1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "Finished xhci_run for USB2 roothub"); 697 698 xhci_dbc_init(xhci); 699 700 xhci_debugfs_init(xhci); 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(xhci_run); 705 706 /* 707 * Stop xHCI driver. 708 * 709 * This function is called by the USB core when the HC driver is removed. 710 * Its opposite is xhci_run(). 711 * 712 * Disable device contexts, disable IRQs, and quiesce the HC. 713 * Reset the HC, finish any completed transactions, and cleanup memory. 714 */ 715 static void xhci_stop(struct usb_hcd *hcd) 716 { 717 u32 temp; 718 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 719 720 mutex_lock(&xhci->mutex); 721 722 /* Only halt host and free memory after both hcds are removed */ 723 if (!usb_hcd_is_primary_hcd(hcd)) { 724 mutex_unlock(&xhci->mutex); 725 return; 726 } 727 728 xhci_dbc_exit(xhci); 729 730 spin_lock_irq(&xhci->lock); 731 xhci->xhc_state |= XHCI_STATE_HALTED; 732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 733 xhci_halt(xhci); 734 xhci_reset(xhci); 735 spin_unlock_irq(&xhci->lock); 736 737 xhci_cleanup_msix(xhci); 738 739 /* Deleting Compliance Mode Recovery Timer */ 740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 741 (!(xhci_all_ports_seen_u0(xhci)))) { 742 del_timer_sync(&xhci->comp_mode_recovery_timer); 743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 744 "%s: compliance mode recovery timer deleted", 745 __func__); 746 } 747 748 if (xhci->quirks & XHCI_AMD_PLL_FIX) 749 usb_amd_dev_put(); 750 751 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 752 "// Disabling event ring interrupts"); 753 temp = readl(&xhci->op_regs->status); 754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 755 temp = readl(&xhci->ir_set->irq_pending); 756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 757 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 759 xhci_mem_cleanup(xhci); 760 xhci_debugfs_exit(xhci); 761 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 762 "xhci_stop completed - status = %x", 763 readl(&xhci->op_regs->status)); 764 mutex_unlock(&xhci->mutex); 765 } 766 767 /* 768 * Shutdown HC (not bus-specific) 769 * 770 * This is called when the machine is rebooting or halting. We assume that the 771 * machine will be powered off, and the HC's internal state will be reset. 772 * Don't bother to free memory. 773 * 774 * This will only ever be called with the main usb_hcd (the USB3 roothub). 775 */ 776 void xhci_shutdown(struct usb_hcd *hcd) 777 { 778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 779 780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 782 783 spin_lock_irq(&xhci->lock); 784 xhci_halt(xhci); 785 /* Workaround for spurious wakeups at shutdown with HSW */ 786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 787 xhci_reset(xhci); 788 spin_unlock_irq(&xhci->lock); 789 790 xhci_cleanup_msix(xhci); 791 792 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 793 "xhci_shutdown completed - status = %x", 794 readl(&xhci->op_regs->status)); 795 } 796 EXPORT_SYMBOL_GPL(xhci_shutdown); 797 798 #ifdef CONFIG_PM 799 static void xhci_save_registers(struct xhci_hcd *xhci) 800 { 801 xhci->s3.command = readl(&xhci->op_regs->command); 802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 810 } 811 812 static void xhci_restore_registers(struct xhci_hcd *xhci) 813 { 814 writel(xhci->s3.command, &xhci->op_regs->command); 815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 823 } 824 825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 826 { 827 u64 val_64; 828 829 /* step 2: initialize command ring buffer */ 830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 833 xhci->cmd_ring->dequeue) & 834 (u64) ~CMD_RING_RSVD_BITS) | 835 xhci->cmd_ring->cycle_state; 836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 837 "// Setting command ring address to 0x%llx", 838 (long unsigned long) val_64); 839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 840 } 841 842 /* 843 * The whole command ring must be cleared to zero when we suspend the host. 844 * 845 * The host doesn't save the command ring pointer in the suspend well, so we 846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 847 * aligned, because of the reserved bits in the command ring dequeue pointer 848 * register. Therefore, we can't just set the dequeue pointer back in the 849 * middle of the ring (TRBs are 16-byte aligned). 850 */ 851 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 852 { 853 struct xhci_ring *ring; 854 struct xhci_segment *seg; 855 856 ring = xhci->cmd_ring; 857 seg = ring->deq_seg; 858 do { 859 memset(seg->trbs, 0, 860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 862 cpu_to_le32(~TRB_CYCLE); 863 seg = seg->next; 864 } while (seg != ring->deq_seg); 865 866 /* Reset the software enqueue and dequeue pointers */ 867 ring->deq_seg = ring->first_seg; 868 ring->dequeue = ring->first_seg->trbs; 869 ring->enq_seg = ring->deq_seg; 870 ring->enqueue = ring->dequeue; 871 872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 873 /* 874 * Ring is now zeroed, so the HW should look for change of ownership 875 * when the cycle bit is set to 1. 876 */ 877 ring->cycle_state = 1; 878 879 /* 880 * Reset the hardware dequeue pointer. 881 * Yes, this will need to be re-written after resume, but we're paranoid 882 * and want to make sure the hardware doesn't access bogus memory 883 * because, say, the BIOS or an SMI started the host without changing 884 * the command ring pointers. 885 */ 886 xhci_set_cmd_ring_deq(xhci); 887 } 888 889 /* 890 * Disable port wake bits if do_wakeup is not set. 891 * 892 * Also clear a possible internal port wake state left hanging for ports that 893 * detected termination but never successfully enumerated (trained to 0U). 894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 895 * at enumeration clears this wake, force one here as well for unconnected ports 896 */ 897 898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 899 struct xhci_hub *rhub, 900 bool do_wakeup) 901 { 902 unsigned long flags; 903 u32 t1, t2, portsc; 904 int i; 905 906 spin_lock_irqsave(&xhci->lock, flags); 907 908 for (i = 0; i < rhub->num_ports; i++) { 909 portsc = readl(rhub->ports[i]->addr); 910 t1 = xhci_port_state_to_neutral(portsc); 911 t2 = t1; 912 913 /* clear wake bits if do_wake is not set */ 914 if (!do_wakeup) 915 t2 &= ~PORT_WAKE_BITS; 916 917 /* Don't touch csc bit if connected or connect change is set */ 918 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 919 t2 |= PORT_CSC; 920 921 if (t1 != t2) { 922 writel(t2, rhub->ports[i]->addr); 923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 924 rhub->hcd->self.busnum, i + 1, portsc, t2); 925 } 926 } 927 spin_unlock_irqrestore(&xhci->lock, flags); 928 } 929 930 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 931 { 932 struct xhci_port **ports; 933 int port_index; 934 u32 status; 935 u32 portsc; 936 937 status = readl(&xhci->op_regs->status); 938 if (status & STS_EINT) 939 return true; 940 /* 941 * Checking STS_EINT is not enough as there is a lag between a change 942 * bit being set and the Port Status Change Event that it generated 943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 944 */ 945 946 port_index = xhci->usb2_rhub.num_ports; 947 ports = xhci->usb2_rhub.ports; 948 while (port_index--) { 949 portsc = readl(ports[port_index]->addr); 950 if (portsc & PORT_CHANGE_MASK || 951 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 952 return true; 953 } 954 port_index = xhci->usb3_rhub.num_ports; 955 ports = xhci->usb3_rhub.ports; 956 while (port_index--) { 957 portsc = readl(ports[port_index]->addr); 958 if (portsc & PORT_CHANGE_MASK || 959 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 960 return true; 961 } 962 return false; 963 } 964 965 /* 966 * Stop HC (not bus-specific) 967 * 968 * This is called when the machine transition into S3/S4 mode. 969 * 970 */ 971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 972 { 973 int rc = 0; 974 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 975 struct usb_hcd *hcd = xhci_to_hcd(xhci); 976 u32 command; 977 u32 res; 978 979 if (!hcd->state) 980 return 0; 981 982 if (hcd->state != HC_STATE_SUSPENDED || 983 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 984 return -EINVAL; 985 986 /* Clear root port wake on bits if wakeup not allowed. */ 987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 989 990 if (!HCD_HW_ACCESSIBLE(hcd)) 991 return 0; 992 993 xhci_dbc_suspend(xhci); 994 995 /* Don't poll the roothubs on bus suspend. */ 996 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 997 __func__, hcd->self.busnum); 998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 999 del_timer_sync(&hcd->rh_timer); 1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1001 del_timer_sync(&xhci->shared_hcd->rh_timer); 1002 1003 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1004 usleep_range(1000, 1500); 1005 1006 spin_lock_irq(&xhci->lock); 1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1009 /* step 1: stop endpoint */ 1010 /* skipped assuming that port suspend has done */ 1011 1012 /* step 2: clear Run/Stop bit */ 1013 command = readl(&xhci->op_regs->command); 1014 command &= ~CMD_RUN; 1015 writel(command, &xhci->op_regs->command); 1016 1017 /* Some chips from Fresco Logic need an extraordinary delay */ 1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1019 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_HALT, STS_HALT, delay)) { 1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 xhci_clear_command_ring(xhci); 1027 1028 /* step 3: save registers */ 1029 xhci_save_registers(xhci); 1030 1031 /* step 4: set CSS flag */ 1032 command = readl(&xhci->op_regs->command); 1033 command |= CMD_CSS; 1034 writel(command, &xhci->op_regs->command); 1035 xhci->broken_suspend = 0; 1036 if (xhci_handshake(&xhci->op_regs->status, 1037 STS_SAVE, 0, 20 * 1000)) { 1038 /* 1039 * AMD SNPS xHC 3.0 occasionally does not clear the 1040 * SSS bit of USBSTS and when driver tries to poll 1041 * to see if the xHC clears BIT(8) which never happens 1042 * and driver assumes that controller is not responding 1043 * and times out. To workaround this, its good to check 1044 * if SRE and HCE bits are not set (as per xhci 1045 * Section 5.4.2) and bypass the timeout. 1046 */ 1047 res = readl(&xhci->op_regs->status); 1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1049 (((res & STS_SRE) == 0) && 1050 ((res & STS_HCE) == 0))) { 1051 xhci->broken_suspend = 1; 1052 } else { 1053 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1054 spin_unlock_irq(&xhci->lock); 1055 return -ETIMEDOUT; 1056 } 1057 } 1058 spin_unlock_irq(&xhci->lock); 1059 1060 /* 1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1062 * is about to be suspended. 1063 */ 1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1065 (!(xhci_all_ports_seen_u0(xhci)))) { 1066 del_timer_sync(&xhci->comp_mode_recovery_timer); 1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1068 "%s: compliance mode recovery timer deleted", 1069 __func__); 1070 } 1071 1072 /* step 5: remove core well power */ 1073 /* synchronize irq when using MSI-X */ 1074 xhci_msix_sync_irqs(xhci); 1075 1076 return rc; 1077 } 1078 EXPORT_SYMBOL_GPL(xhci_suspend); 1079 1080 /* 1081 * start xHC (not bus-specific) 1082 * 1083 * This is called when the machine transition from S3/S4 mode. 1084 * 1085 */ 1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1087 { 1088 u32 command, temp = 0; 1089 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1090 struct usb_hcd *secondary_hcd; 1091 int retval = 0; 1092 bool comp_timer_running = false; 1093 bool pending_portevent = false; 1094 1095 if (!hcd->state) 1096 return 0; 1097 1098 /* Wait a bit if either of the roothubs need to settle from the 1099 * transition into bus suspend. 1100 */ 1101 1102 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1103 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1104 msleep(100); 1105 1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1108 1109 spin_lock_irq(&xhci->lock); 1110 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1111 hibernated = true; 1112 1113 if (!hibernated) { 1114 /* 1115 * Some controllers might lose power during suspend, so wait 1116 * for controller not ready bit to clear, just as in xHC init. 1117 */ 1118 retval = xhci_handshake(&xhci->op_regs->status, 1119 STS_CNR, 0, 10 * 1000 * 1000); 1120 if (retval) { 1121 xhci_warn(xhci, "Controller not ready at resume %d\n", 1122 retval); 1123 spin_unlock_irq(&xhci->lock); 1124 return retval; 1125 } 1126 /* step 1: restore register */ 1127 xhci_restore_registers(xhci); 1128 /* step 2: initialize command ring buffer */ 1129 xhci_set_cmd_ring_deq(xhci); 1130 /* step 3: restore state and start state*/ 1131 /* step 3: set CRS flag */ 1132 command = readl(&xhci->op_regs->command); 1133 command |= CMD_CRS; 1134 writel(command, &xhci->op_regs->command); 1135 /* 1136 * Some controllers take up to 55+ ms to complete the controller 1137 * restore so setting the timeout to 100ms. Xhci specification 1138 * doesn't mention any timeout value. 1139 */ 1140 if (xhci_handshake(&xhci->op_regs->status, 1141 STS_RESTORE, 0, 100 * 1000)) { 1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1143 spin_unlock_irq(&xhci->lock); 1144 return -ETIMEDOUT; 1145 } 1146 temp = readl(&xhci->op_regs->status); 1147 } 1148 1149 /* If restore operation fails, re-initialize the HC during resume */ 1150 if ((temp & STS_SRE) || hibernated) { 1151 1152 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1153 !(xhci_all_ports_seen_u0(xhci))) { 1154 del_timer_sync(&xhci->comp_mode_recovery_timer); 1155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1156 "Compliance Mode Recovery Timer deleted!"); 1157 } 1158 1159 /* Let the USB core know _both_ roothubs lost power. */ 1160 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1161 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1162 1163 xhci_dbg(xhci, "Stop HCD\n"); 1164 xhci_halt(xhci); 1165 xhci_zero_64b_regs(xhci); 1166 retval = xhci_reset(xhci); 1167 spin_unlock_irq(&xhci->lock); 1168 if (retval) 1169 return retval; 1170 xhci_cleanup_msix(xhci); 1171 1172 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1173 temp = readl(&xhci->op_regs->status); 1174 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1175 temp = readl(&xhci->ir_set->irq_pending); 1176 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1177 1178 xhci_dbg(xhci, "cleaning up memory\n"); 1179 xhci_mem_cleanup(xhci); 1180 xhci_debugfs_exit(xhci); 1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1182 readl(&xhci->op_regs->status)); 1183 1184 /* USB core calls the PCI reinit and start functions twice: 1185 * first with the primary HCD, and then with the secondary HCD. 1186 * If we don't do the same, the host will never be started. 1187 */ 1188 if (!usb_hcd_is_primary_hcd(hcd)) 1189 secondary_hcd = hcd; 1190 else 1191 secondary_hcd = xhci->shared_hcd; 1192 1193 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1194 retval = xhci_init(hcd->primary_hcd); 1195 if (retval) 1196 return retval; 1197 comp_timer_running = true; 1198 1199 xhci_dbg(xhci, "Start the primary HCD\n"); 1200 retval = xhci_run(hcd->primary_hcd); 1201 if (!retval) { 1202 xhci_dbg(xhci, "Start the secondary HCD\n"); 1203 retval = xhci_run(secondary_hcd); 1204 } 1205 hcd->state = HC_STATE_SUSPENDED; 1206 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1207 goto done; 1208 } 1209 1210 /* step 4: set Run/Stop bit */ 1211 command = readl(&xhci->op_regs->command); 1212 command |= CMD_RUN; 1213 writel(command, &xhci->op_regs->command); 1214 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1215 0, 250 * 1000); 1216 1217 /* step 5: walk topology and initialize portsc, 1218 * portpmsc and portli 1219 */ 1220 /* this is done in bus_resume */ 1221 1222 /* step 6: restart each of the previously 1223 * Running endpoints by ringing their doorbells 1224 */ 1225 1226 spin_unlock_irq(&xhci->lock); 1227 1228 xhci_dbc_resume(xhci); 1229 1230 done: 1231 if (retval == 0) { 1232 /* 1233 * Resume roothubs only if there are pending events. 1234 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1235 * the first wake signalling failed, give it that chance. 1236 */ 1237 pending_portevent = xhci_pending_portevent(xhci); 1238 if (!pending_portevent) { 1239 msleep(120); 1240 pending_portevent = xhci_pending_portevent(xhci); 1241 } 1242 1243 if (pending_portevent) { 1244 usb_hcd_resume_root_hub(xhci->shared_hcd); 1245 usb_hcd_resume_root_hub(hcd); 1246 } 1247 } 1248 /* 1249 * If system is subject to the Quirk, Compliance Mode Timer needs to 1250 * be re-initialized Always after a system resume. Ports are subject 1251 * to suffer the Compliance Mode issue again. It doesn't matter if 1252 * ports have entered previously to U0 before system's suspension. 1253 */ 1254 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1255 compliance_mode_recovery_timer_init(xhci); 1256 1257 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1258 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1259 1260 /* Re-enable port polling. */ 1261 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1262 __func__, hcd->self.busnum); 1263 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1264 usb_hcd_poll_rh_status(xhci->shared_hcd); 1265 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1266 usb_hcd_poll_rh_status(hcd); 1267 1268 return retval; 1269 } 1270 EXPORT_SYMBOL_GPL(xhci_resume); 1271 #endif /* CONFIG_PM */ 1272 1273 /*-------------------------------------------------------------------------*/ 1274 1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1276 { 1277 void *temp; 1278 int ret = 0; 1279 unsigned int buf_len; 1280 enum dma_data_direction dir; 1281 1282 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1283 buf_len = urb->transfer_buffer_length; 1284 1285 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1286 dev_to_node(hcd->self.sysdev)); 1287 1288 if (usb_urb_dir_out(urb)) 1289 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1290 temp, buf_len, 0); 1291 1292 urb->transfer_buffer = temp; 1293 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1294 urb->transfer_buffer, 1295 urb->transfer_buffer_length, 1296 dir); 1297 1298 if (dma_mapping_error(hcd->self.sysdev, 1299 urb->transfer_dma)) { 1300 ret = -EAGAIN; 1301 kfree(temp); 1302 } else { 1303 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1304 } 1305 1306 return ret; 1307 } 1308 1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1310 struct urb *urb) 1311 { 1312 bool ret = false; 1313 unsigned int i; 1314 unsigned int len = 0; 1315 unsigned int trb_size; 1316 unsigned int max_pkt; 1317 struct scatterlist *sg; 1318 struct scatterlist *tail_sg; 1319 1320 tail_sg = urb->sg; 1321 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1322 1323 if (!urb->num_sgs) 1324 return ret; 1325 1326 if (urb->dev->speed >= USB_SPEED_SUPER) 1327 trb_size = TRB_CACHE_SIZE_SS; 1328 else 1329 trb_size = TRB_CACHE_SIZE_HS; 1330 1331 if (urb->transfer_buffer_length != 0 && 1332 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1333 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1334 len = len + sg->length; 1335 if (i > trb_size - 2) { 1336 len = len - tail_sg->length; 1337 if (len < max_pkt) { 1338 ret = true; 1339 break; 1340 } 1341 1342 tail_sg = sg_next(tail_sg); 1343 } 1344 } 1345 } 1346 return ret; 1347 } 1348 1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1350 { 1351 unsigned int len; 1352 unsigned int buf_len; 1353 enum dma_data_direction dir; 1354 1355 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1356 1357 buf_len = urb->transfer_buffer_length; 1358 1359 if (IS_ENABLED(CONFIG_HAS_DMA) && 1360 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1361 dma_unmap_single(hcd->self.sysdev, 1362 urb->transfer_dma, 1363 urb->transfer_buffer_length, 1364 dir); 1365 1366 if (usb_urb_dir_in(urb)) { 1367 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1368 urb->transfer_buffer, 1369 buf_len, 1370 0); 1371 if (len != buf_len) { 1372 xhci_dbg(hcd_to_xhci(hcd), 1373 "Copy from tmp buf to urb sg list failed\n"); 1374 urb->actual_length = len; 1375 } 1376 } 1377 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1378 kfree(urb->transfer_buffer); 1379 urb->transfer_buffer = NULL; 1380 } 1381 1382 /* 1383 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1384 * we'll copy the actual data into the TRB address register. This is limited to 1385 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1386 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1387 */ 1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1389 gfp_t mem_flags) 1390 { 1391 struct xhci_hcd *xhci; 1392 1393 xhci = hcd_to_xhci(hcd); 1394 1395 if (xhci_urb_suitable_for_idt(urb)) 1396 return 0; 1397 1398 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1399 if (xhci_urb_temp_buffer_required(hcd, urb)) 1400 return xhci_map_temp_buffer(hcd, urb); 1401 } 1402 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1403 } 1404 1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1406 { 1407 struct xhci_hcd *xhci; 1408 bool unmap_temp_buf = false; 1409 1410 xhci = hcd_to_xhci(hcd); 1411 1412 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1413 unmap_temp_buf = true; 1414 1415 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1416 xhci_unmap_temp_buf(hcd, urb); 1417 else 1418 usb_hcd_unmap_urb_for_dma(hcd, urb); 1419 } 1420 1421 /** 1422 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1423 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1424 * value to right shift 1 for the bitmask. 