xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 239480ab)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; i++) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 
220 #ifdef CONFIG_USB_PCI
221 /*
222  * Set up MSI
223  */
224 static int xhci_setup_msi(struct xhci_hcd *xhci)
225 {
226 	int ret;
227 	/*
228 	 * TODO:Check with MSI Soc for sysdev
229 	 */
230 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
231 
232 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
233 	if (ret < 0) {
234 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 				"failed to allocate MSI entry");
236 		return ret;
237 	}
238 
239 	ret = request_irq(pdev->irq, xhci_msi_irq,
240 				0, "xhci_hcd", xhci_to_hcd(xhci));
241 	if (ret) {
242 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
243 				"disable MSI interrupt");
244 		pci_free_irq_vectors(pdev);
245 	}
246 
247 	return ret;
248 }
249 
250 /*
251  * Set up MSI-X
252  */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255 	int i, ret = 0;
256 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
257 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258 
259 	/*
260 	 * calculate number of msi-x vectors supported.
261 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
263 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
264 	 *   Add additional 1 vector to ensure always available interrupt.
265 	 */
266 	xhci->msix_count = min(num_online_cpus() + 1,
267 				HCS_MAX_INTRS(xhci->hcs_params1));
268 
269 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
270 			PCI_IRQ_MSIX);
271 	if (ret < 0) {
272 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
273 				"Failed to enable MSI-X");
274 		return ret;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
279 				"xhci_hcd", xhci_to_hcd(xhci));
280 		if (ret)
281 			goto disable_msix;
282 	}
283 
284 	hcd->msix_enabled = 1;
285 	return ret;
286 
287 disable_msix:
288 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
289 	while (--i >= 0)
290 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
291 	pci_free_irq_vectors(pdev);
292 	return ret;
293 }
294 
295 /* Free any IRQs and disable MSI-X */
296 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
297 {
298 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
299 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
300 
301 	if (xhci->quirks & XHCI_PLAT)
302 		return;
303 
304 	/* return if using legacy interrupt */
305 	if (hcd->irq > 0)
306 		return;
307 
308 	if (hcd->msix_enabled) {
309 		int i;
310 
311 		for (i = 0; i < xhci->msix_count; i++)
312 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
313 	} else {
314 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
315 	}
316 
317 	pci_free_irq_vectors(pdev);
318 	hcd->msix_enabled = 0;
319 }
320 
321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
324 
325 	if (hcd->msix_enabled) {
326 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 		int i;
328 
329 		for (i = 0; i < xhci->msix_count; i++)
330 			synchronize_irq(pci_irq_vector(pdev, i));
331 	}
332 }
333 
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337 	struct pci_dev  *pdev;
338 	int ret;
339 
340 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
341 	if (xhci->quirks & XHCI_PLAT)
342 		return 0;
343 
344 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345 	/*
346 	 * Some Fresco Logic host controllers advertise MSI, but fail to
347 	 * generate interrupts.  Don't even try to enable MSI.
348 	 */
349 	if (xhci->quirks & XHCI_BROKEN_MSI)
350 		goto legacy_irq;
351 
352 	/* unregister the legacy interrupt */
353 	if (hcd->irq)
354 		free_irq(hcd->irq, hcd);
355 	hcd->irq = 0;
356 
357 	ret = xhci_setup_msix(xhci);
358 	if (ret)
359 		/* fall back to msi*/
360 		ret = xhci_setup_msi(xhci);
361 
362 	if (!ret)
363 		/* hcd->irq is 0, we have MSI */
364 		return 0;
365 
366 	if (!pdev->irq) {
367 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
368 		return -EINVAL;
369 	}
370 
371  legacy_irq:
372 	if (!strlen(hcd->irq_descr))
373 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
374 			 hcd->driver->description, hcd->self.busnum);
375 
376 	/* fall back to legacy interrupt*/
377 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
378 			hcd->irq_descr, hcd);
379 	if (ret) {
380 		xhci_err(xhci, "request interrupt %d failed\n",
381 				pdev->irq);
382 		return ret;
383 	}
384 	hcd->irq = pdev->irq;
385 	return 0;
386 }
387 
388 #else
389 
390 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
391 {
392 	return 0;
393 }
394 
395 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
396 {
397 }
398 
399 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
400 {
401 }
402 
403 #endif
404 
405 static void compliance_mode_recovery(unsigned long arg)
406 {
407 	struct xhci_hcd *xhci;
408 	struct usb_hcd *hcd;
409 	u32 temp;
410 	int i;
411 
412 	xhci = (struct xhci_hcd *)arg;
413 
414 	for (i = 0; i < xhci->num_usb3_ports; i++) {
415 		temp = readl(xhci->usb3_ports[i]);
416 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
417 			/*
418 			 * Compliance Mode Detected. Letting USB Core
419 			 * handle the Warm Reset
420 			 */
421 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
422 					"Compliance mode detected->port %d",
423 					i + 1);
424 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
425 					"Attempting compliance mode recovery");
426 			hcd = xhci->shared_hcd;
427 
428 			if (hcd->state == HC_STATE_SUSPENDED)
429 				usb_hcd_resume_root_hub(hcd);
430 
431 			usb_hcd_poll_rh_status(hcd);
432 		}
433 	}
434 
435 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
436 		mod_timer(&xhci->comp_mode_recovery_timer,
437 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
438 }
439 
440 /*
441  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
442  * that causes ports behind that hardware to enter compliance mode sometimes.
443  * The quirk creates a timer that polls every 2 seconds the link state of
444  * each host controller's port and recovers it by issuing a Warm reset
445  * if Compliance mode is detected, otherwise the port will become "dead" (no
446  * device connections or disconnections will be detected anymore). Becasue no
447  * status event is generated when entering compliance mode (per xhci spec),
448  * this quirk is needed on systems that have the failing hardware installed.
449  */
450 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
451 {
452 	xhci->port_status_u0 = 0;
453 	setup_timer(&xhci->comp_mode_recovery_timer,
454 		    compliance_mode_recovery, (unsigned long)xhci);
455 	xhci->comp_mode_recovery_timer.expires = jiffies +
456 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
457 
458 	add_timer(&xhci->comp_mode_recovery_timer);
459 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460 			"Compliance mode recovery timer initialized");
461 }
462 
463 /*
464  * This function identifies the systems that have installed the SN65LVPE502CP
465  * USB3.0 re-driver and that need the Compliance Mode Quirk.
466  * Systems:
467  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468  */
469 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471 	const char *dmi_product_name, *dmi_sys_vendor;
472 
473 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 	if (!dmi_product_name || !dmi_sys_vendor)
476 		return false;
477 
478 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 		return false;
480 
481 	if (strstr(dmi_product_name, "Z420") ||
482 			strstr(dmi_product_name, "Z620") ||
483 			strstr(dmi_product_name, "Z820") ||
484 			strstr(dmi_product_name, "Z1 Workstation"))
485 		return true;
486 
487 	return false;
488 }
489 
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494 
495 
496 /*
497  * Initialize memory for HCD and xHC (one-time init).
498  *
499  * Program the PAGESIZE register, initialize the device context array, create
500  * device contexts (?), set up a command ring segment (or two?), create event
501  * ring (one for now).
502  */
503 static int xhci_init(struct usb_hcd *hcd)
504 {
505 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 	int retval = 0;
507 
508 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
509 	spin_lock_init(&xhci->lock);
510 	if (xhci->hci_version == 0x95 && link_quirk) {
511 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
512 				"QUIRK: Not clearing Link TRB chain bits.");
513 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
514 	} else {
515 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
516 				"xHCI doesn't need link TRB QUIRK");
517 	}
518 	retval = xhci_mem_init(xhci, GFP_KERNEL);
519 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
520 
521 	/* Initializing Compliance Mode Recovery Data If Needed */
522 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
523 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
524 		compliance_mode_recovery_timer_init(xhci);
525 	}
526 
527 	return retval;
528 }
529 
530 /*-------------------------------------------------------------------------*/
531 
532 
533 static int xhci_run_finished(struct xhci_hcd *xhci)
534 {
535 	if (xhci_start(xhci)) {
536 		xhci_halt(xhci);
537 		return -ENODEV;
538 	}
539 	xhci->shared_hcd->state = HC_STATE_RUNNING;
540 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
541 
542 	if (xhci->quirks & XHCI_NEC_HOST)
543 		xhci_ring_cmd_db(xhci);
544 
545 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
546 			"Finished xhci_run for USB3 roothub");
547 	return 0;
548 }
549 
550 /*
551  * Start the HC after it was halted.
552  *
553  * This function is called by the USB core when the HC driver is added.
554  * Its opposite is xhci_stop().
555  *
556  * xhci_init() must be called once before this function can be called.
557  * Reset the HC, enable device slot contexts, program DCBAAP, and
558  * set command ring pointer and event ring pointer.
559  *
560  * Setup MSI-X vectors and enable interrupts.
561  */
562 int xhci_run(struct usb_hcd *hcd)
563 {
564 	u32 temp;
565 	u64 temp_64;
566 	int ret;
567 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
568 
569 	/* Start the xHCI host controller running only after the USB 2.0 roothub
570 	 * is setup.
571 	 */
572 
573 	hcd->uses_new_polling = 1;
574 	if (!usb_hcd_is_primary_hcd(hcd))
575 		return xhci_run_finished(xhci);
576 
577 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
578 
579 	ret = xhci_try_enable_msi(hcd);
580 	if (ret)
581 		return ret;
582 
583 	xhci_dbg_cmd_ptrs(xhci);
584 
585 	xhci_dbg(xhci, "ERST memory map follows:\n");
586 	xhci_dbg_erst(xhci, &xhci->erst);
587 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
588 	temp_64 &= ~ERST_PTR_MASK;
589 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
591 
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 			"// Set the interrupt modulation register");
594 	temp = readl(&xhci->ir_set->irq_control);
595 	temp &= ~ER_IRQ_INTERVAL_MASK;
596 	/*
597 	 * the increment interval is 8 times as much as that defined
598 	 * in xHCI spec on MTK's controller
599 	 */
600 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
601 	writel(temp, &xhci->ir_set->irq_control);
602 
603 	/* Set the HCD state before we enable the irqs */
604 	temp = readl(&xhci->op_regs->command);
605 	temp |= (CMD_EIE);
606 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 			"// Enable interrupts, cmd = 0x%x.", temp);
608 	writel(temp, &xhci->op_regs->command);
609 
610 	temp = readl(&xhci->ir_set->irq_pending);
611 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
612 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
613 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
614 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
615 	xhci_print_ir_set(xhci, 0);
616 
617 	if (xhci->quirks & XHCI_NEC_HOST) {
618 		struct xhci_command *command;
619 
620 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
621 		if (!command)
622 			return -ENOMEM;
623 
624 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
625 				TRB_TYPE(TRB_NEC_GET_FW));
626 	}
627 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 			"Finished xhci_run for USB2 roothub");
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(xhci_run);
632 
633 /*
634  * Stop xHCI driver.
635  *
636  * This function is called by the USB core when the HC driver is removed.
637  * Its opposite is xhci_run().
638  *
639  * Disable device contexts, disable IRQs, and quiesce the HC.
640  * Reset the HC, finish any completed transactions, and cleanup memory.
641  */
642 static void xhci_stop(struct usb_hcd *hcd)
643 {
644 	u32 temp;
645 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
646 
647 	mutex_lock(&xhci->mutex);
648 
649 	/* Only halt host and free memory after both hcds are removed */
650 	if (!usb_hcd_is_primary_hcd(hcd)) {
651 		/* usb core will free this hcd shortly, unset pointer */
652 		xhci->shared_hcd = NULL;
653 		mutex_unlock(&xhci->mutex);
654 		return;
655 	}
656 
657 	spin_lock_irq(&xhci->lock);
658 	xhci->xhc_state |= XHCI_STATE_HALTED;
659 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
660 	xhci_halt(xhci);
661 	xhci_reset(xhci);
662 	spin_unlock_irq(&xhci->lock);
663 
664 	xhci_cleanup_msix(xhci);
665 
666 	/* Deleting Compliance Mode Recovery Timer */
667 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
668 			(!(xhci_all_ports_seen_u0(xhci)))) {
669 		del_timer_sync(&xhci->comp_mode_recovery_timer);
670 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
671 				"%s: compliance mode recovery timer deleted",
672 				__func__);
673 	}
674 
675 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
676 		usb_amd_dev_put();
677 
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Disabling event ring interrupts");
680 	temp = readl(&xhci->op_regs->status);
681 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
682 	temp = readl(&xhci->ir_set->irq_pending);
683 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
684 	xhci_print_ir_set(xhci, 0);
685 
686 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
687 	xhci_mem_cleanup(xhci);
688 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 			"xhci_stop completed - status = %x",
690 			readl(&xhci->op_regs->status));
691 	mutex_unlock(&xhci->mutex);
692 }
693 
694 /*
695  * Shutdown HC (not bus-specific)
696  *
697  * This is called when the machine is rebooting or halting.  We assume that the
698  * machine will be powered off, and the HC's internal state will be reset.
699  * Don't bother to free memory.
700  *
701  * This will only ever be called with the main usb_hcd (the USB3 roothub).
702  */
703 static void xhci_shutdown(struct usb_hcd *hcd)
704 {
705 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706 
707 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
708 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
709 
710 	spin_lock_irq(&xhci->lock);
711 	xhci_halt(xhci);
712 	/* Workaround for spurious wakeups at shutdown with HSW */
713 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
714 		xhci_reset(xhci);
715 	spin_unlock_irq(&xhci->lock);
716 
717 	xhci_cleanup_msix(xhci);
718 
719 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 			"xhci_shutdown completed - status = %x",
721 			readl(&xhci->op_regs->status));
722 
723 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
724 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
725 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
726 }
727 
728 #ifdef CONFIG_PM
729 static void xhci_save_registers(struct xhci_hcd *xhci)
730 {
731 	xhci->s3.command = readl(&xhci->op_regs->command);
732 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
733 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
734 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
735 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
736 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
737 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
738 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
739 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
740 }
741 
742 static void xhci_restore_registers(struct xhci_hcd *xhci)
743 {
744 	writel(xhci->s3.command, &xhci->op_regs->command);
745 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
746 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
747 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
748 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
749 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
750 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
751 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
752 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
753 }
754 
755 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
756 {
757 	u64	val_64;
758 
759 	/* step 2: initialize command ring buffer */
760 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
761 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
762 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
763 				      xhci->cmd_ring->dequeue) &
764 		 (u64) ~CMD_RING_RSVD_BITS) |
765 		xhci->cmd_ring->cycle_state;
766 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767 			"// Setting command ring address to 0x%llx",
768 			(long unsigned long) val_64);
769 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
770 }
771 
772 /*
773  * The whole command ring must be cleared to zero when we suspend the host.
774  *
775  * The host doesn't save the command ring pointer in the suspend well, so we
776  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
777  * aligned, because of the reserved bits in the command ring dequeue pointer
778  * register.  Therefore, we can't just set the dequeue pointer back in the
779  * middle of the ring (TRBs are 16-byte aligned).
780  */
781 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
782 {
783 	struct xhci_ring *ring;
784 	struct xhci_segment *seg;
785 
786 	ring = xhci->cmd_ring;
787 	seg = ring->deq_seg;
788 	do {
789 		memset(seg->trbs, 0,
790 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
791 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
792 			cpu_to_le32(~TRB_CYCLE);
793 		seg = seg->next;
794 	} while (seg != ring->deq_seg);
795 
796 	/* Reset the software enqueue and dequeue pointers */
797 	ring->deq_seg = ring->first_seg;
798 	ring->dequeue = ring->first_seg->trbs;
799 	ring->enq_seg = ring->deq_seg;
800 	ring->enqueue = ring->dequeue;
801 
802 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
803 	/*
804 	 * Ring is now zeroed, so the HW should look for change of ownership
805 	 * when the cycle bit is set to 1.
806 	 */
807 	ring->cycle_state = 1;
808 
809 	/*
810 	 * Reset the hardware dequeue pointer.
811 	 * Yes, this will need to be re-written after resume, but we're paranoid
812 	 * and want to make sure the hardware doesn't access bogus memory
813 	 * because, say, the BIOS or an SMI started the host without changing
814 	 * the command ring pointers.
815 	 */
816 	xhci_set_cmd_ring_deq(xhci);
817 }
818 
819 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
820 {
821 	int port_index;
822 	__le32 __iomem **port_array;
823 	unsigned long flags;
824 	u32 t1, t2;
825 
826 	spin_lock_irqsave(&xhci->lock, flags);
827 
828 	/* disable usb3 ports Wake bits */
829 	port_index = xhci->num_usb3_ports;
830 	port_array = xhci->usb3_ports;
831 	while (port_index--) {
832 		t1 = readl(port_array[port_index]);
833 		t1 = xhci_port_state_to_neutral(t1);
834 		t2 = t1 & ~PORT_WAKE_BITS;
835 		if (t1 != t2)
836 			writel(t2, port_array[port_index]);
837 	}
838 
839 	/* disable usb2 ports Wake bits */
840 	port_index = xhci->num_usb2_ports;
841 	port_array = xhci->usb2_ports;
842 	while (port_index--) {
843 		t1 = readl(port_array[port_index]);
844 		t1 = xhci_port_state_to_neutral(t1);
845 		t2 = t1 & ~PORT_WAKE_BITS;
846 		if (t1 != t2)
847 			writel(t2, port_array[port_index]);
848 	}
849 
850 	spin_unlock_irqrestore(&xhci->lock, flags);
851 }
852 
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
860 {
861 	int			rc = 0;
862 	unsigned int		delay = XHCI_MAX_HALT_USEC;
863 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
864 	u32			command;
865 
866 	if (!hcd->state)
867 		return 0;
868 
869 	if (hcd->state != HC_STATE_SUSPENDED ||
870 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
871 		return -EINVAL;
872 
873 	/* Clear root port wake on bits if wakeup not allowed. */
874 	if (!do_wakeup)
875 		xhci_disable_port_wake_on_bits(xhci);
876 
877 	/* Don't poll the roothubs on bus suspend. */
878 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
879 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
880 	del_timer_sync(&hcd->rh_timer);
881 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
882 	del_timer_sync(&xhci->shared_hcd->rh_timer);
883 
884 	spin_lock_irq(&xhci->lock);
885 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
886 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
887 	/* step 1: stop endpoint */
888 	/* skipped assuming that port suspend has done */
889 
890 	/* step 2: clear Run/Stop bit */
891 	command = readl(&xhci->op_regs->command);
892 	command &= ~CMD_RUN;
893 	writel(command, &xhci->op_regs->command);
894 
895 	/* Some chips from Fresco Logic need an extraordinary delay */
896 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
897 
898 	if (xhci_handshake(&xhci->op_regs->status,
899 		      STS_HALT, STS_HALT, delay)) {
900 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
901 		spin_unlock_irq(&xhci->lock);
902 		return -ETIMEDOUT;
903 	}
904 	xhci_clear_command_ring(xhci);
905 
906 	/* step 3: save registers */
907 	xhci_save_registers(xhci);
908 
909 	/* step 4: set CSS flag */
910 	command = readl(&xhci->op_regs->command);
911 	command |= CMD_CSS;
912 	writel(command, &xhci->op_regs->command);
913 	if (xhci_handshake(&xhci->op_regs->status,
914 				STS_SAVE, 0, 10 * 1000)) {
915 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
916 		spin_unlock_irq(&xhci->lock);
917 		return -ETIMEDOUT;
918 	}
919 	spin_unlock_irq(&xhci->lock);
920 
921 	/*
922 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
923 	 * is about to be suspended.
