xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 2455f0e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret) {
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 	}
159 
160 	return ret;
161 }
162 
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172 	u32 command;
173 	u32 state;
174 	int ret;
175 
176 	state = readl(&xhci->op_regs->status);
177 
178 	if (state == ~(u32)0) {
179 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 		return -ENODEV;
181 	}
182 
183 	if ((state & STS_HALT) == 0) {
184 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 		return 0;
186 	}
187 
188 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 	command = readl(&xhci->op_regs->command);
190 	command |= CMD_RESET;
191 	writel(command, &xhci->op_regs->command);
192 
193 	/* Existing Intel xHCI controllers require a delay of 1 mS,
194 	 * after setting the CMD_RESET bit, and before accessing any
195 	 * HC registers. This allows the HC to complete the
196 	 * reset operation and be ready for HC register access.
197 	 * Without this delay, the subsequent HC register access,
198 	 * may result in a system hang very rarely.
199 	 */
200 	if (xhci->quirks & XHCI_INTEL_HOST)
201 		udelay(1000);
202 
203 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 	if (ret)
205 		return ret;
206 
207 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209 
210 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 			 "Wait for controller to be ready for doorbell rings");
212 	/*
213 	 * xHCI cannot write to any doorbells or operational registers other
214 	 * than status until the "Controller Not Ready" flag is cleared.
215 	 */
216 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217 
218 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
224 
225 	return ret;
226 }
227 
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 	int err, i;
232 	u64 val;
233 	u32 intrs;
234 
235 	/*
236 	 * Some Renesas controllers get into a weird state if they are
237 	 * reset while programmed with 64bit addresses (they will preserve
238 	 * the top half of the address in internal, non visible
239 	 * registers). You end up with half the address coming from the
240 	 * kernel, and the other half coming from the firmware. Also,
241 	 * changing the programming leads to extra accesses even if the
242 	 * controller is supposed to be halted. The controller ends up with
243 	 * a fatal fault, and is then ripe for being properly reset.
244 	 *
245 	 * Special care is taken to only apply this if the device is behind
246 	 * an iommu. Doing anything when there is no iommu is definitely
247 	 * unsafe...
248 	 */
249 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250 		return;
251 
252 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253 
254 	/* Clear HSEIE so that faults do not get signaled */
255 	val = readl(&xhci->op_regs->command);
256 	val &= ~CMD_HSEIE;
257 	writel(val, &xhci->op_regs->command);
258 
259 	/* Clear HSE (aka FATAL) */
260 	val = readl(&xhci->op_regs->status);
261 	val |= STS_FATAL;
262 	writel(val, &xhci->op_regs->status);
263 
264 	/* Now zero the registers, and brace for impact */
265 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 	if (upper_32_bits(val))
270 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271 
272 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 		      ARRAY_SIZE(xhci->run_regs->ir_set));
274 
275 	for (i = 0; i < intrs; i++) {
276 		struct xhci_intr_reg __iomem *ir;
277 
278 		ir = &xhci->run_regs->ir_set[i];
279 		val = xhci_read_64(xhci, &ir->erst_base);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_base);
282 		val= xhci_read_64(xhci, &ir->erst_dequeue);
283 		if (upper_32_bits(val))
284 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
285 	}
286 
287 	/* Wait for the fault to appear. It will be cleared on reset */
288 	err = xhci_handshake(&xhci->op_regs->status,
289 			     STS_FATAL, STS_FATAL,
290 			     XHCI_MAX_HALT_USEC);
291 	if (!err)
292 		xhci_info(xhci, "Fault detected\n");
293 }
294 
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301 	int ret;
302 	/*
303 	 * TODO:Check with MSI Soc for sysdev
304 	 */
305 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306 
307 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308 	if (ret < 0) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"failed to allocate MSI entry");
311 		return ret;
312 	}
313 
314 	ret = request_irq(pdev->irq, xhci_msi_irq,
315 				0, "xhci_hcd", xhci_to_hcd(xhci));
316 	if (ret) {
317 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 				"disable MSI interrupt");
319 		pci_free_irq_vectors(pdev);
320 	}
321 
322 	return ret;
323 }
324 
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330 	int i, ret;
331 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333 
334 	/*
335 	 * calculate number of msi-x vectors supported.
336 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
338 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 	 *   Add additional 1 vector to ensure always available interrupt.
340 	 */
341 	xhci->msix_count = min(num_online_cpus() + 1,
342 				HCS_MAX_INTRS(xhci->hcs_params1));
343 
344 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345 			PCI_IRQ_MSIX);
346 	if (ret < 0) {
347 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 				"Failed to enable MSI-X");
349 		return ret;
350 	}
351 
352 	for (i = 0; i < xhci->msix_count; i++) {
353 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 				"xhci_hcd", xhci_to_hcd(xhci));
355 		if (ret)
356 			goto disable_msix;
357 	}
358 
359 	hcd->msix_enabled = 1;
360 	return ret;
361 
362 disable_msix:
363 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364 	while (--i >= 0)
365 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 	pci_free_irq_vectors(pdev);
367 	return ret;
368 }
369 
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375 
376 	if (xhci->quirks & XHCI_PLAT)
377 		return;
378 
379 	/* return if using legacy interrupt */
380 	if (hcd->irq > 0)
381 		return;
382 
383 	if (hcd->msix_enabled) {
384 		int i;
385 
386 		for (i = 0; i < xhci->msix_count; i++)
387 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388 	} else {
389 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390 	}
391 
392 	pci_free_irq_vectors(pdev);
393 	hcd->msix_enabled = 0;
394 }
395 
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
399 
400 	if (hcd->msix_enabled) {
401 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402 		int i;
403 
404 		for (i = 0; i < xhci->msix_count; i++)
405 			synchronize_irq(pci_irq_vector(pdev, i));
406 	}
407 }
408 
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 	struct pci_dev  *pdev;
413 	int ret;
414 
415 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
416 	if (xhci->quirks & XHCI_PLAT)
417 		return 0;
418 
419 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 	/*
421 	 * Some Fresco Logic host controllers advertise MSI, but fail to
422 	 * generate interrupts.  Don't even try to enable MSI.
423 	 */
424 	if (xhci->quirks & XHCI_BROKEN_MSI)
425 		goto legacy_irq;
426 
427 	/* unregister the legacy interrupt */
428 	if (hcd->irq)
429 		free_irq(hcd->irq, hcd);
430 	hcd->irq = 0;
431 
432 	ret = xhci_setup_msix(xhci);
433 	if (ret)
434 		/* fall back to msi*/
435 		ret = xhci_setup_msi(xhci);
436 
437 	if (!ret) {
438 		hcd->msi_enabled = 1;
439 		return 0;
440 	}
441 
442 	if (!pdev->irq) {
443 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444 		return -EINVAL;
445 	}
446 
447  legacy_irq:
448 	if (!strlen(hcd->irq_descr))
449 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 			 hcd->driver->description, hcd->self.busnum);
451 
452 	/* fall back to legacy interrupt*/
453 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 			hcd->irq_descr, hcd);
455 	if (ret) {
456 		xhci_err(xhci, "request interrupt %d failed\n",
457 				pdev->irq);
458 		return ret;
459 	}
460 	hcd->irq = pdev->irq;
461 	return 0;
462 }
463 
464 #else
465 
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468 	return 0;
469 }
470 
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474 
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478 
479 #endif
480 
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483 	struct xhci_hcd *xhci;
484 	struct usb_hcd *hcd;
485 	struct xhci_hub *rhub;
486 	u32 temp;
487 	int i;
488 
489 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 	rhub = &xhci->usb3_rhub;
491 	hcd = rhub->hcd;
492 
493 	if (!hcd)
494 		return;
495 
496 	for (i = 0; i < rhub->num_ports; i++) {
497 		temp = readl(rhub->ports[i]->addr);
498 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499 			/*
500 			 * Compliance Mode Detected. Letting USB Core
501 			 * handle the Warm Reset
502 			 */
503 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 					"Compliance mode detected->port %d",
505 					i + 1);
506 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 					"Attempting compliance mode recovery");
508 
509 			if (hcd->state == HC_STATE_SUSPENDED)
510 				usb_hcd_resume_root_hub(hcd);
511 
512 			usb_hcd_poll_rh_status(hcd);
513 		}
514 	}
515 
516 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 		mod_timer(&xhci->comp_mode_recovery_timer,
518 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520 
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533 	xhci->port_status_u0 = 0;
534 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 		    0);
536 	xhci->comp_mode_recovery_timer.expires = jiffies +
537 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538 
539 	add_timer(&xhci->comp_mode_recovery_timer);
540 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 			"Compliance mode recovery timer initialized");
542 }
543 
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552 	const char *dmi_product_name, *dmi_sys_vendor;
553 
554 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 	if (!dmi_product_name || !dmi_sys_vendor)
557 		return false;
558 
559 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 		return false;
561 
562 	if (strstr(dmi_product_name, "Z420") ||
563 			strstr(dmi_product_name, "Z620") ||
564 			strstr(dmi_product_name, "Z820") ||
565 			strstr(dmi_product_name, "Z1 Workstation"))
566 		return true;
567 
568 	return false;
569 }
570 
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575 
576 
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 	int retval;
588 
589 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 	spin_lock_init(&xhci->lock);
591 	if (xhci->hci_version == 0x95 && link_quirk) {
592 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 				"QUIRK: Not clearing Link TRB chain bits.");
594 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 	} else {
596 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 				"xHCI doesn't need link TRB QUIRK");
598 	}
599 	retval = xhci_mem_init(xhci, GFP_KERNEL);
600 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601 
602 	/* Initializing Compliance Mode Recovery Data If Needed */
603 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 		compliance_mode_recovery_timer_init(xhci);
606 	}
607 
608 	return retval;
609 }
610 
611 /*-------------------------------------------------------------------------*/
612 
613 
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616 	unsigned long	flags;
617 	u32		temp;
618 
619 	/*
620 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 	 * Protect the short window before host is running with a lock
622 	 */
623 	spin_lock_irqsave(&xhci->lock, flags);
624 
625 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 	temp = readl(&xhci->op_regs->command);
627 	temp |= (CMD_EIE);
628 	writel(temp, &xhci->op_regs->command);
629 
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 	temp = readl(&xhci->ir_set->irq_pending);
632 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633 
634 	if (xhci_start(xhci)) {
635 		xhci_halt(xhci);
636 		spin_unlock_irqrestore(&xhci->lock, flags);
637 		return -ENODEV;
638 	}
639 
640 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641 
642 	if (xhci->quirks & XHCI_NEC_HOST)
643 		xhci_ring_cmd_db(xhci);
644 
645 	spin_unlock_irqrestore(&xhci->lock, flags);
646 
647 	return 0;
648 }
649 
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664 	u32 temp;
665 	u64 temp_64;
666 	int ret;
667 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668 
669 	/* Start the xHCI host controller running only after the USB 2.0 roothub
670 	 * is setup.
671 	 */
672 
673 	hcd->uses_new_polling = 1;
674 	if (!usb_hcd_is_primary_hcd(hcd))
675 		return xhci_run_finished(xhci);
676 
677 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678 
679 	ret = xhci_try_enable_msi(hcd);
680 	if (ret)
681 		return ret;
682 
683 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 	temp_64 &= ~ERST_PTR_MASK;
685 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687 
688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 			"// Set the interrupt modulation register");
690 	temp = readl(&xhci->ir_set->irq_control);
691 	temp &= ~ER_IRQ_INTERVAL_MASK;
692 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 	writel(temp, &xhci->ir_set->irq_control);
694 
695 	if (xhci->quirks & XHCI_NEC_HOST) {
696 		struct xhci_command *command;
697 
698 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699 		if (!command)
700 			return -ENOMEM;
701 
702 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 				TRB_TYPE(TRB_NEC_GET_FW));
704 		if (ret)
705 			xhci_free_command(xhci, command);
706 	}
707 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 			"Finished %s for main hcd", __func__);
709 
710 	xhci_create_dbc_dev(xhci);
711 
712 	xhci_debugfs_init(xhci);
713 
714 	if (xhci_has_one_roothub(xhci))
715 		return xhci_run_finished(xhci);
716 
717 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718 
719 	return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722 
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734 	u32 temp;
735 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736 
737 	mutex_lock(&xhci->mutex);
738 
739 	/* Only halt host and free memory after both hcds are removed */
740 	if (!usb_hcd_is_primary_hcd(hcd)) {
741 		mutex_unlock(&xhci->mutex);
742 		return;
743 	}
744 
745 	xhci_remove_dbc_dev(xhci);
746 
747 	spin_lock_irq(&xhci->lock);
748 	xhci->xhc_state |= XHCI_STATE_HALTED;
749 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750 	xhci_halt(xhci);
751 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 	spin_unlock_irq(&xhci->lock);
753 
754 	xhci_cleanup_msix(xhci);
755 
756 	/* Deleting Compliance Mode Recovery Timer */
757 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 			(!(xhci_all_ports_seen_u0(xhci)))) {
759 		del_timer_sync(&xhci->comp_mode_recovery_timer);
760 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 				"%s: compliance mode recovery timer deleted",
762 				__func__);
763 	}
764 
765 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
766 		usb_amd_dev_put();
767 
768 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 			"// Disabling event ring interrupts");
770 	temp = readl(&xhci->op_regs->status);
771 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 	temp = readl(&xhci->ir_set->irq_pending);
773 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774 
775 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 	xhci_mem_cleanup(xhci);
777 	xhci_debugfs_exit(xhci);
778 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 			"xhci_stop completed - status = %x",
780 			readl(&xhci->op_regs->status));
781 	mutex_unlock(&xhci->mutex);
782 }
783 
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796 
797 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799 
800 	/* Don't poll the roothubs after shutdown. */
801 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 			__func__, hcd->self.busnum);
803 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 	del_timer_sync(&hcd->rh_timer);
805 
806 	if (xhci->shared_hcd) {
807 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 		del_timer_sync(&xhci->shared_hcd->rh_timer);
809 	}
810 
811 	spin_lock_irq(&xhci->lock);
812 	xhci_halt(xhci);
813 
814 	/*
815 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
816 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
817 	 */
818 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
819 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
820 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
821 
822 	spin_unlock_irq(&xhci->lock);
823 
824 	xhci_cleanup_msix(xhci);
825 
826 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
827 			"xhci_shutdown completed - status = %x",
828 			readl(&xhci->op_regs->status));
829 }
830 EXPORT_SYMBOL_GPL(xhci_shutdown);
831 
832 #ifdef CONFIG_PM
833 static void xhci_save_registers(struct xhci_hcd *xhci)
834 {
835 	xhci->s3.command = readl(&xhci->op_regs->command);
836 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
837 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
838 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
839 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
840 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
841 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
842 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
843 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
844 }
845 
846 static void xhci_restore_registers(struct xhci_hcd *xhci)
847 {
848 	writel(xhci->s3.command, &xhci->op_regs->command);
849 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
850 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
851 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
852 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
853 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
854 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
855 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
856 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
857 }
858 
859 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
860 {
861 	u64	val_64;
862 
863 	/* step 2: initialize command ring buffer */
864 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
865 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
866 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
867 				      xhci->cmd_ring->dequeue) &
868 		 (u64) ~CMD_RING_RSVD_BITS) |
869 		xhci->cmd_ring->cycle_state;
870 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
871 			"// Setting command ring address to 0x%llx",
872 			(long unsigned long) val_64);
873 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
874 }
875 
876 /*
877  * The whole command ring must be cleared to zero when we suspend the host.
878  *
879  * The host doesn't save the command ring pointer in the suspend well, so we
880  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
881  * aligned, because of the reserved bits in the command ring dequeue pointer
882  * register.  Therefore, we can't just set the dequeue pointer back in the
883  * middle of the ring (TRBs are 16-byte aligned).
884  */
885 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
886 {
887 	struct xhci_ring *ring;
888 	struct xhci_segment *seg;
889 
890 	ring = xhci->cmd_ring;
891 	seg = ring->deq_seg;
892 	do {
893 		memset(seg->trbs, 0,
894 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
895 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
896 			cpu_to_le32(~TRB_CYCLE);
897 		seg = seg->next;
898 	} while (seg != ring->deq_seg);
899 
900 	/* Reset the software enqueue and dequeue pointers */
901 	ring->deq_seg = ring->first_seg;
902 	ring->dequeue = ring->first_seg->trbs;
903 	ring->enq_seg = ring->deq_seg;
904 	ring->enqueue = ring->dequeue;
905 
906 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
907 	/*
908 	 * Ring is now zeroed, so the HW should look for change of ownership
909 	 * when the cycle bit is set to 1.
910 	 */
911 	ring->cycle_state = 1;
912 
913 	/*
914 	 * Reset the hardware dequeue pointer.
915 	 * Yes, this will need to be re-written after resume, but we're paranoid
916 	 * and want to make sure the hardware doesn't access bogus memory
917 	 * because, say, the BIOS or an SMI started the host without changing
918 	 * the command ring pointers.
919 	 */
920 	xhci_set_cmd_ring_deq(xhci);
921 }
922 
923 /*
924  * Disable port wake bits if do_wakeup is not set.
925  *
926  * Also clear a possible internal port wake state left hanging for ports that
927  * detected termination but never successfully enumerated (trained to 0U).
928  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
929  * at enumeration clears this wake, force one here as well for unconnected ports
930  */
931 
932 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
933 				       struct xhci_hub *rhub,
934 				       bool do_wakeup)
935 {
936 	unsigned long flags;
937 	u32 t1, t2, portsc;
938 	int i;
939 
940 	spin_lock_irqsave(&xhci->lock, flags);
941 
942 	for (i = 0; i < rhub->num_ports; i++) {
943 		portsc = readl(rhub->ports[i]->addr);
944 		t1 = xhci_port_state_to_neutral(portsc);
945 		t2 = t1;
946 
947 		/* clear wake bits if do_wake is not set */
948 		if (!do_wakeup)
949 			t2 &= ~PORT_WAKE_BITS;
950 
951 		/* Don't touch csc bit if connected or connect change is set */
952 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
953 			t2 |= PORT_CSC;
954 
955 		if (t1 != t2) {
956 			writel(t2, rhub->ports[i]->addr);
957 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
958 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
959 		}
960 	}
961 	spin_unlock_irqrestore(&xhci->lock, flags);
962 }
963 
964 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
965 {
966 	struct xhci_port	**ports;
967 	int			port_index;
968 	u32			status;
969 	u32			portsc;
970 
971 	status = readl(&xhci->op_regs->status);
972 	if (status & STS_EINT)
973 		return true;
974 	/*
975 	 * Checking STS_EINT is not enough as there is a lag between a change
976 	 * bit being set and the Port Status Change Event that it generated
977 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
978 	 */
979 
980 	port_index = xhci->usb2_rhub.num_ports;
981 	ports = xhci->usb2_rhub.ports;
982 	while (port_index--) {
983 		portsc = readl(ports[port_index]->addr);
984 		if (portsc & PORT_CHANGE_MASK ||
985 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
986 			return true;
987 	}
988 	port_index = xhci->usb3_rhub.num_ports;
989 	ports = xhci->usb3_rhub.ports;
990 	while (port_index--) {
991 		portsc = readl(ports[port_index]->addr);
992 		if (portsc & PORT_CHANGE_MASK ||
993 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
994 			return true;
995 	}
996 	return false;
997 }
998 
999 /*
1000  * Stop HC (not bus-specific)
1001  *
1002  * This is called when the machine transition into S3/S4 mode.
