1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; i++) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 220 #ifdef CONFIG_USB_PCI 221 /* 222 * Set up MSI 223 */ 224 static int xhci_setup_msi(struct xhci_hcd *xhci) 225 { 226 int ret; 227 /* 228 * TODO:Check with MSI Soc for sysdev 229 */ 230 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 231 232 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 233 if (ret < 0) { 234 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 235 "failed to allocate MSI entry"); 236 return ret; 237 } 238 239 ret = request_irq(pdev->irq, xhci_msi_irq, 240 0, "xhci_hcd", xhci_to_hcd(xhci)); 241 if (ret) { 242 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 243 "disable MSI interrupt"); 244 pci_free_irq_vectors(pdev); 245 } 246 247 return ret; 248 } 249 250 /* 251 * Set up MSI-X 252 */ 253 static int xhci_setup_msix(struct xhci_hcd *xhci) 254 { 255 int i, ret = 0; 256 struct usb_hcd *hcd = xhci_to_hcd(xhci); 257 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 258 259 /* 260 * calculate number of msi-x vectors supported. 261 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 262 * with max number of interrupters based on the xhci HCSPARAMS1. 263 * - num_online_cpus: maximum msi-x vectors per CPUs core. 264 * Add additional 1 vector to ensure always available interrupt. 265 */ 266 xhci->msix_count = min(num_online_cpus() + 1, 267 HCS_MAX_INTRS(xhci->hcs_params1)); 268 269 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 270 PCI_IRQ_MSIX); 271 if (ret < 0) { 272 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 273 "Failed to enable MSI-X"); 274 return ret; 275 } 276 277 for (i = 0; i < xhci->msix_count; i++) { 278 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 279 "xhci_hcd", xhci_to_hcd(xhci)); 280 if (ret) 281 goto disable_msix; 282 } 283 284 hcd->msix_enabled = 1; 285 return ret; 286 287 disable_msix: 288 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 289 while (--i >= 0) 290 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 291 pci_free_irq_vectors(pdev); 292 return ret; 293 } 294 295 /* Free any IRQs and disable MSI-X */ 296 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 297 { 298 struct usb_hcd *hcd = xhci_to_hcd(xhci); 299 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 300 301 if (xhci->quirks & XHCI_PLAT) 302 return; 303 304 /* return if using legacy interrupt */ 305 if (hcd->irq > 0) 306 return; 307 308 if (hcd->msix_enabled) { 309 int i; 310 311 for (i = 0; i < xhci->msix_count; i++) 312 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 313 } else { 314 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 315 } 316 317 pci_free_irq_vectors(pdev); 318 hcd->msix_enabled = 0; 319 } 320 321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 322 { 323 struct usb_hcd *hcd = xhci_to_hcd(xhci); 324 325 if (hcd->msix_enabled) { 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 int i; 328 329 for (i = 0; i < xhci->msix_count; i++) 330 synchronize_irq(pci_irq_vector(pdev, i)); 331 } 332 } 333 334 static int xhci_try_enable_msi(struct usb_hcd *hcd) 335 { 336 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 337 struct pci_dev *pdev; 338 int ret; 339 340 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 341 if (xhci->quirks & XHCI_PLAT) 342 return 0; 343 344 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 345 /* 346 * Some Fresco Logic host controllers advertise MSI, but fail to 347 * generate interrupts. Don't even try to enable MSI. 348 */ 349 if (xhci->quirks & XHCI_BROKEN_MSI) 350 goto legacy_irq; 351 352 /* unregister the legacy interrupt */ 353 if (hcd->irq) 354 free_irq(hcd->irq, hcd); 355 hcd->irq = 0; 356 357 ret = xhci_setup_msix(xhci); 358 if (ret) 359 /* fall back to msi*/ 360 ret = xhci_setup_msi(xhci); 361 362 if (!ret) 363 /* hcd->irq is 0, we have MSI */ 364 return 0; 365 366 if (!pdev->irq) { 367 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 368 return -EINVAL; 369 } 370 371 legacy_irq: 372 if (!strlen(hcd->irq_descr)) 373 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 374 hcd->driver->description, hcd->self.busnum); 375 376 /* fall back to legacy interrupt*/ 377 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 378 hcd->irq_descr, hcd); 379 if (ret) { 380 xhci_err(xhci, "request interrupt %d failed\n", 381 pdev->irq); 382 return ret; 383 } 384 hcd->irq = pdev->irq; 385 return 0; 386 } 387 388 #else 389 390 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 391 { 392 return 0; 393 } 394 395 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 396 { 397 } 398 399 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 400 { 401 } 402 403 #endif 404 405 static void compliance_mode_recovery(unsigned long arg) 406 { 407 struct xhci_hcd *xhci; 408 struct usb_hcd *hcd; 409 u32 temp; 410 int i; 411 412 xhci = (struct xhci_hcd *)arg; 413 414 for (i = 0; i < xhci->num_usb3_ports; i++) { 415 temp = readl(xhci->usb3_ports[i]); 416 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 417 /* 418 * Compliance Mode Detected. Letting USB Core 419 * handle the Warm Reset 420 */ 421 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 422 "Compliance mode detected->port %d", 423 i + 1); 424 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 425 "Attempting compliance mode recovery"); 426 hcd = xhci->shared_hcd; 427 428 if (hcd->state == HC_STATE_SUSPENDED) 429 usb_hcd_resume_root_hub(hcd); 430 431 usb_hcd_poll_rh_status(hcd); 432 } 433 } 434 435 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 436 mod_timer(&xhci->comp_mode_recovery_timer, 437 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 438 } 439 440 /* 441 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 442 * that causes ports behind that hardware to enter compliance mode sometimes. 443 * The quirk creates a timer that polls every 2 seconds the link state of 444 * each host controller's port and recovers it by issuing a Warm reset 445 * if Compliance mode is detected, otherwise the port will become "dead" (no 446 * device connections or disconnections will be detected anymore). Becasue no 447 * status event is generated when entering compliance mode (per xhci spec), 448 * this quirk is needed on systems that have the failing hardware installed. 449 */ 450 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 451 { 452 xhci->port_status_u0 = 0; 453 setup_timer(&xhci->comp_mode_recovery_timer, 454 compliance_mode_recovery, (unsigned long)xhci); 455 xhci->comp_mode_recovery_timer.expires = jiffies + 456 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 457 458 add_timer(&xhci->comp_mode_recovery_timer); 459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 460 "Compliance mode recovery timer initialized"); 461 } 462 463 /* 464 * This function identifies the systems that have installed the SN65LVPE502CP 465 * USB3.0 re-driver and that need the Compliance Mode Quirk. 466 * Systems: 467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 468 */ 469 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 470 { 471 const char *dmi_product_name, *dmi_sys_vendor; 472 473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 475 if (!dmi_product_name || !dmi_sys_vendor) 476 return false; 477 478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 479 return false; 480 481 if (strstr(dmi_product_name, "Z420") || 482 strstr(dmi_product_name, "Z620") || 483 strstr(dmi_product_name, "Z820") || 484 strstr(dmi_product_name, "Z1 Workstation")) 485 return true; 486 487 return false; 488 } 489 490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 491 { 492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 493 } 494 495 496 /* 497 * Initialize memory for HCD and xHC (one-time init). 498 * 499 * Program the PAGESIZE register, initialize the device context array, create 500 * device contexts (?), set up a command ring segment (or two?), create event 501 * ring (one for now). 502 */ 503 static int xhci_init(struct usb_hcd *hcd) 504 { 505 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 506 int retval = 0; 507 508 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 509 spin_lock_init(&xhci->lock); 510 if (xhci->hci_version == 0x95 && link_quirk) { 511 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 512 "QUIRK: Not clearing Link TRB chain bits."); 513 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 514 } else { 515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 516 "xHCI doesn't need link TRB QUIRK"); 517 } 518 retval = xhci_mem_init(xhci, GFP_KERNEL); 519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 520 521 /* Initializing Compliance Mode Recovery Data If Needed */ 522 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 523 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 524 compliance_mode_recovery_timer_init(xhci); 525 } 526 527 return retval; 528 } 529 530 /*-------------------------------------------------------------------------*/ 531 532 533 static int xhci_run_finished(struct xhci_hcd *xhci) 534 { 535 if (xhci_start(xhci)) { 536 xhci_halt(xhci); 537 return -ENODEV; 538 } 539 xhci->shared_hcd->state = HC_STATE_RUNNING; 540 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 541 542 if (xhci->quirks & XHCI_NEC_HOST) 543 xhci_ring_cmd_db(xhci); 544 545 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 546 "Finished xhci_run for USB3 roothub"); 547 return 0; 548 } 549 550 /* 551 * Start the HC after it was halted. 552 * 553 * This function is called by the USB core when the HC driver is added. 554 * Its opposite is xhci_stop(). 555 * 556 * xhci_init() must be called once before this function can be called. 557 * Reset the HC, enable device slot contexts, program DCBAAP, and 558 * set command ring pointer and event ring pointer. 559 * 560 * Setup MSI-X vectors and enable interrupts. 561 */ 562 int xhci_run(struct usb_hcd *hcd) 563 { 564 u32 temp; 565 u64 temp_64; 566 int ret; 567 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 568 569 /* Start the xHCI host controller running only after the USB 2.0 roothub 570 * is setup. 571 */ 572 573 hcd->uses_new_polling = 1; 574 if (!usb_hcd_is_primary_hcd(hcd)) 575 return xhci_run_finished(xhci); 576 577 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 578 579 ret = xhci_try_enable_msi(hcd); 580 if (ret) 581 return ret; 582 583 xhci_dbg_cmd_ptrs(xhci); 584 585 xhci_dbg(xhci, "ERST memory map follows:\n"); 586 xhci_dbg_erst(xhci, &xhci->erst); 587 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 588 temp_64 &= ~ERST_PTR_MASK; 589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 590 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 591 592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 593 "// Set the interrupt modulation register"); 594 temp = readl(&xhci->ir_set->irq_control); 595 temp &= ~ER_IRQ_INTERVAL_MASK; 596 /* 597 * the increment interval is 8 times as much as that defined 598 * in xHCI spec on MTK's controller 599 */ 600 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 601 writel(temp, &xhci->ir_set->irq_control); 602 603 /* Set the HCD state before we enable the irqs */ 604 temp = readl(&xhci->op_regs->command); 605 temp |= (CMD_EIE); 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Enable interrupts, cmd = 0x%x.", temp); 608 writel(temp, &xhci->op_regs->command); 609 610 temp = readl(&xhci->ir_set->irq_pending); 611 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 612 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 613 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 614 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 615 xhci_print_ir_set(xhci, 0); 616 617 if (xhci->quirks & XHCI_NEC_HOST) { 618 struct xhci_command *command; 619 620 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 621 if (!command) 622 return -ENOMEM; 623 624 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 625 TRB_TYPE(TRB_NEC_GET_FW)); 626 } 627 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 628 "Finished xhci_run for USB2 roothub"); 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(xhci_run); 632 633 /* 634 * Stop xHCI driver. 635 * 636 * This function is called by the USB core when the HC driver is removed. 637 * Its opposite is xhci_run(). 638 * 639 * Disable device contexts, disable IRQs, and quiesce the HC. 640 * Reset the HC, finish any completed transactions, and cleanup memory. 641 */ 642 static void xhci_stop(struct usb_hcd *hcd) 643 { 644 u32 temp; 645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 646 647 mutex_lock(&xhci->mutex); 648 649 /* Only halt host and free memory after both hcds are removed */ 650 if (!usb_hcd_is_primary_hcd(hcd)) { 651 /* usb core will free this hcd shortly, unset pointer */ 652 xhci->shared_hcd = NULL; 653 mutex_unlock(&xhci->mutex); 654 return; 655 } 656 657 spin_lock_irq(&xhci->lock); 658 xhci->xhc_state |= XHCI_STATE_HALTED; 659 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 660 xhci_halt(xhci); 661 xhci_reset(xhci); 662 spin_unlock_irq(&xhci->lock); 663 664 xhci_cleanup_msix(xhci); 665 666 /* Deleting Compliance Mode Recovery Timer */ 667 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 668 (!(xhci_all_ports_seen_u0(xhci)))) { 669 del_timer_sync(&xhci->comp_mode_recovery_timer); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 671 "%s: compliance mode recovery timer deleted", 672 __func__); 673 } 674 675 if (xhci->quirks & XHCI_AMD_PLL_FIX) 676 usb_amd_dev_put(); 677 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Disabling event ring interrupts"); 680 temp = readl(&xhci->op_regs->status); 681 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 682 temp = readl(&xhci->ir_set->irq_pending); 683 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 684 xhci_print_ir_set(xhci, 0); 685 686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 687 xhci_mem_cleanup(xhci); 688 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 689 "xhci_stop completed - status = %x", 690 readl(&xhci->op_regs->status)); 691 mutex_unlock(&xhci->mutex); 692 } 693 694 /* 695 * Shutdown HC (not bus-specific) 696 * 697 * This is called when the machine is rebooting or halting. We assume that the 698 * machine will be powered off, and the HC's internal state will be reset. 699 * Don't bother to free memory. 700 * 701 * This will only ever be called with the main usb_hcd (the USB3 roothub). 702 */ 703 static void xhci_shutdown(struct usb_hcd *hcd) 704 { 705 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 706 707 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 708 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 709 710 spin_lock_irq(&xhci->lock); 711 xhci_halt(xhci); 712 /* Workaround for spurious wakeups at shutdown with HSW */ 713 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 714 xhci_reset(xhci); 715 spin_unlock_irq(&xhci->lock); 716 717 xhci_cleanup_msix(xhci); 718 719 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 720 "xhci_shutdown completed - status = %x", 721 readl(&xhci->op_regs->status)); 722 723 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 724 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 725 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 726 } 727 728 #ifdef CONFIG_PM 729 static void xhci_save_registers(struct xhci_hcd *xhci) 730 { 731 xhci->s3.command = readl(&xhci->op_regs->command); 732 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 733 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 734 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 735 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 736 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 737 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 738 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 739 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 740 } 741 742 static void xhci_restore_registers(struct xhci_hcd *xhci) 743 { 744 writel(xhci->s3.command, &xhci->op_regs->command); 745 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 746 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 747 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 748 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 749 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 750 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 751 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 752 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 753 } 754 755 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 756 { 757 u64 val_64; 758 759 /* step 2: initialize command ring buffer */ 760 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 761 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 762 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 763 xhci->cmd_ring->dequeue) & 764 (u64) ~CMD_RING_RSVD_BITS) | 765 xhci->cmd_ring->cycle_state; 766 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 767 "// Setting command ring address to 0x%llx", 768 (long unsigned long) val_64); 769 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 770 } 771 772 /* 773 * The whole command ring must be cleared to zero when we suspend the host. 774 * 775 * The host doesn't save the command ring pointer in the suspend well, so we 776 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 777 * aligned, because of the reserved bits in the command ring dequeue pointer 778 * register. Therefore, we can't just set the dequeue pointer back in the 779 * middle of the ring (TRBs are 16-byte aligned). 780 */ 781 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 782 { 783 struct xhci_ring *ring; 784 struct xhci_segment *seg; 785 786 ring = xhci->cmd_ring; 787 seg = ring->deq_seg; 788 do { 789 memset(seg->trbs, 0, 790 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 791 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 792 cpu_to_le32(~TRB_CYCLE); 793 seg = seg->next; 794 } while (seg != ring->deq_seg); 795 796 /* Reset the software enqueue and dequeue pointers */ 797 ring->deq_seg = ring->first_seg; 798 ring->dequeue = ring->first_seg->trbs; 799 ring->enq_seg = ring->deq_seg; 800 ring->enqueue = ring->dequeue; 801 802 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 803 /* 804 * Ring is now zeroed, so the HW should look for change of ownership 805 * when the cycle bit is set to 1. 806 */ 807 ring->cycle_state = 1; 808 809 /* 810 * Reset the hardware dequeue pointer. 811 * Yes, this will need to be re-written after resume, but we're paranoid 812 * and want to make sure the hardware doesn't access bogus memory 813 * because, say, the BIOS or an SMI started the host without changing 814 * the command ring pointers. 