1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 } 793 EXPORT_SYMBOL_GPL(xhci_shutdown); 794 795 #ifdef CONFIG_PM 796 static void xhci_save_registers(struct xhci_hcd *xhci) 797 { 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 807 } 808 809 static void xhci_restore_registers(struct xhci_hcd *xhci) 810 { 811 writel(xhci->s3.command, &xhci->op_regs->command); 812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 820 } 821 822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 823 { 824 u64 val_64; 825 826 /* step 2: initialize command ring buffer */ 827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 830 xhci->cmd_ring->dequeue) & 831 (u64) ~CMD_RING_RSVD_BITS) | 832 xhci->cmd_ring->cycle_state; 833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 834 "// Setting command ring address to 0x%llx", 835 (long unsigned long) val_64); 836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 837 } 838 839 /* 840 * The whole command ring must be cleared to zero when we suspend the host. 841 * 842 * The host doesn't save the command ring pointer in the suspend well, so we 843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 844 * aligned, because of the reserved bits in the command ring dequeue pointer 845 * register. Therefore, we can't just set the dequeue pointer back in the 846 * middle of the ring (TRBs are 16-byte aligned). 847 */ 848 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 849 { 850 struct xhci_ring *ring; 851 struct xhci_segment *seg; 852 853 ring = xhci->cmd_ring; 854 seg = ring->deq_seg; 855 do { 856 memset(seg->trbs, 0, 857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 859 cpu_to_le32(~TRB_CYCLE); 860 seg = seg->next; 861 } while (seg != ring->deq_seg); 862 863 /* Reset the software enqueue and dequeue pointers */ 864 ring->deq_seg = ring->first_seg; 865 ring->dequeue = ring->first_seg->trbs; 866 ring->enq_seg = ring->deq_seg; 867 ring->enqueue = ring->dequeue; 868 869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 870 /* 871 * Ring is now zeroed, so the HW should look for change of ownership 872 * when the cycle bit is set to 1. 873 */ 874 ring->cycle_state = 1; 875 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 887 { 888 struct xhci_port **ports; 889 int port_index; 890 unsigned long flags; 891 u32 t1, t2, portsc; 892 893 spin_lock_irqsave(&xhci->lock, flags); 894 895 /* disable usb3 ports Wake bits */ 896 port_index = xhci->usb3_rhub.num_ports; 897 ports = xhci->usb3_rhub.ports; 898 while (port_index--) { 899 t1 = readl(ports[port_index]->addr); 900 portsc = t1; 901 t1 = xhci_port_state_to_neutral(t1); 902 t2 = t1 & ~PORT_WAKE_BITS; 903 if (t1 != t2) { 904 writel(t2, ports[port_index]->addr); 905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 906 xhci->usb3_rhub.hcd->self.busnum, 907 port_index + 1, portsc, t2); 908 } 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 portsc = t1; 917 t1 = xhci_port_state_to_neutral(t1); 918 t2 = t1 & ~PORT_WAKE_BITS; 919 if (t1 != t2) { 920 writel(t2, ports[port_index]->addr); 921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 922 xhci->usb2_rhub.hcd->self.busnum, 923 port_index + 1, portsc, t2); 924 } 925 } 926 spin_unlock_irqrestore(&xhci->lock, flags); 927 } 928 929 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 930 { 931 struct xhci_port **ports; 932 int port_index; 933 u32 status; 934 u32 portsc; 935 936 status = readl(&xhci->op_regs->status); 937 if (status & STS_EINT) 938 return true; 939 /* 940 * Checking STS_EINT is not enough as there is a lag between a change 941 * bit being set and the Port Status Change Event that it generated 942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 943 */ 944 945 port_index = xhci->usb2_rhub.num_ports; 946 ports = xhci->usb2_rhub.ports; 947 while (port_index--) { 948 portsc = readl(ports[port_index]->addr); 949 if (portsc & PORT_CHANGE_MASK || 950 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 951 return true; 952 } 953 port_index = xhci->usb3_rhub.num_ports; 954 ports = xhci->usb3_rhub.ports; 955 while (port_index--) { 956 portsc = readl(ports[port_index]->addr); 957 if (portsc & PORT_CHANGE_MASK || 958 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 959 return true; 960 } 961 return false; 962 } 963 964 /* 965 * Stop HC (not bus-specific) 966 * 967 * This is called when the machine transition into S3/S4 mode. 968 * 969 */ 970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 971 { 972 int rc = 0; 973 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 974 struct usb_hcd *hcd = xhci_to_hcd(xhci); 975 u32 command; 976 u32 res; 977 978 if (!hcd->state) 979 return 0; 980 981 if (hcd->state != HC_STATE_SUSPENDED || 982 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 983 return -EINVAL; 984 985 xhci_dbc_suspend(xhci); 986 987 /* Clear root port wake on bits if wakeup not allowed. */ 988 if (!do_wakeup) 989 xhci_disable_port_wake_on_bits(xhci); 990 991 /* Don't poll the roothubs on bus suspend. */ 992 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 993 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 994 del_timer_sync(&hcd->rh_timer); 995 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 996 del_timer_sync(&xhci->shared_hcd->rh_timer); 997 998 if (xhci->quirks & XHCI_SUSPEND_DELAY) 999 usleep_range(1000, 1500); 1000 1001 spin_lock_irq(&xhci->lock); 1002 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1003 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1004 /* step 1: stop endpoint */ 1005 /* skipped assuming that port suspend has done */ 1006 1007 /* step 2: clear Run/Stop bit */ 1008 command = readl(&xhci->op_regs->command); 1009 command &= ~CMD_RUN; 1010 writel(command, &xhci->op_regs->command); 1011 1012 /* Some chips from Fresco Logic need an extraordinary delay */ 1013 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1014 1015 if (xhci_handshake(&xhci->op_regs->status, 1016 STS_HALT, STS_HALT, delay)) { 1017 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1018 spin_unlock_irq(&xhci->lock); 1019 return -ETIMEDOUT; 1020 } 1021 xhci_clear_command_ring(xhci); 1022 1023 /* step 3: save registers */ 1024 xhci_save_registers(xhci); 1025 1026 /* step 4: set CSS flag */ 1027 command = readl(&xhci->op_regs->command); 1028 command |= CMD_CSS; 1029 writel(command, &xhci->op_regs->command); 1030 xhci->broken_suspend = 0; 1031 if (xhci_handshake(&xhci->op_regs->status, 1032 STS_SAVE, 0, 20 * 1000)) { 1033 /* 1034 * AMD SNPS xHC 3.0 occasionally does not clear the 1035 * SSS bit of USBSTS and when driver tries to poll 1036 * to see if the xHC clears BIT(8) which never happens 1037 * and driver assumes that controller is not responding 1038 * and times out. To workaround this, its good to check 1039 * if SRE and HCE bits are not set (as per xhci 1040 * Section 5.4.2) and bypass the timeout. 1041 */ 1042 res = readl(&xhci->op_regs->status); 1043 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1044 (((res & STS_SRE) == 0) && 1045 ((res & STS_HCE) == 0))) { 1046 xhci->broken_suspend = 1; 1047 } else { 1048 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1049 spin_unlock_irq(&xhci->lock); 1050 return -ETIMEDOUT; 1051 } 1052 } 1053 spin_unlock_irq(&xhci->lock); 1054 1055 /* 1056 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1057 * is about to be suspended. 1058 */ 1059 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1060 (!(xhci_all_ports_seen_u0(xhci)))) { 1061 del_timer_sync(&xhci->comp_mode_recovery_timer); 1062 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1063 "%s: compliance mode recovery timer deleted", 1064 __func__); 1065 } 1066 1067 /* step 5: remove core well power */ 1068 /* synchronize irq when using MSI-X */ 1069 xhci_msix_sync_irqs(xhci); 1070 1071 return rc; 1072 } 1073 EXPORT_SYMBOL_GPL(xhci_suspend); 1074 1075 /* 1076 * start xHC (not bus-specific) 1077 * 1078 * This is called when the machine transition from S3/S4 mode. 1079 * 1080 */ 1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1082 { 1083 u32 command, temp = 0; 1084 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1085 struct usb_hcd *secondary_hcd; 1086 int retval = 0; 1087 bool comp_timer_running = false; 1088 1089 if (!hcd->state) 1090 return 0; 1091 1092 /* Wait a bit if either of the roothubs need to settle from the 1093 * transition into bus suspend. 1094 */ 1095 1096 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1097 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1098 msleep(100); 1099 1100 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1101 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1102 1103 spin_lock_irq(&xhci->lock); 1104 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1105 hibernated = true; 1106 1107 if (!hibernated) { 1108 /* 1109 * Some controllers might lose power during suspend, so wait 1110 * for controller not ready bit to clear, just as in xHC init. 1111 */ 1112 retval = xhci_handshake(&xhci->op_regs->status, 1113 STS_CNR, 0, 10 * 1000 * 1000); 1114 if (retval) { 1115 xhci_warn(xhci, "Controller not ready at resume %d\n", 1116 retval); 1117 spin_unlock_irq(&xhci->lock); 1118 return retval; 1119 } 1120 /* step 1: restore register */ 1121 xhci_restore_registers(xhci); 1122 /* step 2: initialize command ring buffer */ 1123 xhci_set_cmd_ring_deq(xhci); 1124 /* step 3: restore state and start state*/ 1125 /* step 3: set CRS flag */ 1126 command = readl(&xhci->op_regs->command); 1127 command |= CMD_CRS; 1128 writel(command, &xhci->op_regs->command); 1129 /* 1130 * Some controllers take up to 55+ ms to complete the controller 1131 * restore so setting the timeout to 100ms. Xhci specification 1132 * doesn't mention any timeout value. 1133 */ 1134 if (xhci_handshake(&xhci->op_regs->status, 1135 STS_RESTORE, 0, 100 * 1000)) { 1136 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1137 spin_unlock_irq(&xhci->lock); 1138 return -ETIMEDOUT; 1139 } 1140 temp = readl(&xhci->op_regs->status); 1141 } 1142 1143 /* If restore operation fails, re-initialize the HC during resume */ 1144 if ((temp & STS_SRE) || hibernated) { 1145 1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1147 !(xhci_all_ports_seen_u0(xhci))) { 1148 del_timer_sync(&xhci->comp_mode_recovery_timer); 1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1150 "Compliance Mode Recovery Timer deleted!"); 1151 } 1152 1153 /* Let the USB core know _both_ roothubs lost power. */ 1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1155 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1156 1157 xhci_dbg(xhci, "Stop HCD\n"); 1158 xhci_halt(xhci); 1159 xhci_zero_64b_regs(xhci); 1160 xhci_reset(xhci); 1161 spin_unlock_irq(&xhci->lock); 1162 xhci_cleanup_msix(xhci); 1163 1164 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1165 temp = readl(&xhci->op_regs->status); 1166 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1167 temp = readl(&xhci->ir_set->irq_pending); 1168 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1169 1170 xhci_dbg(xhci, "cleaning up memory\n"); 1171 xhci_mem_cleanup(xhci); 1172 xhci_debugfs_exit(xhci); 1173 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1174 readl(&xhci->op_regs->status)); 1175 1176 /* USB core calls the PCI reinit and start functions twice: 1177 * first with the primary HCD, and then with the secondary HCD. 1178 * If we don't do the same, the host will never be started. 1179 */ 1180 if (!usb_hcd_is_primary_hcd(hcd)) 1181 secondary_hcd = hcd; 1182 else 1183 secondary_hcd = xhci->shared_hcd; 1184 1185 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1186 retval = xhci_init(hcd->primary_hcd); 1187 if (retval) 1188 return retval; 1189 comp_timer_running = true; 1190 1191 xhci_dbg(xhci, "Start the primary HCD\n"); 1192 retval = xhci_run(hcd->primary_hcd); 1193 if (!retval) { 1194 xhci_dbg(xhci, "Start the secondary HCD\n"); 1195 retval = xhci_run(secondary_hcd); 1196 } 1197 hcd->state = HC_STATE_SUSPENDED; 1198 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1199 goto done; 1200 } 1201 1202 /* step 4: set Run/Stop bit */ 1203 command = readl(&xhci->op_regs->command); 1204 command |= CMD_RUN; 1205 writel(command, &xhci->op_regs->command); 1206 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1207 0, 250 * 1000); 1208 1209 /* step 5: walk topology and initialize portsc, 1210 * portpmsc and portli 1211 */ 1212 /* this is done in bus_resume */ 1213 1214 /* step 6: restart each of the previously 1215 * Running endpoints by ringing their doorbells 1216 */ 1217 1218 spin_unlock_irq(&xhci->lock); 1219 1220 xhci_dbc_resume(xhci); 1221 1222 done: 1223 if (retval == 0) { 1224 /* Resume root hubs only when have pending events. */ 1225 if (xhci_pending_portevent(xhci)) { 1226 usb_hcd_resume_root_hub(xhci->shared_hcd); 1227 usb_hcd_resume_root_hub(hcd); 1228 } 1229 } 1230 1231 /* 1232 * If system is subject to the Quirk, Compliance Mode Timer needs to 1233 * be re-initialized Always after a system resume. Ports are subject 1234 * to suffer the Compliance Mode issue again. It doesn't matter if 1235 * ports have entered previously to U0 before system's suspension. 1236 */ 1237 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1238 compliance_mode_recovery_timer_init(xhci); 1239 1240 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1241 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1242 1243 /* Re-enable port polling. */ 1244 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1245 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1246 usb_hcd_poll_rh_status(xhci->shared_hcd); 1247 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1248 usb_hcd_poll_rh_status(hcd); 1249 1250 return retval; 1251 } 1252 EXPORT_SYMBOL_GPL(xhci_resume); 1253 #endif /* CONFIG_PM */ 1254 1255 /*-------------------------------------------------------------------------*/ 1256 1257 /* 1258 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1259 * we'll copy the actual data into the TRB address register. This is limited to 1260 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1261 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1262 */ 1263 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1264 gfp_t mem_flags) 1265 { 1266 if (xhci_urb_suitable_for_idt(urb)) 1267 return 0; 1268 1269 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1270 } 1271 1272 /** 1273 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1274 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1275 * value to right shift 1 for the bitmask. 1276 * 1277 * Index = (epnum * 2) + direction - 1, 1278 * where direction = 0 for OUT, 1 for IN. 1279 * For control endpoints, the IN index is used (OUT index is unused), so 1280 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1281 */ 1282 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1283 { 1284 unsigned int index; 1285 if (usb_endpoint_xfer_control(desc)) 1286 index = (unsigned int) (usb_endpoint_num(desc)*2); 1287 else 1288 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1289 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1290 return index; 1291 } 1292 1293 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1294 * address from the XHCI endpoint index. 1295 */ 1296 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1297 { 1298 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1299 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1300 return direction | number; 1301 } 1302 1303 /* Find the flag for this endpoint (for use in the control context). Use the 1304 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1305 * bit 1, etc. 1306 */ 1307 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1308 { 1309 return 1 << (xhci_get_endpoint_index(desc) + 1); 1310 } 1311 1312 /* Find the flag for this endpoint (for use in the control context). Use the 1313 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1314 * bit 1, etc. 1315 */ 1316 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1317 { 1318 return 1 << (ep_index + 1); 1319 } 1320 1321 /* Compute the last valid endpoint context index. Basically, this is the 1322 * endpoint index plus one. For slot contexts with more than valid endpoint, 1323 * we find the most significant bit set in the added contexts flags. 1324 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1325 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1326 */ 1327 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1328 { 1329 return fls(added_ctxs) - 1; 1330 } 1331 1332 /* Returns 1 if the arguments are OK; 1333 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1334 */ 1335 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1336 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1337 const char *func) { 1338 struct xhci_hcd *xhci; 1339 struct xhci_virt_device *virt_dev; 1340 1341 if (!hcd || (check_ep && !ep) || !udev) { 1342 pr_debug("xHCI %s called with invalid args\n", func); 1343 return -EINVAL; 1344 } 1345 if (!udev->parent) { 1346 pr_debug("xHCI %s called for root hub\n", func); 1347 return 0; 1348 } 1349 1350 xhci = hcd_to_xhci(hcd); 1351 if (check_virt_dev) { 1352 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1353 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1354 func); 1355 return -EINVAL; 1356 } 1357 1358 virt_dev = xhci->devs[udev->slot_id]; 1359 if (virt_dev->udev != udev) { 1360 xhci_dbg(xhci, "xHCI %s called with udev and " 1361 "virt_dev does not match\n", func); 1362 return -EINVAL; 1363 } 1364 } 1365 1366 if (xhci->xhc_state & XHCI_STATE_HALTED) 1367 return -ENODEV; 1368 1369 return 1; 1370 } 1371 1372 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1373 struct usb_device *udev, struct xhci_command *command, 1374 bool ctx_change, bool must_succeed); 1375 1376 /* 1377 * Full speed devices may have a max packet size greater than 8 bytes, but the 1378 * USB core doesn't know that until it reads the first 8 bytes of the 1379 * descriptor. If the usb_device's max packet size changes after that point, 1380 * we need to issue an evaluate context command and wait on it. 1381 */ 1382 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1383 unsigned int ep_index, struct urb *urb) 1384 { 1385 struct xhci_container_ctx *out_ctx; 1386 struct xhci_input_control_ctx *ctrl_ctx; 1387 struct xhci_ep_ctx *ep_ctx; 1388 struct xhci_command *command; 1389 int max_packet_size; 1390 int hw_max_packet_size; 1391 int ret = 0; 1392 1393 out_ctx = xhci->devs[slot_id]->out_ctx; 1394 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1395 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1396 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1397 if (hw_max_packet_size != max_packet_size) { 1398 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1399 "Max Packet Size for ep 0 changed."); 1400 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1401 "Max packet size in usb_device = %d", 1402 max_packet_size); 1403 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1404 "Max packet size in xHCI HW = %d", 1405 hw_max_packet_size); 1406 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1407 "Issuing evaluate context command."); 1408 1409 /* Set up the input context flags for the command */ 1410 /* FIXME: This won't work if a non-default control endpoint 1411 * changes max packet sizes. 