1003  *
1004  */
1005 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006 {
1007 	int			rc = 0;
1008 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1009 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1010 	u32			command;
1011 	u32			res;
1012 
1013 	if (!hcd->state)
1014 		return 0;
1015 
1016 	if (hcd->state != HC_STATE_SUSPENDED ||
1017 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018 		return -EINVAL;
1019 
1020 	/* Clear root port wake on bits if wakeup not allowed. */
1021 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023 
1024 	if (!HCD_HW_ACCESSIBLE(hcd))
1025 		return 0;
1026 
1027 	xhci_dbc_suspend(xhci);
1028 
1029 	/* Don't poll the roothubs on bus suspend. */
1030 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031 		 __func__, hcd->self.busnum);
1032 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033 	del_timer_sync(&hcd->rh_timer);
1034 	if (xhci->shared_hcd) {
1035 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1037 	}
1038 
1039 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040 		usleep_range(1000, 1500);
1041 
1042 	spin_lock_irq(&xhci->lock);
1043 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044 	if (xhci->shared_hcd)
1045 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046 	/* step 1: stop endpoint */
1047 	/* skipped assuming that port suspend has done */
1048 
1049 	/* step 2: clear Run/Stop bit */
1050 	command = readl(&xhci->op_regs->command);
1051 	command &= ~CMD_RUN;
1052 	writel(command, &xhci->op_regs->command);
1053 
1054 	/* Some chips from Fresco Logic need an extraordinary delay */
1055 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056 
1057 	if (xhci_handshake(&xhci->op_regs->status,
1058 		      STS_HALT, STS_HALT, delay)) {
1059 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060 		spin_unlock_irq(&xhci->lock);
1061 		return -ETIMEDOUT;
1062 	}
1063 	xhci_clear_command_ring(xhci);
1064 
1065 	/* step 3: save registers */
1066 	xhci_save_registers(xhci);
1067 
1068 	/* step 4: set CSS flag */
1069 	command = readl(&xhci->op_regs->command);
1070 	command |= CMD_CSS;
1071 	writel(command, &xhci->op_regs->command);
1072 	xhci->broken_suspend = 0;
1073 	if (xhci_handshake(&xhci->op_regs->status,
1074 				STS_SAVE, 0, 20 * 1000)) {
1075 	/*
1076 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1077 	 * SSS bit of USBSTS and when driver tries to poll
1078 	 * to see if the xHC clears BIT(8) which never happens
1079 	 * and driver assumes that controller is not responding
1080 	 * and times out. To workaround this, its good to check
1081 	 * if SRE and HCE bits are not set (as per xhci
1082 	 * Section 5.4.2) and bypass the timeout.
1083 	 */
1084 		res = readl(&xhci->op_regs->status);
1085 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086 		    (((res & STS_SRE) == 0) &&
1087 				((res & STS_HCE) == 0))) {
1088 			xhci->broken_suspend = 1;
1089 		} else {
1090 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091 			spin_unlock_irq(&xhci->lock);
1092 			return -ETIMEDOUT;
1093 		}
1094 	}
1095 	spin_unlock_irq(&xhci->lock);
1096 
1097 	/*
1098 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099 	 * is about to be suspended.
1100 	 */
1101 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102 			(!(xhci_all_ports_seen_u0(xhci)))) {
1103 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1104 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105 				"%s: compliance mode recovery timer deleted",
1106 				__func__);
1107 	}
1108 
1109 	/* step 5: remove core well power */
1110 	/* synchronize irq when using MSI-X */
1111 	xhci_msix_sync_irqs(xhci);
1112 
1113 	return rc;
1114 }
1115 EXPORT_SYMBOL_GPL(xhci_suspend);
1116 
1117 /*
1118  * start xHC (not bus-specific)
1119  *
1120  * This is called when the machine transition from S3/S4 mode.
1121  *
1122  */
1123 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124 {
1125 	u32			command, temp = 0;
1126 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1127 	int			retval = 0;
1128 	bool			comp_timer_running = false;
1129 	bool			pending_portevent = false;
1130 	bool			reinit_xhc = false;
1131 
1132 	if (!hcd->state)
1133 		return 0;
1134 
1135 	/* Wait a bit if either of the roothubs need to settle from the
1136 	 * transition into bus suspend.
1137 	 */
1138 
1139 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141 		msleep(100);
1142 
1143 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144 	if (xhci->shared_hcd)
1145 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146 
1147 	spin_lock_irq(&xhci->lock);
1148 
1149 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150 		reinit_xhc = true;
1151 
1152 	if (!reinit_xhc) {
1153 		/*
1154 		 * Some controllers might lose power during suspend, so wait
1155 		 * for controller not ready bit to clear, just as in xHC init.
1156 		 */
1157 		retval = xhci_handshake(&xhci->op_regs->status,
1158 					STS_CNR, 0, 10 * 1000 * 1000);
1159 		if (retval) {
1160 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1161 				  retval);
1162 			spin_unlock_irq(&xhci->lock);
1163 			return retval;
1164 		}
1165 		/* step 1: restore register */
1166 		xhci_restore_registers(xhci);
1167 		/* step 2: initialize command ring buffer */
1168 		xhci_set_cmd_ring_deq(xhci);
1169 		/* step 3: restore state and start state*/
1170 		/* step 3: set CRS flag */
1171 		command = readl(&xhci->op_regs->command);
1172 		command |= CMD_CRS;
1173 		writel(command, &xhci->op_regs->command);
1174 		/*
1175 		 * Some controllers take up to 55+ ms to complete the controller
1176 		 * restore so setting the timeout to 100ms. Xhci specification
1177 		 * doesn't mention any timeout value.
1178 		 */
1179 		if (xhci_handshake(&xhci->op_regs->status,
1180 			      STS_RESTORE, 0, 100 * 1000)) {
1181 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182 			spin_unlock_irq(&xhci->lock);
1183 			return -ETIMEDOUT;
1184 		}
1185 	}
1186 
1187 	temp = readl(&xhci->op_regs->status);
1188 
1189 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1190 	if (temp & (STS_SRE | STS_HCE)) {
1191 		reinit_xhc = true;
1192 		if (!xhci->broken_suspend)
1193 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194 	}
1195 
1196 	if (reinit_xhc) {
1197 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198 				!(xhci_all_ports_seen_u0(xhci))) {
1199 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1200 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201 				"Compliance Mode Recovery Timer deleted!");
1202 		}
1203 
1204 		/* Let the USB core know _both_ roothubs lost power. */
1205 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206 		if (xhci->shared_hcd)
1207 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208 
1209 		xhci_dbg(xhci, "Stop HCD\n");
1210 		xhci_halt(xhci);
1211 		xhci_zero_64b_regs(xhci);
1212 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213 		spin_unlock_irq(&xhci->lock);
1214 		if (retval)
1215 			return retval;
1216 		xhci_cleanup_msix(xhci);
1217 
1218 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219 		temp = readl(&xhci->op_regs->status);
1220 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221 		temp = readl(&xhci->ir_set->irq_pending);
1222 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1223 
1224 		xhci_dbg(xhci, "cleaning up memory\n");
1225 		xhci_mem_cleanup(xhci);
1226 		xhci_debugfs_exit(xhci);
1227 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228 			    readl(&xhci->op_regs->status));
1229 
1230 		/* USB core calls the PCI reinit and start functions twice:
1231 		 * first with the primary HCD, and then with the secondary HCD.
1232 		 * If we don't do the same, the host will never be started.
1233 		 */
1234 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235 		retval = xhci_init(hcd);
1236 		if (retval)
1237 			return retval;
1238 		comp_timer_running = true;
1239 
1240 		xhci_dbg(xhci, "Start the primary HCD\n");
1241 		retval = xhci_run(hcd);
1242 		if (!retval && xhci->shared_hcd) {
1243 			xhci_dbg(xhci, "Start the secondary HCD\n");
1244 			retval = xhci_run(xhci->shared_hcd);
1245 		}
1246 
1247 		hcd->state = HC_STATE_SUSPENDED;
1248 		if (xhci->shared_hcd)
1249 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250 		goto done;
1251 	}
1252 
1253 	/* step 4: set Run/Stop bit */
1254 	command = readl(&xhci->op_regs->command);
1255 	command |= CMD_RUN;
1256 	writel(command, &xhci->op_regs->command);
1257 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258 		  0, 250 * 1000);
1259 
1260 	/* step 5: walk topology and initialize portsc,
1261 	 * portpmsc and portli
1262 	 */
1263 	/* this is done in bus_resume */
1264 
1265 	/* step 6: restart each of the previously
1266 	 * Running endpoints by ringing their doorbells
1267 	 */
1268 
1269 	spin_unlock_irq(&xhci->lock);
1270 
1271 	xhci_dbc_resume(xhci);
1272 
1273  done:
1274 	if (retval == 0) {
1275 		/*
1276 		 * Resume roothubs only if there are pending events.
1277 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278 		 * the first wake signalling failed, give it that chance.
1279 		 */
1280 		pending_portevent = xhci_pending_portevent(xhci);
1281 		if (!pending_portevent) {
1282 			msleep(120);
1283 			pending_portevent = xhci_pending_portevent(xhci);
1284 		}
1285 
1286 		if (pending_portevent) {
1287 			if (xhci->shared_hcd)
1288 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1289 			usb_hcd_resume_root_hub(hcd);
1290 		}
1291 	}
1292 	/*
1293 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1294 	 * be re-initialized Always after a system resume. Ports are subject
1295 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1296 	 * ports have entered previously to U0 before system's suspension.
1297 	 */
1298 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299 		compliance_mode_recovery_timer_init(xhci);
1300 
1301 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303 
1304 	/* Re-enable port polling. */
1305 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306 		 __func__, hcd->self.busnum);
1307 	if (xhci->shared_hcd) {
1308 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1310 	}
1311 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312 	usb_hcd_poll_rh_status(hcd);
1313 
1314 	return retval;
1315 }
1316 EXPORT_SYMBOL_GPL(xhci_resume);
1317 #endif	/* CONFIG_PM */
1318 
1319 /*-------------------------------------------------------------------------*/
1320 
1321 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322 {
1323 	void *temp;
1324 	int ret = 0;
1325 	unsigned int buf_len;
1326 	enum dma_data_direction dir;
1327 
1328 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329 	buf_len = urb->transfer_buffer_length;
1330 
1331 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332 			    dev_to_node(hcd->self.sysdev));
1333 
1334 	if (usb_urb_dir_out(urb))
1335 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336 				   temp, buf_len, 0);
1337 
1338 	urb->transfer_buffer = temp;
1339 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340 					   urb->transfer_buffer,
1341 					   urb->transfer_buffer_length,
1342 					   dir);
1343 
1344 	if (dma_mapping_error(hcd->self.sysdev,
1345 			      urb->transfer_dma)) {
1346 		ret = -EAGAIN;
1347 		kfree(temp);
1348 	} else {
1349 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356 					  struct urb *urb)
1357 {
1358 	bool ret = false;
1359 	unsigned int i;
1360 	unsigned int len = 0;
1361 	unsigned int trb_size;
1362 	unsigned int max_pkt;
1363 	struct scatterlist *sg;
1364 	struct scatterlist *tail_sg;
1365 
1366 	tail_sg = urb->sg;
1367 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368 
1369 	if (!urb->num_sgs)
1370 		return ret;
1371 
1372 	if (urb->dev->speed >= USB_SPEED_SUPER)
1373 		trb_size = TRB_CACHE_SIZE_SS;
1374 	else
1375 		trb_size = TRB_CACHE_SIZE_HS;
1376 
1377 	if (urb->transfer_buffer_length != 0 &&
1378 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380 			len = len + sg->length;
1381 			if (i > trb_size - 2) {
1382 				len = len - tail_sg->length;
1383 				if (len < max_pkt) {
1384 					ret = true;
1385 					break;
1386 				}
1387 
1388 				tail_sg = sg_next(tail_sg);
1389 			}
1390 		}
1391 	}
1392 	return ret;
1393 }
1394 
1395 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396 {
1397 	unsigned int len;
1398 	unsigned int buf_len;
1399 	enum dma_data_direction dir;
1400 
1401 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402 
1403 	buf_len = urb->transfer_buffer_length;
1404 
1405 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407 		dma_unmap_single(hcd->self.sysdev,
1408 				 urb->transfer_dma,
1409 				 urb->transfer_buffer_length,
1410 				 dir);
1411 
1412 	if (usb_urb_dir_in(urb)) {
1413 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414 					   urb->transfer_buffer,
1415 					   buf_len,
1416 					   0);
1417 		if (len != buf_len) {
1418 			xhci_dbg(hcd_to_xhci(hcd),
1419 				 "Copy from tmp buf to urb sg list failed\n");
1420 			urb->actual_length = len;
1421 		}
1422 	}
1423 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424 	kfree(urb->transfer_buffer);
1425 	urb->transfer_buffer = NULL;
1426 }
1427 
1428 /*
1429  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430  * we'll copy the actual data into the TRB address register. This is limited to
1431  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433  */
1434 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435 				gfp_t mem_flags)
1436 {
1437 	struct xhci_hcd *xhci;
1438 
1439 	xhci = hcd_to_xhci(hcd);
1440 
1441 	if (xhci_urb_suitable_for_idt(urb))
1442 		return 0;
1443 
1444 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445 		if (xhci_urb_temp_buffer_required(hcd, urb))
1446 			return xhci_map_temp_buffer(hcd, urb);
1447 	}
1448 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449 }
1450 
1451 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453 	struct xhci_hcd *xhci;
1454 	bool unmap_temp_buf = false;
1455 
1456 	xhci = hcd_to_xhci(hcd);
1457 
1458 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459 		unmap_temp_buf = true;
1460 
1461 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462 		xhci_unmap_temp_buf(hcd, urb);
1463 	else
1464 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1465 }
1466 
1467 /**
1468  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1470  * value to right shift 1 for the bitmask.
1471  *
1472  * Index  = (epnum * 2) + direction - 1,
1473  * where direction = 0 for OUT, 1 for IN.
1474  * For control endpoints, the IN index is used (OUT index is unused), so
1475  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476  */
1477 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478 {
1479 	unsigned int index;
1480 	if (usb_endpoint_xfer_control(desc))
1481 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1482 	else
1483 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485 	return index;
1486 }
1487 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488 
1489 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490  * address from the XHCI endpoint index.
1491  */
1492 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493 {
1494 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496 	return direction | number;
1497 }
1498 
1499 /* Find the flag for this endpoint (for use in the control context).  Use the
1500  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1501  * bit 1, etc.
1502  */
1503 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504 {
1505 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1506 }
1507 
1508 /* Compute the last valid endpoint context index.  Basically, this is the
1509  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1510  * we find the most significant bit set in the added contexts flags.
1511  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513  */
1514 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515 {
1516 	return fls(added_ctxs) - 1;
1517 }
1518 
1519 /* Returns 1 if the arguments are OK;
1520  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521  */
1522 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524 		const char *func) {
1525 	struct xhci_hcd	*xhci;
1526 	struct xhci_virt_device	*virt_dev;
1527 
1528 	if (!hcd || (check_ep && !ep) || !udev) {
1529 		pr_debug("xHCI %s called with invalid args\n", func);
1530 		return -EINVAL;
1531 	}
1532 	if (!udev->parent) {
1533 		pr_debug("xHCI %s called for root hub\n", func);
1534 		return 0;
1535 	}
1536 
1537 	xhci = hcd_to_xhci(hcd);
1538 	if (check_virt_dev) {
1539 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541 					func);
1542 			return -EINVAL;
1543 		}
1544 
1545 		virt_dev = xhci->devs[udev->slot_id];
1546 		if (virt_dev->udev != udev) {
1547 			xhci_dbg(xhci, "xHCI %s called with udev and "
1548 					  "virt_dev does not match\n", func);
1549 			return -EINVAL;
1550 		}
1551 	}
1552 
1553 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1554 		return -ENODEV;
1555 
1556 	return 1;
1557 }
1558 
1559 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560 		struct usb_device *udev, struct xhci_command *command,
1561 		bool ctx_change, bool must_succeed);
1562 
1563 /*
1564  * Full speed devices may have a max packet size greater than 8 bytes, but the
1565  * USB core doesn't know that until it reads the first 8 bytes of the
1566  * descriptor.  If the usb_device's max packet size changes after that point,
1567  * we need to issue an evaluate context command and wait on it.
1568  */
1569 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571 {
1572 	struct xhci_container_ctx *out_ctx;
1573 	struct xhci_input_control_ctx *ctrl_ctx;
1574 	struct xhci_ep_ctx *ep_ctx;
1575 	struct xhci_command *command;
1576 	int max_packet_size;
1577 	int hw_max_packet_size;
1578 	int ret = 0;
1579 
1580 	out_ctx = xhci->devs[slot_id]->out_ctx;
1581 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584 	if (hw_max_packet_size != max_packet_size) {
1585 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1586 				"Max Packet Size for ep 0 changed.");
1587 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588 				"Max packet size in usb_device = %d",
1589 				max_packet_size);
1590 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1591 				"Max packet size in xHCI HW = %d",
1592 				hw_max_packet_size);
1593 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1594 				"Issuing evaluate context command.");
1595 
1596 		/* Set up the input context flags for the command */
1597 		/* FIXME: This won't work if a non-default control endpoint
1598 		 * changes max packet sizes.
1599 		 */
1600 
1601 		command = xhci_alloc_command(xhci, true, mem_flags);
1602 		if (!command)
1603 			return -ENOMEM;
1604 
1605 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607 		if (!ctrl_ctx) {
1608 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609 					__func__);
1610 			ret = -ENOMEM;
1611 			goto command_cleanup;
1612 		}
1613 		/* Set up the modified control endpoint 0 */
1614 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615 				xhci->devs[slot_id]->out_ctx, ep_index);
1616 
1617 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621 
1622 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623 		ctrl_ctx->drop_flags = 0;
1624 
1625 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1626 				true, false);
1627 
1628 		/* Clean up the input context for later use by bandwidth
1629 		 * functions.
1630 		 */
1631 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632 command_cleanup:
1633 		kfree(command->completion);
1634 		kfree(command);
1635 	}
1636 	return ret;
1637 }
1638 
1639 /*
1640  * non-error returns are a promise to giveback() the urb later
1641  * we drop ownership so next owner (or urb unlink) can get it
1642  */
1643 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644 {
1645 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1646 	unsigned long flags;
1647 	int ret = 0;
1648 	unsigned int slot_id, ep_index;
1649 	unsigned int *ep_state;
1650 	struct urb_priv	*urb_priv;
1651 	int num_tds;
1652 
1653 	if (!urb)
1654 		return -EINVAL;
1655 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656 					true, true, __func__);
1657 	if (ret <= 0)
1658 		return ret ? ret : -EINVAL;
1659 
1660 	slot_id = urb->dev->slot_id;
1661 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663 
1664 	if (!HCD_HW_ACCESSIBLE(hcd))
1665 		return -ESHUTDOWN;
1666 
1667 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669 		return -ENODEV;
1670 	}
1671 
1672 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673 		num_tds = urb->number_of_packets;
1674 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675 	    urb->transfer_buffer_length > 0 &&
1676 	    urb->transfer_flags & URB_ZERO_PACKET &&
1677 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678 		num_tds = 2;
1679 	else
1680 		num_tds = 1;
1681 
1682 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1683 	if (!urb_priv)
1684 		return -ENOMEM;
1685 
1686 	urb_priv->num_tds = num_tds;
1687 	urb_priv->num_tds_done = 0;
1688 	urb->hcpriv = urb_priv;
1689 
1690 	trace_xhci_urb_enqueue(urb);
1691 
1692 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693 		/* Check to see if the max packet size for the default control
1694 		 * endpoint changed during FS device enumeration
1695 		 */
1696 		if (urb->dev->speed == USB_SPEED_FULL) {
1697 			ret = xhci_check_maxpacket(xhci, slot_id,
1698 					ep_index, urb, mem_flags);
1699 			if (ret < 0) {
1700 				xhci_urb_free_priv(urb_priv);
1701 				urb->hcpriv = NULL;
1702 				return ret;
1703 			}
1704 		}
1705 	}
1706 
1707 	spin_lock_irqsave(&xhci->lock, flags);
1708 
1709 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1710 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711 			 urb->ep->desc.bEndpointAddress, urb);
1712 		ret = -ESHUTDOWN;
1713 		goto free_priv;
1714 	}
1715 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717 			  *ep_state);
1718 		ret = -EINVAL;
1719 		goto free_priv;
1720 	}
1721 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723 		ret = -EINVAL;
1724 		goto free_priv;
1725 	}
1726 
1727 	switch (usb_endpoint_type(&urb->ep->desc)) {
1728 
1729 	case USB_ENDPOINT_XFER_CONTROL:
1730 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731 					 slot_id, ep_index);
1732 		break;
1733 	case USB_ENDPOINT_XFER_BULK:
1734 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735 					 slot_id, ep_index);
1736 		break;
1737 	case USB_ENDPOINT_XFER_INT:
1738 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739 				slot_id, ep_index);
1740 		break;
1741 	case USB_ENDPOINT_XFER_ISOC:
1742 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743 				slot_id, ep_index);
1744 	}
1745 
1746 	if (ret) {
1747 free_priv:
1748 		xhci_urb_free_priv(urb_priv);
1749 		urb->hcpriv = NULL;
1750 	}
1751 	spin_unlock_irqrestore(&xhci->lock, flags);
1752 	return ret;
1753 }
1754 
1755 /*
1756  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1757  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1758  * should pick up where it left off in the TD, unless a Set Transfer Ring
1759  * Dequeue Pointer is issued.
