 ret = -EINVAL; 3762 goto command_cleanup; 3763 } 3764 3765 /* Free up host controller endpoint resources */ 3766 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3767 spin_lock_irqsave(&xhci->lock, flags); 3768 /* Don't delete the default control endpoint resources */ 3769 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3770 spin_unlock_irqrestore(&xhci->lock, flags); 3771 } 3772 3773 /* Everything but endpoint 0 is disabled, so free the rings. */ 3774 for (i = 1; i < 31; i++) { 3775 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3776 3777 if (ep->ep_state & EP_HAS_STREAMS) { 3778 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3779 xhci_get_endpoint_address(i)); 3780 xhci_free_stream_info(xhci, ep->stream_info); 3781 ep->stream_info = NULL; 3782 ep->ep_state &= ~EP_HAS_STREAMS; 3783 } 3784 3785 if (ep->ring) { 3786 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3787 xhci_free_endpoint_ring(xhci, virt_dev, i); 3788 } 3789 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3790 xhci_drop_ep_from_interval_table(xhci, 3791 &virt_dev->eps[i].bw_info, 3792 virt_dev->bw_table, 3793 udev, 3794 &virt_dev->eps[i], 3795 virt_dev->tt_info); 3796 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3797 } 3798 /* If necessary, update the number of active TTs on this root port */ 3799 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3800 virt_dev->flags = 0; 3801 ret = 0; 3802 3803 command_cleanup: 3804 xhci_free_command(xhci, reset_device_cmd); 3805 return ret; 3806 } 3807 3808 /* 3809 * At this point, the struct usb_device is about to go away, the device has 3810 * disconnected, and all traffic has been stopped and the endpoints have been 3811 * disabled. Free any HC data structures associated with that device. 3812 */ 3813 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3814 { 3815 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3816 struct xhci_virt_device *virt_dev; 3817 struct xhci_slot_ctx *slot_ctx; 3818 unsigned long flags; 3819 int i, ret; 3820 3821 /* 3822 * We called pm_runtime_get_noresume when the device was attached. 3823 * Decrement the counter here to allow controller to runtime suspend 3824 * if no devices remain. 3825 */ 3826 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3827 pm_runtime_put_noidle(hcd->self.controller); 3828 3829 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3830 /* If the host is halted due to driver unload, we still need to free the 3831 * device. 3832 */ 3833 if (ret <= 0 && ret != -ENODEV) 3834 return; 3835 3836 virt_dev = xhci->devs[udev->slot_id]; 3837 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3838 trace_xhci_free_dev(slot_ctx); 3839 3840 /* Stop any wayward timer functions (which may grab the lock) */ 3841 for (i = 0; i < 31; i++) 3842 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3843 virt_dev->udev = NULL; 3844 xhci_disable_slot(xhci, udev->slot_id); 3845 3846 spin_lock_irqsave(&xhci->lock, flags); 3847 xhci_free_virt_device(xhci, udev->slot_id); 3848 spin_unlock_irqrestore(&xhci->lock, flags); 3849 3850 } 3851 3852 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3853 { 3854 struct xhci_command *command; 3855 unsigned long flags; 3856 u32 state; 3857 int ret; 3858 3859 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3860 if (!command) 3861 return -ENOMEM; 3862 3863 xhci_debugfs_remove_slot(xhci, slot_id); 3864 3865 spin_lock_irqsave(&xhci->lock, flags); 3866 /* Don't disable the slot if the host controller is dead. */ 3867 state = readl(&xhci->op_regs->status); 3868 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3869 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3870 spin_unlock_irqrestore(&xhci->lock, flags); 3871 kfree(command); 3872 return -ENODEV; 3873 } 3874 3875 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3876 slot_id); 3877 if (ret) { 3878 spin_unlock_irqrestore(&xhci->lock, flags); 3879 kfree(command); 3880 return ret; 3881 } 3882 xhci_ring_cmd_db(xhci); 3883 spin_unlock_irqrestore(&xhci->lock, flags); 3884 3885 wait_for_completion(command->completion); 3886 3887 if (command->status != COMP_SUCCESS) 3888 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3889 slot_id, command->status); 3890 3891 xhci_free_command(xhci, command); 3892 3893 return 0; 3894 } 3895 3896 /* 3897 * Checks if we have enough host controller resources for the default control 3898 * endpoint. 3899 * 3900 * Must be called with xhci->lock held. 3901 */ 3902 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3903 { 3904 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3905 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3906 "Not enough ep ctxs: " 3907 "%u active, need to add 1, limit is %u.", 3908 xhci->num_active_eps, xhci->limit_active_eps); 3909 return -ENOMEM; 3910 } 3911 xhci->num_active_eps += 1; 3912 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3913 "Adding 1 ep ctx, %u now active.", 3914 xhci->num_active_eps); 3915 return 0; 3916 } 3917 3918 3919 /* 3920 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3921 * timed out, or allocating memory failed. Returns 1 on success. 3922 */ 3923 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3924 { 3925 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3926 struct xhci_virt_device *vdev; 3927 struct xhci_slot_ctx *slot_ctx; 3928 unsigned long flags; 3929 int ret, slot_id; 3930 struct xhci_command *command; 3931 3932 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3933 if (!command) 3934 return 0; 3935 3936 spin_lock_irqsave(&xhci->lock, flags); 3937 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3938 if (ret) { 3939 spin_unlock_irqrestore(&xhci->lock, flags); 3940 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3941 xhci_free_command(xhci, command); 3942 return 0; 3943 } 3944 xhci_ring_cmd_db(xhci); 3945 spin_unlock_irqrestore(&xhci->lock, flags); 3946 3947 wait_for_completion(command->completion); 3948 slot_id = command->slot_id; 3949 3950 if (!slot_id || command->status != COMP_SUCCESS) { 3951 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3952 xhci_trb_comp_code_string(command->status)); 3953 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3954 HCS_MAX_SLOTS( 3955 readl(&xhci->cap_regs->hcs_params1))); 3956 xhci_free_command(xhci, command); 3957 return 0; 3958 } 3959 3960 xhci_free_command(xhci, command); 3961 3962 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3963 spin_lock_irqsave(&xhci->lock, flags); 3964 ret = xhci_reserve_host_control_ep_resources(xhci); 3965 if (ret) { 3966 spin_unlock_irqrestore(&xhci->lock, flags); 3967 xhci_warn(xhci, "Not enough host resources, " 3968 "active endpoint contexts = %u\n", 3969 xhci->num_active_eps); 3970 goto disable_slot; 3971 } 3972 spin_unlock_irqrestore(&xhci->lock, flags); 3973 } 3974 /* Use GFP_NOIO, since this function can be called from 3975 * xhci_discover_or_reset_device(), which may be called as part of 3976 * mass storage driver error handling. 