1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 31 #include "xhci.h" 32 33 #define DRIVER_AUTHOR "Sarah Sharp" 34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 35 36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 37 static int link_quirk; 38 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 40 41 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 42 /* 43 * xhci_handshake - spin reading hc until handshake completes or fails 44 * @ptr: address of hc register to be read 45 * @mask: bits to look at in result of read 46 * @done: value of those bits when handshake succeeds 47 * @usec: timeout in microseconds 48 * 49 * Returns negative errno, or zero on success 50 * 51 * Success happens when the "mask" bits have the specified value (hardware 52 * handshake done). There are two failure modes: "usec" have passed (major 53 * hardware flakeout), or the register reads as all-ones (hardware removed). 54 */ 55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 56 u32 mask, u32 done, int usec) 57 { 58 u32 result; 59 60 do { 61 result = xhci_readl(xhci, ptr); 62 if (result == ~(u32)0) /* card removed */ 63 return -ENODEV; 64 result &= mask; 65 if (result == done) 66 return 0; 67 udelay(1); 68 usec--; 69 } while (usec > 0); 70 return -ETIMEDOUT; 71 } 72 73 /* 74 * Disable interrupts and begin the xHCI halting process. 75 */ 76 void xhci_quiesce(struct xhci_hcd *xhci) 77 { 78 u32 halted; 79 u32 cmd; 80 u32 mask; 81 82 mask = ~(XHCI_IRQS); 83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 84 if (!halted) 85 mask &= ~CMD_RUN; 86 87 cmd = xhci_readl(xhci, &xhci->op_regs->command); 88 cmd &= mask; 89 xhci_writel(xhci, cmd, &xhci->op_regs->command); 90 } 91 92 /* 93 * Force HC into halt state. 94 * 95 * Disable any IRQs and clear the run/stop bit. 96 * HC will complete any current and actively pipelined transactions, and 97 * should halt within 16 ms of the run/stop bit being cleared. 98 * Read HC Halted bit in the status register to see when the HC is finished. 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 int ret; 103 xhci_dbg(xhci, "// Halt the HC\n"); 104 xhci_quiesce(xhci); 105 106 ret = xhci_handshake(xhci, &xhci->op_regs->status, 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 108 if (!ret) { 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 111 } else 112 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 113 XHCI_MAX_HALT_USEC); 114 return ret; 115 } 116 117 /* 118 * Set the run bit and wait for the host to be running. 119 */ 120 static int xhci_start(struct xhci_hcd *xhci) 121 { 122 u32 temp; 123 int ret; 124 125 temp = xhci_readl(xhci, &xhci->op_regs->command); 126 temp |= (CMD_RUN); 127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 128 temp); 129 xhci_writel(xhci, temp, &xhci->op_regs->command); 130 131 /* 132 * Wait for the HCHalted Status bit to be 0 to indicate the host is 133 * running. 134 */ 135 ret = xhci_handshake(xhci, &xhci->op_regs->status, 136 STS_HALT, 0, XHCI_MAX_HALT_USEC); 137 if (ret == -ETIMEDOUT) 138 xhci_err(xhci, "Host took too long to start, " 139 "waited %u microseconds.\n", 140 XHCI_MAX_HALT_USEC); 141 if (!ret) 142 xhci->xhc_state &= ~XHCI_STATE_HALTED; 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = xhci_readl(xhci, &xhci->op_regs->status); 160 if ((state & STS_HALT) == 0) { 161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 162 return 0; 163 } 164 165 xhci_dbg(xhci, "// Reset the HC\n"); 166 command = xhci_readl(xhci, &xhci->op_regs->command); 167 command |= CMD_RESET; 168 xhci_writel(xhci, command, &xhci->op_regs->command); 169 170 ret = xhci_handshake(xhci, &xhci->op_regs->command, 171 CMD_RESET, 0, 10 * 1000 * 1000); 172 if (ret) 173 return ret; 174 175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 176 /* 177 * xHCI cannot write to any doorbells or operational registers other 178 * than status until the "Controller Not Ready" flag is cleared. 179 */ 180 ret = xhci_handshake(xhci, &xhci->op_regs->status, 181 STS_CNR, 0, 10 * 1000 * 1000); 182 183 for (i = 0; i < 2; ++i) { 184 xhci->bus_state[i].port_c_suspend = 0; 185 xhci->bus_state[i].suspended_ports = 0; 186 xhci->bus_state[i].resuming_ports = 0; 187 } 188 189 return ret; 190 } 191 192 #ifdef CONFIG_PCI 193 static int xhci_free_msi(struct xhci_hcd *xhci) 194 { 195 int i; 196 197 if (!xhci->msix_entries) 198 return -EINVAL; 199 200 for (i = 0; i < xhci->msix_count; i++) 201 if (xhci->msix_entries[i].vector) 202 free_irq(xhci->msix_entries[i].vector, 203 xhci_to_hcd(xhci)); 204 return 0; 205 } 206 207 /* 208 * Set up MSI 209 */ 210 static int xhci_setup_msi(struct xhci_hcd *xhci) 211 { 212 int ret; 213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 214 215 ret = pci_enable_msi(pdev); 216 if (ret) { 217 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 218 return ret; 219 } 220 221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 222 0, "xhci_hcd", xhci_to_hcd(xhci)); 223 if (ret) { 224 xhci_dbg(xhci, "disable MSI interrupt\n"); 225 pci_disable_msi(pdev); 226 } 227 228 return ret; 229 } 230 231 /* 232 * Free IRQs 233 * free all IRQs request 234 */ 235 static void xhci_free_irq(struct xhci_hcd *xhci) 236 { 237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 238 int ret; 239 240 /* return if using legacy interrupt */ 241 if (xhci_to_hcd(xhci)->irq > 0) 242 return; 243 244 ret = xhci_free_msi(xhci); 245 if (!ret) 246 return; 247 if (pdev->irq > 0) 248 free_irq(pdev->irq, xhci_to_hcd(xhci)); 249 250 return; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 xhci->msix_entries = 273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 274 GFP_KERNEL); 275 if (!xhci->msix_entries) { 276 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 277 return -ENOMEM; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 xhci->msix_entries[i].entry = i; 282 xhci->msix_entries[i].vector = 0; 283 } 284 285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 286 if (ret) { 287 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 288 goto free_entries; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 ret = request_irq(xhci->msix_entries[i].vector, 293 (irq_handler_t)xhci_msi_irq, 294 0, "xhci_hcd", xhci_to_hcd(xhci)); 295 if (ret) 296 goto disable_msix; 297 } 298 299 hcd->msix_enabled = 1; 300 return ret; 301 302 disable_msix: 303 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 304 xhci_free_irq(xhci); 305 pci_disable_msix(pdev); 306 free_entries: 307 kfree(xhci->msix_entries); 308 xhci->msix_entries = NULL; 309 return ret; 310 } 311 312 /* Free any IRQs and disable MSI-X */ 313 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 314 { 315 struct usb_hcd *hcd = xhci_to_hcd(xhci); 316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 317 318 xhci_free_irq(xhci); 319 320 if (xhci->msix_entries) { 321 pci_disable_msix(pdev); 322 kfree(xhci->msix_entries); 323 xhci->msix_entries = NULL; 324 } else { 325 pci_disable_msi(pdev); 326 } 327 328 hcd->msix_enabled = 0; 329 return; 330 } 331 332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 333 { 334 int i; 335 336 if (xhci->msix_entries) { 337 for (i = 0; i < xhci->msix_count; i++) 338 synchronize_irq(xhci->msix_entries[i].vector); 339 } 340 } 341 342 static int xhci_try_enable_msi(struct usb_hcd *hcd) 343 { 344 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 346 int ret; 347 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 goto legacy_irq; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) 366 /* hcd->irq is 0, we have MSI */ 367 return 0; 368 369 if (!pdev->irq) { 370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 371 return -EINVAL; 372 } 373 374 legacy_irq: 375 /* fall back to legacy interrupt*/ 376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 377 hcd->irq_descr, hcd); 378 if (ret) { 379 xhci_err(xhci, "request interrupt %d failed\n", 380 pdev->irq); 381 return ret; 382 } 383 hcd->irq = pdev->irq; 384 return 0; 385 } 386 387 #else 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 return 0; 392 } 393 394 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 395 { 396 } 397 398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 399 { 400 } 401 402 #endif 403 404 static void compliance_mode_recovery(unsigned long arg) 405 { 406 struct xhci_hcd *xhci; 407 struct usb_hcd *hcd; 408 u32 temp; 409 int i; 410 411 xhci = (struct xhci_hcd *)arg; 412 413 for (i = 0; i < xhci->num_usb3_ports; i++) { 414 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 416 /* 417 * Compliance Mode Detected. Letting USB Core 418 * handle the Warm Reset 419 */ 420 xhci_dbg(xhci, "Compliance mode detected->port %d\n", 421 i + 1); 422 xhci_dbg(xhci, "Attempting compliance mode recovery\n"); 423 hcd = xhci->shared_hcd; 424 425 if (hcd->state == HC_STATE_SUSPENDED) 426 usb_hcd_resume_root_hub(hcd); 427 428 usb_hcd_poll_rh_status(hcd); 429 } 430 } 431 432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 433 mod_timer(&xhci->comp_mode_recovery_timer, 434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 435 } 436 437 /* 438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 439 * that causes ports behind that hardware to enter compliance mode sometimes. 440 * The quirk creates a timer that polls every 2 seconds the link state of 441 * each host controller's port and recovers it by issuing a Warm reset 442 * if Compliance mode is detected, otherwise the port will become "dead" (no 443 * device connections or disconnections will be detected anymore). Becasue no 444 * status event is generated when entering compliance mode (per xhci spec), 445 * this quirk is needed on systems that have the failing hardware installed. 446 */ 447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 448 { 449 xhci->port_status_u0 = 0; 450 init_timer(&xhci->comp_mode_recovery_timer); 451 452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 454 xhci->comp_mode_recovery_timer.expires = jiffies + 455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 456 457 set_timer_slack(&xhci->comp_mode_recovery_timer, 458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 add_timer(&xhci->comp_mode_recovery_timer); 460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n"); 461 } 462 463 /* 464 * This function identifies the systems that have installed the SN65LVPE502CP 465 * USB3.0 re-driver and that need the Compliance Mode Quirk. 466 * Systems: 467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 468 */ 469 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 470 { 471 const char *dmi_product_name, *dmi_sys_vendor; 472 473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 475 if (!dmi_product_name || !dmi_sys_vendor) 476 return false; 477 478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 479 return false; 480 481 if (strstr(dmi_product_name, "Z420") || 482 strstr(dmi_product_name, "Z620") || 483 strstr(dmi_product_name, "Z820") || 484 strstr(dmi_product_name, "Z1 Workstation")) 485 return true; 486 487 return false; 488 } 489 490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 491 { 492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 493 } 494 495 496 /* 497 * Initialize memory for HCD and xHC (one-time init). 498 * 499 * Program the PAGESIZE register, initialize the device context array, create 500 * device contexts (?), set up a command ring segment (or two?), create event 501 * ring (one for now). 502 */ 503 int xhci_init(struct usb_hcd *hcd) 504 { 505 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 506 int retval = 0; 507 508 xhci_dbg(xhci, "xhci_init\n"); 509 spin_lock_init(&xhci->lock); 510 if (xhci->hci_version == 0x95 && link_quirk) { 511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 512 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 513 } else { 514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 515 } 516 retval = xhci_mem_init(xhci, GFP_KERNEL); 517 xhci_dbg(xhci, "Finished xhci_init\n"); 518 519 /* Initializing Compliance Mode Recovery Data If Needed */ 520 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 521 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 522 compliance_mode_recovery_timer_init(xhci); 523 } 524 525 return retval; 526 } 527 528 /*-------------------------------------------------------------------------*/ 529 530 531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 532 static void xhci_event_ring_work(unsigned long arg) 533 { 534 unsigned long flags; 535 int temp; 536 u64 temp_64; 537 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 538 int i, j; 539 540 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 541 542 spin_lock_irqsave(&xhci->lock, flags); 543 temp = xhci_readl(xhci, &xhci->op_regs->status); 544 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 545 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 546 (xhci->xhc_state & XHCI_STATE_HALTED)) { 547 xhci_dbg(xhci, "HW died, polling stopped.\n"); 548 spin_unlock_irqrestore(&xhci->lock, flags); 549 return; 550 } 551 552 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 553 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 554 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 555 xhci->error_bitmask = 0; 556 xhci_dbg(xhci, "Event ring:\n"); 557 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 558 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 559 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 560 temp_64 &= ~ERST_PTR_MASK; 561 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 562 xhci_dbg(xhci, "Command ring:\n"); 563 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 564 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 565 xhci_dbg_cmd_ptrs(xhci); 566 for (i = 0; i < MAX_HC_SLOTS; ++i) { 567 if (!xhci->devs[i]) 568 continue; 569 for (j = 0; j < 31; ++j) { 570 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 571 } 572 } 573 spin_unlock_irqrestore(&xhci->lock, flags); 574 575 if (!xhci->zombie) 576 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 577 else 578 xhci_dbg(xhci, "Quit polling the event ring.\n"); 579 } 580 #endif 581 582 static int xhci_run_finished(struct xhci_hcd *xhci) 583 { 584 if (xhci_start(xhci)) { 585 xhci_halt(xhci); 586 return -ENODEV; 587 } 588 xhci->shared_hcd->state = HC_STATE_RUNNING; 589 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 590 591 if (xhci->quirks & XHCI_NEC_HOST) 592 xhci_ring_cmd_db(xhci); 593 594 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 595 return 0; 596 } 597 598 /* 599 * Start the HC after it was halted. 600 * 601 * This function is called by the USB core when the HC driver is added. 602 * Its opposite is xhci_stop(). 603 * 604 * xhci_init() must be called once before this function can be called. 605 * Reset the HC, enable device slot contexts, program DCBAAP, and 606 * set command ring pointer and event ring pointer. 607 * 608 * Setup MSI-X vectors and enable interrupts. 609 */ 610 int xhci_run(struct usb_hcd *hcd) 611 { 612 u32 temp; 613 u64 temp_64; 614 int ret; 615 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 616 617 /* Start the xHCI host controller running only after the USB 2.0 roothub 618 * is setup. 619 */ 620 621 hcd->uses_new_polling = 1; 622 if (!usb_hcd_is_primary_hcd(hcd)) 623 return xhci_run_finished(xhci); 624 625 xhci_dbg(xhci, "xhci_run\n"); 626 627 ret = xhci_try_enable_msi(hcd); 628 if (ret) 629 return ret; 630 631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 632 init_timer(&xhci->event_ring_timer); 633 xhci->event_ring_timer.data = (unsigned long) xhci; 634 xhci->event_ring_timer.function = xhci_event_ring_work; 635 /* Poll the event ring */ 636 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 637 xhci->zombie = 0; 638 xhci_dbg(xhci, "Setting event ring polling timer\n"); 639 add_timer(&xhci->event_ring_timer); 640 #endif 641 642 xhci_dbg(xhci, "Command ring memory map follows:\n"); 643 xhci_debug_ring(xhci, xhci->cmd_ring); 644 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 645 xhci_dbg_cmd_ptrs(xhci); 646 647 xhci_dbg(xhci, "ERST memory map follows:\n"); 648 xhci_dbg_erst(xhci, &xhci->erst); 649 xhci_dbg(xhci, "Event ring:\n"); 650 xhci_debug_ring(xhci, xhci->event_ring); 651 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 652 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 653 temp_64 &= ~ERST_PTR_MASK; 654 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 655 656 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 657 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 658 temp &= ~ER_IRQ_INTERVAL_MASK; 659 temp |= (u32) 160; 660 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 661 662 /* Set the HCD state before we enable the irqs */ 663 temp = xhci_readl(xhci, &xhci->op_regs->command); 664 temp |= (CMD_EIE); 665 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 666 temp); 667 xhci_writel(xhci, temp, &xhci->op_regs->command); 668 669 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 670 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 671 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 672 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 673 &xhci->ir_set->irq_pending); 674 xhci_print_ir_set(xhci, 0); 675 676 if (xhci->quirks & XHCI_NEC_HOST) 677 xhci_queue_vendor_command(xhci, 0, 0, 0, 678 TRB_TYPE(TRB_NEC_GET_FW)); 679 680 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 681 return 0; 682 } 683 684 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 685 { 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 spin_lock_irq(&xhci->lock); 689 xhci_halt(xhci); 690 691 /* The shared_hcd is going to be deallocated shortly (the USB core only 692 * calls this function when allocation fails in usb_add_hcd(), or 693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 694 */ 695 xhci->shared_hcd = NULL; 696 spin_unlock_irq(&xhci->lock); 697 } 698 699 /* 700 * Stop xHCI driver. 701 * 702 * This function is called by the USB core when the HC driver is removed. 703 * Its opposite is xhci_run(). 704 * 705 * Disable device contexts, disable IRQs, and quiesce the HC. 706 * Reset the HC, finish any completed transactions, and cleanup memory. 707 */ 708 void xhci_stop(struct usb_hcd *hcd) 709 { 710 u32 temp; 711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 712 713 if (!usb_hcd_is_primary_hcd(hcd)) { 714 xhci_only_stop_hcd(xhci->shared_hcd); 715 return; 716 } 717 718 spin_lock_irq(&xhci->lock); 719 /* Make sure the xHC is halted for a USB3 roothub 720 * (xhci_stop() could be called as part of failed init). 721 */ 722 xhci_halt(xhci); 723 xhci_reset(xhci); 724 spin_unlock_irq(&xhci->lock); 725 726 xhci_cleanup_msix(xhci); 727 728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 729 /* Tell the event ring poll function not to reschedule */ 730 xhci->zombie = 1; 731 del_timer_sync(&xhci->event_ring_timer); 732 #endif 733 734 /* Deleting Compliance Mode Recovery Timer */ 735 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 736 (!(xhci_all_ports_seen_u0(xhci)))) { 737 del_timer_sync(&xhci->comp_mode_recovery_timer); 738 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 739 __func__); 740 } 741 742 if (xhci->quirks & XHCI_AMD_PLL_FIX) 743 usb_amd_dev_put(); 744 745 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 746 temp = xhci_readl(xhci, &xhci->op_regs->status); 747 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 748 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 749 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 750 &xhci->ir_set->irq_pending); 751 xhci_print_ir_set(xhci, 0); 752 753 xhci_dbg(xhci, "cleaning up memory\n"); 754 xhci_mem_cleanup(xhci); 755 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 756 xhci_readl(xhci, &xhci->op_regs->status)); 757 } 758 759 /* 760 * Shutdown HC (not bus-specific) 761 * 762 * This is called when the machine is rebooting or halting. We assume that the 763 * machine will be powered off, and the HC's internal state will be reset. 