1760  *
1761  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762  * the ring.  Since the ring is a contiguous structure, they can't be physically
1763  * removed.  Instead, there are two options:
1764  *
1765  *  1) If the HC is in the middle of processing the URB to be canceled, we
1766  *     simply move the ring's dequeue pointer past those TRBs using the Set
1767  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1768  *     when drivers timeout on the last submitted URB and attempt to cancel.
1769  *
1770  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1772  *     HC will need to invalidate the any TRBs it has cached after the stop
1773  *     endpoint command, as noted in the xHCI 0.95 errata.
1774  *
1775  *  3) The TD may have completed by the time the Stop Endpoint Command
1776  *     completes, so software needs to handle that case too.
1777  *
1778  * This function should protect against the TD enqueueing code ringing the
1779  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780  * It also needs to account for multiple cancellations on happening at the same
1781  * time for the same endpoint.
1782  *
1783  * Note that this function can be called in any context, or so says
1784  * usb_hcd_unlink_urb()
1785  */
1786 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787 {
1788 	unsigned long flags;
1789 	int ret, i;
1790 	u32 temp;
1791 	struct xhci_hcd *xhci;
1792 	struct urb_priv	*urb_priv;
1793 	struct xhci_td *td;
1794 	unsigned int ep_index;
1795 	struct xhci_ring *ep_ring;
1796 	struct xhci_virt_ep *ep;
1797 	struct xhci_command *command;
1798 	struct xhci_virt_device *vdev;
1799 
1800 	xhci = hcd_to_xhci(hcd);
1801 	spin_lock_irqsave(&xhci->lock, flags);
1802 
1803 	trace_xhci_urb_dequeue(urb);
1804 
1805 	/* Make sure the URB hasn't completed or been unlinked already */
1806 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807 	if (ret)
1808 		goto done;
1809 
1810 	/* give back URB now if we can't queue it for cancel */
1811 	vdev = xhci->devs[urb->dev->slot_id];
1812 	urb_priv = urb->hcpriv;
1813 	if (!vdev || !urb_priv)
1814 		goto err_giveback;
1815 
1816 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817 	ep = &vdev->eps[ep_index];
1818 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819 	if (!ep || !ep_ring)
1820 		goto err_giveback;
1821 
1822 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823 	temp = readl(&xhci->op_regs->status);
1824 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825 		xhci_hc_died(xhci);
1826 		goto done;
1827 	}
1828 
1829 	/*
1830 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1831 	 * make sure none of the ring related pointers in this URB private data
1832 	 * are touched, such as td_list, otherwise we overwrite freed data
1833 	 */
1834 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837 			td = &urb_priv->td[i];
1838 			if (!list_empty(&td->cancelled_td_list))
1839 				list_del_init(&td->cancelled_td_list);
1840 		}
1841 		goto err_giveback;
1842 	}
1843 
1844 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846 				"HC halted, freeing TD manually.");
1847 		for (i = urb_priv->num_tds_done;
1848 		     i < urb_priv->num_tds;
1849 		     i++) {
1850 			td = &urb_priv->td[i];
1851 			if (!list_empty(&td->td_list))
1852 				list_del_init(&td->td_list);
1853 			if (!list_empty(&td->cancelled_td_list))
1854 				list_del_init(&td->cancelled_td_list);
1855 		}
1856 		goto err_giveback;
1857 	}
1858 
1859 	i = urb_priv->num_tds_done;
1860 	if (i < urb_priv->num_tds)
1861 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862 				"Cancel URB %p, dev %s, ep 0x%x, "
1863 				"starting at offset 0x%llx",
1864 				urb, urb->dev->devpath,
1865 				urb->ep->desc.bEndpointAddress,
1866 				(unsigned long long) xhci_trb_virt_to_dma(
1867 					urb_priv->td[i].start_seg,
1868 					urb_priv->td[i].first_trb));
1869 
1870 	for (; i < urb_priv->num_tds; i++) {
1871 		td = &urb_priv->td[i];
1872 		/* TD can already be on cancelled list if ep halted on it */
1873 		if (list_empty(&td->cancelled_td_list)) {
1874 			td->cancel_status = TD_DIRTY;
1875 			list_add_tail(&td->cancelled_td_list,
1876 				      &ep->cancelled_td_list);
1877 		}
1878 	}
1879 
1880 	/* Queue a stop endpoint command, but only if this is
1881 	 * the first cancellation to be handled.
1882 	 */
1883 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885 		if (!command) {
1886 			ret = -ENOMEM;
1887 			goto done;
1888 		}
1889 		ep->ep_state |= EP_STOP_CMD_PENDING;
1890 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891 					 ep_index, 0);
1892 		xhci_ring_cmd_db(xhci);
1893 	}
1894 done:
1895 	spin_unlock_irqrestore(&xhci->lock, flags);
1896 	return ret;
1897 
1898 err_giveback:
1899 	if (urb_priv)
1900 		xhci_urb_free_priv(urb_priv);
1901 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1902 	spin_unlock_irqrestore(&xhci->lock, flags);
1903 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904 	return ret;
1905 }
1906 
1907 /* Drop an endpoint from a new bandwidth configuration for this device.
1908  * Only one call to this function is allowed per endpoint before
1909  * check_bandwidth() or reset_bandwidth() must be called.
1910  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911  * add the endpoint to the schedule with possibly new parameters denoted by a
1912  * different endpoint descriptor in usb_host_endpoint.
1913  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914  * not allowed.
1915  *
1916  * The USB core will not allow URBs to be queued to an endpoint that is being
1917  * disabled, so there's no need for mutual exclusion to protect
1918  * the xhci->devs[slot_id] structure.
1919  */
1920 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921 		       struct usb_host_endpoint *ep)
1922 {
1923 	struct xhci_hcd *xhci;
1924 	struct xhci_container_ctx *in_ctx, *out_ctx;
1925 	struct xhci_input_control_ctx *ctrl_ctx;
1926 	unsigned int ep_index;
1927 	struct xhci_ep_ctx *ep_ctx;
1928 	u32 drop_flag;
1929 	u32 new_add_flags, new_drop_flags;
1930 	int ret;
1931 
1932 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933 	if (ret <= 0)
1934 		return ret;
1935 	xhci = hcd_to_xhci(hcd);
1936 	if (xhci->xhc_state & XHCI_STATE_DYING)
1937 		return -ENODEV;
1938 
1939 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943 				__func__, drop_flag);
1944 		return 0;
1945 	}
1946 
1947 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950 	if (!ctrl_ctx) {
1951 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952 				__func__);
1953 		return 0;
1954 	}
1955 
1956 	ep_index = xhci_get_endpoint_index(&ep->desc);
1957 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958 	/* If the HC already knows the endpoint is disabled,
1959 	 * or the HCD has noted it is disabled, ignore this request
1960 	 */
1961 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1962 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1963 	    xhci_get_endpoint_flag(&ep->desc)) {
1964 		/* Do not warn when called after a usb_device_reset */
1965 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967 				  __func__, ep);
1968 		return 0;
1969 	}
1970 
1971 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973 
1974 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976 
1977 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1978 
1979 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980 
1981 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982 			(unsigned int) ep->desc.bEndpointAddress,
1983 			udev->slot_id,
1984 			(unsigned int) new_drop_flags,
1985 			(unsigned int) new_add_flags);
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989 
1990 /* Add an endpoint to a new possible bandwidth configuration for this device.
1991  * Only one call to this function is allowed per endpoint before
1992  * check_bandwidth() or reset_bandwidth() must be called.
1993  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994  * add the endpoint to the schedule with possibly new parameters denoted by a
1995  * different endpoint descriptor in usb_host_endpoint.
1996  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997  * not allowed.
1998  *
1999  * The USB core will not allow URBs to be queued to an endpoint until the
2000  * configuration or alt setting is installed in the device, so there's no need
2001  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002  */
2003 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004 		      struct usb_host_endpoint *ep)
2005 {
2006 	struct xhci_hcd *xhci;
2007 	struct xhci_container_ctx *in_ctx;
2008 	unsigned int ep_index;
2009 	struct xhci_input_control_ctx *ctrl_ctx;
2010 	struct xhci_ep_ctx *ep_ctx;
2011 	u32 added_ctxs;
2012 	u32 new_add_flags, new_drop_flags;
2013 	struct xhci_virt_device *virt_dev;
2014 	int ret = 0;
2015 
2016 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017 	if (ret <= 0) {
2018 		/* So we won't queue a reset ep command for a root hub */
2019 		ep->hcpriv = NULL;
2020 		return ret;
2021 	}
2022 	xhci = hcd_to_xhci(hcd);
2023 	if (xhci->xhc_state & XHCI_STATE_DYING)
2024 		return -ENODEV;
2025 
2026 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2027 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028 		/* FIXME when we have to issue an evaluate endpoint command to
2029 		 * deal with ep0 max packet size changing once we get the
2030 		 * descriptors
2031 		 */
2032 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033 				__func__, added_ctxs);
2034 		return 0;
2035 	}
2036 
2037 	virt_dev = xhci->devs[udev->slot_id];
2038 	in_ctx = virt_dev->in_ctx;
2039 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040 	if (!ctrl_ctx) {
2041 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042 				__func__);
2043 		return 0;
2044 	}
2045 
2046 	ep_index = xhci_get_endpoint_index(&ep->desc);
2047 	/* If this endpoint is already in use, and the upper layers are trying
2048 	 * to add it again without dropping it, reject the addition.
2049 	 */
2050 	if (virt_dev->eps[ep_index].ring &&
2051 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2052 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053 				"without dropping it.\n",
2054 				(unsigned int) ep->desc.bEndpointAddress);
2055 		return -EINVAL;
2056 	}
2057 
2058 	/* If the HCD has already noted the endpoint is enabled,
2059 	 * ignore this request.
2060 	 */
2061 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2062 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063 				__func__, ep);
2064 		return 0;
2065 	}
2066 
2067 	/*
2068 	 * Configuration and alternate setting changes must be done in
2069 	 * process context, not interrupt context (or so documenation
2070 	 * for usb_set_interface() and usb_set_configuration() claim).
2071 	 */
2072 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074 				__func__, ep->desc.bEndpointAddress);
2075 		return -ENOMEM;
2076 	}
2077 
2078 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080 
2081 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2082 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2083 	 * this re-adds a new state for the endpoint from the new endpoint
2084 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2085 	 * drop flags alone.
2086 	 */
2087 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088 
2089 	/* Store the usb_device pointer for later use */
2090 	ep->hcpriv = udev;
2091 
2092 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093 	trace_xhci_add_endpoint(ep_ctx);
2094 
2095 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096 			(unsigned int) ep->desc.bEndpointAddress,
2097 			udev->slot_id,
2098 			(unsigned int) new_drop_flags,
2099 			(unsigned int) new_add_flags);
2100 	return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103 
2104 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105 {
2106 	struct xhci_input_control_ctx *ctrl_ctx;
2107 	struct xhci_ep_ctx *ep_ctx;
2108 	struct xhci_slot_ctx *slot_ctx;
2109 	int i;
2110 
2111 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112 	if (!ctrl_ctx) {
2113 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114 				__func__);
2115 		return;
2116 	}
2117 
2118 	/* When a device's add flag and drop flag are zero, any subsequent
2119 	 * configure endpoint command will leave that endpoint's state
2120 	 * untouched.  Make sure we don't leave any old state in the input
2121 	 * endpoint contexts.
2122 	 */
2123 	ctrl_ctx->drop_flags = 0;
2124 	ctrl_ctx->add_flags = 0;
2125 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127 	/* Endpoint 0 is always valid */
2128 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129 	for (i = 1; i < 31; i++) {
2130 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131 		ep_ctx->ep_info = 0;
2132 		ep_ctx->ep_info2 = 0;
2133 		ep_ctx->deq = 0;
2134 		ep_ctx->tx_info = 0;
2135 	}
2136 }
2137 
2138 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139 		struct usb_device *udev, u32 *cmd_status)
2140 {
2141 	int ret;
2142 
2143 	switch (*cmd_status) {
2144 	case COMP_COMMAND_ABORTED:
2145 	case COMP_COMMAND_RING_STOPPED:
2146 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147 		ret = -ETIME;
2148 		break;
2149 	case COMP_RESOURCE_ERROR:
2150 		dev_warn(&udev->dev,
2151 			 "Not enough host controller resources for new device state.\n");
2152 		ret = -ENOMEM;
2153 		/* FIXME: can we allocate more resources for the HC? */
2154 		break;
2155 	case COMP_BANDWIDTH_ERROR:
2156 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2157 		dev_warn(&udev->dev,
2158 			 "Not enough bandwidth for new device state.\n");
2159 		ret = -ENOSPC;
2160 		/* FIXME: can we go back to the old state? */
2161 		break;
2162 	case COMP_TRB_ERROR:
2163 		/* the HCD set up something wrong */
2164 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165 				"add flag = 1, "
2166 				"and endpoint is not disabled.\n");
2167 		ret = -EINVAL;
2168 		break;
2169 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170 		dev_warn(&udev->dev,
2171 			 "ERROR: Incompatible device for endpoint configure command.\n");
2172 		ret = -ENODEV;
2173 		break;
2174 	case COMP_SUCCESS:
2175 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176 				"Successful Endpoint Configure command");
2177 		ret = 0;
2178 		break;
2179 	default:
2180 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181 				*cmd_status);
2182 		ret = -EINVAL;
2183 		break;
2184 	}
2185 	return ret;
2186 }
2187 
2188 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189 		struct usb_device *udev, u32 *cmd_status)
2190 {
2191 	int ret;
2192 
2193 	switch (*cmd_status) {
2194 	case COMP_COMMAND_ABORTED:
2195 	case COMP_COMMAND_RING_STOPPED:
2196 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197 		ret = -ETIME;
2198 		break;
2199 	case COMP_PARAMETER_ERROR:
2200 		dev_warn(&udev->dev,
2201 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2202 		ret = -EINVAL;
2203 		break;
2204 	case COMP_SLOT_NOT_ENABLED_ERROR:
2205 		dev_warn(&udev->dev,
2206 			"WARN: slot not enabled for evaluate context command.\n");
2207 		ret = -EINVAL;
2208 		break;
2209 	case COMP_CONTEXT_STATE_ERROR:
2210 		dev_warn(&udev->dev,
2211 			"WARN: invalid context state for evaluate context command.\n");
2212 		ret = -EINVAL;
2213 		break;
2214 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215 		dev_warn(&udev->dev,
2216 			"ERROR: Incompatible device for evaluate context command.\n");
2217 		ret = -ENODEV;
2218 		break;
2219 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220 		/* Max Exit Latency too large error */
2221 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222 		ret = -EINVAL;
2223 		break;
2224 	case COMP_SUCCESS:
2225 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226 				"Successful evaluate context command");
2227 		ret = 0;
2228 		break;
2229 	default:
2230 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231 			*cmd_status);
2232 		ret = -EINVAL;
2233 		break;
2234 	}
2235 	return ret;
2236 }
2237 
2238 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239 		struct xhci_input_control_ctx *ctrl_ctx)
2240 {
2241 	u32 valid_add_flags;
2242 	u32 valid_drop_flags;
2243 
2244 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2245 	 * (bit 1).  The default control endpoint is added during the Address
2246 	 * Device command and is never removed until the slot is disabled.
2247 	 */
2248 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250 
2251 	/* Use hweight32 to count the number of ones in the add flags, or
2252 	 * number of endpoints added.  Don't count endpoints that are changed
2253 	 * (both added and dropped).
2254 	 */
2255 	return hweight32(valid_add_flags) -
2256 		hweight32(valid_add_flags & valid_drop_flags);
2257 }
2258 
2259 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260 		struct xhci_input_control_ctx *ctrl_ctx)
2261 {
2262 	u32 valid_add_flags;
2263 	u32 valid_drop_flags;
2264 
2265 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2267 
2268 	return hweight32(valid_drop_flags) -
2269 		hweight32(valid_add_flags & valid_drop_flags);
2270 }
2271 
2272 /*
2273  * We need to reserve the new number of endpoints before the configure endpoint
2274  * command completes.  We can't subtract the dropped endpoints from the number
2275  * of active endpoints until the command completes because we can oversubscribe
2276  * the host in this case:
2277  *
2278  *  - the first configure endpoint command drops more endpoints than it adds
2279  *  - a second configure endpoint command that adds more endpoints is queued
2280  *  - the first configure endpoint command fails, so the config is unchanged
2281  *  - the second command may succeed, even though there isn't enough resources
2282  *
2283  * Must be called with xhci->lock held.
2284  */
2285 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286 		struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288 	u32 added_eps;
2289 
2290 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 				"Not enough ep ctxs: "
2294 				"%u active, need to add %u, limit is %u.",
2295 				xhci->num_active_eps, added_eps,
2296 				xhci->limit_active_eps);
2297 		return -ENOMEM;
2298 	}
2299 	xhci->num_active_eps += added_eps;
2300 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301 			"Adding %u ep ctxs, %u now active.", added_eps,
2302 			xhci->num_active_eps);
2303 	return 0;
2304 }
2305 
2306 /*
2307  * The configure endpoint was failed by the xHC for some other reason, so we
2308  * need to revert the resources that failed configuration would have used.
2309  *
2310  * Must be called with xhci->lock held.
2311  */
2312 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313 		struct xhci_input_control_ctx *ctrl_ctx)
2314 {
2315 	u32 num_failed_eps;
2316 
2317 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318 	xhci->num_active_eps -= num_failed_eps;
2319 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320 			"Removing %u failed ep ctxs, %u now active.",
2321 			num_failed_eps,
2322 			xhci->num_active_eps);
2323 }
2324 
2325 /*
2326  * Now that the command has completed, clean up the active endpoint count by
2327  * subtracting out the endpoints that were dropped (but not changed).
2328  *
2329  * Must be called with xhci->lock held.
2330  */
2331 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332 		struct xhci_input_control_ctx *ctrl_ctx)
2333 {
2334 	u32 num_dropped_eps;
2335 
2336 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337 	xhci->num_active_eps -= num_dropped_eps;
2338 	if (num_dropped_eps)
2339 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 				"Removing %u dropped ep ctxs, %u now active.",
2341 				num_dropped_eps,
2342 				xhci->num_active_eps);
2343 }
2344 
2345 static unsigned int xhci_get_block_size(struct usb_device *udev)
2346 {
2347 	switch (udev->speed) {
2348 	case USB_SPEED_LOW:
2349 	case USB_SPEED_FULL:
2350 		return FS_BLOCK;
2351 	case USB_SPEED_HIGH:
2352 		return HS_BLOCK;
2353 	case USB_SPEED_SUPER:
2354 	case USB_SPEED_SUPER_PLUS:
2355 		return SS_BLOCK;
2356 	case USB_SPEED_UNKNOWN:
2357 	case USB_SPEED_WIRELESS:
2358 	default:
2359 		/* Should never happen */
2360 		return 1;
2361 	}
2362 }
2363 
2364 static unsigned int
2365 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366 {
2367 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368 		return LS_OVERHEAD;
2369 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370 		return FS_OVERHEAD;
2371 	return HS_OVERHEAD;
2372 }
2373 
2374 /* If we are changing a LS/FS device under a HS hub,
2375  * make sure (if we are activating a new TT) that the HS bus has enough
2376  * bandwidth for this new TT.
