1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, timeout_us); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 124 xhci->xhc_state |= XHCI_STATE_HALTED; 125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 126 127 return ret; 128 } 129 130 /* 131 * Set the run bit and wait for the host to be running. 132 */ 133 int xhci_start(struct xhci_hcd *xhci) 134 { 135 u32 temp; 136 int ret; 137 138 temp = readl(&xhci->op_regs->command); 139 temp |= (CMD_RUN); 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 141 temp); 142 writel(temp, &xhci->op_regs->command); 143 144 /* 145 * Wait for the HCHalted Status bit to be 0 to indicate the host is 146 * running. 147 */ 148 ret = xhci_handshake(&xhci->op_regs->status, 149 STS_HALT, 0, XHCI_MAX_HALT_USEC); 150 if (ret == -ETIMEDOUT) 151 xhci_err(xhci, "Host took too long to start, " 152 "waited %u microseconds.\n", 153 XHCI_MAX_HALT_USEC); 154 if (!ret) { 155 /* clear state flags. Including dying, halted or removing */ 156 xhci->xhc_state = 0; 157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 158 } 159 160 return ret; 161 } 162 163 /* 164 * Reset a halted HC. 165 * 166 * This resets pipelines, timers, counters, state machines, etc. 167 * Transactions will be terminated immediately, and operational registers 168 * will be set to their defaults. 169 */ 170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 171 { 172 u32 command; 173 u32 state; 174 int ret; 175 176 state = readl(&xhci->op_regs->status); 177 178 if (state == ~(u32)0) { 179 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 180 return -ENODEV; 181 } 182 183 if ((state & STS_HALT) == 0) { 184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 185 return 0; 186 } 187 188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 189 command = readl(&xhci->op_regs->command); 190 command |= CMD_RESET; 191 writel(command, &xhci->op_regs->command); 192 193 /* Existing Intel xHCI controllers require a delay of 1 mS, 194 * after setting the CMD_RESET bit, and before accessing any 195 * HC registers. This allows the HC to complete the 196 * reset operation and be ready for HC register access. 197 * Without this delay, the subsequent HC register access, 198 * may result in a system hang very rarely. 199 */ 200 if (xhci->quirks & XHCI_INTEL_HOST) 201 udelay(1000); 202 203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 204 if (ret) 205 return ret; 206 207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 209 210 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 211 "Wait for controller to be ready for doorbell rings"); 212 /* 213 * xHCI cannot write to any doorbells or operational registers other 214 * than status until the "Controller Not Ready" flag is cleared. 215 */ 216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 217 218 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb2_rhub.bus_state.suspended_ports = 0; 220 xhci->usb2_rhub.bus_state.resuming_ports = 0; 221 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 222 xhci->usb3_rhub.bus_state.suspended_ports = 0; 223 xhci->usb3_rhub.bus_state.resuming_ports = 0; 224 225 return ret; 226 } 227 228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 229 { 230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 231 int err, i; 232 u64 val; 233 u32 intrs; 234 235 /* 236 * Some Renesas controllers get into a weird state if they are 237 * reset while programmed with 64bit addresses (they will preserve 238 * the top half of the address in internal, non visible 239 * registers). You end up with half the address coming from the 240 * kernel, and the other half coming from the firmware. Also, 241 * changing the programming leads to extra accesses even if the 242 * controller is supposed to be halted. The controller ends up with 243 * a fatal fault, and is then ripe for being properly reset. 244 * 245 * Special care is taken to only apply this if the device is behind 246 * an iommu. Doing anything when there is no iommu is definitely 247 * unsafe... 248 */ 249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 250 return; 251 252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 253 254 /* Clear HSEIE so that faults do not get signaled */ 255 val = readl(&xhci->op_regs->command); 256 val &= ~CMD_HSEIE; 257 writel(val, &xhci->op_regs->command); 258 259 /* Clear HSE (aka FATAL) */ 260 val = readl(&xhci->op_regs->status); 261 val |= STS_FATAL; 262 writel(val, &xhci->op_regs->status); 263 264 /* Now zero the registers, and brace for impact */ 265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 269 if (upper_32_bits(val)) 270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 271 272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 273 ARRAY_SIZE(xhci->run_regs->ir_set)); 274 275 for (i = 0; i < intrs; i++) { 276 struct xhci_intr_reg __iomem *ir; 277 278 ir = &xhci->run_regs->ir_set[i]; 279 val = xhci_read_64(xhci, &ir->erst_base); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_base); 282 val= xhci_read_64(xhci, &ir->erst_dequeue); 283 if (upper_32_bits(val)) 284 xhci_write_64(xhci, 0, &ir->erst_dequeue); 285 } 286 287 /* Wait for the fault to appear. It will be cleared on reset */ 288 err = xhci_handshake(&xhci->op_regs->status, 289 STS_FATAL, STS_FATAL, 290 XHCI_MAX_HALT_USEC); 291 if (!err) 292 xhci_info(xhci, "Fault detected\n"); 293 } 294 295 #ifdef CONFIG_USB_PCI 296 /* 297 * Set up MSI 298 */ 299 static int xhci_setup_msi(struct xhci_hcd *xhci) 300 { 301 int ret; 302 /* 303 * TODO:Check with MSI Soc for sysdev 304 */ 305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 306 307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 308 if (ret < 0) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "failed to allocate MSI entry"); 311 return ret; 312 } 313 314 ret = request_irq(pdev->irq, xhci_msi_irq, 315 0, "xhci_hcd", xhci_to_hcd(xhci)); 316 if (ret) { 317 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 318 "disable MSI interrupt"); 319 pci_free_irq_vectors(pdev); 320 } 321 322 return ret; 323 } 324 325 /* 326 * Set up MSI-X 327 */ 328 static int xhci_setup_msix(struct xhci_hcd *xhci) 329 { 330 int i, ret; 331 struct usb_hcd *hcd = xhci_to_hcd(xhci); 332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 333 334 /* 335 * calculate number of msi-x vectors supported. 336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 337 * with max number of interrupters based on the xhci HCSPARAMS1. 338 * - num_online_cpus: maximum msi-x vectors per CPUs core. 339 * Add additional 1 vector to ensure always available interrupt. 340 */ 341 xhci->msix_count = min(num_online_cpus() + 1, 342 HCS_MAX_INTRS(xhci->hcs_params1)); 343 344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 345 PCI_IRQ_MSIX); 346 if (ret < 0) { 347 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 348 "Failed to enable MSI-X"); 349 return ret; 350 } 351 352 for (i = 0; i < xhci->msix_count; i++) { 353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 354 "xhci_hcd", xhci_to_hcd(xhci)); 355 if (ret) 356 goto disable_msix; 357 } 358 359 hcd->msix_enabled = 1; 360 return ret; 361 362 disable_msix: 363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 364 while (--i >= 0) 365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 366 pci_free_irq_vectors(pdev); 367 return ret; 368 } 369 370 /* Free any IRQs and disable MSI-X */ 371 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 372 { 373 struct usb_hcd *hcd = xhci_to_hcd(xhci); 374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 375 376 if (xhci->quirks & XHCI_PLAT) 377 return; 378 379 /* return if using legacy interrupt */ 380 if (hcd->irq > 0) 381 return; 382 383 if (hcd->msix_enabled) { 384 int i; 385 386 for (i = 0; i < xhci->msix_count; i++) 387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 388 } else { 389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 390 } 391 392 pci_free_irq_vectors(pdev); 393 hcd->msix_enabled = 0; 394 } 395 396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 397 { 398 struct usb_hcd *hcd = xhci_to_hcd(xhci); 399 400 if (hcd->msix_enabled) { 401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 402 int i; 403 404 for (i = 0; i < xhci->msix_count; i++) 405 synchronize_irq(pci_irq_vector(pdev, i)); 406 } 407 } 408 409 static int xhci_try_enable_msi(struct usb_hcd *hcd) 410 { 411 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 412 struct pci_dev *pdev; 413 int ret; 414 415 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 416 if (xhci->quirks & XHCI_PLAT) 417 return 0; 418 419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 420 /* 421 * Some Fresco Logic host controllers advertise MSI, but fail to 422 * generate interrupts. Don't even try to enable MSI. 423 */ 424 if (xhci->quirks & XHCI_BROKEN_MSI) 425 goto legacy_irq; 426 427 /* unregister the legacy interrupt */ 428 if (hcd->irq) 429 free_irq(hcd->irq, hcd); 430 hcd->irq = 0; 431 432 ret = xhci_setup_msix(xhci); 433 if (ret) 434 /* fall back to msi*/ 435 ret = xhci_setup_msi(xhci); 436 437 if (!ret) { 438 hcd->msi_enabled = 1; 439 return 0; 440 } 441 442 if (!pdev->irq) { 443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 444 return -EINVAL; 445 } 446 447 legacy_irq: 448 if (!strlen(hcd->irq_descr)) 449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 450 hcd->driver->description, hcd->self.busnum); 451 452 /* fall back to legacy interrupt*/ 453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 454 hcd->irq_descr, hcd); 455 if (ret) { 456 xhci_err(xhci, "request interrupt %d failed\n", 457 pdev->irq); 458 return ret; 459 } 460 hcd->irq = pdev->irq; 461 return 0; 462 } 463 464 #else 465 466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 467 { 468 return 0; 469 } 470 471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 472 { 473 } 474 475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 476 { 477 } 478 479 #endif 480 481 static void compliance_mode_recovery(struct timer_list *t) 482 { 483 struct xhci_hcd *xhci; 484 struct usb_hcd *hcd; 485 struct xhci_hub *rhub; 486 u32 temp; 487 int i; 488 489 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 490 rhub = &xhci->usb3_rhub; 491 hcd = rhub->hcd; 492 493 if (!hcd) 494 return; 495 496 for (i = 0; i < rhub->num_ports; i++) { 497 temp = readl(rhub->ports[i]->addr); 498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 499 /* 500 * Compliance Mode Detected. Letting USB Core 501 * handle the Warm Reset 502 */ 503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 504 "Compliance mode detected->port %d", 505 i + 1); 506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 507 "Attempting compliance mode recovery"); 508 509 if (hcd->state == HC_STATE_SUSPENDED) 510 usb_hcd_resume_root_hub(hcd); 511 512 usb_hcd_poll_rh_status(hcd); 513 } 514 } 515 516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 517 mod_timer(&xhci->comp_mode_recovery_timer, 518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 519 } 520 521 /* 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 523 * that causes ports behind that hardware to enter compliance mode sometimes. 524 * The quirk creates a timer that polls every 2 seconds the link state of 525 * each host controller's port and recovers it by issuing a Warm reset 526 * if Compliance mode is detected, otherwise the port will become "dead" (no 527 * device connections or disconnections will be detected anymore). Becasue no 528 * status event is generated when entering compliance mode (per xhci spec), 529 * this quirk is needed on systems that have the failing hardware installed. 530 */ 531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 532 { 533 xhci->port_status_u0 = 0; 534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 535 0); 536 xhci->comp_mode_recovery_timer.expires = jiffies + 537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 538 539 add_timer(&xhci->comp_mode_recovery_timer); 540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 541 "Compliance mode recovery timer initialized"); 542 } 543 544 /* 545 * This function identifies the systems that have installed the SN65LVPE502CP 546 * USB3.0 re-driver and that need the Compliance Mode Quirk. 547 * Systems: 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 549 */ 550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 551 { 552 const char *dmi_product_name, *dmi_sys_vendor; 553 554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 556 if (!dmi_product_name || !dmi_sys_vendor) 557 return false; 558 559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 560 return false; 561 562 if (strstr(dmi_product_name, "Z420") || 563 strstr(dmi_product_name, "Z620") || 564 strstr(dmi_product_name, "Z820") || 565 strstr(dmi_product_name, "Z1 Workstation")) 566 return true; 567 568 return false; 569 } 570 571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 572 { 573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 574 } 575 576 577 /* 578 * Initialize memory for HCD and xHC (one-time init). 579 * 580 * Program the PAGESIZE register, initialize the device context array, create 581 * device contexts (?), set up a command ring segment (or two?), create event 582 * ring (one for now). 583 */ 584 static int xhci_init(struct usb_hcd *hcd) 585 { 586 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 587 int retval; 588 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 590 spin_lock_init(&xhci->lock); 591 if (xhci->hci_version == 0x95 && link_quirk) { 592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 593 "QUIRK: Not clearing Link TRB chain bits."); 594 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 595 } else { 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 597 "xHCI doesn't need link TRB QUIRK"); 598 } 599 retval = xhci_mem_init(xhci, GFP_KERNEL); 600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 601 602 /* Initializing Compliance Mode Recovery Data If Needed */ 603 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 604 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 605 compliance_mode_recovery_timer_init(xhci); 606 } 607 608 return retval; 609 } 610 611 /*-------------------------------------------------------------------------*/ 612 613 614 static int xhci_run_finished(struct xhci_hcd *xhci) 615 { 616 unsigned long flags; 617 u32 temp; 618 619 /* 620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 621 * Protect the short window before host is running with a lock 622 */ 623 spin_lock_irqsave(&xhci->lock, flags); 624 625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 626 temp = readl(&xhci->op_regs->command); 627 temp |= (CMD_EIE); 628 writel(temp, &xhci->op_regs->command); 629 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 631 temp = readl(&xhci->ir_set->irq_pending); 632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 633 634 if (xhci_start(xhci)) { 635 xhci_halt(xhci); 636 spin_unlock_irqrestore(&xhci->lock, flags); 637 return -ENODEV; 638 } 639 640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 641 642 if (xhci->quirks & XHCI_NEC_HOST) 643 xhci_ring_cmd_db(xhci); 644 645 spin_unlock_irqrestore(&xhci->lock, flags); 646 647 return 0; 648 } 649 650 /* 651 * Start the HC after it was halted. 652 * 653 * This function is called by the USB core when the HC driver is added. 654 * Its opposite is xhci_stop(). 655 * 656 * xhci_init() must be called once before this function can be called. 657 * Reset the HC, enable device slot contexts, program DCBAAP, and 658 * set command ring pointer and event ring pointer. 659 * 660 * Setup MSI-X vectors and enable interrupts. 661 */ 662 int xhci_run(struct usb_hcd *hcd) 663 { 664 u32 temp; 665 u64 temp_64; 666 int ret; 667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 668 669 /* Start the xHCI host controller running only after the USB 2.0 roothub 670 * is setup. 671 */ 672 673 hcd->uses_new_polling = 1; 674 if (!usb_hcd_is_primary_hcd(hcd)) 675 return xhci_run_finished(xhci); 676 677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 678 679 ret = xhci_try_enable_msi(hcd); 680 if (ret) 681 return ret; 682 683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 684 temp_64 &= ~ERST_PTR_MASK; 685 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 687 688 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 689 "// Set the interrupt modulation register"); 690 temp = readl(&xhci->ir_set->irq_control); 691 temp &= ~ER_IRQ_INTERVAL_MASK; 692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 693 writel(temp, &xhci->ir_set->irq_control); 694 695 if (xhci->quirks & XHCI_NEC_HOST) { 696 struct xhci_command *command; 697 698 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 699 if (!command) 700 return -ENOMEM; 701 702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 703 TRB_TYPE(TRB_NEC_GET_FW)); 704 if (ret) 705 xhci_free_command(xhci, command); 706 } 707 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 708 "Finished %s for main hcd", __func__); 709 710 xhci_create_dbc_dev(xhci); 711 712 xhci_debugfs_init(xhci); 713 714 if (xhci_has_one_roothub(xhci)) 715 return xhci_run_finished(xhci); 716 717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 718 719 return 0; 720 } 721 EXPORT_SYMBOL_GPL(xhci_run); 722 723 /* 724 * Stop xHCI driver. 725 * 726 * This function is called by the USB core when the HC driver is removed. 727 * Its opposite is xhci_run(). 728 * 729 * Disable device contexts, disable IRQs, and quiesce the HC. 730 * Reset the HC, finish any completed transactions, and cleanup memory. 731 */ 732 static void xhci_stop(struct usb_hcd *hcd) 733 { 734 u32 temp; 735 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 736 737 mutex_lock(&xhci->mutex); 738 739 /* Only halt host and free memory after both hcds are removed */ 740 if (!usb_hcd_is_primary_hcd(hcd)) { 741 mutex_unlock(&xhci->mutex); 742 return; 743 } 744 745 xhci_remove_dbc_dev(xhci); 746 747 spin_lock_irq(&xhci->lock); 748 xhci->xhc_state |= XHCI_STATE_HALTED; 749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 750 xhci_halt(xhci); 751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 752 spin_unlock_irq(&xhci->lock); 753 754 xhci_cleanup_msix(xhci); 755 756 /* Deleting Compliance Mode Recovery Timer */ 757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 758 (!(xhci_all_ports_seen_u0(xhci)))) { 759 del_timer_sync(&xhci->comp_mode_recovery_timer); 760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 761 "%s: compliance mode recovery timer deleted", 762 __func__); 763 } 764 765 if (xhci->quirks & XHCI_AMD_PLL_FIX) 766 usb_amd_dev_put(); 767 768 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 769 "// Disabling event ring interrupts"); 770 temp = readl(&xhci->op_regs->status); 771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 772 temp = readl(&xhci->ir_set->irq_pending); 773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 774 775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 776 xhci_mem_cleanup(xhci); 777 xhci_debugfs_exit(xhci); 778 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 779 "xhci_stop completed - status = %x", 780 readl(&xhci->op_regs->status)); 781 mutex_unlock(&xhci->mutex); 782 } 783 784 /* 785 * Shutdown HC (not bus-specific) 786 * 787 * This is called when the machine is rebooting or halting. We assume that the 788 * machine will be powered off, and the HC's internal state will be reset. 789 * Don't bother to free memory. 790 * 791 * This will only ever be called with the main usb_hcd (the USB3 roothub). 792 */ 793 void xhci_shutdown(struct usb_hcd *hcd) 794 { 795 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 796 797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 799 800 /* Don't poll the roothubs after shutdown. */ 801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 802 __func__, hcd->self.busnum); 803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 804 del_timer_sync(&hcd->rh_timer); 805 806 if (xhci->shared_hcd) { 807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 808 del_timer_sync(&xhci->shared_hcd->rh_timer); 809 } 810 811 spin_lock_irq(&xhci->lock); 812 xhci_halt(xhci); 813 814 /* 815 * Workaround for spurious wakeps at shutdown with HSW, and for boot 816 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 817 */ 818 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 819 xhci->quirks & XHCI_RESET_TO_DEFAULT) 820 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 821 822 spin_unlock_irq(&xhci->lock); 823 824 xhci_cleanup_msix(xhci); 825 826 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 827 "xhci_shutdown completed - status = %x", 828 readl(&xhci->op_regs->status)); 829 } 830 EXPORT_SYMBOL_GPL(xhci_shutdown); 831 832 #ifdef CONFIG_PM 833 static void xhci_save_registers(struct xhci_hcd *xhci) 834 { 835 xhci->s3.command = readl(&xhci->op_regs->command); 836 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 837 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 838 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 839 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 840 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 841 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 842 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 843 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 844 } 845 846 static void xhci_restore_registers(struct xhci_hcd *xhci) 847 { 848 writel(xhci->s3.command, &xhci->op_regs->command); 849 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 850 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 851 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 852 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 853 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 854 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 855 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 856 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 857 } 858 859 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 860 { 861 u64 val_64; 862 863 /* step 2: initialize command ring buffer */ 864 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 865 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 866 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 867 xhci->cmd_ring->dequeue) & 868 (u64) ~CMD_RING_RSVD_BITS) | 869 xhci->cmd_ring->cycle_state; 870 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 871 "// Setting command ring address to 0x%llx", 872 (long unsigned long) val_64); 873 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 874 } 875 876 /* 877 * The whole command ring must be cleared to zero when we suspend the host. 878 * 879 * The host doesn't save the command ring pointer in the suspend well, so we 880 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 881 * aligned, because of the reserved bits in the command ring dequeue pointer 882 * register. Therefore, we can't just set the dequeue pointer back in the 883 * middle of the ring (TRBs are 16-byte aligned). 