1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 if ((state & STS_HALT) == 0) { 171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 172 return 0; 173 } 174 175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 176 command = readl(&xhci->op_regs->command); 177 command |= CMD_RESET; 178 writel(command, &xhci->op_regs->command); 179 180 /* Existing Intel xHCI controllers require a delay of 1 mS, 181 * after setting the CMD_RESET bit, and before accessing any 182 * HC registers. This allows the HC to complete the 183 * reset operation and be ready for HC register access. 184 * Without this delay, the subsequent HC register access, 185 * may result in a system hang very rarely. 186 */ 187 if (xhci->quirks & XHCI_INTEL_HOST) 188 udelay(1000); 189 190 ret = xhci_handshake(&xhci->op_regs->command, 191 CMD_RESET, 0, 10 * 1000 * 1000); 192 if (ret) 193 return ret; 194 195 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 196 "Wait for controller to be ready for doorbell rings"); 197 /* 198 * xHCI cannot write to any doorbells or operational registers other 199 * than status until the "Controller Not Ready" flag is cleared. 200 */ 201 ret = xhci_handshake(&xhci->op_regs->status, 202 STS_CNR, 0, 10 * 1000 * 1000); 203 204 for (i = 0; i < 2; ++i) { 205 xhci->bus_state[i].port_c_suspend = 0; 206 xhci->bus_state[i].suspended_ports = 0; 207 xhci->bus_state[i].resuming_ports = 0; 208 } 209 210 return ret; 211 } 212 213 #ifdef CONFIG_PCI 214 static int xhci_free_msi(struct xhci_hcd *xhci) 215 { 216 int i; 217 218 if (!xhci->msix_entries) 219 return -EINVAL; 220 221 for (i = 0; i < xhci->msix_count; i++) 222 if (xhci->msix_entries[i].vector) 223 free_irq(xhci->msix_entries[i].vector, 224 xhci_to_hcd(xhci)); 225 return 0; 226 } 227 228 /* 229 * Set up MSI 230 */ 231 static int xhci_setup_msi(struct xhci_hcd *xhci) 232 { 233 int ret; 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 236 ret = pci_enable_msi(pdev); 237 if (ret) { 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "failed to allocate MSI entry"); 240 return ret; 241 } 242 243 ret = request_irq(pdev->irq, xhci_msi_irq, 244 0, "xhci_hcd", xhci_to_hcd(xhci)); 245 if (ret) { 246 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 247 "disable MSI interrupt"); 248 pci_disable_msi(pdev); 249 } 250 251 return ret; 252 } 253 254 /* 255 * Free IRQs 256 * free all IRQs request 257 */ 258 static void xhci_free_irq(struct xhci_hcd *xhci) 259 { 260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 261 int ret; 262 263 /* return if using legacy interrupt */ 264 if (xhci_to_hcd(xhci)->irq > 0) 265 return; 266 267 ret = xhci_free_msi(xhci); 268 if (!ret) 269 return; 270 if (pdev->irq > 0) 271 free_irq(pdev->irq, xhci_to_hcd(xhci)); 272 273 return; 274 } 275 276 /* 277 * Set up MSI-X 278 */ 279 static int xhci_setup_msix(struct xhci_hcd *xhci) 280 { 281 int i, ret = 0; 282 struct usb_hcd *hcd = xhci_to_hcd(xhci); 283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 284 285 /* 286 * calculate number of msi-x vectors supported. 287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 288 * with max number of interrupters based on the xhci HCSPARAMS1. 289 * - num_online_cpus: maximum msi-x vectors per CPUs core. 290 * Add additional 1 vector to ensure always available interrupt. 291 */ 292 xhci->msix_count = min(num_online_cpus() + 1, 293 HCS_MAX_INTRS(xhci->hcs_params1)); 294 295 xhci->msix_entries = 296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 297 GFP_KERNEL); 298 if (!xhci->msix_entries) { 299 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 300 return -ENOMEM; 301 } 302 303 for (i = 0; i < xhci->msix_count; i++) { 304 xhci->msix_entries[i].entry = i; 305 xhci->msix_entries[i].vector = 0; 306 } 307 308 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 309 if (ret) { 310 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 311 "Failed to enable MSI-X"); 312 goto free_entries; 313 } 314 315 for (i = 0; i < xhci->msix_count; i++) { 316 ret = request_irq(xhci->msix_entries[i].vector, 317 xhci_msi_irq, 318 0, "xhci_hcd", xhci_to_hcd(xhci)); 319 if (ret) 320 goto disable_msix; 321 } 322 323 hcd->msix_enabled = 1; 324 return ret; 325 326 disable_msix: 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 328 xhci_free_irq(xhci); 329 pci_disable_msix(pdev); 330 free_entries: 331 kfree(xhci->msix_entries); 332 xhci->msix_entries = NULL; 333 return ret; 334 } 335 336 /* Free any IRQs and disable MSI-X */ 337 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 338 { 339 struct usb_hcd *hcd = xhci_to_hcd(xhci); 340 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 341 342 if (xhci->quirks & XHCI_PLAT) 343 return; 344 345 xhci_free_irq(xhci); 346 347 if (xhci->msix_entries) { 348 pci_disable_msix(pdev); 349 kfree(xhci->msix_entries); 350 xhci->msix_entries = NULL; 351 } else { 352 pci_disable_msi(pdev); 353 } 354 355 hcd->msix_enabled = 0; 356 return; 357 } 358 359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 360 { 361 int i; 362 363 if (xhci->msix_entries) { 364 for (i = 0; i < xhci->msix_count; i++) 365 synchronize_irq(xhci->msix_entries[i].vector); 366 } 367 } 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 372 struct pci_dev *pdev; 373 int ret; 374 375 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 376 if (xhci->quirks & XHCI_PLAT) 377 return 0; 378 379 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 380 /* 381 * Some Fresco Logic host controllers advertise MSI, but fail to 382 * generate interrupts. Don't even try to enable MSI. 383 */ 384 if (xhci->quirks & XHCI_BROKEN_MSI) 385 goto legacy_irq; 386 387 /* unregister the legacy interrupt */ 388 if (hcd->irq) 389 free_irq(hcd->irq, hcd); 390 hcd->irq = 0; 391 392 ret = xhci_setup_msix(xhci); 393 if (ret) 394 /* fall back to msi*/ 395 ret = xhci_setup_msi(xhci); 396 397 if (!ret) 398 /* hcd->irq is 0, we have MSI */ 399 return 0; 400 401 if (!pdev->irq) { 402 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 403 return -EINVAL; 404 } 405 406 legacy_irq: 407 if (!strlen(hcd->irq_descr)) 408 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 409 hcd->driver->description, hcd->self.busnum); 410 411 /* fall back to legacy interrupt*/ 412 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 413 hcd->irq_descr, hcd); 414 if (ret) { 415 xhci_err(xhci, "request interrupt %d failed\n", 416 pdev->irq); 417 return ret; 418 } 419 hcd->irq = pdev->irq; 420 return 0; 421 } 422 423 #else 424 425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 426 { 427 return 0; 428 } 429 430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 431 { 432 } 433 434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 435 { 436 } 437 438 #endif 439 440 static void compliance_mode_recovery(unsigned long arg) 441 { 442 struct xhci_hcd *xhci; 443 struct usb_hcd *hcd; 444 u32 temp; 445 int i; 446 447 xhci = (struct xhci_hcd *)arg; 448 449 for (i = 0; i < xhci->num_usb3_ports; i++) { 450 temp = readl(xhci->usb3_ports[i]); 451 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 452 /* 453 * Compliance Mode Detected. Letting USB Core 454 * handle the Warm Reset 455 */ 456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 457 "Compliance mode detected->port %d", 458 i + 1); 459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 460 "Attempting compliance mode recovery"); 461 hcd = xhci->shared_hcd; 462 463 if (hcd->state == HC_STATE_SUSPENDED) 464 usb_hcd_resume_root_hub(hcd); 465 466 usb_hcd_poll_rh_status(hcd); 467 } 468 } 469 470 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 471 mod_timer(&xhci->comp_mode_recovery_timer, 472 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 473 } 474 475 /* 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 477 * that causes ports behind that hardware to enter compliance mode sometimes. 478 * The quirk creates a timer that polls every 2 seconds the link state of 479 * each host controller's port and recovers it by issuing a Warm reset 480 * if Compliance mode is detected, otherwise the port will become "dead" (no 481 * device connections or disconnections will be detected anymore). Becasue no 482 * status event is generated when entering compliance mode (per xhci spec), 483 * this quirk is needed on systems that have the failing hardware installed. 484 */ 485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 486 { 487 xhci->port_status_u0 = 0; 488 setup_timer(&xhci->comp_mode_recovery_timer, 489 compliance_mode_recovery, (unsigned long)xhci); 490 xhci->comp_mode_recovery_timer.expires = jiffies + 491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 492 493 set_timer_slack(&xhci->comp_mode_recovery_timer, 494 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 495 add_timer(&xhci->comp_mode_recovery_timer); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode recovery timer initialized"); 498 } 499 500 /* 501 * This function identifies the systems that have installed the SN65LVPE502CP 502 * USB3.0 re-driver and that need the Compliance Mode Quirk. 503 * Systems: 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 505 */ 506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 507 { 508 const char *dmi_product_name, *dmi_sys_vendor; 509 510 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 511 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 512 if (!dmi_product_name || !dmi_sys_vendor) 513 return false; 514 515 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 516 return false; 517 518 if (strstr(dmi_product_name, "Z420") || 519 strstr(dmi_product_name, "Z620") || 520 strstr(dmi_product_name, "Z820") || 521 strstr(dmi_product_name, "Z1 Workstation")) 522 return true; 523 524 return false; 525 } 526 527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 528 { 529 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 530 } 531 532 533 /* 534 * Initialize memory for HCD and xHC (one-time init). 535 * 536 * Program the PAGESIZE register, initialize the device context array, create 537 * device contexts (?), set up a command ring segment (or two?), create event 538 * ring (one for now). 539 */ 540 int xhci_init(struct usb_hcd *hcd) 541 { 542 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 543 int retval = 0; 544 545 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 546 spin_lock_init(&xhci->lock); 547 if (xhci->hci_version == 0x95 && link_quirk) { 548 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 549 "QUIRK: Not clearing Link TRB chain bits."); 550 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 551 } else { 552 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 553 "xHCI doesn't need link TRB QUIRK"); 554 } 555 retval = xhci_mem_init(xhci, GFP_KERNEL); 556 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 557 558 /* Initializing Compliance Mode Recovery Data If Needed */ 559 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 560 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 561 compliance_mode_recovery_timer_init(xhci); 562 } 563 564 return retval; 565 } 566 567 /*-------------------------------------------------------------------------*/ 568 569 570 static int xhci_run_finished(struct xhci_hcd *xhci) 571 { 572 if (xhci_start(xhci)) { 573 xhci_halt(xhci); 574 return -ENODEV; 575 } 576 xhci->shared_hcd->state = HC_STATE_RUNNING; 577 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 578 579 if (xhci->quirks & XHCI_NEC_HOST) 580 xhci_ring_cmd_db(xhci); 581 582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 583 "Finished xhci_run for USB3 roothub"); 584 return 0; 585 } 586 587 /* 588 * Start the HC after it was halted. 589 * 590 * This function is called by the USB core when the HC driver is added. 591 * Its opposite is xhci_stop(). 592 * 593 * xhci_init() must be called once before this function can be called. 594 * Reset the HC, enable device slot contexts, program DCBAAP, and 595 * set command ring pointer and event ring pointer. 596 * 597 * Setup MSI-X vectors and enable interrupts. 598 */ 599 int xhci_run(struct usb_hcd *hcd) 600 { 601 u32 temp; 602 u64 temp_64; 603 int ret; 604 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 605 606 /* Start the xHCI host controller running only after the USB 2.0 roothub 607 * is setup. 608 */ 609 610 hcd->uses_new_polling = 1; 611 if (!usb_hcd_is_primary_hcd(hcd)) 612 return xhci_run_finished(xhci); 613 614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 615 616 ret = xhci_try_enable_msi(hcd); 617 if (ret) 618 return ret; 619 620 xhci_dbg(xhci, "Command ring memory map follows:\n"); 621 xhci_debug_ring(xhci, xhci->cmd_ring); 622 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 623 xhci_dbg_cmd_ptrs(xhci); 624 625 xhci_dbg(xhci, "ERST memory map follows:\n"); 626 xhci_dbg_erst(xhci, &xhci->erst); 627 xhci_dbg(xhci, "Event ring:\n"); 628 xhci_debug_ring(xhci, xhci->event_ring); 629 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 630 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 631 temp_64 &= ~ERST_PTR_MASK; 632 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 633 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 636 "// Set the interrupt modulation register"); 637 temp = readl(&xhci->ir_set->irq_control); 638 temp &= ~ER_IRQ_INTERVAL_MASK; 639 /* 640 * the increment interval is 8 times as much as that defined 641 * in xHCI spec on MTK's controller 642 */ 643 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 644 writel(temp, &xhci->ir_set->irq_control); 645 646 /* Set the HCD state before we enable the irqs */ 647 temp = readl(&xhci->op_regs->command); 648 temp |= (CMD_EIE); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "// Enable interrupts, cmd = 0x%x.", temp); 651 writel(temp, &xhci->op_regs->command); 652 653 temp = readl(&xhci->ir_set->irq_pending); 654 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 655 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 656 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 657 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 658 xhci_print_ir_set(xhci, 0); 659 660 if (xhci->quirks & XHCI_NEC_HOST) { 661 struct xhci_command *command; 662 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 663 if (!command) 664 return -ENOMEM; 665 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 666 TRB_TYPE(TRB_NEC_GET_FW)); 667 } 668 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 669 "Finished xhci_run for USB2 roothub"); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(xhci_run); 673 674 /* 675 * Stop xHCI driver. 676 * 677 * This function is called by the USB core when the HC driver is removed. 678 * Its opposite is xhci_run(). 679 * 680 * Disable device contexts, disable IRQs, and quiesce the HC. 681 * Reset the HC, finish any completed transactions, and cleanup memory. 682 */ 683 void xhci_stop(struct usb_hcd *hcd) 684 { 685 u32 temp; 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 if (xhci->xhc_state & XHCI_STATE_HALTED) 689 return; 690 691 mutex_lock(&xhci->mutex); 692 spin_lock_irq(&xhci->lock); 693 xhci->xhc_state |= XHCI_STATE_HALTED; 694 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 695 696 /* Make sure the xHC is halted for a USB3 roothub 697 * (xhci_stop() could be called as part of failed init). 698 */ 699 xhci_halt(xhci); 700 xhci_reset(xhci); 701 spin_unlock_irq(&xhci->lock); 702 703 xhci_cleanup_msix(xhci); 704 705 /* Deleting Compliance Mode Recovery Timer */ 706 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 707 (!(xhci_all_ports_seen_u0(xhci)))) { 708 del_timer_sync(&xhci->comp_mode_recovery_timer); 709 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 710 "%s: compliance mode recovery timer deleted", 711 __func__); 712 } 713 714 if (xhci->quirks & XHCI_AMD_PLL_FIX) 715 usb_amd_dev_put(); 716 717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 718 "// Disabling event ring interrupts"); 719 temp = readl(&xhci->op_regs->status); 720 writel(temp & ~STS_EINT, &xhci->op_regs->status); 721 temp = readl(&xhci->ir_set->irq_pending); 722 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 723 xhci_print_ir_set(xhci, 0); 724 725 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 726 xhci_mem_cleanup(xhci); 727 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 728 "xhci_stop completed - status = %x", 729 readl(&xhci->op_regs->status)); 730 mutex_unlock(&xhci->mutex); 731 } 732 733 /* 734 * Shutdown HC (not bus-specific) 735 * 736 * This is called when the machine is rebooting or halting. We assume that the 737 * machine will be powered off, and the HC's internal state will be reset. 738 * Don't bother to free memory. 739 * 740 * This will only ever be called with the main usb_hcd (the USB3 roothub). 741 */ 742 void xhci_shutdown(struct usb_hcd *hcd) 743 { 744 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 745 746 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 747 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 748 749 spin_lock_irq(&xhci->lock); 750 xhci_halt(xhci); 751 /* Workaround for spurious wakeups at shutdown with HSW */ 752 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 753 xhci_reset(xhci); 754 spin_unlock_irq(&xhci->lock); 755 756 xhci_cleanup_msix(xhci); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_shutdown completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 762 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 763 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 764 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 765 } 766 767 #ifdef CONFIG_PM 768 static void xhci_save_registers(struct xhci_hcd *xhci) 769 { 770 xhci->s3.command = readl(&xhci->op_regs->command); 771 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 772 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 773 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 774 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 775 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 776 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 777 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 778 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 779 } 780 781 static void xhci_restore_registers(struct xhci_hcd *xhci) 782 { 783 writel(xhci->s3.command, &xhci->op_regs->command); 784 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 785 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 786 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 787 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 788 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 789 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 790 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 791 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 792 } 793 794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 795 { 796 u64 val_64; 797 798 /* step 2: initialize command ring buffer */ 799 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 800 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 801 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 802 xhci->cmd_ring->dequeue) & 803 (u64) ~CMD_RING_RSVD_BITS) | 804 xhci->cmd_ring->cycle_state; 805 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 806 "// Setting command ring address to 0x%llx", 807 (long unsigned long) val_64); 808 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 809 } 810 811 /* 812 * The whole command ring must be cleared to zero when we suspend the host. 813 * 814 * The host doesn't save the command ring pointer in the suspend well, so we 815 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 816 * aligned, because of the reserved bits in the command ring dequeue pointer 817 * register. Therefore, we can't just set the dequeue pointer back in the 818 * middle of the ring (TRBs are 16-byte aligned). 819 */ 820 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 821 { 822 struct xhci_ring *ring; 823 struct xhci_segment *seg; 824 825 ring = xhci->cmd_ring; 826 seg = ring->deq_seg; 827 do { 828 memset(seg->trbs, 0, 829 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 830 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 831 cpu_to_le32(~TRB_CYCLE); 832 seg = seg->next; 833 } while (seg != ring->deq_seg); 834 835 /* Reset the software enqueue and dequeue pointers */ 836 ring->deq_seg = ring->first_seg; 837 ring->dequeue = ring->first_seg->trbs; 838 ring->enq_seg = ring->deq_seg; 839 ring->enqueue = ring->dequeue; 840 841 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 842 /* 843 * Ring is now zeroed, so the HW should look for change of ownership 844 * when the cycle bit is set to 1. 