1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 } 793 EXPORT_SYMBOL_GPL(xhci_shutdown); 794 795 #ifdef CONFIG_PM 796 static void xhci_save_registers(struct xhci_hcd *xhci) 797 { 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 807 } 808 809 static void xhci_restore_registers(struct xhci_hcd *xhci) 810 { 811 writel(xhci->s3.command, &xhci->op_regs->command); 812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 820 } 821 822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 823 { 824 u64 val_64; 825 826 /* step 2: initialize command ring buffer */ 827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 830 xhci->cmd_ring->dequeue) & 831 (u64) ~CMD_RING_RSVD_BITS) | 832 xhci->cmd_ring->cycle_state; 833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 834 "// Setting command ring address to 0x%llx", 835 (long unsigned long) val_64); 836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 837 } 838 839 /* 840 * The whole command ring must be cleared to zero when we suspend the host. 841 * 842 * The host doesn't save the command ring pointer in the suspend well, so we 843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 844 * aligned, because of the reserved bits in the command ring dequeue pointer 845 * register. Therefore, we can't just set the dequeue pointer back in the 846 * middle of the ring (TRBs are 16-byte aligned). 847 */ 848 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 849 { 850 struct xhci_ring *ring; 851 struct xhci_segment *seg; 852 853 ring = xhci->cmd_ring; 854 seg = ring->deq_seg; 855 do { 856 memset(seg->trbs, 0, 857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 859 cpu_to_le32(~TRB_CYCLE); 860 seg = seg->next; 861 } while (seg != ring->deq_seg); 862 863 /* Reset the software enqueue and dequeue pointers */ 864 ring->deq_seg = ring->first_seg; 865 ring->dequeue = ring->first_seg->trbs; 866 ring->enq_seg = ring->deq_seg; 867 ring->enqueue = ring->dequeue; 868 869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 870 /* 871 * Ring is now zeroed, so the HW should look for change of ownership 872 * when the cycle bit is set to 1. 873 */ 874 ring->cycle_state = 1; 875 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 887 { 888 struct xhci_port **ports; 889 int port_index; 890 unsigned long flags; 891 u32 t1, t2, portsc; 892 893 spin_lock_irqsave(&xhci->lock, flags); 894 895 /* disable usb3 ports Wake bits */ 896 port_index = xhci->usb3_rhub.num_ports; 897 ports = xhci->usb3_rhub.ports; 898 while (port_index--) { 899 t1 = readl(ports[port_index]->addr); 900 portsc = t1; 901 t1 = xhci_port_state_to_neutral(t1); 902 t2 = t1 & ~PORT_WAKE_BITS; 903 if (t1 != t2) { 904 writel(t2, ports[port_index]->addr); 905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 906 xhci->usb3_rhub.hcd->self.busnum, 907 port_index + 1, portsc, t2); 908 } 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 portsc = t1; 917 t1 = xhci_port_state_to_neutral(t1); 918 t2 = t1 & ~PORT_WAKE_BITS; 919 if (t1 != t2) { 920 writel(t2, ports[port_index]->addr); 921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 922 xhci->usb2_rhub.hcd->self.busnum, 923 port_index + 1, portsc, t2); 924 } 925 } 926 spin_unlock_irqrestore(&xhci->lock, flags); 927 } 928 929 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 930 { 931 struct xhci_port **ports; 932 int port_index; 933 u32 status; 934 u32 portsc; 935 936 status = readl(&xhci->op_regs->status); 937 if (status & STS_EINT) 938 return true; 939 /* 940 * Checking STS_EINT is not enough as there is a lag between a change 941 * bit being set and the Port Status Change Event that it generated 942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 943 */ 944 945 port_index = xhci->usb2_rhub.num_ports; 946 ports = xhci->usb2_rhub.ports; 947 while (port_index--) { 948 portsc = readl(ports[port_index]->addr); 949 if (portsc & PORT_CHANGE_MASK || 950 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 951 return true; 952 } 953 port_index = xhci->usb3_rhub.num_ports; 954 ports = xhci->usb3_rhub.ports; 955 while (port_index--) { 956 portsc = readl(ports[port_index]->addr); 957 if (portsc & PORT_CHANGE_MASK || 958 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 959 return true; 960 } 961 return false; 962 } 963 964 /* 965 * Stop HC (not bus-specific) 966 * 967 * This is called when the machine transition into S3/S4 mode. 968 * 969 */ 970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 971 { 972 int rc = 0; 973 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 974 struct usb_hcd *hcd = xhci_to_hcd(xhci); 975 u32 command; 976 u32 res; 977 978 if (!hcd->state) 979 return 0; 980 981 if (hcd->state != HC_STATE_SUSPENDED || 982 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 983 return -EINVAL; 984 985 xhci_dbc_suspend(xhci); 986 987 /* Clear root port wake on bits if wakeup not allowed. */ 988 if (!do_wakeup) 989 xhci_disable_port_wake_on_bits(xhci); 990 991 /* Don't poll the roothubs on bus suspend. */ 992 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 993 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 994 del_timer_sync(&hcd->rh_timer); 995 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 996 del_timer_sync(&xhci->shared_hcd->rh_timer); 997 998 if (xhci->quirks & XHCI_SUSPEND_DELAY) 999 usleep_range(1000, 1500); 1000 1001 spin_lock_irq(&xhci->lock); 1002 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1003 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1004 /* step 1: stop endpoint */ 1005 /* skipped assuming that port suspend has done */ 1006 1007 /* step 2: clear Run/Stop bit */ 1008 command = readl(&xhci->op_regs->command); 1009 command &= ~CMD_RUN; 1010 writel(command, &xhci->op_regs->command); 1011 1012 /* Some chips from Fresco Logic need an extraordinary delay */ 1013 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1014 1015 if (xhci_handshake(&xhci->op_regs->status, 1016 STS_HALT, STS_HALT, delay)) { 1017 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1018 spin_unlock_irq(&xhci->lock); 1019 return -ETIMEDOUT; 1020 } 1021 xhci_clear_command_ring(xhci); 1022 1023 /* step 3: save registers */ 1024 xhci_save_registers(xhci); 1025 1026 /* step 4: set CSS flag */ 1027 command = readl(&xhci->op_regs->command); 1028 command |= CMD_CSS; 1029 writel(command, &xhci->op_regs->command); 1030 xhci->broken_suspend = 0; 1031 if (xhci_handshake(&xhci->op_regs->status, 1032 STS_SAVE, 0, 20 * 1000)) { 1033 /* 1034 * AMD SNPS xHC 3.0 occasionally does not clear the 1035 * SSS bit of USBSTS and when driver tries to poll 1036 * to see if the xHC clears BIT(8) which never happens 1037 * and driver assumes that controller is not responding 1038 * and times out. To workaround this, its good to check 1039 * if SRE and HCE bits are not set (as per xhci 1040 * Section 5.4.2) and bypass the timeout. 1041 */ 1042 res = readl(&xhci->op_regs->status); 1043 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1044 (((res & STS_SRE) == 0) && 1045 ((res & STS_HCE) == 0))) { 1046 xhci->broken_suspend = 1; 1047 } else { 1048 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1049 spin_unlock_irq(&xhci->lock); 1050 return -ETIMEDOUT; 1051 } 1052 } 1053 spin_unlock_irq(&xhci->lock); 1054 1055 /* 1056 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1057 * is about to be suspended. 1058 */ 1059 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1060 (!(xhci_all_ports_seen_u0(xhci)))) { 1061 del_timer_sync(&xhci->comp_mode_recovery_timer); 1062 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1063 "%s: compliance mode recovery timer deleted", 1064 __func__); 1065 } 1066 1067 /* step 5: remove core well power */ 1068 /* synchronize irq when using MSI-X */ 1069 xhci_msix_sync_irqs(xhci); 1070 1071 return rc; 1072 } 1073 EXPORT_SYMBOL_GPL(xhci_suspend); 1074 1075 /* 1076 * start xHC (not bus-specific) 1077 * 1078 * This is called when the machine transition from S3/S4 mode. 1079 * 1080 */ 1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1082 { 1083 u32 command, temp = 0; 1084 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1085 struct usb_hcd *secondary_hcd; 1086 int retval = 0; 1087 bool comp_timer_running = false; 1088 1089 if (!hcd->state) 1090 return 0; 1091 1092 /* Wait a bit if either of the roothubs need to settle from the 1093 * transition into bus suspend. 1094 */ 1095 1096 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1097 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1098 msleep(100); 1099 1100 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1101 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1102 1103 spin_lock_irq(&xhci->lock); 1104 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1105 hibernated = true; 1106 1107 if (!hibernated) { 1108 /* 1109 * Some controllers might lose power during suspend, so wait 1110 * for controller not ready bit to clear, just as in xHC init. 1111 */ 1112 retval = xhci_handshake(&xhci->op_regs->status, 1113 STS_CNR, 0, 10 * 1000 * 1000); 1114 if (retval) { 1115 xhci_warn(xhci, "Controller not ready at resume %d\n", 1116 retval); 1117 spin_unlock_irq(&xhci->lock); 1118 return retval; 1119 } 1120 /* step 1: restore register */ 1121 xhci_restore_registers(xhci); 1122 /* step 2: initialize command ring buffer */ 1123 xhci_set_cmd_ring_deq(xhci); 1124 /* step 3: restore state and start state*/ 1125 /* step 3: set CRS flag */ 1126 command = readl(&xhci->op_regs->command); 1127 command |= CMD_CRS; 1128 writel(command, &xhci->op_regs->command); 1129 /* 1130 * Some controllers take up to 55+ ms to complete the controller 1131 * restore so setting the timeout to 100ms. Xhci specification 1132 * doesn't mention any timeout value. 1133 */ 1134 if (xhci_handshake(&xhci->op_regs->status, 1135 STS_RESTORE, 0, 100 * 1000)) { 1136 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1137 spin_unlock_irq(&xhci->lock); 1138 return -ETIMEDOUT; 1139 } 1140 temp = readl(&xhci->op_regs->status); 1141 } 1142 1143 /* If restore operation fails, re-initialize the HC during resume */ 1144 if ((temp & STS_SRE) || hibernated) { 1145 1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1147 !(xhci_all_ports_seen_u0(xhci))) { 1148 del_timer_sync(&xhci->comp_mode_recovery_timer); 1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1150 "Compliance Mode Recovery Timer deleted!"); 1151 } 1152 1153 /* Let the USB core know _both_ roothubs lost power. */ 1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1155 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1156 1157 xhci_dbg(xhci, "Stop HCD\n"); 1158 xhci_halt(xhci); 1159 xhci_zero_64b_regs(xhci); 1160 retval = xhci_reset(xhci); 1161 spin_unlock_irq(&xhci->lock); 1162 if (retval) 1163 return retval; 1164 xhci_cleanup_msix(xhci); 1165 1166 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1167 temp = readl(&xhci->op_regs->status); 1168 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1169 temp = readl(&xhci->ir_set->irq_pending); 1170 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1171 1172 xhci_dbg(xhci, "cleaning up memory\n"); 1173 xhci_mem_cleanup(xhci); 1174 xhci_debugfs_exit(xhci); 1175 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1176 readl(&xhci->op_regs->status)); 1177 1178 /* USB core calls the PCI reinit and start functions twice: 1179 * first with the primary HCD, and then with the secondary HCD. 1180 * If we don't do the same, the host will never be started. 1181 */ 1182 if (!usb_hcd_is_primary_hcd(hcd)) 1183 secondary_hcd = hcd; 1184 else 1185 secondary_hcd = xhci->shared_hcd; 1186 1187 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1188 retval = xhci_init(hcd->primary_hcd); 1189 if (retval) 1190 return retval; 1191 comp_timer_running = true; 1192 1193 xhci_dbg(xhci, "Start the primary HCD\n"); 1194 retval = xhci_run(hcd->primary_hcd); 1195 if (!retval) { 1196 xhci_dbg(xhci, "Start the secondary HCD\n"); 1197 retval = xhci_run(secondary_hcd); 1198 } 1199 hcd->state = HC_STATE_SUSPENDED; 1200 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1201 goto done; 1202 } 1203 1204 /* step 4: set Run/Stop bit */ 1205 command = readl(&xhci->op_regs->command); 1206 command |= CMD_RUN; 1207 writel(command, &xhci->op_regs->command); 1208 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1209 0, 250 * 1000); 1210 1211 /* step 5: walk topology and initialize portsc, 1212 * portpmsc and portli 1213 */ 1214 /* this is done in bus_resume */ 1215 1216 /* step 6: restart each of the previously 1217 * Running endpoints by ringing their doorbells 1218 */ 1219 1220 spin_unlock_irq(&xhci->lock); 1221 1222 xhci_dbc_resume(xhci); 1223 1224 done: 1225 if (retval == 0) { 1226 /* Resume root hubs only when have pending events. */ 1227 if (xhci_pending_portevent(xhci)) { 1228 usb_hcd_resume_root_hub(xhci->shared_hcd); 1229 usb_hcd_resume_root_hub(hcd); 1230 } 1231 } 1232 1233 /* 1234 * If system is subject to the Quirk, Compliance Mode Timer needs to 1235 * be re-initialized Always after a system resume. Ports are subject 1236 * to suffer the Compliance Mode issue again. It doesn't matter if 1237 * ports have entered previously to U0 before system's suspension. 1238 */ 1239 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1240 compliance_mode_recovery_timer_init(xhci); 1241 1242 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1243 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1244 1245 /* Re-enable port polling. */ 1246 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1247 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1248 usb_hcd_poll_rh_status(xhci->shared_hcd); 1249 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1250 usb_hcd_poll_rh_status(hcd); 1251 1252 return retval; 1253 } 1254 EXPORT_SYMBOL_GPL(xhci_resume); 1255 #endif /* CONFIG_PM */ 1256 1257 /*-------------------------------------------------------------------------*/ 1258 1259 /* 1260 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1261 * we'll copy the actual data into the TRB address register. This is limited to 1262 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1263 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1264 */ 1265 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1266 gfp_t mem_flags) 1267 { 1268 if (xhci_urb_suitable_for_idt(urb)) 1269 return 0; 1270 1271 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1272 } 1273 1274 /* 1275 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1276 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1277 * value to right shift 1 for the bitmask. 1278 * 1279 * Index = (epnum * 2) + direction - 1, 1280 * where direction = 0 for OUT, 1 for IN. 1281 * For control endpoints, the IN index is used (OUT index is unused), so 1282 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1283 */ 1284 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1285 { 1286 unsigned int index; 1287 if (usb_endpoint_xfer_control(desc)) 1288 index = (unsigned int) (usb_endpoint_num(desc)*2); 1289 else 1290 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1291 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1292 return index; 1293 } 1294 1295 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1296 * address from the XHCI endpoint index. 1297 */ 1298 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1299 { 1300 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1301 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1302 return direction | number; 1303 } 1304 1305 /* Find the flag for this endpoint (for use in the control context). Use the 1306 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1307 * bit 1, etc. 1308 */ 1309 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1310 { 1311 return 1 << (xhci_get_endpoint_index(desc) + 1); 1312 } 1313 1314 /* Find the flag for this endpoint (for use in the control context). Use the 1315 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1316 * bit 1, etc. 1317 */ 1318 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1319 { 1320 return 1 << (ep_index + 1); 1321 } 1322 1323 /* Compute the last valid endpoint context index. Basically, this is the 1324 * endpoint index plus one. For slot contexts with more than valid endpoint, 1325 * we find the most significant bit set in the added contexts flags. 1326 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1327 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1328 */ 1329 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1330 { 1331 return fls(added_ctxs) - 1; 1332 } 1333 1334 /* Returns 1 if the arguments are OK; 1335 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1336 */ 1337 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1338 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1339 const char *func) { 1340 struct xhci_hcd *xhci; 1341 struct xhci_virt_device *virt_dev; 1342 1343 if (!hcd || (check_ep && !ep) || !udev) { 1344 pr_debug("xHCI %s called with invalid args\n", func); 1345 return -EINVAL; 1346 } 1347 if (!udev->parent) { 1348 pr_debug("xHCI %s called for root hub\n", func); 1349 return 0; 1350 } 1351 1352 xhci = hcd_to_xhci(hcd); 1353 if (check_virt_dev) { 1354 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1355 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1356 func); 1357 return -EINVAL; 1358 } 1359 1360 virt_dev = xhci->devs[udev->slot_id]; 1361 if (virt_dev->udev != udev) { 1362 xhci_dbg(xhci, "xHCI %s called with udev and " 1363 "virt_dev does not match\n", func); 1364 return -EINVAL; 1365 } 1366 } 1367 1368 if (xhci->xhc_state & XHCI_STATE_HALTED) 1369 return -ENODEV; 1370 1371 return 1; 1372 } 1373 1374 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1375 struct usb_device *udev, struct xhci_command *command, 1376 bool ctx_change, bool must_succeed); 1377 1378 /* 1379 * Full speed devices may have a max packet size greater than 8 bytes, but the 1380 * USB core doesn't know that until it reads the first 8 bytes of the 1381 * descriptor. If the usb_device's max packet size changes after that point, 1382 * we need to issue an evaluate context command and wait on it. 1383 */ 1384 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1385 unsigned int ep_index, struct urb *urb) 1386 { 1387 struct xhci_container_ctx *out_ctx; 1388 struct xhci_input_control_ctx *ctrl_ctx; 1389 struct xhci_ep_ctx *ep_ctx; 1390 struct xhci_command *command; 1391 int max_packet_size; 1392 int hw_max_packet_size; 1393 int ret = 0; 1394 1395 out_ctx = xhci->devs[slot_id]->out_ctx; 1396 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1397 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1398 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1399 if (hw_max_packet_size != max_packet_size) { 1400 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1401 "Max Packet Size for ep 0 changed."); 1402 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1403 "Max packet size in usb_device = %d", 1404 max_packet_size); 1405 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1406 "Max packet size in xHCI HW = %d", 1407 hw_max_packet_size); 1408 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1409 "Issuing evaluate context command."); 1410 1411 /* Set up the input context flags for the command */ 1412 /* FIXME: This won't work if a non-default control endpoint 1413 * changes max packet sizes. 