884 */ 885 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 886 { 887 struct xhci_ring *ring; 888 struct xhci_segment *seg; 889 890 ring = xhci->cmd_ring; 891 seg = ring->deq_seg; 892 do { 893 memset(seg->trbs, 0, 894 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 895 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 896 cpu_to_le32(~TRB_CYCLE); 897 seg = seg->next; 898 } while (seg != ring->deq_seg); 899 900 /* Reset the software enqueue and dequeue pointers */ 901 ring->deq_seg = ring->first_seg; 902 ring->dequeue = ring->first_seg->trbs; 903 ring->enq_seg = ring->deq_seg; 904 ring->enqueue = ring->dequeue; 905 906 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 907 /* 908 * Ring is now zeroed, so the HW should look for change of ownership 909 * when the cycle bit is set to 1. 910 */ 911 ring->cycle_state = 1; 912 913 /* 914 * Reset the hardware dequeue pointer. 915 * Yes, this will need to be re-written after resume, but we're paranoid 916 * and want to make sure the hardware doesn't access bogus memory 917 * because, say, the BIOS or an SMI started the host without changing 918 * the command ring pointers. 919 */ 920 xhci_set_cmd_ring_deq(xhci); 921 } 922 923 /* 924 * Disable port wake bits if do_wakeup is not set. 925 * 926 * Also clear a possible internal port wake state left hanging for ports that 927 * detected termination but never successfully enumerated (trained to 0U). 928 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 929 * at enumeration clears this wake, force one here as well for unconnected ports 930 */ 931 932 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 933 struct xhci_hub *rhub, 934 bool do_wakeup) 935 { 936 unsigned long flags; 937 u32 t1, t2, portsc; 938 int i; 939 940 spin_lock_irqsave(&xhci->lock, flags); 941 942 for (i = 0; i < rhub->num_ports; i++) { 943 portsc = readl(rhub->ports[i]->addr); 944 t1 = xhci_port_state_to_neutral(portsc); 945 t2 = t1; 946 947 /* clear wake bits if do_wake is not set */ 948 if (!do_wakeup) 949 t2 &= ~PORT_WAKE_BITS; 950 951 /* Don't touch csc bit if connected or connect change is set */ 952 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 953 t2 |= PORT_CSC; 954 955 if (t1 != t2) { 956 writel(t2, rhub->ports[i]->addr); 957 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 958 rhub->hcd->self.busnum, i + 1, portsc, t2); 959 } 960 } 961 spin_unlock_irqrestore(&xhci->lock, flags); 962 } 963 964 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 965 { 966 struct xhci_port **ports; 967 int port_index; 968 u32 status; 969 u32 portsc; 970 971 status = readl(&xhci->op_regs->status); 972 if (status & STS_EINT) 973 return true; 974 /* 975 * Checking STS_EINT is not enough as there is a lag between a change 976 * bit being set and the Port Status Change Event that it generated 977 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 978 */ 979 980 port_index = xhci->usb2_rhub.num_ports; 981 ports = xhci->usb2_rhub.ports; 982 while (port_index--) { 983 portsc = readl(ports[port_index]->addr); 984 if (portsc & PORT_CHANGE_MASK || 985 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 986 return true; 987 } 988 port_index = xhci->usb3_rhub.num_ports; 989 ports = xhci->usb3_rhub.ports; 990 while (port_index--) { 991 portsc = readl(ports[port_index]->addr); 992 if (portsc & PORT_CHANGE_MASK || 993 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 994 return true; 995 } 996 return false; 997 } 998 999 /* 1000 * Stop HC (not bus-specific) 1001 * 1002 * This is called when the machine transition into S3/S4 mode. 1003 * 1004 */ 1005 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 1006 { 1007 int rc = 0; 1008 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 1009 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1010 u32 command; 1011 u32 res; 1012 1013 if (!hcd->state) 1014 return 0; 1015 1016 if (hcd->state != HC_STATE_SUSPENDED || 1017 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 1018 return -EINVAL; 1019 1020 /* Clear root port wake on bits if wakeup not allowed. */ 1021 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 1022 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 1023 1024 if (!HCD_HW_ACCESSIBLE(hcd)) 1025 return 0; 1026 1027 xhci_dbc_suspend(xhci); 1028 1029 /* Don't poll the roothubs on bus suspend. */ 1030 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 1031 __func__, hcd->self.busnum); 1032 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1033 del_timer_sync(&hcd->rh_timer); 1034 if (xhci->shared_hcd) { 1035 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1036 del_timer_sync(&xhci->shared_hcd->rh_timer); 1037 } 1038 1039 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1040 usleep_range(1000, 1500); 1041 1042 spin_lock_irq(&xhci->lock); 1043 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1044 if (xhci->shared_hcd) 1045 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1046 /* step 1: stop endpoint */ 1047 /* skipped assuming that port suspend has done */ 1048 1049 /* step 2: clear Run/Stop bit */ 1050 command = readl(&xhci->op_regs->command); 1051 command &= ~CMD_RUN; 1052 writel(command, &xhci->op_regs->command); 1053 1054 /* Some chips from Fresco Logic need an extraordinary delay */ 1055 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1056 1057 if (xhci_handshake(&xhci->op_regs->status, 1058 STS_HALT, STS_HALT, delay)) { 1059 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1060 spin_unlock_irq(&xhci->lock); 1061 return -ETIMEDOUT; 1062 } 1063 xhci_clear_command_ring(xhci); 1064 1065 /* step 3: save registers */ 1066 xhci_save_registers(xhci); 1067 1068 /* step 4: set CSS flag */ 1069 command = readl(&xhci->op_regs->command); 1070 command |= CMD_CSS; 1071 writel(command, &xhci->op_regs->command); 1072 xhci->broken_suspend = 0; 1073 if (xhci_handshake(&xhci->op_regs->status, 1074 STS_SAVE, 0, 20 * 1000)) { 1075 /* 1076 * AMD SNPS xHC 3.0 occasionally does not clear the 1077 * SSS bit of USBSTS and when driver tries to poll 1078 * to see if the xHC clears BIT(8) which never happens 1079 * and driver assumes that controller is not responding 1080 * and times out. To workaround this, its good to check 1081 * if SRE and HCE bits are not set (as per xhci 1082 * Section 5.4.2) and bypass the timeout. 1083 */ 1084 res = readl(&xhci->op_regs->status); 1085 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1086 (((res & STS_SRE) == 0) && 1087 ((res & STS_HCE) == 0))) { 1088 xhci->broken_suspend = 1; 1089 } else { 1090 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1091 spin_unlock_irq(&xhci->lock); 1092 return -ETIMEDOUT; 1093 } 1094 } 1095 spin_unlock_irq(&xhci->lock); 1096 1097 /* 1098 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1099 * is about to be suspended. 1100 */ 1101 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1102 (!(xhci_all_ports_seen_u0(xhci)))) { 1103 del_timer_sync(&xhci->comp_mode_recovery_timer); 1104 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1105 "%s: compliance mode recovery timer deleted", 1106 __func__); 1107 } 1108 1109 /* step 5: remove core well power */ 1110 /* synchronize irq when using MSI-X */ 1111 xhci_msix_sync_irqs(xhci); 1112 1113 return rc; 1114 } 1115 EXPORT_SYMBOL_GPL(xhci_suspend); 1116 1117 /* 1118 * start xHC (not bus-specific) 1119 * 1120 * This is called when the machine transition from S3/S4 mode. 1121 * 1122 */ 1123 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1124 { 1125 u32 command, temp = 0; 1126 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1127 int retval = 0; 1128 bool comp_timer_running = false; 1129 bool pending_portevent = false; 1130 bool reinit_xhc = false; 1131 1132 if (!hcd->state) 1133 return 0; 1134 1135 /* Wait a bit if either of the roothubs need to settle from the 1136 * transition into bus suspend. 1137 */ 1138 1139 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1140 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1141 msleep(100); 1142 1143 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1144 if (xhci->shared_hcd) 1145 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1146 1147 spin_lock_irq(&xhci->lock); 1148 1149 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1150 reinit_xhc = true; 1151 1152 if (!reinit_xhc) { 1153 /* 1154 * Some controllers might lose power during suspend, so wait 1155 * for controller not ready bit to clear, just as in xHC init. 1156 */ 1157 retval = xhci_handshake(&xhci->op_regs->status, 1158 STS_CNR, 0, 10 * 1000 * 1000); 1159 if (retval) { 1160 xhci_warn(xhci, "Controller not ready at resume %d\n", 1161 retval); 1162 spin_unlock_irq(&xhci->lock); 1163 return retval; 1164 } 1165 /* step 1: restore register */ 1166 xhci_restore_registers(xhci); 1167 /* step 2: initialize command ring buffer */ 1168 xhci_set_cmd_ring_deq(xhci); 1169 /* step 3: restore state and start state*/ 1170 /* step 3: set CRS flag */ 1171 command = readl(&xhci->op_regs->command); 1172 command |= CMD_CRS; 1173 writel(command, &xhci->op_regs->command); 1174 /* 1175 * Some controllers take up to 55+ ms to complete the controller 1176 * restore so setting the timeout to 100ms. Xhci specification 1177 * doesn't mention any timeout value. 1178 */ 1179 if (xhci_handshake(&xhci->op_regs->status, 1180 STS_RESTORE, 0, 100 * 1000)) { 1181 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1182 spin_unlock_irq(&xhci->lock); 1183 return -ETIMEDOUT; 1184 } 1185 } 1186 1187 temp = readl(&xhci->op_regs->status); 1188 1189 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1190 if (temp & (STS_SRE | STS_HCE)) { 1191 reinit_xhc = true; 1192 if (!xhci->broken_suspend) 1193 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1194 } 1195 1196 if (reinit_xhc) { 1197 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1198 !(xhci_all_ports_seen_u0(xhci))) { 1199 del_timer_sync(&xhci->comp_mode_recovery_timer); 1200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1201 "Compliance Mode Recovery Timer deleted!"); 1202 } 1203 1204 /* Let the USB core know _both_ roothubs lost power. */ 1205 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1206 if (xhci->shared_hcd) 1207 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1208 1209 xhci_dbg(xhci, "Stop HCD\n"); 1210 xhci_halt(xhci); 1211 xhci_zero_64b_regs(xhci); 1212 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1213 spin_unlock_irq(&xhci->lock); 1214 if (retval) 1215 return retval; 1216 xhci_cleanup_msix(xhci); 1217 1218 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1219 temp = readl(&xhci->op_regs->status); 1220 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1221 temp = readl(&xhci->ir_set->irq_pending); 1222 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1223 1224 xhci_dbg(xhci, "cleaning up memory\n"); 1225 xhci_mem_cleanup(xhci); 1226 xhci_debugfs_exit(xhci); 1227 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1228 readl(&xhci->op_regs->status)); 1229 1230 /* USB core calls the PCI reinit and start functions twice: 1231 * first with the primary HCD, and then with the secondary HCD. 1232 * If we don't do the same, the host will never be started. 1233 */ 1234 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1235 retval = xhci_init(hcd); 1236 if (retval) 1237 return retval; 1238 comp_timer_running = true; 1239 1240 xhci_dbg(xhci, "Start the primary HCD\n"); 1241 retval = xhci_run(hcd); 1242 if (!retval && xhci->shared_hcd) { 1243 xhci_dbg(xhci, "Start the secondary HCD\n"); 1244 retval = xhci_run(xhci->shared_hcd); 1245 } 1246 1247 hcd->state = HC_STATE_SUSPENDED; 1248 if (xhci->shared_hcd) 1249 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1250 goto done; 1251 } 1252 1253 /* step 4: set Run/Stop bit */ 1254 command = readl(&xhci->op_regs->command); 1255 command |= CMD_RUN; 1256 writel(command, &xhci->op_regs->command); 1257 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1258 0, 250 * 1000); 1259 1260 /* step 5: walk topology and initialize portsc, 1261 * portpmsc and portli 1262 */ 1263 /* this is done in bus_resume */ 1264 1265 /* step 6: restart each of the previously 1266 * Running endpoints by ringing their doorbells 1267 */ 1268 1269 spin_unlock_irq(&xhci->lock); 1270 1271 xhci_dbc_resume(xhci); 1272 1273 done: 1274 if (retval == 0) { 1275 /* 1276 * Resume roothubs only if there are pending events. 1277 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1278 * the first wake signalling failed, give it that chance. 1279 */ 1280 pending_portevent = xhci_pending_portevent(xhci); 1281 if (!pending_portevent) { 1282 msleep(120); 1283 pending_portevent = xhci_pending_portevent(xhci); 1284 } 1285 1286 if (pending_portevent) { 1287 if (xhci->shared_hcd) 1288 usb_hcd_resume_root_hub(xhci->shared_hcd); 1289 usb_hcd_resume_root_hub(hcd); 1290 } 1291 } 1292 /* 1293 * If system is subject to the Quirk, Compliance Mode Timer needs to 1294 * be re-initialized Always after a system resume. Ports are subject 1295 * to suffer the Compliance Mode issue again. It doesn't matter if 1296 * ports have entered previously to U0 before system's suspension. 1297 */ 1298 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1299 compliance_mode_recovery_timer_init(xhci); 1300 1301 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1302 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1303 1304 /* Re-enable port polling. */ 1305 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1306 __func__, hcd->self.busnum); 1307 if (xhci->shared_hcd) { 1308 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1309 usb_hcd_poll_rh_status(xhci->shared_hcd); 1310 } 1311 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1312 usb_hcd_poll_rh_status(hcd); 1313 1314 return retval; 1315 } 1316 EXPORT_SYMBOL_GPL(xhci_resume); 1317 #endif /* CONFIG_PM */ 1318 1319 /*-------------------------------------------------------------------------*/ 1320 1321 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1322 { 1323 void *temp; 1324 int ret = 0; 1325 unsigned int buf_len; 1326 enum dma_data_direction dir; 1327 1328 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1329 buf_len = urb->transfer_buffer_length; 1330 1331 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1332 dev_to_node(hcd->self.sysdev)); 1333 1334 if (usb_urb_dir_out(urb)) 1335 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1336 temp, buf_len, 0); 1337 1338 urb->transfer_buffer = temp; 1339 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1340 urb->transfer_buffer, 1341 urb->transfer_buffer_length, 1342 dir); 1343 1344 if (dma_mapping_error(hcd->self.sysdev, 1345 urb->transfer_dma)) { 1346 ret = -EAGAIN; 1347 kfree(temp); 1348 } else { 1349 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1350 } 1351 1352 return ret; 1353 } 1354 1355 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1356 struct urb *urb) 1357 { 1358 bool ret = false; 1359 unsigned int i; 1360 unsigned int len = 0; 1361 unsigned int trb_size; 1362 unsigned int max_pkt; 1363 struct scatterlist *sg; 1364 struct scatterlist *tail_sg; 1365 1366 tail_sg = urb->sg; 1367 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1368 1369 if (!urb->num_sgs) 1370 return ret; 1371 1372 if (urb->dev->speed >= USB_SPEED_SUPER) 1373 trb_size = TRB_CACHE_SIZE_SS; 1374 else 1375 trb_size = TRB_CACHE_SIZE_HS; 1376 1377 if (urb->transfer_buffer_length != 0 && 1378 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1379 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1380 len = len + sg->length; 1381 if (i > trb_size - 2) { 1382 len = len - tail_sg->length; 1383 if (len < max_pkt) { 1384 ret = true; 1385 break; 1386 } 1387 1388 tail_sg = sg_next(tail_sg); 1389 } 1390 } 1391 } 1392 return ret; 1393 } 1394 1395 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1396 { 1397 unsigned int len; 1398 unsigned int buf_len; 1399 enum dma_data_direction dir; 1400 1401 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1402 1403 buf_len = urb->transfer_buffer_length; 1404 1405 if (IS_ENABLED(CONFIG_HAS_DMA) && 1406 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1407 dma_unmap_single(hcd->self.sysdev, 1408 urb->transfer_dma, 1409 urb->transfer_buffer_length, 1410 dir); 1411 1412 if (usb_urb_dir_in(urb)) { 1413 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1414 urb->transfer_buffer, 1415 buf_len, 1416 0); 1417 if (len != buf_len) { 1418 xhci_dbg(hcd_to_xhci(hcd), 1419 "Copy from tmp buf to urb sg list failed\n"); 1420 urb->actual_length = len; 1421 } 1422 } 1423 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1424 kfree(urb->transfer_buffer); 1425 urb->transfer_buffer = NULL; 1426 } 1427 1428 /* 1429 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1430 * we'll copy the actual data into the TRB address register. This is limited to 1431 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1432 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1433 */ 1434 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1435 gfp_t mem_flags) 1436 { 1437 struct xhci_hcd *xhci; 1438 1439 xhci = hcd_to_xhci(hcd); 1440 1441 if (xhci_urb_suitable_for_idt(urb)) 1442 return 0; 1443 1444 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1445 if (xhci_urb_temp_buffer_required(hcd, urb)) 1446 return xhci_map_temp_buffer(hcd, urb); 1447 } 1448 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1449 } 1450 1451 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1452 { 1453 struct xhci_hcd *xhci; 1454 bool unmap_temp_buf = false; 1455 1456 xhci = hcd_to_xhci(hcd); 1457 1458 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1459 unmap_temp_buf = true; 1460 1461 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1462 xhci_unmap_temp_buf(hcd, urb); 1463 else 1464 usb_hcd_unmap_urb_for_dma(hcd, urb); 1465 } 1466 1467 /** 1468 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1469 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1470 * value to right shift 1 for the bitmask. 1471 * 1472 * Index = (epnum * 2) + direction - 1, 1473 * where direction = 0 for OUT, 1 for IN. 1474 * For control endpoints, the IN index is used (OUT index is unused), so 1475 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1476 */ 1477 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1478 { 1479 unsigned int index; 1480 if (usb_endpoint_xfer_control(desc)) 1481 index = (unsigned int) (usb_endpoint_num(desc)*2); 1482 else 1483 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1484 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1485 return index; 1486 } 1487 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1488 1489 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1490 * address from the XHCI endpoint index. 1491 */ 1492 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1493 { 1494 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1495 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1496 return direction | number; 1497 } 1498 1499 /* Find the flag for this endpoint (for use in the control context). Use the 1500 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1501 * bit 1, etc. 1502 */ 1503 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1504 { 1505 return 1 << (xhci_get_endpoint_index(desc) + 1); 1506 } 1507 1508 /* Compute the last valid endpoint context index. Basically, this is the 1509 * endpoint index plus one. For slot contexts with more than valid endpoint, 1510 * we find the most significant bit set in the added contexts flags. 1511 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1512 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1513 */ 1514 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1515 { 1516 return fls(added_ctxs) - 1; 1517 } 1518 1519 /* Returns 1 if the arguments are OK; 1520 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1521 */ 1522 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1523 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1524 const char *func) { 1525 struct xhci_hcd *xhci; 1526 struct xhci_virt_device *virt_dev; 1527 1528 if (!hcd || (check_ep && !ep) || !udev) { 1529 pr_debug("xHCI %s called with invalid args\n", func); 1530 return -EINVAL; 1531 } 1532 if (!udev->parent) { 1533 pr_debug("xHCI %s called for root hub\n", func); 1534 return 0; 1535 } 1536 1537 xhci = hcd_to_xhci(hcd); 1538 if (check_virt_dev) { 1539 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1540 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1541 func); 1542 return -EINVAL; 1543 } 1544 1545 virt_dev = xhci->devs[udev->slot_id]; 1546 if (virt_dev->udev != udev) { 1547 xhci_dbg(xhci, "xHCI %s called with udev and " 1548 "virt_dev does not match\n", func); 1549 return -EINVAL; 1550 } 1551 } 1552 1553 if (xhci->xhc_state & XHCI_STATE_HALTED) 1554 return -ENODEV; 1555 1556 return 1; 1557 } 1558 1559 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1560 struct usb_device *udev, struct xhci_command *command, 1561 bool ctx_change, bool must_succeed); 1562 1563 /* 1564 * Full speed devices may have a max packet size greater than 8 bytes, but the 1565 * USB core doesn't know that until it reads the first 8 bytes of the 1566 * descriptor. If the usb_device's max packet size changes after that point, 1567 * we need to issue an evaluate context command and wait on it. 1568 */ 1569 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1570 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1571 { 1572 struct xhci_container_ctx *out_ctx; 1573 struct xhci_input_control_ctx *ctrl_ctx; 1574 struct xhci_ep_ctx *ep_ctx; 1575 struct xhci_command *command; 1576 int max_packet_size; 1577 int hw_max_packet_size; 1578 int ret = 0; 1579 1580 out_ctx = xhci->devs[slot_id]->out_ctx; 1581 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1582 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1583 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1584 if (hw_max_packet_size != max_packet_size) { 1585 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1586 "Max Packet Size for ep 0 changed."); 1587 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1588 "Max packet size in usb_device = %d", 1589 max_packet_size); 1590 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1591 "Max packet size in xHCI HW = %d", 1592 hw_max_packet_size); 1593 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1594 "Issuing evaluate context command."); 1595 1596 /* Set up the input context flags for the command */ 1597 /* FIXME: This won't work if a non-default control endpoint 1598 * changes max packet sizes. 