815 */ 816 xhci_set_cmd_ring_deq(xhci); 817 } 818 819 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 820 { 821 int port_index; 822 __le32 __iomem **port_array; 823 unsigned long flags; 824 u32 t1, t2; 825 826 spin_lock_irqsave(&xhci->lock, flags); 827 828 /* disable usb3 ports Wake bits */ 829 port_index = xhci->num_usb3_ports; 830 port_array = xhci->usb3_ports; 831 while (port_index--) { 832 t1 = readl(port_array[port_index]); 833 t1 = xhci_port_state_to_neutral(t1); 834 t2 = t1 & ~PORT_WAKE_BITS; 835 if (t1 != t2) 836 writel(t2, port_array[port_index]); 837 } 838 839 /* disable usb2 ports Wake bits */ 840 port_index = xhci->num_usb2_ports; 841 port_array = xhci->usb2_ports; 842 while (port_index--) { 843 t1 = readl(port_array[port_index]); 844 t1 = xhci_port_state_to_neutral(t1); 845 t2 = t1 & ~PORT_WAKE_BITS; 846 if (t1 != t2) 847 writel(t2, port_array[port_index]); 848 } 849 850 spin_unlock_irqrestore(&xhci->lock, flags); 851 } 852 853 /* 854 * Stop HC (not bus-specific) 855 * 856 * This is called when the machine transition into S3/S4 mode. 857 * 858 */ 859 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 860 { 861 int rc = 0; 862 unsigned int delay = XHCI_MAX_HALT_USEC; 863 struct usb_hcd *hcd = xhci_to_hcd(xhci); 864 u32 command; 865 866 if (!hcd->state) 867 return 0; 868 869 if (hcd->state != HC_STATE_SUSPENDED || 870 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 871 return -EINVAL; 872 873 /* Clear root port wake on bits if wakeup not allowed. */ 874 if (!do_wakeup) 875 xhci_disable_port_wake_on_bits(xhci); 876 877 /* Don't poll the roothubs on bus suspend. */ 878 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 879 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 880 del_timer_sync(&hcd->rh_timer); 881 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 882 del_timer_sync(&xhci->shared_hcd->rh_timer); 883 884 spin_lock_irq(&xhci->lock); 885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 886 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 887 /* step 1: stop endpoint */ 888 /* skipped assuming that port suspend has done */ 889 890 /* step 2: clear Run/Stop bit */ 891 command = readl(&xhci->op_regs->command); 892 command &= ~CMD_RUN; 893 writel(command, &xhci->op_regs->command); 894 895 /* Some chips from Fresco Logic need an extraordinary delay */ 896 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 897 898 if (xhci_handshake(&xhci->op_regs->status, 899 STS_HALT, STS_HALT, delay)) { 900 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 901 spin_unlock_irq(&xhci->lock); 902 return -ETIMEDOUT; 903 } 904 xhci_clear_command_ring(xhci); 905 906 /* step 3: save registers */ 907 xhci_save_registers(xhci); 908 909 /* step 4: set CSS flag */ 910 command = readl(&xhci->op_regs->command); 911 command |= CMD_CSS; 912 writel(command, &xhci->op_regs->command); 913 if (xhci_handshake(&xhci->op_regs->status, 914 STS_SAVE, 0, 10 * 1000)) { 915 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 916 spin_unlock_irq(&xhci->lock); 917 return -ETIMEDOUT; 918 } 919 spin_unlock_irq(&xhci->lock); 920 921 /* 922 * Deleting Compliance Mode Recovery Timer because the xHCI Host 923 * is about to be suspended. 924 */ 925 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 926 (!(xhci_all_ports_seen_u0(xhci)))) { 927 del_timer_sync(&xhci->comp_mode_recovery_timer); 928 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 929 "%s: compliance mode recovery timer deleted", 930 __func__); 931 } 932 933 /* step 5: remove core well power */ 934 /* synchronize irq when using MSI-X */ 935 xhci_msix_sync_irqs(xhci); 936 937 return rc; 938 } 939 EXPORT_SYMBOL_GPL(xhci_suspend); 940 941 /* 942 * start xHC (not bus-specific) 943 * 944 * This is called when the machine transition from S3/S4 mode. 945 * 946 */ 947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 948 { 949 u32 command, temp = 0, status; 950 struct usb_hcd *hcd = xhci_to_hcd(xhci); 951 struct usb_hcd *secondary_hcd; 952 int retval = 0; 953 bool comp_timer_running = false; 954 955 if (!hcd->state) 956 return 0; 957 958 /* Wait a bit if either of the roothubs need to settle from the 959 * transition into bus suspend. 960 */ 961 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 962 time_before(jiffies, 963 xhci->bus_state[1].next_statechange)) 964 msleep(100); 965 966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 967 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 968 969 spin_lock_irq(&xhci->lock); 970 if (xhci->quirks & XHCI_RESET_ON_RESUME) 971 hibernated = true; 972 973 if (!hibernated) { 974 /* step 1: restore register */ 975 xhci_restore_registers(xhci); 976 /* step 2: initialize command ring buffer */ 977 xhci_set_cmd_ring_deq(xhci); 978 /* step 3: restore state and start state*/ 979 /* step 3: set CRS flag */ 980 command = readl(&xhci->op_regs->command); 981 command |= CMD_CRS; 982 writel(command, &xhci->op_regs->command); 983 if (xhci_handshake(&xhci->op_regs->status, 984 STS_RESTORE, 0, 10 * 1000)) { 985 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 986 spin_unlock_irq(&xhci->lock); 987 return -ETIMEDOUT; 988 } 989 temp = readl(&xhci->op_regs->status); 990 } 991 992 /* If restore operation fails, re-initialize the HC during resume */ 993 if ((temp & STS_SRE) || hibernated) { 994 995 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 996 !(xhci_all_ports_seen_u0(xhci))) { 997 del_timer_sync(&xhci->comp_mode_recovery_timer); 998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 999 "Compliance Mode Recovery Timer deleted!"); 1000 } 1001 1002 /* Let the USB core know _both_ roothubs lost power. */ 1003 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1004 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1005 1006 xhci_dbg(xhci, "Stop HCD\n"); 1007 xhci_halt(xhci); 1008 xhci_reset(xhci); 1009 spin_unlock_irq(&xhci->lock); 1010 xhci_cleanup_msix(xhci); 1011 1012 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1013 temp = readl(&xhci->op_regs->status); 1014 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1015 temp = readl(&xhci->ir_set->irq_pending); 1016 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1017 xhci_print_ir_set(xhci, 0); 1018 1019 xhci_dbg(xhci, "cleaning up memory\n"); 1020 xhci_mem_cleanup(xhci); 1021 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1022 readl(&xhci->op_regs->status)); 1023 1024 /* USB core calls the PCI reinit and start functions twice: 1025 * first with the primary HCD, and then with the secondary HCD. 1026 * If we don't do the same, the host will never be started. 1027 */ 1028 if (!usb_hcd_is_primary_hcd(hcd)) 1029 secondary_hcd = hcd; 1030 else 1031 secondary_hcd = xhci->shared_hcd; 1032 1033 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1034 retval = xhci_init(hcd->primary_hcd); 1035 if (retval) 1036 return retval; 1037 comp_timer_running = true; 1038 1039 xhci_dbg(xhci, "Start the primary HCD\n"); 1040 retval = xhci_run(hcd->primary_hcd); 1041 if (!retval) { 1042 xhci_dbg(xhci, "Start the secondary HCD\n"); 1043 retval = xhci_run(secondary_hcd); 1044 } 1045 hcd->state = HC_STATE_SUSPENDED; 1046 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1047 goto done; 1048 } 1049 1050 /* step 4: set Run/Stop bit */ 1051 command = readl(&xhci->op_regs->command); 1052 command |= CMD_RUN; 1053 writel(command, &xhci->op_regs->command); 1054 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1055 0, 250 * 1000); 1056 1057 /* step 5: walk topology and initialize portsc, 1058 * portpmsc and portli 1059 */ 1060 /* this is done in bus_resume */ 1061 1062 /* step 6: restart each of the previously 1063 * Running endpoints by ringing their doorbells 1064 */ 1065 1066 spin_unlock_irq(&xhci->lock); 1067 1068 done: 1069 if (retval == 0) { 1070 /* Resume root hubs only when have pending events. */ 1071 status = readl(&xhci->op_regs->status); 1072 if (status & STS_EINT) { 1073 usb_hcd_resume_root_hub(xhci->shared_hcd); 1074 usb_hcd_resume_root_hub(hcd); 1075 } 1076 } 1077 1078 /* 1079 * If system is subject to the Quirk, Compliance Mode Timer needs to 1080 * be re-initialized Always after a system resume. Ports are subject 1081 * to suffer the Compliance Mode issue again. It doesn't matter if 1082 * ports have entered previously to U0 before system's suspension. 1083 */ 1084 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1085 compliance_mode_recovery_timer_init(xhci); 1086 1087 /* Re-enable port polling. */ 1088 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1089 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1090 usb_hcd_poll_rh_status(xhci->shared_hcd); 1091 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1092 usb_hcd_poll_rh_status(hcd); 1093 1094 return retval; 1095 } 1096 EXPORT_SYMBOL_GPL(xhci_resume); 1097 #endif /* CONFIG_PM */ 1098 1099 /*-------------------------------------------------------------------------*/ 1100 1101 /** 1102 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1103 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1104 * value to right shift 1 for the bitmask. 1105 * 1106 * Index = (epnum * 2) + direction - 1, 1107 * where direction = 0 for OUT, 1 for IN. 1108 * For control endpoints, the IN index is used (OUT index is unused), so 1109 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1110 */ 1111 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1112 { 1113 unsigned int index; 1114 if (usb_endpoint_xfer_control(desc)) 1115 index = (unsigned int) (usb_endpoint_num(desc)*2); 1116 else 1117 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1118 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1119 return index; 1120 } 1121 1122 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1123 * address from the XHCI endpoint index. 1124 */ 1125 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1126 { 1127 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1128 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1129 return direction | number; 1130 } 1131 1132 /* Find the flag for this endpoint (for use in the control context). Use the 1133 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1134 * bit 1, etc. 1135 */ 1136 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1137 { 1138 return 1 << (xhci_get_endpoint_index(desc) + 1); 1139 } 1140 1141 /* Find the flag for this endpoint (for use in the control context). Use the 1142 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1143 * bit 1, etc. 1144 */ 1145 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1146 { 1147 return 1 << (ep_index + 1); 1148 } 1149 1150 /* Compute the last valid endpoint context index. Basically, this is the 1151 * endpoint index plus one. For slot contexts with more than valid endpoint, 1152 * we find the most significant bit set in the added contexts flags. 1153 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1154 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1155 */ 1156 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1157 { 1158 return fls(added_ctxs) - 1; 1159 } 1160 1161 /* Returns 1 if the arguments are OK; 1162 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1163 */ 1164 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1165 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1166 const char *func) { 1167 struct xhci_hcd *xhci; 1168 struct xhci_virt_device *virt_dev; 1169 1170 if (!hcd || (check_ep && !ep) || !udev) { 1171 pr_debug("xHCI %s called with invalid args\n", func); 1172 return -EINVAL; 1173 } 1174 if (!udev->parent) { 1175 pr_debug("xHCI %s called for root hub\n", func); 1176 return 0; 1177 } 1178 1179 xhci = hcd_to_xhci(hcd); 1180 if (check_virt_dev) { 1181 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1182 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1183 func); 1184 return -EINVAL; 1185 } 1186 1187 virt_dev = xhci->devs[udev->slot_id]; 1188 if (virt_dev->udev != udev) { 1189 xhci_dbg(xhci, "xHCI %s called with udev and " 1190 "virt_dev does not match\n", func); 1191 return -EINVAL; 1192 } 1193 } 1194 1195 if (xhci->xhc_state & XHCI_STATE_HALTED) 1196 return -ENODEV; 1197 1198 return 1; 1199 } 1200 1201 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1202 struct usb_device *udev, struct xhci_command *command, 1203 bool ctx_change, bool must_succeed); 1204 1205 /* 1206 * Full speed devices may have a max packet size greater than 8 bytes, but the 1207 * USB core doesn't know that until it reads the first 8 bytes of the 1208 * descriptor. If the usb_device's max packet size changes after that point, 1209 * we need to issue an evaluate context command and wait on it. 1210 */ 1211 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1212 unsigned int ep_index, struct urb *urb) 1213 { 1214 struct xhci_container_ctx *out_ctx; 1215 struct xhci_input_control_ctx *ctrl_ctx; 1216 struct xhci_ep_ctx *ep_ctx; 1217 struct xhci_command *command; 1218 int max_packet_size; 1219 int hw_max_packet_size; 1220 int ret = 0; 1221 1222 out_ctx = xhci->devs[slot_id]->out_ctx; 1223 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1224 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1225 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1226 if (hw_max_packet_size != max_packet_size) { 1227 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1228 "Max Packet Size for ep 0 changed."); 1229 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1230 "Max packet size in usb_device = %d", 1231 max_packet_size); 1232 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1233 "Max packet size in xHCI HW = %d", 1234 hw_max_packet_size); 1235 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1236 "Issuing evaluate context command."); 1237 1238 /* Set up the input context flags for the command */ 1239 /* FIXME: This won't work if a non-default control endpoint 1240 * changes max packet sizes. 1241 */ 1242 1243 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1244 if (!command) 1245 return -ENOMEM; 1246 1247 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1248 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1249 if (!ctrl_ctx) { 1250 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1251 __func__); 1252 ret = -ENOMEM; 1253 goto command_cleanup; 1254 } 1255 /* Set up the modified control endpoint 0 */ 1256 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1257 xhci->devs[slot_id]->out_ctx, ep_index); 1258 1259 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1260 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1261 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1262 1263 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1264 ctrl_ctx->drop_flags = 0; 1265 1266 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1267 true, false); 1268 1269 /* Clean up the input context for later use by bandwidth 1270 * functions. 1271 */ 1272 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1273 command_cleanup: 1274 kfree(command->completion); 1275 kfree(command); 1276 } 1277 return ret; 1278 } 1279 1280 /* 1281 * non-error returns are a promise to giveback() the urb later 1282 * we drop ownership so next owner (or urb unlink) can get it 1283 */ 1284 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1285 { 1286 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1287 unsigned long flags; 1288 int ret = 0; 1289 unsigned int slot_id, ep_index, ep_state; 1290 struct urb_priv *urb_priv; 1291 int num_tds; 1292 1293 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1294 true, true, __func__) <= 0) 1295 return -EINVAL; 1296 1297 slot_id = urb->dev->slot_id; 1298 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1299 1300 if (!HCD_HW_ACCESSIBLE(hcd)) { 1301 if (!in_interrupt()) 1302 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1303 return -ESHUTDOWN; 1304 } 1305 1306 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1307 num_tds = urb->number_of_packets; 1308 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1309 urb->transfer_buffer_length > 0 && 1310 urb->transfer_flags & URB_ZERO_PACKET && 1311 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1312 num_tds = 2; 1313 else 1314 num_tds = 1; 1315 1316 urb_priv = kzalloc(sizeof(struct urb_priv) + 1317 num_tds * sizeof(struct xhci_td), mem_flags); 1318 if (!urb_priv) 1319 return -ENOMEM; 1320 1321 urb_priv->num_tds = num_tds; 1322 urb_priv->num_tds_done = 0; 1323 urb->hcpriv = urb_priv; 1324 1325 trace_xhci_urb_enqueue(urb); 1326 1327 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1328 /* Check to see if the max packet size for the default control 1329 * endpoint changed during FS device enumeration 1330 */ 1331 if (urb->dev->speed == USB_SPEED_FULL) { 1332 ret = xhci_check_maxpacket(xhci, slot_id, 1333 ep_index, urb); 1334 if (ret < 0) { 1335 xhci_urb_free_priv(urb_priv); 1336 urb->hcpriv = NULL; 1337 return ret; 1338 } 1339 } 1340 } 1341 1342 spin_lock_irqsave(&xhci->lock, flags); 1343 1344 if (xhci->xhc_state & XHCI_STATE_DYING) { 1345 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1346 urb->ep->desc.bEndpointAddress, urb); 1347 ret = -ESHUTDOWN; 1348 goto free_priv; 1349 } 1350 1351 switch (usb_endpoint_type(&urb->ep->desc)) { 1352 1353 case USB_ENDPOINT_XFER_CONTROL: 1354 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1355 slot_id, ep_index); 1356 break; 1357 case USB_ENDPOINT_XFER_BULK: 1358 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1359 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1360 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1361 ep_state); 1362 ret = -EINVAL; 1363 break; 1364 } 1365 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1366 slot_id, ep_index); 1367 break; 1368 1369 1370 case USB_ENDPOINT_XFER_INT: 1371 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1372 slot_id, ep_index); 1373 break; 1374 1375 case USB_ENDPOINT_XFER_ISOC: 1376 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1377 slot_id, ep_index); 1378 } 1379 1380 if (ret) { 1381 free_priv: 1382 xhci_urb_free_priv(urb_priv); 1383 urb->hcpriv = NULL; 1384 } 1385 spin_unlock_irqrestore(&xhci->lock, flags); 1386 return ret; 1387 } 1388 1389 /* 1390 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1391 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1392 * should pick up where it left off in the TD, unless a Set Transfer Ring 1393 * Dequeue Pointer is issued. 1394 * 1395 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1396 * the ring. Since the ring is a contiguous structure, they can't be physically 1397 * removed. Instead, there are two options: 1398 * 1399 * 1) If the HC is in the middle of processing the URB to be canceled, we 1400 * simply move the ring's dequeue pointer past those TRBs using the Set 1401 * Transfer Ring Dequeue Pointer command. This will be the common case, 1402 * when drivers timeout on the last submitted URB and attempt to cancel. 1403 * 1404 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1405 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1406 * HC will need to invalidate the any TRBs it has cached after the stop 1407 * endpoint command, as noted in the xHCI 0.95 errata. 1408 * 1409 * 3) The TD may have completed by the time the Stop Endpoint Command 1410 * completes, so software needs to handle that case too. 1411 * 1412 * This function should protect against the TD enqueueing code ringing the 1413 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1414 * It also needs to account for multiple cancellations on happening at the same 1415 * time for the same endpoint. 1416 * 1417 * Note that this function can be called in any context, or so says 1418 * usb_hcd_unlink_urb() 1419 */ 1420 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1421 { 1422 unsigned long flags; 1423 int ret, i; 1424 u32 temp; 1425 struct xhci_hcd *xhci; 1426 struct urb_priv *urb_priv; 1427 struct xhci_td *td; 1428 unsigned int ep_index; 1429 struct xhci_ring *ep_ring; 1430 struct xhci_virt_ep *ep; 1431 struct xhci_command *command; 1432 struct xhci_virt_device *vdev; 1433 1434 xhci = hcd_to_xhci(hcd); 1435 spin_lock_irqsave(&xhci->lock, flags); 1436 1437 trace_xhci_urb_dequeue(urb); 1438 1439 /* Make sure the URB hasn't completed or been unlinked already */ 1440 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1441 if (ret) 1442 goto done; 1443 1444 /* give back URB now if we can't queue it for cancel */ 1445 vdev = xhci->devs[urb->dev->slot_id]; 1446 urb_priv = urb->hcpriv; 1447 if (!vdev || !urb_priv) 1448 goto err_giveback; 1449 1450 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1451 ep = &vdev->eps[ep_index]; 1452 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1453 if (!ep || !ep_ring) 1454 goto err_giveback; 1455 1456 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1457 temp = readl(&xhci->op_regs->status); 1458 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1459 xhci_hc_died(xhci); 1460 goto done; 1461 } 1462 1463 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1464 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1465 "HC halted, freeing TD manually."); 1466 for (i = urb_priv->num_tds_done; 1467 i < urb_priv->num_tds; 1468 i++) { 1469 td = &urb_priv->td[i]; 1470 if (!list_empty(&td->td_list)) 1471 list_del_init(&td->td_list); 1472 if (!list_empty(&td->cancelled_td_list)) 1473 list_del_init(&td->cancelled_td_list); 1474 } 1475 goto err_giveback; 1476 } 1477 1478 i = urb_priv->num_tds_done; 1479 if (i < urb_priv->num_tds) 1480 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1481 "Cancel URB %p, dev %s, ep 0x%x, " 1482 "starting at offset 0x%llx", 1483 urb, urb->dev->devpath, 1484 urb->ep->desc.bEndpointAddress, 1485 (unsigned long long) xhci_trb_virt_to_dma( 1486 urb_priv->td[i].start_seg, 1487 urb_priv->td[i].first_trb)); 1488 1489 for (; i < urb_priv->num_tds; i++) { 1490 td = &urb_priv->td[i]; 1491 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1492 } 1493 1494 /* Queue a stop endpoint command, but only if this is 1495 * the first cancellation to be handled. 