764 * Don't bother to free memory. 765 * 766 * This will only ever be called with the main usb_hcd (the USB3 roothub). 767 */ 768 void xhci_shutdown(struct usb_hcd *hcd) 769 { 770 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 771 772 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 773 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 774 775 spin_lock_irq(&xhci->lock); 776 xhci_halt(xhci); 777 spin_unlock_irq(&xhci->lock); 778 779 xhci_cleanup_msix(xhci); 780 781 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 782 xhci_readl(xhci, &xhci->op_regs->status)); 783 } 784 785 #ifdef CONFIG_PM 786 static void xhci_save_registers(struct xhci_hcd *xhci) 787 { 788 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 789 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 790 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 791 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 792 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 793 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 794 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 795 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 796 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 797 } 798 799 static void xhci_restore_registers(struct xhci_hcd *xhci) 800 { 801 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 802 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 803 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 804 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 805 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 806 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 807 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 808 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 809 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 810 } 811 812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 813 { 814 u64 val_64; 815 816 /* step 2: initialize command ring buffer */ 817 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 818 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 819 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 820 xhci->cmd_ring->dequeue) & 821 (u64) ~CMD_RING_RSVD_BITS) | 822 xhci->cmd_ring->cycle_state; 823 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 824 (long unsigned long) val_64); 825 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 826 } 827 828 /* 829 * The whole command ring must be cleared to zero when we suspend the host. 830 * 831 * The host doesn't save the command ring pointer in the suspend well, so we 832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 833 * aligned, because of the reserved bits in the command ring dequeue pointer 834 * register. Therefore, we can't just set the dequeue pointer back in the 835 * middle of the ring (TRBs are 16-byte aligned). 836 */ 837 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 838 { 839 struct xhci_ring *ring; 840 struct xhci_segment *seg; 841 842 ring = xhci->cmd_ring; 843 seg = ring->deq_seg; 844 do { 845 memset(seg->trbs, 0, 846 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 847 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 848 cpu_to_le32(~TRB_CYCLE); 849 seg = seg->next; 850 } while (seg != ring->deq_seg); 851 852 /* Reset the software enqueue and dequeue pointers */ 853 ring->deq_seg = ring->first_seg; 854 ring->dequeue = ring->first_seg->trbs; 855 ring->enq_seg = ring->deq_seg; 856 ring->enqueue = ring->dequeue; 857 858 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 859 /* 860 * Ring is now zeroed, so the HW should look for change of ownership 861 * when the cycle bit is set to 1. 862 */ 863 ring->cycle_state = 1; 864 865 /* 866 * Reset the hardware dequeue pointer. 867 * Yes, this will need to be re-written after resume, but we're paranoid 868 * and want to make sure the hardware doesn't access bogus memory 869 * because, say, the BIOS or an SMI started the host without changing 870 * the command ring pointers. 871 */ 872 xhci_set_cmd_ring_deq(xhci); 873 } 874 875 /* 876 * Stop HC (not bus-specific) 877 * 878 * This is called when the machine transition into S3/S4 mode. 879 * 880 */ 881 int xhci_suspend(struct xhci_hcd *xhci) 882 { 883 int rc = 0; 884 struct usb_hcd *hcd = xhci_to_hcd(xhci); 885 u32 command; 886 887 if (hcd->state != HC_STATE_SUSPENDED || 888 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 889 return -EINVAL; 890 891 /* Don't poll the roothubs on bus suspend. */ 892 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 894 del_timer_sync(&hcd->rh_timer); 895 896 spin_lock_irq(&xhci->lock); 897 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 899 /* step 1: stop endpoint */ 900 /* skipped assuming that port suspend has done */ 901 902 /* step 2: clear Run/Stop bit */ 903 command = xhci_readl(xhci, &xhci->op_regs->command); 904 command &= ~CMD_RUN; 905 xhci_writel(xhci, command, &xhci->op_regs->command); 906 if (xhci_handshake(xhci, &xhci->op_regs->status, 907 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 908 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 909 spin_unlock_irq(&xhci->lock); 910 return -ETIMEDOUT; 911 } 912 xhci_clear_command_ring(xhci); 913 914 /* step 3: save registers */ 915 xhci_save_registers(xhci); 916 917 /* step 4: set CSS flag */ 918 command = xhci_readl(xhci, &xhci->op_regs->command); 919 command |= CMD_CSS; 920 xhci_writel(xhci, command, &xhci->op_regs->command); 921 if (xhci_handshake(xhci, &xhci->op_regs->status, 922 STS_SAVE, 0, 10 * 1000)) { 923 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 924 spin_unlock_irq(&xhci->lock); 925 return -ETIMEDOUT; 926 } 927 spin_unlock_irq(&xhci->lock); 928 929 /* 930 * Deleting Compliance Mode Recovery Timer because the xHCI Host 931 * is about to be suspended. 932 */ 933 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 934 (!(xhci_all_ports_seen_u0(xhci)))) { 935 del_timer_sync(&xhci->comp_mode_recovery_timer); 936 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 937 __func__); 938 } 939 940 /* step 5: remove core well power */ 941 /* synchronize irq when using MSI-X */ 942 xhci_msix_sync_irqs(xhci); 943 944 return rc; 945 } 946 947 /* 948 * start xHC (not bus-specific) 949 * 950 * This is called when the machine transition from S3/S4 mode. 951 * 952 */ 953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 954 { 955 u32 command, temp = 0; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 struct usb_hcd *secondary_hcd; 958 int retval = 0; 959 bool comp_timer_running = false; 960 961 /* Wait a bit if either of the roothubs need to settle from the 962 * transition into bus suspend. 963 */ 964 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 965 time_before(jiffies, 966 xhci->bus_state[1].next_statechange)) 967 msleep(100); 968 969 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 970 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 971 972 spin_lock_irq(&xhci->lock); 973 if (xhci->quirks & XHCI_RESET_ON_RESUME) 974 hibernated = true; 975 976 if (!hibernated) { 977 /* step 1: restore register */ 978 xhci_restore_registers(xhci); 979 /* step 2: initialize command ring buffer */ 980 xhci_set_cmd_ring_deq(xhci); 981 /* step 3: restore state and start state*/ 982 /* step 3: set CRS flag */ 983 command = xhci_readl(xhci, &xhci->op_regs->command); 984 command |= CMD_CRS; 985 xhci_writel(xhci, command, &xhci->op_regs->command); 986 if (xhci_handshake(xhci, &xhci->op_regs->status, 987 STS_RESTORE, 0, 10 * 1000)) { 988 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 989 spin_unlock_irq(&xhci->lock); 990 return -ETIMEDOUT; 991 } 992 temp = xhci_readl(xhci, &xhci->op_regs->status); 993 } 994 995 /* If restore operation fails, re-initialize the HC during resume */ 996 if ((temp & STS_SRE) || hibernated) { 997 998 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 999 !(xhci_all_ports_seen_u0(xhci))) { 1000 del_timer_sync(&xhci->comp_mode_recovery_timer); 1001 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n"); 1002 } 1003 1004 /* Let the USB core know _both_ roothubs lost power. */ 1005 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1006 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1007 1008 xhci_dbg(xhci, "Stop HCD\n"); 1009 xhci_halt(xhci); 1010 xhci_reset(xhci); 1011 spin_unlock_irq(&xhci->lock); 1012 xhci_cleanup_msix(xhci); 1013 1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 1015 /* Tell the event ring poll function not to reschedule */ 1016 xhci->zombie = 1; 1017 del_timer_sync(&xhci->event_ring_timer); 1018 #endif 1019 1020 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1021 temp = xhci_readl(xhci, &xhci->op_regs->status); 1022 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 1023 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 1024 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 1025 &xhci->ir_set->irq_pending); 1026 xhci_print_ir_set(xhci, 0); 1027 1028 xhci_dbg(xhci, "cleaning up memory\n"); 1029 xhci_mem_cleanup(xhci); 1030 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1031 xhci_readl(xhci, &xhci->op_regs->status)); 1032 1033 /* USB core calls the PCI reinit and start functions twice: 1034 * first with the primary HCD, and then with the secondary HCD. 1035 * If we don't do the same, the host will never be started. 1036 */ 1037 if (!usb_hcd_is_primary_hcd(hcd)) 1038 secondary_hcd = hcd; 1039 else 1040 secondary_hcd = xhci->shared_hcd; 1041 1042 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1043 retval = xhci_init(hcd->primary_hcd); 1044 if (retval) 1045 return retval; 1046 comp_timer_running = true; 1047 1048 xhci_dbg(xhci, "Start the primary HCD\n"); 1049 retval = xhci_run(hcd->primary_hcd); 1050 if (!retval) { 1051 xhci_dbg(xhci, "Start the secondary HCD\n"); 1052 retval = xhci_run(secondary_hcd); 1053 } 1054 hcd->state = HC_STATE_SUSPENDED; 1055 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1056 goto done; 1057 } 1058 1059 /* step 4: set Run/Stop bit */ 1060 command = xhci_readl(xhci, &xhci->op_regs->command); 1061 command |= CMD_RUN; 1062 xhci_writel(xhci, command, &xhci->op_regs->command); 1063 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1064 0, 250 * 1000); 1065 1066 /* step 5: walk topology and initialize portsc, 1067 * portpmsc and portli 1068 */ 1069 /* this is done in bus_resume */ 1070 1071 /* step 6: restart each of the previously 1072 * Running endpoints by ringing their doorbells 1073 */ 1074 1075 spin_unlock_irq(&xhci->lock); 1076 1077 done: 1078 if (retval == 0) { 1079 usb_hcd_resume_root_hub(hcd); 1080 usb_hcd_resume_root_hub(xhci->shared_hcd); 1081 } 1082 1083 /* 1084 * If system is subject to the Quirk, Compliance Mode Timer needs to 1085 * be re-initialized Always after a system resume. Ports are subject 1086 * to suffer the Compliance Mode issue again. It doesn't matter if 1087 * ports have entered previously to U0 before system's suspension. 1088 */ 1089 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1090 compliance_mode_recovery_timer_init(xhci); 1091 1092 /* Re-enable port polling. */ 1093 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1094 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1095 usb_hcd_poll_rh_status(hcd); 1096 1097 return retval; 1098 } 1099 #endif /* CONFIG_PM */ 1100 1101 /*-------------------------------------------------------------------------*/ 1102 1103 /** 1104 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1105 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1106 * value to right shift 1 for the bitmask. 1107 * 1108 * Index = (epnum * 2) + direction - 1, 1109 * where direction = 0 for OUT, 1 for IN. 1110 * For control endpoints, the IN index is used (OUT index is unused), so 1111 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1112 */ 1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1114 { 1115 unsigned int index; 1116 if (usb_endpoint_xfer_control(desc)) 1117 index = (unsigned int) (usb_endpoint_num(desc)*2); 1118 else 1119 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1120 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1121 return index; 1122 } 1123 1124 /* Find the flag for this endpoint (for use in the control context). Use the 1125 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1126 * bit 1, etc. 1127 */ 1128 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1129 { 1130 return 1 << (xhci_get_endpoint_index(desc) + 1); 1131 } 1132 1133 /* Find the flag for this endpoint (for use in the control context). Use the 1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1135 * bit 1, etc. 1136 */ 1137 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1138 { 1139 return 1 << (ep_index + 1); 1140 } 1141 1142 /* Compute the last valid endpoint context index. Basically, this is the 1143 * endpoint index plus one. For slot contexts with more than valid endpoint, 1144 * we find the most significant bit set in the added contexts flags. 1145 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1146 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1147 */ 1148 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1149 { 1150 return fls(added_ctxs) - 1; 1151 } 1152 1153 /* Returns 1 if the arguments are OK; 1154 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1155 */ 1156 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1157 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1158 const char *func) { 1159 struct xhci_hcd *xhci; 1160 struct xhci_virt_device *virt_dev; 1161 1162 if (!hcd || (check_ep && !ep) || !udev) { 1163 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1164 func); 1165 return -EINVAL; 1166 } 1167 if (!udev->parent) { 1168 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1169 func); 1170 return 0; 1171 } 1172 1173 xhci = hcd_to_xhci(hcd); 1174 if (xhci->xhc_state & XHCI_STATE_HALTED) 1175 return -ENODEV; 1176 1177 if (check_virt_dev) { 1178 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1179 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1180 "device\n", func); 1181 return -EINVAL; 1182 } 1183 1184 virt_dev = xhci->devs[udev->slot_id]; 1185 if (virt_dev->udev != udev) { 1186 printk(KERN_DEBUG "xHCI %s called with udev and " 1187 "virt_dev does not match\n", func); 1188 return -EINVAL; 1189 } 1190 } 1191 1192 return 1; 1193 } 1194 1195 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1196 struct usb_device *udev, struct xhci_command *command, 1197 bool ctx_change, bool must_succeed); 1198 1199 /* 1200 * Full speed devices may have a max packet size greater than 8 bytes, but the 1201 * USB core doesn't know that until it reads the first 8 bytes of the 1202 * descriptor. If the usb_device's max packet size changes after that point, 1203 * we need to issue an evaluate context command and wait on it. 1204 */ 1205 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1206 unsigned int ep_index, struct urb *urb) 1207 { 1208 struct xhci_container_ctx *in_ctx; 1209 struct xhci_container_ctx *out_ctx; 1210 struct xhci_input_control_ctx *ctrl_ctx; 1211 struct xhci_ep_ctx *ep_ctx; 1212 int max_packet_size; 1213 int hw_max_packet_size; 1214 int ret = 0; 1215 1216 out_ctx = xhci->devs[slot_id]->out_ctx; 1217 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1218 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1219 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1220 if (hw_max_packet_size != max_packet_size) { 1221 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1222 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1223 max_packet_size); 1224 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1225 hw_max_packet_size); 1226 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1227 1228 /* Set up the modified control endpoint 0 */ 1229 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1230 xhci->devs[slot_id]->out_ctx, ep_index); 1231 in_ctx = xhci->devs[slot_id]->in_ctx; 1232 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1233 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1234 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1235 1236 /* Set up the input context flags for the command */ 1237 /* FIXME: This won't work if a non-default control endpoint 1238 * changes max packet sizes. 1239 */ 1240 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1241 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1242 ctrl_ctx->drop_flags = 0; 1243 1244 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1245 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1246 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1247 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1248 1249 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1250 true, false); 1251 1252 /* Clean up the input context for later use by bandwidth 1253 * functions. 1254 */ 1255 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1256 } 1257 return ret; 1258 } 1259 1260 /* 1261 * non-error returns are a promise to giveback() the urb later 1262 * we drop ownership so next owner (or urb unlink) can get it 1263 */ 1264 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1265 { 1266 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1267 struct xhci_td *buffer; 1268 unsigned long flags; 1269 int ret = 0; 1270 unsigned int slot_id, ep_index; 1271 struct urb_priv *urb_priv; 1272 int size, i; 1273 1274 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1275 true, true, __func__) <= 0) 1276 return -EINVAL; 1277 1278 slot_id = urb->dev->slot_id; 1279 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1280 1281 if (!HCD_HW_ACCESSIBLE(hcd)) { 1282 if (!in_interrupt()) 1283 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1284 ret = -ESHUTDOWN; 1285 goto exit; 1286 } 1287 1288 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1289 size = urb->number_of_packets; 1290 else 1291 size = 1; 1292 1293 urb_priv = kzalloc(sizeof(struct urb_priv) + 1294 size * sizeof(struct xhci_td *), mem_flags); 1295 if (!urb_priv) 1296 return -ENOMEM; 1297 1298 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1299 if (!buffer) { 1300 kfree(urb_priv); 1301 return -ENOMEM; 1302 } 1303 1304 for (i = 0; i < size; i++) { 1305 urb_priv->td[i] = buffer; 1306 buffer++; 1307 } 1308 1309 urb_priv->length = size; 1310 urb_priv->td_cnt = 0; 1311 urb->hcpriv = urb_priv; 1312 1313 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1314 /* Check to see if the max packet size for the default control 1315 * endpoint changed during FS device enumeration 1316 */ 1317 if (urb->dev->speed == USB_SPEED_FULL) { 1318 ret = xhci_check_maxpacket(xhci, slot_id, 1319 ep_index, urb); 1320 if (ret < 0) { 1321 xhci_urb_free_priv(xhci, urb_priv); 1322 urb->hcpriv = NULL; 1323 return ret; 1324 } 1325 } 1326 1327 /* We have a spinlock and interrupts disabled, so we must pass 1328 * atomic context to this function, which may allocate memory. 