1412 */ 1413 1414 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1415 if (!command) 1416 return -ENOMEM; 1417 1418 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1419 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1420 if (!ctrl_ctx) { 1421 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1422 __func__); 1423 ret = -ENOMEM; 1424 goto command_cleanup; 1425 } 1426 /* Set up the modified control endpoint 0 */ 1427 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1428 xhci->devs[slot_id]->out_ctx, ep_index); 1429 1430 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1431 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1432 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1433 1434 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1435 ctrl_ctx->drop_flags = 0; 1436 1437 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1438 true, false); 1439 1440 /* Clean up the input context for later use by bandwidth 1441 * functions. 1442 */ 1443 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1444 command_cleanup: 1445 kfree(command->completion); 1446 kfree(command); 1447 } 1448 return ret; 1449 } 1450 1451 /* 1452 * non-error returns are a promise to giveback() the urb later 1453 * we drop ownership so next owner (or urb unlink) can get it 1454 */ 1455 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1456 { 1457 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1458 unsigned long flags; 1459 int ret = 0; 1460 unsigned int slot_id, ep_index; 1461 unsigned int *ep_state; 1462 struct urb_priv *urb_priv; 1463 int num_tds; 1464 1465 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1466 true, true, __func__) <= 0) 1467 return -EINVAL; 1468 1469 slot_id = urb->dev->slot_id; 1470 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1471 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1472 1473 if (!HCD_HW_ACCESSIBLE(hcd)) { 1474 if (!in_interrupt()) 1475 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1476 return -ESHUTDOWN; 1477 } 1478 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1479 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1480 return -ENODEV; 1481 } 1482 1483 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1484 num_tds = urb->number_of_packets; 1485 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1486 urb->transfer_buffer_length > 0 && 1487 urb->transfer_flags & URB_ZERO_PACKET && 1488 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1489 num_tds = 2; 1490 else 1491 num_tds = 1; 1492 1493 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1494 if (!urb_priv) 1495 return -ENOMEM; 1496 1497 urb_priv->num_tds = num_tds; 1498 urb_priv->num_tds_done = 0; 1499 urb->hcpriv = urb_priv; 1500 1501 trace_xhci_urb_enqueue(urb); 1502 1503 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1504 /* Check to see if the max packet size for the default control 1505 * endpoint changed during FS device enumeration 1506 */ 1507 if (urb->dev->speed == USB_SPEED_FULL) { 1508 ret = xhci_check_maxpacket(xhci, slot_id, 1509 ep_index, urb); 1510 if (ret < 0) { 1511 xhci_urb_free_priv(urb_priv); 1512 urb->hcpriv = NULL; 1513 return ret; 1514 } 1515 } 1516 } 1517 1518 spin_lock_irqsave(&xhci->lock, flags); 1519 1520 if (xhci->xhc_state & XHCI_STATE_DYING) { 1521 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1522 urb->ep->desc.bEndpointAddress, urb); 1523 ret = -ESHUTDOWN; 1524 goto free_priv; 1525 } 1526 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1527 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1528 *ep_state); 1529 ret = -EINVAL; 1530 goto free_priv; 1531 } 1532 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1533 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1534 ret = -EINVAL; 1535 goto free_priv; 1536 } 1537 1538 switch (usb_endpoint_type(&urb->ep->desc)) { 1539 1540 case USB_ENDPOINT_XFER_CONTROL: 1541 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1542 slot_id, ep_index); 1543 break; 1544 case USB_ENDPOINT_XFER_BULK: 1545 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1546 slot_id, ep_index); 1547 break; 1548 case USB_ENDPOINT_XFER_INT: 1549 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1550 slot_id, ep_index); 1551 break; 1552 case USB_ENDPOINT_XFER_ISOC: 1553 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1554 slot_id, ep_index); 1555 } 1556 1557 if (ret) { 1558 free_priv: 1559 xhci_urb_free_priv(urb_priv); 1560 urb->hcpriv = NULL; 1561 } 1562 spin_unlock_irqrestore(&xhci->lock, flags); 1563 return ret; 1564 } 1565 1566 /* 1567 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1568 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1569 * should pick up where it left off in the TD, unless a Set Transfer Ring 1570 * Dequeue Pointer is issued. 1571 * 1572 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1573 * the ring. Since the ring is a contiguous structure, they can't be physically 1574 * removed. Instead, there are two options: 1575 * 1576 * 1) If the HC is in the middle of processing the URB to be canceled, we 1577 * simply move the ring's dequeue pointer past those TRBs using the Set 1578 * Transfer Ring Dequeue Pointer command. This will be the common case, 1579 * when drivers timeout on the last submitted URB and attempt to cancel. 1580 * 1581 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1582 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1583 * HC will need to invalidate the any TRBs it has cached after the stop 1584 * endpoint command, as noted in the xHCI 0.95 errata. 1585 * 1586 * 3) The TD may have completed by the time the Stop Endpoint Command 1587 * completes, so software needs to handle that case too. 1588 * 1589 * This function should protect against the TD enqueueing code ringing the 1590 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1591 * It also needs to account for multiple cancellations on happening at the same 1592 * time for the same endpoint. 1593 * 1594 * Note that this function can be called in any context, or so says 1595 * usb_hcd_unlink_urb() 1596 */ 1597 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1598 { 1599 unsigned long flags; 1600 int ret, i; 1601 u32 temp; 1602 struct xhci_hcd *xhci; 1603 struct urb_priv *urb_priv; 1604 struct xhci_td *td; 1605 unsigned int ep_index; 1606 struct xhci_ring *ep_ring; 1607 struct xhci_virt_ep *ep; 1608 struct xhci_command *command; 1609 struct xhci_virt_device *vdev; 1610 1611 xhci = hcd_to_xhci(hcd); 1612 spin_lock_irqsave(&xhci->lock, flags); 1613 1614 trace_xhci_urb_dequeue(urb); 1615 1616 /* Make sure the URB hasn't completed or been unlinked already */ 1617 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1618 if (ret) 1619 goto done; 1620 1621 /* give back URB now if we can't queue it for cancel */ 1622 vdev = xhci->devs[urb->dev->slot_id]; 1623 urb_priv = urb->hcpriv; 1624 if (!vdev || !urb_priv) 1625 goto err_giveback; 1626 1627 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1628 ep = &vdev->eps[ep_index]; 1629 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1630 if (!ep || !ep_ring) 1631 goto err_giveback; 1632 1633 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1634 temp = readl(&xhci->op_regs->status); 1635 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1636 xhci_hc_died(xhci); 1637 goto done; 1638 } 1639 1640 /* 1641 * check ring is not re-allocated since URB was enqueued. If it is, then 1642 * make sure none of the ring related pointers in this URB private data 1643 * are touched, such as td_list, otherwise we overwrite freed data 1644 */ 1645 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1646 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1647 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1648 td = &urb_priv->td[i]; 1649 if (!list_empty(&td->cancelled_td_list)) 1650 list_del_init(&td->cancelled_td_list); 1651 } 1652 goto err_giveback; 1653 } 1654 1655 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1656 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1657 "HC halted, freeing TD manually."); 1658 for (i = urb_priv->num_tds_done; 1659 i < urb_priv->num_tds; 1660 i++) { 1661 td = &urb_priv->td[i]; 1662 if (!list_empty(&td->td_list)) 1663 list_del_init(&td->td_list); 1664 if (!list_empty(&td->cancelled_td_list)) 1665 list_del_init(&td->cancelled_td_list); 1666 } 1667 goto err_giveback; 1668 } 1669 1670 i = urb_priv->num_tds_done; 1671 if (i < urb_priv->num_tds) 1672 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1673 "Cancel URB %p, dev %s, ep 0x%x, " 1674 "starting at offset 0x%llx", 1675 urb, urb->dev->devpath, 1676 urb->ep->desc.bEndpointAddress, 1677 (unsigned long long) xhci_trb_virt_to_dma( 1678 urb_priv->td[i].start_seg, 1679 urb_priv->td[i].first_trb)); 1680 1681 for (; i < urb_priv->num_tds; i++) { 1682 td = &urb_priv->td[i]; 1683 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1684 } 1685 1686 /* Queue a stop endpoint command, but only if this is 1687 * the first cancellation to be handled. 1688 */ 1689 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1690 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1691 if (!command) { 1692 ret = -ENOMEM; 1693 goto done; 1694 } 1695 ep->ep_state |= EP_STOP_CMD_PENDING; 1696 ep->stop_cmd_timer.expires = jiffies + 1697 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1698 add_timer(&ep->stop_cmd_timer); 1699 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1700 ep_index, 0); 1701 xhci_ring_cmd_db(xhci); 1702 } 1703 done: 1704 spin_unlock_irqrestore(&xhci->lock, flags); 1705 return ret; 1706 1707 err_giveback: 1708 if (urb_priv) 1709 xhci_urb_free_priv(urb_priv); 1710 usb_hcd_unlink_urb_from_ep(hcd, urb); 1711 spin_unlock_irqrestore(&xhci->lock, flags); 1712 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1713 return ret; 1714 } 1715 1716 /* Drop an endpoint from a new bandwidth configuration for this device. 1717 * Only one call to this function is allowed per endpoint before 1718 * check_bandwidth() or reset_bandwidth() must be called. 1719 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1720 * add the endpoint to the schedule with possibly new parameters denoted by a 1721 * different endpoint descriptor in usb_host_endpoint. 1722 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1723 * not allowed. 1724 * 1725 * The USB core will not allow URBs to be queued to an endpoint that is being 1726 * disabled, so there's no need for mutual exclusion to protect 1727 * the xhci->devs[slot_id] structure. 1728 */ 1729 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1730 struct usb_host_endpoint *ep) 1731 { 1732 struct xhci_hcd *xhci; 1733 struct xhci_container_ctx *in_ctx, *out_ctx; 1734 struct xhci_input_control_ctx *ctrl_ctx; 1735 unsigned int ep_index; 1736 struct xhci_ep_ctx *ep_ctx; 1737 u32 drop_flag; 1738 u32 new_add_flags, new_drop_flags; 1739 int ret; 1740 1741 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1742 if (ret <= 0) 1743 return ret; 1744 xhci = hcd_to_xhci(hcd); 1745 if (xhci->xhc_state & XHCI_STATE_DYING) 1746 return -ENODEV; 1747 1748 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1749 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1750 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1751 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1752 __func__, drop_flag); 1753 return 0; 1754 } 1755 1756 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1757 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1758 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1759 if (!ctrl_ctx) { 1760 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1761 __func__); 1762 return 0; 1763 } 1764 1765 ep_index = xhci_get_endpoint_index(&ep->desc); 1766 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1767 /* If the HC already knows the endpoint is disabled, 1768 * or the HCD has noted it is disabled, ignore this request 1769 */ 1770 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1771 le32_to_cpu(ctrl_ctx->drop_flags) & 1772 xhci_get_endpoint_flag(&ep->desc)) { 1773 /* Do not warn when called after a usb_device_reset */ 1774 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1775 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1776 __func__, ep); 1777 return 0; 1778 } 1779 1780 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1781 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1782 1783 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1784 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1785 1786 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1787 1788 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1789 1790 if (xhci->quirks & XHCI_MTK_HOST) 1791 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1792 1793 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1794 (unsigned int) ep->desc.bEndpointAddress, 1795 udev->slot_id, 1796 (unsigned int) new_drop_flags, 1797 (unsigned int) new_add_flags); 1798 return 0; 1799 } 1800 1801 /* Add an endpoint to a new possible bandwidth configuration for this device. 1802 * Only one call to this function is allowed per endpoint before 1803 * check_bandwidth() or reset_bandwidth() must be called. 1804 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1805 * add the endpoint to the schedule with possibly new parameters denoted by a 1806 * different endpoint descriptor in usb_host_endpoint. 1807 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1808 * not allowed. 1809 * 1810 * The USB core will not allow URBs to be queued to an endpoint until the 1811 * configuration or alt setting is installed in the device, so there's no need 1812 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1813 */ 1814 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1815 struct usb_host_endpoint *ep) 1816 { 1817 struct xhci_hcd *xhci; 1818 struct xhci_container_ctx *in_ctx; 1819 unsigned int ep_index; 1820 struct xhci_input_control_ctx *ctrl_ctx; 1821 struct xhci_ep_ctx *ep_ctx; 1822 u32 added_ctxs; 1823 u32 new_add_flags, new_drop_flags; 1824 struct xhci_virt_device *virt_dev; 1825 int ret = 0; 1826 1827 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1828 if (ret <= 0) { 1829 /* So we won't queue a reset ep command for a root hub */ 1830 ep->hcpriv = NULL; 1831 return ret; 1832 } 1833 xhci = hcd_to_xhci(hcd); 1834 if (xhci->xhc_state & XHCI_STATE_DYING) 1835 return -ENODEV; 1836 1837 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1838 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1839 /* FIXME when we have to issue an evaluate endpoint command to 1840 * deal with ep0 max packet size changing once we get the 1841 * descriptors 1842 */ 1843 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1844 __func__, added_ctxs); 1845 return 0; 1846 } 1847 1848 virt_dev = xhci->devs[udev->slot_id]; 1849 in_ctx = virt_dev->in_ctx; 1850 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1851 if (!ctrl_ctx) { 1852 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1853 __func__); 1854 return 0; 1855 } 1856 1857 ep_index = xhci_get_endpoint_index(&ep->desc); 1858 /* If this endpoint is already in use, and the upper layers are trying 1859 * to add it again without dropping it, reject the addition. 1860 */ 1861 if (virt_dev->eps[ep_index].ring && 1862 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1863 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1864 "without dropping it.\n", 1865 (unsigned int) ep->desc.bEndpointAddress); 1866 return -EINVAL; 1867 } 1868 1869 /* If the HCD has already noted the endpoint is enabled, 1870 * ignore this request. 1871 */ 1872 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1873 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1874 __func__, ep); 1875 return 0; 1876 } 1877 1878 /* 1879 * Configuration and alternate setting changes must be done in 1880 * process context, not interrupt context (or so documenation 1881 * for usb_set_interface() and usb_set_configuration() claim). 1882 */ 1883 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1884 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1885 __func__, ep->desc.bEndpointAddress); 1886 return -ENOMEM; 1887 } 1888 1889 if (xhci->quirks & XHCI_MTK_HOST) { 1890 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1891 if (ret < 0) { 1892 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1893 virt_dev->eps[ep_index].new_ring = NULL; 1894 return ret; 1895 } 1896 } 1897 1898 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1899 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1900 1901 /* If xhci_endpoint_disable() was called for this endpoint, but the 1902 * xHC hasn't been notified yet through the check_bandwidth() call, 1903 * this re-adds a new state for the endpoint from the new endpoint 1904 * descriptors. We must drop and re-add this endpoint, so we leave the 1905 * drop flags alone. 1906 */ 1907 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1908 1909 /* Store the usb_device pointer for later use */ 1910 ep->hcpriv = udev; 1911 1912 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1913 trace_xhci_add_endpoint(ep_ctx); 1914 1915 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1916 1917 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1918 (unsigned int) ep->desc.bEndpointAddress, 1919 udev->slot_id, 1920 (unsigned int) new_drop_flags, 1921 (unsigned int) new_add_flags); 1922 return 0; 1923 } 1924 1925 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1926 { 1927 struct xhci_input_control_ctx *ctrl_ctx; 1928 struct xhci_ep_ctx *ep_ctx; 1929 struct xhci_slot_ctx *slot_ctx; 1930 int i; 1931 1932 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1933 if (!ctrl_ctx) { 1934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1935 __func__); 1936 return; 1937 } 1938 1939 /* When a device's add flag and drop flag are zero, any subsequent 1940 * configure endpoint command will leave that endpoint's state 1941 * untouched. Make sure we don't leave any old state in the input 1942 * endpoint contexts. 1943 */ 1944 ctrl_ctx->drop_flags = 0; 1945 ctrl_ctx->add_flags = 0; 1946 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1947 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1948 /* Endpoint 0 is always valid */ 1949 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1950 for (i = 1; i < 31; i++) { 1951 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1952 ep_ctx->ep_info = 0; 1953 ep_ctx->ep_info2 = 0; 1954 ep_ctx->deq = 0; 1955 ep_ctx->tx_info = 0; 1956 } 1957 } 1958 1959 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1960 struct usb_device *udev, u32 *cmd_status) 1961 { 1962 int ret; 1963 1964 switch (*cmd_status) { 1965 case COMP_COMMAND_ABORTED: 1966 case COMP_COMMAND_RING_STOPPED: 1967 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1968 ret = -ETIME; 1969 break; 1970 case COMP_RESOURCE_ERROR: 1971 dev_warn(&udev->dev, 1972 "Not enough host controller resources for new device state.