xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	/* Clear root port wake on bits if wakeup not allowed. */
986 	if (!do_wakeup)
987 		xhci_disable_port_wake_on_bits(xhci);
988 
989 	if (!HCD_HW_ACCESSIBLE(hcd))
990 		return 0;
991 
992 	xhci_dbc_suspend(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 20 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/*
1112 		 * Some controllers might lose power during suspend, so wait
1113 		 * for controller not ready bit to clear, just as in xHC init.
1114 		 */
1115 		retval = xhci_handshake(&xhci->op_regs->status,
1116 					STS_CNR, 0, 10 * 1000 * 1000);
1117 		if (retval) {
1118 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 				  retval);
1120 			spin_unlock_irq(&xhci->lock);
1121 			return retval;
1122 		}
1123 		/* step 1: restore register */
1124 		xhci_restore_registers(xhci);
1125 		/* step 2: initialize command ring buffer */
1126 		xhci_set_cmd_ring_deq(xhci);
1127 		/* step 3: restore state and start state*/
1128 		/* step 3: set CRS flag */
1129 		command = readl(&xhci->op_regs->command);
1130 		command |= CMD_CRS;
1131 		writel(command, &xhci->op_regs->command);
1132 		/*
1133 		 * Some controllers take up to 55+ ms to complete the controller
1134 		 * restore so setting the timeout to 100ms. Xhci specification
1135 		 * doesn't mention any timeout value.
1136 		 */
1137 		if (xhci_handshake(&xhci->op_regs->status,
1138 			      STS_RESTORE, 0, 100 * 1000)) {
1139 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 			spin_unlock_irq(&xhci->lock);
1141 			return -ETIMEDOUT;
1142 		}
1143 		temp = readl(&xhci->op_regs->status);
1144 	}
1145 
1146 	/* If restore operation fails, re-initialize the HC during resume */
1147 	if ((temp & STS_SRE) || hibernated) {
1148 
1149 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 				!(xhci_all_ports_seen_u0(xhci))) {
1151 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 				"Compliance Mode Recovery Timer deleted!");
1154 		}
1155 
1156 		/* Let the USB core know _both_ roothubs lost power. */
1157 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159 
1160 		xhci_dbg(xhci, "Stop HCD\n");
1161 		xhci_halt(xhci);
1162 		xhci_zero_64b_regs(xhci);
1163 		retval = xhci_reset(xhci);
1164 		spin_unlock_irq(&xhci->lock);
1165 		if (retval)
1166 			return retval;
1167 		xhci_cleanup_msix(xhci);
1168 
1169 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 		temp = readl(&xhci->op_regs->status);
1171 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 		temp = readl(&xhci->ir_set->irq_pending);
1173 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174 
1175 		xhci_dbg(xhci, "cleaning up memory\n");
1176 		xhci_mem_cleanup(xhci);
1177 		xhci_debugfs_exit(xhci);
1178 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179 			    readl(&xhci->op_regs->status));
1180 
1181 		/* USB core calls the PCI reinit and start functions twice:
1182 		 * first with the primary HCD, and then with the secondary HCD.
1183 		 * If we don't do the same, the host will never be started.
1184 		 */
1185 		if (!usb_hcd_is_primary_hcd(hcd))
1186 			secondary_hcd = hcd;
1187 		else
1188 			secondary_hcd = xhci->shared_hcd;
1189 
1190 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191 		retval = xhci_init(hcd->primary_hcd);
1192 		if (retval)
1193 			return retval;
1194 		comp_timer_running = true;
1195 
1196 		xhci_dbg(xhci, "Start the primary HCD\n");
1197 		retval = xhci_run(hcd->primary_hcd);
1198 		if (!retval) {
1199 			xhci_dbg(xhci, "Start the secondary HCD\n");
1200 			retval = xhci_run(secondary_hcd);
1201 		}
1202 		hcd->state = HC_STATE_SUSPENDED;
1203 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204 		goto done;
1205 	}
1206 
1207 	/* step 4: set Run/Stop bit */
1208 	command = readl(&xhci->op_regs->command);
1209 	command |= CMD_RUN;
1210 	writel(command, &xhci->op_regs->command);
1211 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212 		  0, 250 * 1000);
1213 
1214 	/* step 5: walk topology and initialize portsc,
1215 	 * portpmsc and portli
1216 	 */
1217 	/* this is done in bus_resume */
1218 
1219 	/* step 6: restart each of the previously
1220 	 * Running endpoints by ringing their doorbells
1221 	 */
1222 
1223 	spin_unlock_irq(&xhci->lock);
1224 
1225 	xhci_dbc_resume(xhci);
1226 
1227  done:
1228 	if (retval == 0) {
1229 		/* Resume root hubs only when have pending events. */
1230 		if (xhci_pending_portevent(xhci)) {
1231 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1232 			usb_hcd_resume_root_hub(hcd);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1238 	 * be re-initialized Always after a system resume. Ports are subject
1239 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1240 	 * ports have entered previously to U0 before system's suspension.
1241 	 */
1242 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243 		compliance_mode_recovery_timer_init(xhci);
1244 
1245 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247 
1248 	/* Re-enable port polling. */
1249 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1252 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253 	usb_hcd_poll_rh_status(hcd);
1254 
1255 	return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif	/* CONFIG_PM */
1259 
1260 /*-------------------------------------------------------------------------*/
1261 
1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264 	void *temp;
1265 	int ret = 0;
1266 	unsigned int buf_len;
1267 	enum dma_data_direction dir;
1268 
1269 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1270 	buf_len = urb->transfer_buffer_length;
1271 
1272 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1273 			    dev_to_node(hcd->self.sysdev));
1274 
1275 	if (usb_urb_dir_out(urb))
1276 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1277 				   temp, buf_len, 0);
1278 
1279 	urb->transfer_buffer = temp;
1280 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1281 					   urb->transfer_buffer,
1282 					   urb->transfer_buffer_length,
1283 					   dir);
1284 
1285 	if (dma_mapping_error(hcd->self.sysdev,
1286 			      urb->transfer_dma)) {
1287 		ret = -EAGAIN;
1288 		kfree(temp);
1289 	} else {
1290 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1297 					  struct urb *urb)
1298 {
1299 	bool ret = false;
1300 	unsigned int i;
1301 	unsigned int len = 0;
1302 	unsigned int trb_size;
1303 	unsigned int max_pkt;
1304 	struct scatterlist *sg;
1305 	struct scatterlist *tail_sg;
1306 
1307 	tail_sg = urb->sg;
1308 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1309 
1310 	if (!urb->num_sgs)
1311 		return ret;
1312 
1313 	if (urb->dev->speed >= USB_SPEED_SUPER)
1314 		trb_size = TRB_CACHE_SIZE_SS;
1315 	else
1316 		trb_size = TRB_CACHE_SIZE_HS;
1317 
1318 	if (urb->transfer_buffer_length != 0 &&
1319 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1320 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1321 			len = len + sg->length;
1322 			if (i > trb_size - 2) {
1323 				len = len - tail_sg->length;
1324 				if (len < max_pkt) {
1325 					ret = true;
1326 					break;
1327 				}
1328 
1329 				tail_sg = sg_next(tail_sg);
1330 			}
1331 		}
1332 	}
1333 	return ret;
1334 }
1335 
1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338 	unsigned int len;
1339 	unsigned int buf_len;
1340 	enum dma_data_direction dir;
1341 
1342 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1343 
1344 	buf_len = urb->transfer_buffer_length;
1345 
1346 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348 		dma_unmap_single(hcd->self.sysdev,
1349 				 urb->transfer_dma,
1350 				 urb->transfer_buffer_length,
1351 				 dir);
1352 
1353 	if (usb_urb_dir_in(urb))
1354 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1355 					   urb->transfer_buffer,
1356 					   buf_len,
1357 					   0);
1358 
1359 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1360 	kfree(urb->transfer_buffer);
1361 	urb->transfer_buffer = NULL;
1362 }
1363 
1364 /*
1365  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1366  * we'll copy the actual data into the TRB address register. This is limited to
1367  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1368  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1369  */
1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1371 				gfp_t mem_flags)
1372 {
1373 	struct xhci_hcd *xhci;
1374 
1375 	xhci = hcd_to_xhci(hcd);
1376 
1377 	if (xhci_urb_suitable_for_idt(urb))
1378 		return 0;
1379 
1380 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1381 		if (xhci_urb_temp_buffer_required(hcd, urb))
1382 			return xhci_map_temp_buffer(hcd, urb);
1383 	}
1384 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1385 }
1386 
1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1388 {
1389 	struct xhci_hcd *xhci;
1390 	bool unmap_temp_buf = false;
1391 
1392 	xhci = hcd_to_xhci(hcd);
1393 
1394 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1395 		unmap_temp_buf = true;
1396 
1397 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1398 		xhci_unmap_temp_buf(hcd, urb);
1399 	else
1400 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1401 }
1402 
1403 /**
1404  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1405  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1406  * value to right shift 1 for the bitmask.
1407  *
1408  * Index  = (epnum * 2) + direction - 1,
1409  * where direction = 0 for OUT, 1 for IN.
1410  * For control endpoints, the IN index is used (OUT index is unused), so
1411  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1412  */
1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1414 {
1415 	unsigned int index;
1416 	if (usb_endpoint_xfer_control(desc))
1417 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1418 	else
1419 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1420 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1421 	return index;
1422 }
1423 
1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1425  * address from the XHCI endpoint index.
1426  */
1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1428 {
1429 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1430 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1431 	return direction | number;
1432 }
1433 
1434 /* Find the flag for this endpoint (for use in the control context).  Use the
1435  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1436  * bit 1, etc.
1437  */
1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1439 {
1440 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1441 }
1442 
1443 /* Compute the last valid endpoint context index.  Basically, this is the
1444  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1445  * we find the most significant bit set in the added contexts flags.
1446  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1447  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1448  */
1449 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1450 {
1451 	return fls(added_ctxs) - 1;
1452 }
1453 
1454 /* Returns 1 if the arguments are OK;
1455  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1456  */
1457 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1458 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1459 		const char *func) {
1460 	struct xhci_hcd	*xhci;
1461 	struct xhci_virt_device	*virt_dev;
1462 
1463 	if (!hcd || (check_ep && !ep) || !udev) {
1464 		pr_debug("xHCI %s called with invalid args\n", func);
1465 		return -EINVAL;
1466 	}
1467 	if (!udev->parent) {
1468 		pr_debug("xHCI %s called for root hub\n", func);
1469 		return 0;
1470 	}
1471 
1472 	xhci = hcd_to_xhci(hcd);
1473 	if (check_virt_dev) {
1474 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1475 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1476 					func);
1477 			return -EINVAL;
1478 		}
1479 
1480 		virt_dev = xhci->devs[udev->slot_id];
1481 		if (virt_dev->udev != udev) {
1482 			xhci_dbg(xhci, "xHCI %s called with udev and "
1483 					  "virt_dev does not match\n", func);
1484 			return -EINVAL;
1485 		}
1486 	}
1487 
1488 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1489 		return -ENODEV;
1490 
1491 	return 1;
1492 }
1493 
1494 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1495 		struct usb_device *udev, struct xhci_command *command,
1496 		bool ctx_change, bool must_succeed);
1497 
1498 /*
1499  * Full speed devices may have a max packet size greater than 8 bytes, but the
1500  * USB core doesn't know that until it reads the first 8 bytes of the
1501  * descriptor.  If the usb_device's max packet size changes after that point,
1502  * we need to issue an evaluate context command and wait on it.
1503  */
1504 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1505 		unsigned int ep_index, struct urb *urb)
1506 {
1507 	struct xhci_container_ctx *out_ctx;
1508 	struct xhci_input_control_ctx *ctrl_ctx;
1509 	struct xhci_ep_ctx *ep_ctx;
1510 	struct xhci_command *command;
1511 	int max_packet_size;
1512 	int hw_max_packet_size;
1513 	int ret = 0;
1514 
1515 	out_ctx = xhci->devs[slot_id]->out_ctx;
1516 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1517 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1518 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1519 	if (hw_max_packet_size != max_packet_size) {
1520 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1521 				"Max Packet Size for ep 0 changed.");
1522 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1523 				"Max packet size in usb_device = %d",
1524 				max_packet_size);
1525 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1526 				"Max packet size in xHCI HW = %d",
1527 				hw_max_packet_size);
1528 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1529 				"Issuing evaluate context command.");
1530 
1531 		/* Set up the input context flags for the command */
1532 		/* FIXME: This won't work if a non-default control endpoint
1533 		 * changes max packet sizes.
1534 		 */
1535 
1536 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1537 		if (!command)
1538 			return -ENOMEM;
1539 
1540 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1541 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1542 		if (!ctrl_ctx) {
1543 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1544 					__func__);
1545 			ret = -ENOMEM;
1546 			goto command_cleanup;
1547 		}
1548 		/* Set up the modified control endpoint 0 */
1549 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1550 				xhci->devs[slot_id]->out_ctx, ep_index);
1551 
1552 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1553 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1554 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1555 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1556 
1557 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1558 		ctrl_ctx->drop_flags = 0;
1559 
1560 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1561 				true, false);
1562 
1563 		/* Clean up the input context for later use by bandwidth
1564 		 * functions.
1565 		 */
1566 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1567 command_cleanup:
1568 		kfree(command->completion);
1569 		kfree(command);
1570 	}
1571 	return ret;
1572 }
1573 
1574 /*
1575  * non-error returns are a promise to giveback() the urb later
1576  * we drop ownership so next owner (or urb unlink) can get it
1577  */
1578 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1579 {
1580 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1581 	unsigned long flags;
1582 	int ret = 0;
1583 	unsigned int slot_id, ep_index;
1584 	unsigned int *ep_state;
1585 	struct urb_priv	*urb_priv;
1586 	int num_tds;
1587 
1588 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1589 					true, true, __func__) <= 0)
1590 		return -EINVAL;
1591 
1592 	slot_id = urb->dev->slot_id;
1593 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595 
1596 	if (!HCD_HW_ACCESSIBLE(hcd))
1597 		return -ESHUTDOWN;
1598 
1599 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1600 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1601 		return -ENODEV;
1602 	}
1603 
1604 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1605 		num_tds = urb->number_of_packets;
1606 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1607 	    urb->transfer_buffer_length > 0 &&
1608 	    urb->transfer_flags & URB_ZERO_PACKET &&
1609 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1610 		num_tds = 2;
1611 	else
1612 		num_tds = 1;
1613 
1614 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1615 	if (!urb_priv)
1616 		return -ENOMEM;
1617 
1618 	urb_priv->num_tds = num_tds;
1619 	urb_priv->num_tds_done = 0;
1620 	urb->hcpriv = urb_priv;
1621 
1622 	trace_xhci_urb_enqueue(urb);
1623 
1624 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1625 		/* Check to see if the max packet size for the default control
1626 		 * endpoint changed during FS device enumeration
1627 		 */
1628 		if (urb->dev->speed == USB_SPEED_FULL) {
1629 			ret = xhci_check_maxpacket(xhci, slot_id,
1630 					ep_index, urb);
1631 			if (ret < 0) {
1632 				xhci_urb_free_priv(urb_priv);
1633 				urb->hcpriv = NULL;
1634 				return ret;
1635 			}
1636 		}
1637 	}
1638 
1639 	spin_lock_irqsave(&xhci->lock, flags);
1640 
1641 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1642 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1643 			 urb->ep->desc.bEndpointAddress, urb);
1644 		ret = -ESHUTDOWN;
1645 		goto free_priv;
1646 	}
1647 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1648 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1649 			  *ep_state);
1650 		ret = -EINVAL;
1651 		goto free_priv;
1652 	}
1653 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1654 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1655 		ret = -EINVAL;
1656 		goto free_priv;
1657 	}
1658 
1659 	switch (usb_endpoint_type(&urb->ep->desc)) {
1660 
1661 	case USB_ENDPOINT_XFER_CONTROL:
1662 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1663 					 slot_id, ep_index);
1664 		break;
1665 	case USB_ENDPOINT_XFER_BULK:
1666 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1667 					 slot_id, ep_index);
1668 		break;
1669 	case USB_ENDPOINT_XFER_INT:
1670 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1671 				slot_id, ep_index);
1672 		break;
1673 	case USB_ENDPOINT_XFER_ISOC:
1674 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1675 				slot_id, ep_index);
1676 	}
1677 
1678 	if (ret) {
1679 free_priv:
1680 		xhci_urb_free_priv(urb_priv);
1681 		urb->hcpriv = NULL;
1682 	}
1683 	spin_unlock_irqrestore(&xhci->lock, flags);
1684 	return ret;
1685 }
1686 
1687 /*
1688  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1689  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1690  * should pick up where it left off in the TD, unless a Set Transfer Ring
1691  * Dequeue Pointer is issued.
1692  *
1693  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1694  * the ring.  Since the ring is a contiguous structure, they can't be physically
1695  * removed.  Instead, there are two options:
1696  *
1697  *  1) If the HC is in the middle of processing the URB to be canceled, we
1698  *     simply move the ring's dequeue pointer past those TRBs using the Set
1699  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1700  *     when drivers timeout on the last submitted URB and attempt to cancel.
1701  *
1702  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1703  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1704  *     HC will need to invalidate the any TRBs it has cached after the stop
1705  *     endpoint command, as noted in the xHCI 0.95 errata.