3977 */ 3978 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3979 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3980 goto disable_slot; 3981 } 3982 vdev = xhci->devs[slot_id]; 3983 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3984 trace_xhci_alloc_dev(slot_ctx); 3985 3986 udev->slot_id = slot_id; 3987 3988 xhci_debugfs_create_slot(xhci, slot_id); 3989 3990 /* 3991 * If resetting upon resume, we can't put the controller into runtime 3992 * suspend if there is a device attached. 3993 */ 3994 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3995 pm_runtime_get_noresume(hcd->self.controller); 3996 3997 /* Is this a LS or FS device under a HS hub? */ 3998 /* Hub or peripherial? */ 3999 return 1; 4000 4001 disable_slot: 4002 xhci_disable_slot(xhci, udev->slot_id); 4003 xhci_free_virt_device(xhci, udev->slot_id); 4004 4005 return 0; 4006 } 4007 4008 /* 4009 * Issue an Address Device command and optionally send a corresponding 4010 * SetAddress request to the device. 4011 */ 4012 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4013 enum xhci_setup_dev setup) 4014 { 4015 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4016 unsigned long flags; 4017 struct xhci_virt_device *virt_dev; 4018 int ret = 0; 4019 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4020 struct xhci_slot_ctx *slot_ctx; 4021 struct xhci_input_control_ctx *ctrl_ctx; 4022 u64 temp_64; 4023 struct xhci_command *command = NULL; 4024 4025 mutex_lock(&xhci->mutex); 4026 4027 if (xhci->xhc_state) { /* dying, removing or halted */ 4028 ret = -ESHUTDOWN; 4029 goto out; 4030 } 4031 4032 if (!udev->slot_id) { 4033 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4034 "Bad Slot ID %d", udev->slot_id); 4035 ret = -EINVAL; 4036 goto out; 4037 } 4038 4039 virt_dev = xhci->devs[udev->slot_id]; 4040 4041 if (WARN_ON(!virt_dev)) { 4042 /* 4043 * In plug/unplug torture test with an NEC controller, 4044 * a zero-dereference was observed once due to virt_dev = 0. 4045 * Print useful debug rather than crash if it is observed again! 4046 */ 4047 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4048 udev->slot_id); 4049 ret = -EINVAL; 4050 goto out; 4051 } 4052 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4053 trace_xhci_setup_device_slot(slot_ctx); 4054 4055 if (setup == SETUP_CONTEXT_ONLY) { 4056 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4057 SLOT_STATE_DEFAULT) { 4058 xhci_dbg(xhci, "Slot already in default state\n"); 4059 goto out; 4060 } 4061 } 4062 4063 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4064 if (!command) { 4065 ret = -ENOMEM; 4066 goto out; 4067 } 4068 4069 command->in_ctx = virt_dev->in_ctx; 4070 4071 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4072 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4073 if (!ctrl_ctx) { 4074 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4075 __func__); 4076 ret = -EINVAL; 4077 goto out; 4078 } 4079 /* 4080 * If this is the first Set Address since device plug-in or 4081 * virt_device realloaction after a resume with an xHCI power loss, 4082 * then set up the slot context. 4083 */ 4084 if (!slot_ctx->dev_info) 4085 xhci_setup_addressable_virt_dev(xhci, udev); 4086 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4087 else 4088 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4089 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4090 ctrl_ctx->drop_flags = 0; 4091 4092 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4093 le32_to_cpu(slot_ctx->dev_info) >> 27); 4094 4095 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4096 spin_lock_irqsave(&xhci->lock, flags); 4097 trace_xhci_setup_device(virt_dev); 4098 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4099 udev->slot_id, setup); 4100 if (ret) { 4101 spin_unlock_irqrestore(&xhci->lock, flags); 4102 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4103 "FIXME: allocate a command ring segment"); 4104 goto out; 4105 } 4106 xhci_ring_cmd_db(xhci); 4107 spin_unlock_irqrestore(&xhci->lock, flags); 4108 4109 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4110 wait_for_completion(command->completion); 4111 4112 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4113 * the SetAddress() "recovery interval" required by USB and aborting the 4114 * command on a timeout. 4115 */ 4116 switch (command->status) { 4117 case COMP_COMMAND_ABORTED: 4118 case COMP_COMMAND_RING_STOPPED: 4119 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4120 ret = -ETIME; 4121 break; 4122 case COMP_CONTEXT_STATE_ERROR: 4123 case COMP_SLOT_NOT_ENABLED_ERROR: 4124 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4125 act, udev->slot_id); 4126 ret = -EINVAL; 4127 break; 4128 case COMP_USB_TRANSACTION_ERROR: 4129 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4130 4131 mutex_unlock(&xhci->mutex); 4132 ret = xhci_disable_slot(xhci, udev->slot_id); 4133 xhci_free_virt_device(xhci, udev->slot_id); 4134 if (!ret) 4135 xhci_alloc_dev(hcd, udev); 4136 kfree(command->completion); 4137 kfree(command); 4138 return -EPROTO; 4139 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4140 dev_warn(&udev->dev, 4141 "ERROR: Incompatible device for setup %s command\n", act); 4142 ret = -ENODEV; 4143 break; 4144 case COMP_SUCCESS: 4145 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4146 "Successful setup %s command", act); 4147 break; 4148 default: 4149 xhci_err(xhci, 4150 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4151 act, command->status); 4152 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4153 ret = -EINVAL; 4154 break; 4155 } 4156 if (ret) 4157 goto out; 4158 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4160 "Op regs DCBAA ptr = %#016llx", temp_64); 4161 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4162 "Slot ID %d dcbaa entry @%p = %#016llx", 4163 udev->slot_id, 4164 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4165 (unsigned long long) 4166 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4167 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4168 "Output Context DMA address = %#08llx", 4169 (unsigned long long)virt_dev->out_ctx->dma); 