1425 * 1426 * Index = (epnum * 2) + direction - 1, 1427 * where direction = 0 for OUT, 1 for IN. 1428 * For control endpoints, the IN index is used (OUT index is unused), so 1429 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1430 */ 1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1432 { 1433 unsigned int index; 1434 if (usb_endpoint_xfer_control(desc)) 1435 index = (unsigned int) (usb_endpoint_num(desc)*2); 1436 else 1437 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1438 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1439 return index; 1440 } 1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1442 1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1444 * address from the XHCI endpoint index. 1445 */ 1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1447 { 1448 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1449 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1450 return direction | number; 1451 } 1452 1453 /* Find the flag for this endpoint (for use in the control context). Use the 1454 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1455 * bit 1, etc. 1456 */ 1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1458 { 1459 return 1 << (xhci_get_endpoint_index(desc) + 1); 1460 } 1461 1462 /* Compute the last valid endpoint context index. Basically, this is the 1463 * endpoint index plus one. For slot contexts with more than valid endpoint, 1464 * we find the most significant bit set in the added contexts flags. 1465 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1466 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1467 */ 1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1469 { 1470 return fls(added_ctxs) - 1; 1471 } 1472 1473 /* Returns 1 if the arguments are OK; 1474 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1475 */ 1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1477 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1478 const char *func) { 1479 struct xhci_hcd *xhci; 1480 struct xhci_virt_device *virt_dev; 1481 1482 if (!hcd || (check_ep && !ep) || !udev) { 1483 pr_debug("xHCI %s called with invalid args\n", func); 1484 return -EINVAL; 1485 } 1486 if (!udev->parent) { 1487 pr_debug("xHCI %s called for root hub\n", func); 1488 return 0; 1489 } 1490 1491 xhci = hcd_to_xhci(hcd); 1492 if (check_virt_dev) { 1493 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1494 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1495 func); 1496 return -EINVAL; 1497 } 1498 1499 virt_dev = xhci->devs[udev->slot_id]; 1500 if (virt_dev->udev != udev) { 1501 xhci_dbg(xhci, "xHCI %s called with udev and " 1502 "virt_dev does not match\n", func); 1503 return -EINVAL; 1504 } 1505 } 1506 1507 if (xhci->xhc_state & XHCI_STATE_HALTED) 1508 return -ENODEV; 1509 1510 return 1; 1511 } 1512 1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1514 struct usb_device *udev, struct xhci_command *command, 1515 bool ctx_change, bool must_succeed); 1516 1517 /* 1518 * Full speed devices may have a max packet size greater than 8 bytes, but the 1519 * USB core doesn't know that until it reads the first 8 bytes of the 1520 * descriptor. If the usb_device's max packet size changes after that point, 1521 * we need to issue an evaluate context command and wait on it. 1522 */ 1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1524 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1525 { 1526 struct xhci_container_ctx *out_ctx; 1527 struct xhci_input_control_ctx *ctrl_ctx; 1528 struct xhci_ep_ctx *ep_ctx; 1529 struct xhci_command *command; 1530 int max_packet_size; 1531 int hw_max_packet_size; 1532 int ret = 0; 1533 1534 out_ctx = xhci->devs[slot_id]->out_ctx; 1535 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1536 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1537 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1538 if (hw_max_packet_size != max_packet_size) { 1539 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1540 "Max Packet Size for ep 0 changed."); 1541 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1542 "Max packet size in usb_device = %d", 1543 max_packet_size); 1544 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1545 "Max packet size in xHCI HW = %d", 1546 hw_max_packet_size); 1547 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1548 "Issuing evaluate context command."); 1549 1550 /* Set up the input context flags for the command */ 1551 /* FIXME: This won't work if a non-default control endpoint 1552 * changes max packet sizes. 1553 */ 1554 1555 command = xhci_alloc_command(xhci, true, mem_flags); 1556 if (!command) 1557 return -ENOMEM; 1558 1559 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1560 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1561 if (!ctrl_ctx) { 1562 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1563 __func__); 1564 ret = -ENOMEM; 1565 goto command_cleanup; 1566 } 1567 /* Set up the modified control endpoint 0 */ 1568 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1569 xhci->devs[slot_id]->out_ctx, ep_index); 1570 1571 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1572 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1573 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1574 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1575 1576 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1577 ctrl_ctx->drop_flags = 0; 1578 1579 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1580 true, false); 1581 1582 /* Clean up the input context for later use by bandwidth 1583 * functions. 1584 */ 1585 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1586 command_cleanup: 1587 kfree(command->completion); 1588 kfree(command); 1589 } 1590 return ret; 1591 } 1592 1593 /* 1594 * non-error returns are a promise to giveback() the urb later 1595 * we drop ownership so next owner (or urb unlink) can get it 1596 */ 1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1598 { 1599 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1600 unsigned long flags; 1601 int ret = 0; 1602 unsigned int slot_id, ep_index; 1603 unsigned int *ep_state; 1604 struct urb_priv *urb_priv; 1605 int num_tds; 1606 1607 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1608 true, true, __func__) <= 0) 1609 return -EINVAL; 1610 1611 slot_id = urb->dev->slot_id; 1612 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1613 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1614 1615 if (!HCD_HW_ACCESSIBLE(hcd)) 1616 return -ESHUTDOWN; 1617 1618 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1619 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1620 return -ENODEV; 1621 } 1622 1623 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1624 num_tds = urb->number_of_packets; 1625 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1626 urb->transfer_buffer_length > 0 && 1627 urb->transfer_flags & URB_ZERO_PACKET && 1628 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1629 num_tds = 2; 1630 else 1631 num_tds = 1; 1632 1633 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1634 if (!urb_priv) 1635 return -ENOMEM; 1636 1637 urb_priv->num_tds = num_tds; 1638 urb_priv->num_tds_done = 0; 1639 urb->hcpriv = urb_priv; 1640 1641 trace_xhci_urb_enqueue(urb); 1642 1643 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1644 /* Check to see if the max packet size for the default control 1645 * endpoint changed during FS device enumeration 1646 */ 1647 if (urb->dev->speed == USB_SPEED_FULL) { 1648 ret = xhci_check_maxpacket(xhci, slot_id, 1649 ep_index, urb, mem_flags); 1650 if (ret < 0) { 1651 xhci_urb_free_priv(urb_priv); 1652 urb->hcpriv = NULL; 1653 return ret; 1654 } 1655 } 1656 } 1657 1658 spin_lock_irqsave(&xhci->lock, flags); 1659 1660 if (xhci->xhc_state & XHCI_STATE_DYING) { 1661 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1662 urb->ep->desc.bEndpointAddress, urb); 1663 ret = -ESHUTDOWN; 1664 goto free_priv; 1665 } 1666 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1667 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1668 *ep_state); 1669 ret = -EINVAL; 1670 goto free_priv; 1671 } 1672 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1673 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1674 ret = -EINVAL; 1675 goto free_priv; 1676 } 1677 1678 switch (usb_endpoint_type(&urb->ep->desc)) { 1679 1680 case USB_ENDPOINT_XFER_CONTROL: 1681 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1682 slot_id, ep_index); 1683 break; 1684 case USB_ENDPOINT_XFER_BULK: 1685 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1686 slot_id, ep_index); 1687 break; 1688 case USB_ENDPOINT_XFER_INT: 1689 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1690 slot_id, ep_index); 1691 break; 1692 case USB_ENDPOINT_XFER_ISOC: 1693 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1694 slot_id, ep_index); 1695 } 1696 1697 if (ret) { 1698 free_priv: 1699 xhci_urb_free_priv(urb_priv); 1700 urb->hcpriv = NULL; 1701 } 1702 spin_unlock_irqrestore(&xhci->lock, flags); 1703 return ret; 1704 } 1705 1706 /* 1707 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1708 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1709 * should pick up where it left off in the TD, unless a Set Transfer Ring 1710 * Dequeue Pointer is issued. 1711 * 1712 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1713 * the ring. Since the ring is a contiguous structure, they can't be physically 1714 * removed. Instead, there are two options: 1715 * 1716 * 1) If the HC is in the middle of processing the URB to be canceled, we 1717 * simply move the ring's dequeue pointer past those TRBs using the Set 1718 * Transfer Ring Dequeue Pointer command. This will be the common case, 1719 * when drivers timeout on the last submitted URB and attempt to cancel. 1720 * 1721 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1722 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1723 * HC will need to invalidate the any TRBs it has cached after the stop 1724 * endpoint command, as noted in the xHCI 0.95 errata. 1725 * 1726 * 3) The TD may have completed by the time the Stop Endpoint Command 1727 * completes, so software needs to handle that case too. 1728 * 1729 * This function should protect against the TD enqueueing code ringing the 1730 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1731 * It also needs to account for multiple cancellations on happening at the same 1732 * time for the same endpoint. 1733 * 1734 * Note that this function can be called in any context, or so says 1735 * usb_hcd_unlink_urb() 1736 */ 1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1738 { 1739 unsigned long flags; 1740 int ret, i; 1741 u32 temp; 1742 struct xhci_hcd *xhci; 1743 struct urb_priv *urb_priv; 1744 struct xhci_td *td; 1745 unsigned int ep_index; 1746 struct xhci_ring *ep_ring; 1747 struct xhci_virt_ep *ep; 1748 struct xhci_command *command; 1749 struct xhci_virt_device *vdev; 1750 1751 xhci = hcd_to_xhci(hcd); 1752 spin_lock_irqsave(&xhci->lock, flags); 1753 1754 trace_xhci_urb_dequeue(urb); 1755 1756 /* Make sure the URB hasn't completed or been unlinked already */ 1757 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1758 if (ret) 1759 goto done; 1760 1761 /* give back URB now if we can't queue it for cancel */ 1762 vdev = xhci->devs[urb->dev->slot_id]; 1763 urb_priv = urb->hcpriv; 1764 if (!vdev || !urb_priv) 1765 goto err_giveback; 1766 1767 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1768 ep = &vdev->eps[ep_index]; 1769 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1770 if (!ep || !ep_ring) 1771 goto err_giveback; 1772 1773 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1774 temp = readl(&xhci->op_regs->status); 1775 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1776 xhci_hc_died(xhci); 1777 goto done; 1778 } 1779 1780 /* 1781 * check ring is not re-allocated since URB was enqueued. If it is, then 1782 * make sure none of the ring related pointers in this URB private data 1783 * are touched, such as td_list, otherwise we overwrite freed data 1784 */ 1785 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1786 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1787 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1788 td = &urb_priv->td[i]; 1789 if (!list_empty(&td->cancelled_td_list)) 1790 list_del_init(&td->cancelled_td_list); 1791 } 1792 goto err_giveback; 1793 } 1794 1795 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1796 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1797 "HC halted, freeing TD manually."); 1798 for (i = urb_priv->num_tds_done; 1799 i < urb_priv->num_tds; 1800 i++) { 1801 td = &urb_priv->td[i]; 1802 if (!list_empty(&td->td_list)) 1803 list_del_init(&td->td_list); 1804 if (!list_empty(&td->cancelled_td_list)) 1805 list_del_init(&td->cancelled_td_list); 1806 } 1807 goto err_giveback; 1808 } 1809 1810 i = urb_priv->num_tds_done; 1811 if (i < urb_priv->num_tds) 1812 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1813 "Cancel URB %p, dev %s, ep 0x%x, " 1814 "starting at offset 0x%llx", 1815 urb, urb->dev->devpath, 1816 urb->ep->desc.bEndpointAddress, 1817 (unsigned long long) xhci_trb_virt_to_dma( 1818 urb_priv->td[i].start_seg, 1819 urb_priv->td[i].first_trb)); 1820 1821 for (; i < urb_priv->num_tds; i++) { 1822 td = &urb_priv->td[i]; 1823 /* TD can already be on cancelled list if ep halted on it */ 1824 if (list_empty(&td->cancelled_td_list)) { 1825 td->cancel_status = TD_DIRTY; 1826 list_add_tail(&td->cancelled_td_list, 1827 &ep->cancelled_td_list); 1828 } 1829 } 1830 1831 /* Queue a stop endpoint command, but only if this is 1832 * the first cancellation to be handled. 1833 */ 1834 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1835 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1836 if (!command) { 1837 ret = -ENOMEM; 1838 goto done; 1839 } 1840 ep->ep_state |= EP_STOP_CMD_PENDING; 1841 ep->stop_cmd_timer.expires = jiffies + 1842 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1843 add_timer(&ep->stop_cmd_timer); 1844 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1845 ep_index, 0); 1846 xhci_ring_cmd_db(xhci); 1847 } 1848 done: 1849 spin_unlock_irqrestore(&xhci->lock, flags); 1850 return ret; 1851 1852 err_giveback: 1853 if (urb_priv) 1854 xhci_urb_free_priv(urb_priv); 1855 usb_hcd_unlink_urb_from_ep(hcd, urb); 1856 spin_unlock_irqrestore(&xhci->lock, flags); 1857 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1858 return ret; 1859 } 1860 1861 /* Drop an endpoint from a new bandwidth configuration for this device. 1862 * Only one call to this function is allowed per endpoint before 1863 * check_bandwidth() or reset_bandwidth() must be called. 1864 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1865 * add the endpoint to the schedule with possibly new parameters denoted by a 1866 * different endpoint descriptor in usb_host_endpoint. 1867 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1868 * not allowed. 1869 * 1870 * The USB core will not allow URBs to be queued to an endpoint that is being 1871 * disabled, so there's no need for mutual exclusion to protect 1872 * the xhci->devs[slot_id] structure. 1873 */ 1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1875 struct usb_host_endpoint *ep) 1876 { 1877 struct xhci_hcd *xhci; 1878 struct xhci_container_ctx *in_ctx, *out_ctx; 1879 struct xhci_input_control_ctx *ctrl_ctx; 1880 unsigned int ep_index; 1881 struct xhci_ep_ctx *ep_ctx; 1882 u32 drop_flag; 1883 u32 new_add_flags, new_drop_flags; 1884 int ret; 1885 1886 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1887 if (ret <= 0) 1888 return ret; 1889 xhci = hcd_to_xhci(hcd); 1890 if (xhci->xhc_state & XHCI_STATE_DYING) 1891 return -ENODEV; 1892 1893 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1894 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1895 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1896 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1897 __func__, drop_flag); 1898 return 0; 1899 } 1900 1901 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1902 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1903 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1904 if (!ctrl_ctx) { 1905 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1906 __func__); 1907 return 0; 1908 } 1909 1910 ep_index = xhci_get_endpoint_index(&ep->desc); 1911 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1912 /* If the HC already knows the endpoint is disabled, 1913 * or the HCD has noted it is disabled, ignore this request 1914 */ 1915 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1916 le32_to_cpu(ctrl_ctx->drop_flags) & 1917 xhci_get_endpoint_flag(&ep->desc)) { 1918 /* Do not warn when called after a usb_device_reset */ 1919 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1920 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1921 __func__, ep); 1922 return 0; 1923 } 1924 1925 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1926 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1927 1928 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1929 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1930 1931 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1932 1933 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1934 1935 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1936 (unsigned int) ep->desc.bEndpointAddress, 1937 udev->slot_id, 1938 (unsigned int) new_drop_flags, 1939 (unsigned int) new_add_flags); 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1943 1944 /* Add an endpoint to a new possible bandwidth configuration for this device. 