1414 */ 1415 1416 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1417 if (!command) 1418 return -ENOMEM; 1419 1420 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1421 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1422 if (!ctrl_ctx) { 1423 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1424 __func__); 1425 ret = -ENOMEM; 1426 goto command_cleanup; 1427 } 1428 /* Set up the modified control endpoint 0 */ 1429 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1430 xhci->devs[slot_id]->out_ctx, ep_index); 1431 1432 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1433 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1434 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1435 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1436 1437 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1438 ctrl_ctx->drop_flags = 0; 1439 1440 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1441 true, false); 1442 1443 /* Clean up the input context for later use by bandwidth 1444 * functions. 1445 */ 1446 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1447 command_cleanup: 1448 kfree(command->completion); 1449 kfree(command); 1450 } 1451 return ret; 1452 } 1453 1454 /* 1455 * non-error returns are a promise to giveback() the urb later 1456 * we drop ownership so next owner (or urb unlink) can get it 1457 */ 1458 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1459 { 1460 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1461 unsigned long flags; 1462 int ret = 0; 1463 unsigned int slot_id, ep_index; 1464 unsigned int *ep_state; 1465 struct urb_priv *urb_priv; 1466 int num_tds; 1467 1468 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1469 true, true, __func__) <= 0) 1470 return -EINVAL; 1471 1472 slot_id = urb->dev->slot_id; 1473 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1474 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1475 1476 if (!HCD_HW_ACCESSIBLE(hcd)) { 1477 if (!in_interrupt()) 1478 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1479 return -ESHUTDOWN; 1480 } 1481 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1482 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1483 return -ENODEV; 1484 } 1485 1486 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1487 num_tds = urb->number_of_packets; 1488 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1489 urb->transfer_buffer_length > 0 && 1490 urb->transfer_flags & URB_ZERO_PACKET && 1491 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1492 num_tds = 2; 1493 else 1494 num_tds = 1; 1495 1496 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1497 if (!urb_priv) 1498 return -ENOMEM; 1499 1500 urb_priv->num_tds = num_tds; 1501 urb_priv->num_tds_done = 0; 1502 urb->hcpriv = urb_priv; 1503 1504 trace_xhci_urb_enqueue(urb); 1505 1506 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1507 /* Check to see if the max packet size for the default control 1508 * endpoint changed during FS device enumeration 1509 */ 1510 if (urb->dev->speed == USB_SPEED_FULL) { 1511 ret = xhci_check_maxpacket(xhci, slot_id, 1512 ep_index, urb); 1513 if (ret < 0) { 1514 xhci_urb_free_priv(urb_priv); 1515 urb->hcpriv = NULL; 1516 return ret; 1517 } 1518 } 1519 } 1520 1521 spin_lock_irqsave(&xhci->lock, flags); 1522 1523 if (xhci->xhc_state & XHCI_STATE_DYING) { 1524 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1525 urb->ep->desc.bEndpointAddress, urb); 1526 ret = -ESHUTDOWN; 1527 goto free_priv; 1528 } 1529 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1530 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1531 *ep_state); 1532 ret = -EINVAL; 1533 goto free_priv; 1534 } 1535 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1536 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1537 ret = -EINVAL; 1538 goto free_priv; 1539 } 1540 1541 switch (usb_endpoint_type(&urb->ep->desc)) { 1542 1543 case USB_ENDPOINT_XFER_CONTROL: 1544 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1545 slot_id, ep_index); 1546 break; 1547 case USB_ENDPOINT_XFER_BULK: 1548 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1549 slot_id, ep_index); 1550 break; 1551 case USB_ENDPOINT_XFER_INT: 1552 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1553 slot_id, ep_index); 1554 break; 1555 case USB_ENDPOINT_XFER_ISOC: 1556 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1557 slot_id, ep_index); 1558 } 1559 1560 if (ret) { 1561 free_priv: 1562 xhci_urb_free_priv(urb_priv); 1563 urb->hcpriv = NULL; 1564 } 1565 spin_unlock_irqrestore(&xhci->lock, flags); 1566 return ret; 1567 } 1568 1569 /* 1570 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1571 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1572 * should pick up where it left off in the TD, unless a Set Transfer Ring 1573 * Dequeue Pointer is issued. 1574 * 1575 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1576 * the ring. Since the ring is a contiguous structure, they can't be physically 1577 * removed. Instead, there are two options: 1578 * 1579 * 1) If the HC is in the middle of processing the URB to be canceled, we 1580 * simply move the ring's dequeue pointer past those TRBs using the Set 1581 * Transfer Ring Dequeue Pointer command. This will be the common case, 1582 * when drivers timeout on the last submitted URB and attempt to cancel. 1583 * 1584 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1585 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1586 * HC will need to invalidate the any TRBs it has cached after the stop 1587 * endpoint command, as noted in the xHCI 0.95 errata. 1588 * 1589 * 3) The TD may have completed by the time the Stop Endpoint Command 1590 * completes, so software needs to handle that case too. 1591 * 1592 * This function should protect against the TD enqueueing code ringing the 1593 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1594 * It also needs to account for multiple cancellations on happening at the same 1595 * time for the same endpoint. 1596 * 1597 * Note that this function can be called in any context, or so says 1598 * usb_hcd_unlink_urb() 1599 */ 1600 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1601 { 1602 unsigned long flags; 1603 int ret, i; 1604 u32 temp; 1605 struct xhci_hcd *xhci; 1606 struct urb_priv *urb_priv; 1607 struct xhci_td *td; 1608 unsigned int ep_index; 1609 struct xhci_ring *ep_ring; 1610 struct xhci_virt_ep *ep; 1611 struct xhci_command *command; 1612 struct xhci_virt_device *vdev; 1613 1614 xhci = hcd_to_xhci(hcd); 1615 spin_lock_irqsave(&xhci->lock, flags); 1616 1617 trace_xhci_urb_dequeue(urb); 1618 1619 /* Make sure the URB hasn't completed or been unlinked already */ 1620 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1621 if (ret) 1622 goto done; 1623 1624 /* give back URB now if we can't queue it for cancel */ 1625 vdev = xhci->devs[urb->dev->slot_id]; 1626 urb_priv = urb->hcpriv; 1627 if (!vdev || !urb_priv) 1628 goto err_giveback; 1629 1630 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1631 ep = &vdev->eps[ep_index]; 1632 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1633 if (!ep || !ep_ring) 1634 goto err_giveback; 1635 1636 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1637 temp = readl(&xhci->op_regs->status); 1638 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1639 xhci_hc_died(xhci); 1640 goto done; 1641 } 1642 1643 /* 1644 * check ring is not re-allocated since URB was enqueued. If it is, then 1645 * make sure none of the ring related pointers in this URB private data 1646 * are touched, such as td_list, otherwise we overwrite freed data 1647 */ 1648 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1649 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1650 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1651 td = &urb_priv->td[i]; 1652 if (!list_empty(&td->cancelled_td_list)) 1653 list_del_init(&td->cancelled_td_list); 1654 } 1655 goto err_giveback; 1656 } 1657 1658 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1659 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1660 "HC halted, freeing TD manually."); 1661 for (i = urb_priv->num_tds_done; 1662 i < urb_priv->num_tds; 1663 i++) { 1664 td = &urb_priv->td[i]; 1665 if (!list_empty(&td->td_list)) 1666 list_del_init(&td->td_list); 1667 if (!list_empty(&td->cancelled_td_list)) 1668 list_del_init(&td->cancelled_td_list); 1669 } 1670 goto err_giveback; 1671 } 1672 1673 i = urb_priv->num_tds_done; 1674 if (i < urb_priv->num_tds) 1675 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1676 "Cancel URB %p, dev %s, ep 0x%x, " 1677 "starting at offset 0x%llx", 1678 urb, urb->dev->devpath, 1679 urb->ep->desc.bEndpointAddress, 1680 (unsigned long long) xhci_trb_virt_to_dma( 1681 urb_priv->td[i].start_seg, 1682 urb_priv->td[i].first_trb)); 1683 1684 for (; i < urb_priv->num_tds; i++) { 1685 td = &urb_priv->td[i]; 1686 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1687 } 1688 1689 /* Queue a stop endpoint command, but only if this is 1690 * the first cancellation to be handled. 1691 */ 1692 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1693 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1694 if (!command) { 1695 ret = -ENOMEM; 1696 goto done; 1697 } 1698 ep->ep_state |= EP_STOP_CMD_PENDING; 1699 ep->stop_cmd_timer.expires = jiffies + 1700 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1701 add_timer(&ep->stop_cmd_timer); 1702 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1703 ep_index, 0); 1704 xhci_ring_cmd_db(xhci); 1705 } 1706 done: 1707 spin_unlock_irqrestore(&xhci->lock, flags); 1708 return ret; 1709 1710 err_giveback: 1711 if (urb_priv) 1712 xhci_urb_free_priv(urb_priv); 1713 usb_hcd_unlink_urb_from_ep(hcd, urb); 1714 spin_unlock_irqrestore(&xhci->lock, flags); 1715 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1716 return ret; 1717 } 1718 1719 /* Drop an endpoint from a new bandwidth configuration for this device. 1720 * Only one call to this function is allowed per endpoint before 1721 * check_bandwidth() or reset_bandwidth() must be called. 1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1723 * add the endpoint to the schedule with possibly new parameters denoted by a 1724 * different endpoint descriptor in usb_host_endpoint. 1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1726 * not allowed. 1727 * 1728 * The USB core will not allow URBs to be queued to an endpoint that is being 1729 * disabled, so there's no need for mutual exclusion to protect 1730 * the xhci->devs[slot_id] structure. 1731 */ 1732 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1733 struct usb_host_endpoint *ep) 1734 { 1735 struct xhci_hcd *xhci; 1736 struct xhci_container_ctx *in_ctx, *out_ctx; 1737 struct xhci_input_control_ctx *ctrl_ctx; 1738 unsigned int ep_index; 1739 struct xhci_ep_ctx *ep_ctx; 1740 u32 drop_flag; 1741 u32 new_add_flags, new_drop_flags; 1742 int ret; 1743 1744 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1745 if (ret <= 0) 1746 return ret; 1747 xhci = hcd_to_xhci(hcd); 1748 if (xhci->xhc_state & XHCI_STATE_DYING) 1749 return -ENODEV; 1750 1751 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1752 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1753 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1754 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1755 __func__, drop_flag); 1756 return 0; 1757 } 1758 1759 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1760 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1761 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1762 if (!ctrl_ctx) { 1763 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1764 __func__); 1765 return 0; 1766 } 1767 1768 ep_index = xhci_get_endpoint_index(&ep->desc); 1769 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1770 /* If the HC already knows the endpoint is disabled, 1771 * or the HCD has noted it is disabled, ignore this request 1772 */ 1773 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1774 le32_to_cpu(ctrl_ctx->drop_flags) & 1775 xhci_get_endpoint_flag(&ep->desc)) { 1776 /* Do not warn when called after a usb_device_reset */ 1777 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1778 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1779 __func__, ep); 1780 return 0; 1781 } 1782 1783 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1784 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1785 1786 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1787 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1788 1789 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1790 1791 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1792 1793 if (xhci->quirks & XHCI_MTK_HOST) 1794 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1795 1796 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1797 (unsigned int) ep->desc.bEndpointAddress, 1798 udev->slot_id, 1799 (unsigned int) new_drop_flags, 1800 (unsigned int) new_add_flags); 1801 return 0; 1802 } 1803 1804 /* Add an endpoint to a new possible bandwidth configuration for this device. 1805 * Only one call to this function is allowed per endpoint before 1806 * check_bandwidth() or reset_bandwidth() must be called. 1807 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1808 * add the endpoint to the schedule with possibly new parameters denoted by a 1809 * different endpoint descriptor in usb_host_endpoint. 1810 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1811 * not allowed. 1812 * 1813 * The USB core will not allow URBs to be queued to an endpoint until the 1814 * configuration or alt setting is installed in the device, so there's no need 1815 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1816 */ 1817 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1818 struct usb_host_endpoint *ep) 1819 { 1820 struct xhci_hcd *xhci; 1821 struct xhci_container_ctx *in_ctx; 1822 unsigned int ep_index; 1823 struct xhci_input_control_ctx *ctrl_ctx; 1824 struct xhci_ep_ctx *ep_ctx; 1825 u32 added_ctxs; 1826 u32 new_add_flags, new_drop_flags; 1827 struct xhci_virt_device *virt_dev; 1828 int ret = 0; 1829 1830 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1831 if (ret <= 0) { 1832 /* So we won't queue a reset ep command for a root hub */ 1833 ep->hcpriv = NULL; 1834 return ret; 1835 } 1836 xhci = hcd_to_xhci(hcd); 1837 if (xhci->xhc_state & XHCI_STATE_DYING) 1838 return -ENODEV; 1839 1840 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1841 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1842 /* FIXME when we have to issue an evaluate endpoint command to 1843 * deal with ep0 max packet size changing once we get the 1844 * descriptors 1845 */ 1846 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1847 __func__, added_ctxs); 1848 return 0; 1849 } 1850 1851 virt_dev = xhci->devs[udev->slot_id]; 1852 in_ctx = virt_dev->in_ctx; 1853 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1854 if (!ctrl_ctx) { 1855 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1856 __func__); 1857 return 0; 1858 } 1859 1860 ep_index = xhci_get_endpoint_index(&ep->desc); 1861 /* If this endpoint is already in use, and the upper layers are trying 1862 * to add it again without dropping it, reject the addition. 1863 */ 1864 if (virt_dev->eps[ep_index].ring && 1865 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1866 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1867 "without dropping it.\n", 1868 (unsigned int) ep->desc.bEndpointAddress); 1869 return -EINVAL; 1870 } 1871 1872 /* If the HCD has already noted the endpoint is enabled, 1873 * ignore this request. 1874 */ 1875 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1876 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1877 __func__, ep); 1878 return 0; 1879 } 1880 1881 /* 1882 * Configuration and alternate setting changes must be done in 1883 * process context, not interrupt context (or so documenation 1884 * for usb_set_interface() and usb_set_configuration() claim). 1885 */ 1886 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1887 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1888 __func__, ep->desc.bEndpointAddress); 1889 return -ENOMEM; 1890 } 1891 1892 if (xhci->quirks & XHCI_MTK_HOST) { 1893 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1894 if (ret < 0) { 1895 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1896 virt_dev->eps[ep_index].new_ring = NULL; 1897 return ret; 1898 } 1899 } 1900 1901 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1902 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1903 1904 /* If xhci_endpoint_disable() was called for this endpoint, but the 1905 * xHC hasn't been notified yet through the check_bandwidth() call, 1906 * this re-adds a new state for the endpoint from the new endpoint 1907 * descriptors. We must drop and re-add this endpoint, so we leave the 1908 * drop flags alone. 1909 */ 1910 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1911 1912 /* Store the usb_device pointer for later use */ 1913 ep->hcpriv = udev; 1914 1915 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1916 trace_xhci_add_endpoint(ep_ctx); 1917 1918 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1919 1920 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1921 (unsigned int) ep->desc.bEndpointAddress, 1922 udev->slot_id, 1923 (unsigned int) new_drop_flags, 1924 (unsigned int) new_add_flags); 1925 return 0; 1926 } 1927 1928 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1929 { 1930 struct xhci_input_control_ctx *ctrl_ctx; 1931 struct xhci_ep_ctx *ep_ctx; 1932 struct xhci_slot_ctx *slot_ctx; 1933 int i; 1934 1935 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1936 if (!ctrl_ctx) { 1937 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1938 __func__); 1939 return; 1940 } 1941 1942 /* When a device's add flag and drop flag are zero, any subsequent 1943 * configure endpoint command will leave that endpoint's state 1944 * untouched. Make sure we don't leave any old state in the input 1945 * endpoint contexts. 1946 */ 1947 ctrl_ctx->drop_flags = 0; 1948 ctrl_ctx->add_flags = 0; 1949 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1950 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1951 /* Endpoint 0 is always valid */ 1952 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1953 for (i = 1; i < 31; i++) { 1954 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1955 ep_ctx->ep_info = 0; 1956 ep_ctx->ep_info2 = 0; 1957 ep_ctx->deq = 0; 1958 ep_ctx->tx_info = 0; 1959 } 1960 } 1961 1962 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1963 struct usb_device *udev, u32 *cmd_status) 1964 { 1965 int ret; 1966 1967 switch (*cmd_status) { 1968 case COMP_COMMAND_ABORTED: 1969 case COMP_COMMAND_RING_STOPPED: 1970 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1971 ret = -ETIME; 1972 break; 1973 case COMP_RESOURCE_ERROR: 1974 dev_warn(&udev->dev, 1975 "Not enough host controller resources for new device state.