1599 */ 1600 1601 command = xhci_alloc_command(xhci, true, mem_flags); 1602 if (!command) 1603 return -ENOMEM; 1604 1605 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1606 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1607 if (!ctrl_ctx) { 1608 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1609 __func__); 1610 ret = -ENOMEM; 1611 goto command_cleanup; 1612 } 1613 /* Set up the modified control endpoint 0 */ 1614 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1615 xhci->devs[slot_id]->out_ctx, ep_index); 1616 1617 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1618 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1619 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1620 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1621 1622 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1623 ctrl_ctx->drop_flags = 0; 1624 1625 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1626 true, false); 1627 1628 /* Clean up the input context for later use by bandwidth 1629 * functions. 1630 */ 1631 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1632 command_cleanup: 1633 kfree(command->completion); 1634 kfree(command); 1635 } 1636 return ret; 1637 } 1638 1639 /* 1640 * non-error returns are a promise to giveback() the urb later 1641 * we drop ownership so next owner (or urb unlink) can get it 1642 */ 1643 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1644 { 1645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1646 unsigned long flags; 1647 int ret = 0; 1648 unsigned int slot_id, ep_index; 1649 unsigned int *ep_state; 1650 struct urb_priv *urb_priv; 1651 int num_tds; 1652 1653 if (!urb) 1654 return -EINVAL; 1655 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1656 true, true, __func__); 1657 if (ret <= 0) 1658 return ret ? ret : -EINVAL; 1659 1660 slot_id = urb->dev->slot_id; 1661 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1662 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1663 1664 if (!HCD_HW_ACCESSIBLE(hcd)) 1665 return -ESHUTDOWN; 1666 1667 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1668 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1669 return -ENODEV; 1670 } 1671 1672 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1673 num_tds = urb->number_of_packets; 1674 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1675 urb->transfer_buffer_length > 0 && 1676 urb->transfer_flags & URB_ZERO_PACKET && 1677 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1678 num_tds = 2; 1679 else 1680 num_tds = 1; 1681 1682 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1683 if (!urb_priv) 1684 return -ENOMEM; 1685 1686 urb_priv->num_tds = num_tds; 1687 urb_priv->num_tds_done = 0; 1688 urb->hcpriv = urb_priv; 1689 1690 trace_xhci_urb_enqueue(urb); 1691 1692 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1693 /* Check to see if the max packet size for the default control 1694 * endpoint changed during FS device enumeration 1695 */ 1696 if (urb->dev->speed == USB_SPEED_FULL) { 1697 ret = xhci_check_maxpacket(xhci, slot_id, 1698 ep_index, urb, mem_flags); 1699 if (ret < 0) { 1700 xhci_urb_free_priv(urb_priv); 1701 urb->hcpriv = NULL; 1702 return ret; 1703 } 1704 } 1705 } 1706 1707 spin_lock_irqsave(&xhci->lock, flags); 1708 1709 if (xhci->xhc_state & XHCI_STATE_DYING) { 1710 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1711 urb->ep->desc.bEndpointAddress, urb); 1712 ret = -ESHUTDOWN; 1713 goto free_priv; 1714 } 1715 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1716 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1717 *ep_state); 1718 ret = -EINVAL; 1719 goto free_priv; 1720 } 1721 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1722 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1723 ret = -EINVAL; 1724 goto free_priv; 1725 } 1726 1727 switch (usb_endpoint_type(&urb->ep->desc)) { 1728 1729 case USB_ENDPOINT_XFER_CONTROL: 1730 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1731 slot_id, ep_index); 1732 break; 1733 case USB_ENDPOINT_XFER_BULK: 1734 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1735 slot_id, ep_index); 1736 break; 1737 case USB_ENDPOINT_XFER_INT: 1738 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1739 slot_id, ep_index); 1740 break; 1741 case USB_ENDPOINT_XFER_ISOC: 1742 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1743 slot_id, ep_index); 1744 } 1745 1746 if (ret) { 1747 free_priv: 1748 xhci_urb_free_priv(urb_priv); 1749 urb->hcpriv = NULL; 1750 } 1751 spin_unlock_irqrestore(&xhci->lock, flags); 1752 return ret; 1753 } 1754 1755 /* 1756 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1757 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1758 * should pick up where it left off in the TD, unless a Set Transfer Ring 1759 * Dequeue Pointer is issued. 1760 * 1761 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1762 * the ring. Since the ring is a contiguous structure, they can't be physically 1763 * removed. Instead, there are two options: 1764 * 1765 * 1) If the HC is in the middle of processing the URB to be canceled, we 1766 * simply move the ring's dequeue pointer past those TRBs using the Set 1767 * Transfer Ring Dequeue Pointer command. This will be the common case, 1768 * when drivers timeout on the last submitted URB and attempt to cancel. 1769 * 1770 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1771 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1772 * HC will need to invalidate the any TRBs it has cached after the stop 1773 * endpoint command, as noted in the xHCI 0.95 errata. 1774 * 1775 * 3) The TD may have completed by the time the Stop Endpoint Command 1776 * completes, so software needs to handle that case too. 1777 * 1778 * This function should protect against the TD enqueueing code ringing the 1779 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1780 * It also needs to account for multiple cancellations on happening at the same 1781 * time for the same endpoint. 1782 * 1783 * Note that this function can be called in any context, or so says 1784 * usb_hcd_unlink_urb() 1785 */ 1786 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1787 { 1788 unsigned long flags; 1789 int ret, i; 1790 u32 temp; 1791 struct xhci_hcd *xhci; 1792 struct urb_priv *urb_priv; 1793 struct xhci_td *td; 1794 unsigned int ep_index; 1795 struct xhci_ring *ep_ring; 1796 struct xhci_virt_ep *ep; 1797 struct xhci_command *command; 1798 struct xhci_virt_device *vdev; 1799 1800 xhci = hcd_to_xhci(hcd); 1801 spin_lock_irqsave(&xhci->lock, flags); 1802 1803 trace_xhci_urb_dequeue(urb); 1804 1805 /* Make sure the URB hasn't completed or been unlinked already */ 1806 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1807 if (ret) 1808 goto done; 1809 1810 /* give back URB now if we can't queue it for cancel */ 1811 vdev = xhci->devs[urb->dev->slot_id]; 1812 urb_priv = urb->hcpriv; 1813 if (!vdev || !urb_priv) 1814 goto err_giveback; 1815 1816 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1817 ep = &vdev->eps[ep_index]; 1818 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1819 if (!ep || !ep_ring) 1820 goto err_giveback; 1821 1822 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1823 temp = readl(&xhci->op_regs->status); 1824 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1825 xhci_hc_died(xhci); 1826 goto done; 1827 } 1828 1829 /* 1830 * check ring is not re-allocated since URB was enqueued. If it is, then 1831 * make sure none of the ring related pointers in this URB private data 1832 * are touched, such as td_list, otherwise we overwrite freed data 1833 */ 1834 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1835 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1836 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1837 td = &urb_priv->td[i]; 1838 if (!list_empty(&td->cancelled_td_list)) 1839 list_del_init(&td->cancelled_td_list); 1840 } 1841 goto err_giveback; 1842 } 1843 1844 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1845 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1846 "HC halted, freeing TD manually."); 1847 for (i = urb_priv->num_tds_done; 1848 i < urb_priv->num_tds; 1849 i++) { 1850 td = &urb_priv->td[i]; 1851 if (!list_empty(&td->td_list)) 1852 list_del_init(&td->td_list); 1853 if (!list_empty(&td->cancelled_td_list)) 1854 list_del_init(&td->cancelled_td_list); 1855 } 1856 goto err_giveback; 1857 } 1858 1859 i = urb_priv->num_tds_done; 1860 if (i < urb_priv->num_tds) 1861 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1862 "Cancel URB %p, dev %s, ep 0x%x, " 1863 "starting at offset 0x%llx", 1864 urb, urb->dev->devpath, 1865 urb->ep->desc.bEndpointAddress, 1866 (unsigned long long) xhci_trb_virt_to_dma( 1867 urb_priv->td[i].start_seg, 1868 urb_priv->td[i].first_trb)); 1869 1870 for (; i < urb_priv->num_tds; i++) { 1871 td = &urb_priv->td[i]; 1872 /* TD can already be on cancelled list if ep halted on it */ 1873 if (list_empty(&td->cancelled_td_list)) { 1874 td->cancel_status = TD_DIRTY; 1875 list_add_tail(&td->cancelled_td_list, 1876 &ep->cancelled_td_list); 1877 } 1878 } 1879 1880 /* Queue a stop endpoint command, but only if this is 1881 * the first cancellation to be handled. 1882 */ 1883 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1884 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1885 if (!command) { 1886 ret = -ENOMEM; 1887 goto done; 1888 } 1889 ep->ep_state |= EP_STOP_CMD_PENDING; 1890 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1891 ep_index, 0); 1892 xhci_ring_cmd_db(xhci); 1893 } 1894 done: 1895 spin_unlock_irqrestore(&xhci->lock, flags); 1896 return ret; 1897 1898 err_giveback: 1899 if (urb_priv) 1900 xhci_urb_free_priv(urb_priv); 1901 usb_hcd_unlink_urb_from_ep(hcd, urb); 1902 spin_unlock_irqrestore(&xhci->lock, flags); 1903 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1904 return ret; 1905 } 1906 1907 /* Drop an endpoint from a new bandwidth configuration for this device. 1908 * Only one call to this function is allowed per endpoint before 1909 * check_bandwidth() or reset_bandwidth() must be called. 1910 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1911 * add the endpoint to the schedule with possibly new parameters denoted by a 1912 * different endpoint descriptor in usb_host_endpoint. 1913 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1914 * not allowed. 1915 * 1916 * The USB core will not allow URBs to be queued to an endpoint that is being 1917 * disabled, so there's no need for mutual exclusion to protect 1918 * the xhci->devs[slot_id] structure. 1919 */ 1920 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1921 struct usb_host_endpoint *ep) 1922 { 1923 struct xhci_hcd *xhci; 1924 struct xhci_container_ctx *in_ctx, *out_ctx; 1925 struct xhci_input_control_ctx *ctrl_ctx; 1926 unsigned int ep_index; 1927 struct xhci_ep_ctx *ep_ctx; 1928 u32 drop_flag; 1929 u32 new_add_flags, new_drop_flags; 1930 int ret; 1931 1932 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1933 if (ret <= 0) 1934 return ret; 1935 xhci = hcd_to_xhci(hcd); 1936 if (xhci->xhc_state & XHCI_STATE_DYING) 1937 return -ENODEV; 1938 1939 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1940 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1941 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1942 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1943 __func__, drop_flag); 1944 return 0; 1945 } 1946 1947 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1948 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1949 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1950 if (!ctrl_ctx) { 1951 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1952 __func__); 1953 return 0; 1954 } 1955 1956 ep_index = xhci_get_endpoint_index(&ep->desc); 1957 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1958 /* If the HC already knows the endpoint is disabled, 1959 * or the HCD has noted it is disabled, ignore this request 1960 */ 1961 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1962 le32_to_cpu(ctrl_ctx->drop_flags) & 1963 xhci_get_endpoint_flag(&ep->desc)) { 1964 /* Do not warn when called after a usb_device_reset */ 1965 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1966 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1967 __func__, ep); 1968 return 0; 1969 } 1970 1971 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1972 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1973 1974 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1975 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1976 1977 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1978 1979 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1980 1981 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1982 (unsigned int) ep->desc.bEndpointAddress, 1983 udev->slot_id, 1984 (unsigned int) new_drop_flags, 1985 (unsigned int) new_add_flags); 1986 return 0; 1987 } 1988 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1989 1990 /* Add an endpoint to a new possible bandwidth configuration for this device. 1991 * Only one call to this function is allowed per endpoint before 1992 * check_bandwidth() or reset_bandwidth() must be called. 1993 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1994 * add the endpoint to the schedule with possibly new parameters denoted by a 1995 * different endpoint descriptor in usb_host_endpoint. 1996 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1997 * not allowed. 1998 * 1999 * The USB core will not allow URBs to be queued to an endpoint until the 2000 * configuration or alt setting is installed in the device, so there's no need 2001 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 2002 */ 2003 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 2004 struct usb_host_endpoint *ep) 2005 { 2006 struct xhci_hcd *xhci; 2007 struct xhci_container_ctx *in_ctx; 2008 unsigned int ep_index; 2009 struct xhci_input_control_ctx *ctrl_ctx; 2010 struct xhci_ep_ctx *ep_ctx; 2011 u32 added_ctxs; 2012 u32 new_add_flags, new_drop_flags; 2013 struct xhci_virt_device *virt_dev; 2014 int ret = 0; 2015 2016 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 2017 if (ret <= 0) { 2018 /* So we won't queue a reset ep command for a root hub */ 2019 ep->hcpriv = NULL; 2020 return ret; 2021 } 2022 xhci = hcd_to_xhci(hcd); 2023 if (xhci->xhc_state & XHCI_STATE_DYING) 2024 return -ENODEV; 2025 2026 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 2027 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 2028 /* FIXME when we have to issue an evaluate endpoint command to 2029 * deal with ep0 max packet size changing once we get the 2030 * descriptors 2031 */ 2032 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 2033 __func__, added_ctxs); 2034 return 0; 2035 } 2036 2037 virt_dev = xhci->devs[udev->slot_id]; 2038 in_ctx = virt_dev->in_ctx; 2039 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2040 if (!ctrl_ctx) { 2041 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2042 __func__); 2043 return 0; 2044 } 2045 2046 ep_index = xhci_get_endpoint_index(&ep->desc); 2047 /* If this endpoint is already in use, and the upper layers are trying 2048 * to add it again without dropping it, reject the addition. 2049 */ 2050 if (virt_dev->eps[ep_index].ring && 2051 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2052 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2053 "without dropping it.\n", 2054 (unsigned int) ep->desc.bEndpointAddress); 2055 return -EINVAL; 2056 } 2057 2058 /* If the HCD has already noted the endpoint is enabled, 2059 * ignore this request. 2060 */ 2061 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2062 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2063 __func__, ep); 2064 return 0; 2065 } 2066 2067 /* 2068 * Configuration and alternate setting changes must be done in 2069 * process context, not interrupt context (or so documenation 2070 * for usb_set_interface() and usb_set_configuration() claim). 2071 */ 2072 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2073 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2074 __func__, ep->desc.bEndpointAddress); 2075 return -ENOMEM; 2076 } 2077 2078 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2079 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2080 2081 /* If xhci_endpoint_disable() was called for this endpoint, but the 2082 * xHC hasn't been notified yet through the check_bandwidth() call, 2083 * this re-adds a new state for the endpoint from the new endpoint 2084 * descriptors. We must drop and re-add this endpoint, so we leave the 2085 * drop flags alone. 2086 */ 2087 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2088 2089 /* Store the usb_device pointer for later use */ 2090 ep->hcpriv = udev; 2091 2092 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2093 trace_xhci_add_endpoint(ep_ctx); 2094 2095 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2096 (unsigned int) ep->desc.bEndpointAddress, 2097 udev->slot_id, 2098 (unsigned int) new_drop_flags, 2099 (unsigned int) new_add_flags); 2100 return 0; 2101 } 2102 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2103 2104 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2105 { 2106 struct xhci_input_control_ctx *ctrl_ctx; 2107 struct xhci_ep_ctx *ep_ctx; 2108 struct xhci_slot_ctx *slot_ctx; 2109 int i; 2110 2111 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2112 if (!ctrl_ctx) { 2113 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2114 __func__); 2115 return; 2116 } 2117 2118 /* When a device's add flag and drop flag are zero, any subsequent 2119 * configure endpoint command will leave that endpoint's state 2120 * untouched. Make sure we don't leave any old state in the input 2121 * endpoint contexts. 2122 */ 2123 ctrl_ctx->drop_flags = 0; 2124 ctrl_ctx->add_flags = 0; 2125 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2126 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2127 /* Endpoint 0 is always valid */ 2128 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2129 for (i = 1; i < 31; i++) { 2130 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2131 ep_ctx->ep_info = 0; 2132 ep_ctx->ep_info2 = 0; 2133 ep_ctx->deq = 0; 2134 ep_ctx->tx_info = 0; 2135 } 2136 } 2137 2138 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2139 struct usb_device *udev, u32 *cmd_status) 2140 { 2141 int ret; 2142 2143 switch (*cmd_status) { 2144 case COMP_COMMAND_ABORTED: 2145 case COMP_COMMAND_RING_STOPPED: 2146 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2147 ret = -ETIME; 2148 break; 2149 case COMP_RESOURCE_ERROR: 2150 dev_warn(&udev->dev, 2151 "Not enough host controller resources for new device state.\n"); 2152 ret = -ENOMEM; 2153 /* FIXME: can we allocate more resources for the HC? */ 2154 break; 2155 case COMP_BANDWIDTH_ERROR: 2156 case COMP_SECONDARY_BANDWIDTH_ERROR: 2157 dev_warn(&udev->dev, 2158 "Not enough bandwidth for new device state.\n"); 2159 ret = -ENOSPC; 2160 /* FIXME: can we go back to the old state? */ 2161 break; 2162 case COMP_TRB_ERROR: 2163 /* the HCD set up something wrong */ 2164 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2165 "add flag = 1, " 2166 "and endpoint is not disabled.\n"); 2167 ret = -EINVAL; 2168 break; 2169 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2170 dev_warn(&udev->dev, 2171 "ERROR: Incompatible device for endpoint configure command.\n"); 2172 ret = -ENODEV; 2173 break; 2174 case COMP_SUCCESS: 2175 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2176 "Successful Endpoint Configure command"); 2177 ret = 0; 2178 break; 2179 default: 2180 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2181 *cmd_status); 2182 ret = -EINVAL; 2183 break; 2184 } 2185 return ret; 2186 } 2187 2188 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2189 struct usb_device *udev, u32 *cmd_status) 2190 { 2191 int ret; 2192 2193 switch (*cmd_status) { 2194 case COMP_COMMAND_ABORTED: 2195 case COMP_COMMAND_RING_STOPPED: 2196 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2197 ret = -ETIME; 2198 break; 2199 case COMP_PARAMETER_ERROR: 2200 dev_warn(&udev->dev, 2201 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2202 ret = -EINVAL; 2203 break; 2204 case COMP_SLOT_NOT_ENABLED_ERROR: 2205 dev_warn(&udev->dev, 2206 "WARN: slot not enabled for evaluate context command.\n"); 2207 ret = -EINVAL; 2208 break; 2209 case COMP_CONTEXT_STATE_ERROR: 2210 dev_warn(&udev->dev, 2211 "WARN: invalid context state for evaluate context command.\n"); 2212 ret = -EINVAL; 2213 break; 2214 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2215 dev_warn(&udev->dev, 2216 "ERROR: Incompatible device for evaluate context command.