1945 * Only one call to this function is allowed per endpoint before 1946 * check_bandwidth() or reset_bandwidth() must be called. 1947 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1948 * add the endpoint to the schedule with possibly new parameters denoted by a 1949 * different endpoint descriptor in usb_host_endpoint. 1950 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1951 * not allowed. 1952 * 1953 * The USB core will not allow URBs to be queued to an endpoint until the 1954 * configuration or alt setting is installed in the device, so there's no need 1955 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1956 */ 1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1958 struct usb_host_endpoint *ep) 1959 { 1960 struct xhci_hcd *xhci; 1961 struct xhci_container_ctx *in_ctx; 1962 unsigned int ep_index; 1963 struct xhci_input_control_ctx *ctrl_ctx; 1964 struct xhci_ep_ctx *ep_ctx; 1965 u32 added_ctxs; 1966 u32 new_add_flags, new_drop_flags; 1967 struct xhci_virt_device *virt_dev; 1968 int ret = 0; 1969 1970 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1971 if (ret <= 0) { 1972 /* So we won't queue a reset ep command for a root hub */ 1973 ep->hcpriv = NULL; 1974 return ret; 1975 } 1976 xhci = hcd_to_xhci(hcd); 1977 if (xhci->xhc_state & XHCI_STATE_DYING) 1978 return -ENODEV; 1979 1980 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1981 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1982 /* FIXME when we have to issue an evaluate endpoint command to 1983 * deal with ep0 max packet size changing once we get the 1984 * descriptors 1985 */ 1986 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1987 __func__, added_ctxs); 1988 return 0; 1989 } 1990 1991 virt_dev = xhci->devs[udev->slot_id]; 1992 in_ctx = virt_dev->in_ctx; 1993 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1994 if (!ctrl_ctx) { 1995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1996 __func__); 1997 return 0; 1998 } 1999 2000 ep_index = xhci_get_endpoint_index(&ep->desc); 2001 /* If this endpoint is already in use, and the upper layers are trying 2002 * to add it again without dropping it, reject the addition. 2003 */ 2004 if (virt_dev->eps[ep_index].ring && 2005 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2006 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2007 "without dropping it.\n", 2008 (unsigned int) ep->desc.bEndpointAddress); 2009 return -EINVAL; 2010 } 2011 2012 /* If the HCD has already noted the endpoint is enabled, 2013 * ignore this request. 2014 */ 2015 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2016 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2017 __func__, ep); 2018 return 0; 2019 } 2020 2021 /* 2022 * Configuration and alternate setting changes must be done in 2023 * process context, not interrupt context (or so documenation 2024 * for usb_set_interface() and usb_set_configuration() claim). 2025 */ 2026 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2027 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2028 __func__, ep->desc.bEndpointAddress); 2029 return -ENOMEM; 2030 } 2031 2032 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2033 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2034 2035 /* If xhci_endpoint_disable() was called for this endpoint, but the 2036 * xHC hasn't been notified yet through the check_bandwidth() call, 2037 * this re-adds a new state for the endpoint from the new endpoint 2038 * descriptors. We must drop and re-add this endpoint, so we leave the 2039 * drop flags alone. 2040 */ 2041 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2042 2043 /* Store the usb_device pointer for later use */ 2044 ep->hcpriv = udev; 2045 2046 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2047 trace_xhci_add_endpoint(ep_ctx); 2048 2049 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2050 (unsigned int) ep->desc.bEndpointAddress, 2051 udev->slot_id, 2052 (unsigned int) new_drop_flags, 2053 (unsigned int) new_add_flags); 2054 return 0; 2055 } 2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2057 2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2059 { 2060 struct xhci_input_control_ctx *ctrl_ctx; 2061 struct xhci_ep_ctx *ep_ctx; 2062 struct xhci_slot_ctx *slot_ctx; 2063 int i; 2064 2065 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2066 if (!ctrl_ctx) { 2067 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2068 __func__); 2069 return; 2070 } 2071 2072 /* When a device's add flag and drop flag are zero, any subsequent 2073 * configure endpoint command will leave that endpoint's state 2074 * untouched. Make sure we don't leave any old state in the input 2075 * endpoint contexts. 2076 */ 2077 ctrl_ctx->drop_flags = 0; 2078 ctrl_ctx->add_flags = 0; 2079 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2080 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2081 /* Endpoint 0 is always valid */ 2082 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2083 for (i = 1; i < 31; i++) { 2084 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2085 ep_ctx->ep_info = 0; 2086 ep_ctx->ep_info2 = 0; 2087 ep_ctx->deq = 0; 2088 ep_ctx->tx_info = 0; 2089 } 2090 } 2091 2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2093 struct usb_device *udev, u32 *cmd_status) 2094 { 2095 int ret; 2096 2097 switch (*cmd_status) { 2098 case COMP_COMMAND_ABORTED: 2099 case COMP_COMMAND_RING_STOPPED: 2100 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2101 ret = -ETIME; 2102 break; 2103 case COMP_RESOURCE_ERROR: 2104 dev_warn(&udev->dev, 2105 "Not enough host controller resources for new device state.\n"); 2106 ret = -ENOMEM; 2107 /* FIXME: can we allocate more resources for the HC? */ 2108 break; 2109 case COMP_BANDWIDTH_ERROR: 2110 case COMP_SECONDARY_BANDWIDTH_ERROR: 2111 dev_warn(&udev->dev, 2112 "Not enough bandwidth for new device state.\n"); 2113 ret = -ENOSPC; 2114 /* FIXME: can we go back to the old state? */ 2115 break; 2116 case COMP_TRB_ERROR: 2117 /* the HCD set up something wrong */ 2118 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2119 "add flag = 1, " 2120 "and endpoint is not disabled.\n"); 2121 ret = -EINVAL; 2122 break; 2123 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2124 dev_warn(&udev->dev, 2125 "ERROR: Incompatible device for endpoint configure command.\n"); 2126 ret = -ENODEV; 2127 break; 2128 case COMP_SUCCESS: 2129 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2130 "Successful Endpoint Configure command"); 2131 ret = 0; 2132 break; 2133 default: 2134 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2135 *cmd_status); 2136 ret = -EINVAL; 2137 break; 2138 } 2139 return ret; 2140 } 2141 2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2143 struct usb_device *udev, u32 *cmd_status) 2144 { 2145 int ret; 2146 2147 switch (*cmd_status) { 2148 case COMP_COMMAND_ABORTED: 2149 case COMP_COMMAND_RING_STOPPED: 2150 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2151 ret = -ETIME; 2152 break; 2153 case COMP_PARAMETER_ERROR: 2154 dev_warn(&udev->dev, 2155 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2156 ret = -EINVAL; 2157 break; 2158 case COMP_SLOT_NOT_ENABLED_ERROR: 2159 dev_warn(&udev->dev, 2160 "WARN: slot not enabled for evaluate context command.\n"); 2161 ret = -EINVAL; 2162 break; 2163 case COMP_CONTEXT_STATE_ERROR: 2164 dev_warn(&udev->dev, 2165 "WARN: invalid context state for evaluate context command.\n"); 2166 ret = -EINVAL; 2167 break; 2168 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2169 dev_warn(&udev->dev, 2170 "ERROR: Incompatible device for evaluate context command.\n"); 2171 ret = -ENODEV; 2172 break; 2173 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2174 /* Max Exit Latency too large error */ 2175 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2176 ret = -EINVAL; 2177 break; 2178 case COMP_SUCCESS: 2179 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2180 "Successful evaluate context command"); 2181 ret = 0; 2182 break; 2183 default: 2184 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2185 *cmd_status); 2186 ret = -EINVAL; 2187 break; 2188 } 2189 return ret; 2190 } 2191 2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2193 struct xhci_input_control_ctx *ctrl_ctx) 2194 { 2195 u32 valid_add_flags; 2196 u32 valid_drop_flags; 2197 2198 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2199 * (bit 1). The default control endpoint is added during the Address 2200 * Device command and is never removed until the slot is disabled. 2201 */ 2202 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2203 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2204 2205 /* Use hweight32 to count the number of ones in the add flags, or 2206 * number of endpoints added. Don't count endpoints that are changed 2207 * (both added and dropped). 2208 */ 2209 return hweight32(valid_add_flags) - 2210 hweight32(valid_add_flags & valid_drop_flags); 2211 } 2212 2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2214 struct xhci_input_control_ctx *ctrl_ctx) 2215 { 2216 u32 valid_add_flags; 2217 u32 valid_drop_flags; 2218 2219 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2220 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2221 2222 return hweight32(valid_drop_flags) - 2223 hweight32(valid_add_flags & valid_drop_flags); 2224 } 2225 2226 /* 2227 * We need to reserve the new number of endpoints before the configure endpoint 2228 * command completes. We can't subtract the dropped endpoints from the number 2229 * of active endpoints until the command completes because we can oversubscribe 2230 * the host in this case: 2231 * 2232 * - the first configure endpoint command drops more endpoints than it adds 2233 * - a second configure endpoint command that adds more endpoints is queued 2234 * - the first configure endpoint command fails, so the config is unchanged 2235 * - the second command may succeed, even though there isn't enough resources 2236 * 2237 * Must be called with xhci->lock held. 2238 */ 2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2240 struct xhci_input_control_ctx *ctrl_ctx) 2241 { 2242 u32 added_eps; 2243 2244 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2245 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Not enough ep ctxs: " 2248 "%u active, need to add %u, limit is %u.", 2249 xhci->num_active_eps, added_eps, 2250 xhci->limit_active_eps); 2251 return -ENOMEM; 2252 } 2253 xhci->num_active_eps += added_eps; 2254 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2255 "Adding %u ep ctxs, %u now active.", added_eps, 2256 xhci->num_active_eps); 2257 return 0; 2258 } 2259 2260 /* 2261 * The configure endpoint was failed by the xHC for some other reason, so we 2262 * need to revert the resources that failed configuration would have used. 2263 * 2264 * Must be called with xhci->lock held. 2265 */ 2266 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2267 struct xhci_input_control_ctx *ctrl_ctx) 2268 { 2269 u32 num_failed_eps; 2270 2271 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2272 xhci->num_active_eps -= num_failed_eps; 2273 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2274 "Removing %u failed ep ctxs, %u now active.", 2275 num_failed_eps, 2276 xhci->num_active_eps); 2277 } 2278 2279 /* 2280 * Now that the command has completed, clean up the active endpoint count by 2281 * subtracting out the endpoints that were dropped (but not changed). 2282 * 2283 * Must be called with xhci->lock held. 2284 */ 2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2286 struct xhci_input_control_ctx *ctrl_ctx) 2287 { 2288 u32 num_dropped_eps; 2289 2290 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2291 xhci->num_active_eps -= num_dropped_eps; 2292 if (num_dropped_eps) 2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2294 "Removing %u dropped ep ctxs, %u now active.", 2295 num_dropped_eps, 2296 xhci->num_active_eps); 2297 } 2298 2299 static unsigned int xhci_get_block_size(struct usb_device *udev) 2300 { 2301 switch (udev->speed) { 2302 case USB_SPEED_LOW: 2303 case USB_SPEED_FULL: 2304 return FS_BLOCK; 2305 case USB_SPEED_HIGH: 2306 return HS_BLOCK; 2307 case USB_SPEED_SUPER: 2308 case USB_SPEED_SUPER_PLUS: 2309 return SS_BLOCK; 2310 case USB_SPEED_UNKNOWN: 2311 case USB_SPEED_WIRELESS: 2312 default: 2313 /* Should never happen */ 2314 return 1; 2315 } 2316 } 2317 2318 static unsigned int 2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2320 { 2321 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2322 return LS_OVERHEAD; 2323 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2324 return FS_OVERHEAD; 2325 return HS_OVERHEAD; 2326 } 2327 2328 /* If we are changing a LS/FS device under a HS hub, 2329 * make sure (if we are activating a new TT) that the HS bus has enough 2330 * bandwidth for this new TT. 2331 */ 2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2333 struct xhci_virt_device *virt_dev, 2334 int old_active_eps) 2335 { 2336 struct xhci_interval_bw_table *bw_table; 2337 struct xhci_tt_bw_info *tt_info; 2338 2339 /* Find the bandwidth table for the root port this TT is attached to. */ 2340 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2341 tt_info = virt_dev->tt_info; 2342 /* If this TT already had active endpoints, the bandwidth for this TT 2343 * has already been added. Removing all periodic endpoints (and thus 2344 * making the TT enactive) will only decrease the bandwidth used. 2345 */ 2346 if (old_active_eps) 2347 return 0; 2348 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2349 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2350 return -ENOMEM; 2351 return 0; 2352 } 2353 /* Not sure why we would have no new active endpoints... 2354 * 2355 * Maybe because of an Evaluate Context change for a hub update or a 2356 * control endpoint 0 max packet size change? 2357 * FIXME: skip the bandwidth calculation in that case. 2358 */ 2359 return 0; 2360 } 2361 2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2363 struct xhci_virt_device *virt_dev) 2364 { 2365 unsigned int bw_reserved; 2366 2367 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2368 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2369 return -ENOMEM; 2370 2371 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2372 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2373 return -ENOMEM; 2374 2375 return 0; 2376 } 2377 2378 /* 2379 * This algorithm is a very conservative estimate of the worst-case scheduling 2380 * scenario for any one interval. The hardware dynamically schedules the 2381 * packets, so we can't tell which microframe could be the limiting factor in 2382 * the bandwidth scheduling. This only takes into account periodic endpoints. 2383 * 2384 * Obviously, we can't solve an NP complete problem to find the minimum worst 2385 * case scenario. Instead, we come up with an estimate that is no less than 2386 * the worst case bandwidth used for any one microframe, but may be an 2387 * over-estimate. 2388 * 2389 * We walk the requirements for each endpoint by interval, starting with the 2390 * smallest interval, and place packets in the schedule where there is only one 2391 * possible way to schedule packets for that interval. In order to simplify 2392 * this algorithm, we record the largest max packet size for each interval, and 2393 * assume all packets will be that size. 2394 * 2395 * For interval 0, we obviously must schedule all packets for each interval. 2396 * The bandwidth for interval 0 is just the amount of data to be transmitted 2397 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2398 * the number of packets). 2399 * 2400 * For interval 1, we have two possible microframes to schedule those packets 2401 * in. For this algorithm, if we can schedule the same number of packets for 2402 * each possible scheduling opportunity (each microframe), we will do so. The 2403 * remaining number of packets will be saved to be transmitted in the gaps in 2404 * the next interval's scheduling sequence. 2405 * 2406 * As we move those remaining packets to be scheduled with interval 2 packets, 2407 * we have to double the number of remaining packets to transmit. This is 2408 * because the intervals are actually powers of 2, and we would be transmitting 2409 * the previous interval's packets twice in this interval. We also have to be 2410 * sure that when we look at the largest max packet size for this interval, we 2411 * also look at the largest max packet size for the remaining packets and take 2412 * the greater of the two. 2413 * 2414 * The algorithm continues to evenly distribute packets in each scheduling 2415 * opportunity, and push the remaining packets out, until we get to the last 2416 * interval. Then those packets and their associated overhead are just added 2417 * to the bandwidth used. 2418 */ 2419 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2420 struct xhci_virt_device *virt_dev, 2421 int old_active_eps) 2422 { 2423 unsigned int bw_reserved; 2424 unsigned int max_bandwidth; 2425 unsigned int bw_used; 2426 unsigned int block_size; 2427 struct xhci_interval_bw_table *bw_table; 2428 unsigned int packet_size = 0; 2429 unsigned int overhead = 0; 2430 unsigned int packets_transmitted = 0; 2431 unsigned int packets_remaining = 0; 2432 unsigned int i; 2433 2434 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2435 return xhci_check_ss_bw(xhci, virt_dev); 2436 2437 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2438 max_bandwidth = HS_BW_LIMIT; 2439 /* Convert percent of bus BW reserved to blocks reserved */ 2440 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2441 } else { 2442 max_bandwidth = FS_BW_LIMIT; 2443 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2444 } 2445 2446 bw_table = virt_dev->bw_table; 2447 /* We need to translate the max packet size and max ESIT payloads into 2448 * the units the hardware uses. 2449 */ 2450 block_size = xhci_get_block_size(virt_dev->udev); 2451 2452 /* If we are manipulating a LS/FS device under a HS hub, double check 2453 * that the HS bus has enough bandwidth if we are activing a new TT. 2454 */ 2455 if (virt_dev->tt_info) { 2456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2457 "Recalculating BW for rootport %u", 2458 virt_dev->real_port); 2459 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2460 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2461 "newly activated TT.\n"); 2462 return -ENOMEM; 2463 } 2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2465 "Recalculating BW for TT slot %u port %u", 2466 virt_dev->tt_info->slot_id, 2467 virt_dev->tt_info->ttport); 2468 } else { 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2470 "Recalculating BW for rootport %u", 2471 virt_dev->real_port); 2472 } 2473 2474 /* Add in how much bandwidth will be used for interval zero, or the 2475 * rounded max ESIT payload + number of packets * largest overhead. 2476 */ 2477 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2478 bw_table->interval_bw[0].num_packets * 2479 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2480 2481 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2482 unsigned int bw_added; 2483 unsigned int largest_mps; 2484 unsigned int interval_overhead; 2485 2486 /* 2487 * How many packets could we transmit in this interval? 2488 * If packets didn't fit in the previous interval, we will need 2489 * to transmit that many packets twice within this interval. 2490 */ 2491 packets_remaining = 2 * packets_remaining + 2492 bw_table->interval_bw[i].num_packets; 2493 2494 /* Find the largest max packet size of this or the previous 2495 * interval. 