1706  *
1707  *  3) The TD may have completed by the time the Stop Endpoint Command
1708  *     completes, so software needs to handle that case too.
1709  *
1710  * This function should protect against the TD enqueueing code ringing the
1711  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1712  * It also needs to account for multiple cancellations on happening at the same
1713  * time for the same endpoint.
1714  *
1715  * Note that this function can be called in any context, or so says
1716  * usb_hcd_unlink_urb()
1717  */
1718 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1719 {
1720 	unsigned long flags;
1721 	int ret, i;
1722 	u32 temp;
1723 	struct xhci_hcd *xhci;
1724 	struct urb_priv	*urb_priv;
1725 	struct xhci_td *td;
1726 	unsigned int ep_index;
1727 	struct xhci_ring *ep_ring;
1728 	struct xhci_virt_ep *ep;
1729 	struct xhci_command *command;
1730 	struct xhci_virt_device *vdev;
1731 
1732 	xhci = hcd_to_xhci(hcd);
1733 	spin_lock_irqsave(&xhci->lock, flags);
1734 
1735 	trace_xhci_urb_dequeue(urb);
1736 
1737 	/* Make sure the URB hasn't completed or been unlinked already */
1738 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1739 	if (ret)
1740 		goto done;
1741 
1742 	/* give back URB now if we can't queue it for cancel */
1743 	vdev = xhci->devs[urb->dev->slot_id];
1744 	urb_priv = urb->hcpriv;
1745 	if (!vdev || !urb_priv)
1746 		goto err_giveback;
1747 
1748 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1749 	ep = &vdev->eps[ep_index];
1750 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1751 	if (!ep || !ep_ring)
1752 		goto err_giveback;
1753 
1754 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1755 	temp = readl(&xhci->op_regs->status);
1756 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1757 		xhci_hc_died(xhci);
1758 		goto done;
1759 	}
1760 
1761 	/*
1762 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1763 	 * make sure none of the ring related pointers in this URB private data
1764 	 * are touched, such as td_list, otherwise we overwrite freed data
1765 	 */
1766 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1767 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1768 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1769 			td = &urb_priv->td[i];
1770 			if (!list_empty(&td->cancelled_td_list))
1771 				list_del_init(&td->cancelled_td_list);
1772 		}
1773 		goto err_giveback;
1774 	}
1775 
1776 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1777 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1778 				"HC halted, freeing TD manually.");
1779 		for (i = urb_priv->num_tds_done;
1780 		     i < urb_priv->num_tds;
1781 		     i++) {
1782 			td = &urb_priv->td[i];
1783 			if (!list_empty(&td->td_list))
1784 				list_del_init(&td->td_list);
1785 			if (!list_empty(&td->cancelled_td_list))
1786 				list_del_init(&td->cancelled_td_list);
1787 		}
1788 		goto err_giveback;
1789 	}
1790 
1791 	i = urb_priv->num_tds_done;
1792 	if (i < urb_priv->num_tds)
1793 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1794 				"Cancel URB %p, dev %s, ep 0x%x, "
1795 				"starting at offset 0x%llx",
1796 				urb, urb->dev->devpath,
1797 				urb->ep->desc.bEndpointAddress,
1798 				(unsigned long long) xhci_trb_virt_to_dma(
1799 					urb_priv->td[i].start_seg,
1800 					urb_priv->td[i].first_trb));
1801 
1802 	for (; i < urb_priv->num_tds; i++) {
1803 		td = &urb_priv->td[i];
1804 		/* TD can already be on cancelled list if ep halted on it */
1805 		if (list_empty(&td->cancelled_td_list)) {
1806 			td->cancel_status = TD_DIRTY;
1807 			list_add_tail(&td->cancelled_td_list,
1808 				      &ep->cancelled_td_list);
1809 		}
1810 	}
1811 
1812 	/* Queue a stop endpoint command, but only if this is
1813 	 * the first cancellation to be handled.
1814 	 */
1815 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1816 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1817 		if (!command) {
1818 			ret = -ENOMEM;
1819 			goto done;
1820 		}
1821 		ep->ep_state |= EP_STOP_CMD_PENDING;
1822 		ep->stop_cmd_timer.expires = jiffies +
1823 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1824 		add_timer(&ep->stop_cmd_timer);
1825 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1826 					 ep_index, 0);
1827 		xhci_ring_cmd_db(xhci);
1828 	}
1829 done:
1830 	spin_unlock_irqrestore(&xhci->lock, flags);
1831 	return ret;
1832 
1833 err_giveback:
1834 	if (urb_priv)
1835 		xhci_urb_free_priv(urb_priv);
1836 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1837 	spin_unlock_irqrestore(&xhci->lock, flags);
1838 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1839 	return ret;
1840 }
1841 
1842 /* Drop an endpoint from a new bandwidth configuration for this device.
1843  * Only one call to this function is allowed per endpoint before
1844  * check_bandwidth() or reset_bandwidth() must be called.
1845  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1846  * add the endpoint to the schedule with possibly new parameters denoted by a
1847  * different endpoint descriptor in usb_host_endpoint.
1848  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1849  * not allowed.
1850  *
1851  * The USB core will not allow URBs to be queued to an endpoint that is being
1852  * disabled, so there's no need for mutual exclusion to protect
1853  * the xhci->devs[slot_id] structure.
1854  */
1855 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1856 		struct usb_host_endpoint *ep)
1857 {
1858 	struct xhci_hcd *xhci;
1859 	struct xhci_container_ctx *in_ctx, *out_ctx;
1860 	struct xhci_input_control_ctx *ctrl_ctx;
1861 	unsigned int ep_index;
1862 	struct xhci_ep_ctx *ep_ctx;
1863 	u32 drop_flag;
1864 	u32 new_add_flags, new_drop_flags;
1865 	int ret;
1866 
1867 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1868 	if (ret <= 0)
1869 		return ret;
1870 	xhci = hcd_to_xhci(hcd);
1871 	if (xhci->xhc_state & XHCI_STATE_DYING)
1872 		return -ENODEV;
1873 
1874 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1875 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1876 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1877 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1878 				__func__, drop_flag);
1879 		return 0;
1880 	}
1881 
1882 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1883 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1884 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1885 	if (!ctrl_ctx) {
1886 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1887 				__func__);
1888 		return 0;
1889 	}
1890 
1891 	ep_index = xhci_get_endpoint_index(&ep->desc);
1892 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1893 	/* If the HC already knows the endpoint is disabled,
1894 	 * or the HCD has noted it is disabled, ignore this request
1895 	 */
1896 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1897 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1898 	    xhci_get_endpoint_flag(&ep->desc)) {
1899 		/* Do not warn when called after a usb_device_reset */
1900 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1901 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1902 				  __func__, ep);
1903 		return 0;
1904 	}
1905 
1906 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1907 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1908 
1909 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1910 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1911 
1912 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1913 
1914 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1915 
1916 	if (xhci->quirks & XHCI_MTK_HOST)
1917 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1918 
1919 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1920 			(unsigned int) ep->desc.bEndpointAddress,
1921 			udev->slot_id,
1922 			(unsigned int) new_drop_flags,
1923 			(unsigned int) new_add_flags);
1924 	return 0;
1925 }
1926 
1927 /* Add an endpoint to a new possible bandwidth configuration for this device.
1928  * Only one call to this function is allowed per endpoint before
1929  * check_bandwidth() or reset_bandwidth() must be called.
1930  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1931  * add the endpoint to the schedule with possibly new parameters denoted by a
1932  * different endpoint descriptor in usb_host_endpoint.
1933  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1934  * not allowed.
1935  *
1936  * The USB core will not allow URBs to be queued to an endpoint until the
1937  * configuration or alt setting is installed in the device, so there's no need
1938  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1939  */
1940 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1941 		struct usb_host_endpoint *ep)
1942 {
1943 	struct xhci_hcd *xhci;
1944 	struct xhci_container_ctx *in_ctx;
1945 	unsigned int ep_index;
1946 	struct xhci_input_control_ctx *ctrl_ctx;
1947 	struct xhci_ep_ctx *ep_ctx;
1948 	u32 added_ctxs;
1949 	u32 new_add_flags, new_drop_flags;
1950 	struct xhci_virt_device *virt_dev;
1951 	int ret = 0;
1952 
1953 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1954 	if (ret <= 0) {
1955 		/* So we won't queue a reset ep command for a root hub */
1956 		ep->hcpriv = NULL;
1957 		return ret;
1958 	}
1959 	xhci = hcd_to_xhci(hcd);
1960 	if (xhci->xhc_state & XHCI_STATE_DYING)
1961 		return -ENODEV;
1962 
1963 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1964 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1965 		/* FIXME when we have to issue an evaluate endpoint command to
1966 		 * deal with ep0 max packet size changing once we get the
1967 		 * descriptors
1968 		 */
1969 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1970 				__func__, added_ctxs);
1971 		return 0;
1972 	}
1973 
1974 	virt_dev = xhci->devs[udev->slot_id];
1975 	in_ctx = virt_dev->in_ctx;
1976 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1977 	if (!ctrl_ctx) {
1978 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1979 				__func__);
1980 		return 0;
1981 	}
1982 
1983 	ep_index = xhci_get_endpoint_index(&ep->desc);
1984 	/* If this endpoint is already in use, and the upper layers are trying
1985 	 * to add it again without dropping it, reject the addition.
1986 	 */
1987 	if (virt_dev->eps[ep_index].ring &&
1988 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1989 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1990 				"without dropping it.\n",
1991 				(unsigned int) ep->desc.bEndpointAddress);
1992 		return -EINVAL;
1993 	}
1994 
1995 	/* If the HCD has already noted the endpoint is enabled,
1996 	 * ignore this request.
1997 	 */
1998 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1999 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2000 				__func__, ep);
2001 		return 0;
2002 	}
2003 
2004 	/*
2005 	 * Configuration and alternate setting changes must be done in
2006 	 * process context, not interrupt context (or so documenation
2007 	 * for usb_set_interface() and usb_set_configuration() claim).
2008 	 */
2009 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2010 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2011 				__func__, ep->desc.bEndpointAddress);
2012 		return -ENOMEM;
2013 	}
2014 
2015 	if (xhci->quirks & XHCI_MTK_HOST) {
2016 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2017 		if (ret < 0) {
2018 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2019 			virt_dev->eps[ep_index].new_ring = NULL;
2020 			return ret;
2021 		}
2022 	}
2023 
2024 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2025 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2026 
2027 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2028 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2029 	 * this re-adds a new state for the endpoint from the new endpoint
2030 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2031 	 * drop flags alone.
2032 	 */
2033 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2034 
2035 	/* Store the usb_device pointer for later use */
2036 	ep->hcpriv = udev;
2037 
2038 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2039 	trace_xhci_add_endpoint(ep_ctx);
2040 
2041 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2042 			(unsigned int) ep->desc.bEndpointAddress,
2043 			udev->slot_id,
2044 			(unsigned int) new_drop_flags,
2045 			(unsigned int) new_add_flags);
2046 	return 0;
2047 }
2048 
2049 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2050 {
2051 	struct xhci_input_control_ctx *ctrl_ctx;
2052 	struct xhci_ep_ctx *ep_ctx;
2053 	struct xhci_slot_ctx *slot_ctx;
2054 	int i;
2055 
2056 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2057 	if (!ctrl_ctx) {
2058 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2059 				__func__);
2060 		return;
2061 	}
2062 
2063 	/* When a device's add flag and drop flag are zero, any subsequent
2064 	 * configure endpoint command will leave that endpoint's state
2065 	 * untouched.  Make sure we don't leave any old state in the input
2066 	 * endpoint contexts.
2067 	 */
2068 	ctrl_ctx->drop_flags = 0;
2069 	ctrl_ctx->add_flags = 0;
2070 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2071 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2072 	/* Endpoint 0 is always valid */
2073 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2074 	for (i = 1; i < 31; i++) {
2075 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2076 		ep_ctx->ep_info = 0;
2077 		ep_ctx->ep_info2 = 0;
2078 		ep_ctx->deq = 0;
2079 		ep_ctx->tx_info = 0;
2080 	}
2081 }
2082 
2083 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2084 		struct usb_device *udev, u32 *cmd_status)
2085 {
2086 	int ret;
2087 
2088 	switch (*cmd_status) {
2089 	case COMP_COMMAND_ABORTED:
2090 	case COMP_COMMAND_RING_STOPPED:
2091 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2092 		ret = -ETIME;
2093 		break;
2094 	case COMP_RESOURCE_ERROR:
2095 		dev_warn(&udev->dev,
2096 			 "Not enough host controller resources for new device state.\n");
2097 		ret = -ENOMEM;
2098 		/* FIXME: can we allocate more resources for the HC? */
2099 		break;
2100 	case COMP_BANDWIDTH_ERROR:
2101 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2102 		dev_warn(&udev->dev,
2103 			 "Not enough bandwidth for new device state.\n");
2104 		ret = -ENOSPC;
2105 		/* FIXME: can we go back to the old state? */
2106 		break;
2107 	case COMP_TRB_ERROR:
2108 		/* the HCD set up something wrong */
2109 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2110 				"add flag = 1, "
2111 				"and endpoint is not disabled.\n");
2112 		ret = -EINVAL;
2113 		break;
2114 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2115 		dev_warn(&udev->dev,
2116 			 "ERROR: Incompatible device for endpoint configure command.\n");
2117 		ret = -ENODEV;
2118 		break;
2119 	case COMP_SUCCESS:
2120 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2121 				"Successful Endpoint Configure command");
2122 		ret = 0;
2123 		break;
2124 	default:
2125 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2126 				*cmd_status);
2127 		ret = -EINVAL;
2128 		break;
2129 	}
2130 	return ret;
2131 }
2132 
2133 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2134 		struct usb_device *udev, u32 *cmd_status)
2135 {
2136 	int ret;
2137 
2138 	switch (*cmd_status) {
2139 	case COMP_COMMAND_ABORTED:
2140 	case COMP_COMMAND_RING_STOPPED:
2141 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2142 		ret = -ETIME;
2143 		break;
2144 	case COMP_PARAMETER_ERROR:
2145 		dev_warn(&udev->dev,
2146 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2147 		ret = -EINVAL;
2148 		break;
2149 	case COMP_SLOT_NOT_ENABLED_ERROR:
2150 		dev_warn(&udev->dev,
2151 			"WARN: slot not enabled for evaluate context command.\n");
2152 		ret = -EINVAL;
2153 		break;
2154 	case COMP_CONTEXT_STATE_ERROR:
2155 		dev_warn(&udev->dev,
2156 			"WARN: invalid context state for evaluate context command.\n");
2157 		ret = -EINVAL;
2158 		break;
2159 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2160 		dev_warn(&udev->dev,
2161 			"ERROR: Incompatible device for evaluate context command.\n");
2162 		ret = -ENODEV;
2163 		break;
2164 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2165 		/* Max Exit Latency too large error */
2166 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2167 		ret = -EINVAL;
2168 		break;
2169 	case COMP_SUCCESS:
2170 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2171 				"Successful evaluate context command");
2172 		ret = 0;
2173 		break;
2174 	default:
2175 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2176 			*cmd_status);
2177 		ret = -EINVAL;
2178 		break;
2179 	}
2180 	return ret;
2181 }
2182 
2183 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2184 		struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186 	u32 valid_add_flags;
2187 	u32 valid_drop_flags;
2188 
2189 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2190 	 * (bit 1).  The default control endpoint is added during the Address
2191 	 * Device command and is never removed until the slot is disabled.
2192 	 */
2193 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2194 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2195 
2196 	/* Use hweight32 to count the number of ones in the add flags, or
2197 	 * number of endpoints added.  Don't count endpoints that are changed
2198 	 * (both added and dropped).
2199 	 */
2200 	return hweight32(valid_add_flags) -
2201 		hweight32(valid_add_flags & valid_drop_flags);
2202 }
2203 
2204 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2205 		struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207 	u32 valid_add_flags;
2208 	u32 valid_drop_flags;
2209 
2210 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2211 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2212 
2213 	return hweight32(valid_drop_flags) -
2214 		hweight32(valid_add_flags & valid_drop_flags);
2215 }
2216 
2217 /*
2218  * We need to reserve the new number of endpoints before the configure endpoint
2219  * command completes.  We can't subtract the dropped endpoints from the number
2220  * of active endpoints until the command completes because we can oversubscribe
2221  * the host in this case:
2222  *
2223  *  - the first configure endpoint command drops more endpoints than it adds
2224  *  - a second configure endpoint command that adds more endpoints is queued
2225  *  - the first configure endpoint command fails, so the config is unchanged
2226  *  - the second command may succeed, even though there isn't enough resources
2227  *
2228  * Must be called with xhci->lock held.
2229  */
2230 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2231 		struct xhci_input_control_ctx *ctrl_ctx)
2232 {
2233 	u32 added_eps;
2234 
2235 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2236 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2237 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238 				"Not enough ep ctxs: "
2239 				"%u active, need to add %u, limit is %u.",
2240 				xhci->num_active_eps, added_eps,
2241 				xhci->limit_active_eps);
2242 		return -ENOMEM;
2243 	}
2244 	xhci->num_active_eps += added_eps;
2245 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 			"Adding %u ep ctxs, %u now active.", added_eps,
2247 			xhci->num_active_eps);
2248 	return 0;
2249 }
2250 
2251 /*
2252  * The configure endpoint was failed by the xHC for some other reason, so we
2253  * need to revert the resources that failed configuration would have used.