1496 */ 1497 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1498 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1499 if (!command) { 1500 ret = -ENOMEM; 1501 goto done; 1502 } 1503 ep->ep_state |= EP_STOP_CMD_PENDING; 1504 ep->stop_cmd_timer.expires = jiffies + 1505 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1506 add_timer(&ep->stop_cmd_timer); 1507 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1508 ep_index, 0); 1509 xhci_ring_cmd_db(xhci); 1510 } 1511 done: 1512 spin_unlock_irqrestore(&xhci->lock, flags); 1513 return ret; 1514 1515 err_giveback: 1516 if (urb_priv) 1517 xhci_urb_free_priv(urb_priv); 1518 usb_hcd_unlink_urb_from_ep(hcd, urb); 1519 spin_unlock_irqrestore(&xhci->lock, flags); 1520 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1521 return ret; 1522 } 1523 1524 /* Drop an endpoint from a new bandwidth configuration for this device. 1525 * Only one call to this function is allowed per endpoint before 1526 * check_bandwidth() or reset_bandwidth() must be called. 1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1528 * add the endpoint to the schedule with possibly new parameters denoted by a 1529 * different endpoint descriptor in usb_host_endpoint. 1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1531 * not allowed. 1532 * 1533 * The USB core will not allow URBs to be queued to an endpoint that is being 1534 * disabled, so there's no need for mutual exclusion to protect 1535 * the xhci->devs[slot_id] structure. 1536 */ 1537 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1538 struct usb_host_endpoint *ep) 1539 { 1540 struct xhci_hcd *xhci; 1541 struct xhci_container_ctx *in_ctx, *out_ctx; 1542 struct xhci_input_control_ctx *ctrl_ctx; 1543 unsigned int ep_index; 1544 struct xhci_ep_ctx *ep_ctx; 1545 u32 drop_flag; 1546 u32 new_add_flags, new_drop_flags; 1547 int ret; 1548 1549 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1550 if (ret <= 0) 1551 return ret; 1552 xhci = hcd_to_xhci(hcd); 1553 if (xhci->xhc_state & XHCI_STATE_DYING) 1554 return -ENODEV; 1555 1556 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1557 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1558 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1559 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1560 __func__, drop_flag); 1561 return 0; 1562 } 1563 1564 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1565 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1566 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1567 if (!ctrl_ctx) { 1568 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1569 __func__); 1570 return 0; 1571 } 1572 1573 ep_index = xhci_get_endpoint_index(&ep->desc); 1574 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1575 /* If the HC already knows the endpoint is disabled, 1576 * or the HCD has noted it is disabled, ignore this request 1577 */ 1578 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1579 le32_to_cpu(ctrl_ctx->drop_flags) & 1580 xhci_get_endpoint_flag(&ep->desc)) { 1581 /* Do not warn when called after a usb_device_reset */ 1582 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1583 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1584 __func__, ep); 1585 return 0; 1586 } 1587 1588 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1589 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1590 1591 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1592 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1593 1594 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1595 1596 if (xhci->quirks & XHCI_MTK_HOST) 1597 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1598 1599 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1600 (unsigned int) ep->desc.bEndpointAddress, 1601 udev->slot_id, 1602 (unsigned int) new_drop_flags, 1603 (unsigned int) new_add_flags); 1604 return 0; 1605 } 1606 1607 /* Add an endpoint to a new possible bandwidth configuration for this device. 1608 * Only one call to this function is allowed per endpoint before 1609 * check_bandwidth() or reset_bandwidth() must be called. 1610 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1611 * add the endpoint to the schedule with possibly new parameters denoted by a 1612 * different endpoint descriptor in usb_host_endpoint. 1613 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1614 * not allowed. 1615 * 1616 * The USB core will not allow URBs to be queued to an endpoint until the 1617 * configuration or alt setting is installed in the device, so there's no need 1618 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1619 */ 1620 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1621 struct usb_host_endpoint *ep) 1622 { 1623 struct xhci_hcd *xhci; 1624 struct xhci_container_ctx *in_ctx; 1625 unsigned int ep_index; 1626 struct xhci_input_control_ctx *ctrl_ctx; 1627 u32 added_ctxs; 1628 u32 new_add_flags, new_drop_flags; 1629 struct xhci_virt_device *virt_dev; 1630 int ret = 0; 1631 1632 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1633 if (ret <= 0) { 1634 /* So we won't queue a reset ep command for a root hub */ 1635 ep->hcpriv = NULL; 1636 return ret; 1637 } 1638 xhci = hcd_to_xhci(hcd); 1639 if (xhci->xhc_state & XHCI_STATE_DYING) 1640 return -ENODEV; 1641 1642 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1643 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1644 /* FIXME when we have to issue an evaluate endpoint command to 1645 * deal with ep0 max packet size changing once we get the 1646 * descriptors 1647 */ 1648 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1649 __func__, added_ctxs); 1650 return 0; 1651 } 1652 1653 virt_dev = xhci->devs[udev->slot_id]; 1654 in_ctx = virt_dev->in_ctx; 1655 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1656 if (!ctrl_ctx) { 1657 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1658 __func__); 1659 return 0; 1660 } 1661 1662 ep_index = xhci_get_endpoint_index(&ep->desc); 1663 /* If this endpoint is already in use, and the upper layers are trying 1664 * to add it again without dropping it, reject the addition. 1665 */ 1666 if (virt_dev->eps[ep_index].ring && 1667 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1668 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1669 "without dropping it.\n", 1670 (unsigned int) ep->desc.bEndpointAddress); 1671 return -EINVAL; 1672 } 1673 1674 /* If the HCD has already noted the endpoint is enabled, 1675 * ignore this request. 1676 */ 1677 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1678 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1679 __func__, ep); 1680 return 0; 1681 } 1682 1683 /* 1684 * Configuration and alternate setting changes must be done in 1685 * process context, not interrupt context (or so documenation 1686 * for usb_set_interface() and usb_set_configuration() claim). 1687 */ 1688 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1689 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1690 __func__, ep->desc.bEndpointAddress); 1691 return -ENOMEM; 1692 } 1693 1694 if (xhci->quirks & XHCI_MTK_HOST) { 1695 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1696 if (ret < 0) { 1697 xhci_free_or_cache_endpoint_ring(xhci, 1698 virt_dev, ep_index); 1699 return ret; 1700 } 1701 } 1702 1703 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1704 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1705 1706 /* If xhci_endpoint_disable() was called for this endpoint, but the 1707 * xHC hasn't been notified yet through the check_bandwidth() call, 1708 * this re-adds a new state for the endpoint from the new endpoint 1709 * descriptors. We must drop and re-add this endpoint, so we leave the 1710 * drop flags alone. 1711 */ 1712 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1713 1714 /* Store the usb_device pointer for later use */ 1715 ep->hcpriv = udev; 1716 1717 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1718 (unsigned int) ep->desc.bEndpointAddress, 1719 udev->slot_id, 1720 (unsigned int) new_drop_flags, 1721 (unsigned int) new_add_flags); 1722 return 0; 1723 } 1724 1725 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1726 { 1727 struct xhci_input_control_ctx *ctrl_ctx; 1728 struct xhci_ep_ctx *ep_ctx; 1729 struct xhci_slot_ctx *slot_ctx; 1730 int i; 1731 1732 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1733 if (!ctrl_ctx) { 1734 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1735 __func__); 1736 return; 1737 } 1738 1739 /* When a device's add flag and drop flag are zero, any subsequent 1740 * configure endpoint command will leave that endpoint's state 1741 * untouched. Make sure we don't leave any old state in the input 1742 * endpoint contexts. 1743 */ 1744 ctrl_ctx->drop_flags = 0; 1745 ctrl_ctx->add_flags = 0; 1746 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1747 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1748 /* Endpoint 0 is always valid */ 1749 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1750 for (i = 1; i < 31; i++) { 1751 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1752 ep_ctx->ep_info = 0; 1753 ep_ctx->ep_info2 = 0; 1754 ep_ctx->deq = 0; 1755 ep_ctx->tx_info = 0; 1756 } 1757 } 1758 1759 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1760 struct usb_device *udev, u32 *cmd_status) 1761 { 1762 int ret; 1763 1764 switch (*cmd_status) { 1765 case COMP_COMMAND_ABORTED: 1766 case COMP_STOPPED: 1767 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1768 ret = -ETIME; 1769 break; 1770 case COMP_RESOURCE_ERROR: 1771 dev_warn(&udev->dev, 1772 "Not enough host controller resources for new device state.\n"); 1773 ret = -ENOMEM; 1774 /* FIXME: can we allocate more resources for the HC? */ 1775 break; 1776 case COMP_BANDWIDTH_ERROR: 1777 case COMP_SECONDARY_BANDWIDTH_ERROR: 1778 dev_warn(&udev->dev, 1779 "Not enough bandwidth for new device state.\n"); 1780 ret = -ENOSPC; 1781 /* FIXME: can we go back to the old state? */ 1782 break; 1783 case COMP_TRB_ERROR: 1784 /* the HCD set up something wrong */ 1785 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1786 "add flag = 1, " 1787 "and endpoint is not disabled.\n"); 1788 ret = -EINVAL; 1789 break; 1790 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1791 dev_warn(&udev->dev, 1792 "ERROR: Incompatible device for endpoint configure command.\n"); 1793 ret = -ENODEV; 1794 break; 1795 case COMP_SUCCESS: 1796 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1797 "Successful Endpoint Configure command"); 1798 ret = 0; 1799 break; 1800 default: 1801 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1802 *cmd_status); 1803 ret = -EINVAL; 1804 break; 1805 } 1806 return ret; 1807 } 1808 1809 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1810 struct usb_device *udev, u32 *cmd_status) 1811 { 1812 int ret; 1813 1814 switch (*cmd_status) { 1815 case COMP_COMMAND_ABORTED: 1816 case COMP_STOPPED: 1817 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1818 ret = -ETIME; 1819 break; 1820 case COMP_PARAMETER_ERROR: 1821 dev_warn(&udev->dev, 1822 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1823 ret = -EINVAL; 1824 break; 1825 case COMP_SLOT_NOT_ENABLED_ERROR: 1826 dev_warn(&udev->dev, 1827 "WARN: slot not enabled for evaluate context command.\n"); 1828 ret = -EINVAL; 1829 break; 1830 case COMP_CONTEXT_STATE_ERROR: 1831 dev_warn(&udev->dev, 1832 "WARN: invalid context state for evaluate context command.\n"); 1833 ret = -EINVAL; 1834 break; 1835 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1836 dev_warn(&udev->dev, 1837 "ERROR: Incompatible device for evaluate context command.\n"); 1838 ret = -ENODEV; 1839 break; 1840 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1841 /* Max Exit Latency too large error */ 1842 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1843 ret = -EINVAL; 1844 break; 1845 case COMP_SUCCESS: 1846 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1847 "Successful evaluate context command"); 1848 ret = 0; 1849 break; 1850 default: 1851 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1852 *cmd_status); 1853 ret = -EINVAL; 1854 break; 1855 } 1856 return ret; 1857 } 1858 1859 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1860 struct xhci_input_control_ctx *ctrl_ctx) 1861 { 1862 u32 valid_add_flags; 1863 u32 valid_drop_flags; 1864 1865 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1866 * (bit 1). The default control endpoint is added during the Address 1867 * Device command and is never removed until the slot is disabled. 1868 */ 1869 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1870 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1871 1872 /* Use hweight32 to count the number of ones in the add flags, or 1873 * number of endpoints added. Don't count endpoints that are changed 1874 * (both added and dropped). 1875 */ 1876 return hweight32(valid_add_flags) - 1877 hweight32(valid_add_flags & valid_drop_flags); 1878 } 1879 1880 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1881 struct xhci_input_control_ctx *ctrl_ctx) 1882 { 1883 u32 valid_add_flags; 1884 u32 valid_drop_flags; 1885 1886 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1887 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1888 1889 return hweight32(valid_drop_flags) - 1890 hweight32(valid_add_flags & valid_drop_flags); 1891 } 1892 1893 /* 1894 * We need to reserve the new number of endpoints before the configure endpoint 1895 * command completes. We can't subtract the dropped endpoints from the number 1896 * of active endpoints until the command completes because we can oversubscribe 1897 * the host in this case: 1898 * 1899 * - the first configure endpoint command drops more endpoints than it adds 1900 * - a second configure endpoint command that adds more endpoints is queued 1901 * - the first configure endpoint command fails, so the config is unchanged 1902 * - the second command may succeed, even though there isn't enough resources 1903 * 1904 * Must be called with xhci->lock held. 1905 */ 1906 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1907 struct xhci_input_control_ctx *ctrl_ctx) 1908 { 1909 u32 added_eps; 1910 1911 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1912 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1913 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1914 "Not enough ep ctxs: " 1915 "%u active, need to add %u, limit is %u.", 1916 xhci->num_active_eps, added_eps, 1917 xhci->limit_active_eps); 1918 return -ENOMEM; 1919 } 1920 xhci->num_active_eps += added_eps; 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1922 "Adding %u ep ctxs, %u now active.", added_eps, 1923 xhci->num_active_eps); 1924 return 0; 1925 } 1926 1927 /* 1928 * The configure endpoint was failed by the xHC for some other reason, so we 1929 * need to revert the resources that failed configuration would have used. 1930 * 1931 * Must be called with xhci->lock held. 1932 */ 1933 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1934 struct xhci_input_control_ctx *ctrl_ctx) 1935 { 1936 u32 num_failed_eps; 1937 1938 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1939 xhci->num_active_eps -= num_failed_eps; 1940 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1941 "Removing %u failed ep ctxs, %u now active.", 1942 num_failed_eps, 1943 xhci->num_active_eps); 1944 } 1945 1946 /* 1947 * Now that the command has completed, clean up the active endpoint count by 1948 * subtracting out the endpoints that were dropped (but not changed). 1949 * 1950 * Must be called with xhci->lock held. 1951 */ 1952 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1953 struct xhci_input_control_ctx *ctrl_ctx) 1954 { 1955 u32 num_dropped_eps; 1956 1957 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1958 xhci->num_active_eps -= num_dropped_eps; 1959 if (num_dropped_eps) 1960 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1961 "Removing %u dropped ep ctxs, %u now active.", 1962 num_dropped_eps, 1963 xhci->num_active_eps); 1964 } 1965 1966 static unsigned int xhci_get_block_size(struct usb_device *udev) 1967 { 1968 switch (udev->speed) { 1969 case USB_SPEED_LOW: 1970 case USB_SPEED_FULL: 1971 return FS_BLOCK; 1972 case USB_SPEED_HIGH: 1973 return HS_BLOCK; 1974 case USB_SPEED_SUPER: 1975 case USB_SPEED_SUPER_PLUS: 1976 return SS_BLOCK; 1977 case USB_SPEED_UNKNOWN: 1978 case USB_SPEED_WIRELESS: 1979 default: 1980 /* Should never happen */ 1981 return 1; 1982 } 1983 } 1984 1985 static unsigned int 1986 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1987 { 1988 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1989 return LS_OVERHEAD; 1990 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1991 return FS_OVERHEAD; 1992 return HS_OVERHEAD; 1993 } 1994 1995 /* If we are changing a LS/FS device under a HS hub, 1996 * make sure (if we are activating a new TT) that the HS bus has enough 1997 * bandwidth for this new TT. 1998 */ 1999 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2000 struct xhci_virt_device *virt_dev, 2001 int old_active_eps) 2002 { 2003 struct xhci_interval_bw_table *bw_table; 2004 struct xhci_tt_bw_info *tt_info; 2005 2006 /* Find the bandwidth table for the root port this TT is attached to. */ 2007 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2008 tt_info = virt_dev->tt_info; 2009 /* If this TT already had active endpoints, the bandwidth for this TT 2010 * has already been added. Removing all periodic endpoints (and thus 2011 * making the TT enactive) will only decrease the bandwidth used. 2012 */ 2013 if (old_active_eps) 2014 return 0; 2015 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2016 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2017 return -ENOMEM; 2018 return 0; 2019 } 2020 /* Not sure why we would have no new active endpoints... 2021 * 2022 * Maybe because of an Evaluate Context change for a hub update or a 2023 * control endpoint 0 max packet size change? 2024 * FIXME: skip the bandwidth calculation in that case. 2025 */ 2026 return 0; 2027 } 2028 2029 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2030 struct xhci_virt_device *virt_dev) 2031 { 2032 unsigned int bw_reserved; 2033 2034 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2035 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2036 return -ENOMEM; 2037 2038 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2039 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2040 return -ENOMEM; 2041 2042 return 0; 2043 } 2044 2045 /* 2046 * This algorithm is a very conservative estimate of the worst-case scheduling 2047 * scenario for any one interval. The hardware dynamically schedules the 2048 * packets, so we can't tell which microframe could be the limiting factor in 2049 * the bandwidth scheduling. This only takes into account periodic endpoints. 