2377  */
2378 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379 		struct xhci_virt_device *virt_dev,
2380 		int old_active_eps)
2381 {
2382 	struct xhci_interval_bw_table *bw_table;
2383 	struct xhci_tt_bw_info *tt_info;
2384 
2385 	/* Find the bandwidth table for the root port this TT is attached to. */
2386 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387 	tt_info = virt_dev->tt_info;
2388 	/* If this TT already had active endpoints, the bandwidth for this TT
2389 	 * has already been added.  Removing all periodic endpoints (and thus
2390 	 * making the TT enactive) will only decrease the bandwidth used.
2391 	 */
2392 	if (old_active_eps)
2393 		return 0;
2394 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396 			return -ENOMEM;
2397 		return 0;
2398 	}
2399 	/* Not sure why we would have no new active endpoints...
2400 	 *
2401 	 * Maybe because of an Evaluate Context change for a hub update or a
2402 	 * control endpoint 0 max packet size change?
2403 	 * FIXME: skip the bandwidth calculation in that case.
2404 	 */
2405 	return 0;
2406 }
2407 
2408 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409 		struct xhci_virt_device *virt_dev)
2410 {
2411 	unsigned int bw_reserved;
2412 
2413 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415 		return -ENOMEM;
2416 
2417 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419 		return -ENOMEM;
2420 
2421 	return 0;
2422 }
2423 
2424 /*
2425  * This algorithm is a very conservative estimate of the worst-case scheduling
2426  * scenario for any one interval.  The hardware dynamically schedules the
2427  * packets, so we can't tell which microframe could be the limiting factor in
2428  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2429  *
2430  * Obviously, we can't solve an NP complete problem to find the minimum worst
2431  * case scenario.  Instead, we come up with an estimate that is no less than
2432  * the worst case bandwidth used for any one microframe, but may be an
2433  * over-estimate.
2434  *
2435  * We walk the requirements for each endpoint by interval, starting with the
2436  * smallest interval, and place packets in the schedule where there is only one
2437  * possible way to schedule packets for that interval.  In order to simplify
2438  * this algorithm, we record the largest max packet size for each interval, and
2439  * assume all packets will be that size.
2440  *
2441  * For interval 0, we obviously must schedule all packets for each interval.
2442  * The bandwidth for interval 0 is just the amount of data to be transmitted
2443  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444  * the number of packets).
2445  *
2446  * For interval 1, we have two possible microframes to schedule those packets
2447  * in.  For this algorithm, if we can schedule the same number of packets for
2448  * each possible scheduling opportunity (each microframe), we will do so.  The
2449  * remaining number of packets will be saved to be transmitted in the gaps in
2450  * the next interval's scheduling sequence.
2451  *
2452  * As we move those remaining packets to be scheduled with interval 2 packets,
2453  * we have to double the number of remaining packets to transmit.  This is
2454  * because the intervals are actually powers of 2, and we would be transmitting
2455  * the previous interval's packets twice in this interval.  We also have to be
2456  * sure that when we look at the largest max packet size for this interval, we
2457  * also look at the largest max packet size for the remaining packets and take
2458  * the greater of the two.
2459  *
2460  * The algorithm continues to evenly distribute packets in each scheduling
2461  * opportunity, and push the remaining packets out, until we get to the last
2462  * interval.  Then those packets and their associated overhead are just added
2463  * to the bandwidth used.
2464  */
2465 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466 		struct xhci_virt_device *virt_dev,
2467 		int old_active_eps)
2468 {
2469 	unsigned int bw_reserved;
2470 	unsigned int max_bandwidth;
2471 	unsigned int bw_used;
2472 	unsigned int block_size;
2473 	struct xhci_interval_bw_table *bw_table;
2474 	unsigned int packet_size = 0;
2475 	unsigned int overhead = 0;
2476 	unsigned int packets_transmitted = 0;
2477 	unsigned int packets_remaining = 0;
2478 	unsigned int i;
2479 
2480 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481 		return xhci_check_ss_bw(xhci, virt_dev);
2482 
2483 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484 		max_bandwidth = HS_BW_LIMIT;
2485 		/* Convert percent of bus BW reserved to blocks reserved */
2486 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487 	} else {
2488 		max_bandwidth = FS_BW_LIMIT;
2489 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490 	}
2491 
2492 	bw_table = virt_dev->bw_table;
2493 	/* We need to translate the max packet size and max ESIT payloads into
2494 	 * the units the hardware uses.
2495 	 */
2496 	block_size = xhci_get_block_size(virt_dev->udev);
2497 
2498 	/* If we are manipulating a LS/FS device under a HS hub, double check
2499 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2500 	 */
2501 	if (virt_dev->tt_info) {
2502 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503 				"Recalculating BW for rootport %u",
2504 				virt_dev->real_port);
2505 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507 					"newly activated TT.\n");
2508 			return -ENOMEM;
2509 		}
2510 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511 				"Recalculating BW for TT slot %u port %u",
2512 				virt_dev->tt_info->slot_id,
2513 				virt_dev->tt_info->ttport);
2514 	} else {
2515 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516 				"Recalculating BW for rootport %u",
2517 				virt_dev->real_port);
2518 	}
2519 
2520 	/* Add in how much bandwidth will be used for interval zero, or the
2521 	 * rounded max ESIT payload + number of packets * largest overhead.
2522 	 */
2523 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524 		bw_table->interval_bw[0].num_packets *
2525 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526 
2527 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528 		unsigned int bw_added;
2529 		unsigned int largest_mps;
2530 		unsigned int interval_overhead;
2531 
2532 		/*
2533 		 * How many packets could we transmit in this interval?
2534 		 * If packets didn't fit in the previous interval, we will need
2535 		 * to transmit that many packets twice within this interval.
2536 		 */
2537 		packets_remaining = 2 * packets_remaining +
2538 			bw_table->interval_bw[i].num_packets;
2539 
2540 		/* Find the largest max packet size of this or the previous
2541 		 * interval.
2542 		 */
2543 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2544 			largest_mps = 0;
2545 		else {
2546 			struct xhci_virt_ep *virt_ep;
2547 			struct list_head *ep_entry;
2548 
2549 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2550 			virt_ep = list_entry(ep_entry,
2551 					struct xhci_virt_ep, bw_endpoint_list);
2552 			/* Convert to blocks, rounding up */
2553 			largest_mps = DIV_ROUND_UP(
2554 					virt_ep->bw_info.max_packet_size,
2555 					block_size);
2556 		}
2557 		if (largest_mps > packet_size)
2558 			packet_size = largest_mps;
2559 
2560 		/* Use the larger overhead of this or the previous interval. */
2561 		interval_overhead = xhci_get_largest_overhead(
2562 				&bw_table->interval_bw[i]);
2563 		if (interval_overhead > overhead)
2564 			overhead = interval_overhead;
2565 
2566 		/* How many packets can we evenly distribute across
2567 		 * (1 << (i + 1)) possible scheduling opportunities?
2568 		 */
2569 		packets_transmitted = packets_remaining >> (i + 1);
2570 
2571 		/* Add in the bandwidth used for those scheduled packets */
2572 		bw_added = packets_transmitted * (overhead + packet_size);
2573 
2574 		/* How many packets do we have remaining to transmit? */
2575 		packets_remaining = packets_remaining % (1 << (i + 1));
2576 
2577 		/* What largest max packet size should those packets have? */
2578 		/* If we've transmitted all packets, don't carry over the
2579 		 * largest packet size.
2580 		 */
2581 		if (packets_remaining == 0) {
2582 			packet_size = 0;
2583 			overhead = 0;
2584 		} else if (packets_transmitted > 0) {
2585 			/* Otherwise if we do have remaining packets, and we've
2586 			 * scheduled some packets in this interval, take the
2587 			 * largest max packet size from endpoints with this
2588 			 * interval.
2589 			 */
2590 			packet_size = largest_mps;
2591 			overhead = interval_overhead;
2592 		}
2593 		/* Otherwise carry over packet_size and overhead from the last
2594 		 * time we had a remainder.
2595 		 */
2596 		bw_used += bw_added;
2597 		if (bw_used > max_bandwidth) {
2598 			xhci_warn(xhci, "Not enough bandwidth. "
2599 					"Proposed: %u, Max: %u\n",
2600 				bw_used, max_bandwidth);
2601 			return -ENOMEM;
2602 		}
2603 	}
2604 	/*
2605 	 * Ok, we know we have some packets left over after even-handedly
2606 	 * scheduling interval 15.  We don't know which microframes they will
2607 	 * fit into, so we over-schedule and say they will be scheduled every
2608 	 * microframe.
2609 	 */
2610 	if (packets_remaining > 0)
2611 		bw_used += overhead + packet_size;
2612 
2613 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614 		unsigned int port_index = virt_dev->real_port - 1;
2615 
2616 		/* OK, we're manipulating a HS device attached to a
2617 		 * root port bandwidth domain.  Include the number of active TTs
2618 		 * in the bandwidth used.
2619 		 */
2620 		bw_used += TT_HS_OVERHEAD *
2621 			xhci->rh_bw[port_index].num_active_tts;
2622 	}
2623 
2624 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626 		"Available: %u " "percent",
2627 		bw_used, max_bandwidth, bw_reserved,
2628 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2629 		max_bandwidth);
2630 
2631 	bw_used += bw_reserved;
2632 	if (bw_used > max_bandwidth) {
2633 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634 				bw_used, max_bandwidth);
2635 		return -ENOMEM;
2636 	}
2637 
2638 	bw_table->bw_used = bw_used;
2639 	return 0;
2640 }
2641 
2642 static bool xhci_is_async_ep(unsigned int ep_type)
2643 {
2644 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645 					ep_type != ISOC_IN_EP &&
2646 					ep_type != INT_IN_EP);
2647 }
2648 
2649 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650 {
2651 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652 }
2653 
2654 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655 {
2656 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657 
2658 	if (ep_bw->ep_interval == 0)
2659 		return SS_OVERHEAD_BURST +
2660 			(ep_bw->mult * ep_bw->num_packets *
2661 					(SS_OVERHEAD + mps));
2662 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664 				1 << ep_bw->ep_interval);
2665 
2666 }
2667 
2668 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669 		struct xhci_bw_info *ep_bw,
2670 		struct xhci_interval_bw_table *bw_table,
2671 		struct usb_device *udev,
2672 		struct xhci_virt_ep *virt_ep,
2673 		struct xhci_tt_bw_info *tt_info)
2674 {
2675 	struct xhci_interval_bw	*interval_bw;
2676 	int normalized_interval;
2677 
2678 	if (xhci_is_async_ep(ep_bw->type))
2679 		return;
2680 
2681 	if (udev->speed >= USB_SPEED_SUPER) {
2682 		if (xhci_is_sync_in_ep(ep_bw->type))
2683 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684 				xhci_get_ss_bw_consumed(ep_bw);
2685 		else
2686 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687 				xhci_get_ss_bw_consumed(ep_bw);
2688 		return;
2689 	}
2690 
2691 	/* SuperSpeed endpoints never get added to intervals in the table, so
2692 	 * this check is only valid for HS/FS/LS devices.
2693 	 */
2694 	if (list_empty(&virt_ep->bw_endpoint_list))
2695 		return;
2696 	/* For LS/FS devices, we need to translate the interval expressed in
2697 	 * microframes to frames.
2698 	 */
2699 	if (udev->speed == USB_SPEED_HIGH)
2700 		normalized_interval = ep_bw->ep_interval;
2701 	else
2702 		normalized_interval = ep_bw->ep_interval - 3;
2703 
2704 	if (normalized_interval == 0)
2705 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706 	interval_bw = &bw_table->interval_bw[normalized_interval];
2707 	interval_bw->num_packets -= ep_bw->num_packets;
2708 	switch (udev->speed) {
2709 	case USB_SPEED_LOW:
2710 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711 		break;
2712 	case USB_SPEED_FULL:
2713 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714 		break;
2715 	case USB_SPEED_HIGH:
2716 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717 		break;
2718 	case USB_SPEED_SUPER:
2719 	case USB_SPEED_SUPER_PLUS:
2720 	case USB_SPEED_UNKNOWN:
2721 	case USB_SPEED_WIRELESS:
2722 		/* Should never happen because only LS/FS/HS endpoints will get
2723 		 * added to the endpoint list.
2724 		 */
2725 		return;
2726 	}
2727 	if (tt_info)
2728 		tt_info->active_eps -= 1;
2729 	list_del_init(&virt_ep->bw_endpoint_list);
2730 }
2731 
2732 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733 		struct xhci_bw_info *ep_bw,
2734 		struct xhci_interval_bw_table *bw_table,
2735 		struct usb_device *udev,
2736 		struct xhci_virt_ep *virt_ep,
2737 		struct xhci_tt_bw_info *tt_info)
2738 {
2739 	struct xhci_interval_bw	*interval_bw;
2740 	struct xhci_virt_ep *smaller_ep;
2741 	int normalized_interval;
2742 
2743 	if (xhci_is_async_ep(ep_bw->type))
2744 		return;
2745 
2746 	if (udev->speed == USB_SPEED_SUPER) {
2747 		if (xhci_is_sync_in_ep(ep_bw->type))
2748 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749 				xhci_get_ss_bw_consumed(ep_bw);
2750 		else
2751 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752 				xhci_get_ss_bw_consumed(ep_bw);
2753 		return;
2754 	}
2755 
2756 	/* For LS/FS devices, we need to translate the interval expressed in
2757 	 * microframes to frames.
2758 	 */
2759 	if (udev->speed == USB_SPEED_HIGH)
2760 		normalized_interval = ep_bw->ep_interval;
2761 	else
2762 		normalized_interval = ep_bw->ep_interval - 3;
2763 
2764 	if (normalized_interval == 0)
2765 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766 	interval_bw = &bw_table->interval_bw[normalized_interval];
2767 	interval_bw->num_packets += ep_bw->num_packets;
2768 	switch (udev->speed) {
2769 	case USB_SPEED_LOW:
2770 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771 		break;
2772 	case USB_SPEED_FULL:
2773 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774 		break;
2775 	case USB_SPEED_HIGH:
2776 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777 		break;
2778 	case USB_SPEED_SUPER:
2779 	case USB_SPEED_SUPER_PLUS:
2780 	case USB_SPEED_UNKNOWN:
2781 	case USB_SPEED_WIRELESS:
2782 		/* Should never happen because only LS/FS/HS endpoints will get
2783 		 * added to the endpoint list.
2784 		 */
2785 		return;
2786 	}
2787 
2788 	if (tt_info)
2789 		tt_info->active_eps += 1;
2790 	/* Insert the endpoint into the list, largest max packet size first. */
2791 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792 			bw_endpoint_list) {
2793 		if (ep_bw->max_packet_size >=
2794 				smaller_ep->bw_info.max_packet_size) {
2795 			/* Add the new ep before the smaller endpoint */
2796 			list_add_tail(&virt_ep->bw_endpoint_list,
2797 					&smaller_ep->bw_endpoint_list);
2798 			return;
2799 		}
2800 	}
2801 	/* Add the new endpoint at the end of the list. */
2802 	list_add_tail(&virt_ep->bw_endpoint_list,
2803 			&interval_bw->endpoints);
2804 }
2805 
2806 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807 		struct xhci_virt_device *virt_dev,
2808 		int old_active_eps)
2809 {
2810 	struct xhci_root_port_bw_info *rh_bw_info;
2811 	if (!virt_dev->tt_info)
2812 		return;
2813 
2814 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815 	if (old_active_eps == 0 &&
2816 				virt_dev->tt_info->active_eps != 0) {
2817 		rh_bw_info->num_active_tts += 1;
2818 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819 	} else if (old_active_eps != 0 &&
2820 				virt_dev->tt_info->active_eps == 0) {
2821 		rh_bw_info->num_active_tts -= 1;
2822 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823 	}
2824 }
2825 
2826 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827 		struct xhci_virt_device *virt_dev,
2828 		struct xhci_container_ctx *in_ctx)
2829 {
2830 	struct xhci_bw_info ep_bw_info[31];
2831 	int i;
2832 	struct xhci_input_control_ctx *ctrl_ctx;
2833 	int old_active_eps = 0;
2834 
2835 	if (virt_dev->tt_info)
2836 		old_active_eps = virt_dev->tt_info->active_eps;
2837 
2838 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839 	if (!ctrl_ctx) {
2840 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841 				__func__);
2842 		return -ENOMEM;
2843 	}
2844 
2845 	for (i = 0; i < 31; i++) {
2846 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847 			continue;
2848 
2849 		/* Make a copy of the BW info in case we need to revert this */
2850 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851 				sizeof(ep_bw_info[i]));
2852 		/* Drop the endpoint from the interval table if the endpoint is
2853 		 * being dropped or changed.
2854 		 */
2855 		if (EP_IS_DROPPED(ctrl_ctx, i))
2856 			xhci_drop_ep_from_interval_table(xhci,
2857 					&virt_dev->eps[i].bw_info,
2858 					virt_dev->bw_table,
2859 					virt_dev->udev,
2860 					&virt_dev->eps[i],
2861 					virt_dev->tt_info);
2862 	}
2863 	/* Overwrite the information stored in the endpoints' bw_info */
2864 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865 	for (i = 0; i < 31; i++) {
2866 		/* Add any changed or added endpoints to the interval table */
2867 		if (EP_IS_ADDED(ctrl_ctx, i))
2868 			xhci_add_ep_to_interval_table(xhci,
2869 					&virt_dev->eps[i].bw_info,
2870 					virt_dev->bw_table,
2871 					virt_dev->udev,
2872 					&virt_dev->eps[i],
2873 					virt_dev->tt_info);
2874 	}
2875 
2876 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877 		/* Ok, this fits in the bandwidth we have.
2878 		 * Update the number of active TTs.
2879 		 */
2880 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881 		return 0;
2882 	}
2883 
2884 	/* We don't have enough bandwidth for this, revert the stored info. */
2885 	for (i = 0; i < 31; i++) {
2886 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887 			continue;
2888 
2889 		/* Drop the new copies of any added or changed endpoints from
2890 		 * the interval table.
2891 		 */
2892 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2893 			xhci_drop_ep_from_interval_table(xhci,
2894 					&virt_dev->eps[i].bw_info,
2895 					virt_dev->bw_table,
2896 					virt_dev->udev,
2897 					&virt_dev->eps[i],
2898 					virt_dev->tt_info);
2899 		}
2900 		/* Revert the endpoint back to its old information */
2901 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902 				sizeof(ep_bw_info[i]));
2903 		/* Add any changed or dropped endpoints back into the table */
2904 		if (EP_IS_DROPPED(ctrl_ctx, i))
2905 			xhci_add_ep_to_interval_table(xhci,
2906 					&virt_dev->eps[i].bw_info,
2907 					virt_dev->bw_table,
2908 					virt_dev->udev,
2909 					&virt_dev->eps[i],
2910 					virt_dev->tt_info);
2911 	}
2912 	return -ENOMEM;
2913 }
2914 
2915 
2916 /* Issue a configure endpoint command or evaluate context command
2917  * and wait for it to finish.