\n"); 1976 ret = -ENOMEM; 1977 /* FIXME: can we allocate more resources for the HC? */ 1978 break; 1979 case COMP_BANDWIDTH_ERROR: 1980 case COMP_SECONDARY_BANDWIDTH_ERROR: 1981 dev_warn(&udev->dev, 1982 "Not enough bandwidth for new device state.\n"); 1983 ret = -ENOSPC; 1984 /* FIXME: can we go back to the old state? */ 1985 break; 1986 case COMP_TRB_ERROR: 1987 /* the HCD set up something wrong */ 1988 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1989 "add flag = 1, " 1990 "and endpoint is not disabled.\n"); 1991 ret = -EINVAL; 1992 break; 1993 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1994 dev_warn(&udev->dev, 1995 "ERROR: Incompatible device for endpoint configure command.\n"); 1996 ret = -ENODEV; 1997 break; 1998 case COMP_SUCCESS: 1999 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2000 "Successful Endpoint Configure command"); 2001 ret = 0; 2002 break; 2003 default: 2004 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2005 *cmd_status); 2006 ret = -EINVAL; 2007 break; 2008 } 2009 return ret; 2010 } 2011 2012 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2013 struct usb_device *udev, u32 *cmd_status) 2014 { 2015 int ret; 2016 2017 switch (*cmd_status) { 2018 case COMP_COMMAND_ABORTED: 2019 case COMP_COMMAND_RING_STOPPED: 2020 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2021 ret = -ETIME; 2022 break; 2023 case COMP_PARAMETER_ERROR: 2024 dev_warn(&udev->dev, 2025 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2026 ret = -EINVAL; 2027 break; 2028 case COMP_SLOT_NOT_ENABLED_ERROR: 2029 dev_warn(&udev->dev, 2030 "WARN: slot not enabled for evaluate context command.\n"); 2031 ret = -EINVAL; 2032 break; 2033 case COMP_CONTEXT_STATE_ERROR: 2034 dev_warn(&udev->dev, 2035 "WARN: invalid context state for evaluate context command.\n"); 2036 ret = -EINVAL; 2037 break; 2038 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2039 dev_warn(&udev->dev, 2040 "ERROR: Incompatible device for evaluate context command.\n"); 2041 ret = -ENODEV; 2042 break; 2043 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2044 /* Max Exit Latency too large error */ 2045 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2046 ret = -EINVAL; 2047 break; 2048 case COMP_SUCCESS: 2049 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2050 "Successful evaluate context command"); 2051 ret = 0; 2052 break; 2053 default: 2054 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2055 *cmd_status); 2056 ret = -EINVAL; 2057 break; 2058 } 2059 return ret; 2060 } 2061 2062 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2063 struct xhci_input_control_ctx *ctrl_ctx) 2064 { 2065 u32 valid_add_flags; 2066 u32 valid_drop_flags; 2067 2068 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2069 * (bit 1). The default control endpoint is added during the Address 2070 * Device command and is never removed until the slot is disabled. 2071 */ 2072 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2073 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2074 2075 /* Use hweight32 to count the number of ones in the add flags, or 2076 * number of endpoints added. Don't count endpoints that are changed 2077 * (both added and dropped). 2078 */ 2079 return hweight32(valid_add_flags) - 2080 hweight32(valid_add_flags & valid_drop_flags); 2081 } 2082 2083 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2084 struct xhci_input_control_ctx *ctrl_ctx) 2085 { 2086 u32 valid_add_flags; 2087 u32 valid_drop_flags; 2088 2089 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2090 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2091 2092 return hweight32(valid_drop_flags) - 2093 hweight32(valid_add_flags & valid_drop_flags); 2094 } 2095 2096 /* 2097 * We need to reserve the new number of endpoints before the configure endpoint 2098 * command completes. We can't subtract the dropped endpoints from the number 2099 * of active endpoints until the command completes because we can oversubscribe 2100 * the host in this case: 2101 * 2102 * - the first configure endpoint command drops more endpoints than it adds 2103 * - a second configure endpoint command that adds more endpoints is queued 2104 * - the first configure endpoint command fails, so the config is unchanged 2105 * - the second command may succeed, even though there isn't enough resources 2106 * 2107 * Must be called with xhci->lock held. 2108 */ 2109 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2110 struct xhci_input_control_ctx *ctrl_ctx) 2111 { 2112 u32 added_eps; 2113 2114 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2115 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2116 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2117 "Not enough ep ctxs: " 2118 "%u active, need to add %u, limit is %u.", 2119 xhci->num_active_eps, added_eps, 2120 xhci->limit_active_eps); 2121 return -ENOMEM; 2122 } 2123 xhci->num_active_eps += added_eps; 2124 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2125 "Adding %u ep ctxs, %u now active.", added_eps, 2126 xhci->num_active_eps); 2127 return 0; 2128 } 2129 2130 /* 2131 * The configure endpoint was failed by the xHC for some other reason, so we 2132 * need to revert the resources that failed configuration would have used. 2133 * 2134 * Must be called with xhci->lock held. 2135 */ 2136 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2137 struct xhci_input_control_ctx *ctrl_ctx) 2138 { 2139 u32 num_failed_eps; 2140 2141 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2142 xhci->num_active_eps -= num_failed_eps; 2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2144 "Removing %u failed ep ctxs, %u now active.", 2145 num_failed_eps, 2146 xhci->num_active_eps); 2147 } 2148 2149 /* 2150 * Now that the command has completed, clean up the active endpoint count by 2151 * subtracting out the endpoints that were dropped (but not changed). 2152 * 2153 * Must be called with xhci->lock held. 2154 */ 2155 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2156 struct xhci_input_control_ctx *ctrl_ctx) 2157 { 2158 u32 num_dropped_eps; 2159 2160 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2161 xhci->num_active_eps -= num_dropped_eps; 2162 if (num_dropped_eps) 2163 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2164 "Removing %u dropped ep ctxs, %u now active.", 2165 num_dropped_eps, 2166 xhci->num_active_eps); 2167 } 2168 2169 static unsigned int xhci_get_block_size(struct usb_device *udev) 2170 { 2171 switch (udev->speed) { 2172 case USB_SPEED_LOW: 2173 case USB_SPEED_FULL: 2174 return FS_BLOCK; 2175 case USB_SPEED_HIGH: 2176 return HS_BLOCK; 2177 case USB_SPEED_SUPER: 2178 case USB_SPEED_SUPER_PLUS: 2179 return SS_BLOCK; 2180 case USB_SPEED_UNKNOWN: 2181 case USB_SPEED_WIRELESS: 2182 default: 2183 /* Should never happen */ 2184 return 1; 2185 } 2186 } 2187 2188 static unsigned int 2189 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2190 { 2191 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2192 return LS_OVERHEAD; 2193 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2194 return FS_OVERHEAD; 2195 return HS_OVERHEAD; 2196 } 2197 2198 /* If we are changing a LS/FS device under a HS hub, 2199 * make sure (if we are activating a new TT) that the HS bus has enough 2200 * bandwidth for this new TT. 2201 */ 2202 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2203 struct xhci_virt_device *virt_dev, 2204 int old_active_eps) 2205 { 2206 struct xhci_interval_bw_table *bw_table; 2207 struct xhci_tt_bw_info *tt_info; 2208 2209 /* Find the bandwidth table for the root port this TT is attached to. */ 2210 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2211 tt_info = virt_dev->tt_info; 2212 /* If this TT already had active endpoints, the bandwidth for this TT 2213 * has already been added. Removing all periodic endpoints (and thus 2214 * making the TT enactive) will only decrease the bandwidth used. 2215 */ 2216 if (old_active_eps) 2217 return 0; 2218 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2219 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2220 return -ENOMEM; 2221 return 0; 2222 } 2223 /* Not sure why we would have no new active endpoints... 2224 * 2225 * Maybe because of an Evaluate Context change for a hub update or a 2226 * control endpoint 0 max packet size change? 2227 * FIXME: skip the bandwidth calculation in that case. 2228 */ 2229 return 0; 2230 } 2231 2232 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2233 struct xhci_virt_device *virt_dev) 2234 { 2235 unsigned int bw_reserved; 2236 2237 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2238 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2239 return -ENOMEM; 2240 2241 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2242 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2243 return -ENOMEM; 2244 2245 return 0; 2246 } 2247 2248 /* 2249 * This algorithm is a very conservative estimate of the worst-case scheduling 2250 * scenario for any one interval. The hardware dynamically schedules the 2251 * packets, so we can't tell which microframe could be the limiting factor in 2252 * the bandwidth scheduling. This only takes into account periodic endpoints. 2253 * 2254 * Obviously, we can't solve an NP complete problem to find the minimum worst 2255 * case scenario. Instead, we come up with an estimate that is no less than 2256 * the worst case bandwidth used for any one microframe, but may be an 2257 * over-estimate. 2258 * 2259 * We walk the requirements for each endpoint by interval, starting with the 2260 * smallest interval, and place packets in the schedule where there is only one 2261 * possible way to schedule packets for that interval. In order to simplify 2262 * this algorithm, we record the largest max packet size for each interval, and 2263 * assume all packets will be that size. 2264 * 2265 * For interval 0, we obviously must schedule all packets for each interval. 2266 * The bandwidth for interval 0 is just the amount of data to be transmitted 2267 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2268 * the number of packets). 2269 * 2270 * For interval 1, we have two possible microframes to schedule those packets 2271 * in. For this algorithm, if we can schedule the same number of packets for 2272 * each possible scheduling opportunity (each microframe), we will do so. The 2273 * remaining number of packets will be saved to be transmitted in the gaps in 2274 * the next interval's scheduling sequence. 2275 * 2276 * As we move those remaining packets to be scheduled with interval 2 packets, 2277 * we have to double the number of remaining packets to transmit. This is 2278 * because the intervals are actually powers of 2, and we would be transmitting 2279 * the previous interval's packets twice in this interval. We also have to be 2280 * sure that when we look at the largest max packet size for this interval, we 2281 * also look at the largest max packet size for the remaining packets and take 2282 * the greater of the two. 2283 * 2284 * The algorithm continues to evenly distribute packets in each scheduling 2285 * opportunity, and push the remaining packets out, until we get to the last 2286 * interval. Then those packets and their associated overhead are just added 2287 * to the bandwidth used. 2288 */ 2289 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2290 struct xhci_virt_device *virt_dev, 2291 int old_active_eps) 2292 { 2293 unsigned int bw_reserved; 2294 unsigned int max_bandwidth; 2295 unsigned int bw_used; 2296 unsigned int block_size; 2297 struct xhci_interval_bw_table *bw_table; 2298 unsigned int packet_size = 0; 2299 unsigned int overhead = 0; 2300 unsigned int packets_transmitted = 0; 2301 unsigned int packets_remaining = 0; 2302 unsigned int i; 2303 2304 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2305 return xhci_check_ss_bw(xhci, virt_dev); 2306 2307 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2308 max_bandwidth = HS_BW_LIMIT; 2309 /* Convert percent of bus BW reserved to blocks reserved */ 2310 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2311 } else { 2312 max_bandwidth = FS_BW_LIMIT; 2313 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2314 } 2315 2316 bw_table = virt_dev->bw_table; 2317 /* We need to translate the max packet size and max ESIT payloads into 2318 * the units the hardware uses. 2319 */ 2320 block_size = xhci_get_block_size(virt_dev->udev); 2321 2322 /* If we are manipulating a LS/FS device under a HS hub, double check 2323 * that the HS bus has enough bandwidth if we are activing a new TT. 2324 */ 2325 if (virt_dev->tt_info) { 2326 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2327 "Recalculating BW for rootport %u", 2328 virt_dev->real_port); 2329 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2330 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2331 "newly activated TT.\n"); 2332 return -ENOMEM; 2333 } 2334 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2335 "Recalculating BW for TT slot %u port %u", 2336 virt_dev->tt_info->slot_id, 2337 virt_dev->tt_info->ttport); 2338 } else { 2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2340 "Recalculating BW for rootport %u", 2341 virt_dev->real_port); 2342 } 2343 2344 /* Add in how much bandwidth will be used for interval zero, or the 2345 * rounded max ESIT payload + number of packets * largest overhead. 2346 */ 2347 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2348 bw_table->interval_bw[0].num_packets * 2349 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2350 2351 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2352 unsigned int bw_added; 2353 unsigned int largest_mps; 2354 unsigned int interval_overhead; 2355 2356 /* 2357 * How many packets could we transmit in this interval? 2358 * If packets didn't fit in the previous interval, we will need 2359 * to transmit that many packets twice within this interval. 2360 */ 2361 packets_remaining = 2 * packets_remaining + 2362 bw_table->interval_bw[i].num_packets; 2363 2364 /* Find the largest max packet size of this or the previous 2365 * interval. 2366 */ 2367 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2368 largest_mps = 0; 2369 else { 2370 struct xhci_virt_ep *virt_ep; 2371 struct list_head *ep_entry; 2372 2373 ep_entry = bw_table->interval_bw[i].endpoints.next; 2374 virt_ep = list_entry(ep_entry, 2375 struct xhci_virt_ep, bw_endpoint_list); 2376 /* Convert to blocks, rounding up */ 2377 largest_mps = DIV_ROUND_UP( 2378 virt_ep->bw_info.max_packet_size, 2379 block_size); 2380 } 2381 if (largest_mps > packet_size) 2382 packet_size = largest_mps; 2383 2384 /* Use the larger overhead of this or the previous interval. */ 2385 interval_overhead = xhci_get_largest_overhead( 2386 &bw_table->interval_bw[i]); 2387 if (interval_overhead > overhead) 2388 overhead = interval_overhead; 2389 2390 /* How many packets can we evenly distribute across 2391 * (1 << (i + 1)) possible scheduling opportunities? 2392 */ 2393 packets_transmitted = packets_remaining >> (i + 1); 2394 2395 /* Add in the bandwidth used for those scheduled packets */ 2396 bw_added = packets_transmitted * (overhead + packet_size); 2397 2398 /* How many packets do we have remaining to transmit? */ 2399 packets_remaining = packets_remaining % (1 << (i + 1)); 2400 2401 /* What largest max packet size should those packets have? */ 2402 /* If we've transmitted all packets, don't carry over the 2403 * largest packet size. 2404 */ 2405 if (packets_remaining == 0) { 2406 packet_size = 0; 2407 overhead = 0; 2408 } else if (packets_transmitted > 0) { 2409 /* Otherwise if we do have remaining packets, and we've 2410 * scheduled some packets in this interval, take the 2411 * largest max packet size from endpoints with this 2412 * interval. 2413 */ 2414 packet_size = largest_mps; 2415 overhead = interval_overhead; 2416 } 2417 /* Otherwise carry over packet_size and overhead from the last 2418 * time we had a remainder. 2419 */ 2420 bw_used += bw_added; 2421 if (bw_used > max_bandwidth) { 2422 xhci_warn(xhci, "Not enough bandwidth. " 2423 "Proposed: %u, Max: %u\n", 2424 bw_used, max_bandwidth); 2425 return -ENOMEM; 2426 } 2427 } 2428 /* 2429 * Ok, we know we have some packets left over after even-handedly 2430 * scheduling interval 15. We don't know which microframes they will 2431 * fit into, so we over-schedule and say they will be scheduled every 2432 * microframe. 2433 */ 2434 if (packets_remaining > 0) 2435 bw_used += overhead + packet_size; 2436 2437 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2438 unsigned int port_index = virt_dev->real_port - 1; 2439 2440 /* OK, we're manipulating a HS device attached to a 2441 * root port bandwidth domain. Include the number of active TTs 2442 * in the bandwidth used. 2443 */ 2444 bw_used += TT_HS_OVERHEAD * 2445 xhci->rh_bw[port_index].num_active_tts; 2446 } 2447 2448 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2449 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2450 "Available: %u " "percent", 2451 bw_used, max_bandwidth, bw_reserved, 2452 (max_bandwidth - bw_used - bw_reserved) * 100 / 2453 max_bandwidth); 2454 2455 bw_used += bw_reserved; 2456 if (bw_used > max_bandwidth) { 2457 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2458 bw_used, max_bandwidth); 2459 return -ENOMEM; 2460 } 2461 2462 bw_table->bw_used = bw_used; 2463 return 0; 2464 } 2465 2466 static bool xhci_is_async_ep(unsigned int ep_type) 2467 { 2468 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2469 ep_type != ISOC_IN_EP && 2470 ep_type != INT_IN_EP); 2471 } 2472 2473 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2474 { 2475 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2476 } 2477 2478 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2479 { 2480 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2481 2482 if (ep_bw->ep_interval == 0) 2483 return SS_OVERHEAD_BURST + 2484 (ep_bw->mult * ep_bw->num_packets * 2485 (SS_OVERHEAD + mps)); 2486 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2487 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2488 1 << ep_bw->ep_interval); 2489 2490 } 2491 2492 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2493 struct xhci_bw_info *ep_bw, 2494 struct xhci_interval_bw_table *bw_table, 2495 struct usb_device *udev, 2496 struct xhci_virt_ep *virt_ep, 2497 struct xhci_tt_bw_info *tt_info) 2498 { 2499 struct xhci_interval_bw *interval_bw; 2500 int normalized_interval; 2501 2502 if (xhci_is_async_ep(ep_bw->type)) 2503 return; 2504 2505 if (udev->speed >= USB_SPEED_SUPER) { 2506 if (xhci_is_sync_in_ep(ep_bw->type)) 2507 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2508 xhci_get_ss_bw_consumed(ep_bw); 2509 else 2510 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2511 xhci_get_ss_bw_consumed(ep_bw); 2512 return; 2513 } 2514 2515 /* SuperSpeed endpoints never get added to intervals in the table, so 2516 * this check is only valid for HS/FS/LS devices. 