\n"); 1973 ret = -ENOMEM; 1974 /* FIXME: can we allocate more resources for the HC? */ 1975 break; 1976 case COMP_BANDWIDTH_ERROR: 1977 case COMP_SECONDARY_BANDWIDTH_ERROR: 1978 dev_warn(&udev->dev, 1979 "Not enough bandwidth for new device state.\n"); 1980 ret = -ENOSPC; 1981 /* FIXME: can we go back to the old state? */ 1982 break; 1983 case COMP_TRB_ERROR: 1984 /* the HCD set up something wrong */ 1985 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1986 "add flag = 1, " 1987 "and endpoint is not disabled.\n"); 1988 ret = -EINVAL; 1989 break; 1990 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1991 dev_warn(&udev->dev, 1992 "ERROR: Incompatible device for endpoint configure command.\n"); 1993 ret = -ENODEV; 1994 break; 1995 case COMP_SUCCESS: 1996 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1997 "Successful Endpoint Configure command"); 1998 ret = 0; 1999 break; 2000 default: 2001 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2002 *cmd_status); 2003 ret = -EINVAL; 2004 break; 2005 } 2006 return ret; 2007 } 2008 2009 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2010 struct usb_device *udev, u32 *cmd_status) 2011 { 2012 int ret; 2013 2014 switch (*cmd_status) { 2015 case COMP_COMMAND_ABORTED: 2016 case COMP_COMMAND_RING_STOPPED: 2017 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2018 ret = -ETIME; 2019 break; 2020 case COMP_PARAMETER_ERROR: 2021 dev_warn(&udev->dev, 2022 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2023 ret = -EINVAL; 2024 break; 2025 case COMP_SLOT_NOT_ENABLED_ERROR: 2026 dev_warn(&udev->dev, 2027 "WARN: slot not enabled for evaluate context command.\n"); 2028 ret = -EINVAL; 2029 break; 2030 case COMP_CONTEXT_STATE_ERROR: 2031 dev_warn(&udev->dev, 2032 "WARN: invalid context state for evaluate context command.\n"); 2033 ret = -EINVAL; 2034 break; 2035 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2036 dev_warn(&udev->dev, 2037 "ERROR: Incompatible device for evaluate context command.\n"); 2038 ret = -ENODEV; 2039 break; 2040 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2041 /* Max Exit Latency too large error */ 2042 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2043 ret = -EINVAL; 2044 break; 2045 case COMP_SUCCESS: 2046 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2047 "Successful evaluate context command"); 2048 ret = 0; 2049 break; 2050 default: 2051 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2052 *cmd_status); 2053 ret = -EINVAL; 2054 break; 2055 } 2056 return ret; 2057 } 2058 2059 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2060 struct xhci_input_control_ctx *ctrl_ctx) 2061 { 2062 u32 valid_add_flags; 2063 u32 valid_drop_flags; 2064 2065 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2066 * (bit 1). The default control endpoint is added during the Address 2067 * Device command and is never removed until the slot is disabled. 2068 */ 2069 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2070 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2071 2072 /* Use hweight32 to count the number of ones in the add flags, or 2073 * number of endpoints added. Don't count endpoints that are changed 2074 * (both added and dropped). 2075 */ 2076 return hweight32(valid_add_flags) - 2077 hweight32(valid_add_flags & valid_drop_flags); 2078 } 2079 2080 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2081 struct xhci_input_control_ctx *ctrl_ctx) 2082 { 2083 u32 valid_add_flags; 2084 u32 valid_drop_flags; 2085 2086 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2087 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2088 2089 return hweight32(valid_drop_flags) - 2090 hweight32(valid_add_flags & valid_drop_flags); 2091 } 2092 2093 /* 2094 * We need to reserve the new number of endpoints before the configure endpoint 2095 * command completes. We can't subtract the dropped endpoints from the number 2096 * of active endpoints until the command completes because we can oversubscribe 2097 * the host in this case: 2098 * 2099 * - the first configure endpoint command drops more endpoints than it adds 2100 * - a second configure endpoint command that adds more endpoints is queued 2101 * - the first configure endpoint command fails, so the config is unchanged 2102 * - the second command may succeed, even though there isn't enough resources 2103 * 2104 * Must be called with xhci->lock held. 2105 */ 2106 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2107 struct xhci_input_control_ctx *ctrl_ctx) 2108 { 2109 u32 added_eps; 2110 2111 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2112 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2113 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2114 "Not enough ep ctxs: " 2115 "%u active, need to add %u, limit is %u.", 2116 xhci->num_active_eps, added_eps, 2117 xhci->limit_active_eps); 2118 return -ENOMEM; 2119 } 2120 xhci->num_active_eps += added_eps; 2121 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2122 "Adding %u ep ctxs, %u now active.", added_eps, 2123 xhci->num_active_eps); 2124 return 0; 2125 } 2126 2127 /* 2128 * The configure endpoint was failed by the xHC for some other reason, so we 2129 * need to revert the resources that failed configuration would have used. 2130 * 2131 * Must be called with xhci->lock held. 2132 */ 2133 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2134 struct xhci_input_control_ctx *ctrl_ctx) 2135 { 2136 u32 num_failed_eps; 2137 2138 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2139 xhci->num_active_eps -= num_failed_eps; 2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2141 "Removing %u failed ep ctxs, %u now active.", 2142 num_failed_eps, 2143 xhci->num_active_eps); 2144 } 2145 2146 /* 2147 * Now that the command has completed, clean up the active endpoint count by 2148 * subtracting out the endpoints that were dropped (but not changed). 2149 * 2150 * Must be called with xhci->lock held. 2151 */ 2152 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2153 struct xhci_input_control_ctx *ctrl_ctx) 2154 { 2155 u32 num_dropped_eps; 2156 2157 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2158 xhci->num_active_eps -= num_dropped_eps; 2159 if (num_dropped_eps) 2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2161 "Removing %u dropped ep ctxs, %u now active.", 2162 num_dropped_eps, 2163 xhci->num_active_eps); 2164 } 2165 2166 static unsigned int xhci_get_block_size(struct usb_device *udev) 2167 { 2168 switch (udev->speed) { 2169 case USB_SPEED_LOW: 2170 case USB_SPEED_FULL: 2171 return FS_BLOCK; 2172 case USB_SPEED_HIGH: 2173 return HS_BLOCK; 2174 case USB_SPEED_SUPER: 2175 case USB_SPEED_SUPER_PLUS: 2176 return SS_BLOCK; 2177 case USB_SPEED_UNKNOWN: 2178 case USB_SPEED_WIRELESS: 2179 default: 2180 /* Should never happen */ 2181 return 1; 2182 } 2183 } 2184 2185 static unsigned int 2186 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2187 { 2188 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2189 return LS_OVERHEAD; 2190 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2191 return FS_OVERHEAD; 2192 return HS_OVERHEAD; 2193 } 2194 2195 /* If we are changing a LS/FS device under a HS hub, 2196 * make sure (if we are activating a new TT) that the HS bus has enough 2197 * bandwidth for this new TT. 2198 */ 2199 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2200 struct xhci_virt_device *virt_dev, 2201 int old_active_eps) 2202 { 2203 struct xhci_interval_bw_table *bw_table; 2204 struct xhci_tt_bw_info *tt_info; 2205 2206 /* Find the bandwidth table for the root port this TT is attached to. */ 2207 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2208 tt_info = virt_dev->tt_info; 2209 /* If this TT already had active endpoints, the bandwidth for this TT 2210 * has already been added. Removing all periodic endpoints (and thus 2211 * making the TT enactive) will only decrease the bandwidth used. 2212 */ 2213 if (old_active_eps) 2214 return 0; 2215 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2216 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2217 return -ENOMEM; 2218 return 0; 2219 } 2220 /* Not sure why we would have no new active endpoints... 2221 * 2222 * Maybe because of an Evaluate Context change for a hub update or a 2223 * control endpoint 0 max packet size change? 2224 * FIXME: skip the bandwidth calculation in that case. 2225 */ 2226 return 0; 2227 } 2228 2229 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2230 struct xhci_virt_device *virt_dev) 2231 { 2232 unsigned int bw_reserved; 2233 2234 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2235 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2236 return -ENOMEM; 2237 2238 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2239 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2240 return -ENOMEM; 2241 2242 return 0; 2243 } 2244 2245 /* 2246 * This algorithm is a very conservative estimate of the worst-case scheduling 2247 * scenario for any one interval. The hardware dynamically schedules the 2248 * packets, so we can't tell which microframe could be the limiting factor in 2249 * the bandwidth scheduling. This only takes into account periodic endpoints. 2250 * 2251 * Obviously, we can't solve an NP complete problem to find the minimum worst 2252 * case scenario. Instead, we come up with an estimate that is no less than 2253 * the worst case bandwidth used for any one microframe, but may be an 2254 * over-estimate. 2255 * 2256 * We walk the requirements for each endpoint by interval, starting with the 2257 * smallest interval, and place packets in the schedule where there is only one 2258 * possible way to schedule packets for that interval. In order to simplify 2259 * this algorithm, we record the largest max packet size for each interval, and 2260 * assume all packets will be that size. 2261 * 2262 * For interval 0, we obviously must schedule all packets for each interval. 2263 * The bandwidth for interval 0 is just the amount of data to be transmitted 2264 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2265 * the number of packets). 2266 * 2267 * For interval 1, we have two possible microframes to schedule those packets 2268 * in. For this algorithm, if we can schedule the same number of packets for 2269 * each possible scheduling opportunity (each microframe), we will do so. The 2270 * remaining number of packets will be saved to be transmitted in the gaps in 2271 * the next interval's scheduling sequence. 2272 * 2273 * As we move those remaining packets to be scheduled with interval 2 packets, 2274 * we have to double the number of remaining packets to transmit. This is 2275 * because the intervals are actually powers of 2, and we would be transmitting 2276 * the previous interval's packets twice in this interval. We also have to be 2277 * sure that when we look at the largest max packet size for this interval, we 2278 * also look at the largest max packet size for the remaining packets and take 2279 * the greater of the two. 2280 * 2281 * The algorithm continues to evenly distribute packets in each scheduling 2282 * opportunity, and push the remaining packets out, until we get to the last 2283 * interval. Then those packets and their associated overhead are just added 2284 * to the bandwidth used. 2285 */ 2286 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2287 struct xhci_virt_device *virt_dev, 2288 int old_active_eps) 2289 { 2290 unsigned int bw_reserved; 2291 unsigned int max_bandwidth; 2292 unsigned int bw_used; 2293 unsigned int block_size; 2294 struct xhci_interval_bw_table *bw_table; 2295 unsigned int packet_size = 0; 2296 unsigned int overhead = 0; 2297 unsigned int packets_transmitted = 0; 2298 unsigned int packets_remaining = 0; 2299 unsigned int i; 2300 2301 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2302 return xhci_check_ss_bw(xhci, virt_dev); 2303 2304 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2305 max_bandwidth = HS_BW_LIMIT; 2306 /* Convert percent of bus BW reserved to blocks reserved */ 2307 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2308 } else { 2309 max_bandwidth = FS_BW_LIMIT; 2310 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2311 } 2312 2313 bw_table = virt_dev->bw_table; 2314 /* We need to translate the max packet size and max ESIT payloads into 2315 * the units the hardware uses. 2316 */ 2317 block_size = xhci_get_block_size(virt_dev->udev); 2318 2319 /* If we are manipulating a LS/FS device under a HS hub, double check 2320 * that the HS bus has enough bandwidth if we are activing a new TT. 2321 */ 2322 if (virt_dev->tt_info) { 2323 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2324 "Recalculating BW for rootport %u", 2325 virt_dev->real_port); 2326 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2327 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2328 "newly activated TT.\n"); 2329 return -ENOMEM; 2330 } 2331 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2332 "Recalculating BW for TT slot %u port %u", 2333 virt_dev->tt_info->slot_id, 2334 virt_dev->tt_info->ttport); 2335 } else { 2336 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2337 "Recalculating BW for rootport %u", 2338 virt_dev->real_port); 2339 } 2340 2341 /* Add in how much bandwidth will be used for interval zero, or the 2342 * rounded max ESIT payload + number of packets * largest overhead. 2343 */ 2344 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2345 bw_table->interval_bw[0].num_packets * 2346 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2347 2348 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2349 unsigned int bw_added; 2350 unsigned int largest_mps; 2351 unsigned int interval_overhead; 2352 2353 /* 2354 * How many packets could we transmit in this interval? 2355 * If packets didn't fit in the previous interval, we will need 2356 * to transmit that many packets twice within this interval. 2357 */ 2358 packets_remaining = 2 * packets_remaining + 2359 bw_table->interval_bw[i].num_packets; 2360 2361 /* Find the largest max packet size of this or the previous 2362 * interval. 2363 */ 2364 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2365 largest_mps = 0; 2366 else { 2367 struct xhci_virt_ep *virt_ep; 2368 struct list_head *ep_entry; 2369 2370 ep_entry = bw_table->interval_bw[i].endpoints.next; 2371 virt_ep = list_entry(ep_entry, 2372 struct xhci_virt_ep, bw_endpoint_list); 2373 /* Convert to blocks, rounding up */ 2374 largest_mps = DIV_ROUND_UP( 2375 virt_ep->bw_info.max_packet_size, 2376 block_size); 2377 } 2378 if (largest_mps > packet_size) 2379 packet_size = largest_mps; 2380 2381 /* Use the larger overhead of this or the previous interval. */ 2382 interval_overhead = xhci_get_largest_overhead( 2383 &bw_table->interval_bw[i]); 2384 if (interval_overhead > overhead) 2385 overhead = interval_overhead; 2386 2387 /* How many packets can we evenly distribute across 2388 * (1 << (i + 1)) possible scheduling opportunities? 2389 */ 2390 packets_transmitted = packets_remaining >> (i + 1); 2391 2392 /* Add in the bandwidth used for those scheduled packets */ 2393 bw_added = packets_transmitted * (overhead + packet_size); 2394 2395 /* How many packets do we have remaining to transmit? */ 2396 packets_remaining = packets_remaining % (1 << (i + 1)); 2397 2398 /* What largest max packet size should those packets have? */ 2399 /* If we've transmitted all packets, don't carry over the 2400 * largest packet size. 2401 */ 2402 if (packets_remaining == 0) { 2403 packet_size = 0; 2404 overhead = 0; 2405 } else if (packets_transmitted > 0) { 2406 /* Otherwise if we do have remaining packets, and we've 2407 * scheduled some packets in this interval, take the 2408 * largest max packet size from endpoints with this 2409 * interval. 2410 */ 2411 packet_size = largest_mps; 2412 overhead = interval_overhead; 2413 } 2414 /* Otherwise carry over packet_size and overhead from the last 2415 * time we had a remainder. 2416 */ 2417 bw_used += bw_added; 2418 if (bw_used > max_bandwidth) { 2419 xhci_warn(xhci, "Not enough bandwidth. " 2420 "Proposed: %u, Max: %u\n", 2421 bw_used, max_bandwidth); 2422 return -ENOMEM; 2423 } 2424 } 2425 /* 2426 * Ok, we know we have some packets left over after even-handedly 2427 * scheduling interval 15. We don't know which microframes they will 2428 * fit into, so we over-schedule and say they will be scheduled every 2429 * microframe. 2430 */ 2431 if (packets_remaining > 0) 2432 bw_used += overhead + packet_size; 2433 2434 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2435 unsigned int port_index = virt_dev->real_port - 1; 2436 2437 /* OK, we're manipulating a HS device attached to a 2438 * root port bandwidth domain. Include the number of active TTs 2439 * in the bandwidth used. 2440 */ 2441 bw_used += TT_HS_OVERHEAD * 2442 xhci->rh_bw[port_index].num_active_tts; 2443 } 2444 2445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2446 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2447 "Available: %u " "percent", 2448 bw_used, max_bandwidth, bw_reserved, 2449 (max_bandwidth - bw_used - bw_reserved) * 100 / 2450 max_bandwidth); 2451 2452 bw_used += bw_reserved; 2453 if (bw_used > max_bandwidth) { 2454 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2455 bw_used, max_bandwidth); 2456 return -ENOMEM; 2457 } 2458 2459 bw_table->bw_used = bw_used; 2460 return 0; 2461 } 2462 2463 static bool xhci_is_async_ep(unsigned int ep_type) 2464 { 2465 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2466 ep_type != ISOC_IN_EP && 2467 ep_type != INT_IN_EP); 2468 } 2469 2470 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2471 { 2472 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2473 } 2474 2475 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2476 { 2477 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2478 2479 if (ep_bw->ep_interval == 0) 2480 return SS_OVERHEAD_BURST + 2481 (ep_bw->mult * ep_bw->num_packets * 2482 (SS_OVERHEAD + mps)); 2483 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2484 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2485 1 << ep_bw->ep_interval); 2486 2487 } 2488 2489 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2490 struct xhci_bw_info *ep_bw, 2491 struct xhci_interval_bw_table *bw_table, 2492 struct usb_device *udev, 2493 struct xhci_virt_ep *virt_ep, 2494 struct xhci_tt_bw_info *tt_info) 2495 { 2496 struct xhci_interval_bw *interval_bw; 2497 int normalized_interval; 2498 2499 if (xhci_is_async_ep(ep_bw->type)) 2500 return; 2501 2502 if (udev->speed >= USB_SPEED_SUPER) { 2503 if (xhci_is_sync_in_ep(ep_bw->type)) 2504 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2505 xhci_get_ss_bw_consumed(ep_bw); 2506 else 2507 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2508 xhci_get_ss_bw_consumed(ep_bw); 2509 return; 2510 } 2511 2512 /* SuperSpeed endpoints never get added to intervals in the table, so 2513 * this check is only valid for HS/FS/LS devices. 