2918  */
2919 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920 		struct usb_device *udev,
2921 		struct xhci_command *command,
2922 		bool ctx_change, bool must_succeed)
2923 {
2924 	int ret;
2925 	unsigned long flags;
2926 	struct xhci_input_control_ctx *ctrl_ctx;
2927 	struct xhci_virt_device *virt_dev;
2928 	struct xhci_slot_ctx *slot_ctx;
2929 
2930 	if (!command)
2931 		return -EINVAL;
2932 
2933 	spin_lock_irqsave(&xhci->lock, flags);
2934 
2935 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2936 		spin_unlock_irqrestore(&xhci->lock, flags);
2937 		return -ESHUTDOWN;
2938 	}
2939 
2940 	virt_dev = xhci->devs[udev->slot_id];
2941 
2942 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943 	if (!ctrl_ctx) {
2944 		spin_unlock_irqrestore(&xhci->lock, flags);
2945 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946 				__func__);
2947 		return -ENOMEM;
2948 	}
2949 
2950 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952 		spin_unlock_irqrestore(&xhci->lock, flags);
2953 		xhci_warn(xhci, "Not enough host resources, "
2954 				"active endpoint contexts = %u\n",
2955 				xhci->num_active_eps);
2956 		return -ENOMEM;
2957 	}
2958 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961 			xhci_free_host_resources(xhci, ctrl_ctx);
2962 		spin_unlock_irqrestore(&xhci->lock, flags);
2963 		xhci_warn(xhci, "Not enough bandwidth\n");
2964 		return -ENOMEM;
2965 	}
2966 
2967 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2968 
2969 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970 	trace_xhci_configure_endpoint(slot_ctx);
2971 
2972 	if (!ctx_change)
2973 		ret = xhci_queue_configure_endpoint(xhci, command,
2974 				command->in_ctx->dma,
2975 				udev->slot_id, must_succeed);
2976 	else
2977 		ret = xhci_queue_evaluate_context(xhci, command,
2978 				command->in_ctx->dma,
2979 				udev->slot_id, must_succeed);
2980 	if (ret < 0) {
2981 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982 			xhci_free_host_resources(xhci, ctrl_ctx);
2983 		spin_unlock_irqrestore(&xhci->lock, flags);
2984 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2985 				"FIXME allocate a new ring segment");
2986 		return -ENOMEM;
2987 	}
2988 	xhci_ring_cmd_db(xhci);
2989 	spin_unlock_irqrestore(&xhci->lock, flags);
2990 
2991 	/* Wait for the configure endpoint command to complete */
2992 	wait_for_completion(command->completion);
2993 
2994 	if (!ctx_change)
2995 		ret = xhci_configure_endpoint_result(xhci, udev,
2996 						     &command->status);
2997 	else
2998 		ret = xhci_evaluate_context_result(xhci, udev,
2999 						   &command->status);
3000 
3001 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002 		spin_lock_irqsave(&xhci->lock, flags);
3003 		/* If the command failed, remove the reserved resources.
3004 		 * Otherwise, clean up the estimate to include dropped eps.
3005 		 */
3006 		if (ret)
3007 			xhci_free_host_resources(xhci, ctrl_ctx);
3008 		else
3009 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010 		spin_unlock_irqrestore(&xhci->lock, flags);
3011 	}
3012 	return ret;
3013 }
3014 
3015 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016 	struct xhci_virt_device *vdev, int i)
3017 {
3018 	struct xhci_virt_ep *ep = &vdev->eps[i];
3019 
3020 	if (ep->ep_state & EP_HAS_STREAMS) {
3021 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022 				xhci_get_endpoint_address(i));
3023 		xhci_free_stream_info(xhci, ep->stream_info);
3024 		ep->stream_info = NULL;
3025 		ep->ep_state &= ~EP_HAS_STREAMS;
3026 	}
3027 }
3028 
3029 /* Called after one or more calls to xhci_add_endpoint() or
3030  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3031  * to call xhci_reset_bandwidth().
3032  *
3033  * Since we are in the middle of changing either configuration or
3034  * installing a new alt setting, the USB core won't allow URBs to be
3035  * enqueued for any endpoint on the old config or interface.  Nothing
3036  * else should be touching the xhci->devs[slot_id] structure, so we
3037  * don't need to take the xhci->lock for manipulating that.
3038  */
3039 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040 {
3041 	int i;
3042 	int ret = 0;
3043 	struct xhci_hcd *xhci;
3044 	struct xhci_virt_device	*virt_dev;
3045 	struct xhci_input_control_ctx *ctrl_ctx;
3046 	struct xhci_slot_ctx *slot_ctx;
3047 	struct xhci_command *command;
3048 
3049 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050 	if (ret <= 0)
3051 		return ret;
3052 	xhci = hcd_to_xhci(hcd);
3053 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3055 		return -ENODEV;
3056 
3057 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058 	virt_dev = xhci->devs[udev->slot_id];
3059 
3060 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061 	if (!command)
3062 		return -ENOMEM;
3063 
3064 	command->in_ctx = virt_dev->in_ctx;
3065 
3066 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068 	if (!ctrl_ctx) {
3069 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070 				__func__);
3071 		ret = -ENOMEM;
3072 		goto command_cleanup;
3073 	}
3074 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077 
3078 	/* Don't issue the command if there's no endpoints to update. */
3079 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080 	    ctrl_ctx->drop_flags == 0) {
3081 		ret = 0;
3082 		goto command_cleanup;
3083 	}
3084 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086 	for (i = 31; i >= 1; i--) {
3087 		__le32 le32 = cpu_to_le32(BIT(i));
3088 
3089 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3091 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093 			break;
3094 		}
3095 	}
3096 
3097 	ret = xhci_configure_endpoint(xhci, udev, command,
3098 			false, false);
3099 	if (ret)
3100 		/* Callee should call reset_bandwidth() */
3101 		goto command_cleanup;
3102 
3103 	/* Free any rings that were dropped, but not changed. */
3104 	for (i = 1; i < 31; i++) {
3105 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3108 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109 		}
3110 	}
3111 	xhci_zero_in_ctx(xhci, virt_dev);
3112 	/*
3113 	 * Install any rings for completely new endpoints or changed endpoints,
3114 	 * and free any old rings from changed endpoints.
3115 	 */
3116 	for (i = 1; i < 31; i++) {
3117 		if (!virt_dev->eps[i].new_ring)
3118 			continue;
3119 		/* Only free the old ring if it exists.
3120 		 * It may not if this is the first add of an endpoint.
3121 		 */
3122 		if (virt_dev->eps[i].ring) {
3123 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3124 		}
3125 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127 		virt_dev->eps[i].new_ring = NULL;
3128 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129 	}
3130 command_cleanup:
3131 	kfree(command->completion);
3132 	kfree(command);
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137 
3138 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139 {
3140 	struct xhci_hcd *xhci;
3141 	struct xhci_virt_device	*virt_dev;
3142 	int i, ret;
3143 
3144 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145 	if (ret <= 0)
3146 		return;
3147 	xhci = hcd_to_xhci(hcd);
3148 
3149 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150 	virt_dev = xhci->devs[udev->slot_id];
3151 	/* Free any rings allocated for added endpoints */
3152 	for (i = 0; i < 31; i++) {
3153 		if (virt_dev->eps[i].new_ring) {
3154 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156 			virt_dev->eps[i].new_ring = NULL;
3157 		}
3158 	}
3159 	xhci_zero_in_ctx(xhci, virt_dev);
3160 }
3161 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162 
3163 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164 		struct xhci_container_ctx *in_ctx,
3165 		struct xhci_container_ctx *out_ctx,
3166 		struct xhci_input_control_ctx *ctrl_ctx,
3167 		u32 add_flags, u32 drop_flags)
3168 {
3169 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3172 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3173 }
3174 
3175 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176 				  struct usb_host_endpoint *host_ep)
3177 {
3178 	struct xhci_hcd		*xhci;
3179 	struct xhci_virt_device	*vdev;
3180 	struct xhci_virt_ep	*ep;
3181 	struct usb_device	*udev;
3182 	unsigned long		flags;
3183 	unsigned int		ep_index;
3184 
3185 	xhci = hcd_to_xhci(hcd);
3186 rescan:
3187 	spin_lock_irqsave(&xhci->lock, flags);
3188 
3189 	udev = (struct usb_device *)host_ep->hcpriv;
3190 	if (!udev || !udev->slot_id)
3191 		goto done;
3192 
3193 	vdev = xhci->devs[udev->slot_id];
3194 	if (!vdev)
3195 		goto done;
3196 
3197 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198 	ep = &vdev->eps[ep_index];
3199 
3200 	/* wait for hub_tt_work to finish clearing hub TT */
3201 	if (ep->ep_state & EP_CLEARING_TT) {
3202 		spin_unlock_irqrestore(&xhci->lock, flags);
3203 		schedule_timeout_uninterruptible(1);
3204 		goto rescan;
3205 	}
3206 
3207 	if (ep->ep_state)
3208 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209 			 ep->ep_state);
3210 done:
3211 	host_ep->hcpriv = NULL;
3212 	spin_unlock_irqrestore(&xhci->lock, flags);
3213 }
3214 
3215 /*
3216  * Called after usb core issues a clear halt control message.
3217  * The host side of the halt should already be cleared by a reset endpoint
3218  * command issued when the STALL event was received.
3219  *
3220  * The reset endpoint command may only be issued to endpoints in the halted
3221  * state. For software that wishes to reset the data toggle or sequence number
3222  * of an endpoint that isn't in the halted state this function will issue a
3223  * configure endpoint command with the Drop and Add bits set for the target
3224  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3225  */
3226 
3227 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228 		struct usb_host_endpoint *host_ep)
3229 {
3230 	struct xhci_hcd *xhci;
3231 	struct usb_device *udev;
3232 	struct xhci_virt_device *vdev;
3233 	struct xhci_virt_ep *ep;
3234 	struct xhci_input_control_ctx *ctrl_ctx;
3235 	struct xhci_command *stop_cmd, *cfg_cmd;
3236 	unsigned int ep_index;
3237 	unsigned long flags;
3238 	u32 ep_flag;
3239 	int err;
3240 
3241 	xhci = hcd_to_xhci(hcd);
3242 	if (!host_ep->hcpriv)
3243 		return;
3244 	udev = (struct usb_device *) host_ep->hcpriv;
3245 	vdev = xhci->devs[udev->slot_id];
3246 
3247 	/*
3248 	 * vdev may be lost due to xHC restore error and re-initialization
3249 	 * during S3/S4 resume. A new vdev will be allocated later by
3250 	 * xhci_discover_or_reset_device()
3251 	 */
3252 	if (!udev->slot_id || !vdev)
3253 		return;
3254 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255 	ep = &vdev->eps[ep_index];
3256 
3257 	/* Bail out if toggle is already being cleared by a endpoint reset */
3258 	spin_lock_irqsave(&xhci->lock, flags);
3259 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261 		spin_unlock_irqrestore(&xhci->lock, flags);
3262 		return;
3263 	}
3264 	spin_unlock_irqrestore(&xhci->lock, flags);
3265 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3268 		return;
3269 
3270 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271 
3272 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273 		return;
3274 
3275 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276 	if (!stop_cmd)
3277 		return;
3278 
3279 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280 	if (!cfg_cmd)
3281 		goto cleanup;
3282 
3283 	spin_lock_irqsave(&xhci->lock, flags);
3284 
3285 	/* block queuing new trbs and ringing ep doorbell */
3286 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287 
3288 	/*
3289 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3290 	 * Driver is required to synchronously cancel all transfer request.
3291 	 * Stop the endpoint to force xHC to update the output context
3292 	 */
3293 
3294 	if (!list_empty(&ep->ring->td_list)) {
3295 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296 		spin_unlock_irqrestore(&xhci->lock, flags);
3297 		xhci_free_command(xhci, cfg_cmd);
3298 		goto cleanup;
3299 	}
3300 
3301 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302 					ep_index, 0);
3303 	if (err < 0) {
3304 		spin_unlock_irqrestore(&xhci->lock, flags);
3305 		xhci_free_command(xhci, cfg_cmd);
3306 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307 				__func__, err);
3308 		goto cleanup;
3309 	}
3310 
3311 	xhci_ring_cmd_db(xhci);
3312 	spin_unlock_irqrestore(&xhci->lock, flags);
3313 
3314 	wait_for_completion(stop_cmd->completion);
3315 
3316 	spin_lock_irqsave(&xhci->lock, flags);
3317 
3318 	/* config ep command clears toggle if add and drop ep flags are set */
3319 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320 	if (!ctrl_ctx) {
3321 		spin_unlock_irqrestore(&xhci->lock, flags);
3322 		xhci_free_command(xhci, cfg_cmd);
3323 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324 				__func__);
3325 		goto cleanup;
3326 	}
3327 
3328 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329 					   ctrl_ctx, ep_flag, ep_flag);
3330 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331 
3332 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333 				      udev->slot_id, false);
3334 	if (err < 0) {
3335 		spin_unlock_irqrestore(&xhci->lock, flags);
3336 		xhci_free_command(xhci, cfg_cmd);
3337 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338 				__func__, err);
3339 		goto cleanup;
3340 	}
3341 
3342 	xhci_ring_cmd_db(xhci);
3343 	spin_unlock_irqrestore(&xhci->lock, flags);
3344 
3345 	wait_for_completion(cfg_cmd->completion);
3346 
3347 	xhci_free_command(xhci, cfg_cmd);
3348 cleanup:
3349 	xhci_free_command(xhci, stop_cmd);
3350 	spin_lock_irqsave(&xhci->lock, flags);
3351 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353 	spin_unlock_irqrestore(&xhci->lock, flags);
3354 }
3355 
3356 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357 		struct usb_device *udev, struct usb_host_endpoint *ep,
3358 		unsigned int slot_id)
3359 {
3360 	int ret;
3361 	unsigned int ep_index;
3362 	unsigned int ep_state;
3363 
3364 	if (!ep)
3365 		return -EINVAL;
3366 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367 	if (ret <= 0)
3368 		return ret ? ret : -EINVAL;
3369 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371 				" descriptor for ep 0x%x does not support streams\n",
3372 				ep->desc.bEndpointAddress);
3373 		return -EINVAL;
3374 	}
3375 
3376 	ep_index = xhci_get_endpoint_index(&ep->desc);
3377 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378 	if (ep_state & EP_HAS_STREAMS ||
3379 			ep_state & EP_GETTING_STREAMS) {
3380 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381 				"already has streams set up.\n",
3382 				ep->desc.bEndpointAddress);
3383 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384 				"dynamic stream context array reallocation.\n");
3385 		return -EINVAL;
3386 	}
3387 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389 				"endpoint 0x%x; URBs are pending.\n",
3390 				ep->desc.bEndpointAddress);
3391 		return -EINVAL;
3392 	}
3393 	return 0;
3394 }
3395 
3396 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398 {
3399 	unsigned int max_streams;
3400 
3401 	/* The stream context array size must be a power of two */
3402 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403 	/*
3404 	 * Find out how many primary stream array entries the host controller
3405 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3406 	 * level page entries), but that's an optional feature for xHCI host
3407 	 * controllers. xHCs must support at least 4 stream IDs.
3408 	 */
3409 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410 	if (*num_stream_ctxs > max_streams) {
3411 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412 				max_streams);
3413 		*num_stream_ctxs = max_streams;
3414 		*num_streams = max_streams;
3415 	}
3416 }
3417 
3418 /* Returns an error code if one of the endpoint already has streams.
3419  * This does not change any data structures, it only checks and gathers
3420  * information.
3421  */
3422 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423 		struct usb_device *udev,
3424 		struct usb_host_endpoint **eps, unsigned int num_eps,
3425 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3426 {
3427 	unsigned int max_streams;
3428 	unsigned int endpoint_flag;
3429 	int i;
3430 	int ret;
3431 
3432 	for (i = 0; i < num_eps; i++) {
3433 		ret = xhci_check_streams_endpoint(xhci, udev,
3434 				eps[i], udev->slot_id);
3435 		if (ret < 0)
3436 			return ret;
3437 
3438 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439 		if (max_streams < (*num_streams - 1)) {
3440 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441 					eps[i]->desc.bEndpointAddress,
3442 					max_streams);
3443 			*num_streams = max_streams+1;
3444 		}
3445 
3446 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447 		if (*changed_ep_bitmask & endpoint_flag)
3448 			return -EINVAL;
3449 		*changed_ep_bitmask |= endpoint_flag;
3450 	}
3451 	return 0;
3452 }
3453 
3454 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455 		struct usb_device *udev,
3456 		struct usb_host_endpoint **eps, unsigned int num_eps)
3457 {
3458 	u32 changed_ep_bitmask = 0;
3459 	unsigned int slot_id;
3460 	unsigned int ep_index;
3461 	unsigned int ep_state;
3462 	int i;
3463 
3464 	slot_id = udev->slot_id;
3465 	if (!xhci->devs[slot_id])
3466 		return 0;
3467 
3468 	for (i = 0; i < num_eps; i++) {
3469 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471 		/* Are streams already being freed for the endpoint? */
3472 		if (ep_state & EP_GETTING_NO_STREAMS) {
3473 			xhci_warn(xhci, "WARN Can't disable streams for "
3474 					"endpoint 0x%x, "
3475 					"streams are being disabled already\n",
3476 					eps[i]->desc.bEndpointAddress);
3477 			return 0;
3478 		}
3479 		/* Are there actually any streams to free? */
3480 		if (!(ep_state & EP_HAS_STREAMS) &&
3481 				!(ep_state & EP_GETTING_STREAMS)) {
3482 			xhci_warn(xhci, "WARN Can't disable streams for "
3483 					"endpoint 0x%x, "
3484 					"streams are already disabled!\n",
3485 					eps[i]->desc.bEndpointAddress);
3486 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3487 					"with non-streams endpoint\n");
3488 			return 0;
3489 		}
3490 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491 	}
3492 	return changed_ep_bitmask;
3493 }
3494 
3495 /*
3496  * The USB device drivers use this function (through the HCD interface in USB
3497  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3498  * coordinate mass storage command queueing across multiple endpoints (basically
3499  * a stream ID == a task ID).
3500  *
3501  * Setting up streams involves allocating the same size stream context array
3502  * for each endpoint and issuing a configure endpoint command for all endpoints.
3503  *
3504  * Don't allow the call to succeed if one endpoint only supports one stream
3505  * (which means it doesn't support streams at all).
3506  *
3507  * Drivers may get less stream IDs than they asked for, if the host controller
3508  * hardware or endpoints claim they can't support the number of requested
3509  * stream IDs.
3510  */
3511 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512 		struct usb_host_endpoint **eps, unsigned int num_eps,
3513 		unsigned int num_streams, gfp_t mem_flags)
3514 {
3515 	int i, ret;
3516 	struct xhci_hcd *xhci;
3517 	struct xhci_virt_device *vdev;
3518 	struct xhci_command *config_cmd;
3519 	struct xhci_input_control_ctx *ctrl_ctx;
3520 	unsigned int ep_index;
3521 	unsigned int num_stream_ctxs;
3522 	unsigned int max_packet;
3523 	unsigned long flags;
3524 	u32 changed_ep_bitmask = 0;
3525 
3526 	if (!eps)
3527 		return -EINVAL;
3528 
3529 	/* Add one to the number of streams requested to account for
3530 	 * stream 0 that is reserved for xHCI usage.
3531 	 */
3532 	num_streams += 1;
3533 	xhci = hcd_to_xhci(hcd);
3534 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535 			num_streams);
3536 
3537 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3538 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541 		return -ENOSYS;
3542 	}
3543 
3544 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545 	if (!config_cmd)
3546 		return -ENOMEM;
3547 
3548 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549 	if (!ctrl_ctx) {
3550 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551 				__func__);
3552 		xhci_free_command(xhci, config_cmd);
3553 		return -ENOMEM;
3554 	}
3555 
3556 	/* Check to make sure all endpoints are not already configured for
3557 	 * streams.  While we're at it, find the maximum number of streams that
3558 	 * all the endpoints will support and check for duplicate endpoints.
3559 	 */
3560 	spin_lock_irqsave(&xhci->lock, flags);
3561 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562 			num_eps, &num_streams, &changed_ep_bitmask);
3563 	if (ret < 0) {
3564 		xhci_free_command(xhci, config_cmd);
3565 		spin_unlock_irqrestore(&xhci->lock, flags);
3566 		return ret;
3567 	}
3568 	if (num_streams <= 1) {
3569 		xhci_warn(xhci, "WARN: endpoints can't handle "
3570 				"more than one stream.\n");
3571 		xhci_free_command(xhci, config_cmd);
3572 		spin_unlock_irqrestore(&xhci->lock, flags);
3573 		return -EINVAL;
3574 	}
3575 	vdev = xhci->devs[udev->slot_id];
3576 	/* Mark each endpoint as being in transition, so
3577 	 * xhci_urb_enqueue() will reject all URBs.
3578 	 */
3579 	for (i = 0; i < num_eps; i++) {
3580 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582 	}
3583 	spin_unlock_irqrestore(&xhci->lock, flags);
3584 
3585 	/* Setup internal data structures and allocate HW data structures for
3586 	 * streams (but don't install the HW structures in the input context
3587 	 * until we're sure all memory allocation succeeded).