2496 */ 2497 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2498 largest_mps = 0; 2499 else { 2500 struct xhci_virt_ep *virt_ep; 2501 struct list_head *ep_entry; 2502 2503 ep_entry = bw_table->interval_bw[i].endpoints.next; 2504 virt_ep = list_entry(ep_entry, 2505 struct xhci_virt_ep, bw_endpoint_list); 2506 /* Convert to blocks, rounding up */ 2507 largest_mps = DIV_ROUND_UP( 2508 virt_ep->bw_info.max_packet_size, 2509 block_size); 2510 } 2511 if (largest_mps > packet_size) 2512 packet_size = largest_mps; 2513 2514 /* Use the larger overhead of this or the previous interval. */ 2515 interval_overhead = xhci_get_largest_overhead( 2516 &bw_table->interval_bw[i]); 2517 if (interval_overhead > overhead) 2518 overhead = interval_overhead; 2519 2520 /* How many packets can we evenly distribute across 2521 * (1 << (i + 1)) possible scheduling opportunities? 2522 */ 2523 packets_transmitted = packets_remaining >> (i + 1); 2524 2525 /* Add in the bandwidth used for those scheduled packets */ 2526 bw_added = packets_transmitted * (overhead + packet_size); 2527 2528 /* How many packets do we have remaining to transmit? */ 2529 packets_remaining = packets_remaining % (1 << (i + 1)); 2530 2531 /* What largest max packet size should those packets have? */ 2532 /* If we've transmitted all packets, don't carry over the 2533 * largest packet size. 2534 */ 2535 if (packets_remaining == 0) { 2536 packet_size = 0; 2537 overhead = 0; 2538 } else if (packets_transmitted > 0) { 2539 /* Otherwise if we do have remaining packets, and we've 2540 * scheduled some packets in this interval, take the 2541 * largest max packet size from endpoints with this 2542 * interval. 2543 */ 2544 packet_size = largest_mps; 2545 overhead = interval_overhead; 2546 } 2547 /* Otherwise carry over packet_size and overhead from the last 2548 * time we had a remainder. 2549 */ 2550 bw_used += bw_added; 2551 if (bw_used > max_bandwidth) { 2552 xhci_warn(xhci, "Not enough bandwidth. " 2553 "Proposed: %u, Max: %u\n", 2554 bw_used, max_bandwidth); 2555 return -ENOMEM; 2556 } 2557 } 2558 /* 2559 * Ok, we know we have some packets left over after even-handedly 2560 * scheduling interval 15. We don't know which microframes they will 2561 * fit into, so we over-schedule and say they will be scheduled every 2562 * microframe. 2563 */ 2564 if (packets_remaining > 0) 2565 bw_used += overhead + packet_size; 2566 2567 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2568 unsigned int port_index = virt_dev->real_port - 1; 2569 2570 /* OK, we're manipulating a HS device attached to a 2571 * root port bandwidth domain. Include the number of active TTs 2572 * in the bandwidth used. 2573 */ 2574 bw_used += TT_HS_OVERHEAD * 2575 xhci->rh_bw[port_index].num_active_tts; 2576 } 2577 2578 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2579 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2580 "Available: %u " "percent", 2581 bw_used, max_bandwidth, bw_reserved, 2582 (max_bandwidth - bw_used - bw_reserved) * 100 / 2583 max_bandwidth); 2584 2585 bw_used += bw_reserved; 2586 if (bw_used > max_bandwidth) { 2587 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2588 bw_used, max_bandwidth); 2589 return -ENOMEM; 2590 } 2591 2592 bw_table->bw_used = bw_used; 2593 return 0; 2594 } 2595 2596 static bool xhci_is_async_ep(unsigned int ep_type) 2597 { 2598 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2599 ep_type != ISOC_IN_EP && 2600 ep_type != INT_IN_EP); 2601 } 2602 2603 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2604 { 2605 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2606 } 2607 2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2609 { 2610 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2611 2612 if (ep_bw->ep_interval == 0) 2613 return SS_OVERHEAD_BURST + 2614 (ep_bw->mult * ep_bw->num_packets * 2615 (SS_OVERHEAD + mps)); 2616 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2617 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2618 1 << ep_bw->ep_interval); 2619 2620 } 2621 2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2623 struct xhci_bw_info *ep_bw, 2624 struct xhci_interval_bw_table *bw_table, 2625 struct usb_device *udev, 2626 struct xhci_virt_ep *virt_ep, 2627 struct xhci_tt_bw_info *tt_info) 2628 { 2629 struct xhci_interval_bw *interval_bw; 2630 int normalized_interval; 2631 2632 if (xhci_is_async_ep(ep_bw->type)) 2633 return; 2634 2635 if (udev->speed >= USB_SPEED_SUPER) { 2636 if (xhci_is_sync_in_ep(ep_bw->type)) 2637 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2638 xhci_get_ss_bw_consumed(ep_bw); 2639 else 2640 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2641 xhci_get_ss_bw_consumed(ep_bw); 2642 return; 2643 } 2644 2645 /* SuperSpeed endpoints never get added to intervals in the table, so 2646 * this check is only valid for HS/FS/LS devices. 2647 */ 2648 if (list_empty(&virt_ep->bw_endpoint_list)) 2649 return; 2650 /* For LS/FS devices, we need to translate the interval expressed in 2651 * microframes to frames. 2652 */ 2653 if (udev->speed == USB_SPEED_HIGH) 2654 normalized_interval = ep_bw->ep_interval; 2655 else 2656 normalized_interval = ep_bw->ep_interval - 3; 2657 2658 if (normalized_interval == 0) 2659 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2660 interval_bw = &bw_table->interval_bw[normalized_interval]; 2661 interval_bw->num_packets -= ep_bw->num_packets; 2662 switch (udev->speed) { 2663 case USB_SPEED_LOW: 2664 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2665 break; 2666 case USB_SPEED_FULL: 2667 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2668 break; 2669 case USB_SPEED_HIGH: 2670 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2671 break; 2672 case USB_SPEED_SUPER: 2673 case USB_SPEED_SUPER_PLUS: 2674 case USB_SPEED_UNKNOWN: 2675 case USB_SPEED_WIRELESS: 2676 /* Should never happen because only LS/FS/HS endpoints will get 2677 * added to the endpoint list. 2678 */ 2679 return; 2680 } 2681 if (tt_info) 2682 tt_info->active_eps -= 1; 2683 list_del_init(&virt_ep->bw_endpoint_list); 2684 } 2685 2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2687 struct xhci_bw_info *ep_bw, 2688 struct xhci_interval_bw_table *bw_table, 2689 struct usb_device *udev, 2690 struct xhci_virt_ep *virt_ep, 2691 struct xhci_tt_bw_info *tt_info) 2692 { 2693 struct xhci_interval_bw *interval_bw; 2694 struct xhci_virt_ep *smaller_ep; 2695 int normalized_interval; 2696 2697 if (xhci_is_async_ep(ep_bw->type)) 2698 return; 2699 2700 if (udev->speed == USB_SPEED_SUPER) { 2701 if (xhci_is_sync_in_ep(ep_bw->type)) 2702 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2703 xhci_get_ss_bw_consumed(ep_bw); 2704 else 2705 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2706 xhci_get_ss_bw_consumed(ep_bw); 2707 return; 2708 } 2709 2710 /* For LS/FS devices, we need to translate the interval expressed in 2711 * microframes to frames. 2712 */ 2713 if (udev->speed == USB_SPEED_HIGH) 2714 normalized_interval = ep_bw->ep_interval; 2715 else 2716 normalized_interval = ep_bw->ep_interval - 3; 2717 2718 if (normalized_interval == 0) 2719 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2720 interval_bw = &bw_table->interval_bw[normalized_interval]; 2721 interval_bw->num_packets += ep_bw->num_packets; 2722 switch (udev->speed) { 2723 case USB_SPEED_LOW: 2724 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2725 break; 2726 case USB_SPEED_FULL: 2727 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2728 break; 2729 case USB_SPEED_HIGH: 2730 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2731 break; 2732 case USB_SPEED_SUPER: 2733 case USB_SPEED_SUPER_PLUS: 2734 case USB_SPEED_UNKNOWN: 2735 case USB_SPEED_WIRELESS: 2736 /* Should never happen because only LS/FS/HS endpoints will get 2737 * added to the endpoint list. 2738 */ 2739 return; 2740 } 2741 2742 if (tt_info) 2743 tt_info->active_eps += 1; 2744 /* Insert the endpoint into the list, largest max packet size first. */ 2745 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2746 bw_endpoint_list) { 2747 if (ep_bw->max_packet_size >= 2748 smaller_ep->bw_info.max_packet_size) { 2749 /* Add the new ep before the smaller endpoint */ 2750 list_add_tail(&virt_ep->bw_endpoint_list, 2751 &smaller_ep->bw_endpoint_list); 2752 return; 2753 } 2754 } 2755 /* Add the new endpoint at the end of the list. */ 2756 list_add_tail(&virt_ep->bw_endpoint_list, 2757 &interval_bw->endpoints); 2758 } 2759 2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2761 struct xhci_virt_device *virt_dev, 2762 int old_active_eps) 2763 { 2764 struct xhci_root_port_bw_info *rh_bw_info; 2765 if (!virt_dev->tt_info) 2766 return; 2767 2768 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2769 if (old_active_eps == 0 && 2770 virt_dev->tt_info->active_eps != 0) { 2771 rh_bw_info->num_active_tts += 1; 2772 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2773 } else if (old_active_eps != 0 && 2774 virt_dev->tt_info->active_eps == 0) { 2775 rh_bw_info->num_active_tts -= 1; 2776 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2777 } 2778 } 2779 2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2781 struct xhci_virt_device *virt_dev, 2782 struct xhci_container_ctx *in_ctx) 2783 { 2784 struct xhci_bw_info ep_bw_info[31]; 2785 int i; 2786 struct xhci_input_control_ctx *ctrl_ctx; 2787 int old_active_eps = 0; 2788 2789 if (virt_dev->tt_info) 2790 old_active_eps = virt_dev->tt_info->active_eps; 2791 2792 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2793 if (!ctrl_ctx) { 2794 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2795 __func__); 2796 return -ENOMEM; 2797 } 2798 2799 for (i = 0; i < 31; i++) { 2800 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2801 continue; 2802 2803 /* Make a copy of the BW info in case we need to revert this */ 2804 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2805 sizeof(ep_bw_info[i])); 2806 /* Drop the endpoint from the interval table if the endpoint is 2807 * being dropped or changed. 2808 */ 2809 if (EP_IS_DROPPED(ctrl_ctx, i)) 2810 xhci_drop_ep_from_interval_table(xhci, 2811 &virt_dev->eps[i].bw_info, 2812 virt_dev->bw_table, 2813 virt_dev->udev, 2814 &virt_dev->eps[i], 2815 virt_dev->tt_info); 2816 } 2817 /* Overwrite the information stored in the endpoints' bw_info */ 2818 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2819 for (i = 0; i < 31; i++) { 2820 /* Add any changed or added endpoints to the interval table */ 2821 if (EP_IS_ADDED(ctrl_ctx, i)) 2822 xhci_add_ep_to_interval_table(xhci, 2823 &virt_dev->eps[i].bw_info, 2824 virt_dev->bw_table, 2825 virt_dev->udev, 2826 &virt_dev->eps[i], 2827 virt_dev->tt_info); 2828 } 2829 2830 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2831 /* Ok, this fits in the bandwidth we have. 2832 * Update the number of active TTs. 2833 */ 2834 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2835 return 0; 2836 } 2837 2838 /* We don't have enough bandwidth for this, revert the stored info. */ 2839 for (i = 0; i < 31; i++) { 2840 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2841 continue; 2842 2843 /* Drop the new copies of any added or changed endpoints from 2844 * the interval table. 2845 */ 2846 if (EP_IS_ADDED(ctrl_ctx, i)) { 2847 xhci_drop_ep_from_interval_table(xhci, 2848 &virt_dev->eps[i].bw_info, 2849 virt_dev->bw_table, 2850 virt_dev->udev, 2851 &virt_dev->eps[i], 2852 virt_dev->tt_info); 2853 } 2854 /* Revert the endpoint back to its old information */ 2855 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2856 sizeof(ep_bw_info[i])); 2857 /* Add any changed or dropped endpoints back into the table */ 2858 if (EP_IS_DROPPED(ctrl_ctx, i)) 2859 xhci_add_ep_to_interval_table(xhci, 2860 &virt_dev->eps[i].bw_info, 2861 virt_dev->bw_table, 2862 virt_dev->udev, 2863 &virt_dev->eps[i], 2864 virt_dev->tt_info); 2865 } 2866 return -ENOMEM; 2867 } 2868 2869 2870 /* Issue a configure endpoint command or evaluate context command 2871 * and wait for it to finish. 2872 */ 2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2874 struct usb_device *udev, 2875 struct xhci_command *command, 2876 bool ctx_change, bool must_succeed) 2877 { 2878 int ret; 2879 unsigned long flags; 2880 struct xhci_input_control_ctx *ctrl_ctx; 2881 struct xhci_virt_device *virt_dev; 2882 struct xhci_slot_ctx *slot_ctx; 2883 2884 if (!command) 2885 return -EINVAL; 2886 2887 spin_lock_irqsave(&xhci->lock, flags); 2888 2889 if (xhci->xhc_state & XHCI_STATE_DYING) { 2890 spin_unlock_irqrestore(&xhci->lock, flags); 2891 return -ESHUTDOWN; 2892 } 2893 2894 virt_dev = xhci->devs[udev->slot_id]; 2895 2896 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2897 if (!ctrl_ctx) { 2898 spin_unlock_irqrestore(&xhci->lock, flags); 2899 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2900 __func__); 2901 return -ENOMEM; 2902 } 2903 2904 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2905 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2906 spin_unlock_irqrestore(&xhci->lock, flags); 2907 xhci_warn(xhci, "Not enough host resources, " 2908 "active endpoint contexts = %u\n", 2909 xhci->num_active_eps); 2910 return -ENOMEM; 2911 } 2912 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2913 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2914 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2915 xhci_free_host_resources(xhci, ctrl_ctx); 2916 spin_unlock_irqrestore(&xhci->lock, flags); 2917 xhci_warn(xhci, "Not enough bandwidth\n"); 2918 return -ENOMEM; 2919 } 2920 2921 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2922 2923 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2924 trace_xhci_configure_endpoint(slot_ctx); 2925 2926 if (!ctx_change) 2927 ret = xhci_queue_configure_endpoint(xhci, command, 2928 command->in_ctx->dma, 2929 udev->slot_id, must_succeed); 2930 else 2931 ret = xhci_queue_evaluate_context(xhci, command, 2932 command->in_ctx->dma, 2933 udev->slot_id, must_succeed); 2934 if (ret < 0) { 2935 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2936 xhci_free_host_resources(xhci, ctrl_ctx); 2937 spin_unlock_irqrestore(&xhci->lock, flags); 2938 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2939 "FIXME allocate a new ring segment"); 2940 return -ENOMEM; 2941 } 2942 xhci_ring_cmd_db(xhci); 2943 spin_unlock_irqrestore(&xhci->lock, flags); 2944 2945 /* Wait for the configure endpoint command to complete */ 2946 wait_for_completion(command->completion); 2947 2948 if (!ctx_change) 2949 ret = xhci_configure_endpoint_result(xhci, udev, 2950 &command->status); 2951 else 2952 ret = xhci_evaluate_context_result(xhci, udev, 2953 &command->status); 2954 2955 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2956 spin_lock_irqsave(&xhci->lock, flags); 2957 /* If the command failed, remove the reserved resources. 2958 * Otherwise, clean up the estimate to include dropped eps. 2959 */ 2960 if (ret) 2961 xhci_free_host_resources(xhci, ctrl_ctx); 2962 else 2963 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2964 spin_unlock_irqrestore(&xhci->lock, flags); 2965 } 2966 return ret; 2967 } 2968 2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2970 struct xhci_virt_device *vdev, int i) 2971 { 2972 struct xhci_virt_ep *ep = &vdev->eps[i]; 2973 2974 if (ep->ep_state & EP_HAS_STREAMS) { 2975 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2976 xhci_get_endpoint_address(i)); 2977 xhci_free_stream_info(xhci, ep->stream_info); 2978 ep->stream_info = NULL; 2979 ep->ep_state &= ~EP_HAS_STREAMS; 2980 } 2981 } 2982 2983 /* Called after one or more calls to xhci_add_endpoint() or 2984 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2985 * to call xhci_reset_bandwidth(). 2986 * 2987 * Since we are in the middle of changing either configuration or 2988 * installing a new alt setting, the USB core won't allow URBs to be 2989 * enqueued for any endpoint on the old config or interface. Nothing 2990 * else should be touching the xhci->devs[slot_id] structure, so we 2991 * don't need to take the xhci->lock for manipulating that. 2992 */ 2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2994 { 2995 int i; 2996 int ret = 0; 2997 struct xhci_hcd *xhci; 2998 struct xhci_virt_device *virt_dev; 2999 struct xhci_input_control_ctx *ctrl_ctx; 3000 struct xhci_slot_ctx *slot_ctx; 3001 struct xhci_command *command; 3002 3003 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3004 if (ret <= 0) 3005 return ret; 3006 xhci = hcd_to_xhci(hcd); 3007 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3008 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3009 return -ENODEV; 3010 3011 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3012 virt_dev = xhci->devs[udev->slot_id]; 3013 3014 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3015 if (!command) 3016 return -ENOMEM; 3017 3018 command->in_ctx = virt_dev->in_ctx; 3019 3020 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3021 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3022 if (!ctrl_ctx) { 3023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3024 __func__); 3025 ret = -ENOMEM; 3026 goto command_cleanup; 3027 } 3028 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3029 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3030 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3031 3032 /* Don't issue the command if there's no endpoints to update. */ 3033 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3034 ctrl_ctx->drop_flags == 0) { 3035 ret = 0; 3036 goto command_cleanup; 3037 } 3038 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3039 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3040 for (i = 31; i >= 1; i--) { 3041 __le32 le32 = cpu_to_le32(BIT(i)); 3042 3043 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3044 || (ctrl_ctx->add_flags & le32) || i == 1) { 3045 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3046 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3047 break; 3048 } 3049 } 3050 3051 ret = xhci_configure_endpoint(xhci, udev, command, 3052 false, false); 3053 if (ret) 3054 /* Callee should call reset_bandwidth() */ 3055 goto command_cleanup; 3056 3057 /* Free any rings that were dropped, but not changed. */ 3058 for (i = 1; i < 31; i++) { 3059 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3060 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3061 xhci_free_endpoint_ring(xhci, virt_dev, i); 3062 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3063 } 3064 } 3065 xhci_zero_in_ctx(xhci, virt_dev); 3066 /* 3067 * Install any rings for completely new endpoints or changed endpoints, 3068 * and free any old rings from changed endpoints. 3069 */ 3070 for (i = 1; i < 31; i++) { 3071 if (!virt_dev->eps[i].new_ring) 3072 continue; 3073 /* Only free the old ring if it exists. 3074 * It may not if this is the first add of an endpoint. 