2514 */ 2515 if (list_empty(&virt_ep->bw_endpoint_list)) 2516 return; 2517 /* For LS/FS devices, we need to translate the interval expressed in 2518 * microframes to frames. 2519 */ 2520 if (udev->speed == USB_SPEED_HIGH) 2521 normalized_interval = ep_bw->ep_interval; 2522 else 2523 normalized_interval = ep_bw->ep_interval - 3; 2524 2525 if (normalized_interval == 0) 2526 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2527 interval_bw = &bw_table->interval_bw[normalized_interval]; 2528 interval_bw->num_packets -= ep_bw->num_packets; 2529 switch (udev->speed) { 2530 case USB_SPEED_LOW: 2531 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2532 break; 2533 case USB_SPEED_FULL: 2534 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2535 break; 2536 case USB_SPEED_HIGH: 2537 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2538 break; 2539 case USB_SPEED_SUPER: 2540 case USB_SPEED_SUPER_PLUS: 2541 case USB_SPEED_UNKNOWN: 2542 case USB_SPEED_WIRELESS: 2543 /* Should never happen because only LS/FS/HS endpoints will get 2544 * added to the endpoint list. 2545 */ 2546 return; 2547 } 2548 if (tt_info) 2549 tt_info->active_eps -= 1; 2550 list_del_init(&virt_ep->bw_endpoint_list); 2551 } 2552 2553 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2554 struct xhci_bw_info *ep_bw, 2555 struct xhci_interval_bw_table *bw_table, 2556 struct usb_device *udev, 2557 struct xhci_virt_ep *virt_ep, 2558 struct xhci_tt_bw_info *tt_info) 2559 { 2560 struct xhci_interval_bw *interval_bw; 2561 struct xhci_virt_ep *smaller_ep; 2562 int normalized_interval; 2563 2564 if (xhci_is_async_ep(ep_bw->type)) 2565 return; 2566 2567 if (udev->speed == USB_SPEED_SUPER) { 2568 if (xhci_is_sync_in_ep(ep_bw->type)) 2569 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2570 xhci_get_ss_bw_consumed(ep_bw); 2571 else 2572 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2573 xhci_get_ss_bw_consumed(ep_bw); 2574 return; 2575 } 2576 2577 /* For LS/FS devices, we need to translate the interval expressed in 2578 * microframes to frames. 2579 */ 2580 if (udev->speed == USB_SPEED_HIGH) 2581 normalized_interval = ep_bw->ep_interval; 2582 else 2583 normalized_interval = ep_bw->ep_interval - 3; 2584 2585 if (normalized_interval == 0) 2586 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2587 interval_bw = &bw_table->interval_bw[normalized_interval]; 2588 interval_bw->num_packets += ep_bw->num_packets; 2589 switch (udev->speed) { 2590 case USB_SPEED_LOW: 2591 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2592 break; 2593 case USB_SPEED_FULL: 2594 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2595 break; 2596 case USB_SPEED_HIGH: 2597 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2598 break; 2599 case USB_SPEED_SUPER: 2600 case USB_SPEED_SUPER_PLUS: 2601 case USB_SPEED_UNKNOWN: 2602 case USB_SPEED_WIRELESS: 2603 /* Should never happen because only LS/FS/HS endpoints will get 2604 * added to the endpoint list. 2605 */ 2606 return; 2607 } 2608 2609 if (tt_info) 2610 tt_info->active_eps += 1; 2611 /* Insert the endpoint into the list, largest max packet size first. */ 2612 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2613 bw_endpoint_list) { 2614 if (ep_bw->max_packet_size >= 2615 smaller_ep->bw_info.max_packet_size) { 2616 /* Add the new ep before the smaller endpoint */ 2617 list_add_tail(&virt_ep->bw_endpoint_list, 2618 &smaller_ep->bw_endpoint_list); 2619 return; 2620 } 2621 } 2622 /* Add the new endpoint at the end of the list. */ 2623 list_add_tail(&virt_ep->bw_endpoint_list, 2624 &interval_bw->endpoints); 2625 } 2626 2627 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2628 struct xhci_virt_device *virt_dev, 2629 int old_active_eps) 2630 { 2631 struct xhci_root_port_bw_info *rh_bw_info; 2632 if (!virt_dev->tt_info) 2633 return; 2634 2635 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2636 if (old_active_eps == 0 && 2637 virt_dev->tt_info->active_eps != 0) { 2638 rh_bw_info->num_active_tts += 1; 2639 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2640 } else if (old_active_eps != 0 && 2641 virt_dev->tt_info->active_eps == 0) { 2642 rh_bw_info->num_active_tts -= 1; 2643 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2644 } 2645 } 2646 2647 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2648 struct xhci_virt_device *virt_dev, 2649 struct xhci_container_ctx *in_ctx) 2650 { 2651 struct xhci_bw_info ep_bw_info[31]; 2652 int i; 2653 struct xhci_input_control_ctx *ctrl_ctx; 2654 int old_active_eps = 0; 2655 2656 if (virt_dev->tt_info) 2657 old_active_eps = virt_dev->tt_info->active_eps; 2658 2659 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2660 if (!ctrl_ctx) { 2661 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2662 __func__); 2663 return -ENOMEM; 2664 } 2665 2666 for (i = 0; i < 31; i++) { 2667 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2668 continue; 2669 2670 /* Make a copy of the BW info in case we need to revert this */ 2671 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2672 sizeof(ep_bw_info[i])); 2673 /* Drop the endpoint from the interval table if the endpoint is 2674 * being dropped or changed. 2675 */ 2676 if (EP_IS_DROPPED(ctrl_ctx, i)) 2677 xhci_drop_ep_from_interval_table(xhci, 2678 &virt_dev->eps[i].bw_info, 2679 virt_dev->bw_table, 2680 virt_dev->udev, 2681 &virt_dev->eps[i], 2682 virt_dev->tt_info); 2683 } 2684 /* Overwrite the information stored in the endpoints' bw_info */ 2685 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2686 for (i = 0; i < 31; i++) { 2687 /* Add any changed or added endpoints to the interval table */ 2688 if (EP_IS_ADDED(ctrl_ctx, i)) 2689 xhci_add_ep_to_interval_table(xhci, 2690 &virt_dev->eps[i].bw_info, 2691 virt_dev->bw_table, 2692 virt_dev->udev, 2693 &virt_dev->eps[i], 2694 virt_dev->tt_info); 2695 } 2696 2697 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2698 /* Ok, this fits in the bandwidth we have. 2699 * Update the number of active TTs. 2700 */ 2701 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2702 return 0; 2703 } 2704 2705 /* We don't have enough bandwidth for this, revert the stored info. */ 2706 for (i = 0; i < 31; i++) { 2707 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2708 continue; 2709 2710 /* Drop the new copies of any added or changed endpoints from 2711 * the interval table. 2712 */ 2713 if (EP_IS_ADDED(ctrl_ctx, i)) { 2714 xhci_drop_ep_from_interval_table(xhci, 2715 &virt_dev->eps[i].bw_info, 2716 virt_dev->bw_table, 2717 virt_dev->udev, 2718 &virt_dev->eps[i], 2719 virt_dev->tt_info); 2720 } 2721 /* Revert the endpoint back to its old information */ 2722 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2723 sizeof(ep_bw_info[i])); 2724 /* Add any changed or dropped endpoints back into the table */ 2725 if (EP_IS_DROPPED(ctrl_ctx, i)) 2726 xhci_add_ep_to_interval_table(xhci, 2727 &virt_dev->eps[i].bw_info, 2728 virt_dev->bw_table, 2729 virt_dev->udev, 2730 &virt_dev->eps[i], 2731 virt_dev->tt_info); 2732 } 2733 return -ENOMEM; 2734 } 2735 2736 2737 /* Issue a configure endpoint command or evaluate context command 2738 * and wait for it to finish. 2739 */ 2740 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2741 struct usb_device *udev, 2742 struct xhci_command *command, 2743 bool ctx_change, bool must_succeed) 2744 { 2745 int ret; 2746 unsigned long flags; 2747 struct xhci_input_control_ctx *ctrl_ctx; 2748 struct xhci_virt_device *virt_dev; 2749 struct xhci_slot_ctx *slot_ctx; 2750 2751 if (!command) 2752 return -EINVAL; 2753 2754 spin_lock_irqsave(&xhci->lock, flags); 2755 2756 if (xhci->xhc_state & XHCI_STATE_DYING) { 2757 spin_unlock_irqrestore(&xhci->lock, flags); 2758 return -ESHUTDOWN; 2759 } 2760 2761 virt_dev = xhci->devs[udev->slot_id]; 2762 2763 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2764 if (!ctrl_ctx) { 2765 spin_unlock_irqrestore(&xhci->lock, flags); 2766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2767 __func__); 2768 return -ENOMEM; 2769 } 2770 2771 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2772 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2773 spin_unlock_irqrestore(&xhci->lock, flags); 2774 xhci_warn(xhci, "Not enough host resources, " 2775 "active endpoint contexts = %u\n", 2776 xhci->num_active_eps); 2777 return -ENOMEM; 2778 } 2779 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2780 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2781 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2782 xhci_free_host_resources(xhci, ctrl_ctx); 2783 spin_unlock_irqrestore(&xhci->lock, flags); 2784 xhci_warn(xhci, "Not enough bandwidth\n"); 2785 return -ENOMEM; 2786 } 2787 2788 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2789 2790 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2791 trace_xhci_configure_endpoint(slot_ctx); 2792 2793 if (!ctx_change) 2794 ret = xhci_queue_configure_endpoint(xhci, command, 2795 command->in_ctx->dma, 2796 udev->slot_id, must_succeed); 2797 else 2798 ret = xhci_queue_evaluate_context(xhci, command, 2799 command->in_ctx->dma, 2800 udev->slot_id, must_succeed); 2801 if (ret < 0) { 2802 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2803 xhci_free_host_resources(xhci, ctrl_ctx); 2804 spin_unlock_irqrestore(&xhci->lock, flags); 2805 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2806 "FIXME allocate a new ring segment"); 2807 return -ENOMEM; 2808 } 2809 xhci_ring_cmd_db(xhci); 2810 spin_unlock_irqrestore(&xhci->lock, flags); 2811 2812 /* Wait for the configure endpoint command to complete */ 2813 wait_for_completion(command->completion); 2814 2815 if (!ctx_change) 2816 ret = xhci_configure_endpoint_result(xhci, udev, 2817 &command->status); 2818 else 2819 ret = xhci_evaluate_context_result(xhci, udev, 2820 &command->status); 2821 2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2823 spin_lock_irqsave(&xhci->lock, flags); 2824 /* If the command failed, remove the reserved resources. 2825 * Otherwise, clean up the estimate to include dropped eps. 2826 */ 2827 if (ret) 2828 xhci_free_host_resources(xhci, ctrl_ctx); 2829 else 2830 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2831 spin_unlock_irqrestore(&xhci->lock, flags); 2832 } 2833 return ret; 2834 } 2835 2836 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2837 struct xhci_virt_device *vdev, int i) 2838 { 2839 struct xhci_virt_ep *ep = &vdev->eps[i]; 2840 2841 if (ep->ep_state & EP_HAS_STREAMS) { 2842 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2843 xhci_get_endpoint_address(i)); 2844 xhci_free_stream_info(xhci, ep->stream_info); 2845 ep->stream_info = NULL; 2846 ep->ep_state &= ~EP_HAS_STREAMS; 2847 } 2848 } 2849 2850 /* Called after one or more calls to xhci_add_endpoint() or 2851 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2852 * to call xhci_reset_bandwidth(). 2853 * 2854 * Since we are in the middle of changing either configuration or 2855 * installing a new alt setting, the USB core won't allow URBs to be 2856 * enqueued for any endpoint on the old config or interface. Nothing 2857 * else should be touching the xhci->devs[slot_id] structure, so we 2858 * don't need to take the xhci->lock for manipulating that. 2859 */ 2860 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2861 { 2862 int i; 2863 int ret = 0; 2864 struct xhci_hcd *xhci; 2865 struct xhci_virt_device *virt_dev; 2866 struct xhci_input_control_ctx *ctrl_ctx; 2867 struct xhci_slot_ctx *slot_ctx; 2868 struct xhci_command *command; 2869 2870 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2871 if (ret <= 0) 2872 return ret; 2873 xhci = hcd_to_xhci(hcd); 2874 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2875 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2876 return -ENODEV; 2877 2878 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2879 virt_dev = xhci->devs[udev->slot_id]; 2880 2881 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2882 if (!command) 2883 return -ENOMEM; 2884 2885 command->in_ctx = virt_dev->in_ctx; 2886 2887 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2888 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2889 if (!ctrl_ctx) { 2890 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2891 __func__); 2892 ret = -ENOMEM; 2893 goto command_cleanup; 2894 } 2895 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2896 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2897 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2898 2899 /* Don't issue the command if there's no endpoints to update. */ 2900 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2901 ctrl_ctx->drop_flags == 0) { 2902 ret = 0; 2903 goto command_cleanup; 2904 } 2905 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2906 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2907 for (i = 31; i >= 1; i--) { 2908 __le32 le32 = cpu_to_le32(BIT(i)); 2909 2910 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2911 || (ctrl_ctx->add_flags & le32) || i == 1) { 2912 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2913 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2914 break; 2915 } 2916 } 2917 2918 ret = xhci_configure_endpoint(xhci, udev, command, 2919 false, false); 2920 if (ret) 2921 /* Callee should call reset_bandwidth() */ 2922 goto command_cleanup; 2923 2924 /* Free any rings that were dropped, but not changed. */ 2925 for (i = 1; i < 31; i++) { 2926 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2927 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2928 xhci_free_endpoint_ring(xhci, virt_dev, i); 2929 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2930 } 2931 } 2932 xhci_zero_in_ctx(xhci, virt_dev); 2933 /* 2934 * Install any rings for completely new endpoints or changed endpoints, 2935 * and free any old rings from changed endpoints. 2936 */ 2937 for (i = 1; i < 31; i++) { 2938 if (!virt_dev->eps[i].new_ring) 2939 continue; 2940 /* Only free the old ring if it exists. 2941 * It may not if this is the first add of an endpoint. 2942 */ 2943 if (virt_dev->eps[i].ring) { 2944 xhci_free_endpoint_ring(xhci, virt_dev, i); 2945 } 2946 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2947 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2948 virt_dev->eps[i].new_ring = NULL; 2949 } 2950 command_cleanup: 2951 kfree(command->completion); 2952 kfree(command); 2953 2954 return ret; 2955 } 2956 2957 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2958 { 2959 struct xhci_hcd *xhci; 2960 struct xhci_virt_device *virt_dev; 2961 int i, ret; 2962 2963 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2964 if (ret <= 0) 2965 return; 2966 xhci = hcd_to_xhci(hcd); 2967 2968 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2969 virt_dev = xhci->devs[udev->slot_id]; 2970 /* Free any rings allocated for added endpoints */ 2971 for (i = 0; i < 31; i++) { 2972 if (virt_dev->eps[i].new_ring) { 2973 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2974 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2975 virt_dev->eps[i].new_ring = NULL; 2976 } 2977 } 2978 xhci_zero_in_ctx(xhci, virt_dev); 2979 } 2980 2981 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2982 struct xhci_container_ctx *in_ctx, 2983 struct xhci_container_ctx *out_ctx, 2984 struct xhci_input_control_ctx *ctrl_ctx, 2985 u32 add_flags, u32 drop_flags) 2986 { 2987 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2988 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2989 xhci_slot_copy(xhci, in_ctx, out_ctx); 2990 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2991 } 2992 2993 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2994 unsigned int slot_id, unsigned int ep_index, 2995 struct xhci_dequeue_state *deq_state) 2996 { 2997 struct xhci_input_control_ctx *ctrl_ctx; 2998 struct xhci_container_ctx *in_ctx; 2999 struct xhci_ep_ctx *ep_ctx; 3000 u32 added_ctxs; 3001 dma_addr_t addr; 3002 3003 in_ctx = xhci->devs[slot_id]->in_ctx; 3004 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 3005 if (!ctrl_ctx) { 3006 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3007 __func__); 3008 return; 3009 } 3010 3011 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3012 xhci->devs[slot_id]->out_ctx, ep_index); 3013 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3014 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3015 deq_state->new_deq_ptr); 3016 if (addr == 0) { 3017 xhci_warn(xhci, "WARN Cannot submit config ep after " 3018 "reset ep command\n"); 3019 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3020 deq_state->new_deq_seg, 3021 deq_state->new_deq_ptr); 3022 return; 3023 } 3024 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3025 3026 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3027 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3028 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3029 added_ctxs, added_ctxs); 3030 } 3031 3032 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 3033 unsigned int stream_id, struct xhci_td *td) 3034 { 3035 struct xhci_dequeue_state deq_state; 3036 struct usb_device *udev = td->urb->dev; 3037 3038 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3039 "Cleaning up stalled endpoint ring"); 3040 /* We need to move the HW's dequeue pointer past this TD, 3041 * or it will attempt to resend it on the next doorbell ring. 3042 */ 3043 xhci_find_new_dequeue_state(xhci, udev->slot_id, 3044 ep_index, stream_id, td, &deq_state); 3045 3046 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3047 return; 3048 3049 /* HW with the reset endpoint quirk will use the saved dequeue state to 3050 * issue a configure endpoint command later. 3051 */ 3052 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3053 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3054 "Queueing new dequeue state"); 3055 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 3056 ep_index, &deq_state); 3057 } else { 3058 /* Better hope no one uses the input context between now and the 3059 * reset endpoint completion! 3060 * XXX: No idea how this hardware will react when stream rings 3061 * are enabled. 3062 */ 3063 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3064 "Setting up input context for " 3065 "configure endpoint command"); 3066 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 3067 ep_index, &deq_state); 3068 } 3069 } 3070 3071 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3072 struct usb_host_endpoint *host_ep) 3073 { 3074 struct xhci_hcd *xhci; 3075 struct xhci_virt_device *vdev; 3076 struct xhci_virt_ep *ep; 3077 struct usb_device *udev; 3078 unsigned long flags; 3079 unsigned int ep_index; 3080 3081 xhci = hcd_to_xhci(hcd); 3082 rescan: 3083 spin_lock_irqsave(&xhci->lock, flags); 3084 3085 udev = (struct usb_device *)host_ep->hcpriv; 3086 if (!udev || !udev->slot_id) 3087 goto done; 3088 3089 vdev = xhci->devs[udev->slot_id]; 3090 if (!vdev) 3091 goto done; 3092 3093 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3094 ep = &vdev->eps[ep_index]; 3095 if (!ep) 3096 goto done; 3097 3098 /* wait for hub_tt_work to finish clearing hub TT */ 3099 if (ep->ep_state & EP_CLEARING_TT) { 3100 spin_unlock_irqrestore(&xhci->lock, flags); 3101 schedule_timeout_uninterruptible(1); 3102 goto rescan; 3103 } 3104 3105 if (ep->ep_state) 3106 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3107 ep->ep_state); 3108 done: 3109 host_ep->hcpriv = NULL; 3110 spin_unlock_irqrestore(&xhci->lock, flags); 3111 } 3112 3113 /* 3114 * Called after usb core issues a clear halt control message. 