3588 	 */
3589 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591 			num_stream_ctxs, num_streams);
3592 
3593 	for (i = 0; i < num_eps; i++) {
3594 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597 				num_stream_ctxs,
3598 				num_streams,
3599 				max_packet, mem_flags);
3600 		if (!vdev->eps[ep_index].stream_info)
3601 			goto cleanup;
3602 		/* Set maxPstreams in endpoint context and update deq ptr to
3603 		 * point to stream context array. FIXME
3604 		 */
3605 	}
3606 
3607 	/* Set up the input context for a configure endpoint command. */
3608 	for (i = 0; i < num_eps; i++) {
3609 		struct xhci_ep_ctx *ep_ctx;
3610 
3611 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613 
3614 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615 				vdev->out_ctx, ep_index);
3616 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617 				vdev->eps[ep_index].stream_info);
3618 	}
3619 	/* Tell the HW to drop its old copy of the endpoint context info
3620 	 * and add the updated copy from the input context.
3621 	 */
3622 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623 			vdev->out_ctx, ctrl_ctx,
3624 			changed_ep_bitmask, changed_ep_bitmask);
3625 
3626 	/* Issue and wait for the configure endpoint command */
3627 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628 			false, false);
3629 
3630 	/* xHC rejected the configure endpoint command for some reason, so we
3631 	 * leave the old ring intact and free our internal streams data
3632 	 * structure.
3633 	 */
3634 	if (ret < 0)
3635 		goto cleanup;
3636 
3637 	spin_lock_irqsave(&xhci->lock, flags);
3638 	for (i = 0; i < num_eps; i++) {
3639 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642 			 udev->slot_id, ep_index);
3643 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644 	}
3645 	xhci_free_command(xhci, config_cmd);
3646 	spin_unlock_irqrestore(&xhci->lock, flags);
3647 
3648 	for (i = 0; i < num_eps; i++) {
3649 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651 	}
3652 	/* Subtract 1 for stream 0, which drivers can't use */
3653 	return num_streams - 1;
3654 
3655 cleanup:
3656 	/* If it didn't work, free the streams! */
3657 	for (i = 0; i < num_eps; i++) {
3658 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660 		vdev->eps[ep_index].stream_info = NULL;
3661 		/* FIXME Unset maxPstreams in endpoint context and
3662 		 * update deq ptr to point to normal string ring.
3663 		 */
3664 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3667 	}
3668 	xhci_free_command(xhci, config_cmd);
3669 	return -ENOMEM;
3670 }
3671 
3672 /* Transition the endpoint from using streams to being a "normal" endpoint
3673  * without streams.
3674  *
3675  * Modify the endpoint context state, submit a configure endpoint command,
3676  * and free all endpoint rings for streams if that completes successfully.
3677  */
3678 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679 		struct usb_host_endpoint **eps, unsigned int num_eps,
3680 		gfp_t mem_flags)
3681 {
3682 	int i, ret;
3683 	struct xhci_hcd *xhci;
3684 	struct xhci_virt_device *vdev;
3685 	struct xhci_command *command;
3686 	struct xhci_input_control_ctx *ctrl_ctx;
3687 	unsigned int ep_index;
3688 	unsigned long flags;
3689 	u32 changed_ep_bitmask;
3690 
3691 	xhci = hcd_to_xhci(hcd);
3692 	vdev = xhci->devs[udev->slot_id];
3693 
3694 	/* Set up a configure endpoint command to remove the streams rings */
3695 	spin_lock_irqsave(&xhci->lock, flags);
3696 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697 			udev, eps, num_eps);
3698 	if (changed_ep_bitmask == 0) {
3699 		spin_unlock_irqrestore(&xhci->lock, flags);
3700 		return -EINVAL;
3701 	}
3702 
3703 	/* Use the xhci_command structure from the first endpoint.  We may have
3704 	 * allocated too many, but the driver may call xhci_free_streams() for
3705 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3706 	 */
3707 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3709 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710 	if (!ctrl_ctx) {
3711 		spin_unlock_irqrestore(&xhci->lock, flags);
3712 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713 				__func__);
3714 		return -EINVAL;
3715 	}
3716 
3717 	for (i = 0; i < num_eps; i++) {
3718 		struct xhci_ep_ctx *ep_ctx;
3719 
3720 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723 			EP_GETTING_NO_STREAMS;
3724 
3725 		xhci_endpoint_copy(xhci, command->in_ctx,
3726 				vdev->out_ctx, ep_index);
3727 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728 				&vdev->eps[ep_index]);
3729 	}
3730 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731 			vdev->out_ctx, ctrl_ctx,
3732 			changed_ep_bitmask, changed_ep_bitmask);
3733 	spin_unlock_irqrestore(&xhci->lock, flags);
3734 
3735 	/* Issue and wait for the configure endpoint command,
3736 	 * which must succeed.
3737 	 */
3738 	ret = xhci_configure_endpoint(xhci, udev, command,
3739 			false, true);
3740 
3741 	/* xHC rejected the configure endpoint command for some reason, so we
3742 	 * leave the streams rings intact.
3743 	 */
3744 	if (ret < 0)
3745 		return ret;
3746 
3747 	spin_lock_irqsave(&xhci->lock, flags);
3748 	for (i = 0; i < num_eps; i++) {
3749 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751 		vdev->eps[ep_index].stream_info = NULL;
3752 		/* FIXME Unset maxPstreams in endpoint context and
3753 		 * update deq ptr to point to normal string ring.
3754 		 */
3755 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757 	}
3758 	spin_unlock_irqrestore(&xhci->lock, flags);
3759 
3760 	return 0;
3761 }
3762 
3763 /*
3764  * Deletes endpoint resources for endpoints that were active before a Reset
3765  * Device command, or a Disable Slot command.  The Reset Device command leaves
3766  * the control endpoint intact, whereas the Disable Slot command deletes it.
3767  *
3768  * Must be called with xhci->lock held.
3769  */
3770 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772 {
3773 	int i;
3774 	unsigned int num_dropped_eps = 0;
3775 	unsigned int drop_flags = 0;
3776 
3777 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778 		if (virt_dev->eps[i].ring) {
3779 			drop_flags |= 1 << i;
3780 			num_dropped_eps++;
3781 		}
3782 	}
3783 	xhci->num_active_eps -= num_dropped_eps;
3784 	if (num_dropped_eps)
3785 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786 				"Dropped %u ep ctxs, flags = 0x%x, "
3787 				"%u now active.",
3788 				num_dropped_eps, drop_flags,
3789 				xhci->num_active_eps);
3790 }
3791 
3792 /*
3793  * This submits a Reset Device Command, which will set the device state to 0,
3794  * set the device address to 0, and disable all the endpoints except the default
3795  * control endpoint.  The USB core should come back and call
3796  * xhci_address_device(), and then re-set up the configuration.  If this is
3797  * called because of a usb_reset_and_verify_device(), then the old alternate
3798  * settings will be re-installed through the normal bandwidth allocation
3799  * functions.
3800  *
3801  * Wait for the Reset Device command to finish.  Remove all structures
3802  * associated with the endpoints that were disabled.  Clear the input device
3803  * structure? Reset the control endpoint 0 max packet size?
3804  *
3805  * If the virt_dev to be reset does not exist or does not match the udev,
3806  * it means the device is lost, possibly due to the xHC restore error and
3807  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808  * re-allocate the device.
3809  */
3810 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811 		struct usb_device *udev)
3812 {
3813 	int ret, i;
3814 	unsigned long flags;
3815 	struct xhci_hcd *xhci;
3816 	unsigned int slot_id;
3817 	struct xhci_virt_device *virt_dev;
3818 	struct xhci_command *reset_device_cmd;
3819 	struct xhci_slot_ctx *slot_ctx;
3820 	int old_active_eps = 0;
3821 
3822 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823 	if (ret <= 0)
3824 		return ret;
3825 	xhci = hcd_to_xhci(hcd);
3826 	slot_id = udev->slot_id;
3827 	virt_dev = xhci->devs[slot_id];
3828 	if (!virt_dev) {
3829 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830 				"not exist. Re-allocate the device\n", slot_id);
3831 		ret = xhci_alloc_dev(hcd, udev);
3832 		if (ret == 1)
3833 			return 0;
3834 		else
3835 			return -EINVAL;
3836 	}
3837 
3838 	if (virt_dev->tt_info)
3839 		old_active_eps = virt_dev->tt_info->active_eps;
3840 
3841 	if (virt_dev->udev != udev) {
3842 		/* If the virt_dev and the udev does not match, this virt_dev
3843 		 * may belong to another udev.
3844 		 * Re-allocate the device.
3845 		 */
3846 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847 				"not match the udev. Re-allocate the device\n",
3848 				slot_id);
3849 		ret = xhci_alloc_dev(hcd, udev);
3850 		if (ret == 1)
3851 			return 0;
3852 		else
3853 			return -EINVAL;
3854 	}
3855 
3856 	/* If device is not setup, there is no point in resetting it */
3857 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859 						SLOT_STATE_DISABLED)
3860 		return 0;
3861 
3862 	trace_xhci_discover_or_reset_device(slot_ctx);
3863 
3864 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865 	/* Allocate the command structure that holds the struct completion.
3866 	 * Assume we're in process context, since the normal device reset
3867 	 * process has to wait for the device anyway.  Storage devices are
3868 	 * reset as part of error handling, so use GFP_NOIO instead of
3869 	 * GFP_KERNEL.
3870 	 */
3871 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872 	if (!reset_device_cmd) {
3873 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874 		return -ENOMEM;
3875 	}
3876 
3877 	/* Attempt to submit the Reset Device command to the command ring */
3878 	spin_lock_irqsave(&xhci->lock, flags);
3879 
3880 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3881 	if (ret) {
3882 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3883 		spin_unlock_irqrestore(&xhci->lock, flags);
3884 		goto command_cleanup;
3885 	}
3886 	xhci_ring_cmd_db(xhci);
3887 	spin_unlock_irqrestore(&xhci->lock, flags);
3888 
3889 	/* Wait for the Reset Device command to finish */
3890 	wait_for_completion(reset_device_cmd->completion);
3891 
3892 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893 	 * unless we tried to reset a slot ID that wasn't enabled,
3894 	 * or the device wasn't in the addressed or configured state.
3895 	 */
3896 	ret = reset_device_cmd->status;
3897 	switch (ret) {
3898 	case COMP_COMMAND_ABORTED:
3899 	case COMP_COMMAND_RING_STOPPED:
3900 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901 		ret = -ETIME;
3902 		goto command_cleanup;
3903 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906 				slot_id,
3907 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908 		xhci_dbg(xhci, "Not freeing device rings.\n");
3909 		/* Don't treat this as an error.  May change my mind later. */
3910 		ret = 0;
3911 		goto command_cleanup;
3912 	case COMP_SUCCESS:
3913 		xhci_dbg(xhci, "Successful reset device command.\n");
3914 		break;
3915 	default:
3916 		if (xhci_is_vendor_info_code(xhci, ret))
3917 			break;
3918 		xhci_warn(xhci, "Unknown completion code %u for "
3919 				"reset device command.\n", ret);
3920 		ret = -EINVAL;
3921 		goto command_cleanup;
3922 	}
3923 
3924 	/* Free up host controller endpoint resources */
3925 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926 		spin_lock_irqsave(&xhci->lock, flags);
3927 		/* Don't delete the default control endpoint resources */
3928 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929 		spin_unlock_irqrestore(&xhci->lock, flags);
3930 	}
3931 
3932 	/* Everything but endpoint 0 is disabled, so free the rings. */
3933 	for (i = 1; i < 31; i++) {
3934 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935 
3936 		if (ep->ep_state & EP_HAS_STREAMS) {
3937 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938 					xhci_get_endpoint_address(i));
3939 			xhci_free_stream_info(xhci, ep->stream_info);
3940 			ep->stream_info = NULL;
3941 			ep->ep_state &= ~EP_HAS_STREAMS;
3942 		}
3943 
3944 		if (ep->ring) {
3945 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3947 		}
3948 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949 			xhci_drop_ep_from_interval_table(xhci,
3950 					&virt_dev->eps[i].bw_info,
3951 					virt_dev->bw_table,
3952 					udev,
3953 					&virt_dev->eps[i],
3954 					virt_dev->tt_info);
3955 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956 	}
3957 	/* If necessary, update the number of active TTs on this root port */
3958 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959 	virt_dev->flags = 0;
3960 	ret = 0;
3961 
3962 command_cleanup:
3963 	xhci_free_command(xhci, reset_device_cmd);
3964 	return ret;
3965 }
3966 
3967 /*
3968  * At this point, the struct usb_device is about to go away, the device has
3969  * disconnected, and all traffic has been stopped and the endpoints have been
3970  * disabled.  Free any HC data structures associated with that device.
3971  */
3972 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973 {
3974 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975 	struct xhci_virt_device *virt_dev;
3976 	struct xhci_slot_ctx *slot_ctx;
3977 	unsigned long flags;
3978 	int i, ret;
3979 
3980 	/*
3981 	 * We called pm_runtime_get_noresume when the device was attached.
3982 	 * Decrement the counter here to allow controller to runtime suspend
3983 	 * if no devices remain.
3984 	 */
3985 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3986 		pm_runtime_put_noidle(hcd->self.controller);
3987 
3988 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3989 	/* If the host is halted due to driver unload, we still need to free the
3990 	 * device.
3991 	 */
3992 	if (ret <= 0 && ret != -ENODEV)
3993 		return;
3994 
3995 	virt_dev = xhci->devs[udev->slot_id];
3996 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3997 	trace_xhci_free_dev(slot_ctx);
3998 
3999 	/* Stop any wayward timer functions (which may grab the lock) */
4000 	for (i = 0; i < 31; i++)
4001 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4002 	virt_dev->udev = NULL;
4003 	xhci_disable_slot(xhci, udev->slot_id);
4004 
4005 	spin_lock_irqsave(&xhci->lock, flags);
4006 	xhci_free_virt_device(xhci, udev->slot_id);
4007 	spin_unlock_irqrestore(&xhci->lock, flags);
4008 
4009 }
4010 
4011 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4012 {
4013 	struct xhci_command *command;
4014 	unsigned long flags;
4015 	u32 state;
4016 	int ret;
4017 
4018 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4019 	if (!command)
4020 		return -ENOMEM;
4021 
4022 	xhci_debugfs_remove_slot(xhci, slot_id);
4023 
4024 	spin_lock_irqsave(&xhci->lock, flags);
4025 	/* Don't disable the slot if the host controller is dead. */
4026 	state = readl(&xhci->op_regs->status);
4027 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4028 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4029 		spin_unlock_irqrestore(&xhci->lock, flags);
4030 		kfree(command);
4031 		return -ENODEV;
4032 	}
4033 
4034 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4035 				slot_id);
4036 	if (ret) {
4037 		spin_unlock_irqrestore(&xhci->lock, flags);
4038 		kfree(command);
4039 		return ret;
4040 	}
4041 	xhci_ring_cmd_db(xhci);
4042 	spin_unlock_irqrestore(&xhci->lock, flags);
4043 
4044 	wait_for_completion(command->completion);
4045 
4046 	if (command->status != COMP_SUCCESS)
4047 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4048 			  slot_id, command->status);
4049 
4050 	xhci_free_command(xhci, command);
4051 
4052 	return 0;
4053 }
4054 
4055 /*
4056  * Checks if we have enough host controller resources for the default control
4057  * endpoint.
4058  *
4059  * Must be called with xhci->lock held.
4060  */
4061 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4062 {
4063 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4064 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4065 				"Not enough ep ctxs: "
4066 				"%u active, need to add 1, limit is %u.",
4067 				xhci->num_active_eps, xhci->limit_active_eps);
4068 		return -ENOMEM;
4069 	}
4070 	xhci->num_active_eps += 1;
4071 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072 			"Adding 1 ep ctx, %u now active.",
4073 			xhci->num_active_eps);
4074 	return 0;
4075 }
4076 
4077 
4078 /*
4079  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4080  * timed out, or allocating memory failed.  Returns 1 on success.
4081  */
4082 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4083 {
4084 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085 	struct xhci_virt_device *vdev;
4086 	struct xhci_slot_ctx *slot_ctx;
4087 	unsigned long flags;
4088 	int ret, slot_id;
4089 	struct xhci_command *command;
4090 
4091 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4092 	if (!command)
4093 		return 0;
4094 
4095 	spin_lock_irqsave(&xhci->lock, flags);
4096 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4097 	if (ret) {
4098 		spin_unlock_irqrestore(&xhci->lock, flags);
4099 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4100 		xhci_free_command(xhci, command);
4101 		return 0;
4102 	}
4103 	xhci_ring_cmd_db(xhci);
4104 	spin_unlock_irqrestore(&xhci->lock, flags);
4105 
4106 	wait_for_completion(command->completion);
4107 	slot_id = command->slot_id;
4108 
4109 	if (!slot_id || command->status != COMP_SUCCESS) {
4110 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4111 			 xhci_trb_comp_code_string(command->status));
4112 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4113 				HCS_MAX_SLOTS(
4114 					readl(&xhci->cap_regs->hcs_params1)));
4115 		xhci_free_command(xhci, command);
4116 		return 0;
4117 	}
4118 
4119 	xhci_free_command(xhci, command);
4120 
4121 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4122 		spin_lock_irqsave(&xhci->lock, flags);
4123 		ret = xhci_reserve_host_control_ep_resources(xhci);
4124 		if (ret) {
4125 			spin_unlock_irqrestore(&xhci->lock, flags);
4126 			xhci_warn(xhci, "Not enough host resources, "
4127 					"active endpoint contexts = %u\n",
4128 					xhci->num_active_eps);
4129 			goto disable_slot;
4130 		}
4131 		spin_unlock_irqrestore(&xhci->lock, flags);
4132 	}
4133 	/* Use GFP_NOIO, since this function can be called from
4134 	 * xhci_discover_or_reset_device(), which may be called as part of
4135 	 * mass storage driver error handling.
4136 	 */
4137 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4138 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4139 		goto disable_slot;
4140 	}
4141 	vdev = xhci->devs[slot_id];
4142 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4143 	trace_xhci_alloc_dev(slot_ctx);
4144 
4145 	udev->slot_id = slot_id;
4146 
4147 	xhci_debugfs_create_slot(xhci, slot_id);
4148 
4149 	/*
4150 	 * If resetting upon resume, we can't put the controller into runtime
4151 	 * suspend if there is a device attached.
4152 	 */
4153 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4154 		pm_runtime_get_noresume(hcd->self.controller);
4155 
4156 	/* Is this a LS or FS device under a HS hub? */
4157 	/* Hub or peripherial? */
4158 	return 1;
4159 
4160 disable_slot:
4161 	xhci_disable_slot(xhci, udev->slot_id);
4162 	xhci_free_virt_device(xhci, udev->slot_id);
4163 
4164 	return 0;
4165 }
4166 
4167 /*
4168  * Issue an Address Device command and optionally send a corresponding
4169  * SetAddress request to the device.
4170  */
4171 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4172 			     enum xhci_setup_dev setup)
4173 {
4174 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4175 	unsigned long flags;
4176 	struct xhci_virt_device *virt_dev;
4177 	int ret = 0;
4178 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4179 	struct xhci_slot_ctx *slot_ctx;
4180 	struct xhci_input_control_ctx *ctrl_ctx;
4181 	u64 temp_64;
4182 	struct xhci_command *command = NULL;
4183 
4184 	mutex_lock(&xhci->mutex);
4185 
4186 	if (xhci->xhc_state) {	/* dying, removing or halted */
4187 		ret = -ESHUTDOWN;
4188 		goto out;
4189 	}
4190 
4191 	if (!udev->slot_id) {
4192 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 				"Bad Slot ID %d", udev->slot_id);
4194 		ret = -EINVAL;
4195 		goto out;
4196 	}
4197 
4198 	virt_dev = xhci->devs[udev->slot_id];
4199 
4200 	if (WARN_ON(!virt_dev)) {
4201 		/*
4202 		 * In plug/unplug torture test with an NEC controller,
4203 		 * a zero-dereference was observed once due to virt_dev = 0.
4204 		 * Print useful debug rather than crash if it is observed again!