4170 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4171 le32_to_cpu(slot_ctx->dev_info) >> 27); 4172 /* 4173 * USB core uses address 1 for the roothubs, so we add one to the 4174 * address given back to us by the HC. 4175 */ 4176 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4177 le32_to_cpu(slot_ctx->dev_info) >> 27); 4178 /* Zero the input context control for later use */ 4179 ctrl_ctx->add_flags = 0; 4180 ctrl_ctx->drop_flags = 0; 4181 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4182 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4183 4184 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4185 "Internal device address = %d", 4186 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4187 out: 4188 mutex_unlock(&xhci->mutex); 4189 if (command) { 4190 kfree(command->completion); 4191 kfree(command); 4192 } 4193 return ret; 4194 } 4195 4196 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4197 { 4198 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4199 } 4200 4201 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4202 { 4203 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4204 } 4205 4206 /* 4207 * Transfer the port index into real index in the HW port status 4208 * registers. Caculate offset between the port's PORTSC register 4209 * and port status base. Divide the number of per port register 4210 * to get the real index. The raw port number bases 1. 4211 */ 4212 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4213 { 4214 struct xhci_hub *rhub; 4215 4216 rhub = xhci_get_rhub(hcd); 4217 return rhub->ports[port1 - 1]->hw_portnum + 1; 4218 } 4219 4220 /* 4221 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4222 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4223 */ 4224 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4225 struct usb_device *udev, u16 max_exit_latency) 4226 { 4227 struct xhci_virt_device *virt_dev; 4228 struct xhci_command *command; 4229 struct xhci_input_control_ctx *ctrl_ctx; 4230 struct xhci_slot_ctx *slot_ctx; 4231 unsigned long flags; 4232 int ret; 4233 4234 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4235 if (!command) 4236 return -ENOMEM; 4237 4238 spin_lock_irqsave(&xhci->lock, flags); 4239 4240 virt_dev = xhci->devs[udev->slot_id]; 4241 4242 /* 4243 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4244 * xHC was re-initialized. Exit latency will be set later after 4245 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4246 */ 4247 4248 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4249 spin_unlock_irqrestore(&xhci->lock, flags); 4250 xhci_free_command(xhci, command); 4251 return 0; 4252 } 4253 4254 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4255 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4256 if (!ctrl_ctx) { 4257 spin_unlock_irqrestore(&xhci->lock, flags); 4258 xhci_free_command(xhci, command); 4259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4260 __func__); 4261 return -ENOMEM; 4262 } 4263 4264 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4265 spin_unlock_irqrestore(&xhci->lock, flags); 4266 4267 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4268 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4269 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4270 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4271 slot_ctx->dev_state = 0; 4272 4273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4274 "Set up evaluate context for LPM MEL change."); 4275 4276 /* Issue and wait for the evaluate context command. */ 4277 ret = xhci_configure_endpoint(xhci, udev, command, 4278 true, true); 4279 4280 if (!ret) { 4281 spin_lock_irqsave(&xhci->lock, flags); 4282 virt_dev->current_mel = max_exit_latency; 4283 spin_unlock_irqrestore(&xhci->lock, flags); 4284 } 4285 4286 xhci_free_command(xhci, command); 4287 4288 return ret; 4289 } 4290 4291 #ifdef CONFIG_PM 4292 4293 /* BESL to HIRD Encoding array for USB2 LPM */ 4294 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4295 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4296 4297 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4298 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4299 struct usb_device *udev) 4300 { 4301 int u2del, besl, besl_host; 4302 int besl_device = 0; 4303 u32 field; 4304 4305 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4306 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4307 4308 if (field & USB_BESL_SUPPORT) { 4309 for (besl_host = 0; besl_host < 16; besl_host++) { 4310 if (xhci_besl_encoding[besl_host] >= u2del) 4311 break; 4312 } 4313 /* Use baseline BESL value as default */ 4314 if (field & USB_BESL_BASELINE_VALID) 4315 besl_device = USB_GET_BESL_BASELINE(field); 4316 else if (field & USB_BESL_DEEP_VALID) 4317 besl_device = USB_GET_BESL_DEEP(field); 4318 } else { 4319 if (u2del <= 50) 4320 besl_host = 0; 4321 else 4322 besl_host = (u2del - 51) / 75 + 1; 4323 } 4324 4325 besl = besl_host + besl_device; 4326 if (besl > 15) 4327 besl = 15; 4328 4329 return besl; 4330 } 4331 4332 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4333 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4334 { 4335 u32 field; 4336 int l1; 4337 int besld = 0; 4338 int hirdm = 0; 4339 4340 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4341 4342 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4343 l1 = udev->l1_params.timeout / 256; 4344 4345 /* device has preferred BESLD */ 4346 if (field & USB_BESL_DEEP_VALID) { 4347 besld = USB_GET_BESL_DEEP(field); 4348 hirdm = 1; 4349 } 4350 4351 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4352 } 4353 4354 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4355 struct usb_device *udev, int enable) 4356 { 4357 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4358 struct xhci_port **ports; 4359 __le32 __iomem *pm_addr, *hlpm_addr; 4360 u32 pm_val, hlpm_val, field; 4361 unsigned int port_num; 4362 unsigned long flags; 4363 int hird, exit_latency; 4364 int ret; 4365 4366 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4367 return -EPERM; 4368 4369 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4370 !udev->lpm_capable) 4371 return -EPERM; 4372 4373 if (!udev->parent || udev->parent->parent || 4374 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4375 return -EPERM; 4376 4377 if (udev->usb2_hw_lpm_capable != 1) 4378 return -EPERM; 4379 4380 spin_lock_irqsave(&xhci->lock, flags); 4381 4382 ports = xhci->usb2_rhub.ports; 4383 port_num = udev->portnum - 1; 4384 pm_addr = ports[port_num]->addr + PORTPMSC; 