3115 * The host side of the halt should already be cleared by a reset endpoint 3116 * command issued when the STALL event was received. 3117 * 3118 * The reset endpoint command may only be issued to endpoints in the halted 3119 * state. For software that wishes to reset the data toggle or sequence number 3120 * of an endpoint that isn't in the halted state this function will issue a 3121 * configure endpoint command with the Drop and Add bits set for the target 3122 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3123 */ 3124 3125 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3126 struct usb_host_endpoint *host_ep) 3127 { 3128 struct xhci_hcd *xhci; 3129 struct usb_device *udev; 3130 struct xhci_virt_device *vdev; 3131 struct xhci_virt_ep *ep; 3132 struct xhci_input_control_ctx *ctrl_ctx; 3133 struct xhci_command *stop_cmd, *cfg_cmd; 3134 unsigned int ep_index; 3135 unsigned long flags; 3136 u32 ep_flag; 3137 int err; 3138 3139 xhci = hcd_to_xhci(hcd); 3140 if (!host_ep->hcpriv) 3141 return; 3142 udev = (struct usb_device *) host_ep->hcpriv; 3143 vdev = xhci->devs[udev->slot_id]; 3144 3145 /* 3146 * vdev may be lost due to xHC restore error and re-initialization 3147 * during S3/S4 resume. A new vdev will be allocated later by 3148 * xhci_discover_or_reset_device() 3149 */ 3150 if (!udev->slot_id || !vdev) 3151 return; 3152 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3153 ep = &vdev->eps[ep_index]; 3154 if (!ep) 3155 return; 3156 3157 /* Bail out if toggle is already being cleared by a endpoint reset */ 3158 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3159 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3160 return; 3161 } 3162 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3163 if (usb_endpoint_xfer_control(&host_ep->desc) || 3164 usb_endpoint_xfer_isoc(&host_ep->desc)) 3165 return; 3166 3167 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3168 3169 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3170 return; 3171 3172 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3173 if (!stop_cmd) 3174 return; 3175 3176 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3177 if (!cfg_cmd) 3178 goto cleanup; 3179 3180 spin_lock_irqsave(&xhci->lock, flags); 3181 3182 /* block queuing new trbs and ringing ep doorbell */ 3183 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3184 3185 /* 3186 * Make sure endpoint ring is empty before resetting the toggle/seq. 3187 * Driver is required to synchronously cancel all transfer request. 3188 * Stop the endpoint to force xHC to update the output context 3189 */ 3190 3191 if (!list_empty(&ep->ring->td_list)) { 3192 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 xhci_free_command(xhci, cfg_cmd); 3195 goto cleanup; 3196 } 3197 3198 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3199 ep_index, 0); 3200 if (err < 0) { 3201 spin_unlock_irqrestore(&xhci->lock, flags); 3202 xhci_free_command(xhci, cfg_cmd); 3203 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3204 __func__, err); 3205 goto cleanup; 3206 } 3207 3208 xhci_ring_cmd_db(xhci); 3209 spin_unlock_irqrestore(&xhci->lock, flags); 3210 3211 wait_for_completion(stop_cmd->completion); 3212 3213 spin_lock_irqsave(&xhci->lock, flags); 3214 3215 /* config ep command clears toggle if add and drop ep flags are set */ 3216 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3217 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3218 ctrl_ctx, ep_flag, ep_flag); 3219 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3220 3221 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3222 udev->slot_id, false); 3223 if (err < 0) { 3224 spin_unlock_irqrestore(&xhci->lock, flags); 3225 xhci_free_command(xhci, cfg_cmd); 3226 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3227 __func__, err); 3228 goto cleanup; 3229 } 3230 3231 xhci_ring_cmd_db(xhci); 3232 spin_unlock_irqrestore(&xhci->lock, flags); 3233 3234 wait_for_completion(cfg_cmd->completion); 3235 3236 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3237 xhci_free_command(xhci, cfg_cmd); 3238 cleanup: 3239 xhci_free_command(xhci, stop_cmd); 3240 } 3241 3242 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3243 struct usb_device *udev, struct usb_host_endpoint *ep, 3244 unsigned int slot_id) 3245 { 3246 int ret; 3247 unsigned int ep_index; 3248 unsigned int ep_state; 3249 3250 if (!ep) 3251 return -EINVAL; 3252 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3253 if (ret <= 0) 3254 return -EINVAL; 3255 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3256 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3257 " descriptor for ep 0x%x does not support streams\n", 3258 ep->desc.bEndpointAddress); 3259 return -EINVAL; 3260 } 3261 3262 ep_index = xhci_get_endpoint_index(&ep->desc); 3263 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3264 if (ep_state & EP_HAS_STREAMS || 3265 ep_state & EP_GETTING_STREAMS) { 3266 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3267 "already has streams set up.\n", 3268 ep->desc.bEndpointAddress); 3269 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3270 "dynamic stream context array reallocation.\n"); 3271 return -EINVAL; 3272 } 3273 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3274 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3275 "endpoint 0x%x; URBs are pending.\n", 3276 ep->desc.bEndpointAddress); 3277 return -EINVAL; 3278 } 3279 return 0; 3280 } 3281 3282 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3283 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3284 { 3285 unsigned int max_streams; 3286 3287 /* The stream context array size must be a power of two */ 3288 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3289 /* 3290 * Find out how many primary stream array entries the host controller 3291 * supports. Later we may use secondary stream arrays (similar to 2nd 3292 * level page entries), but that's an optional feature for xHCI host 3293 * controllers. xHCs must support at least 4 stream IDs. 3294 */ 3295 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3296 if (*num_stream_ctxs > max_streams) { 3297 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3298 max_streams); 3299 *num_stream_ctxs = max_streams; 3300 *num_streams = max_streams; 3301 } 3302 } 3303 3304 /* Returns an error code if one of the endpoint already has streams. 3305 * This does not change any data structures, it only checks and gathers 3306 * information. 3307 */ 3308 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3309 struct usb_device *udev, 3310 struct usb_host_endpoint **eps, unsigned int num_eps, 3311 unsigned int *num_streams, u32 *changed_ep_bitmask) 3312 { 3313 unsigned int max_streams; 3314 unsigned int endpoint_flag; 3315 int i; 3316 int ret; 3317 3318 for (i = 0; i < num_eps; i++) { 3319 ret = xhci_check_streams_endpoint(xhci, udev, 3320 eps[i], udev->slot_id); 3321 if (ret < 0) 3322 return ret; 3323 3324 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3325 if (max_streams < (*num_streams - 1)) { 3326 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3327 eps[i]->desc.bEndpointAddress, 3328 max_streams); 3329 *num_streams = max_streams+1; 3330 } 3331 3332 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3333 if (*changed_ep_bitmask & endpoint_flag) 3334 return -EINVAL; 3335 *changed_ep_bitmask |= endpoint_flag; 3336 } 3337 return 0; 3338 } 3339 3340 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3341 struct usb_device *udev, 3342 struct usb_host_endpoint **eps, unsigned int num_eps) 3343 { 3344 u32 changed_ep_bitmask = 0; 3345 unsigned int slot_id; 3346 unsigned int ep_index; 3347 unsigned int ep_state; 3348 int i; 3349 3350 slot_id = udev->slot_id; 3351 if (!xhci->devs[slot_id]) 3352 return 0; 3353 3354 for (i = 0; i < num_eps; i++) { 3355 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3356 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3357 /* Are streams already being freed for the endpoint? */ 3358 if (ep_state & EP_GETTING_NO_STREAMS) { 3359 xhci_warn(xhci, "WARN Can't disable streams for " 3360 "endpoint 0x%x, " 3361 "streams are being disabled already\n", 3362 eps[i]->desc.bEndpointAddress); 3363 return 0; 3364 } 3365 /* Are there actually any streams to free? */ 3366 if (!(ep_state & EP_HAS_STREAMS) && 3367 !(ep_state & EP_GETTING_STREAMS)) { 3368 xhci_warn(xhci, "WARN Can't disable streams for " 3369 "endpoint 0x%x, " 3370 "streams are already disabled!\n", 3371 eps[i]->desc.bEndpointAddress); 3372 xhci_warn(xhci, "WARN xhci_free_streams() called " 3373 "with non-streams endpoint\n"); 3374 return 0; 3375 } 3376 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3377 } 3378 return changed_ep_bitmask; 3379 } 3380 3381 /* 3382 * The USB device drivers use this function (through the HCD interface in USB 3383 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3384 * coordinate mass storage command queueing across multiple endpoints (basically 3385 * a stream ID == a task ID). 3386 * 3387 * Setting up streams involves allocating the same size stream context array 3388 * for each endpoint and issuing a configure endpoint command for all endpoints. 3389 * 3390 * Don't allow the call to succeed if one endpoint only supports one stream 3391 * (which means it doesn't support streams at all). 3392 * 3393 * Drivers may get less stream IDs than they asked for, if the host controller 3394 * hardware or endpoints claim they can't support the number of requested 3395 * stream IDs. 3396 */ 3397 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3398 struct usb_host_endpoint **eps, unsigned int num_eps, 3399 unsigned int num_streams, gfp_t mem_flags) 3400 { 3401 int i, ret; 3402 struct xhci_hcd *xhci; 3403 struct xhci_virt_device *vdev; 3404 struct xhci_command *config_cmd; 3405 struct xhci_input_control_ctx *ctrl_ctx; 3406 unsigned int ep_index; 3407 unsigned int num_stream_ctxs; 3408 unsigned int max_packet; 3409 unsigned long flags; 3410 u32 changed_ep_bitmask = 0; 3411 3412 if (!eps) 3413 return -EINVAL; 3414 3415 /* Add one to the number of streams requested to account for 3416 * stream 0 that is reserved for xHCI usage. 3417 */ 3418 num_streams += 1; 3419 xhci = hcd_to_xhci(hcd); 3420 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3421 num_streams); 3422 3423 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3424 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3425 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3426 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3427 return -ENOSYS; 3428 } 3429 3430 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3431 if (!config_cmd) 3432 return -ENOMEM; 3433 3434 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3435 if (!ctrl_ctx) { 3436 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3437 __func__); 3438 xhci_free_command(xhci, config_cmd); 3439 return -ENOMEM; 3440 } 3441 3442 /* Check to make sure all endpoints are not already configured for 3443 * streams. While we're at it, find the maximum number of streams that 3444 * all the endpoints will support and check for duplicate endpoints. 3445 */ 3446 spin_lock_irqsave(&xhci->lock, flags); 3447 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3448 num_eps, &num_streams, &changed_ep_bitmask); 3449 if (ret < 0) { 3450 xhci_free_command(xhci, config_cmd); 3451 spin_unlock_irqrestore(&xhci->lock, flags); 3452 return ret; 3453 } 3454 if (num_streams <= 1) { 3455 xhci_warn(xhci, "WARN: endpoints can't handle " 3456 "more than one stream.\n"); 3457 xhci_free_command(xhci, config_cmd); 3458 spin_unlock_irqrestore(&xhci->lock, flags); 3459 return -EINVAL; 3460 } 3461 vdev = xhci->devs[udev->slot_id]; 3462 /* Mark each endpoint as being in transition, so 3463 * xhci_urb_enqueue() will reject all URBs. 3464 */ 3465 for (i = 0; i < num_eps; i++) { 3466 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3467 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3468 } 3469 spin_unlock_irqrestore(&xhci->lock, flags); 3470 3471 /* Setup internal data structures and allocate HW data structures for 3472 * streams (but don't install the HW structures in the input context 3473 * until we're sure all memory allocation succeeded). 3474 */ 3475 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3476 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3477 num_stream_ctxs, num_streams); 3478 3479 for (i = 0; i < num_eps; i++) { 3480 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3481 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3482 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3483 num_stream_ctxs, 3484 num_streams, 3485 max_packet, mem_flags); 3486 if (!vdev->eps[ep_index].stream_info) 3487 goto cleanup; 3488 /* Set maxPstreams in endpoint context and update deq ptr to 3489 * point to stream context array. FIXME 3490 */ 3491 } 3492 3493 /* Set up the input context for a configure endpoint command. */ 3494 for (i = 0; i < num_eps; i++) { 3495 struct xhci_ep_ctx *ep_ctx; 3496 3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3498 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3499 3500 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3501 vdev->out_ctx, ep_index); 3502 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3503 vdev->eps[ep_index].stream_info); 3504 } 3505 /* Tell the HW to drop its old copy of the endpoint context info 3506 * and add the updated copy from the input context. 3507 */ 3508 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3509 vdev->out_ctx, ctrl_ctx, 3510 changed_ep_bitmask, changed_ep_bitmask); 3511 3512 /* Issue and wait for the configure endpoint command */ 3513 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3514 false, false); 3515 3516 /* xHC rejected the configure endpoint command for some reason, so we 3517 * leave the old ring intact and free our internal streams data 3518 * structure. 3519 */ 3520 if (ret < 0) 3521 goto cleanup; 3522 3523 spin_lock_irqsave(&xhci->lock, flags); 3524 for (i = 0; i < num_eps; i++) { 3525 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3526 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3527 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3528 udev->slot_id, ep_index); 3529 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3530 } 3531 xhci_free_command(xhci, config_cmd); 3532 spin_unlock_irqrestore(&xhci->lock, flags); 3533 3534 /* Subtract 1 for stream 0, which drivers can't use */ 3535 return num_streams - 1; 3536 3537 cleanup: 3538 /* If it didn't work, free the streams! */ 3539 for (i = 0; i < num_eps; i++) { 3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3541 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3542 vdev->eps[ep_index].stream_info = NULL; 3543 /* FIXME Unset maxPstreams in endpoint context and 3544 * update deq ptr to point to normal string ring. 3545 */ 3546 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3547 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3548 xhci_endpoint_zero(xhci, vdev, eps[i]); 3549 } 3550 xhci_free_command(xhci, config_cmd); 3551 return -ENOMEM; 3552 } 3553 3554 /* Transition the endpoint from using streams to being a "normal" endpoint 3555 * without streams. 3556 * 3557 * Modify the endpoint context state, submit a configure endpoint command, 3558 * and free all endpoint rings for streams if that completes successfully. 3559 */ 3560 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3561 struct usb_host_endpoint **eps, unsigned int num_eps, 3562 gfp_t mem_flags) 3563 { 3564 int i, ret; 3565 struct xhci_hcd *xhci; 3566 struct xhci_virt_device *vdev; 3567 struct xhci_command *command; 3568 struct xhci_input_control_ctx *ctrl_ctx; 3569 unsigned int ep_index; 3570 unsigned long flags; 3571 u32 changed_ep_bitmask; 3572 3573 xhci = hcd_to_xhci(hcd); 3574 vdev = xhci->devs[udev->slot_id]; 3575 3576 /* Set up a configure endpoint command to remove the streams rings */ 3577 spin_lock_irqsave(&xhci->lock, flags); 3578 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3579 udev, eps, num_eps); 3580 if (changed_ep_bitmask == 0) { 3581 spin_unlock_irqrestore(&xhci->lock, flags); 3582 return -EINVAL; 3583 } 3584 3585 /* Use the xhci_command structure from the first endpoint. We may have 3586 * allocated too many, but the driver may call xhci_free_streams() for 3587 * each endpoint it grouped into one call to xhci_alloc_streams(). 3588 */ 3589 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3590 command = vdev->eps[ep_index].stream_info->free_streams_command; 3591 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3592 if (!ctrl_ctx) { 3593 spin_unlock_irqrestore(&xhci->lock, flags); 3594 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3595 __func__); 3596 return -EINVAL; 3597 } 3598 3599 for (i = 0; i < num_eps; i++) { 3600 struct xhci_ep_ctx *ep_ctx; 3601 3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3603 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3604 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3605 EP_GETTING_NO_STREAMS; 3606 3607 xhci_endpoint_copy(xhci, command->in_ctx, 3608 vdev->out_ctx, ep_index); 3609 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3610 &vdev->eps[ep_index]); 3611 } 3612 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3613 vdev->out_ctx, ctrl_ctx, 3614 changed_ep_bitmask, changed_ep_bitmask); 3615 spin_unlock_irqrestore(&xhci->lock, flags); 3616 3617 /* Issue and wait for the configure endpoint command, 3618 * which must succeed. 3619 */ 3620 ret = xhci_configure_endpoint(xhci, udev, command, 3621 false, true); 3622 3623 /* xHC rejected the configure endpoint command for some reason, so we 3624 * leave the streams rings intact. 