4205 		 */
4206 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4207 			udev->slot_id);
4208 		ret = -EINVAL;
4209 		goto out;
4210 	}
4211 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4212 	trace_xhci_setup_device_slot(slot_ctx);
4213 
4214 	if (setup == SETUP_CONTEXT_ONLY) {
4215 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4216 		    SLOT_STATE_DEFAULT) {
4217 			xhci_dbg(xhci, "Slot already in default state\n");
4218 			goto out;
4219 		}
4220 	}
4221 
4222 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4223 	if (!command) {
4224 		ret = -ENOMEM;
4225 		goto out;
4226 	}
4227 
4228 	command->in_ctx = virt_dev->in_ctx;
4229 
4230 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4231 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4232 	if (!ctrl_ctx) {
4233 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4234 				__func__);
4235 		ret = -EINVAL;
4236 		goto out;
4237 	}
4238 	/*
4239 	 * If this is the first Set Address since device plug-in or
4240 	 * virt_device realloaction after a resume with an xHCI power loss,
4241 	 * then set up the slot context.
4242 	 */
4243 	if (!slot_ctx->dev_info)
4244 		xhci_setup_addressable_virt_dev(xhci, udev);
4245 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4246 	else
4247 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4248 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4249 	ctrl_ctx->drop_flags = 0;
4250 
4251 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4252 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4253 
4254 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4255 	spin_lock_irqsave(&xhci->lock, flags);
4256 	trace_xhci_setup_device(virt_dev);
4257 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4258 					udev->slot_id, setup);
4259 	if (ret) {
4260 		spin_unlock_irqrestore(&xhci->lock, flags);
4261 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262 				"FIXME: allocate a command ring segment");
4263 		goto out;
4264 	}
4265 	xhci_ring_cmd_db(xhci);
4266 	spin_unlock_irqrestore(&xhci->lock, flags);
4267 
4268 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4269 	wait_for_completion(command->completion);
4270 
4271 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4272 	 * the SetAddress() "recovery interval" required by USB and aborting the
4273 	 * command on a timeout.
4274 	 */
4275 	switch (command->status) {
4276 	case COMP_COMMAND_ABORTED:
4277 	case COMP_COMMAND_RING_STOPPED:
4278 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4279 		ret = -ETIME;
4280 		break;
4281 	case COMP_CONTEXT_STATE_ERROR:
4282 	case COMP_SLOT_NOT_ENABLED_ERROR:
4283 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4284 			 act, udev->slot_id);
4285 		ret = -EINVAL;
4286 		break;
4287 	case COMP_USB_TRANSACTION_ERROR:
4288 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4289 
4290 		mutex_unlock(&xhci->mutex);
4291 		ret = xhci_disable_slot(xhci, udev->slot_id);
4292 		xhci_free_virt_device(xhci, udev->slot_id);
4293 		if (!ret)
4294 			xhci_alloc_dev(hcd, udev);
4295 		kfree(command->completion);
4296 		kfree(command);
4297 		return -EPROTO;
4298 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4299 		dev_warn(&udev->dev,
4300 			 "ERROR: Incompatible device for setup %s command\n", act);
4301 		ret = -ENODEV;
4302 		break;
4303 	case COMP_SUCCESS:
4304 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 			       "Successful setup %s command", act);
4306 		break;
4307 	default:
4308 		xhci_err(xhci,
4309 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4310 			 act, command->status);
4311 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4312 		ret = -EINVAL;
4313 		break;
4314 	}
4315 	if (ret)
4316 		goto out;
4317 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4318 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4319 			"Op regs DCBAA ptr = %#016llx", temp_64);
4320 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4321 		"Slot ID %d dcbaa entry @%p = %#016llx",
4322 		udev->slot_id,
4323 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4324 		(unsigned long long)
4325 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4326 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327 			"Output Context DMA address = %#08llx",
4328 			(unsigned long long)virt_dev->out_ctx->dma);
4329 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4330 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4331 	/*
4332 	 * USB core uses address 1 for the roothubs, so we add one to the
4333 	 * address given back to us by the HC.
4334 	 */
4335 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4336 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4337 	/* Zero the input context control for later use */
4338 	ctrl_ctx->add_flags = 0;
4339 	ctrl_ctx->drop_flags = 0;
4340 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4341 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342 
4343 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4344 		       "Internal device address = %d",
4345 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4346 out:
4347 	mutex_unlock(&xhci->mutex);
4348 	if (command) {
4349 		kfree(command->completion);
4350 		kfree(command);
4351 	}
4352 	return ret;
4353 }
4354 
4355 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4356 {
4357 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4358 }
4359 
4360 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4361 {
4362 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4363 }
4364 
4365 /*
4366  * Transfer the port index into real index in the HW port status
4367  * registers. Caculate offset between the port's PORTSC register
4368  * and port status base. Divide the number of per port register
4369  * to get the real index. The raw port number bases 1.
4370  */
4371 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4372 {
4373 	struct xhci_hub *rhub;
4374 
4375 	rhub = xhci_get_rhub(hcd);
4376 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4377 }
4378 
4379 /*
4380  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4381  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4382  */
4383 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4384 			struct usb_device *udev, u16 max_exit_latency)
4385 {
4386 	struct xhci_virt_device *virt_dev;
4387 	struct xhci_command *command;
4388 	struct xhci_input_control_ctx *ctrl_ctx;
4389 	struct xhci_slot_ctx *slot_ctx;
4390 	unsigned long flags;
4391 	int ret;
4392 
4393 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4394 	if (!command)
4395 		return -ENOMEM;
4396 
4397 	spin_lock_irqsave(&xhci->lock, flags);
4398 
4399 	virt_dev = xhci->devs[udev->slot_id];
4400 
4401 	/*
4402 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4403 	 * xHC was re-initialized. Exit latency will be set later after
4404 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4405 	 */
4406 
4407 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4408 		spin_unlock_irqrestore(&xhci->lock, flags);
4409 		return 0;
4410 	}
4411 
4412 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4413 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4414 	if (!ctrl_ctx) {
4415 		spin_unlock_irqrestore(&xhci->lock, flags);
4416 		xhci_free_command(xhci, command);
4417 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4418 				__func__);
4419 		return -ENOMEM;
4420 	}
4421 
4422 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4423 	spin_unlock_irqrestore(&xhci->lock, flags);
4424 
4425 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4426 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4427 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4428 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4429 	slot_ctx->dev_state = 0;
4430 
4431 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4432 			"Set up evaluate context for LPM MEL change.");
4433 
4434 	/* Issue and wait for the evaluate context command. */
4435 	ret = xhci_configure_endpoint(xhci, udev, command,
4436 			true, true);
4437 
4438 	if (!ret) {
4439 		spin_lock_irqsave(&xhci->lock, flags);
4440 		virt_dev->current_mel = max_exit_latency;
4441 		spin_unlock_irqrestore(&xhci->lock, flags);
4442 	}
4443 
4444 	xhci_free_command(xhci, command);
4445 
4446 	return ret;
4447 }
4448 
4449 #ifdef CONFIG_PM
4450 
4451 /* BESL to HIRD Encoding array for USB2 LPM */
4452 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4453 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4454 
4455 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4456 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4457 					struct usb_device *udev)
4458 {
4459 	int u2del, besl, besl_host;
4460 	int besl_device = 0;
4461 	u32 field;
4462 
4463 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4464 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4465 
4466 	if (field & USB_BESL_SUPPORT) {
4467 		for (besl_host = 0; besl_host < 16; besl_host++) {
4468 			if (xhci_besl_encoding[besl_host] >= u2del)
4469 				break;
4470 		}
4471 		/* Use baseline BESL value as default */
4472 		if (field & USB_BESL_BASELINE_VALID)
4473 			besl_device = USB_GET_BESL_BASELINE(field);
4474 		else if (field & USB_BESL_DEEP_VALID)
4475 			besl_device = USB_GET_BESL_DEEP(field);
4476 	} else {
4477 		if (u2del <= 50)
4478 			besl_host = 0;
4479 		else
4480 			besl_host = (u2del - 51) / 75 + 1;
4481 	}
4482 
4483 	besl = besl_host + besl_device;
4484 	if (besl > 15)
4485 		besl = 15;
4486 
4487 	return besl;
4488 }
4489 
4490 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4491 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4492 {
4493 	u32 field;
4494 	int l1;
4495 	int besld = 0;
4496 	int hirdm = 0;
4497 
4498 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499 
4500 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4501 	l1 = udev->l1_params.timeout / 256;
4502 
4503 	/* device has preferred BESLD */
4504 	if (field & USB_BESL_DEEP_VALID) {
4505 		besld = USB_GET_BESL_DEEP(field);
4506 		hirdm = 1;
4507 	}
4508 
4509 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4510 }
4511 
4512 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4513 			struct usb_device *udev, int enable)
4514 {
4515 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4516 	struct xhci_port **ports;
4517 	__le32 __iomem	*pm_addr, *hlpm_addr;
4518 	u32		pm_val, hlpm_val, field;
4519 	unsigned int	port_num;
4520 	unsigned long	flags;
4521 	int		hird, exit_latency;
4522 	int		ret;
4523 
4524 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4525 		return -EPERM;
4526 
4527 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4528 			!udev->lpm_capable)
4529 		return -EPERM;
4530 
4531 	if (!udev->parent || udev->parent->parent ||
4532 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4533 		return -EPERM;
4534 
4535 	if (udev->usb2_hw_lpm_capable != 1)
4536 		return -EPERM;
4537 
4538 	spin_lock_irqsave(&xhci->lock, flags);
4539 
4540 	ports = xhci->usb2_rhub.ports;
4541 	port_num = udev->portnum - 1;
4542 	pm_addr = ports[port_num]->addr + PORTPMSC;
4543 	pm_val = readl(pm_addr);
4544 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4545 
4546 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4547 			enable ? "enable" : "disable", port_num + 1);
4548 
4549 	if (enable) {
4550 		/* Host supports BESL timeout instead of HIRD */
4551 		if (udev->usb2_hw_lpm_besl_capable) {
4552 			/* if device doesn't have a preferred BESL value use a
4553 			 * default one which works with mixed HIRD and BESL
4554 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4555 			 */
4556 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4557 			if ((field & USB_BESL_SUPPORT) &&
4558 			    (field & USB_BESL_BASELINE_VALID))
4559 				hird = USB_GET_BESL_BASELINE(field);
4560 			else
4561 				hird = udev->l1_params.besl;
4562 
4563 			exit_latency = xhci_besl_encoding[hird];
4564 			spin_unlock_irqrestore(&xhci->lock, flags);
4565 
4566 			ret = xhci_change_max_exit_latency(xhci, udev,
4567 							   exit_latency);
4568 			if (ret < 0)
4569 				return ret;
4570 			spin_lock_irqsave(&xhci->lock, flags);
4571 
4572 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4573 			writel(hlpm_val, hlpm_addr);
4574 			/* flush write */
4575 			readl(hlpm_addr);
4576 		} else {
4577 			hird = xhci_calculate_hird_besl(xhci, udev);
4578 		}
4579 
4580 		pm_val &= ~PORT_HIRD_MASK;
4581 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4582 		writel(pm_val, pm_addr);
4583 		pm_val = readl(pm_addr);
4584 		pm_val |= PORT_HLE;
4585 		writel(pm_val, pm_addr);
4586 		/* flush write */
4587 		readl(pm_addr);
4588 	} else {
4589 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4590 		writel(pm_val, pm_addr);
4591 		/* flush write */
4592 		readl(pm_addr);
4593 		if (udev->usb2_hw_lpm_besl_capable) {
4594 			spin_unlock_irqrestore(&xhci->lock, flags);
4595 			xhci_change_max_exit_latency(xhci, udev, 0);
4596 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4597 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4598 					   100, 10000);
4599 			return 0;
4600 		}
4601 	}
4602 
4603 	spin_unlock_irqrestore(&xhci->lock, flags);
4604 	return 0;
4605 }
4606 
4607 /* check if a usb2 port supports a given extened capability protocol
4608  * only USB2 ports extended protocol capability values are cached.
4609  * Return 1 if capability is supported
4610  */
4611 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4612 					   unsigned capability)
4613 {
4614 	u32 port_offset, port_count;
4615 	int i;
4616 
4617 	for (i = 0; i < xhci->num_ext_caps; i++) {
4618 		if (xhci->ext_caps[i] & capability) {
4619 			/* port offsets starts at 1 */
4620 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4621 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4622 			if (port >= port_offset &&
4623 			    port < port_offset + port_count)
4624 				return 1;
4625 		}
4626 	}
4627 	return 0;
4628 }
4629 
4630 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631 {
4632 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4633 	int		portnum = udev->portnum - 1;
4634 
4635 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4636 		return 0;
4637 
4638 	/* we only support lpm for non-hub device connected to root hub yet */
4639 	if (!udev->parent || udev->parent->parent ||
4640 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641 		return 0;
4642 
4643 	if (xhci->hw_lpm_support == 1 &&
4644 			xhci_check_usb2_port_capability(
4645 				xhci, portnum, XHCI_HLC)) {
4646 		udev->usb2_hw_lpm_capable = 1;
4647 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4648 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4649 		if (xhci_check_usb2_port_capability(xhci, portnum,
4650 					XHCI_BLC))
4651 			udev->usb2_hw_lpm_besl_capable = 1;
4652 	}
4653 
4654 	return 0;
4655 }
4656 
4657 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4658 
4659 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4660 static unsigned long long xhci_service_interval_to_ns(
4661 		struct usb_endpoint_descriptor *desc)
4662 {
4663 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4664 }
4665 
4666 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4667 		enum usb3_link_state state)
4668 {
4669 	unsigned long long sel;
4670 	unsigned long long pel;
4671 	unsigned int max_sel_pel;
4672 	char *state_name;
4673 
4674 	switch (state) {
4675 	case USB3_LPM_U1:
4676 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4677 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4678 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4679 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4680 		state_name = "U1";
4681 		break;
4682 	case USB3_LPM_U2:
4683 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4684 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4685 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4686 		state_name = "U2";
4687 		break;
4688 	default:
4689 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4690 				__func__);
4691 		return USB3_LPM_DISABLED;
4692 	}
4693 
4694 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4695 		return USB3_LPM_DEVICE_INITIATED;
4696 
4697 	if (sel > max_sel_pel)
4698 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699 				"due to long SEL %llu ms\n",
4700 				state_name, sel);
4701 	else
4702 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4703 				"due to long PEL %llu ms\n",
4704 				state_name, pel);
4705 	return USB3_LPM_DISABLED;
4706 }
4707 
4708 /* The U1 timeout should be the maximum of the following values:
4709  *  - For control endpoints, U1 system exit latency (SEL) * 3
4710  *  - For bulk endpoints, U1 SEL * 5
4711  *  - For interrupt endpoints:
4712  *    - Notification EPs, U1 SEL * 3
4713  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4714  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4715  */
4716 static unsigned long long xhci_calculate_intel_u1_timeout(
4717 		struct usb_device *udev,
4718 		struct usb_endpoint_descriptor *desc)
4719 {
4720 	unsigned long long timeout_ns;
4721 	int ep_type;
4722 	int intr_type;
4723 
4724 	ep_type = usb_endpoint_type(desc);
4725 	switch (ep_type) {
4726 	case USB_ENDPOINT_XFER_CONTROL:
4727 		timeout_ns = udev->u1_params.sel * 3;
4728 		break;
4729 	case USB_ENDPOINT_XFER_BULK:
4730 		timeout_ns = udev->u1_params.sel * 5;
4731 		break;
4732 	case USB_ENDPOINT_XFER_INT:
4733 		intr_type = usb_endpoint_interrupt_type(desc);
4734 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4735 			timeout_ns = udev->u1_params.sel * 3;
4736 			break;
4737 		}
4738 		/* Otherwise the calculation is the same as isoc eps */
4739 		fallthrough;
4740 	case USB_ENDPOINT_XFER_ISOC:
4741 		timeout_ns = xhci_service_interval_to_ns(desc);
4742 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4743 		if (timeout_ns < udev->u1_params.sel * 2)
4744 			timeout_ns = udev->u1_params.sel * 2;
4745 		break;
4746 	default:
4747 		return 0;
4748 	}
4749 
4750 	return timeout_ns;
4751 }
4752 
4753 /* Returns the hub-encoded U1 timeout value. */
4754 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4755 		struct usb_device *udev,
4756 		struct usb_endpoint_descriptor *desc)
4757 {
4758 	unsigned long long timeout_ns;
4759 
4760 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4761 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4763 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4764 			return USB3_LPM_DISABLED;
4765 		}
4766 	}
4767 
4768 	if (xhci->quirks & XHCI_INTEL_HOST)
4769 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4770 	else
4771 		timeout_ns = udev->u1_params.sel;
4772 
4773 	/* The U1 timeout is encoded in 1us intervals.
4774 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4775 	 */
4776 	if (timeout_ns == USB3_LPM_DISABLED)
4777 		timeout_ns = 1;
4778 	else
4779 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4780 
4781 	/* If the necessary timeout value is bigger than what we can set in the
4782 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4783 	 */
4784 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4785 		return timeout_ns;
4786 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4787 			"due to long timeout %llu ms\n", timeout_ns);
4788 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4789 }
4790 
4791 /* The U2 timeout should be the maximum of:
4792  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4793  *  - largest bInterval of any active periodic endpoint (to avoid going
4794  *    into lower power link states between intervals).
4795  *  - the U2 Exit Latency of the device
4796  */
4797 static unsigned long long xhci_calculate_intel_u2_timeout(
4798 		struct usb_device *udev,
4799 		struct usb_endpoint_descriptor *desc)
4800 {
4801 	unsigned long long timeout_ns;
4802 	unsigned long long u2_del_ns;
4803 
4804 	timeout_ns = 10 * 1000 * 1000;
4805 
4806 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4807 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4808 		timeout_ns = xhci_service_interval_to_ns(desc);
4809 
4810 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4811 	if (u2_del_ns > timeout_ns)
4812 		timeout_ns = u2_del_ns;
4813 
4814 	return timeout_ns;
4815 }
4816 
4817 /* Returns the hub-encoded U2 timeout value. */
4818 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4819 		struct usb_device *udev,
4820 		struct usb_endpoint_descriptor *desc)
4821 {
4822 	unsigned long long timeout_ns;
4823 
4824 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4825 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4826 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4827 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4828 			return USB3_LPM_DISABLED;
4829 		}
4830 	}
4831 
4832 	if (xhci->quirks & XHCI_INTEL_HOST)
4833 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4834 	else
4835 		timeout_ns = udev->u2_params.sel;
4836 
4837 	/* The U2 timeout is encoded in 256us intervals */
4838 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4839 	/* If the necessary timeout value is bigger than what we can set in the
4840 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4841 	 */
4842 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4843 		return timeout_ns;
4844 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4845 			"due to long timeout %llu ms\n", timeout_ns);
4846 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4847 }
4848 
4849 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4850 		struct usb_device *udev,
4851 		struct usb_endpoint_descriptor *desc,
4852 		enum usb3_link_state state,
4853 		u16 *timeout)
4854 {
4855 	if (state == USB3_LPM_U1)
4856 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4857 	else if (state == USB3_LPM_U2)
4858 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4859 
4860 	return USB3_LPM_DISABLED;
4861 }
4862 
4863 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4864 		struct usb_device *udev,
4865 		struct usb_endpoint_descriptor *desc,
4866 		enum usb3_link_state state,
4867 		u16 *timeout)
4868 {
4869 	u16 alt_timeout;
4870 
4871 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4872 		desc, state, timeout);
4873 
4874 	/* If we found we can't enable hub-initiated LPM, and
4875 	 * the U1 or U2 exit latency was too high to allow
4876 	 * device-initiated LPM as well, then we will disable LPM
4877 	 * for this device, so stop searching any further.