2517 */ 2518 if (list_empty(&virt_ep->bw_endpoint_list)) 2519 return; 2520 /* For LS/FS devices, we need to translate the interval expressed in 2521 * microframes to frames. 2522 */ 2523 if (udev->speed == USB_SPEED_HIGH) 2524 normalized_interval = ep_bw->ep_interval; 2525 else 2526 normalized_interval = ep_bw->ep_interval - 3; 2527 2528 if (normalized_interval == 0) 2529 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2530 interval_bw = &bw_table->interval_bw[normalized_interval]; 2531 interval_bw->num_packets -= ep_bw->num_packets; 2532 switch (udev->speed) { 2533 case USB_SPEED_LOW: 2534 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2535 break; 2536 case USB_SPEED_FULL: 2537 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2538 break; 2539 case USB_SPEED_HIGH: 2540 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2541 break; 2542 case USB_SPEED_SUPER: 2543 case USB_SPEED_SUPER_PLUS: 2544 case USB_SPEED_UNKNOWN: 2545 case USB_SPEED_WIRELESS: 2546 /* Should never happen because only LS/FS/HS endpoints will get 2547 * added to the endpoint list. 2548 */ 2549 return; 2550 } 2551 if (tt_info) 2552 tt_info->active_eps -= 1; 2553 list_del_init(&virt_ep->bw_endpoint_list); 2554 } 2555 2556 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2557 struct xhci_bw_info *ep_bw, 2558 struct xhci_interval_bw_table *bw_table, 2559 struct usb_device *udev, 2560 struct xhci_virt_ep *virt_ep, 2561 struct xhci_tt_bw_info *tt_info) 2562 { 2563 struct xhci_interval_bw *interval_bw; 2564 struct xhci_virt_ep *smaller_ep; 2565 int normalized_interval; 2566 2567 if (xhci_is_async_ep(ep_bw->type)) 2568 return; 2569 2570 if (udev->speed == USB_SPEED_SUPER) { 2571 if (xhci_is_sync_in_ep(ep_bw->type)) 2572 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2573 xhci_get_ss_bw_consumed(ep_bw); 2574 else 2575 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2576 xhci_get_ss_bw_consumed(ep_bw); 2577 return; 2578 } 2579 2580 /* For LS/FS devices, we need to translate the interval expressed in 2581 * microframes to frames. 2582 */ 2583 if (udev->speed == USB_SPEED_HIGH) 2584 normalized_interval = ep_bw->ep_interval; 2585 else 2586 normalized_interval = ep_bw->ep_interval - 3; 2587 2588 if (normalized_interval == 0) 2589 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2590 interval_bw = &bw_table->interval_bw[normalized_interval]; 2591 interval_bw->num_packets += ep_bw->num_packets; 2592 switch (udev->speed) { 2593 case USB_SPEED_LOW: 2594 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2595 break; 2596 case USB_SPEED_FULL: 2597 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2598 break; 2599 case USB_SPEED_HIGH: 2600 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2601 break; 2602 case USB_SPEED_SUPER: 2603 case USB_SPEED_SUPER_PLUS: 2604 case USB_SPEED_UNKNOWN: 2605 case USB_SPEED_WIRELESS: 2606 /* Should never happen because only LS/FS/HS endpoints will get 2607 * added to the endpoint list. 2608 */ 2609 return; 2610 } 2611 2612 if (tt_info) 2613 tt_info->active_eps += 1; 2614 /* Insert the endpoint into the list, largest max packet size first. */ 2615 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2616 bw_endpoint_list) { 2617 if (ep_bw->max_packet_size >= 2618 smaller_ep->bw_info.max_packet_size) { 2619 /* Add the new ep before the smaller endpoint */ 2620 list_add_tail(&virt_ep->bw_endpoint_list, 2621 &smaller_ep->bw_endpoint_list); 2622 return; 2623 } 2624 } 2625 /* Add the new endpoint at the end of the list. */ 2626 list_add_tail(&virt_ep->bw_endpoint_list, 2627 &interval_bw->endpoints); 2628 } 2629 2630 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2631 struct xhci_virt_device *virt_dev, 2632 int old_active_eps) 2633 { 2634 struct xhci_root_port_bw_info *rh_bw_info; 2635 if (!virt_dev->tt_info) 2636 return; 2637 2638 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2639 if (old_active_eps == 0 && 2640 virt_dev->tt_info->active_eps != 0) { 2641 rh_bw_info->num_active_tts += 1; 2642 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2643 } else if (old_active_eps != 0 && 2644 virt_dev->tt_info->active_eps == 0) { 2645 rh_bw_info->num_active_tts -= 1; 2646 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2647 } 2648 } 2649 2650 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2651 struct xhci_virt_device *virt_dev, 2652 struct xhci_container_ctx *in_ctx) 2653 { 2654 struct xhci_bw_info ep_bw_info[31]; 2655 int i; 2656 struct xhci_input_control_ctx *ctrl_ctx; 2657 int old_active_eps = 0; 2658 2659 if (virt_dev->tt_info) 2660 old_active_eps = virt_dev->tt_info->active_eps; 2661 2662 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2663 if (!ctrl_ctx) { 2664 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2665 __func__); 2666 return -ENOMEM; 2667 } 2668 2669 for (i = 0; i < 31; i++) { 2670 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2671 continue; 2672 2673 /* Make a copy of the BW info in case we need to revert this */ 2674 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2675 sizeof(ep_bw_info[i])); 2676 /* Drop the endpoint from the interval table if the endpoint is 2677 * being dropped or changed. 2678 */ 2679 if (EP_IS_DROPPED(ctrl_ctx, i)) 2680 xhci_drop_ep_from_interval_table(xhci, 2681 &virt_dev->eps[i].bw_info, 2682 virt_dev->bw_table, 2683 virt_dev->udev, 2684 &virt_dev->eps[i], 2685 virt_dev->tt_info); 2686 } 2687 /* Overwrite the information stored in the endpoints' bw_info */ 2688 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2689 for (i = 0; i < 31; i++) { 2690 /* Add any changed or added endpoints to the interval table */ 2691 if (EP_IS_ADDED(ctrl_ctx, i)) 2692 xhci_add_ep_to_interval_table(xhci, 2693 &virt_dev->eps[i].bw_info, 2694 virt_dev->bw_table, 2695 virt_dev->udev, 2696 &virt_dev->eps[i], 2697 virt_dev->tt_info); 2698 } 2699 2700 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2701 /* Ok, this fits in the bandwidth we have. 2702 * Update the number of active TTs. 2703 */ 2704 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2705 return 0; 2706 } 2707 2708 /* We don't have enough bandwidth for this, revert the stored info. */ 2709 for (i = 0; i < 31; i++) { 2710 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2711 continue; 2712 2713 /* Drop the new copies of any added or changed endpoints from 2714 * the interval table. 2715 */ 2716 if (EP_IS_ADDED(ctrl_ctx, i)) { 2717 xhci_drop_ep_from_interval_table(xhci, 2718 &virt_dev->eps[i].bw_info, 2719 virt_dev->bw_table, 2720 virt_dev->udev, 2721 &virt_dev->eps[i], 2722 virt_dev->tt_info); 2723 } 2724 /* Revert the endpoint back to its old information */ 2725 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2726 sizeof(ep_bw_info[i])); 2727 /* Add any changed or dropped endpoints back into the table */ 2728 if (EP_IS_DROPPED(ctrl_ctx, i)) 2729 xhci_add_ep_to_interval_table(xhci, 2730 &virt_dev->eps[i].bw_info, 2731 virt_dev->bw_table, 2732 virt_dev->udev, 2733 &virt_dev->eps[i], 2734 virt_dev->tt_info); 2735 } 2736 return -ENOMEM; 2737 } 2738 2739 2740 /* Issue a configure endpoint command or evaluate context command 2741 * and wait for it to finish. 2742 */ 2743 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2744 struct usb_device *udev, 2745 struct xhci_command *command, 2746 bool ctx_change, bool must_succeed) 2747 { 2748 int ret; 2749 unsigned long flags; 2750 struct xhci_input_control_ctx *ctrl_ctx; 2751 struct xhci_virt_device *virt_dev; 2752 struct xhci_slot_ctx *slot_ctx; 2753 2754 if (!command) 2755 return -EINVAL; 2756 2757 spin_lock_irqsave(&xhci->lock, flags); 2758 2759 if (xhci->xhc_state & XHCI_STATE_DYING) { 2760 spin_unlock_irqrestore(&xhci->lock, flags); 2761 return -ESHUTDOWN; 2762 } 2763 2764 virt_dev = xhci->devs[udev->slot_id]; 2765 2766 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2767 if (!ctrl_ctx) { 2768 spin_unlock_irqrestore(&xhci->lock, flags); 2769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2770 __func__); 2771 return -ENOMEM; 2772 } 2773 2774 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2775 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2776 spin_unlock_irqrestore(&xhci->lock, flags); 2777 xhci_warn(xhci, "Not enough host resources, " 2778 "active endpoint contexts = %u\n", 2779 xhci->num_active_eps); 2780 return -ENOMEM; 2781 } 2782 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2783 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2784 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2785 xhci_free_host_resources(xhci, ctrl_ctx); 2786 spin_unlock_irqrestore(&xhci->lock, flags); 2787 xhci_warn(xhci, "Not enough bandwidth\n"); 2788 return -ENOMEM; 2789 } 2790 2791 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2792 2793 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2794 trace_xhci_configure_endpoint(slot_ctx); 2795 2796 if (!ctx_change) 2797 ret = xhci_queue_configure_endpoint(xhci, command, 2798 command->in_ctx->dma, 2799 udev->slot_id, must_succeed); 2800 else 2801 ret = xhci_queue_evaluate_context(xhci, command, 2802 command->in_ctx->dma, 2803 udev->slot_id, must_succeed); 2804 if (ret < 0) { 2805 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2806 xhci_free_host_resources(xhci, ctrl_ctx); 2807 spin_unlock_irqrestore(&xhci->lock, flags); 2808 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2809 "FIXME allocate a new ring segment"); 2810 return -ENOMEM; 2811 } 2812 xhci_ring_cmd_db(xhci); 2813 spin_unlock_irqrestore(&xhci->lock, flags); 2814 2815 /* Wait for the configure endpoint command to complete */ 2816 wait_for_completion(command->completion); 2817 2818 if (!ctx_change) 2819 ret = xhci_configure_endpoint_result(xhci, udev, 2820 &command->status); 2821 else 2822 ret = xhci_evaluate_context_result(xhci, udev, 2823 &command->status); 2824 2825 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2826 spin_lock_irqsave(&xhci->lock, flags); 2827 /* If the command failed, remove the reserved resources. 2828 * Otherwise, clean up the estimate to include dropped eps. 2829 */ 2830 if (ret) 2831 xhci_free_host_resources(xhci, ctrl_ctx); 2832 else 2833 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2834 spin_unlock_irqrestore(&xhci->lock, flags); 2835 } 2836 return ret; 2837 } 2838 2839 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2840 struct xhci_virt_device *vdev, int i) 2841 { 2842 struct xhci_virt_ep *ep = &vdev->eps[i]; 2843 2844 if (ep->ep_state & EP_HAS_STREAMS) { 2845 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2846 xhci_get_endpoint_address(i)); 2847 xhci_free_stream_info(xhci, ep->stream_info); 2848 ep->stream_info = NULL; 2849 ep->ep_state &= ~EP_HAS_STREAMS; 2850 } 2851 } 2852 2853 /* Called after one or more calls to xhci_add_endpoint() or 2854 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2855 * to call xhci_reset_bandwidth(). 2856 * 2857 * Since we are in the middle of changing either configuration or 2858 * installing a new alt setting, the USB core won't allow URBs to be 2859 * enqueued for any endpoint on the old config or interface. Nothing 2860 * else should be touching the xhci->devs[slot_id] structure, so we 2861 * don't need to take the xhci->lock for manipulating that. 2862 */ 2863 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2864 { 2865 int i; 2866 int ret = 0; 2867 struct xhci_hcd *xhci; 2868 struct xhci_virt_device *virt_dev; 2869 struct xhci_input_control_ctx *ctrl_ctx; 2870 struct xhci_slot_ctx *slot_ctx; 2871 struct xhci_command *command; 2872 2873 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2874 if (ret <= 0) 2875 return ret; 2876 xhci = hcd_to_xhci(hcd); 2877 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2878 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2879 return -ENODEV; 2880 2881 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2882 virt_dev = xhci->devs[udev->slot_id]; 2883 2884 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2885 if (!command) 2886 return -ENOMEM; 2887 2888 command->in_ctx = virt_dev->in_ctx; 2889 2890 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2891 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2892 if (!ctrl_ctx) { 2893 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2894 __func__); 2895 ret = -ENOMEM; 2896 goto command_cleanup; 2897 } 2898 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2899 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2900 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2901 2902 /* Don't issue the command if there's no endpoints to update. */ 2903 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2904 ctrl_ctx->drop_flags == 0) { 2905 ret = 0; 2906 goto command_cleanup; 2907 } 2908 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2909 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2910 for (i = 31; i >= 1; i--) { 2911 __le32 le32 = cpu_to_le32(BIT(i)); 2912 2913 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2914 || (ctrl_ctx->add_flags & le32) || i == 1) { 2915 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2916 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2917 break; 2918 } 2919 } 2920 2921 ret = xhci_configure_endpoint(xhci, udev, command, 2922 false, false); 2923 if (ret) 2924 /* Callee should call reset_bandwidth() */ 2925 goto command_cleanup; 2926 2927 /* Free any rings that were dropped, but not changed. */ 2928 for (i = 1; i < 31; i++) { 2929 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2930 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2931 xhci_free_endpoint_ring(xhci, virt_dev, i); 2932 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2933 } 2934 } 2935 xhci_zero_in_ctx(xhci, virt_dev); 2936 /* 2937 * Install any rings for completely new endpoints or changed endpoints, 2938 * and free any old rings from changed endpoints. 2939 */ 2940 for (i = 1; i < 31; i++) { 2941 if (!virt_dev->eps[i].new_ring) 2942 continue; 2943 /* Only free the old ring if it exists. 2944 * It may not if this is the first add of an endpoint. 2945 */ 2946 if (virt_dev->eps[i].ring) { 2947 xhci_free_endpoint_ring(xhci, virt_dev, i); 2948 } 2949 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2950 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2951 virt_dev->eps[i].new_ring = NULL; 2952 } 2953 command_cleanup: 2954 kfree(command->completion); 2955 kfree(command); 2956 2957 return ret; 2958 } 2959 2960 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2961 { 2962 struct xhci_hcd *xhci; 2963 struct xhci_virt_device *virt_dev; 2964 int i, ret; 2965 2966 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2967 if (ret <= 0) 2968 return; 2969 xhci = hcd_to_xhci(hcd); 2970 2971 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2972 virt_dev = xhci->devs[udev->slot_id]; 2973 /* Free any rings allocated for added endpoints */ 2974 for (i = 0; i < 31; i++) { 2975 if (virt_dev->eps[i].new_ring) { 2976 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2977 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2978 virt_dev->eps[i].new_ring = NULL; 2979 } 2980 } 2981 xhci_zero_in_ctx(xhci, virt_dev); 2982 } 2983 2984 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2985 struct xhci_container_ctx *in_ctx, 2986 struct xhci_container_ctx *out_ctx, 2987 struct xhci_input_control_ctx *ctrl_ctx, 2988 u32 add_flags, u32 drop_flags) 2989 { 2990 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2991 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2992 xhci_slot_copy(xhci, in_ctx, out_ctx); 2993 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2994 } 2995 2996 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2997 unsigned int slot_id, unsigned int ep_index, 2998 struct xhci_dequeue_state *deq_state) 2999 { 3000 struct xhci_input_control_ctx *ctrl_ctx; 3001 struct xhci_container_ctx *in_ctx; 3002 struct xhci_ep_ctx *ep_ctx; 3003 u32 added_ctxs; 3004 dma_addr_t addr; 3005 3006 in_ctx = xhci->devs[slot_id]->in_ctx; 3007 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 3008 if (!ctrl_ctx) { 3009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3010 __func__); 3011 return; 3012 } 3013 3014 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 3015 xhci->devs[slot_id]->out_ctx, ep_index); 3016 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 3017 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 3018 deq_state->new_deq_ptr); 3019 if (addr == 0) { 3020 xhci_warn(xhci, "WARN Cannot submit config ep after " 3021 "reset ep command\n"); 3022 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 3023 deq_state->new_deq_seg, 3024 deq_state->new_deq_ptr); 3025 return; 3026 } 3027 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 3028 3029 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 3030 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 3031 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 3032 added_ctxs, added_ctxs); 3033 } 3034 3035 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id, 3036 unsigned int ep_index, unsigned int stream_id, 3037 struct xhci_td *td) 3038 { 3039 struct xhci_dequeue_state deq_state; 3040 3041 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3042 "Cleaning up stalled endpoint ring"); 3043 /* We need to move the HW's dequeue pointer past this TD, 3044 * or it will attempt to resend it on the next doorbell ring. 3045 */ 3046 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td, 3047 &deq_state); 3048 3049 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 3050 return; 3051 3052 /* HW with the reset endpoint quirk will use the saved dequeue state to 3053 * issue a configure endpoint command later. 3054 */ 3055 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 3056 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 3057 "Queueing new dequeue state"); 3058 xhci_queue_new_dequeue_state(xhci, slot_id, 3059 ep_index, &deq_state); 3060 } else { 3061 /* Better hope no one uses the input context between now and the 3062 * reset endpoint completion! 3063 * XXX: No idea how this hardware will react when stream rings 3064 * are enabled. 3065 */ 3066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3067 "Setting up input context for " 3068 "configure endpoint command"); 3069 xhci_setup_input_ctx_for_quirk(xhci, slot_id, 3070 ep_index, &deq_state); 3071 } 3072 } 3073 3074 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3075 struct usb_host_endpoint *host_ep) 3076 { 3077 struct xhci_hcd *xhci; 3078 struct xhci_virt_device *vdev; 3079 struct xhci_virt_ep *ep; 3080 struct usb_device *udev; 3081 unsigned long flags; 3082 unsigned int ep_index; 3083 3084 xhci = hcd_to_xhci(hcd); 3085 rescan: 3086 spin_lock_irqsave(&xhci->lock, flags); 3087 3088 udev = (struct usb_device *)host_ep->hcpriv; 3089 if (!udev || !udev->slot_id) 3090 goto done; 3091 3092 vdev = xhci->devs[udev->slot_id]; 3093 if (!vdev) 3094 goto done; 3095 3096 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3097 ep = &vdev->eps[ep_index]; 3098 if (!ep) 3099 goto done; 3100 3101 /* wait for hub_tt_work to finish clearing hub TT */ 3102 if (ep->ep_state & EP_CLEARING_TT) { 3103 spin_unlock_irqrestore(&xhci->lock, flags); 3104 schedule_timeout_uninterruptible(1); 3105 goto rescan; 3106 } 3107 3108 if (ep->ep_state) 3109 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3110 ep->ep_state); 3111 done: 3112 host_ep->hcpriv = NULL; 3113 spin_unlock_irqrestore(&xhci->lock, flags); 3114 } 3115 3116 /* 3117 * Called after usb core issues a clear halt control message. 