924 	 */
925 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
926 			(!(xhci_all_ports_seen_u0(xhci)))) {
927 		del_timer_sync(&xhci->comp_mode_recovery_timer);
928 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
929 				"%s: compliance mode recovery timer deleted",
930 				__func__);
931 	}
932 
933 	/* step 5: remove core well power */
934 	/* synchronize irq when using MSI-X */
935 	xhci_msix_sync_irqs(xhci);
936 
937 	return rc;
938 }
939 EXPORT_SYMBOL_GPL(xhci_suspend);
940 
941 /*
942  * start xHC (not bus-specific)
943  *
944  * This is called when the machine transition from S3/S4 mode.
945  *
946  */
947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
948 {
949 	u32			command, temp = 0, status;
950 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
951 	struct usb_hcd		*secondary_hcd;
952 	int			retval = 0;
953 	bool			comp_timer_running = false;
954 
955 	if (!hcd->state)
956 		return 0;
957 
958 	/* Wait a bit if either of the roothubs need to settle from the
959 	 * transition into bus suspend.
960 	 */
961 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
962 			time_before(jiffies,
963 				xhci->bus_state[1].next_statechange))
964 		msleep(100);
965 
966 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
967 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
968 
969 	spin_lock_irq(&xhci->lock);
970 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
971 		hibernated = true;
972 
973 	if (!hibernated) {
974 		/* step 1: restore register */
975 		xhci_restore_registers(xhci);
976 		/* step 2: initialize command ring buffer */
977 		xhci_set_cmd_ring_deq(xhci);
978 		/* step 3: restore state and start state*/
979 		/* step 3: set CRS flag */
980 		command = readl(&xhci->op_regs->command);
981 		command |= CMD_CRS;
982 		writel(command, &xhci->op_regs->command);
983 		if (xhci_handshake(&xhci->op_regs->status,
984 			      STS_RESTORE, 0, 10 * 1000)) {
985 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
986 			spin_unlock_irq(&xhci->lock);
987 			return -ETIMEDOUT;
988 		}
989 		temp = readl(&xhci->op_regs->status);
990 	}
991 
992 	/* If restore operation fails, re-initialize the HC during resume */
993 	if ((temp & STS_SRE) || hibernated) {
994 
995 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
996 				!(xhci_all_ports_seen_u0(xhci))) {
997 			del_timer_sync(&xhci->comp_mode_recovery_timer);
998 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
999 				"Compliance Mode Recovery Timer deleted!");
1000 		}
1001 
1002 		/* Let the USB core know _both_ roothubs lost power. */
1003 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1004 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1005 
1006 		xhci_dbg(xhci, "Stop HCD\n");
1007 		xhci_halt(xhci);
1008 		xhci_reset(xhci);
1009 		spin_unlock_irq(&xhci->lock);
1010 		xhci_cleanup_msix(xhci);
1011 
1012 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1013 		temp = readl(&xhci->op_regs->status);
1014 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1015 		temp = readl(&xhci->ir_set->irq_pending);
1016 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1017 		xhci_print_ir_set(xhci, 0);
1018 
1019 		xhci_dbg(xhci, "cleaning up memory\n");
1020 		xhci_mem_cleanup(xhci);
1021 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1022 			    readl(&xhci->op_regs->status));
1023 
1024 		/* USB core calls the PCI reinit and start functions twice:
1025 		 * first with the primary HCD, and then with the secondary HCD.
1026 		 * If we don't do the same, the host will never be started.
1027 		 */
1028 		if (!usb_hcd_is_primary_hcd(hcd))
1029 			secondary_hcd = hcd;
1030 		else
1031 			secondary_hcd = xhci->shared_hcd;
1032 
1033 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1034 		retval = xhci_init(hcd->primary_hcd);
1035 		if (retval)
1036 			return retval;
1037 		comp_timer_running = true;
1038 
1039 		xhci_dbg(xhci, "Start the primary HCD\n");
1040 		retval = xhci_run(hcd->primary_hcd);
1041 		if (!retval) {
1042 			xhci_dbg(xhci, "Start the secondary HCD\n");
1043 			retval = xhci_run(secondary_hcd);
1044 		}
1045 		hcd->state = HC_STATE_SUSPENDED;
1046 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1047 		goto done;
1048 	}
1049 
1050 	/* step 4: set Run/Stop bit */
1051 	command = readl(&xhci->op_regs->command);
1052 	command |= CMD_RUN;
1053 	writel(command, &xhci->op_regs->command);
1054 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1055 		  0, 250 * 1000);
1056 
1057 	/* step 5: walk topology and initialize portsc,
1058 	 * portpmsc and portli
1059 	 */
1060 	/* this is done in bus_resume */
1061 
1062 	/* step 6: restart each of the previously
1063 	 * Running endpoints by ringing their doorbells
1064 	 */
1065 
1066 	spin_unlock_irq(&xhci->lock);
1067 
1068  done:
1069 	if (retval == 0) {
1070 		/* Resume root hubs only when have pending events. */
1071 		status = readl(&xhci->op_regs->status);
1072 		if (status & STS_EINT) {
1073 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1074 			usb_hcd_resume_root_hub(hcd);
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1080 	 * be re-initialized Always after a system resume. Ports are subject
1081 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1082 	 * ports have entered previously to U0 before system's suspension.
1083 	 */
1084 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1085 		compliance_mode_recovery_timer_init(xhci);
1086 
1087 	/* Re-enable port polling. */
1088 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1089 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1090 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1091 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1092 	usb_hcd_poll_rh_status(hcd);
1093 
1094 	return retval;
1095 }
1096 EXPORT_SYMBOL_GPL(xhci_resume);
1097 #endif	/* CONFIG_PM */
1098 
1099 /*-------------------------------------------------------------------------*/
1100 
1101 /**
1102  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1103  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1104  * value to right shift 1 for the bitmask.
1105  *
1106  * Index  = (epnum * 2) + direction - 1,
1107  * where direction = 0 for OUT, 1 for IN.
1108  * For control endpoints, the IN index is used (OUT index is unused), so
1109  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1110  */
1111 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1112 {
1113 	unsigned int index;
1114 	if (usb_endpoint_xfer_control(desc))
1115 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1116 	else
1117 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1118 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1119 	return index;
1120 }
1121 
1122 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1123  * address from the XHCI endpoint index.
1124  */
1125 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1126 {
1127 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1128 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1129 	return direction | number;
1130 }
1131 
1132 /* Find the flag for this endpoint (for use in the control context).  Use the
1133  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1134  * bit 1, etc.
1135  */
1136 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1137 {
1138 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1139 }
1140 
1141 /* Find the flag for this endpoint (for use in the control context).  Use the
1142  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1143  * bit 1, etc.
1144  */
1145 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1146 {
1147 	return 1 << (ep_index + 1);
1148 }
1149 
1150 /* Compute the last valid endpoint context index.  Basically, this is the
1151  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1152  * we find the most significant bit set in the added contexts flags.
1153  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1154  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1155  */
1156 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1157 {
1158 	return fls(added_ctxs) - 1;
1159 }
1160 
1161 /* Returns 1 if the arguments are OK;
1162  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1163  */
1164 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1165 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1166 		const char *func) {
1167 	struct xhci_hcd	*xhci;
1168 	struct xhci_virt_device	*virt_dev;
1169 
1170 	if (!hcd || (check_ep && !ep) || !udev) {
1171 		pr_debug("xHCI %s called with invalid args\n", func);
1172 		return -EINVAL;
1173 	}
1174 	if (!udev->parent) {
1175 		pr_debug("xHCI %s called for root hub\n", func);
1176 		return 0;
1177 	}
1178 
1179 	xhci = hcd_to_xhci(hcd);
1180 	if (check_virt_dev) {
1181 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1182 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1183 					func);
1184 			return -EINVAL;
1185 		}
1186 
1187 		virt_dev = xhci->devs[udev->slot_id];
1188 		if (virt_dev->udev != udev) {
1189 			xhci_dbg(xhci, "xHCI %s called with udev and "
1190 					  "virt_dev does not match\n", func);
1191 			return -EINVAL;
1192 		}
1193 	}
1194 
1195 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1196 		return -ENODEV;
1197 
1198 	return 1;
1199 }
1200 
1201 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1202 		struct usb_device *udev, struct xhci_command *command,
1203 		bool ctx_change, bool must_succeed);
1204 
1205 /*
1206  * Full speed devices may have a max packet size greater than 8 bytes, but the
1207  * USB core doesn't know that until it reads the first 8 bytes of the
1208  * descriptor.  If the usb_device's max packet size changes after that point,
1209  * we need to issue an evaluate context command and wait on it.
1210  */
1211 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1212 		unsigned int ep_index, struct urb *urb)
1213 {
1214 	struct xhci_container_ctx *out_ctx;
1215 	struct xhci_input_control_ctx *ctrl_ctx;
1216 	struct xhci_ep_ctx *ep_ctx;
1217 	struct xhci_command *command;
1218 	int max_packet_size;
1219 	int hw_max_packet_size;
1220 	int ret = 0;
1221 
1222 	out_ctx = xhci->devs[slot_id]->out_ctx;
1223 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1224 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1225 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1226 	if (hw_max_packet_size != max_packet_size) {
1227 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1228 				"Max Packet Size for ep 0 changed.");
1229 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1230 				"Max packet size in usb_device = %d",
1231 				max_packet_size);
1232 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1233 				"Max packet size in xHCI HW = %d",
1234 				hw_max_packet_size);
1235 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1236 				"Issuing evaluate context command.");
1237 
1238 		/* Set up the input context flags for the command */
1239 		/* FIXME: This won't work if a non-default control endpoint
1240 		 * changes max packet sizes.
1241 		 */
1242 
1243 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1244 		if (!command)
1245 			return -ENOMEM;
1246 
1247 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1248 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1249 		if (!ctrl_ctx) {
1250 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1251 					__func__);
1252 			ret = -ENOMEM;
1253 			goto command_cleanup;
1254 		}
1255 		/* Set up the modified control endpoint 0 */
1256 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1257 				xhci->devs[slot_id]->out_ctx, ep_index);
1258 
1259 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1260 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1261 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1262 
1263 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1264 		ctrl_ctx->drop_flags = 0;
1265 
1266 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1267 				true, false);
1268 
1269 		/* Clean up the input context for later use by bandwidth
1270 		 * functions.
1271 		 */
1272 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1273 command_cleanup:
1274 		kfree(command->completion);
1275 		kfree(command);
1276 	}
1277 	return ret;
1278 }
1279 
1280 /*
1281  * non-error returns are a promise to giveback() the urb later
1282  * we drop ownership so next owner (or urb unlink) can get it
1283  */
1284 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1285 {
1286 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1287 	unsigned long flags;
1288 	int ret = 0;
1289 	unsigned int slot_id, ep_index, ep_state;
1290 	struct urb_priv	*urb_priv;
1291 	int num_tds;
1292 
1293 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1294 					true, true, __func__) <= 0)
1295 		return -EINVAL;
1296 
1297 	slot_id = urb->dev->slot_id;
1298 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1299 
1300 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1301 		if (!in_interrupt())
1302 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1303 		return -ESHUTDOWN;
1304 	}
1305 
1306 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1307 		num_tds = urb->number_of_packets;
1308 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1309 	    urb->transfer_buffer_length > 0 &&
1310 	    urb->transfer_flags & URB_ZERO_PACKET &&
1311 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1312 		num_tds = 2;
1313 	else
1314 		num_tds = 1;
1315 
1316 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1317 			   num_tds * sizeof(struct xhci_td), mem_flags);
1318 	if (!urb_priv)
1319 		return -ENOMEM;
1320 
1321 	urb_priv->num_tds = num_tds;
1322 	urb_priv->num_tds_done = 0;
1323 	urb->hcpriv = urb_priv;
1324 
1325 	trace_xhci_urb_enqueue(urb);
1326 
1327 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1328 		/* Check to see if the max packet size for the default control
1329 		 * endpoint changed during FS device enumeration
1330 		 */
1331 		if (urb->dev->speed == USB_SPEED_FULL) {
1332 			ret = xhci_check_maxpacket(xhci, slot_id,
1333 					ep_index, urb);
1334 			if (ret < 0) {
1335 				xhci_urb_free_priv(urb_priv);
1336 				urb->hcpriv = NULL;
1337 				return ret;
1338 			}
1339 		}
1340 	}
1341 
1342 	spin_lock_irqsave(&xhci->lock, flags);
1343 
1344 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1345 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1346 			 urb->ep->desc.bEndpointAddress, urb);
1347 		ret = -ESHUTDOWN;
1348 		goto free_priv;
1349 	}
1350 
1351 	switch (usb_endpoint_type(&urb->ep->desc)) {
1352 
1353 	case USB_ENDPOINT_XFER_CONTROL:
1354 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1355 					 slot_id, ep_index);
1356 		break;
1357 	case USB_ENDPOINT_XFER_BULK:
1358 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1359 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1360 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1361 				  ep_state);
1362 			ret = -EINVAL;
1363 			break;
1364 		}
1365 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1366 					 slot_id, ep_index);
1367 		break;
1368 
1369 
1370 	case USB_ENDPOINT_XFER_INT:
1371 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1372 				slot_id, ep_index);
1373 		break;
1374 
1375 	case USB_ENDPOINT_XFER_ISOC:
1376 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1377 				slot_id, ep_index);
1378 	}
1379 
1380 	if (ret) {
1381 free_priv:
1382 		xhci_urb_free_priv(urb_priv);
1383 		urb->hcpriv = NULL;
1384 	}
1385 	spin_unlock_irqrestore(&xhci->lock, flags);
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1391  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1392  * should pick up where it left off in the TD, unless a Set Transfer Ring
1393  * Dequeue Pointer is issued.
1394  *
1395  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1396  * the ring.  Since the ring is a contiguous structure, they can't be physically
1397  * removed.  Instead, there are two options:
1398  *
1399  *  1) If the HC is in the middle of processing the URB to be canceled, we
1400  *     simply move the ring's dequeue pointer past those TRBs using the Set
1401  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1402  *     when drivers timeout on the last submitted URB and attempt to cancel.
1403  *
1404  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1405  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1406  *     HC will need to invalidate the any TRBs it has cached after the stop
1407  *     endpoint command, as noted in the xHCI 0.95 errata.
1408  *
1409  *  3) The TD may have completed by the time the Stop Endpoint Command
1410  *     completes, so software needs to handle that case too.
1411  *
1412  * This function should protect against the TD enqueueing code ringing the
1413  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1414  * It also needs to account for multiple cancellations on happening at the same
1415  * time for the same endpoint.
1416  *
1417  * Note that this function can be called in any context, or so says
1418  * usb_hcd_unlink_urb()
1419  */
1420 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1421 {
1422 	unsigned long flags;
1423 	int ret, i;
1424 	u32 temp;
1425 	struct xhci_hcd *xhci;
1426 	struct urb_priv	*urb_priv;
1427 	struct xhci_td *td;
1428 	unsigned int ep_index;
1429 	struct xhci_ring *ep_ring;
1430 	struct xhci_virt_ep *ep;
1431 	struct xhci_command *command;
1432 	struct xhci_virt_device *vdev;
1433 
1434 	xhci = hcd_to_xhci(hcd);
1435 	spin_lock_irqsave(&xhci->lock, flags);
1436 
1437 	trace_xhci_urb_dequeue(urb);
1438 
1439 	/* Make sure the URB hasn't completed or been unlinked already */
1440 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1441 	if (ret)
1442 		goto done;
1443 
1444 	/* give back URB now if we can't queue it for cancel */
1445 	vdev = xhci->devs[urb->dev->slot_id];
1446 	urb_priv = urb->hcpriv;
1447 	if (!vdev || !urb_priv)
1448 		goto err_giveback;
1449 
1450 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1451 	ep = &vdev->eps[ep_index];
1452 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1453 	if (!ep || !ep_ring)
1454 		goto err_giveback;
1455 
1456 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1457 	temp = readl(&xhci->op_regs->status);
1458 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1459 		xhci_hc_died(xhci);
1460 		goto done;
1461 	}
1462 
1463 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1464 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1465 				"HC halted, freeing TD manually.");
1466 		for (i = urb_priv->num_tds_done;
1467 		     i < urb_priv->num_tds;
1468 		     i++) {
1469 			td = &urb_priv->td[i];
1470 			if (!list_empty(&td->td_list))
1471 				list_del_init(&td->td_list);
1472 			if (!list_empty(&td->cancelled_td_list))
1473 				list_del_init(&td->cancelled_td_list);
1474 		}
1475 		goto err_giveback;
1476 	}
1477 
1478 	i = urb_priv->num_tds_done;
1479 	if (i < urb_priv->num_tds)
1480 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1481 				"Cancel URB %p, dev %s, ep 0x%x, "
1482 				"starting at offset 0x%llx",
1483 				urb, urb->dev->devpath,
1484 				urb->ep->desc.bEndpointAddress,
1485 				(unsigned long long) xhci_trb_virt_to_dma(
1486 					urb_priv->td[i].start_seg,
1487 					urb_priv->td[i].first_trb));
1488 
1489 	for (; i < urb_priv->num_tds; i++) {
1490 		td = &urb_priv->td[i];
1491 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1492 	}
1493 
1494 	/* Queue a stop endpoint command, but only if this is
1495 	 * the first cancellation to be handled.