845 */ 846 ring->cycle_state = 1; 847 848 /* 849 * Reset the hardware dequeue pointer. 850 * Yes, this will need to be re-written after resume, but we're paranoid 851 * and want to make sure the hardware doesn't access bogus memory 852 * because, say, the BIOS or an SMI started the host without changing 853 * the command ring pointers. 854 */ 855 xhci_set_cmd_ring_deq(xhci); 856 } 857 858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 859 { 860 int port_index; 861 __le32 __iomem **port_array; 862 unsigned long flags; 863 u32 t1, t2; 864 865 spin_lock_irqsave(&xhci->lock, flags); 866 867 /* disble usb3 ports Wake bits*/ 868 port_index = xhci->num_usb3_ports; 869 port_array = xhci->usb3_ports; 870 while (port_index--) { 871 t1 = readl(port_array[port_index]); 872 t1 = xhci_port_state_to_neutral(t1); 873 t2 = t1 & ~PORT_WAKE_BITS; 874 if (t1 != t2) 875 writel(t2, port_array[port_index]); 876 } 877 878 /* disble usb2 ports Wake bits*/ 879 port_index = xhci->num_usb2_ports; 880 port_array = xhci->usb2_ports; 881 while (port_index--) { 882 t1 = readl(port_array[port_index]); 883 t1 = xhci_port_state_to_neutral(t1); 884 t2 = t1 & ~PORT_WAKE_BITS; 885 if (t1 != t2) 886 writel(t2, port_array[port_index]); 887 } 888 889 spin_unlock_irqrestore(&xhci->lock, flags); 890 } 891 892 /* 893 * Stop HC (not bus-specific) 894 * 895 * This is called when the machine transition into S3/S4 mode. 896 * 897 */ 898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 899 { 900 int rc = 0; 901 unsigned int delay = XHCI_MAX_HALT_USEC; 902 struct usb_hcd *hcd = xhci_to_hcd(xhci); 903 u32 command; 904 905 if (!hcd->state) 906 return 0; 907 908 if (hcd->state != HC_STATE_SUSPENDED || 909 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 910 return -EINVAL; 911 912 /* Clear root port wake on bits if wakeup not allowed. */ 913 if (!do_wakeup) 914 xhci_disable_port_wake_on_bits(xhci); 915 916 /* Don't poll the roothubs on bus suspend. */ 917 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 918 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 919 del_timer_sync(&hcd->rh_timer); 920 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 921 del_timer_sync(&xhci->shared_hcd->rh_timer); 922 923 spin_lock_irq(&xhci->lock); 924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 925 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 926 /* step 1: stop endpoint */ 927 /* skipped assuming that port suspend has done */ 928 929 /* step 2: clear Run/Stop bit */ 930 command = readl(&xhci->op_regs->command); 931 command &= ~CMD_RUN; 932 writel(command, &xhci->op_regs->command); 933 934 /* Some chips from Fresco Logic need an extraordinary delay */ 935 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 936 937 if (xhci_handshake(&xhci->op_regs->status, 938 STS_HALT, STS_HALT, delay)) { 939 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 940 spin_unlock_irq(&xhci->lock); 941 return -ETIMEDOUT; 942 } 943 xhci_clear_command_ring(xhci); 944 945 /* step 3: save registers */ 946 xhci_save_registers(xhci); 947 948 /* step 4: set CSS flag */ 949 command = readl(&xhci->op_regs->command); 950 command |= CMD_CSS; 951 writel(command, &xhci->op_regs->command); 952 if (xhci_handshake(&xhci->op_regs->status, 953 STS_SAVE, 0, 10 * 1000)) { 954 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 955 spin_unlock_irq(&xhci->lock); 956 return -ETIMEDOUT; 957 } 958 spin_unlock_irq(&xhci->lock); 959 960 /* 961 * Deleting Compliance Mode Recovery Timer because the xHCI Host 962 * is about to be suspended. 963 */ 964 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 965 (!(xhci_all_ports_seen_u0(xhci)))) { 966 del_timer_sync(&xhci->comp_mode_recovery_timer); 967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 968 "%s: compliance mode recovery timer deleted", 969 __func__); 970 } 971 972 /* step 5: remove core well power */ 973 /* synchronize irq when using MSI-X */ 974 xhci_msix_sync_irqs(xhci); 975 976 return rc; 977 } 978 EXPORT_SYMBOL_GPL(xhci_suspend); 979 980 /* 981 * start xHC (not bus-specific) 982 * 983 * This is called when the machine transition from S3/S4 mode. 984 * 985 */ 986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 987 { 988 u32 command, temp = 0, status; 989 struct usb_hcd *hcd = xhci_to_hcd(xhci); 990 struct usb_hcd *secondary_hcd; 991 int retval = 0; 992 bool comp_timer_running = false; 993 994 if (!hcd->state) 995 return 0; 996 997 /* Wait a bit if either of the roothubs need to settle from the 998 * transition into bus suspend. 999 */ 1000 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1001 time_before(jiffies, 1002 xhci->bus_state[1].next_statechange)) 1003 msleep(100); 1004 1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 1008 spin_lock_irq(&xhci->lock); 1009 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1010 hibernated = true; 1011 1012 if (!hibernated) { 1013 /* step 1: restore register */ 1014 xhci_restore_registers(xhci); 1015 /* step 2: initialize command ring buffer */ 1016 xhci_set_cmd_ring_deq(xhci); 1017 /* step 3: restore state and start state*/ 1018 /* step 3: set CRS flag */ 1019 command = readl(&xhci->op_regs->command); 1020 command |= CMD_CRS; 1021 writel(command, &xhci->op_regs->command); 1022 if (xhci_handshake(&xhci->op_regs->status, 1023 STS_RESTORE, 0, 10 * 1000)) { 1024 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1025 spin_unlock_irq(&xhci->lock); 1026 return -ETIMEDOUT; 1027 } 1028 temp = readl(&xhci->op_regs->status); 1029 } 1030 1031 /* If restore operation fails, re-initialize the HC during resume */ 1032 if ((temp & STS_SRE) || hibernated) { 1033 1034 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1035 !(xhci_all_ports_seen_u0(xhci))) { 1036 del_timer_sync(&xhci->comp_mode_recovery_timer); 1037 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1038 "Compliance Mode Recovery Timer deleted!"); 1039 } 1040 1041 /* Let the USB core know _both_ roothubs lost power. */ 1042 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1043 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1044 1045 xhci_dbg(xhci, "Stop HCD\n"); 1046 xhci_halt(xhci); 1047 xhci_reset(xhci); 1048 spin_unlock_irq(&xhci->lock); 1049 xhci_cleanup_msix(xhci); 1050 1051 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1052 temp = readl(&xhci->op_regs->status); 1053 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1054 temp = readl(&xhci->ir_set->irq_pending); 1055 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1056 xhci_print_ir_set(xhci, 0); 1057 1058 xhci_dbg(xhci, "cleaning up memory\n"); 1059 xhci_mem_cleanup(xhci); 1060 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1061 readl(&xhci->op_regs->status)); 1062 1063 /* USB core calls the PCI reinit and start functions twice: 1064 * first with the primary HCD, and then with the secondary HCD. 1065 * If we don't do the same, the host will never be started. 1066 */ 1067 if (!usb_hcd_is_primary_hcd(hcd)) 1068 secondary_hcd = hcd; 1069 else 1070 secondary_hcd = xhci->shared_hcd; 1071 1072 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1073 retval = xhci_init(hcd->primary_hcd); 1074 if (retval) 1075 return retval; 1076 comp_timer_running = true; 1077 1078 xhci_dbg(xhci, "Start the primary HCD\n"); 1079 retval = xhci_run(hcd->primary_hcd); 1080 if (!retval) { 1081 xhci_dbg(xhci, "Start the secondary HCD\n"); 1082 retval = xhci_run(secondary_hcd); 1083 } 1084 hcd->state = HC_STATE_SUSPENDED; 1085 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1086 goto done; 1087 } 1088 1089 /* step 4: set Run/Stop bit */ 1090 command = readl(&xhci->op_regs->command); 1091 command |= CMD_RUN; 1092 writel(command, &xhci->op_regs->command); 1093 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1094 0, 250 * 1000); 1095 1096 /* step 5: walk topology and initialize portsc, 1097 * portpmsc and portli 1098 */ 1099 /* this is done in bus_resume */ 1100 1101 /* step 6: restart each of the previously 1102 * Running endpoints by ringing their doorbells 1103 */ 1104 1105 spin_unlock_irq(&xhci->lock); 1106 1107 done: 1108 if (retval == 0) { 1109 /* Resume root hubs only when have pending events. */ 1110 status = readl(&xhci->op_regs->status); 1111 if (status & STS_EINT) { 1112 usb_hcd_resume_root_hub(xhci->shared_hcd); 1113 usb_hcd_resume_root_hub(hcd); 1114 } 1115 } 1116 1117 /* 1118 * If system is subject to the Quirk, Compliance Mode Timer needs to 1119 * be re-initialized Always after a system resume. Ports are subject 1120 * to suffer the Compliance Mode issue again. It doesn't matter if 1121 * ports have entered previously to U0 before system's suspension. 1122 */ 1123 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1124 compliance_mode_recovery_timer_init(xhci); 1125 1126 /* Re-enable port polling. */ 1127 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1128 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1129 usb_hcd_poll_rh_status(xhci->shared_hcd); 1130 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1131 usb_hcd_poll_rh_status(hcd); 1132 1133 return retval; 1134 } 1135 EXPORT_SYMBOL_GPL(xhci_resume); 1136 #endif /* CONFIG_PM */ 1137 1138 /*-------------------------------------------------------------------------*/ 1139 1140 /** 1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1142 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1143 * value to right shift 1 for the bitmask. 1144 * 1145 * Index = (epnum * 2) + direction - 1, 1146 * where direction = 0 for OUT, 1 for IN. 1147 * For control endpoints, the IN index is used (OUT index is unused), so 1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1149 */ 1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1151 { 1152 unsigned int index; 1153 if (usb_endpoint_xfer_control(desc)) 1154 index = (unsigned int) (usb_endpoint_num(desc)*2); 1155 else 1156 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1157 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1158 return index; 1159 } 1160 1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1162 * address from the XHCI endpoint index. 1163 */ 1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1165 { 1166 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1167 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1168 return direction | number; 1169 } 1170 1171 /* Find the flag for this endpoint (for use in the control context). Use the 1172 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1173 * bit 1, etc. 1174 */ 1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1176 { 1177 return 1 << (xhci_get_endpoint_index(desc) + 1); 1178 } 1179 1180 /* Find the flag for this endpoint (for use in the control context). Use the 1181 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1182 * bit 1, etc. 1183 */ 1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1185 { 1186 return 1 << (ep_index + 1); 1187 } 1188 1189 /* Compute the last valid endpoint context index. Basically, this is the 1190 * endpoint index plus one. For slot contexts with more than valid endpoint, 1191 * we find the most significant bit set in the added contexts flags. 1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1194 */ 1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1196 { 1197 return fls(added_ctxs) - 1; 1198 } 1199 1200 /* Returns 1 if the arguments are OK; 1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1202 */ 1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1204 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1205 const char *func) { 1206 struct xhci_hcd *xhci; 1207 struct xhci_virt_device *virt_dev; 1208 1209 if (!hcd || (check_ep && !ep) || !udev) { 1210 pr_debug("xHCI %s called with invalid args\n", func); 1211 return -EINVAL; 1212 } 1213 if (!udev->parent) { 1214 pr_debug("xHCI %s called for root hub\n", func); 1215 return 0; 1216 } 1217 1218 xhci = hcd_to_xhci(hcd); 1219 if (check_virt_dev) { 1220 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1221 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1222 func); 1223 return -EINVAL; 1224 } 1225 1226 virt_dev = xhci->devs[udev->slot_id]; 1227 if (virt_dev->udev != udev) { 1228 xhci_dbg(xhci, "xHCI %s called with udev and " 1229 "virt_dev does not match\n", func); 1230 return -EINVAL; 1231 } 1232 } 1233 1234 if (xhci->xhc_state & XHCI_STATE_HALTED) 1235 return -ENODEV; 1236 1237 return 1; 1238 } 1239 1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1241 struct usb_device *udev, struct xhci_command *command, 1242 bool ctx_change, bool must_succeed); 1243 1244 /* 1245 * Full speed devices may have a max packet size greater than 8 bytes, but the 1246 * USB core doesn't know that until it reads the first 8 bytes of the 1247 * descriptor. If the usb_device's max packet size changes after that point, 1248 * we need to issue an evaluate context command and wait on it. 1249 */ 1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1251 unsigned int ep_index, struct urb *urb) 1252 { 1253 struct xhci_container_ctx *out_ctx; 1254 struct xhci_input_control_ctx *ctrl_ctx; 1255 struct xhci_ep_ctx *ep_ctx; 1256 struct xhci_command *command; 1257 int max_packet_size; 1258 int hw_max_packet_size; 1259 int ret = 0; 1260 1261 out_ctx = xhci->devs[slot_id]->out_ctx; 1262 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1263 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1264 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1265 if (hw_max_packet_size != max_packet_size) { 1266 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1267 "Max Packet Size for ep 0 changed."); 1268 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1269 "Max packet size in usb_device = %d", 1270 max_packet_size); 1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1272 "Max packet size in xHCI HW = %d", 1273 hw_max_packet_size); 1274 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1275 "Issuing evaluate context command."); 1276 1277 /* Set up the input context flags for the command */ 1278 /* FIXME: This won't work if a non-default control endpoint 1279 * changes max packet sizes. 1280 */ 1281 1282 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1283 if (!command) 1284 return -ENOMEM; 1285 1286 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1287 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1288 if (!ctrl_ctx) { 1289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1290 __func__); 1291 ret = -ENOMEM; 1292 goto command_cleanup; 1293 } 1294 /* Set up the modified control endpoint 0 */ 1295 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1296 xhci->devs[slot_id]->out_ctx, ep_index); 1297 1298 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1299 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1300 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1301 1302 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1303 ctrl_ctx->drop_flags = 0; 1304 1305 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1306 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1307 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1308 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1309 1310 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1311 true, false); 1312 1313 /* Clean up the input context for later use by bandwidth 1314 * functions. 1315 */ 1316 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1317 command_cleanup: 1318 kfree(command->completion); 1319 kfree(command); 1320 } 1321 return ret; 1322 } 1323 1324 /* 1325 * non-error returns are a promise to giveback() the urb later 1326 * we drop ownership so next owner (or urb unlink) can get it 1327 */ 1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1329 { 1330 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1331 struct xhci_td *buffer; 1332 unsigned long flags; 1333 int ret = 0; 1334 unsigned int slot_id, ep_index; 1335 struct urb_priv *urb_priv; 1336 int size, i; 1337 1338 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1339 true, true, __func__) <= 0) 1340 return -EINVAL; 1341 1342 slot_id = urb->dev->slot_id; 1343 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1344 1345 if (!HCD_HW_ACCESSIBLE(hcd)) { 1346 if (!in_interrupt()) 1347 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1348 ret = -ESHUTDOWN; 1349 goto exit; 1350 } 1351 1352 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1353 size = urb->number_of_packets; 1354 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1355 urb->transfer_buffer_length > 0 && 1356 urb->transfer_flags & URB_ZERO_PACKET && 1357 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1358 size = 2; 1359 else 1360 size = 1; 1361 1362 urb_priv = kzalloc(sizeof(struct urb_priv) + 1363 size * sizeof(struct xhci_td *), mem_flags); 1364 if (!urb_priv) 1365 return -ENOMEM; 1366 1367 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1368 if (!buffer) { 1369 kfree(urb_priv); 1370 return -ENOMEM; 1371 } 1372 1373 for (i = 0; i < size; i++) { 1374 urb_priv->td[i] = buffer; 1375 buffer++; 1376 } 1377 1378 urb_priv->length = size; 1379 urb_priv->td_cnt = 0; 1380 urb->hcpriv = urb_priv; 1381 1382 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1383 /* Check to see if the max packet size for the default control 1384 * endpoint changed during FS device enumeration 1385 */ 1386 if (urb->dev->speed == USB_SPEED_FULL) { 1387 ret = xhci_check_maxpacket(xhci, slot_id, 1388 ep_index, urb); 1389 if (ret < 0) { 1390 xhci_urb_free_priv(urb_priv); 1391 urb->hcpriv = NULL; 1392 return ret; 1393 } 1394 } 1395 1396 /* We have a spinlock and interrupts disabled, so we must pass 1397 * atomic context to this function, which may allocate memory. 1398 */ 1399 spin_lock_irqsave(&xhci->lock, flags); 1400 if (xhci->xhc_state & XHCI_STATE_DYING) 1401 goto dying; 1402 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1403 slot_id, ep_index); 1404 if (ret) 1405 goto free_priv; 1406 spin_unlock_irqrestore(&xhci->lock, flags); 1407 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1408 spin_lock_irqsave(&xhci->lock, flags); 1409 if (xhci->xhc_state & XHCI_STATE_DYING) 1410 goto dying; 1411 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1412 EP_GETTING_STREAMS) { 1413 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1414 "is transitioning to using streams.\n"); 1415 ret = -EINVAL; 1416 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1417 EP_GETTING_NO_STREAMS) { 1418 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1419 "is transitioning to " 1420 "not having streams.\n"); 1421 ret = -EINVAL; 1422 } else { 1423 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1424 slot_id, ep_index); 1425 } 1426 if (ret) 1427 goto free_priv; 1428 spin_unlock_irqrestore(&xhci->lock, flags); 1429 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1430 spin_lock_irqsave(&xhci->lock, flags); 1431 if (xhci->xhc_state & XHCI_STATE_DYING) 1432 goto dying; 1433 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1434 slot_id, ep_index); 1435 if (ret) 1436 goto free_priv; 1437 spin_unlock_irqrestore(&xhci->lock, flags); 1438 } else { 1439 spin_lock_irqsave(&xhci->lock, flags); 1440 if (xhci->xhc_state & XHCI_STATE_DYING) 1441 goto dying; 1442 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1443 slot_id, ep_index); 1444 if (ret) 1445 goto free_priv; 1446 spin_unlock_irqrestore(&xhci->lock, flags); 1447 } 1448 exit: 1449 return ret; 1450 dying: 1451 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1452 "non-responsive xHCI host.\n", 1453 urb->ep->desc.bEndpointAddress, urb); 1454 ret = -ESHUTDOWN; 1455 free_priv: 1456 xhci_urb_free_priv(urb_priv); 1457 urb->hcpriv = NULL; 1458 spin_unlock_irqrestore(&xhci->lock, flags); 1459 return ret; 1460 } 1461 1462 /* 1463 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1464 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1465 * should pick up where it left off in the TD, unless a Set Transfer Ring 1466 * Dequeue Pointer is issued. 