2254  *
2255  * Must be called with xhci->lock held.
2256  */
2257 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2258 		struct xhci_input_control_ctx *ctrl_ctx)
2259 {
2260 	u32 num_failed_eps;
2261 
2262 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2263 	xhci->num_active_eps -= num_failed_eps;
2264 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2265 			"Removing %u failed ep ctxs, %u now active.",
2266 			num_failed_eps,
2267 			xhci->num_active_eps);
2268 }
2269 
2270 /*
2271  * Now that the command has completed, clean up the active endpoint count by
2272  * subtracting out the endpoints that were dropped (but not changed).
2273  *
2274  * Must be called with xhci->lock held.
2275  */
2276 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2277 		struct xhci_input_control_ctx *ctrl_ctx)
2278 {
2279 	u32 num_dropped_eps;
2280 
2281 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2282 	xhci->num_active_eps -= num_dropped_eps;
2283 	if (num_dropped_eps)
2284 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285 				"Removing %u dropped ep ctxs, %u now active.",
2286 				num_dropped_eps,
2287 				xhci->num_active_eps);
2288 }
2289 
2290 static unsigned int xhci_get_block_size(struct usb_device *udev)
2291 {
2292 	switch (udev->speed) {
2293 	case USB_SPEED_LOW:
2294 	case USB_SPEED_FULL:
2295 		return FS_BLOCK;
2296 	case USB_SPEED_HIGH:
2297 		return HS_BLOCK;
2298 	case USB_SPEED_SUPER:
2299 	case USB_SPEED_SUPER_PLUS:
2300 		return SS_BLOCK;
2301 	case USB_SPEED_UNKNOWN:
2302 	case USB_SPEED_WIRELESS:
2303 	default:
2304 		/* Should never happen */
2305 		return 1;
2306 	}
2307 }
2308 
2309 static unsigned int
2310 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2311 {
2312 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2313 		return LS_OVERHEAD;
2314 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2315 		return FS_OVERHEAD;
2316 	return HS_OVERHEAD;
2317 }
2318 
2319 /* If we are changing a LS/FS device under a HS hub,
2320  * make sure (if we are activating a new TT) that the HS bus has enough
2321  * bandwidth for this new TT.
2322  */
2323 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2324 		struct xhci_virt_device *virt_dev,
2325 		int old_active_eps)
2326 {
2327 	struct xhci_interval_bw_table *bw_table;
2328 	struct xhci_tt_bw_info *tt_info;
2329 
2330 	/* Find the bandwidth table for the root port this TT is attached to. */
2331 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2332 	tt_info = virt_dev->tt_info;
2333 	/* If this TT already had active endpoints, the bandwidth for this TT
2334 	 * has already been added.  Removing all periodic endpoints (and thus
2335 	 * making the TT enactive) will only decrease the bandwidth used.
2336 	 */
2337 	if (old_active_eps)
2338 		return 0;
2339 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2340 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2341 			return -ENOMEM;
2342 		return 0;
2343 	}
2344 	/* Not sure why we would have no new active endpoints...
2345 	 *
2346 	 * Maybe because of an Evaluate Context change for a hub update or a
2347 	 * control endpoint 0 max packet size change?
2348 	 * FIXME: skip the bandwidth calculation in that case.
2349 	 */
2350 	return 0;
2351 }
2352 
2353 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2354 		struct xhci_virt_device *virt_dev)
2355 {
2356 	unsigned int bw_reserved;
2357 
2358 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2359 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2360 		return -ENOMEM;
2361 
2362 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2363 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2364 		return -ENOMEM;
2365 
2366 	return 0;
2367 }
2368 
2369 /*
2370  * This algorithm is a very conservative estimate of the worst-case scheduling
2371  * scenario for any one interval.  The hardware dynamically schedules the
2372  * packets, so we can't tell which microframe could be the limiting factor in
2373  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2374  *
2375  * Obviously, we can't solve an NP complete problem to find the minimum worst
2376  * case scenario.  Instead, we come up with an estimate that is no less than
2377  * the worst case bandwidth used for any one microframe, but may be an
2378  * over-estimate.
2379  *
2380  * We walk the requirements for each endpoint by interval, starting with the
2381  * smallest interval, and place packets in the schedule where there is only one
2382  * possible way to schedule packets for that interval.  In order to simplify
2383  * this algorithm, we record the largest max packet size for each interval, and
2384  * assume all packets will be that size.
2385  *
2386  * For interval 0, we obviously must schedule all packets for each interval.
2387  * The bandwidth for interval 0 is just the amount of data to be transmitted
2388  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2389  * the number of packets).
2390  *
2391  * For interval 1, we have two possible microframes to schedule those packets
2392  * in.  For this algorithm, if we can schedule the same number of packets for
2393  * each possible scheduling opportunity (each microframe), we will do so.  The
2394  * remaining number of packets will be saved to be transmitted in the gaps in
2395  * the next interval's scheduling sequence.
2396  *
2397  * As we move those remaining packets to be scheduled with interval 2 packets,
2398  * we have to double the number of remaining packets to transmit.  This is
2399  * because the intervals are actually powers of 2, and we would be transmitting
2400  * the previous interval's packets twice in this interval.  We also have to be
2401  * sure that when we look at the largest max packet size for this interval, we
2402  * also look at the largest max packet size for the remaining packets and take
2403  * the greater of the two.
2404  *
2405  * The algorithm continues to evenly distribute packets in each scheduling
2406  * opportunity, and push the remaining packets out, until we get to the last
2407  * interval.  Then those packets and their associated overhead are just added
2408  * to the bandwidth used.
2409  */
2410 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2411 		struct xhci_virt_device *virt_dev,
2412 		int old_active_eps)
2413 {
2414 	unsigned int bw_reserved;
2415 	unsigned int max_bandwidth;
2416 	unsigned int bw_used;
2417 	unsigned int block_size;
2418 	struct xhci_interval_bw_table *bw_table;
2419 	unsigned int packet_size = 0;
2420 	unsigned int overhead = 0;
2421 	unsigned int packets_transmitted = 0;
2422 	unsigned int packets_remaining = 0;
2423 	unsigned int i;
2424 
2425 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2426 		return xhci_check_ss_bw(xhci, virt_dev);
2427 
2428 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2429 		max_bandwidth = HS_BW_LIMIT;
2430 		/* Convert percent of bus BW reserved to blocks reserved */
2431 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2432 	} else {
2433 		max_bandwidth = FS_BW_LIMIT;
2434 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2435 	}
2436 
2437 	bw_table = virt_dev->bw_table;
2438 	/* We need to translate the max packet size and max ESIT payloads into
2439 	 * the units the hardware uses.
2440 	 */
2441 	block_size = xhci_get_block_size(virt_dev->udev);
2442 
2443 	/* If we are manipulating a LS/FS device under a HS hub, double check
2444 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2445 	 */
2446 	if (virt_dev->tt_info) {
2447 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2448 				"Recalculating BW for rootport %u",
2449 				virt_dev->real_port);
2450 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2451 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2452 					"newly activated TT.\n");
2453 			return -ENOMEM;
2454 		}
2455 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456 				"Recalculating BW for TT slot %u port %u",
2457 				virt_dev->tt_info->slot_id,
2458 				virt_dev->tt_info->ttport);
2459 	} else {
2460 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2461 				"Recalculating BW for rootport %u",
2462 				virt_dev->real_port);
2463 	}
2464 
2465 	/* Add in how much bandwidth will be used for interval zero, or the
2466 	 * rounded max ESIT payload + number of packets * largest overhead.
2467 	 */
2468 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2469 		bw_table->interval_bw[0].num_packets *
2470 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2471 
2472 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2473 		unsigned int bw_added;
2474 		unsigned int largest_mps;
2475 		unsigned int interval_overhead;
2476 
2477 		/*
2478 		 * How many packets could we transmit in this interval?
2479 		 * If packets didn't fit in the previous interval, we will need
2480 		 * to transmit that many packets twice within this interval.
2481 		 */
2482 		packets_remaining = 2 * packets_remaining +
2483 			bw_table->interval_bw[i].num_packets;
2484 
2485 		/* Find the largest max packet size of this or the previous
2486 		 * interval.
2487 		 */
2488 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2489 			largest_mps = 0;
2490 		else {
2491 			struct xhci_virt_ep *virt_ep;
2492 			struct list_head *ep_entry;
2493 
2494 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2495 			virt_ep = list_entry(ep_entry,
2496 					struct xhci_virt_ep, bw_endpoint_list);
2497 			/* Convert to blocks, rounding up */
2498 			largest_mps = DIV_ROUND_UP(
2499 					virt_ep->bw_info.max_packet_size,
2500 					block_size);
2501 		}
2502 		if (largest_mps > packet_size)
2503 			packet_size = largest_mps;
2504 
2505 		/* Use the larger overhead of this or the previous interval. */
2506 		interval_overhead = xhci_get_largest_overhead(
2507 				&bw_table->interval_bw[i]);
2508 		if (interval_overhead > overhead)
2509 			overhead = interval_overhead;
2510 
2511 		/* How many packets can we evenly distribute across
2512 		 * (1 << (i + 1)) possible scheduling opportunities?
2513 		 */
2514 		packets_transmitted = packets_remaining >> (i + 1);
2515 
2516 		/* Add in the bandwidth used for those scheduled packets */
2517 		bw_added = packets_transmitted * (overhead + packet_size);
2518 
2519 		/* How many packets do we have remaining to transmit? */
2520 		packets_remaining = packets_remaining % (1 << (i + 1));
2521 
2522 		/* What largest max packet size should those packets have? */
2523 		/* If we've transmitted all packets, don't carry over the
2524 		 * largest packet size.
2525 		 */
2526 		if (packets_remaining == 0) {
2527 			packet_size = 0;
2528 			overhead = 0;
2529 		} else if (packets_transmitted > 0) {
2530 			/* Otherwise if we do have remaining packets, and we've
2531 			 * scheduled some packets in this interval, take the
2532 			 * largest max packet size from endpoints with this
2533 			 * interval.
2534 			 */
2535 			packet_size = largest_mps;
2536 			overhead = interval_overhead;
2537 		}
2538 		/* Otherwise carry over packet_size and overhead from the last
2539 		 * time we had a remainder.
2540 		 */
2541 		bw_used += bw_added;
2542 		if (bw_used > max_bandwidth) {
2543 			xhci_warn(xhci, "Not enough bandwidth. "
2544 					"Proposed: %u, Max: %u\n",
2545 				bw_used, max_bandwidth);
2546 			return -ENOMEM;
2547 		}
2548 	}
2549 	/*
2550 	 * Ok, we know we have some packets left over after even-handedly
2551 	 * scheduling interval 15.  We don't know which microframes they will
2552 	 * fit into, so we over-schedule and say they will be scheduled every
2553 	 * microframe.
2554 	 */
2555 	if (packets_remaining > 0)
2556 		bw_used += overhead + packet_size;
2557 
2558 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2559 		unsigned int port_index = virt_dev->real_port - 1;
2560 
2561 		/* OK, we're manipulating a HS device attached to a
2562 		 * root port bandwidth domain.  Include the number of active TTs
2563 		 * in the bandwidth used.
2564 		 */
2565 		bw_used += TT_HS_OVERHEAD *
2566 			xhci->rh_bw[port_index].num_active_tts;
2567 	}
2568 
2569 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2570 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2571 		"Available: %u " "percent",
2572 		bw_used, max_bandwidth, bw_reserved,
2573 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2574 		max_bandwidth);
2575 
2576 	bw_used += bw_reserved;
2577 	if (bw_used > max_bandwidth) {
2578 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2579 				bw_used, max_bandwidth);
2580 		return -ENOMEM;
2581 	}
2582 
2583 	bw_table->bw_used = bw_used;
2584 	return 0;
2585 }
2586 
2587 static bool xhci_is_async_ep(unsigned int ep_type)
2588 {
2589 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2590 					ep_type != ISOC_IN_EP &&
2591 					ep_type != INT_IN_EP);
2592 }
2593 
2594 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2595 {
2596 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2597 }
2598 
2599 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2600 {
2601 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2602 
2603 	if (ep_bw->ep_interval == 0)
2604 		return SS_OVERHEAD_BURST +
2605 			(ep_bw->mult * ep_bw->num_packets *
2606 					(SS_OVERHEAD + mps));
2607 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2608 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2609 				1 << ep_bw->ep_interval);
2610 
2611 }
2612 
2613 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2614 		struct xhci_bw_info *ep_bw,
2615 		struct xhci_interval_bw_table *bw_table,
2616 		struct usb_device *udev,
2617 		struct xhci_virt_ep *virt_ep,
2618 		struct xhci_tt_bw_info *tt_info)
2619 {
2620 	struct xhci_interval_bw	*interval_bw;
2621 	int normalized_interval;
2622 
2623 	if (xhci_is_async_ep(ep_bw->type))
2624 		return;
2625 
2626 	if (udev->speed >= USB_SPEED_SUPER) {
2627 		if (xhci_is_sync_in_ep(ep_bw->type))
2628 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2629 				xhci_get_ss_bw_consumed(ep_bw);
2630 		else
2631 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2632 				xhci_get_ss_bw_consumed(ep_bw);
2633 		return;
2634 	}
2635 
2636 	/* SuperSpeed endpoints never get added to intervals in the table, so
2637 	 * this check is only valid for HS/FS/LS devices.
2638 	 */
2639 	if (list_empty(&virt_ep->bw_endpoint_list))
2640 		return;
2641 	/* For LS/FS devices, we need to translate the interval expressed in
2642 	 * microframes to frames.
2643 	 */
2644 	if (udev->speed == USB_SPEED_HIGH)
2645 		normalized_interval = ep_bw->ep_interval;
2646 	else
2647 		normalized_interval = ep_bw->ep_interval - 3;
2648 
2649 	if (normalized_interval == 0)
2650 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2651 	interval_bw = &bw_table->interval_bw[normalized_interval];
2652 	interval_bw->num_packets -= ep_bw->num_packets;
2653 	switch (udev->speed) {
2654 	case USB_SPEED_LOW:
2655 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2656 		break;
2657 	case USB_SPEED_FULL:
2658 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2659 		break;
2660 	case USB_SPEED_HIGH:
2661 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2662 		break;
2663 	case USB_SPEED_SUPER:
2664 	case USB_SPEED_SUPER_PLUS:
2665 	case USB_SPEED_UNKNOWN:
2666 	case USB_SPEED_WIRELESS:
2667 		/* Should never happen because only LS/FS/HS endpoints will get
2668 		 * added to the endpoint list.
2669 		 */
2670 		return;
2671 	}
2672 	if (tt_info)
2673 		tt_info->active_eps -= 1;
2674 	list_del_init(&virt_ep->bw_endpoint_list);
2675 }
2676 
2677 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2678 		struct xhci_bw_info *ep_bw,
2679 		struct xhci_interval_bw_table *bw_table,
2680 		struct usb_device *udev,
2681 		struct xhci_virt_ep *virt_ep,
2682 		struct xhci_tt_bw_info *tt_info)
2683 {
2684 	struct xhci_interval_bw	*interval_bw;
2685 	struct xhci_virt_ep *smaller_ep;
2686 	int normalized_interval;
2687 
2688 	if (xhci_is_async_ep(ep_bw->type))
2689 		return;
2690 
2691 	if (udev->speed == USB_SPEED_SUPER) {
2692 		if (xhci_is_sync_in_ep(ep_bw->type))
2693 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2694 				xhci_get_ss_bw_consumed(ep_bw);
2695 		else
2696 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2697 				xhci_get_ss_bw_consumed(ep_bw);
2698 		return;
2699 	}
2700 
2701 	/* For LS/FS devices, we need to translate the interval expressed in
2702 	 * microframes to frames.
2703 	 */
2704 	if (udev->speed == USB_SPEED_HIGH)
2705 		normalized_interval = ep_bw->ep_interval;
2706 	else
2707 		normalized_interval = ep_bw->ep_interval - 3;
2708 
2709 	if (normalized_interval == 0)
2710 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2711 	interval_bw = &bw_table->interval_bw[normalized_interval];
2712 	interval_bw->num_packets += ep_bw->num_packets;
2713 	switch (udev->speed) {
2714 	case USB_SPEED_LOW:
2715 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2716 		break;
2717 	case USB_SPEED_FULL:
2718 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2719 		break;
2720 	case USB_SPEED_HIGH:
2721 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2722 		break;
2723 	case USB_SPEED_SUPER:
2724 	case USB_SPEED_SUPER_PLUS:
2725 	case USB_SPEED_UNKNOWN:
2726 	case USB_SPEED_WIRELESS:
2727 		/* Should never happen because only LS/FS/HS endpoints will get
2728 		 * added to the endpoint list.