\n"); 2217 ret = -ENODEV; 2218 break; 2219 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2220 /* Max Exit Latency too large error */ 2221 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2222 ret = -EINVAL; 2223 break; 2224 case COMP_SUCCESS: 2225 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2226 "Successful evaluate context command"); 2227 ret = 0; 2228 break; 2229 default: 2230 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2231 *cmd_status); 2232 ret = -EINVAL; 2233 break; 2234 } 2235 return ret; 2236 } 2237 2238 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2239 struct xhci_input_control_ctx *ctrl_ctx) 2240 { 2241 u32 valid_add_flags; 2242 u32 valid_drop_flags; 2243 2244 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2245 * (bit 1). The default control endpoint is added during the Address 2246 * Device command and is never removed until the slot is disabled. 2247 */ 2248 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2249 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2250 2251 /* Use hweight32 to count the number of ones in the add flags, or 2252 * number of endpoints added. Don't count endpoints that are changed 2253 * (both added and dropped). 2254 */ 2255 return hweight32(valid_add_flags) - 2256 hweight32(valid_add_flags & valid_drop_flags); 2257 } 2258 2259 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2260 struct xhci_input_control_ctx *ctrl_ctx) 2261 { 2262 u32 valid_add_flags; 2263 u32 valid_drop_flags; 2264 2265 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2266 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2267 2268 return hweight32(valid_drop_flags) - 2269 hweight32(valid_add_flags & valid_drop_flags); 2270 } 2271 2272 /* 2273 * We need to reserve the new number of endpoints before the configure endpoint 2274 * command completes. We can't subtract the dropped endpoints from the number 2275 * of active endpoints until the command completes because we can oversubscribe 2276 * the host in this case: 2277 * 2278 * - the first configure endpoint command drops more endpoints than it adds 2279 * - a second configure endpoint command that adds more endpoints is queued 2280 * - the first configure endpoint command fails, so the config is unchanged 2281 * - the second command may succeed, even though there isn't enough resources 2282 * 2283 * Must be called with xhci->lock held. 2284 */ 2285 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2286 struct xhci_input_control_ctx *ctrl_ctx) 2287 { 2288 u32 added_eps; 2289 2290 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2291 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2293 "Not enough ep ctxs: " 2294 "%u active, need to add %u, limit is %u.", 2295 xhci->num_active_eps, added_eps, 2296 xhci->limit_active_eps); 2297 return -ENOMEM; 2298 } 2299 xhci->num_active_eps += added_eps; 2300 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2301 "Adding %u ep ctxs, %u now active.", added_eps, 2302 xhci->num_active_eps); 2303 return 0; 2304 } 2305 2306 /* 2307 * The configure endpoint was failed by the xHC for some other reason, so we 2308 * need to revert the resources that failed configuration would have used. 2309 * 2310 * Must be called with xhci->lock held. 2311 */ 2312 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2313 struct xhci_input_control_ctx *ctrl_ctx) 2314 { 2315 u32 num_failed_eps; 2316 2317 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2318 xhci->num_active_eps -= num_failed_eps; 2319 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2320 "Removing %u failed ep ctxs, %u now active.", 2321 num_failed_eps, 2322 xhci->num_active_eps); 2323 } 2324 2325 /* 2326 * Now that the command has completed, clean up the active endpoint count by 2327 * subtracting out the endpoints that were dropped (but not changed). 2328 * 2329 * Must be called with xhci->lock held. 2330 */ 2331 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2332 struct xhci_input_control_ctx *ctrl_ctx) 2333 { 2334 u32 num_dropped_eps; 2335 2336 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2337 xhci->num_active_eps -= num_dropped_eps; 2338 if (num_dropped_eps) 2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2340 "Removing %u dropped ep ctxs, %u now active.", 2341 num_dropped_eps, 2342 xhci->num_active_eps); 2343 } 2344 2345 static unsigned int xhci_get_block_size(struct usb_device *udev) 2346 { 2347 switch (udev->speed) { 2348 case USB_SPEED_LOW: 2349 case USB_SPEED_FULL: 2350 return FS_BLOCK; 2351 case USB_SPEED_HIGH: 2352 return HS_BLOCK; 2353 case USB_SPEED_SUPER: 2354 case USB_SPEED_SUPER_PLUS: 2355 return SS_BLOCK; 2356 case USB_SPEED_UNKNOWN: 2357 case USB_SPEED_WIRELESS: 2358 default: 2359 /* Should never happen */ 2360 return 1; 2361 } 2362 } 2363 2364 static unsigned int 2365 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2366 { 2367 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2368 return LS_OVERHEAD; 2369 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2370 return FS_OVERHEAD; 2371 return HS_OVERHEAD; 2372 } 2373 2374 /* If we are changing a LS/FS device under a HS hub, 2375 * make sure (if we are activating a new TT) that the HS bus has enough 2376 * bandwidth for this new TT. 2377 */ 2378 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2379 struct xhci_virt_device *virt_dev, 2380 int old_active_eps) 2381 { 2382 struct xhci_interval_bw_table *bw_table; 2383 struct xhci_tt_bw_info *tt_info; 2384 2385 /* Find the bandwidth table for the root port this TT is attached to. */ 2386 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2387 tt_info = virt_dev->tt_info; 2388 /* If this TT already had active endpoints, the bandwidth for this TT 2389 * has already been added. Removing all periodic endpoints (and thus 2390 * making the TT enactive) will only decrease the bandwidth used. 2391 */ 2392 if (old_active_eps) 2393 return 0; 2394 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2395 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2396 return -ENOMEM; 2397 return 0; 2398 } 2399 /* Not sure why we would have no new active endpoints... 2400 * 2401 * Maybe because of an Evaluate Context change for a hub update or a 2402 * control endpoint 0 max packet size change? 2403 * FIXME: skip the bandwidth calculation in that case. 2404 */ 2405 return 0; 2406 } 2407 2408 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2409 struct xhci_virt_device *virt_dev) 2410 { 2411 unsigned int bw_reserved; 2412 2413 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2414 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2415 return -ENOMEM; 2416 2417 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2418 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2419 return -ENOMEM; 2420 2421 return 0; 2422 } 2423 2424 /* 2425 * This algorithm is a very conservative estimate of the worst-case scheduling 2426 * scenario for any one interval. The hardware dynamically schedules the 2427 * packets, so we can't tell which microframe could be the limiting factor in 2428 * the bandwidth scheduling. This only takes into account periodic endpoints. 2429 * 2430 * Obviously, we can't solve an NP complete problem to find the minimum worst 2431 * case scenario. Instead, we come up with an estimate that is no less than 2432 * the worst case bandwidth used for any one microframe, but may be an 2433 * over-estimate. 2434 * 2435 * We walk the requirements for each endpoint by interval, starting with the 2436 * smallest interval, and place packets in the schedule where there is only one 2437 * possible way to schedule packets for that interval. In order to simplify 2438 * this algorithm, we record the largest max packet size for each interval, and 2439 * assume all packets will be that size. 2440 * 2441 * For interval 0, we obviously must schedule all packets for each interval. 2442 * The bandwidth for interval 0 is just the amount of data to be transmitted 2443 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2444 * the number of packets). 2445 * 2446 * For interval 1, we have two possible microframes to schedule those packets 2447 * in. For this algorithm, if we can schedule the same number of packets for 2448 * each possible scheduling opportunity (each microframe), we will do so. The 2449 * remaining number of packets will be saved to be transmitted in the gaps in 2450 * the next interval's scheduling sequence. 2451 * 2452 * As we move those remaining packets to be scheduled with interval 2 packets, 2453 * we have to double the number of remaining packets to transmit. This is 2454 * because the intervals are actually powers of 2, and we would be transmitting 2455 * the previous interval's packets twice in this interval. We also have to be 2456 * sure that when we look at the largest max packet size for this interval, we 2457 * also look at the largest max packet size for the remaining packets and take 2458 * the greater of the two. 2459 * 2460 * The algorithm continues to evenly distribute packets in each scheduling 2461 * opportunity, and push the remaining packets out, until we get to the last 2462 * interval. Then those packets and their associated overhead are just added 2463 * to the bandwidth used. 2464 */ 2465 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2466 struct xhci_virt_device *virt_dev, 2467 int old_active_eps) 2468 { 2469 unsigned int bw_reserved; 2470 unsigned int max_bandwidth; 2471 unsigned int bw_used; 2472 unsigned int block_size; 2473 struct xhci_interval_bw_table *bw_table; 2474 unsigned int packet_size = 0; 2475 unsigned int overhead = 0; 2476 unsigned int packets_transmitted = 0; 2477 unsigned int packets_remaining = 0; 2478 unsigned int i; 2479 2480 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2481 return xhci_check_ss_bw(xhci, virt_dev); 2482 2483 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2484 max_bandwidth = HS_BW_LIMIT; 2485 /* Convert percent of bus BW reserved to blocks reserved */ 2486 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2487 } else { 2488 max_bandwidth = FS_BW_LIMIT; 2489 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2490 } 2491 2492 bw_table = virt_dev->bw_table; 2493 /* We need to translate the max packet size and max ESIT payloads into 2494 * the units the hardware uses. 2495 */ 2496 block_size = xhci_get_block_size(virt_dev->udev); 2497 2498 /* If we are manipulating a LS/FS device under a HS hub, double check 2499 * that the HS bus has enough bandwidth if we are activing a new TT. 2500 */ 2501 if (virt_dev->tt_info) { 2502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2503 "Recalculating BW for rootport %u", 2504 virt_dev->real_port); 2505 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2506 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2507 "newly activated TT.\n"); 2508 return -ENOMEM; 2509 } 2510 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2511 "Recalculating BW for TT slot %u port %u", 2512 virt_dev->tt_info->slot_id, 2513 virt_dev->tt_info->ttport); 2514 } else { 2515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2516 "Recalculating BW for rootport %u", 2517 virt_dev->real_port); 2518 } 2519 2520 /* Add in how much bandwidth will be used for interval zero, or the 2521 * rounded max ESIT payload + number of packets * largest overhead. 2522 */ 2523 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2524 bw_table->interval_bw[0].num_packets * 2525 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2526 2527 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2528 unsigned int bw_added; 2529 unsigned int largest_mps; 2530 unsigned int interval_overhead; 2531 2532 /* 2533 * How many packets could we transmit in this interval? 2534 * If packets didn't fit in the previous interval, we will need 2535 * to transmit that many packets twice within this interval. 2536 */ 2537 packets_remaining = 2 * packets_remaining + 2538 bw_table->interval_bw[i].num_packets; 2539 2540 /* Find the largest max packet size of this or the previous 2541 * interval. 2542 */ 2543 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2544 largest_mps = 0; 2545 else { 2546 struct xhci_virt_ep *virt_ep; 2547 struct list_head *ep_entry; 2548 2549 ep_entry = bw_table->interval_bw[i].endpoints.next; 2550 virt_ep = list_entry(ep_entry, 2551 struct xhci_virt_ep, bw_endpoint_list); 2552 /* Convert to blocks, rounding up */ 2553 largest_mps = DIV_ROUND_UP( 2554 virt_ep->bw_info.max_packet_size, 2555 block_size); 2556 } 2557 if (largest_mps > packet_size) 2558 packet_size = largest_mps; 2559 2560 /* Use the larger overhead of this or the previous interval. */ 2561 interval_overhead = xhci_get_largest_overhead( 2562 &bw_table->interval_bw[i]); 2563 if (interval_overhead > overhead) 2564 overhead = interval_overhead; 2565 2566 /* How many packets can we evenly distribute across 2567 * (1 << (i + 1)) possible scheduling opportunities? 2568 */ 2569 packets_transmitted = packets_remaining >> (i + 1); 2570 2571 /* Add in the bandwidth used for those scheduled packets */ 2572 bw_added = packets_transmitted * (overhead + packet_size); 2573 2574 /* How many packets do we have remaining to transmit? */ 2575 packets_remaining = packets_remaining % (1 << (i + 1)); 2576 2577 /* What largest max packet size should those packets have? */ 2578 /* If we've transmitted all packets, don't carry over the 2579 * largest packet size. 2580 */ 2581 if (packets_remaining == 0) { 2582 packet_size = 0; 2583 overhead = 0; 2584 } else if (packets_transmitted > 0) { 2585 /* Otherwise if we do have remaining packets, and we've 2586 * scheduled some packets in this interval, take the 2587 * largest max packet size from endpoints with this 2588 * interval. 2589 */ 2590 packet_size = largest_mps; 2591 overhead = interval_overhead; 2592 } 2593 /* Otherwise carry over packet_size and overhead from the last 2594 * time we had a remainder. 2595 */ 2596 bw_used += bw_added; 2597 if (bw_used > max_bandwidth) { 2598 xhci_warn(xhci, "Not enough bandwidth. " 2599 "Proposed: %u, Max: %u\n", 2600 bw_used, max_bandwidth); 2601 return -ENOMEM; 2602 } 2603 } 2604 /* 2605 * Ok, we know we have some packets left over after even-handedly 2606 * scheduling interval 15. We don't know which microframes they will 2607 * fit into, so we over-schedule and say they will be scheduled every 2608 * microframe. 2609 */ 2610 if (packets_remaining > 0) 2611 bw_used += overhead + packet_size; 2612 2613 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2614 unsigned int port_index = virt_dev->real_port - 1; 2615 2616 /* OK, we're manipulating a HS device attached to a 2617 * root port bandwidth domain. Include the number of active TTs 2618 * in the bandwidth used. 2619 */ 2620 bw_used += TT_HS_OVERHEAD * 2621 xhci->rh_bw[port_index].num_active_tts; 2622 } 2623 2624 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2625 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2626 "Available: %u " "percent", 2627 bw_used, max_bandwidth, bw_reserved, 2628 (max_bandwidth - bw_used - bw_reserved) * 100 / 2629 max_bandwidth); 2630 2631 bw_used += bw_reserved; 2632 if (bw_used > max_bandwidth) { 2633 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2634 bw_used, max_bandwidth); 2635 return -ENOMEM; 2636 } 2637 2638 bw_table->bw_used = bw_used; 2639 return 0; 2640 } 2641 2642 static bool xhci_is_async_ep(unsigned int ep_type) 2643 { 2644 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2645 ep_type != ISOC_IN_EP && 2646 ep_type != INT_IN_EP); 2647 } 2648 2649 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2650 { 2651 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2652 } 2653 2654 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2655 { 2656 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2657 2658 if (ep_bw->ep_interval == 0) 2659 return SS_OVERHEAD_BURST + 2660 (ep_bw->mult * ep_bw->num_packets * 2661 (SS_OVERHEAD + mps)); 2662 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2663 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2664 1 << ep_bw->ep_interval); 2665 2666 } 2667 2668 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2669 struct xhci_bw_info *ep_bw, 2670 struct xhci_interval_bw_table *bw_table, 2671 struct usb_device *udev, 2672 struct xhci_virt_ep *virt_ep, 2673 struct xhci_tt_bw_info *tt_info) 2674 { 2675 struct xhci_interval_bw *interval_bw; 2676 int normalized_interval; 2677 2678 if (xhci_is_async_ep(ep_bw->type)) 2679 return; 2680 2681 if (udev->speed >= USB_SPEED_SUPER) { 2682 if (xhci_is_sync_in_ep(ep_bw->type)) 2683 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2684 xhci_get_ss_bw_consumed(ep_bw); 2685 else 2686 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2687 xhci_get_ss_bw_consumed(ep_bw); 2688 return; 2689 } 2690 2691 /* SuperSpeed endpoints never get added to intervals in the table, so 2692 * this check is only valid for HS/FS/LS devices. 2693 */ 2694 if (list_empty(&virt_ep->bw_endpoint_list)) 2695 return; 2696 /* For LS/FS devices, we need to translate the interval expressed in 2697 * microframes to frames. 2698 */ 2699 if (udev->speed == USB_SPEED_HIGH) 2700 normalized_interval = ep_bw->ep_interval; 2701 else 2702 normalized_interval = ep_bw->ep_interval - 3; 2703 2704 if (normalized_interval == 0) 2705 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2706 interval_bw = &bw_table->interval_bw[normalized_interval]; 2707 interval_bw->num_packets -= ep_bw->num_packets; 2708 switch (udev->speed) { 2709 case USB_SPEED_LOW: 2710 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2711 break; 2712 case USB_SPEED_FULL: 2713 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2714 break; 2715 case USB_SPEED_HIGH: 2716 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2717 break; 2718 case USB_SPEED_SUPER: 2719 case USB_SPEED_SUPER_PLUS: 2720 case USB_SPEED_UNKNOWN: 2721 case USB_SPEED_WIRELESS: 2722 /* Should never happen because only LS/FS/HS endpoints will get 2723 * added to the endpoint list. 2724 */ 2725 return; 2726 } 2727 if (tt_info) 2728 tt_info->active_eps -= 1; 2729 list_del_init(&virt_ep->bw_endpoint_list); 2730 } 2731 2732 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2733 struct xhci_bw_info *ep_bw, 2734 struct xhci_interval_bw_table *bw_table, 2735 struct usb_device *udev, 2736 struct xhci_virt_ep *virt_ep, 2737 struct xhci_tt_bw_info *tt_info) 2738 { 2739 struct xhci_interval_bw *interval_bw; 2740 struct xhci_virt_ep *smaller_ep; 2741 int normalized_interval; 2742 2743 if (xhci_is_async_ep(ep_bw->type)) 2744 return; 2745 2746 if (udev->speed == USB_SPEED_SUPER) { 2747 if (xhci_is_sync_in_ep(ep_bw->type)) 2748 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2749 xhci_get_ss_bw_consumed(ep_bw); 2750 else 2751 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2752 xhci_get_ss_bw_consumed(ep_bw); 2753 return; 2754 } 2755 2756 /* For LS/FS devices, we need to translate the interval expressed in 2757 * microframes to frames. 2758 */ 2759 if (udev->speed == USB_SPEED_HIGH) 2760 normalized_interval = ep_bw->ep_interval; 2761 else 2762 normalized_interval = ep_bw->ep_interval - 3; 2763 2764 if (normalized_interval == 0) 2765 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2766 interval_bw = &bw_table->interval_bw[normalized_interval]; 2767 interval_bw->num_packets += ep_bw->num_packets; 2768 switch (udev->speed) { 2769 case USB_SPEED_LOW: 2770 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2771 break; 2772 case USB_SPEED_FULL: 2773 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2774 break; 2775 case USB_SPEED_HIGH: 2776 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2777 break; 2778 case USB_SPEED_SUPER: 2779 case USB_SPEED_SUPER_PLUS: 2780 case USB_SPEED_UNKNOWN: 2781 case USB_SPEED_WIRELESS: 2782 /* Should never happen because only LS/FS/HS endpoints will get 2783 * added to the endpoint list. 2784 */ 2785 return; 2786 } 2787 2788 if (tt_info) 2789 tt_info->active_eps += 1; 2790 /* Insert the endpoint into the list, largest max packet size first. */ 2791 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2792 bw_endpoint_list) { 2793 if (ep_bw->max_packet_size >= 2794 smaller_ep->bw_info.max_packet_size) { 2795 /* Add the new ep before the smaller endpoint */ 2796 list_add_tail(&virt_ep->bw_endpoint_list, 2797 &smaller_ep->bw_endpoint_list); 2798 return; 2799 } 2800 } 2801 /* Add the new endpoint at the end of the list. */ 2802 list_add_tail(&virt_ep->bw_endpoint_list, 2803 &interval_bw->endpoints); 2804 } 2805 2806 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2807 struct xhci_virt_device *virt_dev, 2808 int old_active_eps) 2809 { 2810 struct xhci_root_port_bw_info *rh_bw_info; 2811 if (!virt_dev->tt_info) 2812 return; 2813 2814 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2815 if (old_active_eps == 0 && 2816 virt_dev->tt_info->active_eps != 0) { 2817 rh_bw_info->num_active_tts += 1; 2818 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2819 } else if (old_active_eps != 0 && 2820 virt_dev->tt_info->active_eps == 0) { 2821 rh_bw_info->num_active_tts -= 1; 2822 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2823 } 2824 } 2825 2826 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2827 struct xhci_virt_device *virt_dev, 2828 struct xhci_container_ctx *in_ctx) 2829 { 2830 struct xhci_bw_info ep_bw_info[31]; 2831 int i; 2832 struct xhci_input_control_ctx *ctrl_ctx; 2833 int old_active_eps = 0; 2834 2835 if (virt_dev->tt_info) 2836 old_active_eps = virt_dev->tt_info->active_eps; 2837 2838 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2839 if (!ctrl_ctx) { 2840 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2841 __func__); 2842 return -ENOMEM; 2843 } 2844 2845 for (i = 0; i < 31; i++) { 2846 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2847 continue; 2848 2849 /* Make a copy of the BW info in case we need to revert this */ 2850 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2851 sizeof(ep_bw_info[i])); 2852 /* Drop the endpoint from the interval table if the endpoint is 2853 * being dropped or changed. 