3075 */ 3076 if (virt_dev->eps[i].ring) { 3077 xhci_free_endpoint_ring(xhci, virt_dev, i); 3078 } 3079 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3080 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3081 virt_dev->eps[i].new_ring = NULL; 3082 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3083 } 3084 command_cleanup: 3085 kfree(command->completion); 3086 kfree(command); 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3091 3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3093 { 3094 struct xhci_hcd *xhci; 3095 struct xhci_virt_device *virt_dev; 3096 int i, ret; 3097 3098 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3099 if (ret <= 0) 3100 return; 3101 xhci = hcd_to_xhci(hcd); 3102 3103 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3104 virt_dev = xhci->devs[udev->slot_id]; 3105 /* Free any rings allocated for added endpoints */ 3106 for (i = 0; i < 31; i++) { 3107 if (virt_dev->eps[i].new_ring) { 3108 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3109 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3110 virt_dev->eps[i].new_ring = NULL; 3111 } 3112 } 3113 xhci_zero_in_ctx(xhci, virt_dev); 3114 } 3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3116 3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3118 struct xhci_container_ctx *in_ctx, 3119 struct xhci_container_ctx *out_ctx, 3120 struct xhci_input_control_ctx *ctrl_ctx, 3121 u32 add_flags, u32 drop_flags) 3122 { 3123 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3124 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3125 xhci_slot_copy(xhci, in_ctx, out_ctx); 3126 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3127 } 3128 3129 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3130 struct usb_host_endpoint *host_ep) 3131 { 3132 struct xhci_hcd *xhci; 3133 struct xhci_virt_device *vdev; 3134 struct xhci_virt_ep *ep; 3135 struct usb_device *udev; 3136 unsigned long flags; 3137 unsigned int ep_index; 3138 3139 xhci = hcd_to_xhci(hcd); 3140 rescan: 3141 spin_lock_irqsave(&xhci->lock, flags); 3142 3143 udev = (struct usb_device *)host_ep->hcpriv; 3144 if (!udev || !udev->slot_id) 3145 goto done; 3146 3147 vdev = xhci->devs[udev->slot_id]; 3148 if (!vdev) 3149 goto done; 3150 3151 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3152 ep = &vdev->eps[ep_index]; 3153 if (!ep) 3154 goto done; 3155 3156 /* wait for hub_tt_work to finish clearing hub TT */ 3157 if (ep->ep_state & EP_CLEARING_TT) { 3158 spin_unlock_irqrestore(&xhci->lock, flags); 3159 schedule_timeout_uninterruptible(1); 3160 goto rescan; 3161 } 3162 3163 if (ep->ep_state) 3164 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3165 ep->ep_state); 3166 done: 3167 host_ep->hcpriv = NULL; 3168 spin_unlock_irqrestore(&xhci->lock, flags); 3169 } 3170 3171 /* 3172 * Called after usb core issues a clear halt control message. 3173 * The host side of the halt should already be cleared by a reset endpoint 3174 * command issued when the STALL event was received. 3175 * 3176 * The reset endpoint command may only be issued to endpoints in the halted 3177 * state. For software that wishes to reset the data toggle or sequence number 3178 * of an endpoint that isn't in the halted state this function will issue a 3179 * configure endpoint command with the Drop and Add bits set for the target 3180 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3181 */ 3182 3183 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3184 struct usb_host_endpoint *host_ep) 3185 { 3186 struct xhci_hcd *xhci; 3187 struct usb_device *udev; 3188 struct xhci_virt_device *vdev; 3189 struct xhci_virt_ep *ep; 3190 struct xhci_input_control_ctx *ctrl_ctx; 3191 struct xhci_command *stop_cmd, *cfg_cmd; 3192 unsigned int ep_index; 3193 unsigned long flags; 3194 u32 ep_flag; 3195 int err; 3196 3197 xhci = hcd_to_xhci(hcd); 3198 if (!host_ep->hcpriv) 3199 return; 3200 udev = (struct usb_device *) host_ep->hcpriv; 3201 vdev = xhci->devs[udev->slot_id]; 3202 3203 /* 3204 * vdev may be lost due to xHC restore error and re-initialization 3205 * during S3/S4 resume. A new vdev will be allocated later by 3206 * xhci_discover_or_reset_device() 3207 */ 3208 if (!udev->slot_id || !vdev) 3209 return; 3210 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3211 ep = &vdev->eps[ep_index]; 3212 if (!ep) 3213 return; 3214 3215 /* Bail out if toggle is already being cleared by a endpoint reset */ 3216 spin_lock_irqsave(&xhci->lock, flags); 3217 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3218 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3219 spin_unlock_irqrestore(&xhci->lock, flags); 3220 return; 3221 } 3222 spin_unlock_irqrestore(&xhci->lock, flags); 3223 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3224 if (usb_endpoint_xfer_control(&host_ep->desc) || 3225 usb_endpoint_xfer_isoc(&host_ep->desc)) 3226 return; 3227 3228 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3229 3230 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3231 return; 3232 3233 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3234 if (!stop_cmd) 3235 return; 3236 3237 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3238 if (!cfg_cmd) 3239 goto cleanup; 3240 3241 spin_lock_irqsave(&xhci->lock, flags); 3242 3243 /* block queuing new trbs and ringing ep doorbell */ 3244 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3245 3246 /* 3247 * Make sure endpoint ring is empty before resetting the toggle/seq. 3248 * Driver is required to synchronously cancel all transfer request. 3249 * Stop the endpoint to force xHC to update the output context 3250 */ 3251 3252 if (!list_empty(&ep->ring->td_list)) { 3253 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 xhci_free_command(xhci, cfg_cmd); 3256 goto cleanup; 3257 } 3258 3259 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3260 ep_index, 0); 3261 if (err < 0) { 3262 spin_unlock_irqrestore(&xhci->lock, flags); 3263 xhci_free_command(xhci, cfg_cmd); 3264 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3265 __func__, err); 3266 goto cleanup; 3267 } 3268 3269 xhci_ring_cmd_db(xhci); 3270 spin_unlock_irqrestore(&xhci->lock, flags); 3271 3272 wait_for_completion(stop_cmd->completion); 3273 3274 spin_lock_irqsave(&xhci->lock, flags); 3275 3276 /* config ep command clears toggle if add and drop ep flags are set */ 3277 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3278 if (!ctrl_ctx) { 3279 spin_unlock_irqrestore(&xhci->lock, flags); 3280 xhci_free_command(xhci, cfg_cmd); 3281 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3282 __func__); 3283 goto cleanup; 3284 } 3285 3286 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3287 ctrl_ctx, ep_flag, ep_flag); 3288 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3289 3290 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3291 udev->slot_id, false); 3292 if (err < 0) { 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 xhci_free_command(xhci, cfg_cmd); 3295 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3296 __func__, err); 3297 goto cleanup; 3298 } 3299 3300 xhci_ring_cmd_db(xhci); 3301 spin_unlock_irqrestore(&xhci->lock, flags); 3302 3303 wait_for_completion(cfg_cmd->completion); 3304 3305 xhci_free_command(xhci, cfg_cmd); 3306 cleanup: 3307 xhci_free_command(xhci, stop_cmd); 3308 spin_lock_irqsave(&xhci->lock, flags); 3309 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3310 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3311 spin_unlock_irqrestore(&xhci->lock, flags); 3312 } 3313 3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3315 struct usb_device *udev, struct usb_host_endpoint *ep, 3316 unsigned int slot_id) 3317 { 3318 int ret; 3319 unsigned int ep_index; 3320 unsigned int ep_state; 3321 3322 if (!ep) 3323 return -EINVAL; 3324 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3325 if (ret <= 0) 3326 return -EINVAL; 3327 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3328 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3329 " descriptor for ep 0x%x does not support streams\n", 3330 ep->desc.bEndpointAddress); 3331 return -EINVAL; 3332 } 3333 3334 ep_index = xhci_get_endpoint_index(&ep->desc); 3335 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3336 if (ep_state & EP_HAS_STREAMS || 3337 ep_state & EP_GETTING_STREAMS) { 3338 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3339 "already has streams set up.\n", 3340 ep->desc.bEndpointAddress); 3341 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3342 "dynamic stream context array reallocation.\n"); 3343 return -EINVAL; 3344 } 3345 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3346 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3347 "endpoint 0x%x; URBs are pending.\n", 3348 ep->desc.bEndpointAddress); 3349 return -EINVAL; 3350 } 3351 return 0; 3352 } 3353 3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3355 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3356 { 3357 unsigned int max_streams; 3358 3359 /* The stream context array size must be a power of two */ 3360 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3361 /* 3362 * Find out how many primary stream array entries the host controller 3363 * supports. Later we may use secondary stream arrays (similar to 2nd 3364 * level page entries), but that's an optional feature for xHCI host 3365 * controllers. xHCs must support at least 4 stream IDs. 3366 */ 3367 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3368 if (*num_stream_ctxs > max_streams) { 3369 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3370 max_streams); 3371 *num_stream_ctxs = max_streams; 3372 *num_streams = max_streams; 3373 } 3374 } 3375 3376 /* Returns an error code if one of the endpoint already has streams. 3377 * This does not change any data structures, it only checks and gathers 3378 * information. 3379 */ 3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3381 struct usb_device *udev, 3382 struct usb_host_endpoint **eps, unsigned int num_eps, 3383 unsigned int *num_streams, u32 *changed_ep_bitmask) 3384 { 3385 unsigned int max_streams; 3386 unsigned int endpoint_flag; 3387 int i; 3388 int ret; 3389 3390 for (i = 0; i < num_eps; i++) { 3391 ret = xhci_check_streams_endpoint(xhci, udev, 3392 eps[i], udev->slot_id); 3393 if (ret < 0) 3394 return ret; 3395 3396 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3397 if (max_streams < (*num_streams - 1)) { 3398 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3399 eps[i]->desc.bEndpointAddress, 3400 max_streams); 3401 *num_streams = max_streams+1; 3402 } 3403 3404 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3405 if (*changed_ep_bitmask & endpoint_flag) 3406 return -EINVAL; 3407 *changed_ep_bitmask |= endpoint_flag; 3408 } 3409 return 0; 3410 } 3411 3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3413 struct usb_device *udev, 3414 struct usb_host_endpoint **eps, unsigned int num_eps) 3415 { 3416 u32 changed_ep_bitmask = 0; 3417 unsigned int slot_id; 3418 unsigned int ep_index; 3419 unsigned int ep_state; 3420 int i; 3421 3422 slot_id = udev->slot_id; 3423 if (!xhci->devs[slot_id]) 3424 return 0; 3425 3426 for (i = 0; i < num_eps; i++) { 3427 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3428 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3429 /* Are streams already being freed for the endpoint? */ 3430 if (ep_state & EP_GETTING_NO_STREAMS) { 3431 xhci_warn(xhci, "WARN Can't disable streams for " 3432 "endpoint 0x%x, " 3433 "streams are being disabled already\n", 3434 eps[i]->desc.bEndpointAddress); 3435 return 0; 3436 } 3437 /* Are there actually any streams to free? */ 3438 if (!(ep_state & EP_HAS_STREAMS) && 3439 !(ep_state & EP_GETTING_STREAMS)) { 3440 xhci_warn(xhci, "WARN Can't disable streams for " 3441 "endpoint 0x%x, " 3442 "streams are already disabled!\n", 3443 eps[i]->desc.bEndpointAddress); 3444 xhci_warn(xhci, "WARN xhci_free_streams() called " 3445 "with non-streams endpoint\n"); 3446 return 0; 3447 } 3448 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3449 } 3450 return changed_ep_bitmask; 3451 } 3452 3453 /* 3454 * The USB device drivers use this function (through the HCD interface in USB 3455 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3456 * coordinate mass storage command queueing across multiple endpoints (basically 3457 * a stream ID == a task ID). 3458 * 3459 * Setting up streams involves allocating the same size stream context array 3460 * for each endpoint and issuing a configure endpoint command for all endpoints. 3461 * 3462 * Don't allow the call to succeed if one endpoint only supports one stream 3463 * (which means it doesn't support streams at all). 3464 * 3465 * Drivers may get less stream IDs than they asked for, if the host controller 3466 * hardware or endpoints claim they can't support the number of requested 3467 * stream IDs. 3468 */ 3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3470 struct usb_host_endpoint **eps, unsigned int num_eps, 3471 unsigned int num_streams, gfp_t mem_flags) 3472 { 3473 int i, ret; 3474 struct xhci_hcd *xhci; 3475 struct xhci_virt_device *vdev; 3476 struct xhci_command *config_cmd; 3477 struct xhci_input_control_ctx *ctrl_ctx; 3478 unsigned int ep_index; 3479 unsigned int num_stream_ctxs; 3480 unsigned int max_packet; 3481 unsigned long flags; 3482 u32 changed_ep_bitmask = 0; 3483 3484 if (!eps) 3485 return -EINVAL; 3486 3487 /* Add one to the number of streams requested to account for 3488 * stream 0 that is reserved for xHCI usage. 3489 */ 3490 num_streams += 1; 3491 xhci = hcd_to_xhci(hcd); 3492 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3493 num_streams); 3494 3495 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3496 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3497 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3498 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3499 return -ENOSYS; 3500 } 3501 3502 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3503 if (!config_cmd) 3504 return -ENOMEM; 3505 3506 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3507 if (!ctrl_ctx) { 3508 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3509 __func__); 3510 xhci_free_command(xhci, config_cmd); 3511 return -ENOMEM; 3512 } 3513 3514 /* Check to make sure all endpoints are not already configured for 3515 * streams. While we're at it, find the maximum number of streams that 3516 * all the endpoints will support and check for duplicate endpoints. 3517 */ 3518 spin_lock_irqsave(&xhci->lock, flags); 3519 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3520 num_eps, &num_streams, &changed_ep_bitmask); 3521 if (ret < 0) { 3522 xhci_free_command(xhci, config_cmd); 3523 spin_unlock_irqrestore(&xhci->lock, flags); 3524 return ret; 3525 } 3526 if (num_streams <= 1) { 3527 xhci_warn(xhci, "WARN: endpoints can't handle " 3528 "more than one stream.\n"); 3529 xhci_free_command(xhci, config_cmd); 3530 spin_unlock_irqrestore(&xhci->lock, flags); 3531 return -EINVAL; 3532 } 3533 vdev = xhci->devs[udev->slot_id]; 3534 /* Mark each endpoint as being in transition, so 3535 * xhci_urb_enqueue() will reject all URBs. 3536 */ 3537 for (i = 0; i < num_eps; i++) { 3538 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3539 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3540 } 3541 spin_unlock_irqrestore(&xhci->lock, flags); 3542 3543 /* Setup internal data structures and allocate HW data structures for 3544 * streams (but don't install the HW structures in the input context 3545 * until we're sure all memory allocation succeeded). 3546 */ 3547 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3548 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3549 num_stream_ctxs, num_streams); 3550 3551 for (i = 0; i < num_eps; i++) { 3552 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3553 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3554 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3555 num_stream_ctxs, 3556 num_streams, 3557 max_packet, mem_flags); 3558 if (!vdev->eps[ep_index].stream_info) 3559 goto cleanup; 3560 /* Set maxPstreams in endpoint context and update deq ptr to 3561 * point to stream context array. FIXME 3562 */ 3563 } 3564 3565 /* Set up the input context for a configure endpoint command. */ 3566 for (i = 0; i < num_eps; i++) { 3567 struct xhci_ep_ctx *ep_ctx; 3568 3569 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3570 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3571 3572 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3573 vdev->out_ctx, ep_index); 3574 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3575 vdev->eps[ep_index].stream_info); 3576 } 3577 /* Tell the HW to drop its old copy of the endpoint context info 3578 * and add the updated copy from the input context. 3579 */ 3580 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3581 vdev->out_ctx, ctrl_ctx, 3582 changed_ep_bitmask, changed_ep_bitmask); 3583 3584 /* Issue and wait for the configure endpoint command */ 3585 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3586 false, false); 3587 3588 /* xHC rejected the configure endpoint command for some reason, so we 3589 * leave the old ring intact and free our internal streams data 3590 * structure. 3591 */ 3592 if (ret < 0) 3593 goto cleanup; 3594 3595 spin_lock_irqsave(&xhci->lock, flags); 3596 for (i = 0; i < num_eps; i++) { 3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3598 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3599 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3600 udev->slot_id, ep_index); 3601 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3602 } 3603 xhci_free_command(xhci, config_cmd); 3604 spin_unlock_irqrestore(&xhci->lock, flags); 3605 3606 for (i = 0; i < num_eps; i++) { 3607 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3608 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3609 } 3610 /* Subtract 1 for stream 0, which drivers can't use */ 3611 return num_streams - 1; 3612 3613 cleanup: 3614 /* If it didn't work, free the streams! */ 3615 for (i = 0; i < num_eps; i++) { 3616 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3617 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3618 vdev->eps[ep_index].stream_info = NULL; 3619 /* FIXME Unset maxPstreams in endpoint context and 3620 * update deq ptr to point to normal string ring. 3621 */ 3622 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3623 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3624 xhci_endpoint_zero(xhci, vdev, eps[i]); 3625 } 3626 xhci_free_command(xhci, config_cmd); 3627 return -ENOMEM; 3628 } 3629 3630 /* Transition the endpoint from using streams to being a "normal" endpoint 3631 * without streams. 3632 * 3633 * Modify the endpoint context state, submit a configure endpoint command, 3634 * and free all endpoint rings for streams if that completes successfully. 3635 */ 3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3637 struct usb_host_endpoint **eps, unsigned int num_eps, 3638 gfp_t mem_flags) 3639 { 3640 int i, ret; 3641 struct xhci_hcd *xhci; 3642 struct xhci_virt_device *vdev; 3643 struct xhci_command *command; 3644 struct xhci_input_control_ctx *ctrl_ctx; 3645 unsigned int ep_index; 3646 unsigned long flags; 3647 u32 changed_ep_bitmask; 3648 3649 xhci = hcd_to_xhci(hcd); 3650 vdev = xhci->devs[udev->slot_id]; 3651 3652 /* Set up a configure endpoint command to remove the streams rings */ 3653 spin_lock_irqsave(&xhci->lock, flags); 3654 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3655 udev, eps, num_eps); 3656 if (changed_ep_bitmask == 0) { 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 return -EINVAL; 3659 } 3660 3661 /* Use the xhci_command structure from the first endpoint. We may have 3662 * allocated too many, but the driver may call xhci_free_streams() for 3663 * each endpoint it grouped into one call to xhci_alloc_streams(). 3664 */ 3665 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3666 command = vdev->eps[ep_index].stream_info->free_streams_command; 3667 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3668 if (!ctrl_ctx) { 3669 spin_unlock_irqrestore(&xhci->lock, flags); 3670 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3671 __func__); 3672 return -EINVAL; 3673 } 3674 3675 for (i = 0; i < num_eps; i++) { 3676 struct xhci_ep_ctx *ep_ctx; 3677 3678 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3679 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3680 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3681 EP_GETTING_NO_STREAMS; 3682 3683 xhci_endpoint_copy(xhci, command->in_ctx, 3684 vdev->out_ctx, ep_index); 3685 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3686 &vdev->eps[ep_index]); 3687 } 3688 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3689 vdev->out_ctx, ctrl_ctx, 3690 changed_ep_bitmask, changed_ep_bitmask); 3691 spin_unlock_irqrestore(&xhci->lock, flags); 3692 3693 /* Issue and wait for the configure endpoint command, 3694 * which must succeed. 