2729 		 */
2730 		return;
2731 	}
2732 
2733 	if (tt_info)
2734 		tt_info->active_eps += 1;
2735 	/* Insert the endpoint into the list, largest max packet size first. */
2736 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2737 			bw_endpoint_list) {
2738 		if (ep_bw->max_packet_size >=
2739 				smaller_ep->bw_info.max_packet_size) {
2740 			/* Add the new ep before the smaller endpoint */
2741 			list_add_tail(&virt_ep->bw_endpoint_list,
2742 					&smaller_ep->bw_endpoint_list);
2743 			return;
2744 		}
2745 	}
2746 	/* Add the new endpoint at the end of the list. */
2747 	list_add_tail(&virt_ep->bw_endpoint_list,
2748 			&interval_bw->endpoints);
2749 }
2750 
2751 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2752 		struct xhci_virt_device *virt_dev,
2753 		int old_active_eps)
2754 {
2755 	struct xhci_root_port_bw_info *rh_bw_info;
2756 	if (!virt_dev->tt_info)
2757 		return;
2758 
2759 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2760 	if (old_active_eps == 0 &&
2761 				virt_dev->tt_info->active_eps != 0) {
2762 		rh_bw_info->num_active_tts += 1;
2763 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2764 	} else if (old_active_eps != 0 &&
2765 				virt_dev->tt_info->active_eps == 0) {
2766 		rh_bw_info->num_active_tts -= 1;
2767 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2768 	}
2769 }
2770 
2771 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2772 		struct xhci_virt_device *virt_dev,
2773 		struct xhci_container_ctx *in_ctx)
2774 {
2775 	struct xhci_bw_info ep_bw_info[31];
2776 	int i;
2777 	struct xhci_input_control_ctx *ctrl_ctx;
2778 	int old_active_eps = 0;
2779 
2780 	if (virt_dev->tt_info)
2781 		old_active_eps = virt_dev->tt_info->active_eps;
2782 
2783 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2784 	if (!ctrl_ctx) {
2785 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2786 				__func__);
2787 		return -ENOMEM;
2788 	}
2789 
2790 	for (i = 0; i < 31; i++) {
2791 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2792 			continue;
2793 
2794 		/* Make a copy of the BW info in case we need to revert this */
2795 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2796 				sizeof(ep_bw_info[i]));
2797 		/* Drop the endpoint from the interval table if the endpoint is
2798 		 * being dropped or changed.
2799 		 */
2800 		if (EP_IS_DROPPED(ctrl_ctx, i))
2801 			xhci_drop_ep_from_interval_table(xhci,
2802 					&virt_dev->eps[i].bw_info,
2803 					virt_dev->bw_table,
2804 					virt_dev->udev,
2805 					&virt_dev->eps[i],
2806 					virt_dev->tt_info);
2807 	}
2808 	/* Overwrite the information stored in the endpoints' bw_info */
2809 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2810 	for (i = 0; i < 31; i++) {
2811 		/* Add any changed or added endpoints to the interval table */
2812 		if (EP_IS_ADDED(ctrl_ctx, i))
2813 			xhci_add_ep_to_interval_table(xhci,
2814 					&virt_dev->eps[i].bw_info,
2815 					virt_dev->bw_table,
2816 					virt_dev->udev,
2817 					&virt_dev->eps[i],
2818 					virt_dev->tt_info);
2819 	}
2820 
2821 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2822 		/* Ok, this fits in the bandwidth we have.
2823 		 * Update the number of active TTs.
2824 		 */
2825 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2826 		return 0;
2827 	}
2828 
2829 	/* We don't have enough bandwidth for this, revert the stored info. */
2830 	for (i = 0; i < 31; i++) {
2831 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2832 			continue;
2833 
2834 		/* Drop the new copies of any added or changed endpoints from
2835 		 * the interval table.
2836 		 */
2837 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2838 			xhci_drop_ep_from_interval_table(xhci,
2839 					&virt_dev->eps[i].bw_info,
2840 					virt_dev->bw_table,
2841 					virt_dev->udev,
2842 					&virt_dev->eps[i],
2843 					virt_dev->tt_info);
2844 		}
2845 		/* Revert the endpoint back to its old information */
2846 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2847 				sizeof(ep_bw_info[i]));
2848 		/* Add any changed or dropped endpoints back into the table */
2849 		if (EP_IS_DROPPED(ctrl_ctx, i))
2850 			xhci_add_ep_to_interval_table(xhci,
2851 					&virt_dev->eps[i].bw_info,
2852 					virt_dev->bw_table,
2853 					virt_dev->udev,
2854 					&virt_dev->eps[i],
2855 					virt_dev->tt_info);
2856 	}
2857 	return -ENOMEM;
2858 }
2859 
2860 
2861 /* Issue a configure endpoint command or evaluate context command
2862  * and wait for it to finish.
2863  */
2864 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2865 		struct usb_device *udev,
2866 		struct xhci_command *command,
2867 		bool ctx_change, bool must_succeed)
2868 {
2869 	int ret;
2870 	unsigned long flags;
2871 	struct xhci_input_control_ctx *ctrl_ctx;
2872 	struct xhci_virt_device *virt_dev;
2873 	struct xhci_slot_ctx *slot_ctx;
2874 
2875 	if (!command)
2876 		return -EINVAL;
2877 
2878 	spin_lock_irqsave(&xhci->lock, flags);
2879 
2880 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2881 		spin_unlock_irqrestore(&xhci->lock, flags);
2882 		return -ESHUTDOWN;
2883 	}
2884 
2885 	virt_dev = xhci->devs[udev->slot_id];
2886 
2887 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2888 	if (!ctrl_ctx) {
2889 		spin_unlock_irqrestore(&xhci->lock, flags);
2890 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2891 				__func__);
2892 		return -ENOMEM;
2893 	}
2894 
2895 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2896 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2897 		spin_unlock_irqrestore(&xhci->lock, flags);
2898 		xhci_warn(xhci, "Not enough host resources, "
2899 				"active endpoint contexts = %u\n",
2900 				xhci->num_active_eps);
2901 		return -ENOMEM;
2902 	}
2903 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2904 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2905 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2906 			xhci_free_host_resources(xhci, ctrl_ctx);
2907 		spin_unlock_irqrestore(&xhci->lock, flags);
2908 		xhci_warn(xhci, "Not enough bandwidth\n");
2909 		return -ENOMEM;
2910 	}
2911 
2912 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2913 
2914 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2915 	trace_xhci_configure_endpoint(slot_ctx);
2916 
2917 	if (!ctx_change)
2918 		ret = xhci_queue_configure_endpoint(xhci, command,
2919 				command->in_ctx->dma,
2920 				udev->slot_id, must_succeed);
2921 	else
2922 		ret = xhci_queue_evaluate_context(xhci, command,
2923 				command->in_ctx->dma,
2924 				udev->slot_id, must_succeed);
2925 	if (ret < 0) {
2926 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2927 			xhci_free_host_resources(xhci, ctrl_ctx);
2928 		spin_unlock_irqrestore(&xhci->lock, flags);
2929 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2930 				"FIXME allocate a new ring segment");
2931 		return -ENOMEM;
2932 	}
2933 	xhci_ring_cmd_db(xhci);
2934 	spin_unlock_irqrestore(&xhci->lock, flags);
2935 
2936 	/* Wait for the configure endpoint command to complete */
2937 	wait_for_completion(command->completion);
2938 
2939 	if (!ctx_change)
2940 		ret = xhci_configure_endpoint_result(xhci, udev,
2941 						     &command->status);
2942 	else
2943 		ret = xhci_evaluate_context_result(xhci, udev,
2944 						   &command->status);
2945 
2946 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2947 		spin_lock_irqsave(&xhci->lock, flags);
2948 		/* If the command failed, remove the reserved resources.
2949 		 * Otherwise, clean up the estimate to include dropped eps.
2950 		 */
2951 		if (ret)
2952 			xhci_free_host_resources(xhci, ctrl_ctx);
2953 		else
2954 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2955 		spin_unlock_irqrestore(&xhci->lock, flags);
2956 	}
2957 	return ret;
2958 }
2959 
2960 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2961 	struct xhci_virt_device *vdev, int i)
2962 {
2963 	struct xhci_virt_ep *ep = &vdev->eps[i];
2964 
2965 	if (ep->ep_state & EP_HAS_STREAMS) {
2966 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2967 				xhci_get_endpoint_address(i));
2968 		xhci_free_stream_info(xhci, ep->stream_info);
2969 		ep->stream_info = NULL;
2970 		ep->ep_state &= ~EP_HAS_STREAMS;
2971 	}
2972 }
2973 
2974 /* Called after one or more calls to xhci_add_endpoint() or
2975  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2976  * to call xhci_reset_bandwidth().
2977  *
2978  * Since we are in the middle of changing either configuration or
2979  * installing a new alt setting, the USB core won't allow URBs to be
2980  * enqueued for any endpoint on the old config or interface.  Nothing
2981  * else should be touching the xhci->devs[slot_id] structure, so we
2982  * don't need to take the xhci->lock for manipulating that.
2983  */
2984 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2985 {
2986 	int i;
2987 	int ret = 0;
2988 	struct xhci_hcd *xhci;
2989 	struct xhci_virt_device	*virt_dev;
2990 	struct xhci_input_control_ctx *ctrl_ctx;
2991 	struct xhci_slot_ctx *slot_ctx;
2992 	struct xhci_command *command;
2993 
2994 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2995 	if (ret <= 0)
2996 		return ret;
2997 	xhci = hcd_to_xhci(hcd);
2998 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2999 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3000 		return -ENODEV;
3001 
3002 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3003 	virt_dev = xhci->devs[udev->slot_id];
3004 
3005 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3006 	if (!command)
3007 		return -ENOMEM;
3008 
3009 	command->in_ctx = virt_dev->in_ctx;
3010 
3011 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3012 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3013 	if (!ctrl_ctx) {
3014 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3015 				__func__);
3016 		ret = -ENOMEM;
3017 		goto command_cleanup;
3018 	}
3019 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3020 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3021 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3022 
3023 	/* Don't issue the command if there's no endpoints to update. */
3024 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3025 	    ctrl_ctx->drop_flags == 0) {
3026 		ret = 0;
3027 		goto command_cleanup;
3028 	}
3029 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3030 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3031 	for (i = 31; i >= 1; i--) {
3032 		__le32 le32 = cpu_to_le32(BIT(i));
3033 
3034 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3035 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3036 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3037 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3038 			break;
3039 		}
3040 	}
3041 
3042 	ret = xhci_configure_endpoint(xhci, udev, command,
3043 			false, false);
3044 	if (ret)
3045 		/* Callee should call reset_bandwidth() */
3046 		goto command_cleanup;
3047 
3048 	/* Free any rings that were dropped, but not changed. */
3049 	for (i = 1; i < 31; i++) {
3050 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3051 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3052 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3053 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3054 		}
3055 	}
3056 	xhci_zero_in_ctx(xhci, virt_dev);
3057 	/*
3058 	 * Install any rings for completely new endpoints or changed endpoints,
3059 	 * and free any old rings from changed endpoints.
3060 	 */
3061 	for (i = 1; i < 31; i++) {
3062 		if (!virt_dev->eps[i].new_ring)
3063 			continue;
3064 		/* Only free the old ring if it exists.
3065 		 * It may not if this is the first add of an endpoint.
3066 		 */
3067 		if (virt_dev->eps[i].ring) {
3068 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3069 		}
3070 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3071 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3072 		virt_dev->eps[i].new_ring = NULL;
3073 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3074 	}
3075 command_cleanup:
3076 	kfree(command->completion);
3077 	kfree(command);
3078 
3079 	return ret;
3080 }
3081 
3082 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3083 {
3084 	struct xhci_hcd *xhci;
3085 	struct xhci_virt_device	*virt_dev;
3086 	int i, ret;
3087 
3088 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3089 	if (ret <= 0)
3090 		return;
3091 	xhci = hcd_to_xhci(hcd);
3092 
3093 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3094 	virt_dev = xhci->devs[udev->slot_id];
3095 	/* Free any rings allocated for added endpoints */
3096 	for (i = 0; i < 31; i++) {
3097 		if (virt_dev->eps[i].new_ring) {
3098 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3099 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3100 			virt_dev->eps[i].new_ring = NULL;
3101 		}
3102 	}
3103 	xhci_zero_in_ctx(xhci, virt_dev);
3104 }
3105 
3106 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3107 		struct xhci_container_ctx *in_ctx,
3108 		struct xhci_container_ctx *out_ctx,
3109 		struct xhci_input_control_ctx *ctrl_ctx,
3110 		u32 add_flags, u32 drop_flags)
3111 {
3112 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3113 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3114 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3115 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3116 }
3117 
3118 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3119 				  struct usb_host_endpoint *host_ep)
3120 {
3121 	struct xhci_hcd		*xhci;
3122 	struct xhci_virt_device	*vdev;
3123 	struct xhci_virt_ep	*ep;
3124 	struct usb_device	*udev;
3125 	unsigned long		flags;
3126 	unsigned int		ep_index;
3127 
3128 	xhci = hcd_to_xhci(hcd);
3129 rescan:
3130 	spin_lock_irqsave(&xhci->lock, flags);
3131 
3132 	udev = (struct usb_device *)host_ep->hcpriv;
3133 	if (!udev || !udev->slot_id)
3134 		goto done;
3135 
3136 	vdev = xhci->devs[udev->slot_id];
3137 	if (!vdev)
3138 		goto done;
3139 
3140 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3141 	ep = &vdev->eps[ep_index];
3142 	if (!ep)
3143 		goto done;
3144 
3145 	/* wait for hub_tt_work to finish clearing hub TT */
3146 	if (ep->ep_state & EP_CLEARING_TT) {
3147 		spin_unlock_irqrestore(&xhci->lock, flags);
3148 		schedule_timeout_uninterruptible(1);
3149 		goto rescan;
3150 	}
3151 
3152 	if (ep->ep_state)
3153 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3154 			 ep->ep_state);
3155 done:
3156 	host_ep->hcpriv = NULL;
3157 	spin_unlock_irqrestore(&xhci->lock, flags);
3158 }
3159 
3160 /*
3161  * Called after usb core issues a clear halt control message.
3162  * The host side of the halt should already be cleared by a reset endpoint
3163  * command issued when the STALL event was received.
3164  *
3165  * The reset endpoint command may only be issued to endpoints in the halted
3166  * state. For software that wishes to reset the data toggle or sequence number
3167  * of an endpoint that isn't in the halted state this function will issue a
3168  * configure endpoint command with the Drop and Add bits set for the target
3169  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3170  */
3171 
3172 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3173 		struct usb_host_endpoint *host_ep)
3174 {
3175 	struct xhci_hcd *xhci;
3176 	struct usb_device *udev;
3177 	struct xhci_virt_device *vdev;
3178 	struct xhci_virt_ep *ep;
3179 	struct xhci_input_control_ctx *ctrl_ctx;
3180 	struct xhci_command *stop_cmd, *cfg_cmd;
3181 	unsigned int ep_index;
3182 	unsigned long flags;
3183 	u32 ep_flag;
3184 	int err;
3185 
3186 	xhci = hcd_to_xhci(hcd);
3187 	if (!host_ep->hcpriv)
3188 		return;
3189 	udev = (struct usb_device *) host_ep->hcpriv;
3190 	vdev = xhci->devs[udev->slot_id];
3191 
3192 	/*
3193 	 * vdev may be lost due to xHC restore error and re-initialization
3194 	 * during S3/S4 resume. A new vdev will be allocated later by
3195 	 * xhci_discover_or_reset_device()
3196 	 */
3197 	if (!udev->slot_id || !vdev)
3198 		return;
3199 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3200 	ep = &vdev->eps[ep_index];
3201 	if (!ep)
3202 		return;
3203 
3204 	/* Bail out if toggle is already being cleared by a endpoint reset */
3205 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3206 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3207 		return;
3208 	}
3209 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3210 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3211 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3212 		return;
3213 
3214 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3215 
3216 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3217 		return;
3218 
3219 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3220 	if (!stop_cmd)
3221 		return;
3222 
3223 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3224 	if (!cfg_cmd)
3225 		goto cleanup;
3226 
3227 	spin_lock_irqsave(&xhci->lock, flags);
3228 
3229 	/* block queuing new trbs and ringing ep doorbell */
3230 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3231 
3232 	/*
3233 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3234 	 * Driver is required to synchronously cancel all transfer request.