4385 pm_val = readl(pm_addr); 4386 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4387 4388 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4389 enable ? "enable" : "disable", port_num + 1); 4390 4391 if (enable) { 4392 /* Host supports BESL timeout instead of HIRD */ 4393 if (udev->usb2_hw_lpm_besl_capable) { 4394 /* if device doesn't have a preferred BESL value use a 4395 * default one which works with mixed HIRD and BESL 4396 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4397 */ 4398 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4399 if ((field & USB_BESL_SUPPORT) && 4400 (field & USB_BESL_BASELINE_VALID)) 4401 hird = USB_GET_BESL_BASELINE(field); 4402 else 4403 hird = udev->l1_params.besl; 4404 4405 exit_latency = xhci_besl_encoding[hird]; 4406 spin_unlock_irqrestore(&xhci->lock, flags); 4407 4408 ret = xhci_change_max_exit_latency(xhci, udev, 4409 exit_latency); 4410 if (ret < 0) 4411 return ret; 4412 spin_lock_irqsave(&xhci->lock, flags); 4413 4414 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4415 writel(hlpm_val, hlpm_addr); 4416 /* flush write */ 4417 readl(hlpm_addr); 4418 } else { 4419 hird = xhci_calculate_hird_besl(xhci, udev); 4420 } 4421 4422 pm_val &= ~PORT_HIRD_MASK; 4423 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4424 writel(pm_val, pm_addr); 4425 pm_val = readl(pm_addr); 4426 pm_val |= PORT_HLE; 4427 writel(pm_val, pm_addr); 4428 /* flush write */ 4429 readl(pm_addr); 4430 } else { 4431 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4432 writel(pm_val, pm_addr); 4433 /* flush write */ 4434 readl(pm_addr); 4435 if (udev->usb2_hw_lpm_besl_capable) { 4436 spin_unlock_irqrestore(&xhci->lock, flags); 4437 xhci_change_max_exit_latency(xhci, udev, 0); 4438 readl_poll_timeout(ports[port_num]->addr, pm_val, 4439 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4440 100, 10000); 4441 return 0; 4442 } 4443 } 4444 4445 spin_unlock_irqrestore(&xhci->lock, flags); 4446 return 0; 4447 } 4448 4449 /* check if a usb2 port supports a given extened capability protocol 4450 * only USB2 ports extended protocol capability values are cached. 4451 * Return 1 if capability is supported 4452 */ 4453 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4454 unsigned capability) 4455 { 4456 u32 port_offset, port_count; 4457 int i; 4458 4459 for (i = 0; i < xhci->num_ext_caps; i++) { 4460 if (xhci->ext_caps[i] & capability) { 4461 /* port offsets starts at 1 */ 4462 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4463 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4464 if (port >= port_offset && 4465 port < port_offset + port_count) 4466 return 1; 4467 } 4468 } 4469 return 0; 4470 } 4471 4472 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4473 { 4474 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4475 int portnum = udev->portnum - 1; 4476 4477 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4478 return 0; 4479 4480 /* we only support lpm for non-hub device connected to root hub yet */ 4481 if (!udev->parent || udev->parent->parent || 4482 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4483 return 0; 4484 4485 if (xhci->hw_lpm_support == 1 && 4486 xhci_check_usb2_port_capability( 4487 xhci, portnum, XHCI_HLC)) { 4488 udev->usb2_hw_lpm_capable = 1; 4489 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4490 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4491 if (xhci_check_usb2_port_capability(xhci, portnum, 4492 XHCI_BLC)) 4493 udev->usb2_hw_lpm_besl_capable = 1; 4494 } 4495 4496 return 0; 4497 } 4498 4499 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4500 4501 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4502 static unsigned long long xhci_service_interval_to_ns( 4503 struct usb_endpoint_descriptor *desc) 4504 { 4505 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4506 } 4507 4508 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4509 enum usb3_link_state state) 4510 { 4511 unsigned long long sel; 4512 unsigned long long pel; 4513 unsigned int max_sel_pel; 4514 char *state_name; 4515 4516 switch (state) { 4517 case USB3_LPM_U1: 4518 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4519 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4520 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4521 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4522 state_name = "U1"; 4523 break; 4524 case USB3_LPM_U2: 4525 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4526 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4527 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4528 state_name = "U2"; 4529 break; 4530 default: 4531 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4532 __func__); 4533 return USB3_LPM_DISABLED; 4534 } 4535 4536 if (sel <= max_sel_pel && pel <= max_sel_pel) 4537 return USB3_LPM_DEVICE_INITIATED; 4538 4539 if (sel > max_sel_pel) 4540 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4541 "due to long SEL %llu ms\n", 4542 state_name, sel); 4543 else 4544 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4545 "due to long PEL %llu ms\n", 4546 state_name, pel); 4547 return USB3_LPM_DISABLED; 4548 } 4549 4550 /* The U1 timeout should be the maximum of the following values: 4551 * - For control endpoints, U1 system exit latency (SEL) * 3 4552 * - For bulk endpoints, U1 SEL * 5 4553 * - For interrupt endpoints: 4554 * - Notification EPs, U1 SEL * 3 4555 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4556 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4557 */ 4558 static unsigned long long xhci_calculate_intel_u1_timeout( 4559 struct usb_device *udev, 4560 struct usb_endpoint_descriptor *desc) 4561 { 4562 unsigned long long timeout_ns; 4563 int ep_type; 4564 int intr_type; 4565 4566 ep_type = usb_endpoint_type(desc); 4567 switch (ep_type) { 4568 case USB_ENDPOINT_XFER_CONTROL: 4569 timeout_ns = udev->u1_params.sel * 3; 4570 break; 4571 case USB_ENDPOINT_XFER_BULK: 4572 timeout_ns = udev->u1_params.sel * 5; 4573 break; 4574 case USB_ENDPOINT_XFER_INT: 4575 intr_type = usb_endpoint_interrupt_type(desc); 4576 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4577 timeout_ns = udev->u1_params.sel * 3; 4578 break; 4579 } 4580 /* Otherwise the calculation is the same as isoc eps */ 4581 fallthrough; 4582 case USB_ENDPOINT_XFER_ISOC: 4583 timeout_ns = xhci_service_interval_to_ns(desc); 4584 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4585 if (timeout_ns < udev->u1_params.sel * 2) 4586 timeout_ns = udev->u1_params.sel * 2; 4587 break; 4588 default: 4589 return 0; 4590 } 4591 4592 return timeout_ns; 4593 } 4594 4595 /* Returns the hub-encoded U1 timeout value. */ 4596 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4597 struct usb_device *udev, 4598 struct usb_endpoint_descriptor *desc) 4599 { 4600 unsigned long long timeout_ns; 4601 4602 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4603 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4604 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4605 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4606 return USB3_LPM_DISABLED; 4607 } 4608 } 4609 4610 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4611 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4612 else 4613 timeout_ns = udev->u1_params.sel; 4614 4615 /* The U1 timeout is encoded in 1us intervals. 