1329 */ 1330 spin_lock_irqsave(&xhci->lock, flags); 1331 if (xhci->xhc_state & XHCI_STATE_DYING) 1332 goto dying; 1333 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1334 slot_id, ep_index); 1335 if (ret) 1336 goto free_priv; 1337 spin_unlock_irqrestore(&xhci->lock, flags); 1338 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1339 spin_lock_irqsave(&xhci->lock, flags); 1340 if (xhci->xhc_state & XHCI_STATE_DYING) 1341 goto dying; 1342 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1343 EP_GETTING_STREAMS) { 1344 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1345 "is transitioning to using streams.\n"); 1346 ret = -EINVAL; 1347 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1348 EP_GETTING_NO_STREAMS) { 1349 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1350 "is transitioning to " 1351 "not having streams.\n"); 1352 ret = -EINVAL; 1353 } else { 1354 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1355 slot_id, ep_index); 1356 } 1357 if (ret) 1358 goto free_priv; 1359 spin_unlock_irqrestore(&xhci->lock, flags); 1360 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1361 spin_lock_irqsave(&xhci->lock, flags); 1362 if (xhci->xhc_state & XHCI_STATE_DYING) 1363 goto dying; 1364 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1365 slot_id, ep_index); 1366 if (ret) 1367 goto free_priv; 1368 spin_unlock_irqrestore(&xhci->lock, flags); 1369 } else { 1370 spin_lock_irqsave(&xhci->lock, flags); 1371 if (xhci->xhc_state & XHCI_STATE_DYING) 1372 goto dying; 1373 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1374 slot_id, ep_index); 1375 if (ret) 1376 goto free_priv; 1377 spin_unlock_irqrestore(&xhci->lock, flags); 1378 } 1379 exit: 1380 return ret; 1381 dying: 1382 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1383 "non-responsive xHCI host.\n", 1384 urb->ep->desc.bEndpointAddress, urb); 1385 ret = -ESHUTDOWN; 1386 free_priv: 1387 xhci_urb_free_priv(xhci, urb_priv); 1388 urb->hcpriv = NULL; 1389 spin_unlock_irqrestore(&xhci->lock, flags); 1390 return ret; 1391 } 1392 1393 /* Get the right ring for the given URB. 1394 * If the endpoint supports streams, boundary check the URB's stream ID. 1395 * If the endpoint doesn't support streams, return the singular endpoint ring. 1396 */ 1397 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1398 struct urb *urb) 1399 { 1400 unsigned int slot_id; 1401 unsigned int ep_index; 1402 unsigned int stream_id; 1403 struct xhci_virt_ep *ep; 1404 1405 slot_id = urb->dev->slot_id; 1406 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1407 stream_id = urb->stream_id; 1408 ep = &xhci->devs[slot_id]->eps[ep_index]; 1409 /* Common case: no streams */ 1410 if (!(ep->ep_state & EP_HAS_STREAMS)) 1411 return ep->ring; 1412 1413 if (stream_id == 0) { 1414 xhci_warn(xhci, 1415 "WARN: Slot ID %u, ep index %u has streams, " 1416 "but URB has no stream ID.\n", 1417 slot_id, ep_index); 1418 return NULL; 1419 } 1420 1421 if (stream_id < ep->stream_info->num_streams) 1422 return ep->stream_info->stream_rings[stream_id]; 1423 1424 xhci_warn(xhci, 1425 "WARN: Slot ID %u, ep index %u has " 1426 "stream IDs 1 to %u allocated, " 1427 "but stream ID %u is requested.\n", 1428 slot_id, ep_index, 1429 ep->stream_info->num_streams - 1, 1430 stream_id); 1431 return NULL; 1432 } 1433 1434 /* 1435 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1436 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1437 * should pick up where it left off in the TD, unless a Set Transfer Ring 1438 * Dequeue Pointer is issued. 1439 * 1440 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1441 * the ring. Since the ring is a contiguous structure, they can't be physically 1442 * removed. Instead, there are two options: 1443 * 1444 * 1) If the HC is in the middle of processing the URB to be canceled, we 1445 * simply move the ring's dequeue pointer past those TRBs using the Set 1446 * Transfer Ring Dequeue Pointer command. This will be the common case, 1447 * when drivers timeout on the last submitted URB and attempt to cancel. 1448 * 1449 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1450 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1451 * HC will need to invalidate the any TRBs it has cached after the stop 1452 * endpoint command, as noted in the xHCI 0.95 errata. 1453 * 1454 * 3) The TD may have completed by the time the Stop Endpoint Command 1455 * completes, so software needs to handle that case too. 1456 * 1457 * This function should protect against the TD enqueueing code ringing the 1458 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1459 * It also needs to account for multiple cancellations on happening at the same 1460 * time for the same endpoint. 1461 * 1462 * Note that this function can be called in any context, or so says 1463 * usb_hcd_unlink_urb() 1464 */ 1465 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1466 { 1467 unsigned long flags; 1468 int ret, i; 1469 u32 temp; 1470 struct xhci_hcd *xhci; 1471 struct urb_priv *urb_priv; 1472 struct xhci_td *td; 1473 unsigned int ep_index; 1474 struct xhci_ring *ep_ring; 1475 struct xhci_virt_ep *ep; 1476 1477 xhci = hcd_to_xhci(hcd); 1478 spin_lock_irqsave(&xhci->lock, flags); 1479 /* Make sure the URB hasn't completed or been unlinked already */ 1480 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1481 if (ret || !urb->hcpriv) 1482 goto done; 1483 temp = xhci_readl(xhci, &xhci->op_regs->status); 1484 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1485 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1486 urb_priv = urb->hcpriv; 1487 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1488 td = urb_priv->td[i]; 1489 if (!list_empty(&td->td_list)) 1490 list_del_init(&td->td_list); 1491 if (!list_empty(&td->cancelled_td_list)) 1492 list_del_init(&td->cancelled_td_list); 1493 } 1494 1495 usb_hcd_unlink_urb_from_ep(hcd, urb); 1496 spin_unlock_irqrestore(&xhci->lock, flags); 1497 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1498 xhci_urb_free_priv(xhci, urb_priv); 1499 return ret; 1500 } 1501 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1502 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1503 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1504 "non-responsive xHCI host.\n", 1505 urb->ep->desc.bEndpointAddress, urb); 1506 /* Let the stop endpoint command watchdog timer (which set this 1507 * state) finish cleaning up the endpoint TD lists. We must 1508 * have caught it in the middle of dropping a lock and giving 1509 * back an URB. 1510 */ 1511 goto done; 1512 } 1513 1514 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1515 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1516 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1517 if (!ep_ring) { 1518 ret = -EINVAL; 1519 goto done; 1520 } 1521 1522 urb_priv = urb->hcpriv; 1523 i = urb_priv->td_cnt; 1524 if (i < urb_priv->length) 1525 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1526 "starting at offset 0x%llx\n", 1527 urb, urb->dev->devpath, 1528 urb->ep->desc.bEndpointAddress, 1529 (unsigned long long) xhci_trb_virt_to_dma( 1530 urb_priv->td[i]->start_seg, 1531 urb_priv->td[i]->first_trb)); 1532 1533 for (; i < urb_priv->length; i++) { 1534 td = urb_priv->td[i]; 1535 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1536 } 1537 1538 /* Queue a stop endpoint command, but only if this is 1539 * the first cancellation to be handled. 1540 */ 1541 if (!(ep->ep_state & EP_HALT_PENDING)) { 1542 ep->ep_state |= EP_HALT_PENDING; 1543 ep->stop_cmds_pending++; 1544 ep->stop_cmd_timer.expires = jiffies + 1545 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1546 add_timer(&ep->stop_cmd_timer); 1547 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1548 xhci_ring_cmd_db(xhci); 1549 } 1550 done: 1551 spin_unlock_irqrestore(&xhci->lock, flags); 1552 return ret; 1553 } 1554 1555 /* Drop an endpoint from a new bandwidth configuration for this device. 1556 * Only one call to this function is allowed per endpoint before 1557 * check_bandwidth() or reset_bandwidth() must be called. 1558 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1559 * add the endpoint to the schedule with possibly new parameters denoted by a 1560 * different endpoint descriptor in usb_host_endpoint. 1561 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1562 * not allowed. 1563 * 1564 * The USB core will not allow URBs to be queued to an endpoint that is being 1565 * disabled, so there's no need for mutual exclusion to protect 1566 * the xhci->devs[slot_id] structure. 1567 */ 1568 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1569 struct usb_host_endpoint *ep) 1570 { 1571 struct xhci_hcd *xhci; 1572 struct xhci_container_ctx *in_ctx, *out_ctx; 1573 struct xhci_input_control_ctx *ctrl_ctx; 1574 struct xhci_slot_ctx *slot_ctx; 1575 unsigned int last_ctx; 1576 unsigned int ep_index; 1577 struct xhci_ep_ctx *ep_ctx; 1578 u32 drop_flag; 1579 u32 new_add_flags, new_drop_flags, new_slot_info; 1580 int ret; 1581 1582 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1583 if (ret <= 0) 1584 return ret; 1585 xhci = hcd_to_xhci(hcd); 1586 if (xhci->xhc_state & XHCI_STATE_DYING) 1587 return -ENODEV; 1588 1589 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1590 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1591 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1592 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1593 __func__, drop_flag); 1594 return 0; 1595 } 1596 1597 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1598 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1599 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1600 ep_index = xhci_get_endpoint_index(&ep->desc); 1601 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1602 /* If the HC already knows the endpoint is disabled, 1603 * or the HCD has noted it is disabled, ignore this request 1604 */ 1605 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1606 cpu_to_le32(EP_STATE_DISABLED)) || 1607 le32_to_cpu(ctrl_ctx->drop_flags) & 1608 xhci_get_endpoint_flag(&ep->desc)) { 1609 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1610 __func__, ep); 1611 return 0; 1612 } 1613 1614 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1615 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1616 1617 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1618 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1619 1620 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1621 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1622 /* Update the last valid endpoint context, if we deleted the last one */ 1623 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1624 LAST_CTX(last_ctx)) { 1625 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1626 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1627 } 1628 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1629 1630 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1631 1632 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1633 (unsigned int) ep->desc.bEndpointAddress, 1634 udev->slot_id, 1635 (unsigned int) new_drop_flags, 1636 (unsigned int) new_add_flags, 1637 (unsigned int) new_slot_info); 1638 return 0; 1639 } 1640 1641 /* Add an endpoint to a new possible bandwidth configuration for this device. 1642 * Only one call to this function is allowed per endpoint before 1643 * check_bandwidth() or reset_bandwidth() must be called. 1644 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1645 * add the endpoint to the schedule with possibly new parameters denoted by a 1646 * different endpoint descriptor in usb_host_endpoint. 1647 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1648 * not allowed. 1649 * 1650 * The USB core will not allow URBs to be queued to an endpoint until the 1651 * configuration or alt setting is installed in the device, so there's no need 1652 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1653 */ 1654 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1655 struct usb_host_endpoint *ep) 1656 { 1657 struct xhci_hcd *xhci; 1658 struct xhci_container_ctx *in_ctx, *out_ctx; 1659 unsigned int ep_index; 1660 struct xhci_slot_ctx *slot_ctx; 1661 struct xhci_input_control_ctx *ctrl_ctx; 1662 u32 added_ctxs; 1663 unsigned int last_ctx; 1664 u32 new_add_flags, new_drop_flags, new_slot_info; 1665 struct xhci_virt_device *virt_dev; 1666 int ret = 0; 1667 1668 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1669 if (ret <= 0) { 1670 /* So we won't queue a reset ep command for a root hub */ 1671 ep->hcpriv = NULL; 1672 return ret; 1673 } 1674 xhci = hcd_to_xhci(hcd); 1675 if (xhci->xhc_state & XHCI_STATE_DYING) 1676 return -ENODEV; 1677 1678 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1679 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1680 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1681 /* FIXME when we have to issue an evaluate endpoint command to 1682 * deal with ep0 max packet size changing once we get the 1683 * descriptors 1684 */ 1685 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1686 __func__, added_ctxs); 1687 return 0; 1688 } 1689 1690 virt_dev = xhci->devs[udev->slot_id]; 1691 in_ctx = virt_dev->in_ctx; 1692 out_ctx = virt_dev->out_ctx; 1693 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1694 ep_index = xhci_get_endpoint_index(&ep->desc); 1695 1696 /* If this endpoint is already in use, and the upper layers are trying 1697 * to add it again without dropping it, reject the addition. 1698 */ 1699 if (virt_dev->eps[ep_index].ring && 1700 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1701 xhci_get_endpoint_flag(&ep->desc))) { 1702 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1703 "without dropping it.\n", 1704 (unsigned int) ep->desc.bEndpointAddress); 1705 return -EINVAL; 1706 } 1707 1708 /* If the HCD has already noted the endpoint is enabled, 1709 * ignore this request. 1710 */ 1711 if (le32_to_cpu(ctrl_ctx->add_flags) & 1712 xhci_get_endpoint_flag(&ep->desc)) { 1713 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1714 __func__, ep); 1715 return 0; 1716 } 1717 1718 /* 1719 * Configuration and alternate setting changes must be done in 1720 * process context, not interrupt context (or so documenation 1721 * for usb_set_interface() and usb_set_configuration() claim). 1722 */ 1723 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1724 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1725 __func__, ep->desc.bEndpointAddress); 1726 return -ENOMEM; 1727 } 1728 1729 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1730 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1731 1732 /* If xhci_endpoint_disable() was called for this endpoint, but the 1733 * xHC hasn't been notified yet through the check_bandwidth() call, 1734 * this re-adds a new state for the endpoint from the new endpoint 1735 * descriptors. We must drop and re-add this endpoint, so we leave the 1736 * drop flags alone. 1737 */ 1738 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1739 1740 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1741 /* Update the last valid endpoint context, if we just added one past */ 1742 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1743 LAST_CTX(last_ctx)) { 1744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1745 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1746 } 1747 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1748 1749 /* Store the usb_device pointer for later use */ 1750 ep->hcpriv = udev; 1751 1752 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1753 (unsigned int) ep->desc.bEndpointAddress, 1754 udev->slot_id, 1755 (unsigned int) new_drop_flags, 1756 (unsigned int) new_add_flags, 1757 (unsigned int) new_slot_info); 1758 return 0; 1759 } 1760 1761 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1762 { 1763 struct xhci_input_control_ctx *ctrl_ctx; 1764 struct xhci_ep_ctx *ep_ctx; 1765 struct xhci_slot_ctx *slot_ctx; 1766 int i; 1767 1768 /* When a device's add flag and drop flag are zero, any subsequent 1769 * configure endpoint command will leave that endpoint's state 1770 * untouched. Make sure we don't leave any old state in the input 1771 * endpoint contexts. 1772 */ 1773 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1774 ctrl_ctx->drop_flags = 0; 1775 ctrl_ctx->add_flags = 0; 1776 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1777 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1778 /* Endpoint 0 is always valid */ 1779 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1780 for (i = 1; i < 31; ++i) { 1781 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1782 ep_ctx->ep_info = 0; 1783 ep_ctx->ep_info2 = 0; 1784 ep_ctx->deq = 0; 1785 ep_ctx->tx_info = 0; 1786 } 1787 } 1788 1789 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1790 struct usb_device *udev, u32 *cmd_status) 1791 { 1792 int ret; 1793 1794 switch (*cmd_status) { 1795 case COMP_ENOMEM: 1796 dev_warn(&udev->dev, "Not enough host controller resources " 1797 "for new device state.\n"); 1798 ret = -ENOMEM; 1799 /* FIXME: can we allocate more resources for the HC? */ 1800 break; 1801 case COMP_BW_ERR: 1802 case COMP_2ND_BW_ERR: 1803 dev_warn(&udev->dev, "Not enough bandwidth " 1804 "for new device state.\n"); 1805 ret = -ENOSPC; 1806 /* FIXME: can we go back to the old state? */ 1807 break; 1808 case COMP_TRB_ERR: 1809 /* the HCD set up something wrong */ 1810 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1811 "add flag = 1, " 1812 "and endpoint is not disabled.\n"); 1813 ret = -EINVAL; 1814 break; 1815 case COMP_DEV_ERR: 1816 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1817 "configure command.\n"); 1818 ret = -ENODEV; 1819 break; 1820 case COMP_SUCCESS: 1821 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1822 ret = 0; 1823 break; 1824 default: 1825 xhci_err(xhci, "ERROR: unexpected command completion " 1826 "code 0x%x.\n", *cmd_status); 1827 ret = -EINVAL; 1828 break; 1829 } 1830 return ret; 1831 } 1832 1833 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1834 struct usb_device *udev, u32 *cmd_status) 1835 { 1836 int ret; 1837 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1838 1839 switch (*cmd_status) { 1840 case COMP_EINVAL: 1841 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1842 "context command.\n"); 1843 ret = -EINVAL; 1844 break; 1845 case COMP_EBADSLT: 1846 dev_warn(&udev->dev, "WARN: slot not enabled for" 1847 "evaluate context command.\n"); 1848 ret = -EINVAL; 1849 break; 1850 case COMP_CTX_STATE: 1851 dev_warn(&udev->dev, "WARN: invalid context state for " 1852 "evaluate context command.\n"); 1853 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1854 ret = -EINVAL; 1855 break; 1856 case COMP_DEV_ERR: 1857 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1858 "context command.\n"); 1859 ret = -ENODEV; 1860 break; 1861 case COMP_MEL_ERR: 1862 /* Max Exit Latency too large error */ 1863 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1864 ret = -EINVAL; 1865 break; 1866 case COMP_SUCCESS: 1867 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1868 ret = 0; 1869 break; 1870 default: 1871 xhci_err(xhci, "ERROR: unexpected command completion " 1872 "code 0x%x.\n", *cmd_status); 1873 ret = -EINVAL; 1874 break; 1875 } 1876 return ret; 1877 } 1878 1879 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1880 struct xhci_container_ctx *in_ctx) 1881 { 1882 struct xhci_input_control_ctx *ctrl_ctx; 1883 u32 valid_add_flags; 1884 u32 valid_drop_flags; 1885 1886 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1887 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1888 * (bit 1). The default control endpoint is added during the Address 1889 * Device command and is never removed until the slot is disabled. 