3235 	 * Stop the endpoint to force xHC to update the output context
3236 	 */
3237 
3238 	if (!list_empty(&ep->ring->td_list)) {
3239 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3240 		spin_unlock_irqrestore(&xhci->lock, flags);
3241 		xhci_free_command(xhci, cfg_cmd);
3242 		goto cleanup;
3243 	}
3244 
3245 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3246 					ep_index, 0);
3247 	if (err < 0) {
3248 		spin_unlock_irqrestore(&xhci->lock, flags);
3249 		xhci_free_command(xhci, cfg_cmd);
3250 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3251 				__func__, err);
3252 		goto cleanup;
3253 	}
3254 
3255 	xhci_ring_cmd_db(xhci);
3256 	spin_unlock_irqrestore(&xhci->lock, flags);
3257 
3258 	wait_for_completion(stop_cmd->completion);
3259 
3260 	spin_lock_irqsave(&xhci->lock, flags);
3261 
3262 	/* config ep command clears toggle if add and drop ep flags are set */
3263 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3264 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3265 					   ctrl_ctx, ep_flag, ep_flag);
3266 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3267 
3268 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3269 				      udev->slot_id, false);
3270 	if (err < 0) {
3271 		spin_unlock_irqrestore(&xhci->lock, flags);
3272 		xhci_free_command(xhci, cfg_cmd);
3273 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3274 				__func__, err);
3275 		goto cleanup;
3276 	}
3277 
3278 	xhci_ring_cmd_db(xhci);
3279 	spin_unlock_irqrestore(&xhci->lock, flags);
3280 
3281 	wait_for_completion(cfg_cmd->completion);
3282 
3283 	xhci_free_command(xhci, cfg_cmd);
3284 cleanup:
3285 	xhci_free_command(xhci, stop_cmd);
3286 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3287 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3288 }
3289 
3290 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3291 		struct usb_device *udev, struct usb_host_endpoint *ep,
3292 		unsigned int slot_id)
3293 {
3294 	int ret;
3295 	unsigned int ep_index;
3296 	unsigned int ep_state;
3297 
3298 	if (!ep)
3299 		return -EINVAL;
3300 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3301 	if (ret <= 0)
3302 		return -EINVAL;
3303 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3304 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3305 				" descriptor for ep 0x%x does not support streams\n",
3306 				ep->desc.bEndpointAddress);
3307 		return -EINVAL;
3308 	}
3309 
3310 	ep_index = xhci_get_endpoint_index(&ep->desc);
3311 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3312 	if (ep_state & EP_HAS_STREAMS ||
3313 			ep_state & EP_GETTING_STREAMS) {
3314 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3315 				"already has streams set up.\n",
3316 				ep->desc.bEndpointAddress);
3317 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3318 				"dynamic stream context array reallocation.\n");
3319 		return -EINVAL;
3320 	}
3321 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3322 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3323 				"endpoint 0x%x; URBs are pending.\n",
3324 				ep->desc.bEndpointAddress);
3325 		return -EINVAL;
3326 	}
3327 	return 0;
3328 }
3329 
3330 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3331 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3332 {
3333 	unsigned int max_streams;
3334 
3335 	/* The stream context array size must be a power of two */
3336 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3337 	/*
3338 	 * Find out how many primary stream array entries the host controller
3339 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3340 	 * level page entries), but that's an optional feature for xHCI host
3341 	 * controllers. xHCs must support at least 4 stream IDs.
3342 	 */
3343 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3344 	if (*num_stream_ctxs > max_streams) {
3345 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3346 				max_streams);
3347 		*num_stream_ctxs = max_streams;
3348 		*num_streams = max_streams;
3349 	}
3350 }
3351 
3352 /* Returns an error code if one of the endpoint already has streams.
3353  * This does not change any data structures, it only checks and gathers
3354  * information.
3355  */
3356 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3357 		struct usb_device *udev,
3358 		struct usb_host_endpoint **eps, unsigned int num_eps,
3359 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3360 {
3361 	unsigned int max_streams;
3362 	unsigned int endpoint_flag;
3363 	int i;
3364 	int ret;
3365 
3366 	for (i = 0; i < num_eps; i++) {
3367 		ret = xhci_check_streams_endpoint(xhci, udev,
3368 				eps[i], udev->slot_id);
3369 		if (ret < 0)
3370 			return ret;
3371 
3372 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3373 		if (max_streams < (*num_streams - 1)) {
3374 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3375 					eps[i]->desc.bEndpointAddress,
3376 					max_streams);
3377 			*num_streams = max_streams+1;
3378 		}
3379 
3380 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3381 		if (*changed_ep_bitmask & endpoint_flag)
3382 			return -EINVAL;
3383 		*changed_ep_bitmask |= endpoint_flag;
3384 	}
3385 	return 0;
3386 }
3387 
3388 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3389 		struct usb_device *udev,
3390 		struct usb_host_endpoint **eps, unsigned int num_eps)
3391 {
3392 	u32 changed_ep_bitmask = 0;
3393 	unsigned int slot_id;
3394 	unsigned int ep_index;
3395 	unsigned int ep_state;
3396 	int i;
3397 
3398 	slot_id = udev->slot_id;
3399 	if (!xhci->devs[slot_id])
3400 		return 0;
3401 
3402 	for (i = 0; i < num_eps; i++) {
3403 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3404 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3405 		/* Are streams already being freed for the endpoint? */
3406 		if (ep_state & EP_GETTING_NO_STREAMS) {
3407 			xhci_warn(xhci, "WARN Can't disable streams for "
3408 					"endpoint 0x%x, "
3409 					"streams are being disabled already\n",
3410 					eps[i]->desc.bEndpointAddress);
3411 			return 0;
3412 		}
3413 		/* Are there actually any streams to free? */
3414 		if (!(ep_state & EP_HAS_STREAMS) &&
3415 				!(ep_state & EP_GETTING_STREAMS)) {
3416 			xhci_warn(xhci, "WARN Can't disable streams for "
3417 					"endpoint 0x%x, "
3418 					"streams are already disabled!\n",
3419 					eps[i]->desc.bEndpointAddress);
3420 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3421 					"with non-streams endpoint\n");
3422 			return 0;
3423 		}
3424 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3425 	}
3426 	return changed_ep_bitmask;
3427 }
3428 
3429 /*
3430  * The USB device drivers use this function (through the HCD interface in USB
3431  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3432  * coordinate mass storage command queueing across multiple endpoints (basically
3433  * a stream ID == a task ID).
3434  *
3435  * Setting up streams involves allocating the same size stream context array
3436  * for each endpoint and issuing a configure endpoint command for all endpoints.
3437  *
3438  * Don't allow the call to succeed if one endpoint only supports one stream
3439  * (which means it doesn't support streams at all).
3440  *
3441  * Drivers may get less stream IDs than they asked for, if the host controller
3442  * hardware or endpoints claim they can't support the number of requested
3443  * stream IDs.
3444  */
3445 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3446 		struct usb_host_endpoint **eps, unsigned int num_eps,
3447 		unsigned int num_streams, gfp_t mem_flags)
3448 {
3449 	int i, ret;
3450 	struct xhci_hcd *xhci;
3451 	struct xhci_virt_device *vdev;
3452 	struct xhci_command *config_cmd;
3453 	struct xhci_input_control_ctx *ctrl_ctx;
3454 	unsigned int ep_index;
3455 	unsigned int num_stream_ctxs;
3456 	unsigned int max_packet;
3457 	unsigned long flags;
3458 	u32 changed_ep_bitmask = 0;
3459 
3460 	if (!eps)
3461 		return -EINVAL;
3462 
3463 	/* Add one to the number of streams requested to account for
3464 	 * stream 0 that is reserved for xHCI usage.
3465 	 */
3466 	num_streams += 1;
3467 	xhci = hcd_to_xhci(hcd);
3468 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3469 			num_streams);
3470 
3471 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3472 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3473 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3474 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3475 		return -ENOSYS;
3476 	}
3477 
3478 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3479 	if (!config_cmd)
3480 		return -ENOMEM;
3481 
3482 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3483 	if (!ctrl_ctx) {
3484 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3485 				__func__);
3486 		xhci_free_command(xhci, config_cmd);
3487 		return -ENOMEM;
3488 	}
3489 
3490 	/* Check to make sure all endpoints are not already configured for
3491 	 * streams.  While we're at it, find the maximum number of streams that
3492 	 * all the endpoints will support and check for duplicate endpoints.
3493 	 */
3494 	spin_lock_irqsave(&xhci->lock, flags);
3495 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3496 			num_eps, &num_streams, &changed_ep_bitmask);
3497 	if (ret < 0) {
3498 		xhci_free_command(xhci, config_cmd);
3499 		spin_unlock_irqrestore(&xhci->lock, flags);
3500 		return ret;
3501 	}
3502 	if (num_streams <= 1) {
3503 		xhci_warn(xhci, "WARN: endpoints can't handle "
3504 				"more than one stream.\n");
3505 		xhci_free_command(xhci, config_cmd);
3506 		spin_unlock_irqrestore(&xhci->lock, flags);
3507 		return -EINVAL;
3508 	}
3509 	vdev = xhci->devs[udev->slot_id];
3510 	/* Mark each endpoint as being in transition, so
3511 	 * xhci_urb_enqueue() will reject all URBs.
3512 	 */
3513 	for (i = 0; i < num_eps; i++) {
3514 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3516 	}
3517 	spin_unlock_irqrestore(&xhci->lock, flags);
3518 
3519 	/* Setup internal data structures and allocate HW data structures for
3520 	 * streams (but don't install the HW structures in the input context
3521 	 * until we're sure all memory allocation succeeded).
3522 	 */
3523 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3524 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3525 			num_stream_ctxs, num_streams);
3526 
3527 	for (i = 0; i < num_eps; i++) {
3528 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3530 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3531 				num_stream_ctxs,
3532 				num_streams,
3533 				max_packet, mem_flags);
3534 		if (!vdev->eps[ep_index].stream_info)
3535 			goto cleanup;
3536 		/* Set maxPstreams in endpoint context and update deq ptr to
3537 		 * point to stream context array. FIXME
3538 		 */
3539 	}
3540 
3541 	/* Set up the input context for a configure endpoint command. */
3542 	for (i = 0; i < num_eps; i++) {
3543 		struct xhci_ep_ctx *ep_ctx;
3544 
3545 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3547 
3548 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3549 				vdev->out_ctx, ep_index);
3550 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3551 				vdev->eps[ep_index].stream_info);
3552 	}
3553 	/* Tell the HW to drop its old copy of the endpoint context info
3554 	 * and add the updated copy from the input context.
3555 	 */
3556 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3557 			vdev->out_ctx, ctrl_ctx,
3558 			changed_ep_bitmask, changed_ep_bitmask);
3559 
3560 	/* Issue and wait for the configure endpoint command */
3561 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3562 			false, false);
3563 
3564 	/* xHC rejected the configure endpoint command for some reason, so we
3565 	 * leave the old ring intact and free our internal streams data
3566 	 * structure.
3567 	 */
3568 	if (ret < 0)
3569 		goto cleanup;
3570 
3571 	spin_lock_irqsave(&xhci->lock, flags);
3572 	for (i = 0; i < num_eps; i++) {
3573 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3575 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3576 			 udev->slot_id, ep_index);
3577 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3578 	}
3579 	xhci_free_command(xhci, config_cmd);
3580 	spin_unlock_irqrestore(&xhci->lock, flags);
3581 
3582 	for (i = 0; i < num_eps; i++) {
3583 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3584 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3585 	}
3586 	/* Subtract 1 for stream 0, which drivers can't use */
3587 	return num_streams - 1;
3588 
3589 cleanup:
3590 	/* If it didn't work, free the streams! */
3591 	for (i = 0; i < num_eps; i++) {
3592 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3594 		vdev->eps[ep_index].stream_info = NULL;
3595 		/* FIXME Unset maxPstreams in endpoint context and
3596 		 * update deq ptr to point to normal string ring.
3597 		 */
3598 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3600 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3601 	}
3602 	xhci_free_command(xhci, config_cmd);
3603 	return -ENOMEM;
3604 }
3605 
3606 /* Transition the endpoint from using streams to being a "normal" endpoint
3607  * without streams.
3608  *
3609  * Modify the endpoint context state, submit a configure endpoint command,
3610  * and free all endpoint rings for streams if that completes successfully.
3611  */
3612 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3613 		struct usb_host_endpoint **eps, unsigned int num_eps,
3614 		gfp_t mem_flags)
3615 {
3616 	int i, ret;
3617 	struct xhci_hcd *xhci;
3618 	struct xhci_virt_device *vdev;
3619 	struct xhci_command *command;
3620 	struct xhci_input_control_ctx *ctrl_ctx;
3621 	unsigned int ep_index;
3622 	unsigned long flags;
3623 	u32 changed_ep_bitmask;
3624 
3625 	xhci = hcd_to_xhci(hcd);
3626 	vdev = xhci->devs[udev->slot_id];
3627 
3628 	/* Set up a configure endpoint command to remove the streams rings */
3629 	spin_lock_irqsave(&xhci->lock, flags);
3630 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3631 			udev, eps, num_eps);
3632 	if (changed_ep_bitmask == 0) {
3633 		spin_unlock_irqrestore(&xhci->lock, flags);
3634 		return -EINVAL;
3635 	}
3636 
3637 	/* Use the xhci_command structure from the first endpoint.  We may have
3638 	 * allocated too many, but the driver may call xhci_free_streams() for
3639 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3640 	 */
3641 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3642 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3643 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3644 	if (!ctrl_ctx) {
3645 		spin_unlock_irqrestore(&xhci->lock, flags);
3646 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3647 				__func__);
3648 		return -EINVAL;
3649 	}
3650 
3651 	for (i = 0; i < num_eps; i++) {
3652 		struct xhci_ep_ctx *ep_ctx;
3653 
3654 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3655 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3656 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3657 			EP_GETTING_NO_STREAMS;
3658 
3659 		xhci_endpoint_copy(xhci, command->in_ctx,
3660 				vdev->out_ctx, ep_index);
3661 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3662 				&vdev->eps[ep_index]);
3663 	}
3664 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3665 			vdev->out_ctx, ctrl_ctx,
3666 			changed_ep_bitmask, changed_ep_bitmask);
3667 	spin_unlock_irqrestore(&xhci->lock, flags);
3668 
3669 	/* Issue and wait for the configure endpoint command,
3670 	 * which must succeed.
3671 	 */
3672 	ret = xhci_configure_endpoint(xhci, udev, command,
3673 			false, true);
3674 
3675 	/* xHC rejected the configure endpoint command for some reason, so we
3676 	 * leave the streams rings intact.
3677 	 */
3678 	if (ret < 0)
3679 		return ret;
3680 
3681 	spin_lock_irqsave(&xhci->lock, flags);
3682 	for (i = 0; i < num_eps; i++) {
3683 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3684 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3685 		vdev->eps[ep_index].stream_info = NULL;
3686 		/* FIXME Unset maxPstreams in endpoint context and
3687 		 * update deq ptr to point to normal string ring.
3688 		 */
3689 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3690 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3691 	}
3692 	spin_unlock_irqrestore(&xhci->lock, flags);
3693 
3694 	return 0;
3695 }
3696 
3697 /*
3698  * Deletes endpoint resources for endpoints that were active before a Reset
3699  * Device command, or a Disable Slot command.  The Reset Device command leaves
3700  * the control endpoint intact, whereas the Disable Slot command deletes it.
3701  *
3702  * Must be called with xhci->lock held.
3703  */
3704 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3705 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3706 {
3707 	int i;
3708 	unsigned int num_dropped_eps = 0;
3709 	unsigned int drop_flags = 0;
3710 
3711 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3712 		if (virt_dev->eps[i].ring) {
3713 			drop_flags |= 1 << i;
3714 			num_dropped_eps++;
3715 		}
3716 	}
3717 	xhci->num_active_eps -= num_dropped_eps;
3718 	if (num_dropped_eps)
3719 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3720 				"Dropped %u ep ctxs, flags = 0x%x, "
3721 				"%u now active.",
3722 				num_dropped_eps, drop_flags,
3723 				xhci->num_active_eps);
3724 }
3725 
3726 /*
3727  * This submits a Reset Device Command, which will set the device state to 0,
3728  * set the device address to 0, and disable all the endpoints except the default
3729  * control endpoint.  The USB core should come back and call
3730  * xhci_address_device(), and then re-set up the configuration.  If this is
3731  * called because of a usb_reset_and_verify_device(), then the old alternate
3732  * settings will be re-installed through the normal bandwidth allocation
3733  * functions.
3734  *
3735  * Wait for the Reset Device command to finish.  Remove all structures
3736  * associated with the endpoints that were disabled.  Clear the input device
3737  * structure? Reset the control endpoint 0 max packet size?
3738  *
3739  * If the virt_dev to be reset does not exist or does not match the udev,
3740  * it means the device is lost, possibly due to the xHC restore error and
3741  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3742  * re-allocate the device.
3743  */
3744 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3745 		struct usb_device *udev)
3746 {
3747 	int ret, i;
3748 	unsigned long flags;
3749 	struct xhci_hcd *xhci;
3750 	unsigned int slot_id;
3751 	struct xhci_virt_device *virt_dev;
3752 	struct xhci_command *reset_device_cmd;
3753 	struct xhci_slot_ctx *slot_ctx;
3754 	int old_active_eps = 0;
3755 
3756 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3757 	if (ret <= 0)
3758 		return ret;
3759 	xhci = hcd_to_xhci(hcd);
3760 	slot_id = udev->slot_id;
3761 	virt_dev = xhci->devs[slot_id];
3762 	if (!virt_dev) {
3763 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3764 				"not exist. Re-allocate the device\n", slot_id);
3765 		ret = xhci_alloc_dev(hcd, udev);
3766 		if (ret == 1)
3767 			return 0;
3768 		else
3769 			return -EINVAL;
3770 	}
3771 
3772 	if (virt_dev->tt_info)
3773 		old_active_eps = virt_dev->tt_info->active_eps;
3774 
3775 	if (virt_dev->udev != udev) {
3776 		/* If the virt_dev and the udev does not match, this virt_dev
3777 		 * may belong to another udev.
3778 		 * Re-allocate the device.