2050 * 2051 * Obviously, we can't solve an NP complete problem to find the minimum worst 2052 * case scenario. Instead, we come up with an estimate that is no less than 2053 * the worst case bandwidth used for any one microframe, but may be an 2054 * over-estimate. 2055 * 2056 * We walk the requirements for each endpoint by interval, starting with the 2057 * smallest interval, and place packets in the schedule where there is only one 2058 * possible way to schedule packets for that interval. In order to simplify 2059 * this algorithm, we record the largest max packet size for each interval, and 2060 * assume all packets will be that size. 2061 * 2062 * For interval 0, we obviously must schedule all packets for each interval. 2063 * The bandwidth for interval 0 is just the amount of data to be transmitted 2064 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2065 * the number of packets). 2066 * 2067 * For interval 1, we have two possible microframes to schedule those packets 2068 * in. For this algorithm, if we can schedule the same number of packets for 2069 * each possible scheduling opportunity (each microframe), we will do so. The 2070 * remaining number of packets will be saved to be transmitted in the gaps in 2071 * the next interval's scheduling sequence. 2072 * 2073 * As we move those remaining packets to be scheduled with interval 2 packets, 2074 * we have to double the number of remaining packets to transmit. This is 2075 * because the intervals are actually powers of 2, and we would be transmitting 2076 * the previous interval's packets twice in this interval. We also have to be 2077 * sure that when we look at the largest max packet size for this interval, we 2078 * also look at the largest max packet size for the remaining packets and take 2079 * the greater of the two. 2080 * 2081 * The algorithm continues to evenly distribute packets in each scheduling 2082 * opportunity, and push the remaining packets out, until we get to the last 2083 * interval. Then those packets and their associated overhead are just added 2084 * to the bandwidth used. 2085 */ 2086 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2087 struct xhci_virt_device *virt_dev, 2088 int old_active_eps) 2089 { 2090 unsigned int bw_reserved; 2091 unsigned int max_bandwidth; 2092 unsigned int bw_used; 2093 unsigned int block_size; 2094 struct xhci_interval_bw_table *bw_table; 2095 unsigned int packet_size = 0; 2096 unsigned int overhead = 0; 2097 unsigned int packets_transmitted = 0; 2098 unsigned int packets_remaining = 0; 2099 unsigned int i; 2100 2101 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2102 return xhci_check_ss_bw(xhci, virt_dev); 2103 2104 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2105 max_bandwidth = HS_BW_LIMIT; 2106 /* Convert percent of bus BW reserved to blocks reserved */ 2107 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2108 } else { 2109 max_bandwidth = FS_BW_LIMIT; 2110 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2111 } 2112 2113 bw_table = virt_dev->bw_table; 2114 /* We need to translate the max packet size and max ESIT payloads into 2115 * the units the hardware uses. 2116 */ 2117 block_size = xhci_get_block_size(virt_dev->udev); 2118 2119 /* If we are manipulating a LS/FS device under a HS hub, double check 2120 * that the HS bus has enough bandwidth if we are activing a new TT. 2121 */ 2122 if (virt_dev->tt_info) { 2123 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2124 "Recalculating BW for rootport %u", 2125 virt_dev->real_port); 2126 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2127 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2128 "newly activated TT.\n"); 2129 return -ENOMEM; 2130 } 2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2132 "Recalculating BW for TT slot %u port %u", 2133 virt_dev->tt_info->slot_id, 2134 virt_dev->tt_info->ttport); 2135 } else { 2136 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2137 "Recalculating BW for rootport %u", 2138 virt_dev->real_port); 2139 } 2140 2141 /* Add in how much bandwidth will be used for interval zero, or the 2142 * rounded max ESIT payload + number of packets * largest overhead. 2143 */ 2144 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2145 bw_table->interval_bw[0].num_packets * 2146 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2147 2148 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2149 unsigned int bw_added; 2150 unsigned int largest_mps; 2151 unsigned int interval_overhead; 2152 2153 /* 2154 * How many packets could we transmit in this interval? 2155 * If packets didn't fit in the previous interval, we will need 2156 * to transmit that many packets twice within this interval. 2157 */ 2158 packets_remaining = 2 * packets_remaining + 2159 bw_table->interval_bw[i].num_packets; 2160 2161 /* Find the largest max packet size of this or the previous 2162 * interval. 2163 */ 2164 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2165 largest_mps = 0; 2166 else { 2167 struct xhci_virt_ep *virt_ep; 2168 struct list_head *ep_entry; 2169 2170 ep_entry = bw_table->interval_bw[i].endpoints.next; 2171 virt_ep = list_entry(ep_entry, 2172 struct xhci_virt_ep, bw_endpoint_list); 2173 /* Convert to blocks, rounding up */ 2174 largest_mps = DIV_ROUND_UP( 2175 virt_ep->bw_info.max_packet_size, 2176 block_size); 2177 } 2178 if (largest_mps > packet_size) 2179 packet_size = largest_mps; 2180 2181 /* Use the larger overhead of this or the previous interval. */ 2182 interval_overhead = xhci_get_largest_overhead( 2183 &bw_table->interval_bw[i]); 2184 if (interval_overhead > overhead) 2185 overhead = interval_overhead; 2186 2187 /* How many packets can we evenly distribute across 2188 * (1 << (i + 1)) possible scheduling opportunities? 2189 */ 2190 packets_transmitted = packets_remaining >> (i + 1); 2191 2192 /* Add in the bandwidth used for those scheduled packets */ 2193 bw_added = packets_transmitted * (overhead + packet_size); 2194 2195 /* How many packets do we have remaining to transmit? */ 2196 packets_remaining = packets_remaining % (1 << (i + 1)); 2197 2198 /* What largest max packet size should those packets have? */ 2199 /* If we've transmitted all packets, don't carry over the 2200 * largest packet size. 2201 */ 2202 if (packets_remaining == 0) { 2203 packet_size = 0; 2204 overhead = 0; 2205 } else if (packets_transmitted > 0) { 2206 /* Otherwise if we do have remaining packets, and we've 2207 * scheduled some packets in this interval, take the 2208 * largest max packet size from endpoints with this 2209 * interval. 2210 */ 2211 packet_size = largest_mps; 2212 overhead = interval_overhead; 2213 } 2214 /* Otherwise carry over packet_size and overhead from the last 2215 * time we had a remainder. 2216 */ 2217 bw_used += bw_added; 2218 if (bw_used > max_bandwidth) { 2219 xhci_warn(xhci, "Not enough bandwidth. " 2220 "Proposed: %u, Max: %u\n", 2221 bw_used, max_bandwidth); 2222 return -ENOMEM; 2223 } 2224 } 2225 /* 2226 * Ok, we know we have some packets left over after even-handedly 2227 * scheduling interval 15. We don't know which microframes they will 2228 * fit into, so we over-schedule and say they will be scheduled every 2229 * microframe. 2230 */ 2231 if (packets_remaining > 0) 2232 bw_used += overhead + packet_size; 2233 2234 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2235 unsigned int port_index = virt_dev->real_port - 1; 2236 2237 /* OK, we're manipulating a HS device attached to a 2238 * root port bandwidth domain. Include the number of active TTs 2239 * in the bandwidth used. 2240 */ 2241 bw_used += TT_HS_OVERHEAD * 2242 xhci->rh_bw[port_index].num_active_tts; 2243 } 2244 2245 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2246 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2247 "Available: %u " "percent", 2248 bw_used, max_bandwidth, bw_reserved, 2249 (max_bandwidth - bw_used - bw_reserved) * 100 / 2250 max_bandwidth); 2251 2252 bw_used += bw_reserved; 2253 if (bw_used > max_bandwidth) { 2254 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2255 bw_used, max_bandwidth); 2256 return -ENOMEM; 2257 } 2258 2259 bw_table->bw_used = bw_used; 2260 return 0; 2261 } 2262 2263 static bool xhci_is_async_ep(unsigned int ep_type) 2264 { 2265 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2266 ep_type != ISOC_IN_EP && 2267 ep_type != INT_IN_EP); 2268 } 2269 2270 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2271 { 2272 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2273 } 2274 2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2276 { 2277 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2278 2279 if (ep_bw->ep_interval == 0) 2280 return SS_OVERHEAD_BURST + 2281 (ep_bw->mult * ep_bw->num_packets * 2282 (SS_OVERHEAD + mps)); 2283 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2284 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2285 1 << ep_bw->ep_interval); 2286 2287 } 2288 2289 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2290 struct xhci_bw_info *ep_bw, 2291 struct xhci_interval_bw_table *bw_table, 2292 struct usb_device *udev, 2293 struct xhci_virt_ep *virt_ep, 2294 struct xhci_tt_bw_info *tt_info) 2295 { 2296 struct xhci_interval_bw *interval_bw; 2297 int normalized_interval; 2298 2299 if (xhci_is_async_ep(ep_bw->type)) 2300 return; 2301 2302 if (udev->speed >= USB_SPEED_SUPER) { 2303 if (xhci_is_sync_in_ep(ep_bw->type)) 2304 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2305 xhci_get_ss_bw_consumed(ep_bw); 2306 else 2307 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2308 xhci_get_ss_bw_consumed(ep_bw); 2309 return; 2310 } 2311 2312 /* SuperSpeed endpoints never get added to intervals in the table, so 2313 * this check is only valid for HS/FS/LS devices. 2314 */ 2315 if (list_empty(&virt_ep->bw_endpoint_list)) 2316 return; 2317 /* For LS/FS devices, we need to translate the interval expressed in 2318 * microframes to frames. 2319 */ 2320 if (udev->speed == USB_SPEED_HIGH) 2321 normalized_interval = ep_bw->ep_interval; 2322 else 2323 normalized_interval = ep_bw->ep_interval - 3; 2324 2325 if (normalized_interval == 0) 2326 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2327 interval_bw = &bw_table->interval_bw[normalized_interval]; 2328 interval_bw->num_packets -= ep_bw->num_packets; 2329 switch (udev->speed) { 2330 case USB_SPEED_LOW: 2331 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2332 break; 2333 case USB_SPEED_FULL: 2334 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2335 break; 2336 case USB_SPEED_HIGH: 2337 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2338 break; 2339 case USB_SPEED_SUPER: 2340 case USB_SPEED_SUPER_PLUS: 2341 case USB_SPEED_UNKNOWN: 2342 case USB_SPEED_WIRELESS: 2343 /* Should never happen because only LS/FS/HS endpoints will get 2344 * added to the endpoint list. 2345 */ 2346 return; 2347 } 2348 if (tt_info) 2349 tt_info->active_eps -= 1; 2350 list_del_init(&virt_ep->bw_endpoint_list); 2351 } 2352 2353 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2354 struct xhci_bw_info *ep_bw, 2355 struct xhci_interval_bw_table *bw_table, 2356 struct usb_device *udev, 2357 struct xhci_virt_ep *virt_ep, 2358 struct xhci_tt_bw_info *tt_info) 2359 { 2360 struct xhci_interval_bw *interval_bw; 2361 struct xhci_virt_ep *smaller_ep; 2362 int normalized_interval; 2363 2364 if (xhci_is_async_ep(ep_bw->type)) 2365 return; 2366 2367 if (udev->speed == USB_SPEED_SUPER) { 2368 if (xhci_is_sync_in_ep(ep_bw->type)) 2369 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2370 xhci_get_ss_bw_consumed(ep_bw); 2371 else 2372 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2373 xhci_get_ss_bw_consumed(ep_bw); 2374 return; 2375 } 2376 2377 /* For LS/FS devices, we need to translate the interval expressed in 2378 * microframes to frames. 2379 */ 2380 if (udev->speed == USB_SPEED_HIGH) 2381 normalized_interval = ep_bw->ep_interval; 2382 else 2383 normalized_interval = ep_bw->ep_interval - 3; 2384 2385 if (normalized_interval == 0) 2386 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2387 interval_bw = &bw_table->interval_bw[normalized_interval]; 2388 interval_bw->num_packets += ep_bw->num_packets; 2389 switch (udev->speed) { 2390 case USB_SPEED_LOW: 2391 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2392 break; 2393 case USB_SPEED_FULL: 2394 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2395 break; 2396 case USB_SPEED_HIGH: 2397 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2398 break; 2399 case USB_SPEED_SUPER: 2400 case USB_SPEED_SUPER_PLUS: 2401 case USB_SPEED_UNKNOWN: 2402 case USB_SPEED_WIRELESS: 2403 /* Should never happen because only LS/FS/HS endpoints will get 2404 * added to the endpoint list. 2405 */ 2406 return; 2407 } 2408 2409 if (tt_info) 2410 tt_info->active_eps += 1; 2411 /* Insert the endpoint into the list, largest max packet size first. */ 2412 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2413 bw_endpoint_list) { 2414 if (ep_bw->max_packet_size >= 2415 smaller_ep->bw_info.max_packet_size) { 2416 /* Add the new ep before the smaller endpoint */ 2417 list_add_tail(&virt_ep->bw_endpoint_list, 2418 &smaller_ep->bw_endpoint_list); 2419 return; 2420 } 2421 } 2422 /* Add the new endpoint at the end of the list. */ 2423 list_add_tail(&virt_ep->bw_endpoint_list, 2424 &interval_bw->endpoints); 2425 } 2426 2427 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2428 struct xhci_virt_device *virt_dev, 2429 int old_active_eps) 2430 { 2431 struct xhci_root_port_bw_info *rh_bw_info; 2432 if (!virt_dev->tt_info) 2433 return; 2434 2435 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2436 if (old_active_eps == 0 && 2437 virt_dev->tt_info->active_eps != 0) { 2438 rh_bw_info->num_active_tts += 1; 2439 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2440 } else if (old_active_eps != 0 && 2441 virt_dev->tt_info->active_eps == 0) { 2442 rh_bw_info->num_active_tts -= 1; 2443 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2444 } 2445 } 2446 2447 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2448 struct xhci_virt_device *virt_dev, 2449 struct xhci_container_ctx *in_ctx) 2450 { 2451 struct xhci_bw_info ep_bw_info[31]; 2452 int i; 2453 struct xhci_input_control_ctx *ctrl_ctx; 2454 int old_active_eps = 0; 2455 2456 if (virt_dev->tt_info) 2457 old_active_eps = virt_dev->tt_info->active_eps; 2458 2459 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2460 if (!ctrl_ctx) { 2461 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2462 __func__); 2463 return -ENOMEM; 2464 } 2465 2466 for (i = 0; i < 31; i++) { 2467 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2468 continue; 2469 2470 /* Make a copy of the BW info in case we need to revert this */ 2471 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2472 sizeof(ep_bw_info[i])); 2473 /* Drop the endpoint from the interval table if the endpoint is 2474 * being dropped or changed. 2475 */ 2476 if (EP_IS_DROPPED(ctrl_ctx, i)) 2477 xhci_drop_ep_from_interval_table(xhci, 2478 &virt_dev->eps[i].bw_info, 2479 virt_dev->bw_table, 2480 virt_dev->udev, 2481 &virt_dev->eps[i], 2482 virt_dev->tt_info); 2483 } 2484 /* Overwrite the information stored in the endpoints' bw_info */ 2485 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2486 for (i = 0; i < 31; i++) { 2487 /* Add any changed or added endpoints to the interval table */ 2488 if (EP_IS_ADDED(ctrl_ctx, i)) 2489 xhci_add_ep_to_interval_table(xhci, 2490 &virt_dev->eps[i].bw_info, 2491 virt_dev->bw_table, 2492 virt_dev->udev, 2493 &virt_dev->eps[i], 2494 virt_dev->tt_info); 2495 } 2496 2497 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2498 /* Ok, this fits in the bandwidth we have. 2499 * Update the number of active TTs. 2500 */ 2501 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2502 return 0; 2503 } 2504 2505 /* We don't have enough bandwidth for this, revert the stored info. */ 2506 for (i = 0; i < 31; i++) { 2507 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2508 continue; 2509 2510 /* Drop the new copies of any added or changed endpoints from 2511 * the interval table. 2512 */ 2513 if (EP_IS_ADDED(ctrl_ctx, i)) { 2514 xhci_drop_ep_from_interval_table(xhci, 2515 &virt_dev->eps[i].bw_info, 2516 virt_dev->bw_table, 2517 virt_dev->udev, 2518 &virt_dev->eps[i], 2519 virt_dev->tt_info); 2520 } 2521 /* Revert the endpoint back to its old information */ 2522 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2523 sizeof(ep_bw_info[i])); 2524 /* Add any changed or dropped endpoints back into the table */ 2525 if (EP_IS_DROPPED(ctrl_ctx, i)) 2526 xhci_add_ep_to_interval_table(xhci, 2527 &virt_dev->eps[i].bw_info, 2528 virt_dev->bw_table, 2529 virt_dev->udev, 2530 &virt_dev->eps[i], 2531 virt_dev->tt_info); 2532 } 2533 return -ENOMEM; 2534 } 2535 2536 2537 /* Issue a configure endpoint command or evaluate context command 2538 * and wait for it to finish. 2539 */ 2540 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2541 struct usb_device *udev, 2542 struct xhci_command *command, 2543 bool ctx_change, bool must_succeed) 2544 { 2545 int ret; 2546 unsigned long flags; 2547 struct xhci_input_control_ctx *ctrl_ctx; 2548 struct xhci_virt_device *virt_dev; 2549 2550 if (!command) 2551 return -EINVAL; 2552 2553 spin_lock_irqsave(&xhci->lock, flags); 2554 2555 if (xhci->xhc_state & XHCI_STATE_DYING) { 2556 spin_unlock_irqrestore(&xhci->lock, flags); 2557 return -ESHUTDOWN; 2558 } 2559 2560 virt_dev = xhci->devs[udev->slot_id]; 2561 2562 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2563 if (!ctrl_ctx) { 2564 spin_unlock_irqrestore(&xhci->lock, flags); 2565 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2566 __func__); 2567 return -ENOMEM; 2568 } 2569 2570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2571 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2572 spin_unlock_irqrestore(&xhci->lock, flags); 2573 xhci_warn(xhci, "Not enough host resources, " 2574 "active endpoint contexts = %u\n", 2575 xhci->num_active_eps); 2576 return -ENOMEM; 2577 } 2578 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2579 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2580 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2581 xhci_free_host_resources(xhci, ctrl_ctx); 2582 spin_unlock_irqrestore(&xhci->lock, flags); 2583 xhci_warn(xhci, "Not enough bandwidth\n"); 2584 return -ENOMEM; 2585 } 2586 2587 if (!ctx_change) 2588 ret = xhci_queue_configure_endpoint(xhci, command, 2589 command->in_ctx->dma, 2590 udev->slot_id, must_succeed); 2591 else 2592 ret = xhci_queue_evaluate_context(xhci, command, 2593 command->in_ctx->dma, 2594 udev->slot_id, must_succeed); 2595 if (ret < 0) { 2596 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2597 xhci_free_host_resources(xhci, ctrl_ctx); 2598 spin_unlock_irqrestore(&xhci->lock, flags); 2599 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2600 "FIXME allocate a new ring segment"); 2601 return -ENOMEM; 2602 } 2603 xhci_ring_cmd_db(xhci); 2604 spin_unlock_irqrestore(&xhci->lock, flags); 2605 2606 /* Wait for the configure endpoint command to complete */ 2607 wait_for_completion(command->completion); 2608 2609 if (!ctx_change) 2610 ret = xhci_configure_endpoint_result(xhci, udev, 2611 &command->status); 2612 else 2613 ret = xhci_evaluate_context_result(xhci, udev, 2614 &command->status); 2615 2616 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2617 spin_lock_irqsave(&xhci->lock, flags); 2618 /* If the command failed, remove the reserved resources. 