1496 	 */
1497 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1498 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1499 		if (!command) {
1500 			ret = -ENOMEM;
1501 			goto done;
1502 		}
1503 		ep->ep_state |= EP_STOP_CMD_PENDING;
1504 		ep->stop_cmd_timer.expires = jiffies +
1505 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1506 		add_timer(&ep->stop_cmd_timer);
1507 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1508 					 ep_index, 0);
1509 		xhci_ring_cmd_db(xhci);
1510 	}
1511 done:
1512 	spin_unlock_irqrestore(&xhci->lock, flags);
1513 	return ret;
1514 
1515 err_giveback:
1516 	if (urb_priv)
1517 		xhci_urb_free_priv(urb_priv);
1518 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1519 	spin_unlock_irqrestore(&xhci->lock, flags);
1520 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1521 	return ret;
1522 }
1523 
1524 /* Drop an endpoint from a new bandwidth configuration for this device.
1525  * Only one call to this function is allowed per endpoint before
1526  * check_bandwidth() or reset_bandwidth() must be called.
1527  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528  * add the endpoint to the schedule with possibly new parameters denoted by a
1529  * different endpoint descriptor in usb_host_endpoint.
1530  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531  * not allowed.
1532  *
1533  * The USB core will not allow URBs to be queued to an endpoint that is being
1534  * disabled, so there's no need for mutual exclusion to protect
1535  * the xhci->devs[slot_id] structure.
1536  */
1537 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538 		struct usb_host_endpoint *ep)
1539 {
1540 	struct xhci_hcd *xhci;
1541 	struct xhci_container_ctx *in_ctx, *out_ctx;
1542 	struct xhci_input_control_ctx *ctrl_ctx;
1543 	unsigned int ep_index;
1544 	struct xhci_ep_ctx *ep_ctx;
1545 	u32 drop_flag;
1546 	u32 new_add_flags, new_drop_flags;
1547 	int ret;
1548 
1549 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1550 	if (ret <= 0)
1551 		return ret;
1552 	xhci = hcd_to_xhci(hcd);
1553 	if (xhci->xhc_state & XHCI_STATE_DYING)
1554 		return -ENODEV;
1555 
1556 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1557 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1558 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1559 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1560 				__func__, drop_flag);
1561 		return 0;
1562 	}
1563 
1564 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1565 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1566 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1567 	if (!ctrl_ctx) {
1568 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1569 				__func__);
1570 		return 0;
1571 	}
1572 
1573 	ep_index = xhci_get_endpoint_index(&ep->desc);
1574 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1575 	/* If the HC already knows the endpoint is disabled,
1576 	 * or the HCD has noted it is disabled, ignore this request
1577 	 */
1578 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1579 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1580 	    xhci_get_endpoint_flag(&ep->desc)) {
1581 		/* Do not warn when called after a usb_device_reset */
1582 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1583 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1584 				  __func__, ep);
1585 		return 0;
1586 	}
1587 
1588 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1589 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1590 
1591 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1592 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1593 
1594 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1595 
1596 	if (xhci->quirks & XHCI_MTK_HOST)
1597 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1598 
1599 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1600 			(unsigned int) ep->desc.bEndpointAddress,
1601 			udev->slot_id,
1602 			(unsigned int) new_drop_flags,
1603 			(unsigned int) new_add_flags);
1604 	return 0;
1605 }
1606 
1607 /* Add an endpoint to a new possible bandwidth configuration for this device.
1608  * Only one call to this function is allowed per endpoint before
1609  * check_bandwidth() or reset_bandwidth() must be called.
1610  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1611  * add the endpoint to the schedule with possibly new parameters denoted by a
1612  * different endpoint descriptor in usb_host_endpoint.
1613  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1614  * not allowed.
1615  *
1616  * The USB core will not allow URBs to be queued to an endpoint until the
1617  * configuration or alt setting is installed in the device, so there's no need
1618  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1619  */
1620 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1621 		struct usb_host_endpoint *ep)
1622 {
1623 	struct xhci_hcd *xhci;
1624 	struct xhci_container_ctx *in_ctx;
1625 	unsigned int ep_index;
1626 	struct xhci_input_control_ctx *ctrl_ctx;
1627 	u32 added_ctxs;
1628 	u32 new_add_flags, new_drop_flags;
1629 	struct xhci_virt_device *virt_dev;
1630 	int ret = 0;
1631 
1632 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1633 	if (ret <= 0) {
1634 		/* So we won't queue a reset ep command for a root hub */
1635 		ep->hcpriv = NULL;
1636 		return ret;
1637 	}
1638 	xhci = hcd_to_xhci(hcd);
1639 	if (xhci->xhc_state & XHCI_STATE_DYING)
1640 		return -ENODEV;
1641 
1642 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1643 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1644 		/* FIXME when we have to issue an evaluate endpoint command to
1645 		 * deal with ep0 max packet size changing once we get the
1646 		 * descriptors
1647 		 */
1648 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1649 				__func__, added_ctxs);
1650 		return 0;
1651 	}
1652 
1653 	virt_dev = xhci->devs[udev->slot_id];
1654 	in_ctx = virt_dev->in_ctx;
1655 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1656 	if (!ctrl_ctx) {
1657 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1658 				__func__);
1659 		return 0;
1660 	}
1661 
1662 	ep_index = xhci_get_endpoint_index(&ep->desc);
1663 	/* If this endpoint is already in use, and the upper layers are trying
1664 	 * to add it again without dropping it, reject the addition.
1665 	 */
1666 	if (virt_dev->eps[ep_index].ring &&
1667 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1668 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1669 				"without dropping it.\n",
1670 				(unsigned int) ep->desc.bEndpointAddress);
1671 		return -EINVAL;
1672 	}
1673 
1674 	/* If the HCD has already noted the endpoint is enabled,
1675 	 * ignore this request.
1676 	 */
1677 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1678 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1679 				__func__, ep);
1680 		return 0;
1681 	}
1682 
1683 	/*
1684 	 * Configuration and alternate setting changes must be done in
1685 	 * process context, not interrupt context (or so documenation
1686 	 * for usb_set_interface() and usb_set_configuration() claim).
1687 	 */
1688 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1689 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1690 				__func__, ep->desc.bEndpointAddress);
1691 		return -ENOMEM;
1692 	}
1693 
1694 	if (xhci->quirks & XHCI_MTK_HOST) {
1695 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1696 		if (ret < 0) {
1697 			xhci_free_or_cache_endpoint_ring(xhci,
1698 				virt_dev, ep_index);
1699 			return ret;
1700 		}
1701 	}
1702 
1703 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1704 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705 
1706 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1707 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1708 	 * this re-adds a new state for the endpoint from the new endpoint
1709 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1710 	 * drop flags alone.
1711 	 */
1712 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1713 
1714 	/* Store the usb_device pointer for later use */
1715 	ep->hcpriv = udev;
1716 
1717 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1718 			(unsigned int) ep->desc.bEndpointAddress,
1719 			udev->slot_id,
1720 			(unsigned int) new_drop_flags,
1721 			(unsigned int) new_add_flags);
1722 	return 0;
1723 }
1724 
1725 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1726 {
1727 	struct xhci_input_control_ctx *ctrl_ctx;
1728 	struct xhci_ep_ctx *ep_ctx;
1729 	struct xhci_slot_ctx *slot_ctx;
1730 	int i;
1731 
1732 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1733 	if (!ctrl_ctx) {
1734 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1735 				__func__);
1736 		return;
1737 	}
1738 
1739 	/* When a device's add flag and drop flag are zero, any subsequent
1740 	 * configure endpoint command will leave that endpoint's state
1741 	 * untouched.  Make sure we don't leave any old state in the input
1742 	 * endpoint contexts.
1743 	 */
1744 	ctrl_ctx->drop_flags = 0;
1745 	ctrl_ctx->add_flags = 0;
1746 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1747 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1748 	/* Endpoint 0 is always valid */
1749 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1750 	for (i = 1; i < 31; i++) {
1751 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1752 		ep_ctx->ep_info = 0;
1753 		ep_ctx->ep_info2 = 0;
1754 		ep_ctx->deq = 0;
1755 		ep_ctx->tx_info = 0;
1756 	}
1757 }
1758 
1759 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1760 		struct usb_device *udev, u32 *cmd_status)
1761 {
1762 	int ret;
1763 
1764 	switch (*cmd_status) {
1765 	case COMP_COMMAND_ABORTED:
1766 	case COMP_STOPPED:
1767 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1768 		ret = -ETIME;
1769 		break;
1770 	case COMP_RESOURCE_ERROR:
1771 		dev_warn(&udev->dev,
1772 			 "Not enough host controller resources for new device state.\n");
1773 		ret = -ENOMEM;
1774 		/* FIXME: can we allocate more resources for the HC? */
1775 		break;
1776 	case COMP_BANDWIDTH_ERROR:
1777 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1778 		dev_warn(&udev->dev,
1779 			 "Not enough bandwidth for new device state.\n");
1780 		ret = -ENOSPC;
1781 		/* FIXME: can we go back to the old state? */
1782 		break;
1783 	case COMP_TRB_ERROR:
1784 		/* the HCD set up something wrong */
1785 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1786 				"add flag = 1, "
1787 				"and endpoint is not disabled.\n");
1788 		ret = -EINVAL;
1789 		break;
1790 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1791 		dev_warn(&udev->dev,
1792 			 "ERROR: Incompatible device for endpoint configure command.\n");
1793 		ret = -ENODEV;
1794 		break;
1795 	case COMP_SUCCESS:
1796 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1797 				"Successful Endpoint Configure command");
1798 		ret = 0;
1799 		break;
1800 	default:
1801 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1802 				*cmd_status);
1803 		ret = -EINVAL;
1804 		break;
1805 	}
1806 	return ret;
1807 }
1808 
1809 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1810 		struct usb_device *udev, u32 *cmd_status)
1811 {
1812 	int ret;
1813 
1814 	switch (*cmd_status) {
1815 	case COMP_COMMAND_ABORTED:
1816 	case COMP_STOPPED:
1817 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1818 		ret = -ETIME;
1819 		break;
1820 	case COMP_PARAMETER_ERROR:
1821 		dev_warn(&udev->dev,
1822 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1823 		ret = -EINVAL;
1824 		break;
1825 	case COMP_SLOT_NOT_ENABLED_ERROR:
1826 		dev_warn(&udev->dev,
1827 			"WARN: slot not enabled for evaluate context command.\n");
1828 		ret = -EINVAL;
1829 		break;
1830 	case COMP_CONTEXT_STATE_ERROR:
1831 		dev_warn(&udev->dev,
1832 			"WARN: invalid context state for evaluate context command.\n");
1833 		ret = -EINVAL;
1834 		break;
1835 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1836 		dev_warn(&udev->dev,
1837 			"ERROR: Incompatible device for evaluate context command.\n");
1838 		ret = -ENODEV;
1839 		break;
1840 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1841 		/* Max Exit Latency too large error */
1842 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1843 		ret = -EINVAL;
1844 		break;
1845 	case COMP_SUCCESS:
1846 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1847 				"Successful evaluate context command");
1848 		ret = 0;
1849 		break;
1850 	default:
1851 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1852 			*cmd_status);
1853 		ret = -EINVAL;
1854 		break;
1855 	}
1856 	return ret;
1857 }
1858 
1859 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1860 		struct xhci_input_control_ctx *ctrl_ctx)
1861 {
1862 	u32 valid_add_flags;
1863 	u32 valid_drop_flags;
1864 
1865 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1866 	 * (bit 1).  The default control endpoint is added during the Address
1867 	 * Device command and is never removed until the slot is disabled.
1868 	 */
1869 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1870 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1871 
1872 	/* Use hweight32 to count the number of ones in the add flags, or
1873 	 * number of endpoints added.  Don't count endpoints that are changed
1874 	 * (both added and dropped).
1875 	 */
1876 	return hweight32(valid_add_flags) -
1877 		hweight32(valid_add_flags & valid_drop_flags);
1878 }
1879 
1880 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1881 		struct xhci_input_control_ctx *ctrl_ctx)
1882 {
1883 	u32 valid_add_flags;
1884 	u32 valid_drop_flags;
1885 
1886 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1887 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1888 
1889 	return hweight32(valid_drop_flags) -
1890 		hweight32(valid_add_flags & valid_drop_flags);
1891 }
1892 
1893 /*
1894  * We need to reserve the new number of endpoints before the configure endpoint
1895  * command completes.  We can't subtract the dropped endpoints from the number
1896  * of active endpoints until the command completes because we can oversubscribe
1897  * the host in this case:
1898  *
1899  *  - the first configure endpoint command drops more endpoints than it adds
1900  *  - a second configure endpoint command that adds more endpoints is queued
1901  *  - the first configure endpoint command fails, so the config is unchanged
1902  *  - the second command may succeed, even though there isn't enough resources
1903  *
1904  * Must be called with xhci->lock held.
1905  */
1906 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1907 		struct xhci_input_control_ctx *ctrl_ctx)
1908 {
1909 	u32 added_eps;
1910 
1911 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1912 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1913 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1914 				"Not enough ep ctxs: "
1915 				"%u active, need to add %u, limit is %u.",
1916 				xhci->num_active_eps, added_eps,
1917 				xhci->limit_active_eps);
1918 		return -ENOMEM;
1919 	}
1920 	xhci->num_active_eps += added_eps;
1921 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922 			"Adding %u ep ctxs, %u now active.", added_eps,
1923 			xhci->num_active_eps);
1924 	return 0;
1925 }
1926 
1927 /*
1928  * The configure endpoint was failed by the xHC for some other reason, so we
1929  * need to revert the resources that failed configuration would have used.
1930  *
1931  * Must be called with xhci->lock held.
1932  */
1933 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1934 		struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936 	u32 num_failed_eps;
1937 
1938 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1939 	xhci->num_active_eps -= num_failed_eps;
1940 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1941 			"Removing %u failed ep ctxs, %u now active.",
1942 			num_failed_eps,
1943 			xhci->num_active_eps);
1944 }
1945 
1946 /*
1947  * Now that the command has completed, clean up the active endpoint count by
1948  * subtracting out the endpoints that were dropped (but not changed).
1949  *
1950  * Must be called with xhci->lock held.
1951  */
1952 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1953 		struct xhci_input_control_ctx *ctrl_ctx)
1954 {
1955 	u32 num_dropped_eps;
1956 
1957 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1958 	xhci->num_active_eps -= num_dropped_eps;
1959 	if (num_dropped_eps)
1960 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1961 				"Removing %u dropped ep ctxs, %u now active.",
1962 				num_dropped_eps,
1963 				xhci->num_active_eps);
1964 }
1965 
1966 static unsigned int xhci_get_block_size(struct usb_device *udev)
1967 {
1968 	switch (udev->speed) {
1969 	case USB_SPEED_LOW:
1970 	case USB_SPEED_FULL:
1971 		return FS_BLOCK;
1972 	case USB_SPEED_HIGH:
1973 		return HS_BLOCK;
1974 	case USB_SPEED_SUPER:
1975 	case USB_SPEED_SUPER_PLUS:
1976 		return SS_BLOCK;
1977 	case USB_SPEED_UNKNOWN:
1978 	case USB_SPEED_WIRELESS:
1979 	default:
1980 		/* Should never happen */
1981 		return 1;
1982 	}
1983 }
1984 
1985 static unsigned int
1986 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1987 {
1988 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1989 		return LS_OVERHEAD;
1990 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1991 		return FS_OVERHEAD;
1992 	return HS_OVERHEAD;
1993 }
1994 
1995 /* If we are changing a LS/FS device under a HS hub,
1996  * make sure (if we are activating a new TT) that the HS bus has enough
1997  * bandwidth for this new TT.
1998  */
1999 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2000 		struct xhci_virt_device *virt_dev,
2001 		int old_active_eps)
2002 {
2003 	struct xhci_interval_bw_table *bw_table;
2004 	struct xhci_tt_bw_info *tt_info;
2005 
2006 	/* Find the bandwidth table for the root port this TT is attached to. */
2007 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2008 	tt_info = virt_dev->tt_info;
2009 	/* If this TT already had active endpoints, the bandwidth for this TT
2010 	 * has already been added.  Removing all periodic endpoints (and thus
2011 	 * making the TT enactive) will only decrease the bandwidth used.
2012 	 */
2013 	if (old_active_eps)
2014 		return 0;
2015 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2016 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2017 			return -ENOMEM;
2018 		return 0;
2019 	}
2020 	/* Not sure why we would have no new active endpoints...
2021 	 *
2022 	 * Maybe because of an Evaluate Context change for a hub update or a
2023 	 * control endpoint 0 max packet size change?
2024 	 * FIXME: skip the bandwidth calculation in that case.
2025 	 */
2026 	return 0;
2027 }
2028 
2029 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2030 		struct xhci_virt_device *virt_dev)
2031 {
2032 	unsigned int bw_reserved;
2033 
2034 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2035 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2036 		return -ENOMEM;
2037 
2038 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2039 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2040 		return -ENOMEM;
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * This algorithm is a very conservative estimate of the worst-case scheduling
2047  * scenario for any one interval.  The hardware dynamically schedules the
2048  * packets, so we can't tell which microframe could be the limiting factor in
2049  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2050  *
2051  * Obviously, we can't solve an NP complete problem to find the minimum worst
2052  * case scenario.  Instead, we come up with an estimate that is no less than
2053  * the worst case bandwidth used for any one microframe, but may be an
2054  * over-estimate.
2055  *
2056  * We walk the requirements for each endpoint by interval, starting with the
2057  * smallest interval, and place packets in the schedule where there is only one
2058  * possible way to schedule packets for that interval.  In order to simplify
2059  * this algorithm, we record the largest max packet size for each interval, and
2060  * assume all packets will be that size.
2061  *
2062  * For interval 0, we obviously must schedule all packets for each interval.
2063  * The bandwidth for interval 0 is just the amount of data to be transmitted
2064  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2065  * the number of packets).
2066  *
2067  * For interval 1, we have two possible microframes to schedule those packets
2068  * in.  For this algorithm, if we can schedule the same number of packets for
2069  * each possible scheduling opportunity (each microframe), we will do so.  The
2070  * remaining number of packets will be saved to be transmitted in the gaps in
2071  * the next interval's scheduling sequence.
2072  *
2073  * As we move those remaining packets to be scheduled with interval 2 packets,
2074  * we have to double the number of remaining packets to transmit.  This is
2075  * because the intervals are actually powers of 2, and we would be transmitting
2076  * the previous interval's packets twice in this interval.  We also have to be
2077  * sure that when we look at the largest max packet size for this interval, we
2078  * also look at the largest max packet size for the remaining packets and take
2079  * the greater of the two.
2080  *
2081  * The algorithm continues to evenly distribute packets in each scheduling
2082  * opportunity, and push the remaining packets out, until we get to the last
2083  * interval.  Then those packets and their associated overhead are just added
2084  * to the bandwidth used.