4616 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4617 */ 4618 if (timeout_ns == USB3_LPM_DISABLED) 4619 timeout_ns = 1; 4620 else 4621 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4622 4623 /* If the necessary timeout value is bigger than what we can set in the 4624 * USB 3.0 hub, we have to disable hub-initiated U1. 4625 */ 4626 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4627 return timeout_ns; 4628 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4629 "due to long timeout %llu ms\n", timeout_ns); 4630 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4631 } 4632 4633 /* The U2 timeout should be the maximum of: 4634 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4635 * - largest bInterval of any active periodic endpoint (to avoid going 4636 * into lower power link states between intervals). 4637 * - the U2 Exit Latency of the device 4638 */ 4639 static unsigned long long xhci_calculate_intel_u2_timeout( 4640 struct usb_device *udev, 4641 struct usb_endpoint_descriptor *desc) 4642 { 4643 unsigned long long timeout_ns; 4644 unsigned long long u2_del_ns; 4645 4646 timeout_ns = 10 * 1000 * 1000; 4647 4648 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4649 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4650 timeout_ns = xhci_service_interval_to_ns(desc); 4651 4652 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4653 if (u2_del_ns > timeout_ns) 4654 timeout_ns = u2_del_ns; 4655 4656 return timeout_ns; 4657 } 4658 4659 /* Returns the hub-encoded U2 timeout value. */ 4660 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4661 struct usb_device *udev, 4662 struct usb_endpoint_descriptor *desc) 4663 { 4664 unsigned long long timeout_ns; 4665 4666 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4667 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4668 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4669 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4670 return USB3_LPM_DISABLED; 4671 } 4672 } 4673 4674 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4675 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4676 else 4677 timeout_ns = udev->u2_params.sel; 4678 4679 /* The U2 timeout is encoded in 256us intervals */ 4680 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4681 /* If the necessary timeout value is bigger than what we can set in the 4682 * USB 3.0 hub, we have to disable hub-initiated U2. 4683 */ 4684 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4685 return timeout_ns; 4686 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4687 "due to long timeout %llu ms\n", timeout_ns); 4688 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4689 } 4690 4691 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4692 struct usb_device *udev, 4693 struct usb_endpoint_descriptor *desc, 4694 enum usb3_link_state state, 4695 u16 *timeout) 4696 { 4697 if (state == USB3_LPM_U1) 4698 return xhci_calculate_u1_timeout(xhci, udev, desc); 4699 else if (state == USB3_LPM_U2) 4700 return xhci_calculate_u2_timeout(xhci, udev, desc); 4701 4702 return USB3_LPM_DISABLED; 4703 } 4704 4705 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4706 struct usb_device *udev, 4707 struct usb_endpoint_descriptor *desc, 4708 enum usb3_link_state state, 4709 u16 *timeout) 4710 { 4711 u16 alt_timeout; 4712 4713 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4714 desc, state, timeout); 4715 4716 /* If we found we can't enable hub-initiated LPM, and 4717 * the U1 or U2 exit latency was too high to allow 4718 * device-initiated LPM as well, then we will disable LPM 4719 * for this device, so stop searching any further. 4720 */ 4721 if (alt_timeout == USB3_LPM_DISABLED) { 4722 *timeout = alt_timeout; 4723 return -E2BIG; 4724 } 4725 if (alt_timeout > *timeout) 4726 *timeout = alt_timeout; 4727 return 0; 4728 } 4729 4730 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4731 struct usb_device *udev, 4732 struct usb_host_interface *alt, 4733 enum usb3_link_state state, 4734 u16 *timeout) 4735 { 4736 int j; 4737 4738 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4739 if (xhci_update_timeout_for_endpoint(xhci, udev, 4740 &alt->endpoint[j].desc, state, timeout)) 4741 return -E2BIG; 4742 } 4743 return 0; 4744 } 4745 4746 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4747 struct usb_device *udev, 4748 enum usb3_link_state state) 4749 { 4750 struct usb_device *parent = udev->parent; 4751 int tier = 1; /* roothub is tier1 */ 4752 4753 while (parent) { 4754 parent = parent->parent; 4755 tier++; 4756 } 4757 4758 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4759 goto fail; 4760 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4761 goto fail; 4762 4763 return 0; 4764 fail: 4765 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4766 tier); 4767 return -E2BIG; 4768 } 4769 4770 /* Returns the U1 or U2 timeout that should be enabled. 4771 * If the tier check or timeout setting functions return with a non-zero exit 4772 * code, that means the timeout value has been finalized and we shouldn't look 4773 * at any more endpoints. 4774 */ 4775 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4776 struct usb_device *udev, enum usb3_link_state state) 4777 { 4778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4779 struct usb_host_config *config; 4780 char *state_name; 4781 int i; 4782 u16 timeout = USB3_LPM_DISABLED; 4783 4784 if (state == USB3_LPM_U1) 4785 state_name = "U1"; 4786 else if (state == USB3_LPM_U2) 4787 state_name = "U2"; 4788 else { 4789 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4790 state); 4791 return timeout; 4792 } 4793 4794 /* Gather some information about the currently installed configuration 4795 * and alternate interface settings. 