3779 		 */
3780 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781 				"not match the udev. Re-allocate the device\n",
3782 				slot_id);
3783 		ret = xhci_alloc_dev(hcd, udev);
3784 		if (ret == 1)
3785 			return 0;
3786 		else
3787 			return -EINVAL;
3788 	}
3789 
3790 	/* If device is not setup, there is no point in resetting it */
3791 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3792 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3793 						SLOT_STATE_DISABLED)
3794 		return 0;
3795 
3796 	trace_xhci_discover_or_reset_device(slot_ctx);
3797 
3798 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3799 	/* Allocate the command structure that holds the struct completion.
3800 	 * Assume we're in process context, since the normal device reset
3801 	 * process has to wait for the device anyway.  Storage devices are
3802 	 * reset as part of error handling, so use GFP_NOIO instead of
3803 	 * GFP_KERNEL.
3804 	 */
3805 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3806 	if (!reset_device_cmd) {
3807 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3808 		return -ENOMEM;
3809 	}
3810 
3811 	/* Attempt to submit the Reset Device command to the command ring */
3812 	spin_lock_irqsave(&xhci->lock, flags);
3813 
3814 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3815 	if (ret) {
3816 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3817 		spin_unlock_irqrestore(&xhci->lock, flags);
3818 		goto command_cleanup;
3819 	}
3820 	xhci_ring_cmd_db(xhci);
3821 	spin_unlock_irqrestore(&xhci->lock, flags);
3822 
3823 	/* Wait for the Reset Device command to finish */
3824 	wait_for_completion(reset_device_cmd->completion);
3825 
3826 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3827 	 * unless we tried to reset a slot ID that wasn't enabled,
3828 	 * or the device wasn't in the addressed or configured state.
3829 	 */
3830 	ret = reset_device_cmd->status;
3831 	switch (ret) {
3832 	case COMP_COMMAND_ABORTED:
3833 	case COMP_COMMAND_RING_STOPPED:
3834 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3835 		ret = -ETIME;
3836 		goto command_cleanup;
3837 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3838 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3839 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3840 				slot_id,
3841 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3842 		xhci_dbg(xhci, "Not freeing device rings.\n");
3843 		/* Don't treat this as an error.  May change my mind later. */
3844 		ret = 0;
3845 		goto command_cleanup;
3846 	case COMP_SUCCESS:
3847 		xhci_dbg(xhci, "Successful reset device command.\n");
3848 		break;
3849 	default:
3850 		if (xhci_is_vendor_info_code(xhci, ret))
3851 			break;
3852 		xhci_warn(xhci, "Unknown completion code %u for "
3853 				"reset device command.\n", ret);
3854 		ret = -EINVAL;
3855 		goto command_cleanup;
3856 	}
3857 
3858 	/* Free up host controller endpoint resources */
3859 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3860 		spin_lock_irqsave(&xhci->lock, flags);
3861 		/* Don't delete the default control endpoint resources */
3862 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3863 		spin_unlock_irqrestore(&xhci->lock, flags);
3864 	}
3865 
3866 	/* Everything but endpoint 0 is disabled, so free the rings. */
3867 	for (i = 1; i < 31; i++) {
3868 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3869 
3870 		if (ep->ep_state & EP_HAS_STREAMS) {
3871 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3872 					xhci_get_endpoint_address(i));
3873 			xhci_free_stream_info(xhci, ep->stream_info);
3874 			ep->stream_info = NULL;
3875 			ep->ep_state &= ~EP_HAS_STREAMS;
3876 		}
3877 
3878 		if (ep->ring) {
3879 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3880 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3881 		}
3882 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3883 			xhci_drop_ep_from_interval_table(xhci,
3884 					&virt_dev->eps[i].bw_info,
3885 					virt_dev->bw_table,
3886 					udev,
3887 					&virt_dev->eps[i],
3888 					virt_dev->tt_info);
3889 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3890 	}
3891 	/* If necessary, update the number of active TTs on this root port */
3892 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3893 	virt_dev->flags = 0;
3894 	ret = 0;
3895 
3896 command_cleanup:
3897 	xhci_free_command(xhci, reset_device_cmd);
3898 	return ret;
3899 }
3900 
3901 /*
3902  * At this point, the struct usb_device is about to go away, the device has
3903  * disconnected, and all traffic has been stopped and the endpoints have been
3904  * disabled.  Free any HC data structures associated with that device.
3905  */
3906 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3907 {
3908 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3909 	struct xhci_virt_device *virt_dev;
3910 	struct xhci_slot_ctx *slot_ctx;
3911 	int i, ret;
3912 
3913 #ifndef CONFIG_USB_DEFAULT_PERSIST
3914 	/*
3915 	 * We called pm_runtime_get_noresume when the device was attached.
3916 	 * Decrement the counter here to allow controller to runtime suspend
3917 	 * if no devices remain.
3918 	 */
3919 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3920 		pm_runtime_put_noidle(hcd->self.controller);
3921 #endif
3922 
3923 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3924 	/* If the host is halted due to driver unload, we still need to free the
3925 	 * device.
3926 	 */
3927 	if (ret <= 0 && ret != -ENODEV)
3928 		return;
3929 
3930 	virt_dev = xhci->devs[udev->slot_id];
3931 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3932 	trace_xhci_free_dev(slot_ctx);
3933 
3934 	/* Stop any wayward timer functions (which may grab the lock) */
3935 	for (i = 0; i < 31; i++) {
3936 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3937 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3938 	}
3939 	virt_dev->udev = NULL;
3940 	ret = xhci_disable_slot(xhci, udev->slot_id);
3941 	if (ret)
3942 		xhci_free_virt_device(xhci, udev->slot_id);
3943 }
3944 
3945 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3946 {
3947 	struct xhci_command *command;
3948 	unsigned long flags;
3949 	u32 state;
3950 	int ret = 0;
3951 
3952 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3953 	if (!command)
3954 		return -ENOMEM;
3955 
3956 	xhci_debugfs_remove_slot(xhci, slot_id);
3957 
3958 	spin_lock_irqsave(&xhci->lock, flags);
3959 	/* Don't disable the slot if the host controller is dead. */
3960 	state = readl(&xhci->op_regs->status);
3961 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3962 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3963 		spin_unlock_irqrestore(&xhci->lock, flags);
3964 		kfree(command);
3965 		return -ENODEV;
3966 	}
3967 
3968 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3969 				slot_id);
3970 	if (ret) {
3971 		spin_unlock_irqrestore(&xhci->lock, flags);
3972 		kfree(command);
3973 		return ret;
3974 	}
3975 	xhci_ring_cmd_db(xhci);
3976 	spin_unlock_irqrestore(&xhci->lock, flags);
3977 	return ret;
3978 }
3979 
3980 /*
3981  * Checks if we have enough host controller resources for the default control
3982  * endpoint.
3983  *
3984  * Must be called with xhci->lock held.
3985  */
3986 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3987 {
3988 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3989 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3990 				"Not enough ep ctxs: "
3991 				"%u active, need to add 1, limit is %u.",
3992 				xhci->num_active_eps, xhci->limit_active_eps);
3993 		return -ENOMEM;
3994 	}
3995 	xhci->num_active_eps += 1;
3996 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3997 			"Adding 1 ep ctx, %u now active.",
3998 			xhci->num_active_eps);
3999 	return 0;
4000 }
4001 
4002 
4003 /*
4004  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4005  * timed out, or allocating memory failed.  Returns 1 on success.
4006  */
4007 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4008 {
4009 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4010 	struct xhci_virt_device *vdev;
4011 	struct xhci_slot_ctx *slot_ctx;
4012 	unsigned long flags;
4013 	int ret, slot_id;
4014 	struct xhci_command *command;
4015 
4016 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4017 	if (!command)
4018 		return 0;
4019 
4020 	spin_lock_irqsave(&xhci->lock, flags);
4021 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4022 	if (ret) {
4023 		spin_unlock_irqrestore(&xhci->lock, flags);
4024 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4025 		xhci_free_command(xhci, command);
4026 		return 0;
4027 	}
4028 	xhci_ring_cmd_db(xhci);
4029 	spin_unlock_irqrestore(&xhci->lock, flags);
4030 
4031 	wait_for_completion(command->completion);
4032 	slot_id = command->slot_id;
4033 
4034 	if (!slot_id || command->status != COMP_SUCCESS) {
4035 		xhci_err(xhci, "Error while assigning device slot ID\n");
4036 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4037 				HCS_MAX_SLOTS(
4038 					readl(&xhci->cap_regs->hcs_params1)));
4039 		xhci_free_command(xhci, command);
4040 		return 0;
4041 	}
4042 
4043 	xhci_free_command(xhci, command);
4044 
4045 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4046 		spin_lock_irqsave(&xhci->lock, flags);
4047 		ret = xhci_reserve_host_control_ep_resources(xhci);
4048 		if (ret) {
4049 			spin_unlock_irqrestore(&xhci->lock, flags);
4050 			xhci_warn(xhci, "Not enough host resources, "
4051 					"active endpoint contexts = %u\n",
4052 					xhci->num_active_eps);
4053 			goto disable_slot;
4054 		}
4055 		spin_unlock_irqrestore(&xhci->lock, flags);
4056 	}
4057 	/* Use GFP_NOIO, since this function can be called from
4058 	 * xhci_discover_or_reset_device(), which may be called as part of
4059 	 * mass storage driver error handling.
4060 	 */
4061 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4062 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4063 		goto disable_slot;
4064 	}
4065 	vdev = xhci->devs[slot_id];
4066 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4067 	trace_xhci_alloc_dev(slot_ctx);
4068 
4069 	udev->slot_id = slot_id;
4070 
4071 	xhci_debugfs_create_slot(xhci, slot_id);
4072 
4073 #ifndef CONFIG_USB_DEFAULT_PERSIST
4074 	/*
4075 	 * If resetting upon resume, we can't put the controller into runtime
4076 	 * suspend if there is a device attached.
4077 	 */
4078 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4079 		pm_runtime_get_noresume(hcd->self.controller);
4080 #endif
4081 
4082 	/* Is this a LS or FS device under a HS hub? */
4083 	/* Hub or peripherial? */
4084 	return 1;
4085 
4086 disable_slot:
4087 	ret = xhci_disable_slot(xhci, udev->slot_id);
4088 	if (ret)
4089 		xhci_free_virt_device(xhci, udev->slot_id);
4090 
4091 	return 0;
4092 }
4093 
4094 /*
4095  * Issue an Address Device command and optionally send a corresponding
4096  * SetAddress request to the device.
4097  */
4098 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4099 			     enum xhci_setup_dev setup)
4100 {
4101 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4102 	unsigned long flags;
4103 	struct xhci_virt_device *virt_dev;
4104 	int ret = 0;
4105 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4106 	struct xhci_slot_ctx *slot_ctx;
4107 	struct xhci_input_control_ctx *ctrl_ctx;
4108 	u64 temp_64;
4109 	struct xhci_command *command = NULL;
4110 
4111 	mutex_lock(&xhci->mutex);
4112 
4113 	if (xhci->xhc_state) {	/* dying, removing or halted */
4114 		ret = -ESHUTDOWN;
4115 		goto out;
4116 	}
4117 
4118 	if (!udev->slot_id) {
4119 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4120 				"Bad Slot ID %d", udev->slot_id);
4121 		ret = -EINVAL;
4122 		goto out;
4123 	}
4124 
4125 	virt_dev = xhci->devs[udev->slot_id];
4126 
4127 	if (WARN_ON(!virt_dev)) {
4128 		/*
4129 		 * In plug/unplug torture test with an NEC controller,
4130 		 * a zero-dereference was observed once due to virt_dev = 0.
4131 		 * Print useful debug rather than crash if it is observed again!
4132 		 */
4133 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4134 			udev->slot_id);
4135 		ret = -EINVAL;
4136 		goto out;
4137 	}
4138 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4139 	trace_xhci_setup_device_slot(slot_ctx);
4140 
4141 	if (setup == SETUP_CONTEXT_ONLY) {
4142 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4143 		    SLOT_STATE_DEFAULT) {
4144 			xhci_dbg(xhci, "Slot already in default state\n");
4145 			goto out;
4146 		}
4147 	}
4148 
4149 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4150 	if (!command) {
4151 		ret = -ENOMEM;
4152 		goto out;
4153 	}
4154 
4155 	command->in_ctx = virt_dev->in_ctx;
4156 
4157 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4158 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4159 	if (!ctrl_ctx) {
4160 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4161 				__func__);
4162 		ret = -EINVAL;
4163 		goto out;
4164 	}
4165 	/*
4166 	 * If this is the first Set Address since device plug-in or
4167 	 * virt_device realloaction after a resume with an xHCI power loss,
4168 	 * then set up the slot context.
4169 	 */
4170 	if (!slot_ctx->dev_info)
4171 		xhci_setup_addressable_virt_dev(xhci, udev);
4172 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4173 	else
4174 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4175 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4176 	ctrl_ctx->drop_flags = 0;
4177 
4178 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4179 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4180 
4181 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4182 	spin_lock_irqsave(&xhci->lock, flags);
4183 	trace_xhci_setup_device(virt_dev);
4184 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4185 					udev->slot_id, setup);
4186 	if (ret) {
4187 		spin_unlock_irqrestore(&xhci->lock, flags);
4188 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189 				"FIXME: allocate a command ring segment");
4190 		goto out;
4191 	}
4192 	xhci_ring_cmd_db(xhci);
4193 	spin_unlock_irqrestore(&xhci->lock, flags);
4194 
4195 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4196 	wait_for_completion(command->completion);
4197 
4198 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4199 	 * the SetAddress() "recovery interval" required by USB and aborting the
4200 	 * command on a timeout.
4201 	 */
4202 	switch (command->status) {
4203 	case COMP_COMMAND_ABORTED:
4204 	case COMP_COMMAND_RING_STOPPED:
4205 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4206 		ret = -ETIME;
4207 		break;
4208 	case COMP_CONTEXT_STATE_ERROR:
4209 	case COMP_SLOT_NOT_ENABLED_ERROR:
4210 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4211 			 act, udev->slot_id);
4212 		ret = -EINVAL;
4213 		break;
4214 	case COMP_USB_TRANSACTION_ERROR:
4215 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4216 
4217 		mutex_unlock(&xhci->mutex);
4218 		ret = xhci_disable_slot(xhci, udev->slot_id);
4219 		if (!ret)
4220 			xhci_alloc_dev(hcd, udev);
4221 		kfree(command->completion);
4222 		kfree(command);
4223 		return -EPROTO;
4224 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4225 		dev_warn(&udev->dev,
4226 			 "ERROR: Incompatible device for setup %s command\n", act);
4227 		ret = -ENODEV;
4228 		break;
4229 	case COMP_SUCCESS:
4230 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4231 			       "Successful setup %s command", act);
4232 		break;
4233 	default:
4234 		xhci_err(xhci,
4235 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4236 			 act, command->status);
4237 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4238 		ret = -EINVAL;
4239 		break;
4240 	}
4241 	if (ret)
4242 		goto out;
4243 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4244 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4245 			"Op regs DCBAA ptr = %#016llx", temp_64);
4246 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4247 		"Slot ID %d dcbaa entry @%p = %#016llx",
4248 		udev->slot_id,
4249 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4250 		(unsigned long long)
4251 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4252 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4253 			"Output Context DMA address = %#08llx",
4254 			(unsigned long long)virt_dev->out_ctx->dma);
4255 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4256 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4257 	/*
4258 	 * USB core uses address 1 for the roothubs, so we add one to the
4259 	 * address given back to us by the HC.
4260 	 */
4261 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4262 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4263 	/* Zero the input context control for later use */
4264 	ctrl_ctx->add_flags = 0;
4265 	ctrl_ctx->drop_flags = 0;
4266 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4267 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4268 
4269 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270 		       "Internal device address = %d",
4271 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4272 out:
4273 	mutex_unlock(&xhci->mutex);
4274 	if (command) {
4275 		kfree(command->completion);
4276 		kfree(command);
4277 	}
4278 	return ret;
4279 }
4280 
4281 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4282 {
4283 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4284 }
4285 
4286 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4287 {
4288 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4289 }
4290 
4291 /*
4292  * Transfer the port index into real index in the HW port status
4293  * registers. Caculate offset between the port's PORTSC register
4294  * and port status base. Divide the number of per port register
4295  * to get the real index. The raw port number bases 1.