1467 * 1468 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1469 * the ring. Since the ring is a contiguous structure, they can't be physically 1470 * removed. Instead, there are two options: 1471 * 1472 * 1) If the HC is in the middle of processing the URB to be canceled, we 1473 * simply move the ring's dequeue pointer past those TRBs using the Set 1474 * Transfer Ring Dequeue Pointer command. This will be the common case, 1475 * when drivers timeout on the last submitted URB and attempt to cancel. 1476 * 1477 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1478 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1479 * HC will need to invalidate the any TRBs it has cached after the stop 1480 * endpoint command, as noted in the xHCI 0.95 errata. 1481 * 1482 * 3) The TD may have completed by the time the Stop Endpoint Command 1483 * completes, so software needs to handle that case too. 1484 * 1485 * This function should protect against the TD enqueueing code ringing the 1486 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1487 * It also needs to account for multiple cancellations on happening at the same 1488 * time for the same endpoint. 1489 * 1490 * Note that this function can be called in any context, or so says 1491 * usb_hcd_unlink_urb() 1492 */ 1493 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1494 { 1495 unsigned long flags; 1496 int ret, i; 1497 u32 temp; 1498 struct xhci_hcd *xhci; 1499 struct urb_priv *urb_priv; 1500 struct xhci_td *td; 1501 unsigned int ep_index; 1502 struct xhci_ring *ep_ring; 1503 struct xhci_virt_ep *ep; 1504 struct xhci_command *command; 1505 1506 xhci = hcd_to_xhci(hcd); 1507 spin_lock_irqsave(&xhci->lock, flags); 1508 /* Make sure the URB hasn't completed or been unlinked already */ 1509 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1510 if (ret || !urb->hcpriv) 1511 goto done; 1512 temp = readl(&xhci->op_regs->status); 1513 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1514 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1515 "HW died, freeing TD."); 1516 urb_priv = urb->hcpriv; 1517 for (i = urb_priv->td_cnt; 1518 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1519 i++) { 1520 td = urb_priv->td[i]; 1521 if (!list_empty(&td->td_list)) 1522 list_del_init(&td->td_list); 1523 if (!list_empty(&td->cancelled_td_list)) 1524 list_del_init(&td->cancelled_td_list); 1525 } 1526 1527 usb_hcd_unlink_urb_from_ep(hcd, urb); 1528 spin_unlock_irqrestore(&xhci->lock, flags); 1529 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1530 xhci_urb_free_priv(urb_priv); 1531 return ret; 1532 } 1533 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1534 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1535 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1536 "Ep 0x%x: URB %p to be canceled on " 1537 "non-responsive xHCI host.", 1538 urb->ep->desc.bEndpointAddress, urb); 1539 /* Let the stop endpoint command watchdog timer (which set this 1540 * state) finish cleaning up the endpoint TD lists. We must 1541 * have caught it in the middle of dropping a lock and giving 1542 * back an URB. 1543 */ 1544 goto done; 1545 } 1546 1547 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1548 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1549 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1550 if (!ep_ring) { 1551 ret = -EINVAL; 1552 goto done; 1553 } 1554 1555 urb_priv = urb->hcpriv; 1556 i = urb_priv->td_cnt; 1557 if (i < urb_priv->length) 1558 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1559 "Cancel URB %p, dev %s, ep 0x%x, " 1560 "starting at offset 0x%llx", 1561 urb, urb->dev->devpath, 1562 urb->ep->desc.bEndpointAddress, 1563 (unsigned long long) xhci_trb_virt_to_dma( 1564 urb_priv->td[i]->start_seg, 1565 urb_priv->td[i]->first_trb)); 1566 1567 for (; i < urb_priv->length; i++) { 1568 td = urb_priv->td[i]; 1569 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1570 } 1571 1572 /* Queue a stop endpoint command, but only if this is 1573 * the first cancellation to be handled. 1574 */ 1575 if (!(ep->ep_state & EP_HALT_PENDING)) { 1576 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1577 if (!command) { 1578 ret = -ENOMEM; 1579 goto done; 1580 } 1581 ep->ep_state |= EP_HALT_PENDING; 1582 ep->stop_cmds_pending++; 1583 ep->stop_cmd_timer.expires = jiffies + 1584 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1585 add_timer(&ep->stop_cmd_timer); 1586 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1587 ep_index, 0); 1588 xhci_ring_cmd_db(xhci); 1589 } 1590 done: 1591 spin_unlock_irqrestore(&xhci->lock, flags); 1592 return ret; 1593 } 1594 1595 /* Drop an endpoint from a new bandwidth configuration for this device. 1596 * Only one call to this function is allowed per endpoint before 1597 * check_bandwidth() or reset_bandwidth() must be called. 1598 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1599 * add the endpoint to the schedule with possibly new parameters denoted by a 1600 * different endpoint descriptor in usb_host_endpoint. 1601 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1602 * not allowed. 1603 * 1604 * The USB core will not allow URBs to be queued to an endpoint that is being 1605 * disabled, so there's no need for mutual exclusion to protect 1606 * the xhci->devs[slot_id] structure. 1607 */ 1608 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1609 struct usb_host_endpoint *ep) 1610 { 1611 struct xhci_hcd *xhci; 1612 struct xhci_container_ctx *in_ctx, *out_ctx; 1613 struct xhci_input_control_ctx *ctrl_ctx; 1614 unsigned int ep_index; 1615 struct xhci_ep_ctx *ep_ctx; 1616 u32 drop_flag; 1617 u32 new_add_flags, new_drop_flags; 1618 int ret; 1619 1620 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1621 if (ret <= 0) 1622 return ret; 1623 xhci = hcd_to_xhci(hcd); 1624 if (xhci->xhc_state & XHCI_STATE_DYING) 1625 return -ENODEV; 1626 1627 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1628 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1629 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1630 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1631 __func__, drop_flag); 1632 return 0; 1633 } 1634 1635 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1636 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1637 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1638 if (!ctrl_ctx) { 1639 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1640 __func__); 1641 return 0; 1642 } 1643 1644 ep_index = xhci_get_endpoint_index(&ep->desc); 1645 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1646 /* If the HC already knows the endpoint is disabled, 1647 * or the HCD has noted it is disabled, ignore this request 1648 */ 1649 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1650 cpu_to_le32(EP_STATE_DISABLED)) || 1651 le32_to_cpu(ctrl_ctx->drop_flags) & 1652 xhci_get_endpoint_flag(&ep->desc)) { 1653 /* Do not warn when called after a usb_device_reset */ 1654 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1655 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1656 __func__, ep); 1657 return 0; 1658 } 1659 1660 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1661 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1662 1663 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1664 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1665 1666 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1667 1668 if (xhci->quirks & XHCI_MTK_HOST) 1669 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1670 1671 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1672 (unsigned int) ep->desc.bEndpointAddress, 1673 udev->slot_id, 1674 (unsigned int) new_drop_flags, 1675 (unsigned int) new_add_flags); 1676 return 0; 1677 } 1678 1679 /* Add an endpoint to a new possible bandwidth configuration for this device. 1680 * Only one call to this function is allowed per endpoint before 1681 * check_bandwidth() or reset_bandwidth() must be called. 1682 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1683 * add the endpoint to the schedule with possibly new parameters denoted by a 1684 * different endpoint descriptor in usb_host_endpoint. 1685 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1686 * not allowed. 1687 * 1688 * The USB core will not allow URBs to be queued to an endpoint until the 1689 * configuration or alt setting is installed in the device, so there's no need 1690 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1691 */ 1692 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1693 struct usb_host_endpoint *ep) 1694 { 1695 struct xhci_hcd *xhci; 1696 struct xhci_container_ctx *in_ctx; 1697 unsigned int ep_index; 1698 struct xhci_input_control_ctx *ctrl_ctx; 1699 u32 added_ctxs; 1700 u32 new_add_flags, new_drop_flags; 1701 struct xhci_virt_device *virt_dev; 1702 int ret = 0; 1703 1704 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1705 if (ret <= 0) { 1706 /* So we won't queue a reset ep command for a root hub */ 1707 ep->hcpriv = NULL; 1708 return ret; 1709 } 1710 xhci = hcd_to_xhci(hcd); 1711 if (xhci->xhc_state & XHCI_STATE_DYING) 1712 return -ENODEV; 1713 1714 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1715 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1716 /* FIXME when we have to issue an evaluate endpoint command to 1717 * deal with ep0 max packet size changing once we get the 1718 * descriptors 1719 */ 1720 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1721 __func__, added_ctxs); 1722 return 0; 1723 } 1724 1725 virt_dev = xhci->devs[udev->slot_id]; 1726 in_ctx = virt_dev->in_ctx; 1727 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1728 if (!ctrl_ctx) { 1729 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1730 __func__); 1731 return 0; 1732 } 1733 1734 ep_index = xhci_get_endpoint_index(&ep->desc); 1735 /* If this endpoint is already in use, and the upper layers are trying 1736 * to add it again without dropping it, reject the addition. 1737 */ 1738 if (virt_dev->eps[ep_index].ring && 1739 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1740 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1741 "without dropping it.\n", 1742 (unsigned int) ep->desc.bEndpointAddress); 1743 return -EINVAL; 1744 } 1745 1746 /* If the HCD has already noted the endpoint is enabled, 1747 * ignore this request. 1748 */ 1749 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1750 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1751 __func__, ep); 1752 return 0; 1753 } 1754 1755 /* 1756 * Configuration and alternate setting changes must be done in 1757 * process context, not interrupt context (or so documenation 1758 * for usb_set_interface() and usb_set_configuration() claim). 1759 */ 1760 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1761 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1762 __func__, ep->desc.bEndpointAddress); 1763 return -ENOMEM; 1764 } 1765 1766 if (xhci->quirks & XHCI_MTK_HOST) { 1767 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1768 if (ret < 0) { 1769 xhci_free_or_cache_endpoint_ring(xhci, 1770 virt_dev, ep_index); 1771 return ret; 1772 } 1773 } 1774 1775 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1776 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1777 1778 /* If xhci_endpoint_disable() was called for this endpoint, but the 1779 * xHC hasn't been notified yet through the check_bandwidth() call, 1780 * this re-adds a new state for the endpoint from the new endpoint 1781 * descriptors. We must drop and re-add this endpoint, so we leave the 1782 * drop flags alone. 1783 */ 1784 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1785 1786 /* Store the usb_device pointer for later use */ 1787 ep->hcpriv = udev; 1788 1789 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1790 (unsigned int) ep->desc.bEndpointAddress, 1791 udev->slot_id, 1792 (unsigned int) new_drop_flags, 1793 (unsigned int) new_add_flags); 1794 return 0; 1795 } 1796 1797 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1798 { 1799 struct xhci_input_control_ctx *ctrl_ctx; 1800 struct xhci_ep_ctx *ep_ctx; 1801 struct xhci_slot_ctx *slot_ctx; 1802 int i; 1803 1804 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1805 if (!ctrl_ctx) { 1806 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1807 __func__); 1808 return; 1809 } 1810 1811 /* When a device's add flag and drop flag are zero, any subsequent 1812 * configure endpoint command will leave that endpoint's state 1813 * untouched. Make sure we don't leave any old state in the input 1814 * endpoint contexts. 1815 */ 1816 ctrl_ctx->drop_flags = 0; 1817 ctrl_ctx->add_flags = 0; 1818 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1819 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1820 /* Endpoint 0 is always valid */ 1821 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1822 for (i = 1; i < 31; ++i) { 1823 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1824 ep_ctx->ep_info = 0; 1825 ep_ctx->ep_info2 = 0; 1826 ep_ctx->deq = 0; 1827 ep_ctx->tx_info = 0; 1828 } 1829 } 1830 1831 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1832 struct usb_device *udev, u32 *cmd_status) 1833 { 1834 int ret; 1835 1836 switch (*cmd_status) { 1837 case COMP_CMD_ABORT: 1838 case COMP_CMD_STOP: 1839 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1840 ret = -ETIME; 1841 break; 1842 case COMP_ENOMEM: 1843 dev_warn(&udev->dev, 1844 "Not enough host controller resources for new device state.\n"); 1845 ret = -ENOMEM; 1846 /* FIXME: can we allocate more resources for the HC? */ 1847 break; 1848 case COMP_BW_ERR: 1849 case COMP_2ND_BW_ERR: 1850 dev_warn(&udev->dev, 1851 "Not enough bandwidth for new device state.\n"); 1852 ret = -ENOSPC; 1853 /* FIXME: can we go back to the old state? */ 1854 break; 1855 case COMP_TRB_ERR: 1856 /* the HCD set up something wrong */ 1857 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1858 "add flag = 1, " 1859 "and endpoint is not disabled.\n"); 1860 ret = -EINVAL; 1861 break; 1862 case COMP_DEV_ERR: 1863 dev_warn(&udev->dev, 1864 "ERROR: Incompatible device for endpoint configure command.\n"); 1865 ret = -ENODEV; 1866 break; 1867 case COMP_SUCCESS: 1868 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1869 "Successful Endpoint Configure command"); 1870 ret = 0; 1871 break; 1872 default: 1873 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1874 *cmd_status); 1875 ret = -EINVAL; 1876 break; 1877 } 1878 return ret; 1879 } 1880 1881 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1882 struct usb_device *udev, u32 *cmd_status) 1883 { 1884 int ret; 1885 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1886 1887 switch (*cmd_status) { 1888 case COMP_CMD_ABORT: 1889 case COMP_CMD_STOP: 1890 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1891 ret = -ETIME; 1892 break; 1893 case COMP_EINVAL: 1894 dev_warn(&udev->dev, 1895 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1896 ret = -EINVAL; 1897 break; 1898 case COMP_EBADSLT: 1899 dev_warn(&udev->dev, 1900 "WARN: slot not enabled for evaluate context command.\n"); 1901 ret = -EINVAL; 1902 break; 1903 case COMP_CTX_STATE: 1904 dev_warn(&udev->dev, 1905 "WARN: invalid context state for evaluate context command.\n"); 1906 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1907 ret = -EINVAL; 1908 break; 1909 case COMP_DEV_ERR: 1910 dev_warn(&udev->dev, 1911 "ERROR: Incompatible device for evaluate context command.\n"); 1912 ret = -ENODEV; 1913 break; 1914 case COMP_MEL_ERR: 1915 /* Max Exit Latency too large error */ 1916 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1917 ret = -EINVAL; 1918 break; 1919 case COMP_SUCCESS: 1920 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1921 "Successful evaluate context command"); 1922 ret = 0; 1923 break; 1924 default: 1925 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1926 *cmd_status); 1927 ret = -EINVAL; 1928 break; 1929 } 1930 return ret; 1931 } 1932 1933 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1934 struct xhci_input_control_ctx *ctrl_ctx) 1935 { 1936 u32 valid_add_flags; 1937 u32 valid_drop_flags; 1938 1939 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1940 * (bit 1). The default control endpoint is added during the Address 1941 * Device command and is never removed until the slot is disabled. 1942 */ 1943 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1944 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1945 1946 /* Use hweight32 to count the number of ones in the add flags, or 1947 * number of endpoints added. Don't count endpoints that are changed 1948 * (both added and dropped). 1949 */ 1950 return hweight32(valid_add_flags) - 1951 hweight32(valid_add_flags & valid_drop_flags); 1952 } 1953 1954 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1955 struct xhci_input_control_ctx *ctrl_ctx) 1956 { 1957 u32 valid_add_flags; 1958 u32 valid_drop_flags; 1959 1960 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1961 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1962 1963 return hweight32(valid_drop_flags) - 1964 hweight32(valid_add_flags & valid_drop_flags); 1965 } 1966 1967 /* 1968 * We need to reserve the new number of endpoints before the configure endpoint 1969 * command completes. We can't subtract the dropped endpoints from the number 1970 * of active endpoints until the command completes because we can oversubscribe 1971 * the host in this case: 1972 * 1973 * - the first configure endpoint command drops more endpoints than it adds 1974 * - a second configure endpoint command that adds more endpoints is queued 1975 * - the first configure endpoint command fails, so the config is unchanged 1976 * - the second command may succeed, even though there isn't enough resources 1977 * 1978 * Must be called with xhci->lock held. 1979 */ 1980 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1981 struct xhci_input_control_ctx *ctrl_ctx) 1982 { 1983 u32 added_eps; 1984 1985 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1986 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1987 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1988 "Not enough ep ctxs: " 1989 "%u active, need to add %u, limit is %u.", 1990 xhci->num_active_eps, added_eps, 1991 xhci->limit_active_eps); 1992 return -ENOMEM; 1993 } 1994 xhci->num_active_eps += added_eps; 1995 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1996 "Adding %u ep ctxs, %u now active.", added_eps, 1997 xhci->num_active_eps); 1998 return 0; 1999 } 2000 2001 /* 2002 * The configure endpoint was failed by the xHC for some other reason, so we 2003 * need to revert the resources that failed configuration would have used. 2004 * 2005 * Must be called with xhci->lock held. 2006 */ 2007 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2008 struct xhci_input_control_ctx *ctrl_ctx) 2009 { 2010 u32 num_failed_eps; 2011 2012 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2013 xhci->num_active_eps -= num_failed_eps; 2014 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2015 "Removing %u failed ep ctxs, %u now active.", 2016 num_failed_eps, 2017 xhci->num_active_eps); 2018 } 2019 2020 /* 2021 * Now that the command has completed, clean up the active endpoint count by 2022 * subtracting out the endpoints that were dropped (but not changed). 