2619 * Otherwise, clean up the estimate to include dropped eps. 2620 */ 2621 if (ret) 2622 xhci_free_host_resources(xhci, ctrl_ctx); 2623 else 2624 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2625 spin_unlock_irqrestore(&xhci->lock, flags); 2626 } 2627 return ret; 2628 } 2629 2630 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2631 struct xhci_virt_device *vdev, int i) 2632 { 2633 struct xhci_virt_ep *ep = &vdev->eps[i]; 2634 2635 if (ep->ep_state & EP_HAS_STREAMS) { 2636 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2637 xhci_get_endpoint_address(i)); 2638 xhci_free_stream_info(xhci, ep->stream_info); 2639 ep->stream_info = NULL; 2640 ep->ep_state &= ~EP_HAS_STREAMS; 2641 } 2642 } 2643 2644 /* Called after one or more calls to xhci_add_endpoint() or 2645 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2646 * to call xhci_reset_bandwidth(). 2647 * 2648 * Since we are in the middle of changing either configuration or 2649 * installing a new alt setting, the USB core won't allow URBs to be 2650 * enqueued for any endpoint on the old config or interface. Nothing 2651 * else should be touching the xhci->devs[slot_id] structure, so we 2652 * don't need to take the xhci->lock for manipulating that. 2653 */ 2654 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2655 { 2656 int i; 2657 int ret = 0; 2658 struct xhci_hcd *xhci; 2659 struct xhci_virt_device *virt_dev; 2660 struct xhci_input_control_ctx *ctrl_ctx; 2661 struct xhci_slot_ctx *slot_ctx; 2662 struct xhci_command *command; 2663 2664 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2665 if (ret <= 0) 2666 return ret; 2667 xhci = hcd_to_xhci(hcd); 2668 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2669 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2670 return -ENODEV; 2671 2672 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2673 virt_dev = xhci->devs[udev->slot_id]; 2674 2675 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2676 if (!command) 2677 return -ENOMEM; 2678 2679 command->in_ctx = virt_dev->in_ctx; 2680 2681 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2682 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2683 if (!ctrl_ctx) { 2684 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2685 __func__); 2686 ret = -ENOMEM; 2687 goto command_cleanup; 2688 } 2689 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2690 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2691 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2692 2693 /* Don't issue the command if there's no endpoints to update. */ 2694 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2695 ctrl_ctx->drop_flags == 0) { 2696 ret = 0; 2697 goto command_cleanup; 2698 } 2699 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2700 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2701 for (i = 31; i >= 1; i--) { 2702 __le32 le32 = cpu_to_le32(BIT(i)); 2703 2704 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2705 || (ctrl_ctx->add_flags & le32) || i == 1) { 2706 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2707 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2708 break; 2709 } 2710 } 2711 2712 ret = xhci_configure_endpoint(xhci, udev, command, 2713 false, false); 2714 if (ret) 2715 /* Callee should call reset_bandwidth() */ 2716 goto command_cleanup; 2717 2718 /* Free any rings that were dropped, but not changed. */ 2719 for (i = 1; i < 31; i++) { 2720 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2721 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2722 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2723 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2724 } 2725 } 2726 xhci_zero_in_ctx(xhci, virt_dev); 2727 /* 2728 * Install any rings for completely new endpoints or changed endpoints, 2729 * and free or cache any old rings from changed endpoints. 2730 */ 2731 for (i = 1; i < 31; i++) { 2732 if (!virt_dev->eps[i].new_ring) 2733 continue; 2734 /* Only cache or free the old ring if it exists. 2735 * It may not if this is the first add of an endpoint. 2736 */ 2737 if (virt_dev->eps[i].ring) { 2738 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2739 } 2740 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2741 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2742 virt_dev->eps[i].new_ring = NULL; 2743 } 2744 command_cleanup: 2745 kfree(command->completion); 2746 kfree(command); 2747 2748 return ret; 2749 } 2750 2751 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2752 { 2753 struct xhci_hcd *xhci; 2754 struct xhci_virt_device *virt_dev; 2755 int i, ret; 2756 2757 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2758 if (ret <= 0) 2759 return; 2760 xhci = hcd_to_xhci(hcd); 2761 2762 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2763 virt_dev = xhci->devs[udev->slot_id]; 2764 /* Free any rings allocated for added endpoints */ 2765 for (i = 0; i < 31; i++) { 2766 if (virt_dev->eps[i].new_ring) { 2767 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2768 virt_dev->eps[i].new_ring = NULL; 2769 } 2770 } 2771 xhci_zero_in_ctx(xhci, virt_dev); 2772 } 2773 2774 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2775 struct xhci_container_ctx *in_ctx, 2776 struct xhci_container_ctx *out_ctx, 2777 struct xhci_input_control_ctx *ctrl_ctx, 2778 u32 add_flags, u32 drop_flags) 2779 { 2780 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2781 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2782 xhci_slot_copy(xhci, in_ctx, out_ctx); 2783 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2784 } 2785 2786 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2787 unsigned int slot_id, unsigned int ep_index, 2788 struct xhci_dequeue_state *deq_state) 2789 { 2790 struct xhci_input_control_ctx *ctrl_ctx; 2791 struct xhci_container_ctx *in_ctx; 2792 struct xhci_ep_ctx *ep_ctx; 2793 u32 added_ctxs; 2794 dma_addr_t addr; 2795 2796 in_ctx = xhci->devs[slot_id]->in_ctx; 2797 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2798 if (!ctrl_ctx) { 2799 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2800 __func__); 2801 return; 2802 } 2803 2804 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2805 xhci->devs[slot_id]->out_ctx, ep_index); 2806 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2807 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2808 deq_state->new_deq_ptr); 2809 if (addr == 0) { 2810 xhci_warn(xhci, "WARN Cannot submit config ep after " 2811 "reset ep command\n"); 2812 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2813 deq_state->new_deq_seg, 2814 deq_state->new_deq_ptr); 2815 return; 2816 } 2817 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2818 2819 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2820 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2821 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2822 added_ctxs, added_ctxs); 2823 } 2824 2825 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2826 unsigned int ep_index, struct xhci_td *td) 2827 { 2828 struct xhci_dequeue_state deq_state; 2829 struct xhci_virt_ep *ep; 2830 struct usb_device *udev = td->urb->dev; 2831 2832 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2833 "Cleaning up stalled endpoint ring"); 2834 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2835 /* We need to move the HW's dequeue pointer past this TD, 2836 * or it will attempt to resend it on the next doorbell ring. 2837 */ 2838 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2839 ep_index, ep->stopped_stream, td, &deq_state); 2840 2841 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2842 return; 2843 2844 /* HW with the reset endpoint quirk will use the saved dequeue state to 2845 * issue a configure endpoint command later. 2846 */ 2847 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2848 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2849 "Queueing new dequeue state"); 2850 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2851 ep_index, ep->stopped_stream, &deq_state); 2852 } else { 2853 /* Better hope no one uses the input context between now and the 2854 * reset endpoint completion! 2855 * XXX: No idea how this hardware will react when stream rings 2856 * are enabled. 2857 */ 2858 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2859 "Setting up input context for " 2860 "configure endpoint command"); 2861 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2862 ep_index, &deq_state); 2863 } 2864 } 2865 2866 /* Called when clearing halted device. The core should have sent the control 2867 * message to clear the device halt condition. The host side of the halt should 2868 * already be cleared with a reset endpoint command issued when the STALL tx 2869 * event was received. 2870 * 2871 * Context: in_interrupt 2872 */ 2873 2874 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2875 struct usb_host_endpoint *ep) 2876 { 2877 struct xhci_hcd *xhci; 2878 2879 xhci = hcd_to_xhci(hcd); 2880 2881 /* 2882 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2883 * The Reset Endpoint Command may only be issued to endpoints in the 2884 * Halted state. If software wishes reset the Data Toggle or Sequence 2885 * Number of an endpoint that isn't in the Halted state, then software 2886 * may issue a Configure Endpoint Command with the Drop and Add bits set 2887 * for the target endpoint. that is in the Stopped state. 2888 */ 2889 2890 /* For now just print debug to follow the situation */ 2891 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2892 ep->desc.bEndpointAddress); 2893 } 2894 2895 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2896 struct usb_device *udev, struct usb_host_endpoint *ep, 2897 unsigned int slot_id) 2898 { 2899 int ret; 2900 unsigned int ep_index; 2901 unsigned int ep_state; 2902 2903 if (!ep) 2904 return -EINVAL; 2905 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2906 if (ret <= 0) 2907 return -EINVAL; 2908 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2909 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2910 " descriptor for ep 0x%x does not support streams\n", 2911 ep->desc.bEndpointAddress); 2912 return -EINVAL; 2913 } 2914 2915 ep_index = xhci_get_endpoint_index(&ep->desc); 2916 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2917 if (ep_state & EP_HAS_STREAMS || 2918 ep_state & EP_GETTING_STREAMS) { 2919 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2920 "already has streams set up.\n", 2921 ep->desc.bEndpointAddress); 2922 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2923 "dynamic stream context array reallocation.\n"); 2924 return -EINVAL; 2925 } 2926 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2927 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2928 "endpoint 0x%x; URBs are pending.\n", 2929 ep->desc.bEndpointAddress); 2930 return -EINVAL; 2931 } 2932 return 0; 2933 } 2934 2935 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2936 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2937 { 2938 unsigned int max_streams; 2939 2940 /* The stream context array size must be a power of two */ 2941 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2942 /* 2943 * Find out how many primary stream array entries the host controller 2944 * supports. Later we may use secondary stream arrays (similar to 2nd 2945 * level page entries), but that's an optional feature for xHCI host 2946 * controllers. xHCs must support at least 4 stream IDs. 2947 */ 2948 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2949 if (*num_stream_ctxs > max_streams) { 2950 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2951 max_streams); 2952 *num_stream_ctxs = max_streams; 2953 *num_streams = max_streams; 2954 } 2955 } 2956 2957 /* Returns an error code if one of the endpoint already has streams. 2958 * This does not change any data structures, it only checks and gathers 2959 * information. 2960 */ 2961 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2962 struct usb_device *udev, 2963 struct usb_host_endpoint **eps, unsigned int num_eps, 2964 unsigned int *num_streams, u32 *changed_ep_bitmask) 2965 { 2966 unsigned int max_streams; 2967 unsigned int endpoint_flag; 2968 int i; 2969 int ret; 2970 2971 for (i = 0; i < num_eps; i++) { 2972 ret = xhci_check_streams_endpoint(xhci, udev, 2973 eps[i], udev->slot_id); 2974 if (ret < 0) 2975 return ret; 2976 2977 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2978 if (max_streams < (*num_streams - 1)) { 2979 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2980 eps[i]->desc.bEndpointAddress, 2981 max_streams); 2982 *num_streams = max_streams+1; 2983 } 2984 2985 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2986 if (*changed_ep_bitmask & endpoint_flag) 2987 return -EINVAL; 2988 *changed_ep_bitmask |= endpoint_flag; 2989 } 2990 return 0; 2991 } 2992 2993 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2994 struct usb_device *udev, 2995 struct usb_host_endpoint **eps, unsigned int num_eps) 2996 { 2997 u32 changed_ep_bitmask = 0; 2998 unsigned int slot_id; 2999 unsigned int ep_index; 3000 unsigned int ep_state; 3001 int i; 3002 3003 slot_id = udev->slot_id; 3004 if (!xhci->devs[slot_id]) 3005 return 0; 3006 3007 for (i = 0; i < num_eps; i++) { 3008 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3009 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3010 /* Are streams already being freed for the endpoint? */ 3011 if (ep_state & EP_GETTING_NO_STREAMS) { 3012 xhci_warn(xhci, "WARN Can't disable streams for " 3013 "endpoint 0x%x, " 3014 "streams are being disabled already\n", 3015 eps[i]->desc.bEndpointAddress); 3016 return 0; 3017 } 3018 /* Are there actually any streams to free? */ 3019 if (!(ep_state & EP_HAS_STREAMS) && 3020 !(ep_state & EP_GETTING_STREAMS)) { 3021 xhci_warn(xhci, "WARN Can't disable streams for " 3022 "endpoint 0x%x, " 3023 "streams are already disabled!\n", 3024 eps[i]->desc.bEndpointAddress); 3025 xhci_warn(xhci, "WARN xhci_free_streams() called " 3026 "with non-streams endpoint\n"); 3027 return 0; 3028 } 3029 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3030 } 3031 return changed_ep_bitmask; 3032 } 3033 3034 /* 3035 * The USB device drivers use this function (through the HCD interface in USB 3036 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3037 * coordinate mass storage command queueing across multiple endpoints (basically 3038 * a stream ID == a task ID). 3039 * 3040 * Setting up streams involves allocating the same size stream context array 3041 * for each endpoint and issuing a configure endpoint command for all endpoints. 3042 * 3043 * Don't allow the call to succeed if one endpoint only supports one stream 3044 * (which means it doesn't support streams at all). 3045 * 3046 * Drivers may get less stream IDs than they asked for, if the host controller 3047 * hardware or endpoints claim they can't support the number of requested 3048 * stream IDs. 3049 */ 3050 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3051 struct usb_host_endpoint **eps, unsigned int num_eps, 3052 unsigned int num_streams, gfp_t mem_flags) 3053 { 3054 int i, ret; 3055 struct xhci_hcd *xhci; 3056 struct xhci_virt_device *vdev; 3057 struct xhci_command *config_cmd; 3058 struct xhci_input_control_ctx *ctrl_ctx; 3059 unsigned int ep_index; 3060 unsigned int num_stream_ctxs; 3061 unsigned int max_packet; 3062 unsigned long flags; 3063 u32 changed_ep_bitmask = 0; 3064 3065 if (!eps) 3066 return -EINVAL; 3067 3068 /* Add one to the number of streams requested to account for 3069 * stream 0 that is reserved for xHCI usage. 3070 */ 3071 num_streams += 1; 3072 xhci = hcd_to_xhci(hcd); 3073 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3074 num_streams); 3075 3076 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3077 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3078 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3079 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3080 return -ENOSYS; 3081 } 3082 3083 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3084 if (!config_cmd) 3085 return -ENOMEM; 3086 3087 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3088 if (!ctrl_ctx) { 3089 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3090 __func__); 3091 xhci_free_command(xhci, config_cmd); 3092 return -ENOMEM; 3093 } 3094 3095 /* Check to make sure all endpoints are not already configured for 3096 * streams. While we're at it, find the maximum number of streams that 3097 * all the endpoints will support and check for duplicate endpoints. 3098 */ 3099 spin_lock_irqsave(&xhci->lock, flags); 3100 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3101 num_eps, &num_streams, &changed_ep_bitmask); 3102 if (ret < 0) { 3103 xhci_free_command(xhci, config_cmd); 3104 spin_unlock_irqrestore(&xhci->lock, flags); 3105 return ret; 3106 } 3107 if (num_streams <= 1) { 3108 xhci_warn(xhci, "WARN: endpoints can't handle " 3109 "more than one stream.\n"); 3110 xhci_free_command(xhci, config_cmd); 3111 spin_unlock_irqrestore(&xhci->lock, flags); 3112 return -EINVAL; 3113 } 3114 vdev = xhci->devs[udev->slot_id]; 3115 /* Mark each endpoint as being in transition, so 3116 * xhci_urb_enqueue() will reject all URBs. 3117 */ 3118 for (i = 0; i < num_eps; i++) { 3119 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3120 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3121 } 3122 spin_unlock_irqrestore(&xhci->lock, flags); 3123 3124 /* Setup internal data structures and allocate HW data structures for 3125 * streams (but don't install the HW structures in the input context 3126 * until we're sure all memory allocation succeeded). 3127 */ 3128 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3129 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3130 num_stream_ctxs, num_streams); 3131 3132 for (i = 0; i < num_eps; i++) { 3133 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3134 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3135 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3136 num_stream_ctxs, 3137 num_streams, 3138 max_packet, mem_flags); 3139 if (!vdev->eps[ep_index].stream_info) 3140 goto cleanup; 3141 /* Set maxPstreams in endpoint context and update deq ptr to 3142 * point to stream context array. FIXME 3143 */ 3144 } 3145 3146 /* Set up the input context for a configure endpoint command. */ 3147 for (i = 0; i < num_eps; i++) { 3148 struct xhci_ep_ctx *ep_ctx; 3149 3150 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3151 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3152 3153 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3154 vdev->out_ctx, ep_index); 3155 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3156 vdev->eps[ep_index].stream_info); 3157 } 3158 /* Tell the HW to drop its old copy of the endpoint context info 3159 * and add the updated copy from the input context. 3160 */ 3161 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3162 vdev->out_ctx, ctrl_ctx, 3163 changed_ep_bitmask, changed_ep_bitmask); 3164 3165 /* Issue and wait for the configure endpoint command */ 3166 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3167 false, false); 3168 3169 /* xHC rejected the configure endpoint command for some reason, so we 3170 * leave the old ring intact and free our internal streams data 3171 * structure. 