3695 */ 3696 ret = xhci_configure_endpoint(xhci, udev, command, 3697 false, true); 3698 3699 /* xHC rejected the configure endpoint command for some reason, so we 3700 * leave the streams rings intact. 3701 */ 3702 if (ret < 0) 3703 return ret; 3704 3705 spin_lock_irqsave(&xhci->lock, flags); 3706 for (i = 0; i < num_eps; i++) { 3707 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3708 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3709 vdev->eps[ep_index].stream_info = NULL; 3710 /* FIXME Unset maxPstreams in endpoint context and 3711 * update deq ptr to point to normal string ring. 3712 */ 3713 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3714 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3715 } 3716 spin_unlock_irqrestore(&xhci->lock, flags); 3717 3718 return 0; 3719 } 3720 3721 /* 3722 * Deletes endpoint resources for endpoints that were active before a Reset 3723 * Device command, or a Disable Slot command. The Reset Device command leaves 3724 * the control endpoint intact, whereas the Disable Slot command deletes it. 3725 * 3726 * Must be called with xhci->lock held. 3727 */ 3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3729 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3730 { 3731 int i; 3732 unsigned int num_dropped_eps = 0; 3733 unsigned int drop_flags = 0; 3734 3735 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3736 if (virt_dev->eps[i].ring) { 3737 drop_flags |= 1 << i; 3738 num_dropped_eps++; 3739 } 3740 } 3741 xhci->num_active_eps -= num_dropped_eps; 3742 if (num_dropped_eps) 3743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3744 "Dropped %u ep ctxs, flags = 0x%x, " 3745 "%u now active.", 3746 num_dropped_eps, drop_flags, 3747 xhci->num_active_eps); 3748 } 3749 3750 /* 3751 * This submits a Reset Device Command, which will set the device state to 0, 3752 * set the device address to 0, and disable all the endpoints except the default 3753 * control endpoint. The USB core should come back and call 3754 * xhci_address_device(), and then re-set up the configuration. If this is 3755 * called because of a usb_reset_and_verify_device(), then the old alternate 3756 * settings will be re-installed through the normal bandwidth allocation 3757 * functions. 3758 * 3759 * Wait for the Reset Device command to finish. Remove all structures 3760 * associated with the endpoints that were disabled. Clear the input device 3761 * structure? Reset the control endpoint 0 max packet size? 3762 * 3763 * If the virt_dev to be reset does not exist or does not match the udev, 3764 * it means the device is lost, possibly due to the xHC restore error and 3765 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3766 * re-allocate the device. 3767 */ 3768 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3769 struct usb_device *udev) 3770 { 3771 int ret, i; 3772 unsigned long flags; 3773 struct xhci_hcd *xhci; 3774 unsigned int slot_id; 3775 struct xhci_virt_device *virt_dev; 3776 struct xhci_command *reset_device_cmd; 3777 struct xhci_slot_ctx *slot_ctx; 3778 int old_active_eps = 0; 3779 3780 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3781 if (ret <= 0) 3782 return ret; 3783 xhci = hcd_to_xhci(hcd); 3784 slot_id = udev->slot_id; 3785 virt_dev = xhci->devs[slot_id]; 3786 if (!virt_dev) { 3787 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3788 "not exist. Re-allocate the device\n", slot_id); 3789 ret = xhci_alloc_dev(hcd, udev); 3790 if (ret == 1) 3791 return 0; 3792 else 3793 return -EINVAL; 3794 } 3795 3796 if (virt_dev->tt_info) 3797 old_active_eps = virt_dev->tt_info->active_eps; 3798 3799 if (virt_dev->udev != udev) { 3800 /* If the virt_dev and the udev does not match, this virt_dev 3801 * may belong to another udev. 3802 * Re-allocate the device. 3803 */ 3804 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3805 "not match the udev. Re-allocate the device\n", 3806 slot_id); 3807 ret = xhci_alloc_dev(hcd, udev); 3808 if (ret == 1) 3809 return 0; 3810 else 3811 return -EINVAL; 3812 } 3813 3814 /* If device is not setup, there is no point in resetting it */ 3815 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3816 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3817 SLOT_STATE_DISABLED) 3818 return 0; 3819 3820 trace_xhci_discover_or_reset_device(slot_ctx); 3821 3822 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3823 /* Allocate the command structure that holds the struct completion. 3824 * Assume we're in process context, since the normal device reset 3825 * process has to wait for the device anyway. Storage devices are 3826 * reset as part of error handling, so use GFP_NOIO instead of 3827 * GFP_KERNEL. 3828 */ 3829 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3830 if (!reset_device_cmd) { 3831 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3832 return -ENOMEM; 3833 } 3834 3835 /* Attempt to submit the Reset Device command to the command ring */ 3836 spin_lock_irqsave(&xhci->lock, flags); 3837 3838 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3839 if (ret) { 3840 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3841 spin_unlock_irqrestore(&xhci->lock, flags); 3842 goto command_cleanup; 3843 } 3844 xhci_ring_cmd_db(xhci); 3845 spin_unlock_irqrestore(&xhci->lock, flags); 3846 3847 /* Wait for the Reset Device command to finish */ 3848 wait_for_completion(reset_device_cmd->completion); 3849 3850 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3851 * unless we tried to reset a slot ID that wasn't enabled, 3852 * or the device wasn't in the addressed or configured state. 3853 */ 3854 ret = reset_device_cmd->status; 3855 switch (ret) { 3856 case COMP_COMMAND_ABORTED: 3857 case COMP_COMMAND_RING_STOPPED: 3858 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3859 ret = -ETIME; 3860 goto command_cleanup; 3861 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3862 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3863 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3864 slot_id, 3865 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3866 xhci_dbg(xhci, "Not freeing device rings.\n"); 3867 /* Don't treat this as an error. May change my mind later. */ 3868 ret = 0; 3869 goto command_cleanup; 3870 case COMP_SUCCESS: 3871 xhci_dbg(xhci, "Successful reset device command.\n"); 3872 break; 3873 default: 3874 if (xhci_is_vendor_info_code(xhci, ret)) 3875 break; 3876 xhci_warn(xhci, "Unknown completion code %u for " 3877 "reset device command.\n", ret); 3878 ret = -EINVAL; 3879 goto command_cleanup; 3880 } 3881 3882 /* Free up host controller endpoint resources */ 3883 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3884 spin_lock_irqsave(&xhci->lock, flags); 3885 /* Don't delete the default control endpoint resources */ 3886 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3887 spin_unlock_irqrestore(&xhci->lock, flags); 3888 } 3889 3890 /* Everything but endpoint 0 is disabled, so free the rings. */ 3891 for (i = 1; i < 31; i++) { 3892 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3893 3894 if (ep->ep_state & EP_HAS_STREAMS) { 3895 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3896 xhci_get_endpoint_address(i)); 3897 xhci_free_stream_info(xhci, ep->stream_info); 3898 ep->stream_info = NULL; 3899 ep->ep_state &= ~EP_HAS_STREAMS; 3900 } 3901 3902 if (ep->ring) { 3903 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3904 xhci_free_endpoint_ring(xhci, virt_dev, i); 3905 } 3906 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3907 xhci_drop_ep_from_interval_table(xhci, 3908 &virt_dev->eps[i].bw_info, 3909 virt_dev->bw_table, 3910 udev, 3911 &virt_dev->eps[i], 3912 virt_dev->tt_info); 3913 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3914 } 3915 /* If necessary, update the number of active TTs on this root port */ 3916 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3917 virt_dev->flags = 0; 3918 ret = 0; 3919 3920 command_cleanup: 3921 xhci_free_command(xhci, reset_device_cmd); 3922 return ret; 3923 } 3924 3925 /* 3926 * At this point, the struct usb_device is about to go away, the device has 3927 * disconnected, and all traffic has been stopped and the endpoints have been 3928 * disabled. Free any HC data structures associated with that device. 3929 */ 3930 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3931 { 3932 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3933 struct xhci_virt_device *virt_dev; 3934 struct xhci_slot_ctx *slot_ctx; 3935 int i, ret; 3936 3937 /* 3938 * We called pm_runtime_get_noresume when the device was attached. 3939 * Decrement the counter here to allow controller to runtime suspend 3940 * if no devices remain. 3941 */ 3942 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3943 pm_runtime_put_noidle(hcd->self.controller); 3944 3945 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3946 /* If the host is halted due to driver unload, we still need to free the 3947 * device. 3948 */ 3949 if (ret <= 0 && ret != -ENODEV) 3950 return; 3951 3952 virt_dev = xhci->devs[udev->slot_id]; 3953 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3954 trace_xhci_free_dev(slot_ctx); 3955 3956 /* Stop any wayward timer functions (which may grab the lock) */ 3957 for (i = 0; i < 31; i++) { 3958 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3959 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3960 } 3961 virt_dev->udev = NULL; 3962 xhci_disable_slot(xhci, udev->slot_id); 3963 xhci_free_virt_device(xhci, udev->slot_id); 3964 } 3965 3966 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3967 { 3968 struct xhci_command *command; 3969 unsigned long flags; 3970 u32 state; 3971 int ret = 0; 3972 3973 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3974 if (!command) 3975 return -ENOMEM; 3976 3977 xhci_debugfs_remove_slot(xhci, slot_id); 3978 3979 spin_lock_irqsave(&xhci->lock, flags); 3980 /* Don't disable the slot if the host controller is dead. */ 3981 state = readl(&xhci->op_regs->status); 3982 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3983 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3984 spin_unlock_irqrestore(&xhci->lock, flags); 3985 kfree(command); 3986 return -ENODEV; 3987 } 3988 3989 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3990 slot_id); 3991 if (ret) { 3992 spin_unlock_irqrestore(&xhci->lock, flags); 3993 kfree(command); 3994 return ret; 3995 } 3996 xhci_ring_cmd_db(xhci); 3997 spin_unlock_irqrestore(&xhci->lock, flags); 3998 3999 wait_for_completion(command->completion); 4000 4001 if (command->status != COMP_SUCCESS) 4002 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4003 slot_id, command->status); 4004 4005 xhci_free_command(xhci, command); 4006 4007 return ret; 4008 } 4009 4010 /* 4011 * Checks if we have enough host controller resources for the default control 4012 * endpoint. 4013 * 4014 * Must be called with xhci->lock held. 4015 */ 4016 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4017 { 4018 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4019 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4020 "Not enough ep ctxs: " 4021 "%u active, need to add 1, limit is %u.", 4022 xhci->num_active_eps, xhci->limit_active_eps); 4023 return -ENOMEM; 4024 } 4025 xhci->num_active_eps += 1; 4026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4027 "Adding 1 ep ctx, %u now active.", 4028 xhci->num_active_eps); 4029 return 0; 4030 } 4031 4032 4033 /* 4034 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4035 * timed out, or allocating memory failed. Returns 1 on success. 4036 */ 4037 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4038 { 4039 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4040 struct xhci_virt_device *vdev; 4041 struct xhci_slot_ctx *slot_ctx; 4042 unsigned long flags; 4043 int ret, slot_id; 4044 struct xhci_command *command; 4045 4046 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4047 if (!command) 4048 return 0; 4049 4050 spin_lock_irqsave(&xhci->lock, flags); 4051 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4052 if (ret) { 4053 spin_unlock_irqrestore(&xhci->lock, flags); 4054 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4055 xhci_free_command(xhci, command); 4056 return 0; 4057 } 4058 xhci_ring_cmd_db(xhci); 4059 spin_unlock_irqrestore(&xhci->lock, flags); 4060 4061 wait_for_completion(command->completion); 4062 slot_id = command->slot_id; 4063 4064 if (!slot_id || command->status != COMP_SUCCESS) { 4065 xhci_err(xhci, "Error while assigning device slot ID\n"); 4066 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4067 HCS_MAX_SLOTS( 4068 readl(&xhci->cap_regs->hcs_params1))); 4069 xhci_free_command(xhci, command); 4070 return 0; 4071 } 4072 4073 xhci_free_command(xhci, command); 4074 4075 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4076 spin_lock_irqsave(&xhci->lock, flags); 4077 ret = xhci_reserve_host_control_ep_resources(xhci); 4078 if (ret) { 4079 spin_unlock_irqrestore(&xhci->lock, flags); 4080 xhci_warn(xhci, "Not enough host resources, " 4081 "active endpoint contexts = %u\n", 4082 xhci->num_active_eps); 4083 goto disable_slot; 4084 } 4085 spin_unlock_irqrestore(&xhci->lock, flags); 4086 } 4087 /* Use GFP_NOIO, since this function can be called from 4088 * xhci_discover_or_reset_device(), which may be called as part of 4089 * mass storage driver error handling. 4090 */ 4091 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4092 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4093 goto disable_slot; 4094 } 4095 vdev = xhci->devs[slot_id]; 4096 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4097 trace_xhci_alloc_dev(slot_ctx); 4098 4099 udev->slot_id = slot_id; 4100 4101 xhci_debugfs_create_slot(xhci, slot_id); 4102 4103 /* 4104 * If resetting upon resume, we can't put the controller into runtime 4105 * suspend if there is a device attached. 4106 */ 4107 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4108 pm_runtime_get_noresume(hcd->self.controller); 4109 4110 /* Is this a LS or FS device under a HS hub? */ 4111 /* Hub or peripherial? */ 4112 return 1; 4113 4114 disable_slot: 4115 xhci_disable_slot(xhci, udev->slot_id); 4116 xhci_free_virt_device(xhci, udev->slot_id); 4117 4118 return 0; 4119 } 4120 4121 /* 4122 * Issue an Address Device command and optionally send a corresponding 4123 * SetAddress request to the device. 4124 */ 4125 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4126 enum xhci_setup_dev setup) 4127 { 4128 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4129 unsigned long flags; 4130 struct xhci_virt_device *virt_dev; 4131 int ret = 0; 4132 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4133 struct xhci_slot_ctx *slot_ctx; 4134 struct xhci_input_control_ctx *ctrl_ctx; 4135 u64 temp_64; 4136 struct xhci_command *command = NULL; 4137 4138 mutex_lock(&xhci->mutex); 4139 4140 if (xhci->xhc_state) { /* dying, removing or halted */ 4141 ret = -ESHUTDOWN; 4142 goto out; 4143 } 4144 4145 if (!udev->slot_id) { 4146 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4147 "Bad Slot ID %d", udev->slot_id); 4148 ret = -EINVAL; 4149 goto out; 4150 } 4151 4152 virt_dev = xhci->devs[udev->slot_id]; 4153 4154 if (WARN_ON(!virt_dev)) { 4155 /* 4156 * In plug/unplug torture test with an NEC controller, 4157 * a zero-dereference was observed once due to virt_dev = 0. 4158 * Print useful debug rather than crash if it is observed again! 4159 */ 4160 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4161 udev->slot_id); 4162 ret = -EINVAL; 4163 goto out; 4164 } 4165 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4166 trace_xhci_setup_device_slot(slot_ctx); 4167 4168 if (setup == SETUP_CONTEXT_ONLY) { 4169 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4170 SLOT_STATE_DEFAULT) { 4171 xhci_dbg(xhci, "Slot already in default state\n"); 4172 goto out; 4173 } 4174 } 4175 4176 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4177 if (!command) { 4178 ret = -ENOMEM; 4179 goto out; 4180 } 4181 4182 command->in_ctx = virt_dev->in_ctx; 4183 4184 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4185 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4186 if (!ctrl_ctx) { 4187 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4188 __func__); 4189 ret = -EINVAL; 4190 goto out; 4191 } 4192 /* 4193 * If this is the first Set Address since device plug-in or 4194 * virt_device realloaction after a resume with an xHCI power loss, 4195 * then set up the slot context. 4196 */ 4197 if (!slot_ctx->dev_info) 4198 xhci_setup_addressable_virt_dev(xhci, udev); 4199 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4200 else 4201 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4202 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4203 ctrl_ctx->drop_flags = 0; 4204 4205 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4206 le32_to_cpu(slot_ctx->dev_info) >> 27); 4207 4208 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4209 spin_lock_irqsave(&xhci->lock, flags); 4210 trace_xhci_setup_device(virt_dev); 4211 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4212 udev->slot_id, setup); 4213 if (ret) { 4214 spin_unlock_irqrestore(&xhci->lock, flags); 4215 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4216 "FIXME: allocate a command ring segment"); 4217 goto out; 4218 } 4219 xhci_ring_cmd_db(xhci); 4220 spin_unlock_irqrestore(&xhci->lock, flags); 4221 4222 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4223 wait_for_completion(command->completion); 4224 4225 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4226 * the SetAddress() "recovery interval" required by USB and aborting the 4227 * command on a timeout. 