2085  */
2086 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2087 		struct xhci_virt_device *virt_dev,
2088 		int old_active_eps)
2089 {
2090 	unsigned int bw_reserved;
2091 	unsigned int max_bandwidth;
2092 	unsigned int bw_used;
2093 	unsigned int block_size;
2094 	struct xhci_interval_bw_table *bw_table;
2095 	unsigned int packet_size = 0;
2096 	unsigned int overhead = 0;
2097 	unsigned int packets_transmitted = 0;
2098 	unsigned int packets_remaining = 0;
2099 	unsigned int i;
2100 
2101 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2102 		return xhci_check_ss_bw(xhci, virt_dev);
2103 
2104 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2105 		max_bandwidth = HS_BW_LIMIT;
2106 		/* Convert percent of bus BW reserved to blocks reserved */
2107 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2108 	} else {
2109 		max_bandwidth = FS_BW_LIMIT;
2110 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2111 	}
2112 
2113 	bw_table = virt_dev->bw_table;
2114 	/* We need to translate the max packet size and max ESIT payloads into
2115 	 * the units the hardware uses.
2116 	 */
2117 	block_size = xhci_get_block_size(virt_dev->udev);
2118 
2119 	/* If we are manipulating a LS/FS device under a HS hub, double check
2120 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2121 	 */
2122 	if (virt_dev->tt_info) {
2123 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2124 				"Recalculating BW for rootport %u",
2125 				virt_dev->real_port);
2126 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2127 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2128 					"newly activated TT.\n");
2129 			return -ENOMEM;
2130 		}
2131 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132 				"Recalculating BW for TT slot %u port %u",
2133 				virt_dev->tt_info->slot_id,
2134 				virt_dev->tt_info->ttport);
2135 	} else {
2136 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 				"Recalculating BW for rootport %u",
2138 				virt_dev->real_port);
2139 	}
2140 
2141 	/* Add in how much bandwidth will be used for interval zero, or the
2142 	 * rounded max ESIT payload + number of packets * largest overhead.
2143 	 */
2144 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2145 		bw_table->interval_bw[0].num_packets *
2146 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2147 
2148 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2149 		unsigned int bw_added;
2150 		unsigned int largest_mps;
2151 		unsigned int interval_overhead;
2152 
2153 		/*
2154 		 * How many packets could we transmit in this interval?
2155 		 * If packets didn't fit in the previous interval, we will need
2156 		 * to transmit that many packets twice within this interval.
2157 		 */
2158 		packets_remaining = 2 * packets_remaining +
2159 			bw_table->interval_bw[i].num_packets;
2160 
2161 		/* Find the largest max packet size of this or the previous
2162 		 * interval.
2163 		 */
2164 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2165 			largest_mps = 0;
2166 		else {
2167 			struct xhci_virt_ep *virt_ep;
2168 			struct list_head *ep_entry;
2169 
2170 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2171 			virt_ep = list_entry(ep_entry,
2172 					struct xhci_virt_ep, bw_endpoint_list);
2173 			/* Convert to blocks, rounding up */
2174 			largest_mps = DIV_ROUND_UP(
2175 					virt_ep->bw_info.max_packet_size,
2176 					block_size);
2177 		}
2178 		if (largest_mps > packet_size)
2179 			packet_size = largest_mps;
2180 
2181 		/* Use the larger overhead of this or the previous interval. */
2182 		interval_overhead = xhci_get_largest_overhead(
2183 				&bw_table->interval_bw[i]);
2184 		if (interval_overhead > overhead)
2185 			overhead = interval_overhead;
2186 
2187 		/* How many packets can we evenly distribute across
2188 		 * (1 << (i + 1)) possible scheduling opportunities?
2189 		 */
2190 		packets_transmitted = packets_remaining >> (i + 1);
2191 
2192 		/* Add in the bandwidth used for those scheduled packets */
2193 		bw_added = packets_transmitted * (overhead + packet_size);
2194 
2195 		/* How many packets do we have remaining to transmit? */
2196 		packets_remaining = packets_remaining % (1 << (i + 1));
2197 
2198 		/* What largest max packet size should those packets have? */
2199 		/* If we've transmitted all packets, don't carry over the
2200 		 * largest packet size.
2201 		 */
2202 		if (packets_remaining == 0) {
2203 			packet_size = 0;
2204 			overhead = 0;
2205 		} else if (packets_transmitted > 0) {
2206 			/* Otherwise if we do have remaining packets, and we've
2207 			 * scheduled some packets in this interval, take the
2208 			 * largest max packet size from endpoints with this
2209 			 * interval.
2210 			 */
2211 			packet_size = largest_mps;
2212 			overhead = interval_overhead;
2213 		}
2214 		/* Otherwise carry over packet_size and overhead from the last
2215 		 * time we had a remainder.
2216 		 */
2217 		bw_used += bw_added;
2218 		if (bw_used > max_bandwidth) {
2219 			xhci_warn(xhci, "Not enough bandwidth. "
2220 					"Proposed: %u, Max: %u\n",
2221 				bw_used, max_bandwidth);
2222 			return -ENOMEM;
2223 		}
2224 	}
2225 	/*
2226 	 * Ok, we know we have some packets left over after even-handedly
2227 	 * scheduling interval 15.  We don't know which microframes they will
2228 	 * fit into, so we over-schedule and say they will be scheduled every
2229 	 * microframe.
2230 	 */
2231 	if (packets_remaining > 0)
2232 		bw_used += overhead + packet_size;
2233 
2234 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2235 		unsigned int port_index = virt_dev->real_port - 1;
2236 
2237 		/* OK, we're manipulating a HS device attached to a
2238 		 * root port bandwidth domain.  Include the number of active TTs
2239 		 * in the bandwidth used.
2240 		 */
2241 		bw_used += TT_HS_OVERHEAD *
2242 			xhci->rh_bw[port_index].num_active_tts;
2243 	}
2244 
2245 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247 		"Available: %u " "percent",
2248 		bw_used, max_bandwidth, bw_reserved,
2249 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2250 		max_bandwidth);
2251 
2252 	bw_used += bw_reserved;
2253 	if (bw_used > max_bandwidth) {
2254 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255 				bw_used, max_bandwidth);
2256 		return -ENOMEM;
2257 	}
2258 
2259 	bw_table->bw_used = bw_used;
2260 	return 0;
2261 }
2262 
2263 static bool xhci_is_async_ep(unsigned int ep_type)
2264 {
2265 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266 					ep_type != ISOC_IN_EP &&
2267 					ep_type != INT_IN_EP);
2268 }
2269 
2270 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2271 {
2272 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2273 }
2274 
2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2276 {
2277 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2278 
2279 	if (ep_bw->ep_interval == 0)
2280 		return SS_OVERHEAD_BURST +
2281 			(ep_bw->mult * ep_bw->num_packets *
2282 					(SS_OVERHEAD + mps));
2283 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285 				1 << ep_bw->ep_interval);
2286 
2287 }
2288 
2289 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290 		struct xhci_bw_info *ep_bw,
2291 		struct xhci_interval_bw_table *bw_table,
2292 		struct usb_device *udev,
2293 		struct xhci_virt_ep *virt_ep,
2294 		struct xhci_tt_bw_info *tt_info)
2295 {
2296 	struct xhci_interval_bw	*interval_bw;
2297 	int normalized_interval;
2298 
2299 	if (xhci_is_async_ep(ep_bw->type))
2300 		return;
2301 
2302 	if (udev->speed >= USB_SPEED_SUPER) {
2303 		if (xhci_is_sync_in_ep(ep_bw->type))
2304 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305 				xhci_get_ss_bw_consumed(ep_bw);
2306 		else
2307 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308 				xhci_get_ss_bw_consumed(ep_bw);
2309 		return;
2310 	}
2311 
2312 	/* SuperSpeed endpoints never get added to intervals in the table, so
2313 	 * this check is only valid for HS/FS/LS devices.
2314 	 */
2315 	if (list_empty(&virt_ep->bw_endpoint_list))
2316 		return;
2317 	/* For LS/FS devices, we need to translate the interval expressed in
2318 	 * microframes to frames.
2319 	 */
2320 	if (udev->speed == USB_SPEED_HIGH)
2321 		normalized_interval = ep_bw->ep_interval;
2322 	else
2323 		normalized_interval = ep_bw->ep_interval - 3;
2324 
2325 	if (normalized_interval == 0)
2326 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327 	interval_bw = &bw_table->interval_bw[normalized_interval];
2328 	interval_bw->num_packets -= ep_bw->num_packets;
2329 	switch (udev->speed) {
2330 	case USB_SPEED_LOW:
2331 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2332 		break;
2333 	case USB_SPEED_FULL:
2334 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2335 		break;
2336 	case USB_SPEED_HIGH:
2337 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2338 		break;
2339 	case USB_SPEED_SUPER:
2340 	case USB_SPEED_SUPER_PLUS:
2341 	case USB_SPEED_UNKNOWN:
2342 	case USB_SPEED_WIRELESS:
2343 		/* Should never happen because only LS/FS/HS endpoints will get
2344 		 * added to the endpoint list.
2345 		 */
2346 		return;
2347 	}
2348 	if (tt_info)
2349 		tt_info->active_eps -= 1;
2350 	list_del_init(&virt_ep->bw_endpoint_list);
2351 }
2352 
2353 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2354 		struct xhci_bw_info *ep_bw,
2355 		struct xhci_interval_bw_table *bw_table,
2356 		struct usb_device *udev,
2357 		struct xhci_virt_ep *virt_ep,
2358 		struct xhci_tt_bw_info *tt_info)
2359 {
2360 	struct xhci_interval_bw	*interval_bw;
2361 	struct xhci_virt_ep *smaller_ep;
2362 	int normalized_interval;
2363 
2364 	if (xhci_is_async_ep(ep_bw->type))
2365 		return;
2366 
2367 	if (udev->speed == USB_SPEED_SUPER) {
2368 		if (xhci_is_sync_in_ep(ep_bw->type))
2369 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2370 				xhci_get_ss_bw_consumed(ep_bw);
2371 		else
2372 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2373 				xhci_get_ss_bw_consumed(ep_bw);
2374 		return;
2375 	}
2376 
2377 	/* For LS/FS devices, we need to translate the interval expressed in
2378 	 * microframes to frames.
2379 	 */
2380 	if (udev->speed == USB_SPEED_HIGH)
2381 		normalized_interval = ep_bw->ep_interval;
2382 	else
2383 		normalized_interval = ep_bw->ep_interval - 3;
2384 
2385 	if (normalized_interval == 0)
2386 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2387 	interval_bw = &bw_table->interval_bw[normalized_interval];
2388 	interval_bw->num_packets += ep_bw->num_packets;
2389 	switch (udev->speed) {
2390 	case USB_SPEED_LOW:
2391 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2392 		break;
2393 	case USB_SPEED_FULL:
2394 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2395 		break;
2396 	case USB_SPEED_HIGH:
2397 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2398 		break;
2399 	case USB_SPEED_SUPER:
2400 	case USB_SPEED_SUPER_PLUS:
2401 	case USB_SPEED_UNKNOWN:
2402 	case USB_SPEED_WIRELESS:
2403 		/* Should never happen because only LS/FS/HS endpoints will get
2404 		 * added to the endpoint list.
2405 		 */
2406 		return;
2407 	}
2408 
2409 	if (tt_info)
2410 		tt_info->active_eps += 1;
2411 	/* Insert the endpoint into the list, largest max packet size first. */
2412 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2413 			bw_endpoint_list) {
2414 		if (ep_bw->max_packet_size >=
2415 				smaller_ep->bw_info.max_packet_size) {
2416 			/* Add the new ep before the smaller endpoint */
2417 			list_add_tail(&virt_ep->bw_endpoint_list,
2418 					&smaller_ep->bw_endpoint_list);
2419 			return;
2420 		}
2421 	}
2422 	/* Add the new endpoint at the end of the list. */
2423 	list_add_tail(&virt_ep->bw_endpoint_list,
2424 			&interval_bw->endpoints);
2425 }
2426 
2427 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2428 		struct xhci_virt_device *virt_dev,
2429 		int old_active_eps)
2430 {
2431 	struct xhci_root_port_bw_info *rh_bw_info;
2432 	if (!virt_dev->tt_info)
2433 		return;
2434 
2435 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2436 	if (old_active_eps == 0 &&
2437 				virt_dev->tt_info->active_eps != 0) {
2438 		rh_bw_info->num_active_tts += 1;
2439 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2440 	} else if (old_active_eps != 0 &&
2441 				virt_dev->tt_info->active_eps == 0) {
2442 		rh_bw_info->num_active_tts -= 1;
2443 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2444 	}
2445 }
2446 
2447 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2448 		struct xhci_virt_device *virt_dev,
2449 		struct xhci_container_ctx *in_ctx)
2450 {
2451 	struct xhci_bw_info ep_bw_info[31];
2452 	int i;
2453 	struct xhci_input_control_ctx *ctrl_ctx;
2454 	int old_active_eps = 0;
2455 
2456 	if (virt_dev->tt_info)
2457 		old_active_eps = virt_dev->tt_info->active_eps;
2458 
2459 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2460 	if (!ctrl_ctx) {
2461 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2462 				__func__);
2463 		return -ENOMEM;
2464 	}
2465 
2466 	for (i = 0; i < 31; i++) {
2467 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2468 			continue;
2469 
2470 		/* Make a copy of the BW info in case we need to revert this */
2471 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2472 				sizeof(ep_bw_info[i]));
2473 		/* Drop the endpoint from the interval table if the endpoint is
2474 		 * being dropped or changed.
2475 		 */
2476 		if (EP_IS_DROPPED(ctrl_ctx, i))
2477 			xhci_drop_ep_from_interval_table(xhci,
2478 					&virt_dev->eps[i].bw_info,
2479 					virt_dev->bw_table,
2480 					virt_dev->udev,
2481 					&virt_dev->eps[i],
2482 					virt_dev->tt_info);
2483 	}
2484 	/* Overwrite the information stored in the endpoints' bw_info */
2485 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2486 	for (i = 0; i < 31; i++) {
2487 		/* Add any changed or added endpoints to the interval table */
2488 		if (EP_IS_ADDED(ctrl_ctx, i))
2489 			xhci_add_ep_to_interval_table(xhci,
2490 					&virt_dev->eps[i].bw_info,
2491 					virt_dev->bw_table,
2492 					virt_dev->udev,
2493 					&virt_dev->eps[i],
2494 					virt_dev->tt_info);
2495 	}
2496 
2497 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2498 		/* Ok, this fits in the bandwidth we have.
2499 		 * Update the number of active TTs.
2500 		 */
2501 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2502 		return 0;
2503 	}
2504 
2505 	/* We don't have enough bandwidth for this, revert the stored info. */
2506 	for (i = 0; i < 31; i++) {
2507 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2508 			continue;
2509 
2510 		/* Drop the new copies of any added or changed endpoints from
2511 		 * the interval table.
2512 		 */
2513 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2514 			xhci_drop_ep_from_interval_table(xhci,
2515 					&virt_dev->eps[i].bw_info,
2516 					virt_dev->bw_table,
2517 					virt_dev->udev,
2518 					&virt_dev->eps[i],
2519 					virt_dev->tt_info);
2520 		}
2521 		/* Revert the endpoint back to its old information */
2522 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2523 				sizeof(ep_bw_info[i]));
2524 		/* Add any changed or dropped endpoints back into the table */
2525 		if (EP_IS_DROPPED(ctrl_ctx, i))
2526 			xhci_add_ep_to_interval_table(xhci,
2527 					&virt_dev->eps[i].bw_info,
2528 					virt_dev->bw_table,
2529 					virt_dev->udev,
2530 					&virt_dev->eps[i],
2531 					virt_dev->tt_info);
2532 	}
2533 	return -ENOMEM;
2534 }
2535 
2536 
2537 /* Issue a configure endpoint command or evaluate context command
2538  * and wait for it to finish.
2539  */
2540 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2541 		struct usb_device *udev,
2542 		struct xhci_command *command,
2543 		bool ctx_change, bool must_succeed)
2544 {
2545 	int ret;
2546 	unsigned long flags;
2547 	struct xhci_input_control_ctx *ctrl_ctx;
2548 	struct xhci_virt_device *virt_dev;
2549 
2550 	if (!command)
2551 		return -EINVAL;
2552 
2553 	spin_lock_irqsave(&xhci->lock, flags);
2554 
2555 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2556 		spin_unlock_irqrestore(&xhci->lock, flags);
2557 		return -ESHUTDOWN;
2558 	}
2559 
2560 	virt_dev = xhci->devs[udev->slot_id];
2561 
2562 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2563 	if (!ctrl_ctx) {
2564 		spin_unlock_irqrestore(&xhci->lock, flags);
2565 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2566 				__func__);
2567 		return -ENOMEM;
2568 	}
2569 
2570 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2571 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2572 		spin_unlock_irqrestore(&xhci->lock, flags);
2573 		xhci_warn(xhci, "Not enough host resources, "
2574 				"active endpoint contexts = %u\n",
2575 				xhci->num_active_eps);
2576 		return -ENOMEM;
2577 	}
2578 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2579 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2580 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2581 			xhci_free_host_resources(xhci, ctrl_ctx);
2582 		spin_unlock_irqrestore(&xhci->lock, flags);
2583 		xhci_warn(xhci, "Not enough bandwidth\n");
2584 		return -ENOMEM;
2585 	}
2586 
2587 	if (!ctx_change)
2588 		ret = xhci_queue_configure_endpoint(xhci, command,
2589 				command->in_ctx->dma,
2590 				udev->slot_id, must_succeed);
2591 	else
2592 		ret = xhci_queue_evaluate_context(xhci, command,
2593 				command->in_ctx->dma,
2594 				udev->slot_id, must_succeed);
2595 	if (ret < 0) {
2596 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2597 			xhci_free_host_resources(xhci, ctrl_ctx);
2598 		spin_unlock_irqrestore(&xhci->lock, flags);
2599 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2600 				"FIXME allocate a new ring segment");
2601 		return -ENOMEM;
2602 	}
2603 	xhci_ring_cmd_db(xhci);
2604 	spin_unlock_irqrestore(&xhci->lock, flags);
2605 
2606 	/* Wait for the configure endpoint command to complete */
2607 	wait_for_completion(command->completion);
2608 
2609 	if (!ctx_change)
2610 		ret = xhci_configure_endpoint_result(xhci, udev,
2611 						     &command->status);
2612 	else
2613 		ret = xhci_evaluate_context_result(xhci, udev,
2614 						   &command->status);
2615 
2616 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2617 		spin_lock_irqsave(&xhci->lock, flags);
2618 		/* If the command failed, remove the reserved resources.