1890 */ 1891 valid_add_flags = ctrl_ctx->add_flags >> 2; 1892 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1893 1894 /* Use hweight32 to count the number of ones in the add flags, or 1895 * number of endpoints added. Don't count endpoints that are changed 1896 * (both added and dropped). 1897 */ 1898 return hweight32(valid_add_flags) - 1899 hweight32(valid_add_flags & valid_drop_flags); 1900 } 1901 1902 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1903 struct xhci_container_ctx *in_ctx) 1904 { 1905 struct xhci_input_control_ctx *ctrl_ctx; 1906 u32 valid_add_flags; 1907 u32 valid_drop_flags; 1908 1909 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1910 valid_add_flags = ctrl_ctx->add_flags >> 2; 1911 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1912 1913 return hweight32(valid_drop_flags) - 1914 hweight32(valid_add_flags & valid_drop_flags); 1915 } 1916 1917 /* 1918 * We need to reserve the new number of endpoints before the configure endpoint 1919 * command completes. We can't subtract the dropped endpoints from the number 1920 * of active endpoints until the command completes because we can oversubscribe 1921 * the host in this case: 1922 * 1923 * - the first configure endpoint command drops more endpoints than it adds 1924 * - a second configure endpoint command that adds more endpoints is queued 1925 * - the first configure endpoint command fails, so the config is unchanged 1926 * - the second command may succeed, even though there isn't enough resources 1927 * 1928 * Must be called with xhci->lock held. 1929 */ 1930 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1931 struct xhci_container_ctx *in_ctx) 1932 { 1933 u32 added_eps; 1934 1935 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1936 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1937 xhci_dbg(xhci, "Not enough ep ctxs: " 1938 "%u active, need to add %u, limit is %u.\n", 1939 xhci->num_active_eps, added_eps, 1940 xhci->limit_active_eps); 1941 return -ENOMEM; 1942 } 1943 xhci->num_active_eps += added_eps; 1944 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1945 xhci->num_active_eps); 1946 return 0; 1947 } 1948 1949 /* 1950 * The configure endpoint was failed by the xHC for some other reason, so we 1951 * need to revert the resources that failed configuration would have used. 1952 * 1953 * Must be called with xhci->lock held. 1954 */ 1955 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1956 struct xhci_container_ctx *in_ctx) 1957 { 1958 u32 num_failed_eps; 1959 1960 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1961 xhci->num_active_eps -= num_failed_eps; 1962 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1963 num_failed_eps, 1964 xhci->num_active_eps); 1965 } 1966 1967 /* 1968 * Now that the command has completed, clean up the active endpoint count by 1969 * subtracting out the endpoints that were dropped (but not changed). 1970 * 1971 * Must be called with xhci->lock held. 1972 */ 1973 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1974 struct xhci_container_ctx *in_ctx) 1975 { 1976 u32 num_dropped_eps; 1977 1978 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1979 xhci->num_active_eps -= num_dropped_eps; 1980 if (num_dropped_eps) 1981 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1982 num_dropped_eps, 1983 xhci->num_active_eps); 1984 } 1985 1986 static unsigned int xhci_get_block_size(struct usb_device *udev) 1987 { 1988 switch (udev->speed) { 1989 case USB_SPEED_LOW: 1990 case USB_SPEED_FULL: 1991 return FS_BLOCK; 1992 case USB_SPEED_HIGH: 1993 return HS_BLOCK; 1994 case USB_SPEED_SUPER: 1995 return SS_BLOCK; 1996 case USB_SPEED_UNKNOWN: 1997 case USB_SPEED_WIRELESS: 1998 default: 1999 /* Should never happen */ 2000 return 1; 2001 } 2002 } 2003 2004 static unsigned int 2005 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2006 { 2007 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2008 return LS_OVERHEAD; 2009 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2010 return FS_OVERHEAD; 2011 return HS_OVERHEAD; 2012 } 2013 2014 /* If we are changing a LS/FS device under a HS hub, 2015 * make sure (if we are activating a new TT) that the HS bus has enough 2016 * bandwidth for this new TT. 2017 */ 2018 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2019 struct xhci_virt_device *virt_dev, 2020 int old_active_eps) 2021 { 2022 struct xhci_interval_bw_table *bw_table; 2023 struct xhci_tt_bw_info *tt_info; 2024 2025 /* Find the bandwidth table for the root port this TT is attached to. */ 2026 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2027 tt_info = virt_dev->tt_info; 2028 /* If this TT already had active endpoints, the bandwidth for this TT 2029 * has already been added. Removing all periodic endpoints (and thus 2030 * making the TT enactive) will only decrease the bandwidth used. 2031 */ 2032 if (old_active_eps) 2033 return 0; 2034 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2035 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2036 return -ENOMEM; 2037 return 0; 2038 } 2039 /* Not sure why we would have no new active endpoints... 2040 * 2041 * Maybe because of an Evaluate Context change for a hub update or a 2042 * control endpoint 0 max packet size change? 2043 * FIXME: skip the bandwidth calculation in that case. 2044 */ 2045 return 0; 2046 } 2047 2048 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2049 struct xhci_virt_device *virt_dev) 2050 { 2051 unsigned int bw_reserved; 2052 2053 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2054 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2055 return -ENOMEM; 2056 2057 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2058 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2059 return -ENOMEM; 2060 2061 return 0; 2062 } 2063 2064 /* 2065 * This algorithm is a very conservative estimate of the worst-case scheduling 2066 * scenario for any one interval. The hardware dynamically schedules the 2067 * packets, so we can't tell which microframe could be the limiting factor in 2068 * the bandwidth scheduling. This only takes into account periodic endpoints. 2069 * 2070 * Obviously, we can't solve an NP complete problem to find the minimum worst 2071 * case scenario. Instead, we come up with an estimate that is no less than 2072 * the worst case bandwidth used for any one microframe, but may be an 2073 * over-estimate. 2074 * 2075 * We walk the requirements for each endpoint by interval, starting with the 2076 * smallest interval, and place packets in the schedule where there is only one 2077 * possible way to schedule packets for that interval. In order to simplify 2078 * this algorithm, we record the largest max packet size for each interval, and 2079 * assume all packets will be that size. 2080 * 2081 * For interval 0, we obviously must schedule all packets for each interval. 2082 * The bandwidth for interval 0 is just the amount of data to be transmitted 2083 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2084 * the number of packets). 2085 * 2086 * For interval 1, we have two possible microframes to schedule those packets 2087 * in. For this algorithm, if we can schedule the same number of packets for 2088 * each possible scheduling opportunity (each microframe), we will do so. The 2089 * remaining number of packets will be saved to be transmitted in the gaps in 2090 * the next interval's scheduling sequence. 2091 * 2092 * As we move those remaining packets to be scheduled with interval 2 packets, 2093 * we have to double the number of remaining packets to transmit. This is 2094 * because the intervals are actually powers of 2, and we would be transmitting 2095 * the previous interval's packets twice in this interval. We also have to be 2096 * sure that when we look at the largest max packet size for this interval, we 2097 * also look at the largest max packet size for the remaining packets and take 2098 * the greater of the two. 2099 * 2100 * The algorithm continues to evenly distribute packets in each scheduling 2101 * opportunity, and push the remaining packets out, until we get to the last 2102 * interval. Then those packets and their associated overhead are just added 2103 * to the bandwidth used. 2104 */ 2105 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2106 struct xhci_virt_device *virt_dev, 2107 int old_active_eps) 2108 { 2109 unsigned int bw_reserved; 2110 unsigned int max_bandwidth; 2111 unsigned int bw_used; 2112 unsigned int block_size; 2113 struct xhci_interval_bw_table *bw_table; 2114 unsigned int packet_size = 0; 2115 unsigned int overhead = 0; 2116 unsigned int packets_transmitted = 0; 2117 unsigned int packets_remaining = 0; 2118 unsigned int i; 2119 2120 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2121 return xhci_check_ss_bw(xhci, virt_dev); 2122 2123 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2124 max_bandwidth = HS_BW_LIMIT; 2125 /* Convert percent of bus BW reserved to blocks reserved */ 2126 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2127 } else { 2128 max_bandwidth = FS_BW_LIMIT; 2129 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2130 } 2131 2132 bw_table = virt_dev->bw_table; 2133 /* We need to translate the max packet size and max ESIT payloads into 2134 * the units the hardware uses. 2135 */ 2136 block_size = xhci_get_block_size(virt_dev->udev); 2137 2138 /* If we are manipulating a LS/FS device under a HS hub, double check 2139 * that the HS bus has enough bandwidth if we are activing a new TT. 2140 */ 2141 if (virt_dev->tt_info) { 2142 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2143 virt_dev->real_port); 2144 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2145 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2146 "newly activated TT.\n"); 2147 return -ENOMEM; 2148 } 2149 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2150 virt_dev->tt_info->slot_id, 2151 virt_dev->tt_info->ttport); 2152 } else { 2153 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2154 virt_dev->real_port); 2155 } 2156 2157 /* Add in how much bandwidth will be used for interval zero, or the 2158 * rounded max ESIT payload + number of packets * largest overhead. 2159 */ 2160 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2161 bw_table->interval_bw[0].num_packets * 2162 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2163 2164 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2165 unsigned int bw_added; 2166 unsigned int largest_mps; 2167 unsigned int interval_overhead; 2168 2169 /* 2170 * How many packets could we transmit in this interval? 2171 * If packets didn't fit in the previous interval, we will need 2172 * to transmit that many packets twice within this interval. 2173 */ 2174 packets_remaining = 2 * packets_remaining + 2175 bw_table->interval_bw[i].num_packets; 2176 2177 /* Find the largest max packet size of this or the previous 2178 * interval. 2179 */ 2180 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2181 largest_mps = 0; 2182 else { 2183 struct xhci_virt_ep *virt_ep; 2184 struct list_head *ep_entry; 2185 2186 ep_entry = bw_table->interval_bw[i].endpoints.next; 2187 virt_ep = list_entry(ep_entry, 2188 struct xhci_virt_ep, bw_endpoint_list); 2189 /* Convert to blocks, rounding up */ 2190 largest_mps = DIV_ROUND_UP( 2191 virt_ep->bw_info.max_packet_size, 2192 block_size); 2193 } 2194 if (largest_mps > packet_size) 2195 packet_size = largest_mps; 2196 2197 /* Use the larger overhead of this or the previous interval. */ 2198 interval_overhead = xhci_get_largest_overhead( 2199 &bw_table->interval_bw[i]); 2200 if (interval_overhead > overhead) 2201 overhead = interval_overhead; 2202 2203 /* How many packets can we evenly distribute across 2204 * (1 << (i + 1)) possible scheduling opportunities? 2205 */ 2206 packets_transmitted = packets_remaining >> (i + 1); 2207 2208 /* Add in the bandwidth used for those scheduled packets */ 2209 bw_added = packets_transmitted * (overhead + packet_size); 2210 2211 /* How many packets do we have remaining to transmit? */ 2212 packets_remaining = packets_remaining % (1 << (i + 1)); 2213 2214 /* What largest max packet size should those packets have? */ 2215 /* If we've transmitted all packets, don't carry over the 2216 * largest packet size. 2217 */ 2218 if (packets_remaining == 0) { 2219 packet_size = 0; 2220 overhead = 0; 2221 } else if (packets_transmitted > 0) { 2222 /* Otherwise if we do have remaining packets, and we've 2223 * scheduled some packets in this interval, take the 2224 * largest max packet size from endpoints with this 2225 * interval. 2226 */ 2227 packet_size = largest_mps; 2228 overhead = interval_overhead; 2229 } 2230 /* Otherwise carry over packet_size and overhead from the last 2231 * time we had a remainder. 2232 */ 2233 bw_used += bw_added; 2234 if (bw_used > max_bandwidth) { 2235 xhci_warn(xhci, "Not enough bandwidth. " 2236 "Proposed: %u, Max: %u\n", 2237 bw_used, max_bandwidth); 2238 return -ENOMEM; 2239 } 2240 } 2241 /* 2242 * Ok, we know we have some packets left over after even-handedly 2243 * scheduling interval 15. We don't know which microframes they will 2244 * fit into, so we over-schedule and say they will be scheduled every 2245 * microframe. 2246 */ 2247 if (packets_remaining > 0) 2248 bw_used += overhead + packet_size; 2249 2250 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2251 unsigned int port_index = virt_dev->real_port - 1; 2252 2253 /* OK, we're manipulating a HS device attached to a 2254 * root port bandwidth domain. Include the number of active TTs 2255 * in the bandwidth used. 2256 */ 2257 bw_used += TT_HS_OVERHEAD * 2258 xhci->rh_bw[port_index].num_active_tts; 2259 } 2260 2261 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2262 "Available: %u " "percent\n", 2263 bw_used, max_bandwidth, bw_reserved, 2264 (max_bandwidth - bw_used - bw_reserved) * 100 / 2265 max_bandwidth); 2266 2267 bw_used += bw_reserved; 2268 if (bw_used > max_bandwidth) { 2269 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2270 bw_used, max_bandwidth); 2271 return -ENOMEM; 2272 } 2273 2274 bw_table->bw_used = bw_used; 2275 return 0; 2276 } 2277 2278 static bool xhci_is_async_ep(unsigned int ep_type) 2279 { 2280 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2281 ep_type != ISOC_IN_EP && 2282 ep_type != INT_IN_EP); 2283 } 2284 2285 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2286 { 2287 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2288 } 2289 2290 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2291 { 2292 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2293 2294 if (ep_bw->ep_interval == 0) 2295 return SS_OVERHEAD_BURST + 2296 (ep_bw->mult * ep_bw->num_packets * 2297 (SS_OVERHEAD + mps)); 2298 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2299 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2300 1 << ep_bw->ep_interval); 2301 2302 } 2303 2304 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2305 struct xhci_bw_info *ep_bw, 2306 struct xhci_interval_bw_table *bw_table, 2307 struct usb_device *udev, 2308 struct xhci_virt_ep *virt_ep, 2309 struct xhci_tt_bw_info *tt_info) 2310 { 2311 struct xhci_interval_bw *interval_bw; 2312 int normalized_interval; 2313 2314 if (xhci_is_async_ep(ep_bw->type)) 2315 return; 2316 2317 if (udev->speed == USB_SPEED_SUPER) { 2318 if (xhci_is_sync_in_ep(ep_bw->type)) 2319 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2320 xhci_get_ss_bw_consumed(ep_bw); 2321 else 2322 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2323 xhci_get_ss_bw_consumed(ep_bw); 2324 return; 2325 } 2326 2327 /* SuperSpeed endpoints never get added to intervals in the table, so 2328 * this check is only valid for HS/FS/LS devices. 2329 */ 2330 if (list_empty(&virt_ep->bw_endpoint_list)) 2331 return; 2332 /* For LS/FS devices, we need to translate the interval expressed in 2333 * microframes to frames. 2334 */ 2335 if (udev->speed == USB_SPEED_HIGH) 2336 normalized_interval = ep_bw->ep_interval; 2337 else 2338 normalized_interval = ep_bw->ep_interval - 3; 2339 2340 if (normalized_interval == 0) 2341 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2342 interval_bw = &bw_table->interval_bw[normalized_interval]; 2343 interval_bw->num_packets -= ep_bw->num_packets; 2344 switch (udev->speed) { 2345 case USB_SPEED_LOW: 2346 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2347 break; 2348 case USB_SPEED_FULL: 2349 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2350 break; 2351 case USB_SPEED_HIGH: 2352 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2353 break; 2354 case USB_SPEED_SUPER: 2355 case USB_SPEED_UNKNOWN: 2356 case USB_SPEED_WIRELESS: 2357 /* Should never happen because only LS/FS/HS endpoints will get 2358 * added to the endpoint list. 2359 */ 2360 return; 2361 } 2362 if (tt_info) 2363 tt_info->active_eps -= 1; 2364 list_del_init(&virt_ep->bw_endpoint_list); 2365 } 2366 2367 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2368 struct xhci_bw_info *ep_bw, 2369 struct xhci_interval_bw_table *bw_table, 2370 struct usb_device *udev, 2371 struct xhci_virt_ep *virt_ep, 2372 struct xhci_tt_bw_info *tt_info) 2373 { 2374 struct xhci_interval_bw *interval_bw; 2375 struct xhci_virt_ep *smaller_ep; 2376 int normalized_interval; 2377 2378 if (xhci_is_async_ep(ep_bw->type)) 2379 return; 2380 2381 if (udev->speed == USB_SPEED_SUPER) { 2382 if (xhci_is_sync_in_ep(ep_bw->type)) 2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2384 xhci_get_ss_bw_consumed(ep_bw); 2385 else 2386 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2387 xhci_get_ss_bw_consumed(ep_bw); 2388 return; 2389 } 2390 2391 /* For LS/FS devices, we need to translate the interval expressed in 2392 * microframes to frames. 2393 */ 2394 if (udev->speed == USB_SPEED_HIGH) 2395 normalized_interval = ep_bw->ep_interval; 2396 else 2397 normalized_interval = ep_bw->ep_interval - 3; 2398 2399 if (normalized_interval == 0) 2400 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2401 interval_bw = &bw_table->interval_bw[normalized_interval]; 2402 interval_bw->num_packets += ep_bw->num_packets; 2403 switch (udev->speed) { 2404 case USB_SPEED_LOW: 2405 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2406 break; 2407 case USB_SPEED_FULL: 2408 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2409 break; 2410 case USB_SPEED_HIGH: 2411 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2412 break; 2413 case USB_SPEED_SUPER: 2414 case USB_SPEED_UNKNOWN: 2415 case USB_SPEED_WIRELESS: 2416 /* Should never happen because only LS/FS/HS endpoints will get 2417 * added to the endpoint list. 2418 */ 2419 return; 2420 } 2421 2422 if (tt_info) 2423 tt_info->active_eps += 1; 2424 /* Insert the endpoint into the list, largest max packet size first. */ 2425 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2426 bw_endpoint_list) { 2427 if (ep_bw->max_packet_size >= 2428 smaller_ep->bw_info.max_packet_size) { 2429 /* Add the new ep before the smaller endpoint */ 2430 list_add_tail(&virt_ep->bw_endpoint_list, 2431 &smaller_ep->bw_endpoint_list); 2432 return; 2433 } 2434 } 2435 /* Add the new endpoint at the end of the list. */ 2436 list_add_tail(&virt_ep->bw_endpoint_list, 2437 &interval_bw->endpoints); 2438 } 2439 2440 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2441 struct xhci_virt_device *virt_dev, 2442 int old_active_eps) 2443 { 2444 struct xhci_root_port_bw_info *rh_bw_info; 2445 if (!virt_dev->tt_info) 2446 return; 2447 2448 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2449 if (old_active_eps == 0 && 2450 virt_dev->tt_info->active_eps != 0) { 2451 rh_bw_info->num_active_tts += 1; 2452 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2453 } else if (old_active_eps != 0 && 2454 virt_dev->tt_info->active_eps == 0) { 2455 rh_bw_info->num_active_tts -= 1; 2456 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2457 } 2458 } 2459 2460 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2461 struct xhci_virt_device *virt_dev, 2462 struct xhci_container_ctx *in_ctx) 2463 { 2464 struct xhci_bw_info ep_bw_info[31]; 2465 int i; 2466 struct xhci_input_control_ctx *ctrl_ctx; 2467 int old_active_eps = 0; 2468 2469 if (virt_dev->tt_info) 2470 old_active_eps = virt_dev->tt_info->active_eps; 2471 2472 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2473 2474 for (i = 0; i < 31; i++) { 2475 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2476 continue; 2477 2478 /* Make a copy of the BW info in case we need to revert this */ 2479 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2480 sizeof(ep_bw_info[i])); 2481 /* Drop the endpoint from the interval table if the endpoint is 2482 * being dropped or changed. 