2023 * 2024 * Must be called with xhci->lock held. 2025 */ 2026 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2027 struct xhci_input_control_ctx *ctrl_ctx) 2028 { 2029 u32 num_dropped_eps; 2030 2031 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2032 xhci->num_active_eps -= num_dropped_eps; 2033 if (num_dropped_eps) 2034 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2035 "Removing %u dropped ep ctxs, %u now active.", 2036 num_dropped_eps, 2037 xhci->num_active_eps); 2038 } 2039 2040 static unsigned int xhci_get_block_size(struct usb_device *udev) 2041 { 2042 switch (udev->speed) { 2043 case USB_SPEED_LOW: 2044 case USB_SPEED_FULL: 2045 return FS_BLOCK; 2046 case USB_SPEED_HIGH: 2047 return HS_BLOCK; 2048 case USB_SPEED_SUPER: 2049 case USB_SPEED_SUPER_PLUS: 2050 return SS_BLOCK; 2051 case USB_SPEED_UNKNOWN: 2052 case USB_SPEED_WIRELESS: 2053 default: 2054 /* Should never happen */ 2055 return 1; 2056 } 2057 } 2058 2059 static unsigned int 2060 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2061 { 2062 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2063 return LS_OVERHEAD; 2064 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2065 return FS_OVERHEAD; 2066 return HS_OVERHEAD; 2067 } 2068 2069 /* If we are changing a LS/FS device under a HS hub, 2070 * make sure (if we are activating a new TT) that the HS bus has enough 2071 * bandwidth for this new TT. 2072 */ 2073 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2074 struct xhci_virt_device *virt_dev, 2075 int old_active_eps) 2076 { 2077 struct xhci_interval_bw_table *bw_table; 2078 struct xhci_tt_bw_info *tt_info; 2079 2080 /* Find the bandwidth table for the root port this TT is attached to. */ 2081 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2082 tt_info = virt_dev->tt_info; 2083 /* If this TT already had active endpoints, the bandwidth for this TT 2084 * has already been added. Removing all periodic endpoints (and thus 2085 * making the TT enactive) will only decrease the bandwidth used. 2086 */ 2087 if (old_active_eps) 2088 return 0; 2089 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2090 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2091 return -ENOMEM; 2092 return 0; 2093 } 2094 /* Not sure why we would have no new active endpoints... 2095 * 2096 * Maybe because of an Evaluate Context change for a hub update or a 2097 * control endpoint 0 max packet size change? 2098 * FIXME: skip the bandwidth calculation in that case. 2099 */ 2100 return 0; 2101 } 2102 2103 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2104 struct xhci_virt_device *virt_dev) 2105 { 2106 unsigned int bw_reserved; 2107 2108 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2109 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2110 return -ENOMEM; 2111 2112 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2113 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2114 return -ENOMEM; 2115 2116 return 0; 2117 } 2118 2119 /* 2120 * This algorithm is a very conservative estimate of the worst-case scheduling 2121 * scenario for any one interval. The hardware dynamically schedules the 2122 * packets, so we can't tell which microframe could be the limiting factor in 2123 * the bandwidth scheduling. This only takes into account periodic endpoints. 2124 * 2125 * Obviously, we can't solve an NP complete problem to find the minimum worst 2126 * case scenario. Instead, we come up with an estimate that is no less than 2127 * the worst case bandwidth used for any one microframe, but may be an 2128 * over-estimate. 2129 * 2130 * We walk the requirements for each endpoint by interval, starting with the 2131 * smallest interval, and place packets in the schedule where there is only one 2132 * possible way to schedule packets for that interval. In order to simplify 2133 * this algorithm, we record the largest max packet size for each interval, and 2134 * assume all packets will be that size. 2135 * 2136 * For interval 0, we obviously must schedule all packets for each interval. 2137 * The bandwidth for interval 0 is just the amount of data to be transmitted 2138 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2139 * the number of packets). 2140 * 2141 * For interval 1, we have two possible microframes to schedule those packets 2142 * in. For this algorithm, if we can schedule the same number of packets for 2143 * each possible scheduling opportunity (each microframe), we will do so. The 2144 * remaining number of packets will be saved to be transmitted in the gaps in 2145 * the next interval's scheduling sequence. 2146 * 2147 * As we move those remaining packets to be scheduled with interval 2 packets, 2148 * we have to double the number of remaining packets to transmit. This is 2149 * because the intervals are actually powers of 2, and we would be transmitting 2150 * the previous interval's packets twice in this interval. We also have to be 2151 * sure that when we look at the largest max packet size for this interval, we 2152 * also look at the largest max packet size for the remaining packets and take 2153 * the greater of the two. 2154 * 2155 * The algorithm continues to evenly distribute packets in each scheduling 2156 * opportunity, and push the remaining packets out, until we get to the last 2157 * interval. Then those packets and their associated overhead are just added 2158 * to the bandwidth used. 2159 */ 2160 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2161 struct xhci_virt_device *virt_dev, 2162 int old_active_eps) 2163 { 2164 unsigned int bw_reserved; 2165 unsigned int max_bandwidth; 2166 unsigned int bw_used; 2167 unsigned int block_size; 2168 struct xhci_interval_bw_table *bw_table; 2169 unsigned int packet_size = 0; 2170 unsigned int overhead = 0; 2171 unsigned int packets_transmitted = 0; 2172 unsigned int packets_remaining = 0; 2173 unsigned int i; 2174 2175 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2176 return xhci_check_ss_bw(xhci, virt_dev); 2177 2178 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2179 max_bandwidth = HS_BW_LIMIT; 2180 /* Convert percent of bus BW reserved to blocks reserved */ 2181 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2182 } else { 2183 max_bandwidth = FS_BW_LIMIT; 2184 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2185 } 2186 2187 bw_table = virt_dev->bw_table; 2188 /* We need to translate the max packet size and max ESIT payloads into 2189 * the units the hardware uses. 2190 */ 2191 block_size = xhci_get_block_size(virt_dev->udev); 2192 2193 /* If we are manipulating a LS/FS device under a HS hub, double check 2194 * that the HS bus has enough bandwidth if we are activing a new TT. 2195 */ 2196 if (virt_dev->tt_info) { 2197 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2198 "Recalculating BW for rootport %u", 2199 virt_dev->real_port); 2200 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2201 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2202 "newly activated TT.\n"); 2203 return -ENOMEM; 2204 } 2205 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2206 "Recalculating BW for TT slot %u port %u", 2207 virt_dev->tt_info->slot_id, 2208 virt_dev->tt_info->ttport); 2209 } else { 2210 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2211 "Recalculating BW for rootport %u", 2212 virt_dev->real_port); 2213 } 2214 2215 /* Add in how much bandwidth will be used for interval zero, or the 2216 * rounded max ESIT payload + number of packets * largest overhead. 2217 */ 2218 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2219 bw_table->interval_bw[0].num_packets * 2220 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2221 2222 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2223 unsigned int bw_added; 2224 unsigned int largest_mps; 2225 unsigned int interval_overhead; 2226 2227 /* 2228 * How many packets could we transmit in this interval? 2229 * If packets didn't fit in the previous interval, we will need 2230 * to transmit that many packets twice within this interval. 2231 */ 2232 packets_remaining = 2 * packets_remaining + 2233 bw_table->interval_bw[i].num_packets; 2234 2235 /* Find the largest max packet size of this or the previous 2236 * interval. 2237 */ 2238 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2239 largest_mps = 0; 2240 else { 2241 struct xhci_virt_ep *virt_ep; 2242 struct list_head *ep_entry; 2243 2244 ep_entry = bw_table->interval_bw[i].endpoints.next; 2245 virt_ep = list_entry(ep_entry, 2246 struct xhci_virt_ep, bw_endpoint_list); 2247 /* Convert to blocks, rounding up */ 2248 largest_mps = DIV_ROUND_UP( 2249 virt_ep->bw_info.max_packet_size, 2250 block_size); 2251 } 2252 if (largest_mps > packet_size) 2253 packet_size = largest_mps; 2254 2255 /* Use the larger overhead of this or the previous interval. */ 2256 interval_overhead = xhci_get_largest_overhead( 2257 &bw_table->interval_bw[i]); 2258 if (interval_overhead > overhead) 2259 overhead = interval_overhead; 2260 2261 /* How many packets can we evenly distribute across 2262 * (1 << (i + 1)) possible scheduling opportunities? 2263 */ 2264 packets_transmitted = packets_remaining >> (i + 1); 2265 2266 /* Add in the bandwidth used for those scheduled packets */ 2267 bw_added = packets_transmitted * (overhead + packet_size); 2268 2269 /* How many packets do we have remaining to transmit? */ 2270 packets_remaining = packets_remaining % (1 << (i + 1)); 2271 2272 /* What largest max packet size should those packets have? */ 2273 /* If we've transmitted all packets, don't carry over the 2274 * largest packet size. 2275 */ 2276 if (packets_remaining == 0) { 2277 packet_size = 0; 2278 overhead = 0; 2279 } else if (packets_transmitted > 0) { 2280 /* Otherwise if we do have remaining packets, and we've 2281 * scheduled some packets in this interval, take the 2282 * largest max packet size from endpoints with this 2283 * interval. 2284 */ 2285 packet_size = largest_mps; 2286 overhead = interval_overhead; 2287 } 2288 /* Otherwise carry over packet_size and overhead from the last 2289 * time we had a remainder. 2290 */ 2291 bw_used += bw_added; 2292 if (bw_used > max_bandwidth) { 2293 xhci_warn(xhci, "Not enough bandwidth. " 2294 "Proposed: %u, Max: %u\n", 2295 bw_used, max_bandwidth); 2296 return -ENOMEM; 2297 } 2298 } 2299 /* 2300 * Ok, we know we have some packets left over after even-handedly 2301 * scheduling interval 15. We don't know which microframes they will 2302 * fit into, so we over-schedule and say they will be scheduled every 2303 * microframe. 2304 */ 2305 if (packets_remaining > 0) 2306 bw_used += overhead + packet_size; 2307 2308 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2309 unsigned int port_index = virt_dev->real_port - 1; 2310 2311 /* OK, we're manipulating a HS device attached to a 2312 * root port bandwidth domain. Include the number of active TTs 2313 * in the bandwidth used. 2314 */ 2315 bw_used += TT_HS_OVERHEAD * 2316 xhci->rh_bw[port_index].num_active_tts; 2317 } 2318 2319 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2320 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2321 "Available: %u " "percent", 2322 bw_used, max_bandwidth, bw_reserved, 2323 (max_bandwidth - bw_used - bw_reserved) * 100 / 2324 max_bandwidth); 2325 2326 bw_used += bw_reserved; 2327 if (bw_used > max_bandwidth) { 2328 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2329 bw_used, max_bandwidth); 2330 return -ENOMEM; 2331 } 2332 2333 bw_table->bw_used = bw_used; 2334 return 0; 2335 } 2336 2337 static bool xhci_is_async_ep(unsigned int ep_type) 2338 { 2339 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2340 ep_type != ISOC_IN_EP && 2341 ep_type != INT_IN_EP); 2342 } 2343 2344 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2345 { 2346 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2347 } 2348 2349 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2350 { 2351 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2352 2353 if (ep_bw->ep_interval == 0) 2354 return SS_OVERHEAD_BURST + 2355 (ep_bw->mult * ep_bw->num_packets * 2356 (SS_OVERHEAD + mps)); 2357 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2358 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2359 1 << ep_bw->ep_interval); 2360 2361 } 2362 2363 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2364 struct xhci_bw_info *ep_bw, 2365 struct xhci_interval_bw_table *bw_table, 2366 struct usb_device *udev, 2367 struct xhci_virt_ep *virt_ep, 2368 struct xhci_tt_bw_info *tt_info) 2369 { 2370 struct xhci_interval_bw *interval_bw; 2371 int normalized_interval; 2372 2373 if (xhci_is_async_ep(ep_bw->type)) 2374 return; 2375 2376 if (udev->speed >= USB_SPEED_SUPER) { 2377 if (xhci_is_sync_in_ep(ep_bw->type)) 2378 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2379 xhci_get_ss_bw_consumed(ep_bw); 2380 else 2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2382 xhci_get_ss_bw_consumed(ep_bw); 2383 return; 2384 } 2385 2386 /* SuperSpeed endpoints never get added to intervals in the table, so 2387 * this check is only valid for HS/FS/LS devices. 2388 */ 2389 if (list_empty(&virt_ep->bw_endpoint_list)) 2390 return; 2391 /* For LS/FS devices, we need to translate the interval expressed in 2392 * microframes to frames. 2393 */ 2394 if (udev->speed == USB_SPEED_HIGH) 2395 normalized_interval = ep_bw->ep_interval; 2396 else 2397 normalized_interval = ep_bw->ep_interval - 3; 2398 2399 if (normalized_interval == 0) 2400 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2401 interval_bw = &bw_table->interval_bw[normalized_interval]; 2402 interval_bw->num_packets -= ep_bw->num_packets; 2403 switch (udev->speed) { 2404 case USB_SPEED_LOW: 2405 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2406 break; 2407 case USB_SPEED_FULL: 2408 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2409 break; 2410 case USB_SPEED_HIGH: 2411 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2412 break; 2413 case USB_SPEED_SUPER: 2414 case USB_SPEED_SUPER_PLUS: 2415 case USB_SPEED_UNKNOWN: 2416 case USB_SPEED_WIRELESS: 2417 /* Should never happen because only LS/FS/HS endpoints will get 2418 * added to the endpoint list. 2419 */ 2420 return; 2421 } 2422 if (tt_info) 2423 tt_info->active_eps -= 1; 2424 list_del_init(&virt_ep->bw_endpoint_list); 2425 } 2426 2427 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2428 struct xhci_bw_info *ep_bw, 2429 struct xhci_interval_bw_table *bw_table, 2430 struct usb_device *udev, 2431 struct xhci_virt_ep *virt_ep, 2432 struct xhci_tt_bw_info *tt_info) 2433 { 2434 struct xhci_interval_bw *interval_bw; 2435 struct xhci_virt_ep *smaller_ep; 2436 int normalized_interval; 2437 2438 if (xhci_is_async_ep(ep_bw->type)) 2439 return; 2440 2441 if (udev->speed == USB_SPEED_SUPER) { 2442 if (xhci_is_sync_in_ep(ep_bw->type)) 2443 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2444 xhci_get_ss_bw_consumed(ep_bw); 2445 else 2446 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2447 xhci_get_ss_bw_consumed(ep_bw); 2448 return; 2449 } 2450 2451 /* For LS/FS devices, we need to translate the interval expressed in 2452 * microframes to frames. 2453 */ 2454 if (udev->speed == USB_SPEED_HIGH) 2455 normalized_interval = ep_bw->ep_interval; 2456 else 2457 normalized_interval = ep_bw->ep_interval - 3; 2458 2459 if (normalized_interval == 0) 2460 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2461 interval_bw = &bw_table->interval_bw[normalized_interval]; 2462 interval_bw->num_packets += ep_bw->num_packets; 2463 switch (udev->speed) { 2464 case USB_SPEED_LOW: 2465 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2466 break; 2467 case USB_SPEED_FULL: 2468 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2469 break; 2470 case USB_SPEED_HIGH: 2471 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2472 break; 2473 case USB_SPEED_SUPER: 2474 case USB_SPEED_SUPER_PLUS: 2475 case USB_SPEED_UNKNOWN: 2476 case USB_SPEED_WIRELESS: 2477 /* Should never happen because only LS/FS/HS endpoints will get 2478 * added to the endpoint list. 2479 */ 2480 return; 2481 } 2482 2483 if (tt_info) 2484 tt_info->active_eps += 1; 2485 /* Insert the endpoint into the list, largest max packet size first. */ 2486 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2487 bw_endpoint_list) { 2488 if (ep_bw->max_packet_size >= 2489 smaller_ep->bw_info.max_packet_size) { 2490 /* Add the new ep before the smaller endpoint */ 2491 list_add_tail(&virt_ep->bw_endpoint_list, 2492 &smaller_ep->bw_endpoint_list); 2493 return; 2494 } 2495 } 2496 /* Add the new endpoint at the end of the list. */ 2497 list_add_tail(&virt_ep->bw_endpoint_list, 2498 &interval_bw->endpoints); 2499 } 2500 2501 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2502 struct xhci_virt_device *virt_dev, 2503 int old_active_eps) 2504 { 2505 struct xhci_root_port_bw_info *rh_bw_info; 2506 if (!virt_dev->tt_info) 2507 return; 2508 2509 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2510 if (old_active_eps == 0 && 2511 virt_dev->tt_info->active_eps != 0) { 2512 rh_bw_info->num_active_tts += 1; 2513 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2514 } else if (old_active_eps != 0 && 2515 virt_dev->tt_info->active_eps == 0) { 2516 rh_bw_info->num_active_tts -= 1; 2517 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2518 } 2519 } 2520 2521 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2522 struct xhci_virt_device *virt_dev, 2523 struct xhci_container_ctx *in_ctx) 2524 { 2525 struct xhci_bw_info ep_bw_info[31]; 2526 int i; 2527 struct xhci_input_control_ctx *ctrl_ctx; 2528 int old_active_eps = 0; 2529 2530 if (virt_dev->tt_info) 2531 old_active_eps = virt_dev->tt_info->active_eps; 2532 2533 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2534 if (!ctrl_ctx) { 2535 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2536 __func__); 2537 return -ENOMEM; 2538 } 2539 2540 for (i = 0; i < 31; i++) { 2541 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2542 continue; 2543 2544 /* Make a copy of the BW info in case we need to revert this */ 2545 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2546 sizeof(ep_bw_info[i])); 2547 /* Drop the endpoint from the interval table if the endpoint is 2548 * being dropped or changed. 2549 */ 2550 if (EP_IS_DROPPED(ctrl_ctx, i)) 2551 xhci_drop_ep_from_interval_table(xhci, 2552 &virt_dev->eps[i].bw_info, 2553 virt_dev->bw_table, 2554 virt_dev->udev, 2555 &virt_dev->eps[i], 2556 virt_dev->tt_info); 2557 } 2558 /* Overwrite the information stored in the endpoints' bw_info */ 2559 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2560 for (i = 0; i < 31; i++) { 2561 /* Add any changed or added endpoints to the interval table */ 2562 if (EP_IS_ADDED(ctrl_ctx, i)) 2563 xhci_add_ep_to_interval_table(xhci, 2564 &virt_dev->eps[i].bw_info, 2565 virt_dev->bw_table, 2566 virt_dev->udev, 2567 &virt_dev->eps[i], 2568 virt_dev->tt_info); 2569 } 2570 2571 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2572 /* Ok, this fits in the bandwidth we have. 2573 * Update the number of active TTs. 2574 */ 2575 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2576 return 0; 2577 } 2578 2579 /* We don't have enough bandwidth for this, revert the stored info. */ 2580 for (i = 0; i < 31; i++) { 2581 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2582 continue; 2583 2584 /* Drop the new copies of any added or changed endpoints from 2585 * the interval table. 2586 */ 2587 if (EP_IS_ADDED(ctrl_ctx, i)) { 2588 xhci_drop_ep_from_interval_table(xhci, 2589 &virt_dev->eps[i].bw_info, 2590 virt_dev->bw_table, 2591 virt_dev->udev, 2592 &virt_dev->eps[i], 2593 virt_dev->tt_info); 2594 } 2595 /* Revert the endpoint back to its old information */ 2596 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2597 sizeof(ep_bw_info[i])); 2598 /* Add any changed or dropped endpoints back into the table */ 2599 if (EP_IS_DROPPED(ctrl_ctx, i)) 2600 xhci_add_ep_to_interval_table(xhci, 2601 &virt_dev->eps[i].bw_info, 2602 virt_dev->bw_table, 2603 virt_dev->udev, 2604 &virt_dev->eps[i], 2605 virt_dev->tt_info); 2606 } 2607 return -ENOMEM; 2608 } 2609 2610 2611 /* Issue a configure endpoint command or evaluate context command 2612 * and wait for it to finish. 