2619 		 * Otherwise, clean up the estimate to include dropped eps.
2620 		 */
2621 		if (ret)
2622 			xhci_free_host_resources(xhci, ctrl_ctx);
2623 		else
2624 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2625 		spin_unlock_irqrestore(&xhci->lock, flags);
2626 	}
2627 	return ret;
2628 }
2629 
2630 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2631 	struct xhci_virt_device *vdev, int i)
2632 {
2633 	struct xhci_virt_ep *ep = &vdev->eps[i];
2634 
2635 	if (ep->ep_state & EP_HAS_STREAMS) {
2636 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2637 				xhci_get_endpoint_address(i));
2638 		xhci_free_stream_info(xhci, ep->stream_info);
2639 		ep->stream_info = NULL;
2640 		ep->ep_state &= ~EP_HAS_STREAMS;
2641 	}
2642 }
2643 
2644 /* Called after one or more calls to xhci_add_endpoint() or
2645  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2646  * to call xhci_reset_bandwidth().
2647  *
2648  * Since we are in the middle of changing either configuration or
2649  * installing a new alt setting, the USB core won't allow URBs to be
2650  * enqueued for any endpoint on the old config or interface.  Nothing
2651  * else should be touching the xhci->devs[slot_id] structure, so we
2652  * don't need to take the xhci->lock for manipulating that.
2653  */
2654 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2655 {
2656 	int i;
2657 	int ret = 0;
2658 	struct xhci_hcd *xhci;
2659 	struct xhci_virt_device	*virt_dev;
2660 	struct xhci_input_control_ctx *ctrl_ctx;
2661 	struct xhci_slot_ctx *slot_ctx;
2662 	struct xhci_command *command;
2663 
2664 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2665 	if (ret <= 0)
2666 		return ret;
2667 	xhci = hcd_to_xhci(hcd);
2668 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2669 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2670 		return -ENODEV;
2671 
2672 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673 	virt_dev = xhci->devs[udev->slot_id];
2674 
2675 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2676 	if (!command)
2677 		return -ENOMEM;
2678 
2679 	command->in_ctx = virt_dev->in_ctx;
2680 
2681 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2682 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2683 	if (!ctrl_ctx) {
2684 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2685 				__func__);
2686 		ret = -ENOMEM;
2687 		goto command_cleanup;
2688 	}
2689 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2690 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2691 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2692 
2693 	/* Don't issue the command if there's no endpoints to update. */
2694 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2695 	    ctrl_ctx->drop_flags == 0) {
2696 		ret = 0;
2697 		goto command_cleanup;
2698 	}
2699 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2700 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2701 	for (i = 31; i >= 1; i--) {
2702 		__le32 le32 = cpu_to_le32(BIT(i));
2703 
2704 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2705 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2706 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2707 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2708 			break;
2709 		}
2710 	}
2711 
2712 	ret = xhci_configure_endpoint(xhci, udev, command,
2713 			false, false);
2714 	if (ret)
2715 		/* Callee should call reset_bandwidth() */
2716 		goto command_cleanup;
2717 
2718 	/* Free any rings that were dropped, but not changed. */
2719 	for (i = 1; i < 31; i++) {
2720 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2721 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2722 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2723 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2724 		}
2725 	}
2726 	xhci_zero_in_ctx(xhci, virt_dev);
2727 	/*
2728 	 * Install any rings for completely new endpoints or changed endpoints,
2729 	 * and free or cache any old rings from changed endpoints.
2730 	 */
2731 	for (i = 1; i < 31; i++) {
2732 		if (!virt_dev->eps[i].new_ring)
2733 			continue;
2734 		/* Only cache or free the old ring if it exists.
2735 		 * It may not if this is the first add of an endpoint.
2736 		 */
2737 		if (virt_dev->eps[i].ring) {
2738 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2739 		}
2740 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2741 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2742 		virt_dev->eps[i].new_ring = NULL;
2743 	}
2744 command_cleanup:
2745 	kfree(command->completion);
2746 	kfree(command);
2747 
2748 	return ret;
2749 }
2750 
2751 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2752 {
2753 	struct xhci_hcd *xhci;
2754 	struct xhci_virt_device	*virt_dev;
2755 	int i, ret;
2756 
2757 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2758 	if (ret <= 0)
2759 		return;
2760 	xhci = hcd_to_xhci(hcd);
2761 
2762 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2763 	virt_dev = xhci->devs[udev->slot_id];
2764 	/* Free any rings allocated for added endpoints */
2765 	for (i = 0; i < 31; i++) {
2766 		if (virt_dev->eps[i].new_ring) {
2767 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2768 			virt_dev->eps[i].new_ring = NULL;
2769 		}
2770 	}
2771 	xhci_zero_in_ctx(xhci, virt_dev);
2772 }
2773 
2774 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2775 		struct xhci_container_ctx *in_ctx,
2776 		struct xhci_container_ctx *out_ctx,
2777 		struct xhci_input_control_ctx *ctrl_ctx,
2778 		u32 add_flags, u32 drop_flags)
2779 {
2780 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2781 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2782 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2783 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2784 }
2785 
2786 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2787 		unsigned int slot_id, unsigned int ep_index,
2788 		struct xhci_dequeue_state *deq_state)
2789 {
2790 	struct xhci_input_control_ctx *ctrl_ctx;
2791 	struct xhci_container_ctx *in_ctx;
2792 	struct xhci_ep_ctx *ep_ctx;
2793 	u32 added_ctxs;
2794 	dma_addr_t addr;
2795 
2796 	in_ctx = xhci->devs[slot_id]->in_ctx;
2797 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2798 	if (!ctrl_ctx) {
2799 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2800 				__func__);
2801 		return;
2802 	}
2803 
2804 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2805 			xhci->devs[slot_id]->out_ctx, ep_index);
2806 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2807 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2808 			deq_state->new_deq_ptr);
2809 	if (addr == 0) {
2810 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2811 				"reset ep command\n");
2812 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2813 				deq_state->new_deq_seg,
2814 				deq_state->new_deq_ptr);
2815 		return;
2816 	}
2817 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2818 
2819 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2820 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2821 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2822 			added_ctxs, added_ctxs);
2823 }
2824 
2825 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2826 			unsigned int ep_index, struct xhci_td *td)
2827 {
2828 	struct xhci_dequeue_state deq_state;
2829 	struct xhci_virt_ep *ep;
2830 	struct usb_device *udev = td->urb->dev;
2831 
2832 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2833 			"Cleaning up stalled endpoint ring");
2834 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2835 	/* We need to move the HW's dequeue pointer past this TD,
2836 	 * or it will attempt to resend it on the next doorbell ring.
2837 	 */
2838 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2839 			ep_index, ep->stopped_stream, td, &deq_state);
2840 
2841 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2842 		return;
2843 
2844 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2845 	 * issue a configure endpoint command later.
2846 	 */
2847 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2848 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2849 				"Queueing new dequeue state");
2850 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2851 				ep_index, ep->stopped_stream, &deq_state);
2852 	} else {
2853 		/* Better hope no one uses the input context between now and the
2854 		 * reset endpoint completion!
2855 		 * XXX: No idea how this hardware will react when stream rings
2856 		 * are enabled.
2857 		 */
2858 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2859 				"Setting up input context for "
2860 				"configure endpoint command");
2861 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2862 				ep_index, &deq_state);
2863 	}
2864 }
2865 
2866 /* Called when clearing halted device. The core should have sent the control
2867  * message to clear the device halt condition. The host side of the halt should
2868  * already be cleared with a reset endpoint command issued when the STALL tx
2869  * event was received.
2870  *
2871  * Context: in_interrupt
2872  */
2873 
2874 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2875 		struct usb_host_endpoint *ep)
2876 {
2877 	struct xhci_hcd *xhci;
2878 
2879 	xhci = hcd_to_xhci(hcd);
2880 
2881 	/*
2882 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2883 	 * The Reset Endpoint Command may only be issued to endpoints in the
2884 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2885 	 * Number of an endpoint that isn't in the Halted state, then software
2886 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2887 	 * for the target endpoint. that is in the Stopped state.
2888 	 */
2889 
2890 	/* For now just print debug to follow the situation */
2891 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2892 		 ep->desc.bEndpointAddress);
2893 }
2894 
2895 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2896 		struct usb_device *udev, struct usb_host_endpoint *ep,
2897 		unsigned int slot_id)
2898 {
2899 	int ret;
2900 	unsigned int ep_index;
2901 	unsigned int ep_state;
2902 
2903 	if (!ep)
2904 		return -EINVAL;
2905 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2906 	if (ret <= 0)
2907 		return -EINVAL;
2908 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2909 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2910 				" descriptor for ep 0x%x does not support streams\n",
2911 				ep->desc.bEndpointAddress);
2912 		return -EINVAL;
2913 	}
2914 
2915 	ep_index = xhci_get_endpoint_index(&ep->desc);
2916 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2917 	if (ep_state & EP_HAS_STREAMS ||
2918 			ep_state & EP_GETTING_STREAMS) {
2919 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2920 				"already has streams set up.\n",
2921 				ep->desc.bEndpointAddress);
2922 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2923 				"dynamic stream context array reallocation.\n");
2924 		return -EINVAL;
2925 	}
2926 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2927 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2928 				"endpoint 0x%x; URBs are pending.\n",
2929 				ep->desc.bEndpointAddress);
2930 		return -EINVAL;
2931 	}
2932 	return 0;
2933 }
2934 
2935 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2936 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2937 {
2938 	unsigned int max_streams;
2939 
2940 	/* The stream context array size must be a power of two */
2941 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2942 	/*
2943 	 * Find out how many primary stream array entries the host controller
2944 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2945 	 * level page entries), but that's an optional feature for xHCI host
2946 	 * controllers. xHCs must support at least 4 stream IDs.
2947 	 */
2948 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2949 	if (*num_stream_ctxs > max_streams) {
2950 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2951 				max_streams);
2952 		*num_stream_ctxs = max_streams;
2953 		*num_streams = max_streams;
2954 	}
2955 }
2956 
2957 /* Returns an error code if one of the endpoint already has streams.
2958  * This does not change any data structures, it only checks and gathers
2959  * information.
2960  */
2961 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2962 		struct usb_device *udev,
2963 		struct usb_host_endpoint **eps, unsigned int num_eps,
2964 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2965 {
2966 	unsigned int max_streams;
2967 	unsigned int endpoint_flag;
2968 	int i;
2969 	int ret;
2970 
2971 	for (i = 0; i < num_eps; i++) {
2972 		ret = xhci_check_streams_endpoint(xhci, udev,
2973 				eps[i], udev->slot_id);
2974 		if (ret < 0)
2975 			return ret;
2976 
2977 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2978 		if (max_streams < (*num_streams - 1)) {
2979 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2980 					eps[i]->desc.bEndpointAddress,
2981 					max_streams);
2982 			*num_streams = max_streams+1;
2983 		}
2984 
2985 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2986 		if (*changed_ep_bitmask & endpoint_flag)
2987 			return -EINVAL;
2988 		*changed_ep_bitmask |= endpoint_flag;
2989 	}
2990 	return 0;
2991 }
2992 
2993 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2994 		struct usb_device *udev,
2995 		struct usb_host_endpoint **eps, unsigned int num_eps)
2996 {
2997 	u32 changed_ep_bitmask = 0;
2998 	unsigned int slot_id;
2999 	unsigned int ep_index;
3000 	unsigned int ep_state;
3001 	int i;
3002 
3003 	slot_id = udev->slot_id;
3004 	if (!xhci->devs[slot_id])
3005 		return 0;
3006 
3007 	for (i = 0; i < num_eps; i++) {
3008 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3009 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3010 		/* Are streams already being freed for the endpoint? */
3011 		if (ep_state & EP_GETTING_NO_STREAMS) {
3012 			xhci_warn(xhci, "WARN Can't disable streams for "
3013 					"endpoint 0x%x, "
3014 					"streams are being disabled already\n",
3015 					eps[i]->desc.bEndpointAddress);
3016 			return 0;
3017 		}
3018 		/* Are there actually any streams to free? */
3019 		if (!(ep_state & EP_HAS_STREAMS) &&
3020 				!(ep_state & EP_GETTING_STREAMS)) {
3021 			xhci_warn(xhci, "WARN Can't disable streams for "
3022 					"endpoint 0x%x, "
3023 					"streams are already disabled!\n",
3024 					eps[i]->desc.bEndpointAddress);
3025 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3026 					"with non-streams endpoint\n");
3027 			return 0;
3028 		}
3029 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3030 	}
3031 	return changed_ep_bitmask;
3032 }
3033 
3034 /*
3035  * The USB device drivers use this function (through the HCD interface in USB
3036  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3037  * coordinate mass storage command queueing across multiple endpoints (basically
3038  * a stream ID == a task ID).
3039  *
3040  * Setting up streams involves allocating the same size stream context array
3041  * for each endpoint and issuing a configure endpoint command for all endpoints.
3042  *
3043  * Don't allow the call to succeed if one endpoint only supports one stream
3044  * (which means it doesn't support streams at all).
3045  *
3046  * Drivers may get less stream IDs than they asked for, if the host controller
3047  * hardware or endpoints claim they can't support the number of requested
3048  * stream IDs.
3049  */
3050 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3051 		struct usb_host_endpoint **eps, unsigned int num_eps,
3052 		unsigned int num_streams, gfp_t mem_flags)
3053 {
3054 	int i, ret;
3055 	struct xhci_hcd *xhci;
3056 	struct xhci_virt_device *vdev;
3057 	struct xhci_command *config_cmd;
3058 	struct xhci_input_control_ctx *ctrl_ctx;
3059 	unsigned int ep_index;
3060 	unsigned int num_stream_ctxs;
3061 	unsigned int max_packet;
3062 	unsigned long flags;
3063 	u32 changed_ep_bitmask = 0;
3064 
3065 	if (!eps)
3066 		return -EINVAL;
3067 
3068 	/* Add one to the number of streams requested to account for
3069 	 * stream 0 that is reserved for xHCI usage.
3070 	 */
3071 	num_streams += 1;
3072 	xhci = hcd_to_xhci(hcd);
3073 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3074 			num_streams);
3075 
3076 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3077 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3078 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3079 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3080 		return -ENOSYS;
3081 	}
3082 
3083 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3084 	if (!config_cmd)
3085 		return -ENOMEM;
3086 
3087 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3088 	if (!ctrl_ctx) {
3089 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3090 				__func__);
3091 		xhci_free_command(xhci, config_cmd);
3092 		return -ENOMEM;
3093 	}
3094 
3095 	/* Check to make sure all endpoints are not already configured for
3096 	 * streams.  While we're at it, find the maximum number of streams that
3097 	 * all the endpoints will support and check for duplicate endpoints.
3098 	 */
3099 	spin_lock_irqsave(&xhci->lock, flags);
3100 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3101 			num_eps, &num_streams, &changed_ep_bitmask);
3102 	if (ret < 0) {
3103 		xhci_free_command(xhci, config_cmd);
3104 		spin_unlock_irqrestore(&xhci->lock, flags);
3105 		return ret;
3106 	}
3107 	if (num_streams <= 1) {
3108 		xhci_warn(xhci, "WARN: endpoints can't handle "
3109 				"more than one stream.\n");
3110 		xhci_free_command(xhci, config_cmd);
3111 		spin_unlock_irqrestore(&xhci->lock, flags);
3112 		return -EINVAL;
3113 	}
3114 	vdev = xhci->devs[udev->slot_id];
3115 	/* Mark each endpoint as being in transition, so
3116 	 * xhci_urb_enqueue() will reject all URBs.
3117 	 */
3118 	for (i = 0; i < num_eps; i++) {
3119 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3120 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3121 	}
3122 	spin_unlock_irqrestore(&xhci->lock, flags);
3123 
3124 	/* Setup internal data structures and allocate HW data structures for
3125 	 * streams (but don't install the HW structures in the input context
3126 	 * until we're sure all memory allocation succeeded).
3127 	 */
3128 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3129 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3130 			num_stream_ctxs, num_streams);
3131 
3132 	for (i = 0; i < num_eps; i++) {
3133 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3134 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3135 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3136 				num_stream_ctxs,
3137 				num_streams,
3138 				max_packet, mem_flags);
3139 		if (!vdev->eps[ep_index].stream_info)
3140 			goto cleanup;
3141 		/* Set maxPstreams in endpoint context and update deq ptr to
3142 		 * point to stream context array. FIXME
3143 		 */
3144 	}
3145 
3146 	/* Set up the input context for a configure endpoint command. */
3147 	for (i = 0; i < num_eps; i++) {
3148 		struct xhci_ep_ctx *ep_ctx;
3149 
3150 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3151 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3152 
3153 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3154 				vdev->out_ctx, ep_index);
3155 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3156 				vdev->eps[ep_index].stream_info);
3157 	}
3158 	/* Tell the HW to drop its old copy of the endpoint context info
3159 	 * and add the updated copy from the input context.
3160 	 */
3161 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3162 			vdev->out_ctx, ctrl_ctx,
3163 			changed_ep_bitmask, changed_ep_bitmask);
3164 
3165 	/* Issue and wait for the configure endpoint command */
3166 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3167 			false, false);
3168 
3169 	/* xHC rejected the configure endpoint command for some reason, so we
3170 	 * leave the old ring intact and free our internal streams data
3171 	 * structure.
3172 	 */
3173 	if (ret < 0)
3174 		goto cleanup;
3175 
3176 	spin_lock_irqsave(&xhci->lock, flags);
3177 	for (i = 0; i < num_eps; i++) {
3178 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3179 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3180 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3181 			 udev->slot_id, ep_index);
3182 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3183 	}
3184 	xhci_free_command(xhci, config_cmd);
3185 	spin_unlock_irqrestore(&xhci->lock, flags);
3186 
3187 	/* Subtract 1 for stream 0, which drivers can't use */
3188 	return num_streams - 1;
3189 
3190 cleanup:
3191 	/* If it didn't work, free the streams! */
3192 	for (i = 0; i < num_eps; i++) {
3193 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3194 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3195 		vdev->eps[ep_index].stream_info = NULL;
3196 		/* FIXME Unset maxPstreams in endpoint context and
3197 		 * update deq ptr to point to normal string ring.
3198 		 */
3199 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3200 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3201 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3202 	}
3203 	xhci_free_command(xhci, config_cmd);
3204 	return -ENOMEM;
3205 }
3206 
3207 /* Transition the endpoint from using streams to being a "normal" endpoint
3208  * without streams.