2483 */ 2484 if (EP_IS_DROPPED(ctrl_ctx, i)) 2485 xhci_drop_ep_from_interval_table(xhci, 2486 &virt_dev->eps[i].bw_info, 2487 virt_dev->bw_table, 2488 virt_dev->udev, 2489 &virt_dev->eps[i], 2490 virt_dev->tt_info); 2491 } 2492 /* Overwrite the information stored in the endpoints' bw_info */ 2493 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2494 for (i = 0; i < 31; i++) { 2495 /* Add any changed or added endpoints to the interval table */ 2496 if (EP_IS_ADDED(ctrl_ctx, i)) 2497 xhci_add_ep_to_interval_table(xhci, 2498 &virt_dev->eps[i].bw_info, 2499 virt_dev->bw_table, 2500 virt_dev->udev, 2501 &virt_dev->eps[i], 2502 virt_dev->tt_info); 2503 } 2504 2505 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2506 /* Ok, this fits in the bandwidth we have. 2507 * Update the number of active TTs. 2508 */ 2509 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2510 return 0; 2511 } 2512 2513 /* We don't have enough bandwidth for this, revert the stored info. */ 2514 for (i = 0; i < 31; i++) { 2515 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2516 continue; 2517 2518 /* Drop the new copies of any added or changed endpoints from 2519 * the interval table. 2520 */ 2521 if (EP_IS_ADDED(ctrl_ctx, i)) { 2522 xhci_drop_ep_from_interval_table(xhci, 2523 &virt_dev->eps[i].bw_info, 2524 virt_dev->bw_table, 2525 virt_dev->udev, 2526 &virt_dev->eps[i], 2527 virt_dev->tt_info); 2528 } 2529 /* Revert the endpoint back to its old information */ 2530 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2531 sizeof(ep_bw_info[i])); 2532 /* Add any changed or dropped endpoints back into the table */ 2533 if (EP_IS_DROPPED(ctrl_ctx, i)) 2534 xhci_add_ep_to_interval_table(xhci, 2535 &virt_dev->eps[i].bw_info, 2536 virt_dev->bw_table, 2537 virt_dev->udev, 2538 &virt_dev->eps[i], 2539 virt_dev->tt_info); 2540 } 2541 return -ENOMEM; 2542 } 2543 2544 2545 /* Issue a configure endpoint command or evaluate context command 2546 * and wait for it to finish. 2547 */ 2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2549 struct usb_device *udev, 2550 struct xhci_command *command, 2551 bool ctx_change, bool must_succeed) 2552 { 2553 int ret; 2554 int timeleft; 2555 unsigned long flags; 2556 struct xhci_container_ctx *in_ctx; 2557 struct completion *cmd_completion; 2558 u32 *cmd_status; 2559 struct xhci_virt_device *virt_dev; 2560 union xhci_trb *cmd_trb; 2561 2562 spin_lock_irqsave(&xhci->lock, flags); 2563 virt_dev = xhci->devs[udev->slot_id]; 2564 2565 if (command) 2566 in_ctx = command->in_ctx; 2567 else 2568 in_ctx = virt_dev->in_ctx; 2569 2570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2571 xhci_reserve_host_resources(xhci, in_ctx)) { 2572 spin_unlock_irqrestore(&xhci->lock, flags); 2573 xhci_warn(xhci, "Not enough host resources, " 2574 "active endpoint contexts = %u\n", 2575 xhci->num_active_eps); 2576 return -ENOMEM; 2577 } 2578 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2579 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2580 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2581 xhci_free_host_resources(xhci, in_ctx); 2582 spin_unlock_irqrestore(&xhci->lock, flags); 2583 xhci_warn(xhci, "Not enough bandwidth\n"); 2584 return -ENOMEM; 2585 } 2586 2587 if (command) { 2588 cmd_completion = command->completion; 2589 cmd_status = &command->status; 2590 command->command_trb = xhci->cmd_ring->enqueue; 2591 2592 /* Enqueue pointer can be left pointing to the link TRB, 2593 * we must handle that 2594 */ 2595 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2596 command->command_trb = 2597 xhci->cmd_ring->enq_seg->next->trbs; 2598 2599 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2600 } else { 2601 cmd_completion = &virt_dev->cmd_completion; 2602 cmd_status = &virt_dev->cmd_status; 2603 } 2604 init_completion(cmd_completion); 2605 2606 cmd_trb = xhci->cmd_ring->dequeue; 2607 if (!ctx_change) 2608 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2609 udev->slot_id, must_succeed); 2610 else 2611 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2612 udev->slot_id, must_succeed); 2613 if (ret < 0) { 2614 if (command) 2615 list_del(&command->cmd_list); 2616 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2617 xhci_free_host_resources(xhci, in_ctx); 2618 spin_unlock_irqrestore(&xhci->lock, flags); 2619 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2620 return -ENOMEM; 2621 } 2622 xhci_ring_cmd_db(xhci); 2623 spin_unlock_irqrestore(&xhci->lock, flags); 2624 2625 /* Wait for the configure endpoint command to complete */ 2626 timeleft = wait_for_completion_interruptible_timeout( 2627 cmd_completion, 2628 XHCI_CMD_DEFAULT_TIMEOUT); 2629 if (timeleft <= 0) { 2630 xhci_warn(xhci, "%s while waiting for %s command\n", 2631 timeleft == 0 ? "Timeout" : "Signal", 2632 ctx_change == 0 ? 2633 "configure endpoint" : 2634 "evaluate context"); 2635 /* cancel the configure endpoint command */ 2636 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2637 if (ret < 0) 2638 return ret; 2639 return -ETIME; 2640 } 2641 2642 if (!ctx_change) 2643 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2644 else 2645 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2646 2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2648 spin_lock_irqsave(&xhci->lock, flags); 2649 /* If the command failed, remove the reserved resources. 2650 * Otherwise, clean up the estimate to include dropped eps. 2651 */ 2652 if (ret) 2653 xhci_free_host_resources(xhci, in_ctx); 2654 else 2655 xhci_finish_resource_reservation(xhci, in_ctx); 2656 spin_unlock_irqrestore(&xhci->lock, flags); 2657 } 2658 return ret; 2659 } 2660 2661 /* Called after one or more calls to xhci_add_endpoint() or 2662 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2663 * to call xhci_reset_bandwidth(). 2664 * 2665 * Since we are in the middle of changing either configuration or 2666 * installing a new alt setting, the USB core won't allow URBs to be 2667 * enqueued for any endpoint on the old config or interface. Nothing 2668 * else should be touching the xhci->devs[slot_id] structure, so we 2669 * don't need to take the xhci->lock for manipulating that. 2670 */ 2671 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2672 { 2673 int i; 2674 int ret = 0; 2675 struct xhci_hcd *xhci; 2676 struct xhci_virt_device *virt_dev; 2677 struct xhci_input_control_ctx *ctrl_ctx; 2678 struct xhci_slot_ctx *slot_ctx; 2679 2680 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2681 if (ret <= 0) 2682 return ret; 2683 xhci = hcd_to_xhci(hcd); 2684 if (xhci->xhc_state & XHCI_STATE_DYING) 2685 return -ENODEV; 2686 2687 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2688 virt_dev = xhci->devs[udev->slot_id]; 2689 2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2691 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2692 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2693 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2694 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2695 2696 /* Don't issue the command if there's no endpoints to update. */ 2697 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2698 ctrl_ctx->drop_flags == 0) 2699 return 0; 2700 2701 xhci_dbg(xhci, "New Input Control Context:\n"); 2702 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2703 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2704 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2705 2706 ret = xhci_configure_endpoint(xhci, udev, NULL, 2707 false, false); 2708 if (ret) { 2709 /* Callee should call reset_bandwidth() */ 2710 return ret; 2711 } 2712 2713 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2714 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2715 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2716 2717 /* Free any rings that were dropped, but not changed. */ 2718 for (i = 1; i < 31; ++i) { 2719 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2720 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2721 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2722 } 2723 xhci_zero_in_ctx(xhci, virt_dev); 2724 /* 2725 * Install any rings for completely new endpoints or changed endpoints, 2726 * and free or cache any old rings from changed endpoints. 2727 */ 2728 for (i = 1; i < 31; ++i) { 2729 if (!virt_dev->eps[i].new_ring) 2730 continue; 2731 /* Only cache or free the old ring if it exists. 2732 * It may not if this is the first add of an endpoint. 2733 */ 2734 if (virt_dev->eps[i].ring) { 2735 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2736 } 2737 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2738 virt_dev->eps[i].new_ring = NULL; 2739 } 2740 2741 return ret; 2742 } 2743 2744 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2745 { 2746 struct xhci_hcd *xhci; 2747 struct xhci_virt_device *virt_dev; 2748 int i, ret; 2749 2750 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2751 if (ret <= 0) 2752 return; 2753 xhci = hcd_to_xhci(hcd); 2754 2755 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2756 virt_dev = xhci->devs[udev->slot_id]; 2757 /* Free any rings allocated for added endpoints */ 2758 for (i = 0; i < 31; ++i) { 2759 if (virt_dev->eps[i].new_ring) { 2760 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2761 virt_dev->eps[i].new_ring = NULL; 2762 } 2763 } 2764 xhci_zero_in_ctx(xhci, virt_dev); 2765 } 2766 2767 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2768 struct xhci_container_ctx *in_ctx, 2769 struct xhci_container_ctx *out_ctx, 2770 u32 add_flags, u32 drop_flags) 2771 { 2772 struct xhci_input_control_ctx *ctrl_ctx; 2773 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2774 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2775 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2776 xhci_slot_copy(xhci, in_ctx, out_ctx); 2777 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2778 2779 xhci_dbg(xhci, "Input Context:\n"); 2780 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2781 } 2782 2783 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2784 unsigned int slot_id, unsigned int ep_index, 2785 struct xhci_dequeue_state *deq_state) 2786 { 2787 struct xhci_container_ctx *in_ctx; 2788 struct xhci_ep_ctx *ep_ctx; 2789 u32 added_ctxs; 2790 dma_addr_t addr; 2791 2792 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2793 xhci->devs[slot_id]->out_ctx, ep_index); 2794 in_ctx = xhci->devs[slot_id]->in_ctx; 2795 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2796 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2797 deq_state->new_deq_ptr); 2798 if (addr == 0) { 2799 xhci_warn(xhci, "WARN Cannot submit config ep after " 2800 "reset ep command\n"); 2801 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2802 deq_state->new_deq_seg, 2803 deq_state->new_deq_ptr); 2804 return; 2805 } 2806 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2807 2808 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2809 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2810 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2811 } 2812 2813 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2814 struct usb_device *udev, unsigned int ep_index) 2815 { 2816 struct xhci_dequeue_state deq_state; 2817 struct xhci_virt_ep *ep; 2818 2819 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2820 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2821 /* We need to move the HW's dequeue pointer past this TD, 2822 * or it will attempt to resend it on the next doorbell ring. 2823 */ 2824 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2825 ep_index, ep->stopped_stream, ep->stopped_td, 2826 &deq_state); 2827 2828 /* HW with the reset endpoint quirk will use the saved dequeue state to 2829 * issue a configure endpoint command later. 2830 */ 2831 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2832 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2833 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2834 ep_index, ep->stopped_stream, &deq_state); 2835 } else { 2836 /* Better hope no one uses the input context between now and the 2837 * reset endpoint completion! 2838 * XXX: No idea how this hardware will react when stream rings 2839 * are enabled. 2840 */ 2841 xhci_dbg(xhci, "Setting up input context for " 2842 "configure endpoint command\n"); 2843 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2844 ep_index, &deq_state); 2845 } 2846 } 2847 2848 /* Deal with stalled endpoints. The core should have sent the control message 2849 * to clear the halt condition. However, we need to make the xHCI hardware 2850 * reset its sequence number, since a device will expect a sequence number of 2851 * zero after the halt condition is cleared. 2852 * Context: in_interrupt 2853 */ 2854 void xhci_endpoint_reset(struct usb_hcd *hcd, 2855 struct usb_host_endpoint *ep) 2856 { 2857 struct xhci_hcd *xhci; 2858 struct usb_device *udev; 2859 unsigned int ep_index; 2860 unsigned long flags; 2861 int ret; 2862 struct xhci_virt_ep *virt_ep; 2863 2864 xhci = hcd_to_xhci(hcd); 2865 udev = (struct usb_device *) ep->hcpriv; 2866 /* Called with a root hub endpoint (or an endpoint that wasn't added 2867 * with xhci_add_endpoint() 2868 */ 2869 if (!ep->hcpriv) 2870 return; 2871 ep_index = xhci_get_endpoint_index(&ep->desc); 2872 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2873 if (!virt_ep->stopped_td) { 2874 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2875 ep->desc.bEndpointAddress); 2876 return; 2877 } 2878 if (usb_endpoint_xfer_control(&ep->desc)) { 2879 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2880 return; 2881 } 2882 2883 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2884 spin_lock_irqsave(&xhci->lock, flags); 2885 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2886 /* 2887 * Can't change the ring dequeue pointer until it's transitioned to the 2888 * stopped state, which is only upon a successful reset endpoint 2889 * command. Better hope that last command worked! 2890 */ 2891 if (!ret) { 2892 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2893 kfree(virt_ep->stopped_td); 2894 xhci_ring_cmd_db(xhci); 2895 } 2896 virt_ep->stopped_td = NULL; 2897 virt_ep->stopped_trb = NULL; 2898 virt_ep->stopped_stream = 0; 2899 spin_unlock_irqrestore(&xhci->lock, flags); 2900 2901 if (ret) 2902 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2903 } 2904 2905 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2906 struct usb_device *udev, struct usb_host_endpoint *ep, 2907 unsigned int slot_id) 2908 { 2909 int ret; 2910 unsigned int ep_index; 2911 unsigned int ep_state; 2912 2913 if (!ep) 2914 return -EINVAL; 2915 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2916 if (ret <= 0) 2917 return -EINVAL; 2918 if (ep->ss_ep_comp.bmAttributes == 0) { 2919 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2920 " descriptor for ep 0x%x does not support streams\n", 2921 ep->desc.bEndpointAddress); 2922 return -EINVAL; 2923 } 2924 2925 ep_index = xhci_get_endpoint_index(&ep->desc); 2926 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2927 if (ep_state & EP_HAS_STREAMS || 2928 ep_state & EP_GETTING_STREAMS) { 2929 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2930 "already has streams set up.\n", 2931 ep->desc.bEndpointAddress); 2932 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2933 "dynamic stream context array reallocation.\n"); 2934 return -EINVAL; 2935 } 2936 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2937 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2938 "endpoint 0x%x; URBs are pending.\n", 2939 ep->desc.bEndpointAddress); 2940 return -EINVAL; 2941 } 2942 return 0; 2943 } 2944 2945 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2946 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2947 { 2948 unsigned int max_streams; 2949 2950 /* The stream context array size must be a power of two */ 2951 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2952 /* 2953 * Find out how many primary stream array entries the host controller 2954 * supports. Later we may use secondary stream arrays (similar to 2nd 2955 * level page entries), but that's an optional feature for xHCI host 2956 * controllers. xHCs must support at least 4 stream IDs. 2957 */ 2958 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2959 if (*num_stream_ctxs > max_streams) { 2960 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2961 max_streams); 2962 *num_stream_ctxs = max_streams; 2963 *num_streams = max_streams; 2964 } 2965 } 2966 2967 /* Returns an error code if one of the endpoint already has streams. 2968 * This does not change any data structures, it only checks and gathers 2969 * information. 2970 */ 2971 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2972 struct usb_device *udev, 2973 struct usb_host_endpoint **eps, unsigned int num_eps, 2974 unsigned int *num_streams, u32 *changed_ep_bitmask) 2975 { 2976 unsigned int max_streams; 2977 unsigned int endpoint_flag; 2978 int i; 2979 int ret; 2980 2981 for (i = 0; i < num_eps; i++) { 2982 ret = xhci_check_streams_endpoint(xhci, udev, 2983 eps[i], udev->slot_id); 2984 if (ret < 0) 2985 return ret; 2986 2987 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2988 if (max_streams < (*num_streams - 1)) { 2989 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2990 eps[i]->desc.bEndpointAddress, 2991 max_streams); 2992 *num_streams = max_streams+1; 2993 } 2994 2995 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2996 if (*changed_ep_bitmask & endpoint_flag) 2997 return -EINVAL; 2998 *changed_ep_bitmask |= endpoint_flag; 2999 } 3000 return 0; 3001 } 3002 3003 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3004 struct usb_device *udev, 3005 struct usb_host_endpoint **eps, unsigned int num_eps) 3006 { 3007 u32 changed_ep_bitmask = 0; 3008 unsigned int slot_id; 3009 unsigned int ep_index; 3010 unsigned int ep_state; 3011 int i; 3012 3013 slot_id = udev->slot_id; 3014 if (!xhci->devs[slot_id]) 3015 return 0; 3016 3017 for (i = 0; i < num_eps; i++) { 3018 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3019 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3020 /* Are streams already being freed for the endpoint? */ 3021 if (ep_state & EP_GETTING_NO_STREAMS) { 3022 xhci_warn(xhci, "WARN Can't disable streams for " 3023 "endpoint 0x%x\n, " 3024 "streams are being disabled already.", 3025 eps[i]->desc.bEndpointAddress); 3026 return 0; 3027 } 3028 /* Are there actually any streams to free? */ 3029 if (!