3172 */ 3173 if (ret < 0) 3174 goto cleanup; 3175 3176 spin_lock_irqsave(&xhci->lock, flags); 3177 for (i = 0; i < num_eps; i++) { 3178 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3179 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3180 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3181 udev->slot_id, ep_index); 3182 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3183 } 3184 xhci_free_command(xhci, config_cmd); 3185 spin_unlock_irqrestore(&xhci->lock, flags); 3186 3187 /* Subtract 1 for stream 0, which drivers can't use */ 3188 return num_streams - 1; 3189 3190 cleanup: 3191 /* If it didn't work, free the streams! */ 3192 for (i = 0; i < num_eps; i++) { 3193 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3194 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3195 vdev->eps[ep_index].stream_info = NULL; 3196 /* FIXME Unset maxPstreams in endpoint context and 3197 * update deq ptr to point to normal string ring. 3198 */ 3199 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3200 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3201 xhci_endpoint_zero(xhci, vdev, eps[i]); 3202 } 3203 xhci_free_command(xhci, config_cmd); 3204 return -ENOMEM; 3205 } 3206 3207 /* Transition the endpoint from using streams to being a "normal" endpoint 3208 * without streams. 3209 * 3210 * Modify the endpoint context state, submit a configure endpoint command, 3211 * and free all endpoint rings for streams if that completes successfully. 3212 */ 3213 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3214 struct usb_host_endpoint **eps, unsigned int num_eps, 3215 gfp_t mem_flags) 3216 { 3217 int i, ret; 3218 struct xhci_hcd *xhci; 3219 struct xhci_virt_device *vdev; 3220 struct xhci_command *command; 3221 struct xhci_input_control_ctx *ctrl_ctx; 3222 unsigned int ep_index; 3223 unsigned long flags; 3224 u32 changed_ep_bitmask; 3225 3226 xhci = hcd_to_xhci(hcd); 3227 vdev = xhci->devs[udev->slot_id]; 3228 3229 /* Set up a configure endpoint command to remove the streams rings */ 3230 spin_lock_irqsave(&xhci->lock, flags); 3231 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3232 udev, eps, num_eps); 3233 if (changed_ep_bitmask == 0) { 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 return -EINVAL; 3236 } 3237 3238 /* Use the xhci_command structure from the first endpoint. We may have 3239 * allocated too many, but the driver may call xhci_free_streams() for 3240 * each endpoint it grouped into one call to xhci_alloc_streams(). 3241 */ 3242 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3243 command = vdev->eps[ep_index].stream_info->free_streams_command; 3244 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3245 if (!ctrl_ctx) { 3246 spin_unlock_irqrestore(&xhci->lock, flags); 3247 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3248 __func__); 3249 return -EINVAL; 3250 } 3251 3252 for (i = 0; i < num_eps; i++) { 3253 struct xhci_ep_ctx *ep_ctx; 3254 3255 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3256 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3257 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3258 EP_GETTING_NO_STREAMS; 3259 3260 xhci_endpoint_copy(xhci, command->in_ctx, 3261 vdev->out_ctx, ep_index); 3262 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3263 &vdev->eps[ep_index]); 3264 } 3265 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3266 vdev->out_ctx, ctrl_ctx, 3267 changed_ep_bitmask, changed_ep_bitmask); 3268 spin_unlock_irqrestore(&xhci->lock, flags); 3269 3270 /* Issue and wait for the configure endpoint command, 3271 * which must succeed. 3272 */ 3273 ret = xhci_configure_endpoint(xhci, udev, command, 3274 false, true); 3275 3276 /* xHC rejected the configure endpoint command for some reason, so we 3277 * leave the streams rings intact. 3278 */ 3279 if (ret < 0) 3280 return ret; 3281 3282 spin_lock_irqsave(&xhci->lock, flags); 3283 for (i = 0; i < num_eps; i++) { 3284 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3285 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3286 vdev->eps[ep_index].stream_info = NULL; 3287 /* FIXME Unset maxPstreams in endpoint context and 3288 * update deq ptr to point to normal string ring. 3289 */ 3290 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3291 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3292 } 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 3295 return 0; 3296 } 3297 3298 /* 3299 * Deletes endpoint resources for endpoints that were active before a Reset 3300 * Device command, or a Disable Slot command. The Reset Device command leaves 3301 * the control endpoint intact, whereas the Disable Slot command deletes it. 3302 * 3303 * Must be called with xhci->lock held. 3304 */ 3305 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3306 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3307 { 3308 int i; 3309 unsigned int num_dropped_eps = 0; 3310 unsigned int drop_flags = 0; 3311 3312 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3313 if (virt_dev->eps[i].ring) { 3314 drop_flags |= 1 << i; 3315 num_dropped_eps++; 3316 } 3317 } 3318 xhci->num_active_eps -= num_dropped_eps; 3319 if (num_dropped_eps) 3320 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3321 "Dropped %u ep ctxs, flags = 0x%x, " 3322 "%u now active.", 3323 num_dropped_eps, drop_flags, 3324 xhci->num_active_eps); 3325 } 3326 3327 /* 3328 * This submits a Reset Device Command, which will set the device state to 0, 3329 * set the device address to 0, and disable all the endpoints except the default 3330 * control endpoint. The USB core should come back and call 3331 * xhci_address_device(), and then re-set up the configuration. If this is 3332 * called because of a usb_reset_and_verify_device(), then the old alternate 3333 * settings will be re-installed through the normal bandwidth allocation 3334 * functions. 3335 * 3336 * Wait for the Reset Device command to finish. Remove all structures 3337 * associated with the endpoints that were disabled. Clear the input device 3338 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3339 * 3340 * If the virt_dev to be reset does not exist or does not match the udev, 3341 * it means the device is lost, possibly due to the xHC restore error and 3342 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3343 * re-allocate the device. 3344 */ 3345 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3346 struct usb_device *udev) 3347 { 3348 int ret, i; 3349 unsigned long flags; 3350 struct xhci_hcd *xhci; 3351 unsigned int slot_id; 3352 struct xhci_virt_device *virt_dev; 3353 struct xhci_command *reset_device_cmd; 3354 int last_freed_endpoint; 3355 struct xhci_slot_ctx *slot_ctx; 3356 int old_active_eps = 0; 3357 3358 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3359 if (ret <= 0) 3360 return ret; 3361 xhci = hcd_to_xhci(hcd); 3362 slot_id = udev->slot_id; 3363 virt_dev = xhci->devs[slot_id]; 3364 if (!virt_dev) { 3365 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3366 "not exist. Re-allocate the device\n", slot_id); 3367 ret = xhci_alloc_dev(hcd, udev); 3368 if (ret == 1) 3369 return 0; 3370 else 3371 return -EINVAL; 3372 } 3373 3374 if (virt_dev->tt_info) 3375 old_active_eps = virt_dev->tt_info->active_eps; 3376 3377 if (virt_dev->udev != udev) { 3378 /* If the virt_dev and the udev does not match, this virt_dev 3379 * may belong to another udev. 3380 * Re-allocate the device. 3381 */ 3382 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3383 "not match the udev. Re-allocate the device\n", 3384 slot_id); 3385 ret = xhci_alloc_dev(hcd, udev); 3386 if (ret == 1) 3387 return 0; 3388 else 3389 return -EINVAL; 3390 } 3391 3392 /* If device is not setup, there is no point in resetting it */ 3393 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3394 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3395 SLOT_STATE_DISABLED) 3396 return 0; 3397 3398 trace_xhci_discover_or_reset_device(slot_ctx); 3399 3400 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3401 /* Allocate the command structure that holds the struct completion. 3402 * Assume we're in process context, since the normal device reset 3403 * process has to wait for the device anyway. Storage devices are 3404 * reset as part of error handling, so use GFP_NOIO instead of 3405 * GFP_KERNEL. 3406 */ 3407 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3408 if (!reset_device_cmd) { 3409 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3410 return -ENOMEM; 3411 } 3412 3413 /* Attempt to submit the Reset Device command to the command ring */ 3414 spin_lock_irqsave(&xhci->lock, flags); 3415 3416 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3417 if (ret) { 3418 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3419 spin_unlock_irqrestore(&xhci->lock, flags); 3420 goto command_cleanup; 3421 } 3422 xhci_ring_cmd_db(xhci); 3423 spin_unlock_irqrestore(&xhci->lock, flags); 3424 3425 /* Wait for the Reset Device command to finish */ 3426 wait_for_completion(reset_device_cmd->completion); 3427 3428 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3429 * unless we tried to reset a slot ID that wasn't enabled, 3430 * or the device wasn't in the addressed or configured state. 3431 */ 3432 ret = reset_device_cmd->status; 3433 switch (ret) { 3434 case COMP_COMMAND_ABORTED: 3435 case COMP_STOPPED: 3436 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3437 ret = -ETIME; 3438 goto command_cleanup; 3439 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3440 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3441 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3442 slot_id, 3443 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3444 xhci_dbg(xhci, "Not freeing device rings.\n"); 3445 /* Don't treat this as an error. May change my mind later. */ 3446 ret = 0; 3447 goto command_cleanup; 3448 case COMP_SUCCESS: 3449 xhci_dbg(xhci, "Successful reset device command.\n"); 3450 break; 3451 default: 3452 if (xhci_is_vendor_info_code(xhci, ret)) 3453 break; 3454 xhci_warn(xhci, "Unknown completion code %u for " 3455 "reset device command.\n", ret); 3456 ret = -EINVAL; 3457 goto command_cleanup; 3458 } 3459 3460 /* Free up host controller endpoint resources */ 3461 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3462 spin_lock_irqsave(&xhci->lock, flags); 3463 /* Don't delete the default control endpoint resources */ 3464 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3465 spin_unlock_irqrestore(&xhci->lock, flags); 3466 } 3467 3468 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3469 last_freed_endpoint = 1; 3470 for (i = 1; i < 31; i++) { 3471 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3472 3473 if (ep->ep_state & EP_HAS_STREAMS) { 3474 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3475 xhci_get_endpoint_address(i)); 3476 xhci_free_stream_info(xhci, ep->stream_info); 3477 ep->stream_info = NULL; 3478 ep->ep_state &= ~EP_HAS_STREAMS; 3479 } 3480 3481 if (ep->ring) { 3482 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3483 last_freed_endpoint = i; 3484 } 3485 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3486 xhci_drop_ep_from_interval_table(xhci, 3487 &virt_dev->eps[i].bw_info, 3488 virt_dev->bw_table, 3489 udev, 3490 &virt_dev->eps[i], 3491 virt_dev->tt_info); 3492 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3493 } 3494 /* If necessary, update the number of active TTs on this root port */ 3495 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3496 ret = 0; 3497 3498 command_cleanup: 3499 xhci_free_command(xhci, reset_device_cmd); 3500 return ret; 3501 } 3502 3503 /* 3504 * At this point, the struct usb_device is about to go away, the device has 3505 * disconnected, and all traffic has been stopped and the endpoints have been 3506 * disabled. Free any HC data structures associated with that device. 3507 */ 3508 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3509 { 3510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3511 struct xhci_virt_device *virt_dev; 3512 struct xhci_slot_ctx *slot_ctx; 3513 int i, ret; 3514 struct xhci_command *command; 3515 3516 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3517 if (!command) 3518 return; 3519 3520 #ifndef CONFIG_USB_DEFAULT_PERSIST 3521 /* 3522 * We called pm_runtime_get_noresume when the device was attached. 3523 * Decrement the counter here to allow controller to runtime suspend 3524 * if no devices remain. 3525 */ 3526 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3527 pm_runtime_put_noidle(hcd->self.controller); 3528 #endif 3529 3530 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3531 /* If the host is halted due to driver unload, we still need to free the 3532 * device. 3533 */ 3534 if (ret <= 0 && ret != -ENODEV) { 3535 kfree(command); 3536 return; 3537 } 3538 3539 virt_dev = xhci->devs[udev->slot_id]; 3540 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3541 trace_xhci_free_dev(slot_ctx); 3542 3543 /* Stop any wayward timer functions (which may grab the lock) */ 3544 for (i = 0; i < 31; i++) { 3545 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3546 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3547 } 3548 3549 xhci_disable_slot(xhci, command, udev->slot_id); 3550 /* 3551 * Event command completion handler will free any data structures 3552 * associated with the slot. XXX Can free sleep? 3553 */ 3554 } 3555 3556 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command, 3557 u32 slot_id) 3558 { 3559 unsigned long flags; 3560 u32 state; 3561 int ret = 0; 3562 struct xhci_virt_device *virt_dev; 3563 3564 virt_dev = xhci->devs[slot_id]; 3565 if (!virt_dev) 3566 return -EINVAL; 3567 if (!command) 3568 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3569 if (!command) 3570 return -ENOMEM; 3571 3572 spin_lock_irqsave(&xhci->lock, flags); 3573 /* Don't disable the slot if the host controller is dead. */ 3574 state = readl(&xhci->op_regs->status); 3575 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3576 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3577 xhci_free_virt_device(xhci, slot_id); 3578 spin_unlock_irqrestore(&xhci->lock, flags); 3579 kfree(command); 3580 return ret; 3581 } 3582 3583 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3584 slot_id); 3585 if (ret) { 3586 spin_unlock_irqrestore(&xhci->lock, flags); 3587 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3588 return ret; 3589 } 3590 xhci_ring_cmd_db(xhci); 3591 spin_unlock_irqrestore(&xhci->lock, flags); 3592 return ret; 3593 } 3594 3595 /* 3596 * Checks if we have enough host controller resources for the default control 3597 * endpoint. 3598 * 3599 * Must be called with xhci->lock held. 3600 */ 3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3602 { 3603 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3604 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3605 "Not enough ep ctxs: " 3606 "%u active, need to add 1, limit is %u.", 3607 xhci->num_active_eps, xhci->limit_active_eps); 3608 return -ENOMEM; 3609 } 3610 xhci->num_active_eps += 1; 3611 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3612 "Adding 1 ep ctx, %u now active.", 3613 xhci->num_active_eps); 3614 return 0; 3615 } 3616 3617 3618 /* 3619 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3620 * timed out, or allocating memory failed. Returns 1 on success. 3621 */ 3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3623 { 3624 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3625 struct xhci_virt_device *vdev; 3626 struct xhci_slot_ctx *slot_ctx; 3627 unsigned long flags; 3628 int ret, slot_id; 3629 struct xhci_command *command; 3630 3631 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3632 if (!command) 3633 return 0; 3634 3635 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3636 mutex_lock(&xhci->mutex); 3637 spin_lock_irqsave(&xhci->lock, flags); 3638 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3639 if (ret) { 3640 spin_unlock_irqrestore(&xhci->lock, flags); 3641 mutex_unlock(&xhci->mutex); 3642 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3643 xhci_free_command(xhci, command); 3644 return 0; 3645 } 3646 xhci_ring_cmd_db(xhci); 3647 spin_unlock_irqrestore(&xhci->lock, flags); 3648 3649 wait_for_completion(command->completion); 3650 slot_id = command->slot_id; 3651 mutex_unlock(&xhci->mutex); 3652 3653 if (!slot_id || command->status != COMP_SUCCESS) { 3654 xhci_err(xhci, "Error while assigning device slot ID\n"); 3655 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3656 HCS_MAX_SLOTS( 3657 readl(&xhci->cap_regs->hcs_params1))); 3658 xhci_free_command(xhci, command); 3659 return 0; 3660 } 3661 3662 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3663 spin_lock_irqsave(&xhci->lock, flags); 3664 ret = xhci_reserve_host_control_ep_resources(xhci); 3665 if (ret) { 3666 spin_unlock_irqrestore(&xhci->lock, flags); 3667 xhci_warn(xhci, "Not enough host resources, " 3668 "active endpoint contexts = %u\n", 3669 xhci->num_active_eps); 3670 goto disable_slot; 3671 } 3672 spin_unlock_irqrestore(&xhci->lock, flags); 3673 } 3674 /* Use GFP_NOIO, since this function can be called from 3675 * xhci_discover_or_reset_device(), which may be called as part of 3676 * mass storage driver error handling. 3677 */ 3678 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3679 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3680 goto disable_slot; 3681 } 3682 vdev = xhci->devs[slot_id]; 3683 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3684 trace_xhci_alloc_dev(slot_ctx); 3685 3686 udev->slot_id = slot_id; 3687 3688 #ifndef CONFIG_USB_DEFAULT_PERSIST 3689 /* 3690 * If resetting upon resume, we can't put the controller into runtime 3691 * suspend if there is a device attached. 3692 */ 3693 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3694 pm_runtime_get_noresume(hcd->self.controller); 3695 #endif 3696 3697 3698 xhci_free_command(xhci, command); 3699 /* Is this a LS or FS device under a HS hub? */ 3700 /* Hub or peripherial? */ 3701 return 1; 3702 3703 disable_slot: 3704 /* Disable slot, if we can do it without mem alloc */ 3705 kfree(command->completion); 3706 command->completion = NULL; 3707 command->status = 0; 3708 return xhci_disable_slot(xhci, command, udev->slot_id); 3709 } 3710 3711 /* 3712 * Issue an Address Device command and optionally send a corresponding 3713 * SetAddress request to the device. 3714 */ 3715 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3716 enum xhci_setup_dev setup) 3717 { 3718 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3719 unsigned long flags; 3720 struct xhci_virt_device *virt_dev; 3721 int ret = 0; 3722 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3723 struct xhci_slot_ctx *slot_ctx; 3724 struct xhci_input_control_ctx *ctrl_ctx; 3725 u64 temp_64; 3726 struct xhci_command *command = NULL; 3727 3728 mutex_lock(&xhci->mutex); 3729 3730 if (xhci->xhc_state) { /* dying, removing or halted */ 3731 ret = -ESHUTDOWN; 3732 goto out; 3733 } 3734 3735 if (!udev->slot_id) { 3736 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3737 "Bad Slot ID %d", udev->slot_id); 3738 ret = -EINVAL; 3739 goto out; 3740 } 3741 3742 virt_dev = xhci->devs[udev->slot_id]; 3743 3744 if (WARN_ON(!virt_dev)) { 3745 /* 3746 * In plug/unplug torture test with an NEC controller, 3747 * a zero-dereference was observed once due to virt_dev = 0. 3748 * Print useful debug rather than crash if it is observed again! 3749 */ 3750 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3751 udev->slot_id); 3752 ret = -EINVAL; 3753 goto out; 3754 } 3755 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3756 trace_xhci_setup_device_slot(slot_ctx); 3757 3758 if (setup == SETUP_CONTEXT_ONLY) { 3759 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3760 SLOT_STATE_DEFAULT) { 3761 xhci_dbg(xhci, "Slot already in default state\n"); 3762 goto out; 3763 } 3764 } 3765 3766 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3767 if (!command) { 3768 ret = -ENOMEM; 3769 goto out; 3770 } 3771 3772 command->in_ctx = virt_dev->in_ctx; 3773 3774 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3775 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3776 if (!ctrl_ctx) { 3777 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3778 __func__); 3779 ret = -EINVAL; 3780 goto out; 3781 } 3782 /* 3783 * If this is the first Set Address since device plug-in or 3784 * virt_device realloaction after a resume with an xHCI power loss, 3785 * then set up the slot context. 