3625 */ 3626 if (ret < 0) 3627 return ret; 3628 3629 spin_lock_irqsave(&xhci->lock, flags); 3630 for (i = 0; i < num_eps; i++) { 3631 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3632 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3633 vdev->eps[ep_index].stream_info = NULL; 3634 /* FIXME Unset maxPstreams in endpoint context and 3635 * update deq ptr to point to normal string ring. 3636 */ 3637 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3638 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3639 } 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 3642 return 0; 3643 } 3644 3645 /* 3646 * Deletes endpoint resources for endpoints that were active before a Reset 3647 * Device command, or a Disable Slot command. The Reset Device command leaves 3648 * the control endpoint intact, whereas the Disable Slot command deletes it. 3649 * 3650 * Must be called with xhci->lock held. 3651 */ 3652 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3653 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3654 { 3655 int i; 3656 unsigned int num_dropped_eps = 0; 3657 unsigned int drop_flags = 0; 3658 3659 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3660 if (virt_dev->eps[i].ring) { 3661 drop_flags |= 1 << i; 3662 num_dropped_eps++; 3663 } 3664 } 3665 xhci->num_active_eps -= num_dropped_eps; 3666 if (num_dropped_eps) 3667 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3668 "Dropped %u ep ctxs, flags = 0x%x, " 3669 "%u now active.", 3670 num_dropped_eps, drop_flags, 3671 xhci->num_active_eps); 3672 } 3673 3674 /* 3675 * This submits a Reset Device Command, which will set the device state to 0, 3676 * set the device address to 0, and disable all the endpoints except the default 3677 * control endpoint. The USB core should come back and call 3678 * xhci_address_device(), and then re-set up the configuration. If this is 3679 * called because of a usb_reset_and_verify_device(), then the old alternate 3680 * settings will be re-installed through the normal bandwidth allocation 3681 * functions. 3682 * 3683 * Wait for the Reset Device command to finish. Remove all structures 3684 * associated with the endpoints that were disabled. Clear the input device 3685 * structure? Reset the control endpoint 0 max packet size? 3686 * 3687 * If the virt_dev to be reset does not exist or does not match the udev, 3688 * it means the device is lost, possibly due to the xHC restore error and 3689 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3690 * re-allocate the device. 3691 */ 3692 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3693 struct usb_device *udev) 3694 { 3695 int ret, i; 3696 unsigned long flags; 3697 struct xhci_hcd *xhci; 3698 unsigned int slot_id; 3699 struct xhci_virt_device *virt_dev; 3700 struct xhci_command *reset_device_cmd; 3701 struct xhci_slot_ctx *slot_ctx; 3702 int old_active_eps = 0; 3703 3704 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3705 if (ret <= 0) 3706 return ret; 3707 xhci = hcd_to_xhci(hcd); 3708 slot_id = udev->slot_id; 3709 virt_dev = xhci->devs[slot_id]; 3710 if (!virt_dev) { 3711 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3712 "not exist. Re-allocate the device\n", slot_id); 3713 ret = xhci_alloc_dev(hcd, udev); 3714 if (ret == 1) 3715 return 0; 3716 else 3717 return -EINVAL; 3718 } 3719 3720 if (virt_dev->tt_info) 3721 old_active_eps = virt_dev->tt_info->active_eps; 3722 3723 if (virt_dev->udev != udev) { 3724 /* If the virt_dev and the udev does not match, this virt_dev 3725 * may belong to another udev. 3726 * Re-allocate the device. 3727 */ 3728 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3729 "not match the udev. Re-allocate the device\n", 3730 slot_id); 3731 ret = xhci_alloc_dev(hcd, udev); 3732 if (ret == 1) 3733 return 0; 3734 else 3735 return -EINVAL; 3736 } 3737 3738 /* If device is not setup, there is no point in resetting it */ 3739 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3740 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3741 SLOT_STATE_DISABLED) 3742 return 0; 3743 3744 trace_xhci_discover_or_reset_device(slot_ctx); 3745 3746 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3747 /* Allocate the command structure that holds the struct completion. 3748 * Assume we're in process context, since the normal device reset 3749 * process has to wait for the device anyway. Storage devices are 3750 * reset as part of error handling, so use GFP_NOIO instead of 3751 * GFP_KERNEL. 3752 */ 3753 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3754 if (!reset_device_cmd) { 3755 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3756 return -ENOMEM; 3757 } 3758 3759 /* Attempt to submit the Reset Device command to the command ring */ 3760 spin_lock_irqsave(&xhci->lock, flags); 3761 3762 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3763 if (ret) { 3764 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3765 spin_unlock_irqrestore(&xhci->lock, flags); 3766 goto command_cleanup; 3767 } 3768 xhci_ring_cmd_db(xhci); 3769 spin_unlock_irqrestore(&xhci->lock, flags); 3770 3771 /* Wait for the Reset Device command to finish */ 3772 wait_for_completion(reset_device_cmd->completion); 3773 3774 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3775 * unless we tried to reset a slot ID that wasn't enabled, 3776 * or the device wasn't in the addressed or configured state. 3777 */ 3778 ret = reset_device_cmd->status; 3779 switch (ret) { 3780 case COMP_COMMAND_ABORTED: 3781 case COMP_COMMAND_RING_STOPPED: 3782 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3783 ret = -ETIME; 3784 goto command_cleanup; 3785 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3786 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3787 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3788 slot_id, 3789 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3790 xhci_dbg(xhci, "Not freeing device rings.\n"); 3791 /* Don't treat this as an error. May change my mind later. */ 3792 ret = 0; 3793 goto command_cleanup; 3794 case COMP_SUCCESS: 3795 xhci_dbg(xhci, "Successful reset device command.\n"); 3796 break; 3797 default: 3798 if (xhci_is_vendor_info_code(xhci, ret)) 3799 break; 3800 xhci_warn(xhci, "Unknown completion code %u for " 3801 "reset device command.\n", ret); 3802 ret = -EINVAL; 3803 goto command_cleanup; 3804 } 3805 3806 /* Free up host controller endpoint resources */ 3807 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3808 spin_lock_irqsave(&xhci->lock, flags); 3809 /* Don't delete the default control endpoint resources */ 3810 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3811 spin_unlock_irqrestore(&xhci->lock, flags); 3812 } 3813 3814 /* Everything but endpoint 0 is disabled, so free the rings. */ 3815 for (i = 1; i < 31; i++) { 3816 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3817 3818 if (ep->ep_state & EP_HAS_STREAMS) { 3819 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3820 xhci_get_endpoint_address(i)); 3821 xhci_free_stream_info(xhci, ep->stream_info); 3822 ep->stream_info = NULL; 3823 ep->ep_state &= ~EP_HAS_STREAMS; 3824 } 3825 3826 if (ep->ring) { 3827 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3828 xhci_free_endpoint_ring(xhci, virt_dev, i); 3829 } 3830 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3831 xhci_drop_ep_from_interval_table(xhci, 3832 &virt_dev->eps[i].bw_info, 3833 virt_dev->bw_table, 3834 udev, 3835 &virt_dev->eps[i], 3836 virt_dev->tt_info); 3837 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3838 } 3839 /* If necessary, update the number of active TTs on this root port */ 3840 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3841 virt_dev->flags = 0; 3842 ret = 0; 3843 3844 command_cleanup: 3845 xhci_free_command(xhci, reset_device_cmd); 3846 return ret; 3847 } 3848 3849 /* 3850 * At this point, the struct usb_device is about to go away, the device has 3851 * disconnected, and all traffic has been stopped and the endpoints have been 3852 * disabled. Free any HC data structures associated with that device. 3853 */ 3854 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3855 { 3856 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3857 struct xhci_virt_device *virt_dev; 3858 struct xhci_slot_ctx *slot_ctx; 3859 int i, ret; 3860 3861 #ifndef CONFIG_USB_DEFAULT_PERSIST 3862 /* 3863 * We called pm_runtime_get_noresume when the device was attached. 3864 * Decrement the counter here to allow controller to runtime suspend 3865 * if no devices remain. 3866 */ 3867 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3868 pm_runtime_put_noidle(hcd->self.controller); 3869 #endif 3870 3871 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3872 /* If the host is halted due to driver unload, we still need to free the 3873 * device. 3874 */ 3875 if (ret <= 0 && ret != -ENODEV) 3876 return; 3877 3878 virt_dev = xhci->devs[udev->slot_id]; 3879 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3880 trace_xhci_free_dev(slot_ctx); 3881 3882 /* Stop any wayward timer functions (which may grab the lock) */ 3883 for (i = 0; i < 31; i++) { 3884 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3885 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3886 } 3887 virt_dev->udev = NULL; 3888 ret = xhci_disable_slot(xhci, udev->slot_id); 3889 if (ret) 3890 xhci_free_virt_device(xhci, udev->slot_id); 3891 } 3892 3893 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3894 { 3895 struct xhci_command *command; 3896 unsigned long flags; 3897 u32 state; 3898 int ret = 0; 3899 3900 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3901 if (!command) 3902 return -ENOMEM; 3903 3904 xhci_debugfs_remove_slot(xhci, slot_id); 3905 3906 spin_lock_irqsave(&xhci->lock, flags); 3907 /* Don't disable the slot if the host controller is dead. */ 3908 state = readl(&xhci->op_regs->status); 3909 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3910 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3911 spin_unlock_irqrestore(&xhci->lock, flags); 3912 kfree(command); 3913 return -ENODEV; 3914 } 3915 3916 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3917 slot_id); 3918 if (ret) { 3919 spin_unlock_irqrestore(&xhci->lock, flags); 3920 kfree(command); 3921 return ret; 3922 } 3923 xhci_ring_cmd_db(xhci); 3924 spin_unlock_irqrestore(&xhci->lock, flags); 3925 return ret; 3926 } 3927 3928 /* 3929 * Checks if we have enough host controller resources for the default control 3930 * endpoint. 3931 * 3932 * Must be called with xhci->lock held. 3933 */ 3934 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3935 { 3936 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3938 "Not enough ep ctxs: " 3939 "%u active, need to add 1, limit is %u.", 3940 xhci->num_active_eps, xhci->limit_active_eps); 3941 return -ENOMEM; 3942 } 3943 xhci->num_active_eps += 1; 3944 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3945 "Adding 1 ep ctx, %u now active.", 3946 xhci->num_active_eps); 3947 return 0; 3948 } 3949 3950 3951 /* 3952 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3953 * timed out, or allocating memory failed. Returns 1 on success. 3954 */ 3955 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3956 { 3957 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3958 struct xhci_virt_device *vdev; 3959 struct xhci_slot_ctx *slot_ctx; 3960 unsigned long flags; 3961 int ret, slot_id; 3962 struct xhci_command *command; 3963 3964 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3965 if (!command) 3966 return 0; 3967 3968 spin_lock_irqsave(&xhci->lock, flags); 3969 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3970 if (ret) { 3971 spin_unlock_irqrestore(&xhci->lock, flags); 3972 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3973 xhci_free_command(xhci, command); 3974 return 0; 3975 } 3976 xhci_ring_cmd_db(xhci); 3977 spin_unlock_irqrestore(&xhci->lock, flags); 3978 3979 wait_for_completion(command->completion); 3980 slot_id = command->slot_id; 3981 3982 if (!slot_id || command->status != COMP_SUCCESS) { 3983 xhci_err(xhci, "Error while assigning device slot ID\n"); 3984 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3985 HCS_MAX_SLOTS( 3986 readl(&xhci->cap_regs->hcs_params1))); 3987 xhci_free_command(xhci, command); 3988 return 0; 3989 } 3990 3991 xhci_free_command(xhci, command); 3992 3993 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3994 spin_lock_irqsave(&xhci->lock, flags); 3995 ret = xhci_reserve_host_control_ep_resources(xhci); 3996 if (ret) { 3997 spin_unlock_irqrestore(&xhci->lock, flags); 3998 xhci_warn(xhci, "Not enough host resources, " 3999 "active endpoint contexts = %u\n", 4000 xhci->num_active_eps); 4001 goto disable_slot; 4002 } 4003 spin_unlock_irqrestore(&xhci->lock, flags); 4004 } 4005 /* Use GFP_NOIO, since this function can be called from 4006 * xhci_discover_or_reset_device(), which may be called as part of 4007 * mass storage driver error handling. 4008 */ 4009 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4010 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4011 goto disable_slot; 4012 } 4013 vdev = xhci->devs[slot_id]; 4014 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4015 trace_xhci_alloc_dev(slot_ctx); 4016 4017 udev->slot_id = slot_id; 4018 4019 xhci_debugfs_create_slot(xhci, slot_id); 4020 4021 #ifndef CONFIG_USB_DEFAULT_PERSIST 4022 /* 4023 * If resetting upon resume, we can't put the controller into runtime 4024 * suspend if there is a device attached. 4025 */ 4026 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4027 pm_runtime_get_noresume(hcd->self.controller); 4028 #endif 4029 4030 /* Is this a LS or FS device under a HS hub? */ 4031 /* Hub or peripherial? */ 4032 return 1; 4033 4034 disable_slot: 4035 ret = xhci_disable_slot(xhci, udev->slot_id); 4036 if (ret) 4037 xhci_free_virt_device(xhci, udev->slot_id); 4038 4039 return 0; 4040 } 4041 4042 /* 4043 * Issue an Address Device command and optionally send a corresponding 4044 * SetAddress request to the device. 4045 */ 4046 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4047 enum xhci_setup_dev setup) 4048 { 4049 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4050 unsigned long flags; 4051 struct xhci_virt_device *virt_dev; 4052 int ret = 0; 4053 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4054 struct xhci_slot_ctx *slot_ctx; 4055 struct xhci_input_control_ctx *ctrl_ctx; 4056 u64 temp_64; 4057 struct xhci_command *command = NULL; 4058 4059 mutex_lock(&xhci->mutex); 4060 4061 if (xhci->xhc_state) { /* dying, removing or halted */ 4062 ret = -ESHUTDOWN; 4063 goto out; 4064 } 4065 4066 if (!udev->slot_id) { 4067 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4068 "Bad Slot ID %d", udev->slot_id); 4069 ret = -EINVAL; 4070 goto out; 4071 } 4072 4073 virt_dev = xhci->devs[udev->slot_id]; 4074 4075 if (WARN_ON(!virt_dev)) { 4076 /* 4077 * In plug/unplug torture test with an NEC controller, 4078 * a zero-dereference was observed once due to virt_dev = 0. 4079 * Print useful debug rather than crash if it is observed again! 4080 */ 4081 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4082 udev->slot_id); 4083 ret = -EINVAL; 4084 goto out; 4085 } 4086 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4087 trace_xhci_setup_device_slot(slot_ctx); 4088 4089 if (setup == SETUP_CONTEXT_ONLY) { 4090 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4091 SLOT_STATE_DEFAULT) { 4092 xhci_dbg(xhci, "Slot already in default state\n"); 4093 goto out; 4094 } 4095 } 4096 4097 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4098 if (!command) { 4099 ret = -ENOMEM; 4100 goto out; 4101 } 4102 4103 command->in_ctx = virt_dev->in_ctx; 4104 4105 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4106 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4107 if (!ctrl_ctx) { 4108 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4109 __func__); 4110 ret = -EINVAL; 4111 goto out; 4112 } 4113 /* 4114 * If this is the first Set Address since device plug-in or 4115 * virt_device realloaction after a resume with an xHCI power loss, 4116 * then set up the slot context. 4117 */ 4118 if (!slot_ctx->dev_info) 4119 xhci_setup_addressable_virt_dev(xhci, udev); 4120 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4121 else 4122 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4123 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4124 ctrl_ctx->drop_flags = 0; 4125 4126 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4127 le32_to_cpu(slot_ctx->dev_info) >> 27); 4128 4129 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4130 spin_lock_irqsave(&xhci->lock, flags); 4131 trace_xhci_setup_device(virt_dev); 4132 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4133 udev->slot_id, setup); 4134 if (ret) { 4135 spin_unlock_irqrestore(&xhci->lock, flags); 4136 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4137 "FIXME: allocate a command ring segment"); 4138 goto out; 4139 } 4140 xhci_ring_cmd_db(xhci); 4141 spin_unlock_irqrestore(&xhci->lock, flags); 4142 4143 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4144 wait_for_completion(command->completion); 4145 4146 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4147 * the SetAddress() "recovery interval" required by USB and aborting the 4148 * command on a timeout. 4149 */ 4150 switch (command->status) { 4151 case COMP_COMMAND_ABORTED: 4152 case COMP_COMMAND_RING_STOPPED: 4153 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4154 ret = -ETIME; 4155 break; 4156 case COMP_CONTEXT_STATE_ERROR: 4157 case COMP_SLOT_NOT_ENABLED_ERROR: 4158 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4159 act, udev->slot_id); 4160 ret = -EINVAL; 4161 break; 4162 case COMP_USB_TRANSACTION_ERROR: 4163 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4164 4165 mutex_unlock(&xhci->mutex); 4166 ret = xhci_disable_slot(xhci, udev->slot_id); 4167 if (!ret) 4168 xhci_alloc_dev(hcd, udev); 4169 kfree(command->completion); 4170 kfree(command); 4171 return -EPROTO; 4172 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4173 dev_warn(&udev->dev, 4174 "ERROR: Incompatible device for setup %s command\n", act); 4175 ret = -ENODEV; 4176 break; 4177 case COMP_SUCCESS: 4178 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4179 "Successful setup %s command", act); 4180 break; 4181 default: 4182 xhci_err(xhci, 4183 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4184 act, command->status); 4185 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4186 ret = -EINVAL; 4187 break; 4188 } 4189 if (ret) 4190 goto out; 4191 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4192 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4193 "Op regs DCBAA ptr = %#016llx", temp_64); 4194 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4195 "Slot ID %d dcbaa entry @%p = %#016llx", 4196 udev->slot_id, 4197 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4198 (unsigned long long) 4199 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4200 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4201 "Output Context DMA address = %#08llx", 4202 (unsigned long long)virt_dev->out_ctx->dma); 4203 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4204 le32_to_cpu(slot_ctx->dev_info) >> 27); 4205 /* 4206 * USB core uses address 1 for the roothubs, so we add one to the 4207 * address given back to us by the HC. 4208 */ 4209 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4210 le32_to_cpu(slot_ctx->dev_info) >> 27); 4211 /* Zero the input context control for later use */ 4212 ctrl_ctx->add_flags = 0; 4213 ctrl_ctx->drop_flags = 0; 4214 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4215 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4216 4217 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4218 "Internal device address = %d", 4219 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4220 out: 4221 mutex_unlock(&xhci->mutex); 4222 if (command) { 4223 kfree(command->completion); 4224 kfree(command); 4225 } 4226 return ret; 4227 } 4228 4229 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4230 { 4231 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4232 } 4233 4234 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4235 { 4236 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4237 } 4238 4239 /* 4240 * Transfer the port index into real index in the HW port status 4241 * registers. Caculate offset between the port's PORTSC register 4242 * and port status base. Divide the number of per port register 4243 * to get the real index. The raw port number bases 1. 