3209  *
3210  * Modify the endpoint context state, submit a configure endpoint command,
3211  * and free all endpoint rings for streams if that completes successfully.
3212  */
3213 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3214 		struct usb_host_endpoint **eps, unsigned int num_eps,
3215 		gfp_t mem_flags)
3216 {
3217 	int i, ret;
3218 	struct xhci_hcd *xhci;
3219 	struct xhci_virt_device *vdev;
3220 	struct xhci_command *command;
3221 	struct xhci_input_control_ctx *ctrl_ctx;
3222 	unsigned int ep_index;
3223 	unsigned long flags;
3224 	u32 changed_ep_bitmask;
3225 
3226 	xhci = hcd_to_xhci(hcd);
3227 	vdev = xhci->devs[udev->slot_id];
3228 
3229 	/* Set up a configure endpoint command to remove the streams rings */
3230 	spin_lock_irqsave(&xhci->lock, flags);
3231 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3232 			udev, eps, num_eps);
3233 	if (changed_ep_bitmask == 0) {
3234 		spin_unlock_irqrestore(&xhci->lock, flags);
3235 		return -EINVAL;
3236 	}
3237 
3238 	/* Use the xhci_command structure from the first endpoint.  We may have
3239 	 * allocated too many, but the driver may call xhci_free_streams() for
3240 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3241 	 */
3242 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3243 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3244 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3245 	if (!ctrl_ctx) {
3246 		spin_unlock_irqrestore(&xhci->lock, flags);
3247 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3248 				__func__);
3249 		return -EINVAL;
3250 	}
3251 
3252 	for (i = 0; i < num_eps; i++) {
3253 		struct xhci_ep_ctx *ep_ctx;
3254 
3255 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3256 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3257 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3258 			EP_GETTING_NO_STREAMS;
3259 
3260 		xhci_endpoint_copy(xhci, command->in_ctx,
3261 				vdev->out_ctx, ep_index);
3262 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3263 				&vdev->eps[ep_index]);
3264 	}
3265 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3266 			vdev->out_ctx, ctrl_ctx,
3267 			changed_ep_bitmask, changed_ep_bitmask);
3268 	spin_unlock_irqrestore(&xhci->lock, flags);
3269 
3270 	/* Issue and wait for the configure endpoint command,
3271 	 * which must succeed.
3272 	 */
3273 	ret = xhci_configure_endpoint(xhci, udev, command,
3274 			false, true);
3275 
3276 	/* xHC rejected the configure endpoint command for some reason, so we
3277 	 * leave the streams rings intact.
3278 	 */
3279 	if (ret < 0)
3280 		return ret;
3281 
3282 	spin_lock_irqsave(&xhci->lock, flags);
3283 	for (i = 0; i < num_eps; i++) {
3284 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3285 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3286 		vdev->eps[ep_index].stream_info = NULL;
3287 		/* FIXME Unset maxPstreams in endpoint context and
3288 		 * update deq ptr to point to normal string ring.
3289 		 */
3290 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3291 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3292 	}
3293 	spin_unlock_irqrestore(&xhci->lock, flags);
3294 
3295 	return 0;
3296 }
3297 
3298 /*
3299  * Deletes endpoint resources for endpoints that were active before a Reset
3300  * Device command, or a Disable Slot command.  The Reset Device command leaves
3301  * the control endpoint intact, whereas the Disable Slot command deletes it.
3302  *
3303  * Must be called with xhci->lock held.
3304  */
3305 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3306 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3307 {
3308 	int i;
3309 	unsigned int num_dropped_eps = 0;
3310 	unsigned int drop_flags = 0;
3311 
3312 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3313 		if (virt_dev->eps[i].ring) {
3314 			drop_flags |= 1 << i;
3315 			num_dropped_eps++;
3316 		}
3317 	}
3318 	xhci->num_active_eps -= num_dropped_eps;
3319 	if (num_dropped_eps)
3320 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3321 				"Dropped %u ep ctxs, flags = 0x%x, "
3322 				"%u now active.",
3323 				num_dropped_eps, drop_flags,
3324 				xhci->num_active_eps);
3325 }
3326 
3327 /*
3328  * This submits a Reset Device Command, which will set the device state to 0,
3329  * set the device address to 0, and disable all the endpoints except the default
3330  * control endpoint.  The USB core should come back and call
3331  * xhci_address_device(), and then re-set up the configuration.  If this is
3332  * called because of a usb_reset_and_verify_device(), then the old alternate
3333  * settings will be re-installed through the normal bandwidth allocation
3334  * functions.
3335  *
3336  * Wait for the Reset Device command to finish.  Remove all structures
3337  * associated with the endpoints that were disabled.  Clear the input device
3338  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3339  *
3340  * If the virt_dev to be reset does not exist or does not match the udev,
3341  * it means the device is lost, possibly due to the xHC restore error and
3342  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3343  * re-allocate the device.
3344  */
3345 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3346 		struct usb_device *udev)
3347 {
3348 	int ret, i;
3349 	unsigned long flags;
3350 	struct xhci_hcd *xhci;
3351 	unsigned int slot_id;
3352 	struct xhci_virt_device *virt_dev;
3353 	struct xhci_command *reset_device_cmd;
3354 	int last_freed_endpoint;
3355 	struct xhci_slot_ctx *slot_ctx;
3356 	int old_active_eps = 0;
3357 
3358 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3359 	if (ret <= 0)
3360 		return ret;
3361 	xhci = hcd_to_xhci(hcd);
3362 	slot_id = udev->slot_id;
3363 	virt_dev = xhci->devs[slot_id];
3364 	if (!virt_dev) {
3365 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3366 				"not exist. Re-allocate the device\n", slot_id);
3367 		ret = xhci_alloc_dev(hcd, udev);
3368 		if (ret == 1)
3369 			return 0;
3370 		else
3371 			return -EINVAL;
3372 	}
3373 
3374 	if (virt_dev->tt_info)
3375 		old_active_eps = virt_dev->tt_info->active_eps;
3376 
3377 	if (virt_dev->udev != udev) {
3378 		/* If the virt_dev and the udev does not match, this virt_dev
3379 		 * may belong to another udev.
3380 		 * Re-allocate the device.
3381 		 */
3382 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3383 				"not match the udev. Re-allocate the device\n",
3384 				slot_id);
3385 		ret = xhci_alloc_dev(hcd, udev);
3386 		if (ret == 1)
3387 			return 0;
3388 		else
3389 			return -EINVAL;
3390 	}
3391 
3392 	/* If device is not setup, there is no point in resetting it */
3393 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3394 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3395 						SLOT_STATE_DISABLED)
3396 		return 0;
3397 
3398 	trace_xhci_discover_or_reset_device(slot_ctx);
3399 
3400 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3401 	/* Allocate the command structure that holds the struct completion.
3402 	 * Assume we're in process context, since the normal device reset
3403 	 * process has to wait for the device anyway.  Storage devices are
3404 	 * reset as part of error handling, so use GFP_NOIO instead of
3405 	 * GFP_KERNEL.
3406 	 */
3407 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3408 	if (!reset_device_cmd) {
3409 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3410 		return -ENOMEM;
3411 	}
3412 
3413 	/* Attempt to submit the Reset Device command to the command ring */
3414 	spin_lock_irqsave(&xhci->lock, flags);
3415 
3416 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3417 	if (ret) {
3418 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3419 		spin_unlock_irqrestore(&xhci->lock, flags);
3420 		goto command_cleanup;
3421 	}
3422 	xhci_ring_cmd_db(xhci);
3423 	spin_unlock_irqrestore(&xhci->lock, flags);
3424 
3425 	/* Wait for the Reset Device command to finish */
3426 	wait_for_completion(reset_device_cmd->completion);
3427 
3428 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3429 	 * unless we tried to reset a slot ID that wasn't enabled,
3430 	 * or the device wasn't in the addressed or configured state.
3431 	 */
3432 	ret = reset_device_cmd->status;
3433 	switch (ret) {
3434 	case COMP_COMMAND_ABORTED:
3435 	case COMP_STOPPED:
3436 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3437 		ret = -ETIME;
3438 		goto command_cleanup;
3439 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3440 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3441 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3442 				slot_id,
3443 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3444 		xhci_dbg(xhci, "Not freeing device rings.\n");
3445 		/* Don't treat this as an error.  May change my mind later. */
3446 		ret = 0;
3447 		goto command_cleanup;
3448 	case COMP_SUCCESS:
3449 		xhci_dbg(xhci, "Successful reset device command.\n");
3450 		break;
3451 	default:
3452 		if (xhci_is_vendor_info_code(xhci, ret))
3453 			break;
3454 		xhci_warn(xhci, "Unknown completion code %u for "
3455 				"reset device command.\n", ret);
3456 		ret = -EINVAL;
3457 		goto command_cleanup;
3458 	}
3459 
3460 	/* Free up host controller endpoint resources */
3461 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3462 		spin_lock_irqsave(&xhci->lock, flags);
3463 		/* Don't delete the default control endpoint resources */
3464 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3465 		spin_unlock_irqrestore(&xhci->lock, flags);
3466 	}
3467 
3468 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3469 	last_freed_endpoint = 1;
3470 	for (i = 1; i < 31; i++) {
3471 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3472 
3473 		if (ep->ep_state & EP_HAS_STREAMS) {
3474 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3475 					xhci_get_endpoint_address(i));
3476 			xhci_free_stream_info(xhci, ep->stream_info);
3477 			ep->stream_info = NULL;
3478 			ep->ep_state &= ~EP_HAS_STREAMS;
3479 		}
3480 
3481 		if (ep->ring) {
3482 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3483 			last_freed_endpoint = i;
3484 		}
3485 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3486 			xhci_drop_ep_from_interval_table(xhci,
3487 					&virt_dev->eps[i].bw_info,
3488 					virt_dev->bw_table,
3489 					udev,
3490 					&virt_dev->eps[i],
3491 					virt_dev->tt_info);
3492 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3493 	}
3494 	/* If necessary, update the number of active TTs on this root port */
3495 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3496 	ret = 0;
3497 
3498 command_cleanup:
3499 	xhci_free_command(xhci, reset_device_cmd);
3500 	return ret;
3501 }
3502 
3503 /*
3504  * At this point, the struct usb_device is about to go away, the device has
3505  * disconnected, and all traffic has been stopped and the endpoints have been
3506  * disabled.  Free any HC data structures associated with that device.
3507  */
3508 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3509 {
3510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3511 	struct xhci_virt_device *virt_dev;
3512 	struct xhci_slot_ctx *slot_ctx;
3513 	int i, ret;
3514 	struct xhci_command *command;
3515 
3516 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3517 	if (!command)
3518 		return;
3519 
3520 #ifndef CONFIG_USB_DEFAULT_PERSIST
3521 	/*
3522 	 * We called pm_runtime_get_noresume when the device was attached.
3523 	 * Decrement the counter here to allow controller to runtime suspend
3524 	 * if no devices remain.
3525 	 */
3526 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3527 		pm_runtime_put_noidle(hcd->self.controller);
3528 #endif
3529 
3530 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3531 	/* If the host is halted due to driver unload, we still need to free the
3532 	 * device.
3533 	 */
3534 	if (ret <= 0 && ret != -ENODEV) {
3535 		kfree(command);
3536 		return;
3537 	}
3538 
3539 	virt_dev = xhci->devs[udev->slot_id];
3540 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3541 	trace_xhci_free_dev(slot_ctx);
3542 
3543 	/* Stop any wayward timer functions (which may grab the lock) */
3544 	for (i = 0; i < 31; i++) {
3545 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3546 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3547 	}
3548 
3549 	xhci_disable_slot(xhci, command, udev->slot_id);
3550 	/*
3551 	 * Event command completion handler will free any data structures
3552 	 * associated with the slot.  XXX Can free sleep?
3553 	 */
3554 }
3555 
3556 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3557 			u32 slot_id)
3558 {
3559 	unsigned long flags;
3560 	u32 state;
3561 	int ret = 0;
3562 	struct xhci_virt_device *virt_dev;
3563 
3564 	virt_dev = xhci->devs[slot_id];
3565 	if (!virt_dev)
3566 		return -EINVAL;
3567 	if (!command)
3568 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3569 	if (!command)
3570 		return -ENOMEM;
3571 
3572 	spin_lock_irqsave(&xhci->lock, flags);
3573 	/* Don't disable the slot if the host controller is dead. */
3574 	state = readl(&xhci->op_regs->status);
3575 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3576 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3577 		xhci_free_virt_device(xhci, slot_id);
3578 		spin_unlock_irqrestore(&xhci->lock, flags);
3579 		kfree(command);
3580 		return ret;
3581 	}
3582 
3583 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3584 				slot_id);
3585 	if (ret) {
3586 		spin_unlock_irqrestore(&xhci->lock, flags);
3587 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3588 		return ret;
3589 	}
3590 	xhci_ring_cmd_db(xhci);
3591 	spin_unlock_irqrestore(&xhci->lock, flags);
3592 	return ret;
3593 }
3594 
3595 /*
3596  * Checks if we have enough host controller resources for the default control
3597  * endpoint.
3598  *
3599  * Must be called with xhci->lock held.
3600  */
3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3602 {
3603 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3604 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3605 				"Not enough ep ctxs: "
3606 				"%u active, need to add 1, limit is %u.",
3607 				xhci->num_active_eps, xhci->limit_active_eps);
3608 		return -ENOMEM;
3609 	}
3610 	xhci->num_active_eps += 1;
3611 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612 			"Adding 1 ep ctx, %u now active.",
3613 			xhci->num_active_eps);
3614 	return 0;
3615 }
3616 
3617 
3618 /*
3619  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3620  * timed out, or allocating memory failed.  Returns 1 on success.
3621  */
3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3623 {
3624 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3625 	struct xhci_virt_device *vdev;
3626 	struct xhci_slot_ctx *slot_ctx;
3627 	unsigned long flags;
3628 	int ret, slot_id;
3629 	struct xhci_command *command;
3630 
3631 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3632 	if (!command)
3633 		return 0;
3634 
3635 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3636 	mutex_lock(&xhci->mutex);
3637 	spin_lock_irqsave(&xhci->lock, flags);
3638 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3639 	if (ret) {
3640 		spin_unlock_irqrestore(&xhci->lock, flags);
3641 		mutex_unlock(&xhci->mutex);
3642 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3643 		xhci_free_command(xhci, command);
3644 		return 0;
3645 	}
3646 	xhci_ring_cmd_db(xhci);
3647 	spin_unlock_irqrestore(&xhci->lock, flags);
3648 
3649 	wait_for_completion(command->completion);
3650 	slot_id = command->slot_id;
3651 	mutex_unlock(&xhci->mutex);
3652 
3653 	if (!slot_id || command->status != COMP_SUCCESS) {
3654 		xhci_err(xhci, "Error while assigning device slot ID\n");
3655 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3656 				HCS_MAX_SLOTS(
3657 					readl(&xhci->cap_regs->hcs_params1)));
3658 		xhci_free_command(xhci, command);
3659 		return 0;
3660 	}
3661 
3662 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3663 		spin_lock_irqsave(&xhci->lock, flags);
3664 		ret = xhci_reserve_host_control_ep_resources(xhci);
3665 		if (ret) {
3666 			spin_unlock_irqrestore(&xhci->lock, flags);
3667 			xhci_warn(xhci, "Not enough host resources, "
3668 					"active endpoint contexts = %u\n",
3669 					xhci->num_active_eps);
3670 			goto disable_slot;
3671 		}
3672 		spin_unlock_irqrestore(&xhci->lock, flags);
3673 	}
3674 	/* Use GFP_NOIO, since this function can be called from
3675 	 * xhci_discover_or_reset_device(), which may be called as part of
3676 	 * mass storage driver error handling.
3677 	 */
3678 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3679 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3680 		goto disable_slot;
3681 	}
3682 	vdev = xhci->devs[slot_id];
3683 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3684 	trace_xhci_alloc_dev(slot_ctx);
3685 
3686 	udev->slot_id = slot_id;
3687 
3688 #ifndef CONFIG_USB_DEFAULT_PERSIST
3689 	/*
3690 	 * If resetting upon resume, we can't put the controller into runtime
3691 	 * suspend if there is a device attached.
3692 	 */
3693 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3694 		pm_runtime_get_noresume(hcd->self.controller);
3695 #endif
3696 
3697 
3698 	xhci_free_command(xhci, command);
3699 	/* Is this a LS or FS device under a HS hub? */
3700 	/* Hub or peripherial? */
3701 	return 1;
3702 
3703 disable_slot:
3704 	/* Disable slot, if we can do it without mem alloc */
3705 	kfree(command->completion);
3706 	command->completion = NULL;
3707 	command->status = 0;
3708 	return xhci_disable_slot(xhci, command, udev->slot_id);
3709 }
3710 
3711 /*
3712  * Issue an Address Device command and optionally send a corresponding
3713  * SetAddress request to the device.
3714  */
3715 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3716 			     enum xhci_setup_dev setup)
3717 {
3718 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3719 	unsigned long flags;
3720 	struct xhci_virt_device *virt_dev;
3721 	int ret = 0;
3722 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3723 	struct xhci_slot_ctx *slot_ctx;
3724 	struct xhci_input_control_ctx *ctrl_ctx;
3725 	u64 temp_64;
3726 	struct xhci_command *command = NULL;
3727 
3728 	mutex_lock(&xhci->mutex);
3729 
3730 	if (xhci->xhc_state) {	/* dying, removing or halted */
3731 		ret = -ESHUTDOWN;
3732 		goto out;
3733 	}
3734 
3735 	if (!udev->slot_id) {
3736 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3737 				"Bad Slot ID %d", udev->slot_id);
3738 		ret = -EINVAL;
3739 		goto out;
3740 	}
3741 
3742 	virt_dev = xhci->devs[udev->slot_id];
3743 
3744 	if (WARN_ON(!virt_dev)) {
3745 		/*
3746 		 * In plug/unplug torture test with an NEC controller,
3747 		 * a zero-dereference was observed once due to virt_dev = 0.
3748 		 * Print useful debug rather than crash if it is observed again!
3749 		 */
3750 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3751 			udev->slot_id);
3752 		ret = -EINVAL;
3753 		goto out;
3754 	}
3755 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3756 	trace_xhci_setup_device_slot(slot_ctx);
3757 
3758 	if (setup == SETUP_CONTEXT_ONLY) {
3759 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3760 		    SLOT_STATE_DEFAULT) {
3761 			xhci_dbg(xhci, "Slot already in default state\n");
3762 			goto out;
3763 		}
3764 	}
3765 
3766 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3767 	if (!command) {
3768 		ret = -ENOMEM;
3769 		goto out;
3770 	}
3771 
3772 	command->in_ctx = virt_dev->in_ctx;
3773 
3774 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3775 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3776 	if (!ctrl_ctx) {
3777 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3778 				__func__);
3779 		ret = -EINVAL;
3780 		goto out;
3781 	}
3782 	/*
3783 	 * If this is the first Set Address since device plug-in or
3784 	 * virt_device realloaction after a resume with an xHCI power loss,
3785 	 * then set up the slot context.