3118 * The host side of the halt should already be cleared by a reset endpoint 3119 * command issued when the STALL event was received. 3120 * 3121 * The reset endpoint command may only be issued to endpoints in the halted 3122 * state. For software that wishes to reset the data toggle or sequence number 3123 * of an endpoint that isn't in the halted state this function will issue a 3124 * configure endpoint command with the Drop and Add bits set for the target 3125 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3126 */ 3127 3128 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3129 struct usb_host_endpoint *host_ep) 3130 { 3131 struct xhci_hcd *xhci; 3132 struct usb_device *udev; 3133 struct xhci_virt_device *vdev; 3134 struct xhci_virt_ep *ep; 3135 struct xhci_input_control_ctx *ctrl_ctx; 3136 struct xhci_command *stop_cmd, *cfg_cmd; 3137 unsigned int ep_index; 3138 unsigned long flags; 3139 u32 ep_flag; 3140 int err; 3141 3142 xhci = hcd_to_xhci(hcd); 3143 if (!host_ep->hcpriv) 3144 return; 3145 udev = (struct usb_device *) host_ep->hcpriv; 3146 vdev = xhci->devs[udev->slot_id]; 3147 3148 /* 3149 * vdev may be lost due to xHC restore error and re-initialization 3150 * during S3/S4 resume. A new vdev will be allocated later by 3151 * xhci_discover_or_reset_device() 3152 */ 3153 if (!udev->slot_id || !vdev) 3154 return; 3155 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3156 ep = &vdev->eps[ep_index]; 3157 if (!ep) 3158 return; 3159 3160 /* Bail out if toggle is already being cleared by a endpoint reset */ 3161 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3162 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3163 return; 3164 } 3165 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3166 if (usb_endpoint_xfer_control(&host_ep->desc) || 3167 usb_endpoint_xfer_isoc(&host_ep->desc)) 3168 return; 3169 3170 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3171 3172 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3173 return; 3174 3175 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3176 if (!stop_cmd) 3177 return; 3178 3179 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3180 if (!cfg_cmd) 3181 goto cleanup; 3182 3183 spin_lock_irqsave(&xhci->lock, flags); 3184 3185 /* block queuing new trbs and ringing ep doorbell */ 3186 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3187 3188 /* 3189 * Make sure endpoint ring is empty before resetting the toggle/seq. 3190 * Driver is required to synchronously cancel all transfer request. 3191 * Stop the endpoint to force xHC to update the output context 3192 */ 3193 3194 if (!list_empty(&ep->ring->td_list)) { 3195 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3196 spin_unlock_irqrestore(&xhci->lock, flags); 3197 xhci_free_command(xhci, cfg_cmd); 3198 goto cleanup; 3199 } 3200 3201 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3202 ep_index, 0); 3203 if (err < 0) { 3204 spin_unlock_irqrestore(&xhci->lock, flags); 3205 xhci_free_command(xhci, cfg_cmd); 3206 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3207 __func__, err); 3208 goto cleanup; 3209 } 3210 3211 xhci_ring_cmd_db(xhci); 3212 spin_unlock_irqrestore(&xhci->lock, flags); 3213 3214 wait_for_completion(stop_cmd->completion); 3215 3216 spin_lock_irqsave(&xhci->lock, flags); 3217 3218 /* config ep command clears toggle if add and drop ep flags are set */ 3219 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3220 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3221 ctrl_ctx, ep_flag, ep_flag); 3222 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3223 3224 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3225 udev->slot_id, false); 3226 if (err < 0) { 3227 spin_unlock_irqrestore(&xhci->lock, flags); 3228 xhci_free_command(xhci, cfg_cmd); 3229 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3230 __func__, err); 3231 goto cleanup; 3232 } 3233 3234 xhci_ring_cmd_db(xhci); 3235 spin_unlock_irqrestore(&xhci->lock, flags); 3236 3237 wait_for_completion(cfg_cmd->completion); 3238 3239 xhci_free_command(xhci, cfg_cmd); 3240 cleanup: 3241 xhci_free_command(xhci, stop_cmd); 3242 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3243 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3244 } 3245 3246 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3247 struct usb_device *udev, struct usb_host_endpoint *ep, 3248 unsigned int slot_id) 3249 { 3250 int ret; 3251 unsigned int ep_index; 3252 unsigned int ep_state; 3253 3254 if (!ep) 3255 return -EINVAL; 3256 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3257 if (ret <= 0) 3258 return -EINVAL; 3259 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3260 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3261 " descriptor for ep 0x%x does not support streams\n", 3262 ep->desc.bEndpointAddress); 3263 return -EINVAL; 3264 } 3265 3266 ep_index = xhci_get_endpoint_index(&ep->desc); 3267 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3268 if (ep_state & EP_HAS_STREAMS || 3269 ep_state & EP_GETTING_STREAMS) { 3270 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3271 "already has streams set up.\n", 3272 ep->desc.bEndpointAddress); 3273 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3274 "dynamic stream context array reallocation.\n"); 3275 return -EINVAL; 3276 } 3277 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3278 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3279 "endpoint 0x%x; URBs are pending.\n", 3280 ep->desc.bEndpointAddress); 3281 return -EINVAL; 3282 } 3283 return 0; 3284 } 3285 3286 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3287 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3288 { 3289 unsigned int max_streams; 3290 3291 /* The stream context array size must be a power of two */ 3292 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3293 /* 3294 * Find out how many primary stream array entries the host controller 3295 * supports. Later we may use secondary stream arrays (similar to 2nd 3296 * level page entries), but that's an optional feature for xHCI host 3297 * controllers. xHCs must support at least 4 stream IDs. 3298 */ 3299 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3300 if (*num_stream_ctxs > max_streams) { 3301 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3302 max_streams); 3303 *num_stream_ctxs = max_streams; 3304 *num_streams = max_streams; 3305 } 3306 } 3307 3308 /* Returns an error code if one of the endpoint already has streams. 3309 * This does not change any data structures, it only checks and gathers 3310 * information. 3311 */ 3312 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3313 struct usb_device *udev, 3314 struct usb_host_endpoint **eps, unsigned int num_eps, 3315 unsigned int *num_streams, u32 *changed_ep_bitmask) 3316 { 3317 unsigned int max_streams; 3318 unsigned int endpoint_flag; 3319 int i; 3320 int ret; 3321 3322 for (i = 0; i < num_eps; i++) { 3323 ret = xhci_check_streams_endpoint(xhci, udev, 3324 eps[i], udev->slot_id); 3325 if (ret < 0) 3326 return ret; 3327 3328 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3329 if (max_streams < (*num_streams - 1)) { 3330 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3331 eps[i]->desc.bEndpointAddress, 3332 max_streams); 3333 *num_streams = max_streams+1; 3334 } 3335 3336 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3337 if (*changed_ep_bitmask & endpoint_flag) 3338 return -EINVAL; 3339 *changed_ep_bitmask |= endpoint_flag; 3340 } 3341 return 0; 3342 } 3343 3344 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3345 struct usb_device *udev, 3346 struct usb_host_endpoint **eps, unsigned int num_eps) 3347 { 3348 u32 changed_ep_bitmask = 0; 3349 unsigned int slot_id; 3350 unsigned int ep_index; 3351 unsigned int ep_state; 3352 int i; 3353 3354 slot_id = udev->slot_id; 3355 if (!xhci->devs[slot_id]) 3356 return 0; 3357 3358 for (i = 0; i < num_eps; i++) { 3359 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3360 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3361 /* Are streams already being freed for the endpoint? */ 3362 if (ep_state & EP_GETTING_NO_STREAMS) { 3363 xhci_warn(xhci, "WARN Can't disable streams for " 3364 "endpoint 0x%x, " 3365 "streams are being disabled already\n", 3366 eps[i]->desc.bEndpointAddress); 3367 return 0; 3368 } 3369 /* Are there actually any streams to free? */ 3370 if (!(ep_state & EP_HAS_STREAMS) && 3371 !(ep_state & EP_GETTING_STREAMS)) { 3372 xhci_warn(xhci, "WARN Can't disable streams for " 3373 "endpoint 0x%x, " 3374 "streams are already disabled!\n", 3375 eps[i]->desc.bEndpointAddress); 3376 xhci_warn(xhci, "WARN xhci_free_streams() called " 3377 "with non-streams endpoint\n"); 3378 return 0; 3379 } 3380 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3381 } 3382 return changed_ep_bitmask; 3383 } 3384 3385 /* 3386 * The USB device drivers use this function (through the HCD interface in USB 3387 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3388 * coordinate mass storage command queueing across multiple endpoints (basically 3389 * a stream ID == a task ID). 3390 * 3391 * Setting up streams involves allocating the same size stream context array 3392 * for each endpoint and issuing a configure endpoint command for all endpoints. 3393 * 3394 * Don't allow the call to succeed if one endpoint only supports one stream 3395 * (which means it doesn't support streams at all). 3396 * 3397 * Drivers may get less stream IDs than they asked for, if the host controller 3398 * hardware or endpoints claim they can't support the number of requested 3399 * stream IDs. 3400 */ 3401 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3402 struct usb_host_endpoint **eps, unsigned int num_eps, 3403 unsigned int num_streams, gfp_t mem_flags) 3404 { 3405 int i, ret; 3406 struct xhci_hcd *xhci; 3407 struct xhci_virt_device *vdev; 3408 struct xhci_command *config_cmd; 3409 struct xhci_input_control_ctx *ctrl_ctx; 3410 unsigned int ep_index; 3411 unsigned int num_stream_ctxs; 3412 unsigned int max_packet; 3413 unsigned long flags; 3414 u32 changed_ep_bitmask = 0; 3415 3416 if (!eps) 3417 return -EINVAL; 3418 3419 /* Add one to the number of streams requested to account for 3420 * stream 0 that is reserved for xHCI usage. 3421 */ 3422 num_streams += 1; 3423 xhci = hcd_to_xhci(hcd); 3424 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3425 num_streams); 3426 3427 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3428 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3429 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3430 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3431 return -ENOSYS; 3432 } 3433 3434 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3435 if (!config_cmd) 3436 return -ENOMEM; 3437 3438 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3439 if (!ctrl_ctx) { 3440 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3441 __func__); 3442 xhci_free_command(xhci, config_cmd); 3443 return -ENOMEM; 3444 } 3445 3446 /* Check to make sure all endpoints are not already configured for 3447 * streams. While we're at it, find the maximum number of streams that 3448 * all the endpoints will support and check for duplicate endpoints. 3449 */ 3450 spin_lock_irqsave(&xhci->lock, flags); 3451 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3452 num_eps, &num_streams, &changed_ep_bitmask); 3453 if (ret < 0) { 3454 xhci_free_command(xhci, config_cmd); 3455 spin_unlock_irqrestore(&xhci->lock, flags); 3456 return ret; 3457 } 3458 if (num_streams <= 1) { 3459 xhci_warn(xhci, "WARN: endpoints can't handle " 3460 "more than one stream.\n"); 3461 xhci_free_command(xhci, config_cmd); 3462 spin_unlock_irqrestore(&xhci->lock, flags); 3463 return -EINVAL; 3464 } 3465 vdev = xhci->devs[udev->slot_id]; 3466 /* Mark each endpoint as being in transition, so 3467 * xhci_urb_enqueue() will reject all URBs. 3468 */ 3469 for (i = 0; i < num_eps; i++) { 3470 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3471 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3472 } 3473 spin_unlock_irqrestore(&xhci->lock, flags); 3474 3475 /* Setup internal data structures and allocate HW data structures for 3476 * streams (but don't install the HW structures in the input context 3477 * until we're sure all memory allocation succeeded). 3478 */ 3479 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3480 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3481 num_stream_ctxs, num_streams); 3482 3483 for (i = 0; i < num_eps; i++) { 3484 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3485 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3486 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3487 num_stream_ctxs, 3488 num_streams, 3489 max_packet, mem_flags); 3490 if (!vdev->eps[ep_index].stream_info) 3491 goto cleanup; 3492 /* Set maxPstreams in endpoint context and update deq ptr to 3493 * point to stream context array. FIXME 3494 */ 3495 } 3496 3497 /* Set up the input context for a configure endpoint command. */ 3498 for (i = 0; i < num_eps; i++) { 3499 struct xhci_ep_ctx *ep_ctx; 3500 3501 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3502 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3503 3504 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3505 vdev->out_ctx, ep_index); 3506 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3507 vdev->eps[ep_index].stream_info); 3508 } 3509 /* Tell the HW to drop its old copy of the endpoint context info 3510 * and add the updated copy from the input context. 3511 */ 3512 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3513 vdev->out_ctx, ctrl_ctx, 3514 changed_ep_bitmask, changed_ep_bitmask); 3515 3516 /* Issue and wait for the configure endpoint command */ 3517 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3518 false, false); 3519 3520 /* xHC rejected the configure endpoint command for some reason, so we 3521 * leave the old ring intact and free our internal streams data 3522 * structure. 3523 */ 3524 if (ret < 0) 3525 goto cleanup; 3526 3527 spin_lock_irqsave(&xhci->lock, flags); 3528 for (i = 0; i < num_eps; i++) { 3529 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3530 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3531 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3532 udev->slot_id, ep_index); 3533 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3534 } 3535 xhci_free_command(xhci, config_cmd); 3536 spin_unlock_irqrestore(&xhci->lock, flags); 3537 3538 /* Subtract 1 for stream 0, which drivers can't use */ 3539 return num_streams - 1; 3540 3541 cleanup: 3542 /* If it didn't work, free the streams! */ 3543 for (i = 0; i < num_eps; i++) { 3544 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3545 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3546 vdev->eps[ep_index].stream_info = NULL; 3547 /* FIXME Unset maxPstreams in endpoint context and 3548 * update deq ptr to point to normal string ring. 3549 */ 3550 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3551 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3552 xhci_endpoint_zero(xhci, vdev, eps[i]); 3553 } 3554 xhci_free_command(xhci, config_cmd); 3555 return -ENOMEM; 3556 } 3557 3558 /* Transition the endpoint from using streams to being a "normal" endpoint 3559 * without streams. 3560 * 3561 * Modify the endpoint context state, submit a configure endpoint command, 3562 * and free all endpoint rings for streams if that completes successfully. 3563 */ 3564 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3565 struct usb_host_endpoint **eps, unsigned int num_eps, 3566 gfp_t mem_flags) 3567 { 3568 int i, ret; 3569 struct xhci_hcd *xhci; 3570 struct xhci_virt_device *vdev; 3571 struct xhci_command *command; 3572 struct xhci_input_control_ctx *ctrl_ctx; 3573 unsigned int ep_index; 3574 unsigned long flags; 3575 u32 changed_ep_bitmask; 3576 3577 xhci = hcd_to_xhci(hcd); 3578 vdev = xhci->devs[udev->slot_id]; 3579 3580 /* Set up a configure endpoint command to remove the streams rings */ 3581 spin_lock_irqsave(&xhci->lock, flags); 3582 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3583 udev, eps, num_eps); 3584 if (changed_ep_bitmask == 0) { 3585 spin_unlock_irqrestore(&xhci->lock, flags); 3586 return -EINVAL; 3587 } 3588 3589 /* Use the xhci_command structure from the first endpoint. We may have 3590 * allocated too many, but the driver may call xhci_free_streams() for 3591 * each endpoint it grouped into one call to xhci_alloc_streams(). 3592 */ 3593 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3594 command = vdev->eps[ep_index].stream_info->free_streams_command; 3595 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3596 if (!ctrl_ctx) { 3597 spin_unlock_irqrestore(&xhci->lock, flags); 3598 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3599 __func__); 3600 return -EINVAL; 3601 } 3602 3603 for (i = 0; i < num_eps; i++) { 3604 struct xhci_ep_ctx *ep_ctx; 3605 3606 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3607 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3608 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3609 EP_GETTING_NO_STREAMS; 3610 3611 xhci_endpoint_copy(xhci, command->in_ctx, 3612 vdev->out_ctx, ep_index); 3613 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3614 &vdev->eps[ep_index]); 3615 } 3616 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3617 vdev->out_ctx, ctrl_ctx, 3618 changed_ep_bitmask, changed_ep_bitmask); 3619 spin_unlock_irqrestore(&xhci->lock, flags); 3620 3621 /* Issue and wait for the configure endpoint command, 3622 * which must succeed. 3623 */ 3624 ret = xhci_configure_endpoint(xhci, udev, command, 3625 false, true); 3626 3627 /* xHC rejected the configure endpoint command for some reason, so we 3628 * leave the streams rings intact. 