3786 */ 3787 if (!slot_ctx->dev_info) 3788 xhci_setup_addressable_virt_dev(xhci, udev); 3789 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3790 else 3791 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3792 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3793 ctrl_ctx->drop_flags = 0; 3794 3795 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3796 le32_to_cpu(slot_ctx->dev_info) >> 27); 3797 3798 spin_lock_irqsave(&xhci->lock, flags); 3799 trace_xhci_setup_device(virt_dev); 3800 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3801 udev->slot_id, setup); 3802 if (ret) { 3803 spin_unlock_irqrestore(&xhci->lock, flags); 3804 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3805 "FIXME: allocate a command ring segment"); 3806 goto out; 3807 } 3808 xhci_ring_cmd_db(xhci); 3809 spin_unlock_irqrestore(&xhci->lock, flags); 3810 3811 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3812 wait_for_completion(command->completion); 3813 3814 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3815 * the SetAddress() "recovery interval" required by USB and aborting the 3816 * command on a timeout. 3817 */ 3818 switch (command->status) { 3819 case COMP_COMMAND_ABORTED: 3820 case COMP_STOPPED: 3821 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3822 ret = -ETIME; 3823 break; 3824 case COMP_CONTEXT_STATE_ERROR: 3825 case COMP_SLOT_NOT_ENABLED_ERROR: 3826 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3827 act, udev->slot_id); 3828 ret = -EINVAL; 3829 break; 3830 case COMP_USB_TRANSACTION_ERROR: 3831 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3832 ret = -EPROTO; 3833 break; 3834 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3835 dev_warn(&udev->dev, 3836 "ERROR: Incompatible device for setup %s command\n", act); 3837 ret = -ENODEV; 3838 break; 3839 case COMP_SUCCESS: 3840 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3841 "Successful setup %s command", act); 3842 break; 3843 default: 3844 xhci_err(xhci, 3845 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3846 act, command->status); 3847 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3848 ret = -EINVAL; 3849 break; 3850 } 3851 if (ret) 3852 goto out; 3853 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3854 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3855 "Op regs DCBAA ptr = %#016llx", temp_64); 3856 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3857 "Slot ID %d dcbaa entry @%p = %#016llx", 3858 udev->slot_id, 3859 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3860 (unsigned long long) 3861 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3862 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3863 "Output Context DMA address = %#08llx", 3864 (unsigned long long)virt_dev->out_ctx->dma); 3865 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3866 le32_to_cpu(slot_ctx->dev_info) >> 27); 3867 /* 3868 * USB core uses address 1 for the roothubs, so we add one to the 3869 * address given back to us by the HC. 3870 */ 3871 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3872 le32_to_cpu(slot_ctx->dev_info) >> 27); 3873 /* Zero the input context control for later use */ 3874 ctrl_ctx->add_flags = 0; 3875 ctrl_ctx->drop_flags = 0; 3876 3877 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3878 "Internal device address = %d", 3879 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3880 out: 3881 mutex_unlock(&xhci->mutex); 3882 if (command) { 3883 kfree(command->completion); 3884 kfree(command); 3885 } 3886 return ret; 3887 } 3888 3889 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3890 { 3891 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3892 } 3893 3894 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3895 { 3896 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3897 } 3898 3899 /* 3900 * Transfer the port index into real index in the HW port status 3901 * registers. Caculate offset between the port's PORTSC register 3902 * and port status base. Divide the number of per port register 3903 * to get the real index. The raw port number bases 1. 3904 */ 3905 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3906 { 3907 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3908 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3909 __le32 __iomem *addr; 3910 int raw_port; 3911 3912 if (hcd->speed < HCD_USB3) 3913 addr = xhci->usb2_ports[port1 - 1]; 3914 else 3915 addr = xhci->usb3_ports[port1 - 1]; 3916 3917 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3918 return raw_port; 3919 } 3920 3921 /* 3922 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3923 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3924 */ 3925 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3926 struct usb_device *udev, u16 max_exit_latency) 3927 { 3928 struct xhci_virt_device *virt_dev; 3929 struct xhci_command *command; 3930 struct xhci_input_control_ctx *ctrl_ctx; 3931 struct xhci_slot_ctx *slot_ctx; 3932 unsigned long flags; 3933 int ret; 3934 3935 spin_lock_irqsave(&xhci->lock, flags); 3936 3937 virt_dev = xhci->devs[udev->slot_id]; 3938 3939 /* 3940 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3941 * xHC was re-initialized. Exit latency will be set later after 3942 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3943 */ 3944 3945 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3946 spin_unlock_irqrestore(&xhci->lock, flags); 3947 return 0; 3948 } 3949 3950 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3951 command = xhci->lpm_command; 3952 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3953 if (!ctrl_ctx) { 3954 spin_unlock_irqrestore(&xhci->lock, flags); 3955 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3956 __func__); 3957 return -ENOMEM; 3958 } 3959 3960 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3961 spin_unlock_irqrestore(&xhci->lock, flags); 3962 3963 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3964 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3965 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3966 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3967 slot_ctx->dev_state = 0; 3968 3969 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3970 "Set up evaluate context for LPM MEL change."); 3971 3972 /* Issue and wait for the evaluate context command. */ 3973 ret = xhci_configure_endpoint(xhci, udev, command, 3974 true, true); 3975 3976 if (!ret) { 3977 spin_lock_irqsave(&xhci->lock, flags); 3978 virt_dev->current_mel = max_exit_latency; 3979 spin_unlock_irqrestore(&xhci->lock, flags); 3980 } 3981 return ret; 3982 } 3983 3984 #ifdef CONFIG_PM 3985 3986 /* BESL to HIRD Encoding array for USB2 LPM */ 3987 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3988 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3989 3990 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3991 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3992 struct usb_device *udev) 3993 { 3994 int u2del, besl, besl_host; 3995 int besl_device = 0; 3996 u32 field; 3997 3998 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3999 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4000 4001 if (field & USB_BESL_SUPPORT) { 4002 for (besl_host = 0; besl_host < 16; besl_host++) { 4003 if (xhci_besl_encoding[besl_host] >= u2del) 4004 break; 4005 } 4006 /* Use baseline BESL value as default */ 4007 if (field & USB_BESL_BASELINE_VALID) 4008 besl_device = USB_GET_BESL_BASELINE(field); 4009 else if (field & USB_BESL_DEEP_VALID) 4010 besl_device = USB_GET_BESL_DEEP(field); 4011 } else { 4012 if (u2del <= 50) 4013 besl_host = 0; 4014 else 4015 besl_host = (u2del - 51) / 75 + 1; 4016 } 4017 4018 besl = besl_host + besl_device; 4019 if (besl > 15) 4020 besl = 15; 4021 4022 return besl; 4023 } 4024 4025 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4026 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4027 { 4028 u32 field; 4029 int l1; 4030 int besld = 0; 4031 int hirdm = 0; 4032 4033 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4034 4035 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4036 l1 = udev->l1_params.timeout / 256; 4037 4038 /* device has preferred BESLD */ 4039 if (field & USB_BESL_DEEP_VALID) { 4040 besld = USB_GET_BESL_DEEP(field); 4041 hirdm = 1; 4042 } 4043 4044 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4045 } 4046 4047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4048 struct usb_device *udev, int enable) 4049 { 4050 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4051 __le32 __iomem **port_array; 4052 __le32 __iomem *pm_addr, *hlpm_addr; 4053 u32 pm_val, hlpm_val, field; 4054 unsigned int port_num; 4055 unsigned long flags; 4056 int hird, exit_latency; 4057 int ret; 4058 4059 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4060 !udev->lpm_capable) 4061 return -EPERM; 4062 4063 if (!udev->parent || udev->parent->parent || 4064 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4065 return -EPERM; 4066 4067 if (udev->usb2_hw_lpm_capable != 1) 4068 return -EPERM; 4069 4070 spin_lock_irqsave(&xhci->lock, flags); 4071 4072 port_array = xhci->usb2_ports; 4073 port_num = udev->portnum - 1; 4074 pm_addr = port_array[port_num] + PORTPMSC; 4075 pm_val = readl(pm_addr); 4076 hlpm_addr = port_array[port_num] + PORTHLPMC; 4077 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4078 4079 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4080 enable ? "enable" : "disable", port_num + 1); 4081 4082 if (enable) { 4083 /* Host supports BESL timeout instead of HIRD */ 4084 if (udev->usb2_hw_lpm_besl_capable) { 4085 /* if device doesn't have a preferred BESL value use a 4086 * default one which works with mixed HIRD and BESL 4087 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4088 */ 4089 if ((field & USB_BESL_SUPPORT) && 4090 (field & USB_BESL_BASELINE_VALID)) 4091 hird = USB_GET_BESL_BASELINE(field); 4092 else 4093 hird = udev->l1_params.besl; 4094 4095 exit_latency = xhci_besl_encoding[hird]; 4096 spin_unlock_irqrestore(&xhci->lock, flags); 4097 4098 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4099 * input context for link powermanagement evaluate 4100 * context commands. It is protected by hcd->bandwidth 4101 * mutex and is shared by all devices. We need to set 4102 * the max ext latency in USB 2 BESL LPM as well, so 4103 * use the same mutex and xhci_change_max_exit_latency() 4104 */ 4105 mutex_lock(hcd->bandwidth_mutex); 4106 ret = xhci_change_max_exit_latency(xhci, udev, 4107 exit_latency); 4108 mutex_unlock(hcd->bandwidth_mutex); 4109 4110 if (ret < 0) 4111 return ret; 4112 spin_lock_irqsave(&xhci->lock, flags); 4113 4114 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4115 writel(hlpm_val, hlpm_addr); 4116 /* flush write */ 4117 readl(hlpm_addr); 4118 } else { 4119 hird = xhci_calculate_hird_besl(xhci, udev); 4120 } 4121 4122 pm_val &= ~PORT_HIRD_MASK; 4123 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4124 writel(pm_val, pm_addr); 4125 pm_val = readl(pm_addr); 4126 pm_val |= PORT_HLE; 4127 writel(pm_val, pm_addr); 4128 /* flush write */ 4129 readl(pm_addr); 4130 } else { 4131 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4132 writel(pm_val, pm_addr); 4133 /* flush write */ 4134 readl(pm_addr); 4135 if (udev->usb2_hw_lpm_besl_capable) { 4136 spin_unlock_irqrestore(&xhci->lock, flags); 4137 mutex_lock(hcd->bandwidth_mutex); 4138 xhci_change_max_exit_latency(xhci, udev, 0); 4139 mutex_unlock(hcd->bandwidth_mutex); 4140 return 0; 4141 } 4142 } 4143 4144 spin_unlock_irqrestore(&xhci->lock, flags); 4145 return 0; 4146 } 4147 4148 /* check if a usb2 port supports a given extened capability protocol 4149 * only USB2 ports extended protocol capability values are cached. 4150 * Return 1 if capability is supported 4151 */ 4152 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4153 unsigned capability) 4154 { 4155 u32 port_offset, port_count; 4156 int i; 4157 4158 for (i = 0; i < xhci->num_ext_caps; i++) { 4159 if (xhci->ext_caps[i] & capability) { 4160 /* port offsets starts at 1 */ 4161 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4162 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4163 if (port >= port_offset && 4164 port < port_offset + port_count) 4165 return 1; 4166 } 4167 } 4168 return 0; 4169 } 4170 4171 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4172 { 4173 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4174 int portnum = udev->portnum - 1; 4175 4176 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4177 !udev->lpm_capable) 4178 return 0; 4179 4180 /* we only support lpm for non-hub device connected to root hub yet */ 4181 if (!udev->parent || udev->parent->parent || 4182 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4183 return 0; 4184 4185 if (xhci->hw_lpm_support == 1 && 4186 xhci_check_usb2_port_capability( 4187 xhci, portnum, XHCI_HLC)) { 4188 udev->usb2_hw_lpm_capable = 1; 4189 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4190 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4191 if (xhci_check_usb2_port_capability(xhci, portnum, 4192 XHCI_BLC)) 4193 udev->usb2_hw_lpm_besl_capable = 1; 4194 } 4195 4196 return 0; 4197 } 4198 4199 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4200 4201 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4202 static unsigned long long xhci_service_interval_to_ns( 4203 struct usb_endpoint_descriptor *desc) 4204 { 4205 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4206 } 4207 4208 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4209 enum usb3_link_state state) 4210 { 4211 unsigned long long sel; 4212 unsigned long long pel; 4213 unsigned int max_sel_pel; 4214 char *state_name; 4215 4216 switch (state) { 4217 case USB3_LPM_U1: 4218 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4219 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4220 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4221 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4222 state_name = "U1"; 4223 break; 4224 case USB3_LPM_U2: 4225 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4226 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4227 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4228 state_name = "U2"; 4229 break; 4230 default: 4231 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4232 __func__); 4233 return USB3_LPM_DISABLED; 4234 } 4235 4236 if (sel <= max_sel_pel && pel <= max_sel_pel) 4237 return USB3_LPM_DEVICE_INITIATED; 4238 4239 if (sel > max_sel_pel) 4240 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4241 "due to long SEL %llu ms\n", 4242 state_name, sel); 4243 else 4244 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4245 "due to long PEL %llu ms\n", 4246 state_name, pel); 4247 return USB3_LPM_DISABLED; 4248 } 4249 4250 /* The U1 timeout should be the maximum of the following values: 4251 * - For control endpoints, U1 system exit latency (SEL) * 3 4252 * - For bulk endpoints, U1 SEL * 5 4253 * - For interrupt endpoints: 4254 * - Notification EPs, U1 SEL * 3 4255 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4256 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4257 */ 4258 static unsigned long long xhci_calculate_intel_u1_timeout( 4259 struct usb_device *udev, 4260 struct usb_endpoint_descriptor *desc) 4261 { 4262 unsigned long long timeout_ns; 4263 int ep_type; 4264 int intr_type; 4265 4266 ep_type = usb_endpoint_type(desc); 4267 switch (ep_type) { 4268 case USB_ENDPOINT_XFER_CONTROL: 4269 timeout_ns = udev->u1_params.sel * 3; 4270 break; 4271 case USB_ENDPOINT_XFER_BULK: 4272 timeout_ns = udev->u1_params.sel * 5; 4273 break; 4274 case USB_ENDPOINT_XFER_INT: 4275 intr_type = usb_endpoint_interrupt_type(desc); 4276 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4277 timeout_ns = udev->u1_params.sel * 3; 4278 break; 4279 } 4280 /* Otherwise the calculation is the same as isoc eps */ 4281 case USB_ENDPOINT_XFER_ISOC: 4282 timeout_ns = xhci_service_interval_to_ns(desc); 4283 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4284 if (timeout_ns < udev->u1_params.sel * 2) 4285 timeout_ns = udev->u1_params.sel * 2; 4286 break; 4287 default: 4288 return 0; 4289 } 4290 4291 return timeout_ns; 4292 } 4293 4294 /* Returns the hub-encoded U1 timeout value. */ 4295 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4296 struct usb_device *udev, 4297 struct usb_endpoint_descriptor *desc) 4298 { 4299 unsigned long long timeout_ns; 4300 4301 if (xhci->quirks & XHCI_INTEL_HOST) 4302 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4303 else 4304 timeout_ns = udev->u1_params.sel; 4305 4306 /* The U1 timeout is encoded in 1us intervals. 4307 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4308 */ 4309 if (timeout_ns == USB3_LPM_DISABLED) 4310 timeout_ns = 1; 4311 else 4312 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4313 4314 /* If the necessary timeout value is bigger than what we can set in the 4315 * USB 3.0 hub, we have to disable hub-initiated U1. 4316 */ 4317 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4318 return timeout_ns; 4319 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4320 "due to long timeout %llu ms\n", timeout_ns); 4321 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4322 } 4323 4324 /* The U2 timeout should be the maximum of: 4325 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4326 * - largest bInterval of any active periodic endpoint (to avoid going 4327 * into lower power link states between intervals). 4328 * - the U2 Exit Latency of the device 4329 */ 4330 static unsigned long long xhci_calculate_intel_u2_timeout( 4331 struct usb_device *udev, 4332 struct usb_endpoint_descriptor *desc) 4333 { 4334 unsigned long long timeout_ns; 4335 unsigned long long u2_del_ns; 4336 4337 timeout_ns = 10 * 1000 * 1000; 4338 4339 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4340 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4341 timeout_ns = xhci_service_interval_to_ns(desc); 4342 4343 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4344 if (u2_del_ns > timeout_ns) 4345 timeout_ns = u2_del_ns; 4346 4347 return timeout_ns; 4348 } 4349 4350 /* Returns the hub-encoded U2 timeout value. */ 4351 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4352 struct usb_device *udev, 4353 struct usb_endpoint_descriptor *desc) 4354 { 4355 unsigned long long timeout_ns; 4356 4357 if (xhci->quirks & XHCI_INTEL_HOST) 4358 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4359 else 4360 timeout_ns = udev->u2_params.sel; 4361 4362 /* The U2 timeout is encoded in 256us intervals */ 4363 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4364 /* If the necessary timeout value is bigger than what we can set in the 4365 * USB 3.0 hub, we have to disable hub-initiated U2. 