4296  */
4297 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4298 {
4299 	struct xhci_hub *rhub;
4300 
4301 	rhub = xhci_get_rhub(hcd);
4302 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4303 }
4304 
4305 /*
4306  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4307  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4308  */
4309 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4310 			struct usb_device *udev, u16 max_exit_latency)
4311 {
4312 	struct xhci_virt_device *virt_dev;
4313 	struct xhci_command *command;
4314 	struct xhci_input_control_ctx *ctrl_ctx;
4315 	struct xhci_slot_ctx *slot_ctx;
4316 	unsigned long flags;
4317 	int ret;
4318 
4319 	spin_lock_irqsave(&xhci->lock, flags);
4320 
4321 	virt_dev = xhci->devs[udev->slot_id];
4322 
4323 	/*
4324 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4325 	 * xHC was re-initialized. Exit latency will be set later after
4326 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4327 	 */
4328 
4329 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4330 		spin_unlock_irqrestore(&xhci->lock, flags);
4331 		return 0;
4332 	}
4333 
4334 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4335 	command = xhci->lpm_command;
4336 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4337 	if (!ctrl_ctx) {
4338 		spin_unlock_irqrestore(&xhci->lock, flags);
4339 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4340 				__func__);
4341 		return -ENOMEM;
4342 	}
4343 
4344 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345 	spin_unlock_irqrestore(&xhci->lock, flags);
4346 
4347 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4348 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4349 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4350 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4351 	slot_ctx->dev_state = 0;
4352 
4353 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4354 			"Set up evaluate context for LPM MEL change.");
4355 
4356 	/* Issue and wait for the evaluate context command. */
4357 	ret = xhci_configure_endpoint(xhci, udev, command,
4358 			true, true);
4359 
4360 	if (!ret) {
4361 		spin_lock_irqsave(&xhci->lock, flags);
4362 		virt_dev->current_mel = max_exit_latency;
4363 		spin_unlock_irqrestore(&xhci->lock, flags);
4364 	}
4365 	return ret;
4366 }
4367 
4368 #ifdef CONFIG_PM
4369 
4370 /* BESL to HIRD Encoding array for USB2 LPM */
4371 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4372 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4373 
4374 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4375 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4376 					struct usb_device *udev)
4377 {
4378 	int u2del, besl, besl_host;
4379 	int besl_device = 0;
4380 	u32 field;
4381 
4382 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4383 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4384 
4385 	if (field & USB_BESL_SUPPORT) {
4386 		for (besl_host = 0; besl_host < 16; besl_host++) {
4387 			if (xhci_besl_encoding[besl_host] >= u2del)
4388 				break;
4389 		}
4390 		/* Use baseline BESL value as default */
4391 		if (field & USB_BESL_BASELINE_VALID)
4392 			besl_device = USB_GET_BESL_BASELINE(field);
4393 		else if (field & USB_BESL_DEEP_VALID)
4394 			besl_device = USB_GET_BESL_DEEP(field);
4395 	} else {
4396 		if (u2del <= 50)
4397 			besl_host = 0;
4398 		else
4399 			besl_host = (u2del - 51) / 75 + 1;
4400 	}
4401 
4402 	besl = besl_host + besl_device;
4403 	if (besl > 15)
4404 		besl = 15;
4405 
4406 	return besl;
4407 }
4408 
4409 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4410 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4411 {
4412 	u32 field;
4413 	int l1;
4414 	int besld = 0;
4415 	int hirdm = 0;
4416 
4417 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4418 
4419 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4420 	l1 = udev->l1_params.timeout / 256;
4421 
4422 	/* device has preferred BESLD */
4423 	if (field & USB_BESL_DEEP_VALID) {
4424 		besld = USB_GET_BESL_DEEP(field);
4425 		hirdm = 1;
4426 	}
4427 
4428 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4429 }
4430 
4431 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4432 			struct usb_device *udev, int enable)
4433 {
4434 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4435 	struct xhci_port **ports;
4436 	__le32 __iomem	*pm_addr, *hlpm_addr;
4437 	u32		pm_val, hlpm_val, field;
4438 	unsigned int	port_num;
4439 	unsigned long	flags;
4440 	int		hird, exit_latency;
4441 	int		ret;
4442 
4443 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4444 		return -EPERM;
4445 
4446 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4447 			!udev->lpm_capable)
4448 		return -EPERM;
4449 
4450 	if (!udev->parent || udev->parent->parent ||
4451 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4452 		return -EPERM;
4453 
4454 	if (udev->usb2_hw_lpm_capable != 1)
4455 		return -EPERM;
4456 
4457 	spin_lock_irqsave(&xhci->lock, flags);
4458 
4459 	ports = xhci->usb2_rhub.ports;
4460 	port_num = udev->portnum - 1;
4461 	pm_addr = ports[port_num]->addr + PORTPMSC;
4462 	pm_val = readl(pm_addr);
4463 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4464 
4465 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4466 			enable ? "enable" : "disable", port_num + 1);
4467 
4468 	if (enable) {
4469 		/* Host supports BESL timeout instead of HIRD */
4470 		if (udev->usb2_hw_lpm_besl_capable) {
4471 			/* if device doesn't have a preferred BESL value use a
4472 			 * default one which works with mixed HIRD and BESL
4473 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4474 			 */
4475 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4476 			if ((field & USB_BESL_SUPPORT) &&
4477 			    (field & USB_BESL_BASELINE_VALID))
4478 				hird = USB_GET_BESL_BASELINE(field);
4479 			else
4480 				hird = udev->l1_params.besl;
4481 
4482 			exit_latency = xhci_besl_encoding[hird];
4483 			spin_unlock_irqrestore(&xhci->lock, flags);
4484 
4485 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4486 			 * input context for link powermanagement evaluate
4487 			 * context commands. It is protected by hcd->bandwidth
4488 			 * mutex and is shared by all devices. We need to set
4489 			 * the max ext latency in USB 2 BESL LPM as well, so
4490 			 * use the same mutex and xhci_change_max_exit_latency()
4491 			 */
4492 			mutex_lock(hcd->bandwidth_mutex);
4493 			ret = xhci_change_max_exit_latency(xhci, udev,
4494 							   exit_latency);
4495 			mutex_unlock(hcd->bandwidth_mutex);
4496 
4497 			if (ret < 0)
4498 				return ret;
4499 			spin_lock_irqsave(&xhci->lock, flags);
4500 
4501 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4502 			writel(hlpm_val, hlpm_addr);
4503 			/* flush write */
4504 			readl(hlpm_addr);
4505 		} else {
4506 			hird = xhci_calculate_hird_besl(xhci, udev);
4507 		}
4508 
4509 		pm_val &= ~PORT_HIRD_MASK;
4510 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4511 		writel(pm_val, pm_addr);
4512 		pm_val = readl(pm_addr);
4513 		pm_val |= PORT_HLE;
4514 		writel(pm_val, pm_addr);
4515 		/* flush write */
4516 		readl(pm_addr);
4517 	} else {
4518 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4519 		writel(pm_val, pm_addr);
4520 		/* flush write */
4521 		readl(pm_addr);
4522 		if (udev->usb2_hw_lpm_besl_capable) {
4523 			spin_unlock_irqrestore(&xhci->lock, flags);
4524 			mutex_lock(hcd->bandwidth_mutex);
4525 			xhci_change_max_exit_latency(xhci, udev, 0);
4526 			mutex_unlock(hcd->bandwidth_mutex);
4527 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4528 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4529 					   100, 10000);
4530 			return 0;
4531 		}
4532 	}
4533 
4534 	spin_unlock_irqrestore(&xhci->lock, flags);
4535 	return 0;
4536 }
4537 
4538 /* check if a usb2 port supports a given extened capability protocol
4539  * only USB2 ports extended protocol capability values are cached.
4540  * Return 1 if capability is supported
4541  */
4542 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4543 					   unsigned capability)
4544 {
4545 	u32 port_offset, port_count;
4546 	int i;
4547 
4548 	for (i = 0; i < xhci->num_ext_caps; i++) {
4549 		if (xhci->ext_caps[i] & capability) {
4550 			/* port offsets starts at 1 */
4551 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4552 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4553 			if (port >= port_offset &&
4554 			    port < port_offset + port_count)
4555 				return 1;
4556 		}
4557 	}
4558 	return 0;
4559 }
4560 
4561 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4562 {
4563 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4564 	int		portnum = udev->portnum - 1;
4565 
4566 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4567 		return 0;
4568 
4569 	/* we only support lpm for non-hub device connected to root hub yet */
4570 	if (!udev->parent || udev->parent->parent ||
4571 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4572 		return 0;
4573 
4574 	if (xhci->hw_lpm_support == 1 &&
4575 			xhci_check_usb2_port_capability(
4576 				xhci, portnum, XHCI_HLC)) {
4577 		udev->usb2_hw_lpm_capable = 1;
4578 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4579 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4580 		if (xhci_check_usb2_port_capability(xhci, portnum,
4581 					XHCI_BLC))
4582 			udev->usb2_hw_lpm_besl_capable = 1;
4583 	}
4584 
4585 	return 0;
4586 }
4587 
4588 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4589 
4590 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4591 static unsigned long long xhci_service_interval_to_ns(
4592 		struct usb_endpoint_descriptor *desc)
4593 {
4594 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4595 }
4596 
4597 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4598 		enum usb3_link_state state)
4599 {
4600 	unsigned long long sel;
4601 	unsigned long long pel;
4602 	unsigned int max_sel_pel;
4603 	char *state_name;
4604 
4605 	switch (state) {
4606 	case USB3_LPM_U1:
4607 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4608 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4609 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4610 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4611 		state_name = "U1";
4612 		break;
4613 	case USB3_LPM_U2:
4614 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4615 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4616 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4617 		state_name = "U2";
4618 		break;
4619 	default:
4620 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4621 				__func__);
4622 		return USB3_LPM_DISABLED;
4623 	}
4624 
4625 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4626 		return USB3_LPM_DEVICE_INITIATED;
4627 
4628 	if (sel > max_sel_pel)
4629 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4630 				"due to long SEL %llu ms\n",
4631 				state_name, sel);
4632 	else
4633 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4634 				"due to long PEL %llu ms\n",
4635 				state_name, pel);
4636 	return USB3_LPM_DISABLED;
4637 }
4638 
4639 /* The U1 timeout should be the maximum of the following values:
4640  *  - For control endpoints, U1 system exit latency (SEL) * 3
4641  *  - For bulk endpoints, U1 SEL * 5
4642  *  - For interrupt endpoints:
4643  *    - Notification EPs, U1 SEL * 3
4644  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4645  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4646  */
4647 static unsigned long long xhci_calculate_intel_u1_timeout(
4648 		struct usb_device *udev,
4649 		struct usb_endpoint_descriptor *desc)
4650 {
4651 	unsigned long long timeout_ns;
4652 	int ep_type;
4653 	int intr_type;
4654 
4655 	ep_type = usb_endpoint_type(desc);
4656 	switch (ep_type) {
4657 	case USB_ENDPOINT_XFER_CONTROL:
4658 		timeout_ns = udev->u1_params.sel * 3;
4659 		break;
4660 	case USB_ENDPOINT_XFER_BULK:
4661 		timeout_ns = udev->u1_params.sel * 5;
4662 		break;
4663 	case USB_ENDPOINT_XFER_INT:
4664 		intr_type = usb_endpoint_interrupt_type(desc);
4665 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4666 			timeout_ns = udev->u1_params.sel * 3;
4667 			break;
4668 		}
4669 		/* Otherwise the calculation is the same as isoc eps */
4670 		fallthrough;
4671 	case USB_ENDPOINT_XFER_ISOC:
4672 		timeout_ns = xhci_service_interval_to_ns(desc);
4673 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4674 		if (timeout_ns < udev->u1_params.sel * 2)
4675 			timeout_ns = udev->u1_params.sel * 2;
4676 		break;
4677 	default:
4678 		return 0;
4679 	}
4680 
4681 	return timeout_ns;
4682 }
4683 
4684 /* Returns the hub-encoded U1 timeout value. */
4685 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4686 		struct usb_device *udev,
4687 		struct usb_endpoint_descriptor *desc)
4688 {
4689 	unsigned long long timeout_ns;
4690 
4691 	if (xhci->quirks & XHCI_INTEL_HOST)
4692 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4693 	else
4694 		timeout_ns = udev->u1_params.sel;
4695 
4696 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4697 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4698 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4699 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4700 			return USB3_LPM_DISABLED;
4701 		}
4702 	}
4703 
4704 	/* The U1 timeout is encoded in 1us intervals.
4705 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4706 	 */
4707 	if (timeout_ns == USB3_LPM_DISABLED)
4708 		timeout_ns = 1;
4709 	else
4710 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4711 
4712 	/* If the necessary timeout value is bigger than what we can set in the
4713 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4714 	 */
4715 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4716 		return timeout_ns;
4717 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4718 			"due to long timeout %llu ms\n", timeout_ns);
4719 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4720 }
4721 
4722 /* The U2 timeout should be the maximum of:
4723  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4724  *  - largest bInterval of any active periodic endpoint (to avoid going
4725  *    into lower power link states between intervals).
4726  *  - the U2 Exit Latency of the device
4727  */
4728 static unsigned long long xhci_calculate_intel_u2_timeout(
4729 		struct usb_device *udev,
4730 		struct usb_endpoint_descriptor *desc)
4731 {
4732 	unsigned long long timeout_ns;
4733 	unsigned long long u2_del_ns;
4734 
4735 	timeout_ns = 10 * 1000 * 1000;
4736 
4737 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4738 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4739 		timeout_ns = xhci_service_interval_to_ns(desc);
4740 
4741 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4742 	if (u2_del_ns > timeout_ns)
4743 		timeout_ns = u2_del_ns;
4744 
4745 	return timeout_ns;
4746 }
4747 
4748 /* Returns the hub-encoded U2 timeout value. */
4749 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4750 		struct usb_device *udev,
4751 		struct usb_endpoint_descriptor *desc)
4752 {
4753 	unsigned long long timeout_ns;
4754 
4755 	if (xhci->quirks & XHCI_INTEL_HOST)
4756 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4757 	else
4758 		timeout_ns = udev->u2_params.sel;
4759 
4760 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4761 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4763 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4764 			return USB3_LPM_DISABLED;
4765 		}
4766 	}
4767 
4768 	/* The U2 timeout is encoded in 256us intervals */
4769 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4770 	/* If the necessary timeout value is bigger than what we can set in the
4771 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4772 	 */
4773 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4774 		return timeout_ns;
4775 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4776 			"due to long timeout %llu ms\n", timeout_ns);
4777 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4778 }
4779 
4780 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4781 		struct usb_device *udev,
4782 		struct usb_endpoint_descriptor *desc,
4783 		enum usb3_link_state state,
4784 		u16 *timeout)
4785 {
4786 	if (state == USB3_LPM_U1)
4787 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4788 	else if (state == USB3_LPM_U2)
4789 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4790 
4791 	return USB3_LPM_DISABLED;
4792 }
4793 
4794 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4795 		struct usb_device *udev,
4796 		struct usb_endpoint_descriptor *desc,
4797 		enum usb3_link_state state,
4798 		u16 *timeout)
4799 {
4800 	u16 alt_timeout;
4801 
4802 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4803 		desc, state, timeout);
4804 
4805 	/* If we found we can't enable hub-initiated LPM, and
4806 	 * the U1 or U2 exit latency was too high to allow
4807 	 * device-initiated LPM as well, then we will disable LPM
4808 	 * for this device, so stop searching any further.
4809 	 */
4810 	if (alt_timeout == USB3_LPM_DISABLED) {
4811 		*timeout = alt_timeout;
4812 		return -E2BIG;
4813 	}
4814 	if (alt_timeout > *timeout)
4815 		*timeout = alt_timeout;
4816 	return 0;
4817 }
4818 
4819 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4820 		struct usb_device *udev,
4821 		struct usb_host_interface *alt,
4822 		enum usb3_link_state state,
4823 		u16 *timeout)
4824 {
4825 	int j;
4826 
4827 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4828 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4829 					&alt->endpoint[j].desc, state, timeout))
4830 			return -E2BIG;
4831 		continue;
4832 	}
4833 	return 0;
4834 }
4835 
4836 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4837 		enum usb3_link_state state)
4838 {
4839 	struct usb_device *parent;
4840 	unsigned int num_hubs;
4841 
4842 	if (state == USB3_LPM_U2)
4843 		return 0;
4844 
4845 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4846 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4847 			parent = parent->parent)
4848 		num_hubs++;
4849 
4850 	if (num_hubs < 2)
4851 		return 0;
4852 
4853 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4854 			" below second-tier hub.\n");
4855 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4856 			"to decrease power consumption.\n");
4857 	return -E2BIG;
4858 }
4859 
4860 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4861 		struct usb_device *udev,
4862 		enum usb3_link_state state)
4863 {
4864 	if (xhci->quirks & XHCI_INTEL_HOST)
4865 		return xhci_check_intel_tier_policy(udev, state);
4866 	else
4867 		return 0;
4868 }
4869 
4870 /* Returns the U1 or U2 timeout that should be enabled.
4871  * If the tier check or timeout setting functions return with a non-zero exit
4872  * code, that means the timeout value has been finalized and we shouldn't look
4873  * at any more endpoints.
4874  */
4875 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4876 			struct usb_device *udev, enum usb3_link_state state)
4877 {
4878 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4879 	struct usb_host_config *config;
4880 	char *state_name;
4881 	int i;
4882 	u16 timeout = USB3_LPM_DISABLED;
4883 
4884 	if (state == USB3_LPM_U1)
4885 		state_name = "U1";
4886 	else if (state == USB3_LPM_U2)
4887 		state_name = "U2";
4888 	else {
4889 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4890 				state);
4891 		return timeout;
4892 	}
4893 
4894 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4895 		return timeout;
4896 
4897 	/* Gather some information about the currently installed configuration
4898 	 * and alternate interface settings.
4899 	 */
4900 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4901 			state, &timeout))
4902 		return timeout;
4903 
4904 	config = udev->actconfig;
4905 	if (!config)
4906 		return timeout;
4907 
4908 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4909 		struct usb_driver *driver;
4910 		struct usb_interface *intf = config->interface[i];
4911 
4912 		if (!intf)
4913 			continue;
4914 
4915 		/* Check if any currently bound drivers want hub-initiated LPM
4916 		 * disabled.