(ep_state & EP_HAS_STREAMS) && 3030 !(ep_state & EP_GETTING_STREAMS)) { 3031 xhci_warn(xhci, "WARN Can't disable streams for " 3032 "endpoint 0x%x\n, " 3033 "streams are already disabled!", 3034 eps[i]->desc.bEndpointAddress); 3035 xhci_warn(xhci, "WARN xhci_free_streams() called " 3036 "with non-streams endpoint\n"); 3037 return 0; 3038 } 3039 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3040 } 3041 return changed_ep_bitmask; 3042 } 3043 3044 /* 3045 * The USB device drivers use this function (though the HCD interface in USB 3046 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3047 * coordinate mass storage command queueing across multiple endpoints (basically 3048 * a stream ID == a task ID). 3049 * 3050 * Setting up streams involves allocating the same size stream context array 3051 * for each endpoint and issuing a configure endpoint command for all endpoints. 3052 * 3053 * Don't allow the call to succeed if one endpoint only supports one stream 3054 * (which means it doesn't support streams at all). 3055 * 3056 * Drivers may get less stream IDs than they asked for, if the host controller 3057 * hardware or endpoints claim they can't support the number of requested 3058 * stream IDs. 3059 */ 3060 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3061 struct usb_host_endpoint **eps, unsigned int num_eps, 3062 unsigned int num_streams, gfp_t mem_flags) 3063 { 3064 int i, ret; 3065 struct xhci_hcd *xhci; 3066 struct xhci_virt_device *vdev; 3067 struct xhci_command *config_cmd; 3068 unsigned int ep_index; 3069 unsigned int num_stream_ctxs; 3070 unsigned long flags; 3071 u32 changed_ep_bitmask = 0; 3072 3073 if (!eps) 3074 return -EINVAL; 3075 3076 /* Add one to the number of streams requested to account for 3077 * stream 0 that is reserved for xHCI usage. 3078 */ 3079 num_streams += 1; 3080 xhci = hcd_to_xhci(hcd); 3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3082 num_streams); 3083 3084 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3085 if (!config_cmd) { 3086 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3087 return -ENOMEM; 3088 } 3089 3090 /* Check to make sure all endpoints are not already configured for 3091 * streams. While we're at it, find the maximum number of streams that 3092 * all the endpoints will support and check for duplicate endpoints. 3093 */ 3094 spin_lock_irqsave(&xhci->lock, flags); 3095 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3096 num_eps, &num_streams, &changed_ep_bitmask); 3097 if (ret < 0) { 3098 xhci_free_command(xhci, config_cmd); 3099 spin_unlock_irqrestore(&xhci->lock, flags); 3100 return ret; 3101 } 3102 if (num_streams <= 1) { 3103 xhci_warn(xhci, "WARN: endpoints can't handle " 3104 "more than one stream.\n"); 3105 xhci_free_command(xhci, config_cmd); 3106 spin_unlock_irqrestore(&xhci->lock, flags); 3107 return -EINVAL; 3108 } 3109 vdev = xhci->devs[udev->slot_id]; 3110 /* Mark each endpoint as being in transition, so 3111 * xhci_urb_enqueue() will reject all URBs. 3112 */ 3113 for (i = 0; i < num_eps; i++) { 3114 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3115 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3116 } 3117 spin_unlock_irqrestore(&xhci->lock, flags); 3118 3119 /* Setup internal data structures and allocate HW data structures for 3120 * streams (but don't install the HW structures in the input context 3121 * until we're sure all memory allocation succeeded). 3122 */ 3123 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3124 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3125 num_stream_ctxs, num_streams); 3126 3127 for (i = 0; i < num_eps; i++) { 3128 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3129 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3130 num_stream_ctxs, 3131 num_streams, mem_flags); 3132 if (!vdev->eps[ep_index].stream_info) 3133 goto cleanup; 3134 /* Set maxPstreams in endpoint context and update deq ptr to 3135 * point to stream context array. FIXME 3136 */ 3137 } 3138 3139 /* Set up the input context for a configure endpoint command. */ 3140 for (i = 0; i < num_eps; i++) { 3141 struct xhci_ep_ctx *ep_ctx; 3142 3143 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3144 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3145 3146 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3147 vdev->out_ctx, ep_index); 3148 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3149 vdev->eps[ep_index].stream_info); 3150 } 3151 /* Tell the HW to drop its old copy of the endpoint context info 3152 * and add the updated copy from the input context. 3153 */ 3154 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3155 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3156 3157 /* Issue and wait for the configure endpoint command */ 3158 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3159 false, false); 3160 3161 /* xHC rejected the configure endpoint command for some reason, so we 3162 * leave the old ring intact and free our internal streams data 3163 * structure. 3164 */ 3165 if (ret < 0) 3166 goto cleanup; 3167 3168 spin_lock_irqsave(&xhci->lock, flags); 3169 for (i = 0; i < num_eps; i++) { 3170 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3171 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3172 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3173 udev->slot_id, ep_index); 3174 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3175 } 3176 xhci_free_command(xhci, config_cmd); 3177 spin_unlock_irqrestore(&xhci->lock, flags); 3178 3179 /* Subtract 1 for stream 0, which drivers can't use */ 3180 return num_streams - 1; 3181 3182 cleanup: 3183 /* If it didn't work, free the streams! */ 3184 for (i = 0; i < num_eps; i++) { 3185 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3186 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3187 vdev->eps[ep_index].stream_info = NULL; 3188 /* FIXME Unset maxPstreams in endpoint context and 3189 * update deq ptr to point to normal string ring. 3190 */ 3191 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3192 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3193 xhci_endpoint_zero(xhci, vdev, eps[i]); 3194 } 3195 xhci_free_command(xhci, config_cmd); 3196 return -ENOMEM; 3197 } 3198 3199 /* Transition the endpoint from using streams to being a "normal" endpoint 3200 * without streams. 3201 * 3202 * Modify the endpoint context state, submit a configure endpoint command, 3203 * and free all endpoint rings for streams if that completes successfully. 3204 */ 3205 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3206 struct usb_host_endpoint **eps, unsigned int num_eps, 3207 gfp_t mem_flags) 3208 { 3209 int i, ret; 3210 struct xhci_hcd *xhci; 3211 struct xhci_virt_device *vdev; 3212 struct xhci_command *command; 3213 unsigned int ep_index; 3214 unsigned long flags; 3215 u32 changed_ep_bitmask; 3216 3217 xhci = hcd_to_xhci(hcd); 3218 vdev = xhci->devs[udev->slot_id]; 3219 3220 /* Set up a configure endpoint command to remove the streams rings */ 3221 spin_lock_irqsave(&xhci->lock, flags); 3222 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3223 udev, eps, num_eps); 3224 if (changed_ep_bitmask == 0) { 3225 spin_unlock_irqrestore(&xhci->lock, flags); 3226 return -EINVAL; 3227 } 3228 3229 /* Use the xhci_command structure from the first endpoint. We may have 3230 * allocated too many, but the driver may call xhci_free_streams() for 3231 * each endpoint it grouped into one call to xhci_alloc_streams(). 3232 */ 3233 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3234 command = vdev->eps[ep_index].stream_info->free_streams_command; 3235 for (i = 0; i < num_eps; i++) { 3236 struct xhci_ep_ctx *ep_ctx; 3237 3238 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3239 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3240 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3241 EP_GETTING_NO_STREAMS; 3242 3243 xhci_endpoint_copy(xhci, command->in_ctx, 3244 vdev->out_ctx, ep_index); 3245 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3246 &vdev->eps[ep_index]); 3247 } 3248 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3249 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3250 spin_unlock_irqrestore(&xhci->lock, flags); 3251 3252 /* Issue and wait for the configure endpoint command, 3253 * which must succeed. 3254 */ 3255 ret = xhci_configure_endpoint(xhci, udev, command, 3256 false, true); 3257 3258 /* xHC rejected the configure endpoint command for some reason, so we 3259 * leave the streams rings intact. 3260 */ 3261 if (ret < 0) 3262 return ret; 3263 3264 spin_lock_irqsave(&xhci->lock, flags); 3265 for (i = 0; i < num_eps; i++) { 3266 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3267 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3268 vdev->eps[ep_index].stream_info = NULL; 3269 /* FIXME Unset maxPstreams in endpoint context and 3270 * update deq ptr to point to normal string ring. 3271 */ 3272 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3273 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3274 } 3275 spin_unlock_irqrestore(&xhci->lock, flags); 3276 3277 return 0; 3278 } 3279 3280 /* 3281 * Deletes endpoint resources for endpoints that were active before a Reset 3282 * Device command, or a Disable Slot command. The Reset Device command leaves 3283 * the control endpoint intact, whereas the Disable Slot command deletes it. 3284 * 3285 * Must be called with xhci->lock held. 3286 */ 3287 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3288 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3289 { 3290 int i; 3291 unsigned int num_dropped_eps = 0; 3292 unsigned int drop_flags = 0; 3293 3294 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3295 if (virt_dev->eps[i].ring) { 3296 drop_flags |= 1 << i; 3297 num_dropped_eps++; 3298 } 3299 } 3300 xhci->num_active_eps -= num_dropped_eps; 3301 if (num_dropped_eps) 3302 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3303 "%u now active.\n", 3304 num_dropped_eps, drop_flags, 3305 xhci->num_active_eps); 3306 } 3307 3308 /* 3309 * This submits a Reset Device Command, which will set the device state to 0, 3310 * set the device address to 0, and disable all the endpoints except the default 3311 * control endpoint. The USB core should come back and call 3312 * xhci_address_device(), and then re-set up the configuration. If this is 3313 * called because of a usb_reset_and_verify_device(), then the old alternate 3314 * settings will be re-installed through the normal bandwidth allocation 3315 * functions. 3316 * 3317 * Wait for the Reset Device command to finish. Remove all structures 3318 * associated with the endpoints that were disabled. Clear the input device 3319 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3320 * 3321 * If the virt_dev to be reset does not exist or does not match the udev, 3322 * it means the device is lost, possibly due to the xHC restore error and 3323 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3324 * re-allocate the device. 3325 */ 3326 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3327 { 3328 int ret, i; 3329 unsigned long flags; 3330 struct xhci_hcd *xhci; 3331 unsigned int slot_id; 3332 struct xhci_virt_device *virt_dev; 3333 struct xhci_command *reset_device_cmd; 3334 int timeleft; 3335 int last_freed_endpoint; 3336 struct xhci_slot_ctx *slot_ctx; 3337 int old_active_eps = 0; 3338 3339 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3340 if (ret <= 0) 3341 return ret; 3342 xhci = hcd_to_xhci(hcd); 3343 slot_id = udev->slot_id; 3344 virt_dev = xhci->devs[slot_id]; 3345 if (!virt_dev) { 3346 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3347 "not exist. Re-allocate the device\n", slot_id); 3348 ret = xhci_alloc_dev(hcd, udev); 3349 if (ret == 1) 3350 return 0; 3351 else 3352 return -EINVAL; 3353 } 3354 3355 if (virt_dev->udev != udev) { 3356 /* If the virt_dev and the udev does not match, this virt_dev 3357 * may belong to another udev. 3358 * Re-allocate the device. 3359 */ 3360 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3361 "not match the udev. Re-allocate the device\n", 3362 slot_id); 3363 ret = xhci_alloc_dev(hcd, udev); 3364 if (ret == 1) 3365 return 0; 3366 else 3367 return -EINVAL; 3368 } 3369 3370 /* If device is not setup, there is no point in resetting it */ 3371 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3372 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3373 SLOT_STATE_DISABLED) 3374 return 0; 3375 3376 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3377 /* Allocate the command structure that holds the struct completion. 3378 * Assume we're in process context, since the normal device reset 3379 * process has to wait for the device anyway. Storage devices are 3380 * reset as part of error handling, so use GFP_NOIO instead of 3381 * GFP_KERNEL. 3382 */ 3383 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3384 if (!reset_device_cmd) { 3385 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3386 return -ENOMEM; 3387 } 3388 3389 /* Attempt to submit the Reset Device command to the command ring */ 3390 spin_lock_irqsave(&xhci->lock, flags); 3391 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3392 3393 /* Enqueue pointer can be left pointing to the link TRB, 3394 * we must handle that 3395 */ 3396 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3397 reset_device_cmd->command_trb = 3398 xhci->cmd_ring->enq_seg->next->trbs; 3399 3400 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3401 ret = xhci_queue_reset_device(xhci, slot_id); 3402 if (ret) { 3403 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3404 list_del(&reset_device_cmd->cmd_list); 3405 spin_unlock_irqrestore(&xhci->lock, flags); 3406 goto command_cleanup; 3407 } 3408 xhci_ring_cmd_db(xhci); 3409 spin_unlock_irqrestore(&xhci->lock, flags); 3410 3411 /* Wait for the Reset Device command to finish */ 3412 timeleft = wait_for_completion_interruptible_timeout( 3413 reset_device_cmd->completion, 3414 USB_CTRL_SET_TIMEOUT); 3415 if (timeleft <= 0) { 3416 xhci_warn(xhci, "%s while waiting for reset device command\n", 3417 timeleft == 0 ? "Timeout" : "Signal"); 3418 spin_lock_irqsave(&xhci->lock, flags); 3419 /* The timeout might have raced with the event ring handler, so 3420 * only delete from the list if the item isn't poisoned. 3421 */ 3422 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3423 list_del(&reset_device_cmd->cmd_list); 3424 spin_unlock_irqrestore(&xhci->lock, flags); 3425 ret = -ETIME; 3426 goto command_cleanup; 3427 } 3428 3429 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3430 * unless we tried to reset a slot ID that wasn't enabled, 3431 * or the device wasn't in the addressed or configured state. 3432 */ 3433 ret = reset_device_cmd->status; 3434 switch (ret) { 3435 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3436 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3437 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3438 slot_id, 3439 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3440 xhci_info(xhci, "Not freeing device rings.\n"); 3441 /* Don't treat this as an error. May change my mind later. */ 3442 ret = 0; 3443 goto command_cleanup; 3444 case COMP_SUCCESS: 3445 xhci_dbg(xhci, "Successful reset device command.\n"); 3446 break; 3447 default: 3448 if (xhci_is_vendor_info_code(xhci, ret)) 3449 break; 3450 xhci_warn(xhci, "Unknown completion code %u for " 3451 "reset device command.\n", ret); 3452 ret = -EINVAL; 3453 goto command_cleanup; 3454 } 3455 3456 /* Free up host controller endpoint resources */ 3457 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3458 spin_lock_irqsave(&xhci->lock, flags); 3459 /* Don't delete the default control endpoint resources */ 3460 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3461 spin_unlock_irqrestore(&xhci->lock, flags); 3462 } 3463 3464 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3465 last_freed_endpoint = 1; 3466 for (i = 1; i < 31; ++i) { 3467 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3468 3469 if (ep->ep_state & EP_HAS_STREAMS) { 3470 xhci_free_stream_info(xhci, ep->stream_info); 3471 ep->stream_info = NULL; 3472 ep->ep_state &= ~EP_HAS_STREAMS; 3473 } 3474 3475 if (ep->ring) { 3476 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3477 last_freed_endpoint = i; 3478 } 3479 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3480 xhci_drop_ep_from_interval_table(xhci, 3481 &virt_dev->eps[i].bw_info, 3482 virt_dev->bw_table, 3483 udev, 3484 &virt_dev->eps[i], 3485 virt_dev->tt_info); 3486 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3487 } 3488 /* If necessary, update the number of active TTs on this root port */ 3489 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3490 3491 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3492 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3493 ret = 0; 3494 3495 command_cleanup: 3496 xhci_free_command(xhci, reset_device_cmd); 3497 return ret; 3498 } 3499 3500 /* 3501 * At this point, the struct usb_device is about to go away, the device has 3502 * disconnected, and all traffic has been stopped and the endpoints have been 3503 * disabled. Free any HC data structures associated with that device. 3504 */ 3505 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3506 { 3507 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3508 struct xhci_virt_device *virt_dev; 3509 unsigned long flags; 3510 u32 state; 3511 int i, ret; 3512 3513 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3514 /* If the host is halted due to driver unload, we still need to free the 3515 * device. 3516 */ 3517 if (ret <= 0 && ret != -ENODEV) 3518 return; 3519 3520 virt_dev = xhci->devs[udev->slot_id]; 3521 3522 /* Stop any wayward timer functions (which may grab the lock) */ 3523 for (i = 0; i < 31; ++i) { 3524 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3525 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3526 } 3527 3528 if (udev->usb2_hw_lpm_enabled) { 3529 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3530 udev->usb2_hw_lpm_enabled = 0; 3531 } 3532 3533 spin_lock_irqsave(&xhci->lock, flags); 3534 /* Don't disable the slot if the host controller is dead. */ 3535 state = xhci_readl(xhci, &xhci->op_regs->status); 3536 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3537 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3538 xhci_free_virt_device(xhci, udev->slot_id); 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 return; 3541 } 3542 3543 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3544 spin_unlock_irqrestore(&xhci->lock, flags); 3545 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3546 return; 3547 } 3548 xhci_ring_cmd_db(xhci); 3549 spin_unlock_irqrestore(&xhci->lock, flags); 3550 /* 3551 * Event command completion handler will free any data structures 3552 * associated with the slot. XXX Can free sleep? 3553 */ 3554 } 3555 3556 /* 3557 * Checks if we have enough host controller resources for the default control 3558 * endpoint. 3559 * 3560 * Must be called with xhci->lock held. 3561 */ 3562 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3563 { 3564 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3565 xhci_dbg(xhci, "Not enough ep ctxs: " 3566 "%u active, need to add 1, limit is %u.