2854 */ 2855 if (EP_IS_DROPPED(ctrl_ctx, i)) 2856 xhci_drop_ep_from_interval_table(xhci, 2857 &virt_dev->eps[i].bw_info, 2858 virt_dev->bw_table, 2859 virt_dev->udev, 2860 &virt_dev->eps[i], 2861 virt_dev->tt_info); 2862 } 2863 /* Overwrite the information stored in the endpoints' bw_info */ 2864 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2865 for (i = 0; i < 31; i++) { 2866 /* Add any changed or added endpoints to the interval table */ 2867 if (EP_IS_ADDED(ctrl_ctx, i)) 2868 xhci_add_ep_to_interval_table(xhci, 2869 &virt_dev->eps[i].bw_info, 2870 virt_dev->bw_table, 2871 virt_dev->udev, 2872 &virt_dev->eps[i], 2873 virt_dev->tt_info); 2874 } 2875 2876 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2877 /* Ok, this fits in the bandwidth we have. 2878 * Update the number of active TTs. 2879 */ 2880 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2881 return 0; 2882 } 2883 2884 /* We don't have enough bandwidth for this, revert the stored info. */ 2885 for (i = 0; i < 31; i++) { 2886 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2887 continue; 2888 2889 /* Drop the new copies of any added or changed endpoints from 2890 * the interval table. 2891 */ 2892 if (EP_IS_ADDED(ctrl_ctx, i)) { 2893 xhci_drop_ep_from_interval_table(xhci, 2894 &virt_dev->eps[i].bw_info, 2895 virt_dev->bw_table, 2896 virt_dev->udev, 2897 &virt_dev->eps[i], 2898 virt_dev->tt_info); 2899 } 2900 /* Revert the endpoint back to its old information */ 2901 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2902 sizeof(ep_bw_info[i])); 2903 /* Add any changed or dropped endpoints back into the table */ 2904 if (EP_IS_DROPPED(ctrl_ctx, i)) 2905 xhci_add_ep_to_interval_table(xhci, 2906 &virt_dev->eps[i].bw_info, 2907 virt_dev->bw_table, 2908 virt_dev->udev, 2909 &virt_dev->eps[i], 2910 virt_dev->tt_info); 2911 } 2912 return -ENOMEM; 2913 } 2914 2915 2916 /* Issue a configure endpoint command or evaluate context command 2917 * and wait for it to finish. 2918 */ 2919 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2920 struct usb_device *udev, 2921 struct xhci_command *command, 2922 bool ctx_change, bool must_succeed) 2923 { 2924 int ret; 2925 unsigned long flags; 2926 struct xhci_input_control_ctx *ctrl_ctx; 2927 struct xhci_virt_device *virt_dev; 2928 struct xhci_slot_ctx *slot_ctx; 2929 2930 if (!command) 2931 return -EINVAL; 2932 2933 spin_lock_irqsave(&xhci->lock, flags); 2934 2935 if (xhci->xhc_state & XHCI_STATE_DYING) { 2936 spin_unlock_irqrestore(&xhci->lock, flags); 2937 return -ESHUTDOWN; 2938 } 2939 2940 virt_dev = xhci->devs[udev->slot_id]; 2941 2942 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2943 if (!ctrl_ctx) { 2944 spin_unlock_irqrestore(&xhci->lock, flags); 2945 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2946 __func__); 2947 return -ENOMEM; 2948 } 2949 2950 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2951 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2952 spin_unlock_irqrestore(&xhci->lock, flags); 2953 xhci_warn(xhci, "Not enough host resources, " 2954 "active endpoint contexts = %u\n", 2955 xhci->num_active_eps); 2956 return -ENOMEM; 2957 } 2958 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2959 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2960 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2961 xhci_free_host_resources(xhci, ctrl_ctx); 2962 spin_unlock_irqrestore(&xhci->lock, flags); 2963 xhci_warn(xhci, "Not enough bandwidth\n"); 2964 return -ENOMEM; 2965 } 2966 2967 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2968 2969 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2970 trace_xhci_configure_endpoint(slot_ctx); 2971 2972 if (!ctx_change) 2973 ret = xhci_queue_configure_endpoint(xhci, command, 2974 command->in_ctx->dma, 2975 udev->slot_id, must_succeed); 2976 else 2977 ret = xhci_queue_evaluate_context(xhci, command, 2978 command->in_ctx->dma, 2979 udev->slot_id, must_succeed); 2980 if (ret < 0) { 2981 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2982 xhci_free_host_resources(xhci, ctrl_ctx); 2983 spin_unlock_irqrestore(&xhci->lock, flags); 2984 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2985 "FIXME allocate a new ring segment"); 2986 return -ENOMEM; 2987 } 2988 xhci_ring_cmd_db(xhci); 2989 spin_unlock_irqrestore(&xhci->lock, flags); 2990 2991 /* Wait for the configure endpoint command to complete */ 2992 wait_for_completion(command->completion); 2993 2994 if (!ctx_change) 2995 ret = xhci_configure_endpoint_result(xhci, udev, 2996 &command->status); 2997 else 2998 ret = xhci_evaluate_context_result(xhci, udev, 2999 &command->status); 3000 3001 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3002 spin_lock_irqsave(&xhci->lock, flags); 3003 /* If the command failed, remove the reserved resources. 3004 * Otherwise, clean up the estimate to include dropped eps. 3005 */ 3006 if (ret) 3007 xhci_free_host_resources(xhci, ctrl_ctx); 3008 else 3009 xhci_finish_resource_reservation(xhci, ctrl_ctx); 3010 spin_unlock_irqrestore(&xhci->lock, flags); 3011 } 3012 return ret; 3013 } 3014 3015 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 3016 struct xhci_virt_device *vdev, int i) 3017 { 3018 struct xhci_virt_ep *ep = &vdev->eps[i]; 3019 3020 if (ep->ep_state & EP_HAS_STREAMS) { 3021 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 3022 xhci_get_endpoint_address(i)); 3023 xhci_free_stream_info(xhci, ep->stream_info); 3024 ep->stream_info = NULL; 3025 ep->ep_state &= ~EP_HAS_STREAMS; 3026 } 3027 } 3028 3029 /* Called after one or more calls to xhci_add_endpoint() or 3030 * xhci_drop_endpoint(). If this call fails, the USB core is expected 3031 * to call xhci_reset_bandwidth(). 3032 * 3033 * Since we are in the middle of changing either configuration or 3034 * installing a new alt setting, the USB core won't allow URBs to be 3035 * enqueued for any endpoint on the old config or interface. Nothing 3036 * else should be touching the xhci->devs[slot_id] structure, so we 3037 * don't need to take the xhci->lock for manipulating that. 3038 */ 3039 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3040 { 3041 int i; 3042 int ret = 0; 3043 struct xhci_hcd *xhci; 3044 struct xhci_virt_device *virt_dev; 3045 struct xhci_input_control_ctx *ctrl_ctx; 3046 struct xhci_slot_ctx *slot_ctx; 3047 struct xhci_command *command; 3048 3049 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3050 if (ret <= 0) 3051 return ret; 3052 xhci = hcd_to_xhci(hcd); 3053 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3054 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3055 return -ENODEV; 3056 3057 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3058 virt_dev = xhci->devs[udev->slot_id]; 3059 3060 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3061 if (!command) 3062 return -ENOMEM; 3063 3064 command->in_ctx = virt_dev->in_ctx; 3065 3066 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3067 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3068 if (!ctrl_ctx) { 3069 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3070 __func__); 3071 ret = -ENOMEM; 3072 goto command_cleanup; 3073 } 3074 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3075 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3076 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3077 3078 /* Don't issue the command if there's no endpoints to update. */ 3079 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3080 ctrl_ctx->drop_flags == 0) { 3081 ret = 0; 3082 goto command_cleanup; 3083 } 3084 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3085 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3086 for (i = 31; i >= 1; i--) { 3087 __le32 le32 = cpu_to_le32(BIT(i)); 3088 3089 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3090 || (ctrl_ctx->add_flags & le32) || i == 1) { 3091 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3092 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3093 break; 3094 } 3095 } 3096 3097 ret = xhci_configure_endpoint(xhci, udev, command, 3098 false, false); 3099 if (ret) 3100 /* Callee should call reset_bandwidth() */ 3101 goto command_cleanup; 3102 3103 /* Free any rings that were dropped, but not changed. */ 3104 for (i = 1; i < 31; i++) { 3105 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3106 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3107 xhci_free_endpoint_ring(xhci, virt_dev, i); 3108 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3109 } 3110 } 3111 xhci_zero_in_ctx(xhci, virt_dev); 3112 /* 3113 * Install any rings for completely new endpoints or changed endpoints, 3114 * and free any old rings from changed endpoints. 3115 */ 3116 for (i = 1; i < 31; i++) { 3117 if (!virt_dev->eps[i].new_ring) 3118 continue; 3119 /* Only free the old ring if it exists. 3120 * It may not if this is the first add of an endpoint. 3121 */ 3122 if (virt_dev->eps[i].ring) { 3123 xhci_free_endpoint_ring(xhci, virt_dev, i); 3124 } 3125 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3126 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3127 virt_dev->eps[i].new_ring = NULL; 3128 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3129 } 3130 command_cleanup: 3131 kfree(command->completion); 3132 kfree(command); 3133 3134 return ret; 3135 } 3136 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3137 3138 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3139 { 3140 struct xhci_hcd *xhci; 3141 struct xhci_virt_device *virt_dev; 3142 int i, ret; 3143 3144 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3145 if (ret <= 0) 3146 return; 3147 xhci = hcd_to_xhci(hcd); 3148 3149 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3150 virt_dev = xhci->devs[udev->slot_id]; 3151 /* Free any rings allocated for added endpoints */ 3152 for (i = 0; i < 31; i++) { 3153 if (virt_dev->eps[i].new_ring) { 3154 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3155 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3156 virt_dev->eps[i].new_ring = NULL; 3157 } 3158 } 3159 xhci_zero_in_ctx(xhci, virt_dev); 3160 } 3161 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3162 3163 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3164 struct xhci_container_ctx *in_ctx, 3165 struct xhci_container_ctx *out_ctx, 3166 struct xhci_input_control_ctx *ctrl_ctx, 3167 u32 add_flags, u32 drop_flags) 3168 { 3169 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3170 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3171 xhci_slot_copy(xhci, in_ctx, out_ctx); 3172 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3173 } 3174 3175 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3176 struct usb_host_endpoint *host_ep) 3177 { 3178 struct xhci_hcd *xhci; 3179 struct xhci_virt_device *vdev; 3180 struct xhci_virt_ep *ep; 3181 struct usb_device *udev; 3182 unsigned long flags; 3183 unsigned int ep_index; 3184 3185 xhci = hcd_to_xhci(hcd); 3186 rescan: 3187 spin_lock_irqsave(&xhci->lock, flags); 3188 3189 udev = (struct usb_device *)host_ep->hcpriv; 3190 if (!udev || !udev->slot_id) 3191 goto done; 3192 3193 vdev = xhci->devs[udev->slot_id]; 3194 if (!vdev) 3195 goto done; 3196 3197 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3198 ep = &vdev->eps[ep_index]; 3199 3200 /* wait for hub_tt_work to finish clearing hub TT */ 3201 if (ep->ep_state & EP_CLEARING_TT) { 3202 spin_unlock_irqrestore(&xhci->lock, flags); 3203 schedule_timeout_uninterruptible(1); 3204 goto rescan; 3205 } 3206 3207 if (ep->ep_state) 3208 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3209 ep->ep_state); 3210 done: 3211 host_ep->hcpriv = NULL; 3212 spin_unlock_irqrestore(&xhci->lock, flags); 3213 } 3214 3215 /* 3216 * Called after usb core issues a clear halt control message. 3217 * The host side of the halt should already be cleared by a reset endpoint 3218 * command issued when the STALL event was received. 3219 * 3220 * The reset endpoint command may only be issued to endpoints in the halted 3221 * state. For software that wishes to reset the data toggle or sequence number 3222 * of an endpoint that isn't in the halted state this function will issue a 3223 * configure endpoint command with the Drop and Add bits set for the target 3224 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3225 */ 3226 3227 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3228 struct usb_host_endpoint *host_ep) 3229 { 3230 struct xhci_hcd *xhci; 3231 struct usb_device *udev; 3232 struct xhci_virt_device *vdev; 3233 struct xhci_virt_ep *ep; 3234 struct xhci_input_control_ctx *ctrl_ctx; 3235 struct xhci_command *stop_cmd, *cfg_cmd; 3236 unsigned int ep_index; 3237 unsigned long flags; 3238 u32 ep_flag; 3239 int err; 3240 3241 xhci = hcd_to_xhci(hcd); 3242 if (!host_ep->hcpriv) 3243 return; 3244 udev = (struct usb_device *) host_ep->hcpriv; 3245 vdev = xhci->devs[udev->slot_id]; 3246 3247 /* 3248 * vdev may be lost due to xHC restore error and re-initialization 3249 * during S3/S4 resume. A new vdev will be allocated later by 3250 * xhci_discover_or_reset_device() 3251 */ 3252 if (!udev->slot_id || !vdev) 3253 return; 3254 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3255 ep = &vdev->eps[ep_index]; 3256 3257 /* Bail out if toggle is already being cleared by a endpoint reset */ 3258 spin_lock_irqsave(&xhci->lock, flags); 3259 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3260 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3261 spin_unlock_irqrestore(&xhci->lock, flags); 3262 return; 3263 } 3264 spin_unlock_irqrestore(&xhci->lock, flags); 3265 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3266 if (usb_endpoint_xfer_control(&host_ep->desc) || 3267 usb_endpoint_xfer_isoc(&host_ep->desc)) 3268 return; 3269 3270 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3271 3272 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3273 return; 3274 3275 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3276 if (!stop_cmd) 3277 return; 3278 3279 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3280 if (!cfg_cmd) 3281 goto cleanup; 3282 3283 spin_lock_irqsave(&xhci->lock, flags); 3284 3285 /* block queuing new trbs and ringing ep doorbell */ 3286 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3287 3288 /* 3289 * Make sure endpoint ring is empty before resetting the toggle/seq. 3290 * Driver is required to synchronously cancel all transfer request. 3291 * Stop the endpoint to force xHC to update the output context 3292 */ 3293 3294 if (!list_empty(&ep->ring->td_list)) { 3295 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3296 spin_unlock_irqrestore(&xhci->lock, flags); 3297 xhci_free_command(xhci, cfg_cmd); 3298 goto cleanup; 3299 } 3300 3301 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3302 ep_index, 0); 3303 if (err < 0) { 3304 spin_unlock_irqrestore(&xhci->lock, flags); 3305 xhci_free_command(xhci, cfg_cmd); 3306 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3307 __func__, err); 3308 goto cleanup; 3309 } 3310 3311 xhci_ring_cmd_db(xhci); 3312 spin_unlock_irqrestore(&xhci->lock, flags); 3313 3314 wait_for_completion(stop_cmd->completion); 3315 3316 spin_lock_irqsave(&xhci->lock, flags); 3317 3318 /* config ep command clears toggle if add and drop ep flags are set */ 3319 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3320 if (!ctrl_ctx) { 3321 spin_unlock_irqrestore(&xhci->lock, flags); 3322 xhci_free_command(xhci, cfg_cmd); 3323 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3324 __func__); 3325 goto cleanup; 3326 } 3327 3328 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3329 ctrl_ctx, ep_flag, ep_flag); 3330 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3331 3332 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3333 udev->slot_id, false); 3334 if (err < 0) { 3335 spin_unlock_irqrestore(&xhci->lock, flags); 3336 xhci_free_command(xhci, cfg_cmd); 3337 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3338 __func__, err); 3339 goto cleanup; 3340 } 3341 3342 xhci_ring_cmd_db(xhci); 3343 spin_unlock_irqrestore(&xhci->lock, flags); 3344 3345 wait_for_completion(cfg_cmd->completion); 3346 3347 xhci_free_command(xhci, cfg_cmd); 3348 cleanup: 3349 xhci_free_command(xhci, stop_cmd); 3350 spin_lock_irqsave(&xhci->lock, flags); 3351 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3352 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3353 spin_unlock_irqrestore(&xhci->lock, flags); 3354 } 3355 3356 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3357 struct usb_device *udev, struct usb_host_endpoint *ep, 3358 unsigned int slot_id) 3359 { 3360 int ret; 3361 unsigned int ep_index; 3362 unsigned int ep_state; 3363 3364 if (!ep) 3365 return -EINVAL; 3366 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3367 if (ret <= 0) 3368 return ret ? ret : -EINVAL; 3369 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3370 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3371 " descriptor for ep 0x%x does not support streams\n", 3372 ep->desc.bEndpointAddress); 3373 return -EINVAL; 3374 } 3375 3376 ep_index = xhci_get_endpoint_index(&ep->desc); 3377 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3378 if (ep_state & EP_HAS_STREAMS || 3379 ep_state & EP_GETTING_STREAMS) { 3380 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3381 "already has streams set up.\n", 3382 ep->desc.bEndpointAddress); 3383 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3384 "dynamic stream context array reallocation.\n"); 3385 return -EINVAL; 3386 } 3387 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3388 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3389 "endpoint 0x%x; URBs are pending.\n", 3390 ep->desc.bEndpointAddress); 3391 return -EINVAL; 3392 } 3393 return 0; 3394 } 3395 3396 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3397 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3398 { 3399 unsigned int max_streams; 3400 3401 /* The stream context array size must be a power of two */ 3402 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3403 /* 3404 * Find out how many primary stream array entries the host controller 3405 * supports. Later we may use secondary stream arrays (similar to 2nd 3406 * level page entries), but that's an optional feature for xHCI host 3407 * controllers. xHCs must support at least 4 stream IDs. 3408 */ 3409 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3410 if (*num_stream_ctxs > max_streams) { 3411 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3412 max_streams); 3413 *num_stream_ctxs = max_streams; 3414 *num_streams = max_streams; 3415 } 3416 } 3417 3418 /* Returns an error code if one of the endpoint already has streams. 3419 * This does not change any data structures, it only checks and gathers 3420 * information. 3421 */ 3422 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3423 struct usb_device *udev, 3424 struct usb_host_endpoint **eps, unsigned int num_eps, 3425 unsigned int *num_streams, u32 *changed_ep_bitmask) 3426 { 3427 unsigned int max_streams; 3428 unsigned int endpoint_flag; 3429 int i; 3430 int ret; 3431 3432 for (i = 0; i < num_eps; i++) { 3433 ret = xhci_check_streams_endpoint(xhci, udev, 3434 eps[i], udev->slot_id); 3435 if (ret < 0) 3436 return ret; 3437 3438 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3439 if (max_streams < (*num_streams - 1)) { 3440 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3441 eps[i]->desc.bEndpointAddress, 3442 max_streams); 3443 *num_streams = max_streams+1; 3444 } 3445 3446 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3447 if (*changed_ep_bitmask & endpoint_flag) 3448 return -EINVAL; 3449 *changed_ep_bitmask |= endpoint_flag; 3450 } 3451 return 0; 3452 } 3453 3454 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3455 struct usb_device *udev, 3456 struct usb_host_endpoint **eps, unsigned int num_eps) 3457 { 3458 u32 changed_ep_bitmask = 0; 3459 unsigned int slot_id; 3460 unsigned int ep_index; 3461 unsigned int ep_state; 3462 int i; 3463 3464 slot_id = udev->slot_id; 3465 if (!xhci->devs[slot_id]) 3466 return 0; 3467 3468 for (i = 0; i < num_eps; i++) { 3469 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3470 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3471 /* Are streams already being freed for the endpoint? */ 3472 if (ep_state & EP_GETTING_NO_STREAMS) { 3473 xhci_warn(xhci, "WARN Can't disable streams for " 3474 "endpoint 0x%x, " 3475 "streams are being disabled already\n", 3476 eps[i]->desc.bEndpointAddress); 3477 return 0; 3478 } 3479 /* Are there actually any streams to free? */ 3480 if (!(ep_state & EP_HAS_STREAMS) && 3481 !(ep_state & EP_GETTING_STREAMS)) { 3482 xhci_warn(xhci, "WARN Can't disable streams for " 3483 "endpoint 0x%x, " 3484 "streams are already disabled!\n", 3485 eps[i]->desc.bEndpointAddress); 3486 xhci_warn(xhci, "WARN xhci_free_streams() called " 3487 "with non-streams endpoint\n"); 3488 return 0; 3489 } 3490 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3491 } 3492 return changed_ep_bitmask; 3493 } 3494 3495 /* 3496 * The USB device drivers use this function (through the HCD interface in USB 3497 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3498 * coordinate mass storage command queueing across multiple endpoints (basically 3499 * a stream ID == a task ID). 3500 * 3501 * Setting up streams involves allocating the same size stream context array 3502 * for each endpoint and issuing a configure endpoint command for all endpoints. 3503 * 3504 * Don't allow the call to succeed if one endpoint only supports one stream 3505 * (which means it doesn't support streams at all). 3506 * 3507 * Drivers may get less stream IDs than they asked for, if the host controller 3508 * hardware or endpoints claim they can't support the number of requested 3509 * stream IDs. 3510 */ 3511 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3512 struct usb_host_endpoint **eps, unsigned int num_eps, 3513 unsigned int num_streams, gfp_t mem_flags) 3514 { 3515 int i, ret; 3516 struct xhci_hcd *xhci; 3517 struct xhci_virt_device *vdev; 3518 struct xhci_command *config_cmd; 3519 struct xhci_input_control_ctx *ctrl_ctx; 3520 unsigned int ep_index; 3521 unsigned int num_stream_ctxs; 3522 unsigned int max_packet; 3523 unsigned long flags; 3524 u32 changed_ep_bitmask = 0; 3525 3526 if (!eps) 3527 return -EINVAL; 3528 3529 /* Add one to the number of streams requested to account for 3530 * stream 0 that is reserved for xHCI usage. 