4917 		 */
4918 		if (intf->dev.driver) {
4919 			driver = to_usb_driver(intf->dev.driver);
4920 			if (driver && driver->disable_hub_initiated_lpm) {
4921 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4922 					state_name, driver->name);
4923 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4924 								      state);
4925 				if (timeout == USB3_LPM_DISABLED)
4926 					return timeout;
4927 			}
4928 		}
4929 
4930 		/* Not sure how this could happen... */
4931 		if (!intf->cur_altsetting)
4932 			continue;
4933 
4934 		if (xhci_update_timeout_for_interface(xhci, udev,
4935 					intf->cur_altsetting,
4936 					state, &timeout))
4937 			return timeout;
4938 	}
4939 	return timeout;
4940 }
4941 
4942 static int calculate_max_exit_latency(struct usb_device *udev,
4943 		enum usb3_link_state state_changed,
4944 		u16 hub_encoded_timeout)
4945 {
4946 	unsigned long long u1_mel_us = 0;
4947 	unsigned long long u2_mel_us = 0;
4948 	unsigned long long mel_us = 0;
4949 	bool disabling_u1;
4950 	bool disabling_u2;
4951 	bool enabling_u1;
4952 	bool enabling_u2;
4953 
4954 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4955 			hub_encoded_timeout == USB3_LPM_DISABLED);
4956 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4957 			hub_encoded_timeout == USB3_LPM_DISABLED);
4958 
4959 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4960 			hub_encoded_timeout != USB3_LPM_DISABLED);
4961 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4962 			hub_encoded_timeout != USB3_LPM_DISABLED);
4963 
4964 	/* If U1 was already enabled and we're not disabling it,
4965 	 * or we're going to enable U1, account for the U1 max exit latency.
4966 	 */
4967 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4968 			enabling_u1)
4969 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4970 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4971 			enabling_u2)
4972 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4973 
4974 	if (u1_mel_us > u2_mel_us)
4975 		mel_us = u1_mel_us;
4976 	else
4977 		mel_us = u2_mel_us;
4978 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4979 	if (mel_us > MAX_EXIT) {
4980 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4981 				"is too big.\n", mel_us);
4982 		return -E2BIG;
4983 	}
4984 	return mel_us;
4985 }
4986 
4987 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4989 			struct usb_device *udev, enum usb3_link_state state)
4990 {
4991 	struct xhci_hcd	*xhci;
4992 	u16 hub_encoded_timeout;
4993 	int mel;
4994 	int ret;
4995 
4996 	xhci = hcd_to_xhci(hcd);
4997 	/* The LPM timeout values are pretty host-controller specific, so don't
4998 	 * enable hub-initiated timeouts unless the vendor has provided
4999 	 * information about their timeout algorithm.
5000 	 */
5001 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5002 			!xhci->devs[udev->slot_id])
5003 		return USB3_LPM_DISABLED;
5004 
5005 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5006 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5007 	if (mel < 0) {
5008 		/* Max Exit Latency is too big, disable LPM. */
5009 		hub_encoded_timeout = USB3_LPM_DISABLED;
5010 		mel = 0;
5011 	}
5012 
5013 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5014 	if (ret)
5015 		return ret;
5016 	return hub_encoded_timeout;
5017 }
5018 
5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020 			struct usb_device *udev, enum usb3_link_state state)
5021 {
5022 	struct xhci_hcd	*xhci;
5023 	u16 mel;
5024 
5025 	xhci = hcd_to_xhci(hcd);
5026 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 			!xhci->devs[udev->slot_id])
5028 		return 0;
5029 
5030 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5031 	return xhci_change_max_exit_latency(xhci, udev, mel);
5032 }
5033 #else /* CONFIG_PM */
5034 
5035 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5036 				struct usb_device *udev, int enable)
5037 {
5038 	return 0;
5039 }
5040 
5041 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5042 {
5043 	return 0;
5044 }
5045 
5046 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5047 			struct usb_device *udev, enum usb3_link_state state)
5048 {
5049 	return USB3_LPM_DISABLED;
5050 }
5051 
5052 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5053 			struct usb_device *udev, enum usb3_link_state state)
5054 {
5055 	return 0;
5056 }
5057 #endif	/* CONFIG_PM */
5058 
5059 /*-------------------------------------------------------------------------*/
5060 
5061 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5062  * internal data structures for the device.
5063  */
5064 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5065 			struct usb_tt *tt, gfp_t mem_flags)
5066 {
5067 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5068 	struct xhci_virt_device *vdev;
5069 	struct xhci_command *config_cmd;
5070 	struct xhci_input_control_ctx *ctrl_ctx;
5071 	struct xhci_slot_ctx *slot_ctx;
5072 	unsigned long flags;
5073 	unsigned think_time;
5074 	int ret;
5075 
5076 	/* Ignore root hubs */
5077 	if (!hdev->parent)
5078 		return 0;
5079 
5080 	vdev = xhci->devs[hdev->slot_id];
5081 	if (!vdev) {
5082 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5083 		return -EINVAL;
5084 	}
5085 
5086 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5087 	if (!config_cmd)
5088 		return -ENOMEM;
5089 
5090 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5091 	if (!ctrl_ctx) {
5092 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5093 				__func__);
5094 		xhci_free_command(xhci, config_cmd);
5095 		return -ENOMEM;
5096 	}
5097 
5098 	spin_lock_irqsave(&xhci->lock, flags);
5099 	if (hdev->speed == USB_SPEED_HIGH &&
5100 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5101 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5102 		xhci_free_command(xhci, config_cmd);
5103 		spin_unlock_irqrestore(&xhci->lock, flags);
5104 		return -ENOMEM;
5105 	}
5106 
5107 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5108 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5109 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5110 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5111 	/*
5112 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5113 	 * but it may be already set to 1 when setup an xHCI virtual
5114 	 * device, so clear it anyway.
5115 	 */
5116 	if (tt->multi)
5117 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5118 	else if (hdev->speed == USB_SPEED_FULL)
5119 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5120 
5121 	if (xhci->hci_version > 0x95) {
5122 		xhci_dbg(xhci, "xHCI version %x needs hub "
5123 				"TT think time and number of ports\n",
5124 				(unsigned int) xhci->hci_version);
5125 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5126 		/* Set TT think time - convert from ns to FS bit times.
5127 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5128 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5129 		 *
5130 		 * xHCI 1.0: this field shall be 0 if the device is not a
5131 		 * High-spped hub.
5132 		 */
5133 		think_time = tt->think_time;
5134 		if (think_time != 0)
5135 			think_time = (think_time / 666) - 1;
5136 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5137 			slot_ctx->tt_info |=
5138 				cpu_to_le32(TT_THINK_TIME(think_time));
5139 	} else {
5140 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5141 				"TT think time or number of ports\n",
5142 				(unsigned int) xhci->hci_version);
5143 	}
5144 	slot_ctx->dev_state = 0;
5145 	spin_unlock_irqrestore(&xhci->lock, flags);
5146 
5147 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5148 			(xhci->hci_version > 0x95) ?
5149 			"configure endpoint" : "evaluate context");
5150 
5151 	/* Issue and wait for the configure endpoint or
5152 	 * evaluate context command.
5153 	 */
5154 	if (xhci->hci_version > 0x95)
5155 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5156 				false, false);
5157 	else
5158 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5159 				true, false);
5160 
5161 	xhci_free_command(xhci, config_cmd);
5162 	return ret;
5163 }
5164 
5165 static int xhci_get_frame(struct usb_hcd *hcd)
5166 {
5167 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5168 	/* EHCI mods by the periodic size.  Why? */
5169 	return readl(&xhci->run_regs->microframe_index) >> 3;
5170 }
5171 
5172 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5173 {
5174 	struct xhci_hcd		*xhci;
5175 	/*
5176 	 * TODO: Check with DWC3 clients for sysdev according to
5177 	 * quirks
5178 	 */
5179 	struct device		*dev = hcd->self.sysdev;
5180 	unsigned int		minor_rev;
5181 	int			retval;
5182 
5183 	/* Accept arbitrarily long scatter-gather lists */
5184 	hcd->self.sg_tablesize = ~0;
5185 
5186 	/* support to build packet from discontinuous buffers */
5187 	hcd->self.no_sg_constraint = 1;
5188 
5189 	/* XHCI controllers don't stop the ep queue on short packets :| */
5190 	hcd->self.no_stop_on_short = 1;
5191 
5192 	xhci = hcd_to_xhci(hcd);
5193 
5194 	if (usb_hcd_is_primary_hcd(hcd)) {
5195 		xhci->main_hcd = hcd;
5196 		xhci->usb2_rhub.hcd = hcd;
5197 		/* Mark the first roothub as being USB 2.0.
5198 		 * The xHCI driver will register the USB 3.0 roothub.
5199 		 */
5200 		hcd->speed = HCD_USB2;
5201 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5202 		/*
5203 		 * USB 2.0 roothub under xHCI has an integrated TT,
5204 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5205 		 * companion controller.
5206 		 */
5207 		hcd->has_tt = 1;
5208 	} else {
5209 		/*
5210 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5211 		 * should return 0x31 for sbrn, or that the minor revision
5212 		 * is a two digit BCD containig minor and sub-minor numbers.
5213 		 * This was later clarified in xHCI 1.2.
5214 		 *
5215 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5216 		 * minor revision set to 0x1 instead of 0x10.
5217 		 */
5218 		if (xhci->usb3_rhub.min_rev == 0x1)
5219 			minor_rev = 1;
5220 		else
5221 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5222 
5223 		switch (minor_rev) {
5224 		case 2:
5225 			hcd->speed = HCD_USB32;
5226 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5227 			hcd->self.root_hub->rx_lanes = 2;
5228 			hcd->self.root_hub->tx_lanes = 2;
5229 			break;
5230 		case 1:
5231 			hcd->speed = HCD_USB31;
5232 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5233 			break;
5234 		}
5235 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5236 			  minor_rev,
5237 			  minor_rev ? "Enhanced " : "");
5238 
5239 		xhci->usb3_rhub.hcd = hcd;
5240 		/* xHCI private pointer was set in xhci_pci_probe for the second
5241 		 * registered roothub.
5242 		 */
5243 		return 0;
5244 	}
5245 
5246 	mutex_init(&xhci->mutex);
5247 	xhci->cap_regs = hcd->regs;
5248 	xhci->op_regs = hcd->regs +
5249 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5250 	xhci->run_regs = hcd->regs +
5251 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5252 	/* Cache read-only capability registers */
5253 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5254 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5255 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5256 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5257 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5258 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5259 	if (xhci->hci_version > 0x100)
5260 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5261 
5262 	xhci->quirks |= quirks;
5263 
5264 	get_quirks(dev, xhci);
5265 
5266 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5267 	 * success event after a short transfer. This quirk will ignore such
5268 	 * spurious event.
5269 	 */
5270 	if (xhci->hci_version > 0x96)
5271 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5272 
5273 	/* Make sure the HC is halted. */
5274 	retval = xhci_halt(xhci);
5275 	if (retval)
5276 		return retval;
5277 
5278 	xhci_zero_64b_regs(xhci);
5279 
5280 	xhci_dbg(xhci, "Resetting HCD\n");
5281 	/* Reset the internal HC memory state and registers. */
5282 	retval = xhci_reset(xhci);
5283 	if (retval)
5284 		return retval;
5285 	xhci_dbg(xhci, "Reset complete\n");
5286 
5287 	/*
5288 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5289 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5290 	 * address memory pointers actually. So, this driver clears the AC64
5291 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5292 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5293 	 */
5294 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5295 		xhci->hcc_params &= ~BIT(0);
5296 
5297 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5298 	 * if xHC supports 64-bit addressing */
5299 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5300 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5301 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5302 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5303 	} else {
5304 		/*
5305 		 * This is to avoid error in cases where a 32-bit USB
5306 		 * controller is used on a 64-bit capable system.
5307 		 */
5308 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5309 		if (retval)
5310 			return retval;
5311 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5312 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5313 	}
5314 
5315 	xhci_dbg(xhci, "Calling HCD init\n");
5316 	/* Initialize HCD and host controller data structures. */
5317 	retval = xhci_init(hcd);
5318 	if (retval)
5319 		return retval;
5320 	xhci_dbg(xhci, "Called HCD init\n");
5321 
5322 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5323 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5324 
5325 	return 0;
5326 }
5327 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5328 
5329 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5330 		struct usb_host_endpoint *ep)
5331 {
5332 	struct xhci_hcd *xhci;
5333 	struct usb_device *udev;
5334 	unsigned int slot_id;
5335 	unsigned int ep_index;
5336 	unsigned long flags;
5337 
5338 	xhci = hcd_to_xhci(hcd);
5339 
5340 	spin_lock_irqsave(&xhci->lock, flags);
5341 	udev = (struct usb_device *)ep->hcpriv;
5342 	slot_id = udev->slot_id;
5343 	ep_index = xhci_get_endpoint_index(&ep->desc);
5344 
5345 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5346 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5347 	spin_unlock_irqrestore(&xhci->lock, flags);
5348 }
5349 
5350 static const struct hc_driver xhci_hc_driver = {
5351 	.description =		"xhci-hcd",
5352 	.product_desc =		"xHCI Host Controller",
5353 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5354 
5355 	/*
5356 	 * generic hardware linkage
5357 	 */
5358 	.irq =			xhci_irq,
5359 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5360 				HCD_BH,
5361 
5362 	/*
5363 	 * basic lifecycle operations
5364 	 */
5365 	.reset =		NULL, /* set in xhci_init_driver() */
5366 	.start =		xhci_run,
5367 	.stop =			xhci_stop,
5368 	.shutdown =		xhci_shutdown,
5369 
5370 	/*
5371 	 * managing i/o requests and associated device resources
5372 	 */
5373 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5374 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5375 	.urb_enqueue =		xhci_urb_enqueue,
5376 	.urb_dequeue =		xhci_urb_dequeue,
5377 	.alloc_dev =		xhci_alloc_dev,
5378 	.free_dev =		xhci_free_dev,
5379 	.alloc_streams =	xhci_alloc_streams,
5380 	.free_streams =		xhci_free_streams,
5381 	.add_endpoint =		xhci_add_endpoint,
5382 	.drop_endpoint =	xhci_drop_endpoint,
5383 	.endpoint_disable =	xhci_endpoint_disable,
5384 	.endpoint_reset =	xhci_endpoint_reset,
5385 	.check_bandwidth =	xhci_check_bandwidth,
5386 	.reset_bandwidth =	xhci_reset_bandwidth,
5387 	.address_device =	xhci_address_device,
5388 	.enable_device =	xhci_enable_device,
5389 	.update_hub_device =	xhci_update_hub_device,
5390 	.reset_device =		xhci_discover_or_reset_device,
5391 
5392 	/*
5393 	 * scheduling support
5394 	 */
5395 	.get_frame_number =	xhci_get_frame,
5396 
5397 	/*
5398 	 * root hub support
5399 	 */
5400 	.hub_control =		xhci_hub_control,
5401 	.hub_status_data =	xhci_hub_status_data,
5402 	.bus_suspend =		xhci_bus_suspend,
5403 	.bus_resume =		xhci_bus_resume,
5404 	.get_resuming_ports =	xhci_get_resuming_ports,
5405 
5406 	/*
5407 	 * call back when device connected and addressed
5408 	 */
5409 	.update_device =        xhci_update_device,
5410 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5411 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5412 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5413 	.find_raw_port_number =	xhci_find_raw_port_number,
5414 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5415 };
5416 
5417 void xhci_init_driver(struct hc_driver *drv,
5418 		      const struct xhci_driver_overrides *over)
5419 {
5420 	BUG_ON(!over);
5421 
5422 	/* Copy the generic table to drv then apply the overrides */
5423 	*drv = xhci_hc_driver;
5424 
5425 	if (over) {
5426 		drv->hcd_priv_size += over->extra_priv_size;
5427 		if (over->reset)
5428 			drv->reset = over->reset;
5429 		if (over->start)
5430 			drv->start = over->start;
5431 		if (over->check_bandwidth)
5432 			drv->check_bandwidth = over->check_bandwidth;
5433 		if (over->reset_bandwidth)
5434 			drv->reset_bandwidth = over->reset_bandwidth;
5435 	}
5436 }
5437 EXPORT_SYMBOL_GPL(xhci_init_driver);
5438 
5439 MODULE_DESCRIPTION(DRIVER_DESC);
5440 MODULE_AUTHOR(DRIVER_AUTHOR);
5441 MODULE_LICENSE("GPL");
5442 
5443 static int __init xhci_hcd_init(void)
5444 {
5445 	/*
5446 	 * Check the compiler generated sizes of structures that must be laid
5447 	 * out in specific ways for hardware access.
5448 	 */
5449 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5450 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5451 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5452 	/* xhci_device_control has eight fields, and also
5453 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5454 	 */
5455 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5456 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5457 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5458 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5459 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5460 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5461 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5462 
5463 	if (usb_disabled())
5464 		return -ENODEV;
5465 
5466 	xhci_debugfs_create_root();
5467 
5468 	return 0;
5469 }
5470 
5471 /*
5472  * If an init function is provided, an exit function must also be provided
5473  * to allow module unload.
5474  */
5475 static void __exit xhci_hcd_fini(void)
5476 {
5477 	xhci_debugfs_remove_root();
5478 }
5479 
5480 module_init(xhci_hcd_init);
5481 module_exit(xhci_hcd_fini);
5482