3629 */ 3630 if (ret < 0) 3631 return ret; 3632 3633 spin_lock_irqsave(&xhci->lock, flags); 3634 for (i = 0; i < num_eps; i++) { 3635 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3636 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3637 vdev->eps[ep_index].stream_info = NULL; 3638 /* FIXME Unset maxPstreams in endpoint context and 3639 * update deq ptr to point to normal string ring. 3640 */ 3641 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3642 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3643 } 3644 spin_unlock_irqrestore(&xhci->lock, flags); 3645 3646 return 0; 3647 } 3648 3649 /* 3650 * Deletes endpoint resources for endpoints that were active before a Reset 3651 * Device command, or a Disable Slot command. The Reset Device command leaves 3652 * the control endpoint intact, whereas the Disable Slot command deletes it. 3653 * 3654 * Must be called with xhci->lock held. 3655 */ 3656 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3657 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3658 { 3659 int i; 3660 unsigned int num_dropped_eps = 0; 3661 unsigned int drop_flags = 0; 3662 3663 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3664 if (virt_dev->eps[i].ring) { 3665 drop_flags |= 1 << i; 3666 num_dropped_eps++; 3667 } 3668 } 3669 xhci->num_active_eps -= num_dropped_eps; 3670 if (num_dropped_eps) 3671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3672 "Dropped %u ep ctxs, flags = 0x%x, " 3673 "%u now active.", 3674 num_dropped_eps, drop_flags, 3675 xhci->num_active_eps); 3676 } 3677 3678 /* 3679 * This submits a Reset Device Command, which will set the device state to 0, 3680 * set the device address to 0, and disable all the endpoints except the default 3681 * control endpoint. The USB core should come back and call 3682 * xhci_address_device(), and then re-set up the configuration. If this is 3683 * called because of a usb_reset_and_verify_device(), then the old alternate 3684 * settings will be re-installed through the normal bandwidth allocation 3685 * functions. 3686 * 3687 * Wait for the Reset Device command to finish. Remove all structures 3688 * associated with the endpoints that were disabled. Clear the input device 3689 * structure? Reset the control endpoint 0 max packet size? 3690 * 3691 * If the virt_dev to be reset does not exist or does not match the udev, 3692 * it means the device is lost, possibly due to the xHC restore error and 3693 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3694 * re-allocate the device. 3695 */ 3696 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3697 struct usb_device *udev) 3698 { 3699 int ret, i; 3700 unsigned long flags; 3701 struct xhci_hcd *xhci; 3702 unsigned int slot_id; 3703 struct xhci_virt_device *virt_dev; 3704 struct xhci_command *reset_device_cmd; 3705 struct xhci_slot_ctx *slot_ctx; 3706 int old_active_eps = 0; 3707 3708 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3709 if (ret <= 0) 3710 return ret; 3711 xhci = hcd_to_xhci(hcd); 3712 slot_id = udev->slot_id; 3713 virt_dev = xhci->devs[slot_id]; 3714 if (!virt_dev) { 3715 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3716 "not exist. Re-allocate the device\n", slot_id); 3717 ret = xhci_alloc_dev(hcd, udev); 3718 if (ret == 1) 3719 return 0; 3720 else 3721 return -EINVAL; 3722 } 3723 3724 if (virt_dev->tt_info) 3725 old_active_eps = virt_dev->tt_info->active_eps; 3726 3727 if (virt_dev->udev != udev) { 3728 /* If the virt_dev and the udev does not match, this virt_dev 3729 * may belong to another udev. 3730 * Re-allocate the device. 3731 */ 3732 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3733 "not match the udev. Re-allocate the device\n", 3734 slot_id); 3735 ret = xhci_alloc_dev(hcd, udev); 3736 if (ret == 1) 3737 return 0; 3738 else 3739 return -EINVAL; 3740 } 3741 3742 /* If device is not setup, there is no point in resetting it */ 3743 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3744 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3745 SLOT_STATE_DISABLED) 3746 return 0; 3747 3748 trace_xhci_discover_or_reset_device(slot_ctx); 3749 3750 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3751 /* Allocate the command structure that holds the struct completion. 3752 * Assume we're in process context, since the normal device reset 3753 * process has to wait for the device anyway. Storage devices are 3754 * reset as part of error handling, so use GFP_NOIO instead of 3755 * GFP_KERNEL. 3756 */ 3757 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3758 if (!reset_device_cmd) { 3759 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3760 return -ENOMEM; 3761 } 3762 3763 /* Attempt to submit the Reset Device command to the command ring */ 3764 spin_lock_irqsave(&xhci->lock, flags); 3765 3766 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3767 if (ret) { 3768 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3769 spin_unlock_irqrestore(&xhci->lock, flags); 3770 goto command_cleanup; 3771 } 3772 xhci_ring_cmd_db(xhci); 3773 spin_unlock_irqrestore(&xhci->lock, flags); 3774 3775 /* Wait for the Reset Device command to finish */ 3776 wait_for_completion(reset_device_cmd->completion); 3777 3778 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3779 * unless we tried to reset a slot ID that wasn't enabled, 3780 * or the device wasn't in the addressed or configured state. 3781 */ 3782 ret = reset_device_cmd->status; 3783 switch (ret) { 3784 case COMP_COMMAND_ABORTED: 3785 case COMP_COMMAND_RING_STOPPED: 3786 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3787 ret = -ETIME; 3788 goto command_cleanup; 3789 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3790 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3791 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3792 slot_id, 3793 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3794 xhci_dbg(xhci, "Not freeing device rings.\n"); 3795 /* Don't treat this as an error. May change my mind later. */ 3796 ret = 0; 3797 goto command_cleanup; 3798 case COMP_SUCCESS: 3799 xhci_dbg(xhci, "Successful reset device command.\n"); 3800 break; 3801 default: 3802 if (xhci_is_vendor_info_code(xhci, ret)) 3803 break; 3804 xhci_warn(xhci, "Unknown completion code %u for " 3805 "reset device command.\n", ret); 3806 ret = -EINVAL; 3807 goto command_cleanup; 3808 } 3809 3810 /* Free up host controller endpoint resources */ 3811 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3812 spin_lock_irqsave(&xhci->lock, flags); 3813 /* Don't delete the default control endpoint resources */ 3814 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3815 spin_unlock_irqrestore(&xhci->lock, flags); 3816 } 3817 3818 /* Everything but endpoint 0 is disabled, so free the rings. */ 3819 for (i = 1; i < 31; i++) { 3820 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3821 3822 if (ep->ep_state & EP_HAS_STREAMS) { 3823 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3824 xhci_get_endpoint_address(i)); 3825 xhci_free_stream_info(xhci, ep->stream_info); 3826 ep->stream_info = NULL; 3827 ep->ep_state &= ~EP_HAS_STREAMS; 3828 } 3829 3830 if (ep->ring) { 3831 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3832 xhci_free_endpoint_ring(xhci, virt_dev, i); 3833 } 3834 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3835 xhci_drop_ep_from_interval_table(xhci, 3836 &virt_dev->eps[i].bw_info, 3837 virt_dev->bw_table, 3838 udev, 3839 &virt_dev->eps[i], 3840 virt_dev->tt_info); 3841 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3842 } 3843 /* If necessary, update the number of active TTs on this root port */ 3844 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3845 virt_dev->flags = 0; 3846 ret = 0; 3847 3848 command_cleanup: 3849 xhci_free_command(xhci, reset_device_cmd); 3850 return ret; 3851 } 3852 3853 /* 3854 * At this point, the struct usb_device is about to go away, the device has 3855 * disconnected, and all traffic has been stopped and the endpoints have been 3856 * disabled. Free any HC data structures associated with that device. 3857 */ 3858 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3859 { 3860 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3861 struct xhci_virt_device *virt_dev; 3862 struct xhci_slot_ctx *slot_ctx; 3863 int i, ret; 3864 3865 #ifndef CONFIG_USB_DEFAULT_PERSIST 3866 /* 3867 * We called pm_runtime_get_noresume when the device was attached. 3868 * Decrement the counter here to allow controller to runtime suspend 3869 * if no devices remain. 3870 */ 3871 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3872 pm_runtime_put_noidle(hcd->self.controller); 3873 #endif 3874 3875 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3876 /* If the host is halted due to driver unload, we still need to free the 3877 * device. 3878 */ 3879 if (ret <= 0 && ret != -ENODEV) 3880 return; 3881 3882 virt_dev = xhci->devs[udev->slot_id]; 3883 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3884 trace_xhci_free_dev(slot_ctx); 3885 3886 /* Stop any wayward timer functions (which may grab the lock) */ 3887 for (i = 0; i < 31; i++) { 3888 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3889 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3890 } 3891 virt_dev->udev = NULL; 3892 ret = xhci_disable_slot(xhci, udev->slot_id); 3893 if (ret) 3894 xhci_free_virt_device(xhci, udev->slot_id); 3895 } 3896 3897 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3898 { 3899 struct xhci_command *command; 3900 unsigned long flags; 3901 u32 state; 3902 int ret = 0; 3903 3904 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3905 if (!command) 3906 return -ENOMEM; 3907 3908 xhci_debugfs_remove_slot(xhci, slot_id); 3909 3910 spin_lock_irqsave(&xhci->lock, flags); 3911 /* Don't disable the slot if the host controller is dead. */ 3912 state = readl(&xhci->op_regs->status); 3913 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3914 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3915 spin_unlock_irqrestore(&xhci->lock, flags); 3916 kfree(command); 3917 return -ENODEV; 3918 } 3919 3920 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3921 slot_id); 3922 if (ret) { 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 kfree(command); 3925 return ret; 3926 } 3927 xhci_ring_cmd_db(xhci); 3928 spin_unlock_irqrestore(&xhci->lock, flags); 3929 return ret; 3930 } 3931 3932 /* 3933 * Checks if we have enough host controller resources for the default control 3934 * endpoint. 3935 * 3936 * Must be called with xhci->lock held. 3937 */ 3938 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3939 { 3940 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3941 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3942 "Not enough ep ctxs: " 3943 "%u active, need to add 1, limit is %u.", 3944 xhci->num_active_eps, xhci->limit_active_eps); 3945 return -ENOMEM; 3946 } 3947 xhci->num_active_eps += 1; 3948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3949 "Adding 1 ep ctx, %u now active.", 3950 xhci->num_active_eps); 3951 return 0; 3952 } 3953 3954 3955 /* 3956 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3957 * timed out, or allocating memory failed. Returns 1 on success. 3958 */ 3959 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3960 { 3961 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3962 struct xhci_virt_device *vdev; 3963 struct xhci_slot_ctx *slot_ctx; 3964 unsigned long flags; 3965 int ret, slot_id; 3966 struct xhci_command *command; 3967 3968 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3969 if (!command) 3970 return 0; 3971 3972 spin_lock_irqsave(&xhci->lock, flags); 3973 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3974 if (ret) { 3975 spin_unlock_irqrestore(&xhci->lock, flags); 3976 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3977 xhci_free_command(xhci, command); 3978 return 0; 3979 } 3980 xhci_ring_cmd_db(xhci); 3981 spin_unlock_irqrestore(&xhci->lock, flags); 3982 3983 wait_for_completion(command->completion); 3984 slot_id = command->slot_id; 3985 3986 if (!slot_id || command->status != COMP_SUCCESS) { 3987 xhci_err(xhci, "Error while assigning device slot ID\n"); 3988 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3989 HCS_MAX_SLOTS( 3990 readl(&xhci->cap_regs->hcs_params1))); 3991 xhci_free_command(xhci, command); 3992 return 0; 3993 } 3994 3995 xhci_free_command(xhci, command); 3996 3997 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3998 spin_lock_irqsave(&xhci->lock, flags); 3999 ret = xhci_reserve_host_control_ep_resources(xhci); 4000 if (ret) { 4001 spin_unlock_irqrestore(&xhci->lock, flags); 4002 xhci_warn(xhci, "Not enough host resources, " 4003 "active endpoint contexts = %u\n", 4004 xhci->num_active_eps); 4005 goto disable_slot; 4006 } 4007 spin_unlock_irqrestore(&xhci->lock, flags); 4008 } 4009 /* Use GFP_NOIO, since this function can be called from 4010 * xhci_discover_or_reset_device(), which may be called as part of 4011 * mass storage driver error handling. 4012 */ 4013 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4014 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4015 goto disable_slot; 4016 } 4017 vdev = xhci->devs[slot_id]; 4018 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4019 trace_xhci_alloc_dev(slot_ctx); 4020 4021 udev->slot_id = slot_id; 4022 4023 xhci_debugfs_create_slot(xhci, slot_id); 4024 4025 #ifndef CONFIG_USB_DEFAULT_PERSIST 4026 /* 4027 * If resetting upon resume, we can't put the controller into runtime 4028 * suspend if there is a device attached. 4029 */ 4030 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4031 pm_runtime_get_noresume(hcd->self.controller); 4032 #endif 4033 4034 /* Is this a LS or FS device under a HS hub? */ 4035 /* Hub or peripherial? */ 4036 return 1; 4037 4038 disable_slot: 4039 ret = xhci_disable_slot(xhci, udev->slot_id); 4040 if (ret) 4041 xhci_free_virt_device(xhci, udev->slot_id); 4042 4043 return 0; 4044 } 4045 4046 /* 4047 * Issue an Address Device command and optionally send a corresponding 4048 * SetAddress request to the device. 4049 */ 4050 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4051 enum xhci_setup_dev setup) 4052 { 4053 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4054 unsigned long flags; 4055 struct xhci_virt_device *virt_dev; 4056 int ret = 0; 4057 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4058 struct xhci_slot_ctx *slot_ctx; 4059 struct xhci_input_control_ctx *ctrl_ctx; 4060 u64 temp_64; 4061 struct xhci_command *command = NULL; 4062 4063 mutex_lock(&xhci->mutex); 4064 4065 if (xhci->xhc_state) { /* dying, removing or halted */ 4066 ret = -ESHUTDOWN; 4067 goto out; 4068 } 4069 4070 if (!udev->slot_id) { 4071 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4072 "Bad Slot ID %d", udev->slot_id); 4073 ret = -EINVAL; 4074 goto out; 4075 } 4076 4077 virt_dev = xhci->devs[udev->slot_id]; 4078 4079 if (WARN_ON(!virt_dev)) { 4080 /* 4081 * In plug/unplug torture test with an NEC controller, 4082 * a zero-dereference was observed once due to virt_dev = 0. 4083 * Print useful debug rather than crash if it is observed again! 4084 */ 4085 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4086 udev->slot_id); 4087 ret = -EINVAL; 4088 goto out; 4089 } 4090 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4091 trace_xhci_setup_device_slot(slot_ctx); 4092 4093 if (setup == SETUP_CONTEXT_ONLY) { 4094 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4095 SLOT_STATE_DEFAULT) { 4096 xhci_dbg(xhci, "Slot already in default state\n"); 4097 goto out; 4098 } 4099 } 4100 4101 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4102 if (!command) { 4103 ret = -ENOMEM; 4104 goto out; 4105 } 4106 4107 command->in_ctx = virt_dev->in_ctx; 4108 4109 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4110 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4111 if (!ctrl_ctx) { 4112 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4113 __func__); 4114 ret = -EINVAL; 4115 goto out; 4116 } 4117 /* 4118 * If this is the first Set Address since device plug-in or 4119 * virt_device realloaction after a resume with an xHCI power loss, 4120 * then set up the slot context. 4121 */ 4122 if (!slot_ctx->dev_info) 4123 xhci_setup_addressable_virt_dev(xhci, udev); 4124 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4125 else 4126 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4127 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4128 ctrl_ctx->drop_flags = 0; 4129 4130 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4131 le32_to_cpu(slot_ctx->dev_info) >> 27); 4132 4133 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4134 spin_lock_irqsave(&xhci->lock, flags); 4135 trace_xhci_setup_device(virt_dev); 4136 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4137 udev->slot_id, setup); 4138 if (ret) { 4139 spin_unlock_irqrestore(&xhci->lock, flags); 4140 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4141 "FIXME: allocate a command ring segment"); 4142 goto out; 4143 } 4144 xhci_ring_cmd_db(xhci); 4145 spin_unlock_irqrestore(&xhci->lock, flags); 4146 4147 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4148 wait_for_completion(command->completion); 4149 4150 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4151 * the SetAddress() "recovery interval" required by USB and aborting the 4152 * command on a timeout. 4153 */ 4154 switch (command->status) { 4155 case COMP_COMMAND_ABORTED: 4156 case COMP_COMMAND_RING_STOPPED: 4157 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4158 ret = -ETIME; 4159 break; 4160 case COMP_CONTEXT_STATE_ERROR: 4161 case COMP_SLOT_NOT_ENABLED_ERROR: 4162 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4163 act, udev->slot_id); 4164 ret = -EINVAL; 4165 break; 4166 case COMP_USB_TRANSACTION_ERROR: 4167 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4168 4169 mutex_unlock(&xhci->mutex); 4170 ret = xhci_disable_slot(xhci, udev->slot_id); 4171 if (!ret) 4172 xhci_alloc_dev(hcd, udev); 4173 kfree(command->completion); 4174 kfree(command); 4175 return -EPROTO; 4176 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4177 dev_warn(&udev->dev, 4178 "ERROR: Incompatible device for setup %s command\n", act); 4179 ret = -ENODEV; 4180 break; 4181 case COMP_SUCCESS: 4182 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4183 "Successful setup %s command", act); 4184 break; 4185 default: 4186 xhci_err(xhci, 4187 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4188 act, command->status); 4189 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4190 ret = -EINVAL; 4191 break; 4192 } 4193 if (ret) 4194 goto out; 4195 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4196 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4197 "Op regs DCBAA ptr = %#016llx", temp_64); 4198 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4199 "Slot ID %d dcbaa entry @%p = %#016llx", 4200 udev->slot_id, 4201 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4202 (unsigned long long) 4203 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4204 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4205 "Output Context DMA address = %#08llx", 4206 (unsigned long long)virt_dev->out_ctx->dma); 4207 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4208 le32_to_cpu(slot_ctx->dev_info) >> 27); 4209 /* 4210 * USB core uses address 1 for the roothubs, so we add one to the 4211 * address given back to us by the HC. 4212 */ 4213 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4214 le32_to_cpu(slot_ctx->dev_info) >> 27); 4215 /* Zero the input context control for later use */ 4216 ctrl_ctx->add_flags = 0; 4217 ctrl_ctx->drop_flags = 0; 4218 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4219 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4220 4221 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4222 "Internal device address = %d", 4223 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4224 out: 4225 mutex_unlock(&xhci->mutex); 4226 if (command) { 4227 kfree(command->completion); 4228 kfree(command); 4229 } 4230 return ret; 4231 } 4232 4233 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4234 { 4235 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4236 } 4237 4238 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4239 { 4240 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4241 } 4242 4243 /* 4244 * Transfer the port index into real index in the HW port status 4245 * registers. Caculate offset between the port's PORTSC register 4246 * and port status base. Divide the number of per port register 4247 * to get the real index. The raw port number bases 1. 