3531 */ 3532 num_streams += 1; 3533 xhci = hcd_to_xhci(hcd); 3534 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3535 num_streams); 3536 3537 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3538 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3539 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3540 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3541 return -ENOSYS; 3542 } 3543 3544 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3545 if (!config_cmd) 3546 return -ENOMEM; 3547 3548 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3549 if (!ctrl_ctx) { 3550 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3551 __func__); 3552 xhci_free_command(xhci, config_cmd); 3553 return -ENOMEM; 3554 } 3555 3556 /* Check to make sure all endpoints are not already configured for 3557 * streams. While we're at it, find the maximum number of streams that 3558 * all the endpoints will support and check for duplicate endpoints. 3559 */ 3560 spin_lock_irqsave(&xhci->lock, flags); 3561 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3562 num_eps, &num_streams, &changed_ep_bitmask); 3563 if (ret < 0) { 3564 xhci_free_command(xhci, config_cmd); 3565 spin_unlock_irqrestore(&xhci->lock, flags); 3566 return ret; 3567 } 3568 if (num_streams <= 1) { 3569 xhci_warn(xhci, "WARN: endpoints can't handle " 3570 "more than one stream.\n"); 3571 xhci_free_command(xhci, config_cmd); 3572 spin_unlock_irqrestore(&xhci->lock, flags); 3573 return -EINVAL; 3574 } 3575 vdev = xhci->devs[udev->slot_id]; 3576 /* Mark each endpoint as being in transition, so 3577 * xhci_urb_enqueue() will reject all URBs. 3578 */ 3579 for (i = 0; i < num_eps; i++) { 3580 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3581 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3582 } 3583 spin_unlock_irqrestore(&xhci->lock, flags); 3584 3585 /* Setup internal data structures and allocate HW data structures for 3586 * streams (but don't install the HW structures in the input context 3587 * until we're sure all memory allocation succeeded). 3588 */ 3589 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3590 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3591 num_stream_ctxs, num_streams); 3592 3593 for (i = 0; i < num_eps; i++) { 3594 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3595 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3596 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3597 num_stream_ctxs, 3598 num_streams, 3599 max_packet, mem_flags); 3600 if (!vdev->eps[ep_index].stream_info) 3601 goto cleanup; 3602 /* Set maxPstreams in endpoint context and update deq ptr to 3603 * point to stream context array. FIXME 3604 */ 3605 } 3606 3607 /* Set up the input context for a configure endpoint command. */ 3608 for (i = 0; i < num_eps; i++) { 3609 struct xhci_ep_ctx *ep_ctx; 3610 3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3612 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3613 3614 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3615 vdev->out_ctx, ep_index); 3616 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3617 vdev->eps[ep_index].stream_info); 3618 } 3619 /* Tell the HW to drop its old copy of the endpoint context info 3620 * and add the updated copy from the input context. 3621 */ 3622 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3623 vdev->out_ctx, ctrl_ctx, 3624 changed_ep_bitmask, changed_ep_bitmask); 3625 3626 /* Issue and wait for the configure endpoint command */ 3627 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3628 false, false); 3629 3630 /* xHC rejected the configure endpoint command for some reason, so we 3631 * leave the old ring intact and free our internal streams data 3632 * structure. 3633 */ 3634 if (ret < 0) 3635 goto cleanup; 3636 3637 spin_lock_irqsave(&xhci->lock, flags); 3638 for (i = 0; i < num_eps; i++) { 3639 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3640 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3641 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3642 udev->slot_id, ep_index); 3643 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3644 } 3645 xhci_free_command(xhci, config_cmd); 3646 spin_unlock_irqrestore(&xhci->lock, flags); 3647 3648 for (i = 0; i < num_eps; i++) { 3649 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3650 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3651 } 3652 /* Subtract 1 for stream 0, which drivers can't use */ 3653 return num_streams - 1; 3654 3655 cleanup: 3656 /* If it didn't work, free the streams! */ 3657 for (i = 0; i < num_eps; i++) { 3658 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3659 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3660 vdev->eps[ep_index].stream_info = NULL; 3661 /* FIXME Unset maxPstreams in endpoint context and 3662 * update deq ptr to point to normal string ring. 3663 */ 3664 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3665 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3666 xhci_endpoint_zero(xhci, vdev, eps[i]); 3667 } 3668 xhci_free_command(xhci, config_cmd); 3669 return -ENOMEM; 3670 } 3671 3672 /* Transition the endpoint from using streams to being a "normal" endpoint 3673 * without streams. 3674 * 3675 * Modify the endpoint context state, submit a configure endpoint command, 3676 * and free all endpoint rings for streams if that completes successfully. 3677 */ 3678 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3679 struct usb_host_endpoint **eps, unsigned int num_eps, 3680 gfp_t mem_flags) 3681 { 3682 int i, ret; 3683 struct xhci_hcd *xhci; 3684 struct xhci_virt_device *vdev; 3685 struct xhci_command *command; 3686 struct xhci_input_control_ctx *ctrl_ctx; 3687 unsigned int ep_index; 3688 unsigned long flags; 3689 u32 changed_ep_bitmask; 3690 3691 xhci = hcd_to_xhci(hcd); 3692 vdev = xhci->devs[udev->slot_id]; 3693 3694 /* Set up a configure endpoint command to remove the streams rings */ 3695 spin_lock_irqsave(&xhci->lock, flags); 3696 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3697 udev, eps, num_eps); 3698 if (changed_ep_bitmask == 0) { 3699 spin_unlock_irqrestore(&xhci->lock, flags); 3700 return -EINVAL; 3701 } 3702 3703 /* Use the xhci_command structure from the first endpoint. We may have 3704 * allocated too many, but the driver may call xhci_free_streams() for 3705 * each endpoint it grouped into one call to xhci_alloc_streams(). 3706 */ 3707 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3708 command = vdev->eps[ep_index].stream_info->free_streams_command; 3709 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3710 if (!ctrl_ctx) { 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3713 __func__); 3714 return -EINVAL; 3715 } 3716 3717 for (i = 0; i < num_eps; i++) { 3718 struct xhci_ep_ctx *ep_ctx; 3719 3720 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3721 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3722 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3723 EP_GETTING_NO_STREAMS; 3724 3725 xhci_endpoint_copy(xhci, command->in_ctx, 3726 vdev->out_ctx, ep_index); 3727 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3728 &vdev->eps[ep_index]); 3729 } 3730 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3731 vdev->out_ctx, ctrl_ctx, 3732 changed_ep_bitmask, changed_ep_bitmask); 3733 spin_unlock_irqrestore(&xhci->lock, flags); 3734 3735 /* Issue and wait for the configure endpoint command, 3736 * which must succeed. 3737 */ 3738 ret = xhci_configure_endpoint(xhci, udev, command, 3739 false, true); 3740 3741 /* xHC rejected the configure endpoint command for some reason, so we 3742 * leave the streams rings intact. 3743 */ 3744 if (ret < 0) 3745 return ret; 3746 3747 spin_lock_irqsave(&xhci->lock, flags); 3748 for (i = 0; i < num_eps; i++) { 3749 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3750 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3751 vdev->eps[ep_index].stream_info = NULL; 3752 /* FIXME Unset maxPstreams in endpoint context and 3753 * update deq ptr to point to normal string ring. 3754 */ 3755 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3756 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3757 } 3758 spin_unlock_irqrestore(&xhci->lock, flags); 3759 3760 return 0; 3761 } 3762 3763 /* 3764 * Deletes endpoint resources for endpoints that were active before a Reset 3765 * Device command, or a Disable Slot command. The Reset Device command leaves 3766 * the control endpoint intact, whereas the Disable Slot command deletes it. 3767 * 3768 * Must be called with xhci->lock held. 3769 */ 3770 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3771 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3772 { 3773 int i; 3774 unsigned int num_dropped_eps = 0; 3775 unsigned int drop_flags = 0; 3776 3777 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3778 if (virt_dev->eps[i].ring) { 3779 drop_flags |= 1 << i; 3780 num_dropped_eps++; 3781 } 3782 } 3783 xhci->num_active_eps -= num_dropped_eps; 3784 if (num_dropped_eps) 3785 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3786 "Dropped %u ep ctxs, flags = 0x%x, " 3787 "%u now active.", 3788 num_dropped_eps, drop_flags, 3789 xhci->num_active_eps); 3790 } 3791 3792 /* 3793 * This submits a Reset Device Command, which will set the device state to 0, 3794 * set the device address to 0, and disable all the endpoints except the default 3795 * control endpoint. The USB core should come back and call 3796 * xhci_address_device(), and then re-set up the configuration. If this is 3797 * called because of a usb_reset_and_verify_device(), then the old alternate 3798 * settings will be re-installed through the normal bandwidth allocation 3799 * functions. 3800 * 3801 * Wait for the Reset Device command to finish. Remove all structures 3802 * associated with the endpoints that were disabled. Clear the input device 3803 * structure? Reset the control endpoint 0 max packet size? 3804 * 3805 * If the virt_dev to be reset does not exist or does not match the udev, 3806 * it means the device is lost, possibly due to the xHC restore error and 3807 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3808 * re-allocate the device. 3809 */ 3810 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3811 struct usb_device *udev) 3812 { 3813 int ret, i; 3814 unsigned long flags; 3815 struct xhci_hcd *xhci; 3816 unsigned int slot_id; 3817 struct xhci_virt_device *virt_dev; 3818 struct xhci_command *reset_device_cmd; 3819 struct xhci_slot_ctx *slot_ctx; 3820 int old_active_eps = 0; 3821 3822 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3823 if (ret <= 0) 3824 return ret; 3825 xhci = hcd_to_xhci(hcd); 3826 slot_id = udev->slot_id; 3827 virt_dev = xhci->devs[slot_id]; 3828 if (!virt_dev) { 3829 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3830 "not exist. Re-allocate the device\n", slot_id); 3831 ret = xhci_alloc_dev(hcd, udev); 3832 if (ret == 1) 3833 return 0; 3834 else 3835 return -EINVAL; 3836 } 3837 3838 if (virt_dev->tt_info) 3839 old_active_eps = virt_dev->tt_info->active_eps; 3840 3841 if (virt_dev->udev != udev) { 3842 /* If the virt_dev and the udev does not match, this virt_dev 3843 * may belong to another udev. 3844 * Re-allocate the device. 3845 */ 3846 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3847 "not match the udev. Re-allocate the device\n", 3848 slot_id); 3849 ret = xhci_alloc_dev(hcd, udev); 3850 if (ret == 1) 3851 return 0; 3852 else 3853 return -EINVAL; 3854 } 3855 3856 /* If device is not setup, there is no point in resetting it */ 3857 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3858 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3859 SLOT_STATE_DISABLED) 3860 return 0; 3861 3862 trace_xhci_discover_or_reset_device(slot_ctx); 3863 3864 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3865 /* Allocate the command structure that holds the struct completion. 3866 * Assume we're in process context, since the normal device reset 3867 * process has to wait for the device anyway. Storage devices are 3868 * reset as part of error handling, so use GFP_NOIO instead of 3869 * GFP_KERNEL. 3870 */ 3871 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3872 if (!reset_device_cmd) { 3873 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3874 return -ENOMEM; 3875 } 3876 3877 /* Attempt to submit the Reset Device command to the command ring */ 3878 spin_lock_irqsave(&xhci->lock, flags); 3879 3880 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3881 if (ret) { 3882 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3883 spin_unlock_irqrestore(&xhci->lock, flags); 3884 goto command_cleanup; 3885 } 3886 xhci_ring_cmd_db(xhci); 3887 spin_unlock_irqrestore(&xhci->lock, flags); 3888 3889 /* Wait for the Reset Device command to finish */ 3890 wait_for_completion(reset_device_cmd->completion); 3891 3892 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3893 * unless we tried to reset a slot ID that wasn't enabled, 3894 * or the device wasn't in the addressed or configured state. 3895 */ 3896 ret = reset_device_cmd->status; 3897 switch (ret) { 3898 case COMP_COMMAND_ABORTED: 3899 case COMP_COMMAND_RING_STOPPED: 3900 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3901 ret = -ETIME; 3902 goto command_cleanup; 3903 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3904 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3905 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3906 slot_id, 3907 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3908 xhci_dbg(xhci, "Not freeing device rings.\n"); 3909 /* Don't treat this as an error. May change my mind later. */ 3910 ret = 0; 3911 goto command_cleanup; 3912 case COMP_SUCCESS: 3913 xhci_dbg(xhci, "Successful reset device command.\n"); 3914 break; 3915 default: 3916 if (xhci_is_vendor_info_code(xhci, ret)) 3917 break; 3918 xhci_warn(xhci, "Unknown completion code %u for " 3919 "reset device command.\n", ret); 3920 ret = -EINVAL; 3921 goto command_cleanup; 3922 } 3923 3924 /* Free up host controller endpoint resources */ 3925 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3926 spin_lock_irqsave(&xhci->lock, flags); 3927 /* Don't delete the default control endpoint resources */ 3928 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3929 spin_unlock_irqrestore(&xhci->lock, flags); 3930 } 3931 3932 /* Everything but endpoint 0 is disabled, so free the rings. */ 3933 for (i = 1; i < 31; i++) { 3934 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3935 3936 if (ep->ep_state & EP_HAS_STREAMS) { 3937 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3938 xhci_get_endpoint_address(i)); 3939 xhci_free_stream_info(xhci, ep->stream_info); 3940 ep->stream_info = NULL; 3941 ep->ep_state &= ~EP_HAS_STREAMS; 3942 } 3943 3944 if (ep->ring) { 3945 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3946 xhci_free_endpoint_ring(xhci, virt_dev, i); 3947 } 3948 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3949 xhci_drop_ep_from_interval_table(xhci, 3950 &virt_dev->eps[i].bw_info, 3951 virt_dev->bw_table, 3952 udev, 3953 &virt_dev->eps[i], 3954 virt_dev->tt_info); 3955 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3956 } 3957 /* If necessary, update the number of active TTs on this root port */ 3958 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3959 virt_dev->flags = 0; 3960 ret = 0; 3961 3962 command_cleanup: 3963 xhci_free_command(xhci, reset_device_cmd); 3964 return ret; 3965 } 3966 3967 /* 3968 * At this point, the struct usb_device is about to go away, the device has 3969 * disconnected, and all traffic has been stopped and the endpoints have been 3970 * disabled. Free any HC data structures associated with that device. 3971 */ 3972 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3973 { 3974 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3975 struct xhci_virt_device *virt_dev; 3976 struct xhci_slot_ctx *slot_ctx; 3977 unsigned long flags; 3978 int i, ret; 3979 3980 /* 3981 * We called pm_runtime_get_noresume when the device was attached. 3982 * Decrement the counter here to allow controller to runtime suspend 3983 * if no devices remain. 3984 */ 3985 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3986 pm_runtime_put_noidle(hcd->self.controller); 3987 3988 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3989 /* If the host is halted due to driver unload, we still need to free the 3990 * device. 3991 */ 3992 if (ret <= 0 && ret != -ENODEV) 3993 return; 3994 3995 virt_dev = xhci->devs[udev->slot_id]; 3996 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3997 trace_xhci_free_dev(slot_ctx); 3998 3999 /* Stop any wayward timer functions (which may grab the lock) */ 4000 for (i = 0; i < 31; i++) 4001 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 4002 virt_dev->udev = NULL; 4003 xhci_disable_slot(xhci, udev->slot_id); 4004 4005 spin_lock_irqsave(&xhci->lock, flags); 4006 xhci_free_virt_device(xhci, udev->slot_id); 4007 spin_unlock_irqrestore(&xhci->lock, flags); 4008 4009 } 4010 4011 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 4012 { 4013 struct xhci_command *command; 4014 unsigned long flags; 4015 u32 state; 4016 int ret; 4017 4018 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4019 if (!command) 4020 return -ENOMEM; 4021 4022 xhci_debugfs_remove_slot(xhci, slot_id); 4023 4024 spin_lock_irqsave(&xhci->lock, flags); 4025 /* Don't disable the slot if the host controller is dead. */ 4026 state = readl(&xhci->op_regs->status); 4027 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4028 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4029 spin_unlock_irqrestore(&xhci->lock, flags); 4030 kfree(command); 4031 return -ENODEV; 4032 } 4033 4034 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4035 slot_id); 4036 if (ret) { 4037 spin_unlock_irqrestore(&xhci->lock, flags); 4038 kfree(command); 4039 return ret; 4040 } 4041 xhci_ring_cmd_db(xhci); 4042 spin_unlock_irqrestore(&xhci->lock, flags); 4043 4044 wait_for_completion(command->completion); 4045 4046 if (command->status != COMP_SUCCESS) 4047 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4048 slot_id, command->status); 4049 4050 xhci_free_command(xhci, command); 4051 4052 return 0; 4053 } 4054 4055 /* 4056 * Checks if we have enough host controller resources for the default control 4057 * endpoint. 4058 * 4059 * Must be called with xhci->lock held. 4060 */ 4061 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4062 { 4063 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4064 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4065 "Not enough ep ctxs: " 4066 "%u active, need to add 1, limit is %u.", 4067 xhci->num_active_eps, xhci->limit_active_eps); 4068 return -ENOMEM; 4069 } 4070 xhci->num_active_eps += 1; 4071 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4072 "Adding 1 ep ctx, %u now active.", 4073 xhci->num_active_eps); 4074 return 0; 4075 } 4076 4077 4078 /* 4079 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4080 * timed out, or allocating memory failed. Returns 1 on success. 4081 */ 4082 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4083 { 4084 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4085 struct xhci_virt_device *vdev; 4086 struct xhci_slot_ctx *slot_ctx; 4087 unsigned long flags; 4088 int ret, slot_id; 4089 struct xhci_command *command; 4090 4091 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4092 if (!command) 4093 return 0; 4094 4095 spin_lock_irqsave(&xhci->lock, flags); 4096 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4097 if (ret) { 4098 spin_unlock_irqrestore(&xhci->lock, flags); 4099 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4100 xhci_free_command(xhci, command); 4101 return 0; 4102 } 4103 xhci_ring_cmd_db(xhci); 4104 spin_unlock_irqrestore(&xhci->lock, flags); 4105 4106 wait_for_completion(command->completion); 4107 slot_id = command->slot_id; 4108 4109 if (!slot_id || command->status != COMP_SUCCESS) { 4110 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4111 xhci_trb_comp_code_string(command->status)); 4112 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4113 HCS_MAX_SLOTS( 4114 readl(&xhci->cap_regs->hcs_params1))); 4115 xhci_free_command(xhci, command); 4116 return 0; 4117 } 4118 4119 xhci_free_command(xhci, command); 4120 4121 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4122 spin_lock_irqsave(&xhci->lock, flags); 4123 ret = xhci_reserve_host_control_ep_resources(xhci); 4124 if (ret) { 4125 spin_unlock_irqrestore(&xhci->lock, flags); 4126 xhci_warn(xhci, "Not enough host resources, " 4127 "active endpoint contexts = %u\n", 4128 xhci->num_active_eps); 4129 goto disable_slot; 4130 } 4131 spin_unlock_irqrestore(&xhci->lock, flags); 4132 } 4133 /* Use GFP_NOIO, since this function can be called from 4134 * xhci_discover_or_reset_device(), which may be called as part of 4135 * mass storage driver error handling. 4136 */ 4137 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4138 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4139 goto disable_slot; 4140 } 4141 vdev = xhci->devs[slot_id]; 4142 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4143 trace_xhci_alloc_dev(slot_ctx); 4144 4145 udev->slot_id = slot_id; 4146 4147 xhci_debugfs_create_slot(xhci, slot_id); 4148 4149 /* 4150 * If resetting upon resume, we can't put the controller into runtime 4151 * suspend if there is a device attached. 4152 */ 4153 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4154 pm_runtime_get_noresume(hcd->self.controller); 4155 4156 /* Is this a LS or FS device under a HS hub? */ 4157 /* Hub or peripherial? */ 4158 return 1; 4159 4160 disable_slot: 4161 xhci_disable_slot(xhci, udev->slot_id); 4162 xhci_free_virt_device(xhci, udev->slot_id); 4163 4164 return 0; 4165 } 4166 4167 /* 4168 * Issue an Address Device command and optionally send a corresponding 4169 * SetAddress request to the device. 