\n", 3567 xhci->num_active_eps, xhci->limit_active_eps); 3568 return -ENOMEM; 3569 } 3570 xhci->num_active_eps += 1; 3571 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3572 xhci->num_active_eps); 3573 return 0; 3574 } 3575 3576 3577 /* 3578 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3579 * timed out, or allocating memory failed. Returns 1 on success. 3580 */ 3581 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3582 { 3583 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3584 unsigned long flags; 3585 int timeleft; 3586 int ret; 3587 union xhci_trb *cmd_trb; 3588 3589 spin_lock_irqsave(&xhci->lock, flags); 3590 cmd_trb = xhci->cmd_ring->dequeue; 3591 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3592 if (ret) { 3593 spin_unlock_irqrestore(&xhci->lock, flags); 3594 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3595 return 0; 3596 } 3597 xhci_ring_cmd_db(xhci); 3598 spin_unlock_irqrestore(&xhci->lock, flags); 3599 3600 /* XXX: how much time for xHC slot assignment? */ 3601 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3602 XHCI_CMD_DEFAULT_TIMEOUT); 3603 if (timeleft <= 0) { 3604 xhci_warn(xhci, "%s while waiting for a slot\n", 3605 timeleft == 0 ? "Timeout" : "Signal"); 3606 /* cancel the enable slot request */ 3607 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3608 } 3609 3610 if (!xhci->slot_id) { 3611 xhci_err(xhci, "Error while assigning device slot ID\n"); 3612 return 0; 3613 } 3614 3615 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3616 spin_lock_irqsave(&xhci->lock, flags); 3617 ret = xhci_reserve_host_control_ep_resources(xhci); 3618 if (ret) { 3619 spin_unlock_irqrestore(&xhci->lock, flags); 3620 xhci_warn(xhci, "Not enough host resources, " 3621 "active endpoint contexts = %u\n", 3622 xhci->num_active_eps); 3623 goto disable_slot; 3624 } 3625 spin_unlock_irqrestore(&xhci->lock, flags); 3626 } 3627 /* Use GFP_NOIO, since this function can be called from 3628 * xhci_discover_or_reset_device(), which may be called as part of 3629 * mass storage driver error handling. 3630 */ 3631 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3632 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3633 goto disable_slot; 3634 } 3635 udev->slot_id = xhci->slot_id; 3636 /* Is this a LS or FS device under a HS hub? */ 3637 /* Hub or peripherial? */ 3638 return 1; 3639 3640 disable_slot: 3641 /* Disable slot, if we can do it without mem alloc */ 3642 spin_lock_irqsave(&xhci->lock, flags); 3643 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3644 xhci_ring_cmd_db(xhci); 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 return 0; 3647 } 3648 3649 /* 3650 * Issue an Address Device command (which will issue a SetAddress request to 3651 * the device). 3652 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3653 * we should only issue and wait on one address command at the same time. 3654 * 3655 * We add one to the device address issued by the hardware because the USB core 3656 * uses address 1 for the root hubs (even though they're not really devices). 3657 */ 3658 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3659 { 3660 unsigned long flags; 3661 int timeleft; 3662 struct xhci_virt_device *virt_dev; 3663 int ret = 0; 3664 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3665 struct xhci_slot_ctx *slot_ctx; 3666 struct xhci_input_control_ctx *ctrl_ctx; 3667 u64 temp_64; 3668 union xhci_trb *cmd_trb; 3669 3670 if (!udev->slot_id) { 3671 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3672 return -EINVAL; 3673 } 3674 3675 virt_dev = xhci->devs[udev->slot_id]; 3676 3677 if (WARN_ON(!virt_dev)) { 3678 /* 3679 * In plug/unplug torture test with an NEC controller, 3680 * a zero-dereference was observed once due to virt_dev = 0. 3681 * Print useful debug rather than crash if it is observed again! 3682 */ 3683 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3684 udev->slot_id); 3685 return -EINVAL; 3686 } 3687 3688 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3689 /* 3690 * If this is the first Set Address since device plug-in or 3691 * virt_device realloaction after a resume with an xHCI power loss, 3692 * then set up the slot context. 3693 */ 3694 if (!slot_ctx->dev_info) 3695 xhci_setup_addressable_virt_dev(xhci, udev); 3696 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3697 else 3698 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3699 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3700 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3701 ctrl_ctx->drop_flags = 0; 3702 3703 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3704 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3705 3706 spin_lock_irqsave(&xhci->lock, flags); 3707 cmd_trb = xhci->cmd_ring->dequeue; 3708 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3709 udev->slot_id); 3710 if (ret) { 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3713 return ret; 3714 } 3715 xhci_ring_cmd_db(xhci); 3716 spin_unlock_irqrestore(&xhci->lock, flags); 3717 3718 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3719 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3720 XHCI_CMD_DEFAULT_TIMEOUT); 3721 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3722 * the SetAddress() "recovery interval" required by USB and aborting the 3723 * command on a timeout. 3724 */ 3725 if (timeleft <= 0) { 3726 xhci_warn(xhci, "%s while waiting for address device command\n", 3727 timeleft == 0 ? "Timeout" : "Signal"); 3728 /* cancel the address device command */ 3729 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3730 if (ret < 0) 3731 return ret; 3732 return -ETIME; 3733 } 3734 3735 switch (virt_dev->cmd_status) { 3736 case COMP_CTX_STATE: 3737 case COMP_EBADSLT: 3738 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3739 udev->slot_id); 3740 ret = -EINVAL; 3741 break; 3742 case COMP_TX_ERR: 3743 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3744 ret = -EPROTO; 3745 break; 3746 case COMP_DEV_ERR: 3747 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3748 "device command.\n"); 3749 ret = -ENODEV; 3750 break; 3751 case COMP_SUCCESS: 3752 xhci_dbg(xhci, "Successful Address Device command\n"); 3753 break; 3754 default: 3755 xhci_err(xhci, "ERROR: unexpected command completion " 3756 "code 0x%x.\n", virt_dev->cmd_status); 3757 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3758 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3759 ret = -EINVAL; 3760 break; 3761 } 3762 if (ret) { 3763 return ret; 3764 } 3765 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3766 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3767 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3768 udev->slot_id, 3769 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3770 (unsigned long long) 3771 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3772 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3773 (unsigned long long)virt_dev->out_ctx->dma); 3774 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3775 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3776 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3777 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3778 /* 3779 * USB core uses address 1 for the roothubs, so we add one to the 3780 * address given back to us by the HC. 3781 */ 3782 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3783 /* Use kernel assigned address for devices; store xHC assigned 3784 * address locally. */ 3785 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3786 + 1; 3787 /* Zero the input context control for later use */ 3788 ctrl_ctx->add_flags = 0; 3789 ctrl_ctx->drop_flags = 0; 3790 3791 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3792 3793 return 0; 3794 } 3795 3796 /* 3797 * Transfer the port index into real index in the HW port status 3798 * registers. Caculate offset between the port's PORTSC register 3799 * and port status base. Divide the number of per port register 3800 * to get the real index. The raw port number bases 1. 3801 */ 3802 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3803 { 3804 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3805 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3806 __le32 __iomem *addr; 3807 int raw_port; 3808 3809 if (hcd->speed != HCD_USB3) 3810 addr = xhci->usb2_ports[port1 - 1]; 3811 else 3812 addr = xhci->usb3_ports[port1 - 1]; 3813 3814 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3815 return raw_port; 3816 } 3817 3818 #ifdef CONFIG_PM_RUNTIME 3819 3820 /* BESL to HIRD Encoding array for USB2 LPM */ 3821 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3822 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3823 3824 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3825 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3826 struct usb_device *udev) 3827 { 3828 int u2del, besl, besl_host; 3829 int besl_device = 0; 3830 u32 field; 3831 3832 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3833 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3834 3835 if (field & USB_BESL_SUPPORT) { 3836 for (besl_host = 0; besl_host < 16; besl_host++) { 3837 if (xhci_besl_encoding[besl_host] >= u2del) 3838 break; 3839 } 3840 /* Use baseline BESL value as default */ 3841 if (field & USB_BESL_BASELINE_VALID) 3842 besl_device = USB_GET_BESL_BASELINE(field); 3843 else if (field & USB_BESL_DEEP_VALID) 3844 besl_device = USB_GET_BESL_DEEP(field); 3845 } else { 3846 if (u2del <= 50) 3847 besl_host = 0; 3848 else 3849 besl_host = (u2del - 51) / 75 + 1; 3850 } 3851 3852 besl = besl_host + besl_device; 3853 if (besl > 15) 3854 besl = 15; 3855 3856 return besl; 3857 } 3858 3859 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3860 struct usb_device *udev) 3861 { 3862 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3863 struct dev_info *dev_info; 3864 __le32 __iomem **port_array; 3865 __le32 __iomem *addr, *pm_addr; 3866 u32 temp, dev_id; 3867 unsigned int port_num; 3868 unsigned long flags; 3869 int hird; 3870 int ret; 3871 3872 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3873 !udev->lpm_capable) 3874 return -EINVAL; 3875 3876 /* we only support lpm for non-hub device connected to root hub yet */ 3877 if (!udev->parent || udev->parent->parent || 3878 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3879 return -EINVAL; 3880 3881 spin_lock_irqsave(&xhci->lock, flags); 3882 3883 /* Look for devices in lpm_failed_devs list */ 3884 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3885 le16_to_cpu(udev->descriptor.idProduct); 3886 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3887 if (dev_info->dev_id == dev_id) { 3888 ret = -EINVAL; 3889 goto finish; 3890 } 3891 } 3892 3893 port_array = xhci->usb2_ports; 3894 port_num = udev->portnum - 1; 3895 3896 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3897 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3898 ret = -EINVAL; 3899 goto finish; 3900 } 3901 3902 /* 3903 * Test USB 2.0 software LPM. 3904 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3905 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3906 * in the June 2011 errata release. 3907 */ 3908 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3909 /* 3910 * Set L1 Device Slot and HIRD/BESL. 3911 * Check device's USB 2.0 extension descriptor to determine whether 3912 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3913 */ 3914 pm_addr = port_array[port_num] + 1; 3915 hird = xhci_calculate_hird_besl(xhci, udev); 3916 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3917 xhci_writel(xhci, temp, pm_addr); 3918 3919 /* Set port link state to U2(L1) */ 3920 addr = port_array[port_num]; 3921 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3922 3923 /* wait for ACK */ 3924 spin_unlock_irqrestore(&xhci->lock, flags); 3925 msleep(10); 3926 spin_lock_irqsave(&xhci->lock, flags); 3927 3928 /* Check L1 Status */ 3929 ret = xhci_handshake(xhci, pm_addr, 3930 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3931 if (ret != -ETIMEDOUT) { 3932 /* enter L1 successfully */ 3933 temp = xhci_readl(xhci, addr); 3934 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3935 port_num, temp); 3936 ret = 0; 3937 } else { 3938 temp = xhci_readl(xhci, pm_addr); 3939 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3940 port_num, temp & PORT_L1S_MASK); 3941 ret = -EINVAL; 3942 } 3943 3944 /* Resume the port */ 3945 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3946 3947 spin_unlock_irqrestore(&xhci->lock, flags); 3948 msleep(10); 3949 spin_lock_irqsave(&xhci->lock, flags); 3950 3951 /* Clear PLC */ 3952 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3953 3954 /* Check PORTSC to make sure the device is in the right state */ 3955 if (!ret) { 3956 temp = xhci_readl(xhci, addr); 3957 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3958 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3959 (temp & PORT_PLS_MASK) != XDEV_U0) { 3960 xhci_dbg(xhci, "port L1 resume fail\n"); 3961 ret = -EINVAL; 3962 } 3963 } 3964 3965 if (ret) { 3966 /* Insert dev to lpm_failed_devs list */ 3967 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3968 "re-enumerate\n"); 3969 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3970 if (!dev_info) { 3971 ret = -ENOMEM; 3972 goto finish; 3973 } 3974 dev_info->dev_id = dev_id; 3975 INIT_LIST_HEAD(&dev_info->list); 3976 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3977 } else { 3978 xhci_ring_device(xhci, udev->slot_id); 3979 } 3980 3981 finish: 3982 spin_unlock_irqrestore(&xhci->lock, flags); 3983 return ret; 3984 } 3985 3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3987 struct usb_device *udev, int enable) 3988 { 3989 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3990 __le32 __iomem **port_array; 3991 __le32 __iomem *pm_addr; 3992 u32 temp; 3993 unsigned int port_num; 3994 unsigned long flags; 3995 int hird; 3996 3997 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3998 !udev->lpm_capable) 3999 return -EPERM; 4000 4001 if (!udev->parent || udev->parent->parent || 4002 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4003 return -EPERM; 4004 4005 if (udev->usb2_hw_lpm_capable != 1) 4006 return -EPERM; 4007 4008 spin_lock_irqsave(&xhci->lock, flags); 4009 4010 port_array = xhci->usb2_ports; 4011 port_num = udev->portnum - 1; 4012 pm_addr = port_array[port_num] + 1; 4013 temp = xhci_readl(xhci, pm_addr); 4014 4015 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4016 enable ? "enable" : "disable", port_num); 4017 4018 hird = xhci_calculate_hird_besl(xhci, udev); 4019 4020 if (enable) { 4021 temp &= ~PORT_HIRD_MASK; 4022 temp |= PORT_HIRD(hird) | PORT_RWE; 4023 xhci_writel(xhci, temp, pm_addr); 4024 temp = xhci_readl(xhci, pm_addr); 4025 temp |= PORT_HLE; 4026 xhci_writel(xhci, temp, pm_addr); 4027 } else { 4028 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4029 xhci_writel(xhci, temp, pm_addr); 4030 } 4031 4032 spin_unlock_irqrestore(&xhci->lock, flags); 4033 return 0; 4034 } 4035 4036 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4037 { 4038 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4039 int ret; 4040 4041 ret = xhci_usb2_software_lpm_test(hcd, udev); 4042 if (!ret) { 4043 xhci_dbg(xhci, "software LPM test succeed\n"); 4044 if (xhci->hw_lpm_support == 1) { 4045 udev->usb2_hw_lpm_capable = 1; 4046 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4047 if (!ret) 4048 udev->usb2_hw_lpm_enabled = 1; 4049 } 4050 } 4051 4052 return 0; 4053 } 4054 4055 #else 4056 4057 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4058 struct usb_device *udev, int enable) 4059 { 4060 return 0; 4061 } 4062 4063 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4064 { 4065 return 0; 4066 } 4067 4068 #endif /* CONFIG_PM_RUNTIME */ 4069 4070 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4071 4072 #ifdef CONFIG_PM 4073 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4074 static unsigned long long xhci_service_interval_to_ns( 4075 struct usb_endpoint_descriptor *desc) 4076 { 4077 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4078 } 4079 4080 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4081 enum usb3_link_state state) 4082 { 4083 unsigned long long sel; 4084 unsigned long long pel; 4085 unsigned int max_sel_pel; 4086 char *state_name; 4087 4088 switch (state) { 4089 case USB3_LPM_U1: 4090 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4091 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4092 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4093 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4094 state_name = "U1"; 4095 break; 4096 case USB3_LPM_U2: 4097 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4098 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4099 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4100 state_name = "U2"; 4101 break; 4102 default: 4103 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4104 __func__); 4105 return USB3_LPM_DISABLED; 4106 } 4107 4108 if (sel <= max_sel_pel && pel <= max_sel_pel) 4109 return USB3_LPM_DEVICE_INITIATED; 4110 4111 if (sel > max_sel_pel) 4112 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4113 "due to long SEL %llu ms\n", 4114 state_name, sel); 4115 else 4116 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4117 "due to long PEL %llu\n ms", 4118 state_name, pel); 4119 return USB3_LPM_DISABLED; 4120 } 4121 4122 /* Returns the hub-encoded U1 timeout value. 4123 * The U1 timeout should be the maximum of the following values: 4124 * - For control endpoints, U1 system exit latency (SEL) * 3 4125 * - For bulk endpoints, U1 SEL * 5 4126 * - For interrupt endpoints: 4127 * - Notification EPs, U1 SEL * 3 4128 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4129 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4130 */ 4131 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4132 struct usb_endpoint_descriptor *desc) 4133 { 4134 unsigned long long timeout_ns; 4135 int ep_type; 4136 int intr_type; 4137 4138 ep_type = usb_endpoint_type(desc); 4139 switch (ep_type) { 4140 case USB_ENDPOINT_XFER_CONTROL: 4141 timeout_ns = udev->u1_params.sel * 3; 4142 break; 4143 case USB_ENDPOINT_XFER_BULK: 4144 timeout_ns = udev->u1_params.sel * 5; 4145 break; 4146 case USB_ENDPOINT_XFER_INT: 4147 intr_type = usb_endpoint_interrupt_type(desc); 4148 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4149 timeout_ns = udev->u1_params.sel * 3; 4150 break; 4151 } 4152 /* Otherwise the calculation is the same as isoc eps */ 4153 case USB_ENDPOINT_XFER_ISOC: 4154 timeout_ns = xhci_service_interval_to_ns(desc); 4155 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4156 if (timeout_ns < udev->u1_params.sel * 2) 4157 timeout_ns = udev->u1_params.sel * 2; 4158 break; 4159 default: 4160 return 0; 4161 } 4162 4163 /* The U1 timeout is encoded in 1us intervals. */ 4164 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4165 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4166 if (timeout_ns == USB3_LPM_DISABLED) 4167 timeout_ns++; 4168 4169 /* If the necessary timeout value is bigger than what we can set in the 4170 * USB 3.0 hub, we have to disable hub-initiated U1. 4171 */ 4172 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4173 return timeout_ns; 4174 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4175 "due to long timeout %llu ms\n", timeout_ns); 4176 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4177 } 4178 4179 /* Returns the hub-encoded U2 timeout value. 