2613 */ 2614 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2615 struct usb_device *udev, 2616 struct xhci_command *command, 2617 bool ctx_change, bool must_succeed) 2618 { 2619 int ret; 2620 unsigned long flags; 2621 struct xhci_input_control_ctx *ctrl_ctx; 2622 struct xhci_virt_device *virt_dev; 2623 2624 if (!command) 2625 return -EINVAL; 2626 2627 spin_lock_irqsave(&xhci->lock, flags); 2628 virt_dev = xhci->devs[udev->slot_id]; 2629 2630 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2631 if (!ctrl_ctx) { 2632 spin_unlock_irqrestore(&xhci->lock, flags); 2633 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2634 __func__); 2635 return -ENOMEM; 2636 } 2637 2638 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2639 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2640 spin_unlock_irqrestore(&xhci->lock, flags); 2641 xhci_warn(xhci, "Not enough host resources, " 2642 "active endpoint contexts = %u\n", 2643 xhci->num_active_eps); 2644 return -ENOMEM; 2645 } 2646 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2647 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2648 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2649 xhci_free_host_resources(xhci, ctrl_ctx); 2650 spin_unlock_irqrestore(&xhci->lock, flags); 2651 xhci_warn(xhci, "Not enough bandwidth\n"); 2652 return -ENOMEM; 2653 } 2654 2655 if (!ctx_change) 2656 ret = xhci_queue_configure_endpoint(xhci, command, 2657 command->in_ctx->dma, 2658 udev->slot_id, must_succeed); 2659 else 2660 ret = xhci_queue_evaluate_context(xhci, command, 2661 command->in_ctx->dma, 2662 udev->slot_id, must_succeed); 2663 if (ret < 0) { 2664 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2665 xhci_free_host_resources(xhci, ctrl_ctx); 2666 spin_unlock_irqrestore(&xhci->lock, flags); 2667 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2668 "FIXME allocate a new ring segment"); 2669 return -ENOMEM; 2670 } 2671 xhci_ring_cmd_db(xhci); 2672 spin_unlock_irqrestore(&xhci->lock, flags); 2673 2674 /* Wait for the configure endpoint command to complete */ 2675 wait_for_completion(command->completion); 2676 2677 if (!ctx_change) 2678 ret = xhci_configure_endpoint_result(xhci, udev, 2679 &command->status); 2680 else 2681 ret = xhci_evaluate_context_result(xhci, udev, 2682 &command->status); 2683 2684 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2685 spin_lock_irqsave(&xhci->lock, flags); 2686 /* If the command failed, remove the reserved resources. 2687 * Otherwise, clean up the estimate to include dropped eps. 2688 */ 2689 if (ret) 2690 xhci_free_host_resources(xhci, ctrl_ctx); 2691 else 2692 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2693 spin_unlock_irqrestore(&xhci->lock, flags); 2694 } 2695 return ret; 2696 } 2697 2698 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2699 struct xhci_virt_device *vdev, int i) 2700 { 2701 struct xhci_virt_ep *ep = &vdev->eps[i]; 2702 2703 if (ep->ep_state & EP_HAS_STREAMS) { 2704 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2705 xhci_get_endpoint_address(i)); 2706 xhci_free_stream_info(xhci, ep->stream_info); 2707 ep->stream_info = NULL; 2708 ep->ep_state &= ~EP_HAS_STREAMS; 2709 } 2710 } 2711 2712 /* Called after one or more calls to xhci_add_endpoint() or 2713 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2714 * to call xhci_reset_bandwidth(). 2715 * 2716 * Since we are in the middle of changing either configuration or 2717 * installing a new alt setting, the USB core won't allow URBs to be 2718 * enqueued for any endpoint on the old config or interface. Nothing 2719 * else should be touching the xhci->devs[slot_id] structure, so we 2720 * don't need to take the xhci->lock for manipulating that. 2721 */ 2722 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2723 { 2724 int i; 2725 int ret = 0; 2726 struct xhci_hcd *xhci; 2727 struct xhci_virt_device *virt_dev; 2728 struct xhci_input_control_ctx *ctrl_ctx; 2729 struct xhci_slot_ctx *slot_ctx; 2730 struct xhci_command *command; 2731 2732 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2733 if (ret <= 0) 2734 return ret; 2735 xhci = hcd_to_xhci(hcd); 2736 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2737 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2738 return -ENODEV; 2739 2740 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2741 virt_dev = xhci->devs[udev->slot_id]; 2742 2743 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2744 if (!command) 2745 return -ENOMEM; 2746 2747 command->in_ctx = virt_dev->in_ctx; 2748 2749 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2750 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2751 if (!ctrl_ctx) { 2752 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2753 __func__); 2754 ret = -ENOMEM; 2755 goto command_cleanup; 2756 } 2757 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2758 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2759 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2760 2761 /* Don't issue the command if there's no endpoints to update. */ 2762 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2763 ctrl_ctx->drop_flags == 0) { 2764 ret = 0; 2765 goto command_cleanup; 2766 } 2767 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2768 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2769 for (i = 31; i >= 1; i--) { 2770 __le32 le32 = cpu_to_le32(BIT(i)); 2771 2772 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2773 || (ctrl_ctx->add_flags & le32) || i == 1) { 2774 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2775 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2776 break; 2777 } 2778 } 2779 xhci_dbg(xhci, "New Input Control Context:\n"); 2780 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2781 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2782 2783 ret = xhci_configure_endpoint(xhci, udev, command, 2784 false, false); 2785 if (ret) 2786 /* Callee should call reset_bandwidth() */ 2787 goto command_cleanup; 2788 2789 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2790 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2791 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2792 2793 /* Free any rings that were dropped, but not changed. */ 2794 for (i = 1; i < 31; ++i) { 2795 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2796 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2797 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2798 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2799 } 2800 } 2801 xhci_zero_in_ctx(xhci, virt_dev); 2802 /* 2803 * Install any rings for completely new endpoints or changed endpoints, 2804 * and free or cache any old rings from changed endpoints. 2805 */ 2806 for (i = 1; i < 31; ++i) { 2807 if (!virt_dev->eps[i].new_ring) 2808 continue; 2809 /* Only cache or free the old ring if it exists. 2810 * It may not if this is the first add of an endpoint. 2811 */ 2812 if (virt_dev->eps[i].ring) { 2813 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2814 } 2815 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2816 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2817 virt_dev->eps[i].new_ring = NULL; 2818 } 2819 command_cleanup: 2820 kfree(command->completion); 2821 kfree(command); 2822 2823 return ret; 2824 } 2825 2826 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2827 { 2828 struct xhci_hcd *xhci; 2829 struct xhci_virt_device *virt_dev; 2830 int i, ret; 2831 2832 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2833 if (ret <= 0) 2834 return; 2835 xhci = hcd_to_xhci(hcd); 2836 2837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2838 virt_dev = xhci->devs[udev->slot_id]; 2839 /* Free any rings allocated for added endpoints */ 2840 for (i = 0; i < 31; ++i) { 2841 if (virt_dev->eps[i].new_ring) { 2842 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2843 virt_dev->eps[i].new_ring = NULL; 2844 } 2845 } 2846 xhci_zero_in_ctx(xhci, virt_dev); 2847 } 2848 2849 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2850 struct xhci_container_ctx *in_ctx, 2851 struct xhci_container_ctx *out_ctx, 2852 struct xhci_input_control_ctx *ctrl_ctx, 2853 u32 add_flags, u32 drop_flags) 2854 { 2855 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2856 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2857 xhci_slot_copy(xhci, in_ctx, out_ctx); 2858 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2859 2860 xhci_dbg(xhci, "Input Context:\n"); 2861 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2862 } 2863 2864 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2865 unsigned int slot_id, unsigned int ep_index, 2866 struct xhci_dequeue_state *deq_state) 2867 { 2868 struct xhci_input_control_ctx *ctrl_ctx; 2869 struct xhci_container_ctx *in_ctx; 2870 struct xhci_ep_ctx *ep_ctx; 2871 u32 added_ctxs; 2872 dma_addr_t addr; 2873 2874 in_ctx = xhci->devs[slot_id]->in_ctx; 2875 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2876 if (!ctrl_ctx) { 2877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2878 __func__); 2879 return; 2880 } 2881 2882 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2883 xhci->devs[slot_id]->out_ctx, ep_index); 2884 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2885 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2886 deq_state->new_deq_ptr); 2887 if (addr == 0) { 2888 xhci_warn(xhci, "WARN Cannot submit config ep after " 2889 "reset ep command\n"); 2890 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2891 deq_state->new_deq_seg, 2892 deq_state->new_deq_ptr); 2893 return; 2894 } 2895 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2896 2897 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2898 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2899 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2900 added_ctxs, added_ctxs); 2901 } 2902 2903 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2904 unsigned int ep_index, struct xhci_td *td) 2905 { 2906 struct xhci_dequeue_state deq_state; 2907 struct xhci_virt_ep *ep; 2908 struct usb_device *udev = td->urb->dev; 2909 2910 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2911 "Cleaning up stalled endpoint ring"); 2912 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2913 /* We need to move the HW's dequeue pointer past this TD, 2914 * or it will attempt to resend it on the next doorbell ring. 2915 */ 2916 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2917 ep_index, ep->stopped_stream, td, &deq_state); 2918 2919 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2920 return; 2921 2922 /* HW with the reset endpoint quirk will use the saved dequeue state to 2923 * issue a configure endpoint command later. 2924 */ 2925 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2926 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2927 "Queueing new dequeue state"); 2928 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2929 ep_index, ep->stopped_stream, &deq_state); 2930 } else { 2931 /* Better hope no one uses the input context between now and the 2932 * reset endpoint completion! 2933 * XXX: No idea how this hardware will react when stream rings 2934 * are enabled. 2935 */ 2936 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2937 "Setting up input context for " 2938 "configure endpoint command"); 2939 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2940 ep_index, &deq_state); 2941 } 2942 } 2943 2944 /* Called when clearing halted device. The core should have sent the control 2945 * message to clear the device halt condition. The host side of the halt should 2946 * already be cleared with a reset endpoint command issued when the STALL tx 2947 * event was received. 2948 * 2949 * Context: in_interrupt 2950 */ 2951 2952 void xhci_endpoint_reset(struct usb_hcd *hcd, 2953 struct usb_host_endpoint *ep) 2954 { 2955 struct xhci_hcd *xhci; 2956 2957 xhci = hcd_to_xhci(hcd); 2958 2959 /* 2960 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2961 * The Reset Endpoint Command may only be issued to endpoints in the 2962 * Halted state. If software wishes reset the Data Toggle or Sequence 2963 * Number of an endpoint that isn't in the Halted state, then software 2964 * may issue a Configure Endpoint Command with the Drop and Add bits set 2965 * for the target endpoint. that is in the Stopped state. 2966 */ 2967 2968 /* For now just print debug to follow the situation */ 2969 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2970 ep->desc.bEndpointAddress); 2971 } 2972 2973 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2974 struct usb_device *udev, struct usb_host_endpoint *ep, 2975 unsigned int slot_id) 2976 { 2977 int ret; 2978 unsigned int ep_index; 2979 unsigned int ep_state; 2980 2981 if (!ep) 2982 return -EINVAL; 2983 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2984 if (ret <= 0) 2985 return -EINVAL; 2986 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2987 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2988 " descriptor for ep 0x%x does not support streams\n", 2989 ep->desc.bEndpointAddress); 2990 return -EINVAL; 2991 } 2992 2993 ep_index = xhci_get_endpoint_index(&ep->desc); 2994 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2995 if (ep_state & EP_HAS_STREAMS || 2996 ep_state & EP_GETTING_STREAMS) { 2997 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2998 "already has streams set up.\n", 2999 ep->desc.bEndpointAddress); 3000 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3001 "dynamic stream context array reallocation.\n"); 3002 return -EINVAL; 3003 } 3004 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3005 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3006 "endpoint 0x%x; URBs are pending.\n", 3007 ep->desc.bEndpointAddress); 3008 return -EINVAL; 3009 } 3010 return 0; 3011 } 3012 3013 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3014 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3015 { 3016 unsigned int max_streams; 3017 3018 /* The stream context array size must be a power of two */ 3019 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3020 /* 3021 * Find out how many primary stream array entries the host controller 3022 * supports. Later we may use secondary stream arrays (similar to 2nd 3023 * level page entries), but that's an optional feature for xHCI host 3024 * controllers. xHCs must support at least 4 stream IDs. 3025 */ 3026 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3027 if (*num_stream_ctxs > max_streams) { 3028 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3029 max_streams); 3030 *num_stream_ctxs = max_streams; 3031 *num_streams = max_streams; 3032 } 3033 } 3034 3035 /* Returns an error code if one of the endpoint already has streams. 3036 * This does not change any data structures, it only checks and gathers 3037 * information. 3038 */ 3039 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3040 struct usb_device *udev, 3041 struct usb_host_endpoint **eps, unsigned int num_eps, 3042 unsigned int *num_streams, u32 *changed_ep_bitmask) 3043 { 3044 unsigned int max_streams; 3045 unsigned int endpoint_flag; 3046 int i; 3047 int ret; 3048 3049 for (i = 0; i < num_eps; i++) { 3050 ret = xhci_check_streams_endpoint(xhci, udev, 3051 eps[i], udev->slot_id); 3052 if (ret < 0) 3053 return ret; 3054 3055 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3056 if (max_streams < (*num_streams - 1)) { 3057 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3058 eps[i]->desc.bEndpointAddress, 3059 max_streams); 3060 *num_streams = max_streams+1; 3061 } 3062 3063 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3064 if (*changed_ep_bitmask & endpoint_flag) 3065 return -EINVAL; 3066 *changed_ep_bitmask |= endpoint_flag; 3067 } 3068 return 0; 3069 } 3070 3071 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3072 struct usb_device *udev, 3073 struct usb_host_endpoint **eps, unsigned int num_eps) 3074 { 3075 u32 changed_ep_bitmask = 0; 3076 unsigned int slot_id; 3077 unsigned int ep_index; 3078 unsigned int ep_state; 3079 int i; 3080 3081 slot_id = udev->slot_id; 3082 if (!xhci->devs[slot_id]) 3083 return 0; 3084 3085 for (i = 0; i < num_eps; i++) { 3086 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3087 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3088 /* Are streams already being freed for the endpoint? */ 3089 if (ep_state & EP_GETTING_NO_STREAMS) { 3090 xhci_warn(xhci, "WARN Can't disable streams for " 3091 "endpoint 0x%x, " 3092 "streams are being disabled already\n", 3093 eps[i]->desc.bEndpointAddress); 3094 return 0; 3095 } 3096 /* Are there actually any streams to free? */ 3097 if (!(ep_state & EP_HAS_STREAMS) && 3098 !(ep_state & EP_GETTING_STREAMS)) { 3099 xhci_warn(xhci, "WARN Can't disable streams for " 3100 "endpoint 0x%x, " 3101 "streams are already disabled!\n", 3102 eps[i]->desc.bEndpointAddress); 3103 xhci_warn(xhci, "WARN xhci_free_streams() called " 3104 "with non-streams endpoint\n"); 3105 return 0; 3106 } 3107 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3108 } 3109 return changed_ep_bitmask; 3110 } 3111 3112 /* 3113 * The USB device drivers use this function (through the HCD interface in USB 3114 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3115 * coordinate mass storage command queueing across multiple endpoints (basically 3116 * a stream ID == a task ID). 3117 * 3118 * Setting up streams involves allocating the same size stream context array 3119 * for each endpoint and issuing a configure endpoint command for all endpoints. 3120 * 3121 * Don't allow the call to succeed if one endpoint only supports one stream 3122 * (which means it doesn't support streams at all). 3123 * 3124 * Drivers may get less stream IDs than they asked for, if the host controller 3125 * hardware or endpoints claim they can't support the number of requested 3126 * stream IDs. 3127 */ 3128 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3129 struct usb_host_endpoint **eps, unsigned int num_eps, 3130 unsigned int num_streams, gfp_t mem_flags) 3131 { 3132 int i, ret; 3133 struct xhci_hcd *xhci; 3134 struct xhci_virt_device *vdev; 3135 struct xhci_command *config_cmd; 3136 struct xhci_input_control_ctx *ctrl_ctx; 3137 unsigned int ep_index; 3138 unsigned int num_stream_ctxs; 3139 unsigned long flags; 3140 u32 changed_ep_bitmask = 0; 3141 3142 if (!eps) 3143 return -EINVAL; 3144 3145 /* Add one to the number of streams requested to account for 3146 * stream 0 that is reserved for xHCI usage. 3147 */ 3148 num_streams += 1; 3149 xhci = hcd_to_xhci(hcd); 3150 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3151 num_streams); 3152 3153 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3154 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3155 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3156 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3157 return -ENOSYS; 3158 } 3159 3160 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3161 if (!config_cmd) { 3162 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3163 return -ENOMEM; 3164 } 3165 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3166 if (!ctrl_ctx) { 3167 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3168 __func__); 3169 xhci_free_command(xhci, config_cmd); 3170 return -ENOMEM; 3171 } 3172 3173 /* Check to make sure all endpoints are not already configured for 3174 * streams. While we're at it, find the maximum number of streams that 3175 * all the endpoints will support and check for duplicate endpoints. 3176 */ 3177 spin_lock_irqsave(&xhci->lock, flags); 3178 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3179 num_eps, &num_streams, &changed_ep_bitmask); 3180 if (ret < 0) { 3181 xhci_free_command(xhci, config_cmd); 3182 spin_unlock_irqrestore(&xhci->lock, flags); 3183 return ret; 3184 } 3185 if (num_streams <= 1) { 3186 xhci_warn(xhci, "WARN: endpoints can't handle " 3187 "more than one stream.\n"); 3188 xhci_free_command(xhci, config_cmd); 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 return -EINVAL; 3191 } 3192 vdev = xhci->devs[udev->slot_id]; 3193 /* Mark each endpoint as being in transition, so 3194 * xhci_urb_enqueue() will reject all URBs. 3195 */ 3196 for (i = 0; i < num_eps; i++) { 3197 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3198 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3199 } 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 3202 /* Setup internal data structures and allocate HW data structures for 3203 * streams (but don't install the HW structures in the input context 3204 * until we're sure all memory allocation succeeded). 