4170 */ 4171 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4172 enum xhci_setup_dev setup) 4173 { 4174 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4175 unsigned long flags; 4176 struct xhci_virt_device *virt_dev; 4177 int ret = 0; 4178 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4179 struct xhci_slot_ctx *slot_ctx; 4180 struct xhci_input_control_ctx *ctrl_ctx; 4181 u64 temp_64; 4182 struct xhci_command *command = NULL; 4183 4184 mutex_lock(&xhci->mutex); 4185 4186 if (xhci->xhc_state) { /* dying, removing or halted */ 4187 ret = -ESHUTDOWN; 4188 goto out; 4189 } 4190 4191 if (!udev->slot_id) { 4192 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4193 "Bad Slot ID %d", udev->slot_id); 4194 ret = -EINVAL; 4195 goto out; 4196 } 4197 4198 virt_dev = xhci->devs[udev->slot_id]; 4199 4200 if (WARN_ON(!virt_dev)) { 4201 /* 4202 * In plug/unplug torture test with an NEC controller, 4203 * a zero-dereference was observed once due to virt_dev = 0. 4204 * Print useful debug rather than crash if it is observed again! 4205 */ 4206 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4207 udev->slot_id); 4208 ret = -EINVAL; 4209 goto out; 4210 } 4211 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4212 trace_xhci_setup_device_slot(slot_ctx); 4213 4214 if (setup == SETUP_CONTEXT_ONLY) { 4215 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4216 SLOT_STATE_DEFAULT) { 4217 xhci_dbg(xhci, "Slot already in default state\n"); 4218 goto out; 4219 } 4220 } 4221 4222 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4223 if (!command) { 4224 ret = -ENOMEM; 4225 goto out; 4226 } 4227 4228 command->in_ctx = virt_dev->in_ctx; 4229 4230 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4231 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4232 if (!ctrl_ctx) { 4233 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4234 __func__); 4235 ret = -EINVAL; 4236 goto out; 4237 } 4238 /* 4239 * If this is the first Set Address since device plug-in or 4240 * virt_device realloaction after a resume with an xHCI power loss, 4241 * then set up the slot context. 4242 */ 4243 if (!slot_ctx->dev_info) 4244 xhci_setup_addressable_virt_dev(xhci, udev); 4245 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4246 else 4247 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4248 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4249 ctrl_ctx->drop_flags = 0; 4250 4251 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4252 le32_to_cpu(slot_ctx->dev_info) >> 27); 4253 4254 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4255 spin_lock_irqsave(&xhci->lock, flags); 4256 trace_xhci_setup_device(virt_dev); 4257 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4258 udev->slot_id, setup); 4259 if (ret) { 4260 spin_unlock_irqrestore(&xhci->lock, flags); 4261 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4262 "FIXME: allocate a command ring segment"); 4263 goto out; 4264 } 4265 xhci_ring_cmd_db(xhci); 4266 spin_unlock_irqrestore(&xhci->lock, flags); 4267 4268 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4269 wait_for_completion(command->completion); 4270 4271 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4272 * the SetAddress() "recovery interval" required by USB and aborting the 4273 * command on a timeout. 4274 */ 4275 switch (command->status) { 4276 case COMP_COMMAND_ABORTED: 4277 case COMP_COMMAND_RING_STOPPED: 4278 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4279 ret = -ETIME; 4280 break; 4281 case COMP_CONTEXT_STATE_ERROR: 4282 case COMP_SLOT_NOT_ENABLED_ERROR: 4283 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4284 act, udev->slot_id); 4285 ret = -EINVAL; 4286 break; 4287 case COMP_USB_TRANSACTION_ERROR: 4288 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4289 4290 mutex_unlock(&xhci->mutex); 4291 ret = xhci_disable_slot(xhci, udev->slot_id); 4292 xhci_free_virt_device(xhci, udev->slot_id); 4293 if (!ret) 4294 xhci_alloc_dev(hcd, udev); 4295 kfree(command->completion); 4296 kfree(command); 4297 return -EPROTO; 4298 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4299 dev_warn(&udev->dev, 4300 "ERROR: Incompatible device for setup %s command\n", act); 4301 ret = -ENODEV; 4302 break; 4303 case COMP_SUCCESS: 4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4305 "Successful setup %s command", act); 4306 break; 4307 default: 4308 xhci_err(xhci, 4309 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4310 act, command->status); 4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4312 ret = -EINVAL; 4313 break; 4314 } 4315 if (ret) 4316 goto out; 4317 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4318 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4319 "Op regs DCBAA ptr = %#016llx", temp_64); 4320 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4321 "Slot ID %d dcbaa entry @%p = %#016llx", 4322 udev->slot_id, 4323 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4324 (unsigned long long) 4325 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4326 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4327 "Output Context DMA address = %#08llx", 4328 (unsigned long long)virt_dev->out_ctx->dma); 4329 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4330 le32_to_cpu(slot_ctx->dev_info) >> 27); 4331 /* 4332 * USB core uses address 1 for the roothubs, so we add one to the 4333 * address given back to us by the HC. 4334 */ 4335 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4336 le32_to_cpu(slot_ctx->dev_info) >> 27); 4337 /* Zero the input context control for later use */ 4338 ctrl_ctx->add_flags = 0; 4339 ctrl_ctx->drop_flags = 0; 4340 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4341 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4342 4343 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4344 "Internal device address = %d", 4345 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4346 out: 4347 mutex_unlock(&xhci->mutex); 4348 if (command) { 4349 kfree(command->completion); 4350 kfree(command); 4351 } 4352 return ret; 4353 } 4354 4355 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4356 { 4357 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4358 } 4359 4360 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4361 { 4362 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4363 } 4364 4365 /* 4366 * Transfer the port index into real index in the HW port status 4367 * registers. Caculate offset between the port's PORTSC register 4368 * and port status base. Divide the number of per port register 4369 * to get the real index. The raw port number bases 1. 4370 */ 4371 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4372 { 4373 struct xhci_hub *rhub; 4374 4375 rhub = xhci_get_rhub(hcd); 4376 return rhub->ports[port1 - 1]->hw_portnum + 1; 4377 } 4378 4379 /* 4380 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4381 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4382 */ 4383 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4384 struct usb_device *udev, u16 max_exit_latency) 4385 { 4386 struct xhci_virt_device *virt_dev; 4387 struct xhci_command *command; 4388 struct xhci_input_control_ctx *ctrl_ctx; 4389 struct xhci_slot_ctx *slot_ctx; 4390 unsigned long flags; 4391 int ret; 4392 4393 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4394 if (!command) 4395 return -ENOMEM; 4396 4397 spin_lock_irqsave(&xhci->lock, flags); 4398 4399 virt_dev = xhci->devs[udev->slot_id]; 4400 4401 /* 4402 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4403 * xHC was re-initialized. Exit latency will be set later after 4404 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4405 */ 4406 4407 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4408 spin_unlock_irqrestore(&xhci->lock, flags); 4409 return 0; 4410 } 4411 4412 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4413 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4414 if (!ctrl_ctx) { 4415 spin_unlock_irqrestore(&xhci->lock, flags); 4416 xhci_free_command(xhci, command); 4417 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4418 __func__); 4419 return -ENOMEM; 4420 } 4421 4422 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4423 spin_unlock_irqrestore(&xhci->lock, flags); 4424 4425 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4426 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4427 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4428 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4429 slot_ctx->dev_state = 0; 4430 4431 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4432 "Set up evaluate context for LPM MEL change."); 4433 4434 /* Issue and wait for the evaluate context command. */ 4435 ret = xhci_configure_endpoint(xhci, udev, command, 4436 true, true); 4437 4438 if (!ret) { 4439 spin_lock_irqsave(&xhci->lock, flags); 4440 virt_dev->current_mel = max_exit_latency; 4441 spin_unlock_irqrestore(&xhci->lock, flags); 4442 } 4443 4444 xhci_free_command(xhci, command); 4445 4446 return ret; 4447 } 4448 4449 #ifdef CONFIG_PM 4450 4451 /* BESL to HIRD Encoding array for USB2 LPM */ 4452 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4453 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4454 4455 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4456 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4457 struct usb_device *udev) 4458 { 4459 int u2del, besl, besl_host; 4460 int besl_device = 0; 4461 u32 field; 4462 4463 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4464 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4465 4466 if (field & USB_BESL_SUPPORT) { 4467 for (besl_host = 0; besl_host < 16; besl_host++) { 4468 if (xhci_besl_encoding[besl_host] >= u2del) 4469 break; 4470 } 4471 /* Use baseline BESL value as default */ 4472 if (field & USB_BESL_BASELINE_VALID) 4473 besl_device = USB_GET_BESL_BASELINE(field); 4474 else if (field & USB_BESL_DEEP_VALID) 4475 besl_device = USB_GET_BESL_DEEP(field); 4476 } else { 4477 if (u2del <= 50) 4478 besl_host = 0; 4479 else 4480 besl_host = (u2del - 51) / 75 + 1; 4481 } 4482 4483 besl = besl_host + besl_device; 4484 if (besl > 15) 4485 besl = 15; 4486 4487 return besl; 4488 } 4489 4490 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4491 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4492 { 4493 u32 field; 4494 int l1; 4495 int besld = 0; 4496 int hirdm = 0; 4497 4498 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4499 4500 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4501 l1 = udev->l1_params.timeout / 256; 4502 4503 /* device has preferred BESLD */ 4504 if (field & USB_BESL_DEEP_VALID) { 4505 besld = USB_GET_BESL_DEEP(field); 4506 hirdm = 1; 4507 } 4508 4509 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4510 } 4511 4512 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4513 struct usb_device *udev, int enable) 4514 { 4515 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4516 struct xhci_port **ports; 4517 __le32 __iomem *pm_addr, *hlpm_addr; 4518 u32 pm_val, hlpm_val, field; 4519 unsigned int port_num; 4520 unsigned long flags; 4521 int hird, exit_latency; 4522 int ret; 4523 4524 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4525 return -EPERM; 4526 4527 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4528 !udev->lpm_capable) 4529 return -EPERM; 4530 4531 if (!udev->parent || udev->parent->parent || 4532 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4533 return -EPERM; 4534 4535 if (udev->usb2_hw_lpm_capable != 1) 4536 return -EPERM; 4537 4538 spin_lock_irqsave(&xhci->lock, flags); 4539 4540 ports = xhci->usb2_rhub.ports; 4541 port_num = udev->portnum - 1; 4542 pm_addr = ports[port_num]->addr + PORTPMSC; 4543 pm_val = readl(pm_addr); 4544 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4545 4546 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4547 enable ? "enable" : "disable", port_num + 1); 4548 4549 if (enable) { 4550 /* Host supports BESL timeout instead of HIRD */ 4551 if (udev->usb2_hw_lpm_besl_capable) { 4552 /* if device doesn't have a preferred BESL value use a 4553 * default one which works with mixed HIRD and BESL 4554 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4555 */ 4556 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4557 if ((field & USB_BESL_SUPPORT) && 4558 (field & USB_BESL_BASELINE_VALID)) 4559 hird = USB_GET_BESL_BASELINE(field); 4560 else 4561 hird = udev->l1_params.besl; 4562 4563 exit_latency = xhci_besl_encoding[hird]; 4564 spin_unlock_irqrestore(&xhci->lock, flags); 4565 4566 ret = xhci_change_max_exit_latency(xhci, udev, 4567 exit_latency); 4568 if (ret < 0) 4569 return ret; 4570 spin_lock_irqsave(&xhci->lock, flags); 4571 4572 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4573 writel(hlpm_val, hlpm_addr); 4574 /* flush write */ 4575 readl(hlpm_addr); 4576 } else { 4577 hird = xhci_calculate_hird_besl(xhci, udev); 4578 } 4579 4580 pm_val &= ~PORT_HIRD_MASK; 4581 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4582 writel(pm_val, pm_addr); 4583 pm_val = readl(pm_addr); 4584 pm_val |= PORT_HLE; 4585 writel(pm_val, pm_addr); 4586 /* flush write */ 4587 readl(pm_addr); 4588 } else { 4589 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4590 writel(pm_val, pm_addr); 4591 /* flush write */ 4592 readl(pm_addr); 4593 if (udev->usb2_hw_lpm_besl_capable) { 4594 spin_unlock_irqrestore(&xhci->lock, flags); 4595 xhci_change_max_exit_latency(xhci, udev, 0); 4596 readl_poll_timeout(ports[port_num]->addr, pm_val, 4597 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4598 100, 10000); 4599 return 0; 4600 } 4601 } 4602 4603 spin_unlock_irqrestore(&xhci->lock, flags); 4604 return 0; 4605 } 4606 4607 /* check if a usb2 port supports a given extened capability protocol 4608 * only USB2 ports extended protocol capability values are cached. 4609 * Return 1 if capability is supported 4610 */ 4611 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4612 unsigned capability) 4613 { 4614 u32 port_offset, port_count; 4615 int i; 4616 4617 for (i = 0; i < xhci->num_ext_caps; i++) { 4618 if (xhci->ext_caps[i] & capability) { 4619 /* port offsets starts at 1 */ 4620 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4621 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4622 if (port >= port_offset && 4623 port < port_offset + port_count) 4624 return 1; 4625 } 4626 } 4627 return 0; 4628 } 4629 4630 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4631 { 4632 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4633 int portnum = udev->portnum - 1; 4634 4635 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4636 return 0; 4637 4638 /* we only support lpm for non-hub device connected to root hub yet */ 4639 if (!udev->parent || udev->parent->parent || 4640 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4641 return 0; 4642 4643 if (xhci->hw_lpm_support == 1 && 4644 xhci_check_usb2_port_capability( 4645 xhci, portnum, XHCI_HLC)) { 4646 udev->usb2_hw_lpm_capable = 1; 4647 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4648 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4649 if (xhci_check_usb2_port_capability(xhci, portnum, 4650 XHCI_BLC)) 4651 udev->usb2_hw_lpm_besl_capable = 1; 4652 } 4653 4654 return 0; 4655 } 4656 4657 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4658 4659 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4660 static unsigned long long xhci_service_interval_to_ns( 4661 struct usb_endpoint_descriptor *desc) 4662 { 4663 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4664 } 4665 4666 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4667 enum usb3_link_state state) 4668 { 4669 unsigned long long sel; 4670 unsigned long long pel; 4671 unsigned int max_sel_pel; 4672 char *state_name; 4673 4674 switch (state) { 4675 case USB3_LPM_U1: 4676 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4677 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4678 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4679 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4680 state_name = "U1"; 4681 break; 4682 case USB3_LPM_U2: 4683 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4684 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4685 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4686 state_name = "U2"; 4687 break; 4688 default: 4689 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4690 __func__); 4691 return USB3_LPM_DISABLED; 4692 } 4693 4694 if (sel <= max_sel_pel && pel <= max_sel_pel) 4695 return USB3_LPM_DEVICE_INITIATED; 4696 4697 if (sel > max_sel_pel) 4698 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4699 "due to long SEL %llu ms\n", 4700 state_name, sel); 4701 else 4702 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4703 "due to long PEL %llu ms\n", 4704 state_name, pel); 4705 return USB3_LPM_DISABLED; 4706 } 4707 4708 /* The U1 timeout should be the maximum of the following values: 4709 * - For control endpoints, U1 system exit latency (SEL) * 3 4710 * - For bulk endpoints, U1 SEL * 5 4711 * - For interrupt endpoints: 4712 * - Notification EPs, U1 SEL * 3 4713 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4714 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4715 */ 4716 static unsigned long long xhci_calculate_intel_u1_timeout( 4717 struct usb_device *udev, 4718 struct usb_endpoint_descriptor *desc) 4719 { 4720 unsigned long long timeout_ns; 4721 int ep_type; 4722 int intr_type; 4723 4724 ep_type = usb_endpoint_type(desc); 4725 switch (ep_type) { 4726 case USB_ENDPOINT_XFER_CONTROL: 4727 timeout_ns = udev->u1_params.sel * 3; 4728 break; 4729 case USB_ENDPOINT_XFER_BULK: 4730 timeout_ns = udev->u1_params.sel * 5; 4731 break; 4732 case USB_ENDPOINT_XFER_INT: 4733 intr_type = usb_endpoint_interrupt_type(desc); 4734 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4735 timeout_ns = udev->u1_params.sel * 3; 4736 break; 4737 } 4738 /* Otherwise the calculation is the same as isoc eps */ 4739 fallthrough; 4740 case USB_ENDPOINT_XFER_ISOC: 4741 timeout_ns = xhci_service_interval_to_ns(desc); 4742 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4743 if (timeout_ns < udev->u1_params.sel * 2) 4744 timeout_ns = udev->u1_params.sel * 2; 4745 break; 4746 default: 4747 return 0; 4748 } 4749 4750 return timeout_ns; 4751 } 4752 4753 /* Returns the hub-encoded U1 timeout value. */ 4754 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4755 struct usb_device *udev, 4756 struct usb_endpoint_descriptor *desc) 4757 { 4758 unsigned long long timeout_ns; 4759 4760 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4761 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4762 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4763 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4764 return USB3_LPM_DISABLED; 4765 } 4766 } 4767 4768 if (xhci->quirks & XHCI_INTEL_HOST) 4769 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4770 else 4771 timeout_ns = udev->u1_params.sel; 4772 4773 /* The U1 timeout is encoded in 1us intervals. 4774 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4775 */ 4776 if (timeout_ns == USB3_LPM_DISABLED) 4777 timeout_ns = 1; 4778 else 4779 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4780 4781 /* If the necessary timeout value is bigger than what we can set in the 4782 * USB 3.0 hub, we have to disable hub-initiated U1. 4783 */ 4784 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4785 return timeout_ns; 4786 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4787 "due to long timeout %llu ms\n", timeout_ns); 4788 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4789 } 4790 4791 /* The U2 timeout should be the maximum of: 4792 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4793 * - largest bInterval of any active periodic endpoint (to avoid going 4794 * into lower power link states between intervals). 4795 * - the U2 Exit Latency of the device 4796 */ 4797 static unsigned long long xhci_calculate_intel_u2_timeout( 4798 struct usb_device *udev, 4799 struct usb_endpoint_descriptor *desc) 4800 { 4801 unsigned long long timeout_ns; 4802 unsigned long long u2_del_ns; 4803 4804 timeout_ns = 10 * 1000 * 1000; 4805 4806 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4807 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4808 timeout_ns = xhci_service_interval_to_ns(desc); 4809 4810 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4811 if (u2_del_ns > timeout_ns) 4812 timeout_ns = u2_del_ns; 4813 4814 return timeout_ns; 4815 } 4816 4817 /* Returns the hub-encoded U2 timeout value. */ 4818 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4819 struct usb_device *udev, 4820 struct usb_endpoint_descriptor *desc) 4821 { 4822 unsigned long long timeout_ns; 4823 4824 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4825 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4826 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4827 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4828 return USB3_LPM_DISABLED; 4829 } 4830 } 4831 4832 if (xhci->quirks & XHCI_INTEL_HOST) 4833 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4834 else 4835 timeout_ns = udev->u2_params.sel; 4836 4837 /* The U2 timeout is encoded in 256us intervals */ 4838 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4839 /* If the necessary timeout value is bigger than what we can set in the 4840 * USB 3.0 hub, we have to disable hub-initiated U2. 4841 */ 4842 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4843 return timeout_ns; 4844 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4845 "due to long timeout %llu ms\n", timeout_ns); 4846 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4847 } 4848 4849 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4850 struct usb_device *udev, 4851 struct usb_endpoint_descriptor *desc, 4852 enum usb3_link_state state, 4853 u16 *timeout) 4854 { 4855 if (state == USB3_LPM_U1) 4856 return xhci_calculate_u1_timeout(xhci, udev, desc); 4857 else if (state == USB3_LPM_U2) 4858 return xhci_calculate_u2_timeout(xhci, udev, desc); 4859 4860 return USB3_LPM_DISABLED; 4861 } 4862 4863 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4864 struct usb_device *udev, 4865 struct usb_endpoint_descriptor *desc, 4866 enum usb3_link_state state, 4867 u16 *timeout) 4868 { 4869 u16 alt_timeout; 4870 4871 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4872 desc, state, timeout); 4873 4874 /* If we found we can't enable hub-initiated LPM, and 4875 * the U1 or U2 exit latency was too high to allow 4876 * device-initiated LPM as well, then we will disable LPM 4877 * for this device, so stop searching any further. 