4248 */ 4249 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4250 { 4251 struct xhci_hub *rhub; 4252 4253 rhub = xhci_get_rhub(hcd); 4254 return rhub->ports[port1 - 1]->hw_portnum + 1; 4255 } 4256 4257 /* 4258 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4259 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4260 */ 4261 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4262 struct usb_device *udev, u16 max_exit_latency) 4263 { 4264 struct xhci_virt_device *virt_dev; 4265 struct xhci_command *command; 4266 struct xhci_input_control_ctx *ctrl_ctx; 4267 struct xhci_slot_ctx *slot_ctx; 4268 unsigned long flags; 4269 int ret; 4270 4271 spin_lock_irqsave(&xhci->lock, flags); 4272 4273 virt_dev = xhci->devs[udev->slot_id]; 4274 4275 /* 4276 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4277 * xHC was re-initialized. Exit latency will be set later after 4278 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4279 */ 4280 4281 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4282 spin_unlock_irqrestore(&xhci->lock, flags); 4283 return 0; 4284 } 4285 4286 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4287 command = xhci->lpm_command; 4288 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4289 if (!ctrl_ctx) { 4290 spin_unlock_irqrestore(&xhci->lock, flags); 4291 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4292 __func__); 4293 return -ENOMEM; 4294 } 4295 4296 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4297 spin_unlock_irqrestore(&xhci->lock, flags); 4298 4299 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4300 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4301 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4302 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4303 slot_ctx->dev_state = 0; 4304 4305 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4306 "Set up evaluate context for LPM MEL change."); 4307 4308 /* Issue and wait for the evaluate context command. */ 4309 ret = xhci_configure_endpoint(xhci, udev, command, 4310 true, true); 4311 4312 if (!ret) { 4313 spin_lock_irqsave(&xhci->lock, flags); 4314 virt_dev->current_mel = max_exit_latency; 4315 spin_unlock_irqrestore(&xhci->lock, flags); 4316 } 4317 return ret; 4318 } 4319 4320 #ifdef CONFIG_PM 4321 4322 /* BESL to HIRD Encoding array for USB2 LPM */ 4323 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4324 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4325 4326 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4327 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4328 struct usb_device *udev) 4329 { 4330 int u2del, besl, besl_host; 4331 int besl_device = 0; 4332 u32 field; 4333 4334 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4335 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4336 4337 if (field & USB_BESL_SUPPORT) { 4338 for (besl_host = 0; besl_host < 16; besl_host++) { 4339 if (xhci_besl_encoding[besl_host] >= u2del) 4340 break; 4341 } 4342 /* Use baseline BESL value as default */ 4343 if (field & USB_BESL_BASELINE_VALID) 4344 besl_device = USB_GET_BESL_BASELINE(field); 4345 else if (field & USB_BESL_DEEP_VALID) 4346 besl_device = USB_GET_BESL_DEEP(field); 4347 } else { 4348 if (u2del <= 50) 4349 besl_host = 0; 4350 else 4351 besl_host = (u2del - 51) / 75 + 1; 4352 } 4353 4354 besl = besl_host + besl_device; 4355 if (besl > 15) 4356 besl = 15; 4357 4358 return besl; 4359 } 4360 4361 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4362 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4363 { 4364 u32 field; 4365 int l1; 4366 int besld = 0; 4367 int hirdm = 0; 4368 4369 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4370 4371 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4372 l1 = udev->l1_params.timeout / 256; 4373 4374 /* device has preferred BESLD */ 4375 if (field & USB_BESL_DEEP_VALID) { 4376 besld = USB_GET_BESL_DEEP(field); 4377 hirdm = 1; 4378 } 4379 4380 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4381 } 4382 4383 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4384 struct usb_device *udev, int enable) 4385 { 4386 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4387 struct xhci_port **ports; 4388 __le32 __iomem *pm_addr, *hlpm_addr; 4389 u32 pm_val, hlpm_val, field; 4390 unsigned int port_num; 4391 unsigned long flags; 4392 int hird, exit_latency; 4393 int ret; 4394 4395 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4396 return -EPERM; 4397 4398 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4399 !udev->lpm_capable) 4400 return -EPERM; 4401 4402 if (!udev->parent || udev->parent->parent || 4403 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4404 return -EPERM; 4405 4406 if (udev->usb2_hw_lpm_capable != 1) 4407 return -EPERM; 4408 4409 spin_lock_irqsave(&xhci->lock, flags); 4410 4411 ports = xhci->usb2_rhub.ports; 4412 port_num = udev->portnum - 1; 4413 pm_addr = ports[port_num]->addr + PORTPMSC; 4414 pm_val = readl(pm_addr); 4415 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4416 4417 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4418 enable ? "enable" : "disable", port_num + 1); 4419 4420 if (enable) { 4421 /* Host supports BESL timeout instead of HIRD */ 4422 if (udev->usb2_hw_lpm_besl_capable) { 4423 /* if device doesn't have a preferred BESL value use a 4424 * default one which works with mixed HIRD and BESL 4425 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4426 */ 4427 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4428 if ((field & USB_BESL_SUPPORT) && 4429 (field & USB_BESL_BASELINE_VALID)) 4430 hird = USB_GET_BESL_BASELINE(field); 4431 else 4432 hird = udev->l1_params.besl; 4433 4434 exit_latency = xhci_besl_encoding[hird]; 4435 spin_unlock_irqrestore(&xhci->lock, flags); 4436 4437 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4438 * input context for link powermanagement evaluate 4439 * context commands. It is protected by hcd->bandwidth 4440 * mutex and is shared by all devices. We need to set 4441 * the max ext latency in USB 2 BESL LPM as well, so 4442 * use the same mutex and xhci_change_max_exit_latency() 4443 */ 4444 mutex_lock(hcd->bandwidth_mutex); 4445 ret = xhci_change_max_exit_latency(xhci, udev, 4446 exit_latency); 4447 mutex_unlock(hcd->bandwidth_mutex); 4448 4449 if (ret < 0) 4450 return ret; 4451 spin_lock_irqsave(&xhci->lock, flags); 4452 4453 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4454 writel(hlpm_val, hlpm_addr); 4455 /* flush write */ 4456 readl(hlpm_addr); 4457 } else { 4458 hird = xhci_calculate_hird_besl(xhci, udev); 4459 } 4460 4461 pm_val &= ~PORT_HIRD_MASK; 4462 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4463 writel(pm_val, pm_addr); 4464 pm_val = readl(pm_addr); 4465 pm_val |= PORT_HLE; 4466 writel(pm_val, pm_addr); 4467 /* flush write */ 4468 readl(pm_addr); 4469 } else { 4470 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4471 writel(pm_val, pm_addr); 4472 /* flush write */ 4473 readl(pm_addr); 4474 if (udev->usb2_hw_lpm_besl_capable) { 4475 spin_unlock_irqrestore(&xhci->lock, flags); 4476 mutex_lock(hcd->bandwidth_mutex); 4477 xhci_change_max_exit_latency(xhci, udev, 0); 4478 mutex_unlock(hcd->bandwidth_mutex); 4479 readl_poll_timeout(ports[port_num]->addr, pm_val, 4480 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4481 100, 10000); 4482 return 0; 4483 } 4484 } 4485 4486 spin_unlock_irqrestore(&xhci->lock, flags); 4487 return 0; 4488 } 4489 4490 /* check if a usb2 port supports a given extened capability protocol 4491 * only USB2 ports extended protocol capability values are cached. 4492 * Return 1 if capability is supported 4493 */ 4494 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4495 unsigned capability) 4496 { 4497 u32 port_offset, port_count; 4498 int i; 4499 4500 for (i = 0; i < xhci->num_ext_caps; i++) { 4501 if (xhci->ext_caps[i] & capability) { 4502 /* port offsets starts at 1 */ 4503 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4504 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4505 if (port >= port_offset && 4506 port < port_offset + port_count) 4507 return 1; 4508 } 4509 } 4510 return 0; 4511 } 4512 4513 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4514 { 4515 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4516 int portnum = udev->portnum - 1; 4517 4518 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4519 return 0; 4520 4521 /* we only support lpm for non-hub device connected to root hub yet */ 4522 if (!udev->parent || udev->parent->parent || 4523 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4524 return 0; 4525 4526 if (xhci->hw_lpm_support == 1 && 4527 xhci_check_usb2_port_capability( 4528 xhci, portnum, XHCI_HLC)) { 4529 udev->usb2_hw_lpm_capable = 1; 4530 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4531 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4532 if (xhci_check_usb2_port_capability(xhci, portnum, 4533 XHCI_BLC)) 4534 udev->usb2_hw_lpm_besl_capable = 1; 4535 } 4536 4537 return 0; 4538 } 4539 4540 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4541 4542 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4543 static unsigned long long xhci_service_interval_to_ns( 4544 struct usb_endpoint_descriptor *desc) 4545 { 4546 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4547 } 4548 4549 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4550 enum usb3_link_state state) 4551 { 4552 unsigned long long sel; 4553 unsigned long long pel; 4554 unsigned int max_sel_pel; 4555 char *state_name; 4556 4557 switch (state) { 4558 case USB3_LPM_U1: 4559 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4560 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4561 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4562 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4563 state_name = "U1"; 4564 break; 4565 case USB3_LPM_U2: 4566 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4567 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4568 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4569 state_name = "U2"; 4570 break; 4571 default: 4572 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4573 __func__); 4574 return USB3_LPM_DISABLED; 4575 } 4576 4577 if (sel <= max_sel_pel && pel <= max_sel_pel) 4578 return USB3_LPM_DEVICE_INITIATED; 4579 4580 if (sel > max_sel_pel) 4581 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4582 "due to long SEL %llu ms\n", 4583 state_name, sel); 4584 else 4585 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4586 "due to long PEL %llu ms\n", 4587 state_name, pel); 4588 return USB3_LPM_DISABLED; 4589 } 4590 4591 /* The U1 timeout should be the maximum of the following values: 4592 * - For control endpoints, U1 system exit latency (SEL) * 3 4593 * - For bulk endpoints, U1 SEL * 5 4594 * - For interrupt endpoints: 4595 * - Notification EPs, U1 SEL * 3 4596 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4597 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4598 */ 4599 static unsigned long long xhci_calculate_intel_u1_timeout( 4600 struct usb_device *udev, 4601 struct usb_endpoint_descriptor *desc) 4602 { 4603 unsigned long long timeout_ns; 4604 int ep_type; 4605 int intr_type; 4606 4607 ep_type = usb_endpoint_type(desc); 4608 switch (ep_type) { 4609 case USB_ENDPOINT_XFER_CONTROL: 4610 timeout_ns = udev->u1_params.sel * 3; 4611 break; 4612 case USB_ENDPOINT_XFER_BULK: 4613 timeout_ns = udev->u1_params.sel * 5; 4614 break; 4615 case USB_ENDPOINT_XFER_INT: 4616 intr_type = usb_endpoint_interrupt_type(desc); 4617 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4618 timeout_ns = udev->u1_params.sel * 3; 4619 break; 4620 } 4621 /* Otherwise the calculation is the same as isoc eps */ 4622 fallthrough; 4623 case USB_ENDPOINT_XFER_ISOC: 4624 timeout_ns = xhci_service_interval_to_ns(desc); 4625 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4626 if (timeout_ns < udev->u1_params.sel * 2) 4627 timeout_ns = udev->u1_params.sel * 2; 4628 break; 4629 default: 4630 return 0; 4631 } 4632 4633 return timeout_ns; 4634 } 4635 4636 /* Returns the hub-encoded U1 timeout value. */ 4637 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4638 struct usb_device *udev, 4639 struct usb_endpoint_descriptor *desc) 4640 { 4641 unsigned long long timeout_ns; 4642 4643 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4644 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4645 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4646 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4647 return USB3_LPM_DISABLED; 4648 } 4649 } 4650 4651 if (xhci->quirks & XHCI_INTEL_HOST) 4652 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4653 else 4654 timeout_ns = udev->u1_params.sel; 4655 4656 /* The U1 timeout is encoded in 1us intervals. 4657 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4658 */ 4659 if (timeout_ns == USB3_LPM_DISABLED) 4660 timeout_ns = 1; 4661 else 4662 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4663 4664 /* If the necessary timeout value is bigger than what we can set in the 4665 * USB 3.0 hub, we have to disable hub-initiated U1. 4666 */ 4667 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4668 return timeout_ns; 4669 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4670 "due to long timeout %llu ms\n", timeout_ns); 4671 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4672 } 4673 4674 /* The U2 timeout should be the maximum of: 4675 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4676 * - largest bInterval of any active periodic endpoint (to avoid going 4677 * into lower power link states between intervals). 4678 * - the U2 Exit Latency of the device 4679 */ 4680 static unsigned long long xhci_calculate_intel_u2_timeout( 4681 struct usb_device *udev, 4682 struct usb_endpoint_descriptor *desc) 4683 { 4684 unsigned long long timeout_ns; 4685 unsigned long long u2_del_ns; 4686 4687 timeout_ns = 10 * 1000 * 1000; 4688 4689 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4690 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4691 timeout_ns = xhci_service_interval_to_ns(desc); 4692 4693 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4694 if (u2_del_ns > timeout_ns) 4695 timeout_ns = u2_del_ns; 4696 4697 return timeout_ns; 4698 } 4699 4700 /* Returns the hub-encoded U2 timeout value. */ 4701 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4702 struct usb_device *udev, 4703 struct usb_endpoint_descriptor *desc) 4704 { 4705 unsigned long long timeout_ns; 4706 4707 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4708 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4709 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4710 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4711 return USB3_LPM_DISABLED; 4712 } 4713 } 4714 4715 if (xhci->quirks & XHCI_INTEL_HOST) 4716 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4717 else 4718 timeout_ns = udev->u2_params.sel; 4719 4720 /* The U2 timeout is encoded in 256us intervals */ 4721 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4722 /* If the necessary timeout value is bigger than what we can set in the 4723 * USB 3.0 hub, we have to disable hub-initiated U2. 4724 */ 4725 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4726 return timeout_ns; 4727 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4728 "due to long timeout %llu ms\n", timeout_ns); 4729 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4730 } 4731 4732 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4733 struct usb_device *udev, 4734 struct usb_endpoint_descriptor *desc, 4735 enum usb3_link_state state, 4736 u16 *timeout) 4737 { 4738 if (state == USB3_LPM_U1) 4739 return xhci_calculate_u1_timeout(xhci, udev, desc); 4740 else if (state == USB3_LPM_U2) 4741 return xhci_calculate_u2_timeout(xhci, udev, desc); 4742 4743 return USB3_LPM_DISABLED; 4744 } 4745 4746 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4747 struct usb_device *udev, 4748 struct usb_endpoint_descriptor *desc, 4749 enum usb3_link_state state, 4750 u16 *timeout) 4751 { 4752 u16 alt_timeout; 4753 4754 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4755 desc, state, timeout); 4756 4757 /* If we found we can't enable hub-initiated LPM, and 4758 * the U1 or U2 exit latency was too high to allow 4759 * device-initiated LPM as well, then we will disable LPM 4760 * for this device, so stop searching any further. 4761 */ 4762 if (alt_timeout == USB3_LPM_DISABLED) { 4763 *timeout = alt_timeout; 4764 return -E2BIG; 4765 } 4766 if (alt_timeout > *timeout) 4767 *timeout = alt_timeout; 4768 return 0; 4769 } 4770 4771 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4772 struct usb_device *udev, 4773 struct usb_host_interface *alt, 4774 enum usb3_link_state state, 4775 u16 *timeout) 4776 { 4777 int j; 4778 4779 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4780 if (xhci_update_timeout_for_endpoint(xhci, udev, 4781 &alt->endpoint[j].desc, state, timeout)) 4782 return -E2BIG; 4783 continue; 4784 } 4785 return 0; 4786 } 4787 4788 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4789 enum usb3_link_state state) 4790 { 4791 struct usb_device *parent; 4792 unsigned int num_hubs; 4793 4794 if (state == USB3_LPM_U2) 4795 return 0; 4796 4797 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4798 for (parent = udev->parent, num_hubs = 0; parent->parent; 4799 parent = parent->parent) 4800 num_hubs++; 4801 4802 if (num_hubs < 2) 4803 return 0; 4804 4805 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4806 " below second-tier hub.\n"); 4807 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4808 "to decrease power consumption.\n"); 4809 return -E2BIG; 4810 } 4811 4812 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4813 struct usb_device *udev, 4814 enum usb3_link_state state) 4815 { 4816 if (xhci->quirks & XHCI_INTEL_HOST) 4817 return xhci_check_intel_tier_policy(udev, state); 4818 else 4819 return 0; 4820 } 4821 4822 /* Returns the U1 or U2 timeout that should be enabled. 4823 * If the tier check or timeout setting functions return with a non-zero exit 4824 * code, that means the timeout value has been finalized and we shouldn't look 4825 * at any more endpoints. 