4366 */ 4367 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4368 return timeout_ns; 4369 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4370 "due to long timeout %llu ms\n", timeout_ns); 4371 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4372 } 4373 4374 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4375 struct usb_device *udev, 4376 struct usb_endpoint_descriptor *desc, 4377 enum usb3_link_state state, 4378 u16 *timeout) 4379 { 4380 if (state == USB3_LPM_U1) 4381 return xhci_calculate_u1_timeout(xhci, udev, desc); 4382 else if (state == USB3_LPM_U2) 4383 return xhci_calculate_u2_timeout(xhci, udev, desc); 4384 4385 return USB3_LPM_DISABLED; 4386 } 4387 4388 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4389 struct usb_device *udev, 4390 struct usb_endpoint_descriptor *desc, 4391 enum usb3_link_state state, 4392 u16 *timeout) 4393 { 4394 u16 alt_timeout; 4395 4396 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4397 desc, state, timeout); 4398 4399 /* If we found we can't enable hub-initiated LPM, or 4400 * the U1 or U2 exit latency was too high to allow 4401 * device-initiated LPM as well, just stop searching. 4402 */ 4403 if (alt_timeout == USB3_LPM_DISABLED || 4404 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4405 *timeout = alt_timeout; 4406 return -E2BIG; 4407 } 4408 if (alt_timeout > *timeout) 4409 *timeout = alt_timeout; 4410 return 0; 4411 } 4412 4413 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4414 struct usb_device *udev, 4415 struct usb_host_interface *alt, 4416 enum usb3_link_state state, 4417 u16 *timeout) 4418 { 4419 int j; 4420 4421 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4422 if (xhci_update_timeout_for_endpoint(xhci, udev, 4423 &alt->endpoint[j].desc, state, timeout)) 4424 return -E2BIG; 4425 continue; 4426 } 4427 return 0; 4428 } 4429 4430 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4431 enum usb3_link_state state) 4432 { 4433 struct usb_device *parent; 4434 unsigned int num_hubs; 4435 4436 if (state == USB3_LPM_U2) 4437 return 0; 4438 4439 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4440 for (parent = udev->parent, num_hubs = 0; parent->parent; 4441 parent = parent->parent) 4442 num_hubs++; 4443 4444 if (num_hubs < 2) 4445 return 0; 4446 4447 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4448 " below second-tier hub.\n"); 4449 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4450 "to decrease power consumption.\n"); 4451 return -E2BIG; 4452 } 4453 4454 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4455 struct usb_device *udev, 4456 enum usb3_link_state state) 4457 { 4458 if (xhci->quirks & XHCI_INTEL_HOST) 4459 return xhci_check_intel_tier_policy(udev, state); 4460 else 4461 return 0; 4462 } 4463 4464 /* Returns the U1 or U2 timeout that should be enabled. 4465 * If the tier check or timeout setting functions return with a non-zero exit 4466 * code, that means the timeout value has been finalized and we shouldn't look 4467 * at any more endpoints. 4468 */ 4469 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4470 struct usb_device *udev, enum usb3_link_state state) 4471 { 4472 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4473 struct usb_host_config *config; 4474 char *state_name; 4475 int i; 4476 u16 timeout = USB3_LPM_DISABLED; 4477 4478 if (state == USB3_LPM_U1) 4479 state_name = "U1"; 4480 else if (state == USB3_LPM_U2) 4481 state_name = "U2"; 4482 else { 4483 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4484 state); 4485 return timeout; 4486 } 4487 4488 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4489 return timeout; 4490 4491 /* Gather some information about the currently installed configuration 4492 * and alternate interface settings. 4493 */ 4494 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4495 state, &timeout)) 4496 return timeout; 4497 4498 config = udev->actconfig; 4499 if (!config) 4500 return timeout; 4501 4502 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4503 struct usb_driver *driver; 4504 struct usb_interface *intf = config->interface[i]; 4505 4506 if (!intf) 4507 continue; 4508 4509 /* Check if any currently bound drivers want hub-initiated LPM 4510 * disabled. 4511 */ 4512 if (intf->dev.driver) { 4513 driver = to_usb_driver(intf->dev.driver); 4514 if (driver && driver->disable_hub_initiated_lpm) { 4515 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4516 "at request of driver %s\n", 4517 state_name, driver->name); 4518 return xhci_get_timeout_no_hub_lpm(udev, state); 4519 } 4520 } 4521 4522 /* Not sure how this could happen... */ 4523 if (!intf->cur_altsetting) 4524 continue; 4525 4526 if (xhci_update_timeout_for_interface(xhci, udev, 4527 intf->cur_altsetting, 4528 state, &timeout)) 4529 return timeout; 4530 } 4531 return timeout; 4532 } 4533 4534 static int calculate_max_exit_latency(struct usb_device *udev, 4535 enum usb3_link_state state_changed, 4536 u16 hub_encoded_timeout) 4537 { 4538 unsigned long long u1_mel_us = 0; 4539 unsigned long long u2_mel_us = 0; 4540 unsigned long long mel_us = 0; 4541 bool disabling_u1; 4542 bool disabling_u2; 4543 bool enabling_u1; 4544 bool enabling_u2; 4545 4546 disabling_u1 = (state_changed == USB3_LPM_U1 && 4547 hub_encoded_timeout == USB3_LPM_DISABLED); 4548 disabling_u2 = (state_changed == USB3_LPM_U2 && 4549 hub_encoded_timeout == USB3_LPM_DISABLED); 4550 4551 enabling_u1 = (state_changed == USB3_LPM_U1 && 4552 hub_encoded_timeout != USB3_LPM_DISABLED); 4553 enabling_u2 = (state_changed == USB3_LPM_U2 && 4554 hub_encoded_timeout != USB3_LPM_DISABLED); 4555 4556 /* If U1 was already enabled and we're not disabling it, 4557 * or we're going to enable U1, account for the U1 max exit latency. 4558 */ 4559 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4560 enabling_u1) 4561 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4562 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4563 enabling_u2) 4564 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4565 4566 if (u1_mel_us > u2_mel_us) 4567 mel_us = u1_mel_us; 4568 else 4569 mel_us = u2_mel_us; 4570 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4571 if (mel_us > MAX_EXIT) { 4572 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4573 "is too big.\n", mel_us); 4574 return -E2BIG; 4575 } 4576 return mel_us; 4577 } 4578 4579 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4580 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4581 struct usb_device *udev, enum usb3_link_state state) 4582 { 4583 struct xhci_hcd *xhci; 4584 u16 hub_encoded_timeout; 4585 int mel; 4586 int ret; 4587 4588 xhci = hcd_to_xhci(hcd); 4589 /* The LPM timeout values are pretty host-controller specific, so don't 4590 * enable hub-initiated timeouts unless the vendor has provided 4591 * information about their timeout algorithm. 4592 */ 4593 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4594 !xhci->devs[udev->slot_id]) 4595 return USB3_LPM_DISABLED; 4596 4597 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4598 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4599 if (mel < 0) { 4600 /* Max Exit Latency is too big, disable LPM. */ 4601 hub_encoded_timeout = USB3_LPM_DISABLED; 4602 mel = 0; 4603 } 4604 4605 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4606 if (ret) 4607 return ret; 4608 return hub_encoded_timeout; 4609 } 4610 4611 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4612 struct usb_device *udev, enum usb3_link_state state) 4613 { 4614 struct xhci_hcd *xhci; 4615 u16 mel; 4616 4617 xhci = hcd_to_xhci(hcd); 4618 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4619 !xhci->devs[udev->slot_id]) 4620 return 0; 4621 4622 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4623 return xhci_change_max_exit_latency(xhci, udev, mel); 4624 } 4625 #else /* CONFIG_PM */ 4626 4627 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4628 struct usb_device *udev, int enable) 4629 { 4630 return 0; 4631 } 4632 4633 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4634 { 4635 return 0; 4636 } 4637 4638 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4639 struct usb_device *udev, enum usb3_link_state state) 4640 { 4641 return USB3_LPM_DISABLED; 4642 } 4643 4644 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4645 struct usb_device *udev, enum usb3_link_state state) 4646 { 4647 return 0; 4648 } 4649 #endif /* CONFIG_PM */ 4650 4651 /*-------------------------------------------------------------------------*/ 4652 4653 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4654 * internal data structures for the device. 4655 */ 4656 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4657 struct usb_tt *tt, gfp_t mem_flags) 4658 { 4659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4660 struct xhci_virt_device *vdev; 4661 struct xhci_command *config_cmd; 4662 struct xhci_input_control_ctx *ctrl_ctx; 4663 struct xhci_slot_ctx *slot_ctx; 4664 unsigned long flags; 4665 unsigned think_time; 4666 int ret; 4667 4668 /* Ignore root hubs */ 4669 if (!hdev->parent) 4670 return 0; 4671 4672 vdev = xhci->devs[hdev->slot_id]; 4673 if (!vdev) { 4674 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4675 return -EINVAL; 4676 } 4677 4678 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4679 if (!config_cmd) 4680 return -ENOMEM; 4681 4682 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4683 if (!ctrl_ctx) { 4684 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4685 __func__); 4686 xhci_free_command(xhci, config_cmd); 4687 return -ENOMEM; 4688 } 4689 4690 spin_lock_irqsave(&xhci->lock, flags); 4691 if (hdev->speed == USB_SPEED_HIGH && 4692 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4693 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4694 xhci_free_command(xhci, config_cmd); 4695 spin_unlock_irqrestore(&xhci->lock, flags); 4696 return -ENOMEM; 4697 } 4698 4699 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4700 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4701 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4702 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4703 /* 4704 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4705 * but it may be already set to 1 when setup an xHCI virtual 4706 * device, so clear it anyway. 4707 */ 4708 if (tt->multi) 4709 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4710 else if (hdev->speed == USB_SPEED_FULL) 4711 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4712 4713 if (xhci->hci_version > 0x95) { 4714 xhci_dbg(xhci, "xHCI version %x needs hub " 4715 "TT think time and number of ports\n", 4716 (unsigned int) xhci->hci_version); 4717 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4718 /* Set TT think time - convert from ns to FS bit times. 4719 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4720 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4721 * 4722 * xHCI 1.0: this field shall be 0 if the device is not a 4723 * High-spped hub. 4724 */ 4725 think_time = tt->think_time; 4726 if (think_time != 0) 4727 think_time = (think_time / 666) - 1; 4728 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4729 slot_ctx->tt_info |= 4730 cpu_to_le32(TT_THINK_TIME(think_time)); 4731 } else { 4732 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4733 "TT think time or number of ports\n", 4734 (unsigned int) xhci->hci_version); 4735 } 4736 slot_ctx->dev_state = 0; 4737 spin_unlock_irqrestore(&xhci->lock, flags); 4738 4739 xhci_dbg(xhci, "Set up %s for hub device.\n", 4740 (xhci->hci_version > 0x95) ? 4741 "configure endpoint" : "evaluate context"); 4742 4743 /* Issue and wait for the configure endpoint or 4744 * evaluate context command. 4745 */ 4746 if (xhci->hci_version > 0x95) 4747 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4748 false, false); 4749 else 4750 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4751 true, false); 4752 4753 xhci_free_command(xhci, config_cmd); 4754 return ret; 4755 } 4756 4757 static int xhci_get_frame(struct usb_hcd *hcd) 4758 { 4759 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4760 /* EHCI mods by the periodic size. Why? */ 4761 return readl(&xhci->run_regs->microframe_index) >> 3; 4762 } 4763 4764 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4765 { 4766 struct xhci_hcd *xhci; 4767 /* 4768 * TODO: Check with DWC3 clients for sysdev according to 4769 * quirks 4770 */ 4771 struct device *dev = hcd->self.sysdev; 4772 int retval; 4773 4774 /* Accept arbitrarily long scatter-gather lists */ 4775 hcd->self.sg_tablesize = ~0; 4776 4777 /* support to build packet from discontinuous buffers */ 4778 hcd->self.no_sg_constraint = 1; 4779 4780 /* XHCI controllers don't stop the ep queue on short packets :| */ 4781 hcd->self.no_stop_on_short = 1; 4782 4783 xhci = hcd_to_xhci(hcd); 4784 4785 if (usb_hcd_is_primary_hcd(hcd)) { 4786 xhci->main_hcd = hcd; 4787 /* Mark the first roothub as being USB 2.0. 4788 * The xHCI driver will register the USB 3.0 roothub. 4789 */ 4790 hcd->speed = HCD_USB2; 4791 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4792 /* 4793 * USB 2.0 roothub under xHCI has an integrated TT, 4794 * (rate matching hub) as opposed to having an OHCI/UHCI 4795 * companion controller. 4796 */ 4797 hcd->has_tt = 1; 4798 } else { 4799 if (xhci->sbrn == 0x31) { 4800 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4801 hcd->speed = HCD_USB31; 4802 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4803 } 4804 /* xHCI private pointer was set in xhci_pci_probe for the second 4805 * registered roothub. 4806 */ 4807 return 0; 4808 } 4809 4810 mutex_init(&xhci->mutex); 4811 xhci->cap_regs = hcd->regs; 4812 xhci->op_regs = hcd->regs + 4813 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4814 xhci->run_regs = hcd->regs + 4815 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4816 /* Cache read-only capability registers */ 4817 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4818 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4819 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4820 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4821 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4822 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4823 if (xhci->hci_version > 0x100) 4824 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4825 xhci_print_registers(xhci); 4826 4827 xhci->quirks |= quirks; 4828 4829 get_quirks(dev, xhci); 4830 4831 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4832 * success event after a short transfer. This quirk will ignore such 4833 * spurious event. 4834 */ 4835 if (xhci->hci_version > 0x96) 4836 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4837 4838 /* Make sure the HC is halted. */ 4839 retval = xhci_halt(xhci); 4840 if (retval) 4841 return retval; 4842 4843 xhci_dbg(xhci, "Resetting HCD\n"); 4844 /* Reset the internal HC memory state and registers. */ 4845 retval = xhci_reset(xhci); 4846 if (retval) 4847 return retval; 4848 xhci_dbg(xhci, "Reset complete\n"); 4849 4850 /* 4851 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4852 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4853 * address memory pointers actually. So, this driver clears the AC64 4854 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4855 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4856 */ 4857 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4858 xhci->hcc_params &= ~BIT(0); 4859 4860 /* Set dma_mask and coherent_dma_mask to 64-bits, 4861 * if xHC supports 64-bit addressing */ 4862 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4863 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4864 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4865 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4866 } else { 4867 /* 4868 * This is to avoid error in cases where a 32-bit USB 4869 * controller is used on a 64-bit capable system. 4870 */ 4871 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4872 if (retval) 4873 return retval; 4874 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4875 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4876 } 4877 4878 xhci_dbg(xhci, "Calling HCD init\n"); 4879 /* Initialize HCD and host controller data structures. */ 4880 retval = xhci_init(hcd); 4881 if (retval) 4882 return retval; 4883 xhci_dbg(xhci, "Called HCD init\n"); 4884 4885 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4886 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4887 4888 return 0; 4889 } 4890 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4891 4892 static const struct hc_driver xhci_hc_driver = { 4893 .description = "xhci-hcd", 4894 .product_desc = "xHCI Host Controller", 4895 .hcd_priv_size = sizeof(struct xhci_hcd), 4896 4897 /* 4898 * generic hardware linkage 4899 */ 4900 .irq = xhci_irq, 4901 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4902 4903 /* 4904 * basic lifecycle operations 4905 */ 4906 .reset = NULL, /* set in xhci_init_driver() */ 4907 .start = xhci_run, 4908 .stop = xhci_stop, 4909 .shutdown = xhci_shutdown, 4910 4911 /* 4912 * managing i/o requests and associated device resources 4913 */ 4914 .urb_enqueue = xhci_urb_enqueue, 4915 .urb_dequeue = xhci_urb_dequeue, 4916 .alloc_dev = xhci_alloc_dev, 4917 .free_dev = xhci_free_dev, 4918 .alloc_streams = xhci_alloc_streams, 4919 .free_streams = xhci_free_streams, 4920 .add_endpoint = xhci_add_endpoint, 4921 .drop_endpoint = xhci_drop_endpoint, 4922 .endpoint_reset = xhci_endpoint_reset, 4923 .check_bandwidth = xhci_check_bandwidth, 4924 .reset_bandwidth = xhci_reset_bandwidth, 4925 .address_device = xhci_address_device, 4926 .enable_device = xhci_enable_device, 4927 .update_hub_device = xhci_update_hub_device, 4928 .reset_device = xhci_discover_or_reset_device, 4929 4930 /* 4931 * scheduling support 4932 */ 4933 .get_frame_number = xhci_get_frame, 4934 4935 /* 4936 * root hub support 4937 */ 4938 .hub_control = xhci_hub_control, 4939 .hub_status_data = xhci_hub_status_data, 4940 .bus_suspend = xhci_bus_suspend, 4941 .bus_resume = xhci_bus_resume, 4942 4943 /* 4944 * call back when device connected and addressed 4945 */ 4946 .update_device = xhci_update_device, 4947 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4948 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4949 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4950 .find_raw_port_number = xhci_find_raw_port_number, 4951 }; 4952 4953 void xhci_init_driver(struct hc_driver *drv, 4954 const struct xhci_driver_overrides *over) 4955 { 4956 BUG_ON(!over); 4957 4958 /* Copy the generic table to drv then apply the overrides */ 4959 *drv = xhci_hc_driver; 4960 4961 if (over) { 4962 drv->hcd_priv_size += over->extra_priv_size; 4963 if (over->reset) 4964 drv->reset = over->reset; 4965 if (over->start) 4966 drv->start = over->start; 4967 } 4968 } 4969 EXPORT_SYMBOL_GPL(xhci_init_driver); 4970 4971 MODULE_DESCRIPTION(DRIVER_DESC); 4972 MODULE_AUTHOR(DRIVER_AUTHOR); 4973 MODULE_LICENSE("GPL"); 4974 4975 static int __init xhci_hcd_init(void) 4976 { 4977 /* 4978 * Check the compiler generated sizes of structures that must be laid 4979 * out in specific ways for hardware access. 4980 */ 4981 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4982 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4983 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4984 /* xhci_device_control has eight fields, and also 4985 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4986 */ 4987 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4988 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4989 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4990 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4991 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4992 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4993 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4994 4995 if (usb_disabled()) 4996 return -ENODEV; 4997 4998 return 0; 4999 } 5000 5001 /* 5002 * If an init function is provided, an exit function must also be provided 5003 * to allow module unload. 5004 */ 5005 static void __exit xhci_hcd_fini(void) { } 5006 5007 module_init(xhci_hcd_init); 5008 module_exit(xhci_hcd_fini); 5009