4878 */ 4879 if (alt_timeout == USB3_LPM_DISABLED) { 4880 *timeout = alt_timeout; 4881 return -E2BIG; 4882 } 4883 if (alt_timeout > *timeout) 4884 *timeout = alt_timeout; 4885 return 0; 4886 } 4887 4888 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4889 struct usb_device *udev, 4890 struct usb_host_interface *alt, 4891 enum usb3_link_state state, 4892 u16 *timeout) 4893 { 4894 int j; 4895 4896 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4897 if (xhci_update_timeout_for_endpoint(xhci, udev, 4898 &alt->endpoint[j].desc, state, timeout)) 4899 return -E2BIG; 4900 } 4901 return 0; 4902 } 4903 4904 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4905 enum usb3_link_state state) 4906 { 4907 struct usb_device *parent; 4908 unsigned int num_hubs; 4909 4910 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4911 for (parent = udev->parent, num_hubs = 0; parent->parent; 4912 parent = parent->parent) 4913 num_hubs++; 4914 4915 if (num_hubs < 2) 4916 return 0; 4917 4918 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4919 " below second-tier hub.\n"); 4920 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4921 "to decrease power consumption.\n"); 4922 return -E2BIG; 4923 } 4924 4925 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4926 struct usb_device *udev, 4927 enum usb3_link_state state) 4928 { 4929 if (xhci->quirks & XHCI_INTEL_HOST) 4930 return xhci_check_intel_tier_policy(udev, state); 4931 else 4932 return 0; 4933 } 4934 4935 /* Returns the U1 or U2 timeout that should be enabled. 4936 * If the tier check or timeout setting functions return with a non-zero exit 4937 * code, that means the timeout value has been finalized and we shouldn't look 4938 * at any more endpoints. 4939 */ 4940 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4941 struct usb_device *udev, enum usb3_link_state state) 4942 { 4943 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4944 struct usb_host_config *config; 4945 char *state_name; 4946 int i; 4947 u16 timeout = USB3_LPM_DISABLED; 4948 4949 if (state == USB3_LPM_U1) 4950 state_name = "U1"; 4951 else if (state == USB3_LPM_U2) 4952 state_name = "U2"; 4953 else { 4954 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4955 state); 4956 return timeout; 4957 } 4958 4959 /* Gather some information about the currently installed configuration 4960 * and alternate interface settings. 4961 */ 4962 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4963 state, &timeout)) 4964 return timeout; 4965 4966 config = udev->actconfig; 4967 if (!config) 4968 return timeout; 4969 4970 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4971 struct usb_driver *driver; 4972 struct usb_interface *intf = config->interface[i]; 4973 4974 if (!intf) 4975 continue; 4976 4977 /* Check if any currently bound drivers want hub-initiated LPM 4978 * disabled. 4979 */ 4980 if (intf->dev.driver) { 4981 driver = to_usb_driver(intf->dev.driver); 4982 if (driver && driver->disable_hub_initiated_lpm) { 4983 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4984 state_name, driver->name); 4985 timeout = xhci_get_timeout_no_hub_lpm(udev, 4986 state); 4987 if (timeout == USB3_LPM_DISABLED) 4988 return timeout; 4989 } 4990 } 4991 4992 /* Not sure how this could happen... */ 4993 if (!intf->cur_altsetting) 4994 continue; 4995 4996 if (xhci_update_timeout_for_interface(xhci, udev, 4997 intf->cur_altsetting, 4998 state, &timeout)) 4999 return timeout; 5000 } 5001 return timeout; 5002 } 5003 5004 static int calculate_max_exit_latency(struct usb_device *udev, 5005 enum usb3_link_state state_changed, 5006 u16 hub_encoded_timeout) 5007 { 5008 unsigned long long u1_mel_us = 0; 5009 unsigned long long u2_mel_us = 0; 5010 unsigned long long mel_us = 0; 5011 bool disabling_u1; 5012 bool disabling_u2; 5013 bool enabling_u1; 5014 bool enabling_u2; 5015 5016 disabling_u1 = (state_changed == USB3_LPM_U1 && 5017 hub_encoded_timeout == USB3_LPM_DISABLED); 5018 disabling_u2 = (state_changed == USB3_LPM_U2 && 5019 hub_encoded_timeout == USB3_LPM_DISABLED); 5020 5021 enabling_u1 = (state_changed == USB3_LPM_U1 && 5022 hub_encoded_timeout != USB3_LPM_DISABLED); 5023 enabling_u2 = (state_changed == USB3_LPM_U2 && 5024 hub_encoded_timeout != USB3_LPM_DISABLED); 5025 5026 /* If U1 was already enabled and we're not disabling it, 5027 * or we're going to enable U1, account for the U1 max exit latency. 5028 */ 5029 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5030 enabling_u1) 5031 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5032 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5033 enabling_u2) 5034 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5035 5036 mel_us = max(u1_mel_us, u2_mel_us); 5037 5038 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5039 if (mel_us > MAX_EXIT) { 5040 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5041 "is too big.\n", mel_us); 5042 return -E2BIG; 5043 } 5044 return mel_us; 5045 } 5046 5047 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5048 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5049 struct usb_device *udev, enum usb3_link_state state) 5050 { 5051 struct xhci_hcd *xhci; 5052 struct xhci_port *port; 5053 u16 hub_encoded_timeout; 5054 int mel; 5055 int ret; 5056 5057 xhci = hcd_to_xhci(hcd); 5058 /* The LPM timeout values are pretty host-controller specific, so don't 5059 * enable hub-initiated timeouts unless the vendor has provided 5060 * information about their timeout algorithm. 5061 */ 5062 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5063 !xhci->devs[udev->slot_id]) 5064 return USB3_LPM_DISABLED; 5065 5066 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5067 return USB3_LPM_DISABLED; 5068 5069 /* If connected to root port then check port can handle lpm */ 5070 if (udev->parent && !udev->parent->parent) { 5071 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5072 if (port->lpm_incapable) 5073 return USB3_LPM_DISABLED; 5074 } 5075 5076 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5077 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5078 if (mel < 0) { 5079 /* Max Exit Latency is too big, disable LPM. */ 5080 hub_encoded_timeout = USB3_LPM_DISABLED; 5081 mel = 0; 5082 } 5083 5084 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5085 if (ret) 5086 return ret; 5087 return hub_encoded_timeout; 5088 } 5089 5090 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5091 struct usb_device *udev, enum usb3_link_state state) 5092 { 5093 struct xhci_hcd *xhci; 5094 u16 mel; 5095 5096 xhci = hcd_to_xhci(hcd); 5097 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5098 !xhci->devs[udev->slot_id]) 5099 return 0; 5100 5101 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5102 return xhci_change_max_exit_latency(xhci, udev, mel); 5103 } 5104 #else /* CONFIG_PM */ 5105 5106 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5107 struct usb_device *udev, int enable) 5108 { 5109 return 0; 5110 } 5111 5112 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5113 { 5114 return 0; 5115 } 5116 5117 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5118 struct usb_device *udev, enum usb3_link_state state) 5119 { 5120 return USB3_LPM_DISABLED; 5121 } 5122 5123 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5124 struct usb_device *udev, enum usb3_link_state state) 5125 { 5126 return 0; 5127 } 5128 #endif /* CONFIG_PM */ 5129 5130 /*-------------------------------------------------------------------------*/ 5131 5132 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5133 * internal data structures for the device. 5134 */ 5135 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5136 struct usb_tt *tt, gfp_t mem_flags) 5137 { 5138 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5139 struct xhci_virt_device *vdev; 5140 struct xhci_command *config_cmd; 5141 struct xhci_input_control_ctx *ctrl_ctx; 5142 struct xhci_slot_ctx *slot_ctx; 5143 unsigned long flags; 5144 unsigned think_time; 5145 int ret; 5146 5147 /* Ignore root hubs */ 5148 if (!hdev->parent) 5149 return 0; 5150 5151 vdev = xhci->devs[hdev->slot_id]; 5152 if (!vdev) { 5153 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5154 return -EINVAL; 5155 } 5156 5157 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5158 if (!config_cmd) 5159 return -ENOMEM; 5160 5161 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5162 if (!ctrl_ctx) { 5163 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5164 __func__); 5165 xhci_free_command(xhci, config_cmd); 5166 return -ENOMEM; 5167 } 5168 5169 spin_lock_irqsave(&xhci->lock, flags); 5170 if (hdev->speed == USB_SPEED_HIGH && 5171 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5172 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5173 xhci_free_command(xhci, config_cmd); 5174 spin_unlock_irqrestore(&xhci->lock, flags); 5175 return -ENOMEM; 5176 } 5177 5178 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5179 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5180 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5181 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5182 /* 5183 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5184 * but it may be already set to 1 when setup an xHCI virtual 5185 * device, so clear it anyway. 5186 */ 5187 if (tt->multi) 5188 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5189 else if (hdev->speed == USB_SPEED_FULL) 5190 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5191 5192 if (xhci->hci_version > 0x95) { 5193 xhci_dbg(xhci, "xHCI version %x needs hub " 5194 "TT think time and number of ports\n", 5195 (unsigned int) xhci->hci_version); 5196 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5197 /* Set TT think time - convert from ns to FS bit times. 5198 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5199 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5200 * 5201 * xHCI 1.0: this field shall be 0 if the device is not a 5202 * High-spped hub. 5203 */ 5204 think_time = tt->think_time; 5205 if (think_time != 0) 5206 think_time = (think_time / 666) - 1; 5207 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5208 slot_ctx->tt_info |= 5209 cpu_to_le32(TT_THINK_TIME(think_time)); 5210 } else { 5211 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5212 "TT think time or number of ports\n", 5213 (unsigned int) xhci->hci_version); 5214 } 5215 slot_ctx->dev_state = 0; 5216 spin_unlock_irqrestore(&xhci->lock, flags); 5217 5218 xhci_dbg(xhci, "Set up %s for hub device.\n", 5219 (xhci->hci_version > 0x95) ? 5220 "configure endpoint" : "evaluate context"); 5221 5222 /* Issue and wait for the configure endpoint or 5223 * evaluate context command. 5224 */ 5225 if (xhci->hci_version > 0x95) 5226 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5227 false, false); 5228 else 5229 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5230 true, false); 5231 5232 xhci_free_command(xhci, config_cmd); 5233 return ret; 5234 } 5235 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5236 5237 static int xhci_get_frame(struct usb_hcd *hcd) 5238 { 5239 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5240 /* EHCI mods by the periodic size. Why? */ 5241 return readl(&xhci->run_regs->microframe_index) >> 3; 5242 } 5243 5244 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5245 { 5246 xhci->usb2_rhub.hcd = hcd; 5247 hcd->speed = HCD_USB2; 5248 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5249 /* 5250 * USB 2.0 roothub under xHCI has an integrated TT, 5251 * (rate matching hub) as opposed to having an OHCI/UHCI 5252 * companion controller. 5253 */ 5254 hcd->has_tt = 1; 5255 } 5256 5257 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5258 { 5259 unsigned int minor_rev; 5260 5261 /* 5262 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5263 * should return 0x31 for sbrn, or that the minor revision 5264 * is a two digit BCD containig minor and sub-minor numbers. 5265 * This was later clarified in xHCI 1.2. 5266 * 5267 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5268 * minor revision set to 0x1 instead of 0x10. 5269 */ 5270 if (xhci->usb3_rhub.min_rev == 0x1) 5271 minor_rev = 1; 5272 else 5273 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5274 5275 switch (minor_rev) { 5276 case 2: 5277 hcd->speed = HCD_USB32; 5278 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5279 hcd->self.root_hub->rx_lanes = 2; 5280 hcd->self.root_hub->tx_lanes = 2; 5281 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5282 break; 5283 case 1: 5284 hcd->speed = HCD_USB31; 5285 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5286 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5287 break; 5288 } 5289 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5290 minor_rev, minor_rev ? "Enhanced " : ""); 5291 5292 xhci->usb3_rhub.hcd = hcd; 5293 } 5294 5295 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5296 { 5297 struct xhci_hcd *xhci; 5298 /* 5299 * TODO: Check with DWC3 clients for sysdev according to 5300 * quirks 5301 */ 5302 struct device *dev = hcd->self.sysdev; 5303 int retval; 5304 5305 /* Accept arbitrarily long scatter-gather lists */ 5306 hcd->self.sg_tablesize = ~0; 5307 5308 /* support to build packet from discontinuous buffers */ 5309 hcd->self.no_sg_constraint = 1; 5310 5311 /* XHCI controllers don't stop the ep queue on short packets :| */ 5312 hcd->self.no_stop_on_short = 1; 5313 5314 xhci = hcd_to_xhci(hcd); 5315 5316 if (!usb_hcd_is_primary_hcd(hcd)) { 5317 xhci_hcd_init_usb3_data(xhci, hcd); 5318 return 0; 5319 } 5320 5321 mutex_init(&xhci->mutex); 5322 xhci->main_hcd = hcd; 5323 xhci->cap_regs = hcd->regs; 5324 xhci->op_regs = hcd->regs + 5325 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5326 xhci->run_regs = hcd->regs + 5327 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5328 /* Cache read-only capability registers */ 5329 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5330 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5331 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5332 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5333 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5334 if (xhci->hci_version > 0x100) 5335 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5336 5337 xhci->quirks |= quirks; 5338 5339 get_quirks(dev, xhci); 5340 5341 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5342 * success event after a short transfer. This quirk will ignore such 5343 * spurious event. 5344 */ 5345 if (xhci->hci_version > 0x96) 5346 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5347 5348 /* Make sure the HC is halted. */ 5349 retval = xhci_halt(xhci); 5350 if (retval) 5351 return retval; 5352 5353 xhci_zero_64b_regs(xhci); 5354 5355 xhci_dbg(xhci, "Resetting HCD\n"); 5356 /* Reset the internal HC memory state and registers. */ 5357 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5358 if (retval) 5359 return retval; 5360 xhci_dbg(xhci, "Reset complete\n"); 5361 5362 /* 5363 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5364 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5365 * address memory pointers actually. So, this driver clears the AC64 5366 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5367 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5368 */ 5369 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5370 xhci->hcc_params &= ~BIT(0); 5371 5372 /* Set dma_mask and coherent_dma_mask to 64-bits, 5373 * if xHC supports 64-bit addressing */ 5374 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5375 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5376 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5377 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5378 } else { 5379 /* 5380 * This is to avoid error in cases where a 32-bit USB 5381 * controller is used on a 64-bit capable system. 5382 */ 5383 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5384 if (retval) 5385 return retval; 5386 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5387 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5388 } 5389 5390 xhci_dbg(xhci, "Calling HCD init\n"); 5391 /* Initialize HCD and host controller data structures. */ 5392 retval = xhci_init(hcd); 5393 if (retval) 5394 return retval; 5395 xhci_dbg(xhci, "Called HCD init\n"); 5396 5397 if (xhci_hcd_is_usb3(hcd)) 5398 xhci_hcd_init_usb3_data(xhci, hcd); 5399 else 5400 xhci_hcd_init_usb2_data(xhci, hcd); 5401 5402 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5403 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5404 5405 return 0; 5406 } 5407 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5408 5409 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5410 struct usb_host_endpoint *ep) 5411 { 5412 struct xhci_hcd *xhci; 5413 struct usb_device *udev; 5414 unsigned int slot_id; 5415 unsigned int ep_index; 5416 unsigned long flags; 5417 5418 xhci = hcd_to_xhci(hcd); 5419 5420 spin_lock_irqsave(&xhci->lock, flags); 5421 udev = (struct usb_device *)ep->hcpriv; 5422 slot_id = udev->slot_id; 5423 ep_index = xhci_get_endpoint_index(&ep->desc); 5424 5425 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5426 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5427 spin_unlock_irqrestore(&xhci->lock, flags); 5428 } 5429 5430 static const struct hc_driver xhci_hc_driver = { 5431 .description = "xhci-hcd", 5432 .product_desc = "xHCI Host Controller", 5433 .hcd_priv_size = sizeof(struct xhci_hcd), 5434 5435 /* 5436 * generic hardware linkage 5437 */ 5438 .irq = xhci_irq, 5439 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5440 HCD_BH, 5441 5442 /* 5443 * basic lifecycle operations 5444 */ 5445 .reset = NULL, /* set in xhci_init_driver() */ 5446 .start = xhci_run, 5447 .stop = xhci_stop, 5448 .shutdown = xhci_shutdown, 5449 5450 /* 5451 * managing i/o requests and associated device resources 5452 */ 5453 .map_urb_for_dma = xhci_map_urb_for_dma, 5454 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5455 .urb_enqueue = xhci_urb_enqueue, 5456 .urb_dequeue = xhci_urb_dequeue, 5457 .alloc_dev = xhci_alloc_dev, 5458 .free_dev = xhci_free_dev, 5459 .alloc_streams = xhci_alloc_streams, 5460 .free_streams = xhci_free_streams, 5461 .add_endpoint = xhci_add_endpoint, 5462 .drop_endpoint = xhci_drop_endpoint, 5463 .endpoint_disable = xhci_endpoint_disable, 5464 .endpoint_reset = xhci_endpoint_reset, 5465 .check_bandwidth = xhci_check_bandwidth, 5466 .reset_bandwidth = xhci_reset_bandwidth, 5467 .address_device = xhci_address_device, 5468 .enable_device = xhci_enable_device, 5469 .update_hub_device = xhci_update_hub_device, 5470 .reset_device = xhci_discover_or_reset_device, 5471 5472 /* 5473 * scheduling support 5474 */ 5475 .get_frame_number = xhci_get_frame, 5476 5477 /* 5478 * root hub support 5479 */ 5480 .hub_control = xhci_hub_control, 5481 .hub_status_data = xhci_hub_status_data, 5482 .bus_suspend = xhci_bus_suspend, 5483 .bus_resume = xhci_bus_resume, 5484 .get_resuming_ports = xhci_get_resuming_ports, 5485 5486 /* 5487 * call back when device connected and addressed 5488 */ 5489 .update_device = xhci_update_device, 5490 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5491 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5492 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5493 .find_raw_port_number = xhci_find_raw_port_number, 5494 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5495 }; 5496 5497 void xhci_init_driver(struct hc_driver *drv, 5498 const struct xhci_driver_overrides *over) 5499 { 5500 BUG_ON(!over); 5501 5502 /* Copy the generic table to drv then apply the overrides */ 5503 *drv = xhci_hc_driver; 5504 5505 if (over) { 5506 drv->hcd_priv_size += over->extra_priv_size; 5507 if (over->reset) 5508 drv->reset = over->reset; 5509 if (over->start) 5510 drv->start = over->start; 5511 if (over->add_endpoint) 5512 drv->add_endpoint = over->add_endpoint; 5513 if (over->drop_endpoint) 5514 drv->drop_endpoint = over->drop_endpoint; 5515 if (over->check_bandwidth) 5516 drv->check_bandwidth = over->check_bandwidth; 5517 if (over->reset_bandwidth) 5518 drv->reset_bandwidth = over->reset_bandwidth; 5519 if (over->update_hub_device) 5520 drv->update_hub_device = over->update_hub_device; 5521 } 5522 } 5523 EXPORT_SYMBOL_GPL(xhci_init_driver); 5524 5525 MODULE_DESCRIPTION(DRIVER_DESC); 5526 MODULE_AUTHOR(DRIVER_AUTHOR); 5527 MODULE_LICENSE("GPL"); 5528 5529 static int __init xhci_hcd_init(void) 5530 { 5531 /* 5532 * Check the compiler generated sizes of structures that must be laid 5533 * out in specific ways for hardware access. 5534 */ 5535 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5536 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5537 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5538 /* xhci_device_control has eight fields, and also 5539 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5540 */ 5541 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5542 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5543 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5544 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5545 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5546 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5547 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5548 5549 if (usb_disabled()) 5550 return -ENODEV; 5551 5552 xhci_debugfs_create_root(); 5553 xhci_dbc_init(); 5554 5555 return 0; 5556 } 5557 5558 /* 5559 * If an init function is provided, an exit function must also be provided 5560 * to allow module unload. 5561 */ 5562 static void __exit xhci_hcd_fini(void) 5563 { 5564 xhci_debugfs_remove_root(); 5565 xhci_dbc_exit(); 5566 } 5567 5568 module_init(xhci_hcd_init); 5569 module_exit(xhci_hcd_fini); 5570