4180 * The U2 timeout should be the maximum of: 4181 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4182 * - largest bInterval of any active periodic endpoint (to avoid going 4183 * into lower power link states between intervals). 4184 * - the U2 Exit Latency of the device 4185 */ 4186 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4187 struct usb_endpoint_descriptor *desc) 4188 { 4189 unsigned long long timeout_ns; 4190 unsigned long long u2_del_ns; 4191 4192 timeout_ns = 10 * 1000 * 1000; 4193 4194 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4195 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4196 timeout_ns = xhci_service_interval_to_ns(desc); 4197 4198 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4199 if (u2_del_ns > timeout_ns) 4200 timeout_ns = u2_del_ns; 4201 4202 /* The U2 timeout is encoded in 256us intervals */ 4203 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4204 /* If the necessary timeout value is bigger than what we can set in the 4205 * USB 3.0 hub, we have to disable hub-initiated U2. 4206 */ 4207 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4208 return timeout_ns; 4209 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4210 "due to long timeout %llu ms\n", timeout_ns); 4211 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4212 } 4213 4214 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4215 struct usb_device *udev, 4216 struct usb_endpoint_descriptor *desc, 4217 enum usb3_link_state state, 4218 u16 *timeout) 4219 { 4220 if (state == USB3_LPM_U1) { 4221 if (xhci->quirks & XHCI_INTEL_HOST) 4222 return xhci_calculate_intel_u1_timeout(udev, desc); 4223 } else { 4224 if (xhci->quirks & XHCI_INTEL_HOST) 4225 return xhci_calculate_intel_u2_timeout(udev, desc); 4226 } 4227 4228 return USB3_LPM_DISABLED; 4229 } 4230 4231 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4232 struct usb_device *udev, 4233 struct usb_endpoint_descriptor *desc, 4234 enum usb3_link_state state, 4235 u16 *timeout) 4236 { 4237 u16 alt_timeout; 4238 4239 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4240 desc, state, timeout); 4241 4242 /* If we found we can't enable hub-initiated LPM, or 4243 * the U1 or U2 exit latency was too high to allow 4244 * device-initiated LPM as well, just stop searching. 4245 */ 4246 if (alt_timeout == USB3_LPM_DISABLED || 4247 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4248 *timeout = alt_timeout; 4249 return -E2BIG; 4250 } 4251 if (alt_timeout > *timeout) 4252 *timeout = alt_timeout; 4253 return 0; 4254 } 4255 4256 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4257 struct usb_device *udev, 4258 struct usb_host_interface *alt, 4259 enum usb3_link_state state, 4260 u16 *timeout) 4261 { 4262 int j; 4263 4264 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4265 if (xhci_update_timeout_for_endpoint(xhci, udev, 4266 &alt->endpoint[j].desc, state, timeout)) 4267 return -E2BIG; 4268 continue; 4269 } 4270 return 0; 4271 } 4272 4273 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4274 enum usb3_link_state state) 4275 { 4276 struct usb_device *parent; 4277 unsigned int num_hubs; 4278 4279 if (state == USB3_LPM_U2) 4280 return 0; 4281 4282 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4283 for (parent = udev->parent, num_hubs = 0; parent->parent; 4284 parent = parent->parent) 4285 num_hubs++; 4286 4287 if (num_hubs < 2) 4288 return 0; 4289 4290 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4291 " below second-tier hub.\n"); 4292 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4293 "to decrease power consumption.\n"); 4294 return -E2BIG; 4295 } 4296 4297 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4298 struct usb_device *udev, 4299 enum usb3_link_state state) 4300 { 4301 if (xhci->quirks & XHCI_INTEL_HOST) 4302 return xhci_check_intel_tier_policy(udev, state); 4303 return -EINVAL; 4304 } 4305 4306 /* Returns the U1 or U2 timeout that should be enabled. 4307 * If the tier check or timeout setting functions return with a non-zero exit 4308 * code, that means the timeout value has been finalized and we shouldn't look 4309 * at any more endpoints. 4310 */ 4311 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4312 struct usb_device *udev, enum usb3_link_state state) 4313 { 4314 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4315 struct usb_host_config *config; 4316 char *state_name; 4317 int i; 4318 u16 timeout = USB3_LPM_DISABLED; 4319 4320 if (state == USB3_LPM_U1) 4321 state_name = "U1"; 4322 else if (state == USB3_LPM_U2) 4323 state_name = "U2"; 4324 else { 4325 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4326 state); 4327 return timeout; 4328 } 4329 4330 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4331 return timeout; 4332 4333 /* Gather some information about the currently installed configuration 4334 * and alternate interface settings. 4335 */ 4336 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4337 state, &timeout)) 4338 return timeout; 4339 4340 config = udev->actconfig; 4341 if (!config) 4342 return timeout; 4343 4344 for (i = 0; i < USB_MAXINTERFACES; i++) { 4345 struct usb_driver *driver; 4346 struct usb_interface *intf = config->interface[i]; 4347 4348 if (!intf) 4349 continue; 4350 4351 /* Check if any currently bound drivers want hub-initiated LPM 4352 * disabled. 4353 */ 4354 if (intf->dev.driver) { 4355 driver = to_usb_driver(intf->dev.driver); 4356 if (driver && driver->disable_hub_initiated_lpm) { 4357 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4358 "at request of driver %s\n", 4359 state_name, driver->name); 4360 return xhci_get_timeout_no_hub_lpm(udev, state); 4361 } 4362 } 4363 4364 /* Not sure how this could happen... */ 4365 if (!intf->cur_altsetting) 4366 continue; 4367 4368 if (xhci_update_timeout_for_interface(xhci, udev, 4369 intf->cur_altsetting, 4370 state, &timeout)) 4371 return timeout; 4372 } 4373 return timeout; 4374 } 4375 4376 /* 4377 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4378 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4379 */ 4380 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4381 struct usb_device *udev, u16 max_exit_latency) 4382 { 4383 struct xhci_virt_device *virt_dev; 4384 struct xhci_command *command; 4385 struct xhci_input_control_ctx *ctrl_ctx; 4386 struct xhci_slot_ctx *slot_ctx; 4387 unsigned long flags; 4388 int ret; 4389 4390 spin_lock_irqsave(&xhci->lock, flags); 4391 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4392 spin_unlock_irqrestore(&xhci->lock, flags); 4393 return 0; 4394 } 4395 4396 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4397 virt_dev = xhci->devs[udev->slot_id]; 4398 command = xhci->lpm_command; 4399 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4400 spin_unlock_irqrestore(&xhci->lock, flags); 4401 4402 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4403 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4404 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4405 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4406 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4407 4408 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4409 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4410 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4411 4412 /* Issue and wait for the evaluate context command. */ 4413 ret = xhci_configure_endpoint(xhci, udev, command, 4414 true, true); 4415 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4416 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4417 4418 if (!ret) { 4419 spin_lock_irqsave(&xhci->lock, flags); 4420 virt_dev->current_mel = max_exit_latency; 4421 spin_unlock_irqrestore(&xhci->lock, flags); 4422 } 4423 return ret; 4424 } 4425 4426 static int calculate_max_exit_latency(struct usb_device *udev, 4427 enum usb3_link_state state_changed, 4428 u16 hub_encoded_timeout) 4429 { 4430 unsigned long long u1_mel_us = 0; 4431 unsigned long long u2_mel_us = 0; 4432 unsigned long long mel_us = 0; 4433 bool disabling_u1; 4434 bool disabling_u2; 4435 bool enabling_u1; 4436 bool enabling_u2; 4437 4438 disabling_u1 = (state_changed == USB3_LPM_U1 && 4439 hub_encoded_timeout == USB3_LPM_DISABLED); 4440 disabling_u2 = (state_changed == USB3_LPM_U2 && 4441 hub_encoded_timeout == USB3_LPM_DISABLED); 4442 4443 enabling_u1 = (state_changed == USB3_LPM_U1 && 4444 hub_encoded_timeout != USB3_LPM_DISABLED); 4445 enabling_u2 = (state_changed == USB3_LPM_U2 && 4446 hub_encoded_timeout != USB3_LPM_DISABLED); 4447 4448 /* If U1 was already enabled and we're not disabling it, 4449 * or we're going to enable U1, account for the U1 max exit latency. 4450 */ 4451 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4452 enabling_u1) 4453 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4454 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4455 enabling_u2) 4456 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4457 4458 if (u1_mel_us > u2_mel_us) 4459 mel_us = u1_mel_us; 4460 else 4461 mel_us = u2_mel_us; 4462 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4463 if (mel_us > MAX_EXIT) { 4464 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4465 "is too big.\n", mel_us); 4466 return -E2BIG; 4467 } 4468 return mel_us; 4469 } 4470 4471 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4472 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4473 struct usb_device *udev, enum usb3_link_state state) 4474 { 4475 struct xhci_hcd *xhci; 4476 u16 hub_encoded_timeout; 4477 int mel; 4478 int ret; 4479 4480 xhci = hcd_to_xhci(hcd); 4481 /* The LPM timeout values are pretty host-controller specific, so don't 4482 * enable hub-initiated timeouts unless the vendor has provided 4483 * information about their timeout algorithm. 4484 */ 4485 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4486 !xhci->devs[udev->slot_id]) 4487 return USB3_LPM_DISABLED; 4488 4489 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4490 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4491 if (mel < 0) { 4492 /* Max Exit Latency is too big, disable LPM. */ 4493 hub_encoded_timeout = USB3_LPM_DISABLED; 4494 mel = 0; 4495 } 4496 4497 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4498 if (ret) 4499 return ret; 4500 return hub_encoded_timeout; 4501 } 4502 4503 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4504 struct usb_device *udev, enum usb3_link_state state) 4505 { 4506 struct xhci_hcd *xhci; 4507 u16 mel; 4508 int ret; 4509 4510 xhci = hcd_to_xhci(hcd); 4511 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4512 !xhci->devs[udev->slot_id]) 4513 return 0; 4514 4515 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4516 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4517 if (ret) 4518 return ret; 4519 return 0; 4520 } 4521 #else /* CONFIG_PM */ 4522 4523 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4524 struct usb_device *udev, enum usb3_link_state state) 4525 { 4526 return USB3_LPM_DISABLED; 4527 } 4528 4529 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4530 struct usb_device *udev, enum usb3_link_state state) 4531 { 4532 return 0; 4533 } 4534 #endif /* CONFIG_PM */ 4535 4536 /*-------------------------------------------------------------------------*/ 4537 4538 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4539 * internal data structures for the device. 4540 */ 4541 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4542 struct usb_tt *tt, gfp_t mem_flags) 4543 { 4544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4545 struct xhci_virt_device *vdev; 4546 struct xhci_command *config_cmd; 4547 struct xhci_input_control_ctx *ctrl_ctx; 4548 struct xhci_slot_ctx *slot_ctx; 4549 unsigned long flags; 4550 unsigned think_time; 4551 int ret; 4552 4553 /* Ignore root hubs */ 4554 if (!hdev->parent) 4555 return 0; 4556 4557 vdev = xhci->devs[hdev->slot_id]; 4558 if (!vdev) { 4559 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4560 return -EINVAL; 4561 } 4562 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4563 if (!config_cmd) { 4564 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4565 return -ENOMEM; 4566 } 4567 4568 spin_lock_irqsave(&xhci->lock, flags); 4569 if (hdev->speed == USB_SPEED_HIGH && 4570 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4571 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4572 xhci_free_command(xhci, config_cmd); 4573 spin_unlock_irqrestore(&xhci->lock, flags); 4574 return -ENOMEM; 4575 } 4576 4577 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4578 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4579 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4580 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4581 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4582 if (tt->multi) 4583 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4584 if (xhci->hci_version > 0x95) { 4585 xhci_dbg(xhci, "xHCI version %x needs hub " 4586 "TT think time and number of ports\n", 4587 (unsigned int) xhci->hci_version); 4588 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4589 /* Set TT think time - convert from ns to FS bit times. 4590 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4591 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4592 * 4593 * xHCI 1.0: this field shall be 0 if the device is not a 4594 * High-spped hub. 4595 */ 4596 think_time = tt->think_time; 4597 if (think_time != 0) 4598 think_time = (think_time / 666) - 1; 4599 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4600 slot_ctx->tt_info |= 4601 cpu_to_le32(TT_THINK_TIME(think_time)); 4602 } else { 4603 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4604 "TT think time or number of ports\n", 4605 (unsigned int) xhci->hci_version); 4606 } 4607 slot_ctx->dev_state = 0; 4608 spin_unlock_irqrestore(&xhci->lock, flags); 4609 4610 xhci_dbg(xhci, "Set up %s for hub device.\n", 4611 (xhci->hci_version > 0x95) ? 4612 "configure endpoint" : "evaluate context"); 4613 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4614 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4615 4616 /* Issue and wait for the configure endpoint or 4617 * evaluate context command. 4618 */ 4619 if (xhci->hci_version > 0x95) 4620 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4621 false, false); 4622 else 4623 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4624 true, false); 4625 4626 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4627 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4628 4629 xhci_free_command(xhci, config_cmd); 4630 return ret; 4631 } 4632 4633 int xhci_get_frame(struct usb_hcd *hcd) 4634 { 4635 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4636 /* EHCI mods by the periodic size. Why? */ 4637 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4638 } 4639 4640 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4641 { 4642 struct xhci_hcd *xhci; 4643 struct device *dev = hcd->self.controller; 4644 int retval; 4645 u32 temp; 4646 4647 /* Accept arbitrarily long scatter-gather lists */ 4648 hcd->self.sg_tablesize = ~0; 4649 /* XHCI controllers don't stop the ep queue on short packets :| */ 4650 hcd->self.no_stop_on_short = 1; 4651 4652 if (usb_hcd_is_primary_hcd(hcd)) { 4653 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4654 if (!xhci) 4655 return -ENOMEM; 4656 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4657 xhci->main_hcd = hcd; 4658 /* Mark the first roothub as being USB 2.0. 4659 * The xHCI driver will register the USB 3.0 roothub. 4660 */ 4661 hcd->speed = HCD_USB2; 4662 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4663 /* 4664 * USB 2.0 roothub under xHCI has an integrated TT, 4665 * (rate matching hub) as opposed to having an OHCI/UHCI 4666 * companion controller. 4667 */ 4668 hcd->has_tt = 1; 4669 } else { 4670 /* xHCI private pointer was set in xhci_pci_probe for the second 4671 * registered roothub. 4672 */ 4673 xhci = hcd_to_xhci(hcd); 4674 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4675 if (HCC_64BIT_ADDR(temp)) { 4676 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4677 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4678 } else { 4679 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4680 } 4681 return 0; 4682 } 4683 4684 xhci->cap_regs = hcd->regs; 4685 xhci->op_regs = hcd->regs + 4686 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4687 xhci->run_regs = hcd->regs + 4688 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4689 /* Cache read-only capability registers */ 4690 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4691 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4692 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4693 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4694 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4695 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4696 xhci_print_registers(xhci); 4697 4698 get_quirks(dev, xhci); 4699 4700 /* Make sure the HC is halted. */ 4701 retval = xhci_halt(xhci); 4702 if (retval) 4703 goto error; 4704 4705 xhci_dbg(xhci, "Resetting HCD\n"); 4706 /* Reset the internal HC memory state and registers. */ 4707 retval = xhci_reset(xhci); 4708 if (retval) 4709 goto error; 4710 xhci_dbg(xhci, "Reset complete\n"); 4711 4712 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4713 if (HCC_64BIT_ADDR(temp)) { 4714 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4715 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4716 } else { 4717 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4718 } 4719 4720 xhci_dbg(xhci, "Calling HCD init\n"); 4721 /* Initialize HCD and host controller data structures. */ 4722 retval = xhci_init(hcd); 4723 if (retval) 4724 goto error; 4725 xhci_dbg(xhci, "Called HCD init\n"); 4726 return 0; 4727 error: 4728 kfree(xhci); 4729 return retval; 4730 } 4731 4732 MODULE_DESCRIPTION(DRIVER_DESC); 4733 MODULE_AUTHOR(DRIVER_AUTHOR); 4734 MODULE_LICENSE("GPL"); 4735 4736 static int __init xhci_hcd_init(void) 4737 { 4738 int retval; 4739 4740 retval = xhci_register_pci(); 4741 if (retval < 0) { 4742 printk(KERN_DEBUG "Problem registering PCI driver."); 4743 return retval; 4744 } 4745 retval = xhci_register_plat(); 4746 if (retval < 0) { 4747 printk(KERN_DEBUG "Problem registering platform driver."); 4748 goto unreg_pci; 4749 } 4750 /* 4751 * Check the compiler generated sizes of structures that must be laid 4752 * out in specific ways for hardware access. 4753 */ 4754 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4755 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4756 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4757 /* xhci_device_control has eight fields, and also 4758 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4759 */ 4760 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4761 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4762 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4763 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4764 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4765 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4766 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4767 return 0; 4768 unreg_pci: 4769 xhci_unregister_pci(); 4770 return retval; 4771 } 4772 module_init(xhci_hcd_init); 4773 4774 static void __exit xhci_hcd_cleanup(void) 4775 { 4776 xhci_unregister_pci(); 4777 xhci_unregister_plat(); 4778 } 4779 module_exit(xhci_hcd_cleanup); 4780