4244 */ 4245 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4246 { 4247 struct xhci_hub *rhub; 4248 4249 rhub = xhci_get_rhub(hcd); 4250 return rhub->ports[port1 - 1]->hw_portnum + 1; 4251 } 4252 4253 /* 4254 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4255 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4256 */ 4257 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4258 struct usb_device *udev, u16 max_exit_latency) 4259 { 4260 struct xhci_virt_device *virt_dev; 4261 struct xhci_command *command; 4262 struct xhci_input_control_ctx *ctrl_ctx; 4263 struct xhci_slot_ctx *slot_ctx; 4264 unsigned long flags; 4265 int ret; 4266 4267 spin_lock_irqsave(&xhci->lock, flags); 4268 4269 virt_dev = xhci->devs[udev->slot_id]; 4270 4271 /* 4272 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4273 * xHC was re-initialized. Exit latency will be set later after 4274 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4275 */ 4276 4277 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4278 spin_unlock_irqrestore(&xhci->lock, flags); 4279 return 0; 4280 } 4281 4282 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4283 command = xhci->lpm_command; 4284 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4285 if (!ctrl_ctx) { 4286 spin_unlock_irqrestore(&xhci->lock, flags); 4287 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4288 __func__); 4289 return -ENOMEM; 4290 } 4291 4292 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4293 spin_unlock_irqrestore(&xhci->lock, flags); 4294 4295 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4296 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4297 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4298 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4299 slot_ctx->dev_state = 0; 4300 4301 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4302 "Set up evaluate context for LPM MEL change."); 4303 4304 /* Issue and wait for the evaluate context command. */ 4305 ret = xhci_configure_endpoint(xhci, udev, command, 4306 true, true); 4307 4308 if (!ret) { 4309 spin_lock_irqsave(&xhci->lock, flags); 4310 virt_dev->current_mel = max_exit_latency; 4311 spin_unlock_irqrestore(&xhci->lock, flags); 4312 } 4313 return ret; 4314 } 4315 4316 #ifdef CONFIG_PM 4317 4318 /* BESL to HIRD Encoding array for USB2 LPM */ 4319 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4320 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4321 4322 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4323 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4324 struct usb_device *udev) 4325 { 4326 int u2del, besl, besl_host; 4327 int besl_device = 0; 4328 u32 field; 4329 4330 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4331 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4332 4333 if (field & USB_BESL_SUPPORT) { 4334 for (besl_host = 0; besl_host < 16; besl_host++) { 4335 if (xhci_besl_encoding[besl_host] >= u2del) 4336 break; 4337 } 4338 /* Use baseline BESL value as default */ 4339 if (field & USB_BESL_BASELINE_VALID) 4340 besl_device = USB_GET_BESL_BASELINE(field); 4341 else if (field & USB_BESL_DEEP_VALID) 4342 besl_device = USB_GET_BESL_DEEP(field); 4343 } else { 4344 if (u2del <= 50) 4345 besl_host = 0; 4346 else 4347 besl_host = (u2del - 51) / 75 + 1; 4348 } 4349 4350 besl = besl_host + besl_device; 4351 if (besl > 15) 4352 besl = 15; 4353 4354 return besl; 4355 } 4356 4357 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4358 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4359 { 4360 u32 field; 4361 int l1; 4362 int besld = 0; 4363 int hirdm = 0; 4364 4365 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4366 4367 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4368 l1 = udev->l1_params.timeout / 256; 4369 4370 /* device has preferred BESLD */ 4371 if (field & USB_BESL_DEEP_VALID) { 4372 besld = USB_GET_BESL_DEEP(field); 4373 hirdm = 1; 4374 } 4375 4376 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4377 } 4378 4379 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4380 struct usb_device *udev, int enable) 4381 { 4382 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4383 struct xhci_port **ports; 4384 __le32 __iomem *pm_addr, *hlpm_addr; 4385 u32 pm_val, hlpm_val, field; 4386 unsigned int port_num; 4387 unsigned long flags; 4388 int hird, exit_latency; 4389 int ret; 4390 4391 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4392 !udev->lpm_capable) 4393 return -EPERM; 4394 4395 if (!udev->parent || udev->parent->parent || 4396 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4397 return -EPERM; 4398 4399 if (udev->usb2_hw_lpm_capable != 1) 4400 return -EPERM; 4401 4402 spin_lock_irqsave(&xhci->lock, flags); 4403 4404 ports = xhci->usb2_rhub.ports; 4405 port_num = udev->portnum - 1; 4406 pm_addr = ports[port_num]->addr + PORTPMSC; 4407 pm_val = readl(pm_addr); 4408 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4409 4410 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4411 enable ? "enable" : "disable", port_num + 1); 4412 4413 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4414 /* Host supports BESL timeout instead of HIRD */ 4415 if (udev->usb2_hw_lpm_besl_capable) { 4416 /* if device doesn't have a preferred BESL value use a 4417 * default one which works with mixed HIRD and BESL 4418 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4419 */ 4420 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4421 if ((field & USB_BESL_SUPPORT) && 4422 (field & USB_BESL_BASELINE_VALID)) 4423 hird = USB_GET_BESL_BASELINE(field); 4424 else 4425 hird = udev->l1_params.besl; 4426 4427 exit_latency = xhci_besl_encoding[hird]; 4428 spin_unlock_irqrestore(&xhci->lock, flags); 4429 4430 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4431 * input context for link powermanagement evaluate 4432 * context commands. It is protected by hcd->bandwidth 4433 * mutex and is shared by all devices. We need to set 4434 * the max ext latency in USB 2 BESL LPM as well, so 4435 * use the same mutex and xhci_change_max_exit_latency() 4436 */ 4437 mutex_lock(hcd->bandwidth_mutex); 4438 ret = xhci_change_max_exit_latency(xhci, udev, 4439 exit_latency); 4440 mutex_unlock(hcd->bandwidth_mutex); 4441 4442 if (ret < 0) 4443 return ret; 4444 spin_lock_irqsave(&xhci->lock, flags); 4445 4446 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4447 writel(hlpm_val, hlpm_addr); 4448 /* flush write */ 4449 readl(hlpm_addr); 4450 } else { 4451 hird = xhci_calculate_hird_besl(xhci, udev); 4452 } 4453 4454 pm_val &= ~PORT_HIRD_MASK; 4455 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4456 writel(pm_val, pm_addr); 4457 pm_val = readl(pm_addr); 4458 pm_val |= PORT_HLE; 4459 writel(pm_val, pm_addr); 4460 /* flush write */ 4461 readl(pm_addr); 4462 } else { 4463 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4464 writel(pm_val, pm_addr); 4465 /* flush write */ 4466 readl(pm_addr); 4467 if (udev->usb2_hw_lpm_besl_capable) { 4468 spin_unlock_irqrestore(&xhci->lock, flags); 4469 mutex_lock(hcd->bandwidth_mutex); 4470 xhci_change_max_exit_latency(xhci, udev, 0); 4471 mutex_unlock(hcd->bandwidth_mutex); 4472 return 0; 4473 } 4474 } 4475 4476 spin_unlock_irqrestore(&xhci->lock, flags); 4477 return 0; 4478 } 4479 4480 /* check if a usb2 port supports a given extened capability protocol 4481 * only USB2 ports extended protocol capability values are cached. 4482 * Return 1 if capability is supported 4483 */ 4484 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4485 unsigned capability) 4486 { 4487 u32 port_offset, port_count; 4488 int i; 4489 4490 for (i = 0; i < xhci->num_ext_caps; i++) { 4491 if (xhci->ext_caps[i] & capability) { 4492 /* port offsets starts at 1 */ 4493 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4494 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4495 if (port >= port_offset && 4496 port < port_offset + port_count) 4497 return 1; 4498 } 4499 } 4500 return 0; 4501 } 4502 4503 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4504 { 4505 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4506 int portnum = udev->portnum - 1; 4507 4508 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4509 return 0; 4510 4511 /* we only support lpm for non-hub device connected to root hub yet */ 4512 if (!udev->parent || udev->parent->parent || 4513 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4514 return 0; 4515 4516 if (xhci->hw_lpm_support == 1 && 4517 xhci_check_usb2_port_capability( 4518 xhci, portnum, XHCI_HLC)) { 4519 udev->usb2_hw_lpm_capable = 1; 4520 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4521 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4522 if (xhci_check_usb2_port_capability(xhci, portnum, 4523 XHCI_BLC)) 4524 udev->usb2_hw_lpm_besl_capable = 1; 4525 } 4526 4527 return 0; 4528 } 4529 4530 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4531 4532 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4533 static unsigned long long xhci_service_interval_to_ns( 4534 struct usb_endpoint_descriptor *desc) 4535 { 4536 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4537 } 4538 4539 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4540 enum usb3_link_state state) 4541 { 4542 unsigned long long sel; 4543 unsigned long long pel; 4544 unsigned int max_sel_pel; 4545 char *state_name; 4546 4547 switch (state) { 4548 case USB3_LPM_U1: 4549 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4550 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4551 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4552 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4553 state_name = "U1"; 4554 break; 4555 case USB3_LPM_U2: 4556 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4557 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4558 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4559 state_name = "U2"; 4560 break; 4561 default: 4562 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4563 __func__); 4564 return USB3_LPM_DISABLED; 4565 } 4566 4567 if (sel <= max_sel_pel && pel <= max_sel_pel) 4568 return USB3_LPM_DEVICE_INITIATED; 4569 4570 if (sel > max_sel_pel) 4571 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4572 "due to long SEL %llu ms\n", 4573 state_name, sel); 4574 else 4575 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4576 "due to long PEL %llu ms\n", 4577 state_name, pel); 4578 return USB3_LPM_DISABLED; 4579 } 4580 4581 /* The U1 timeout should be the maximum of the following values: 4582 * - For control endpoints, U1 system exit latency (SEL) * 3 4583 * - For bulk endpoints, U1 SEL * 5 4584 * - For interrupt endpoints: 4585 * - Notification EPs, U1 SEL * 3 4586 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4587 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4588 */ 4589 static unsigned long long xhci_calculate_intel_u1_timeout( 4590 struct usb_device *udev, 4591 struct usb_endpoint_descriptor *desc) 4592 { 4593 unsigned long long timeout_ns; 4594 int ep_type; 4595 int intr_type; 4596 4597 ep_type = usb_endpoint_type(desc); 4598 switch (ep_type) { 4599 case USB_ENDPOINT_XFER_CONTROL: 4600 timeout_ns = udev->u1_params.sel * 3; 4601 break; 4602 case USB_ENDPOINT_XFER_BULK: 4603 timeout_ns = udev->u1_params.sel * 5; 4604 break; 4605 case USB_ENDPOINT_XFER_INT: 4606 intr_type = usb_endpoint_interrupt_type(desc); 4607 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4608 timeout_ns = udev->u1_params.sel * 3; 4609 break; 4610 } 4611 /* Otherwise the calculation is the same as isoc eps */ 4612 /* fall through */ 4613 case USB_ENDPOINT_XFER_ISOC: 4614 timeout_ns = xhci_service_interval_to_ns(desc); 4615 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4616 if (timeout_ns < udev->u1_params.sel * 2) 4617 timeout_ns = udev->u1_params.sel * 2; 4618 break; 4619 default: 4620 return 0; 4621 } 4622 4623 return timeout_ns; 4624 } 4625 4626 /* Returns the hub-encoded U1 timeout value. */ 4627 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4628 struct usb_device *udev, 4629 struct usb_endpoint_descriptor *desc) 4630 { 4631 unsigned long long timeout_ns; 4632 4633 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4634 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4635 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4636 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4637 return USB3_LPM_DISABLED; 4638 } 4639 } 4640 4641 if (xhci->quirks & XHCI_INTEL_HOST) 4642 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4643 else 4644 timeout_ns = udev->u1_params.sel; 4645 4646 /* The U1 timeout is encoded in 1us intervals. 4647 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4648 */ 4649 if (timeout_ns == USB3_LPM_DISABLED) 4650 timeout_ns = 1; 4651 else 4652 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4653 4654 /* If the necessary timeout value is bigger than what we can set in the 4655 * USB 3.0 hub, we have to disable hub-initiated U1. 4656 */ 4657 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4658 return timeout_ns; 4659 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4660 "due to long timeout %llu ms\n", timeout_ns); 4661 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4662 } 4663 4664 /* The U2 timeout should be the maximum of: 4665 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4666 * - largest bInterval of any active periodic endpoint (to avoid going 4667 * into lower power link states between intervals). 4668 * - the U2 Exit Latency of the device 4669 */ 4670 static unsigned long long xhci_calculate_intel_u2_timeout( 4671 struct usb_device *udev, 4672 struct usb_endpoint_descriptor *desc) 4673 { 4674 unsigned long long timeout_ns; 4675 unsigned long long u2_del_ns; 4676 4677 timeout_ns = 10 * 1000 * 1000; 4678 4679 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4680 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4681 timeout_ns = xhci_service_interval_to_ns(desc); 4682 4683 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4684 if (u2_del_ns > timeout_ns) 4685 timeout_ns = u2_del_ns; 4686 4687 return timeout_ns; 4688 } 4689 4690 /* Returns the hub-encoded U2 timeout value. */ 4691 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4692 struct usb_device *udev, 4693 struct usb_endpoint_descriptor *desc) 4694 { 4695 unsigned long long timeout_ns; 4696 4697 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4698 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4699 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4700 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4701 return USB3_LPM_DISABLED; 4702 } 4703 } 4704 4705 if (xhci->quirks & XHCI_INTEL_HOST) 4706 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4707 else 4708 timeout_ns = udev->u2_params.sel; 4709 4710 /* The U2 timeout is encoded in 256us intervals */ 4711 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4712 /* If the necessary timeout value is bigger than what we can set in the 4713 * USB 3.0 hub, we have to disable hub-initiated U2. 4714 */ 4715 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4716 return timeout_ns; 4717 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4718 "due to long timeout %llu ms\n", timeout_ns); 4719 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4720 } 4721 4722 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4723 struct usb_device *udev, 4724 struct usb_endpoint_descriptor *desc, 4725 enum usb3_link_state state, 4726 u16 *timeout) 4727 { 4728 if (state == USB3_LPM_U1) 4729 return xhci_calculate_u1_timeout(xhci, udev, desc); 4730 else if (state == USB3_LPM_U2) 4731 return xhci_calculate_u2_timeout(xhci, udev, desc); 4732 4733 return USB3_LPM_DISABLED; 4734 } 4735 4736 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4737 struct usb_device *udev, 4738 struct usb_endpoint_descriptor *desc, 4739 enum usb3_link_state state, 4740 u16 *timeout) 4741 { 4742 u16 alt_timeout; 4743 4744 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4745 desc, state, timeout); 4746 4747 /* If we found we can't enable hub-initiated LPM, and 4748 * the U1 or U2 exit latency was too high to allow 4749 * device-initiated LPM as well, then we will disable LPM 4750 * for this device, so stop searching any further. 4751 */ 4752 if (alt_timeout == USB3_LPM_DISABLED) { 4753 *timeout = alt_timeout; 4754 return -E2BIG; 4755 } 4756 if (alt_timeout > *timeout) 4757 *timeout = alt_timeout; 4758 return 0; 4759 } 4760 4761 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4762 struct usb_device *udev, 4763 struct usb_host_interface *alt, 4764 enum usb3_link_state state, 4765 u16 *timeout) 4766 { 4767 int j; 4768 4769 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4770 if (xhci_update_timeout_for_endpoint(xhci, udev, 4771 &alt->endpoint[j].desc, state, timeout)) 4772 return -E2BIG; 4773 continue; 4774 } 4775 return 0; 4776 } 4777 4778 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4779 enum usb3_link_state state) 4780 { 4781 struct usb_device *parent; 4782 unsigned int num_hubs; 4783 4784 if (state == USB3_LPM_U2) 4785 return 0; 4786 4787 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4788 for (parent = udev->parent, num_hubs = 0; parent->parent; 4789 parent = parent->parent) 4790 num_hubs++; 4791 4792 if (num_hubs < 2) 4793 return 0; 4794 4795 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4796 " below second-tier hub.\n"); 4797 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4798 "to decrease power consumption.\n"); 4799 return -E2BIG; 4800 } 4801 4802 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4803 struct usb_device *udev, 4804 enum usb3_link_state state) 4805 { 4806 if (xhci->quirks & XHCI_INTEL_HOST) 4807 return xhci_check_intel_tier_policy(udev, state); 4808 else 4809 return 0; 4810 } 4811 4812 /* Returns the U1 or U2 timeout that should be enabled. 4813 * If the tier check or timeout setting functions return with a non-zero exit 4814 * code, that means the timeout value has been finalized and we shouldn't look 4815 * at any more endpoints. 