4878 	 */
4879 	if (alt_timeout == USB3_LPM_DISABLED) {
4880 		*timeout = alt_timeout;
4881 		return -E2BIG;
4882 	}
4883 	if (alt_timeout > *timeout)
4884 		*timeout = alt_timeout;
4885 	return 0;
4886 }
4887 
4888 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4889 		struct usb_device *udev,
4890 		struct usb_host_interface *alt,
4891 		enum usb3_link_state state,
4892 		u16 *timeout)
4893 {
4894 	int j;
4895 
4896 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4897 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4898 					&alt->endpoint[j].desc, state, timeout))
4899 			return -E2BIG;
4900 	}
4901 	return 0;
4902 }
4903 
4904 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4905 		enum usb3_link_state state)
4906 {
4907 	struct usb_device *parent;
4908 	unsigned int num_hubs;
4909 
4910 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4911 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4912 			parent = parent->parent)
4913 		num_hubs++;
4914 
4915 	if (num_hubs < 2)
4916 		return 0;
4917 
4918 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4919 			" below second-tier hub.\n");
4920 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4921 			"to decrease power consumption.\n");
4922 	return -E2BIG;
4923 }
4924 
4925 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4926 		struct usb_device *udev,
4927 		enum usb3_link_state state)
4928 {
4929 	if (xhci->quirks & XHCI_INTEL_HOST)
4930 		return xhci_check_intel_tier_policy(udev, state);
4931 	else
4932 		return 0;
4933 }
4934 
4935 /* Returns the U1 or U2 timeout that should be enabled.
4936  * If the tier check or timeout setting functions return with a non-zero exit
4937  * code, that means the timeout value has been finalized and we shouldn't look
4938  * at any more endpoints.
4939  */
4940 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4941 			struct usb_device *udev, enum usb3_link_state state)
4942 {
4943 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4944 	struct usb_host_config *config;
4945 	char *state_name;
4946 	int i;
4947 	u16 timeout = USB3_LPM_DISABLED;
4948 
4949 	if (state == USB3_LPM_U1)
4950 		state_name = "U1";
4951 	else if (state == USB3_LPM_U2)
4952 		state_name = "U2";
4953 	else {
4954 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4955 				state);
4956 		return timeout;
4957 	}
4958 
4959 	/* Gather some information about the currently installed configuration
4960 	 * and alternate interface settings.
4961 	 */
4962 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4963 			state, &timeout))
4964 		return timeout;
4965 
4966 	config = udev->actconfig;
4967 	if (!config)
4968 		return timeout;
4969 
4970 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4971 		struct usb_driver *driver;
4972 		struct usb_interface *intf = config->interface[i];
4973 
4974 		if (!intf)
4975 			continue;
4976 
4977 		/* Check if any currently bound drivers want hub-initiated LPM
4978 		 * disabled.
4979 		 */
4980 		if (intf->dev.driver) {
4981 			driver = to_usb_driver(intf->dev.driver);
4982 			if (driver && driver->disable_hub_initiated_lpm) {
4983 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4984 					state_name, driver->name);
4985 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4986 								      state);
4987 				if (timeout == USB3_LPM_DISABLED)
4988 					return timeout;
4989 			}
4990 		}
4991 
4992 		/* Not sure how this could happen... */
4993 		if (!intf->cur_altsetting)
4994 			continue;
4995 
4996 		if (xhci_update_timeout_for_interface(xhci, udev,
4997 					intf->cur_altsetting,
4998 					state, &timeout))
4999 			return timeout;
5000 	}
5001 	return timeout;
5002 }
5003 
5004 static int calculate_max_exit_latency(struct usb_device *udev,
5005 		enum usb3_link_state state_changed,
5006 		u16 hub_encoded_timeout)
5007 {
5008 	unsigned long long u1_mel_us = 0;
5009 	unsigned long long u2_mel_us = 0;
5010 	unsigned long long mel_us = 0;
5011 	bool disabling_u1;
5012 	bool disabling_u2;
5013 	bool enabling_u1;
5014 	bool enabling_u2;
5015 
5016 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5017 			hub_encoded_timeout == USB3_LPM_DISABLED);
5018 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5019 			hub_encoded_timeout == USB3_LPM_DISABLED);
5020 
5021 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5022 			hub_encoded_timeout != USB3_LPM_DISABLED);
5023 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5024 			hub_encoded_timeout != USB3_LPM_DISABLED);
5025 
5026 	/* If U1 was already enabled and we're not disabling it,
5027 	 * or we're going to enable U1, account for the U1 max exit latency.
5028 	 */
5029 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5030 			enabling_u1)
5031 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5032 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5033 			enabling_u2)
5034 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5035 
5036 	mel_us = max(u1_mel_us, u2_mel_us);
5037 
5038 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5039 	if (mel_us > MAX_EXIT) {
5040 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5041 				"is too big.\n", mel_us);
5042 		return -E2BIG;
5043 	}
5044 	return mel_us;
5045 }
5046 
5047 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5048 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5049 			struct usb_device *udev, enum usb3_link_state state)
5050 {
5051 	struct xhci_hcd	*xhci;
5052 	struct xhci_port *port;
5053 	u16 hub_encoded_timeout;
5054 	int mel;
5055 	int ret;
5056 
5057 	xhci = hcd_to_xhci(hcd);
5058 	/* The LPM timeout values are pretty host-controller specific, so don't
5059 	 * enable hub-initiated timeouts unless the vendor has provided
5060 	 * information about their timeout algorithm.
5061 	 */
5062 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5063 			!xhci->devs[udev->slot_id])
5064 		return USB3_LPM_DISABLED;
5065 
5066 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5067 		return USB3_LPM_DISABLED;
5068 
5069 	/* If connected to root port then check port can handle lpm */
5070 	if (udev->parent && !udev->parent->parent) {
5071 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5072 		if (port->lpm_incapable)
5073 			return USB3_LPM_DISABLED;
5074 	}
5075 
5076 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5077 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5078 	if (mel < 0) {
5079 		/* Max Exit Latency is too big, disable LPM. */
5080 		hub_encoded_timeout = USB3_LPM_DISABLED;
5081 		mel = 0;
5082 	}
5083 
5084 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5085 	if (ret)
5086 		return ret;
5087 	return hub_encoded_timeout;
5088 }
5089 
5090 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091 			struct usb_device *udev, enum usb3_link_state state)
5092 {
5093 	struct xhci_hcd	*xhci;
5094 	u16 mel;
5095 
5096 	xhci = hcd_to_xhci(hcd);
5097 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5098 			!xhci->devs[udev->slot_id])
5099 		return 0;
5100 
5101 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5102 	return xhci_change_max_exit_latency(xhci, udev, mel);
5103 }
5104 #else /* CONFIG_PM */
5105 
5106 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5107 				struct usb_device *udev, int enable)
5108 {
5109 	return 0;
5110 }
5111 
5112 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5113 {
5114 	return 0;
5115 }
5116 
5117 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5118 			struct usb_device *udev, enum usb3_link_state state)
5119 {
5120 	return USB3_LPM_DISABLED;
5121 }
5122 
5123 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5124 			struct usb_device *udev, enum usb3_link_state state)
5125 {
5126 	return 0;
5127 }
5128 #endif	/* CONFIG_PM */
5129 
5130 /*-------------------------------------------------------------------------*/
5131 
5132 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5133  * internal data structures for the device.
5134  */
5135 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5136 			struct usb_tt *tt, gfp_t mem_flags)
5137 {
5138 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139 	struct xhci_virt_device *vdev;
5140 	struct xhci_command *config_cmd;
5141 	struct xhci_input_control_ctx *ctrl_ctx;
5142 	struct xhci_slot_ctx *slot_ctx;
5143 	unsigned long flags;
5144 	unsigned think_time;
5145 	int ret;
5146 
5147 	/* Ignore root hubs */
5148 	if (!hdev->parent)
5149 		return 0;
5150 
5151 	vdev = xhci->devs[hdev->slot_id];
5152 	if (!vdev) {
5153 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5154 		return -EINVAL;
5155 	}
5156 
5157 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5158 	if (!config_cmd)
5159 		return -ENOMEM;
5160 
5161 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5162 	if (!ctrl_ctx) {
5163 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5164 				__func__);
5165 		xhci_free_command(xhci, config_cmd);
5166 		return -ENOMEM;
5167 	}
5168 
5169 	spin_lock_irqsave(&xhci->lock, flags);
5170 	if (hdev->speed == USB_SPEED_HIGH &&
5171 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5172 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5173 		xhci_free_command(xhci, config_cmd);
5174 		spin_unlock_irqrestore(&xhci->lock, flags);
5175 		return -ENOMEM;
5176 	}
5177 
5178 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5179 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5180 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5181 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5182 	/*
5183 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5184 	 * but it may be already set to 1 when setup an xHCI virtual
5185 	 * device, so clear it anyway.
5186 	 */
5187 	if (tt->multi)
5188 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5189 	else if (hdev->speed == USB_SPEED_FULL)
5190 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5191 
5192 	if (xhci->hci_version > 0x95) {
5193 		xhci_dbg(xhci, "xHCI version %x needs hub "
5194 				"TT think time and number of ports\n",
5195 				(unsigned int) xhci->hci_version);
5196 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5197 		/* Set TT think time - convert from ns to FS bit times.
5198 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5199 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5200 		 *
5201 		 * xHCI 1.0: this field shall be 0 if the device is not a
5202 		 * High-spped hub.
5203 		 */
5204 		think_time = tt->think_time;
5205 		if (think_time != 0)
5206 			think_time = (think_time / 666) - 1;
5207 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5208 			slot_ctx->tt_info |=
5209 				cpu_to_le32(TT_THINK_TIME(think_time));
5210 	} else {
5211 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5212 				"TT think time or number of ports\n",
5213 				(unsigned int) xhci->hci_version);
5214 	}
5215 	slot_ctx->dev_state = 0;
5216 	spin_unlock_irqrestore(&xhci->lock, flags);
5217 
5218 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5219 			(xhci->hci_version > 0x95) ?
5220 			"configure endpoint" : "evaluate context");
5221 
5222 	/* Issue and wait for the configure endpoint or
5223 	 * evaluate context command.
5224 	 */
5225 	if (xhci->hci_version > 0x95)
5226 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5227 				false, false);
5228 	else
5229 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5230 				true, false);
5231 
5232 	xhci_free_command(xhci, config_cmd);
5233 	return ret;
5234 }
5235 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5236 
5237 static int xhci_get_frame(struct usb_hcd *hcd)
5238 {
5239 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5240 	/* EHCI mods by the periodic size.  Why? */
5241 	return readl(&xhci->run_regs->microframe_index) >> 3;
5242 }
5243 
5244 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245 {
5246 	xhci->usb2_rhub.hcd = hcd;
5247 	hcd->speed = HCD_USB2;
5248 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5249 	/*
5250 	 * USB 2.0 roothub under xHCI has an integrated TT,
5251 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5252 	 * companion controller.
5253 	 */
5254 	hcd->has_tt = 1;
5255 }
5256 
5257 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5258 {
5259 	unsigned int minor_rev;
5260 
5261 	/*
5262 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5263 	 * should return 0x31 for sbrn, or that the minor revision
5264 	 * is a two digit BCD containig minor and sub-minor numbers.
5265 	 * This was later clarified in xHCI 1.2.
5266 	 *
5267 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5268 	 * minor revision set to 0x1 instead of 0x10.
5269 	 */
5270 	if (xhci->usb3_rhub.min_rev == 0x1)
5271 		minor_rev = 1;
5272 	else
5273 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5274 
5275 	switch (minor_rev) {
5276 	case 2:
5277 		hcd->speed = HCD_USB32;
5278 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5279 		hcd->self.root_hub->rx_lanes = 2;
5280 		hcd->self.root_hub->tx_lanes = 2;
5281 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5282 		break;
5283 	case 1:
5284 		hcd->speed = HCD_USB31;
5285 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5286 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5287 		break;
5288 	}
5289 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5290 		  minor_rev, minor_rev ? "Enhanced " : "");
5291 
5292 	xhci->usb3_rhub.hcd = hcd;
5293 }
5294 
5295 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5296 {
5297 	struct xhci_hcd		*xhci;
5298 	/*
5299 	 * TODO: Check with DWC3 clients for sysdev according to
5300 	 * quirks
5301 	 */
5302 	struct device		*dev = hcd->self.sysdev;
5303 	int			retval;
5304 
5305 	/* Accept arbitrarily long scatter-gather lists */
5306 	hcd->self.sg_tablesize = ~0;
5307 
5308 	/* support to build packet from discontinuous buffers */
5309 	hcd->self.no_sg_constraint = 1;
5310 
5311 	/* XHCI controllers don't stop the ep queue on short packets :| */
5312 	hcd->self.no_stop_on_short = 1;
5313 
5314 	xhci = hcd_to_xhci(hcd);
5315 
5316 	if (!usb_hcd_is_primary_hcd(hcd)) {
5317 		xhci_hcd_init_usb3_data(xhci, hcd);
5318 		return 0;
5319 	}
5320 
5321 	mutex_init(&xhci->mutex);
5322 	xhci->main_hcd = hcd;
5323 	xhci->cap_regs = hcd->regs;
5324 	xhci->op_regs = hcd->regs +
5325 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5326 	xhci->run_regs = hcd->regs +
5327 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5328 	/* Cache read-only capability registers */
5329 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5330 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5331 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5332 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5333 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5334 	if (xhci->hci_version > 0x100)
5335 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5336 
5337 	xhci->quirks |= quirks;
5338 
5339 	get_quirks(dev, xhci);
5340 
5341 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5342 	 * success event after a short transfer. This quirk will ignore such
5343 	 * spurious event.
5344 	 */
5345 	if (xhci->hci_version > 0x96)
5346 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5347 
5348 	/* Make sure the HC is halted. */
5349 	retval = xhci_halt(xhci);
5350 	if (retval)
5351 		return retval;
5352 
5353 	xhci_zero_64b_regs(xhci);
5354 
5355 	xhci_dbg(xhci, "Resetting HCD\n");
5356 	/* Reset the internal HC memory state and registers. */
5357 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5358 	if (retval)
5359 		return retval;
5360 	xhci_dbg(xhci, "Reset complete\n");
5361 
5362 	/*
5363 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5364 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5365 	 * address memory pointers actually. So, this driver clears the AC64
5366 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5367 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5368 	 */
5369 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5370 		xhci->hcc_params &= ~BIT(0);
5371 
5372 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5373 	 * if xHC supports 64-bit addressing */
5374 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5375 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5376 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5377 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5378 	} else {
5379 		/*
5380 		 * This is to avoid error in cases where a 32-bit USB
5381 		 * controller is used on a 64-bit capable system.
5382 		 */
5383 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5384 		if (retval)
5385 			return retval;
5386 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5387 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5388 	}
5389 
5390 	xhci_dbg(xhci, "Calling HCD init\n");
5391 	/* Initialize HCD and host controller data structures. */
5392 	retval = xhci_init(hcd);
5393 	if (retval)
5394 		return retval;
5395 	xhci_dbg(xhci, "Called HCD init\n");
5396 
5397 	if (xhci_hcd_is_usb3(hcd))
5398 		xhci_hcd_init_usb3_data(xhci, hcd);
5399 	else
5400 		xhci_hcd_init_usb2_data(xhci, hcd);
5401 
5402 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5403 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5404 
5405 	return 0;
5406 }
5407 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5408 
5409 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5410 		struct usb_host_endpoint *ep)
5411 {
5412 	struct xhci_hcd *xhci;
5413 	struct usb_device *udev;
5414 	unsigned int slot_id;
5415 	unsigned int ep_index;
5416 	unsigned long flags;
5417 
5418 	xhci = hcd_to_xhci(hcd);
5419 
5420 	spin_lock_irqsave(&xhci->lock, flags);
5421 	udev = (struct usb_device *)ep->hcpriv;
5422 	slot_id = udev->slot_id;
5423 	ep_index = xhci_get_endpoint_index(&ep->desc);
5424 
5425 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5426 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5427 	spin_unlock_irqrestore(&xhci->lock, flags);
5428 }
5429 
5430 static const struct hc_driver xhci_hc_driver = {
5431 	.description =		"xhci-hcd",
5432 	.product_desc =		"xHCI Host Controller",
5433 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5434 
5435 	/*
5436 	 * generic hardware linkage
5437 	 */
5438 	.irq =			xhci_irq,
5439 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5440 				HCD_BH,
5441 
5442 	/*
5443 	 * basic lifecycle operations
5444 	 */
5445 	.reset =		NULL, /* set in xhci_init_driver() */
5446 	.start =		xhci_run,
5447 	.stop =			xhci_stop,
5448 	.shutdown =		xhci_shutdown,
5449 
5450 	/*
5451 	 * managing i/o requests and associated device resources
5452 	 */
5453 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5454 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5455 	.urb_enqueue =		xhci_urb_enqueue,
5456 	.urb_dequeue =		xhci_urb_dequeue,
5457 	.alloc_dev =		xhci_alloc_dev,
5458 	.free_dev =		xhci_free_dev,
5459 	.alloc_streams =	xhci_alloc_streams,
5460 	.free_streams =		xhci_free_streams,
5461 	.add_endpoint =		xhci_add_endpoint,
5462 	.drop_endpoint =	xhci_drop_endpoint,
5463 	.endpoint_disable =	xhci_endpoint_disable,
5464 	.endpoint_reset =	xhci_endpoint_reset,
5465 	.check_bandwidth =	xhci_check_bandwidth,
5466 	.reset_bandwidth =	xhci_reset_bandwidth,
5467 	.address_device =	xhci_address_device,
5468 	.enable_device =	xhci_enable_device,
5469 	.update_hub_device =	xhci_update_hub_device,
5470 	.reset_device =		xhci_discover_or_reset_device,
5471 
5472 	/*
5473 	 * scheduling support
5474 	 */
5475 	.get_frame_number =	xhci_get_frame,
5476 
5477 	/*
5478 	 * root hub support
5479 	 */
5480 	.hub_control =		xhci_hub_control,
5481 	.hub_status_data =	xhci_hub_status_data,
5482 	.bus_suspend =		xhci_bus_suspend,
5483 	.bus_resume =		xhci_bus_resume,
5484 	.get_resuming_ports =	xhci_get_resuming_ports,
5485 
5486 	/*
5487 	 * call back when device connected and addressed
5488 	 */
5489 	.update_device =        xhci_update_device,
5490 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5491 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5492 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5493 	.find_raw_port_number =	xhci_find_raw_port_number,
5494 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5495 };
5496 
5497 void xhci_init_driver(struct hc_driver *drv,
5498 		      const struct xhci_driver_overrides *over)
5499 {
5500 	BUG_ON(!over);
5501 
5502 	/* Copy the generic table to drv then apply the overrides */
5503 	*drv = xhci_hc_driver;
5504 
5505 	if (over) {
5506 		drv->hcd_priv_size += over->extra_priv_size;
5507 		if (over->reset)
5508 			drv->reset = over->reset;
5509 		if (over->start)
5510 			drv->start = over->start;
5511 		if (over->add_endpoint)
5512 			drv->add_endpoint = over->add_endpoint;
5513 		if (over->drop_endpoint)
5514 			drv->drop_endpoint = over->drop_endpoint;
5515 		if (over->check_bandwidth)
5516 			drv->check_bandwidth = over->check_bandwidth;
5517 		if (over->reset_bandwidth)
5518 			drv->reset_bandwidth = over->reset_bandwidth;
5519 		if (over->update_hub_device)
5520 			drv->update_hub_device = over->update_hub_device;
5521 	}
5522 }
5523 EXPORT_SYMBOL_GPL(xhci_init_driver);
5524 
5525 MODULE_DESCRIPTION(DRIVER_DESC);
5526 MODULE_AUTHOR(DRIVER_AUTHOR);
5527 MODULE_LICENSE("GPL");
5528 
5529 static int __init xhci_hcd_init(void)
5530 {
5531 	/*
5532 	 * Check the compiler generated sizes of structures that must be laid
5533 	 * out in specific ways for hardware access.
5534 	 */
5535 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5536 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5537 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5538 	/* xhci_device_control has eight fields, and also
5539 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5540 	 */
5541 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5542 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5543 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5544 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5545 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5546 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5547 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5548 
5549 	if (usb_disabled())
5550 		return -ENODEV;
5551 
5552 	xhci_debugfs_create_root();
5553 	xhci_dbc_init();
5554 
5555 	return 0;
5556 }
5557 
5558 /*
5559  * If an init function is provided, an exit function must also be provided
5560  * to allow module unload.
5561  */
5562 static void __exit xhci_hcd_fini(void)
5563 {
5564 	xhci_debugfs_remove_root();
5565 	xhci_dbc_exit();
5566 }
5567 
5568 module_init(xhci_hcd_init);
5569 module_exit(xhci_hcd_fini);
5570