3205 */ 3206 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3207 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3208 num_stream_ctxs, num_streams); 3209 3210 for (i = 0; i < num_eps; i++) { 3211 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3212 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3213 num_stream_ctxs, 3214 num_streams, mem_flags); 3215 if (!vdev->eps[ep_index].stream_info) 3216 goto cleanup; 3217 /* Set maxPstreams in endpoint context and update deq ptr to 3218 * point to stream context array. FIXME 3219 */ 3220 } 3221 3222 /* Set up the input context for a configure endpoint command. */ 3223 for (i = 0; i < num_eps; i++) { 3224 struct xhci_ep_ctx *ep_ctx; 3225 3226 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3227 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3228 3229 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3230 vdev->out_ctx, ep_index); 3231 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3232 vdev->eps[ep_index].stream_info); 3233 } 3234 /* Tell the HW to drop its old copy of the endpoint context info 3235 * and add the updated copy from the input context. 3236 */ 3237 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3238 vdev->out_ctx, ctrl_ctx, 3239 changed_ep_bitmask, changed_ep_bitmask); 3240 3241 /* Issue and wait for the configure endpoint command */ 3242 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3243 false, false); 3244 3245 /* xHC rejected the configure endpoint command for some reason, so we 3246 * leave the old ring intact and free our internal streams data 3247 * structure. 3248 */ 3249 if (ret < 0) 3250 goto cleanup; 3251 3252 spin_lock_irqsave(&xhci->lock, flags); 3253 for (i = 0; i < num_eps; i++) { 3254 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3255 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3256 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3257 udev->slot_id, ep_index); 3258 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3259 } 3260 xhci_free_command(xhci, config_cmd); 3261 spin_unlock_irqrestore(&xhci->lock, flags); 3262 3263 /* Subtract 1 for stream 0, which drivers can't use */ 3264 return num_streams - 1; 3265 3266 cleanup: 3267 /* If it didn't work, free the streams! */ 3268 for (i = 0; i < num_eps; i++) { 3269 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3270 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3271 vdev->eps[ep_index].stream_info = NULL; 3272 /* FIXME Unset maxPstreams in endpoint context and 3273 * update deq ptr to point to normal string ring. 3274 */ 3275 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3276 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3277 xhci_endpoint_zero(xhci, vdev, eps[i]); 3278 } 3279 xhci_free_command(xhci, config_cmd); 3280 return -ENOMEM; 3281 } 3282 3283 /* Transition the endpoint from using streams to being a "normal" endpoint 3284 * without streams. 3285 * 3286 * Modify the endpoint context state, submit a configure endpoint command, 3287 * and free all endpoint rings for streams if that completes successfully. 3288 */ 3289 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3290 struct usb_host_endpoint **eps, unsigned int num_eps, 3291 gfp_t mem_flags) 3292 { 3293 int i, ret; 3294 struct xhci_hcd *xhci; 3295 struct xhci_virt_device *vdev; 3296 struct xhci_command *command; 3297 struct xhci_input_control_ctx *ctrl_ctx; 3298 unsigned int ep_index; 3299 unsigned long flags; 3300 u32 changed_ep_bitmask; 3301 3302 xhci = hcd_to_xhci(hcd); 3303 vdev = xhci->devs[udev->slot_id]; 3304 3305 /* Set up a configure endpoint command to remove the streams rings */ 3306 spin_lock_irqsave(&xhci->lock, flags); 3307 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3308 udev, eps, num_eps); 3309 if (changed_ep_bitmask == 0) { 3310 spin_unlock_irqrestore(&xhci->lock, flags); 3311 return -EINVAL; 3312 } 3313 3314 /* Use the xhci_command structure from the first endpoint. We may have 3315 * allocated too many, but the driver may call xhci_free_streams() for 3316 * each endpoint it grouped into one call to xhci_alloc_streams(). 3317 */ 3318 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3319 command = vdev->eps[ep_index].stream_info->free_streams_command; 3320 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3321 if (!ctrl_ctx) { 3322 spin_unlock_irqrestore(&xhci->lock, flags); 3323 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3324 __func__); 3325 return -EINVAL; 3326 } 3327 3328 for (i = 0; i < num_eps; i++) { 3329 struct xhci_ep_ctx *ep_ctx; 3330 3331 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3332 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3333 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3334 EP_GETTING_NO_STREAMS; 3335 3336 xhci_endpoint_copy(xhci, command->in_ctx, 3337 vdev->out_ctx, ep_index); 3338 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3339 &vdev->eps[ep_index]); 3340 } 3341 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3342 vdev->out_ctx, ctrl_ctx, 3343 changed_ep_bitmask, changed_ep_bitmask); 3344 spin_unlock_irqrestore(&xhci->lock, flags); 3345 3346 /* Issue and wait for the configure endpoint command, 3347 * which must succeed. 3348 */ 3349 ret = xhci_configure_endpoint(xhci, udev, command, 3350 false, true); 3351 3352 /* xHC rejected the configure endpoint command for some reason, so we 3353 * leave the streams rings intact. 3354 */ 3355 if (ret < 0) 3356 return ret; 3357 3358 spin_lock_irqsave(&xhci->lock, flags); 3359 for (i = 0; i < num_eps; i++) { 3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3361 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3362 vdev->eps[ep_index].stream_info = NULL; 3363 /* FIXME Unset maxPstreams in endpoint context and 3364 * update deq ptr to point to normal string ring. 3365 */ 3366 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3367 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3368 } 3369 spin_unlock_irqrestore(&xhci->lock, flags); 3370 3371 return 0; 3372 } 3373 3374 /* 3375 * Deletes endpoint resources for endpoints that were active before a Reset 3376 * Device command, or a Disable Slot command. The Reset Device command leaves 3377 * the control endpoint intact, whereas the Disable Slot command deletes it. 3378 * 3379 * Must be called with xhci->lock held. 3380 */ 3381 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3382 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3383 { 3384 int i; 3385 unsigned int num_dropped_eps = 0; 3386 unsigned int drop_flags = 0; 3387 3388 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3389 if (virt_dev->eps[i].ring) { 3390 drop_flags |= 1 << i; 3391 num_dropped_eps++; 3392 } 3393 } 3394 xhci->num_active_eps -= num_dropped_eps; 3395 if (num_dropped_eps) 3396 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3397 "Dropped %u ep ctxs, flags = 0x%x, " 3398 "%u now active.", 3399 num_dropped_eps, drop_flags, 3400 xhci->num_active_eps); 3401 } 3402 3403 /* 3404 * This submits a Reset Device Command, which will set the device state to 0, 3405 * set the device address to 0, and disable all the endpoints except the default 3406 * control endpoint. The USB core should come back and call 3407 * xhci_address_device(), and then re-set up the configuration. If this is 3408 * called because of a usb_reset_and_verify_device(), then the old alternate 3409 * settings will be re-installed through the normal bandwidth allocation 3410 * functions. 3411 * 3412 * Wait for the Reset Device command to finish. Remove all structures 3413 * associated with the endpoints that were disabled. Clear the input device 3414 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3415 * 3416 * If the virt_dev to be reset does not exist or does not match the udev, 3417 * it means the device is lost, possibly due to the xHC restore error and 3418 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3419 * re-allocate the device. 3420 */ 3421 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3422 { 3423 int ret, i; 3424 unsigned long flags; 3425 struct xhci_hcd *xhci; 3426 unsigned int slot_id; 3427 struct xhci_virt_device *virt_dev; 3428 struct xhci_command *reset_device_cmd; 3429 int last_freed_endpoint; 3430 struct xhci_slot_ctx *slot_ctx; 3431 int old_active_eps = 0; 3432 3433 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3434 if (ret <= 0) 3435 return ret; 3436 xhci = hcd_to_xhci(hcd); 3437 slot_id = udev->slot_id; 3438 virt_dev = xhci->devs[slot_id]; 3439 if (!virt_dev) { 3440 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3441 "not exist. Re-allocate the device\n", slot_id); 3442 ret = xhci_alloc_dev(hcd, udev); 3443 if (ret == 1) 3444 return 0; 3445 else 3446 return -EINVAL; 3447 } 3448 3449 if (virt_dev->tt_info) 3450 old_active_eps = virt_dev->tt_info->active_eps; 3451 3452 if (virt_dev->udev != udev) { 3453 /* If the virt_dev and the udev does not match, this virt_dev 3454 * may belong to another udev. 3455 * Re-allocate the device. 3456 */ 3457 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3458 "not match the udev. Re-allocate the device\n", 3459 slot_id); 3460 ret = xhci_alloc_dev(hcd, udev); 3461 if (ret == 1) 3462 return 0; 3463 else 3464 return -EINVAL; 3465 } 3466 3467 /* If device is not setup, there is no point in resetting it */ 3468 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3469 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3470 SLOT_STATE_DISABLED) 3471 return 0; 3472 3473 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3474 /* Allocate the command structure that holds the struct completion. 3475 * Assume we're in process context, since the normal device reset 3476 * process has to wait for the device anyway. Storage devices are 3477 * reset as part of error handling, so use GFP_NOIO instead of 3478 * GFP_KERNEL. 3479 */ 3480 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3481 if (!reset_device_cmd) { 3482 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3483 return -ENOMEM; 3484 } 3485 3486 /* Attempt to submit the Reset Device command to the command ring */ 3487 spin_lock_irqsave(&xhci->lock, flags); 3488 3489 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3490 if (ret) { 3491 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3492 spin_unlock_irqrestore(&xhci->lock, flags); 3493 goto command_cleanup; 3494 } 3495 xhci_ring_cmd_db(xhci); 3496 spin_unlock_irqrestore(&xhci->lock, flags); 3497 3498 /* Wait for the Reset Device command to finish */ 3499 wait_for_completion(reset_device_cmd->completion); 3500 3501 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3502 * unless we tried to reset a slot ID that wasn't enabled, 3503 * or the device wasn't in the addressed or configured state. 3504 */ 3505 ret = reset_device_cmd->status; 3506 switch (ret) { 3507 case COMP_CMD_ABORT: 3508 case COMP_CMD_STOP: 3509 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3510 ret = -ETIME; 3511 goto command_cleanup; 3512 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3513 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3514 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3515 slot_id, 3516 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3517 xhci_dbg(xhci, "Not freeing device rings.\n"); 3518 /* Don't treat this as an error. May change my mind later. */ 3519 ret = 0; 3520 goto command_cleanup; 3521 case COMP_SUCCESS: 3522 xhci_dbg(xhci, "Successful reset device command.\n"); 3523 break; 3524 default: 3525 if (xhci_is_vendor_info_code(xhci, ret)) 3526 break; 3527 xhci_warn(xhci, "Unknown completion code %u for " 3528 "reset device command.\n", ret); 3529 ret = -EINVAL; 3530 goto command_cleanup; 3531 } 3532 3533 /* Free up host controller endpoint resources */ 3534 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3535 spin_lock_irqsave(&xhci->lock, flags); 3536 /* Don't delete the default control endpoint resources */ 3537 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3538 spin_unlock_irqrestore(&xhci->lock, flags); 3539 } 3540 3541 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3542 last_freed_endpoint = 1; 3543 for (i = 1; i < 31; ++i) { 3544 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3545 3546 if (ep->ep_state & EP_HAS_STREAMS) { 3547 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3548 xhci_get_endpoint_address(i)); 3549 xhci_free_stream_info(xhci, ep->stream_info); 3550 ep->stream_info = NULL; 3551 ep->ep_state &= ~EP_HAS_STREAMS; 3552 } 3553 3554 if (ep->ring) { 3555 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3556 last_freed_endpoint = i; 3557 } 3558 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3559 xhci_drop_ep_from_interval_table(xhci, 3560 &virt_dev->eps[i].bw_info, 3561 virt_dev->bw_table, 3562 udev, 3563 &virt_dev->eps[i], 3564 virt_dev->tt_info); 3565 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3566 } 3567 /* If necessary, update the number of active TTs on this root port */ 3568 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3569 3570 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3571 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3572 ret = 0; 3573 3574 command_cleanup: 3575 xhci_free_command(xhci, reset_device_cmd); 3576 return ret; 3577 } 3578 3579 /* 3580 * At this point, the struct usb_device is about to go away, the device has 3581 * disconnected, and all traffic has been stopped and the endpoints have been 3582 * disabled. Free any HC data structures associated with that device. 3583 */ 3584 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3585 { 3586 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3587 struct xhci_virt_device *virt_dev; 3588 unsigned long flags; 3589 u32 state; 3590 int i, ret; 3591 struct xhci_command *command; 3592 3593 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3594 if (!command) 3595 return; 3596 3597 #ifndef CONFIG_USB_DEFAULT_PERSIST 3598 /* 3599 * We called pm_runtime_get_noresume when the device was attached. 3600 * Decrement the counter here to allow controller to runtime suspend 3601 * if no devices remain. 3602 */ 3603 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3604 pm_runtime_put_noidle(hcd->self.controller); 3605 #endif 3606 3607 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3608 /* If the host is halted due to driver unload, we still need to free the 3609 * device. 3610 */ 3611 if (ret <= 0 && ret != -ENODEV) { 3612 kfree(command); 3613 return; 3614 } 3615 3616 virt_dev = xhci->devs[udev->slot_id]; 3617 3618 /* Stop any wayward timer functions (which may grab the lock) */ 3619 for (i = 0; i < 31; ++i) { 3620 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3621 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3622 } 3623 3624 spin_lock_irqsave(&xhci->lock, flags); 3625 /* Don't disable the slot if the host controller is dead. */ 3626 state = readl(&xhci->op_regs->status); 3627 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3628 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3629 xhci_free_virt_device(xhci, udev->slot_id); 3630 spin_unlock_irqrestore(&xhci->lock, flags); 3631 kfree(command); 3632 return; 3633 } 3634 3635 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3636 udev->slot_id)) { 3637 spin_unlock_irqrestore(&xhci->lock, flags); 3638 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3639 return; 3640 } 3641 xhci_ring_cmd_db(xhci); 3642 spin_unlock_irqrestore(&xhci->lock, flags); 3643 3644 /* 3645 * Event command completion handler will free any data structures 3646 * associated with the slot. XXX Can free sleep? 3647 */ 3648 } 3649 3650 /* 3651 * Checks if we have enough host controller resources for the default control 3652 * endpoint. 3653 * 3654 * Must be called with xhci->lock held. 3655 */ 3656 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3657 { 3658 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3659 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3660 "Not enough ep ctxs: " 3661 "%u active, need to add 1, limit is %u.", 3662 xhci->num_active_eps, xhci->limit_active_eps); 3663 return -ENOMEM; 3664 } 3665 xhci->num_active_eps += 1; 3666 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3667 "Adding 1 ep ctx, %u now active.", 3668 xhci->num_active_eps); 3669 return 0; 3670 } 3671 3672 3673 /* 3674 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3675 * timed out, or allocating memory failed. Returns 1 on success. 3676 */ 3677 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3678 { 3679 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3680 unsigned long flags; 3681 int ret, slot_id; 3682 struct xhci_command *command; 3683 3684 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3685 if (!command) 3686 return 0; 3687 3688 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3689 mutex_lock(&xhci->mutex); 3690 spin_lock_irqsave(&xhci->lock, flags); 3691 command->completion = &xhci->addr_dev; 3692 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3693 if (ret) { 3694 spin_unlock_irqrestore(&xhci->lock, flags); 3695 mutex_unlock(&xhci->mutex); 3696 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3697 kfree(command); 3698 return 0; 3699 } 3700 xhci_ring_cmd_db(xhci); 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 3703 wait_for_completion(command->completion); 3704 slot_id = xhci->slot_id; 3705 mutex_unlock(&xhci->mutex); 3706 3707 if (!slot_id || command->status != COMP_SUCCESS) { 3708 xhci_err(xhci, "Error while assigning device slot ID\n"); 3709 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3710 HCS_MAX_SLOTS( 3711 readl(&xhci->cap_regs->hcs_params1))); 3712 kfree(command); 3713 return 0; 3714 } 3715 3716 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3717 spin_lock_irqsave(&xhci->lock, flags); 3718 ret = xhci_reserve_host_control_ep_resources(xhci); 3719 if (ret) { 3720 spin_unlock_irqrestore(&xhci->lock, flags); 3721 xhci_warn(xhci, "Not enough host resources, " 3722 "active endpoint contexts = %u\n", 3723 xhci->num_active_eps); 3724 goto disable_slot; 3725 } 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 } 3728 /* Use GFP_NOIO, since this function can be called from 3729 * xhci_discover_or_reset_device(), which may be called as part of 3730 * mass storage driver error handling. 3731 */ 3732 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3733 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3734 goto disable_slot; 3735 } 3736 udev->slot_id = slot_id; 3737 3738 #ifndef CONFIG_USB_DEFAULT_PERSIST 3739 /* 3740 * If resetting upon resume, we can't put the controller into runtime 3741 * suspend if there is a device attached. 3742 */ 3743 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3744 pm_runtime_get_noresume(hcd->self.controller); 3745 #endif 3746 3747 3748 kfree(command); 3749 /* Is this a LS or FS device under a HS hub? */ 3750 /* Hub or peripherial? */ 3751 return 1; 3752 3753 disable_slot: 3754 /* Disable slot, if we can do it without mem alloc */ 3755 spin_lock_irqsave(&xhci->lock, flags); 3756 command->completion = NULL; 3757 command->status = 0; 3758 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3759 udev->slot_id)) 3760 xhci_ring_cmd_db(xhci); 3761 spin_unlock_irqrestore(&xhci->lock, flags); 3762 return 0; 3763 } 3764 3765 /* 3766 * Issue an Address Device command and optionally send a corresponding 3767 * SetAddress request to the device. 3768 */ 3769 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3770 enum xhci_setup_dev setup) 3771 { 3772 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3773 unsigned long flags; 3774 struct xhci_virt_device *virt_dev; 3775 int ret = 0; 3776 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3777 struct xhci_slot_ctx *slot_ctx; 3778 struct xhci_input_control_ctx *ctrl_ctx; 3779 u64 temp_64; 3780 struct xhci_command *command = NULL; 3781 3782 mutex_lock(&xhci->mutex); 3783 3784 if (xhci->xhc_state) /* dying, removing or halted */ 3785 goto out; 3786 3787 if (!udev->slot_id) { 3788 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3789 "Bad Slot ID %d", udev->slot_id); 3790 ret = -EINVAL; 3791 goto out; 3792 } 3793 3794 virt_dev = xhci->devs[udev->slot_id]; 3795 3796 if (WARN_ON(!virt_dev)) { 3797 /* 3798 * In plug/unplug torture test with an NEC controller, 3799 * a zero-dereference was observed once due to virt_dev = 0. 3800 * Print useful debug rather than crash if it is observed again! 