4816 */ 4817 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4818 struct usb_device *udev, enum usb3_link_state state) 4819 { 4820 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4821 struct usb_host_config *config; 4822 char *state_name; 4823 int i; 4824 u16 timeout = USB3_LPM_DISABLED; 4825 4826 if (state == USB3_LPM_U1) 4827 state_name = "U1"; 4828 else if (state == USB3_LPM_U2) 4829 state_name = "U2"; 4830 else { 4831 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4832 state); 4833 return timeout; 4834 } 4835 4836 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4837 return timeout; 4838 4839 /* Gather some information about the currently installed configuration 4840 * and alternate interface settings. 4841 */ 4842 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4843 state, &timeout)) 4844 return timeout; 4845 4846 config = udev->actconfig; 4847 if (!config) 4848 return timeout; 4849 4850 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4851 struct usb_driver *driver; 4852 struct usb_interface *intf = config->interface[i]; 4853 4854 if (!intf) 4855 continue; 4856 4857 /* Check if any currently bound drivers want hub-initiated LPM 4858 * disabled. 4859 */ 4860 if (intf->dev.driver) { 4861 driver = to_usb_driver(intf->dev.driver); 4862 if (driver && driver->disable_hub_initiated_lpm) { 4863 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4864 state_name, driver->name); 4865 timeout = xhci_get_timeout_no_hub_lpm(udev, 4866 state); 4867 if (timeout == USB3_LPM_DISABLED) 4868 return timeout; 4869 } 4870 } 4871 4872 /* Not sure how this could happen... */ 4873 if (!intf->cur_altsetting) 4874 continue; 4875 4876 if (xhci_update_timeout_for_interface(xhci, udev, 4877 intf->cur_altsetting, 4878 state, &timeout)) 4879 return timeout; 4880 } 4881 return timeout; 4882 } 4883 4884 static int calculate_max_exit_latency(struct usb_device *udev, 4885 enum usb3_link_state state_changed, 4886 u16 hub_encoded_timeout) 4887 { 4888 unsigned long long u1_mel_us = 0; 4889 unsigned long long u2_mel_us = 0; 4890 unsigned long long mel_us = 0; 4891 bool disabling_u1; 4892 bool disabling_u2; 4893 bool enabling_u1; 4894 bool enabling_u2; 4895 4896 disabling_u1 = (state_changed == USB3_LPM_U1 && 4897 hub_encoded_timeout == USB3_LPM_DISABLED); 4898 disabling_u2 = (state_changed == USB3_LPM_U2 && 4899 hub_encoded_timeout == USB3_LPM_DISABLED); 4900 4901 enabling_u1 = (state_changed == USB3_LPM_U1 && 4902 hub_encoded_timeout != USB3_LPM_DISABLED); 4903 enabling_u2 = (state_changed == USB3_LPM_U2 && 4904 hub_encoded_timeout != USB3_LPM_DISABLED); 4905 4906 /* If U1 was already enabled and we're not disabling it, 4907 * or we're going to enable U1, account for the U1 max exit latency. 4908 */ 4909 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4910 enabling_u1) 4911 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4912 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4913 enabling_u2) 4914 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4915 4916 if (u1_mel_us > u2_mel_us) 4917 mel_us = u1_mel_us; 4918 else 4919 mel_us = u2_mel_us; 4920 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4921 if (mel_us > MAX_EXIT) { 4922 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4923 "is too big.\n", mel_us); 4924 return -E2BIG; 4925 } 4926 return mel_us; 4927 } 4928 4929 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4930 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4931 struct usb_device *udev, enum usb3_link_state state) 4932 { 4933 struct xhci_hcd *xhci; 4934 u16 hub_encoded_timeout; 4935 int mel; 4936 int ret; 4937 4938 xhci = hcd_to_xhci(hcd); 4939 /* The LPM timeout values are pretty host-controller specific, so don't 4940 * enable hub-initiated timeouts unless the vendor has provided 4941 * information about their timeout algorithm. 4942 */ 4943 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4944 !xhci->devs[udev->slot_id]) 4945 return USB3_LPM_DISABLED; 4946 4947 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4948 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4949 if (mel < 0) { 4950 /* Max Exit Latency is too big, disable LPM. */ 4951 hub_encoded_timeout = USB3_LPM_DISABLED; 4952 mel = 0; 4953 } 4954 4955 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4956 if (ret) 4957 return ret; 4958 return hub_encoded_timeout; 4959 } 4960 4961 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4962 struct usb_device *udev, enum usb3_link_state state) 4963 { 4964 struct xhci_hcd *xhci; 4965 u16 mel; 4966 4967 xhci = hcd_to_xhci(hcd); 4968 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4969 !xhci->devs[udev->slot_id]) 4970 return 0; 4971 4972 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4973 return xhci_change_max_exit_latency(xhci, udev, mel); 4974 } 4975 #else /* CONFIG_PM */ 4976 4977 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4978 struct usb_device *udev, int enable) 4979 { 4980 return 0; 4981 } 4982 4983 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4984 { 4985 return 0; 4986 } 4987 4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4989 struct usb_device *udev, enum usb3_link_state state) 4990 { 4991 return USB3_LPM_DISABLED; 4992 } 4993 4994 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4995 struct usb_device *udev, enum usb3_link_state state) 4996 { 4997 return 0; 4998 } 4999 #endif /* CONFIG_PM */ 5000 5001 /*-------------------------------------------------------------------------*/ 5002 5003 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5004 * internal data structures for the device. 5005 */ 5006 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5007 struct usb_tt *tt, gfp_t mem_flags) 5008 { 5009 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5010 struct xhci_virt_device *vdev; 5011 struct xhci_command *config_cmd; 5012 struct xhci_input_control_ctx *ctrl_ctx; 5013 struct xhci_slot_ctx *slot_ctx; 5014 unsigned long flags; 5015 unsigned think_time; 5016 int ret; 5017 5018 /* Ignore root hubs */ 5019 if (!hdev->parent) 5020 return 0; 5021 5022 vdev = xhci->devs[hdev->slot_id]; 5023 if (!vdev) { 5024 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5025 return -EINVAL; 5026 } 5027 5028 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5029 if (!config_cmd) 5030 return -ENOMEM; 5031 5032 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5033 if (!ctrl_ctx) { 5034 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5035 __func__); 5036 xhci_free_command(xhci, config_cmd); 5037 return -ENOMEM; 5038 } 5039 5040 spin_lock_irqsave(&xhci->lock, flags); 5041 if (hdev->speed == USB_SPEED_HIGH && 5042 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5043 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5044 xhci_free_command(xhci, config_cmd); 5045 spin_unlock_irqrestore(&xhci->lock, flags); 5046 return -ENOMEM; 5047 } 5048 5049 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5050 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5051 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5052 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5053 /* 5054 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5055 * but it may be already set to 1 when setup an xHCI virtual 5056 * device, so clear it anyway. 5057 */ 5058 if (tt->multi) 5059 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5060 else if (hdev->speed == USB_SPEED_FULL) 5061 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5062 5063 if (xhci->hci_version > 0x95) { 5064 xhci_dbg(xhci, "xHCI version %x needs hub " 5065 "TT think time and number of ports\n", 5066 (unsigned int) xhci->hci_version); 5067 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5068 /* Set TT think time - convert from ns to FS bit times. 5069 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5070 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5071 * 5072 * xHCI 1.0: this field shall be 0 if the device is not a 5073 * High-spped hub. 5074 */ 5075 think_time = tt->think_time; 5076 if (think_time != 0) 5077 think_time = (think_time / 666) - 1; 5078 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5079 slot_ctx->tt_info |= 5080 cpu_to_le32(TT_THINK_TIME(think_time)); 5081 } else { 5082 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5083 "TT think time or number of ports\n", 5084 (unsigned int) xhci->hci_version); 5085 } 5086 slot_ctx->dev_state = 0; 5087 spin_unlock_irqrestore(&xhci->lock, flags); 5088 5089 xhci_dbg(xhci, "Set up %s for hub device.\n", 5090 (xhci->hci_version > 0x95) ? 5091 "configure endpoint" : "evaluate context"); 5092 5093 /* Issue and wait for the configure endpoint or 5094 * evaluate context command. 5095 */ 5096 if (xhci->hci_version > 0x95) 5097 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5098 false, false); 5099 else 5100 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5101 true, false); 5102 5103 xhci_free_command(xhci, config_cmd); 5104 return ret; 5105 } 5106 5107 static int xhci_get_frame(struct usb_hcd *hcd) 5108 { 5109 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5110 /* EHCI mods by the periodic size. Why? */ 5111 return readl(&xhci->run_regs->microframe_index) >> 3; 5112 } 5113 5114 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5115 { 5116 struct xhci_hcd *xhci; 5117 /* 5118 * TODO: Check with DWC3 clients for sysdev according to 5119 * quirks 5120 */ 5121 struct device *dev = hcd->self.sysdev; 5122 unsigned int minor_rev; 5123 int retval; 5124 5125 /* Accept arbitrarily long scatter-gather lists */ 5126 hcd->self.sg_tablesize = ~0; 5127 5128 /* support to build packet from discontinuous buffers */ 5129 hcd->self.no_sg_constraint = 1; 5130 5131 /* XHCI controllers don't stop the ep queue on short packets :| */ 5132 hcd->self.no_stop_on_short = 1; 5133 5134 xhci = hcd_to_xhci(hcd); 5135 5136 if (usb_hcd_is_primary_hcd(hcd)) { 5137 xhci->main_hcd = hcd; 5138 xhci->usb2_rhub.hcd = hcd; 5139 /* Mark the first roothub as being USB 2.0. 5140 * The xHCI driver will register the USB 3.0 roothub. 5141 */ 5142 hcd->speed = HCD_USB2; 5143 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5144 /* 5145 * USB 2.0 roothub under xHCI has an integrated TT, 5146 * (rate matching hub) as opposed to having an OHCI/UHCI 5147 * companion controller. 5148 */ 5149 hcd->has_tt = 1; 5150 } else { 5151 /* 5152 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5153 * should return 0x31 for sbrn, or that the minor revision 5154 * is a two digit BCD containig minor and sub-minor numbers. 5155 * This was later clarified in xHCI 1.2. 5156 * 5157 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5158 * minor revision set to 0x1 instead of 0x10. 5159 */ 5160 if (xhci->usb3_rhub.min_rev == 0x1) 5161 minor_rev = 1; 5162 else 5163 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5164 5165 switch (minor_rev) { 5166 case 2: 5167 hcd->speed = HCD_USB32; 5168 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5169 hcd->self.root_hub->rx_lanes = 2; 5170 hcd->self.root_hub->tx_lanes = 2; 5171 break; 5172 case 1: 5173 hcd->speed = HCD_USB31; 5174 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5175 break; 5176 } 5177 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5178 minor_rev, 5179 minor_rev ? "Enhanced " : ""); 5180 5181 xhci->usb3_rhub.hcd = hcd; 5182 /* xHCI private pointer was set in xhci_pci_probe for the second 5183 * registered roothub. 5184 */ 5185 return 0; 5186 } 5187 5188 mutex_init(&xhci->mutex); 5189 xhci->cap_regs = hcd->regs; 5190 xhci->op_regs = hcd->regs + 5191 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5192 xhci->run_regs = hcd->regs + 5193 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5194 /* Cache read-only capability registers */ 5195 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5196 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5197 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5198 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5199 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5200 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5201 if (xhci->hci_version > 0x100) 5202 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5203 5204 xhci->quirks |= quirks; 5205 5206 get_quirks(dev, xhci); 5207 5208 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5209 * success event after a short transfer. This quirk will ignore such 5210 * spurious event. 5211 */ 5212 if (xhci->hci_version > 0x96) 5213 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5214 5215 /* Make sure the HC is halted. */ 5216 retval = xhci_halt(xhci); 5217 if (retval) 5218 return retval; 5219 5220 xhci_zero_64b_regs(xhci); 5221 5222 xhci_dbg(xhci, "Resetting HCD\n"); 5223 /* Reset the internal HC memory state and registers. */ 5224 retval = xhci_reset(xhci); 5225 if (retval) 5226 return retval; 5227 xhci_dbg(xhci, "Reset complete\n"); 5228 5229 /* 5230 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5231 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5232 * address memory pointers actually. So, this driver clears the AC64 5233 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5234 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5235 */ 5236 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5237 xhci->hcc_params &= ~BIT(0); 5238 5239 /* Set dma_mask and coherent_dma_mask to 64-bits, 5240 * if xHC supports 64-bit addressing */ 5241 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5242 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5243 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5244 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5245 } else { 5246 /* 5247 * This is to avoid error in cases where a 32-bit USB 5248 * controller is used on a 64-bit capable system. 5249 */ 5250 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5251 if (retval) 5252 return retval; 5253 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5254 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5255 } 5256 5257 xhci_dbg(xhci, "Calling HCD init\n"); 5258 /* Initialize HCD and host controller data structures. */ 5259 retval = xhci_init(hcd); 5260 if (retval) 5261 return retval; 5262 xhci_dbg(xhci, "Called HCD init\n"); 5263 5264 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5265 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5266 5267 return 0; 5268 } 5269 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5270 5271 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5272 struct usb_host_endpoint *ep) 5273 { 5274 struct xhci_hcd *xhci; 5275 struct usb_device *udev; 5276 unsigned int slot_id; 5277 unsigned int ep_index; 5278 unsigned long flags; 5279 5280 xhci = hcd_to_xhci(hcd); 5281 5282 spin_lock_irqsave(&xhci->lock, flags); 5283 udev = (struct usb_device *)ep->hcpriv; 5284 slot_id = udev->slot_id; 5285 ep_index = xhci_get_endpoint_index(&ep->desc); 5286 5287 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5288 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5289 spin_unlock_irqrestore(&xhci->lock, flags); 5290 } 5291 5292 static const struct hc_driver xhci_hc_driver = { 5293 .description = "xhci-hcd", 5294 .product_desc = "xHCI Host Controller", 5295 .hcd_priv_size = sizeof(struct xhci_hcd), 5296 5297 /* 5298 * generic hardware linkage 5299 */ 5300 .irq = xhci_irq, 5301 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5302 HCD_BH, 5303 5304 /* 5305 * basic lifecycle operations 5306 */ 5307 .reset = NULL, /* set in xhci_init_driver() */ 5308 .start = xhci_run, 5309 .stop = xhci_stop, 5310 .shutdown = xhci_shutdown, 5311 5312 /* 5313 * managing i/o requests and associated device resources 5314 */ 5315 .map_urb_for_dma = xhci_map_urb_for_dma, 5316 .urb_enqueue = xhci_urb_enqueue, 5317 .urb_dequeue = xhci_urb_dequeue, 5318 .alloc_dev = xhci_alloc_dev, 5319 .free_dev = xhci_free_dev, 5320 .alloc_streams = xhci_alloc_streams, 5321 .free_streams = xhci_free_streams, 5322 .add_endpoint = xhci_add_endpoint, 5323 .drop_endpoint = xhci_drop_endpoint, 5324 .endpoint_disable = xhci_endpoint_disable, 5325 .endpoint_reset = xhci_endpoint_reset, 5326 .check_bandwidth = xhci_check_bandwidth, 5327 .reset_bandwidth = xhci_reset_bandwidth, 5328 .address_device = xhci_address_device, 5329 .enable_device = xhci_enable_device, 5330 .update_hub_device = xhci_update_hub_device, 5331 .reset_device = xhci_discover_or_reset_device, 5332 5333 /* 5334 * scheduling support 5335 */ 5336 .get_frame_number = xhci_get_frame, 5337 5338 /* 5339 * root hub support 5340 */ 5341 .hub_control = xhci_hub_control, 5342 .hub_status_data = xhci_hub_status_data, 5343 .bus_suspend = xhci_bus_suspend, 5344 .bus_resume = xhci_bus_resume, 5345 .get_resuming_ports = xhci_get_resuming_ports, 5346 5347 /* 5348 * call back when device connected and addressed 5349 */ 5350 .update_device = xhci_update_device, 5351 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5352 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5353 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5354 .find_raw_port_number = xhci_find_raw_port_number, 5355 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5356 }; 5357 5358 void xhci_init_driver(struct hc_driver *drv, 5359 const struct xhci_driver_overrides *over) 5360 { 5361 BUG_ON(!over); 5362 5363 /* Copy the generic table to drv then apply the overrides */ 5364 *drv = xhci_hc_driver; 5365 5366 if (over) { 5367 drv->hcd_priv_size += over->extra_priv_size; 5368 if (over->reset) 5369 drv->reset = over->reset; 5370 if (over->start) 5371 drv->start = over->start; 5372 } 5373 } 5374 EXPORT_SYMBOL_GPL(xhci_init_driver); 5375 5376 MODULE_DESCRIPTION(DRIVER_DESC); 5377 MODULE_AUTHOR(DRIVER_AUTHOR); 5378 MODULE_LICENSE("GPL"); 5379 5380 static int __init xhci_hcd_init(void) 5381 { 5382 /* 5383 * Check the compiler generated sizes of structures that must be laid 5384 * out in specific ways for hardware access. 5385 */ 5386 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5387 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5388 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5389 /* xhci_device_control has eight fields, and also 5390 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5391 */ 5392 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5393 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5394 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5395 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5396 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5397 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5398 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5399 5400 if (usb_disabled()) 5401 return -ENODEV; 5402 5403 xhci_debugfs_create_root(); 5404 5405 return 0; 5406 } 5407 5408 /* 5409 * If an init function is provided, an exit function must also be provided 5410 * to allow module unload. 5411 */ 5412 static void __exit xhci_hcd_fini(void) 5413 { 5414 xhci_debugfs_remove_root(); 5415 } 5416 5417 module_init(xhci_hcd_init); 5418 module_exit(xhci_hcd_fini); 5419