4228 */ 4229 switch (command->status) { 4230 case COMP_COMMAND_ABORTED: 4231 case COMP_COMMAND_RING_STOPPED: 4232 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4233 ret = -ETIME; 4234 break; 4235 case COMP_CONTEXT_STATE_ERROR: 4236 case COMP_SLOT_NOT_ENABLED_ERROR: 4237 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4238 act, udev->slot_id); 4239 ret = -EINVAL; 4240 break; 4241 case COMP_USB_TRANSACTION_ERROR: 4242 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4243 4244 mutex_unlock(&xhci->mutex); 4245 ret = xhci_disable_slot(xhci, udev->slot_id); 4246 xhci_free_virt_device(xhci, udev->slot_id); 4247 if (!ret) 4248 xhci_alloc_dev(hcd, udev); 4249 kfree(command->completion); 4250 kfree(command); 4251 return -EPROTO; 4252 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4253 dev_warn(&udev->dev, 4254 "ERROR: Incompatible device for setup %s command\n", act); 4255 ret = -ENODEV; 4256 break; 4257 case COMP_SUCCESS: 4258 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4259 "Successful setup %s command", act); 4260 break; 4261 default: 4262 xhci_err(xhci, 4263 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4264 act, command->status); 4265 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4266 ret = -EINVAL; 4267 break; 4268 } 4269 if (ret) 4270 goto out; 4271 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4272 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4273 "Op regs DCBAA ptr = %#016llx", temp_64); 4274 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4275 "Slot ID %d dcbaa entry @%p = %#016llx", 4276 udev->slot_id, 4277 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4278 (unsigned long long) 4279 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4281 "Output Context DMA address = %#08llx", 4282 (unsigned long long)virt_dev->out_ctx->dma); 4283 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4284 le32_to_cpu(slot_ctx->dev_info) >> 27); 4285 /* 4286 * USB core uses address 1 for the roothubs, so we add one to the 4287 * address given back to us by the HC. 4288 */ 4289 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4290 le32_to_cpu(slot_ctx->dev_info) >> 27); 4291 /* Zero the input context control for later use */ 4292 ctrl_ctx->add_flags = 0; 4293 ctrl_ctx->drop_flags = 0; 4294 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4295 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4296 4297 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4298 "Internal device address = %d", 4299 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4300 out: 4301 mutex_unlock(&xhci->mutex); 4302 if (command) { 4303 kfree(command->completion); 4304 kfree(command); 4305 } 4306 return ret; 4307 } 4308 4309 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4310 { 4311 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4312 } 4313 4314 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4315 { 4316 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4317 } 4318 4319 /* 4320 * Transfer the port index into real index in the HW port status 4321 * registers. Caculate offset between the port's PORTSC register 4322 * and port status base. Divide the number of per port register 4323 * to get the real index. The raw port number bases 1. 4324 */ 4325 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4326 { 4327 struct xhci_hub *rhub; 4328 4329 rhub = xhci_get_rhub(hcd); 4330 return rhub->ports[port1 - 1]->hw_portnum + 1; 4331 } 4332 4333 /* 4334 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4335 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4336 */ 4337 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4338 struct usb_device *udev, u16 max_exit_latency) 4339 { 4340 struct xhci_virt_device *virt_dev; 4341 struct xhci_command *command; 4342 struct xhci_input_control_ctx *ctrl_ctx; 4343 struct xhci_slot_ctx *slot_ctx; 4344 unsigned long flags; 4345 int ret; 4346 4347 spin_lock_irqsave(&xhci->lock, flags); 4348 4349 virt_dev = xhci->devs[udev->slot_id]; 4350 4351 /* 4352 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4353 * xHC was re-initialized. Exit latency will be set later after 4354 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4355 */ 4356 4357 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4358 spin_unlock_irqrestore(&xhci->lock, flags); 4359 return 0; 4360 } 4361 4362 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4363 command = xhci->lpm_command; 4364 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4365 if (!ctrl_ctx) { 4366 spin_unlock_irqrestore(&xhci->lock, flags); 4367 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4368 __func__); 4369 return -ENOMEM; 4370 } 4371 4372 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4373 spin_unlock_irqrestore(&xhci->lock, flags); 4374 4375 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4376 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4377 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4378 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4379 slot_ctx->dev_state = 0; 4380 4381 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4382 "Set up evaluate context for LPM MEL change."); 4383 4384 /* Issue and wait for the evaluate context command. */ 4385 ret = xhci_configure_endpoint(xhci, udev, command, 4386 true, true); 4387 4388 if (!ret) { 4389 spin_lock_irqsave(&xhci->lock, flags); 4390 virt_dev->current_mel = max_exit_latency; 4391 spin_unlock_irqrestore(&xhci->lock, flags); 4392 } 4393 return ret; 4394 } 4395 4396 #ifdef CONFIG_PM 4397 4398 /* BESL to HIRD Encoding array for USB2 LPM */ 4399 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4400 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4401 4402 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4403 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4404 struct usb_device *udev) 4405 { 4406 int u2del, besl, besl_host; 4407 int besl_device = 0; 4408 u32 field; 4409 4410 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4411 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4412 4413 if (field & USB_BESL_SUPPORT) { 4414 for (besl_host = 0; besl_host < 16; besl_host++) { 4415 if (xhci_besl_encoding[besl_host] >= u2del) 4416 break; 4417 } 4418 /* Use baseline BESL value as default */ 4419 if (field & USB_BESL_BASELINE_VALID) 4420 besl_device = USB_GET_BESL_BASELINE(field); 4421 else if (field & USB_BESL_DEEP_VALID) 4422 besl_device = USB_GET_BESL_DEEP(field); 4423 } else { 4424 if (u2del <= 50) 4425 besl_host = 0; 4426 else 4427 besl_host = (u2del - 51) / 75 + 1; 4428 } 4429 4430 besl = besl_host + besl_device; 4431 if (besl > 15) 4432 besl = 15; 4433 4434 return besl; 4435 } 4436 4437 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4438 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4439 { 4440 u32 field; 4441 int l1; 4442 int besld = 0; 4443 int hirdm = 0; 4444 4445 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4446 4447 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4448 l1 = udev->l1_params.timeout / 256; 4449 4450 /* device has preferred BESLD */ 4451 if (field & USB_BESL_DEEP_VALID) { 4452 besld = USB_GET_BESL_DEEP(field); 4453 hirdm = 1; 4454 } 4455 4456 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4457 } 4458 4459 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4460 struct usb_device *udev, int enable) 4461 { 4462 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4463 struct xhci_port **ports; 4464 __le32 __iomem *pm_addr, *hlpm_addr; 4465 u32 pm_val, hlpm_val, field; 4466 unsigned int port_num; 4467 unsigned long flags; 4468 int hird, exit_latency; 4469 int ret; 4470 4471 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4472 return -EPERM; 4473 4474 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4475 !udev->lpm_capable) 4476 return -EPERM; 4477 4478 if (!udev->parent || udev->parent->parent || 4479 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4480 return -EPERM; 4481 4482 if (udev->usb2_hw_lpm_capable != 1) 4483 return -EPERM; 4484 4485 spin_lock_irqsave(&xhci->lock, flags); 4486 4487 ports = xhci->usb2_rhub.ports; 4488 port_num = udev->portnum - 1; 4489 pm_addr = ports[port_num]->addr + PORTPMSC; 4490 pm_val = readl(pm_addr); 4491 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4492 4493 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4494 enable ? "enable" : "disable", port_num + 1); 4495 4496 if (enable) { 4497 /* Host supports BESL timeout instead of HIRD */ 4498 if (udev->usb2_hw_lpm_besl_capable) { 4499 /* if device doesn't have a preferred BESL value use a 4500 * default one which works with mixed HIRD and BESL 4501 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4502 */ 4503 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4504 if ((field & USB_BESL_SUPPORT) && 4505 (field & USB_BESL_BASELINE_VALID)) 4506 hird = USB_GET_BESL_BASELINE(field); 4507 else 4508 hird = udev->l1_params.besl; 4509 4510 exit_latency = xhci_besl_encoding[hird]; 4511 spin_unlock_irqrestore(&xhci->lock, flags); 4512 4513 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4514 * input context for link powermanagement evaluate 4515 * context commands. It is protected by hcd->bandwidth 4516 * mutex and is shared by all devices. We need to set 4517 * the max ext latency in USB 2 BESL LPM as well, so 4518 * use the same mutex and xhci_change_max_exit_latency() 4519 */ 4520 mutex_lock(hcd->bandwidth_mutex); 4521 ret = xhci_change_max_exit_latency(xhci, udev, 4522 exit_latency); 4523 mutex_unlock(hcd->bandwidth_mutex); 4524 4525 if (ret < 0) 4526 return ret; 4527 spin_lock_irqsave(&xhci->lock, flags); 4528 4529 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4530 writel(hlpm_val, hlpm_addr); 4531 /* flush write */ 4532 readl(hlpm_addr); 4533 } else { 4534 hird = xhci_calculate_hird_besl(xhci, udev); 4535 } 4536 4537 pm_val &= ~PORT_HIRD_MASK; 4538 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4539 writel(pm_val, pm_addr); 4540 pm_val = readl(pm_addr); 4541 pm_val |= PORT_HLE; 4542 writel(pm_val, pm_addr); 4543 /* flush write */ 4544 readl(pm_addr); 4545 } else { 4546 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4547 writel(pm_val, pm_addr); 4548 /* flush write */ 4549 readl(pm_addr); 4550 if (udev->usb2_hw_lpm_besl_capable) { 4551 spin_unlock_irqrestore(&xhci->lock, flags); 4552 mutex_lock(hcd->bandwidth_mutex); 4553 xhci_change_max_exit_latency(xhci, udev, 0); 4554 mutex_unlock(hcd->bandwidth_mutex); 4555 readl_poll_timeout(ports[port_num]->addr, pm_val, 4556 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4557 100, 10000); 4558 return 0; 4559 } 4560 } 4561 4562 spin_unlock_irqrestore(&xhci->lock, flags); 4563 return 0; 4564 } 4565 4566 /* check if a usb2 port supports a given extened capability protocol 4567 * only USB2 ports extended protocol capability values are cached. 4568 * Return 1 if capability is supported 4569 */ 4570 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4571 unsigned capability) 4572 { 4573 u32 port_offset, port_count; 4574 int i; 4575 4576 for (i = 0; i < xhci->num_ext_caps; i++) { 4577 if (xhci->ext_caps[i] & capability) { 4578 /* port offsets starts at 1 */ 4579 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4580 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4581 if (port >= port_offset && 4582 port < port_offset + port_count) 4583 return 1; 4584 } 4585 } 4586 return 0; 4587 } 4588 4589 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4590 { 4591 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4592 int portnum = udev->portnum - 1; 4593 4594 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4595 return 0; 4596 4597 /* we only support lpm for non-hub device connected to root hub yet */ 4598 if (!udev->parent || udev->parent->parent || 4599 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4600 return 0; 4601 4602 if (xhci->hw_lpm_support == 1 && 4603 xhci_check_usb2_port_capability( 4604 xhci, portnum, XHCI_HLC)) { 4605 udev->usb2_hw_lpm_capable = 1; 4606 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4607 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4608 if (xhci_check_usb2_port_capability(xhci, portnum, 4609 XHCI_BLC)) 4610 udev->usb2_hw_lpm_besl_capable = 1; 4611 } 4612 4613 return 0; 4614 } 4615 4616 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4617 4618 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4619 static unsigned long long xhci_service_interval_to_ns( 4620 struct usb_endpoint_descriptor *desc) 4621 { 4622 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4623 } 4624 4625 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4626 enum usb3_link_state state) 4627 { 4628 unsigned long long sel; 4629 unsigned long long pel; 4630 unsigned int max_sel_pel; 4631 char *state_name; 4632 4633 switch (state) { 4634 case USB3_LPM_U1: 4635 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4636 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4637 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4638 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4639 state_name = "U1"; 4640 break; 4641 case USB3_LPM_U2: 4642 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4643 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4644 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4645 state_name = "U2"; 4646 break; 4647 default: 4648 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4649 __func__); 4650 return USB3_LPM_DISABLED; 4651 } 4652 4653 if (sel <= max_sel_pel && pel <= max_sel_pel) 4654 return USB3_LPM_DEVICE_INITIATED; 4655 4656 if (sel > max_sel_pel) 4657 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4658 "due to long SEL %llu ms\n", 4659 state_name, sel); 4660 else 4661 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4662 "due to long PEL %llu ms\n", 4663 state_name, pel); 4664 return USB3_LPM_DISABLED; 4665 } 4666 4667 /* The U1 timeout should be the maximum of the following values: 4668 * - For control endpoints, U1 system exit latency (SEL) * 3 4669 * - For bulk endpoints, U1 SEL * 5 4670 * - For interrupt endpoints: 4671 * - Notification EPs, U1 SEL * 3 4672 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4673 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4674 */ 4675 static unsigned long long xhci_calculate_intel_u1_timeout( 4676 struct usb_device *udev, 4677 struct usb_endpoint_descriptor *desc) 4678 { 4679 unsigned long long timeout_ns; 4680 int ep_type; 4681 int intr_type; 4682 4683 ep_type = usb_endpoint_type(desc); 4684 switch (ep_type) { 4685 case USB_ENDPOINT_XFER_CONTROL: 4686 timeout_ns = udev->u1_params.sel * 3; 4687 break; 4688 case USB_ENDPOINT_XFER_BULK: 4689 timeout_ns = udev->u1_params.sel * 5; 4690 break; 4691 case USB_ENDPOINT_XFER_INT: 4692 intr_type = usb_endpoint_interrupt_type(desc); 4693 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4694 timeout_ns = udev->u1_params.sel * 3; 4695 break; 4696 } 4697 /* Otherwise the calculation is the same as isoc eps */ 4698 fallthrough; 4699 case USB_ENDPOINT_XFER_ISOC: 4700 timeout_ns = xhci_service_interval_to_ns(desc); 4701 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4702 if (timeout_ns < udev->u1_params.sel * 2) 4703 timeout_ns = udev->u1_params.sel * 2; 4704 break; 4705 default: 4706 return 0; 4707 } 4708 4709 return timeout_ns; 4710 } 4711 4712 /* Returns the hub-encoded U1 timeout value. */ 4713 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4714 struct usb_device *udev, 4715 struct usb_endpoint_descriptor *desc) 4716 { 4717 unsigned long long timeout_ns; 4718 4719 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4720 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4721 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4722 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4723 return USB3_LPM_DISABLED; 4724 } 4725 } 4726 4727 if (xhci->quirks & XHCI_INTEL_HOST) 4728 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4729 else 4730 timeout_ns = udev->u1_params.sel; 4731 4732 /* The U1 timeout is encoded in 1us intervals. 4733 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4734 */ 4735 if (timeout_ns == USB3_LPM_DISABLED) 4736 timeout_ns = 1; 4737 else 4738 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4739 4740 /* If the necessary timeout value is bigger than what we can set in the 4741 * USB 3.0 hub, we have to disable hub-initiated U1. 4742 */ 4743 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4744 return timeout_ns; 4745 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4746 "due to long timeout %llu ms\n", timeout_ns); 4747 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4748 } 4749 4750 /* The U2 timeout should be the maximum of: 4751 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4752 * - largest bInterval of any active periodic endpoint (to avoid going 4753 * into lower power link states between intervals). 4754 * - the U2 Exit Latency of the device 4755 */ 4756 static unsigned long long xhci_calculate_intel_u2_timeout( 4757 struct usb_device *udev, 4758 struct usb_endpoint_descriptor *desc) 4759 { 4760 unsigned long long timeout_ns; 4761 unsigned long long u2_del_ns; 4762 4763 timeout_ns = 10 * 1000 * 1000; 4764 4765 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4766 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4767 timeout_ns = xhci_service_interval_to_ns(desc); 4768 4769 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4770 if (u2_del_ns > timeout_ns) 4771 timeout_ns = u2_del_ns; 4772 4773 return timeout_ns; 4774 } 4775 4776 /* Returns the hub-encoded U2 timeout value. */ 4777 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4778 struct usb_device *udev, 4779 struct usb_endpoint_descriptor *desc) 4780 { 4781 unsigned long long timeout_ns; 4782 4783 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4784 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4785 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4786 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4787 return USB3_LPM_DISABLED; 4788 } 4789 } 4790 4791 if (xhci->quirks & XHCI_INTEL_HOST) 4792 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4793 else 4794 timeout_ns = udev->u2_params.sel; 4795 4796 /* The U2 timeout is encoded in 256us intervals */ 4797 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4798 /* If the necessary timeout value is bigger than what we can set in the 4799 * USB 3.0 hub, we have to disable hub-initiated U2. 4800 */ 4801 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4802 return timeout_ns; 4803 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4804 "due to long timeout %llu ms\n", timeout_ns); 4805 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4806 } 4807 4808 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4809 struct usb_device *udev, 4810 struct usb_endpoint_descriptor *desc, 4811 enum usb3_link_state state, 4812 u16 *timeout) 4813 { 4814 if (state == USB3_LPM_U1) 4815 return xhci_calculate_u1_timeout(xhci, udev, desc); 4816 else if (state == USB3_LPM_U2) 4817 return xhci_calculate_u2_timeout(xhci, udev, desc); 4818 4819 return USB3_LPM_DISABLED; 4820 } 4821 4822 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4823 struct usb_device *udev, 4824 struct usb_endpoint_descriptor *desc, 4825 enum usb3_link_state state, 4826 u16 *timeout) 4827 { 4828 u16 alt_timeout; 4829 4830 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4831 desc, state, timeout); 4832 4833 /* If we found we can't enable hub-initiated LPM, and 4834 * the U1 or U2 exit latency was too high to allow 4835 * device-initiated LPM as well, then we will disable LPM 4836 * for this device, so stop searching any further. 4837 */ 4838 if (alt_timeout == USB3_LPM_DISABLED) { 4839 *timeout = alt_timeout; 4840 return -E2BIG; 4841 } 4842 if (alt_timeout > *timeout) 4843 *timeout = alt_timeout; 4844 return 0; 4845 } 4846 4847 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4848 struct usb_device *udev, 4849 struct usb_host_interface *alt, 4850 enum usb3_link_state state, 4851 u16 *timeout) 4852 { 4853 int j; 4854 4855 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4856 if (xhci_update_timeout_for_endpoint(xhci, udev, 4857 &alt->endpoint[j].desc, state, timeout)) 4858 return -E2BIG; 4859 } 4860 return 0; 4861 } 4862 4863 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4864 enum usb3_link_state state) 4865 { 4866 struct usb_device *parent; 4867 unsigned int num_hubs; 4868 4869 if (state == USB3_LPM_U2) 4870 return 0; 4871 4872 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4873 for (parent = udev->parent, num_hubs = 0; parent->parent; 4874 parent = parent->parent) 4875 num_hubs++; 4876 4877 if (num_hubs < 2) 4878 return 0; 4879 4880 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4881 " below second-tier hub.\n"); 4882 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4883 "to decrease power consumption.\n"); 4884 return -E2BIG; 4885 } 4886 4887 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4888 struct usb_device *udev, 4889 enum usb3_link_state state) 4890 { 4891 if (xhci->quirks & XHCI_INTEL_HOST) 4892 return xhci_check_intel_tier_policy(udev, state); 4893 else 4894 return 0; 4895 } 4896 4897 /* Returns the U1 or U2 timeout that should be enabled. 