3786 	 */
3787 	if (!slot_ctx->dev_info)
3788 		xhci_setup_addressable_virt_dev(xhci, udev);
3789 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3790 	else
3791 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3792 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3793 	ctrl_ctx->drop_flags = 0;
3794 
3795 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3796 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3797 
3798 	spin_lock_irqsave(&xhci->lock, flags);
3799 	trace_xhci_setup_device(virt_dev);
3800 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3801 					udev->slot_id, setup);
3802 	if (ret) {
3803 		spin_unlock_irqrestore(&xhci->lock, flags);
3804 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3805 				"FIXME: allocate a command ring segment");
3806 		goto out;
3807 	}
3808 	xhci_ring_cmd_db(xhci);
3809 	spin_unlock_irqrestore(&xhci->lock, flags);
3810 
3811 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3812 	wait_for_completion(command->completion);
3813 
3814 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3815 	 * the SetAddress() "recovery interval" required by USB and aborting the
3816 	 * command on a timeout.
3817 	 */
3818 	switch (command->status) {
3819 	case COMP_COMMAND_ABORTED:
3820 	case COMP_STOPPED:
3821 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3822 		ret = -ETIME;
3823 		break;
3824 	case COMP_CONTEXT_STATE_ERROR:
3825 	case COMP_SLOT_NOT_ENABLED_ERROR:
3826 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3827 			 act, udev->slot_id);
3828 		ret = -EINVAL;
3829 		break;
3830 	case COMP_USB_TRANSACTION_ERROR:
3831 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3832 		ret = -EPROTO;
3833 		break;
3834 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3835 		dev_warn(&udev->dev,
3836 			 "ERROR: Incompatible device for setup %s command\n", act);
3837 		ret = -ENODEV;
3838 		break;
3839 	case COMP_SUCCESS:
3840 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3841 			       "Successful setup %s command", act);
3842 		break;
3843 	default:
3844 		xhci_err(xhci,
3845 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3846 			 act, command->status);
3847 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3848 		ret = -EINVAL;
3849 		break;
3850 	}
3851 	if (ret)
3852 		goto out;
3853 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3854 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855 			"Op regs DCBAA ptr = %#016llx", temp_64);
3856 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3857 		"Slot ID %d dcbaa entry @%p = %#016llx",
3858 		udev->slot_id,
3859 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3860 		(unsigned long long)
3861 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3862 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3863 			"Output Context DMA address = %#08llx",
3864 			(unsigned long long)virt_dev->out_ctx->dma);
3865 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3866 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3867 	/*
3868 	 * USB core uses address 1 for the roothubs, so we add one to the
3869 	 * address given back to us by the HC.
3870 	 */
3871 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3872 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3873 	/* Zero the input context control for later use */
3874 	ctrl_ctx->add_flags = 0;
3875 	ctrl_ctx->drop_flags = 0;
3876 
3877 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 		       "Internal device address = %d",
3879 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3880 out:
3881 	mutex_unlock(&xhci->mutex);
3882 	if (command) {
3883 		kfree(command->completion);
3884 		kfree(command);
3885 	}
3886 	return ret;
3887 }
3888 
3889 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3890 {
3891 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3892 }
3893 
3894 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3895 {
3896 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3897 }
3898 
3899 /*
3900  * Transfer the port index into real index in the HW port status
3901  * registers. Caculate offset between the port's PORTSC register
3902  * and port status base. Divide the number of per port register
3903  * to get the real index. The raw port number bases 1.
3904  */
3905 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3906 {
3907 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3908 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3909 	__le32 __iomem *addr;
3910 	int raw_port;
3911 
3912 	if (hcd->speed < HCD_USB3)
3913 		addr = xhci->usb2_ports[port1 - 1];
3914 	else
3915 		addr = xhci->usb3_ports[port1 - 1];
3916 
3917 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3918 	return raw_port;
3919 }
3920 
3921 /*
3922  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3923  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3924  */
3925 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3926 			struct usb_device *udev, u16 max_exit_latency)
3927 {
3928 	struct xhci_virt_device *virt_dev;
3929 	struct xhci_command *command;
3930 	struct xhci_input_control_ctx *ctrl_ctx;
3931 	struct xhci_slot_ctx *slot_ctx;
3932 	unsigned long flags;
3933 	int ret;
3934 
3935 	spin_lock_irqsave(&xhci->lock, flags);
3936 
3937 	virt_dev = xhci->devs[udev->slot_id];
3938 
3939 	/*
3940 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3941 	 * xHC was re-initialized. Exit latency will be set later after
3942 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3943 	 */
3944 
3945 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3946 		spin_unlock_irqrestore(&xhci->lock, flags);
3947 		return 0;
3948 	}
3949 
3950 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3951 	command = xhci->lpm_command;
3952 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3953 	if (!ctrl_ctx) {
3954 		spin_unlock_irqrestore(&xhci->lock, flags);
3955 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3956 				__func__);
3957 		return -ENOMEM;
3958 	}
3959 
3960 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3961 	spin_unlock_irqrestore(&xhci->lock, flags);
3962 
3963 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3964 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3965 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3966 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3967 	slot_ctx->dev_state = 0;
3968 
3969 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3970 			"Set up evaluate context for LPM MEL change.");
3971 
3972 	/* Issue and wait for the evaluate context command. */
3973 	ret = xhci_configure_endpoint(xhci, udev, command,
3974 			true, true);
3975 
3976 	if (!ret) {
3977 		spin_lock_irqsave(&xhci->lock, flags);
3978 		virt_dev->current_mel = max_exit_latency;
3979 		spin_unlock_irqrestore(&xhci->lock, flags);
3980 	}
3981 	return ret;
3982 }
3983 
3984 #ifdef CONFIG_PM
3985 
3986 /* BESL to HIRD Encoding array for USB2 LPM */
3987 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3988 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3989 
3990 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3991 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3992 					struct usb_device *udev)
3993 {
3994 	int u2del, besl, besl_host;
3995 	int besl_device = 0;
3996 	u32 field;
3997 
3998 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3999 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4000 
4001 	if (field & USB_BESL_SUPPORT) {
4002 		for (besl_host = 0; besl_host < 16; besl_host++) {
4003 			if (xhci_besl_encoding[besl_host] >= u2del)
4004 				break;
4005 		}
4006 		/* Use baseline BESL value as default */
4007 		if (field & USB_BESL_BASELINE_VALID)
4008 			besl_device = USB_GET_BESL_BASELINE(field);
4009 		else if (field & USB_BESL_DEEP_VALID)
4010 			besl_device = USB_GET_BESL_DEEP(field);
4011 	} else {
4012 		if (u2del <= 50)
4013 			besl_host = 0;
4014 		else
4015 			besl_host = (u2del - 51) / 75 + 1;
4016 	}
4017 
4018 	besl = besl_host + besl_device;
4019 	if (besl > 15)
4020 		besl = 15;
4021 
4022 	return besl;
4023 }
4024 
4025 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4026 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4027 {
4028 	u32 field;
4029 	int l1;
4030 	int besld = 0;
4031 	int hirdm = 0;
4032 
4033 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4034 
4035 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4036 	l1 = udev->l1_params.timeout / 256;
4037 
4038 	/* device has preferred BESLD */
4039 	if (field & USB_BESL_DEEP_VALID) {
4040 		besld = USB_GET_BESL_DEEP(field);
4041 		hirdm = 1;
4042 	}
4043 
4044 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4045 }
4046 
4047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4048 			struct usb_device *udev, int enable)
4049 {
4050 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4051 	__le32 __iomem	**port_array;
4052 	__le32 __iomem	*pm_addr, *hlpm_addr;
4053 	u32		pm_val, hlpm_val, field;
4054 	unsigned int	port_num;
4055 	unsigned long	flags;
4056 	int		hird, exit_latency;
4057 	int		ret;
4058 
4059 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4060 			!udev->lpm_capable)
4061 		return -EPERM;
4062 
4063 	if (!udev->parent || udev->parent->parent ||
4064 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4065 		return -EPERM;
4066 
4067 	if (udev->usb2_hw_lpm_capable != 1)
4068 		return -EPERM;
4069 
4070 	spin_lock_irqsave(&xhci->lock, flags);
4071 
4072 	port_array = xhci->usb2_ports;
4073 	port_num = udev->portnum - 1;
4074 	pm_addr = port_array[port_num] + PORTPMSC;
4075 	pm_val = readl(pm_addr);
4076 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4077 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4078 
4079 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4080 			enable ? "enable" : "disable", port_num + 1);
4081 
4082 	if (enable) {
4083 		/* Host supports BESL timeout instead of HIRD */
4084 		if (udev->usb2_hw_lpm_besl_capable) {
4085 			/* if device doesn't have a preferred BESL value use a
4086 			 * default one which works with mixed HIRD and BESL
4087 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4088 			 */
4089 			if ((field & USB_BESL_SUPPORT) &&
4090 			    (field & USB_BESL_BASELINE_VALID))
4091 				hird = USB_GET_BESL_BASELINE(field);
4092 			else
4093 				hird = udev->l1_params.besl;
4094 
4095 			exit_latency = xhci_besl_encoding[hird];
4096 			spin_unlock_irqrestore(&xhci->lock, flags);
4097 
4098 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4099 			 * input context for link powermanagement evaluate
4100 			 * context commands. It is protected by hcd->bandwidth
4101 			 * mutex and is shared by all devices. We need to set
4102 			 * the max ext latency in USB 2 BESL LPM as well, so
4103 			 * use the same mutex and xhci_change_max_exit_latency()
4104 			 */
4105 			mutex_lock(hcd->bandwidth_mutex);
4106 			ret = xhci_change_max_exit_latency(xhci, udev,
4107 							   exit_latency);
4108 			mutex_unlock(hcd->bandwidth_mutex);
4109 
4110 			if (ret < 0)
4111 				return ret;
4112 			spin_lock_irqsave(&xhci->lock, flags);
4113 
4114 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4115 			writel(hlpm_val, hlpm_addr);
4116 			/* flush write */
4117 			readl(hlpm_addr);
4118 		} else {
4119 			hird = xhci_calculate_hird_besl(xhci, udev);
4120 		}
4121 
4122 		pm_val &= ~PORT_HIRD_MASK;
4123 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4124 		writel(pm_val, pm_addr);
4125 		pm_val = readl(pm_addr);
4126 		pm_val |= PORT_HLE;
4127 		writel(pm_val, pm_addr);
4128 		/* flush write */
4129 		readl(pm_addr);
4130 	} else {
4131 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4132 		writel(pm_val, pm_addr);
4133 		/* flush write */
4134 		readl(pm_addr);
4135 		if (udev->usb2_hw_lpm_besl_capable) {
4136 			spin_unlock_irqrestore(&xhci->lock, flags);
4137 			mutex_lock(hcd->bandwidth_mutex);
4138 			xhci_change_max_exit_latency(xhci, udev, 0);
4139 			mutex_unlock(hcd->bandwidth_mutex);
4140 			return 0;
4141 		}
4142 	}
4143 
4144 	spin_unlock_irqrestore(&xhci->lock, flags);
4145 	return 0;
4146 }
4147 
4148 /* check if a usb2 port supports a given extened capability protocol
4149  * only USB2 ports extended protocol capability values are cached.
4150  * Return 1 if capability is supported
4151  */
4152 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4153 					   unsigned capability)
4154 {
4155 	u32 port_offset, port_count;
4156 	int i;
4157 
4158 	for (i = 0; i < xhci->num_ext_caps; i++) {
4159 		if (xhci->ext_caps[i] & capability) {
4160 			/* port offsets starts at 1 */
4161 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4162 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4163 			if (port >= port_offset &&
4164 			    port < port_offset + port_count)
4165 				return 1;
4166 		}
4167 	}
4168 	return 0;
4169 }
4170 
4171 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4172 {
4173 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4174 	int		portnum = udev->portnum - 1;
4175 
4176 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4177 			!udev->lpm_capable)
4178 		return 0;
4179 
4180 	/* we only support lpm for non-hub device connected to root hub yet */
4181 	if (!udev->parent || udev->parent->parent ||
4182 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4183 		return 0;
4184 
4185 	if (xhci->hw_lpm_support == 1 &&
4186 			xhci_check_usb2_port_capability(
4187 				xhci, portnum, XHCI_HLC)) {
4188 		udev->usb2_hw_lpm_capable = 1;
4189 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4190 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4191 		if (xhci_check_usb2_port_capability(xhci, portnum,
4192 					XHCI_BLC))
4193 			udev->usb2_hw_lpm_besl_capable = 1;
4194 	}
4195 
4196 	return 0;
4197 }
4198 
4199 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4200 
4201 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4202 static unsigned long long xhci_service_interval_to_ns(
4203 		struct usb_endpoint_descriptor *desc)
4204 {
4205 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4206 }
4207 
4208 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4209 		enum usb3_link_state state)
4210 {
4211 	unsigned long long sel;
4212 	unsigned long long pel;
4213 	unsigned int max_sel_pel;
4214 	char *state_name;
4215 
4216 	switch (state) {
4217 	case USB3_LPM_U1:
4218 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4219 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4220 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4221 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4222 		state_name = "U1";
4223 		break;
4224 	case USB3_LPM_U2:
4225 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4226 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4227 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4228 		state_name = "U2";
4229 		break;
4230 	default:
4231 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4232 				__func__);
4233 		return USB3_LPM_DISABLED;
4234 	}
4235 
4236 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4237 		return USB3_LPM_DEVICE_INITIATED;
4238 
4239 	if (sel > max_sel_pel)
4240 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4241 				"due to long SEL %llu ms\n",
4242 				state_name, sel);
4243 	else
4244 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4245 				"due to long PEL %llu ms\n",
4246 				state_name, pel);
4247 	return USB3_LPM_DISABLED;
4248 }
4249 
4250 /* The U1 timeout should be the maximum of the following values:
4251  *  - For control endpoints, U1 system exit latency (SEL) * 3
4252  *  - For bulk endpoints, U1 SEL * 5
4253  *  - For interrupt endpoints:
4254  *    - Notification EPs, U1 SEL * 3
4255  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4256  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4257  */
4258 static unsigned long long xhci_calculate_intel_u1_timeout(
4259 		struct usb_device *udev,
4260 		struct usb_endpoint_descriptor *desc)
4261 {
4262 	unsigned long long timeout_ns;
4263 	int ep_type;
4264 	int intr_type;
4265 
4266 	ep_type = usb_endpoint_type(desc);
4267 	switch (ep_type) {
4268 	case USB_ENDPOINT_XFER_CONTROL:
4269 		timeout_ns = udev->u1_params.sel * 3;
4270 		break;
4271 	case USB_ENDPOINT_XFER_BULK:
4272 		timeout_ns = udev->u1_params.sel * 5;
4273 		break;
4274 	case USB_ENDPOINT_XFER_INT:
4275 		intr_type = usb_endpoint_interrupt_type(desc);
4276 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4277 			timeout_ns = udev->u1_params.sel * 3;
4278 			break;
4279 		}
4280 		/* Otherwise the calculation is the same as isoc eps */
4281 	case USB_ENDPOINT_XFER_ISOC:
4282 		timeout_ns = xhci_service_interval_to_ns(desc);
4283 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4284 		if (timeout_ns < udev->u1_params.sel * 2)
4285 			timeout_ns = udev->u1_params.sel * 2;
4286 		break;
4287 	default:
4288 		return 0;
4289 	}
4290 
4291 	return timeout_ns;
4292 }
4293 
4294 /* Returns the hub-encoded U1 timeout value. */
4295 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4296 		struct usb_device *udev,
4297 		struct usb_endpoint_descriptor *desc)
4298 {
4299 	unsigned long long timeout_ns;
4300 
4301 	if (xhci->quirks & XHCI_INTEL_HOST)
4302 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4303 	else
4304 		timeout_ns = udev->u1_params.sel;
4305 
4306 	/* The U1 timeout is encoded in 1us intervals.
4307 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4308 	 */
4309 	if (timeout_ns == USB3_LPM_DISABLED)
4310 		timeout_ns = 1;
4311 	else
4312 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4313 
4314 	/* If the necessary timeout value is bigger than what we can set in the
4315 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4316 	 */
4317 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4318 		return timeout_ns;
4319 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4320 			"due to long timeout %llu ms\n", timeout_ns);
4321 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4322 }
4323 
4324 /* The U2 timeout should be the maximum of:
4325  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4326  *  - largest bInterval of any active periodic endpoint (to avoid going
4327  *    into lower power link states between intervals).
4328  *  - the U2 Exit Latency of the device
4329  */
4330 static unsigned long long xhci_calculate_intel_u2_timeout(
4331 		struct usb_device *udev,
4332 		struct usb_endpoint_descriptor *desc)
4333 {
4334 	unsigned long long timeout_ns;
4335 	unsigned long long u2_del_ns;
4336 
4337 	timeout_ns = 10 * 1000 * 1000;
4338 
4339 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4340 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4341 		timeout_ns = xhci_service_interval_to_ns(desc);
4342 
4343 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4344 	if (u2_del_ns > timeout_ns)
4345 		timeout_ns = u2_del_ns;
4346 
4347 	return timeout_ns;
4348 }
4349 
4350 /* Returns the hub-encoded U2 timeout value. */
4351 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4352 		struct usb_device *udev,
4353 		struct usb_endpoint_descriptor *desc)
4354 {
4355 	unsigned long long timeout_ns;
4356 
4357 	if (xhci->quirks & XHCI_INTEL_HOST)
4358 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4359 	else
4360 		timeout_ns = udev->u2_params.sel;
4361 
4362 	/* The U2 timeout is encoded in 256us intervals */
4363 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4364 	/* If the necessary timeout value is bigger than what we can set in the
4365 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4366 	 */
4367 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4368 		return timeout_ns;
4369 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4370 			"due to long timeout %llu ms\n", timeout_ns);
4371 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4372 }
4373 
4374 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4375 		struct usb_device *udev,
4376 		struct usb_endpoint_descriptor *desc,
4377 		enum usb3_link_state state,
4378 		u16 *timeout)
4379 {
4380 	if (state == USB3_LPM_U1)
4381 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4382 	else if (state == USB3_LPM_U2)
4383 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4384 
4385 	return USB3_LPM_DISABLED;
4386 }
4387 
4388 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4389 		struct usb_device *udev,
4390 		struct usb_endpoint_descriptor *desc,
4391 		enum usb3_link_state state,
4392 		u16 *timeout)
4393 {
4394 	u16 alt_timeout;
4395 
4396 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4397 		desc, state, timeout);
4398 
4399 	/* If we found we can't enable hub-initiated LPM, or
4400 	 * the U1 or U2 exit latency was too high to allow
4401 	 * device-initiated LPM as well, just stop searching.