4796 */ 4797 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4798 state, &timeout)) 4799 return timeout; 4800 4801 config = udev->actconfig; 4802 if (!config) 4803 return timeout; 4804 4805 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4806 struct usb_driver *driver; 4807 struct usb_interface *intf = config->interface[i]; 4808 4809 if (!intf) 4810 continue; 4811 4812 /* Check if any currently bound drivers want hub-initiated LPM 4813 * disabled. 4814 */ 4815 if (intf->dev.driver) { 4816 driver = to_usb_driver(intf->dev.driver); 4817 if (driver && driver->disable_hub_initiated_lpm) { 4818 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4819 state_name, driver->name); 4820 timeout = xhci_get_timeout_no_hub_lpm(udev, 4821 state); 4822 if (timeout == USB3_LPM_DISABLED) 4823 return timeout; 4824 } 4825 } 4826 4827 /* Not sure how this could happen... */ 4828 if (!intf->cur_altsetting) 4829 continue; 4830 4831 if (xhci_update_timeout_for_interface(xhci, udev, 4832 intf->cur_altsetting, 4833 state, &timeout)) 4834 return timeout; 4835 } 4836 return timeout; 4837 } 4838 4839 static int calculate_max_exit_latency(struct usb_device *udev, 4840 enum usb3_link_state state_changed, 4841 u16 hub_encoded_timeout) 4842 { 4843 unsigned long long u1_mel_us = 0; 4844 unsigned long long u2_mel_us = 0; 4845 unsigned long long mel_us = 0; 4846 bool disabling_u1; 4847 bool disabling_u2; 4848 bool enabling_u1; 4849 bool enabling_u2; 4850 4851 disabling_u1 = (state_changed == USB3_LPM_U1 && 4852 hub_encoded_timeout == USB3_LPM_DISABLED); 4853 disabling_u2 = (state_changed == USB3_LPM_U2 && 4854 hub_encoded_timeout == USB3_LPM_DISABLED); 4855 4856 enabling_u1 = (state_changed == USB3_LPM_U1 && 4857 hub_encoded_timeout != USB3_LPM_DISABLED); 4858 enabling_u2 = (state_changed == USB3_LPM_U2 && 4859 hub_encoded_timeout != USB3_LPM_DISABLED); 4860 4861 /* If U1 was already enabled and we're not disabling it, 4862 * or we're going to enable U1, account for the U1 max exit latency. 4863 */ 4864 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4865 enabling_u1) 4866 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4867 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4868 enabling_u2) 4869 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4870 4871 mel_us = max(u1_mel_us, u2_mel_us); 4872 4873 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4874 if (mel_us > MAX_EXIT) { 4875 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4876 "is too big.\n", mel_us); 4877 return -E2BIG; 4878 } 4879 return mel_us; 4880 } 4881 4882 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4883 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4884 struct usb_device *udev, enum usb3_link_state state) 4885 { 4886 struct xhci_hcd *xhci; 4887 struct xhci_port *port; 4888 u16 hub_encoded_timeout; 4889 int mel; 4890 int ret; 4891 4892 xhci = hcd_to_xhci(hcd); 4893 /* The LPM timeout values are pretty host-controller specific, so don't 4894 * enable hub-initiated timeouts unless the vendor has provided 4895 * information about their timeout algorithm. 4896 */ 4897 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4898 !xhci->devs[udev->slot_id]) 4899 return USB3_LPM_DISABLED; 4900 4901 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4902 return USB3_LPM_DISABLED; 4903 4904 /* If connected to root port then check port can handle lpm */ 4905 if (udev->parent && !udev->parent->parent) { 4906 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4907 if (port->lpm_incapable) 4908 return USB3_LPM_DISABLED; 4909 } 4910 4911 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4912 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4913 if (mel < 0) { 4914 /* Max Exit Latency is too big, disable LPM. */ 4915 hub_encoded_timeout = USB3_LPM_DISABLED; 4916 mel = 0; 4917 } 4918 4919 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4920 if (ret) 4921 return ret; 4922 return hub_encoded_timeout; 4923 } 4924 4925 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4926 struct usb_device *udev, enum usb3_link_state state) 4927 { 4928 struct xhci_hcd *xhci; 4929 u16 mel; 4930 4931 xhci = hcd_to_xhci(hcd); 4932 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4933 !xhci->devs[udev->slot_id]) 4934 return 0; 4935 4936 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4937 return xhci_change_max_exit_latency(xhci, udev, mel); 4938 } 4939 #else /* CONFIG_PM */ 4940 4941 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4942 struct usb_device *udev, int enable) 4943 { 4944 return 0; 4945 } 4946 4947 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4948 { 4949 return 0; 4950 } 4951 4952 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4953 struct usb_device *udev, enum usb3_link_state state) 4954 { 4955 return USB3_LPM_DISABLED; 4956 } 4957 4958 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4959 struct usb_device *udev, enum usb3_link_state state) 4960 { 4961 return 0; 4962 } 4963 #endif /* CONFIG_PM */ 4964 4965 /*-------------------------------------------------------------------------*/ 4966 4967 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4968 * internal data structures for the device. 4969 */ 4970 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4971 struct usb_tt *tt, gfp_t mem_flags) 4972 { 4973 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4974 struct xhci_virt_device *vdev; 4975 struct xhci_command *config_cmd; 4976 struct xhci_input_control_ctx *ctrl_ctx; 4977 struct xhci_slot_ctx *slot_ctx; 4978 unsigned long flags; 4979 unsigned think_time; 4980 int ret; 4981 4982 /* Ignore root hubs */ 4983 if (!hdev->parent) 4984 return 0; 4985 4986 vdev = xhci->devs[hdev->slot_id]; 4987 if (!vdev) { 4988 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4989 return -EINVAL; 4990 } 4991 4992 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4993 if (!config_cmd) 4994 return -ENOMEM; 4995 4996 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4997 if (!ctrl_ctx) { 4998 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4999 __func__); 5000 xhci_free_command(xhci, config_cmd); 5001 return -ENOMEM; 5002 } 5003 5004 spin_lock_irqsave(&xhci->lock, flags); 5005 if (hdev->speed == USB_SPEED_HIGH && 5006 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5007 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5008 xhci_free_command(xhci, config_cmd); 5009 spin_unlock_irqrestore(&xhci->lock, flags); 5010 return -ENOMEM; 5011 } 5012 5013 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5014 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5015 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5016 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5017 /* 5018 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5019 * but it may be already set to 1 when setup an xHCI virtual 5020 * device, so clear it anyway. 