4898 * If the tier check or timeout setting functions return with a non-zero exit 4899 * code, that means the timeout value has been finalized and we shouldn't look 4900 * at any more endpoints. 4901 */ 4902 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4903 struct usb_device *udev, enum usb3_link_state state) 4904 { 4905 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4906 struct usb_host_config *config; 4907 char *state_name; 4908 int i; 4909 u16 timeout = USB3_LPM_DISABLED; 4910 4911 if (state == USB3_LPM_U1) 4912 state_name = "U1"; 4913 else if (state == USB3_LPM_U2) 4914 state_name = "U2"; 4915 else { 4916 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4917 state); 4918 return timeout; 4919 } 4920 4921 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4922 return timeout; 4923 4924 /* Gather some information about the currently installed configuration 4925 * and alternate interface settings. 4926 */ 4927 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4928 state, &timeout)) 4929 return timeout; 4930 4931 config = udev->actconfig; 4932 if (!config) 4933 return timeout; 4934 4935 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4936 struct usb_driver *driver; 4937 struct usb_interface *intf = config->interface[i]; 4938 4939 if (!intf) 4940 continue; 4941 4942 /* Check if any currently bound drivers want hub-initiated LPM 4943 * disabled. 4944 */ 4945 if (intf->dev.driver) { 4946 driver = to_usb_driver(intf->dev.driver); 4947 if (driver && driver->disable_hub_initiated_lpm) { 4948 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4949 state_name, driver->name); 4950 timeout = xhci_get_timeout_no_hub_lpm(udev, 4951 state); 4952 if (timeout == USB3_LPM_DISABLED) 4953 return timeout; 4954 } 4955 } 4956 4957 /* Not sure how this could happen... */ 4958 if (!intf->cur_altsetting) 4959 continue; 4960 4961 if (xhci_update_timeout_for_interface(xhci, udev, 4962 intf->cur_altsetting, 4963 state, &timeout)) 4964 return timeout; 4965 } 4966 return timeout; 4967 } 4968 4969 static int calculate_max_exit_latency(struct usb_device *udev, 4970 enum usb3_link_state state_changed, 4971 u16 hub_encoded_timeout) 4972 { 4973 unsigned long long u1_mel_us = 0; 4974 unsigned long long u2_mel_us = 0; 4975 unsigned long long mel_us = 0; 4976 bool disabling_u1; 4977 bool disabling_u2; 4978 bool enabling_u1; 4979 bool enabling_u2; 4980 4981 disabling_u1 = (state_changed == USB3_LPM_U1 && 4982 hub_encoded_timeout == USB3_LPM_DISABLED); 4983 disabling_u2 = (state_changed == USB3_LPM_U2 && 4984 hub_encoded_timeout == USB3_LPM_DISABLED); 4985 4986 enabling_u1 = (state_changed == USB3_LPM_U1 && 4987 hub_encoded_timeout != USB3_LPM_DISABLED); 4988 enabling_u2 = (state_changed == USB3_LPM_U2 && 4989 hub_encoded_timeout != USB3_LPM_DISABLED); 4990 4991 /* If U1 was already enabled and we're not disabling it, 4992 * or we're going to enable U1, account for the U1 max exit latency. 4993 */ 4994 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4995 enabling_u1) 4996 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4997 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4998 enabling_u2) 4999 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5000 5001 if (u1_mel_us > u2_mel_us) 5002 mel_us = u1_mel_us; 5003 else 5004 mel_us = u2_mel_us; 5005 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5006 if (mel_us > MAX_EXIT) { 5007 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5008 "is too big.\n", mel_us); 5009 return -E2BIG; 5010 } 5011 return mel_us; 5012 } 5013 5014 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5015 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5016 struct usb_device *udev, enum usb3_link_state state) 5017 { 5018 struct xhci_hcd *xhci; 5019 u16 hub_encoded_timeout; 5020 int mel; 5021 int ret; 5022 5023 xhci = hcd_to_xhci(hcd); 5024 /* The LPM timeout values are pretty host-controller specific, so don't 5025 * enable hub-initiated timeouts unless the vendor has provided 5026 * information about their timeout algorithm. 5027 */ 5028 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5029 !xhci->devs[udev->slot_id]) 5030 return USB3_LPM_DISABLED; 5031 5032 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5033 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5034 if (mel < 0) { 5035 /* Max Exit Latency is too big, disable LPM. */ 5036 hub_encoded_timeout = USB3_LPM_DISABLED; 5037 mel = 0; 5038 } 5039 5040 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5041 if (ret) 5042 return ret; 5043 return hub_encoded_timeout; 5044 } 5045 5046 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5047 struct usb_device *udev, enum usb3_link_state state) 5048 { 5049 struct xhci_hcd *xhci; 5050 u16 mel; 5051 5052 xhci = hcd_to_xhci(hcd); 5053 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5054 !xhci->devs[udev->slot_id]) 5055 return 0; 5056 5057 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5058 return xhci_change_max_exit_latency(xhci, udev, mel); 5059 } 5060 #else /* CONFIG_PM */ 5061 5062 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5063 struct usb_device *udev, int enable) 5064 { 5065 return 0; 5066 } 5067 5068 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5069 { 5070 return 0; 5071 } 5072 5073 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5074 struct usb_device *udev, enum usb3_link_state state) 5075 { 5076 return USB3_LPM_DISABLED; 5077 } 5078 5079 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5080 struct usb_device *udev, enum usb3_link_state state) 5081 { 5082 return 0; 5083 } 5084 #endif /* CONFIG_PM */ 5085 5086 /*-------------------------------------------------------------------------*/ 5087 5088 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5089 * internal data structures for the device. 5090 */ 5091 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5092 struct usb_tt *tt, gfp_t mem_flags) 5093 { 5094 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5095 struct xhci_virt_device *vdev; 5096 struct xhci_command *config_cmd; 5097 struct xhci_input_control_ctx *ctrl_ctx; 5098 struct xhci_slot_ctx *slot_ctx; 5099 unsigned long flags; 5100 unsigned think_time; 5101 int ret; 5102 5103 /* Ignore root hubs */ 5104 if (!hdev->parent) 5105 return 0; 5106 5107 vdev = xhci->devs[hdev->slot_id]; 5108 if (!vdev) { 5109 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5110 return -EINVAL; 5111 } 5112 5113 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5114 if (!config_cmd) 5115 return -ENOMEM; 5116 5117 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5118 if (!ctrl_ctx) { 5119 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5120 __func__); 5121 xhci_free_command(xhci, config_cmd); 5122 return -ENOMEM; 5123 } 5124 5125 spin_lock_irqsave(&xhci->lock, flags); 5126 if (hdev->speed == USB_SPEED_HIGH && 5127 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5128 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5129 xhci_free_command(xhci, config_cmd); 5130 spin_unlock_irqrestore(&xhci->lock, flags); 5131 return -ENOMEM; 5132 } 5133 5134 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5135 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5136 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5137 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5138 /* 5139 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5140 * but it may be already set to 1 when setup an xHCI virtual 5141 * device, so clear it anyway. 5142 */ 5143 if (tt->multi) 5144 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5145 else if (hdev->speed == USB_SPEED_FULL) 5146 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5147 5148 if (xhci->hci_version > 0x95) { 5149 xhci_dbg(xhci, "xHCI version %x needs hub " 5150 "TT think time and number of ports\n", 5151 (unsigned int) xhci->hci_version); 5152 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5153 /* Set TT think time - convert from ns to FS bit times. 5154 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5155 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5156 * 5157 * xHCI 1.0: this field shall be 0 if the device is not a 5158 * High-spped hub. 5159 */ 5160 think_time = tt->think_time; 5161 if (think_time != 0) 5162 think_time = (think_time / 666) - 1; 5163 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5164 slot_ctx->tt_info |= 5165 cpu_to_le32(TT_THINK_TIME(think_time)); 5166 } else { 5167 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5168 "TT think time or number of ports\n", 5169 (unsigned int) xhci->hci_version); 5170 } 5171 slot_ctx->dev_state = 0; 5172 spin_unlock_irqrestore(&xhci->lock, flags); 5173 5174 xhci_dbg(xhci, "Set up %s for hub device.\n", 5175 (xhci->hci_version > 0x95) ? 5176 "configure endpoint" : "evaluate context"); 5177 5178 /* Issue and wait for the configure endpoint or 5179 * evaluate context command. 5180 */ 5181 if (xhci->hci_version > 0x95) 5182 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5183 false, false); 5184 else 5185 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5186 true, false); 5187 5188 xhci_free_command(xhci, config_cmd); 5189 return ret; 5190 } 5191 5192 static int xhci_get_frame(struct usb_hcd *hcd) 5193 { 5194 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5195 /* EHCI mods by the periodic size. Why? */ 5196 return readl(&xhci->run_regs->microframe_index) >> 3; 5197 } 5198 5199 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5200 { 5201 struct xhci_hcd *xhci; 5202 /* 5203 * TODO: Check with DWC3 clients for sysdev according to 5204 * quirks 5205 */ 5206 struct device *dev = hcd->self.sysdev; 5207 unsigned int minor_rev; 5208 int retval; 5209 5210 /* Accept arbitrarily long scatter-gather lists */ 5211 hcd->self.sg_tablesize = ~0; 5212 5213 /* support to build packet from discontinuous buffers */ 5214 hcd->self.no_sg_constraint = 1; 5215 5216 /* XHCI controllers don't stop the ep queue on short packets :| */ 5217 hcd->self.no_stop_on_short = 1; 5218 5219 xhci = hcd_to_xhci(hcd); 5220 5221 if (usb_hcd_is_primary_hcd(hcd)) { 5222 xhci->main_hcd = hcd; 5223 xhci->usb2_rhub.hcd = hcd; 5224 /* Mark the first roothub as being USB 2.0. 5225 * The xHCI driver will register the USB 3.0 roothub. 5226 */ 5227 hcd->speed = HCD_USB2; 5228 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5229 /* 5230 * USB 2.0 roothub under xHCI has an integrated TT, 5231 * (rate matching hub) as opposed to having an OHCI/UHCI 5232 * companion controller. 5233 */ 5234 hcd->has_tt = 1; 5235 } else { 5236 /* 5237 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5238 * should return 0x31 for sbrn, or that the minor revision 5239 * is a two digit BCD containig minor and sub-minor numbers. 5240 * This was later clarified in xHCI 1.2. 5241 * 5242 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5243 * minor revision set to 0x1 instead of 0x10. 5244 */ 5245 if (xhci->usb3_rhub.min_rev == 0x1) 5246 minor_rev = 1; 5247 else 5248 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5249 5250 switch (minor_rev) { 5251 case 2: 5252 hcd->speed = HCD_USB32; 5253 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5254 hcd->self.root_hub->rx_lanes = 2; 5255 hcd->self.root_hub->tx_lanes = 2; 5256 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5257 break; 5258 case 1: 5259 hcd->speed = HCD_USB31; 5260 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5261 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5262 break; 5263 } 5264 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5265 minor_rev, 5266 minor_rev ? "Enhanced " : ""); 5267 5268 xhci->usb3_rhub.hcd = hcd; 5269 /* xHCI private pointer was set in xhci_pci_probe for the second 5270 * registered roothub. 5271 */ 5272 return 0; 5273 } 5274 5275 mutex_init(&xhci->mutex); 5276 xhci->cap_regs = hcd->regs; 5277 xhci->op_regs = hcd->regs + 5278 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5279 xhci->run_regs = hcd->regs + 5280 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5281 /* Cache read-only capability registers */ 5282 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5283 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5284 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5285 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5286 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5287 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5288 if (xhci->hci_version > 0x100) 5289 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5290 5291 xhci->quirks |= quirks; 5292 5293 get_quirks(dev, xhci); 5294 5295 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5296 * success event after a short transfer. This quirk will ignore such 5297 * spurious event. 5298 */ 5299 if (xhci->hci_version > 0x96) 5300 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5301 5302 /* Make sure the HC is halted. */ 5303 retval = xhci_halt(xhci); 5304 if (retval) 5305 return retval; 5306 5307 xhci_zero_64b_regs(xhci); 5308 5309 xhci_dbg(xhci, "Resetting HCD\n"); 5310 /* Reset the internal HC memory state and registers. */ 5311 retval = xhci_reset(xhci); 5312 if (retval) 5313 return retval; 5314 xhci_dbg(xhci, "Reset complete\n"); 5315 5316 /* 5317 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5318 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5319 * address memory pointers actually. So, this driver clears the AC64 5320 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5321 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5322 */ 5323 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5324 xhci->hcc_params &= ~BIT(0); 5325 5326 /* Set dma_mask and coherent_dma_mask to 64-bits, 5327 * if xHC supports 64-bit addressing */ 5328 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5329 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5330 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5331 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5332 } else { 5333 /* 5334 * This is to avoid error in cases where a 32-bit USB 5335 * controller is used on a 64-bit capable system. 5336 */ 5337 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5338 if (retval) 5339 return retval; 5340 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5341 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5342 } 5343 5344 xhci_dbg(xhci, "Calling HCD init\n"); 5345 /* Initialize HCD and host controller data structures. */ 5346 retval = xhci_init(hcd); 5347 if (retval) 5348 return retval; 5349 xhci_dbg(xhci, "Called HCD init\n"); 5350 5351 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5352 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5353 5354 return 0; 5355 } 5356 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5357 5358 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5359 struct usb_host_endpoint *ep) 5360 { 5361 struct xhci_hcd *xhci; 5362 struct usb_device *udev; 5363 unsigned int slot_id; 5364 unsigned int ep_index; 5365 unsigned long flags; 5366 5367 xhci = hcd_to_xhci(hcd); 5368 5369 spin_lock_irqsave(&xhci->lock, flags); 5370 udev = (struct usb_device *)ep->hcpriv; 5371 slot_id = udev->slot_id; 5372 ep_index = xhci_get_endpoint_index(&ep->desc); 5373 5374 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5375 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5376 spin_unlock_irqrestore(&xhci->lock, flags); 5377 } 5378 5379 static const struct hc_driver xhci_hc_driver = { 5380 .description = "xhci-hcd", 5381 .product_desc = "xHCI Host Controller", 5382 .hcd_priv_size = sizeof(struct xhci_hcd), 5383 5384 /* 5385 * generic hardware linkage 5386 */ 5387 .irq = xhci_irq, 5388 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5389 HCD_BH, 5390 5391 /* 5392 * basic lifecycle operations 5393 */ 5394 .reset = NULL, /* set in xhci_init_driver() */ 5395 .start = xhci_run, 5396 .stop = xhci_stop, 5397 .shutdown = xhci_shutdown, 5398 5399 /* 5400 * managing i/o requests and associated device resources 5401 */ 5402 .map_urb_for_dma = xhci_map_urb_for_dma, 5403 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5404 .urb_enqueue = xhci_urb_enqueue, 5405 .urb_dequeue = xhci_urb_dequeue, 5406 .alloc_dev = xhci_alloc_dev, 5407 .free_dev = xhci_free_dev, 5408 .alloc_streams = xhci_alloc_streams, 5409 .free_streams = xhci_free_streams, 5410 .add_endpoint = xhci_add_endpoint, 5411 .drop_endpoint = xhci_drop_endpoint, 5412 .endpoint_disable = xhci_endpoint_disable, 5413 .endpoint_reset = xhci_endpoint_reset, 5414 .check_bandwidth = xhci_check_bandwidth, 5415 .reset_bandwidth = xhci_reset_bandwidth, 5416 .address_device = xhci_address_device, 5417 .enable_device = xhci_enable_device, 5418 .update_hub_device = xhci_update_hub_device, 5419 .reset_device = xhci_discover_or_reset_device, 5420 5421 /* 5422 * scheduling support 5423 */ 5424 .get_frame_number = xhci_get_frame, 5425 5426 /* 5427 * root hub support 5428 */ 5429 .hub_control = xhci_hub_control, 5430 .hub_status_data = xhci_hub_status_data, 5431 .bus_suspend = xhci_bus_suspend, 5432 .bus_resume = xhci_bus_resume, 5433 .get_resuming_ports = xhci_get_resuming_ports, 5434 5435 /* 5436 * call back when device connected and addressed 5437 */ 5438 .update_device = xhci_update_device, 5439 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5440 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5441 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5442 .find_raw_port_number = xhci_find_raw_port_number, 5443 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5444 }; 5445 5446 void xhci_init_driver(struct hc_driver *drv, 5447 const struct xhci_driver_overrides *over) 5448 { 5449 BUG_ON(!over); 5450 5451 /* Copy the generic table to drv then apply the overrides */ 5452 *drv = xhci_hc_driver; 5453 5454 if (over) { 5455 drv->hcd_priv_size += over->extra_priv_size; 5456 if (over->reset) 5457 drv->reset = over->reset; 5458 if (over->start) 5459 drv->start = over->start; 5460 if (over->add_endpoint) 5461 drv->add_endpoint = over->add_endpoint; 5462 if (over->drop_endpoint) 5463 drv->drop_endpoint = over->drop_endpoint; 5464 if (over->check_bandwidth) 5465 drv->check_bandwidth = over->check_bandwidth; 5466 if (over->reset_bandwidth) 5467 drv->reset_bandwidth = over->reset_bandwidth; 5468 } 5469 } 5470 EXPORT_SYMBOL_GPL(xhci_init_driver); 5471 5472 MODULE_DESCRIPTION(DRIVER_DESC); 5473 MODULE_AUTHOR(DRIVER_AUTHOR); 5474 MODULE_LICENSE("GPL"); 5475 5476 static int __init xhci_hcd_init(void) 5477 { 5478 /* 5479 * Check the compiler generated sizes of structures that must be laid 5480 * out in specific ways for hardware access. 5481 */ 5482 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5483 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5484 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5485 /* xhci_device_control has eight fields, and also 5486 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5487 */ 5488 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5489 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5490 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5491 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5492 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5493 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5494 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5495 5496 if (usb_disabled()) 5497 return -ENODEV; 5498 5499 xhci_debugfs_create_root(); 5500 5501 return 0; 5502 } 5503 5504 /* 5505 * If an init function is provided, an exit function must also be provided 5506 * to allow module unload. 5507 */ 5508 static void __exit xhci_hcd_fini(void) 5509 { 5510 xhci_debugfs_remove_root(); 5511 } 5512 5513 module_init(xhci_hcd_init); 5514 module_exit(xhci_hcd_fini); 5515