4826 */ 4827 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4828 struct usb_device *udev, enum usb3_link_state state) 4829 { 4830 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4831 struct usb_host_config *config; 4832 char *state_name; 4833 int i; 4834 u16 timeout = USB3_LPM_DISABLED; 4835 4836 if (state == USB3_LPM_U1) 4837 state_name = "U1"; 4838 else if (state == USB3_LPM_U2) 4839 state_name = "U2"; 4840 else { 4841 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4842 state); 4843 return timeout; 4844 } 4845 4846 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4847 return timeout; 4848 4849 /* Gather some information about the currently installed configuration 4850 * and alternate interface settings. 4851 */ 4852 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4853 state, &timeout)) 4854 return timeout; 4855 4856 config = udev->actconfig; 4857 if (!config) 4858 return timeout; 4859 4860 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4861 struct usb_driver *driver; 4862 struct usb_interface *intf = config->interface[i]; 4863 4864 if (!intf) 4865 continue; 4866 4867 /* Check if any currently bound drivers want hub-initiated LPM 4868 * disabled. 4869 */ 4870 if (intf->dev.driver) { 4871 driver = to_usb_driver(intf->dev.driver); 4872 if (driver && driver->disable_hub_initiated_lpm) { 4873 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4874 state_name, driver->name); 4875 timeout = xhci_get_timeout_no_hub_lpm(udev, 4876 state); 4877 if (timeout == USB3_LPM_DISABLED) 4878 return timeout; 4879 } 4880 } 4881 4882 /* Not sure how this could happen... */ 4883 if (!intf->cur_altsetting) 4884 continue; 4885 4886 if (xhci_update_timeout_for_interface(xhci, udev, 4887 intf->cur_altsetting, 4888 state, &timeout)) 4889 return timeout; 4890 } 4891 return timeout; 4892 } 4893 4894 static int calculate_max_exit_latency(struct usb_device *udev, 4895 enum usb3_link_state state_changed, 4896 u16 hub_encoded_timeout) 4897 { 4898 unsigned long long u1_mel_us = 0; 4899 unsigned long long u2_mel_us = 0; 4900 unsigned long long mel_us = 0; 4901 bool disabling_u1; 4902 bool disabling_u2; 4903 bool enabling_u1; 4904 bool enabling_u2; 4905 4906 disabling_u1 = (state_changed == USB3_LPM_U1 && 4907 hub_encoded_timeout == USB3_LPM_DISABLED); 4908 disabling_u2 = (state_changed == USB3_LPM_U2 && 4909 hub_encoded_timeout == USB3_LPM_DISABLED); 4910 4911 enabling_u1 = (state_changed == USB3_LPM_U1 && 4912 hub_encoded_timeout != USB3_LPM_DISABLED); 4913 enabling_u2 = (state_changed == USB3_LPM_U2 && 4914 hub_encoded_timeout != USB3_LPM_DISABLED); 4915 4916 /* If U1 was already enabled and we're not disabling it, 4917 * or we're going to enable U1, account for the U1 max exit latency. 4918 */ 4919 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4920 enabling_u1) 4921 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4922 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4923 enabling_u2) 4924 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4925 4926 if (u1_mel_us > u2_mel_us) 4927 mel_us = u1_mel_us; 4928 else 4929 mel_us = u2_mel_us; 4930 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4931 if (mel_us > MAX_EXIT) { 4932 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4933 "is too big.\n", mel_us); 4934 return -E2BIG; 4935 } 4936 return mel_us; 4937 } 4938 4939 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4940 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4941 struct usb_device *udev, enum usb3_link_state state) 4942 { 4943 struct xhci_hcd *xhci; 4944 u16 hub_encoded_timeout; 4945 int mel; 4946 int ret; 4947 4948 xhci = hcd_to_xhci(hcd); 4949 /* The LPM timeout values are pretty host-controller specific, so don't 4950 * enable hub-initiated timeouts unless the vendor has provided 4951 * information about their timeout algorithm. 4952 */ 4953 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4954 !xhci->devs[udev->slot_id]) 4955 return USB3_LPM_DISABLED; 4956 4957 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4958 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4959 if (mel < 0) { 4960 /* Max Exit Latency is too big, disable LPM. */ 4961 hub_encoded_timeout = USB3_LPM_DISABLED; 4962 mel = 0; 4963 } 4964 4965 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4966 if (ret) 4967 return ret; 4968 return hub_encoded_timeout; 4969 } 4970 4971 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4972 struct usb_device *udev, enum usb3_link_state state) 4973 { 4974 struct xhci_hcd *xhci; 4975 u16 mel; 4976 4977 xhci = hcd_to_xhci(hcd); 4978 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4979 !xhci->devs[udev->slot_id]) 4980 return 0; 4981 4982 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4983 return xhci_change_max_exit_latency(xhci, udev, mel); 4984 } 4985 #else /* CONFIG_PM */ 4986 4987 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4988 struct usb_device *udev, int enable) 4989 { 4990 return 0; 4991 } 4992 4993 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4994 { 4995 return 0; 4996 } 4997 4998 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4999 struct usb_device *udev, enum usb3_link_state state) 5000 { 5001 return USB3_LPM_DISABLED; 5002 } 5003 5004 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5005 struct usb_device *udev, enum usb3_link_state state) 5006 { 5007 return 0; 5008 } 5009 #endif /* CONFIG_PM */ 5010 5011 /*-------------------------------------------------------------------------*/ 5012 5013 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5014 * internal data structures for the device. 5015 */ 5016 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5017 struct usb_tt *tt, gfp_t mem_flags) 5018 { 5019 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5020 struct xhci_virt_device *vdev; 5021 struct xhci_command *config_cmd; 5022 struct xhci_input_control_ctx *ctrl_ctx; 5023 struct xhci_slot_ctx *slot_ctx; 5024 unsigned long flags; 5025 unsigned think_time; 5026 int ret; 5027 5028 /* Ignore root hubs */ 5029 if (!hdev->parent) 5030 return 0; 5031 5032 vdev = xhci->devs[hdev->slot_id]; 5033 if (!vdev) { 5034 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5035 return -EINVAL; 5036 } 5037 5038 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5039 if (!config_cmd) 5040 return -ENOMEM; 5041 5042 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5043 if (!ctrl_ctx) { 5044 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5045 __func__); 5046 xhci_free_command(xhci, config_cmd); 5047 return -ENOMEM; 5048 } 5049 5050 spin_lock_irqsave(&xhci->lock, flags); 5051 if (hdev->speed == USB_SPEED_HIGH && 5052 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5053 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5054 xhci_free_command(xhci, config_cmd); 5055 spin_unlock_irqrestore(&xhci->lock, flags); 5056 return -ENOMEM; 5057 } 5058 5059 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5060 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5061 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5062 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5063 /* 5064 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5065 * but it may be already set to 1 when setup an xHCI virtual 5066 * device, so clear it anyway. 5067 */ 5068 if (tt->multi) 5069 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5070 else if (hdev->speed == USB_SPEED_FULL) 5071 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5072 5073 if (xhci->hci_version > 0x95) { 5074 xhci_dbg(xhci, "xHCI version %x needs hub " 5075 "TT think time and number of ports\n", 5076 (unsigned int) xhci->hci_version); 5077 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5078 /* Set TT think time - convert from ns to FS bit times. 5079 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5080 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5081 * 5082 * xHCI 1.0: this field shall be 0 if the device is not a 5083 * High-spped hub. 5084 */ 5085 think_time = tt->think_time; 5086 if (think_time != 0) 5087 think_time = (think_time / 666) - 1; 5088 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5089 slot_ctx->tt_info |= 5090 cpu_to_le32(TT_THINK_TIME(think_time)); 5091 } else { 5092 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5093 "TT think time or number of ports\n", 5094 (unsigned int) xhci->hci_version); 5095 } 5096 slot_ctx->dev_state = 0; 5097 spin_unlock_irqrestore(&xhci->lock, flags); 5098 5099 xhci_dbg(xhci, "Set up %s for hub device.\n", 5100 (xhci->hci_version > 0x95) ? 5101 "configure endpoint" : "evaluate context"); 5102 5103 /* Issue and wait for the configure endpoint or 5104 * evaluate context command. 5105 */ 5106 if (xhci->hci_version > 0x95) 5107 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5108 false, false); 5109 else 5110 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5111 true, false); 5112 5113 xhci_free_command(xhci, config_cmd); 5114 return ret; 5115 } 5116 5117 static int xhci_get_frame(struct usb_hcd *hcd) 5118 { 5119 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5120 /* EHCI mods by the periodic size. Why? */ 5121 return readl(&xhci->run_regs->microframe_index) >> 3; 5122 } 5123 5124 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5125 { 5126 struct xhci_hcd *xhci; 5127 /* 5128 * TODO: Check with DWC3 clients for sysdev according to 5129 * quirks 5130 */ 5131 struct device *dev = hcd->self.sysdev; 5132 unsigned int minor_rev; 5133 int retval; 5134 5135 /* Accept arbitrarily long scatter-gather lists */ 5136 hcd->self.sg_tablesize = ~0; 5137 5138 /* support to build packet from discontinuous buffers */ 5139 hcd->self.no_sg_constraint = 1; 5140 5141 /* XHCI controllers don't stop the ep queue on short packets :| */ 5142 hcd->self.no_stop_on_short = 1; 5143 5144 xhci = hcd_to_xhci(hcd); 5145 5146 if (usb_hcd_is_primary_hcd(hcd)) { 5147 xhci->main_hcd = hcd; 5148 xhci->usb2_rhub.hcd = hcd; 5149 /* Mark the first roothub as being USB 2.0. 5150 * The xHCI driver will register the USB 3.0 roothub. 5151 */ 5152 hcd->speed = HCD_USB2; 5153 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5154 /* 5155 * USB 2.0 roothub under xHCI has an integrated TT, 5156 * (rate matching hub) as opposed to having an OHCI/UHCI 5157 * companion controller. 5158 */ 5159 hcd->has_tt = 1; 5160 } else { 5161 /* 5162 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5163 * should return 0x31 for sbrn, or that the minor revision 5164 * is a two digit BCD containig minor and sub-minor numbers. 5165 * This was later clarified in xHCI 1.2. 5166 * 5167 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5168 * minor revision set to 0x1 instead of 0x10. 5169 */ 5170 if (xhci->usb3_rhub.min_rev == 0x1) 5171 minor_rev = 1; 5172 else 5173 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5174 5175 switch (minor_rev) { 5176 case 2: 5177 hcd->speed = HCD_USB32; 5178 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5179 hcd->self.root_hub->rx_lanes = 2; 5180 hcd->self.root_hub->tx_lanes = 2; 5181 break; 5182 case 1: 5183 hcd->speed = HCD_USB31; 5184 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5185 break; 5186 } 5187 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5188 minor_rev, 5189 minor_rev ? "Enhanced " : ""); 5190 5191 xhci->usb3_rhub.hcd = hcd; 5192 /* xHCI private pointer was set in xhci_pci_probe for the second 5193 * registered roothub. 5194 */ 5195 return 0; 5196 } 5197 5198 mutex_init(&xhci->mutex); 5199 xhci->cap_regs = hcd->regs; 5200 xhci->op_regs = hcd->regs + 5201 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5202 xhci->run_regs = hcd->regs + 5203 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5204 /* Cache read-only capability registers */ 5205 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5206 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5207 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5208 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5209 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5210 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5211 if (xhci->hci_version > 0x100) 5212 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5213 5214 xhci->quirks |= quirks; 5215 5216 get_quirks(dev, xhci); 5217 5218 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5219 * success event after a short transfer. This quirk will ignore such 5220 * spurious event. 5221 */ 5222 if (xhci->hci_version > 0x96) 5223 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5224 5225 /* Make sure the HC is halted. */ 5226 retval = xhci_halt(xhci); 5227 if (retval) 5228 return retval; 5229 5230 xhci_zero_64b_regs(xhci); 5231 5232 xhci_dbg(xhci, "Resetting HCD\n"); 5233 /* Reset the internal HC memory state and registers. */ 5234 retval = xhci_reset(xhci); 5235 if (retval) 5236 return retval; 5237 xhci_dbg(xhci, "Reset complete\n"); 5238 5239 /* 5240 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5241 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5242 * address memory pointers actually. So, this driver clears the AC64 5243 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5244 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5245 */ 5246 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5247 xhci->hcc_params &= ~BIT(0); 5248 5249 /* Set dma_mask and coherent_dma_mask to 64-bits, 5250 * if xHC supports 64-bit addressing */ 5251 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5252 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5253 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5254 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5255 } else { 5256 /* 5257 * This is to avoid error in cases where a 32-bit USB 5258 * controller is used on a 64-bit capable system. 5259 */ 5260 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5261 if (retval) 5262 return retval; 5263 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5264 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5265 } 5266 5267 xhci_dbg(xhci, "Calling HCD init\n"); 5268 /* Initialize HCD and host controller data structures. */ 5269 retval = xhci_init(hcd); 5270 if (retval) 5271 return retval; 5272 xhci_dbg(xhci, "Called HCD init\n"); 5273 5274 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5275 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5276 5277 return 0; 5278 } 5279 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5280 5281 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5282 struct usb_host_endpoint *ep) 5283 { 5284 struct xhci_hcd *xhci; 5285 struct usb_device *udev; 5286 unsigned int slot_id; 5287 unsigned int ep_index; 5288 unsigned long flags; 5289 5290 xhci = hcd_to_xhci(hcd); 5291 5292 spin_lock_irqsave(&xhci->lock, flags); 5293 udev = (struct usb_device *)ep->hcpriv; 5294 slot_id = udev->slot_id; 5295 ep_index = xhci_get_endpoint_index(&ep->desc); 5296 5297 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5298 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5299 spin_unlock_irqrestore(&xhci->lock, flags); 5300 } 5301 5302 static const struct hc_driver xhci_hc_driver = { 5303 .description = "xhci-hcd", 5304 .product_desc = "xHCI Host Controller", 5305 .hcd_priv_size = sizeof(struct xhci_hcd), 5306 5307 /* 5308 * generic hardware linkage 5309 */ 5310 .irq = xhci_irq, 5311 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5312 HCD_BH, 5313 5314 /* 5315 * basic lifecycle operations 5316 */ 5317 .reset = NULL, /* set in xhci_init_driver() */ 5318 .start = xhci_run, 5319 .stop = xhci_stop, 5320 .shutdown = xhci_shutdown, 5321 5322 /* 5323 * managing i/o requests and associated device resources 5324 */ 5325 .map_urb_for_dma = xhci_map_urb_for_dma, 5326 .urb_enqueue = xhci_urb_enqueue, 5327 .urb_dequeue = xhci_urb_dequeue, 5328 .alloc_dev = xhci_alloc_dev, 5329 .free_dev = xhci_free_dev, 5330 .alloc_streams = xhci_alloc_streams, 5331 .free_streams = xhci_free_streams, 5332 .add_endpoint = xhci_add_endpoint, 5333 .drop_endpoint = xhci_drop_endpoint, 5334 .endpoint_disable = xhci_endpoint_disable, 5335 .endpoint_reset = xhci_endpoint_reset, 5336 .check_bandwidth = xhci_check_bandwidth, 5337 .reset_bandwidth = xhci_reset_bandwidth, 5338 .address_device = xhci_address_device, 5339 .enable_device = xhci_enable_device, 5340 .update_hub_device = xhci_update_hub_device, 5341 .reset_device = xhci_discover_or_reset_device, 5342 5343 /* 5344 * scheduling support 5345 */ 5346 .get_frame_number = xhci_get_frame, 5347 5348 /* 5349 * root hub support 5350 */ 5351 .hub_control = xhci_hub_control, 5352 .hub_status_data = xhci_hub_status_data, 5353 .bus_suspend = xhci_bus_suspend, 5354 .bus_resume = xhci_bus_resume, 5355 .get_resuming_ports = xhci_get_resuming_ports, 5356 5357 /* 5358 * call back when device connected and addressed 5359 */ 5360 .update_device = xhci_update_device, 5361 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5362 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5363 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5364 .find_raw_port_number = xhci_find_raw_port_number, 5365 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5366 }; 5367 5368 void xhci_init_driver(struct hc_driver *drv, 5369 const struct xhci_driver_overrides *over) 5370 { 5371 BUG_ON(!over); 5372 5373 /* Copy the generic table to drv then apply the overrides */ 5374 *drv = xhci_hc_driver; 5375 5376 if (over) { 5377 drv->hcd_priv_size += over->extra_priv_size; 5378 if (over->reset) 5379 drv->reset = over->reset; 5380 if (over->start) 5381 drv->start = over->start; 5382 } 5383 } 5384 EXPORT_SYMBOL_GPL(xhci_init_driver); 5385 5386 MODULE_DESCRIPTION(DRIVER_DESC); 5387 MODULE_AUTHOR(DRIVER_AUTHOR); 5388 MODULE_LICENSE("GPL"); 5389 5390 static int __init xhci_hcd_init(void) 5391 { 5392 /* 5393 * Check the compiler generated sizes of structures that must be laid 5394 * out in specific ways for hardware access. 5395 */ 5396 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5397 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5398 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5399 /* xhci_device_control has eight fields, and also 5400 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5401 */ 5402 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5403 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5404 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5405 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5406 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5407 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5408 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5409 5410 if (usb_disabled()) 5411 return -ENODEV; 5412 5413 xhci_debugfs_create_root(); 5414 5415 return 0; 5416 } 5417 5418 /* 5419 * If an init function is provided, an exit function must also be provided 5420 * to allow module unload. 5421 */ 5422 static void __exit xhci_hcd_fini(void) 5423 { 5424 xhci_debugfs_remove_root(); 5425 } 5426 5427 module_init(xhci_hcd_init); 5428 module_exit(xhci_hcd_fini); 5429