5021 */ 5022 if (tt->multi) 5023 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5024 else if (hdev->speed == USB_SPEED_FULL) 5025 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5026 5027 if (xhci->hci_version > 0x95) { 5028 xhci_dbg(xhci, "xHCI version %x needs hub " 5029 "TT think time and number of ports\n", 5030 (unsigned int) xhci->hci_version); 5031 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5032 /* Set TT think time - convert from ns to FS bit times. 5033 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5034 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5035 * 5036 * xHCI 1.0: this field shall be 0 if the device is not a 5037 * High-spped hub. 5038 */ 5039 think_time = tt->think_time; 5040 if (think_time != 0) 5041 think_time = (think_time / 666) - 1; 5042 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5043 slot_ctx->tt_info |= 5044 cpu_to_le32(TT_THINK_TIME(think_time)); 5045 } else { 5046 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5047 "TT think time or number of ports\n", 5048 (unsigned int) xhci->hci_version); 5049 } 5050 slot_ctx->dev_state = 0; 5051 spin_unlock_irqrestore(&xhci->lock, flags); 5052 5053 xhci_dbg(xhci, "Set up %s for hub device.\n", 5054 (xhci->hci_version > 0x95) ? 5055 "configure endpoint" : "evaluate context"); 5056 5057 /* Issue and wait for the configure endpoint or 5058 * evaluate context command. 5059 */ 5060 if (xhci->hci_version > 0x95) 5061 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5062 false, false); 5063 else 5064 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5065 true, false); 5066 5067 xhci_free_command(xhci, config_cmd); 5068 return ret; 5069 } 5070 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5071 5072 static int xhci_get_frame(struct usb_hcd *hcd) 5073 { 5074 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5075 /* EHCI mods by the periodic size. Why? */ 5076 return readl(&xhci->run_regs->microframe_index) >> 3; 5077 } 5078 5079 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5080 { 5081 xhci->usb2_rhub.hcd = hcd; 5082 hcd->speed = HCD_USB2; 5083 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5084 /* 5085 * USB 2.0 roothub under xHCI has an integrated TT, 5086 * (rate matching hub) as opposed to having an OHCI/UHCI 5087 * companion controller. 5088 */ 5089 hcd->has_tt = 1; 5090 } 5091 5092 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5093 { 5094 unsigned int minor_rev; 5095 5096 /* 5097 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5098 * should return 0x31 for sbrn, or that the minor revision 5099 * is a two digit BCD containig minor and sub-minor numbers. 5100 * This was later clarified in xHCI 1.2. 5101 * 5102 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5103 * minor revision set to 0x1 instead of 0x10. 5104 */ 5105 if (xhci->usb3_rhub.min_rev == 0x1) 5106 minor_rev = 1; 5107 else 5108 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5109 5110 switch (minor_rev) { 5111 case 2: 5112 hcd->speed = HCD_USB32; 5113 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5114 hcd->self.root_hub->rx_lanes = 2; 5115 hcd->self.root_hub->tx_lanes = 2; 5116 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5117 break; 5118 case 1: 5119 hcd->speed = HCD_USB31; 5120 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5121 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5122 break; 5123 } 5124 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5125 minor_rev, minor_rev ? "Enhanced " : ""); 5126 5127 xhci->usb3_rhub.hcd = hcd; 5128 } 5129 5130 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5131 { 5132 struct xhci_hcd *xhci; 5133 /* 5134 * TODO: Check with DWC3 clients for sysdev according to 5135 * quirks 5136 */ 5137 struct device *dev = hcd->self.sysdev; 5138 int retval; 5139 5140 /* Accept arbitrarily long scatter-gather lists */ 5141 hcd->self.sg_tablesize = ~0; 5142 5143 /* support to build packet from discontinuous buffers */ 5144 hcd->self.no_sg_constraint = 1; 5145 5146 /* XHCI controllers don't stop the ep queue on short packets :| */ 5147 hcd->self.no_stop_on_short = 1; 5148 5149 xhci = hcd_to_xhci(hcd); 5150 5151 if (!usb_hcd_is_primary_hcd(hcd)) { 5152 xhci_hcd_init_usb3_data(xhci, hcd); 5153 return 0; 5154 } 5155 5156 mutex_init(&xhci->mutex); 5157 xhci->main_hcd = hcd; 5158 xhci->cap_regs = hcd->regs; 5159 xhci->op_regs = hcd->regs + 5160 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5161 xhci->run_regs = hcd->regs + 5162 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5163 /* Cache read-only capability registers */ 5164 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5165 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5166 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5167 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5168 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5169 if (xhci->hci_version > 0x100) 5170 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5171 5172 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5173 if ((!xhci->max_interrupters) || 5174 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5175 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5176 5177 xhci->quirks |= quirks; 5178 5179 if (get_quirks) 5180 get_quirks(dev, xhci); 5181 5182 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5183 * success event after a short transfer. This quirk will ignore such 5184 * spurious event. 5185 */ 5186 if (xhci->hci_version > 0x96) 5187 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5188 5189 /* Make sure the HC is halted. */ 5190 retval = xhci_halt(xhci); 5191 if (retval) 5192 return retval; 5193 5194 xhci_zero_64b_regs(xhci); 5195 5196 xhci_dbg(xhci, "Resetting HCD\n"); 5197 /* Reset the internal HC memory state and registers. */ 5198 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5199 if (retval) 5200 return retval; 5201 xhci_dbg(xhci, "Reset complete\n"); 5202 5203 /* 5204 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5205 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5206 * address memory pointers actually. So, this driver clears the AC64 5207 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5208 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5209 */ 5210 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5211 xhci->hcc_params &= ~BIT(0); 5212 5213 /* Set dma_mask and coherent_dma_mask to 64-bits, 5214 * if xHC supports 64-bit addressing */ 5215 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5216 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5217 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5218 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5219 } else { 5220 /* 5221 * This is to avoid error in cases where a 32-bit USB 5222 * controller is used on a 64-bit capable system. 