3801 */ 3802 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3803 udev->slot_id); 3804 ret = -EINVAL; 3805 goto out; 3806 } 3807 3808 if (setup == SETUP_CONTEXT_ONLY) { 3809 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3810 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3811 SLOT_STATE_DEFAULT) { 3812 xhci_dbg(xhci, "Slot already in default state\n"); 3813 goto out; 3814 } 3815 } 3816 3817 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3818 if (!command) { 3819 ret = -ENOMEM; 3820 goto out; 3821 } 3822 3823 command->in_ctx = virt_dev->in_ctx; 3824 command->completion = &xhci->addr_dev; 3825 3826 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3827 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3828 if (!ctrl_ctx) { 3829 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3830 __func__); 3831 ret = -EINVAL; 3832 goto out; 3833 } 3834 /* 3835 * If this is the first Set Address since device plug-in or 3836 * virt_device realloaction after a resume with an xHCI power loss, 3837 * then set up the slot context. 3838 */ 3839 if (!slot_ctx->dev_info) 3840 xhci_setup_addressable_virt_dev(xhci, udev); 3841 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3842 else 3843 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3844 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3845 ctrl_ctx->drop_flags = 0; 3846 3847 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3848 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3849 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3850 le32_to_cpu(slot_ctx->dev_info) >> 27); 3851 3852 spin_lock_irqsave(&xhci->lock, flags); 3853 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3854 udev->slot_id, setup); 3855 if (ret) { 3856 spin_unlock_irqrestore(&xhci->lock, flags); 3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3858 "FIXME: allocate a command ring segment"); 3859 goto out; 3860 } 3861 xhci_ring_cmd_db(xhci); 3862 spin_unlock_irqrestore(&xhci->lock, flags); 3863 3864 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3865 wait_for_completion(command->completion); 3866 3867 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3868 * the SetAddress() "recovery interval" required by USB and aborting the 3869 * command on a timeout. 3870 */ 3871 switch (command->status) { 3872 case COMP_CMD_ABORT: 3873 case COMP_CMD_STOP: 3874 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3875 ret = -ETIME; 3876 break; 3877 case COMP_CTX_STATE: 3878 case COMP_EBADSLT: 3879 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3880 act, udev->slot_id); 3881 ret = -EINVAL; 3882 break; 3883 case COMP_TX_ERR: 3884 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3885 ret = -EPROTO; 3886 break; 3887 case COMP_DEV_ERR: 3888 dev_warn(&udev->dev, 3889 "ERROR: Incompatible device for setup %s command\n", act); 3890 ret = -ENODEV; 3891 break; 3892 case COMP_SUCCESS: 3893 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3894 "Successful setup %s command", act); 3895 break; 3896 default: 3897 xhci_err(xhci, 3898 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3899 act, command->status); 3900 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3901 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3902 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3903 ret = -EINVAL; 3904 break; 3905 } 3906 if (ret) 3907 goto out; 3908 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3909 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3910 "Op regs DCBAA ptr = %#016llx", temp_64); 3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3912 "Slot ID %d dcbaa entry @%p = %#016llx", 3913 udev->slot_id, 3914 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3915 (unsigned long long) 3916 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3917 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3918 "Output Context DMA address = %#08llx", 3919 (unsigned long long)virt_dev->out_ctx->dma); 3920 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3921 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3922 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3923 le32_to_cpu(slot_ctx->dev_info) >> 27); 3924 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3925 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3926 /* 3927 * USB core uses address 1 for the roothubs, so we add one to the 3928 * address given back to us by the HC. 3929 */ 3930 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3931 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3932 le32_to_cpu(slot_ctx->dev_info) >> 27); 3933 /* Zero the input context control for later use */ 3934 ctrl_ctx->add_flags = 0; 3935 ctrl_ctx->drop_flags = 0; 3936 3937 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3938 "Internal device address = %d", 3939 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3940 out: 3941 mutex_unlock(&xhci->mutex); 3942 kfree(command); 3943 return ret; 3944 } 3945 3946 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3947 { 3948 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3949 } 3950 3951 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3952 { 3953 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3954 } 3955 3956 /* 3957 * Transfer the port index into real index in the HW port status 3958 * registers. Caculate offset between the port's PORTSC register 3959 * and port status base. Divide the number of per port register 3960 * to get the real index. The raw port number bases 1. 3961 */ 3962 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3963 { 3964 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3965 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3966 __le32 __iomem *addr; 3967 int raw_port; 3968 3969 if (hcd->speed < HCD_USB3) 3970 addr = xhci->usb2_ports[port1 - 1]; 3971 else 3972 addr = xhci->usb3_ports[port1 - 1]; 3973 3974 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3975 return raw_port; 3976 } 3977 3978 /* 3979 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3980 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3981 */ 3982 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3983 struct usb_device *udev, u16 max_exit_latency) 3984 { 3985 struct xhci_virt_device *virt_dev; 3986 struct xhci_command *command; 3987 struct xhci_input_control_ctx *ctrl_ctx; 3988 struct xhci_slot_ctx *slot_ctx; 3989 unsigned long flags; 3990 int ret; 3991 3992 spin_lock_irqsave(&xhci->lock, flags); 3993 3994 virt_dev = xhci->devs[udev->slot_id]; 3995 3996 /* 3997 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3998 * xHC was re-initialized. Exit latency will be set later after 3999 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4000 */ 4001 4002 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4003 spin_unlock_irqrestore(&xhci->lock, flags); 4004 return 0; 4005 } 4006 4007 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4008 command = xhci->lpm_command; 4009 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4010 if (!ctrl_ctx) { 4011 spin_unlock_irqrestore(&xhci->lock, flags); 4012 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4013 __func__); 4014 return -ENOMEM; 4015 } 4016 4017 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4018 spin_unlock_irqrestore(&xhci->lock, flags); 4019 4020 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4021 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4022 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4023 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4024 slot_ctx->dev_state = 0; 4025 4026 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4027 "Set up evaluate context for LPM MEL change."); 4028 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4029 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4030 4031 /* Issue and wait for the evaluate context command. */ 4032 ret = xhci_configure_endpoint(xhci, udev, command, 4033 true, true); 4034 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4035 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4036 4037 if (!ret) { 4038 spin_lock_irqsave(&xhci->lock, flags); 4039 virt_dev->current_mel = max_exit_latency; 4040 spin_unlock_irqrestore(&xhci->lock, flags); 4041 } 4042 return ret; 4043 } 4044 4045 #ifdef CONFIG_PM 4046 4047 /* BESL to HIRD Encoding array for USB2 LPM */ 4048 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4049 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4050 4051 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4052 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4053 struct usb_device *udev) 4054 { 4055 int u2del, besl, besl_host; 4056 int besl_device = 0; 4057 u32 field; 4058 4059 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4060 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4061 4062 if (field & USB_BESL_SUPPORT) { 4063 for (besl_host = 0; besl_host < 16; besl_host++) { 4064 if (xhci_besl_encoding[besl_host] >= u2del) 4065 break; 4066 } 4067 /* Use baseline BESL value as default */ 4068 if (field & USB_BESL_BASELINE_VALID) 4069 besl_device = USB_GET_BESL_BASELINE(field); 4070 else if (field & USB_BESL_DEEP_VALID) 4071 besl_device = USB_GET_BESL_DEEP(field); 4072 } else { 4073 if (u2del <= 50) 4074 besl_host = 0; 4075 else 4076 besl_host = (u2del - 51) / 75 + 1; 4077 } 4078 4079 besl = besl_host + besl_device; 4080 if (besl > 15) 4081 besl = 15; 4082 4083 return besl; 4084 } 4085 4086 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4087 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4088 { 4089 u32 field; 4090 int l1; 4091 int besld = 0; 4092 int hirdm = 0; 4093 4094 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4095 4096 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4097 l1 = udev->l1_params.timeout / 256; 4098 4099 /* device has preferred BESLD */ 4100 if (field & USB_BESL_DEEP_VALID) { 4101 besld = USB_GET_BESL_DEEP(field); 4102 hirdm = 1; 4103 } 4104 4105 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4106 } 4107 4108 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4109 struct usb_device *udev, int enable) 4110 { 4111 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4112 __le32 __iomem **port_array; 4113 __le32 __iomem *pm_addr, *hlpm_addr; 4114 u32 pm_val, hlpm_val, field; 4115 unsigned int port_num; 4116 unsigned long flags; 4117 int hird, exit_latency; 4118 int ret; 4119 4120 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4121 !udev->lpm_capable) 4122 return -EPERM; 4123 4124 if (!udev->parent || udev->parent->parent || 4125 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4126 return -EPERM; 4127 4128 if (udev->usb2_hw_lpm_capable != 1) 4129 return -EPERM; 4130 4131 spin_lock_irqsave(&xhci->lock, flags); 4132 4133 port_array = xhci->usb2_ports; 4134 port_num = udev->portnum - 1; 4135 pm_addr = port_array[port_num] + PORTPMSC; 4136 pm_val = readl(pm_addr); 4137 hlpm_addr = port_array[port_num] + PORTHLPMC; 4138 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4139 4140 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4141 enable ? "enable" : "disable", port_num + 1); 4142 4143 if (enable) { 4144 /* Host supports BESL timeout instead of HIRD */ 4145 if (udev->usb2_hw_lpm_besl_capable) { 4146 /* if device doesn't have a preferred BESL value use a 4147 * default one which works with mixed HIRD and BESL 4148 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4149 */ 4150 if ((field & USB_BESL_SUPPORT) && 4151 (field & USB_BESL_BASELINE_VALID)) 4152 hird = USB_GET_BESL_BASELINE(field); 4153 else 4154 hird = udev->l1_params.besl; 4155 4156 exit_latency = xhci_besl_encoding[hird]; 4157 spin_unlock_irqrestore(&xhci->lock, flags); 4158 4159 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4160 * input context for link powermanagement evaluate 4161 * context commands. It is protected by hcd->bandwidth 4162 * mutex and is shared by all devices. We need to set 4163 * the max ext latency in USB 2 BESL LPM as well, so 4164 * use the same mutex and xhci_change_max_exit_latency() 4165 */ 4166 mutex_lock(hcd->bandwidth_mutex); 4167 ret = xhci_change_max_exit_latency(xhci, udev, 4168 exit_latency); 4169 mutex_unlock(hcd->bandwidth_mutex); 4170 4171 if (ret < 0) 4172 return ret; 4173 spin_lock_irqsave(&xhci->lock, flags); 4174 4175 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4176 writel(hlpm_val, hlpm_addr); 4177 /* flush write */ 4178 readl(hlpm_addr); 4179 } else { 4180 hird = xhci_calculate_hird_besl(xhci, udev); 4181 } 4182 4183 pm_val &= ~PORT_HIRD_MASK; 4184 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4185 writel(pm_val, pm_addr); 4186 pm_val = readl(pm_addr); 4187 pm_val |= PORT_HLE; 4188 writel(pm_val, pm_addr); 4189 /* flush write */ 4190 readl(pm_addr); 4191 } else { 4192 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4193 writel(pm_val, pm_addr); 4194 /* flush write */ 4195 readl(pm_addr); 4196 if (udev->usb2_hw_lpm_besl_capable) { 4197 spin_unlock_irqrestore(&xhci->lock, flags); 4198 mutex_lock(hcd->bandwidth_mutex); 4199 xhci_change_max_exit_latency(xhci, udev, 0); 4200 mutex_unlock(hcd->bandwidth_mutex); 4201 return 0; 4202 } 4203 } 4204 4205 spin_unlock_irqrestore(&xhci->lock, flags); 4206 return 0; 4207 } 4208 4209 /* check if a usb2 port supports a given extened capability protocol 4210 * only USB2 ports extended protocol capability values are cached. 4211 * Return 1 if capability is supported 4212 */ 4213 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4214 unsigned capability) 4215 { 4216 u32 port_offset, port_count; 4217 int i; 4218 4219 for (i = 0; i < xhci->num_ext_caps; i++) { 4220 if (xhci->ext_caps[i] & capability) { 4221 /* port offsets starts at 1 */ 4222 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4223 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4224 if (port >= port_offset && 4225 port < port_offset + port_count) 4226 return 1; 4227 } 4228 } 4229 return 0; 4230 } 4231 4232 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4233 { 4234 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4235 int portnum = udev->portnum - 1; 4236 4237 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4238 !udev->lpm_capable) 4239 return 0; 4240 4241 /* we only support lpm for non-hub device connected to root hub yet */ 4242 if (!udev->parent || udev->parent->parent || 4243 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4244 return 0; 4245 4246 if (xhci->hw_lpm_support == 1 && 4247 xhci_check_usb2_port_capability( 4248 xhci, portnum, XHCI_HLC)) { 4249 udev->usb2_hw_lpm_capable = 1; 4250 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4251 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4252 if (xhci_check_usb2_port_capability(xhci, portnum, 4253 XHCI_BLC)) 4254 udev->usb2_hw_lpm_besl_capable = 1; 4255 } 4256 4257 return 0; 4258 } 4259 4260 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4261 4262 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4263 static unsigned long long xhci_service_interval_to_ns( 4264 struct usb_endpoint_descriptor *desc) 4265 { 4266 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4267 } 4268 4269 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4270 enum usb3_link_state state) 4271 { 4272 unsigned long long sel; 4273 unsigned long long pel; 4274 unsigned int max_sel_pel; 4275 char *state_name; 4276 4277 switch (state) { 4278 case USB3_LPM_U1: 4279 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4280 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4281 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4282 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4283 state_name = "U1"; 4284 break; 4285 case USB3_LPM_U2: 4286 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4287 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4288 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4289 state_name = "U2"; 4290 break; 4291 default: 4292 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4293 __func__); 4294 return USB3_LPM_DISABLED; 4295 } 4296 4297 if (sel <= max_sel_pel && pel <= max_sel_pel) 4298 return USB3_LPM_DEVICE_INITIATED; 4299 4300 if (sel > max_sel_pel) 4301 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4302 "due to long SEL %llu ms\n", 4303 state_name, sel); 4304 else 4305 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4306 "due to long PEL %llu ms\n", 4307 state_name, pel); 4308 return USB3_LPM_DISABLED; 4309 } 4310 4311 /* The U1 timeout should be the maximum of the following values: 4312 * - For control endpoints, U1 system exit latency (SEL) * 3 4313 * - For bulk endpoints, U1 SEL * 5 4314 * - For interrupt endpoints: 4315 * - Notification EPs, U1 SEL * 3 4316 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4317 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4318 */ 4319 static unsigned long long xhci_calculate_intel_u1_timeout( 4320 struct usb_device *udev, 4321 struct usb_endpoint_descriptor *desc) 4322 { 4323 unsigned long long timeout_ns; 4324 int ep_type; 4325 int intr_type; 4326 4327 ep_type = usb_endpoint_type(desc); 4328 switch (ep_type) { 4329 case USB_ENDPOINT_XFER_CONTROL: 4330 timeout_ns = udev->u1_params.sel * 3; 4331 break; 4332 case USB_ENDPOINT_XFER_BULK: 4333 timeout_ns = udev->u1_params.sel * 5; 4334 break; 4335 case USB_ENDPOINT_XFER_INT: 4336 intr_type = usb_endpoint_interrupt_type(desc); 4337 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4338 timeout_ns = udev->u1_params.sel * 3; 4339 break; 4340 } 4341 /* Otherwise the calculation is the same as isoc eps */ 4342 case USB_ENDPOINT_XFER_ISOC: 4343 timeout_ns = xhci_service_interval_to_ns(desc); 4344 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4345 if (timeout_ns < udev->u1_params.sel * 2) 4346 timeout_ns = udev->u1_params.sel * 2; 4347 break; 4348 default: 4349 return 0; 4350 } 4351 4352 return timeout_ns; 4353 } 4354 4355 /* Returns the hub-encoded U1 timeout value. */ 4356 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4357 struct usb_device *udev, 4358 struct usb_endpoint_descriptor *desc) 4359 { 4360 unsigned long long timeout_ns; 4361 4362 if (xhci->quirks & XHCI_INTEL_HOST) 4363 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4364 else 4365 timeout_ns = udev->u1_params.sel; 4366 4367 /* The U1 timeout is encoded in 1us intervals. 4368 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4369 */ 4370 if (timeout_ns == USB3_LPM_DISABLED) 4371 timeout_ns = 1; 4372 else 4373 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4374 4375 /* If the necessary timeout value is bigger than what we can set in the 4376 * USB 3.0 hub, we have to disable hub-initiated U1. 4377 */ 4378 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4379 return timeout_ns; 4380 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4381 "due to long timeout %llu ms\n", timeout_ns); 4382 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4383 } 4384 4385 /* The U2 timeout should be the maximum of: 4386 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4387 * - largest bInterval of any active periodic endpoint (to avoid going 4388 * into lower power link states between intervals). 4389 * - the U2 Exit Latency of the device 4390 */ 4391 static unsigned long long xhci_calculate_intel_u2_timeout( 4392 struct usb_device *udev, 4393 struct usb_endpoint_descriptor *desc) 4394 { 4395 unsigned long long timeout_ns; 4396 unsigned long long u2_del_ns; 4397 4398 timeout_ns = 10 * 1000 * 1000; 4399 4400 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4401 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4402 timeout_ns = xhci_service_interval_to_ns(desc); 4403 4404 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4405 if (u2_del_ns > timeout_ns) 4406 timeout_ns = u2_del_ns; 4407 4408 return timeout_ns; 4409 } 4410 4411 /* Returns the hub-encoded U2 timeout value. */ 4412 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4413 struct usb_device *udev, 4414 struct usb_endpoint_descriptor *desc) 4415 { 4416 unsigned long long timeout_ns; 4417 4418 if (xhci->quirks & XHCI_INTEL_HOST) 4419 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4420 else 4421 timeout_ns = udev->u2_params.sel; 4422 4423 /* The U2 timeout is encoded in 256us intervals */ 4424 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4425 /* If the necessary timeout value is bigger than what we can set in the 4426 * USB 3.0 hub, we have to disable hub-initiated U2. 