4402 	 */
4403 	if (alt_timeout == USB3_LPM_DISABLED ||
4404 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4405 		*timeout = alt_timeout;
4406 		return -E2BIG;
4407 	}
4408 	if (alt_timeout > *timeout)
4409 		*timeout = alt_timeout;
4410 	return 0;
4411 }
4412 
4413 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4414 		struct usb_device *udev,
4415 		struct usb_host_interface *alt,
4416 		enum usb3_link_state state,
4417 		u16 *timeout)
4418 {
4419 	int j;
4420 
4421 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4422 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4423 					&alt->endpoint[j].desc, state, timeout))
4424 			return -E2BIG;
4425 		continue;
4426 	}
4427 	return 0;
4428 }
4429 
4430 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4431 		enum usb3_link_state state)
4432 {
4433 	struct usb_device *parent;
4434 	unsigned int num_hubs;
4435 
4436 	if (state == USB3_LPM_U2)
4437 		return 0;
4438 
4439 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4440 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4441 			parent = parent->parent)
4442 		num_hubs++;
4443 
4444 	if (num_hubs < 2)
4445 		return 0;
4446 
4447 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4448 			" below second-tier hub.\n");
4449 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4450 			"to decrease power consumption.\n");
4451 	return -E2BIG;
4452 }
4453 
4454 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4455 		struct usb_device *udev,
4456 		enum usb3_link_state state)
4457 {
4458 	if (xhci->quirks & XHCI_INTEL_HOST)
4459 		return xhci_check_intel_tier_policy(udev, state);
4460 	else
4461 		return 0;
4462 }
4463 
4464 /* Returns the U1 or U2 timeout that should be enabled.
4465  * If the tier check or timeout setting functions return with a non-zero exit
4466  * code, that means the timeout value has been finalized and we shouldn't look
4467  * at any more endpoints.
4468  */
4469 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4470 			struct usb_device *udev, enum usb3_link_state state)
4471 {
4472 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4473 	struct usb_host_config *config;
4474 	char *state_name;
4475 	int i;
4476 	u16 timeout = USB3_LPM_DISABLED;
4477 
4478 	if (state == USB3_LPM_U1)
4479 		state_name = "U1";
4480 	else if (state == USB3_LPM_U2)
4481 		state_name = "U2";
4482 	else {
4483 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4484 				state);
4485 		return timeout;
4486 	}
4487 
4488 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4489 		return timeout;
4490 
4491 	/* Gather some information about the currently installed configuration
4492 	 * and alternate interface settings.
4493 	 */
4494 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4495 			state, &timeout))
4496 		return timeout;
4497 
4498 	config = udev->actconfig;
4499 	if (!config)
4500 		return timeout;
4501 
4502 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4503 		struct usb_driver *driver;
4504 		struct usb_interface *intf = config->interface[i];
4505 
4506 		if (!intf)
4507 			continue;
4508 
4509 		/* Check if any currently bound drivers want hub-initiated LPM
4510 		 * disabled.
4511 		 */
4512 		if (intf->dev.driver) {
4513 			driver = to_usb_driver(intf->dev.driver);
4514 			if (driver && driver->disable_hub_initiated_lpm) {
4515 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4516 						"at request of driver %s\n",
4517 						state_name, driver->name);
4518 				return xhci_get_timeout_no_hub_lpm(udev, state);
4519 			}
4520 		}
4521 
4522 		/* Not sure how this could happen... */
4523 		if (!intf->cur_altsetting)
4524 			continue;
4525 
4526 		if (xhci_update_timeout_for_interface(xhci, udev,
4527 					intf->cur_altsetting,
4528 					state, &timeout))
4529 			return timeout;
4530 	}
4531 	return timeout;
4532 }
4533 
4534 static int calculate_max_exit_latency(struct usb_device *udev,
4535 		enum usb3_link_state state_changed,
4536 		u16 hub_encoded_timeout)
4537 {
4538 	unsigned long long u1_mel_us = 0;
4539 	unsigned long long u2_mel_us = 0;
4540 	unsigned long long mel_us = 0;
4541 	bool disabling_u1;
4542 	bool disabling_u2;
4543 	bool enabling_u1;
4544 	bool enabling_u2;
4545 
4546 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4547 			hub_encoded_timeout == USB3_LPM_DISABLED);
4548 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4549 			hub_encoded_timeout == USB3_LPM_DISABLED);
4550 
4551 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4552 			hub_encoded_timeout != USB3_LPM_DISABLED);
4553 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4554 			hub_encoded_timeout != USB3_LPM_DISABLED);
4555 
4556 	/* If U1 was already enabled and we're not disabling it,
4557 	 * or we're going to enable U1, account for the U1 max exit latency.
4558 	 */
4559 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4560 			enabling_u1)
4561 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4562 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4563 			enabling_u2)
4564 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4565 
4566 	if (u1_mel_us > u2_mel_us)
4567 		mel_us = u1_mel_us;
4568 	else
4569 		mel_us = u2_mel_us;
4570 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4571 	if (mel_us > MAX_EXIT) {
4572 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4573 				"is too big.\n", mel_us);
4574 		return -E2BIG;
4575 	}
4576 	return mel_us;
4577 }
4578 
4579 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4580 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4581 			struct usb_device *udev, enum usb3_link_state state)
4582 {
4583 	struct xhci_hcd	*xhci;
4584 	u16 hub_encoded_timeout;
4585 	int mel;
4586 	int ret;
4587 
4588 	xhci = hcd_to_xhci(hcd);
4589 	/* The LPM timeout values are pretty host-controller specific, so don't
4590 	 * enable hub-initiated timeouts unless the vendor has provided
4591 	 * information about their timeout algorithm.
4592 	 */
4593 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4594 			!xhci->devs[udev->slot_id])
4595 		return USB3_LPM_DISABLED;
4596 
4597 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4598 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4599 	if (mel < 0) {
4600 		/* Max Exit Latency is too big, disable LPM. */
4601 		hub_encoded_timeout = USB3_LPM_DISABLED;
4602 		mel = 0;
4603 	}
4604 
4605 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4606 	if (ret)
4607 		return ret;
4608 	return hub_encoded_timeout;
4609 }
4610 
4611 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4612 			struct usb_device *udev, enum usb3_link_state state)
4613 {
4614 	struct xhci_hcd	*xhci;
4615 	u16 mel;
4616 
4617 	xhci = hcd_to_xhci(hcd);
4618 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4619 			!xhci->devs[udev->slot_id])
4620 		return 0;
4621 
4622 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4623 	return xhci_change_max_exit_latency(xhci, udev, mel);
4624 }
4625 #else /* CONFIG_PM */
4626 
4627 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4628 				struct usb_device *udev, int enable)
4629 {
4630 	return 0;
4631 }
4632 
4633 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4634 {
4635 	return 0;
4636 }
4637 
4638 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639 			struct usb_device *udev, enum usb3_link_state state)
4640 {
4641 	return USB3_LPM_DISABLED;
4642 }
4643 
4644 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4645 			struct usb_device *udev, enum usb3_link_state state)
4646 {
4647 	return 0;
4648 }
4649 #endif	/* CONFIG_PM */
4650 
4651 /*-------------------------------------------------------------------------*/
4652 
4653 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4654  * internal data structures for the device.
4655  */
4656 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4657 			struct usb_tt *tt, gfp_t mem_flags)
4658 {
4659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4660 	struct xhci_virt_device *vdev;
4661 	struct xhci_command *config_cmd;
4662 	struct xhci_input_control_ctx *ctrl_ctx;
4663 	struct xhci_slot_ctx *slot_ctx;
4664 	unsigned long flags;
4665 	unsigned think_time;
4666 	int ret;
4667 
4668 	/* Ignore root hubs */
4669 	if (!hdev->parent)
4670 		return 0;
4671 
4672 	vdev = xhci->devs[hdev->slot_id];
4673 	if (!vdev) {
4674 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4675 		return -EINVAL;
4676 	}
4677 
4678 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4679 	if (!config_cmd)
4680 		return -ENOMEM;
4681 
4682 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4683 	if (!ctrl_ctx) {
4684 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4685 				__func__);
4686 		xhci_free_command(xhci, config_cmd);
4687 		return -ENOMEM;
4688 	}
4689 
4690 	spin_lock_irqsave(&xhci->lock, flags);
4691 	if (hdev->speed == USB_SPEED_HIGH &&
4692 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4693 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4694 		xhci_free_command(xhci, config_cmd);
4695 		spin_unlock_irqrestore(&xhci->lock, flags);
4696 		return -ENOMEM;
4697 	}
4698 
4699 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4700 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4701 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4702 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4703 	/*
4704 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4705 	 * but it may be already set to 1 when setup an xHCI virtual
4706 	 * device, so clear it anyway.
4707 	 */
4708 	if (tt->multi)
4709 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4710 	else if (hdev->speed == USB_SPEED_FULL)
4711 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4712 
4713 	if (xhci->hci_version > 0x95) {
4714 		xhci_dbg(xhci, "xHCI version %x needs hub "
4715 				"TT think time and number of ports\n",
4716 				(unsigned int) xhci->hci_version);
4717 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4718 		/* Set TT think time - convert from ns to FS bit times.
4719 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4720 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4721 		 *
4722 		 * xHCI 1.0: this field shall be 0 if the device is not a
4723 		 * High-spped hub.
4724 		 */
4725 		think_time = tt->think_time;
4726 		if (think_time != 0)
4727 			think_time = (think_time / 666) - 1;
4728 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4729 			slot_ctx->tt_info |=
4730 				cpu_to_le32(TT_THINK_TIME(think_time));
4731 	} else {
4732 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4733 				"TT think time or number of ports\n",
4734 				(unsigned int) xhci->hci_version);
4735 	}
4736 	slot_ctx->dev_state = 0;
4737 	spin_unlock_irqrestore(&xhci->lock, flags);
4738 
4739 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4740 			(xhci->hci_version > 0x95) ?
4741 			"configure endpoint" : "evaluate context");
4742 
4743 	/* Issue and wait for the configure endpoint or
4744 	 * evaluate context command.
4745 	 */
4746 	if (xhci->hci_version > 0x95)
4747 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4748 				false, false);
4749 	else
4750 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4751 				true, false);
4752 
4753 	xhci_free_command(xhci, config_cmd);
4754 	return ret;
4755 }
4756 
4757 static int xhci_get_frame(struct usb_hcd *hcd)
4758 {
4759 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4760 	/* EHCI mods by the periodic size.  Why? */
4761 	return readl(&xhci->run_regs->microframe_index) >> 3;
4762 }
4763 
4764 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4765 {
4766 	struct xhci_hcd		*xhci;
4767 	/*
4768 	 * TODO: Check with DWC3 clients for sysdev according to
4769 	 * quirks
4770 	 */
4771 	struct device		*dev = hcd->self.sysdev;
4772 	int			retval;
4773 
4774 	/* Accept arbitrarily long scatter-gather lists */
4775 	hcd->self.sg_tablesize = ~0;
4776 
4777 	/* support to build packet from discontinuous buffers */
4778 	hcd->self.no_sg_constraint = 1;
4779 
4780 	/* XHCI controllers don't stop the ep queue on short packets :| */
4781 	hcd->self.no_stop_on_short = 1;
4782 
4783 	xhci = hcd_to_xhci(hcd);
4784 
4785 	if (usb_hcd_is_primary_hcd(hcd)) {
4786 		xhci->main_hcd = hcd;
4787 		/* Mark the first roothub as being USB 2.0.
4788 		 * The xHCI driver will register the USB 3.0 roothub.
4789 		 */
4790 		hcd->speed = HCD_USB2;
4791 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4792 		/*
4793 		 * USB 2.0 roothub under xHCI has an integrated TT,
4794 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4795 		 * companion controller.
4796 		 */
4797 		hcd->has_tt = 1;
4798 	} else {
4799 		if (xhci->sbrn == 0x31) {
4800 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4801 			hcd->speed = HCD_USB31;
4802 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4803 		}
4804 		/* xHCI private pointer was set in xhci_pci_probe for the second
4805 		 * registered roothub.
4806 		 */
4807 		return 0;
4808 	}
4809 
4810 	mutex_init(&xhci->mutex);
4811 	xhci->cap_regs = hcd->regs;
4812 	xhci->op_regs = hcd->regs +
4813 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4814 	xhci->run_regs = hcd->regs +
4815 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4816 	/* Cache read-only capability registers */
4817 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4818 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4819 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4820 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4821 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4822 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4823 	if (xhci->hci_version > 0x100)
4824 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4825 	xhci_print_registers(xhci);
4826 
4827 	xhci->quirks |= quirks;
4828 
4829 	get_quirks(dev, xhci);
4830 
4831 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4832 	 * success event after a short transfer. This quirk will ignore such
4833 	 * spurious event.
4834 	 */
4835 	if (xhci->hci_version > 0x96)
4836 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4837 
4838 	/* Make sure the HC is halted. */
4839 	retval = xhci_halt(xhci);
4840 	if (retval)
4841 		return retval;
4842 
4843 	xhci_dbg(xhci, "Resetting HCD\n");
4844 	/* Reset the internal HC memory state and registers. */
4845 	retval = xhci_reset(xhci);
4846 	if (retval)
4847 		return retval;
4848 	xhci_dbg(xhci, "Reset complete\n");
4849 
4850 	/*
4851 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4852 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4853 	 * address memory pointers actually. So, this driver clears the AC64
4854 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4855 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4856 	 */
4857 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4858 		xhci->hcc_params &= ~BIT(0);
4859 
4860 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4861 	 * if xHC supports 64-bit addressing */
4862 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4863 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4864 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4865 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4866 	} else {
4867 		/*
4868 		 * This is to avoid error in cases where a 32-bit USB
4869 		 * controller is used on a 64-bit capable system.
4870 		 */
4871 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4872 		if (retval)
4873 			return retval;
4874 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4875 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4876 	}
4877 
4878 	xhci_dbg(xhci, "Calling HCD init\n");
4879 	/* Initialize HCD and host controller data structures. */
4880 	retval = xhci_init(hcd);
4881 	if (retval)
4882 		return retval;
4883 	xhci_dbg(xhci, "Called HCD init\n");
4884 
4885 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4886 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4887 
4888 	return 0;
4889 }
4890 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4891 
4892 static const struct hc_driver xhci_hc_driver = {
4893 	.description =		"xhci-hcd",
4894 	.product_desc =		"xHCI Host Controller",
4895 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4896 
4897 	/*
4898 	 * generic hardware linkage
4899 	 */
4900 	.irq =			xhci_irq,
4901 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4902 
4903 	/*
4904 	 * basic lifecycle operations
4905 	 */
4906 	.reset =		NULL, /* set in xhci_init_driver() */
4907 	.start =		xhci_run,
4908 	.stop =			xhci_stop,
4909 	.shutdown =		xhci_shutdown,
4910 
4911 	/*
4912 	 * managing i/o requests and associated device resources
4913 	 */
4914 	.urb_enqueue =		xhci_urb_enqueue,
4915 	.urb_dequeue =		xhci_urb_dequeue,
4916 	.alloc_dev =		xhci_alloc_dev,
4917 	.free_dev =		xhci_free_dev,
4918 	.alloc_streams =	xhci_alloc_streams,
4919 	.free_streams =		xhci_free_streams,
4920 	.add_endpoint =		xhci_add_endpoint,
4921 	.drop_endpoint =	xhci_drop_endpoint,
4922 	.endpoint_reset =	xhci_endpoint_reset,
4923 	.check_bandwidth =	xhci_check_bandwidth,
4924 	.reset_bandwidth =	xhci_reset_bandwidth,
4925 	.address_device =	xhci_address_device,
4926 	.enable_device =	xhci_enable_device,
4927 	.update_hub_device =	xhci_update_hub_device,
4928 	.reset_device =		xhci_discover_or_reset_device,
4929 
4930 	/*
4931 	 * scheduling support
4932 	 */
4933 	.get_frame_number =	xhci_get_frame,
4934 
4935 	/*
4936 	 * root hub support
4937 	 */
4938 	.hub_control =		xhci_hub_control,
4939 	.hub_status_data =	xhci_hub_status_data,
4940 	.bus_suspend =		xhci_bus_suspend,
4941 	.bus_resume =		xhci_bus_resume,
4942 
4943 	/*
4944 	 * call back when device connected and addressed
4945 	 */
4946 	.update_device =        xhci_update_device,
4947 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4948 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4949 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4950 	.find_raw_port_number =	xhci_find_raw_port_number,
4951 };
4952 
4953 void xhci_init_driver(struct hc_driver *drv,
4954 		      const struct xhci_driver_overrides *over)
4955 {
4956 	BUG_ON(!over);
4957 
4958 	/* Copy the generic table to drv then apply the overrides */
4959 	*drv = xhci_hc_driver;
4960 
4961 	if (over) {
4962 		drv->hcd_priv_size += over->extra_priv_size;
4963 		if (over->reset)
4964 			drv->reset = over->reset;
4965 		if (over->start)
4966 			drv->start = over->start;
4967 	}
4968 }
4969 EXPORT_SYMBOL_GPL(xhci_init_driver);
4970 
4971 MODULE_DESCRIPTION(DRIVER_DESC);
4972 MODULE_AUTHOR(DRIVER_AUTHOR);
4973 MODULE_LICENSE("GPL");
4974 
4975 static int __init xhci_hcd_init(void)
4976 {
4977 	/*
4978 	 * Check the compiler generated sizes of structures that must be laid
4979 	 * out in specific ways for hardware access.
4980 	 */
4981 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4982 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4983 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4984 	/* xhci_device_control has eight fields, and also
4985 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4986 	 */
4987 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4988 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4989 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4990 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4991 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4992 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4993 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4994 
4995 	if (usb_disabled())
4996 		return -ENODEV;
4997 
4998 	return 0;
4999 }
5000 
5001 /*
5002  * If an init function is provided, an exit function must also be provided
5003  * to allow module unload.
5004  */
5005 static void __exit xhci_hcd_fini(void) { }
5006 
5007 module_init(xhci_hcd_init);
5008 module_exit(xhci_hcd_fini);
5009