5223 */ 5224 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5225 if (retval) 5226 return retval; 5227 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5228 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5229 } 5230 5231 xhci_dbg(xhci, "Calling HCD init\n"); 5232 /* Initialize HCD and host controller data structures. */ 5233 retval = xhci_init(hcd); 5234 if (retval) 5235 return retval; 5236 xhci_dbg(xhci, "Called HCD init\n"); 5237 5238 if (xhci_hcd_is_usb3(hcd)) 5239 xhci_hcd_init_usb3_data(xhci, hcd); 5240 else 5241 xhci_hcd_init_usb2_data(xhci, hcd); 5242 5243 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5244 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5245 5246 return 0; 5247 } 5248 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5249 5250 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5251 struct usb_host_endpoint *ep) 5252 { 5253 struct xhci_hcd *xhci; 5254 struct usb_device *udev; 5255 unsigned int slot_id; 5256 unsigned int ep_index; 5257 unsigned long flags; 5258 5259 xhci = hcd_to_xhci(hcd); 5260 5261 spin_lock_irqsave(&xhci->lock, flags); 5262 udev = (struct usb_device *)ep->hcpriv; 5263 slot_id = udev->slot_id; 5264 ep_index = xhci_get_endpoint_index(&ep->desc); 5265 5266 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5267 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5268 spin_unlock_irqrestore(&xhci->lock, flags); 5269 } 5270 5271 static const struct hc_driver xhci_hc_driver = { 5272 .description = "xhci-hcd", 5273 .product_desc = "xHCI Host Controller", 5274 .hcd_priv_size = sizeof(struct xhci_hcd), 5275 5276 /* 5277 * generic hardware linkage 5278 */ 5279 .irq = xhci_irq, 5280 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5281 HCD_BH, 5282 5283 /* 5284 * basic lifecycle operations 5285 */ 5286 .reset = NULL, /* set in xhci_init_driver() */ 5287 .start = xhci_run, 5288 .stop = xhci_stop, 5289 .shutdown = xhci_shutdown, 5290 5291 /* 5292 * managing i/o requests and associated device resources 5293 */ 5294 .map_urb_for_dma = xhci_map_urb_for_dma, 5295 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5296 .urb_enqueue = xhci_urb_enqueue, 5297 .urb_dequeue = xhci_urb_dequeue, 5298 .alloc_dev = xhci_alloc_dev, 5299 .free_dev = xhci_free_dev, 5300 .alloc_streams = xhci_alloc_streams, 5301 .free_streams = xhci_free_streams, 5302 .add_endpoint = xhci_add_endpoint, 5303 .drop_endpoint = xhci_drop_endpoint, 5304 .endpoint_disable = xhci_endpoint_disable, 5305 .endpoint_reset = xhci_endpoint_reset, 5306 .check_bandwidth = xhci_check_bandwidth, 5307 .reset_bandwidth = xhci_reset_bandwidth, 5308 .address_device = xhci_address_device, 5309 .enable_device = xhci_enable_device, 5310 .update_hub_device = xhci_update_hub_device, 5311 .reset_device = xhci_discover_or_reset_device, 5312 5313 /* 5314 * scheduling support 5315 */ 5316 .get_frame_number = xhci_get_frame, 5317 5318 /* 5319 * root hub support 5320 */ 5321 .hub_control = xhci_hub_control, 5322 .hub_status_data = xhci_hub_status_data, 5323 .bus_suspend = xhci_bus_suspend, 5324 .bus_resume = xhci_bus_resume, 5325 .get_resuming_ports = xhci_get_resuming_ports, 5326 5327 /* 5328 * call back when device connected and addressed 5329 */ 5330 .update_device = xhci_update_device, 5331 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5332 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5333 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5334 .find_raw_port_number = xhci_find_raw_port_number, 5335 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5336 }; 5337 5338 void xhci_init_driver(struct hc_driver *drv, 5339 const struct xhci_driver_overrides *over) 5340 { 5341 BUG_ON(!over); 5342 5343 /* Copy the generic table to drv then apply the overrides */ 5344 *drv = xhci_hc_driver; 5345 5346 if (over) { 5347 drv->hcd_priv_size += over->extra_priv_size; 5348 if (over->reset) 5349 drv->reset = over->reset; 5350 if (over->start) 5351 drv->start = over->start; 5352 if (over->add_endpoint) 5353 drv->add_endpoint = over->add_endpoint; 5354 if (over->drop_endpoint) 5355 drv->drop_endpoint = over->drop_endpoint; 5356 if (over->check_bandwidth) 5357 drv->check_bandwidth = over->check_bandwidth; 5358 if (over->reset_bandwidth) 5359 drv->reset_bandwidth = over->reset_bandwidth; 5360 if (over->update_hub_device) 5361 drv->update_hub_device = over->update_hub_device; 5362 if (over->hub_control) 5363 drv->hub_control = over->hub_control; 5364 } 5365 } 5366 EXPORT_SYMBOL_GPL(xhci_init_driver); 5367 5368 MODULE_DESCRIPTION(DRIVER_DESC); 5369 MODULE_AUTHOR(DRIVER_AUTHOR); 5370 MODULE_LICENSE("GPL"); 5371 5372 static int __init xhci_hcd_init(void) 5373 { 5374 /* 5375 * Check the compiler generated sizes of structures that must be laid 5376 * out in specific ways for hardware access. 5377 */ 5378 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5379 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5380 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5381 /* xhci_device_control has eight fields, and also 5382 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5383 */ 5384 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5385 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5386 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5387 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5388 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5389 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5390 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5391 5392 if (usb_disabled()) 5393 return -ENODEV; 5394 5395 xhci_debugfs_create_root(); 5396 xhci_dbc_init(); 5397 5398 return 0; 5399 } 5400 5401 /* 5402 * If an init function is provided, an exit function must also be provided 5403 * to allow module unload. 5404 */ 5405 static void __exit xhci_hcd_fini(void) 5406 { 5407 xhci_debugfs_remove_root(); 5408 xhci_dbc_exit(); 5409 } 5410 5411 module_init(xhci_hcd_init); 5412 module_exit(xhci_hcd_fini); 5413