4427 */ 4428 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4429 return timeout_ns; 4430 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4431 "due to long timeout %llu ms\n", timeout_ns); 4432 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4433 } 4434 4435 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4436 struct usb_device *udev, 4437 struct usb_endpoint_descriptor *desc, 4438 enum usb3_link_state state, 4439 u16 *timeout) 4440 { 4441 if (state == USB3_LPM_U1) 4442 return xhci_calculate_u1_timeout(xhci, udev, desc); 4443 else if (state == USB3_LPM_U2) 4444 return xhci_calculate_u2_timeout(xhci, udev, desc); 4445 4446 return USB3_LPM_DISABLED; 4447 } 4448 4449 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4450 struct usb_device *udev, 4451 struct usb_endpoint_descriptor *desc, 4452 enum usb3_link_state state, 4453 u16 *timeout) 4454 { 4455 u16 alt_timeout; 4456 4457 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4458 desc, state, timeout); 4459 4460 /* If we found we can't enable hub-initiated LPM, or 4461 * the U1 or U2 exit latency was too high to allow 4462 * device-initiated LPM as well, just stop searching. 4463 */ 4464 if (alt_timeout == USB3_LPM_DISABLED || 4465 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4466 *timeout = alt_timeout; 4467 return -E2BIG; 4468 } 4469 if (alt_timeout > *timeout) 4470 *timeout = alt_timeout; 4471 return 0; 4472 } 4473 4474 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4475 struct usb_device *udev, 4476 struct usb_host_interface *alt, 4477 enum usb3_link_state state, 4478 u16 *timeout) 4479 { 4480 int j; 4481 4482 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4483 if (xhci_update_timeout_for_endpoint(xhci, udev, 4484 &alt->endpoint[j].desc, state, timeout)) 4485 return -E2BIG; 4486 continue; 4487 } 4488 return 0; 4489 } 4490 4491 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4492 enum usb3_link_state state) 4493 { 4494 struct usb_device *parent; 4495 unsigned int num_hubs; 4496 4497 if (state == USB3_LPM_U2) 4498 return 0; 4499 4500 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4501 for (parent = udev->parent, num_hubs = 0; parent->parent; 4502 parent = parent->parent) 4503 num_hubs++; 4504 4505 if (num_hubs < 2) 4506 return 0; 4507 4508 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4509 " below second-tier hub.\n"); 4510 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4511 "to decrease power consumption.\n"); 4512 return -E2BIG; 4513 } 4514 4515 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4516 struct usb_device *udev, 4517 enum usb3_link_state state) 4518 { 4519 if (xhci->quirks & XHCI_INTEL_HOST) 4520 return xhci_check_intel_tier_policy(udev, state); 4521 else 4522 return 0; 4523 } 4524 4525 /* Returns the U1 or U2 timeout that should be enabled. 4526 * If the tier check or timeout setting functions return with a non-zero exit 4527 * code, that means the timeout value has been finalized and we shouldn't look 4528 * at any more endpoints. 4529 */ 4530 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4531 struct usb_device *udev, enum usb3_link_state state) 4532 { 4533 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4534 struct usb_host_config *config; 4535 char *state_name; 4536 int i; 4537 u16 timeout = USB3_LPM_DISABLED; 4538 4539 if (state == USB3_LPM_U1) 4540 state_name = "U1"; 4541 else if (state == USB3_LPM_U2) 4542 state_name = "U2"; 4543 else { 4544 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4545 state); 4546 return timeout; 4547 } 4548 4549 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4550 return timeout; 4551 4552 /* Gather some information about the currently installed configuration 4553 * and alternate interface settings. 4554 */ 4555 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4556 state, &timeout)) 4557 return timeout; 4558 4559 config = udev->actconfig; 4560 if (!config) 4561 return timeout; 4562 4563 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4564 struct usb_driver *driver; 4565 struct usb_interface *intf = config->interface[i]; 4566 4567 if (!intf) 4568 continue; 4569 4570 /* Check if any currently bound drivers want hub-initiated LPM 4571 * disabled. 4572 */ 4573 if (intf->dev.driver) { 4574 driver = to_usb_driver(intf->dev.driver); 4575 if (driver && driver->disable_hub_initiated_lpm) { 4576 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4577 "at request of driver %s\n", 4578 state_name, driver->name); 4579 return xhci_get_timeout_no_hub_lpm(udev, state); 4580 } 4581 } 4582 4583 /* Not sure how this could happen... */ 4584 if (!intf->cur_altsetting) 4585 continue; 4586 4587 if (xhci_update_timeout_for_interface(xhci, udev, 4588 intf->cur_altsetting, 4589 state, &timeout)) 4590 return timeout; 4591 } 4592 return timeout; 4593 } 4594 4595 static int calculate_max_exit_latency(struct usb_device *udev, 4596 enum usb3_link_state state_changed, 4597 u16 hub_encoded_timeout) 4598 { 4599 unsigned long long u1_mel_us = 0; 4600 unsigned long long u2_mel_us = 0; 4601 unsigned long long mel_us = 0; 4602 bool disabling_u1; 4603 bool disabling_u2; 4604 bool enabling_u1; 4605 bool enabling_u2; 4606 4607 disabling_u1 = (state_changed == USB3_LPM_U1 && 4608 hub_encoded_timeout == USB3_LPM_DISABLED); 4609 disabling_u2 = (state_changed == USB3_LPM_U2 && 4610 hub_encoded_timeout == USB3_LPM_DISABLED); 4611 4612 enabling_u1 = (state_changed == USB3_LPM_U1 && 4613 hub_encoded_timeout != USB3_LPM_DISABLED); 4614 enabling_u2 = (state_changed == USB3_LPM_U2 && 4615 hub_encoded_timeout != USB3_LPM_DISABLED); 4616 4617 /* If U1 was already enabled and we're not disabling it, 4618 * or we're going to enable U1, account for the U1 max exit latency. 4619 */ 4620 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4621 enabling_u1) 4622 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4623 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4624 enabling_u2) 4625 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4626 4627 if (u1_mel_us > u2_mel_us) 4628 mel_us = u1_mel_us; 4629 else 4630 mel_us = u2_mel_us; 4631 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4632 if (mel_us > MAX_EXIT) { 4633 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4634 "is too big.\n", mel_us); 4635 return -E2BIG; 4636 } 4637 return mel_us; 4638 } 4639 4640 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4641 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4642 struct usb_device *udev, enum usb3_link_state state) 4643 { 4644 struct xhci_hcd *xhci; 4645 u16 hub_encoded_timeout; 4646 int mel; 4647 int ret; 4648 4649 xhci = hcd_to_xhci(hcd); 4650 /* The LPM timeout values are pretty host-controller specific, so don't 4651 * enable hub-initiated timeouts unless the vendor has provided 4652 * information about their timeout algorithm. 4653 */ 4654 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4655 !xhci->devs[udev->slot_id]) 4656 return USB3_LPM_DISABLED; 4657 4658 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4659 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4660 if (mel < 0) { 4661 /* Max Exit Latency is too big, disable LPM. */ 4662 hub_encoded_timeout = USB3_LPM_DISABLED; 4663 mel = 0; 4664 } 4665 4666 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4667 if (ret) 4668 return ret; 4669 return hub_encoded_timeout; 4670 } 4671 4672 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4673 struct usb_device *udev, enum usb3_link_state state) 4674 { 4675 struct xhci_hcd *xhci; 4676 u16 mel; 4677 4678 xhci = hcd_to_xhci(hcd); 4679 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4680 !xhci->devs[udev->slot_id]) 4681 return 0; 4682 4683 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4684 return xhci_change_max_exit_latency(xhci, udev, mel); 4685 } 4686 #else /* CONFIG_PM */ 4687 4688 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4689 struct usb_device *udev, int enable) 4690 { 4691 return 0; 4692 } 4693 4694 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4695 { 4696 return 0; 4697 } 4698 4699 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4700 struct usb_device *udev, enum usb3_link_state state) 4701 { 4702 return USB3_LPM_DISABLED; 4703 } 4704 4705 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4706 struct usb_device *udev, enum usb3_link_state state) 4707 { 4708 return 0; 4709 } 4710 #endif /* CONFIG_PM */ 4711 4712 /*-------------------------------------------------------------------------*/ 4713 4714 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4715 * internal data structures for the device. 4716 */ 4717 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4718 struct usb_tt *tt, gfp_t mem_flags) 4719 { 4720 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4721 struct xhci_virt_device *vdev; 4722 struct xhci_command *config_cmd; 4723 struct xhci_input_control_ctx *ctrl_ctx; 4724 struct xhci_slot_ctx *slot_ctx; 4725 unsigned long flags; 4726 unsigned think_time; 4727 int ret; 4728 4729 /* Ignore root hubs */ 4730 if (!hdev->parent) 4731 return 0; 4732 4733 vdev = xhci->devs[hdev->slot_id]; 4734 if (!vdev) { 4735 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4736 return -EINVAL; 4737 } 4738 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4739 if (!config_cmd) { 4740 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4741 return -ENOMEM; 4742 } 4743 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4744 if (!ctrl_ctx) { 4745 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4746 __func__); 4747 xhci_free_command(xhci, config_cmd); 4748 return -ENOMEM; 4749 } 4750 4751 spin_lock_irqsave(&xhci->lock, flags); 4752 if (hdev->speed == USB_SPEED_HIGH && 4753 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4754 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4755 xhci_free_command(xhci, config_cmd); 4756 spin_unlock_irqrestore(&xhci->lock, flags); 4757 return -ENOMEM; 4758 } 4759 4760 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4761 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4762 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4763 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4764 /* 4765 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4766 * but it may be already set to 1 when setup an xHCI virtual 4767 * device, so clear it anyway. 4768 */ 4769 if (tt->multi) 4770 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4771 else if (hdev->speed == USB_SPEED_FULL) 4772 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4773 4774 if (xhci->hci_version > 0x95) { 4775 xhci_dbg(xhci, "xHCI version %x needs hub " 4776 "TT think time and number of ports\n", 4777 (unsigned int) xhci->hci_version); 4778 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4779 /* Set TT think time - convert from ns to FS bit times. 4780 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4781 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4782 * 4783 * xHCI 1.0: this field shall be 0 if the device is not a 4784 * High-spped hub. 4785 */ 4786 think_time = tt->think_time; 4787 if (think_time != 0) 4788 think_time = (think_time / 666) - 1; 4789 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4790 slot_ctx->tt_info |= 4791 cpu_to_le32(TT_THINK_TIME(think_time)); 4792 } else { 4793 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4794 "TT think time or number of ports\n", 4795 (unsigned int) xhci->hci_version); 4796 } 4797 slot_ctx->dev_state = 0; 4798 spin_unlock_irqrestore(&xhci->lock, flags); 4799 4800 xhci_dbg(xhci, "Set up %s for hub device.\n", 4801 (xhci->hci_version > 0x95) ? 4802 "configure endpoint" : "evaluate context"); 4803 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4804 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4805 4806 /* Issue and wait for the configure endpoint or 4807 * evaluate context command. 4808 */ 4809 if (xhci->hci_version > 0x95) 4810 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4811 false, false); 4812 else 4813 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4814 true, false); 4815 4816 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4817 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4818 4819 xhci_free_command(xhci, config_cmd); 4820 return ret; 4821 } 4822 4823 int xhci_get_frame(struct usb_hcd *hcd) 4824 { 4825 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4826 /* EHCI mods by the periodic size. Why? */ 4827 return readl(&xhci->run_regs->microframe_index) >> 3; 4828 } 4829 4830 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4831 { 4832 struct xhci_hcd *xhci; 4833 struct device *dev = hcd->self.controller; 4834 int retval; 4835 4836 /* Accept arbitrarily long scatter-gather lists */ 4837 hcd->self.sg_tablesize = ~0; 4838 4839 /* support to build packet from discontinuous buffers */ 4840 hcd->self.no_sg_constraint = 1; 4841 4842 /* XHCI controllers don't stop the ep queue on short packets :| */ 4843 hcd->self.no_stop_on_short = 1; 4844 4845 xhci = hcd_to_xhci(hcd); 4846 4847 if (usb_hcd_is_primary_hcd(hcd)) { 4848 xhci->main_hcd = hcd; 4849 /* Mark the first roothub as being USB 2.0. 4850 * The xHCI driver will register the USB 3.0 roothub. 4851 */ 4852 hcd->speed = HCD_USB2; 4853 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4854 /* 4855 * USB 2.0 roothub under xHCI has an integrated TT, 4856 * (rate matching hub) as opposed to having an OHCI/UHCI 4857 * companion controller. 4858 */ 4859 hcd->has_tt = 1; 4860 } else { 4861 if (xhci->sbrn == 0x31) { 4862 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4863 hcd->speed = HCD_USB31; 4864 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4865 } 4866 /* xHCI private pointer was set in xhci_pci_probe for the second 4867 * registered roothub. 4868 */ 4869 return 0; 4870 } 4871 4872 mutex_init(&xhci->mutex); 4873 xhci->cap_regs = hcd->regs; 4874 xhci->op_regs = hcd->regs + 4875 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4876 xhci->run_regs = hcd->regs + 4877 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4878 /* Cache read-only capability registers */ 4879 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4880 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4881 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4882 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4883 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4884 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4885 if (xhci->hci_version > 0x100) 4886 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4887 xhci_print_registers(xhci); 4888 4889 xhci->quirks = quirks; 4890 4891 get_quirks(dev, xhci); 4892 4893 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4894 * success event after a short transfer. This quirk will ignore such 4895 * spurious event. 4896 */ 4897 if (xhci->hci_version > 0x96) 4898 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4899 4900 /* Make sure the HC is halted. */ 4901 retval = xhci_halt(xhci); 4902 if (retval) 4903 return retval; 4904 4905 xhci_dbg(xhci, "Resetting HCD\n"); 4906 /* Reset the internal HC memory state and registers. */ 4907 retval = xhci_reset(xhci); 4908 if (retval) 4909 return retval; 4910 xhci_dbg(xhci, "Reset complete\n"); 4911 4912 /* 4913 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4914 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4915 * address memory pointers actually. So, this driver clears the AC64 4916 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4917 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4918 */ 4919 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4920 xhci->hcc_params &= ~BIT(0); 4921 4922 /* Set dma_mask and coherent_dma_mask to 64-bits, 4923 * if xHC supports 64-bit addressing */ 4924 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4925 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4926 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4927 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4928 } else { 4929 /* 4930 * This is to avoid error in cases where a 32-bit USB 4931 * controller is used on a 64-bit capable system. 4932 */ 4933 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4934 if (retval) 4935 return retval; 4936 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4937 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4938 } 4939 4940 xhci_dbg(xhci, "Calling HCD init\n"); 4941 /* Initialize HCD and host controller data structures. */ 4942 retval = xhci_init(hcd); 4943 if (retval) 4944 return retval; 4945 xhci_dbg(xhci, "Called HCD init\n"); 4946 4947 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4948 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4949 4950 return 0; 4951 } 4952 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4953 4954 static const struct hc_driver xhci_hc_driver = { 4955 .description = "xhci-hcd", 4956 .product_desc = "xHCI Host Controller", 4957 .hcd_priv_size = sizeof(struct xhci_hcd), 4958 4959 /* 4960 * generic hardware linkage 4961 */ 4962 .irq = xhci_irq, 4963 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4964 4965 /* 4966 * basic lifecycle operations 4967 */ 4968 .reset = NULL, /* set in xhci_init_driver() */ 4969 .start = xhci_run, 4970 .stop = xhci_stop, 4971 .shutdown = xhci_shutdown, 4972 4973 /* 4974 * managing i/o requests and associated device resources 4975 */ 4976 .urb_enqueue = xhci_urb_enqueue, 4977 .urb_dequeue = xhci_urb_dequeue, 4978 .alloc_dev = xhci_alloc_dev, 4979 .free_dev = xhci_free_dev, 4980 .alloc_streams = xhci_alloc_streams, 4981 .free_streams = xhci_free_streams, 4982 .add_endpoint = xhci_add_endpoint, 4983 .drop_endpoint = xhci_drop_endpoint, 4984 .endpoint_reset = xhci_endpoint_reset, 4985 .check_bandwidth = xhci_check_bandwidth, 4986 .reset_bandwidth = xhci_reset_bandwidth, 4987 .address_device = xhci_address_device, 4988 .enable_device = xhci_enable_device, 4989 .update_hub_device = xhci_update_hub_device, 4990 .reset_device = xhci_discover_or_reset_device, 4991 4992 /* 4993 * scheduling support 4994 */ 4995 .get_frame_number = xhci_get_frame, 4996 4997 /* 4998 * root hub support 4999 */ 5000 .hub_control = xhci_hub_control, 5001 .hub_status_data = xhci_hub_status_data, 5002 .bus_suspend = xhci_bus_suspend, 5003 .bus_resume = xhci_bus_resume, 5004 5005 /* 5006 * call back when device connected and addressed 5007 */ 5008 .update_device = xhci_update_device, 5009 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5010 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5011 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5012 .find_raw_port_number = xhci_find_raw_port_number, 5013 }; 5014 5015 void xhci_init_driver(struct hc_driver *drv, 5016 const struct xhci_driver_overrides *over) 5017 { 5018 BUG_ON(!over); 5019 5020 /* Copy the generic table to drv then apply the overrides */ 5021 *drv = xhci_hc_driver; 5022 5023 if (over) { 5024 drv->hcd_priv_size += over->extra_priv_size; 5025 if (over->reset) 5026 drv->reset = over->reset; 5027 if (over->start) 5028 drv->start = over->start; 5029 } 5030 } 5031 EXPORT_SYMBOL_GPL(xhci_init_driver); 5032 5033 MODULE_DESCRIPTION(DRIVER_DESC); 5034 MODULE_AUTHOR(DRIVER_AUTHOR); 5035 MODULE_LICENSE("GPL"); 5036 5037 static int __init xhci_hcd_init(void) 5038 { 5039 /* 5040 * Check the compiler generated sizes of structures that must be laid 5041 * out in specific ways for hardware access. 5042 */ 5043 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5044 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5045 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5046 /* xhci_device_control has eight fields, and also 5047 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5048 */ 5049 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5050 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5051 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5052 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5053 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5054 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5055 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5056 5057 if (usb_disabled()) 5058 return -ENODEV; 5059 5060 return 0; 5061 } 5062 5063 /* 5064 * If an init function is provided, an exit function must also be provided 5065 * to allow module unload. 5066 */ 5067 static void __exit xhci_hcd_fini(void) { } 5068 5069 module_init(xhci_hcd_init); 5070 module_exit(xhci_hcd_fini); 5071